Last active
September 26, 2017 04:03
-
-
Save soravux/d6622e2ca367d5dc5d1eab3de2cf3f0e to your computer and use it in GitHub Desktop.
Test pour la stabilité des exemples adversariaux.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import print_function | |
import os | |
from tqdm import tqdm | |
import numpy as np | |
import argparse | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.optim as optim | |
from torchvision import datasets, transforms | |
from torch.autograd import Variable | |
from matplotlib import pyplot as plt | |
# Training settings | |
parser = argparse.ArgumentParser(description='PyTorch MNIST Example') | |
parser.add_argument('--batch-size', type=int, default=64, metavar='N', | |
help='input batch size for training (default: 64)') | |
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', | |
help='input batch size for testing (default: 1000)') | |
parser.add_argument('--epochs', type=int, default=2, metavar='N', | |
help='number of epochs to train (default: 5)') | |
parser.add_argument('--lr', type=float, default=0.01, metavar='LR', | |
help='learning rate (default: 0.01)') | |
parser.add_argument('--log-interval', type=int, default=10, metavar='N', | |
help='how many batches to wait before logging training status') | |
args = parser.parse_args() | |
train_loader = torch.utils.data.DataLoader( | |
datasets.MNIST('./data', train=True, download=True, | |
transform=transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Normalize((0.1307,), (0.3081,)) | |
])), | |
batch_size=args.batch_size, shuffle=True) | |
test_loader = torch.utils.data.DataLoader( | |
datasets.MNIST('./data', train=False, transform=transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Normalize((0.1307,), (0.3081,)) | |
])), | |
batch_size=args.batch_size, shuffle=True) | |
class Net(nn.Module): | |
def __init__(self): | |
super(Net, self).__init__() | |
self.conv1 = nn.Conv2d(1, 10, kernel_size=5) | |
self.conv2 = nn.Conv2d(10, 20, kernel_size=5) | |
self.conv2_drop = nn.Dropout2d() | |
self.fc1 = nn.Linear(320, 50) | |
self.fc2 = nn.Linear(50, 10) | |
def forward(self, x): | |
x = F.relu(F.max_pool2d(self.conv1(x), 2)) | |
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) | |
x = x.view(-1, 320) | |
x = F.relu(self.fc1(x)) | |
x = F.dropout(x, training=self.training) | |
x = self.fc2(x) | |
return F.log_softmax(x) | |
model = Net() | |
optimizer = optim.Adam(model.parameters(), lr=args.lr) | |
def train(epoch): | |
model.train() | |
for batch_idx, (data, target) in enumerate(train_loader): | |
# 1. Add requires_grad so Torch doesn't erase the gradient with its optimization pass | |
data, target = Variable(data, requires_grad=True), Variable(target) | |
optimizer.zero_grad() | |
output = model(data) | |
loss = F.nll_loss(output, target) | |
loss.backward() | |
optimizer.step() | |
if batch_idx % args.log_interval == 0: | |
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( | |
epoch, batch_idx * len(data), len(train_loader.dataset), | |
100. * batch_idx / len(train_loader), loss.data[0])) | |
def getAdversarials(data, target_idx): | |
target = torch.LongTensor(64) | |
target.fill_(target_idx) | |
target = Variable(target) | |
adv_data = Variable(data.data, requires_grad=True) | |
for _ in tqdm(range(1000)): | |
optimizer.zero_grad() | |
adv_data = Variable(adv_data.data, requires_grad=True) | |
output = model(adv_data) | |
loss = F.nll_loss(output, target) | |
loss.backward() | |
adv_data = adv_data - adv_data.grad | |
maxval_adv, idx = torch.max(output, 1) | |
print("Nombre de la batch qui sont maintenant des {}: {}".format(target_idx, np.sum(idx.data.numpy() == target_idx))) | |
return adv_data | |
def checkNoiseSensitivity(data, targets, sigma_noise=0.25): | |
output = model(data) | |
maxval, idx = torch.max(output, 1) | |
# Bruitons ca un peu | |
data_bruite = Variable(data.data + sigma_noise*torch.randn(data.size())) | |
output_bruite = model(data_bruite) | |
maxval_bruite, idx_bruite = torch.max(output_bruite, 1) | |
plt.figure() | |
plt.subplot(221); plt.imshow(data.data.numpy()[0,0,...]); plt.colorbar() | |
plt.subplot(222); plt.imshow(data_bruite.data.numpy()[0,0,...]); plt.colorbar() | |
plt.subplot(223); plt.imshow(data.data.numpy()[1,0,...]); plt.colorbar() | |
plt.subplot(224); plt.imshow(data_bruite.data.numpy()[1,0,...]); plt.colorbar() | |
if isinstance(targets, int): | |
targets = np.zeros(data.data.numpy().shape[0]) + targets | |
else: | |
targets = targets.numpy() | |
maxval = maxval.data.numpy() | |
maxval_bruite = maxval_bruite.data.numpy() | |
idx_bruite = idx_bruite.data.numpy() | |
idx = idx.data.numpy() | |
acc_normal = np.sum(idx == targets) / idx.size | |
acc_bruite = np.sum(idx_bruite == targets) / idx_bruite.size | |
print("acc. normal: {:.2f}%".format(acc_normal*100)) | |
print("acc. bruite: {:.2f}%".format(acc_bruite*100)) | |
plt.figure() | |
plt.subplot(211); plt.hist(maxval, 50) | |
plt.subplot(212); plt.hist(maxval_bruite, 50) | |
plt.show(block=False) | |
def test(): | |
model.eval() | |
test_loss = 0 | |
correct = 0 | |
for data, target in test_loader: | |
data, target = Variable(data, volatile=True), Variable(target) | |
output = model(data) | |
test_loss += F.nll_loss(output, target, size_average=False).data[0] # sum up batch loss | |
pred = output.data.max(1)[1] # get the index of the max log-probability | |
correct += pred.eq(target.data.view_as(pred)).cpu().sum() | |
test_loss /= len(test_loader.dataset) | |
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( | |
test_loss, correct, len(test_loader.dataset), | |
100. * correct / len(test_loader.dataset))) | |
if __name__ == "__main__": | |
model_filename = "ex2model.mesouviensplusdelextension" | |
if os.path.isfile(model_filename): | |
model.load_state_dict(torch.load(model_filename)) | |
else: | |
for epoch in range(1, args.epochs + 1): | |
train(epoch) | |
torch.save(model.state_dict(), model_filename) | |
for data, target in train_loader: | |
break | |
data = Variable(data) | |
adversarials = getAdversarials(data, 1) # On veut qu'ils se trompent pour des "1" | |
print("Données standard") | |
checkNoiseSensitivity(data, target) | |
print("Données adversariales") | |
checkNoiseSensitivity(adversarials, 1) | |
plt.figure() | |
plt.subplot(321); plt.imshow(data.data.numpy()[0,0,...]); plt.colorbar() | |
plt.subplot(322); plt.imshow(adversarials.data.numpy()[0,0,...]); plt.colorbar() | |
plt.subplot(323); plt.imshow(data.data.numpy()[1,0,...]); plt.colorbar() | |
plt.subplot(324); plt.imshow(adversarials.data.numpy()[1,0,...]); plt.colorbar() | |
plt.subplot(325); plt.imshow(data.data.numpy()[2,0,...]); plt.colorbar() | |
plt.subplot(326); plt.imshow(adversarials.data.numpy()[2,0,...]); plt.colorbar() | |
plt.show() | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment