Skip to content

Instantly share code, notes, and snippets.

@spatzle
Created December 1, 2014 02:53
Show Gist options
  • Save spatzle/3fdbf107e7f430dc98c5 to your computer and use it in GitHub Desktop.
Save spatzle/3fdbf107e7f430dc98c5 to your computer and use it in GitHub Desktop.
# Copyright 2011 Hakan Kjellerstrand [email protected]
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Original Stigler's 1939 diet problem Google or-tools.
From GLPK:s example stigler.mod
'''
STIGLER, original Stigler's 1939 diet problem
The Stigler Diet is an optimization problem named for George Stigler,
a 1982 Nobel Laureate in economics, who posed the following problem:
For a moderately active man weighing 154 pounds, how much of each of
77 foods should be eaten on a daily basis so that the man's intake of
nine nutrients will be at least equal to the recommended dietary
allowances (RDSs) suggested by the National Research Council in 1943,
with the cost of the diet being minimal?
The nutrient RDAs required to be met in Stigler's experiment were
calories, protein, calcium, iron, vitamin A, thiamine, riboflavin,
niacin, and ascorbic acid. The result was an annual budget allocated
to foods such as evaporated milk, cabbage, dried navy beans, and beef
liver at a cost of approximately $0.11 a day in 1939 U.S. dollars.
While the name 'Stigler Diet' was applied after the experiment by
outsiders, according to Stigler, 'No one recommends these diets for
anyone, let alone everyone.' The Stigler diet has been much ridiculed
for its lack of variety and palatability, however his methodology has
received praise and is considered to be some of the earliest work in
linear programming.
The Stigler diet question is a linear programming problem. Lacking
any sophisticated method of solving such a problem, Stigler was
forced to utilize heuristic methods in order to find a solution. The
diet question originally asked in which quantities a 154 pound male
would have to consume 77 different foods in order to fulfill the
recommended intake of 9 different nutrients while keeping expense at
a minimum. Through 'trial and error, mathematical insight and
agility,' Stigler was able to eliminate 62 of the foods from the
original 77 (these foods were removed based because they lacked
nutrients in comparison to the remaining 15). From the reduced list,
Stigler calculated the required amounts of each of the remaining 15
foods to arrive at a cost-minimizing solution to his question.
According to Stigler's calculations, the annual cost of his solution
was $39.93 in 1939 dollars. When corrected for inflation using the
consumer price index, the cost of the diet in 2005 dollars is
$561.43. The specific combination of foods and quantities is as
follows:
Stigler's 1939 Diet
Food Annual Quantities Annual Cost
---------------- ----------------- -----------
Wheat Flour 370 lb. $13.33
Evaporated Milk 57 cans 3.84
Cabbage 111 lb. 4.11
Spinach 23 lb. 1.85
Dried Navy Beans 285 lb. 16.80
----------------------------------------------
Total Annual Cost $39.93
The 9 nutrients that Stigler's diet took into consideration and their
respective recommended daily amounts were:
Table of nutrients considered in Stigler's diet
Nutrient Daily Recommended Intake
------------------------- ------------------------
Calories 3,000 Calories
Protein 70 grams
Calcium .8 grams
Iron 12 milligrams
Vitamin A 5,000 IU
Thiamine (Vitamin B1) 1.8 milligrams
Riboflavin (Vitamin B2) 2.7 milligrams
Niacin 18 milligrams
Ascorbic Acid (Vitamin C) 75 milligrams
Seven years after Stigler made his initial estimates, the development
of George Dantzig's Simplex algorithm made it possible to solve the
problem without relying on heuristic methods. The exact value was
determined to be $39.69 (using the original 1939 data). Dantzig's
algorithm describes a method of traversing the vertices of a polytope
of N+1 dimensions in order to find the optimal solution to a specific
situation.
(From Wikipedia, the free encyclopedia.)
Translated from GAMS by Andrew Makhorin <[email protected]>.
For the original GAMS model stigler1939.gms see [3].
References:
1. George J. Stigler, 'The Cost of Subsistence,' J. Farm Econ. 27,
1945, pp. 303-14.
2. National Research Council, 'Recommended Daily Allowances,' Reprint
and Circular Series No. 115, January, 1943.
3. Erwin Kalvelagen, 'Model building with GAMS,' Chapter 2, 'Building
linear programming models,' pp. 128-34.
'''
This model was created by Hakan Kjellerstrand ([email protected])
Also see my other Google CP Solver models:
http://www.hakank.org/google_or_tools/
"""
import sys
from ortools.linear_solver import pywraplp
def main(sol="GLPK"):
# Create the solver.
print "Solver: ", sol
# Instantiate a Glop solver, naming it SolveStigler.
solver = pywraplp.Solver('SolveStigler',
pywraplp.Solver.GLOP_LINEAR_PROGRAMMING)
#
# data
#
# commodities
num_commodities = 77
C = range(num_commodities)
# days in a year
days = 365.25
# nutrients
num_nutrients = 9
N = range(num_nutrients)
nutrients = [
"calories", # Calories, unit = 1000
"protein", # Protein, unit = grams
"calcium", # Calcium, unit = grams
"iron", # Iron, unit = milligrams
"vitaminA", # Vitamin A, unit = 1000 International Units
"thiamine", # Thiamine, Vit. B1, unit = milligrams
"riboflavin", # Riboflavin, Vit. B2, unit = milligrams
"niacin", # Niacin (Nicotinic Acid), unit = milligrams
"ascorbicAcid" # Ascorbic Acid, Vit. C, unit = milligrams
]
commodities = [
["Wheat Flour (Enriched)", "10 lb."],
["Macaroni", "1 lb."],
["Wheat Cereal (Enriched)", "28 oz."],
["Corn Flakes", "8 oz."],
["Corn Meal", "1 lb."],
["Hominy Grits", "24 oz."],
["Rice", "1 lb."],
["Rolled Oats", "1 lb."],
["White Bread (Enriched)", "1 lb."],
["Whole Wheat Bread", "1 lb."],
["Rye Bread", "1 lb."],
["Pound Cake", "1 lb."],
["Soda Crackers", "1 lb."],
["Milk", "1 qt."],
["Evaporated Milk (can)", "14.5 oz."],
["Butter", "1 lb."],
["Oleomargarine", "1 lb."],
["Eggs", "1 doz."],
["Cheese (Cheddar)", "1 lb."],
["Cream", "1/2 pt."],
["Peanut Butter", "1 lb."],
["Mayonnaise", "1/2 pt."],
["Crisco", "1 lb."],
["Lard", "1 lb."],
["Sirloin Steak", "1 lb."],
["Round Steak", "1 lb."],
["Rib Roast", "1 lb."],
["Chuck Roast", "1 lb."],
["Plate", "1 lb."],
["Liver (Beef)", "1 lb."],
["Leg of Lamb", "1 lb."],
["Lamb Chops (Rib)", "1 lb."],
["Pork Chops", "1 lb."],
["Pork Loin Roast", "1 lb."],
["Bacon", "1 lb."],
["Ham - smoked", "1 lb."],
["Salt Pork", "1 lb."],
["Roasting Chicken", "1 lb."],
["Veal Cutlets", "1 lb."],
["Salmon, Pink (can)", "16 oz."],
["Apples", "1 lb."],
["Bananas", "1 lb."],
["Lemons", "1 doz."],
["Oranges", "1 doz."],
["Green Beans", "1 lb."],
["Cabbage", "1 lb."],
["Carrots", "1 bunch"],
["Celery", "1 stalk"],
["Lettuce", "1 head"],
["Onions", "1 lb."],
["Potatoes", "15 lb."],
["Spinach", "1 lb."],
["Sweet Potatoes", "1 lb."],
["Peaches (can)", "No. 2 1/2"],
["Pears (can)", "No. 2 1/2,"],
["Pineapple (can)", "No. 2 1/2"],
["Asparagus (can)", "No. 2"],
["Grean Beans (can)", "No. 2"],
["Pork and Beans (can)", "16 oz."],
["Corn (can)", "No. 2"],
["Peas (can)", "No. 2"],
["Tomatoes (can)", "No. 2"],
["Tomato Soup (can)", "10 1/2 oz."],
["Peaches, Dried", "1 lb."],
["Prunes, Dried", "1 lb."],
["Raisins, Dried", "15 oz."],
["Peas, Dried", "1 lb."],
["Lima Beans, Dried", "1 lb."],
["Navy Beans, Dried", "1 lb."],
["Coffee", "1 lb."],
["Tea", "1/4 lb."],
["Cocoa", "8 oz."],
["Chocolate", "8 oz."],
["Sugar", "10 lb."],
["Corn Sirup", "24 oz."],
["Molasses", "18 oz."],
["Strawberry Preserve", "1 lb."]
]
# price and weight are the two first columns
data = [
[36.0, 12600.0, 44.7, 1411.0, 2.0, 365.0, 0.0, 55.4, 33.3, 441.0, 0.0],
[14.1, 3217.0, 11.6, 418.0, 0.7, 54.0, 0.0, 3.2, 1.9, 68.0, 0.0],
[24.2, 3280.0, 11.8, 377.0, 14.4, 175.0, 0.0, 14.4, 8.8, 114.0, 0.0],
[7.1, 3194.0, 11.4, 252.0, 0.1, 56.0, 0.0, 13.5, 2.3, 68.0, 0.0],
[4.6, 9861.0, 36.0, 897.0, 1.7, 99.0, 30.9, 17.4, 7.9, 106.0, 0.0],
[8.5, 8005.0, 28.6, 680.0, 0.8, 80.0, 0.0, 10.6, 1.6, 110.0, 0.0],
[7.5, 6048.0, 21.2, 460.0, 0.6, 41.0, 0.0, 2.0, 4.8, 60.0, 0.0],
[7.1, 6389.0, 25.3, 907.0, 5.1, 341.0, 0.0, 37.1, 8.9, 64.0, 0.0],
[7.9, 5742.0, 15.6, 488.0, 2.5, 115.0, 0.0, 13.8, 8.5, 126.0, 0.0],
[9.1, 4985.0, 12.2, 484.0, 2.7, 125.0, 0.0, 13.9, 6.4, 160.0, 0.0],
[9.2, 4930.0, 12.4, 439.0, 1.1, 82.0, 0.0, 9.9, 3.0, 66.0, 0.0],
[24.8, 1829.0, 8.0, 130.0, 0.4, 31.0, 18.9, 2.8, 3.0, 17.0, 0.0],
[15.1, 3004.0, 12.5, 288.0, 0.5, 50.0, 0.0, 0.0, 0.0, 0.0, 0.0],
[11.0, 8867.0, 6.1, 310.0, 10.5, 18.0, 16.8, 4.0, 16.0, 7.0, 177.0],
[6.7, 6035.0, 8.4, 422.0, 15.1, 9.0, 26.0, 3.0, 23.5, 11.0, 60.0],
[20.8, 1473.0, 10.8, 9.0, 0.2, 3.0, 44.2, 0.0, 0.2, 2.0, 0.0],
[16.1, 2817.0, 20.6, 17.0, 0.6, 6.0, 55.8, 0.2, 0.0, 0.0, 0.0],
[32.6, 1857.0, 2.9, 238.0, 1.0, 52.0, 18.6, 2.8, 6.5, 1.0, 0.0],
[24.2, 1874.0, 7.4, 448.0, 16.4, 19.0, 28.1, 0.8, 10.3, 4.0, 0.0],
[14.1, 1689.0, 3.5, 49.0, 1.7, 3.0, 16.9, 0.6, 2.5, 0.0, 17.0],
[17.9, 2534.0, 15.7, 661.0, 1.0, 48.0, 0.0, 9.6, 8.1, 471.0, 0.0],
[16.7, 1198.0, 8.6, 18.0, 0.2, 8.0, 2.7, 0.4, 0.5, 0.0, 0.0],
[20.3, 2234.0, 20.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
[9.8, 4628.0, 41.7, 0.0, 0.0, 0.0, 0.2, 0.0, 0.5, 5.0, 0.0],
[39.6, 1145.0, 2.9, 166.0, 0.1, 34.0, 0.2, 2.1, 2.9, 69.0, 0.0],
[36.4, 1246.0, 2.2, 214.0, 0.1, 32.0, 0.4, 2.5, 2.4, 87.0, 0.0],
[29.2, 1553.0, 3.4, 213.0, 0.1, 33.0, 0.0, 0.0, 2.0, 0.0, 0.0],
[22.6, 2007.0, 3.6, 309.0, 0.2, 46.0, 0.4, 1.0, 4.0, 120.0, 0.0],
[14.6, 3107.0, 8.5, 404.0, 0.2, 62.0, 0.0, 0.9, 0.0, 0.0, 0.0],
[26.8, 1692.0, 2.2, 333.0, 0.2, 139.0, 169.2, 6.4, 50.8, 316.0, 525.0],
[27.6, 1643.0, 3.1, 245.0, 0.1, 20.0, 0.0, 2.8, 3.0, 86.0, 0.0],
[36.6, 1239.0, 3.3, 140.0, 0.1, 15.0, 0.0, 1.7, 2.7, 54.0, 0.0],
[30.7, 1477.0, 3.5, 196.0, 0.2, 80.0, 0.0, 17.4, 2.7, 60.0, 0.0],
[24.2, 1874.0, 4.4, 249.0, 0.3, 37.0, 0.0, 18.2, 3.6, 79.0, 0.0],
[25.6, 1772.0, 10.4, 152.0, 0.2, 23.0, 0.0, 1.8, 1.8, 71.0, 0.0],
[27.4, 1655.0, 6.7, 212.0, 0.2, 31.0, 0.0, 9.9, 3.3, 50.0, 0.0],
[16.0, 2835.0, 18.8, 164.0, 0.1, 26.0, 0.0, 1.4, 1.8, 0.0, 0.0],
[30.3, 1497.0, 1.8, 184.0, 0.1, 30.0, 0.1, 0.9, 1.8, 68.0, 46.0],
[42.3, 1072.0, 1.7, 156.0, 0.1, 24.0, 0.0, 1.4, 2.4, 57.0, 0.0],
[13.0, 3489.0, 5.8, 705.0, 6.8, 45.0, 3.5, 1.0, 4.9, 209.0, 0.0],
[4.4, 9072.0, 5.8, 27.0, 0.5, 36.0, 7.3, 3.6, 2.7, 5.0, 544.0],
[6.1, 4982.0, 4.9, 60.0, 0.4, 30.0, 17.4, 2.5, 3.5, 28.0, 498.0],
[26.0, 2380.0, 1.0, 21.0, 0.5, 14.0, 0.0, 0.5, 0.0, 4.0, 952.0],
[30.9, 4439.0, 2.2, 40.0, 1.1, 18.0, 11.1, 3.6, 1.3, 10.0, 1993.0],
[7.1, 5750.0, 2.4, 138.0, 3.7, 80.0, 69.0, 4.3, 5.8, 37.0, 862.0],
[3.7, 8949.0, 2.6, 125.0, 4.0, 36.0, 7.2, 9.0, 4.5, 26.0, 5369.0],
[4.7, 6080.0, 2.7, 73.0, 2.8, 43.0, 188.5, 6.1, 4.3, 89.0, 608.0],
[7.3, 3915.0, 0.9, 51.0, 3.0, 23.0, 0.9, 1.4, 1.4, 9.0, 313.0],
[8.2, 2247.0, 0.4, 27.0, 1.1, 22.0, 112.4, 1.8, 3.4, 11.0, 449.0],
[3.6, 11844.0, 5.8, 166.0, 3.8, 59.0, 16.6, 4.7, 5.9, 21.0, 1184.0],
[34.0, 16810.0, 14.3, 336.0, 1.8, 118.0, 6.7, 29.4, 7.1, 198.0, 2522.0],
[8.1, 4592.0, 1.1, 106.0, 0.0, 138.0, 918.4, 5.7, 13.8, 33.0, 2755.0],
[5.1, 7649.0, 9.6, 138.0, 2.7, 54.0, 290.7, 8.4, 5.4, 83.0, 1912.0],
[16.8, 4894.0, 3.7, 20.0, 0.4, 10.0, 21.5, 0.5, 1.0, 31.0, 196.0],
[20.4, 4030.0, 3.0, 8.0, 0.3, 8.0, 0.8, 0.8, 0.8, 5.0, 81.0],
[21.3, 3993.0, 2.4, 16.0, 0.4, 8.0, 2.0, 2.8, 0.8, 7.0, 399.0],
[27.7, 1945.0, 0.4, 33.0, 0.3, 12.0, 16.3, 1.4, 2.1, 17.0, 272.0],
[10.0, 5386.0, 1.0, 54.0, 2.0, 65.0, 53.9, 1.6, 4.3, 32.0, 431.0],
[7.1, 6389.0, 7.5, 364.0, 4.0, 134.0, 3.5, 8.3, 7.7, 56.0, 0.0],
[10.4, 5452.0, 5.2, 136.0, 0.2, 16.0, 12.0, 1.6, 2.7, 42.0, 218.0],
[13.8, 4109.0, 2.3, 136.0, 0.6, 45.0, 34.9, 4.9, 2.5, 37.0, 370.0],
[8.6, 6263.0, 1.3, 63.0, 0.7, 38.0, 53.2, 3.4, 2.5, 36.0, 1253.0],
[7.6, 3917.0, 1.6, 71.0, 0.6, 43.0, 57.9, 3.5, 2.4, 67.0, 862.0],
[15.7, 2889.0, 8.5, 87.0, 1.7, 173.0, 86.8, 1.2, 4.3, 55.0, 57.0],
[9.0, 4284.0, 12.8, 99.0, 2.5, 154.0, 85.7, 3.9, 4.3, 65.0, 257.0],
[9.4, 4524.0, 13.5, 104.0, 2.5, 136.0, 4.5, 6.3, 1.4, 24.0, 136.0],
[7.9, 5742.0, 20.0, 1367.0, 4.2, 345.0, 2.9, 28.7, 18.4, 162.0, 0.0],
[8.9, 5097.0, 17.4, 1055.0, 3.7, 459.0, 5.1, 26.9, 38.2, 93.0, 0.0],
[5.9, 7688.0, 26.9, 1691.0, 11.4, 792.0, 0.0, 38.4, 24.6, 217.0, 0.0],
[22.4, 2025.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.0, 5.1, 50.0, 0.0],
[17.4, 652.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.3, 42.0, 0.0],
[8.6, 2637.0, 8.7, 237.0, 3.0, 72.0, 0.0, 2.0, 11.9, 40.0, 0.0],
[16.2, 1400.0, 8.0, 77.0, 1.3, 39.0, 0.0, 0.9, 3.4, 14.0, 0.0],
[51.7, 8773.0, 34.9, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
[13.7, 4996.0, 14.7, 0.0, 0.5, 74.0, 0.0, 0.0, 0.0, 5.0, 0.0],
[13.6, 3752.0, 9.0, 0.0, 10.3, 244.0, 0.0, 1.9, 7.5, 146.0, 0.0],
[20.5, 2213.0, 6.4, 11.0, 0.4, 7.0, 0.2, 0.2, 0.4, 3.0, 0.0]]
# recommended daily allowance for a moderately active man
allowance = [3.0, 70.0, 0.8, 12.0, 5.0, 1.8, 2.7, 18.0, 75.0]
#
# variables
#
x = [solver.NumVar(0, 1000, "x[%i]" % i) for i in C]
x_cost = [solver.NumVar(0, 1000, "x_cost[%i]" % i) for i in C]
quant = [solver.NumVar(0, 1000, "quant[%i]" % i) for i in C]
# total food bill
total_cost = solver.NumVar(0, 1000, "total_cost")
# cost per day, to minimize
cost = solver.Sum(x)
#
# constraints
#
solver.Add(total_cost == days * cost) # cost per year
for c in C:
solver.Add(x_cost[c] == days * x[c])
solver.Add(quant[c] == 100.0 * days * x[c] / data[c][0])
# nutrient balance
for n in range(2, num_nutrients + 2):
solver.Add(solver.Sum([data[c][n] * x[c] for c in C]) >= allowance[n - 2])
objective = solver.Minimize(cost)
#
# solution and search
#
solver.Solve()
print
print "Cost = %0.2f" % solver.Objective().Value()
# print 'Cost:', cost.SolutionValue()
print "Total cost: %0.2f" % total_cost.SolutionValue()
print
for i in C:
if x[i].SolutionValue() > 0:
print "%-21s %-11s %0.2f %0.2f" % (commodities[i][0], commodities[i][1],
x_cost[i].SolutionValue(), quant[i].SolutionValue())
print
print "walltime :", solver.WallTime(), "ms"
if sol == "CBC":
print "iterations:", solver.Iterations()
if __name__ == "__main__":
sol = "GLPK"
if len(sys.argv) > 1:
sol = sys.argv[1]
if sol != "GLPK" and sol != "CBC":
print "Solver must be either GLPK or CBC"
sys.exit(1)
main(sol)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment