Skip to content

Instantly share code, notes, and snippets.

@spandanb
Created June 6, 2016 19:45
Show Gist options
  • Save spandanb/cd023a79f0efbd00f929c14aa28ce5b2 to your computer and use it in GitHub Desktop.
Save spandanb/cd023a79f0efbd00f929c14aa28ce5b2 to your computer and use it in GitHub Desktop.
Boto3 ECS
#Original Author https://raw.githubusercontent.com/kgoedecke/python-ecs-example/master/python_ecs_example/deployment.py
import boto3
import pprint
import os
# Credentials & Region
access_key = os.environ["AWS_ACCESS_KEY_ID"]
secret_key = os.environ["AWS_SECRET_ACCESS_KEY"]
region = "us-east-1"
# ECS Details
cluster_name = "BotoCluster"
service_name = "service_hello_world"
task_name = "hello_world"
# Let's use Amazon ECS
ecs_client = boto3.client(
'ecs',
aws_access_key_id=access_key,
aws_secret_access_key=secret_key,
region_name=region
)
# Let's use Amazon EC2
ec2_client = boto3.client(
'ec2',
aws_access_key_id=access_key,
aws_secret_access_key=secret_key,
region_name=region
)
def launch_ecs_example():
response = ecs_client.create_cluster(
clusterName=cluster_name
)
pprint.pprint(response)
# Create EC2 instance(s) in the cluster
# For now I expect a default cluster to be there
# By default, your container instance launches into your default cluster.
# If you want to launch into your own cluster instead of the default,
# choose the Advanced Details list and paste the following script
# into the User data field, replacing your_cluster_name with the name of your cluster.
# !/bin/bash
# echo ECS_CLUSTER=your_cluster_name >> /etc/ecs/ecs.config
response = ec2_client.run_instances(
# Use the official ECS image
ImageId="ami-8f7687e2",
MinCount=1,
MaxCount=1,
InstanceType="t2.micro",
UserData="#!/bin/bash \n echo ECS_CLUSTER=" + cluster_name + " >> /etc/ecs/ecs.config"
)
pprint.pprint(response)
# Create a task definition
response = ecs_client.register_task_definition(
containerDefinitions=[
{
"name": "wordpress",
"links": [
"mysql"
],
"image": "wordpress",
"essential": True,
"portMappings": [
{
"containerPort": 80,
"hostPort": 80
}
],
"memory": 300,
"cpu": 10
},
{
"environment": [
{
"name": "MYSQL_ROOT_PASSWORD",
"value": "password"
}
],
"name": "mysql",
"image": "mysql",
"cpu": 10,
"memory": 300,
"essential": True
}
],
family="hello_world"
)
pprint.pprint(response)
# Create service with exactly 1 desired instance of the task
# Info: Amazon ECS allows you to run and maintain a specified number
# (the "desired count") of instances of a task definition
# simultaneously in an ECS cluster.
response = ecs_client.create_service(
cluster=cluster_name,
serviceName=service_name,
taskDefinition=task_name,
desiredCount=1,
clientToken='request_identifier_string',
deploymentConfiguration={
'maximumPercent': 200,
'minimumHealthyPercent': 50
}
)
pprint.pprint(response)
# Shut everything down and delete task/service/instance/cluster
def terminate_ecs_example():
try:
# Set desired service count to 0 (obligatory to delete)
response = ecs_client.update_service(
cluster=cluster_name,
service=service_name,
desiredCount=0
)
# Delete service
response = ecs_client.delete_service(
cluster=cluster_name,
service=service_name
)
pprint.pprint(response)
except:
print("Service not found/not active")
# List all task definitions and revisions
response = ecs_client.list_task_definitions(
familyPrefix=task_name,
status='ACTIVE'
)
# De-Register all task definitions
for task_definition in response["taskDefinitionArns"]:
# De-register task definition(s)
deregister_response = ecs_client.deregister_task_definition(
taskDefinition=task_definition
)
pprint.pprint(deregister_response)
# Terminate virtual machine(s)
response = ecs_client.list_container_instances(
cluster=cluster_name
)
if response["containerInstanceArns"]:
container_instance_resp = ecs_client.describe_container_instances(
cluster=cluster_name,
containerInstances=response["containerInstanceArns"]
)
for ec2_instance in container_instance_resp["containerInstances"]:
ec2_termination_resp = ec2_client.terminate_instances(
DryRun=False,
InstanceIds=[
ec2_instance["ec2InstanceId"],
]
)
# Finally delete the cluster
response = ecs_client.delete_cluster(
cluster=cluster_name
)
pprint.pprint(response)
if __name__ == "__main__":
launch_ecs_example()
#terminate_ecs_example()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment