Last active
June 21, 2022 14:36
-
-
Save spro/c87cc706625b8a54e604fb1024106556 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
from torch import nn | |
from torch.autograd import Variable | |
import torch.nn.functional as F | |
class RNN(nn.Module): | |
def __init__(self, input_size, hidden_size, output_size, n_layers=1): | |
super(RNN, self).__init__() | |
self.input_size = input_size | |
self.hidden_size = hidden_size | |
self.output_size = output_size | |
self.n_layers = n_layers | |
self.c1 = nn.Conv1d(input_size, hidden_size, 2) | |
self.p1 = nn.AvgPool1d(2) | |
self.c2 = nn.Conv1d(hidden_size, hidden_size, 1) | |
self.p2 = nn.AvgPool1d(2) | |
self.gru = nn.GRU(hidden_size, hidden_size, n_layers, dropout=0.01) | |
self.out = nn.Linear(hidden_size, output_size) | |
def forward(self, inputs, hidden): | |
batch_size = inputs.size(1) | |
# Turn (seq_len x batch_size x input_size) into (batch_size x input_size x seq_len) for CNN | |
inputs = inputs.transpose(0, 1).transpose(1, 2) | |
# Run through Conv1d and Pool1d layers | |
c = self.c1(inputs) | |
p = self.p1(c) | |
c = self.c2(p) | |
p = self.p2(c) | |
# Turn (batch_size x hidden_size x seq_len) back into (seq_len x batch_size x hidden_size) for RNN | |
p = p.transpose(1, 2).transpose(0, 1) | |
p = F.tanh(p) | |
output, hidden = self.gru(p, hidden) | |
conv_seq_len = output.size(0) | |
output = output.view(conv_seq_len * batch_size, self.hidden_size) # Treating (conv_seq_len x batch_size) as batch_size for linear layer | |
output = F.tanh(self.out(output)) | |
output = output.view(conv_seq_len, -1, self.output_size) | |
return output, hidden | |
input_size = 20 | |
hidden_size = 50 | |
output_size = 7 | |
batch_size = 5 | |
n_layers = 2 | |
seq_len = 15 | |
rnn = RNN(input_size, hidden_size, output_size, n_layers=n_layers) | |
inputs = Variable(torch.rand(seq_len, batch_size, input_size)) # seq_len x batch_size x | |
outputs, hidden = rnn(inputs, None) | |
print('outputs', outputs.size()) # conv_seq_len x batch_size x output_size | |
print('hidden', hidden.size()) # n_layers x batch_size x hidden_size |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
@aa1607 I know an old question but I stumbled in here 😄 think the answer is (memory) contiguity. Consider dynamic RNN :
Its faster!