Skip to content

Instantly share code, notes, and snippets.

@soumith
Created June 14, 2018 03:37
Show Gist options
  • Save soumith/2c017934ea51f657a5f4533dbceb134a to your computer and use it in GitHub Desktop.
Save soumith/2c017934ea51f657a5f4533dbceb134a to your computer and use it in GitHub Desktop.
from __future__ import print_function
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import datasets, transforms
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2(x), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return F.log_softmax(x, dim=1)
batch_size = 32
model = Net()
input = torch.randn(batch_size, 1, 28, 28)
################### forward ################
# forward on TPU
xmodel = torch.jit.trace(torch.zeros(batch_size, 1, 28, 28))(model)
output = xmodel(input)
# forward on CPU
output_cpu = model(input)
# print difference
print((output - output_cpu).abs().max().item())
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment