Created
June 19, 2023 20:12
-
-
Save soulitzer/c747d3e9cb1e241f6c7b9b57c0f84a9b to your computer and use it in GitHub Desktop.
fx graph after inlining module call
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
test_dynamo_inline_module_nn_AdaptiveAvgPool1d_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- ------------------- ------------------------------------------------------------------- ------------------------- -------- | |
placeholder l_args_0_ L_args_0_ () {} | |
call_function adaptive_avg_pool1d <built-in method adaptive_avg_pool1d of type object at 0x103ccc7e8> (l_args_0_, 3) {} | |
output output output ((adaptive_avg_pool1d,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_AdaptiveAvgPool2d_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- ------------------- --------------------------------------------- ------------------------- -------- | |
placeholder l_args_0_ L_args_0_ () {} | |
call_function adaptive_avg_pool2d <function adaptive_avg_pool2d at 0x10513a9d0> (l_args_0_, 3) {} | |
output output output ((adaptive_avg_pool2d,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_AdaptiveAvgPool3d_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- ------------------- --------------------------------------------- ------------------------- -------- | |
placeholder l_args_0_ L_args_0_ () {} | |
call_function adaptive_avg_pool3d <function adaptive_avg_pool3d at 0x10513aa60> (l_args_0_, 3) {} | |
output output output ((adaptive_avg_pool3d,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_AdaptiveMaxPool1d_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- ------------------- ------------------------------------------------------ ------------------------- -------- | |
placeholder l_args_0_ L_args_0_ () {} | |
call_function adaptive_max_pool1d <function boolean_dispatch.<locals>.fn at 0x10513a5e0> (l_args_0_, 3, False) {} | |
output output output ((adaptive_max_pool1d,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_AdaptiveMaxPool2d_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- ------------------- ------------------------------------------------------ ------------------------- -------- | |
placeholder l_args_0_ L_args_0_ () {} | |
call_function adaptive_max_pool2d <function boolean_dispatch.<locals>.fn at 0x10513a790> (l_args_0_, 3, False) {} | |
output output output ((adaptive_max_pool2d,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_AdaptiveMaxPool3d_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- ------------------- ------------------------------------------------------ ------------------------- -------- | |
placeholder l_args_0_ L_args_0_ () {} | |
call_function adaptive_max_pool3d <function boolean_dispatch.<locals>.fn at 0x10513a940> (l_args_0_, 3, False) {} | |
output output output ((adaptive_max_pool3d,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_AvgPool1d_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- ---------- ---------------------------------------------------------- ------------------------------------------ -------- | |
placeholder l_args_0_ L_args_0_ () {} | |
call_function avg_pool1d <built-in method avg_pool1d of type object at 0x103ccc7e8> (l_args_0_, (2,), (2,), (0,), False, True) {} | |
output output output ((avg_pool1d,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_AvgPool2d_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- ---------- ------------------------------ ------------------------------------------------- -------- | |
placeholder l_args_0_ L_args_0_ () {} | |
call_function avg_pool2d <built-in function avg_pool2d> (l_args_0_, (2, 2), (2, 2), 0, False, True, None) {} | |
output output output ((avg_pool2d,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_AvgPool3d_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- ---------- ------------------------------ ------------------------------------------------------- -------- | |
placeholder l_args_0_ L_args_0_ () {} | |
call_function avg_pool3d <built-in function avg_pool3d> (l_args_0_, (2, 2, 2), (2, 2, 2), 0, False, True, None) {} | |
output output output ((avg_pool3d,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_BatchNorm1d_eval_mode_cpu_float32 (__main__.TestTempCPU) ... skipped 'skipping lazy module' | |
test_dynamo_inline_module_nn_BatchNorm1d_train_mode_cpu_float32 (__main__.TestTempCPU) ... skipped 'skipping lazy module' | |
test_dynamo_inline_module_nn_BatchNorm2d_eval_mode_cpu_float32 (__main__.TestTempCPU) ... skipped 'skipping lazy module' | |
test_dynamo_inline_module_nn_BatchNorm2d_train_mode_cpu_float32 (__main__.TestTempCPU) ... skipped 'skipping lazy module' | |
test_dynamo_inline_module_nn_BatchNorm3d_eval_mode_cpu_float32 (__main__.TestTempCPU) ... skipped 'skipping lazy module' | |
test_dynamo_inline_module_nn_BatchNorm3d_train_mode_cpu_float32 (__main__.TestTempCPU) ... skipped 'skipping lazy module' | |
test_dynamo_inline_module_nn_Bilinear_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- ------------- -------------------------------------------------------- -------------------------------------------------- -------- | |
placeholder l_args_0_ L_args_0_ () {} | |
placeholder l_args_1_ L_args_1_ () {} | |
get_attr l__m___weight L__m___weight () {} | |
get_attr l__m___bias L__m___bias () {} | |
call_function bilinear <built-in method bilinear of type object at 0x103ccc7e8> (l_args_0_, l_args_1_, l__m___weight, l__m___bias) {} | |
output output output ((bilinear,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_CELU_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- --------- ------------------------------ ----------------------- -------- | |
placeholder l_args_0_ L_args_0_ () {} | |
call_function celu <function celu at 0x10513e280> (l_args_0_, 2.0, False) {} | |
output output output ((celu,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_ConstantPad1d_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- --------- ----------------------- ---------------------------------- -------- | |
placeholder l_args_0_ L_args_0_ () {} | |
call_function pad <built-in function pad> (l_args_0_, (1, 1), 'constant', 2) {} | |
output output output ((pad,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_ConstantPad2d_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- --------- ----------------------- ---------------------------------------- -------- | |
placeholder l_args_0_ L_args_0_ () {} | |
call_function pad <built-in function pad> (l_args_0_, (1, 1, 1, 1), 'constant', 3) {} | |
output output output ((pad,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_ConstantPad3d_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- --------- ----------------------- ---------------------------------------------- -------- | |
placeholder l_args_0_ L_args_0_ () {} | |
call_function pad <built-in function pad> (l_args_0_, (1, 1, 1, 1, 1, 1), 'constant', 3) {} | |
output output output ((pad,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_Conv1d_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- ------------- ------------------------------------------------------ ------------------------------------------------------------ -------- | |
placeholder l_args_0_ L_args_0_ () {} | |
get_attr l__m___weight L__m___weight () {} | |
get_attr l__m___bias L__m___bias () {} | |
call_function conv1d <built-in method conv1d of type object at 0x103ccc7e8> (l_args_0_, l__m___weight, l__m___bias, (1,), (0,), (1,), 1) {} | |
output output output ((conv1d,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_Conv2d_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- ------------- ------------------------------------------------------ ------------------------------------------------------------------ -------- | |
placeholder l_args_0_ L_args_0_ () {} | |
get_attr l__m___weight L__m___weight () {} | |
get_attr l__m___bias L__m___bias () {} | |
call_function conv2d <built-in method conv2d of type object at 0x103ccc7e8> (l_args_0_, l__m___weight, l__m___bias, (1, 1), (0, 0), (1, 1), 1) {} | |
output output output ((conv2d,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_Conv3d_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- ------------- ------------------------------------------------------ --------------------------------------------------------------------------- -------- | |
placeholder l_args_0_ L_args_0_ () {} | |
get_attr l__m___weight L__m___weight () {} | |
get_attr l__m___bias L__m___bias () {} | |
call_function conv3d <built-in method conv3d of type object at 0x103ccc7e8> (l_args_0_, l__m___weight, l__m___bias, (1, 1, 1), (0, 0, 0), (1, 1, 1), 1) {} | |
output output output ((conv3d,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_ConvTranspose1d_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- ---------------- ---------------------------------------------------------------- ------------------------------------------------------------------ -------- | |
placeholder l_args_0_ L_args_0_ () {} | |
get_attr l__m___weight L__m___weight () {} | |
get_attr l__m___bias L__m___bias () {} | |
call_function conv_transpose1d <built-in method conv_transpose1d of type object at 0x103ccc7e8> (l_args_0_, l__m___weight, l__m___bias, (1,), (0,), (0,), 1, (1,)) {} | |
output output output ((conv_transpose1d,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_ConvTranspose2d_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- ---------------- ---------------------------------------------------------------- -------------------------------------------------------------------------- -------- | |
placeholder l_args_0_ L_args_0_ () {} | |
get_attr l__m___weight L__m___weight () {} | |
get_attr l__m___bias L__m___bias () {} | |
call_function conv_transpose2d <built-in method conv_transpose2d of type object at 0x103ccc7e8> (l_args_0_, l__m___weight, l__m___bias, (1, 1), (0, 0), (0, 0), 1, (1, 1)) {} | |
output output output ((conv_transpose2d,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_ConvTranspose3d_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- ---------------- ---------------------------------------------------------------- -------------------------------------------------------------------------------------- -------- | |
placeholder l_args_0_ L_args_0_ () {} | |
get_attr l__m___weight L__m___weight () {} | |
get_attr l__m___bias L__m___bias () {} | |
call_function conv_transpose3d <built-in method conv_transpose3d of type object at 0x103ccc7e8> (l_args_0_, l__m___weight, l__m___bias, (1, 1, 1), (0, 0, 0), (0, 0, 0), 1, (1, 1, 1)) {} | |
output output output ((conv_transpose3d,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_CrossEntropyLoss_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- ------------- --------------------------------------- ---------------------- ---------------------------------------------------------------------------------- | |
placeholder l_args_0_ L_args_0_ () {} | |
placeholder l_args_1_ L_args_1_ () {} | |
call_function cross_entropy <function cross_entropy at 0x105140430> (l_args_0_, l_args_1_) {'weight': None, 'ignore_index': -100, 'reduction': 'sum', 'label_smoothing': 0.0} | |
output output output ((cross_entropy,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_ELU_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- --------- ----------------------------- ----------------------- -------- | |
placeholder l_args_0_ L_args_0_ () {} | |
call_function elu <function elu at 0x10513e160> (l_args_0_, 2.0, False) {} | |
output output output ((elu,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_Embedding_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- ------------- ----------------------------------- --------------------------------------------------------- -------- | |
placeholder l_args_0_ L_args_0_ () {} | |
get_attr l__m___weight L__m___weight () {} | |
call_function embedding <function embedding at 0x10513ec10> (l_args_0_, l__m___weight, None, None, 2.0, False, False) {} | |
output output output ((embedding,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_FractionalMaxPool2d_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- ---------------------- ------------------------------------------------------ -------------------------------------------- ------------------------------------------- | |
placeholder l_args_0_ L_args_0_ () {} | |
get_attr l__m____random_samples L__m____random_samples () {} | |
call_function fractional_max_pool2d <function boolean_dispatch.<locals>.fn at 0x1051369d0> (l_args_0_, (2, 2), None, (0.5, 0.5), False) {'_random_samples': l__m____random_samples} | |
output output output ((fractional_max_pool2d,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_FractionalMaxPool3d_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- ---------------------- ------------------------------------------------------ ---------------------------------------------------- ------------------------------------------- | |
placeholder l_args_0_ L_args_0_ () {} | |
get_attr l__m____random_samples L__m____random_samples () {} | |
call_function fractional_max_pool3d <function boolean_dispatch.<locals>.fn at 0x105136b80> (l_args_0_, (2, 2, 2), None, (0.5, 0.5, 0.5), False) {'_random_samples': l__m____random_samples} | |
output output output ((fractional_max_pool3d,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_GELU_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- --------- ------------------------ ------------ ----------------------- | |
placeholder l_args_0_ L_args_0_ () {} | |
call_function gelu <built-in function gelu> (l_args_0_,) {'approximate': 'none'} | |
output output output ((gelu,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_GLU_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- --------- ----------------------------- --------------- -------- | |
placeholder l_args_0_ L_args_0_ () {} | |
call_function glu <function glu at 0x10513af70> (l_args_0_, -1) {} | |
output output output ((glu,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_GRUCell_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- ---------------- -------------------------------------------------------- -------------------------------------------------------------------------------------------- -------- | |
placeholder l_args_0_ L_args_0_ () {} | |
placeholder l_args_1_ L_args_1_ () {} | |
call_method unsqueeze unsqueeze (l_args_0_, 0) {} | |
call_method unsqueeze_1 unsqueeze (l_args_1_, 0) {} | |
get_attr l__m___weight_ih L__m___weight_ih () {} | |
get_attr l__m___weight_hh L__m___weight_hh () {} | |
get_attr l__m___bias_ih L__m___bias_ih () {} | |
get_attr l__m___bias_hh L__m___bias_hh () {} | |
call_function gru_cell <built-in method gru_cell of type object at 0x103ccc7e8> (unsqueeze, unsqueeze_1, l__m___weight_ih, l__m___weight_hh, l__m___bias_ih, l__m___bias_hh) {} | |
call_method squeeze squeeze (gru_cell, 0) {} | |
output output output ((squeeze,),) {} | |
inline_call [] | |
stats [('calls_captured', 4), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_GRU_eval_mode_cpu_float32 (__main__.TestTempCPU) ... | |
unimplemented [('TorchDynamo purposely graph breaks on RNN, GRU, LSTMs', 1)] | |
expected failure | |
test_dynamo_inline_module_nn_GRU_train_mode_cpu_float32 (__main__.TestTempCPU) ... | |
unimplemented [('TorchDynamo purposely graph breaks on RNN, GRU, LSTMs', 1)] | |
expected failure | |
test_dynamo_inline_module_nn_GaussianNLLLoss_cpu_float32 (__main__.TestTempCPU) ... | |
inline_call [('data dependent operator: aten._local_scalar_dense.default', 1)] | |
unimplemented [('data dependent operator: aten._local_scalar_dense.default', 1)] | |
expected failure | |
test_dynamo_inline_module_nn_GroupNorm_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- ------------- ------------------------------------ ------------------------------------------------- -------- | |
placeholder l_args_0_ L_args_0_ () {} | |
get_attr l__m___weight L__m___weight () {} | |
get_attr l__m___bias L__m___bias () {} | |
call_function group_norm <function group_norm at 0x105140040> (l_args_0_, 3, l__m___weight, l__m___bias, 0.001) {} | |
output output output ((group_norm,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_Hardshrink_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- ---------- ---------------------------------------------------------- ---------------- -------- | |
placeholder l_args_0_ L_args_0_ () {} | |
call_function hardshrink <built-in method hardshrink of type object at 0x103ccc7e8> (l_args_0_, 2.0) {} | |
output output output ((hardshrink,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_Hardswish_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- --------- ----------------------------------- ------------------ -------- | |
placeholder l_args_0_ L_args_0_ () {} | |
call_function hardswish <function hardswish at 0x10513eaf0> (l_args_0_, False) {} | |
output output output ((hardswish,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_Hardtanh_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- --------- ---------------------------------- ----------------------------- -------- | |
placeholder l_args_0_ L_args_0_ () {} | |
call_function hardtanh <function hardtanh at 0x10513e040> (l_args_0_, -1.0, 1.0, False) {} | |
output output output ((hardtanh,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_InstanceNorm1d_eval_mode_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- ------------- --------------------------------------- ----------------------------------------------------- -------- | |
placeholder l_args_0_ L_args_0_ () {} | |
call_function instance_norm <function instance_norm at 0x10513eee0> (l_args_0_, None, None, None, None, True, 0.3, 0.001) {} | |
output output output ((instance_norm,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_InstanceNorm1d_train_mode_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- ------------- --------------------------------------- ----------------------------------------------------- -------- | |
placeholder l_args_0_ L_args_0_ () {} | |
call_function instance_norm <function instance_norm at 0x10513eee0> (l_args_0_, None, None, None, None, True, 0.3, 0.001) {} | |
output output output ((instance_norm,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_InstanceNorm2d_eval_mode_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- ------------- --------------------------------------- ----------------------------------------------------- -------- | |
placeholder l_args_0_ L_args_0_ () {} | |
call_function instance_norm <function instance_norm at 0x10513eee0> (l_args_0_, None, None, None, None, True, 0.3, 0.001) {} | |
output output output ((instance_norm,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_InstanceNorm2d_train_mode_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- ------------- --------------------------------------- ----------------------------------------------------- -------- | |
placeholder l_args_0_ L_args_0_ () {} | |
call_function instance_norm <function instance_norm at 0x10513eee0> (l_args_0_, None, None, None, None, True, 0.3, 0.001) {} | |
output output output ((instance_norm,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_InstanceNorm3d_eval_mode_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- ------------- --------------------------------------- ----------------------------------------------------- -------- | |
placeholder l_args_0_ L_args_0_ () {} | |
call_function instance_norm <function instance_norm at 0x10513eee0> (l_args_0_, None, None, None, None, True, 0.3, 0.001) {} | |
output output output ((instance_norm,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_InstanceNorm3d_train_mode_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- ------------- --------------------------------------- ----------------------------------------------------- -------- | |
placeholder l_args_0_ L_args_0_ () {} | |
call_function instance_norm <function instance_norm at 0x10513eee0> (l_args_0_, None, None, None, None, True, 0.3, 0.001) {} | |
output output output ((instance_norm,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_L1Loss_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- --------- --------------------------------- ---------------------- --------------------- | |
placeholder l_args_0_ L_args_0_ () {} | |
placeholder l_args_1_ L_args_1_ () {} | |
call_function l1_loss <function l1_loss at 0x105140700> (l_args_0_, l_args_1_) {'reduction': 'mean'} | |
output output output ((l1_loss,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_LPPool1d_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- --------- ----------------------------------- -------------------------------- -------- | |
placeholder l_args_0_ L_args_0_ () {} | |
call_function lp_pool1d <function lp_pool1d at 0x10513a430> (l_args_0_, 1.5, 2, None, False) {} | |
output output output ((lp_pool1d,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_LPPool2d_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- --------- ----------------------------------- ----------------------------- -------- | |
placeholder l_args_0_ L_args_0_ () {} | |
call_function lp_pool2d <function lp_pool2d at 0x10513a3a0> (l_args_0_, 2.0, 2, 2, False) {} | |
output output output ((lp_pool2d,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_LSTMCell_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- ---------------- --------------------------------------------------------- ----------------------------------------------------------------------------------------------------------- -------- | |
placeholder l_args_0_ L_args_0_ () {} | |
placeholder l_args_1_0_ L_args_1_0_ () {} | |
placeholder l_args_1_1_ L_args_1_1_ () {} | |
call_method unsqueeze unsqueeze (l_args_0_, 0) {} | |
call_method unsqueeze_1 unsqueeze (l_args_1_0_, 0) {} | |
call_method unsqueeze_2 unsqueeze (l_args_1_1_, 0) {} | |
get_attr l__m___weight_ih L__m___weight_ih () {} | |
get_attr l__m___weight_hh L__m___weight_hh () {} | |
get_attr l__m___bias_ih L__m___bias_ih () {} | |
get_attr l__m___bias_hh L__m___bias_hh () {} | |
call_function lstm_cell <built-in method lstm_cell of type object at 0x103ccc7e8> (unsqueeze, (unsqueeze_1, unsqueeze_2), l__m___weight_ih, l__m___weight_hh, l__m___bias_ih, l__m___bias_hh) {} | |
call_function getitem <built-in function getitem> (lstm_cell, 0) {} | |
call_function getitem_1 <built-in function getitem> (lstm_cell, 1) {} | |
call_method squeeze squeeze (getitem, 0) {} | |
call_method squeeze_1 squeeze (getitem_1, 0) {} | |
output output output ((squeeze, squeeze_1),) {} | |
inline_call [] | |
stats [('calls_captured', 8), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_LSTM_eval_mode_cpu_float32 (__main__.TestTempCPU) ... | |
unimplemented [('TorchDynamo purposely graph breaks on RNN, GRU, LSTMs', 1)] | |
expected failure | |
test_dynamo_inline_module_nn_LSTM_train_mode_cpu_float32 (__main__.TestTempCPU) ... | |
unimplemented [('TorchDynamo purposely graph breaks on RNN, GRU, LSTMs', 1)] | |
expected failure | |
test_dynamo_inline_module_nn_LayerNorm_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- ------------- ------------------------------------ ---------------------------------------------------- -------- | |
placeholder l_args_0_ L_args_0_ () {} | |
get_attr l__m___weight L__m___weight () {} | |
get_attr l__m___bias L__m___bias () {} | |
call_function layer_norm <function layer_norm at 0x10513ef70> (l_args_0_, (5,), l__m___weight, l__m___bias, 0.001) {} | |
output output output ((layer_norm,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_LazyConv1d_cpu_float32 (__main__.TestTempCPU) ... skipped 'skipping lazy module' | |
test_dynamo_inline_module_nn_LazyConv2d_cpu_float32 (__main__.TestTempCPU) ... skipped 'skipping lazy module' | |
test_dynamo_inline_module_nn_LazyConv3d_cpu_float32 (__main__.TestTempCPU) ... skipped 'skipping lazy module' | |
test_dynamo_inline_module_nn_LazyConvTranspose1d_cpu_float32 (__main__.TestTempCPU) ... skipped 'skipping lazy module' | |
test_dynamo_inline_module_nn_LazyConvTranspose2d_cpu_float32 (__main__.TestTempCPU) ... skipped 'skipping lazy module' | |
test_dynamo_inline_module_nn_LazyConvTranspose3d_cpu_float32 (__main__.TestTempCPU) ... skipped 'skipping lazy module' | |
test_dynamo_inline_module_nn_LeakyReLU_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- ---------- ------------------------------------ ------------------------ -------- | |
placeholder l_args_0_ L_args_0_ () {} | |
call_function leaky_relu <function leaky_relu at 0x10513e310> (l_args_0_, 0.01, False) {} | |
output output output ((leaky_relu,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_Linear_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- --------------- -------------------------- --------------------------------------------- -------- | |
placeholder l_kwargs_input_ L_kwargs_input_ () {} | |
get_attr l__m___weight L__m___weight () {} | |
get_attr l__m___bias L__m___bias () {} | |
call_function linear <built-in function linear> (l_kwargs_input_, l__m___weight, l__m___bias) {} | |
output output output ((linear,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_LocalResponseNorm_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- ------------------- --------------------------------------------- --------------------------------- -------- | |
placeholder l_args_0_ L_args_0_ () {} | |
call_function local_response_norm <function local_response_norm at 0x1051400d0> (l_args_0_, 3, 0.0001, 0.75, 1.0) {} | |
output output output ((local_response_norm,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_LogSigmoid_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- ----------- ------------------------------- ----------------- -------- | |
placeholder l_args_0_ L_args_0_ () {} | |
call_function log_sigmoid <built-in function log_sigmoid> (l_args_0_,) {} | |
output output output ((log_sigmoid,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_LogSoftmax_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- ----------- ------------------------------------- ----------------- ------------------ | |
placeholder l_args_0_ L_args_0_ () {} | |
call_function log_softmax <function log_softmax at 0x10513e790> (l_args_0_, 1) {'_stacklevel': 5} | |
output output output ((log_softmax,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_MaxPool1d_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- ---------- ------------------------------------------------------ ----------------------- --------------------------------------------- | |
placeholder l_args_0_ L_args_0_ () {} | |
call_function max_pool1d <function boolean_dispatch.<locals>.fn at 0x105136d30> (l_args_0_, 4, 4, 0, 1) {'ceil_mode': False, 'return_indices': False} | |
output output output ((max_pool1d,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_MaxPool2d_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- ---------- ------------------------------------------------------ -------------------------------------- --------------------------------------------- | |
placeholder l_args_0_ L_args_0_ () {} | |
call_function max_pool2d <function boolean_dispatch.<locals>.fn at 0x105136ee0> (l_args_0_, (3, 3), (2, 2), (1, 1), 1) {'ceil_mode': False, 'return_indices': False} | |
output output output ((max_pool2d,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_MaxPool3d_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- ---------- ------------------------------------------------------ --------------------------------------- --------------------------------------------- | |
placeholder l_args_0_ L_args_0_ () {} | |
call_function max_pool3d <function boolean_dispatch.<locals>.fn at 0x10513a0d0> (l_args_0_, (2, 2, 2), (2, 2, 2), 0, 1) {'ceil_mode': False, 'return_indices': False} | |
output output output ((max_pool3d,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_Mish_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- --------- ------------------------------ ------------ ------------------ | |
placeholder l_args_0_ L_args_0_ () {} | |
call_function mish <function mish at 0x10513ea60> (l_args_0_,) {'inplace': False} | |
output output output ((mish,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_MultiheadAttention_eval_mode_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- ---------------------------- ------------------------------------------------------ -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ---------------------------------------------------------------------------------------------------------------------------------------- | |
placeholder l_args_0_ L_args_0_ () {} | |
placeholder l_args_1_ L_args_1_ () {} | |
placeholder l_args_2_ L_args_2_ () {} | |
call_function _canonical_mask <function _canonical_mask at 0x1051cf1f0> () {'mask': None, 'mask_name': 'key_padding_mask', 'other_type': None, 'other_name': 'attn_mask', 'target_type': torch.float32} | |
call_function _canonical_mask_1 <function _canonical_mask at 0x1051cf1f0> () {'mask': None, 'mask_name': 'attn_mask', 'other_type': None, 'other_name': '', 'target_type': torch.float32, 'check_other': False} | |
call_function getattr_1 <built-in function getattr> (l_args_0_, 'is_nested') {} | |
call_function getattr_2 <built-in function getattr> (l_args_1_, 'is_nested') {} | |
call_function getattr_3 <built-in function getattr> (l_args_2_, 'is_nested') {} | |
get_attr l__m___in_proj_weight L__m___in_proj_weight () {} | |
get_attr l__m___in_proj_bias L__m___in_proj_bias () {} | |
get_attr l__m___bias_k L__m___bias_k () {} | |
get_attr l__m___bias_v L__m___bias_v () {} | |
get_attr l__m___out_proj_weight L__m___out_proj_weight () {} | |
get_attr l__m___out_proj_bias L__m___out_proj_bias () {} | |
call_function multi_head_attention_forward <function multi_head_attention_forward at 0x1051cf310> (l_args_0_, l_args_1_, l_args_2_, 3, 3, l__m___in_proj_weight, l__m___in_proj_bias, l__m___bias_k, l__m___bias_v, True, 0.0, l__m___out_proj_weight, l__m___out_proj_bias) {'training': False, 'key_padding_mask': None, 'need_weights': True, 'attn_mask': None, 'average_attn_weights': True, 'is_causal': False} | |
call_function getitem <built-in function getitem> (multi_head_attention_forward, 0) {} | |
call_function getitem_1 <built-in function getitem> (multi_head_attention_forward, 1) {} | |
output output output ((getitem, getitem_1),) {} | |
inline_call [] | |
stats [('calls_captured', 8), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_MultiheadAttention_train_mode_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- ---------------------------- ------------------------------------------------------ -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- --------------------------------------------------------------------------------------------------------------------------------------- | |
placeholder l_args_0_ L_args_0_ () {} | |
placeholder l_args_1_ L_args_1_ () {} | |
placeholder l_args_2_ L_args_2_ () {} | |
call_function _canonical_mask <function _canonical_mask at 0x1051cf1f0> () {'mask': None, 'mask_name': 'key_padding_mask', 'other_type': None, 'other_name': 'attn_mask', 'target_type': torch.float32} | |
call_function _canonical_mask_1 <function _canonical_mask at 0x1051cf1f0> () {'mask': None, 'mask_name': 'attn_mask', 'other_type': None, 'other_name': '', 'target_type': torch.float32, 'check_other': False} | |
call_function getattr_1 <built-in function getattr> (l_args_0_, 'is_nested') {} | |
call_function getattr_2 <built-in function getattr> (l_args_1_, 'is_nested') {} | |
call_function getattr_3 <built-in function getattr> (l_args_2_, 'is_nested') {} | |
get_attr l__m___in_proj_weight L__m___in_proj_weight () {} | |
get_attr l__m___in_proj_bias L__m___in_proj_bias () {} | |
get_attr l__m___bias_k L__m___bias_k () {} | |
get_attr l__m___bias_v L__m___bias_v () {} | |
get_attr l__m___out_proj_weight L__m___out_proj_weight () {} | |
get_attr l__m___out_proj_bias L__m___out_proj_bias () {} | |
call_function multi_head_attention_forward <function multi_head_attention_forward at 0x1051cf310> (l_args_0_, l_args_1_, l_args_2_, 3, 3, l__m___in_proj_weight, l__m___in_proj_bias, l__m___bias_k, l__m___bias_v, True, 0.0, l__m___out_proj_weight, l__m___out_proj_bias) {'training': True, 'key_padding_mask': None, 'need_weights': True, 'attn_mask': None, 'average_attn_weights': True, 'is_causal': False} | |
call_function getitem <built-in function getitem> (multi_head_attention_forward, 0) {} | |
call_function getitem_1 <built-in function getitem> (multi_head_attention_forward, 1) {} | |
output output output ((getitem, getitem_1),) {} | |
inline_call [] | |
stats [('calls_captured', 8), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_NLLLoss_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- --------- ---------------------------------- ---------------------- ----------------------------------------------------------- | |
placeholder l_args_0_ L_args_0_ () {} | |
placeholder l_args_1_ L_args_1_ () {} | |
call_function nll_loss <function nll_loss at 0x1051401f0> (l_args_0_, l_args_1_) {'weight': None, 'ignore_index': -100, 'reduction': 'mean'} | |
output output output ((nll_loss,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_PReLU_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- ------------- ----------------------------------------------------- -------------------------- -------- | |
placeholder l_args_0_ L_args_0_ () {} | |
get_attr l__m___weight L__m___weight () {} | |
call_function prelu <built-in method prelu of type object at 0x103ccc7e8> (l_args_0_, l__m___weight) {} | |
output output output ((prelu,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_RNNCell_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- ---------------- ------------------------------------------------------------- -------------------------------------------------------------------------------------------- -------- | |
placeholder l_args_0_ L_args_0_ () {} | |
placeholder l_args_1_ L_args_1_ () {} | |
call_method unsqueeze unsqueeze (l_args_0_, 0) {} | |
call_method unsqueeze_1 unsqueeze (l_args_1_, 0) {} | |
get_attr l__m___weight_ih L__m___weight_ih () {} | |
get_attr l__m___weight_hh L__m___weight_hh () {} | |
get_attr l__m___bias_ih L__m___bias_ih () {} | |
get_attr l__m___bias_hh L__m___bias_hh () {} | |
call_function rnn_tanh_cell <built-in method rnn_tanh_cell of type object at 0x103ccc7e8> (unsqueeze, unsqueeze_1, l__m___weight_ih, l__m___weight_hh, l__m___bias_ih, l__m___bias_hh) {} | |
call_method squeeze squeeze (rnn_tanh_cell, 0) {} | |
output output output ((squeeze,),) {} | |
inline_call [] | |
stats [('calls_captured', 4), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_RNN_eval_mode_cpu_float32 (__main__.TestTempCPU) ... | |
unimplemented [('TorchDynamo purposely graph breaks on RNN, GRU, LSTMs', 1)] | |
expected failure | |
test_dynamo_inline_module_nn_RNN_train_mode_cpu_float32 (__main__.TestTempCPU) ... | |
unimplemented [('TorchDynamo purposely graph breaks on RNN, GRU, LSTMs', 1)] | |
expected failure | |
test_dynamo_inline_module_nn_ReLU6_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- --------- ---------------------------------- ---------------------------- -------- | |
placeholder l_args_0_ L_args_0_ () {} | |
call_function hardtanh <function hardtanh at 0x10513e040> (l_args_0_, 0.0, 6.0, False) {} | |
output output output ((hardtanh,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_ReLU_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- --------- ------------------------------ ------------ ------------------ | |
placeholder l_args_0_ L_args_0_ () {} | |
call_function relu <function relu at 0x10513aee0> (l_args_0_,) {'inplace': False} | |
output output output ((relu,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_ReflectionPad1d_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- --------- ----------------------- ------------------------------ -------- | |
placeholder l_args_0_ L_args_0_ () {} | |
call_function pad <built-in function pad> (l_args_0_, (1, 1), 'reflect') {} | |
output output output ((pad,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_ReflectionPad2d_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- --------- ----------------------- ------------------------------------ -------- | |
placeholder l_args_0_ L_args_0_ () {} | |
call_function pad <built-in function pad> (l_args_0_, (1, 1, 1, 1), 'reflect') {} | |
output output output ((pad,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_ReflectionPad3d_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- --------- ----------------------- ------------------------------------------ -------- | |
placeholder l_args_0_ L_args_0_ () {} | |
call_function pad <built-in function pad> (l_args_0_, (1, 1, 1, 1, 1, 1), 'reflect') {} | |
output output output ((pad,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_ReplicationPad1d_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- --------- ----------------------- -------------------------------- -------- | |
placeholder l_args_0_ L_args_0_ () {} | |
call_function pad <built-in function pad> (l_args_0_, (1, 1), 'replicate') {} | |
output output output ((pad,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_ReplicationPad2d_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- --------- ----------------------- -------------------------------------- -------- | |
placeholder l_args_0_ L_args_0_ () {} | |
call_function pad <built-in function pad> (l_args_0_, (1, 1, 1, 1), 'replicate') {} | |
output output output ((pad,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_ReplicationPad3d_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- --------- ----------------------- -------------------------------------------- -------- | |
placeholder l_args_0_ L_args_0_ () {} | |
call_function pad <built-in function pad> (l_args_0_, (1, 1, 1, 1, 1, 1), 'replicate') {} | |
output output output ((pad,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_SELU_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- --------- ------------------------------ ------------------ -------- | |
placeholder l_args_0_ L_args_0_ () {} | |
call_function selu <function selu at 0x10513e1f0> (l_args_0_, False) {} | |
output output output ((selu,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_SiLU_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- --------- ------------------------------ ------------ ------------------ | |
placeholder l_args_0_ L_args_0_ () {} | |
call_function silu <function silu at 0x10513e9d0> (l_args_0_,) {'inplace': False} | |
output output output ((silu,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_Sigmoid_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- --------- ------------------------------------------------------- ------------- -------- | |
placeholder l_args_0_ L_args_0_ () {} | |
call_function sigmoid <built-in method sigmoid of type object at 0x103ccc7e8> (l_args_0_,) {} | |
output output output ((sigmoid,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_Softmax2d_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- --------- --------------------------------- --------------- ------------------ | |
placeholder l_args_0_ L_args_0_ () {} | |
call_function softmax <function softmax at 0x10513e670> (l_args_0_, -3) {'_stacklevel': 5} | |
output output output ((softmax,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_Softmax_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- --------- --------------------------------- -------------- ------------------ | |
placeholder l_args_0_ L_args_0_ () {} | |
call_function softmax <function softmax at 0x10513e670> (l_args_0_, 1) {'_stacklevel': 5} | |
output output output ((softmax,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_Softmin_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- --------- --------------------------------- -------------- ------------------ | |
placeholder l_args_0_ L_args_0_ () {} | |
call_function softmin <function softmin at 0x10513e5e0> (l_args_0_, 1) {'_stacklevel': 5} | |
output output output ((softmin,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_Softplus_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- --------- ---------------------------- ------------------ -------- | |
placeholder l_args_0_ L_args_0_ () {} | |
call_function softplus <built-in function softplus> (l_args_0_, 1, 20) {} | |
output output output ((softplus,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_Softshrink_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- ---------- ------------------------------ ---------------- -------- | |
placeholder l_args_0_ L_args_0_ () {} | |
call_function softshrink <built-in function softshrink> (l_args_0_, 0.5) {} | |
output output output ((softshrink,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_Softsign_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- --------- ---------------------------------- -------------- -------- | |
placeholder l_args_0_ L_args_0_ () {} | |
call_function softsign <function softsign at 0x10513e4c0> (l_args_0_,) {} | |
output output output ((softsign,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_Tanh_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- --------- ---------------------------------------------------- ------------ -------- | |
placeholder l_args_0_ L_args_0_ () {} | |
call_function tanh <built-in method tanh of type object at 0x103ccc7e8> (l_args_0_,) {} | |
output output output ((tanh,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_Tanhshrink_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- ---------- ------------------------------------ ---------------- -------- | |
placeholder l_args_0_ L_args_0_ () {} | |
call_function tanhshrink <function tanhshrink at 0x10513e430> (l_args_0_,) {} | |
output output output ((tanhshrink,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_Threshold_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- ---------- ------------------------------------ ---------------------------- -------- | |
placeholder l_args_0_ L_args_0_ () {} | |
call_function _threshold <function _threshold at 0x10513ae50> (l_args_0_, 2.0, 1.0, False) {} | |
output output output ((_threshold,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_TransformerDecoderLayer_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- --------------------- ------------------------------------ ------------------------------------------------------------ ---------------------------------------------------------------------------------------- | |
placeholder l_args_0_ L_args_0_ () {} | |
placeholder l_args_1_ L_args_1_ () {} | |
call_module l__m___self_attn L__m___self_attn (l_args_0_, l_args_0_, l_args_0_) {'attn_mask': None, 'key_padding_mask': None, 'is_causal': False, 'need_weights': False} | |
call_function getitem <built-in function getitem> (l__m___self_attn, 0) {} | |
call_function dropout <function dropout at 0x10513aaf0> (getitem, 0.0, True, False) {} | |
call_function add <built-in function add> (l_args_0_, dropout) {} | |
get_attr l__m___norm1_weight L__m___norm1_weight () {} | |
get_attr l__m___norm1_bias L__m___norm1_bias () {} | |
call_function layer_norm <function layer_norm at 0x10513ef70> (add, (4,), l__m___norm1_weight, l__m___norm1_bias, 1e-05) {} | |
call_module l__m___multihead_attn L__m___multihead_attn (layer_norm, l_args_1_, l_args_1_) {'attn_mask': None, 'key_padding_mask': None, 'is_causal': False, 'need_weights': False} | |
call_function getitem_1 <built-in function getitem> (l__m___multihead_attn, 0) {} | |
call_function dropout_1 <function dropout at 0x10513aaf0> (getitem_1, 0.0, True, False) {} | |
call_function add_1 <built-in function add> (layer_norm, dropout_1) {} | |
get_attr l__m___norm2_weight L__m___norm2_weight () {} | |
get_attr l__m___norm2_bias L__m___norm2_bias () {} | |
call_function layer_norm_1 <function layer_norm at 0x10513ef70> (add_1, (4,), l__m___norm2_weight, l__m___norm2_bias, 1e-05) {} | |
get_attr l__m___linear1_weight L__m___linear1_weight () {} | |
get_attr l__m___linear1_bias L__m___linear1_bias () {} | |
call_function linear <built-in function linear> (layer_norm_1, l__m___linear1_weight, l__m___linear1_bias) {} | |
call_function relu <function relu at 0x10513aee0> (linear,) {} | |
call_function dropout_2 <function dropout at 0x10513aaf0> (relu, 0.0, True, False) {} | |
get_attr l__m___linear2_weight L__m___linear2_weight () {} | |
get_attr l__m___linear2_bias L__m___linear2_bias () {} | |
call_function linear_1 <built-in function linear> (dropout_2, l__m___linear2_weight, l__m___linear2_bias) {} | |
call_function dropout_3 <function dropout at 0x10513aaf0> (linear_1, 0.0, True, False) {} | |
call_function add_2 <built-in function add> (layer_norm_1, dropout_3) {} | |
get_attr l__m___norm3_weight L__m___norm3_weight () {} | |
get_attr l__m___norm3_bias L__m___norm3_bias () {} | |
call_function layer_norm_2 <function layer_norm at 0x10513ef70> (add_2, (4,), l__m___norm3_weight, l__m___norm3_bias, 1e-05) {} | |
output output output ((layer_norm_2,),) {} | |
inline_call [('comparison TensorVariable() <built-in function is_not> TensorVariable()', 2)] | |
stats [('calls_captured', 17), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_TransformerEncoderLayer_eval_mode_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- --------------------- ----------------------------------------- ------------------------------------------------------------ --------------------------------------------------------------------------------------------------------------------------------- | |
placeholder l_args_0_ L_args_0_ () {} | |
call_function _canonical_mask <function _canonical_mask at 0x1051cf1f0> () {'mask': None, 'mask_name': 'src_key_padding_mask', 'other_type': None, 'other_name': 'src_mask', 'target_type': torch.float32} | |
call_function _canonical_mask_1 <function _canonical_mask at 0x1051cf1f0> () {'mask': None, 'mask_name': 'src_mask', 'other_type': None, 'other_name': '', 'target_type': torch.float32, 'check_other': False} | |
call_module l__m___self_attn L__m___self_attn (l_args_0_, l_args_0_, l_args_0_) {'attn_mask': None, 'key_padding_mask': None, 'need_weights': False, 'is_causal': False} | |
call_function getitem <built-in function getitem> (l__m___self_attn, 0) {} | |
call_function dropout <function dropout at 0x10513aaf0> (getitem, 0.0, False, False) {} | |
call_function add <built-in function add> (l_args_0_, dropout) {} | |
get_attr l__m___norm1_weight L__m___norm1_weight () {} | |
get_attr l__m___norm1_bias L__m___norm1_bias () {} | |
call_function layer_norm <function layer_norm at 0x10513ef70> (add, (4,), l__m___norm1_weight, l__m___norm1_bias, 1e-05) {} | |
get_attr l__m___linear1_weight L__m___linear1_weight () {} | |
get_attr l__m___linear1_bias L__m___linear1_bias () {} | |
call_function linear <built-in function linear> (layer_norm, l__m___linear1_weight, l__m___linear1_bias) {} | |
call_function relu <function relu at 0x10513aee0> (linear,) {} | |
call_function dropout_1 <function dropout at 0x10513aaf0> (relu, 0.0, False, False) {} | |
get_attr l__m___linear2_weight L__m___linear2_weight () {} | |
get_attr l__m___linear2_bias L__m___linear2_bias () {} | |
call_function linear_1 <built-in function linear> (dropout_1, l__m___linear2_weight, l__m___linear2_bias) {} | |
call_function dropout_2 <function dropout at 0x10513aaf0> (linear_1, 0.0, False, False) {} | |
call_function add_1 <built-in function add> (layer_norm, dropout_2) {} | |
get_attr l__m___norm2_weight L__m___norm2_weight () {} | |
get_attr l__m___norm2_bias L__m___norm2_bias () {} | |
call_function layer_norm_1 <function layer_norm at 0x10513ef70> (add_1, (4,), l__m___norm2_weight, l__m___norm2_bias, 1e-05) {} | |
output output output ((layer_norm_1,),) {} | |
inline_call [('comparison TensorVariable() <built-in function is_not> TensorVariable()', 1)] | |
stats [('calls_captured', 14), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_TransformerEncoderLayer_train_mode_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- --------------------- ----------------------------------------- ------------------------------------------------------------ --------------------------------------------------------------------------------------------------------------------------------- | |
placeholder l_args_0_ L_args_0_ () {} | |
call_function _canonical_mask <function _canonical_mask at 0x1051cf1f0> () {'mask': None, 'mask_name': 'src_key_padding_mask', 'other_type': None, 'other_name': 'src_mask', 'target_type': torch.float32} | |
call_function _canonical_mask_1 <function _canonical_mask at 0x1051cf1f0> () {'mask': None, 'mask_name': 'src_mask', 'other_type': None, 'other_name': '', 'target_type': torch.float32, 'check_other': False} | |
call_module l__m___self_attn L__m___self_attn (l_args_0_, l_args_0_, l_args_0_) {'attn_mask': None, 'key_padding_mask': None, 'need_weights': False, 'is_causal': False} | |
call_function getitem <built-in function getitem> (l__m___self_attn, 0) {} | |
call_function dropout <function dropout at 0x10513aaf0> (getitem, 0.0, True, False) {} | |
call_function add <built-in function add> (l_args_0_, dropout) {} | |
get_attr l__m___norm1_weight L__m___norm1_weight () {} | |
get_attr l__m___norm1_bias L__m___norm1_bias () {} | |
call_function layer_norm <function layer_norm at 0x10513ef70> (add, (4,), l__m___norm1_weight, l__m___norm1_bias, 1e-05) {} | |
get_attr l__m___linear1_weight L__m___linear1_weight () {} | |
get_attr l__m___linear1_bias L__m___linear1_bias () {} | |
call_function linear <built-in function linear> (layer_norm, l__m___linear1_weight, l__m___linear1_bias) {} | |
call_function relu <function relu at 0x10513aee0> (linear,) {} | |
call_function dropout_1 <function dropout at 0x10513aaf0> (relu, 0.0, True, False) {} | |
get_attr l__m___linear2_weight L__m___linear2_weight () {} | |
get_attr l__m___linear2_bias L__m___linear2_bias () {} | |
call_function linear_1 <built-in function linear> (dropout_1, l__m___linear2_weight, l__m___linear2_bias) {} | |
call_function dropout_2 <function dropout at 0x10513aaf0> (linear_1, 0.0, True, False) {} | |
call_function add_1 <built-in function add> (layer_norm, dropout_2) {} | |
get_attr l__m___norm2_weight L__m___norm2_weight () {} | |
get_attr l__m___norm2_bias L__m___norm2_bias () {} | |
call_function layer_norm_1 <function layer_norm at 0x10513ef70> (add_1, (4,), l__m___norm2_weight, l__m___norm2_bias, 1e-05) {} | |
output output output ((layer_norm_1,),) {} | |
inline_call [('comparison TensorVariable() <built-in function is_not> TensorVariable()', 1)] | |
stats [('calls_captured', 14), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_TransformerEncoder_eval_mode_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- ------------------------------ ----------------------------------------- ------------------------------------------------------------------------------ --------------------------------------------------------------------------------------------------------------------------------- | |
placeholder l_args_0_ L_args_0_ () {} | |
call_function _canonical_mask <function _canonical_mask at 0x1051cf1f0> () {'mask': None, 'mask_name': 'src_key_padding_mask', 'other_type': None, 'other_name': 'mask', 'target_type': torch.float32} | |
call_function _canonical_mask_1 <function _canonical_mask at 0x1051cf1f0> () {'mask': None, 'mask_name': 'mask', 'other_type': None, 'other_name': '', 'target_type': torch.float32, 'check_other': False} | |
call_function _canonical_mask_2 <function _canonical_mask at 0x1051cf1f0> () {'mask': None, 'mask_name': 'src_key_padding_mask', 'other_type': None, 'other_name': 'src_mask', 'target_type': torch.float32} | |
call_function _canonical_mask_3 <function _canonical_mask at 0x1051cf1f0> () {'mask': None, 'mask_name': 'src_mask', 'other_type': None, 'other_name': '', 'target_type': torch.float32, 'check_other': False} | |
call_module l__m___layers_0_self_attn L__m___layers_0_self_attn (l_args_0_, l_args_0_, l_args_0_) {'attn_mask': None, 'key_padding_mask': None, 'need_weights': False, 'is_causal': False} | |
call_function getitem <built-in function getitem> (l__m___layers_0_self_attn, 0) {} | |
call_function dropout <function dropout at 0x10513aaf0> (getitem, 0.0, False, False) {} | |
call_function add <built-in function add> (l_args_0_, dropout) {} | |
get_attr l__m___layers_0_norm1_weight L__m___layers_0_norm1_weight () {} | |
get_attr l__m___layers_0_norm1_bias L__m___layers_0_norm1_bias () {} | |
call_function layer_norm <function layer_norm at 0x10513ef70> (add, (4,), l__m___layers_0_norm1_weight, l__m___layers_0_norm1_bias, 1e-05) {} | |
get_attr l__m___layers_0_linear1_weight L__m___layers_0_linear1_weight () {} | |
get_attr l__m___layers_0_linear1_bias L__m___layers_0_linear1_bias () {} | |
call_function linear <built-in function linear> (layer_norm, l__m___layers_0_linear1_weight, l__m___layers_0_linear1_bias) {} | |
call_function relu <function relu at 0x10513aee0> (linear,) {} | |
call_function dropout_1 <function dropout at 0x10513aaf0> (relu, 0.0, False, False) {} | |
get_attr l__m___layers_0_linear2_weight L__m___layers_0_linear2_weight () {} | |
get_attr l__m___layers_0_linear2_bias L__m___layers_0_linear2_bias () {} | |
call_function linear_1 <built-in function linear> (dropout_1, l__m___layers_0_linear2_weight, l__m___layers_0_linear2_bias) {} | |
call_function dropout_2 <function dropout at 0x10513aaf0> (linear_1, 0.0, False, False) {} | |
call_function add_1 <built-in function add> (layer_norm, dropout_2) {} | |
get_attr l__m___layers_0_norm2_weight L__m___layers_0_norm2_weight () {} | |
get_attr l__m___layers_0_norm2_bias L__m___layers_0_norm2_bias () {} | |
call_function layer_norm_1 <function layer_norm at 0x10513ef70> (add_1, (4,), l__m___layers_0_norm2_weight, l__m___layers_0_norm2_bias, 1e-05) {} | |
call_function _canonical_mask_6 <function _canonical_mask at 0x1051cf1f0> () {'mask': None, 'mask_name': 'src_key_padding_mask', 'other_type': None, 'other_name': 'src_mask', 'target_type': torch.float32} | |
call_function _canonical_mask_7 <function _canonical_mask at 0x1051cf1f0> () {'mask': None, 'mask_name': 'src_mask', 'other_type': None, 'other_name': '', 'target_type': torch.float32, 'check_other': False} | |
call_module l__m___layers_1_self_attn L__m___layers_1_self_attn (layer_norm_1, layer_norm_1, layer_norm_1) {'attn_mask': None, 'key_padding_mask': None, 'need_weights': False, 'is_causal': False} | |
call_function getitem_1 <built-in function getitem> (l__m___layers_1_self_attn, 0) {} | |
call_function dropout_3 <function dropout at 0x10513aaf0> (getitem_1, 0.0, False, False) {} | |
call_function add_2 <built-in function add> (layer_norm_1, dropout_3) {} | |
get_attr l__m___layers_1_norm1_weight L__m___layers_1_norm1_weight () {} | |
get_attr l__m___layers_1_norm1_bias L__m___layers_1_norm1_bias () {} | |
call_function layer_norm_2 <function layer_norm at 0x10513ef70> (add_2, (4,), l__m___layers_1_norm1_weight, l__m___layers_1_norm1_bias, 1e-05) {} | |
get_attr l__m___layers_1_linear1_weight L__m___layers_1_linear1_weight () {} | |
get_attr l__m___layers_1_linear1_bias L__m___layers_1_linear1_bias () {} | |
call_function linear_2 <built-in function linear> (layer_norm_2, l__m___layers_1_linear1_weight, l__m___layers_1_linear1_bias) {} | |
call_function relu_1 <function relu at 0x10513aee0> (linear_2,) {} | |
call_function dropout_4 <function dropout at 0x10513aaf0> (relu_1, 0.0, False, False) {} | |
get_attr l__m___layers_1_linear2_weight L__m___layers_1_linear2_weight () {} | |
get_attr l__m___layers_1_linear2_bias L__m___layers_1_linear2_bias () {} | |
call_function linear_3 <built-in function linear> (dropout_4, l__m___layers_1_linear2_weight, l__m___layers_1_linear2_bias) {} | |
call_function dropout_5 <function dropout at 0x10513aaf0> (linear_3, 0.0, False, False) {} | |
call_function add_3 <built-in function add> (layer_norm_2, dropout_5) {} | |
get_attr l__m___layers_1_norm2_weight L__m___layers_1_norm2_weight () {} | |
get_attr l__m___layers_1_norm2_bias L__m___layers_1_norm2_bias () {} | |
call_function layer_norm_3 <function layer_norm at 0x10513ef70> (add_3, (4,), l__m___layers_1_norm2_weight, l__m___layers_1_norm2_bias, 1e-05) {} | |
output output output ((layer_norm_3,),) {} | |
inline_call [('comparison TensorVariable() <built-in function is_not> TensorVariable()', 2)] | |
stats [('calls_captured', 30), ('unique_graphs', 1)] | |
unexpected success | |
test_dynamo_inline_module_nn_TransformerEncoder_train_mode_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- ------------------------------ ----------------------------------------- ------------------------------------------------------------------------------ --------------------------------------------------------------------------------------------------------------------------------- | |
placeholder l_args_0_ L_args_0_ () {} | |
call_function _canonical_mask <function _canonical_mask at 0x1051cf1f0> () {'mask': None, 'mask_name': 'src_key_padding_mask', 'other_type': None, 'other_name': 'mask', 'target_type': torch.float32} | |
call_function _canonical_mask_1 <function _canonical_mask at 0x1051cf1f0> () {'mask': None, 'mask_name': 'mask', 'other_type': None, 'other_name': '', 'target_type': torch.float32, 'check_other': False} | |
call_function _canonical_mask_2 <function _canonical_mask at 0x1051cf1f0> () {'mask': None, 'mask_name': 'src_key_padding_mask', 'other_type': None, 'other_name': 'src_mask', 'target_type': torch.float32} | |
call_function _canonical_mask_3 <function _canonical_mask at 0x1051cf1f0> () {'mask': None, 'mask_name': 'src_mask', 'other_type': None, 'other_name': '', 'target_type': torch.float32, 'check_other': False} | |
call_module l__m___layers_0_self_attn L__m___layers_0_self_attn (l_args_0_, l_args_0_, l_args_0_) {'attn_mask': None, 'key_padding_mask': None, 'need_weights': False, 'is_causal': False} | |
call_function getitem <built-in function getitem> (l__m___layers_0_self_attn, 0) {} | |
call_function dropout <function dropout at 0x10513aaf0> (getitem, 0.0, True, False) {} | |
call_function add <built-in function add> (l_args_0_, dropout) {} | |
get_attr l__m___layers_0_norm1_weight L__m___layers_0_norm1_weight () {} | |
get_attr l__m___layers_0_norm1_bias L__m___layers_0_norm1_bias () {} | |
call_function layer_norm <function layer_norm at 0x10513ef70> (add, (4,), l__m___layers_0_norm1_weight, l__m___layers_0_norm1_bias, 1e-05) {} | |
get_attr l__m___layers_0_linear1_weight L__m___layers_0_linear1_weight () {} | |
get_attr l__m___layers_0_linear1_bias L__m___layers_0_linear1_bias () {} | |
call_function linear <built-in function linear> (layer_norm, l__m___layers_0_linear1_weight, l__m___layers_0_linear1_bias) {} | |
call_function relu <function relu at 0x10513aee0> (linear,) {} | |
call_function dropout_1 <function dropout at 0x10513aaf0> (relu, 0.0, True, False) {} | |
get_attr l__m___layers_0_linear2_weight L__m___layers_0_linear2_weight () {} | |
get_attr l__m___layers_0_linear2_bias L__m___layers_0_linear2_bias () {} | |
call_function linear_1 <built-in function linear> (dropout_1, l__m___layers_0_linear2_weight, l__m___layers_0_linear2_bias) {} | |
call_function dropout_2 <function dropout at 0x10513aaf0> (linear_1, 0.0, True, False) {} | |
call_function add_1 <built-in function add> (layer_norm, dropout_2) {} | |
get_attr l__m___layers_0_norm2_weight L__m___layers_0_norm2_weight () {} | |
get_attr l__m___layers_0_norm2_bias L__m___layers_0_norm2_bias () {} | |
call_function layer_norm_1 <function layer_norm at 0x10513ef70> (add_1, (4,), l__m___layers_0_norm2_weight, l__m___layers_0_norm2_bias, 1e-05) {} | |
call_function _canonical_mask_6 <function _canonical_mask at 0x1051cf1f0> () {'mask': None, 'mask_name': 'src_key_padding_mask', 'other_type': None, 'other_name': 'src_mask', 'target_type': torch.float32} | |
call_function _canonical_mask_7 <function _canonical_mask at 0x1051cf1f0> () {'mask': None, 'mask_name': 'src_mask', 'other_type': None, 'other_name': '', 'target_type': torch.float32, 'check_other': False} | |
call_module l__m___layers_1_self_attn L__m___layers_1_self_attn (layer_norm_1, layer_norm_1, layer_norm_1) {'attn_mask': None, 'key_padding_mask': None, 'need_weights': False, 'is_causal': False} | |
call_function getitem_1 <built-in function getitem> (l__m___layers_1_self_attn, 0) {} | |
call_function dropout_3 <function dropout at 0x10513aaf0> (getitem_1, 0.0, True, False) {} | |
call_function add_2 <built-in function add> (layer_norm_1, dropout_3) {} | |
get_attr l__m___layers_1_norm1_weight L__m___layers_1_norm1_weight () {} | |
get_attr l__m___layers_1_norm1_bias L__m___layers_1_norm1_bias () {} | |
call_function layer_norm_2 <function layer_norm at 0x10513ef70> (add_2, (4,), l__m___layers_1_norm1_weight, l__m___layers_1_norm1_bias, 1e-05) {} | |
get_attr l__m___layers_1_linear1_weight L__m___layers_1_linear1_weight () {} | |
get_attr l__m___layers_1_linear1_bias L__m___layers_1_linear1_bias () {} | |
call_function linear_2 <built-in function linear> (layer_norm_2, l__m___layers_1_linear1_weight, l__m___layers_1_linear1_bias) {} | |
call_function relu_1 <function relu at 0x10513aee0> (linear_2,) {} | |
call_function dropout_4 <function dropout at 0x10513aaf0> (relu_1, 0.0, True, False) {} | |
get_attr l__m___layers_1_linear2_weight L__m___layers_1_linear2_weight () {} | |
get_attr l__m___layers_1_linear2_bias L__m___layers_1_linear2_bias () {} | |
call_function linear_3 <built-in function linear> (dropout_4, l__m___layers_1_linear2_weight, l__m___layers_1_linear2_bias) {} | |
call_function dropout_5 <function dropout at 0x10513aaf0> (linear_3, 0.0, True, False) {} | |
call_function add_3 <built-in function add> (layer_norm_2, dropout_5) {} | |
get_attr l__m___layers_1_norm2_weight L__m___layers_1_norm2_weight () {} | |
get_attr l__m___layers_1_norm2_bias L__m___layers_1_norm2_bias () {} | |
call_function layer_norm_3 <function layer_norm at 0x10513ef70> (add_3, (4,), l__m___layers_1_norm2_weight, l__m___layers_1_norm2_bias, 1e-05) {} | |
output output output ((layer_norm_3,),) {} | |
inline_call [('comparison TensorVariable() <built-in function is_not> TensorVariable()', 2)] | |
stats [('calls_captured', 30), ('unique_graphs', 1)] | |
unexpected success | |
test_dynamo_inline_module_nn_Transformer_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- ------------------------------------------------------ ------------------------------------------------------ -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ---------------------------------------------------------------------------------------------------------------------------------------- | |
placeholder l_args_0_ L_args_0_ () {} | |
placeholder l_args_1_ L_args_1_ () {} | |
call_function _canonical_mask <function _canonical_mask at 0x1051cf1f0> () {'mask': None, 'mask_name': 'src_key_padding_mask', 'other_type': None, 'other_name': 'mask', 'target_type': torch.float32} | |
call_function _canonical_mask_1 <function _canonical_mask at 0x1051cf1f0> () {'mask': None, 'mask_name': 'mask', 'other_type': None, 'other_name': '', 'target_type': torch.float32, 'check_other': False} | |
call_function _canonical_mask_2 <function _canonical_mask at 0x1051cf1f0> () {'mask': None, 'mask_name': 'src_key_padding_mask', 'other_type': None, 'other_name': 'src_mask', 'target_type': torch.float32} | |
call_function _canonical_mask_3 <function _canonical_mask at 0x1051cf1f0> () {'mask': None, 'mask_name': 'src_mask', 'other_type': None, 'other_name': '', 'target_type': torch.float32, 'check_other': False} | |
get_attr l__m___encoder_layers_0_norm1_weight L__m___encoder_layers_0_norm1_weight () {} | |
get_attr l__m___encoder_layers_0_norm1_bias L__m___encoder_layers_0_norm1_bias () {} | |
call_function layer_norm <function layer_norm at 0x10513ef70> (l_args_0_, (4,), l__m___encoder_layers_0_norm1_weight, l__m___encoder_layers_0_norm1_bias, 1e-05) {} | |
call_function _canonical_mask_4 <function _canonical_mask at 0x1051cf1f0> () {'mask': None, 'mask_name': 'key_padding_mask', 'other_type': None, 'other_name': 'attn_mask', 'target_type': torch.float32} | |
call_function _canonical_mask_5 <function _canonical_mask at 0x1051cf1f0> () {'mask': None, 'mask_name': 'attn_mask', 'other_type': None, 'other_name': '', 'target_type': torch.float32, 'check_other': False} | |
call_function getattr_1 <built-in function getattr> (layer_norm, 'is_nested') {} | |
call_function getattr_2 <built-in function getattr> (layer_norm, 'is_nested') {} | |
call_function getattr_3 <built-in function getattr> (layer_norm, 'is_nested') {} | |
get_attr l__m___encoder_layers_0_self_attn_in_proj_weight L__m___encoder_layers_0_self_attn_in_proj_weight () {} | |
get_attr l__m___encoder_layers_0_self_attn_in_proj_bias L__m___encoder_layers_0_self_attn_in_proj_bias () {} | |
get_attr l__m___encoder_layers_0_self_attn_out_proj_weight L__m___encoder_layers_0_self_attn_out_proj_weight () {} | |
get_attr l__m___encoder_layers_0_self_attn_out_proj_bias L__m___encoder_layers_0_self_attn_out_proj_bias () {} | |
call_function multi_head_attention_forward <function multi_head_attention_forward at 0x1051cf310> (layer_norm, layer_norm, layer_norm, 4, 2, l__m___encoder_layers_0_self_attn_in_proj_weight, l__m___encoder_layers_0_self_attn_in_proj_bias, None, None, False, 0.0, l__m___encoder_layers_0_self_attn_out_proj_weight, l__m___encoder_layers_0_self_attn_out_proj_bias) {'training': True, 'key_padding_mask': None, 'need_weights': False, 'attn_mask': None, 'average_attn_weights': True, 'is_causal': False} | |
call_function getitem <built-in function getitem> (multi_head_attention_forward, 0) {} | |
call_function dropout <function dropout at 0x10513aaf0> (getitem, 0.0, True, False) {} | |
call_function add <built-in function add> (l_args_0_, dropout) {} | |
get_attr l__m___encoder_layers_0_norm2_weight L__m___encoder_layers_0_norm2_weight () {} | |
get_attr l__m___encoder_layers_0_norm2_bias L__m___encoder_layers_0_norm2_bias () {} | |
call_function layer_norm_1 <function layer_norm at 0x10513ef70> (add, (4,), l__m___encoder_layers_0_norm2_weight, l__m___encoder_layers_0_norm2_bias, 1e-05) {} | |
get_attr l__m___encoder_layers_0_linear1_weight L__m___encoder_layers_0_linear1_weight () {} | |
get_attr l__m___encoder_layers_0_linear1_bias L__m___encoder_layers_0_linear1_bias () {} | |
call_function linear <built-in function linear> (layer_norm_1, l__m___encoder_layers_0_linear1_weight, l__m___encoder_layers_0_linear1_bias) {} | |
call_function relu <function relu at 0x10513aee0> (linear,) {} | |
call_function dropout_1 <function dropout at 0x10513aaf0> (relu, 0.0, True, False) {} | |
get_attr l__m___encoder_layers_0_linear2_weight L__m___encoder_layers_0_linear2_weight () {} | |
get_attr l__m___encoder_layers_0_linear2_bias L__m___encoder_layers_0_linear2_bias () {} | |
call_function linear_1 <built-in function linear> (dropout_1, l__m___encoder_layers_0_linear2_weight, l__m___encoder_layers_0_linear2_bias) {} | |
call_function dropout_2 <function dropout at 0x10513aaf0> (linear_1, 0.0, True, False) {} | |
call_function add_1 <built-in function add> (add, dropout_2) {} | |
get_attr l__m___encoder_norm_weight L__m___encoder_norm_weight () {} | |
get_attr l__m___encoder_norm_bias L__m___encoder_norm_bias () {} | |
call_function layer_norm_2 <function layer_norm at 0x10513ef70> (add_1, (4,), l__m___encoder_norm_weight, l__m___encoder_norm_bias, 1e-05) {} | |
get_attr l__m___decoder_layers_0_norm1_weight L__m___decoder_layers_0_norm1_weight () {} | |
get_attr l__m___decoder_layers_0_norm1_bias L__m___decoder_layers_0_norm1_bias () {} | |
call_function layer_norm_3 <function layer_norm at 0x10513ef70> (l_args_1_, (4,), l__m___decoder_layers_0_norm1_weight, l__m___decoder_layers_0_norm1_bias, 1e-05) {} | |
call_function _canonical_mask_6 <function _canonical_mask at 0x1051cf1f0> () {'mask': None, 'mask_name': 'key_padding_mask', 'other_type': None, 'other_name': 'attn_mask', 'target_type': torch.float32} | |
call_function _canonical_mask_7 <function _canonical_mask at 0x1051cf1f0> () {'mask': None, 'mask_name': 'attn_mask', 'other_type': None, 'other_name': '', 'target_type': torch.float32, 'check_other': False} | |
call_function getattr_4 <built-in function getattr> (layer_norm_3, 'is_nested') {} | |
call_function getattr_5 <built-in function getattr> (layer_norm_3, 'is_nested') {} | |
call_function getattr_6 <built-in function getattr> (layer_norm_3, 'is_nested') {} | |
get_attr l__m___decoder_layers_0_self_attn_in_proj_weight L__m___decoder_layers_0_self_attn_in_proj_weight () {} | |
get_attr l__m___decoder_layers_0_self_attn_in_proj_bias L__m___decoder_layers_0_self_attn_in_proj_bias () {} | |
get_attr l__m___decoder_layers_0_self_attn_out_proj_weight L__m___decoder_layers_0_self_attn_out_proj_weight () {} | |
get_attr l__m___decoder_layers_0_self_attn_out_proj_bias L__m___decoder_layers_0_self_attn_out_proj_bias () {} | |
call_function multi_head_attention_forward_1 <function multi_head_attention_forward at 0x1051cf310> (layer_norm_3, layer_norm_3, layer_norm_3, 4, 2, l__m___decoder_layers_0_self_attn_in_proj_weight, l__m___decoder_layers_0_self_attn_in_proj_bias, None, None, False, 0.0, l__m___decoder_layers_0_self_attn_out_proj_weight, l__m___decoder_layers_0_self_attn_out_proj_bias) {'training': True, 'key_padding_mask': None, 'need_weights': False, 'attn_mask': None, 'average_attn_weights': True, 'is_causal': False} | |
call_function getitem_1 <built-in function getitem> (multi_head_attention_forward_1, 0) {} | |
call_function dropout_3 <function dropout at 0x10513aaf0> (getitem_1, 0.0, True, False) {} | |
call_function add_2 <built-in function add> (l_args_1_, dropout_3) {} | |
get_attr l__m___decoder_layers_0_norm2_weight L__m___decoder_layers_0_norm2_weight () {} | |
get_attr l__m___decoder_layers_0_norm2_bias L__m___decoder_layers_0_norm2_bias () {} | |
call_function layer_norm_4 <function layer_norm at 0x10513ef70> (add_2, (4,), l__m___decoder_layers_0_norm2_weight, l__m___decoder_layers_0_norm2_bias, 1e-05) {} | |
call_function _canonical_mask_8 <function _canonical_mask at 0x1051cf1f0> () {'mask': None, 'mask_name': 'key_padding_mask', 'other_type': None, 'other_name': 'attn_mask', 'target_type': torch.float32} | |
call_function _canonical_mask_9 <function _canonical_mask at 0x1051cf1f0> () {'mask': None, 'mask_name': 'attn_mask', 'other_type': None, 'other_name': '', 'target_type': torch.float32, 'check_other': False} | |
call_function getattr_7 <built-in function getattr> (layer_norm_4, 'is_nested') {} | |
call_function getattr_8 <built-in function getattr> (layer_norm_2, 'is_nested') {} | |
call_function getattr_9 <built-in function getattr> (layer_norm_2, 'is_nested') {} | |
get_attr l__m___decoder_layers_0_multihead_attn_in_proj_weight L__m___decoder_layers_0_multihead_attn_in_proj_weight () {} | |
get_attr l__m___decoder_layers_0_multihead_attn_in_proj_bias L__m___decoder_layers_0_multihead_attn_in_proj_bias () {} | |
get_attr l__m___decoder_layers_0_multihead_attn_out_proj_weight L__m___decoder_layers_0_multihead_attn_out_proj_weight () {} | |
get_attr l__m___decoder_layers_0_multihead_attn_out_proj_bias L__m___decoder_layers_0_multihead_attn_out_proj_bias () {} | |
call_function multi_head_attention_forward_2 <function multi_head_attention_forward at 0x1051cf310> (layer_norm_4, layer_norm_2, layer_norm_2, 4, 2, l__m___decoder_layers_0_multihead_attn_in_proj_weight, l__m___decoder_layers_0_multihead_attn_in_proj_bias, None, None, False, 0.0, l__m___decoder_layers_0_multihead_attn_out_proj_weight, l__m___decoder_layers_0_multihead_attn_out_proj_bias) {'training': True, 'key_padding_mask': None, 'need_weights': False, 'attn_mask': None, 'average_attn_weights': True, 'is_causal': False} | |
call_function getitem_2 <built-in function getitem> (multi_head_attention_forward_2, 0) {} | |
call_function dropout_4 <function dropout at 0x10513aaf0> (getitem_2, 0.0, True, False) {} | |
call_function add_3 <built-in function add> (add_2, dropout_4) {} | |
get_attr l__m___decoder_layers_0_norm3_weight L__m___decoder_layers_0_norm3_weight () {} | |
get_attr l__m___decoder_layers_0_norm3_bias L__m___decoder_layers_0_norm3_bias () {} | |
call_function layer_norm_5 <function layer_norm at 0x10513ef70> (add_3, (4,), l__m___decoder_layers_0_norm3_weight, l__m___decoder_layers_0_norm3_bias, 1e-05) {} | |
get_attr l__m___decoder_layers_0_linear1_weight L__m___decoder_layers_0_linear1_weight () {} | |
get_attr l__m___decoder_layers_0_linear1_bias L__m___decoder_layers_0_linear1_bias () {} | |
call_function linear_2 <built-in function linear> (layer_norm_5, l__m___decoder_layers_0_linear1_weight, l__m___decoder_layers_0_linear1_bias) {} | |
call_function relu_1 <function relu at 0x10513aee0> (linear_2,) {} | |
call_function dropout_5 <function dropout at 0x10513aaf0> (relu_1, 0.0, True, False) {} | |
get_attr l__m___decoder_layers_0_linear2_weight L__m___decoder_layers_0_linear2_weight () {} | |
get_attr l__m___decoder_layers_0_linear2_bias L__m___decoder_layers_0_linear2_bias () {} | |
call_function linear_3 <built-in function linear> (dropout_5, l__m___decoder_layers_0_linear2_weight, l__m___decoder_layers_0_linear2_bias) {} | |
call_function dropout_6 <function dropout at 0x10513aaf0> (linear_3, 0.0, True, False) {} | |
call_function add_4 <built-in function add> (add_3, dropout_6) {} | |
get_attr l__m___decoder_norm_weight L__m___decoder_norm_weight () {} | |
get_attr l__m___decoder_norm_bias L__m___decoder_norm_bias () {} | |
call_function layer_norm_6 <function layer_norm at 0x10513ef70> (add_4, (4,), l__m___decoder_norm_weight, l__m___decoder_norm_bias, 1e-05) {} | |
output output output ((layer_norm_6,),) {} | |
inline_call [] | |
stats [('calls_captured', 50), ('unique_graphs', 1)] | |
unexpected success | |
test_dynamo_inline_module_nn_ZeroPad1d_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- --------- ----------------------- ------------------------------------ -------- | |
placeholder l_args_0_ L_args_0_ () {} | |
call_function pad <built-in function pad> (l_args_0_, (1, 1), 'constant', 0.0) {} | |
output output output ((pad,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_ZeroPad2d_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- --------- ----------------------- ------------------------------------------ -------- | |
placeholder l_args_0_ L_args_0_ () {} | |
call_function pad <built-in function pad> (l_args_0_, (1, 1, 1, 1), 'constant', 0.0) {} | |
output output output ((pad,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
test_dynamo_inline_module_nn_ZeroPad3d_cpu_float32 (__main__.TestTempCPU) ... | |
opcode name target args kwargs | |
------------- --------- ----------------------- ------------------------------------------------ -------- | |
placeholder l_args_0_ L_args_0_ () {} | |
call_function pad <built-in function pad> (l_args_0_, (1, 1, 1, 1, 1, 1), 'constant', 0.0) {} | |
output output output ((pad,),) {} | |
inline_call [] | |
stats [('calls_captured', 1), ('unique_graphs', 1)] | |
ok | |
---------------------------------------------------------------------- | |
Ran 105 tests in 1.530s |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment