Created
June 6, 2016 19:45
-
-
Save spandanb/cd023a79f0efbd00f929c14aa28ce5b2 to your computer and use it in GitHub Desktop.
Boto3 ECS
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#Original Author https://raw.githubusercontent.com/kgoedecke/python-ecs-example/master/python_ecs_example/deployment.py | |
import boto3 | |
import pprint | |
import os | |
# Credentials & Region | |
access_key = os.environ["AWS_ACCESS_KEY_ID"] | |
secret_key = os.environ["AWS_SECRET_ACCESS_KEY"] | |
region = "us-east-1" | |
# ECS Details | |
cluster_name = "BotoCluster" | |
service_name = "service_hello_world" | |
task_name = "hello_world" | |
# Let's use Amazon ECS | |
ecs_client = boto3.client( | |
'ecs', | |
aws_access_key_id=access_key, | |
aws_secret_access_key=secret_key, | |
region_name=region | |
) | |
# Let's use Amazon EC2 | |
ec2_client = boto3.client( | |
'ec2', | |
aws_access_key_id=access_key, | |
aws_secret_access_key=secret_key, | |
region_name=region | |
) | |
def launch_ecs_example(): | |
response = ecs_client.create_cluster( | |
clusterName=cluster_name | |
) | |
pprint.pprint(response) | |
# Create EC2 instance(s) in the cluster | |
# For now I expect a default cluster to be there | |
# By default, your container instance launches into your default cluster. | |
# If you want to launch into your own cluster instead of the default, | |
# choose the Advanced Details list and paste the following script | |
# into the User data field, replacing your_cluster_name with the name of your cluster. | |
# !/bin/bash | |
# echo ECS_CLUSTER=your_cluster_name >> /etc/ecs/ecs.config | |
response = ec2_client.run_instances( | |
# Use the official ECS image | |
ImageId="ami-8f7687e2", | |
MinCount=1, | |
MaxCount=1, | |
InstanceType="t2.micro", | |
UserData="#!/bin/bash \n echo ECS_CLUSTER=" + cluster_name + " >> /etc/ecs/ecs.config" | |
) | |
pprint.pprint(response) | |
# Create a task definition | |
response = ecs_client.register_task_definition( | |
containerDefinitions=[ | |
{ | |
"name": "wordpress", | |
"links": [ | |
"mysql" | |
], | |
"image": "wordpress", | |
"essential": True, | |
"portMappings": [ | |
{ | |
"containerPort": 80, | |
"hostPort": 80 | |
} | |
], | |
"memory": 300, | |
"cpu": 10 | |
}, | |
{ | |
"environment": [ | |
{ | |
"name": "MYSQL_ROOT_PASSWORD", | |
"value": "password" | |
} | |
], | |
"name": "mysql", | |
"image": "mysql", | |
"cpu": 10, | |
"memory": 300, | |
"essential": True | |
} | |
], | |
family="hello_world" | |
) | |
pprint.pprint(response) | |
# Create service with exactly 1 desired instance of the task | |
# Info: Amazon ECS allows you to run and maintain a specified number | |
# (the "desired count") of instances of a task definition | |
# simultaneously in an ECS cluster. | |
response = ecs_client.create_service( | |
cluster=cluster_name, | |
serviceName=service_name, | |
taskDefinition=task_name, | |
desiredCount=1, | |
clientToken='request_identifier_string', | |
deploymentConfiguration={ | |
'maximumPercent': 200, | |
'minimumHealthyPercent': 50 | |
} | |
) | |
pprint.pprint(response) | |
# Shut everything down and delete task/service/instance/cluster | |
def terminate_ecs_example(): | |
try: | |
# Set desired service count to 0 (obligatory to delete) | |
response = ecs_client.update_service( | |
cluster=cluster_name, | |
service=service_name, | |
desiredCount=0 | |
) | |
# Delete service | |
response = ecs_client.delete_service( | |
cluster=cluster_name, | |
service=service_name | |
) | |
pprint.pprint(response) | |
except: | |
print("Service not found/not active") | |
# List all task definitions and revisions | |
response = ecs_client.list_task_definitions( | |
familyPrefix=task_name, | |
status='ACTIVE' | |
) | |
# De-Register all task definitions | |
for task_definition in response["taskDefinitionArns"]: | |
# De-register task definition(s) | |
deregister_response = ecs_client.deregister_task_definition( | |
taskDefinition=task_definition | |
) | |
pprint.pprint(deregister_response) | |
# Terminate virtual machine(s) | |
response = ecs_client.list_container_instances( | |
cluster=cluster_name | |
) | |
if response["containerInstanceArns"]: | |
container_instance_resp = ecs_client.describe_container_instances( | |
cluster=cluster_name, | |
containerInstances=response["containerInstanceArns"] | |
) | |
for ec2_instance in container_instance_resp["containerInstances"]: | |
ec2_termination_resp = ec2_client.terminate_instances( | |
DryRun=False, | |
InstanceIds=[ | |
ec2_instance["ec2InstanceId"], | |
] | |
) | |
# Finally delete the cluster | |
response = ecs_client.delete_cluster( | |
cluster=cluster_name | |
) | |
pprint.pprint(response) | |
if __name__ == "__main__": | |
launch_ecs_example() | |
#terminate_ecs_example() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment