-
-
Save souravCoder1/27b0b6e8672b3a89b15b6d9826826b09 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
package week4; | |
import java.util.ArrayList; | |
import java.util.List; | |
/** | |
* Represents an immutable polynomial with integer coefficients (and a single | |
* indeterminate "x"). A typical polynomial is 5x^2 + 3x + 2. | |
*/ | |
public class Polynomial { | |
// a list of terms in the polynomial | |
private ArrayList<Term> terms = new ArrayList<Term>(); | |
/* | |
* invariant: | |
* | |
* terms != null | |
* | |
* && terms does not contain null terms or terms with zero coefficients | |
* | |
* && terms does not contain more than one term with the same exponent | |
* | |
* && terms is ordered by the exponent of its terms in ascending order. | |
*/ | |
/** Constructs a new zero polynomial. */ | |
public Polynomial() { | |
// do nothing because we won't store terms with zero coefficients | |
} | |
/** | |
* Constructs a new monomial with the given exponent and coefficient. | |
* | |
* @param coefficient | |
* the coefficient | |
* @param exponent | |
* the exponent | |
* @throws NegativeExponentException | |
* if exponent < 0 | |
*/ | |
public Polynomial(int coefficient, int exponent) | |
throws NegativeExponentException { | |
if (exponent < 0) { | |
throw new NegativeExponentException(); | |
} | |
if (coefficient != 0) { | |
terms.add(new Term(coefficient, exponent)); | |
} | |
} | |
/** | |
* Returns a new polynomial that is the result of adding p to this. Both | |
* this and parameter p should remain unchanged by this operation. | |
* | |
* @param p | |
* the polynomial to be added to this one | |
* @return a new polynomial that is is the result of adding p to this | |
*/ | |
public Polynomial add(Polynomial p) { | |
// the polynomial to be returned, initialised to 0 | |
Polynomial result = new Polynomial(); | |
/* | |
* Add each of the terms in this and p to result.terms in exponent | |
* order. (We essentially traverse both ordered lists of terms | |
* simultaneously, merging the terms into a new ordered list.) | |
*/ | |
int i = 0; // current index into this.terms | |
int j = 0; // current index into p.terms | |
while (i < terms.size() && j < p.terms.size()) { | |
if (terms.get(i).getExponent() == p.terms.get(j).getExponent()) { | |
// the exponents of the terms are equal, so we add them together | |
// before including them in result.terms | |
Term nt = terms.get(i).add(p.terms.get(j)); | |
if(nt.getCoefficient() != 0) { | |
result.terms.add(nt); | |
} | |
i++; | |
j++; | |
} else if (terms.get(i).getExponent() < p.terms.get(j) | |
.getExponent()) { | |
// we append the smaller of the two terms onto result.terms | |
result.terms.add(terms.get(i)); | |
i++; | |
} else { | |
// we append the smaller of the two terms onto result.terms | |
result.terms.add(p.terms.get(j)); | |
j++; | |
} | |
} | |
// add the remainder of terms in this to the result | |
while (i < terms.size()) { | |
result.terms.add(terms.get(i)); | |
i++; | |
} | |
// add the remainder of terms in p to the result | |
while (j < p.terms.size()) { | |
result.terms.add(p.terms.get(j)); | |
j++; | |
} | |
return result; | |
} | |
//THIS IS THE FUNCTION THATS NOT WORKING MAXI | |
/** | |
* Returns a new polynomial that is the result of subtracting p from this. | |
* Both this and parameter p should remain unchanged by this operation. | |
* | |
* @param p | |
* the polynomial to be subtracted from this one | |
* @return a new polynomial that is is the result of subtracting p from this | |
*/ | |
public Polynomial subtract(Polynomial p) { | |
Polynomial result = new Polynomial(); | |
// i is the index of this.terms | |
// j is the index of p.terms | |
int i = 0; | |
int j = 0; | |
while(i < terms.size() && j < p.terms.size()) { | |
if (terms.get(i).getExponent() == p.terms.get(j).getExponent()) { | |
Term nt = terms.get(i).subtract(p.terms.get(j)); | |
if(nt.getCoefficient() != 0){ | |
result.terms.add(nt); | |
} | |
} else if (terms.get(i).getExponent() < p.terms.get(j) | |
.getExponent()) { | |
Term zero = new Term(0, terms.get(i).getExponent()); | |
Term nt = zero.subtract(terms.get(i)); | |
// we append the smaller of the two terms onto result.terms | |
result.terms.add(nt); | |
i++; | |
} else { | |
Term zero = new Term(0, p.terms.get(j).getExponent()); | |
Term nt = zero.subtract(p.terms.get(j)); | |
// we append the smaller of the two terms onto result.terms | |
result.terms.add(nt); | |
j++; | |
} | |
} | |
// add the remainder of terms in this to the result | |
while (i < terms.size()) { | |
Term zero = new Term(0, terms.get(i).getExponent()); | |
Term nt = zero.subtract(terms.get(i)); | |
// we append the smaller of the two terms onto result.terms | |
result.terms.add(nt); | |
i++; | |
} | |
// add the remainder of terms in p to the result | |
while (j < p.terms.size()) { | |
Term zero = new Term(0, p.terms.get(j).getExponent()); | |
Term nt = zero.subtract(p.terms.get(j)); | |
// we append the smaller of the two terms onto result.terms | |
result.terms.add(nt); | |
j++; | |
} | |
return result; | |
} | |
/** | |
* <p> | |
* Returns the string representation of the polynomial. | |
* </p> | |
* | |
* <p> | |
* The zero polynomial is represented by the string "0". The string | |
* representation of a non-zero polynomial is a list of the non-zero terms | |
* in the polynomial in descending order of exponent concatenated together | |
* by a single plus operator with a single space on either side (i.e. | |
* " + "). | |
* </p> | |
* | |
* <p> | |
* There shouldn't be more than one term with the same exponent in the | |
* string representation, i.e. we would write "3x^4 + 2x + 3" instead of | |
* "2x^4 + 1x^4 + 2x + 3" | |
* </p> | |
* | |
* <p> | |
* A term with a non-zero coefficient a and exponent b is written "a" if b | |
* is zero, "ax" if b is one, and "ax^b" otherwise. | |
* </p> | |
* | |
* <p> | |
* (Note that this representation isn't as nice as it could be. For example, | |
* we write "1x^2" instead of "x^2", and "3x^2 + -5x" instead of "3x^2 - 5x" | |
* etc. We are keeping it simple on purpose!) | |
* </p> | |
*/ | |
public String toString() { | |
if (terms.size() == 0) { | |
return "0"; | |
} | |
// the string representation under construction | |
String s = "" + terms.get(terms.size() - 1); | |
// add terms in descending order of exponent | |
for (int i = terms.size() - 2; i >= 0; i--) { | |
s = s + " + " + terms.get(i); | |
} | |
return s; | |
} | |
/** | |
* Determines whether this Polynomial is internally consistent (i.e. it | |
* satisfies its class invariant). This method should only be used for | |
* testing the implementation of the class. | |
* | |
* @return true if this polynomial is internally consistent, and false | |
* otherwise. | |
*/ | |
public boolean checkInvariant() { | |
// if terms is null, return false | |
if(terms == null) {return false;} | |
// make a list of exponents to test for doubles | |
List<Integer> exponents = new ArrayList<>(); | |
// for loop for checking each term for doubles of exponents or zero coefficients | |
for(int term = 0; term < terms.size(); term++){ | |
// check for zero coefficient or null term | |
if(terms.get(term) == null || | |
terms.get(term).getCoefficient() == 0){return false;} | |
// check for doubles of exponents | |
for(int exponent = 0; exponent < exponents.size(); exponent++) { | |
if (terms.get(term).getExponent() == exponents.get(exponent)){ | |
return false; | |
} | |
} | |
// add the exponent to the list of tested exponents | |
exponents.add(terms.get(term).getExponent()); | |
} | |
// check if exponents are in ascending order | |
if(exponents.size() > 1) { | |
for (int exponent = 1; exponent < exponents.size(); exponent++) { | |
if (exponents.get(exponent) < exponents.get(exponent - 1)) { | |
return false; | |
} | |
} | |
} | |
return true; | |
} | |
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
package week4; | |
import org.junit.Assert; | |
import org.junit.Test; | |
import org.junit.experimental.theories.suppliers.TestedOn; | |
/** Some JUnit tests for the Polynomial class. */ | |
public class PolynomialTest { | |
/** Test the zero constructor of Polynomial. */ | |
@Test | |
public void testInitialStateZeroPolynomial() { | |
Polynomial p = new Polynomial(); | |
Assert.assertEquals("0", p.toString()); | |
Assert.assertTrue("Invariant check failed", p.checkInvariant()); | |
} | |
/** Test the monomial constructor of Polynomial. */ | |
@Test | |
public void testInitialStateMonomial() { | |
// check initial state of monomial with a zero exponent | |
Polynomial p = new Polynomial(3, 0); | |
Assert.assertEquals("3", p.toString()); | |
Assert.assertTrue("Invariant check failed", p.checkInvariant()); | |
// check initial state of monomial with an exponent of one | |
p = new Polynomial(3, 1); | |
Assert.assertEquals("3x", p.toString()); | |
Assert.assertTrue("Invariant check failed", p.checkInvariant()); | |
// check initial state of monomial with a typical exponent greater than | |
// one | |
p = new Polynomial(3, 4); | |
Assert.assertEquals("3x^4", p.toString()); | |
Assert.assertTrue("Invariant check failed", p.checkInvariant()); | |
// check initial state of monomial with a typical exponent and negative | |
// coefficient | |
p = new Polynomial(-3, 4); | |
Assert.assertEquals("-3x^4", p.toString()); | |
Assert.assertTrue("Invariant check failed", p.checkInvariant()); | |
// check initial state of monomial with a typical exponent and zero | |
// coefficient | |
p = new Polynomial(0, 4); | |
Assert.assertEquals("0", p.toString()); | |
Assert.assertTrue("Invariant check failed", p.checkInvariant()); | |
} | |
/** | |
* Test that attempting to create a monomial with a negative exponent | |
* results in a NegativeExponentException | |
**/ | |
@Test(expected = NegativeExponentException.class) | |
public void testNegativeExponent() { | |
Polynomial p = new Polynomial(3, -1); | |
} | |
/** Test additions of monomials. **/ | |
@Test | |
public void testAdditionOfMonomials() { | |
// test addition of monomials where the result has two terms | |
Polynomial p1 = new Polynomial(4, 5); | |
Polynomial p2 = new Polynomial(2, 3); | |
Polynomial actual = p1.add(p2); | |
Assert.assertEquals("4x^5 + 2x^3", actual.toString()); | |
Assert.assertTrue("Invariant check failed", actual.checkInvariant()); | |
// test addition of monomials where the result is also a monomial | |
p1 = new Polynomial(4, 5); | |
p2 = new Polynomial(2, 5); | |
actual = p1.add(p2); | |
Assert.assertEquals("6x^5", actual.toString()); | |
Assert.assertTrue("Invariant check failed", actual.checkInvariant()); | |
// test addition of monomials where the answer is the zero polynomial | |
p1 = new Polynomial(-4, 2); | |
p2 = new Polynomial(4, 2); | |
actual = p1.add(p2); | |
Assert.assertEquals("0", actual.toString()); | |
Assert.assertTrue("Invariant check failed", actual.checkInvariant()); | |
// test addition of a monomial with the zero polynomial | |
p1 = new Polynomial(); | |
p2 = new Polynomial(4, 2); | |
actual = p1.add(p2); | |
Assert.assertEquals("4x^2", actual.toString()); | |
Assert.assertTrue("Invariant check failed", actual.checkInvariant()); | |
} | |
/** Test additions of polynomials with many terms. **/ | |
@Test | |
public void testAdditionOfTypicalPolynomials() { | |
// test multiple typical additions (that produce polynomials with many | |
// terms) | |
Polynomial p1 = new Polynomial(-2, 5); // -2x^5 | |
Polynomial p2 = new Polynomial(3, 1); // 3x | |
Polynomial p3 = new Polynomial(6, 2); // 6x^2 | |
Polynomial p4 = new Polynomial(2, 0); // 2 | |
Polynomial p5 = new Polynomial(1, 2); // 1x^2 | |
Polynomial p6 = new Polynomial(5, 8); // 5x^8 | |
Polynomial actual = p1.add(p2.add(p3.add(p4))).add(p5.add(p6)); | |
Assert.assertEquals("5x^8 + -2x^5 + 7x^2 + 3x + 2", actual.toString()); | |
Assert.assertTrue("Invariant check failed", actual.checkInvariant()); | |
} | |
/** Test subtractions of monomials. **/ | |
@Test | |
public void testSubtractionOfMonomials() { | |
// test addition of monomials where the result has two terms | |
Polynomial p1 = new Polynomial(4, 5); | |
Polynomial p2 = new Polynomial(2, 3); | |
Polynomial actual = p1.subtract(p2); | |
Assert.assertEquals("4x^5 - 2x^3", actual.toString()); | |
Assert.assertTrue("Invariant check failed", actual.checkInvariant()); | |
// test addition of monomials where the result is also a monomial | |
p1 = new Polynomial(4, 5); | |
p2 = new Polynomial(2, 5); | |
actual = p1.subtract(p2); | |
Assert.assertEquals("2x^5", actual.toString()); | |
Assert.assertTrue("Invariant check failed", actual.checkInvariant()); | |
// test addition of monomials where the answer is the zero polynomial | |
p1 = new Polynomial(4, 2); | |
p2 = new Polynomial(4, 2); | |
actual = p1.subtract(p2); | |
Assert.assertEquals("0", actual.toString()); | |
Assert.assertTrue("Invariant check failed", actual.checkInvariant()); | |
// test addition of a monomial with the zero polynomial | |
p1 = new Polynomial(); | |
p2 = new Polynomial(-4, 2); | |
actual = p1.subtract(p2); | |
Assert.assertEquals("4x^2", actual.toString()); | |
Assert.assertTrue("Invariant check failed", actual.checkInvariant()); | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment