Created
February 16, 2014 13:42
-
-
Save soraphis/9034405 to your computer and use it in GitHub Desktop.
logarithmusregel
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Beweis Logarithmusregel | |
## Logarithmisch Differenzieren | |
**zz:** $ log_a(x) = \frac 1{x * ln(a)} $ | |
### teil 1: | |
##### sonderfall $ a = e $ → $ log_a = ln $ | |
**zz:** $ ln(x) = \frac1x$ | |
$$ e^{ln(x)} = x \ \ | \frac d{dx}$$ | |
$$ \frac d{dx}e^{ln(x)} = \frac {dx}{dx}$$ | |
$$ e^{ln(x)} \frac {d \ ln(x)}{dx} = 1 \ \ | : e^{ln(x)}$$ | |
$$ \frac {d \ ln(x)}{dx} = \frac1{e^{ln(x)}}$$ | |
### teil 2: | |
##### erweiterung auf beliebige basis a | |
$$ log_a(x) = \frac{ln(x)}{ln(a)} \ \ | \frac d{dx}$$ | |
$$ \frac {d\ log_a(x)}{dx} = \frac{ln(x)}{ln(a)}$$ | |
$$ \frac {d\ log_a(x)}{dx} = \frac{1}{x\ ln(a)}$$ | |
$q.e.d$ | |
> Written with [StackEdit](https://stackedit.io/). |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Beweis Logarithmusregel | |
## Logarithmisch Differenzieren | |
**zz:** $ log_a(x) = \frac 1{x * ln(a)} $ | |
### teil 1: | |
##### sonderfall $ a = e $ → $ log_a = ln $ | |
**zz:** $ ln(x) = \frac1x$ | |
$$ e^{ln(x)} = x \ \ | \frac d{dx}$$ | |
$$ \frac d{dx}e^{ln(x)} = \frac {dx}{dx}$$ | |
$$ e^{ln(x)} \frac {d \ ln(x)}{dx} = 1 \ \ | : e^{ln(x)}$$ | |
$$ \frac {d \ ln(x)}{dx} = \frac1{e^{ln(x)}}$$ | |
### teil 2: | |
##### erweiterung auf beliebige basis a | |
$$ log_a(x) = \frac{ln(x)}{ln(a)} \ \ | \frac d{dx}$$ | |
$$ \frac {d\ log_a(x)}{dx} = \frac{ln(x)}{ln(a)}$$ | |
$$ \frac {d\ log_a(x)}{dx} = \frac{1}{x\ ln(a)}$$ | |
$q.e.d$ | |
> Written with [StackEdit](https://stackedit.io/). |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment