Created
June 26, 2023 16:37
-
-
Save spencerkittleson/8dc2eab0c8246cd39e835c4fc5353078 to your computer and use it in GitHub Desktop.
gpt4all with knowledge
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from langchain.llms import GPT4All | |
from langchain.vectorstores import Chroma | |
from langchain.indexes import VectorstoreIndexCreator | |
from langchain.indexes.vectorstore import VectorStoreIndexWrapper | |
from langchain.document_loaders import DirectoryLoader, TextLoader, UnstructuredMarkdownLoader | |
from langchain.chains import RetrievalQA | |
import sys | |
import os | |
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler | |
from langchain.embeddings import HuggingFaceEmbeddings, SentenceTransformerEmbeddings | |
# https://gist.github.com/scriptsandthings/75c38c54e05dd20d65fd83a9bd522406 | |
# GPT4ALL_MODEL_PATH = r'C:\Users\spenc\.models\GPT4All-13B-snoozy.ggmlv3.q4_0.bin' # works | |
# embeddings = LlamaCppEmbeddings(model_path=GPT4ALL_MODEL_PATH) | |
GPT4ALL_MODEL_PATH = r'C:\Users\spenc\.models\GPT4All-13B-snoozy.ggmlv3.q4_0.bin' # works | |
embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2") | |
def main() -> None: | |
print('GPT Deki') | |
# Enable to save to disk & reuse the model (for repeated queries on the same data) | |
PERSIST = True | |
query = "What is the name of my dog?" | |
if PERSIST and os.path.exists("persist"): | |
print("Reusing index...\n") | |
vectorstore = Chroma(persist_directory="persist",embedding_function=embeddings) | |
index = VectorStoreIndexWrapper(vectorstore=vectorstore) | |
else: | |
loader = TextLoader("data.txt") # Use this line if you only need data.txt | |
# loader = DirectoryLoader("data/") | |
if PERSIST: | |
index = VectorstoreIndexCreator(embedding=embeddings,vectorstore_kwargs={"persist_directory":"persist"}).from_loaders([loader]) | |
else: | |
index = VectorstoreIndexCreator(embedding=embeddings).from_loaders([loader]) | |
model = GPT4All(model=GPT4ALL_MODEL_PATH) | |
chain = RetrievalQA.from_chain_type(llm=model,retriever=index.vectorstore.as_retriever(search_kwargs={"k": 1})) | |
print(chain.run(query)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
langchain | |
chromadb | |
tiktoken | |
gpt4all | |
llama-cpp-python | |
sentence-transformers |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment