Created
May 15, 2017 12:12
-
-
Save sourcepirate/00a12011aa84f51cbf279c36841581a1 to your computer and use it in GitHub Desktop.
gradient descent algorithm
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import matplotlib.pyplot as plt | |
from scipy import stats | |
def hypothesis(x, theta): | |
"""function""" | |
return x.dot(theta).sum() | |
def compute_cost(X, Y, theta): | |
"""errors""" | |
m = Y.size | |
predictions = X.dot(theta).flatten() | |
errors = (Y - predictions)**2 | |
result = 1 | |
J = (1./ 2/ m) * errors.sum() | |
return J | |
def descent(X, Y, theta, alpha=0.001, iter_count=1000): | |
m = Y.size | |
new_theta = [0]*len(theta) | |
for i in range(iter_count): | |
predictions = X.dot(theta).flatten() | |
for j in range(len(theta)): | |
errors = (predictions - Y) * X[:, j] | |
new_theta[j] = theta[j] - alpha * (1./m) * errors.sum() | |
theta = new_theta | |
return theta | |
""" | |
h(x) = t0x0 + t1x1 + t2x2 + t3x3 | |
""" | |
x = np.random.rand(2,2) | |
x_cap = map(np.linalg.norm , x) | |
theta = np.array([[1],[1]]) | |
y = np.random.rand(2, 1) | |
h = hypothesis | |
print(theta) | |
theta = descent(x, y, theta, iter_count=100000, alpha=0.25) | |
print(theta) | |
y_cap = map(lambda l: hypothesis(l, theta), x) | |
beta_hat = np.linalg.lstsq(x,y) | |
print(beta_hat) | |
plt.plot(x_cap, y, 'r-' ,label="data plot") | |
plt.plot(x_cap, beta_hat[0], 'g-', label="hypothesis methodof least squares plot") | |
plt.plot(x_cap, y_cap, 'b-', label="descent") | |
plt.xlabel("X - axis") | |
plt.ylabel("Y - axis") | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment