Created
January 6, 2023 12:17
-
-
Save solalatus/e6329879c5c9479ce60af9f6b0e22bb4 to your computer and use it in GitHub Desktop.
NHiTS model loading and finetuning
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#loading model | |
loaded_model = NHiTSModel.load_from_checkpoint("old_checkpoint","/content/", best=True) | |
#defining new parameters | |
MODEL_NAME = "finetune_only" | |
from torch.optim import RAdam | |
OPTIMIZER_CLS = RAdam | |
BASE_LR = 0.00001 | |
EPOCHS = 25 | |
#initializing new logger instance | |
from pytorch_lightning import loggers as pl_loggers | |
tb_logger = pl_loggers.TensorBoardLogger(save_dir="darts_logs/", name=MODEL_NAME, version="logs") | |
#overwriting model params | |
loaded_model.logger = tb_logger | |
loaded_model.n_epochs = EPOCHS | |
loaded_model.model_name = MODEL_NAME | |
loaded_model.load_ckpt_path = None | |
loaded_model.model_params["model_name"] = MODEL_NAME | |
loaded_model.model_params["n_epochs"] = EPOCHS | |
loaded_model.model_params["optimizer_scheduler_cls"] = OPTIMIZER_CLS | |
loaded_model.model_params["optimizer_kwargs"] = {"lr": BASE_LR} | |
loaded_model.model_params["lr_scheduler_cls"] = None | |
loaded_model.model_params["lr_scheduler_kwargs"] = {} | |
loaded_model.model.optimizer_kwargs = {"lr": BASE_LR} | |
loaded_model.model.optimizer_cls = OPTIMIZER_CLS | |
loaded_model.model.lr_scheduler_cls = None | |
loaded_model.model.lr_scheduler_kwargs = {} | |
loaded_model.model.n_epochs = EPOCHS | |
loaded_model.pl_module_params["optimizer_kwargs"] = {"lr": BASE_LR} | |
loaded_model.pl_module_params["optimizer_cls"] = OPTIMIZER_CLS | |
loaded_model.pl_module_params["lr_scheduler_cls"] = None | |
loaded_model.pl_module_params["lr_scheduler_kwargs"] = {} | |
loaded_model.trainer_params["logger"]=tb_logger | |
loaded_model.trainer_params["max_epochs"] = EPOCHS | |
loaded_model.trainer_params["val_check_interval"] = None | |
loaded_model.trainer_params["check_val_every_n_epoch"] = 1 | |
loaded_model.trainer_params["default_root_dir"] = "/content/darts_logs/" | |
loaded_model.trainer_params["callbacks"][0].dirpath = "/content/darts_logs/"+MODEL_NAME+"/checkpoints" | |
#initialize new trainer | |
trainer = loaded_model._init_trainer(loaded_model.trainer_params) | |
#point to new trainer | |
loaded_model.trainer=trainer | |
loaded_model.model.trainer=trainer | |
#call trainer.strategy.setup | |
loaded_model.trainer.strategy.setup_optimizers(trainer) | |
#call model setup | |
loaded_model.model.setup("fit") | |
#FINALLY continue finetuning / new training | |
loaded_model.fit(hubs_train_data, val_series=hubs_valid_data, verbose=True) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment