We start with the imports:
import dicom
import os
import numpy
The
pydicom
package can be installed throughpip
and can be found in https://pypi.python.org/pypi/pydicom/
Populate a lstFilesDCM
with the filenames of the DICOM files under a given PathDicom
directory:
PathDicom = "./dir_with_dicom_series/"
lstFilesDCM = [] # create an empty list
for dirName, subdirList, fileList in os.walk(PathDicom):
for filename in fileList:
if ".dcm" in filename.lower(): # check whether the file's DICOM
lstFilesDCM.append(os.path.join(dirName,filename))
Use the first of the DICOM files to read in some of the metadata, specifically the image dimensions, the pixel-spacing, and the slice-thickness:
# Get ref file
RefDs = dicom.read_file(lstFilesDCM[0])
# Load dimensions based on the number of rows, columns, and slices (along the Z axis)
ConstPixelDims = (int(RefDs.Rows), int(RefDs.Columns), len(lstFilesDCM))
# Load spacing values (in mm)
ConstPixelSpacing = (float(RefDs.PixelSpacing[0]), float(RefDs.PixelSpacing[1]), float(RefDs.SliceThickness))
Load all the pixel data into an appropriate sized NumPy array named ArrayDicom
:
# The array is sized based on 'ConstPixelDims'
ArrayDicom = numpy.zeros(ConstPixelDims, dtype=RefDs.pixel_array.dtype)
# loop through all the DICOM files
for filenameDCM in lstFilesDCM:
# read the file
ds = dicom.read_file(filenameDCM)
# store the raw image data
ArrayDicom[:, :, lstFilesDCM.index(filenameDCM)] = ds.pixel_array
The entire code can be seen in the accompanying .py file
This code returns a 2D array, How can I get 3D array?