Created
July 1, 2011 11:57
-
-
Save sordina/1058392 to your computer and use it in GitHub Desktop.
Dragon Curve ASCII Game
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{- | |
Plotting the dragon curve | |
========================= | |
Console Version | |
http://en.wikipedia.org/wiki/Lindenmayer_system | |
-} | |
import System | |
import System.Random | |
import Control.Monad | |
import Control.Arrow | |
import Data.List | |
import Data.Maybe | |
import Data.Char | |
import qualified Data.Map as M | |
-- Should be 90 degrees, but just playing with it to see what happenes | |
angle = pi/2.2 | |
data Direction = X | Y | F | P | N deriving (Show, Eq) | |
dims = (80,25) | |
-- Magic number: Itteration of the Lindenmayer transform | |
main = do | |
st_george <- readFile "/Users/lyndon/Documents/Reading/st_george.txt" | |
let | |
text = cycle $ stripper st_george | |
curve_length = length dragon_points | |
matcher = take curve_length text | |
dragon_points = normalise ((fromIntegral *** fromIntegral) dims) $ points $ dragon 12 | |
putStrLn $ two_strippers matcher (cycle st_george) | |
render dims $ flip zip (map toLower text) $ dragon_points | |
render :: (Int, Int) -> [((Int,Int),Char)] -> IO () | |
render (w,h) l = | |
forM_ [0..h] $ \y -> do | |
forM_ [0..w] $ \x -> putStr (fromMaybe ' ' (M.lookup (x,y) m) : []) | |
putStrLn "" | |
where m = M.fromList l | |
stripper = filter (not . flip elem ".\n\t ") | |
two_strippers [] _ = [] | |
two_strippers w@(c:cs) (e:es) | |
| c == e = e : two_strippers cs es | |
| otherwise = e : two_strippers w es | |
normalise :: (Float,Float) -> [(Float,Float)] -> [(Int,Int)] | |
normalise (w,h) l = nub $ map ((\x -> round (x * w / maxx)) *** (\y -> round (y * h / maxy))) l' | |
where | |
minx = minimum $ map fst l | |
miny = minimum $ map snd l | |
l' = map (subtract minx *** subtract miny) l | |
maxx = maximum $ map fst l' | |
maxy = maximum $ map snd l' | |
points :: [Direction] -> [(Float,Float)] | |
points l = snd $ foldl' foo (0,[(0,0)]) l | |
where | |
foo :: (Float,[(Float,Float)]) -> Direction -> (Float,[(Float,Float)]) | |
foo (a, xs) P = (a + angle, xs) | |
foo (a, xs) N = (a - angle, xs) | |
foo (a, xs@((x,y):_)) F = (a, (x + cos a, y + sin a):xs) | |
foo i _ = i | |
dragon :: Int -> [Direction] | |
dragon n = filter (`elem` [F,P,N]) (dragons !! n) | |
dragons = iterate (concatMap substitute) [F,X] | |
substitute X = [X,P,Y,F,P] | |
substitute Y = [N,F,X,N,Y] | |
substitute x = [x] |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment