Created
June 26, 2018 04:24
-
-
Save soumith/8102ef39530bac09070912b1a5401d0f to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import torch.nn as nn | |
class Model(nn.Module): | |
def __init__(self): | |
super(Model, self).__init__() | |
def forward(self, x): | |
y = torch.sigmoid(x + x * x) | |
return y | |
def main(): | |
x = torch.randn(4, 1, 28, 28, requires_grad=True) | |
model = Model() | |
traced_model = torch.jit.trace(x)(model) | |
fwd = traced_model._get_method('forward') | |
torch._C._jit_pass_decompose_addmm(fwd.graph) | |
print("forward graph before symbolic diff", fwd.graph) | |
# for now, all inputs require grad, not just parameters | |
inputs_require_grad = [True for i in fwd.graph.inputs()] | |
gradient = torch._C._jit_differentiate(fwd.graph, inputs_require_grad) | |
print("forward graph after symbolic diff", gradient.f) | |
defined_df_inputs = [True for i in gradient.df.inputs()] # all df inputs are defined (usual case) | |
torch._C._jit_pass_specialize_undef(gradient.df, defined_df_inputs) | |
print("gradient graph", gradient.df) | |
exec_f = torch._C.GraphExecutor(gradient.f, True) | |
exec_df = torch._C.GraphExecutor(gradient.df, True) | |
# forward function | |
inputs = [x] | |
raw_outputs = exec_f(*inputs) | |
if isinstance(raw_outputs, torch.Tensor): | |
raw_outputs = [raw_outputs] | |
outputs = raw_outputs[:gradient.f_real_outputs] | |
# backward function | |
grad_outputs = [torch.randn(4, 1, 28, 28)] # random grad_output | |
raw_grad_outputs = [] | |
raw_grad_outputs += grad_outputs | |
raw_grad_outputs += [inputs[i] for i in gradient.df_input_captured_inputs] | |
raw_grad_outputs += [raw_outputs[i] for i in gradient.df_input_captured_outputs] | |
grad_input = exec_df(*raw_grad_outputs) | |
# forward + backward with regular autograd / torch | |
out_groundtruth = model(x) | |
out_groundtruth.backward(*grad_outputs) | |
# compare both | |
print("output_jit - output: ", (outputs[0] - out_groundtruth).abs().max()) | |
print("gradinput_jit - gradinput: ", (grad_input - inputs[0].grad).abs().max()) | |
if __name__ == '__main__': | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment