Skip to content

Instantly share code, notes, and snippets.

@splch
Last active July 24, 2023 00:47
Show Gist options
  • Save splch/42143a394a7e7a71a05186e12eb7b2d1 to your computer and use it in GitHub Desktop.
Save splch/42143a394a7e7a71a05186e12eb7b2d1 to your computer and use it in GitHub Desktop.
Using Qiskit Pulse to create a custom gate, display that gate's microwave, then execute the circuit with a pulse simulator.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "markdown",
"id": "b6d44671",
"metadata": {},
"source": [
"# Qiskit Pulse Gate Visualizations"
]
},
{
"cell_type": "markdown",
"id": "dea0a5d3",
"metadata": {},
"source": [
"## Imports"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "f1f6d7fe",
"metadata": {},
"outputs": [],
"source": [
"from qiskit import assemble, pulse, QuantumCircuit,\\\n",
" schedule, transpile\n",
"from qiskit.circuit import Gate\n",
"from qiskit.providers.aer import PulseSimulator\n",
"from qiskit.providers.aer.pulse import PulseSystemModel\n",
"from qiskit.pulse.library import Gaussian\n",
"from qiskit.test import mock\n",
"from qiskit.visualization import plot_histogram\n",
"from qiskit.visualization.pulse_v2 import draw\n",
"\n",
"# fake quantum computer we're using\n",
"backend = mock.FakeArmonk()\n",
"\n",
"# hide pulsesimulator warning\n",
"import warnings\n",
"warnings.filterwarnings('ignore')"
]
},
{
"cell_type": "markdown",
"id": "0641b26f",
"metadata": {},
"source": [
"## Pulse to Gate"
]
},
{
"cell_type": "markdown",
"id": "30f7fda9",
"metadata": {},
"source": [
"### Create a custom gate"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "398c389e",
"metadata": {},
"outputs": [],
"source": [
"gate = Gate(name='hadamard', label='H', num_qubits=1, params=[])"
]
},
{
"cell_type": "markdown",
"id": "da0268b1",
"metadata": {},
"source": [
"### Build pulse for custom gate"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "be6c7901",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAyAAAACgCAYAAAD0KAgtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAwz0lEQVR4nO3deXgkVb3/8fcnnWUyu4jIcoVREYGLXFBAAQVcQBCXi4oobgNcr6i4I4qAgqKsKirKBRUYVERFkF1A9kVkVVB/rDIIAsMw+0wmSaf7+/vjnE56epJMz0zSySSf1/P0091Vp06d6q506ltnU0RgZmZmZmbWCE0jXQAzMzMzMxs/HICYmZmZmVnDOAAxMzMzM7OGcQBiZmZmZmYN4wDEzMzMzMwaxgGImZmZmZk1zJgOQCQdKykkXd3Pugsl3TgCxVpr+bieH8b8t8mf2x7DtY/hJukwSas9xrSkc/Oxh6QeSfMk3SrpK5KmDUdZV1GeLfL3Pb1m+cxcxsmNLlNVGXaXdIOk5yR1SfqnpO9ImlqT7gBJF0l6Jpd55gD5bSLpYklLJT0v6XRJE+soR1ve73OSlkm6QtKMNTymUyXNrnq/k6Rj1yQvMzMz69+YDkCq7CVpx5EuhK0zHgR2Bt4AfAS4ATgcuG9NL2zXwhbA14HpNcuvIJWxo8HlqbYecB/wKeCtwHeAjwLn16R7LzADuHygjCQ1A1cDmwEHAJ8F9gfOqqMcPwBmkr6j9wLrA9dKmlD3kQxsJ9Lnb2ZmZkOkeaQL0ADzgaeAo4D/Htmi2FCS1B4Ry4ch62URcUfV+ysknQncCZwDvHFtMpfUApQjorSmeUTEXGDu2pRjbUXExcDFVYtulNQNnCVpvYiYn5cfEBHlXFvzPwNktz+wFbB5RDwOIKkIXCDpuIh4pL+NJP0HcAhwcEScl5fdDzwOfAj46dodpZmZmQ218VADEsC3gXdKetVAiSRtJOns3IxkuaSHJR0vqbUqzYzchOT9ks6RtFjSU5I+lNcfIelpSXMlnSSpqWYf2+TmIUvy47eSNlzTA5O0vaQ7JHVIuk/SG2rWfyQ3H5ovaUFuLrNDP/l8UtKTufnKZcBG/aT5oqS7JC2SNEfSZZI2r0lzY27adpCkx3NTmp/nJjI7SbozL7tR0qY1254o6YG8/ilJv6z9bCTNzk1tjpH0FLA4L2/LzXUW5mP9HtCypp9rfyLiKeAbwB6Stsz77bcZVC7nqf18Lv8r6TGgE9hY0paSLsiffYekv0v6XOW8UWoCd1nO5vG8r9kD7VvS+pJmKTUb68j7XeH7rpRN0ufz57wgl2H6EH1U8/Jz799NRJTr2G4f4K5K8JH9HugG9h5ku73y80VV+/s3cGvOc0CSpks6P5/3z0g6qmb9TOCH+XWlWd6NdRyLmZmZDWI81IAA/BY4jlQL8v4B0qxPqi35ArCA1PTlWOBFwMdr0p4E/BJ4D3AwMEvS9qTmIwcDrwGOJzVPuQAgX6zfBtwNfBgoAN8ELpO0U0RETjcbuDEiZq7imCYCs4DvAc+SmolcLGnTiKg0y5kBnAc8RrogPBC4WdI2EfHPvL93AT8C/o90wbc7cHY/+/sP4HTgCWAqcChwm6QtImJRVbrXkT7LTwOb5vItB14LnAwsIzWZOYsVLyw3IAWKT5M+8y8C10t6VU1NwYHA34FP0nf+nki6s34U8A/gY6Q76kPt2vz8OlIzrdWxK/By4MukZlOLSOfYQ6RzaQmwHek8bQdOAO4lNSs6FXg38AzQNcg+fg9snrd5HvgScIOk7SPi0ap07wPuB/6X9L1+l/TZf7KSYDXOQyQVSN/FVsDRwEUR8eyqtquxJem76xUR3Tlg23IV2z0VEUtrlv8/YI9V7POcnOZzpL+hw0nfUU9efwWpWdkXSc3dIAe9ZmZmthYiYsw+SAHE8/n1TKAEbJHfX0i6wBpo22bSxW4n0JqXzSDVqJxTlW4qUAQeAQpVy+8Efl31/ueki83WqmWvyGXat2rZo8DP6jiuAN5UtWy7vGzvAbZpysf0IPC1mnJeVZP2JzmvPQbIq0C6SF4CfKRq+Y3AQmBa1bLf5Lx2q1r2ybxs4iD5b9LPdrNJF+ETqpa9kBTgfLnmWB9Mp/dqnzPnAncPsK4tl+nLVedUAJNr0s0GTq35XJYDGw6yX+Xv56vAP6uWvz3vY0ZN+hX2TQrmAti9Ks0kUjOtM2vK9hjQXLXsNODZmvxXeR5WpX0w7zuAPwzyvU7OaWb2s+4R4LR+lt8KnD/Ivn8C/KWf5ccDTw+y3X/mshxQU775wOyqZYetyXnkhx9++OGHH34M/BgPTbAqfgH8Cziyv5VKPifpH5KWk4KKX5IuOjetSX5d5UVELCZd5N0UK96pf5R0EV3xFlJ7+bKkZqVOt4+TLgh7m8lExOYRcUgdx1MkXdhWVO4e/0fVMW2lNKrQHFKgUwReSbrzXrlzvT1wSU3eF9W8R9LrJF0raR7pDnEH6YJti5qkd8eKNSKPkprR3FqzDGDjqvz3kXS7pEU5/6fyqtr8r4uIzqr3rwImVB9DpCY/tcc0FLQW294TNbUCkiZIOk7So6SajSLwLeCl+fxYHTsBcyPipsqCiFhG6vj9+pq0N0RET9X7fwAbqKq54Wqch5BqAncl1Yq9CvitpDX5rPobtUwDLF/b7SqDUlzam0mqRbm2/+RmZmY2VMZNAJIvuE4GPiRps36SfI7U3OJi4F2kC7pP5XW1o+ksrHnfPcCy6u3WJzW/KdY8Xga8pO4D6bM4qtrWR0R3dVklTQGuyXl/gTSi047AX6vK9SLSXffnavJe4X3ur3EN6aLu46SLzR1zuno+myWxYj+A2rLuSLoQfIrUPG1nUjOn3jRV5tS8r/QTGfQYhkgloKwtQz362+YkUrOfs4C3kT7T4/O61R3BaaMB9jGHNFpVtYU177tJ320rayAi/h4Rt0fEmcAHSMeyuh31F7DySF/kZQuHYbsNSedl7SAGw3HemJmZWZXx0gek4mxSG/Uv97Nuf+C3EdHbEVXS1kO47/mk4Ka/UXmGY06PnUm1IXtGRG9/Ba04l8VcUm3DBjXb1r7fm9Tn5F35rnpl2NTaC9s1tV8uywERUekL01+QCCvf1a7UKmxA+oypej/UKh2e/5SfKzUxtRfuL+hn2/7uxu8P/DAiTq4skLTvGpbtGfo/5hez4ucy3O7Nzy8Drl+N7R6kpq9HrpF5Gal/0mDbvUTSpMq5mW3J4P10ngWmaOWR1IbjvDEzM7Mq46YGBCAiukgdeg9m5ZGe2lm5g+8Hh3D31wHbkJri3F3zmD2E+6loz8+9xyRpF1I/FgByk7G/kGp8qr27n7zK9HXOhdSReagC2HagWAk+sno/+wdIgUDvMeRRpGqPaa0oDfd6DKn50kN5caWZ2FZV6V5L6hdUjxXOudwkrnaQhBVqiwbxZ1Izqt2q8psI7MuKzd+G2675+fFBU63sKmDHmsDznaQmkH8YZLtr8vN+lQWSNibV+F01yHZ3Ve2jst1kYM+adN153VDMKWJmZmaMvxoQgDNJHX13AW6qWn4t8BlJfyZ10v0gaUShoXIsqcP3FZLOJtV6bEK64Dk3Im4EyP0BblqN9vcDuQNYCvxE0smk2pBjgX/XpPs2cJGkM0g1NLuz8rCn15M6hp8j6WekDryHM3gTl9VxLfA5SaeRhp3dhTSHwypFxDxJZwHHSeohjZD1MVL/lBWsxshOkyS9jtQsaXouz6GkTvcHVaW7k/R5/kDSMaQaoSOof6Ska4FP5e98PqnJX1tNmkqw83FJFwAdEfFAbUYRcbWk24BfS/oKaTjcw0lBzil1lqdXPeehpJ8DD5OC2A7g1aTj/xNp8sZKuq2BrekLonaQtJQV+6xcSBrF7KL8WU4jjaB2flTNASLpuny8b87PT+Vz8rTc72Qu6Tx/gtTvq18R8XdJlwJnKM3c/gxp1LDaiR0rtSiflXQ9qenjQ5iZmdkaG1c1IACRhqj9Xj+rvgH8itQG/1ekO5+fGcL9Pkzq19BBavN/FWnI1S76OmVDCgoLQ7C/OaQmPhuSOmR/jnQR/WhNuotJQ+a+gzSM6/akid2q0zxAuvB+LalT84E57+rO5mtT1itJzeLeQ+oLsjtp9Kd6HUFqXvc10nf3NGlo2VoTqa+N/5aki+hbSQMRvInUP2j7iHiiqtzdpDvvZdIF9BeBT5D6JdTj08AtpGGQzwb+Rhp+t1fe3+GkWqnb6JsXpD/7kYKa00hDT4s0Utqjg2wzkHrOwztJk3v+gnSOfYQ0xPJeNX1+3pfL8/P8/lP0DY0NQEQUSYHvk6SR004HfkcaKrhaoZ9yfYY03PR38zbzcxk6GdxMUg3KacDPSLWUF9SkuYUUwH2WVMt05iryNDMzs1XQiq1ezMYmSS8lBV+viDwHipmZmZk13rirAbFxaxfg9w4+zMzMzEaWa0DMzMzMzKxhxmwn9Beuv35stmnt/IFmZmZmZlav++677/mIeNFQ5jlmA5DNNt2Um26+ZaSLYWZmZma2zpo6ZfITq061etwHxMzMzMzMGsYBiJmZmZmZNYwDEDMzMzMzaxgHIGZmZmZm1jAOQMzMzMzMrGEcgJiZmZmZWcM4ADEzMzMzs4ZxAGJmZmZmZg3jAMTMzMzMzBrGAYiZmZmZmTWMAxAzMzMzM2sYByBmZmZmZtYwDkDMzMzMzKxhHICYmZmZmVnDOAAxMzMzM7OGcQBiZmZmZmYN4wDEzMzMzMwaxgGImZmZmZk1jAMQMzMzMzNrmOaRLoCZmY1tEfm5d8EACbXCE9IA6czMbJ3mAMTMbJyJgJ5Sel3Mzz0l5ecUH5TKKV25DOVQeh19ywBKOZCovC+H8nPffgYMNuokAUpBiXqfU6ZNuQ6/kAOVQiE/V5Y3BRI0KaVtUlongkIh5dWct2nxf0Mzs4bxT66Z2TqqEkR0FdN1frEnBQrFUgoKSmVRKqfXPb3P+Wp9LQODRqkEMSsWt96qkdWoQslJWwopaGkppICnuQBNSgFLc1MKZJoLQUF9QUsliDEzs/o4ADEzG0WKPakGodiTgoVSKQUUpbIo9qQL8q6edLVcKo1wYceSHOEU82fbXaxeOUgg01urAm0tKZO2lhTEtDangKWlEDQXUjoHK2ZmDkDMzIZdddOlzm4IxPLutG55tyCgqyhKMTTNlqyBoi8QrDRjW9bZf8BSaU7W3BS9wUlbS9AkmNASIJjYltI2yX1gzGzscgBiZraWKv0lOotQKonunlRr0VMS3cVKjYavJse7SnBZzLVZAEsGqF1pbQkETGiFpqagrSU1AWttid7mYQWPY2lm6ygHIGZmdSiVYXlXuohc1tV3pzuA7qJ6R3oyGwrdxXSOdRWhvyZgTU3Q0hwUmqC9NTX5mtSWTsLJ7Q0sqJnZGnAAYmZGX9+LrqIoltL7zqLoKUFXt2svbHQpl/vOy47c5Ov5mjQTJ6TAZGJr6kQ/oSX1Ran0RzEzGykOQMxs3ChHqsUAWLo81V50dKWRooolEeURLZ7ZkKoEJsuWrxhAFwppiOKWAkxoTbUoE9tSX5T2tpEoqZmNNw5AzGzM6SqmUYyKJbG8OwUYlY7BZQcZNs6VSrmvUnHlDvOVuVWmTszNuSYETQra2zyCl5kNHQcgZrbOWro8TX7X0ZU6fC/vznNhgEeSMlsDlQB94VKt8FyZDLK9NWhpTqN3tbWkIYZda2Jmq8sBiJmNaqUydHSmQGNJbkqyuCM9u+O3WYPkySA7ugRdUN0xvjIi16Tc52Rqe4piJrd7KGEz658DEDMbFbqKaejarqLo7E7DlHbkOTIcaJiNXhHQU4JFyyq1JqmtlnJzrintqX/JpAlBcyFoa+6bRd7Mxif/BJhZQ1Um4FvSIcoBSztFqaTeuTTMbGyoDOqweNmKzbmamtJEi20twYTW1Bl+4oTIy0aqtGbWSA5AzGzIlcup6VRPOY02VY4UcECq4TCz8atchjKp31Z1J3gJWptzM67cCX7apDQhY6GQghYzGxscgJjZWlvWCd09oqtIaj5V6ptIzcysHhF9Nyg68xwnzy1M69rbqptxpWGDXVtitu5yAGJmdVvamZ4Xd4hyOd297CmNbJnMbOxb3pXnNKkZNri1JWhvTbPCT5oQFDyXidk6wQGIma2glJtPFXvSP/typIAjdTR1rYaZjR7dxTSfCYjnFwFKQwNLMK26GZfSPCZuxmU2OjgAMRvnKs2nOruhs5hqNNx8yszWSZHmAgKYu6jynFZNaA2a8nDBLYU0p8mE1pEqqNn45gDEbByIgI6u9HpRh4gQS5e7+ZSZjR+VfiUdNc242lrSZIothdSMq6kJ2h2YmA0rByBmY0i5DOVI82ksXS7KZVicJ+9zrYaZ2cq6imkADRBzF6XRuFqaU/Ot6ZP6mnE1qW8IYTNbOw5AzNZhHV2puUGl+VSxx8PcmpmtjYi+GzbPLVx5NK5CUxqFq7U5NevyaFxmq88BiNkoFwGdxfR60bLUGXzJclEqpw7iePI+M7OGqIzGtTTXLEt985dMbEtDBE9uT3OXuH+J2cAcgJiNEuVIwUZl9KlSpflUuFbDzGw0ivy73dmtFeYukdIQwaKvGdfUidHbhEv+SbdxzgGI2Qjp6ErD2i7vTgFGdw90dfu/kpnZui6i7/f82crzgrRuYltQKMCktqClOXWCdzMuG28cgJgNozSzb3q9cFn6J7S4w82nzMzGq47cjGtJx4rNuNpaUjOuQhNMaU//HNyMy8YqByBmQ6B39KkeWNaVmk8tcfMpMzNbhUozruVd6u1jUt2MC2qacXk0LhsDHICYrYFlnVAsieVd0NWTRp/yMLdmZjZUqptxzak852Zc7W2pP0nvaFwtnlTR1i0OQMwGUA7o6EyvF3U09Y4+VS6PbLnMzGx8q9SULFu+4o2vluZgYhs0F4LJEwIJJk0YiRKaDc4BiI17xZ40cV+xR3R0Qakslnam4W4dbJiZ2bqi2CMW9QCIeYvTskIhPU+bmP6hTWlPtSdtLVBoGpFimjkAsfGjq5iqtJd1ip4SLC+K7mIKOBxomJnZWFQqpef5S5ryc3rfXAApaG+D1kLQ1pqacjU1QauvDm2Y+RSzMaVchu4eeptLASzKI40Ue1KthpmZ2XjXUwJIfRihrylXU1NqwtXcBJNyM67KqFxtLZ7DxIaGAxBbJ3X3pGCjqyi6iqlDeEdXZSI//zqamZmtiXIZusuim74hg59bmNZVRuWa0p5G46rM/l55mNXLAYiNah1d6Xlpp4hy3xC3PSU3mzIzM2ukymiP82pGfSwUoNDUNyJXczO0t6YgxaNzWX8cgNiIK/ZAZ+6L0dEJ5RDLOtOPW09phAtnZmZmgyqVoFRK/SqXVo/MJWhuSn1NJk/oqz1BMLHNneDHMwcgNuxK5dQ0qiPXXnQVUzOpriJ09yhNBu6+GWZmZmNL9PU1WbA0BSYLluZ1Sj1P2ltTM662lqClGVqbo7eviQOUsWvUBCCSjgW+nt8GsAh4FLgG+GFEPFuVVsCRwCeA9YG7gM9ExF8aWGSrUipDdzHNnbGsK80AvjTXYnR2u/O3mZmZVYl0sVfpZ1LdER7IQwX3Tbgo6K1FmdDqzvDrulETgGSLgL3z62nAq0lBxv9K2jsi7snrvgIcA3wJeBD4AvBHSdtUByo2dHpKeVbW3OG7uyfVYqTmU+lXwH0yzMzMbCiUyytPuPhcXteUa0YmtgWFHKj01qIU0nrXnoxuoy0A6YmIO6reXy3pDOBm4NeSXgm0kAKQEyLidABJfwJmA4cBRze2yOu+iPQoR9+diGV5BvBKbUa3h7A1MzOzUaByw7Ovv8nKtScthaBQ6JvbpL0VRPTODN/kAGVEjbYAZCURsVDSEcBVwJ5ANzAV+E1VmmWSLgP2wQHISsrlVM3ZXYSecgomij1pJKnunkrzKddlmpmZ2bqvXIausqAIHZ39X9+0VUbpaumbGb65kEbySpM0QpMvjYbNqA9AshuAHuB1pBq4EvBITZr/BxzQ4HKNuHKk0SfKkftaAMvz0LXLc9+Lrp40hK2ZmZmZQVd3ii6Wd/UfZRQKuRal0hdFfX1P2ltTk5BKoGKrb50IQCKiS9LzwIuBIrA0ImoHaF0ATJTUGhHdDS/kMOnsTsFFd08aQapSc1EspdflECUPVWtmZmY2ZCpDCwO9UwPUai6kmeLbWlKfk5bm1BelpZBnky9A6zpxpd1469LHUv3t99cbQYOsG1V6SulRys2hyrlzd0QamhZS7cXoPxIzMzOz8aknByjFnsqS/gOVyoheIjX9gtQnBVITMAlamsdXx/l1IgCRNAF4ITCHVNMxRVKhphZkOtAREUWA++67j6lTJje8rNXaJr4AqUBz6ySaCs0UWtppKrQi19eZmZmZWRZ5pJ9ScTnlUjelni5KxU5KPV0Uu5aMcOmG3joRgABvJJX1T6QmWAVgc+ChqjRbkobkBWD77bfnpptvaWQZzczMzMzGlOG4oT/qK3skTQdOIk1K+EfgdmAxsH9VmonAO0gjZZmZmZmZ2Sg12mpAmiW9Lr+eAryGNBHhRGDv3OSqJOlE4BhJC+ibiLAJ+OEIlNnMzMzMzOo02gKQaaRmVkGq5XgU+AXww5oZzk8kBRxHkvqG3A3sGRFzGltcMzMzMzNbHYoxOr31q1/96nAfEDMzMzOzNTd1yuR7ImKHocxz1PcBMTMzMzOzsaOhAYik/SQ9KWmppO0buW8zM1s3feqTn+DSSy8Z6WKYmdkQaXQfkFOBwyLC/0nMzEaxP1x1Fb/4xc959NFHaW9vZ5NNNuEd73wn73vfAQ2fy+hHPz6jofszM7Ph1egAZDPg7/2tkNQcET39rTMzs8Y5b9Yszj33HI786lfZZZddmThxIg89+CCzzpvFfvu9m9bW1pEuopmZrcNW2QRL0mxJh0u6X9IiSb/OM5NX1n9M0qOS5ku6VNLG/eTRJmkpaQLBv0p6rCrvL0u6H1gmqVnS6yTdLmmhpL9K2qMqn5dKuknSEknXSjpd0i+G4HMwMzNgyZIl/PjHP+KrRx3FnnvuxaRJk5DEllttxQknnEhrays333wzB7zvfey6y868da89OeOMH/duf9ddd7HXnm9ZIc999tmbO+64A4AHHniAAz/wfnbdZWfe9MY9OPWUUwDo6uriq0ceye67vYHXv35XDjzwA8ybNw+AQw45mIsu+h0ATz75JB/7n0PYfbc3sMfuu3HkkV9h8eLFK+xr1qxz2f+97+H1u+7CEV/6El1dXcP5kZmZ2Wqqtw/I+4C9gZcC2wIzASS9CTghr98IeAK4oHbjiOiKiMo0iv8VES+vWv0BYF9gOvBi4ArgeGA94HDgd5JelNOeD9wDrA98E/honeU3M7M63H//XykWi+yxxxsHTNPe3s7x3zqeW269jR+e/iN++5vfcP3119eV/yknn8SBB36Q227/E5dfcSV7vXUvAC679FKWLl3CH66+hptuupmjjz6Gtra2lbaPCA4+5H+49o/XcdHFv2fOs8/yf/+3YhOta66+hh/9+AyuuPIqHnnkYS69xK1+zcxGk3oDkB9ExNMRMR+4DNguL/8gcHZE3BsRXaR5OXaWNGM1yvCDiHgyIpYDHwKujIgrI6IcEdeS5vh4m6RNgR2BY3JAc3Mui5mZDZGFCxYyffp0mpv7Wuh+5CMf5vWv35XX7rQj99xzNzvuuCOveMUWNDU1scUWW7D3Pvtwzz1315V/c3Mz/3ryXyxYsICJEyey7bb/1bt84aJFPPnkkxQKBbbeemsmT5680vabbropO++8M62tray33np86MMf4Z6771khzYEHHsgGG2zAtGnT2G333XnooYfW4hMxM7OhVm8fkOpJADuASjOrjYF7KysiYqmkecAmwOw6836y6vVmwP6S3lG1rAW4Ie9rQUQsq1r3BPCSOvdjZmarMG36NBYuXEhPT09vEHLeeT8HYK8930K5HDxw//18//vf57HHHqVYLNLd3c2ee+5VV/5fP/Y4zvjxj9jvv9/FxptswqEfP5Tddt+dfd/+dp6d8yxf+fIRLFmyhLftuy+HHfZpWlpaVth+/rx5nHTSSdx77710dCyjXC4zderUFdK8cP31e19PmDCBuc/NXZuPxMzMhtjaDsP7NCloAEDSJNLM5P9ejTyqZ0J8Evh5REyvekyKiBOBZ4AX5H1UbLoWZTczsxrbbvtftLS0cOONNwyY5sgjv8Lue+zBH66+hltvu5337r8/lUlt29vb6ezs7E1bKpVYMH9+7/vNNtuME086metvuJGDDjqIww//Iss7OmhpaeHQQz/BRRf/nnNnncctN9/M5ZetXMn9gx/8AAl+e+GF3Hb7n/jWt09grE6oa2Y2Vq1tAHI+cJCk7SS1Ad8G/hwRs9cwv18A75D0VkkFSRMk7SHpPyLiCVJzrOMktUp6PfCOwbMzM7PVMXXqVD5+6KF8+1vf4tprr6Gjo4NyucyDDz7I8uXLAVi2bBnTpk2lra2NBx54gKuuvLJ3+80224zu7m5uvvlmisUiP/nJWRSLxd71V1x+OfPnz6epqYkpU1LNRVOhwF133skjjzxMqVRi8uTJNDc301QorFS+ZR3LaJ84kSlTpjBnzhxmzTp3eD8QMzMbcms1DG9EXCfpGOB3wAuA24H3r0V+T0p6F3Ay8CugBNwJfCInORCYBcwH/gScR+q8DkAeaWufiLhlTctgZjbeHXTQwWywwYs595xzOeboo3vnAfns5z7Pdtttx1ePOorvfuc7nHjCCbzmNTuw115vZcmSJQBMmTKFI796FN847lhKpRIzDzqIDV784t68b7vtNk499RQ6OzvZaKONOfGkk2lra+P5ec9z/PHfZM6cOUycOJG3vnVv9t1335XK9vGPH8oxRx/F63fdhZdsuilv3/ft/OIXP2/YZ2NmZmtP63LVtaRjgc0j4kO161796lfHTTc7DjEzMzMzW1NTp0y+JyJ2GMo817YJlpmZmZmZWd0cgJiZmZmZWcOsVR+QkRYRx450GczMzMzMrH6uATEzMzMzs4ZxAGJmZmZmZg3jAMTMzMzMzBrGAYiZmZmZmTWMAxAzMzMzM2uYdXoiwsFImgs8McLFWB94foTLYKOfzxOrl88Vq4fPE6uXzxWrxysjYspQZrhOD8M7mIh40UiXQdLdQz1zpI09Pk+sXj5XrB4+T6xePlesHpLuHuo83QTLzMzMzMwaxgGImZmZmZk1jAOQ4XXWSBfA1gk+T6xePlesHj5PrF4+V6weQ36ejNlO6GZmZmZmNvq4BsTMzMzMzBrGAcgQk7S1pOskdUh6WtI3JBVGulw2siQ1S/qKpEckdUl6StL3atLMlhQ1j2dHqsw2vCRtLulMSX+VVJJ0Y836Vkm/kfRPScslzZV0laTX9JOXf3fGsFWdKznNdElnS5ovaWk+VzavSTOzn9+YkHRoww7GhoWk/SVdKunf+fu/R9IH+kn3KkmXS1okaYmkO2t/U/x7MrZJeq+k2yXNk9Qp6SFJR0tqzes3knRK/r1ZKulJSbMkbdxPXqu8thnImB2GdyRIegHwR+AfwLuAlwPfIQV6R49g0WzknQO8GTgOeBB4CbB1P+nOB35Y9b57+ItmI+Q/gbcBdwCt/awvAAGcADwGTAU+D1wvafuI+Cf4d2ecWNW5AvBrYBvgs8Ai0nd/naRXRcTimrRvApZXvf/n0BbXRsAXgMdJvxHPk86X8yWtHxE/BJC0HXALcAlwQN5uR6C9kol/T8aFFwI3AKcAC4GdgGOBDYHDgNcA+wE/Bf4MvDivv13SNhGxtCqveq9tVuI+IENI0pHAEcBmlR98SUeQv9h+/gnYOCBpb+Ay4L8i4h+DpJsNXBgRhzeqbDZyJDVFRDm/vhBYPyL2WMU2k4F5wJER8d28zL87Y9yqzhVJOwO3A2+OiOvzsheTLki/FhGn5mUzSRcMU2ouImwdlwON52uWnQ/sHBEvze/vAP4ZEQcOko9/T8YhSd8CPgW8AJgGLI2Inqr1WwAPATMjYlZeVte1zUDcBGto7QNcXfMHegHp7sLuI1MkGwUOBq5fkz9QG7sqF5SraRnQyYp3wf27M8bVca5sB/QAN1VtMwe4H9h3+Epmo0Vt8JHdB2wAqVkV8FpWrGHvj39Pxqd55P8rEbGwOvjIyx4GOsjnU7ZW1zYOQIbWlqQqqF4R8S/Sl7bliJTIRoPXAg9LOl3S4tyu9qL+2lMCB0vqzu1zL5S0WaMLa6OLkmZJGwInAyXgV1VJ/LtjE4CeiCjVLO8Ctuon/WOSenLb748Pf/FshOxCakoF6f8QwAty2/4eSY9JOqRmG/+ejBOSCpImSno98BngjBigWZSkbYGJ9J1PsHrXNitxADK0XkBqT1drQV5n49OGwEzSXcr3AweR2lheLElV6S4hVYG+GfgSsDNwi6RpjSysjTpfBorAM8BHgbdFxBNV6/27Y48CEyS9qrJAUjupT8h6VemeAY4BPgy8g9S++/8kfb6BZbUGkPRmUh+OH+VFG+bn84BfAnsCfwB+KultVZv692T8WJYft5BqT7/UXyJJTcD3gUeAa6pW1Xtt0y93Qh96/UWPGmC5jQ/Kj3dFxDwASc+Q/uDfBFwHEBGfrdrmFkm3A38h/VGf1sDy2uhyLqlT6EbAJ4HLJe1WU+3t353x7WpSf48zJR0ELAZOJLXlLlYSRcTVOW3FVZLagKMlfX8NmwXaKCNpBmlAk0si4ty8uHLD+acRcXJ+fYOkrYAjgSursvDvyfiwC6lWYyfga8DppP8xtU4g3RDdPSKKVcvrurYZiGtAhtYCYHo/y6fR/x0FGx8WAA9U/kCzW0kjXA04WkRE/I3U6evVw1s8G80i4tmIuDsiLiPdtZ4HfKUqiX93xrmI6CbdgXwxqfnM08DLSHe756xi8wtJtSQzhrGI1iCS1gOuAv4FfKhq1fz8fEPNJtez4v8h/56MExFxb0Tcmgc0+QzwCUkvr04j6ZOkmpGPRsSfa7JYo2ubCgcgQ+tBatpISnoJMImaNpU2rvy/AZYLqOeOo+86GQC5Y+ADpIvLCv/uGBFxJ7A56VzYPCLeQOoweke9WQxX2awxJE0ELid1Jt43IpZVra73/5B/T8ane/PzSysLJL2HNGjBERHx6362WatrGwcgQ+sq4K2SplQtO4A03vpN/W9i48DlwLaS1q9athvQAvx1oI0kbQO8ErhneItn6wpJE0g1Yo9XLfbvjgEQyUMR8ZikVwBvAX62is3eQ5o34olVpLNRTFIz8FvgFcA+EfFcTZLbSXes31yz/M2s+H/Ivyfj0675+XEASXuQ+gqdXhnGux9rdG1T4XlAhlCewOcfwN+Ak0h3Kb8LnBYRnsBnnJI0lXRO/Bv4NjCFdH48GBF75jT7kqrLLyc1n9iSNOlTF7Cdx14fe/Ldykrnzy+SJhr8en5/JakD6T6kjqJP09cHZAdgl4i4L+fj350xblXnSkR0SDqGdIf6eeBVpM7mV0TEzKp8fgfcSRqet0C6sPwQ8JnKZHW2bpJ0FvAx0kSUd9asvi8iuiR9jjSS3rHAXaTg839Jbftvyfn492SMk/QHUr/Cv5NGVdyV9LtyeUS8P/cL+hMwm/Q/p7o2Y25EPJbzWeW1zaAiwo8hfJDavV1PulvwDPBNoDDS5fJjxM+LzUkXlctId6HOBV5QtX5bUoetuaROo8/mNBuPdNn9GLZzYgap2Ut/jxmkmo4r8rnQlf8Z/Br4z37y8u/OGH6s6lzJaU7LFwJdpFGxvgw01+TzbVK/so58rtwDfHikj8+PITlHZq/qHMnpKjOmd5Oac767n7z8ezKGH/n7/BuwlNSv517g00BLXj9zkHPp3Jq8Br22GezhGhAzMzMzM2sY9wExMzMzM7OGcQBiZmZmZmYN4wDEzMzMzMwaxgGImZmZmZk1jAMQMzMzMzNrGAcgZmZmZmbWMA5AzMxWg6SZku6RtETSAkn3SfruEO9jJ0nHDmWeo5mkYyU9PwT5bJHzml6zfKakkDR5bfextiRdJunrq0jz9lzeGfn9Bvm4ZtSk20HSPEnThq/EZmZDzwGImVmdJB0J/BS4Gng38BHgEuCdQ7yrneib6drqtwXpc5tes/wKYGfSBHwjRtJrgTcCqzvr+Aak45pRvTAi7gb+Anx+CIpnZtYwzSNdADOzdchhwJkR8dWqZZdJOm6kCmSrFhFzgbkjXQ7gM8AlETF/CPM8BzhV0vER0TOE+ZqZDRvXgJiZ1W868GztwoiIymtJd0k6pzaNpFmS7s2vWySdKulfkrokPS3pYkmtkmaS75DnZjgh6caqfLaRdEVuArZE0m8lbVi1fo+8zZslXSJpmaRHJO0lqSDpFEnPS/q3pC/Uc9CSPibpAUmdkuZIulDSNEn7SipLemlN+pfm5e+sWrafpDslLc/Nhq6UtNkg+1xP0pl5f52Sbs81CAOl3wO4LL99PH8Gs/O6FZpgSZqR379f0jmSFkt6StKH8voj8ncyV9JJkppq9jXodzBA+aYA+wEX1ixXbl71XM7rPGBq1foZwAP57Q2Vc6Iqi0uB9YC3DrZ/M7PRxAGImVn97gU+Lemjkl44QJqfAvtX9zfIr99DulsNcCTwQeAYYE/gc8AioEBqLvSdnG7n/Phkzmdz4DZgAvBhYCbwn6RaGNWU40zgVtJF7xOkC9/TgSnAgfn9dyS9brADlnR0zusm4L+BT+SyTgb+ADwNfLRms5mkGocrcx4fBi4CHgPeBxwEPAy8aIB9tgF/zJ/Nl/J+5wJ/HORC/17g8Pz63aTPbb/Bjg04CXiG9N3cAsyS9B1SE7iDgdOAI3KZK2Vbne+g2i5AO3B7zfLPAF8DzgLeCywHTq5a/wzpXAH4FH3nBAARsRj4O/CWVRyrmdnoERF++OGHH37U8QC2Bf4JBFAmXfh9A5halWYqsAw4qGrZwUAX8ML8/nLgO4Ps5zByxUrN8p8DDwGtVcteAZSAffP7PXL5vl6VZuu87PqqZU2k2pyTBinHdFK/ie8OkuZ44HFA+b2A2cCpVfv5N3DRIHkcCzxf9f4QoBt4RdWyZlIAc8og+bw9H+eMmuUz8/LJ+f2M/P6cmu+tCDwCFKqW3wn8enW+gwHK9lVgbs2yAimAO6Nm+bXVxwFsk9/vMUDe5wK3jfTfhx9++OFHvQ/XgJiZ1Ski7ge2InU6/zHpYvsY4O5KjUekO9IXki56K2YCl0bEvPz+L8DM3NRn21XcOa/2FuBioCypWVIz6eJ/NrBDTdrrql4/mp+vrzqWMimY2mSQ/e1Mumu/UpOyKmcDm5ECH0idrDer2uaVwMaryKPWW4B7SE2pKscJqRam9jjXRu9nlL+3ucBNEVGqSvMoK35Gq/MdVNsQqB3p6yXARqSBDKpdtBrHQM530CZgZmajiQMQM7PVEBFdEXFZRBwWEVsD/0O6A35IVbKfAW+Q9HJJLwfeQLpQrzge+BGpadVfgSclfbaO3a8PfJl0p7768TLSxWy1hVVl7q5dlnWTmhINpNLM7JmBEkTEP4EbSc2qyM93RsTf682jH+sDr2Pl4zyIlY9zbSysed89wLLqz2h1voNqE0i1YNUqQcNzNctr369KF4N/j2Zmo4pHwTIzWwsR8TNJJwNbVi27WdIjpL4RIjWzuaZqfSep3f/XJL0COBQ4TdJDEfGHQXY3n3T3/af9rFvreTT6Uamx2WgV+f8U+InSMMXvBr44QB71mg/cTepvUqv2Ir7R1vQ7mM/KwwNXBjTYoGZ57ftVmZ7zNzNbJzgAMTOrk6QNIuK5mmUvAqYBc2qSn03uPA6cV9Osp1dEPCLpcFIH461JHbu7c94TcrBScR2pP8A9ERErZTb0/kTqFP1R+jp49+ciUo3OBaSa9Quq1j1E6gPyUfpGqVqV64C9gH/Vft6rUKnpGc7agDX9Dh4CNpbUFhGVIOpJUhDyLtL3XvHumm1XdVwzSJ36zczWCQ5AzMzq94CkS0i1Gc+R+jocTuqoPasm7SxSU6tmUifhXpIuJvVxuI90gf/enO7mnOTB/PxZSdcDiyPiIVJn7TuBKySdTbrjvglptKhzI+LGITpOACJioaRvAt+S1Eoa1aoN2Bc4LiL+ndN1SvolKYj6VUQsrMqjLOkI4Jc5za9IHarflNPe3c+uzyPVCt0o6VRSX5UXkkanejYivjdAkR/Kzx+XdAHQEREPDJB2TR3Lmn0HtwEtwKtItTtERCnXnp2qNBP8LaQRubaq2fZf5EBQ0iKgWPO57UAa0cvMbJ3gPiBmZvX7Bulu8w9IQcg3SSNh7RQRj1cnjIhngT+TRid6qCaf20lDy55P6oD8GuA9VReVtwCnAJ/NeZyZ83yY1DeigzRs61XAcaRmSY8yDCLiBFJTqLfksp5JavKzpCbp7/Pz2TXLiYjzSRfWW5I66J+XX/c7OWCu9XkjaTSo40if9fdJfW3uHKSsT5ACwneTLvjrrXGp25p+B3m7vwH71Kw6Dfg2KeD6HWl44yNqtu0EPkY6T24C7qqsk7Q9aTjj1e24bmY2YtSYWnwzs/FF0nqkpkeHRcTPRro8wy3fyT8AeGkeYctqSPo8cEhEbDOEeZ4A7BgRngfEzNYZrgExMxtCkqbkGbtPJ9US/GqEizSsJL1S0n6kWpIfOvgY1FnAiyQNSbAgaRKpZuT4ocjPzKxR3AfEzGxovQa4gTT7+EciomOEyzPczgReC1xKappmA4iIZZI+Ckwaoiw3Bb4x1H1/zMyGm5tgmZmZmZlZw7gJlpmZmZmZNYwDEDMzMzMzaxgHIGZmZmZm1jAOQMzMzMzMrGEcgJiZmZmZWcM4ADEzMzMzs4b5//W/4VKW3yldAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 936x118.8 with 1 Axes>"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# create a microwave pulse with a gaussian curve\n",
"with pulse.build(backend, name='hadamard') as gate_pulse:\n",
" # custom pulse for this demo\n",
" microwave = Gaussian(duration=310, amp=.36, sigma=80)\n",
" pulse.play(microwave, pulse.drive_channel(0))\n",
"\n",
"gate_pulse.draw()"
]
},
{
"cell_type": "markdown",
"id": "30e052fe",
"metadata": {},
"source": [
"### Use custom gate"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "d5eb0455",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAKAAAAB7CAYAAADzNovBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAIEklEQVR4nO3df0yTiR3H8Q8t53XDynG6s0PKw004ptwRjL0ZyQk4nGGyJUh7auaPP4TMHxGVSMCo1cQNdMFFmpDMDHVmujNqO0cwTidbSiDqBU0g/srQjB+FYFDCzQugRun+MPSulh/l1vJ9gM8raVIf+zzPN+GdPk+b9mmI2+12g0iIRnoAmtoYIIligCSKAZIoBkiiGCCJYoAkigGSKAZIohggiWKAJIoBkigGSKIYIIligCSKAZIoBkiiGCCJYoAkigGSKAZIohggiWKAJIoBkigGSKIYIIkKlR5Ayr//BXzdJbNv/QdA/E+/27o7d+5EQ0NDQOfxR1JSEsrKygK+3Skb4NddwFft0lOMXUNDA2pqaqTHCBgegkkUAyRRDJBEMUASxQBJFAMkUQyQfISHh4/bvqbs+4BTQWRkJMxmM0wmE+bNmwedToe+vj7cu3cP9fX1cDgcePLkidc6BoMBTqcTly5dQkFBQdBnZICTUGxsLA4dOoSsrCyEhvr+iRctWoSNGzfCZrPh/Pnz2LNnD1wulye++Ph49Pf3IywsDL29vUGdlYdgP+36Qxr+Uv1bv5dL2bZtGxobG2GxWOB2u2G327FlyxYkJycjMTERS5YsQV5eHqqqqhAaGop169bh7t272L59uye+hoYGLFu2LOjxASp9Brx48SKsVisePnwIRVFQWFiIuro6OJ1OtLS0SI+nWqWlpZ7D5unTp1FUVITOzk6fx9XV1aG8vByKouDo0aNYuXIlbDYbAHji6+7uHpeZVRfglStXYLFYkJ6ejpKSEvT29uLAgQPo7++HVquVHk+1duzYgYKCArx8+RIbNmzAuXPnRl2ntbUVW7duxeLFi2EwGAAAFRUV4xYfoMIA9+/fD0VRcPnyZc/5S3JyMuLi4hAZGSk8nTrFx8fj8OHDAIC1a9fCbrf7td7gOZ/BYIDL5YLRaERJSQkqKyvR0dERzJE9VHUO2Nvbi1u3bsFsNnudPCuKguTkZL+2ERIS4tetpsY55vm++Gcxsqzved3uttSNeTs1NU6/5/Sd2/eTMKWlpdDpdDh58uSY4xs851uwYAEqKysRHh6O4uLiIWauGdOc/lJVgD09PXC73Z7DwbcNtWy8/Sp9L/72m6+8bh/HfCY6U0xMDDIzM/HixQsUFRX5tc7b8Q2e8+Xn52NgYACrV6/GzJkzgzz5G6oKMCIiAiEhIXj8+LHP/w21bChut9uvW2pqWoCn919qaprfc/rOneq1rVWrVkGj0cBut+Pp06ej7nu4+ACgubkZV69ehU6nQ1ZW1lszp45pTn+pKsCwsDCYTCY4HA68evXKs7y1tRXXr18XnEy9TCYTAODatWujPnak+AZVV1d7bTfYVBUgABw8eBAtLS1YsWIFqqqqcPbsWSxfvhyzZ8+WHk2V5s+fDwBobGwc8XH+xAfA83H/hISEgM86FNW9Cs7IyIDdbofVaoXZbIaiKNi9ezdqa2vhdDrF5vr9lqH3Pdzy8XLs2DEYDAa0tbWN+LiKiopR4wOApqYmFBcXo7m5ORjj+lBdgACQnZ2N7Oxsr2W1tbVC06hbeXm5X4/bvHkzbDYbNm3aNOL7fO3t7di3b1+gxhuVKgOkwOvo6IDFYpEew4fqzgFpapkwz4CnTp2SHoGCgM+AJIoBkigGSKIYIIligCSKAZKoCfM2TKDpP5iY+05KShrzOv9pe/Ox/B9F/9DrfrD3648Q91g+O0MT0u7f/REAcLjo11731YCHYBLFAEkUAyRRDJBEMUASxQBJFAMkUQyQRDFAEsUASRQDJFEMkEQxQBLFAEkUA6QROZ1OJCQkIDY2Frm5uXj9+nVAt88AaVgDAwPIzc3FhQsX8OjRIzx79gxnzpwJ6D4YIA2rvr4ekZGRnitw5eTkwOFwBHQfDJCG1d7eDqPR6Pl3dHQ0XC5XQPcxZb8TMpk97fkvvqisxttftrD9yeFzX6vVYMPK5ZihD/PZjtvt9rreczC+vcFnwEloVkQ44mKi0NnVjc6uby7F9vb9zq5ufPzRh0PGBwBGo9HruoMulwtRUVEBnZUBTlI/+8wEww/eH/ExMVEGpPwkcdj/N5lM6OjowP379wEAJ06c8Llu4/+LAU5SoaFarP7FUmi1Q/+Jp017B6sy06DRDJ+AVqtFRUUFLBYL5s6di+nTp2P9+vUBnZNfy5zkar5sxN+dX/osN/88BZ8m/lhgIm98Bpzklnz6CT40en8JfV6sAtMn8UITeWOAk5xGo8HnmWl4d9o7AICw7+tgzkgZ068ZBZNqA7xz5w7MZjNmzZoFnU6HuLg47N27V3qsCen9cD1+mf7mp87MGSmYHvY94Ym+ocr3AW/fvo2UlBQoioIjR44gOjoazc3Nfv1YzeClJ2hof/7rP8ZlP/5e+kOVAe7atQt6vR43b97EjBkzPMtzcnIEp6JgUN2r4L6+Puj1euTl5aGsrEx6HAoy1T0D9vT0YGBgAHPmzPlO6/MQrA7+HoJV9yIkIiICGo1m3H4wmWSp7hAMAEuXLsWDBw/Q1NTkdQ5Ik48qA/z2q+DCwkIoioK2tjbU1tbi+PHj0uNRAKnuHBAAFi5ciBs3bsBqtSI/Px/Pnz+H0WjEmjVrpEejAFPlMyBNHap7EUJTCwMkUQyQRDFAEsUASRQDJFEMkEQxQBLFAEkUAyRRDJBEMUASxQBJFAMkUQyQRDFAEsUASRQDJFEMkEQxQBLFAEkUAyRRDJBEMUASxQBJFAMkUQyQRDFAEvU/bInS8NA1QFMAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 193.726x144.48 with 1 Axes>"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"qc = QuantumCircuit(1, 1)\n",
"\n",
"# append the custom gate\n",
"qc.append(gate, [0])\n",
"qc.measure(0, 0)\n",
"\n",
"# define pulse of quantum gate\n",
"qc.add_calibration('hadamard', [0], gate_pulse)\n",
"\n",
"qc.draw('mpl')"
]
},
{
"cell_type": "markdown",
"id": "64d0b6e4",
"metadata": {},
"source": [
"## Gate to Pulse"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "6498b86c",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAy0AAAD+CAYAAAA3UuoaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABDoElEQVR4nO3dd5xcVf3/8ddnyrZk0yuhtx8CYmhKT6QEEMQOiKJgAwQUUAQENDSlWFCqWAhFREGQTighdARCVL4iJSSUAGmbbJLtszuf3x/nTphMZndnN7s7s7vv5+Mxj905995zz9y5M3M+95Rr7o6IiIiIiEipihW7ACIiIiIiIh1R0CIiIiIiIiVNQYuIiIiIiJQ0BS0iIiIiIlLSFLSIiIiIiEhJU9AiIiIiIiIlbVAHLWY23czczGbmWXa7mc0uQrF6nZlNjV739n20v2Oi/Q2Nno+Ljv2mBW5/nJk9bGaLzWylmT1tZtO6WZYZUVnczFrNrMbMnjKzM81seHfyXB9mtnV0LEbkpK91zIoh6zzJfVycZ91vm9kbZtZkZnPMbL8O8h1iZgvbOwfNbBMz+4uZLTezBjP7t5kd1ElZ32qnrG5mE7t3BHpW1nuaeTSb2Wtm9mMzi/fC/maY2Ys9nW8X9j80ep3HdGPbj5jZk2ZWH+WxaYHbTTezZV3d32BjZrPN7PZil0NEpCsSxS5AiZhmZru6+wvFLkgfeQnYHXizj/Z3X7S/huj5OOCnwGzgrQK2Pxt4ELgKqAe+CjxoZp9197u7UZ5XgWMBA0YBuwE/BL5jZvu6eyFl6ilbE47FDKA2Kz33mBXTV4D5Wc/fy15oZkcC1wLTgacIx/be6DP1f3nyO5t2vnvMbCPgWeDfUT71wGSgspMyfg4oz0n7PdDm7h90sm1f2xdoBCqAvYELovSfFa1EpecyYARwGOEcKLX3UERE+piCFlgOLCRUpD5b3KL0DXdfBTzX0TpmVunujT20v6XA0vXIYid3z756+rCZbQWcCnQnaKl39+zXf5+Z/Q54Hrge+GT3iwpmlgTS7t7W3Tx64Jj1pP+0E3xknAfc4O4XAJjZ48COwJmEAHMNM9sS+B4hSLwmT16XEYLpQ9w9HaU90lkB3X1uzn4mAB8hfK5LzQvuXhf9P9vMPkr47lHQ8qFtgLvd/dFiF6Sn9OR3qojIYDSou4dFnFBZOCyqPORlZhPN7E9mNt/MGs3sdTO70MzKstbZNOrKcKSZXW9mq6JuMF+Nlv/IzN43s6VmdomZxXL2sb2Z3Wdmq6PHbVHlq8vMbAczu8fMas2szsyeN7MDomXrdA+Lnp9mZpeb2VLg5Si90swuNbO3o+4sC8zs5znbnZSz77W6aGR3dYq6ebwcLXos01Wmo9eSE7BkzCW02PQId18InA9MNbNtcsudvW7UFekXWc9nW+hO+B0zexNoAjYws23M7FYzezfq5vRfMzsl876b2VTgniibBdG+3mpv32Y2xsxusNClrSHa7y75ymZmp0bn3oqoDCN66ljl7G9zQmvR3zJpUbBxG3Bwnk0uB/5AaO3KzWs48Hng6qyApbsOJ3y/3drRSplz1cx2NLPnouM618z2zlnvMAvd3uqjY/pPM5uynmXMWA0kc/Z3sZm9HH12F5rZn/N9F1jolveyhW55i6PzMG83RzMrM7M7zOwdC8EjZrZxdH5kuuLNNLP/l7VN5jvtcDP7nYXumQvN7Lw8319fsPC92GhmTxACjy7J7A/YAjg12vfsaNkhFrqJLrHw3fqcddJN1IIrovfsE1HaqOi1LI6O2zOZZQWWscPPdbRO5jv2QDO728zqgCuz0vczs7ui8+kNM5tmZnEzuyw6H98zs9Py7Pvw6P1ujvZ/kZklspZnvjc+Gh2rejN71cw+38lrGm6h2+2/zWxsocdCRKQvKWgJbgNep+OrsmMIrTKnAQcRrggfC1yRZ91LCN0ZvgA8CdxgZr8EPg58g1Bx+xGhYgWsuQL9NKHLyNHAMcB2wD1mZlnrvWVmMzp6MRYq3U8DE4HjCV1n7gQ26mg74PRom6OB70X7vQs4gdA161OErkxjOsmnIx8QuhsBnEjoArV7N/LZHXhlPcqRz8PR3926se2ehON0BvBpYCUwCXgN+C7h2P2e0CpxRrTNS4QWBwiV9d0J71V7/gEcGG1zBOHz+1imAprlcGA/4DvRvg4l5yp+IedRlllm1hZtc46tPf4iUzHNDUL+B4zKrgCZ2acIx/a8dvazE6Hy7lEFKhVVkM/K/gwU6EjgWXd/u4B1q4AbgN8RPrPNwJ1mVhWVewvgdmAW4b39CnAvoWthd8TNLGFhbM/BhPfrzpx1xhHes0OAU4DNCe/DmmNvZudEZX6c0FJzAuG8W2cclJlVRPv4GLC3u88zs1GE7nz/j/A9cTgwBHjEzHK7410K1AFfBG4GfhL9n8l/J+CvhG59nye0gP4tJ4814wg7ODYfED4Hi4Bbov+/Gy3bjBDkH014n54BHjCzPfNlFAUR1xHOhX3d/Z9mVk5ouTuA8H33WUKL5iNW+AWizj7X2f5IOCaHRf9n/I5w7D8HvE04v64EqoGjoue/NLM130VRgPZXwvfGZwi/PT+Mtst1C+E9+BzwBnCrmW2Y78VE58EjQBnwyaiVV0Sk9Lj7oH0Q+uAvi/4/BmgDto6e3w7M7mDbBOHHpQkoi9I2JbTcXJ+13jAgRfjhiGelPw/8Nev5TYQfwrKstK2iMh2SlTYP+GMnr+svhC5vle0snxqVc/usNAfm5qx3YJR+WAf7cuCk9o5r1rF1YGj0fPvo+dRuvm/fiLb/ZDe2nQG82M6y8ijfM/KVO2u9t4BfZD2fTRijMKGD/Vp0zvwYmJ+Vfmi0j01z1s89ZgdFz6dkrTOEUOH6XU7Z3gQSWWmXA4ty8i/kPNoR+DmhYrZ/lE8b8Jusdb4SlWtEzrb7R+mZz1NZ9Bn4bgfn4JejtJXAxYRueudH+/xuF97jTYA0cHIB606P9rlvVtrkKO2g6PkXgZrunKvtvKe5j79nv195tosTKsoO7BOljSCMd/pVZ+c6ISh7hBBYTspafgFQA4zKShsZHf8To+ebRvu9MSfvfwG3Zj3/G+EigmWlnR1te0xW2k+A1gKO1VtkfcbyLI8RPk8zgT/lvJ/LomN2EyH42S5r+TeBFmCrrLQE4TNzWTfe0/Y+15nz+9c562fSf5qVtm2UNivn9S0CLslKew54LCe/H0Wfjw1zzrFvZK0zGmgFjs9Km034jRtLCKqeBoat7zmuhx566NGbD7W0fOhm4B3grHwLo24Gp5jZK2bWSAhE/kyo6G6cs/qaftgexo8sBR73tcc4zCNURDL2J1wJTUdXYRPAAsKP95ouQO6+pbt/s5PXsi8hIOpq/+n78uSz3Ls32L3Lou4RiazXn2+dnQlXGH/j7o/1dBHWY9s57r5orczMKix0o5lHuHqfAi4CNmvv9XXg48BSd388k+Du9YQr/nvlrPuYu7dmPX8FGGdZXRkLOY/cfa67n+Xu97v7I+5+CvAL4Ltmltvalnv13HLSTyME+L/rYJeZ76MH3P1Md3/M3X9CaAXJ+7lsx5GEoGWdK/3tSBEqcRmZFrzMlemXgeEWuuZNM7MhXShLPvsAuxJaEb5JaH36ffYKZnZw1G1pJaHCuTBatHX0d3fC5ATXd7KvIYRJLMYTAt7sSRT2J7Qursr6zK0G5pD1nRN5KOf5K3x4fCCcn3e7e/Z5cEduYdz9fHfv1lhKM9sweg/eIxyTFDCND49JRpzQLXAqIcj7b9ay/Qmvb0HO98zjrPua2ytHVz7Xud+pGdljdeZFf2dlEjx0j5xP9BsRtbDtROgVkO2vhM9Nbmv1mvfL3WuAJaz9fkE4Jx4nBK7Tot8qEZGSpaAlElXyLgW+amab5FnlFOCXhMDiM4Qf6ROjZRU569bmPG9pJy17uzGE7gWpnMfmdN6tK9doujfbzuIeyqe73iTrtVvONKcWxk/cR/jB/0Ev7D8TROYeh0Lk2+YSQveN6witFbsCF0bLcs+ZzkxsZx+LWbebUm3O8xZCEFHG+rudcGV5h+j5iujviJz1Ms9roy5iZxOugldbGF+T6cJUnRUELI/+5gajs4ANzWxYgWU8khC4Ffo+rvKsMTTu3hL9WxE9f43wmd8cuB9YZma3rEff/7nu/qK7P+fufyJMTHCMRWPMzGxXQteehYSuULvzYZfFzHkzOvrb2edzA2AP4I48x2MMoZth7nfOJ1n3O6c253nu99cEQsU4W+7zbou6et1NeC0/icq4K/AA636WqgjjqWa5++s5y8YQjmXuaz6Wwr9nu/K5bu8crM38k3W+1eask32MxxC6Tubml3leyHdAbtm2JUxWcVN0AUREpKRp9rC1/Qk4h/x9k78E3Obua8a9mNm2Pbjv5YSA6A95lnX1vgM1hEpuV+VeLS8kn2bWrQx3t6//p1l72tr3M/+Y2ThCV5C3gSN9PWbm6kBmUO+z0d+m6G/u6xuZZ9t8/fS/BFzh7pdmEszskG6W7QPyTzwwng8r+30p83ozY1m2Ibw3ZD1f7u5LzWwyIUjJd1+IZwhB6P6EcTD5ZFptOh2cb2EQ+WRCC0aPcff7CLPMDSeMM7mc0OJ3ZA9kn2nZ+Qjwf4RxCEuBIzItF3kupNREfyfS8ffDG8BvgBlmtsjds2dsW04IBC7Is93qLr2C0JUp9/zssYkygC0J3RUPdvcHM4l5xt5AKPsRhPfrA3c/M2vZckKXuRPybNdcYFm68rnuaPxOVywjBFe5x3R89Lc73wGPESY0uc7Mlrn7PZ1tICJSTGppyeLuzYTuL99g3cp6Jev+qH2FnvMoYazHnOgqbPbjrW7kdXg0+HZ9yzTKzA7tYJ2FhMoWsOaK6L6d5LvWlewMd38553W3RHkOJVzhBjjU3Xv83iXRINVzCVfoX4uSM11ysl/fJwjjlAqx1jkTdfHIreTmPRZ5/JPQxWufrPyqCBXopwosT0/4AqFrzn8A3H0+YRKLL2WVKxY9fyBKmke4Mp79ODVa9g2iVrPoPP8vYRKBbPsBb/qH0wR35MuEY7pO16Se4O4r3f0WwgWGnrpokZnF793obyWQyulqlftd8yxhHNXXO8vc3W8CTiLMXpU9BfWjhMk+/pvnO+e1vJm17wXCDIzZXSw7nLGqizLBSfbnaRPCBBjr8DBV8peAH5hZ9gQrjxICoHfyvOaX8+XVTlk6+1z3qOgizRyyPmeRwwnB/LPrbFRYvhcRehDcZmadfW+LiBSVWlrW9TvCoMo9CP19Mx4mzKj1T0I3pq8Qfvx6ynTC4Pz7zOxPhCtrkwiz3Mxw99kAUT/qxzsZj3AeoRLxhIVZy2oIVylrou4ohXqY0Lpxi5mdT5i1ZiKhn/hx0Tp3Aiea2VxCH+xv0Xml/h2iClfUZz/l7h3dufsOQnekY4AtotmcAPCs+61YmC54trsf08n+h0Sz8hihG9MehNmTVhO6iWQ8T7iR4m/N7FxCC9KPgEL7fj9MODbzCFdCT2TdGyBmKofHmdmtQEO+ypO7zzSzp4G/mtmZhPf0h4QK1GUFlmeNQs4jM7uGcMX/BUIg8ClC5ffyqJ98xnTg5uj4P02oSG9FmKiCKNiYnZN35t8XfO17wJwL/N3MLiP0y59K6CL1taxtpxAqn/tlj/GJHEEYE1PbwcvvEjM7jtBF60FC699WhMrjjVnrzCBMLLFpAVnuGo2LSxAC4vMIV/8zn4GHgVPM7HLCbFl7kHO/G3evNbMLgIuisUr3E86tQ4Dzcsau4O7XRMH/9WZW5+7/AH4V5TvLzK4gnOvjgSnAU+7+lwJeS8YlhMD6b2b2R0Igts65ZWY/AX7SjXEtrxIuIvwy+ixWE47be+1t4O73mNnRwJ/NbJW7X0F4z44n3B/nF4TvrNGE7r6L3P3XBZSlkM91b/gpMNPMrieM2fkooZXs9x6mbO8Wdz/TzKqBu8zsAF/7HlYiIiVDQUsOd28ws18TBlZmO58w00qm7/IdhL7oPdKk7u6vRxXpCwl9pSsJP8iP8uFATQjvWXzdHNbK6zUz24swA1Omu9krhGCsK2VyM/sc4YfxFMLrf58wnWbGeYQuCxcSKrZXErq4rHXvlpx8m8zs24Qf4ccJfbU7GgR/QPT3z3mWZW9XRWH96LchXJlME2ZK+h/hauM17r4yq5wt0eu/mtC16TVCt5J85cjnZMKd4q8iBGk3EIK867L28baZ/ZBwLp1MqJht2k5+n4vKeTmhZeZ5wqxX89pZvyOdnkeE4/ItQqtIGeE8/AHw2+yV3P0vUYX4DELQ8V9Ci1hHN6TMy93vNLOvEcbAfJ8Q4J7o7tnH3KKyr3XORN3QtqH9KZW76z+EKWt/RQhcPyAMnP9J1jqFnnvw4YDrNsL7fQ+hIt8K4O73m9kZhPPh24Rz9VBCi9Ya7v5zM1tOOE7HEcYXPUE7Xbvc/bKocnqrmX3a3R+OvnMuAn5NCOA/ILTc/afA15LJ+0UzO5Iw29w/CAHYEYRzNFuMzs+7fPk3W7jXyFWEz+LCqNxT+bClKt92t0Zjpq4zs9XuPsPMMrPSnUcI0pZE5Sx0wpFOP9e9wd0fio7xOYSLZksI3wc/7YHsTyJM2vCAmU1193/3QJ4iIj3K1u6BINI/mdlmhEr1VlGXJZE+Y2ZvEwKPG4pdFhERkYFIY1pkoNgD+IcCFulrZrYBobWwK92pREREpAvU0iIiIsKaSSQ6upjX5vrRFBEpCrW0iIiIBD9h3Xu4ZD+mFK9oIiKD26BtaRk9ZoxvsnHujexFRGSwSqVSpFKpdpeXl5cTj3d5HoE+8/gTT+ZNn7LP3n1cEhEZbObOnbvM3bt70+WCDNqgZaeddvL2vuBFRERERKQww6qHznH3XXpzH+oeJiIiIiIiJU1Bi4iIiIiIlDQFLSIiIiIiUtIUtIiIiIiISElT0CIiIiIiIiVNQYuIiIiIiJQ0BS0iIiIiIlLSFLSIiIiIiEhJU9AiIiIiIiIlTUGLiIiIiIiUNAUtIiIiIiJS0hS0iIiIiIhISVPQIiIiIiIiJU1Bi4iIiIiIlDQFLSIiIiIiUtIUtIiIiIiISElT0CIiIiIiIiVNQYuIiIiIiJQ0BS0iIiIiIlLSFLSIiIiIiEhJU9AiIiIiIiIlTUGLiIiIiIiUNAUtIiIiIiJS0hLFLoBIPq1t0NgMjS1Gc8poaQ1pbW64gwGxGMRjTjIB5Qmnogwqy5zyJJgV+xWIiIiISE9R0CIlo6kFVjUYqxuNppSBt7+uA21t0NZmtKSgng+jlEQchlY61ZXO0AonpvZEERERkX5NQYsUVVsaVtYbK+qMppaeaR5pbYPaOqO2zojHYXhVmpFDQ0uMiIiIiPQ/ClqkKFrboGa1sXx1jHS69/bT1gbLV8dYXgdDK5wxw9IMqei9/YmIiIhIz1PQIn2qLQ3LVvV+sLIOh7pGo64xzpBKZ9zwNFXlfbh/EREREek2BS3SZ5avNpaujNHaVtxy1DcaC5riDK9yxo9Ik9SnQERERKSkqbomva6xGd5bHqO5h8as9AgPY2lWN8YZNzzNyGonVkLFExEREZEPKWiRXpNOw5KVRs3qWIczgRVTOg2LVsRY2eBMHJWmUoP1RUREREqOghbpFQ3N8F5NjJZU/2i+aGw2FiyKM3Z4mtHD1OoiIiIiUkoUtEiPW1JrLF1Vuq0r7XGHJbUx6hqdSWPSlOnTISIiIlISdNs96TEtrbBgUYylK/tfwJKtodl484M4tfVqbhEREREpBbqWLD2irhEW1sRpK/LMYD0lnQ7d2xqb04wf4cQU3ouIiIgUjYIWWW9LasNUxgOOhxtTNrY4G6q7mIiIiEjRDMCapvSVtjS8vSQ2MAOWLJlB+nVNxS6JiIiIyOA0sGub0muaUzB/UYy6xsEx7qO1Dd5ZEqdm1eB4vSIiIiKlRB1epMvqGuHdZXHS6WKXpG+5h3u6NKXCPV00LbKIiIhI31DQIgVzh+WrjUUrBncDXW2d0ZKKsdHYNIl4sUsjIiIiMvAN7tqnFMwdPliugCWjodlYsDhGc6rYJREREREZ+FQDlU5lBtyvqNPpkq0lZczXAH0RERGRXqdaqHQoM+C+vkkDOPJJp+HtJXFW1On4iIiIiPQWBS3SroZmeGtxnJaUKuQdcni/JsbiFTpOIiIiIr1BA/Elr1UNxsKaGD7IZghbH8tWxWhpcyaN1sxiIiIiIj1JQYusRTOErZ9V9UaqNcbGmllMREREpMeoZiprpB0WrVDAsr4aNbOYiIiISI9S7VSAMKD83aUxlq/WKdETMjOLNTYXuyQiIiIi/Z9qqEJLK8xfHKOuUQMxelI6DfMXxamt13EVERERWR8KWga5xmZ4a3GM5hZVrHvLe8tiLFmp4ysiIiLSXRqIP4itboCFNXHSmiGs1y2tjdGSCjOLmeIXERERkS5R0DIIpaMZwhZrwH2fWllvtGhmMREREZEuU611kEmnYdFyBSzF0thszF8Uo6ml2CURERER6T9Ucx1EWtvg7aUxVtTpbS+mVKuxYHGc1Q3FLomIiIhI/6Da6yDR0AzzF8VoaNKAilKQTsM7S+MsXWm4F7s0IiIiIqVNY1oGgdp644PlMQ24L0FLamM0pZxJo9LEdAlBREREJC8FLQNYOg1LVho1q1QbLmWr6o2mljBAvzxZ7NKIiIiIlB7VZgeoVCu8szSmgKWfaEkZ8xfFWdWg7mIiIiIiuVSjHYDqGsP4lXqNX+lX0ml4d2mMxbVGWoGLiIiIyBrqHjaApNOwbJWxbFVMV+v7sZpVMRqaw40o1V1MRERERC0tA0ZL1B1s6UoFLANBY3OYFnllvbqLiYiIiKilpZ9zh5UNxqIVMdrail0a6UltbbBwWYwRQ50JI9PEdYlBREREBikFLf1YaxssWhFjZb3GrgxktXVGfVOMSaPTDKkodmlERERE+p6Cln5qVUO490qrWlcGhVSr8dbiOCOr04wf4Wp1ERERkUGlX1V9zGy6mXn0SJvZCjN7wcwuMrMJOeuamf3YzN41s0Yze8LMJhep6D2mpTXMMPXuUgUsg9GK1THmvR9jdQMa6yIiIiKDRr8KWiIrgd2BPYAjgTuAo4GXzWznrPXOBM4FLgE+DdQBj+QGN/1FOg01q403Pwj38pDBq7XNeGdpnIXLYrS0Frs0IiIiIr2vP3YPa3X357KezzSza4AngL+a2f8DkoSg5efufiWAmT0LvAWcBJzTt0VeP3VNsHhFjKYWBSvyoVUNRl1TnDHD0oyudmL98RKEiIiISAEGRDXH3WuBHwFbAAcQWmGGAX/LWqceuAc4uAhF7JamljCN8duL4wpYJK90GpbUxpj3QYzaet2UUkRERAamARG0RB4DWoHdgG2ANuCNnHX+Fy0raS2t8H6NMX9RnNXqCiYFSLUa7y2L8dbiGHWNGu8iMljddOON7LzTjp2miYj0NwMmaHH3ZmAZMB4YCdS5e+5Q9RVAlZmV9XX5CtHSCh8sN+Z9EGdFnW4SKV3X2Gy8vSSu4EVkkHrwwQc4YNq0TtNERPqbARO0RLKbJfJV16yDZUXT1ALv1cSY936c5atjeLrYJZL+riEKXhYsjrGqQd3GRAaDVCrF7NmzOfDAgzpMExHpj/rjQPy8zKwCGA0sJrSoVJtZPKe1ZQTQ4O4pM2NY9dAilPRD8UQ5w8ZsScXQsZgNtPhRSkmqpZ7VNfNpqlta7KKISC+56+57MDP22muvNWlPPfUUq1ev5jOHfbqIJRMRWX8DJmgBPkl4Pc8CKSAObAm8lrXONsCrADvuuCOPP/FkX5dRRESkV5x55hlMnTqVZDK5Jm3mzAc57LDDuPnPtxSxZCIy0PVFQ8CAuLxvZiMI92OZBzwCPAOsAr6UtU4V4X4tDxShiCIiIr1q5oMz1+kGli9NRKQ/6o8tLQkz2y36vxrYGTgBqAIOirqDtZnZxcC5ZraC0LpyGiFIu6IIZRYREek18+bNY8GC+Uw78MAO00RE+qv+GLQMJ3QBc0JryjzgZuAKd1+Utd7FhCDlLMJYlxeBA9x9cd8WV0REpHfNnDmTj33sY4wfP77DNBGR/qpfBS3uPh2YXuC6DlwUPURERAash2Y+uE6LSr40EZH+akCMaRERERms6urqeOaZZ5g27cAO00RE+jMFLSIiIv3YY7NmMXz4cHbZZZcO00RE+jMFLSIiIv3YzJkz2X//AzCzDtNERPozBS0yYJ343RO4++67il0MEZFeNXPmg0w7cFqnaSIi/ZmF8eoFrGi2FfAycLu7f7WddcoJs3YdAVQCfwG+7+6paHldziaVwNXufnI7+U0EzgcOAYYBS4AngIvd/VUz2xRYACTdvTVruxnAQnc/p73Xs9NOO7luLtnzHnzgAW6++SbmzZtHZWUlkyZN4tOHHcbhhx+hK34iIiIiA9Cw6qFz3L1X+6N2paXlKuCFTtY5E9gF2B7YGtgJWBM4uPvQzAMYDzQCt+XLyMxGE24SWQXsTbgny07A48ABXSi39JEbb7iBSy+9hK8fcwyPznqMWY/N5pxzzuVf//oXqVSq2MUTERERkX6qoKDFzI4EaoFHO1n108Bv3X25uy8Ffgt8o511v0hoOWmvueNUwn1Yjnb3Nz2odffr3b3gG0Sa2ZVmVpf1aDWz6YVuL4VZvXo1V199FT8++2wOOGAaQ4YMwczY5iMf4ec/v5iysjKeeOIJjjj8cPbcY3cOnHYA11xz9ZrtX3jhBaYdsP9aeR588EE899xzALz88ssc9eUj2XOP3dn3k1P5xWWXAdDc3MyPzzqLKfvszV577clRR32ZmpoaAL75zW9wxx1/B+Ddd9/l29/6JlP22ZupU/bhrLPOZNWqVWvt64YbZvClL36Bvfbcgx+dfjrNzc29echEREREpECdBi1mNozQResHBeRn0SP7+YZmNjzPul8HbvT2+6ftD9zp7ukC9tsudz8pq3VnL2AFoIEOPew///k3qVSKqVM/2e46lZWVXHjRhTz51NNcceVV3Pa3vzFr1qyC8r/s0ks46qiv8PQzz3Lvffev6at9z913U1e3mgdnPsTjjz/BOeecS3l5+Trbuzvf+Oa3ePiRR7njzn+weNEirr32mrXWeWjmQ1x19TXcd/8DvPHG69x9l04TERERkVJQSEvLBcAf3f3dAtZ9APi+mY01swnA96L0quyVzGxjYApwQwd5jQHW3OHezA4zs1ozW21mD+WsuyxaVmtmtcBRuZmZ2VjgH8DJ7j63gNciXVC7opYRI0aQSHx4v9Kvfe1o9tprTz7x8V2ZM+dFdt11V7baamtisRhbb701Bx18MHPmvFhQ/olEgnfefYcVK1ZQVVXFDjt8bE167cqVvPvuu8TjcbbddluGDh26zvYbb7wxu+++O2VlZYwaNYqvHv015rw4Z611jjrqKMaNG8fw4cPZZ8oUXnvttfU4IiIiIiLSUxIdLTSzyYQWjx0LzO8iYATwL6AZ+H207ZKc9b4GPOXuCzrIqwaYmHni7ncDI8zsW0DuRABj8gzEz34dSeB24BZ3v7XA1yJdMHzEcGpra2ltbV0TuNx4400ATDtgf9Jp5+X//Iff/OY3vPnmPFKpFC0tLRxwQGGz2/x0+nlcc/VVfO6zn2GDSZM4/rjj2WfKFA459FAWLV7EmWf8iNWrV/OpQw7hpJNOJplMrrX98poaLrnkEl566SUaGupJp9MMGzZsrXVGjxmz5v+KigqWLlm6PodERERERHpIZy0tU4FNgXfMbBHwQ+ALZvZSvpXdvTHqjjXJ3TcnBB5z3L0tZ9Wv0XErC4TxM581s56YlvkKYDVZkwJIz9phh4+RTCaZPfuxdtc566wzmTJ1Kg/OfIinnn6GL37pS2R6B1ZWVtLU1LRm3ba2NlYsX77m+SabbMLFl1zKrMdmc+yxx/LDH/6AxoYGkskkxx9/Anfc+Q9m3HAjTz7xBPfec886+/7tb3+LGdx2++08/cyzXPSzn9N+z0QRERERKSWdBQTXAVsAk6PHtcB9wIH5VjazSWa2gQW7AecCP81ZZw9gEu3MGpblV8BI4CYz2yLKszoqR8HM7DhCV7Sj1nd8jLRv2LBhHHf88fzsoot4+OGHaGhoIJ1O8+qrr9LY2AhAfX09w4cPo7y8nJdffpkH7r9/zfabbLIJLS0tPPHEE6RSKX7/++vWmnHsvnvvZfny5cRiMaqrQwtJLB7nheef5403XqetrY2hQ4eSSCSIxePrlK++oZ7Kqiqqq6tZvHgxN9wwo3cPiIiIiIj0mA67h7l7A9CQeR7dZ6UpmhksMzblFWBbd3+HEODcCIwD3gXOdPfc8SdfB+5w99Wd7HtZFPhcADxFmPJ4cfT/CQW/QvgysDnwftZ9Qn62446F9niTQh177DcYN248M66fwbnnnLPmPi3fP+VUJk+ezI/PPptf/fKXXPzzn7PzzrswbdqBrF4dToPq6mrO+vHZnH/edNra2jjm2GMZN378mryffvppfvGLy2hqamLixA24+JJLKS8vZ1nNMi688AIWL15MVVUVBx54EIcccsg6ZTvuuOM595yz2WvPPdho44059JBDufnmm/rs2IiIiIhI9xV8c8mBRjeXFBERERFZf6V2c0kREREREZE+p6BFRERERERKmoIWEREREREpaQpaRERERESkpCloERERERGRkqagRURERERESpqCFhERERERKWkKWkREREREpKQpaBERERERkZLWL4IWM5tuZm5mb7SzfF60fHpW2rZm9qiZNZjZ+2Z2vpnF+6zQIiIiIiLSIxLFLkAXNAGbmdku7v5iJtHMdgU2iZZn0kYCjwCvAJ8BtgB+SQjSzunLQotIz2pLpWhrbqG1uYW2lhbaWlKkU620pVKkW1tJt7aFv21pPB093ItdbJFet+nen8ib/taT/+zjkoj0PTMAw2IxLBYjFo8RSySIJeLEkgniiSSxsiTxsiSJsjLi5WUkKsqJxXU9u7/oT0FLPfAScCTwYlb6kcAsYOestOOBSuDz7r4KeNjMhgHTzezSKE1ESlBrUzOphkZSjY2kGppobWoi1dhEa1MzrY1NpNvail1EkX6lZXVdsYsgUrLiySTxinKSFeUkKitIVlSQqKogWVlJ2ZBK4mVlxS6iRPpT0AJwKyHwON3d3cwMOBz4CWsHLQcDM3OCk1uBS4ApwD19VWARWVdrUzMt9Q2kGhppqa8nVd9IS0MjqfoGPJ0udvFERGSQaEulaEul2g3uY4kEyapKyoZUkayqJDmkirKqSsqGVimg6WP9LWi5A7gG2At4EtgbGAvcCVyWtd42hNaXNdz9HTNriJYpaBHpZW2pVAhGMkFJfUMIVOob1Foi0ktuuvFGLr/818x5ae6atLsee4Qb776Dv//66iKWTKR/Sre20rxqNc2rVq+zLJ5MhoBmaBXJqqoP/w6pJJbob1Xs0tevjqi715rZg4QuYU9Gfx+M0rNXHQnU5sliRbRMRNaTu5NOpWipj7py1TeSamgIzxsaaWtpKXYRRQadBx98gAOmTVsr7ak5L7DH5J2KVCKRgastlaJtZYqmleuOOkhUlK8JYJKVlSSHVJKsqiJZVUE8mSxCafu/fhW0RG4FLjez04AvAt9rZ718I2+tnXQRyeHpNK3NLbQ2NtHa3LxmXEkYb9IUxpe0tha7mCISSaVSzJ49m5v/fMtaac//37+59LQzi1gykcGntamZ1qZmGpevWGdZPJkM42cqK0hWVZLIHk9TUU68vIyci/FC/wxa7gb+AFwEDCF/V68VwIg86cPJ3wIjMiikW1tpS7XS1pIKM29FM3Flnrc2NYdApbmZdEtKs26J9CNPPfUUZsZee+21VhoYO2+7ffEKJiJryYyjydflDMDMwuxm5eVrgphEWRmxsiSJ8rIweUBZknhZGbFkYtDMgNbvghZ3rzeze4FTgdvcvT7Paq8Sxq6sYWYbEYKcVwHmzp3LsOqhvV1ckZJRRpzNk2MYlxhCzPrFLZpEpAu2PfZApk6dSjKr68nMmQ9S2WKc+e0zilgyEekNbZ7m/dZVLEjVkB4EHYn6XdASuQYoB65tZ/kDwOlmVu3umTD2CKAReBxgxx135PEnnuz1goqUmnR9C21vLye9rB71lhQZOHb73hc57bTT1kqb+eBMzjnpdL4y7bPFKZSI9Dwz4hOGEd9oBFZRGuNj+qIhoF8GLe4+G5jdwSrXEsa63GFmlwCbA9OBX+keLTLYxYaUEdt2AumVjbQuqMFXNXW+kYiUtDffe5sFC+Yz7cAD16TNmzePBQvms/8ue3WwpYj0J7HRQ4hvNppY1eCbbrlfBi2dcfcVZrYfcCVhzEst8GtC4CIiQGx4JckdJpFesprW+TXQqmmIRfqrh194ko997GOMHz9+TdrMmTND2qgxRSyZiPQEq0iS2HIMNrJq0A7S7xdBi7tPp5OAw93H5Dx/Bdi390ol0v9ZLDQxx0YPofXNZaSX5B8UKCKl7ZEXnmTaQQeulfbQzAfXankRkf4pvuEI4puOxmKDM1jJ0GhcEcGScZLbjCex7QRIDo5ZSEQGirrGBp7771ymTfswQKmrq+OZZ55ZK01E+herSJLccUMSm48Z9AELKGgRkSzxMUMp23kjYqOHFLsoIlKgx+c+x7Ah1eyyyy5r0h6bNYvhw4evlSYi/Ud84jCSu2xMrLqi2EUpGQpaRGQtVpYg8ZEJJDYfAzF9RYiUuodfeJJ9d95jrX7uM2fOZP/9Dxi0fd9F+q1EPPwGbzVOrSs5VCMRkXVYzIhvOILk9hOxsn4x9E1k0Hr4hSfZf9e1ZwibOfNBph04rUglEpHusMoykpMnER+r+wjmU1DQYmZHmtn/zKzezN40s73bWa/czH5tZu+b2Qozu9rMklnLP2Jms8xspZnNM7PPdbLfiWb2+yi/OjObb2YzzGybaPmmZuZmlsjZboaZXVjIaxOR9sVGVJLccUNiwyuLXRSRAeOzPz2OPU85nNq6tWfg/+rFp/GJkz/P+zVLupTff29+hM/uvfbYlTfmvcnnP/+F9S6riPSN2JihJHfacFBOZVyoToMWMzsAuAQ4FqgG9gHmt7P6mcAuwPbA1sBOwDlRPgngLuBeYBTwHeBmM9u6nf2OBp4BqoC9o33vRLg55AEFvToRWW9WniCx3URiE4YVuygiA8YGo8fx0JwPb3A87/23aU61FLFEa3N30ul0sYshMijENx5FctsJWFwdoDpSSL+P84Dz3f256Pl7Haz7aeASd18OYGa/JQQ8PwW2ATYAfu3uDswys6eBo4Fz8+R1KrAKONrdM9+ctcD1BZR5DTO7EjgmK6kCuHDHHXfsSjYig5olYiS2HEtbRZK2t2qKXRyRfu/gXadw//OzOXzKIQDc98/H+NTHp3LtvbcA0JJKcc29f+bRuc/Q0ppi6g6f4JTPH0tFWTmrGuqYfuNv+O/bb9DW1sYOm2/DGUccx8ZsCcBdd93Fdb+7lhUrVjBixAiO2/9LHLTrFH5//60sXLqI875+CgDv1yzhc9OP5+nLbyMRj3PCb85lh8234aU3/o/XFi7gz2f9mra2Nn55+x949d35jBg6jOMO+TL777RnUY6ZyECU2GY88XHVxS5Gv9BhSGdmcULLydioO9dCM7vSzNrrK2LRI/v5hmY2PCc9e/n27eS1P3BnVsDSLe5+krsPdfehwF7ACkKLj4h0gcWMxMYjSWwzXgP0RdbT9ptuTX1TIwsWLaQt3cYjLz3NQbvus2b5lXffyLtL3uemM37J339yNUtXLuePD94GhFaQQ3fbl7vO+x13nX8d5ckyfnHbHwBobGjg0ksu5qqrr+aZZ5/jhhtvYusNNyu4XA+88DhnffkEZl32Z0YOHcbJV53HtF325oGfXc8Fx5zKpX+7jvkfvNOzB0NkMIrHSH5skgKWLuis5jEeSAJfJHTRmgzsSNTlK48HgO+b2VgzmwB8L0qvAl4FlgCnm1nSzKYBU6Jl+YwBFmWemNlhZlZrZqvN7KGcdZdFy2rNrBY4KjczMxsL/AM42d3ndvyyRaQ98XHVJLcdDwndz0VkfWRaW55/9d9sOn4SY4ePDgvcueuZRzjl899g+JBqhlRUcsy0L/DwnKcAGD6kmn0n705FWTlDKio59sAvMnfef9fka7EY8+bNo6mpibFjx7L5xI0LLtMhn/gkm0/cmEQ8zrOvzGXiqHF8erf9SMTjbLPRFnxy8m7Mmvtsjx4HkUEnGSc5WeNFu6qz7mGN0d8r3P0DADP7FSFoOTvP+hcBI4B/Ac3A7wlBzhJ3bzOzzwJXAGcALwJ/i9bLpwaYmHni7ncDI8zsW8BXc9Yd4+6tmSdmNiN7YTQZwO3ALe5+a0cvWEQ6Fxs1hOR2E0i9sghSbcUujki/dPDHp3D85efwfs1iDv741DXpK+pW0dTSzNcv++GaNHfWjDFpamnm13f8iedemcuqxnoAGpoaaWtro7KqiksvuZQbbryB6dOnM3nyZE7e50tsOmHDgso0fsSYNf8vWrGU/779Bvv96MOf3La2NAd/fMr6vGyRQc0qkiQ/ugFWmex8ZVlLh0GLu68ws4WAF5KZuzcCJ0UPzOw7wBx3b4uW/4fQukK0/BnghnayexT4rJmdt75dxAiB0mrabyESkS6KDa8kuf0GtL7yAd7c2vkGIrKWiaPGscHo8Tzzykucc9SJa9JHDK2mPFnGX378G8aNGL3Odn+edRfvLH6fP/3wEkYPG8nrCxdw9CU/IAwXhT323JM99tyTpqYmrrrySn72l2u47tSLqCiroKnlw+uENatWrJN39m1dxo0Yw05bbssVJ03vuRctMohZVVkIWMp1K4HuKKRj+vXAyWY2zsxGAqcQZgBbh5lNMrMNLNiNMMD+p1nLdzCzCjOrMrMfElpSZrSz318BI4GbzGyLKM9qQhe1gpnZcYRA6ageCH5EJEusupzE9htgFbpiJNIdZx91IleffB6V5R/e9dosxmf2OIDL77ie5atrAVhSW8Nz/ws9mxuamihPljG0cggr61fzhwf+umbbmpoaZs9+jMaGBsrKyqisqiQejUHbesNNmfvmKyxavpS6xnpuePiODsu21/a78M6S97n/+dm0trXS2tbKK2+/wYJFC3v4KIgMfDaknOTHJilgWQ+FBC0XAC8ArwP/A+YSuoFhZhtH90/JdJjdgjBNcT2hBeVMd88ef3I08AFhbMt+wAHunrd7mLsvA3YDmoCnCC0l/yJMfXxC4S+RLwObA5l7vdSZ2Y+7sL2IdCA2pIzE9hMVuIh0w4ZjJ/CRjbdcJ/2kzxzNhmMm8M1fnsUnT/8KJ185nbcXvw/AkZ88lOZUCweeeQzf/OWZ7PaRD2fDTKfT3HTjjRxwwP7ss8/ezJkzh9MP/w4An9hmMvvvtCdfufhUvn7p6ey13S4dlm1IRSW/PfGnPDznKQ4551sc/ONvcOVdN5FqTfXgERAZ+GxoOckdNsCSGgu6PizTnDzY7LTTTv74E092vqKIFMQbW0i9/AHepAqNSDGU77Nu8APQ/MS8Pi6JiGRYdQXJ7ScO+IBlWPXQOe7e8ZWQ9aR5S0WkR1hlGcmPqsVFREQEBk/A0lcUtIhIj7HKqKuY+uyKiMggZkPLFbD0MAUtItKjYlVlYXB+mQIXEREZfGyIApbeoKBFRHpcbEgZie0mgr6wRURkELHKMpLbTdCFu16goEVEekWsupzkdhMhocBFREQGPqtIhhYWje3sFQpaRKTXxIZVkNx2AsT0VSMiIgOXlSXCmE7d6b7XqCYhIr0qNqKS5HYTAOt0XRERkX4nESex/URiVWXFLsmApqBFRHpdbGRVFLiIiIgMILEYyY9OJDa0vNglGfAUtIhIn4iNHkLiIwpcRERkgMgELNUVxS7JoKCgRUT6THzsUBJbjSt2MURERNZPLEZy2/HEhlcWuySDhoIWEelT8YnDiG82utjFEBER6R4zEluPJTZqSLFLMqgoaBGRPpfYaCTxTUYVuxgiIiJdY0Ziy7HEx1UXuySDjoIWESmKxCajiG80stjFEBERKYwZic1HE584rNglGZQUtIhI0SQ2G018g+HFLoaIiEjHzIhvOor4pBHFLsmgpaBFRIoqseVYXbUSEZHSZUZ8k1Ek1DugqBS0iEjRJbYap8BFRERKTyZg2VgBS7EpaBGRkhACF3UVExGREhF1CVPAUhoUtIhIyUhsNVb9hUVEpPjMSGw2Wl3CSkii2AUQEcmW2GIMxGO0vbO82EUREZHBKBYjscVotf6XGAUtIlJyEpuOwhIxWufXAF7s4oiIyGARj5HYehzxsUOLXRLJoe5hIlKS4huOIPGR8YAVuygiIjIYJOIkt5uogKVEqaVFREpWfOxQrCJB6v8+gFRbsYsjIiIDlFWVkdxuAlZZVuyiSDvU0iIiJS1WXUHZ5A2xoeXFLoqIiAxAsVFDSO6wgQKWEqegRURKnlUmSU7ekNiEYai7mIiI9Agz4huPIrHtBKxMnY9Knd4hEekXLGYktx5H2/BKWt9cBq3qLiYiIt1jFUkSW40lNrKq2EWRAiloEZF+JT6+mtiISlrfWEp6eX2xiyMiIv2JGbHx1SQ2G40l48UujXSBghYR6XesPEFy+4m0La2jbUEN3pQqdpFERKTEWXUFic1GExtRWeyiSDcoaBGRfis+diix0UNIL15F27u1Cl5ERGQdNrSc+EYjiY0ZgpnGRfZXClpEpF+zmBGfOJzYhGGka+pJL15NenkDuG5KKSIyaCXixEZVEZ8wDBteoWBlAFDQIiIDgpkRHzOU+JiheGsaX9VIemUT3tCCN7dCa1qBjAxKVq6fehngzCAZxyoS2JByYsMqsGEVWEyBykCibzIRGXAsEcNGDSE2akixiyJSdGWf2LTYRRARWW+6T4uIiIiIiJQ0BS0iIiIiIlLSFLSIiIiIiEhJU9AiIiIiIiIlTUGLiIiIiIiUNAUtIiIiIiJS0hS0iIiIiIhISVPQIiIiIiIiJU1Bi4iIiIiIlDQFLSIiIiIiUtIUtIiIiIiISElT0CIiIiIiIiVNQYuIiIiIiJQ0BS0iIiIiIlLSFLSIiIiIiEhJU9AiIiIiIiIlTUGLiIiIiIiUNAUtIiIiIiJS0hS0iIiIiIhISVPQIiIiIiIiJU1Bi4iIiIiIlDQFLSIiIiIiUtIUtIiIiIiISEkzdy92GYrCzJYCbxe5GGOAZUUug/QPOlekEDpPpFA6V6QQOk+kUP/P3at7cweJ3sy8lLn72GKXwcxedPddil0OKX06V6QQOk+kUDpXpBA6T6RQZvZib+9D3cNERERERKSkKWgREREREZGSpqCluK4rdgGk39C5IoXQeSKF0rkihdB5IoXq9XNl0A7EFxERERGR/kEtLSIiIiIiUtIUtPQxM9vWzB41swYze9/MzjezeLHLJcVlZgkzO9PM3jCzZjNbaGa/zlnnu2Z2n5nVmJmb2dTilFb6ipltaWa/M7N/m1mbmc3OWT7RzC6LlteZ2btmdoOZbZCz3pfM7G4zey9ab46ZfblPX4z0ODObFL2fbmZDs9JHmNmfzGx5tPwBM9syZ9svmtkz0fdJk5m9ZmbnmFlZznqd5iWlx8yOic6L3MfxWeuYmf04+t5oNLMnzGxynrw6rbcUmpeUnh4+V3q1LjNopzwuBjMbCTwCvAJ8BtgC+CUheDyniEWT4rse2A84D3gV2AjYNmedrwEOzARU4RwctgM+BTwHlOVZvjPwOeAPwD+B8cB04Bkz297d66L1TgMWAKcS7rnwKeAWMxvj7lf06iuQ3nQZUAcMyUn/K7A98H1gJeH35VEz+6i7r4rWGQ08FuVRC3yccO5MAE7qYl5SuvYFGrOez8/6/0zgXOB0wu/OacAj0XfHIuhSvaXTvKTkrde5Eunduoy769FHD+AsYAUwLCvtR0BDdpoeg+sBHASkgG07WS8W/d0++sBPLXbZ9ej1cyOW9f/twOyc5SOARE7a1tH58fWstDF58r4FWFDs16hHt8+NvYHlwA+j93tolL579HzfrHXHR78zP+wkz4sIAYytb156FP38OCb7vMizvIIQhP4kK20IsBS4MCut03pLoXnpUZqPHjxXer0uo+5hfetgYKavfXXqVqASmFKcIkkJ+AYwy91f6Wgld0/3UXmkRHT2nrt7rbu35qS9TqhQjMtKy3dH67nZ60j/EXXNuQI4n3XvVj4ZaAUezyS4+2LgP8AhnWRdw9oteuuTl5S2PYBhwN8yCe5eD9xDqKtkFFJvKTQv6Z8KfX97vS6joKVvbUNoLlvD3d8hVDC2KUqJpBR8AnjdzK40s1VRv+E7cscliBTCzHYAqgjdOTqyRwHrSGk6nnD186o8yyqAVndvy0lvBj6Su7KZxc2sysz2Ar4HXOPRZdCu5iUl6U0za43GLB2Xlb4N0Aa8kbP+/1i7PlJIvaXQvKS0re+50ut1GQUtfWskoek914pomQxOEwjNs5OBI4FjCWMV7jQzK16xpL8xsxjwG8KPy0MdrLcfoX96vkqvlDAzGw1cAJzm7qk8q8wDKszso1nbVBK6YozKs3599HiS0KJy+nrkJaXjA8IYhKOBTxPGvF1rZqdGy0cCdXkC0hVAVdaEDIXUWwrNS0pTT50rvV6X0UD8vpfvxjjWTroMDhY9PuPuNQBm9gGhArEv8GgRyyb9y88J4xCmtFOhxcw2JYxnucvdZ/Rd0aSHXAT8093vb2f5TMKkC78zs2OBVcDFwHBCf/NcexBa5j4O/AS4EvhuN/OSEuHuMwnvX8YDZlYOnGNmv8mslmdTy7OskHpLoXlJienBc6XX6zJqaelbKwgDZ3MNJ/+VDBkcVgAvZz7kkaeAFtaddUMkLzP7LuEq+dfd/Z/trDMKeAB4B/hqHxZPeoCZbUfoN35eNBXxCELAATDczCrdvYVwlXM8oVvP+8DmwI3A4tw83f0ld3/K3X9F6B52gpltES3rUl5S8m4ntJBtSvjdqc6duphQR2nIuuhRSL2l0Lyk/+juudKrdRkFLX3rVXL6d5rZRoRZGF7Nu4UMBv9rJ90ADb6XTpnZFwgDs3/k7n9tZ50q4F7CQOtDooGU0r9sBSSBZwkVhBV82MVvIeEcwN2fB7Yk/N5s6e57EyZdeK6T/F+K/m6WSViPvKR0OaHOESe8t9lyx7AUUm8pNC/pf7pyrvR6XUZBS996ADjQzKqz0o4gzIv9eP5NZBC4F9jBzMZkpe1DqJz8uzhFkv4iujHXn4Er3f0X7ayTAG4jVHoPdvclfVZA6UlPAZ/MeVwSLfsU4Z4rAHjwmru/aWZbAfsDf+wk/z2jvwuyE7uZl5SeLxBmm3sbeIbQ3e9LmYXRhY1PE+oqGYXUWwrNS/qP7pwrvV6X0ZiWvnUtofn9DjO7hNDMPh34lesmXYPZdYTz4h4z+xlQTaiIPOLuT2VWMrNdCE21G0VJU6Ivh7fc/cW+LbL0heiH4VPR00nAMDP7YvT8fmAT4B+Eq11/NbPdsjZf6u5vRv9fHeXzfWBUznpz3b25l16C9KBo6urZ2WnRGCWAJz26maiZnUs4J5YBHyUMsr3V3R/O2u5Bwk0D/0uYGWhP4AfAX7POm4LyktJjZn8HnidMTx0nBBpHAN+LppxtMrOLgXPNbAUf3jAwRtRiF+m03uLuheYlJagHz5Xer8us701p9OjyTXy2BWYRrlJ8QJgFJl7sculR9PNiS0IltJ7Q5WMGMDJnnRmEptrcx4xil1+PXjsvNm3nPfdo2TEdLJ+Rlc9bHeVT7Nepx3qdI5lzYGhW2uXAe4SpiecBZ7DuTUgvAP4PqCOMTXgJOBlI5qzXaV56lN4D+BnwGmFq4kZgDnB0zjoGnE3oWthImEFuxzx5dVpvKTQvPUrv0cPnSq/WZTJ3vRURERERESlJGtMiIiIiIiIlTUGLiIiIiIiUNAUtIiIiIiJS0hS0iIiIiIhISVPQIiIiIiIiJU1Bi4iIiIiIlDQFLSIiIiIiUtIUtIiIyFrMzAt4TDWzt8zsFyVQ3p3NbIWZDevhfO+L7ggvIiJFpptLiojIWsxst6ynlYS7YV8I3JeV/gqwBVDj7u/0YfHWYWYPAP9y97N6ON+9gbuBzdy9tifzFhGRrlHQIiIi7TKzocBq4Fh3n1Hk4qzDzLYCXge2dvc3eiH/ecBv3P2Kns5bREQKp+5hIiLSLbndw8xshpm9aGaHmNkrZtYQdbEaZWZbmtljZlYfrbNDTl4xMzvTzOaZWbOZvW5mXy+gGF8H/pMdsERd1zJd2G4zszozm29m383Z53Zm9qCZLY/K9T8zOzEn/78DX+v60RERkZ6koEVERHrSxsD5wDnAd4A9gOuAW6PHF4EEcKuZWdZ2V0TbXAccAtwJ/MnMDu1kf/sBz7Sz7PfAv4HPAbOBq8zs41nL7wbagK8Ch0VlqM7J4xlgZzMb2Uk5RESkFyWKXQARERlQRgG7u/ubAFGLyunA1939xijNCONjtgH+Z2ZbAicQuqDdEOXziJlNBH4K3JtvR1E+OwI3t1OWv7j7hdG6s4FPA58HnjezMcDmwGfd/eVo/Ufz5PFvwIBdgIcLOgIiItLj1NIiIiI96a1MwBKZF/2dlSdtUvR3PyAN3GlmicyDEERMNrN4O/saCZQDy9pZ/lDmH3dPAW8AG0ZJy4F3gWvN7AgzG9dOHpm8J7SzXERE+oCCFhER6Um1Oc9b8qRn0iqiv2OAOLASSGU9ZhB6BExsZ1+Z7Zu7UJYKAHdPA9OARcCfgEVm9qSZ7ZizTSbvCkREpGjUPUxERIptOdAK7Eloccm1pJ3taqK/I7qzU3d/FfiCmSWBvYFLgPvMbMMoqMnOe3l39iEiIj1DQYuIiBTbLEJLy3B3L3jciLs3m9k7wGbrs/Oo69gsM/sVcAshUMkEKZtGf19fn32IiMj6UdAiIiJF5e6vmdm1hBnFLgVeJHTH2o5w/5VvdbD508DOXd1nNEHAL4C/AvMJ42POAP7t7tmtKrsQuq39t6v7EBGRnqOgRURESsGJhNaMbxOmTF4FvAL8sZPt7gCuN7NKd2/swv4WAYuBs4ENCONfHiMELtkOAu7M6i4mIiJFYO5e7DKIiIh0i5mVAQuBE939th7OezghsNnf3Z/qybxFRKRrNHuYiIj0W+7eAlwGfL8Xsj8BeE4Bi4hI8al7mIiI9HdXAlVmNtzdV/ZgviuB7/VgfiIi0k3qHiYiIiIiIiVN3cNERERERKSkKWgREREREZGSpqBFRERERERKmoIWEREREREpaQpaRERERESkpP1/g0BUxAsC490AAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 936x241.987 with 1 Axes>"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# unnecessary with calibrated gates\n",
"qc_t = transpile(qc, backend)\n",
"\n",
"qc_pulse = schedule(qc_t, backend)\n",
"\n",
"draw(qc_pulse, backend=backend)"
]
},
{
"cell_type": "markdown",
"id": "8318a403",
"metadata": {},
"source": [
"## Execute Circuit"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "e7272238",
"metadata": {},
"outputs": [],
"source": [
"# create a pulse simulator and model\n",
"backend_sim = PulseSimulator()\n",
"backend_model = PulseSystemModel.from_backend(backend)\n",
"\n",
"# prepare the pulse job\n",
"pulse_qobj = assemble(qc_pulse, backend=backend_sim)\n",
"\n",
"# run the job on the backend\n",
"sim_result = backend_sim.run(pulse_qobj, backend_model).result()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "2d021a43",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAc0AAAE0CAYAAABO2GjMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAgYElEQVR4nO3de5hV9X3v8fdXEIJFUsACcomAIgqEwXEMmRQhqSUXksdafXrQXBpPEo0x6mNtmkuTnJPk5GZulajRhrTHNDeNGps0mkZjCgQzxQxzSgRToOESQC4RbQTFUfB7/th7yDDMZW3ZM2zg/Xqeedzrt35r7e9y2Hz4rd9aa0dmIkmSenbc4S5AkqQjhaEpSVJBhqYkSQUZmpIkFWRoSpJUkKEpSVJBhqYkSQX1eWhGxJURsT4ino2I5RFxbg/9IyKujYj/jIjWiNgaEZ/t0GdOeV/PRsS6iLiid49CknQs6t+XbxYR84EFwJXA0vJ/fxQRUzLzN11s9kXgTcDfAI8ALwVObrfPCcB9wD8CbwVmAV+JiN9m5t3d1XPSSSfl+PHjD+mYJElHl+XLlz+emX/U2broyycCRcQy4JeZeVm7trXAXZn5oU76TwZWAtMz81dd7PN64MLMnNSu7WvA1Mxs7K6ehoaGbG5ufnEHI0k6KkXE8sxs6Gxdn52ejYgBwNnA/R1W3Q+8qovN/gxYB7y+fNp1Q0R8PSJGtOvT2Mk+fww0RMTxVShdkiSgb+c0TwL6Ads7tG8HRnWxzUTgFOBi4FLgbcAZwL9ERFvto7rYZ//ye0qSVBV9OqdZ1vF8cHTS1uY4YCDwtsxcAxARbwNWA+cAy7rZZ2ftRMTlwOUAo0ePZtGiRQBMnDiRE088kRUrVgAwfPhwpk6dypIlSwDo378/s2bNoqWlhaeeegqAhoYGtm/fzqZNmwCYNGkSAwcOZOXKlQCMGDGC008/naVLlwIwcOBAGhsbaW5uZvfu3QDMnDmTzZs3s2XLFgAmT55Mv379ePTRRwEYNWoUEyZMoKmpCYBBgwYxc+ZMli1bxp49ewBobGxk/fr1bNu2DYApU6awb98+Vq9eDcCYMWMYO3Ysy5aV/ncNHjyYhoYGmpqaaG1tBWDWrFmsWbOGHTt2ADBt2jRaW1tZu3YtAOPGjWPkyJG0nc4eMmQI9fX1LF26lL179wIwe/ZsVq1axc6dOwGoq6tj165drFu3DoDx48czbNgwWlpaABg6dCh1dXUsXryYzCQimDNnDitWrODJJ58EoL6+nieeeIINGzb4e/L35O/J31Of/J6602dzmuXTs88Al2Tmne3abwamZeacTrb5OPC3mXl8u7YAngPenJl3RsQS4JHMfG+7Pn8BfBs4ITOf76om5zQlSR3VxJxmZj4HLAfmdlg1F/h5F5s9BPSPiFPbtU2kNELeWF5uAv60k302dxeYkiRVqq/v0/wScGlEvCsizoyIBcBo4FaAiPhMRDzYrv9PgBbgHyPirIg4i9KtJcuAtiHircDYiLihvM93UZr//ELfHJIk6VjRp3OamXlHRAwHPkLpXsuVwLzMbBs1ngyc2q7/CxHxJuDLwBJgD/AAcF1mvlDusz4i5gF/B7wHeAy4pqd7NCVJqlSf3qdZa5zTlCR1VBNzmpIkHekMTUmSCjI0JUkqyNCUJKkgQ1OSpIIMTUmSCjI0JUkqyNCUJKkgQ1OSpIIMTUmSCjI0JUkqyNCUJKkgQ1OSpIIMTUmSCjI0j3H/+q//yuTJkznttNP47Gc/e9D6RYsW8dKXvpQZM2YwY8YMPvGJT/S47fz58/f3Hz9+PDNmzOiLQ5GkXtenX0Kt2rJv3z7e+9738sADDzB27FjOOecczj//fKZMmXJAv3PPPZcf/vCHhbe944479vf767/+a1760pf2yfFIUm9zpHkMe/jhhznttNOYOHEiAwYM4OKLL+b73/9+1bbNTL773e9yySWX9Eb5ktTnDM1j2JYtWxg3btz+5bFjx7Jly5aD+jU1NVFXV8cb3vAGVq1aVXjbn/3sZ4wcOZJJkyb10hFIUt/y9OwxLDMPaouIA5br6+vZuHEjgwcP5r777uOCCy5g7dq1hbb9zne+4yhT0lHFkeYxbOzYsWzatGn/8ubNmxk9evQBfYYMGcLgwYMBmDdvHs8//zyPP/54j9vu3buX733ve8yfP7+Xj0KS+o6heQw755xzWLt2LevXr+e5557j9ttv5/zzzz+gz7Zt2/aPKh9++GFeeOEFhg8f3uO2P/nJTzjjjDMYO3Zsnx6TdDTr6Wr3Nr/4xS/o168fd9111/62BQsWMG3aNKZOncoNN9ywv/2jH/0o06dPZ8aMGbz2ta/lscce681DOPJl5jH7c/bZZ+ex7t57781JkyblxIkT85Of/GRmZt5yyy15yy23ZGbmjTfemFOmTMnp06fnzJkz86GHHup22zZvf/vb9+9D0qHbu3dvTpw4MX/9619na2trTp8+PVetWtVpv9e85jX5hje8Ie+8887MzHzkkUdy6tSp+fTTT+fzzz+f5513Xq5ZsyYzM3/3u9/t33bBggX57ne/u28OqIYBzdlFbjineYybN28e8+bNO6Dtiiuu2P/6qquu4qqrriq8bZvbbrutajVKOvCKdWD/FesdbxG78cYbueiii/jFL36xv+1Xv/oVr3zlKznhhBMAmDNnDvfccw/vf//7GTJkyP5+Tz/99EHXJuhAnp6VpCNAkSvWt2zZwj333HPAP3wBpk2bxpIlS9i5cyfPPPMM99133wHXJHz4wx9m3LhxfOtb3zrgASY6mKEpSUeALHDF+rXXXsv1119Pv379Dmg/88wz+cAHPsDcuXN5/etfT11dHf37//5E46c+9Sk2bdrEW97yFm666abeOYCjhKEpSUeAIle7Nzc3c/HFFzN+/HjuuusurrzySv75n/8ZgHe+8520tLSwZMkShg0b1un9029+85u5++67e/U4jnTOaUrSEaD9Fetjxozh9ttv59vf/vYBfdavX7//9aWXXsqb3vQmLrjgAgB27NjBiBEj+M1vfsP3vvc9mpqaAFi7du3+AP3BD37AGWec0TcHdIQyNCXpCNC/f39uuukmXve617Fv3z7e8Y53MHXqVG699VaAg+YxO7rooovYuXMnxx9/PDfffDNDhw4F4IMf/CCrV6/muOOO45RTTtm/P3UuOjtPfqxoaGjI5ubmw12GJKmGRMTyzGzobJ1zmpIkFWRoSpJUkKEpSVJBhqYkSQUZmpIkFWRoSpJUkPdpVsFlNxzuCtQbFl57uCuQVGscaUqSVJChKUlSQYamJEkFGZqSJBVkaEqSVJBXz0o65njF+9GpL654d6QpSVJBhqYkSQUZmpIkFWRoSpJUkKEpSVJBhqYkSQUZmpIkFWRoSpJUkKEpSVJBhqYkSQUZmpIkFWRoSpJUkKEpSVJBhqYkSQX1eWhGxJURsT4ino2I5RFxbsHtJkXErojY3aH91RGRnfyc0TtHIEk6VvVpaEbEfGAB8GngLODnwI8i4mU9bDcAuB1Y0k23qcDJ7X7WVqNmSZLa9PVI8zrgtsxcmJm/ysyrga3Ae3rY7nrgl8Cd3fTZkZnb2v3sq1LNkiQBfRia5dHi2cD9HVbdD7yqm+3eCLwJuKaHt2iOiK0R8WBEvOaQipUkqRN9OdI8CegHbO/Qvh0Y1dkGEXEysBB4W2bu6mK/bSPVi4ALgdXAgxExuxpFS5LUpv9heM/ssBydtLX5JnBLZv57lzvLXE0pKNs0RcR44H10MgcaEZcDlwOMHj2aRYsWATBx4kROPPFEVqxYAcDw4cOZOnUqS5aUdtG/f39mzZpFS0sLTz31FAANDQ1s374dOLW749URqrm5md27S9edzZw5k82bN7NlyxYAJk+eTL9+/Xj00UcBGDVqFBMmTKCpqQmAQYMGMXPmTJYtW8aePXsAaGxsZP369Wzbtg2AKVOmsG/fPlavLv3xHTNmDGPHjmXZsmUADB48mIaGBpqammhtbQVg1qxZrFmzhh07dgAwbdo0WltbWbu2NIU/btw4Ro4cSXNzMwBDhgyhvr6epUuXsnfvXgBmz57NqlWr2LlzJwB1dXXs2rWLdevWATB+/HiGDRtGS0sLAEOHDqWuro7FixeTmUQEc+bMYcWKFTz55JMA1NfX88QTT7Bhwwbg0D5PmzZtAmDSpEkMHDiQlStXAjBixAhOP/10li5dCsDAgQNpbGx8Ub8nGFjhnwYdCbZu3VqVz1N3IrOrvKqu8unZZ4BLMvPOdu03A9Myc04n2yTQfm4yKI2O9wFXZuZXu3iv/w1cnJlndldTQ0NDtv3lciguu+GQd6EatPDaw12Beouf2aNTtT6zEbE8Mxs6W9dnI83MfC4ilgNzOfCCnrnA3V1s9vIOy38GfBh4BbClm7ebQem0rSRJVdPXp2e/BHwjIh4GHgKuAEYDtwJExGeAV2TmeQCZubL9xhHRALzQvj0irgU2AKuAAcBbgQsozXFKklQ1fRqamXlHRAwHPkLpXsqVwLzM3FjucjKVTxAOAL4AjAH2UArPN2bmfdWpWpKkkj6/ECgzvwJ8pYt1l/aw7W3AbR3aPgd8rjrVSZLUNZ89K0lSQYamJEkFGZqSJBVkaEqSVJChKUlSQYamJEkFGZqSJBVkaEqSVJChKUlSQYamJEkFGZqSJBVkaEqSVJChKUlSQYamJEkFGZqSJBVkaEqSVJChKUlSQYamJEkFGZqSJBVUUWhGxHERcVy75VER8a6I+OPqlyZJUm2pdKR5L3A1QEQMBpqBzwOLIuIvq1ybJEk1pdLQPBv4afn1hcBTwAjgMuB9VaxLkqSaU2longj8d/n1a4F7MvN5SkF6ahXrkiSp5lQamr8B/jgi/gB4HfBAuX0Y8Ew1C5Mkqdb0r7D/l4BvALuBjcCScvts4JEq1iVJUs2pKDQz8+8jYjkwDnggM18or/o18NFqFydJUi2pdKRJZjZTumq2fdu9VatIkqQaVfHDDSLiyohYFRHPRMTEctsHIuJ/VL88SZJqR6UPN7gW+AjwVSDarXoMuKp6ZUmSVHsqHWleAVyWmQuAve3aW4CpVatKkqQaVGlongKs7KT9eWDQoZcjSVLtqjQ01wH1nbTPAx499HIkSapdlV49+wXgpog4gdKcZmNEvA14P/COahcnSVItqfQ+zf8bEf2BTwMnUHrQwRbgmsy8oxfqkySpZryY+zQXAgsj4iTguMzcUf2yJEmqPRWHZpvMfLyahUiSVOt6DM2I+CUwJzOfjIhHgOyqb2ZOr2ZxkiTVkiIjzbuB1navuwxNSZKOZj2GZmZ+vN3rj/VqNZIk1bBKH6P304j4w07ah0TET6tWlSRJNajShxu8GhjQSftLgHMPuRpJkmpYoatnI6L9U4CmR8QT7Zb7Aa+jdL+mJElHraK3nDRTugAogfs7Wb8HuLpaRUmSVIuKhuYESo/NWwe8Avhtu3XPATsyc1+Va5MkqaYUCs3M3Fh+WfGXVkuSdLQo8nCDC4F/yczny6+7lJnfq1plkiTVmCIjzbuAUcCO8uuuJKWLgiRJOioVebjBcZ29liTpWGMISpJUUNE5zUKc05QkHc2KzmkW4ZymJOmoVtGcpiRJxzIDUZKkgrxPU5KkgrxPU5KkgrxPU5Kkgvo8BCPiyohYHxHPRsTyiOjyezgjYkpE/FtEbC/3XxcRn46IAR36zSnvq63PFb1/JJKkY03FoRkR9RHxTxHRXP75Rofv2+xu2/nAAuDTwFnAz4EfRcTLutjkOeDrwGuBycC1wDuBT7bb5wTgvvK+zgI+A9wYERdVemySJHWn6FeDARARbwH+CfgppaACeCXwcERcmpnf7GEX1wG3ZebC8vLVEfF64D3Ahzp2zsz/Av6rXdPGiHg10H50egXwWGa2fZ/nryJiJvA+4O6ixyZJUk8qCk3gU8BHM/PT7Rsj4kOURn9dhmb5lOrZwBc6rLofeFWRN4+I04DXAz9o19zIwV+M/WPg7RFxfGY+X2TfkiT1pNLTs38EfLeT9juBET1sexKlq2u3d2jfTunq3C5FxM8j4llgLbAU+Nt2q0d1sc/+5feUJKkqKh1p/hvwag48ZUq5bXHBfWSH5eikraP5wIlAHfB54AOU5i6722dn7UTE5cDlAKNHj2bRokUATJw4kRNPPJEVK1YAMHz4cKZOncqSJUsA6N+/P7NmzaKlpYWnnnoKgIaGBrZv3w6c2kP5OhI1Nzeze/duAGbOnMnmzZvZsmULAJMnT6Zfv348+uijAIwaNYoJEybQ1NQEwKBBg5g5cybLli1jz549ADQ2NrJ+/Xq2bdsGwJQpU9i3bx+rV68GYMyYMYwdO5Zly5YBMHjwYBoaGmhqaqK1tRWAWbNmsWbNGnbs2AHAtGnTaG1tZe3atQCMGzeOkSNH0tzcDMCQIUOor69n6dKl7N27F4DZs2ezatUqdu7cCUBdXR27du1i3bp1AIwfP55hw4bR0tICwNChQ6mrq2Px4sVkJhHBnDlzWLFiBU8++SQA9fX1PPHEE2zYsAE4tM/Tpk2bAJg0aRIDBw5k5cqVAIwYMYLTTz+dpUuXAjBw4EAaGxtf1O8JBlb4p0FHgq1bt1bl89SdyOw+rzo80OBk4GOU5gr/vdz2SuBC4GOZ+ZVu9jMAeAa4JDPvbNd+MzAtM+d0W8jv+78V+BowODP3RsQS4JHMfG+7Pn8BfBs4obvTsw0NDdn2l8uhuOyGQ96FatDCaw93BeotfmaPTtX6zEbE8sxs6Gzdi31g+/7RWjs3Al2GZmY+FxHLgbmUTue2mUtlF+wcR6nufsBeoAm4oEOfuUCz85mSpGrq6we2fwn4RkQ8DDxE6crX0cCtABHxGeAVmXleefltwLPAI5RuP2mgdFr2rsxsG0PfClwVETcAfw/8MXApcEkV65YkqeI5zUOSmXdExHDgI5RO9a4E5mXmxnKXkzlwgnAvpVtRJlGap9wI3Az8Xbt9ro+IeeW29wCPAddkprebSJKqquLQjIhhlG77eBlwwJN5MvMTPW1fnvfs9DRuZl7aYfk7wHcK7HMxUOgBC5IkvViVPtzglcC9QCul20+2UBodtgIbgB5DU5KkI1Wl85WfB74FjKE01/gnlEaczcD11S1NkqTaUmloTgduytJ9KvuAgZm5ndJ9kx+rcm2SJNWUSkPzuXavtwOnlF/vpnQVrCRJR61KLwRqAc4B1gCLgE9GxEjgrcAvq1uaJEm1pdKR5ocp3dIBpdtGfkvpoQZDOfhhB5IkHVUqGmlmZnO7178F3lD1iiRJqlEv6uEGEXEqcGZ58dHMXFe9kiRJqk2V3qc5HPgH4Hzghd83xw+Bd2TmzirXJ0lSzah0TvNrwGnAucBLyj+zgQnAwuqWJklSban09OzrgPMys6ld20MR8W7gJ9UrS5Kk2lPpSPO3wNOdtD8DeGpWknRUqzQ0PwHcEBFj2hrKr7+Iz52VJB3lejw9GxGPANmuaQKwISK2lJfbnkM7gtKcpyRJR6Uic5p39XoVkiQdAXoMzcz8eF8UIklSrXuxDzf4E2AKpdO2qzJzUTWLkiSpFlX6cIMxwD3A2fz+GbSjI6IZ+PPMfKzLjSVJOsJVevXslyl9j+ZpmTkuM8cBk8ptX652cZIk1ZJKT8/OBV6dmevbGjJzXURcAzxY1cokSaoxlY40u/JCz10kSTqyVRqaDwJfjohxbQ0R8TJgAY40JUlHuUpD8xrgBGBdRGyMiA3Ar8tt11S5NkmSakqlc5o7gVcArwHOAILS92n6sHZJ0lGvcGhGRD/gd0BdZj4APNBrVUmSVIMKn57NzH3ARmBA75UjSVLtqnRO8/8An42Ik3qjGEmSalmlc5rvo/QtJ1siYjMdvlszM6dXqzBJkmpNpaF5F6XnzUYv1CJJUk0rFJoRcQLweeAC4HhK92RenZmP915pkiTVlqJzmh8HLgXuBb4D/ClwSy/VJElSTSp6evZC4J2ZeTtARHwLeCgi+pWvqpUk6ahXdKQ5DvhZ20JmPgzsBUb3RlGSJNWioqHZD3iuQ9teXuSXWEuSdCQqGnoBfDMiWtu1vQRYGBHPtDVk5vnVLE6SpFpSNDS/3knbN6tZiCRJta5QaGbm/+ztQiRJqnXV+hJqSZKOeoamJEkFGZqSJBVkaEqSVJChKUlSQYamJEkFGZqSJBVkaEqSVJChKUlSQYamJEkFGZqSJBVkaEqSVJChKUlSQYamJEkFGZqSJBVkaEqSVJChKUlSQYamJEkFGZqSJBXU56EZEVdGxPqIeDYilkfEud30fUlE3BYRv4yI5yNiUSd9Xh0R2cnPGb16IJKkY06fhmZEzAcWAJ8GzgJ+DvwoIl7WxSb9gGeBm4B7e9j9VODkdj9rq1GzJElt+vfx+10H3JaZC8vLV0fE64H3AB/q2DkznwauAIiI6cAfdrPvHZn5eHXLlSTp9/pspBkRA4Czgfs7rLofeFUV3qI5IrZGxIMR8Zoq7E+SpAP05enZkyidbt3eoX07MOoQ9ruV0kj1IuBCYDXwYETMPoR9SpJ0kL4+PQuQHZajk7biO8tcTSko2zRFxHjgfcCSjv0j4nLgcoDRo0ezaNEiACZOnMiJJ57IihUrABg+fDhTp05lyZLSLvr378+sWbNoaWnhqaeeAqChoYHt27cDp77Y8lXDmpub2b17NwAzZ85k8+bNbNmyBYDJkyfTr18/Hn30UQBGjRrFhAkTaGpqAmDQoEHMnDmTZcuWsWfPHgAaGxtZv34927ZtA2DKlCns27eP1atLf3zHjBnD2LFjWbZsGQCDBw+moaGBpqYmWltbAZg1axZr1qxhx44dAEybNo3W1lbWri1N4Y8bN46RI0fS3NwMwJAhQ6ivr2fp0qXs3bsXgNmzZ7Nq1Sp27twJQF1dHbt27WLdunUAjB8/nmHDhtHS0gLA0KFDqaurY/HixWQmEcGcOXNYsWIFTz75JAD19fU88cQTbNiwATi0z9OmTZsAmDRpEgMHDmTlypUAjBgxgtNPP52lS5cCMHDgQBobG1/U7wkGVvinQUeCrVu3VuXz1J3IfNF5VZHy6dlngEsy88527TcD0zJzTg/b31Tu9+oC7/W/gYsz88zu+jU0NGTbXy6H4rIbDnkXqkELrz3cFai3+Jk9OlXrMxsRyzOzobN1fXZ6NjOfA5YDczusmkvpKtpqmkHptK0kSVXT16dnvwR8IyIeBh6idGXsaOBWgIj4DPCKzDyvbYOImAIMoDQnOjgiZgBk5n+U118LbABWlfu9FbiA0hynJElV06ehmZl3RMRw4COU7qVcCczLzI3lLidz8AThfcAp7Zb/X/m/Uf7vAOALwBhgD6XwfGNm3lf9I5AkHcv6/EKgzPwK8JUu1l3aSdv4Hvb3OeBz1ahNkqTu+OxZSZIKMjQlSSrI0JQkqSBDU5KkggxNSZIKMjQlSSrI0JQkqSBDU5KkggxNSZIKMjQlSSrI0JQkqSBDU5KkggxNSZIKMjQlSSrI0JQkqSBDU5KkggxNSZIKMjQlSSrI0JQkqSBDU5KkggxNSZIKMjQlSSrI0JQkqSBDU5KkggxNSZIKMjQlSSrI0JQkqSBDU5KkggxNSZIKMjQlSSrI0JQkqSBDU5KkggxNSZIKMjQlSSrI0JQkqSBDU5KkggxNSZIKMjQlSSrI0JQkqSBDU5KkggxNSZIKMjQlSSrI0JQkqSBDU5KkggxNSZIKMjQlSSrI0JQkqSBDU5KkggxNSZIKMjQlSSrI0JQkqSBDU5KkggxNSZIKMjQlSSrI0JQkqSBDU5Kkgvo8NCPiyohYHxHPRsTyiDi3h/4vj4jFEbEnIrZExP+KiOjQZ055X89GxLqIuKJ3j0KSdCzq09CMiPnAAuDTwFnAz4EfRcTLuug/BHgA2A6cA1wD/A1wXbs+E4D7yvs6C/gMcGNEXNR7RyJJOhb19UjzOuC2zFyYmb/KzKuBrcB7uuj/FuAE4O2ZuTIz7wauB65rN9q8AngsM68u73Mh8HXgfb17KJKkY02fhWZEDADOBu7vsOp+4FVdbNYI/Cwz97Rr+zEwGhjfrk/Hff4YaIiI4w+lZkmS2uvLkeZJQD9Kp1rb2w6M6mKbUV30b1vXXZ/+5feUJKkq+h+G98wOy9FJW0/9O7YX6VNaEXE5cHl5cXdErO7mvXWwk4DHD3cRfeFrf3W4K5Cqws9s5U7pakVfhubjwD4OHlWO4OCRYpttXfSn3TZd9dkL7Oy4w8z8KvDVYiWro4hozsyGw12HpGL8zFZXn52ezczngOXA3A6r5lK68rUzTcC5EfGSDv0fAza06/OnneyzOTOfP5SaJUlqr6+vnv0ScGlEvCsizoyIBZQu6rkVICI+ExEPtuv/beAZ4LaImBYRFwIfBL6UmW2nXm8FxkbEDeV9vgu4FPhCHx2TJOkY0adzmpl5R0QMBz4CnAysBOZl5sZyl5OBU9v1/11EzAVuBpqBJ4EvUgrftj7rI2Ie8HeUbl15DLimfHuKqs9T29KRxc9sFcXvB2ySJKk7PntWkqSCDE1JkgoyNCVJKsjQVI8iYlJEjDzcdUjS4eaFQOpURIwA3gb8FfBbSg+L2ArcBdydmU8fxvIk6bAwNNWpiLgNmAL8kNKTlYYDM4Azgc3A5zLzgcNVn6SDlb9OcVf6F3uvMTR1kPLXru2idA/tknZt44CZwGWUns04PzP/43DVKelAEfH3wMPln42Z+VQnfYZn5kGPGFUxzmmqM1OA9cBzbQ1Z8pvMvBN4E6VQnX+Y6pPUQURcQukftF8Evg98PiL+PCJOjYhB5T6DgH+IiJcfxlKPaI40dZDyB+uHlL4A/C+BX2fmCx36XA28MzNn9H2FkjqKiIWUvhTjc8CFwNspPWFtNXAf8CAwGViQmQMOV51HOkeaOkj5S78/DAwC/gn4y4gYFxF/ABARJwBzKD0GUdJhFhH9KZ0d+u/MXJeZX8jMlwPnAIspBeh3gRuBbxy+So98jjTVpYiYBnwUOB94mtI3yvyW0rfKbAXelZmPHL4KJbWJiKHAyMz8z4gYADzf/oKgiJgPfAeo91qEF8/QVI/Kt5+8EbgAeJbSCPPOzPzPw1mXpO5FxHGU/p7fFxGXUTo1e8LhrutIZmiqIhFxXMf5TUm1LyKuA/pl5ucPdy1HMkNTko4BEXE8sM9/9B4aQ1OSpIK8elaSpIIMTUmSCjI0JUkqyNCUJKkgQ1OSpIIMTUmSCvr/9/yJ1rEB+MAAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 504x360 with 1 Axes>"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# plot circuit output\n",
"plot_histogram(sim_result.get_counts())"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.8"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
@anishthomas9555
Copy link

I didn't understand the gate-to-pulse graph.
I understand that the blue gaussian area represents the frequency sweep, but not the red one.

@splch
Copy link
Author

splch commented Feb 4, 2023

I didn't understand the gate-to-pulse graph. I understand that the blue gaussian area represents the frequency sweep, but not the red one.

Sorry I just saw this! The red represents the measurement of the qubit. This tutorial should explain what's going on well: https://qiskit.org/textbook/ch-quantum-hardware/calibrating-qubits-pulse.html

@jesusmontera
Copy link

Why doing gate to pulse with 2 qubit circuit like h(0) cx(0,1) fails on transpile?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment