Created
October 31, 2019 03:55
-
-
Save soumith/a09b25e94ffca4152b563f1ca1dea7aa to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# ***************************************************************************** | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Redistribution and use in source and binary forms, with or without | |
# modification, are permitted provided that the following conditions are met: | |
# * Redistributions of source code must retain the above copyright | |
# notice, this list of conditions and the following disclaimer. | |
# * Redistributions in binary form must reproduce the above copyright | |
# notice, this list of conditions and the following disclaimer in the | |
# documentation and/or other materials provided with the distribution. | |
# * Neither the name of the NVIDIA CORPORATION nor the | |
# names of its contributors may be used to endorse or promote products | |
# derived from this software without specific prior written permission. | |
# | |
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND | |
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | |
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | |
# DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY | |
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES | |
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | |
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND | |
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | |
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
# | |
# ***************************************************************************** | |
import torch | |
from torch.autograd import Variable | |
import torch.nn.functional as F | |
@torch.jit.script | |
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels): | |
n_channels_int = n_channels[0] | |
in_act = input_a + input_b | |
t_act = torch.tanh(in_act[:, :n_channels_int, :]) | |
s_act = torch.sigmoid(in_act[:, n_channels_int:, :]) | |
acts = t_act * s_act | |
return acts | |
class Invertible1x1Conv(torch.nn.Module): | |
""" | |
The layer outputs both the convolution, and the log determinant | |
of its weight matrix. If reverse=True it does convolution with | |
inverse | |
""" | |
def __init__(self, c): | |
super(Invertible1x1Conv, self).__init__() | |
self.conv = torch.nn.Conv1d(c, c, kernel_size=1, stride=1, padding=0, | |
bias=False) | |
# Sample a random orthonormal matrix to initialize weights | |
W = torch.qr(torch.FloatTensor(c, c).normal_())[0] | |
# Ensure determinant is 1.0 not -1.0 | |
if torch.det(W) < 0: | |
W[:, 0] = -1 * W[:, 0] | |
W = W.view(c, c, 1) | |
self.conv.weight.data = W | |
def forward(self, z, reverse=False): | |
# shape | |
batch_size, group_size, n_of_groups = z.size() | |
W = self.conv.weight.squeeze() | |
if reverse: | |
if not hasattr(self, 'W_inverse'): | |
# Reverse computation | |
W_inverse = W.inverse() | |
W_inverse = Variable(W_inverse[..., None]) | |
if z.type() == 'torch.cuda.HalfTensor' or z.type() == 'torch.HalfTensor': | |
W_inverse = W_inverse.half() | |
self.W_inverse = W_inverse | |
print(z.dtype, z.shape) | |
print(self.W_inverse.dtype) | |
z = F.conv1d(z, self.W_inverse, bias=None, stride=1, padding=0) | |
return z | |
else: | |
# Forward computation | |
log_det_W = torch.logdet(W) | |
log_det_W = batch_size * n_of_groups * log_det_W | |
if z.dtype == torch.float16: | |
z = self.conv(z.float()).half() | |
else: | |
z = self.conv(z) | |
return z, log_det_W | |
class WN(torch.nn.Module): | |
""" | |
This is the WaveNet like layer for the affine coupling. The primary | |
difference from WaveNet is the convolutions need not be causal. There is | |
also no dilation size reset. The dilation only doubles on each layer | |
""" | |
def __init__(self, n_in_channels, n_mel_channels, n_layers, n_channels, | |
kernel_size): | |
super(WN, self).__init__() | |
assert(kernel_size % 2 == 1) | |
assert(n_channels % 2 == 0) | |
self.n_layers = n_layers | |
self.n_channels = n_channels | |
self.in_layers = torch.nn.ModuleList() | |
self.res_skip_layers = torch.nn.ModuleList() | |
self.cond_layers = torch.nn.ModuleList() | |
start = torch.nn.Conv1d(n_in_channels, n_channels, 1) | |
start = torch.nn.utils.weight_norm(start, name='weight') | |
self.start = start | |
# Initializing last layer to 0 makes the affine coupling layers | |
# do nothing at first. This helps with training stability | |
end = torch.nn.Conv1d(n_channels, 2 * n_in_channels, 1) | |
end.weight.data.zero_() | |
end.bias.data.zero_() | |
self.end = end | |
for i in range(n_layers): | |
dilation = 2 ** i | |
padding = int((kernel_size * dilation - dilation) / 2) | |
in_layer = torch.nn.Conv1d(n_channels, 2 * n_channels, kernel_size, | |
dilation=dilation, padding=padding) | |
in_layer = torch.nn.utils.weight_norm(in_layer, name='weight') | |
self.in_layers.append(in_layer) | |
cond_layer = torch.nn.Conv1d(n_mel_channels, 2 * n_channels, 1) | |
cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight') | |
self.cond_layers.append(cond_layer) | |
# last one is not necessary | |
if i < n_layers - 1: | |
res_skip_channels = 2 * n_channels | |
else: | |
res_skip_channels = n_channels | |
res_skip_layer = torch.nn.Conv1d(n_channels, res_skip_channels, 1) | |
res_skip_layer = torch.nn.utils.weight_norm( | |
res_skip_layer, name='weight') | |
self.res_skip_layers.append(res_skip_layer) | |
def forward(self, forward_input): | |
audio, spect = forward_input | |
audio = self.start(audio) | |
for i in range(self.n_layers): | |
acts = fused_add_tanh_sigmoid_multiply( | |
self.in_layers[i](audio), | |
self.cond_layers[i](spect), | |
torch.IntTensor([self.n_channels])) | |
res_skip_acts = self.res_skip_layers[i](acts) | |
if i < self.n_layers - 1: | |
audio = res_skip_acts[:, :self.n_channels, :] + audio | |
skip_acts = res_skip_acts[:, self.n_channels:, :] | |
else: | |
skip_acts = res_skip_acts | |
if i == 0: | |
output = skip_acts | |
else: | |
output = skip_acts + output | |
return self.end(output) | |
class WaveGlow(torch.nn.Module): | |
def __init__(self, n_mel_channels, n_flows, n_group, n_early_every, | |
n_early_size, WN_config): | |
super(WaveGlow, self).__init__() | |
self.upsample = torch.nn.ConvTranspose1d(n_mel_channels, | |
n_mel_channels, | |
1024, stride=256) | |
assert(n_group % 2 == 0) | |
self.n_flows = n_flows | |
self.n_group = n_group | |
self.n_early_every = n_early_every | |
self.n_early_size = n_early_size | |
self.WN = torch.nn.ModuleList() | |
self.convinv = torch.nn.ModuleList() | |
n_half = int(n_group / 2) | |
# Set up layers with the right sizes based on how many dimensions | |
# have been output already | |
n_remaining_channels = n_group | |
for k in range(n_flows): | |
if k % self.n_early_every == 0 and k > 0: | |
n_half = n_half - int(self.n_early_size / 2) | |
n_remaining_channels = n_remaining_channels - self.n_early_size | |
self.convinv.append(Invertible1x1Conv(n_remaining_channels)) | |
self.WN.append(WN(n_half, n_mel_channels * n_group, **WN_config)) | |
self.n_remaining_channels = n_remaining_channels | |
def forward(self, forward_input): | |
""" | |
forward_input[0] = mel_spectrogram: batch x n_mel_channels x frames | |
forward_input[1] = audio: batch x time | |
""" | |
spect, audio = forward_input | |
# Upsample spectrogram to size of audio | |
spect = self.upsample(spect) | |
assert(spect.size(2) >= audio.size(1)) | |
if spect.size(2) > audio.size(1): | |
spect = spect[:, :, :audio.size(1)] | |
spect = spect.unfold(2, self.n_group, self.n_group).permute(0, 2, 1, 3) | |
spect = spect.contiguous().view(spect.size(0), spect.size(1), -1) | |
spect = spect.permute(0, 2, 1) | |
audio = audio.unfold(1, self.n_group, self.n_group).permute(0, 2, 1) | |
output_audio = [] | |
log_s_list = [] | |
log_det_W_list = [] | |
for k in range(self.n_flows): | |
if k % self.n_early_every == 0 and k > 0: | |
output_audio.append(audio[:, :self.n_early_size, :]) | |
audio = audio[:, self.n_early_size:, :] | |
audio, log_det_W = self.convinv[k](audio) | |
log_det_W_list.append(log_det_W) | |
n_half = int(audio.size(1) / 2) | |
audio_0 = audio[:, :n_half, :] | |
audio_1 = audio[:, n_half:, :] | |
output = self.WN[k]((audio_0, spect)) | |
log_s = output[:, n_half:, :] | |
b = output[:, :n_half, :] | |
audio_1 = torch.exp(log_s) * audio_1 + b | |
log_s_list.append(log_s) | |
audio = torch.cat([audio_0, audio_1], 1) | |
output_audio.append(audio) | |
return torch.cat(output_audio, 1), log_s_list, log_det_W_list | |
def infer(self, spect, sigma=1.0): | |
spect = self.upsample(spect) | |
# trim conv artifacts. maybe pad spec to kernel multiple | |
time_cutoff = self.upsample.kernel_size[0] - self.upsample.stride[0] | |
spect = spect[:, :, :-time_cutoff] | |
spect = spect.unfold(2, self.n_group, self.n_group).permute(0, 2, 1, 3) | |
spect = spect.contiguous().view(spect.size(0), spect.size(1), -1) | |
spect = spect.permute(0, 2, 1) | |
audio = torch.randn(spect.size(0), | |
self.n_remaining_channels, | |
spect.size(2), device=spect.device).to(spect.dtype) | |
audio = torch.autograd.Variable(sigma * audio) | |
for k in reversed(range(self.n_flows)): | |
n_half = int(audio.size(1) / 2) | |
audio_0 = audio[:, :n_half, :] | |
audio_1 = audio[:, n_half:, :] | |
output = self.WN[k]((audio_0, spect)) | |
s = output[:, n_half:, :] | |
b = output[:, :n_half, :] | |
audio_1 = (audio_1 - b) / torch.exp(s) | |
audio = torch.cat([audio_0, audio_1], 1) | |
audio = self.convinv[k](audio, reverse=True) | |
if k % self.n_early_every == 0 and k > 0: | |
z = torch.randn(spect.size(0), self.n_early_size, spect.size( | |
2), device=spect.device).to(spect.dtype) | |
audio = torch.cat((sigma * z, audio), 1) | |
audio = audio.permute( | |
0, 2, 1).contiguous().view( | |
audio.size(0), -1).data | |
return audio | |
@staticmethod | |
def remove_weightnorm(model): | |
waveglow = model | |
for WN in waveglow.WN: | |
WN.start = torch.nn.utils.remove_weight_norm(WN.start) | |
WN.in_layers = remove(WN.in_layers) | |
WN.cond_layers = remove(WN.cond_layers) | |
WN.res_skip_layers = remove(WN.res_skip_layers) | |
return waveglow | |
def remove(conv_list): | |
new_conv_list = torch.nn.ModuleList() | |
for old_conv in conv_list: | |
old_conv = torch.nn.utils.remove_weight_norm(old_conv) | |
new_conv_list.append(old_conv) | |
return new_conv_list |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment