Skip to content

Instantly share code, notes, and snippets.

@solaris33
Last active January 22, 2018 15:25
Show Gist options
  • Save solaris33/ed312182e3ad94e671dfd76b9bf39229 to your computer and use it in GitHub Desktop.
Save solaris33/ed312182e3ad94e671dfd76b9bf39229 to your computer and use it in GitHub Desktop.
# -*- coding: utf-8 -*-
#tf.Variable 예제 (변수 공유 안됨)
# MNIST 데이터를 다운로드 한다.
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
import tensorflow as tf
def softmax_classifier(x):
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
y = tf.nn.softmax(tf.matmul(x, W) + b)
return y
x = tf.placeholder(tf.float32, [None, 784])
# tf.Variable을 이용할시 서로 다른 변수를 가진 2개의 classifier가 선언됨
classifier1 = softmax_classifier(x)
classifier2 = softmax_classifier(x)
# cross-entropy 모델을 설정한다.
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(classifier1), reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
# 경사하강법으로 모델을 학습한다.
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)
for i in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
# 학습된 모델이 얼마나 정확한지를 출력한다.
# 두개의 classifier가 변수를 공유하지 않으므로 변수(파라미터)를 최적화한 classifier1만 정확한 값을 출력한다.
correct_prediction1 = tf.equal(tf.argmax(classifier1,1), tf.argmax(y_,1))
correct_prediction2 = tf.equal(tf.argmax(classifier2,1), tf.argmax(y_,1))
accuracy1 = tf.reduce_mean(tf.cast(correct_prediction1, tf.float32))
accuracy2 = tf.reduce_mean(tf.cast(correct_prediction2, tf.float32))
print(sess.run(accuracy1, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
print(sess.run(accuracy2, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment