Created
June 25, 2018 14:51
-
-
Save soumith/316de8801db264342242bf9f1ff29819 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torchvision as vision | |
class XlaMNIST(nn.Module): | |
def __init__(self): | |
super(XlaMNIST, self).__init__() | |
self.conv1 = nn.Conv2d(1, 10, kernel_size=5) | |
self.conv2 = nn.Conv2d(10, 20, kernel_size=5) | |
self.fc1 = nn.Linear(320, 50) | |
self.fc2 = nn.Linear(50, 10) | |
def forward(self, x): | |
y = x * x | |
z = y * 3 + x | |
return z | |
# x = F.relu(F.max_pool2d(self.conv1(x), 2)) | |
# x = F.relu(F.max_pool2d(self.conv2(x), 2)) | |
# x = x.view(-1, 320) | |
# x = F.relu(self.fc1(x)) | |
# x = self.fc2(x) | |
# return F.log_softmax(x, dim=1) | |
def main(): | |
# x = torch.randn(4, 3, 224, 224) | |
# model = vision.models.resnet50() | |
x = torch.randn(4, 1, 28, 28) | |
model = XlaMNIST() | |
traced_model = torch.jit.trace(x)(model) | |
fwd = traced_model._get_method('forward') | |
torch._C._jit_pass_decompose_addmm(fwd.graph) | |
print(fwd.graph) | |
# successfully run forward pass | |
# out_xla = torch._C._to_xla_module(traced_model)(x) | |
# print( (out_xla - model(x)).abs().max().item()) | |
gradient = torch._C._jit_differentiate(fwd.graph, [True for i in fwd.graph.inputs()]) | |
print(gradient.f) | |
print(gradient.df) | |
if __name__ == '__main__': | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment