-
-
Save somat/caaeb88ba806d274adad44d1802e32ca to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
"""Example RNN.""" | |
from __future__ import print_function, division | |
import numpy as np | |
import tensorflow as tf | |
import matplotlib.pyplot as plt | |
num_epochs = 100 | |
total_series_length = 50000 | |
truncated_backprop_length = 15 | |
state_size = 4 | |
num_classes = 2 | |
echo_step = 3 | |
batch_size = 5 | |
num_batches = total_series_length//batch_size//truncated_backprop_length | |
def generateData(): | |
"""Generate data.""" | |
x = np.array(np.random.choice(2, total_series_length, p=[0.5, 0.5])) | |
y = np.roll(x, echo_step) | |
y[0:echo_step] = 0 | |
x = x.reshape((batch_size, -1)) | |
y = y.reshape((batch_size, -1)) | |
return(x, y) | |
batchX_placeholder = tf.placeholder( | |
tf.float32, [batch_size, truncated_backprop_length]) | |
batchY_placeholder = tf.placeholder( | |
tf.int32, [batch_size, truncated_backprop_length]) | |
init_state = tf.placeholder(tf.float32, [batch_size, state_size]) | |
W = tf.Variable(np.random.rand(state_size+1, state_size), dtype=tf.float32) | |
b = tf.Variable(np.zeros((1, state_size)), dtype=tf.float32) | |
W2 = tf.Variable(np.random.rand(state_size, num_classes), dtype=tf.float32) | |
b2 = tf.Variable(np.zeros((1, num_classes)), dtype=tf.float32) | |
input_series = tf.unstack(batchX_placeholder, axis=1) | |
labels_series = tf.unstack(batchY_placeholder, axis=1) | |
current_state = init_state | |
states_series = [] | |
for current_input in input_series: | |
current_input = tf.reshape(current_input, [batch_size, 1]) | |
input_and_state_concatenated = tf.concat([current_input, current_state], 1) | |
next_state = tf.tanh(tf.matmul(input_and_state_concatenated, W) + b) | |
states_series.append(next_state) | |
current_state = next_state | |
logits_series = [tf.matmul(state, W2) + b2 for state in states_series] | |
predictions_series = [tf.nn.softmax(logits) for logits in logits_series] | |
losses = [tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, | |
labels=labels) | |
for logits, labels in zip(logits_series, labels_series)] | |
total_loss = tf.reduce_mean(losses) | |
train_step = tf.train.AdagradOptimizer(0.3).minimize(total_loss) | |
def plot(loss_list, predictions_series, batchX, batchY): | |
"""Visualize.""" | |
plt.subplot(2, 3, 1) | |
plt.cla() | |
plt.plot(loss_list) | |
for batch_series_idx in range(5): | |
one_hot_output_series = np.array( | |
predictions_series)[:, batch_series_idx, :] | |
single_output_series = np.array( | |
[(1 if out[0] < 0.5 else 0) for out in one_hot_output_series]) | |
plt.subplot(2, 3, batch_series_idx + 2) | |
plt.cla() | |
plt.axis([0, truncated_backprop_length, 0, 2]) | |
left_offset = range(truncated_backprop_length) | |
plt.bar( | |
left_offset, batchX[batch_series_idx, :], width=1, color="blue") | |
plt.bar( | |
left_offset, batchY[batch_series_idx, :] * 0.5, width=1, color="red") | |
plt.bar( | |
left_offset, single_output_series * 0.3, width=1, color="green") | |
plt.draw() | |
plt.pause(0.0001) | |
with tf.Session() as sess: | |
sess.run(tf.global_variables_initializer()) | |
plt.ion() | |
plt.figure() | |
plt.show() | |
loss_list = [] | |
for epoch_idx in range(num_epochs): | |
x, y = generateData() | |
_current_state = np.zeros((batch_size, state_size)) | |
print("New data, epoch", epoch_idx) | |
for batch_idx in range(num_batches): | |
start_idx = batch_idx * truncated_backprop_length | |
end_idx = start_idx + truncated_backprop_length | |
batchX = x[:, start_idx:end_idx] | |
batchY = y[:, start_idx:end_idx] | |
_total_loss, _train_step, _current_state, \ | |
_predictions_series = sess.run( | |
[total_loss, train_step, current_state, predictions_series], | |
feed_dict={ | |
batchX_placeholder: batchX, | |
batchY_placeholder: batchY, | |
init_state: _current_state | |
}) | |
loss_list.append(_total_loss) | |
if batch_idx % 100 == 0: | |
print("Step", batch_idx, "Loss", _total_loss) | |
plot(loss_list, _predictions_series, batchX, batchY) | |
plt.ioff() | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment