Created
August 17, 2018 08:07
-
-
Save sreeragh-ar/77c084a6461d5fb821293efa199aed1d to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
import numpy as np | |
import pandas as pd | |
from sklearn.datasets import load_boston | |
import matplotlib.pyplot as plt | |
boston=load_boston() | |
type(boston) | |
boston.feature_names | |
bd=pd.DataFrame(data=boston.data,columns=boston.feature_names) | |
bd['Price']=pd.DataFrame(data=boston.target) | |
np.random.shuffle(bd.values) | |
W0=tf.Variable(0.3) | |
W1=tf.Variable(0.2) | |
b=tf.Variable(0.1) | |
#print(bd.shape[1]) | |
tf.summary.histogram('Weights', W0) | |
tf.summary.histogram('Weights', W1) | |
tf.summary.histogram('Biases', b) | |
dataset_input=bd.iloc[:, 0 : bd.shape[1]-1]; | |
#dataset_input.head(2) | |
dataset_output=bd.iloc[:, bd.shape[1]-1] | |
dataset_output=dataset_output.values | |
dataset_output=dataset_output.reshape((bd.shape[0],1)) | |
#converted (506,) to (506,1) because in pandas | |
#the shape was not changing and it was needed later in feed_dict | |
dataset_input=dataset_input.values #only dataset_input is in DataFrame form and converting it into np.ndarray | |
dataset_input = np.array(dataset_input, dtype=np.float32) | |
#making the datatype into float32 for making it compatible with placeholders | |
dataset_output = np.array(dataset_output, dtype=np.float32) | |
X=tf.placeholder(tf.float32, shape=(None,bd.shape[1]-1)) | |
Y=tf.placeholder(tf.float32, shape=(None,1)) | |
Y_=W0*X*X + W1*X + b #Hope this equation is rightly written | |
#Y_pred = tf.add(tf.multiply(tf.pow(X, pow_i), W), Y_pred) | |
print(X.shape) | |
print(Y.shape) | |
loss=tf.reduce_mean(tf.square(Y_-Y)) | |
tf.summary.scalar('loss',loss) | |
optimizer=tf.train.GradientDescentOptimizer(0.0000000001) | |
train=optimizer.minimize(loss) | |
init=tf.global_variables_initializer()#tf.global_variables_initializer()#tf.initialize_all_variables() | |
sess=tf.Session() | |
sess.run(init) | |
wb_=[] | |
with tf.Session() as sess: | |
summary_merge = tf.summary.merge_all() | |
writer=tf.summary.FileWriter("Users/ajay/Documents",sess.graph) | |
epochs=10 | |
sess.run(init) | |
for i in range(epochs): | |
s_mer=sess.run(summary_merge,feed_dict={X: dataset_input, Y: dataset_output}) #ERROR________ERROR | |
sess.run(train,feed_dict={X:dataset_input,Y:dataset_output}) | |
#CHANGED | |
print("loss = ", sess.run(loss, feed_dict={X:dataset_input,Y:dataset_output})) | |
writer.add_summary(s_mer,i) | |
#tf.summary.histogram(name="loss",values=loss) | |
if(i%5==0): | |
print(i, sess.run([W0,W1,b])) | |
wb_.append(sess.run([W0,W1,b])) | |
print(writer.get_logdir()) | |
print(writer.close()) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment