Last active
March 3, 2016 22:34
-
-
Save sotelo/de05e5173d4315a302ff to your computer and use it in GitHub Desktop.
test simple model file
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from blocks.main_loop import MainLoop | |
from blocks.model import Model | |
from blocks.utils import shared_floatx_zeros, shared_floatx | |
from theano import tensor, config, function | |
from play.bricks.custom import (DeepTransitionFeedback, GMMEmitter, | |
SPF0Emitter) | |
from blocks.extensions.monitoring import TrainingDataMonitoring | |
from blocks.extensions import Printing | |
################### | |
# Define parameters of the model | |
################### | |
batch_size = 64 #for tpbtt | |
frame_size = 257 + 2 | |
seq_size = 128 | |
k = 20 | |
target_size = frame_size * k | |
depth_x = 4 | |
hidden_size_mlp_x = 2000 | |
depth_theta = 4 | |
hidden_size_mlp_theta = 2000 | |
hidden_size_recurrent = 2000 | |
depth_recurrent = 3 | |
lr = 2e-4 | |
floatX = theano.config.floatX | |
save_dir = './results/' | |
save_dir = os.path.join(save_dir,'blizzard/') | |
experiment_name = "baseline_sp" | |
################# | |
# Prepare dataset | |
################# | |
from parrot.datasets.blizzard import blizzard_stream | |
train_stream = blizzard_stream(('train',), batch_size) | |
valid_stream = blizzard_stream( | |
('valid',), batch_size, seq_length = 200, | |
num_examples = 64, sorting_mult = 1) | |
x_tr = next(train_stream.get_epoch_iterator()) | |
################# | |
# Model | |
################# | |
f0 = tensor.matrix('f0') | |
voiced = tensor.matrix('voiced') | |
start_flag = tensor.scalar('start_flag') | |
sp = tensor.tensor3('spectrum') | |
f0s = f0.dimshuffle(0,1,'x') | |
voiceds = voiced.dimshuffle(0,1,'x') | |
x = tensor.concatenate([sp, f0s, voiceds], 2) | |
activations_x = [Rectifier()]*depth_x | |
dims_x = [frame_size] + [hidden_size_mlp_x]*(depth_x-1) + \ | |
[hidden_size_recurrent] | |
activations_theta = [Rectifier()]*depth_theta | |
dims_theta = [hidden_size_recurrent] + \ | |
[hidden_size_mlp_theta]*depth_theta | |
mlp_x = MLP(activations = activations_x, | |
dims = dims_x) | |
feedback = DeepTransitionFeedback(mlp = mlp_x) | |
transition = [GatedRecurrent(dim=hidden_size_recurrent, | |
name = "gru_{}".format(i) ) for i in range(depth_recurrent)] | |
transition = RecurrentStack( transition, | |
name="transition", skip_connections = True) | |
mlp_theta = MLP( activations = activations_theta, | |
dims = dims_theta) | |
emitter = SPF0Emitter(mlp = mlp_theta, | |
name = "emitter") | |
source_names = [name for name in transition.apply.states if 'states' in name] | |
readout = Readout( | |
readout_dim = hidden_size_recurrent, | |
source_names =source_names, | |
emitter=emitter, | |
feedback_brick = feedback, | |
name="readout") | |
generator = SequenceGenerator(readout=readout, | |
transition=transition, | |
name = "generator") | |
generator.weights_init = IsotropicGaussian(0.01) | |
generator.biases_init = Constant(0.) | |
generator.push_initialization_config() | |
generator.transition.biases_init = IsotropicGaussian(0.01,1) | |
generator.transition.push_initialization_config() | |
generator.initialize() | |
cost_matrix = generator.cost_matrix(x) | |
cost = cost_matrix.mean() + 0.*start_flag | |
cost.name = "nll" | |
cg = ComputationGraph(cost) | |
model = Model(cost) | |
monitoring_variables = [cost] | |
################# | |
# Algorithm | |
################# | |
algorithm = GradientDescent( | |
cost=cost, parameters=cg.parameters, | |
step_rule=CompositeRule([StepClipping(10.0), Adam(lr)])) | |
train_monitor = TrainingDataMonitoring( | |
variables=[cost], | |
every_n_batches=1, | |
prefix="train") | |
extensions=[ | |
train_monitor, | |
Printing(after_batch = True)] | |
main_loop = MainLoop( | |
model=model, | |
data_stream=train_stream, | |
algorithm=algorithm, | |
extensions = extensions) | |
main_loop.run() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment