Created
February 11, 2025 21:51
-
-
Save spinningcat/4016cc9f9d023523474bb870854b32e4 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import time | |
import pandas as pd | |
import requests | |
# Set headers for the OpenStreetMap API request | |
headers = { | |
"User-Agent": "MyPythonApp/1.0 ([email protected])" | |
} | |
# Read the CSV file | |
df = pd.read_csv('neighhbourdata.csv') | |
# Counter to keep track of the number of rows processed | |
counter = 0 | |
# Iterate over the rows of the DataFrame | |
for index, row in df.iterrows(): | |
print(counter) | |
if row["Read"] == True: | |
print("True line") | |
if row["Read"] == False: | |
print("False line") | |
if counter >= 1000 : # Stop after processing 3 rows | |
break | |
# Format the query for the OpenStreetMap API | |
query = f'{row["CityName"].replace(" ", "")}, {row["DistrictName"]}, {row["neighbourhood"]}' | |
url = f'https://nominatim.openstreetmap.org/search?q={query}&format=json' | |
print(url) | |
response = requests.get(url, headers=headers) | |
if response.status_code == 200: | |
data = response.json() | |
print(data) | |
if data: # Check if data is not empty | |
# Update the DataFrame with the latitude and longitude | |
df.at[index, 'Lat'] = data[0]["lat"] # Latitude | |
df.at[index, 'Long'] = data[0]["lon"] # Longitude | |
df.at[index, 'Read'] = True # Mark the row as read | |
df.at[index, 'URL'] = url | |
df.at[index, 'Emoty'] = False | |
print(f"Processed row {index}: {query} -> Lat: {data[0]['lat']}, Lon: {data[0]['lon']}") | |
if not data: | |
df.at[index, 'Lat'] = "" | |
df.at[index, 'Long'] = "" | |
df.at[index, 'Read'] = True # Mark the row as read | |
df.at[index, 'URL'] = url | |
df.at[index, 'Emoty'] = True | |
else: | |
print(f"Failed to fetch data for: {query}") | |
counter += 1 | |
# Add a delay to avoid hitting API rate limits | |
time.sleep(5) | |
# Save the updated DataFrame to a new CSV file (or overwrite the existing one) | |
df.to_csv('neighhbourdata.csv', index=False) | |
# Print the updated DataFrame | |
print("\nUpdated DataFrame:") | |
print(df) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment