Created
February 6, 2023 06:31
-
-
Save srelbo/49083069befd1e43f0de9358ca5dcad4 to your computer and use it in GitHub Desktop.
Tensor RT issue https://github.com/pytorch/TensorRT/issues/1628
This file has been truncated, but you can view the full file.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
orch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.155 : Tensor = aten::_convolution(%234, %self.kp_detector.fg_encoder.layer2.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.21 : Tensor = aten::batch_norm(%input.155, %self.kp_detector.fg_encoder.layer2.0.bn2.weight, %self.kp_detector.fg_encoder.layer2.0.bn2.bias, %self.kp_detector.fg_encoder.layer2.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer2.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(32768,1:4,1024,32) -> Half(32768,1:4,1024,32) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.155 : Tensor = aten::_convolution(%234, %self.kp_detector.fg_encoder.layer2.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.21 : Tensor = aten::batch_norm(%input.155, %self.kp_detector.fg_encoder.layer2.0.bn2.weight, %self.kp_detector.fg_encoder.layer2.0.bn2.bias, %self.kp_detector.fg_encoder.layer2.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer2.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.155 : Tensor = aten::_convolution(%234, %self.kp_detector.fg_encoder.layer2.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.21 : Tensor = aten::batch_norm(%input.155, %self.kp_detector.fg_encoder.layer2.0.bn2.weight, %self.kp_detector.fg_encoder.layer2.0.bn2.bias, %self.kp_detector.fg_encoder.layer2.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer2.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(16384,1:8,512,16) -> Float(131072,1024,32,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.155 : Tensor = aten::_convolution(%234, %self.kp_detector.fg_encoder.layer2.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.21 : Tensor = aten::batch_norm(%input.155, %self.kp_detector.fg_encoder.layer2.0.bn2.weight, %self.kp_detector.fg_encoder.layer2.0.bn2.bias, %self.kp_detector.fg_encoder.layer2.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer2.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.155 : Tensor = aten::_convolution(%234, %self.kp_detector.fg_encoder.layer2.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.21 : Tensor = aten::batch_norm(%input.155, %self.kp_detector.fg_encoder.layer2.0.bn2.weight, %self.kp_detector.fg_encoder.layer2.0.bn2.bias, %self.kp_detector.fg_encoder.layer2.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer2.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(16384,1:8,512,16) -> Half(16384,1:8,512,16) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - =============== Computing costs for | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(262144,4096,64,1), Float(131072,1024,32,1) -> Float(131072,1024,32,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(262144,1,4096,64), Float(131072,1,4096,128) -> Float(131072,1,4096,128) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(65536,1:4,1024,16), Float(32768,1:4,1024,32) -> Float(32768,1:4,1024,32) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(262144,4096,64,1), Half(131072,1024,32,1) -> Half(131072,1024,32,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(131072,4096:2,64,1), Half(65536,1024:2,32,1) -> Half(65536,1024:2,32,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(65536,1:4,1024,16), Half(32768,1:4,1024,32) -> Half(32768,1:4,1024,32) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.271 : Tensor = aten::_convolution(%310, %self.kp_detector.fg_encoder.layer2.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.downsample/__module.kp_detector.fg_encoder.layer2.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.13 : Tensor = aten::batch_norm(%input.271, %self.kp_detector.fg_encoder.layer2.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer2.0.bn2.bias, %self.kp_detector.fg_encoder.layer2.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer2.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.downsample/__module.kp_detector.fg_encoder.layer2.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %318 : Tensor = aten::add(%out.37, %identity.13, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %319 : Tensor = aten::relu(%318), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.271 : Tensor = aten::_convolution(%310, %self.kp_detector.fg_encoder.layer2.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.downsample/__module.kp_detector.fg_encoder.layer2.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.13 : Tensor = aten::batch_norm(%input.271, %self.kp_detector.fg_encoder.layer2.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer2.0.bn2.bias, %self.kp_detector.fg_encoder.layer2.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer2.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.downsample/__module.kp_detector.fg_encoder.layer2.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %318 : Tensor = aten::add(%out.37, %identity.13, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %319 : Tensor = aten::relu(%318), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(32768,1:8,512,8), Float(131072,1024,32,1) -> Float(131072,1024,32,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.271 : Tensor = aten::_convolution(%310, %self.kp_detector.fg_encoder.layer2.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.downsample/__module.kp_detector.fg_encoder.layer2.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.13 : Tensor = aten::batch_norm(%input.271, %self.kp_detector.fg_encoder.layer2.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer2.0.bn2.bias, %self.kp_detector.fg_encoder.layer2.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer2.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.downsample/__module.kp_detector.fg_encoder.layer2.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %318 : Tensor = aten::add(%out.37, %identity.13, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %319 : Tensor = aten::relu(%318), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.271 : Tensor = aten::_convolution(%310, %self.kp_detector.fg_encoder.layer2.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.downsample/__module.kp_detector.fg_encoder.layer2.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.13 : Tensor = aten::batch_norm(%input.271, %self.kp_detector.fg_encoder.layer2.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer2.0.bn2.bias, %self.kp_detector.fg_encoder.layer2.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer2.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.downsample/__module.kp_detector.fg_encoder.layer2.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %318 : Tensor = aten::add(%out.37, %identity.13, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %319 : Tensor = aten::relu(%318), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(32768,1:8,512,8), Half(16384,1:8,512,16) -> Half(16384,1:8,512,16) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - =============== Computing costs for | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(262144,4096,64,1), Float(131072,1024,32,1) -> Float(131072,1024,32,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(262144,1,4096,64), Float(131072,1,4096,128) -> Float(131072,1,4096,128) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(65536,1:4,1024,16), Float(32768,1:4,1024,32) -> Float(32768,1:4,1024,32) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(262144,4096,64,1), Half(131072,1024,32,1) -> Half(131072,1024,32,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(131072,4096:2,64,1), Half(65536,1024:2,32,1) -> Half(65536,1024:2,32,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(65536,1:4,1024,16), Half(32768,1:4,1024,32) -> Half(32768,1:4,1024,32) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.157 : Tensor = aten::_convolution(%231, %self.kp_detector.fg_encoder.layer2.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.downsample/__module.kp_detector.fg_encoder.layer2.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.7 : Tensor = aten::batch_norm(%input.157, %self.kp_detector.fg_encoder.layer2.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer2.0.bn2.bias, %self.kp_detector.fg_encoder.layer2.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer2.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.downsample/__module.kp_detector.fg_encoder.layer2.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %239 : Tensor = aten::add(%out.21, %identity.7, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %240 : Tensor = aten::relu(%239), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.157 : Tensor = aten::_convolution(%231, %self.kp_detector.fg_encoder.layer2.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.downsample/__module.kp_detector.fg_encoder.layer2.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.7 : Tensor = aten::batch_norm(%input.157, %self.kp_detector.fg_encoder.layer2.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer2.0.bn2.bias, %self.kp_detector.fg_encoder.layer2.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer2.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.downsample/__module.kp_detector.fg_encoder.layer2.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %239 : Tensor = aten::add(%out.21, %identity.7, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %240 : Tensor = aten::relu(%239), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(32768,1:8,512,8), Float(131072,1024,32,1) -> Float(131072,1024,32,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.157 : Tensor = aten::_convolution(%231, %self.kp_detector.fg_encoder.layer2.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.downsample/__module.kp_detector.fg_encoder.layer2.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.7 : Tensor = aten::batch_norm(%input.157, %self.kp_detector.fg_encoder.layer2.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer2.0.bn2.bias, %self.kp_detector.fg_encoder.layer2.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer2.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.downsample/__module.kp_detector.fg_encoder.layer2.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %239 : Tensor = aten::add(%out.21, %identity.7, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %240 : Tensor = aten::relu(%239), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.157 : Tensor = aten::_convolution(%231, %self.kp_detector.fg_encoder.layer2.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.downsample/__module.kp_detector.fg_encoder.layer2.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.7 : Tensor = aten::batch_norm(%input.157, %self.kp_detector.fg_encoder.layer2.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer2.0.bn2.bias, %self.kp_detector.fg_encoder.layer2.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer2.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.downsample/__module.kp_detector.fg_encoder.layer2.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %239 : Tensor = aten::add(%out.21, %identity.7, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %240 : Tensor = aten::relu(%239), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(32768,1:8,512,8), Half(16384,1:8,512,16) -> Half(16384,1:8,512,16) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - =============== Computing costs for | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(131072,1024,32,1) -> Float(131072,1024,32,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(131072,1,4096,128) -> Float(131072,1,4096,128) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(32768,1:4,1024,32) -> Float(32768,1:4,1024,32) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(131072,1024,32,1) -> Half(131072,1024,32,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(65536,1024:2,32,1) -> Half(65536,1024:2,32,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.163 : Tensor = aten::_convolution(%240, %self.kp_detector.fg_encoder.layer2.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.165 : Tensor = aten::batch_norm(%input.163, %self.kp_detector.fg_encoder.layer2.1.bn1.weight, %self.kp_detector.fg_encoder.layer2.1.bn1.bias, %self.kp_detector.fg_encoder.layer2.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer2.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %243 : Tensor = aten::relu(%input.165), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.163 : Tensor = aten::_convolution(%240, %self.kp_detector.fg_encoder.layer2.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.165 : Tensor = aten::batch_norm(%input.163, %self.kp_detector.fg_encoder.layer2.1.bn1.weight, %self.kp_detector.fg_encoder.layer2.1.bn1.bias, %self.kp_detector.fg_encoder.layer2.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer2.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %243 : Tensor = aten::relu(%input.165), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(32768,1:4,1024,32) -> Half(32768,1:4,1024,32) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.163 : Tensor = aten::_convolution(%240, %self.kp_detector.fg_encoder.layer2.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.165 : Tensor = aten::batch_norm(%input.163, %self.kp_detector.fg_encoder.layer2.1.bn1.weight, %self.kp_detector.fg_encoder.layer2.1.bn1.bias, %self.kp_detector.fg_encoder.layer2.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer2.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %243 : Tensor = aten::relu(%input.165), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.163 : Tensor = aten::_convolution(%240, %self.kp_detector.fg_encoder.layer2.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.165 : Tensor = aten::batch_norm(%input.163, %self.kp_detector.fg_encoder.layer2.1.bn1.weight, %self.kp_detector.fg_encoder.layer2.1.bn1.bias, %self.kp_detector.fg_encoder.layer2.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer2.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %243 : Tensor = aten::relu(%input.165), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(16384,1:8,512,16) -> Float(131072,1024,32,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.163 : Tensor = aten::_convolution(%240, %self.kp_detector.fg_encoder.layer2.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.165 : Tensor = aten::batch_norm(%input.163, %self.kp_detector.fg_encoder.layer2.1.bn1.weight, %self.kp_detector.fg_encoder.layer2.1.bn1.bias, %self.kp_detector.fg_encoder.layer2.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer2.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %243 : Tensor = aten::relu(%input.165), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.163 : Tensor = aten::_convolution(%240, %self.kp_detector.fg_encoder.layer2.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.165 : Tensor = aten::batch_norm(%input.163, %self.kp_detector.fg_encoder.layer2.1.bn1.weight, %self.kp_detector.fg_encoder.layer2.1.bn1.bias, %self.kp_detector.fg_encoder.layer2.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer2.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %243 : Tensor = aten::relu(%input.165), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(16384,1:8,512,16) -> Half(16384,1:8,512,16) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - =============== Computing costs for | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(131072,1024,32,1) -> Float(131072,1024,32,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(131072,1,4096,128) -> Float(131072,1,4096,128) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(32768,1:4,1024,32) -> Float(32768,1:4,1024,32) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(131072,1024,32,1) -> Half(131072,1024,32,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(65536,1024:2,32,1) -> Half(65536,1024:2,32,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.277 : Tensor = aten::_convolution(%319, %self.kp_detector.fg_encoder.layer2.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.279 : Tensor = aten::batch_norm(%input.277, %self.kp_detector.fg_encoder.layer2.1.bn1.weight, %self.kp_detector.fg_encoder.layer2.1.bn1.bias, %self.kp_detector.fg_encoder.layer2.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer2.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %322 : Tensor = aten::relu(%input.279), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.277 : Tensor = aten::_convolution(%319, %self.kp_detector.fg_encoder.layer2.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.279 : Tensor = aten::batch_norm(%input.277, %self.kp_detector.fg_encoder.layer2.1.bn1.weight, %self.kp_detector.fg_encoder.layer2.1.bn1.bias, %self.kp_detector.fg_encoder.layer2.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer2.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %322 : Tensor = aten::relu(%input.279), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(32768,1:4,1024,32) -> Half(32768,1:4,1024,32) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.277 : Tensor = aten::_convolution(%319, %self.kp_detector.fg_encoder.layer2.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.279 : Tensor = aten::batch_norm(%input.277, %self.kp_detector.fg_encoder.layer2.1.bn1.weight, %self.kp_detector.fg_encoder.layer2.1.bn1.bias, %self.kp_detector.fg_encoder.layer2.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer2.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %322 : Tensor = aten::relu(%input.279), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.277 : Tensor = aten::_convolution(%319, %self.kp_detector.fg_encoder.layer2.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.279 : Tensor = aten::batch_norm(%input.277, %self.kp_detector.fg_encoder.layer2.1.bn1.weight, %self.kp_detector.fg_encoder.layer2.1.bn1.bias, %self.kp_detector.fg_encoder.layer2.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer2.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %322 : Tensor = aten::relu(%input.279), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(16384,1:8,512,16) -> Float(131072,1024,32,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.277 : Tensor = aten::_convolution(%319, %self.kp_detector.fg_encoder.layer2.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.279 : Tensor = aten::batch_norm(%input.277, %self.kp_detector.fg_encoder.layer2.1.bn1.weight, %self.kp_detector.fg_encoder.layer2.1.bn1.bias, %self.kp_detector.fg_encoder.layer2.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer2.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %322 : Tensor = aten::relu(%input.279), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.277 : Tensor = aten::_convolution(%319, %self.kp_detector.fg_encoder.layer2.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.279 : Tensor = aten::batch_norm(%input.277, %self.kp_detector.fg_encoder.layer2.1.bn1.weight, %self.kp_detector.fg_encoder.layer2.1.bn1.bias, %self.kp_detector.fg_encoder.layer2.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer2.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %322 : Tensor = aten::relu(%input.279), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(16384,1:8,512,16) -> Half(16384,1:8,512,16) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - =============== Computing costs for | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(131072,1024,32,1), Float(131072,1024,32,1) -> Float(131072,1024,32,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(131072,1,4096,128), Float(131072,1,4096,128) -> Float(131072,1,4096,128) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(32768,1:4,1024,32), Float(32768,1:4,1024,32) -> Float(32768,1:4,1024,32) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(131072,1024,32,1), Half(131072,1024,32,1) -> Half(131072,1024,32,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(65536,1024:2,32,1), Half(65536,1024:2,32,1) -> Half(65536,1024:2,32,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.283 : Tensor = aten::_convolution(%322, %self.kp_detector.fg_encoder.layer2.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.39 : Tensor = aten::batch_norm(%input.283, %self.kp_detector.fg_encoder.layer2.1.bn2.weight, %self.kp_detector.fg_encoder.layer2.1.bn2.bias, %self.kp_detector.fg_encoder.layer2.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer2.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %325 : Tensor = aten::add(%out.39, %319, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %326 : Tensor = aten::relu(%325), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.283 : Tensor = aten::_convolution(%322, %self.kp_detector.fg_encoder.layer2.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.39 : Tensor = aten::batch_norm(%input.283, %self.kp_detector.fg_encoder.layer2.1.bn2.weight, %self.kp_detector.fg_encoder.layer2.1.bn2.bias, %self.kp_detector.fg_encoder.layer2.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer2.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %325 : Tensor = aten::add(%out.39, %319, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %326 : Tensor = aten::relu(%325), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(32768,1:4,1024,32), Half(32768,1:4,1024,32) -> Half(32768,1:4,1024,32) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.283 : Tensor = aten::_convolution(%322, %self.kp_detector.fg_encoder.layer2.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.39 : Tensor = aten::batch_norm(%input.283, %self.kp_detector.fg_encoder.layer2.1.bn2.weight, %self.kp_detector.fg_encoder.layer2.1.bn2.bias, %self.kp_detector.fg_encoder.layer2.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer2.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %325 : Tensor = aten::add(%out.39, %319, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %326 : Tensor = aten::relu(%325), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.283 : Tensor = aten::_convolution(%322, %self.kp_detector.fg_encoder.layer2.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.39 : Tensor = aten::batch_norm(%input.283, %self.kp_detector.fg_encoder.layer2.1.bn2.weight, %self.kp_detector.fg_encoder.layer2.1.bn2.bias, %self.kp_detector.fg_encoder.layer2.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer2.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %325 : Tensor = aten::add(%out.39, %319, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %326 : Tensor = aten::relu(%325), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(16384,1:8,512,16), Float(131072,1024,32,1) -> Float(131072,1024,32,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.283 : Tensor = aten::_convolution(%322, %self.kp_detector.fg_encoder.layer2.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.39 : Tensor = aten::batch_norm(%input.283, %self.kp_detector.fg_encoder.layer2.1.bn2.weight, %self.kp_detector.fg_encoder.layer2.1.bn2.bias, %self.kp_detector.fg_encoder.layer2.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer2.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %325 : Tensor = aten::add(%out.39, %319, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %326 : Tensor = aten::relu(%325), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.283 : Tensor = aten::_convolution(%322, %self.kp_detector.fg_encoder.layer2.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.39 : Tensor = aten::batch_norm(%input.283, %self.kp_detector.fg_encoder.layer2.1.bn2.weight, %self.kp_detector.fg_encoder.layer2.1.bn2.bias, %self.kp_detector.fg_encoder.layer2.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer2.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %325 : Tensor = aten::add(%out.39, %319, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %326 : Tensor = aten::relu(%325), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(16384,1:8,512,16), Half(16384,1:8,512,16) -> Half(16384,1:8,512,16) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - =============== Computing costs for | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(131072,1024,32,1), Float(131072,1024,32,1) -> Float(131072,1024,32,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(131072,1,4096,128), Float(131072,1,4096,128) -> Float(131072,1,4096,128) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(32768,1:4,1024,32), Float(32768,1:4,1024,32) -> Float(32768,1:4,1024,32) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(131072,1024,32,1), Half(131072,1024,32,1) -> Half(131072,1024,32,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(65536,1024:2,32,1), Half(65536,1024:2,32,1) -> Half(65536,1024:2,32,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.169 : Tensor = aten::_convolution(%243, %self.kp_detector.fg_encoder.layer2.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.23 : Tensor = aten::batch_norm(%input.169, %self.kp_detector.fg_encoder.layer2.1.bn2.weight, %self.kp_detector.fg_encoder.layer2.1.bn2.bias, %self.kp_detector.fg_encoder.layer2.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer2.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %246 : Tensor = aten::add(%out.23, %240, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %247 : Tensor = aten::relu(%246), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.169 : Tensor = aten::_convolution(%243, %self.kp_detector.fg_encoder.layer2.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.23 : Tensor = aten::batch_norm(%input.169, %self.kp_detector.fg_encoder.layer2.1.bn2.weight, %self.kp_detector.fg_encoder.layer2.1.bn2.bias, %self.kp_detector.fg_encoder.layer2.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer2.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %246 : Tensor = aten::add(%out.23, %240, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %247 : Tensor = aten::relu(%246), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(32768,1:4,1024,32), Half(32768,1:4,1024,32) -> Half(32768,1:4,1024,32) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.169 : Tensor = aten::_convolution(%243, %self.kp_detector.fg_encoder.layer2.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.23 : Tensor = aten::batch_norm(%input.169, %self.kp_detector.fg_encoder.layer2.1.bn2.weight, %self.kp_detector.fg_encoder.layer2.1.bn2.bias, %self.kp_detector.fg_encoder.layer2.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer2.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %246 : Tensor = aten::add(%out.23, %240, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %247 : Tensor = aten::relu(%246), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.169 : Tensor = aten::_convolution(%243, %self.kp_detector.fg_encoder.layer2.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.23 : Tensor = aten::batch_norm(%input.169, %self.kp_detector.fg_encoder.layer2.1.bn2.weight, %self.kp_detector.fg_encoder.layer2.1.bn2.bias, %self.kp_detector.fg_encoder.layer2.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer2.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %246 : Tensor = aten::add(%out.23, %240, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %247 : Tensor = aten::relu(%246), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(16384,1:8,512,16), Float(131072,1024,32,1) -> Float(131072,1024,32,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.169 : Tensor = aten::_convolution(%243, %self.kp_detector.fg_encoder.layer2.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.23 : Tensor = aten::batch_norm(%input.169, %self.kp_detector.fg_encoder.layer2.1.bn2.weight, %self.kp_detector.fg_encoder.layer2.1.bn2.bias, %self.kp_detector.fg_encoder.layer2.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer2.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %246 : Tensor = aten::add(%out.23, %240, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %247 : Tensor = aten::relu(%246), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.169 : Tensor = aten::_convolution(%243, %self.kp_detector.fg_encoder.layer2.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.23 : Tensor = aten::batch_norm(%input.169, %self.kp_detector.fg_encoder.layer2.1.bn2.weight, %self.kp_detector.fg_encoder.layer2.1.bn2.bias, %self.kp_detector.fg_encoder.layer2.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer2.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %246 : Tensor = aten::add(%out.23, %240, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %247 : Tensor = aten::relu(%246), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(16384,1:8,512,16), Half(16384,1:8,512,16) -> Half(16384,1:8,512,16) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - =============== Computing costs for | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(131072,1024,32,1) -> Float(65536,256,16,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(131072,1,4096,128) -> Float(65536,1,4096,256) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(32768,1:4,1024,32) -> Float(16384,1:4,1024,64) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(131072,1024,32,1) -> Half(65536,256,16,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(65536,1024:2,32,1) -> Half(32768,256:2,16,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.175 : Tensor = aten::_convolution(%247, %self.kp_detector.fg_encoder.layer3.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.177 : Tensor = aten::batch_norm(%input.175, %self.kp_detector.fg_encoder.layer3.0.bn1.weight, %self.kp_detector.fg_encoder.layer3.0.bn1.bias, %self.kp_detector.fg_encoder.layer3.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer3.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %250 : Tensor = aten::relu(%input.177), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.175 : Tensor = aten::_convolution(%247, %self.kp_detector.fg_encoder.layer3.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.177 : Tensor = aten::batch_norm(%input.175, %self.kp_detector.fg_encoder.layer3.0.bn1.weight, %self.kp_detector.fg_encoder.layer3.0.bn1.bias, %self.kp_detector.fg_encoder.layer3.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer3.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %250 : Tensor = aten::relu(%input.177), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(32768,1:4,1024,32) -> Half(16384,1:4,1024,64) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.175 : Tensor = aten::_convolution(%247, %self.kp_detector.fg_encoder.layer3.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.177 : Tensor = aten::batch_norm(%input.175, %self.kp_detector.fg_encoder.layer3.0.bn1.weight, %self.kp_detector.fg_encoder.layer3.0.bn1.bias, %self.kp_detector.fg_encoder.layer3.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer3.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %250 : Tensor = aten::relu(%input.177), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.175 : Tensor = aten::_convolution(%247, %self.kp_detector.fg_encoder.layer3.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.177 : Tensor = aten::batch_norm(%input.175, %self.kp_detector.fg_encoder.layer3.0.bn1.weight, %self.kp_detector.fg_encoder.layer3.0.bn1.bias, %self.kp_detector.fg_encoder.layer3.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer3.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %250 : Tensor = aten::relu(%input.177), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(16384,1:8,512,16) -> Float(65536,256,16,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.175 : Tensor = aten::_convolution(%247, %self.kp_detector.fg_encoder.layer3.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.177 : Tensor = aten::batch_norm(%input.175, %self.kp_detector.fg_encoder.layer3.0.bn1.weight, %self.kp_detector.fg_encoder.layer3.0.bn1.bias, %self.kp_detector.fg_encoder.layer3.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer3.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %250 : Tensor = aten::relu(%input.177), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.175 : Tensor = aten::_convolution(%247, %self.kp_detector.fg_encoder.layer3.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.177 : Tensor = aten::batch_norm(%input.175, %self.kp_detector.fg_encoder.layer3.0.bn1.weight, %self.kp_detector.fg_encoder.layer3.0.bn1.bias, %self.kp_detector.fg_encoder.layer3.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer3.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %250 : Tensor = aten::relu(%input.177), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(16384,1:8,512,16) -> Half(8192,1:8,512,32) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - =============== Computing costs for | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(131072,1024,32,1) -> Float(65536,256,16,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(131072,1,4096,128) -> Float(65536,1,4096,256) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(32768,1:4,1024,32) -> Float(16384,1:4,1024,64) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(131072,1024,32,1) -> Half(65536,256,16,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(65536,1024:2,32,1) -> Half(32768,256:2,16,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.289 : Tensor = aten::_convolution(%326, %self.kp_detector.fg_encoder.layer3.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.291 : Tensor = aten::batch_norm(%input.289, %self.kp_detector.fg_encoder.layer3.0.bn1.weight, %self.kp_detector.fg_encoder.layer3.0.bn1.bias, %self.kp_detector.fg_encoder.layer3.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer3.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %329 : Tensor = aten::relu(%input.291), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.289 : Tensor = aten::_convolution(%326, %self.kp_detector.fg_encoder.layer3.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.291 : Tensor = aten::batch_norm(%input.289, %self.kp_detector.fg_encoder.layer3.0.bn1.weight, %self.kp_detector.fg_encoder.layer3.0.bn1.bias, %self.kp_detector.fg_encoder.layer3.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer3.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %329 : Tensor = aten::relu(%input.291), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(32768,1:4,1024,32) -> Half(16384,1:4,1024,64) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.289 : Tensor = aten::_convolution(%326, %self.kp_detector.fg_encoder.layer3.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.291 : Tensor = aten::batch_norm(%input.289, %self.kp_detector.fg_encoder.layer3.0.bn1.weight, %self.kp_detector.fg_encoder.layer3.0.bn1.bias, %self.kp_detector.fg_encoder.layer3.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer3.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %329 : Tensor = aten::relu(%input.291), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.289 : Tensor = aten::_convolution(%326, %self.kp_detector.fg_encoder.layer3.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.291 : Tensor = aten::batch_norm(%input.289, %self.kp_detector.fg_encoder.layer3.0.bn1.weight, %self.kp_detector.fg_encoder.layer3.0.bn1.bias, %self.kp_detector.fg_encoder.layer3.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer3.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %329 : Tensor = aten::relu(%input.291), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(16384,1:8,512,16) -> Float(65536,256,16,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.289 : Tensor = aten::_convolution(%326, %self.kp_detector.fg_encoder.layer3.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.291 : Tensor = aten::batch_norm(%input.289, %self.kp_detector.fg_encoder.layer3.0.bn1.weight, %self.kp_detector.fg_encoder.layer3.0.bn1.bias, %self.kp_detector.fg_encoder.layer3.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer3.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %329 : Tensor = aten::relu(%input.291), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.289 : Tensor = aten::_convolution(%326, %self.kp_detector.fg_encoder.layer3.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.291 : Tensor = aten::batch_norm(%input.289, %self.kp_detector.fg_encoder.layer3.0.bn1.weight, %self.kp_detector.fg_encoder.layer3.0.bn1.bias, %self.kp_detector.fg_encoder.layer3.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer3.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %329 : Tensor = aten::relu(%input.291), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(16384,1:8,512,16) -> Half(8192,1:8,512,32) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - =============== Computing costs for | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(65536,256,16,1) -> Float(65536,256,16,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(65536,1,4096,256) -> Float(65536,1,4096,256) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(16384,1:4,1024,64) -> Float(16384,1:4,1024,64) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(65536,256,16,1) -> Half(65536,256,16,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(32768,256:2,16,1) -> Half(32768,256:2,16,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.295 : Tensor = aten::_convolution(%329, %self.kp_detector.fg_encoder.layer3.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.41 : Tensor = aten::batch_norm(%input.295, %self.kp_detector.fg_encoder.layer3.0.bn2.weight, %self.kp_detector.fg_encoder.layer3.0.bn2.bias, %self.kp_detector.fg_encoder.layer3.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer3.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.295 : Tensor = aten::_convolution(%329, %self.kp_detector.fg_encoder.layer3.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.41 : Tensor = aten::batch_norm(%input.295, %self.kp_detector.fg_encoder.layer3.0.bn2.weight, %self.kp_detector.fg_encoder.layer3.0.bn2.bias, %self.kp_detector.fg_encoder.layer3.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer3.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(16384,1:4,1024,64) -> Half(16384,1:4,1024,64) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.295 : Tensor = aten::_convolution(%329, %self.kp_detector.fg_encoder.layer3.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.41 : Tensor = aten::batch_norm(%input.295, %self.kp_detector.fg_encoder.layer3.0.bn2.weight, %self.kp_detector.fg_encoder.layer3.0.bn2.bias, %self.kp_detector.fg_encoder.layer3.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer3.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.295 : Tensor = aten::_convolution(%329, %self.kp_detector.fg_encoder.layer3.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.41 : Tensor = aten::batch_norm(%input.295, %self.kp_detector.fg_encoder.layer3.0.bn2.weight, %self.kp_detector.fg_encoder.layer3.0.bn2.bias, %self.kp_detector.fg_encoder.layer3.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer3.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(8192,1:8,512,32) -> Float(65536,256,16,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.295 : Tensor = aten::_convolution(%329, %self.kp_detector.fg_encoder.layer3.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.41 : Tensor = aten::batch_norm(%input.295, %self.kp_detector.fg_encoder.layer3.0.bn2.weight, %self.kp_detector.fg_encoder.layer3.0.bn2.bias, %self.kp_detector.fg_encoder.layer3.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer3.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.295 : Tensor = aten::_convolution(%329, %self.kp_detector.fg_encoder.layer3.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.41 : Tensor = aten::batch_norm(%input.295, %self.kp_detector.fg_encoder.layer3.0.bn2.weight, %self.kp_detector.fg_encoder.layer3.0.bn2.bias, %self.kp_detector.fg_encoder.layer3.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer3.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(8192,1:8,512,32) -> Half(8192,1:8,512,32) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - =============== Computing costs for | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(65536,256,16,1) -> Float(65536,256,16,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(65536,1,4096,256) -> Float(65536,1,4096,256) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(16384,1:4,1024,64) -> Float(16384,1:4,1024,64) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(65536,256,16,1) -> Half(65536,256,16,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(32768,256:2,16,1) -> Half(32768,256:2,16,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.181 : Tensor = aten::_convolution(%250, %self.kp_detector.fg_encoder.layer3.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.25 : Tensor = aten::batch_norm(%input.181, %self.kp_detector.fg_encoder.layer3.0.bn2.weight, %self.kp_detector.fg_encoder.layer3.0.bn2.bias, %self.kp_detector.fg_encoder.layer3.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer3.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.181 : Tensor = aten::_convolution(%250, %self.kp_detector.fg_encoder.layer3.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.25 : Tensor = aten::batch_norm(%input.181, %self.kp_detector.fg_encoder.layer3.0.bn2.weight, %self.kp_detector.fg_encoder.layer3.0.bn2.bias, %self.kp_detector.fg_encoder.layer3.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer3.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(16384,1:4,1024,64) -> Half(16384,1:4,1024,64) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.181 : Tensor = aten::_convolution(%250, %self.kp_detector.fg_encoder.layer3.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.25 : Tensor = aten::batch_norm(%input.181, %self.kp_detector.fg_encoder.layer3.0.bn2.weight, %self.kp_detector.fg_encoder.layer3.0.bn2.bias, %self.kp_detector.fg_encoder.layer3.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer3.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.181 : Tensor = aten::_convolution(%250, %self.kp_detector.fg_encoder.layer3.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.25 : Tensor = aten::batch_norm(%input.181, %self.kp_detector.fg_encoder.layer3.0.bn2.weight, %self.kp_detector.fg_encoder.layer3.0.bn2.bias, %self.kp_detector.fg_encoder.layer3.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer3.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(8192,1:8,512,32) -> Float(65536,256,16,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.181 : Tensor = aten::_convolution(%250, %self.kp_detector.fg_encoder.layer3.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.25 : Tensor = aten::batch_norm(%input.181, %self.kp_detector.fg_encoder.layer3.0.bn2.weight, %self.kp_detector.fg_encoder.layer3.0.bn2.bias, %self.kp_detector.fg_encoder.layer3.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer3.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.181 : Tensor = aten::_convolution(%250, %self.kp_detector.fg_encoder.layer3.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.25 : Tensor = aten::batch_norm(%input.181, %self.kp_detector.fg_encoder.layer3.0.bn2.weight, %self.kp_detector.fg_encoder.layer3.0.bn2.bias, %self.kp_detector.fg_encoder.layer3.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer3.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(8192,1:8,512,32) -> Half(8192,1:8,512,32) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - =============== Computing costs for | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(131072,1024,32,1), Float(65536,256,16,1) -> Float(65536,256,16,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(131072,1,4096,128), Float(65536,1,4096,256) -> Float(65536,1,4096,256) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(32768,1:4,1024,32), Float(16384,1:4,1024,64) -> Float(16384,1:4,1024,64) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(131072,1024,32,1), Half(65536,256,16,1) -> Half(65536,256,16,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(65536,1024:2,32,1), Half(32768,256:2,16,1) -> Half(32768,256:2,16,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.297 : Tensor = aten::_convolution(%326, %self.kp_detector.fg_encoder.layer3.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.downsample/__module.kp_detector.fg_encoder.layer3.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.15 : Tensor = aten::batch_norm(%input.297, %self.kp_detector.fg_encoder.layer3.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer3.0.bn2.bias, %self.kp_detector.fg_encoder.layer3.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer3.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.downsample/__module.kp_detector.fg_encoder.layer3.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %334 : Tensor = aten::add(%out.41, %identity.15, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %335 : Tensor = aten::relu(%334), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.297 : Tensor = aten::_convolution(%326, %self.kp_detector.fg_encoder.layer3.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.downsample/__module.kp_detector.fg_encoder.layer3.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.15 : Tensor = aten::batch_norm(%input.297, %self.kp_detector.fg_encoder.layer3.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer3.0.bn2.bias, %self.kp_detector.fg_encoder.layer3.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer3.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.downsample/__module.kp_detector.fg_encoder.layer3.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %334 : Tensor = aten::add(%out.41, %identity.15, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %335 : Tensor = aten::relu(%334), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(32768,1:4,1024,32), Half(16384,1:4,1024,64) -> Half(16384,1:4,1024,64) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.297 : Tensor = aten::_convolution(%326, %self.kp_detector.fg_encoder.layer3.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.downsample/__module.kp_detector.fg_encoder.layer3.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.15 : Tensor = aten::batch_norm(%input.297, %self.kp_detector.fg_encoder.layer3.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer3.0.bn2.bias, %self.kp_detector.fg_encoder.layer3.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer3.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.downsample/__module.kp_detector.fg_encoder.layer3.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %334 : Tensor = aten::add(%out.41, %identity.15, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %335 : Tensor = aten::relu(%334), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.297 : Tensor = aten::_convolution(%326, %self.kp_detector.fg_encoder.layer3.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.downsample/__module.kp_detector.fg_encoder.layer3.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.15 : Tensor = aten::batch_norm(%input.297, %self.kp_detector.fg_encoder.layer3.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer3.0.bn2.bias, %self.kp_detector.fg_encoder.layer3.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer3.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.downsample/__module.kp_detector.fg_encoder.layer3.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %334 : Tensor = aten::add(%out.41, %identity.15, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %335 : Tensor = aten::relu(%334), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(16384,1:8,512,16), Float(65536,256,16,1) -> Float(65536,256,16,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.297 : Tensor = aten::_convolution(%326, %self.kp_detector.fg_encoder.layer3.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.downsample/__module.kp_detector.fg_encoder.layer3.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.15 : Tensor = aten::batch_norm(%input.297, %self.kp_detector.fg_encoder.layer3.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer3.0.bn2.bias, %self.kp_detector.fg_encoder.layer3.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer3.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.downsample/__module.kp_detector.fg_encoder.layer3.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %334 : Tensor = aten::add(%out.41, %identity.15, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %335 : Tensor = aten::relu(%334), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.297 : Tensor = aten::_convolution(%326, %self.kp_detector.fg_encoder.layer3.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.downsample/__module.kp_detector.fg_encoder.layer3.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.15 : Tensor = aten::batch_norm(%input.297, %self.kp_detector.fg_encoder.layer3.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer3.0.bn2.bias, %self.kp_detector.fg_encoder.layer3.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer3.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.downsample/__module.kp_detector.fg_encoder.layer3.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %334 : Tensor = aten::add(%out.41, %identity.15, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %335 : Tensor = aten::relu(%334), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(16384,1:8,512,16), Half(8192,1:8,512,32) -> Half(8192,1:8,512,32) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - =============== Computing costs for | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(131072,1024,32,1), Float(65536,256,16,1) -> Float(65536,256,16,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(131072,1,4096,128), Float(65536,1,4096,256) -> Float(65536,1,4096,256) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(32768,1:4,1024,32), Float(16384,1:4,1024,64) -> Float(16384,1:4,1024,64) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(131072,1024,32,1), Half(65536,256,16,1) -> Half(65536,256,16,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(65536,1024:2,32,1), Half(32768,256:2,16,1) -> Half(32768,256:2,16,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.183 : Tensor = aten::_convolution(%247, %self.kp_detector.fg_encoder.layer3.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.downsample/__module.kp_detector.fg_encoder.layer3.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.9 : Tensor = aten::batch_norm(%input.183, %self.kp_detector.fg_encoder.layer3.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer3.0.bn2.bias, %self.kp_detector.fg_encoder.layer3.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer3.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.downsample/__module.kp_detector.fg_encoder.layer3.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %255 : Tensor = aten::add(%out.25, %identity.9, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %256 : Tensor = aten::relu(%255), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.183 : Tensor = aten::_convolution(%247, %self.kp_detector.fg_encoder.layer3.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.downsample/__module.kp_detector.fg_encoder.layer3.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.9 : Tensor = aten::batch_norm(%input.183, %self.kp_detector.fg_encoder.layer3.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer3.0.bn2.bias, %self.kp_detector.fg_encoder.layer3.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer3.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.downsample/__module.kp_detector.fg_encoder.layer3.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %255 : Tensor = aten::add(%out.25, %identity.9, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %256 : Tensor = aten::relu(%255), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(32768,1:4,1024,32), Half(16384,1:4,1024,64) -> Half(16384,1:4,1024,64) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.183 : Tensor = aten::_convolution(%247, %self.kp_detector.fg_encoder.layer3.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.downsample/__module.kp_detector.fg_encoder.layer3.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.9 : Tensor = aten::batch_norm(%input.183, %self.kp_detector.fg_encoder.layer3.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer3.0.bn2.bias, %self.kp_detector.fg_encoder.layer3.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer3.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.downsample/__module.kp_detector.fg_encoder.layer3.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %255 : Tensor = aten::add(%out.25, %identity.9, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %256 : Tensor = aten::relu(%255), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.183 : Tensor = aten::_convolution(%247, %self.kp_detector.fg_encoder.layer3.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.downsample/__module.kp_detector.fg_encoder.layer3.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.9 : Tensor = aten::batch_norm(%input.183, %self.kp_detector.fg_encoder.layer3.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer3.0.bn2.bias, %self.kp_detector.fg_encoder.layer3.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer3.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.downsample/__module.kp_detector.fg_encoder.layer3.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %255 : Tensor = aten::add(%out.25, %identity.9, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %256 : Tensor = aten::relu(%255), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(16384,1:8,512,16), Float(65536,256,16,1) -> Float(65536,256,16,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.183 : Tensor = aten::_convolution(%247, %self.kp_detector.fg_encoder.layer3.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.downsample/__module.kp_detector.fg_encoder.layer3.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.9 : Tensor = aten::batch_norm(%input.183, %self.kp_detector.fg_encoder.layer3.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer3.0.bn2.bias, %self.kp_detector.fg_encoder.layer3.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer3.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.downsample/__module.kp_detector.fg_encoder.layer3.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %255 : Tensor = aten::add(%out.25, %identity.9, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %256 : Tensor = aten::relu(%255), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.183 : Tensor = aten::_convolution(%247, %self.kp_detector.fg_encoder.layer3.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.downsample/__module.kp_detector.fg_encoder.layer3.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.9 : Tensor = aten::batch_norm(%input.183, %self.kp_detector.fg_encoder.layer3.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer3.0.bn2.bias, %self.kp_detector.fg_encoder.layer3.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer3.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.downsample/__module.kp_detector.fg_encoder.layer3.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %255 : Tensor = aten::add(%out.25, %identity.9, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %256 : Tensor = aten::relu(%255), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(16384,1:8,512,16), Half(8192,1:8,512,32) -> Half(8192,1:8,512,32) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - =============== Computing costs for | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(65536,256,16,1) -> Float(65536,256,16,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(65536,1,4096,256) -> Float(65536,1,4096,256) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(16384,1:4,1024,64) -> Float(16384,1:4,1024,64) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(65536,256,16,1) -> Half(65536,256,16,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(32768,256:2,16,1) -> Half(32768,256:2,16,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.189 : Tensor = aten::_convolution(%256, %self.kp_detector.fg_encoder.layer3.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.191 : Tensor = aten::batch_norm(%input.189, %self.kp_detector.fg_encoder.layer3.1.bn1.weight, %self.kp_detector.fg_encoder.layer3.1.bn1.bias, %self.kp_detector.fg_encoder.layer3.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer3.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %259 : Tensor = aten::relu(%input.191), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.189 : Tensor = aten::_convolution(%256, %self.kp_detector.fg_encoder.layer3.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.191 : Tensor = aten::batch_norm(%input.189, %self.kp_detector.fg_encoder.layer3.1.bn1.weight, %self.kp_detector.fg_encoder.layer3.1.bn1.bias, %self.kp_detector.fg_encoder.layer3.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer3.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %259 : Tensor = aten::relu(%input.191), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(16384,1:4,1024,64) -> Half(16384,1:4,1024,64) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.189 : Tensor = aten::_convolution(%256, %self.kp_detector.fg_encoder.layer3.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.191 : Tensor = aten::batch_norm(%input.189, %self.kp_detector.fg_encoder.layer3.1.bn1.weight, %self.kp_detector.fg_encoder.layer3.1.bn1.bias, %self.kp_detector.fg_encoder.layer3.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer3.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %259 : Tensor = aten::relu(%input.191), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.189 : Tensor = aten::_convolution(%256, %self.kp_detector.fg_encoder.layer3.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.191 : Tensor = aten::batch_norm(%input.189, %self.kp_detector.fg_encoder.layer3.1.bn1.weight, %self.kp_detector.fg_encoder.layer3.1.bn1.bias, %self.kp_detector.fg_encoder.layer3.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer3.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %259 : Tensor = aten::relu(%input.191), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(8192,1:8,512,32) -> Float(65536,256,16,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.189 : Tensor = aten::_convolution(%256, %self.kp_detector.fg_encoder.layer3.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.191 : Tensor = aten::batch_norm(%input.189, %self.kp_detector.fg_encoder.layer3.1.bn1.weight, %self.kp_detector.fg_encoder.layer3.1.bn1.bias, %self.kp_detector.fg_encoder.layer3.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer3.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %259 : Tensor = aten::relu(%input.191), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.189 : Tensor = aten::_convolution(%256, %self.kp_detector.fg_encoder.layer3.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.191 : Tensor = aten::batch_norm(%input.189, %self.kp_detector.fg_encoder.layer3.1.bn1.weight, %self.kp_detector.fg_encoder.layer3.1.bn1.bias, %self.kp_detector.fg_encoder.layer3.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer3.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %259 : Tensor = aten::relu(%input.191), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(8192,1:8,512,32) -> Half(8192,1:8,512,32) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - =============== Computing costs for | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(65536,256,16,1) -> Float(65536,256,16,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(65536,1,4096,256) -> Float(65536,1,4096,256) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(16384,1:4,1024,64) -> Float(16384,1:4,1024,64) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(65536,256,16,1) -> Half(65536,256,16,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(32768,256:2,16,1) -> Half(32768,256:2,16,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.303 : Tensor = aten::_convolution(%335, %self.kp_detector.fg_encoder.layer3.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.305 : Tensor = aten::batch_norm(%input.303, %self.kp_detector.fg_encoder.layer3.1.bn1.weight, %self.kp_detector.fg_encoder.layer3.1.bn1.bias, %self.kp_detector.fg_encoder.layer3.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer3.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %338 : Tensor = aten::relu(%input.305), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.303 : Tensor = aten::_convolution(%335, %self.kp_detector.fg_encoder.layer3.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.305 : Tensor = aten::batch_norm(%input.303, %self.kp_detector.fg_encoder.layer3.1.bn1.weight, %self.kp_detector.fg_encoder.layer3.1.bn1.bias, %self.kp_detector.fg_encoder.layer3.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer3.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %338 : Tensor = aten::relu(%input.305), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(16384,1:4,1024,64) -> Half(16384,1:4,1024,64) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.303 : Tensor = aten::_convolution(%335, %self.kp_detector.fg_encoder.layer3.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.305 : Tensor = aten::batch_norm(%input.303, %self.kp_detector.fg_encoder.layer3.1.bn1.weight, %self.kp_detector.fg_encoder.layer3.1.bn1.bias, %self.kp_detector.fg_encoder.layer3.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer3.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %338 : Tensor = aten::relu(%input.305), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.303 : Tensor = aten::_convolution(%335, %self.kp_detector.fg_encoder.layer3.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.305 : Tensor = aten::batch_norm(%input.303, %self.kp_detector.fg_encoder.layer3.1.bn1.weight, %self.kp_detector.fg_encoder.layer3.1.bn1.bias, %self.kp_detector.fg_encoder.layer3.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer3.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %338 : Tensor = aten::relu(%input.305), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(8192,1:8,512,32) -> Float(65536,256,16,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.303 : Tensor = aten::_convolution(%335, %self.kp_detector.fg_encoder.layer3.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.305 : Tensor = aten::batch_norm(%input.303, %self.kp_detector.fg_encoder.layer3.1.bn1.weight, %self.kp_detector.fg_encoder.layer3.1.bn1.bias, %self.kp_detector.fg_encoder.layer3.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer3.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %338 : Tensor = aten::relu(%input.305), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.303 : Tensor = aten::_convolution(%335, %self.kp_detector.fg_encoder.layer3.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.305 : Tensor = aten::batch_norm(%input.303, %self.kp_detector.fg_encoder.layer3.1.bn1.weight, %self.kp_detector.fg_encoder.layer3.1.bn1.bias, %self.kp_detector.fg_encoder.layer3.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer3.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %338 : Tensor = aten::relu(%input.305), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(8192,1:8,512,32) -> Half(8192,1:8,512,32) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - =============== Computing costs for | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(65536,256,16,1), Float(65536,256,16,1) -> Float(65536,256,16,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(65536,1,4096,256), Float(65536,1,4096,256) -> Float(65536,1,4096,256) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(16384,1:4,1024,64), Float(16384,1:4,1024,64) -> Float(16384,1:4,1024,64) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(65536,256,16,1), Half(65536,256,16,1) -> Half(65536,256,16,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(32768,256:2,16,1), Half(32768,256:2,16,1) -> Half(32768,256:2,16,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.309 : Tensor = aten::_convolution(%338, %self.kp_detector.fg_encoder.layer3.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.43 : Tensor = aten::batch_norm(%input.309, %self.kp_detector.fg_encoder.layer3.1.bn2.weight, %self.kp_detector.fg_encoder.layer3.1.bn2.bias, %self.kp_detector.fg_encoder.layer3.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer3.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %341 : Tensor = aten::add(%out.43, %335, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %342 : Tensor = aten::relu(%341), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.309 : Tensor = aten::_convolution(%338, %self.kp_detector.fg_encoder.layer3.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.43 : Tensor = aten::batch_norm(%input.309, %self.kp_detector.fg_encoder.layer3.1.bn2.weight, %self.kp_detector.fg_encoder.layer3.1.bn2.bias, %self.kp_detector.fg_encoder.layer3.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer3.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %341 : Tensor = aten::add(%out.43, %335, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %342 : Tensor = aten::relu(%341), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(16384,1:4,1024,64), Half(16384,1:4,1024,64) -> Half(16384,1:4,1024,64) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.309 : Tensor = aten::_convolution(%338, %self.kp_detector.fg_encoder.layer3.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.43 : Tensor = aten::batch_norm(%input.309, %self.kp_detector.fg_encoder.layer3.1.bn2.weight, %self.kp_detector.fg_encoder.layer3.1.bn2.bias, %self.kp_detector.fg_encoder.layer3.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer3.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %341 : Tensor = aten::add(%out.43, %335, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %342 : Tensor = aten::relu(%341), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.309 : Tensor = aten::_convolution(%338, %self.kp_detector.fg_encoder.layer3.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.43 : Tensor = aten::batch_norm(%input.309, %self.kp_detector.fg_encoder.layer3.1.bn2.weight, %self.kp_detector.fg_encoder.layer3.1.bn2.bias, %self.kp_detector.fg_encoder.layer3.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer3.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %341 : Tensor = aten::add(%out.43, %335, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %342 : Tensor = aten::relu(%341), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(8192,1:8,512,32), Float(65536,256,16,1) -> Float(65536,256,16,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.309 : Tensor = aten::_convolution(%338, %self.kp_detector.fg_encoder.layer3.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.43 : Tensor = aten::batch_norm(%input.309, %self.kp_detector.fg_encoder.layer3.1.bn2.weight, %self.kp_detector.fg_encoder.layer3.1.bn2.bias, %self.kp_detector.fg_encoder.layer3.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer3.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %341 : Tensor = aten::add(%out.43, %335, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %342 : Tensor = aten::relu(%341), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.309 : Tensor = aten::_convolution(%338, %self.kp_detector.fg_encoder.layer3.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.43 : Tensor = aten::batch_norm(%input.309, %self.kp_detector.fg_encoder.layer3.1.bn2.weight, %self.kp_detector.fg_encoder.layer3.1.bn2.bias, %self.kp_detector.fg_encoder.layer3.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer3.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %341 : Tensor = aten::add(%out.43, %335, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %342 : Tensor = aten::relu(%341), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(8192,1:8,512,32), Half(8192,1:8,512,32) -> Half(8192,1:8,512,32) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - =============== Computing costs for | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(65536,256,16,1), Float(65536,256,16,1) -> Float(65536,256,16,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(65536,1,4096,256), Float(65536,1,4096,256) -> Float(65536,1,4096,256) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(16384,1:4,1024,64), Float(16384,1:4,1024,64) -> Float(16384,1:4,1024,64) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(65536,256,16,1), Half(65536,256,16,1) -> Half(65536,256,16,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(32768,256:2,16,1), Half(32768,256:2,16,1) -> Half(32768,256:2,16,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.195 : Tensor = aten::_convolution(%259, %self.kp_detector.fg_encoder.layer3.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.27 : Tensor = aten::batch_norm(%input.195, %self.kp_detector.fg_encoder.layer3.1.bn2.weight, %self.kp_detector.fg_encoder.layer3.1.bn2.bias, %self.kp_detector.fg_encoder.layer3.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer3.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %262 : Tensor = aten::add(%out.27, %256, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %263 : Tensor = aten::relu(%262), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.195 : Tensor = aten::_convolution(%259, %self.kp_detector.fg_encoder.layer3.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.27 : Tensor = aten::batch_norm(%input.195, %self.kp_detector.fg_encoder.layer3.1.bn2.weight, %self.kp_detector.fg_encoder.layer3.1.bn2.bias, %self.kp_detector.fg_encoder.layer3.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer3.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %262 : Tensor = aten::add(%out.27, %256, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %263 : Tensor = aten::relu(%262), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(16384,1:4,1024,64), Half(16384,1:4,1024,64) -> Half(16384,1:4,1024,64) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.195 : Tensor = aten::_convolution(%259, %self.kp_detector.fg_encoder.layer3.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.27 : Tensor = aten::batch_norm(%input.195, %self.kp_detector.fg_encoder.layer3.1.bn2.weight, %self.kp_detector.fg_encoder.layer3.1.bn2.bias, %self.kp_detector.fg_encoder.layer3.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer3.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %262 : Tensor = aten::add(%out.27, %256, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %263 : Tensor = aten::relu(%262), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.195 : Tensor = aten::_convolution(%259, %self.kp_detector.fg_encoder.layer3.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.27 : Tensor = aten::batch_norm(%input.195, %self.kp_detector.fg_encoder.layer3.1.bn2.weight, %self.kp_detector.fg_encoder.layer3.1.bn2.bias, %self.kp_detector.fg_encoder.layer3.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer3.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %262 : Tensor = aten::add(%out.27, %256, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %263 : Tensor = aten::relu(%262), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(8192,1:8,512,32), Float(65536,256,16,1) -> Float(65536,256,16,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.195 : Tensor = aten::_convolution(%259, %self.kp_detector.fg_encoder.layer3.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.27 : Tensor = aten::batch_norm(%input.195, %self.kp_detector.fg_encoder.layer3.1.bn2.weight, %self.kp_detector.fg_encoder.layer3.1.bn2.bias, %self.kp_detector.fg_encoder.layer3.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer3.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %262 : Tensor = aten::add(%out.27, %256, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %263 : Tensor = aten::relu(%262), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.195 : Tensor = aten::_convolution(%259, %self.kp_detector.fg_encoder.layer3.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.27 : Tensor = aten::batch_norm(%input.195, %self.kp_detector.fg_encoder.layer3.1.bn2.weight, %self.kp_detector.fg_encoder.layer3.1.bn2.bias, %self.kp_detector.fg_encoder.layer3.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer3.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %262 : Tensor = aten::add(%out.27, %256, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %263 : Tensor = aten::relu(%262), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(8192,1:8,512,32), Half(8192,1:8,512,32) -> Half(8192,1:8,512,32) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - =============== Computing costs for | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(65536,256,16,1) -> Float(32768,64,8,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(65536,1,4096,256) -> Float(32768,1,4096,512) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(16384,1:4,1024,64) -> Float(8192,1:4,1024,128) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(65536,256,16,1) -> Half(32768,64,8,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(32768,256:2,16,1) -> Half(16384,64:2,8,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.201 : Tensor = aten::_convolution(%263, %self.kp_detector.fg_encoder.layer4.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.203 : Tensor = aten::batch_norm(%input.201, %self.kp_detector.fg_encoder.layer4.0.bn1.weight, %self.kp_detector.fg_encoder.layer4.0.bn1.bias, %self.kp_detector.fg_encoder.layer4.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer4.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %266 : Tensor = aten::relu(%input.203), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.201 : Tensor = aten::_convolution(%263, %self.kp_detector.fg_encoder.layer4.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.203 : Tensor = aten::batch_norm(%input.201, %self.kp_detector.fg_encoder.layer4.0.bn1.weight, %self.kp_detector.fg_encoder.layer4.0.bn1.bias, %self.kp_detector.fg_encoder.layer4.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer4.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %266 : Tensor = aten::relu(%input.203), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(16384,1:4,1024,64) -> Half(8192,1:4,1024,128) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.201 : Tensor = aten::_convolution(%263, %self.kp_detector.fg_encoder.layer4.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.203 : Tensor = aten::batch_norm(%input.201, %self.kp_detector.fg_encoder.layer4.0.bn1.weight, %self.kp_detector.fg_encoder.layer4.0.bn1.bias, %self.kp_detector.fg_encoder.layer4.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer4.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %266 : Tensor = aten::relu(%input.203), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.201 : Tensor = aten::_convolution(%263, %self.kp_detector.fg_encoder.layer4.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.203 : Tensor = aten::batch_norm(%input.201, %self.kp_detector.fg_encoder.layer4.0.bn1.weight, %self.kp_detector.fg_encoder.layer4.0.bn1.bias, %self.kp_detector.fg_encoder.layer4.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer4.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %266 : Tensor = aten::relu(%input.203), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(8192,1:8,512,32) -> Float(32768,64,8,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.201 : Tensor = aten::_convolution(%263, %self.kp_detector.fg_encoder.layer4.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.203 : Tensor = aten::batch_norm(%input.201, %self.kp_detector.fg_encoder.layer4.0.bn1.weight, %self.kp_detector.fg_encoder.layer4.0.bn1.bias, %self.kp_detector.fg_encoder.layer4.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer4.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %266 : Tensor = aten::relu(%input.203), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.201 : Tensor = aten::_convolution(%263, %self.kp_detector.fg_encoder.layer4.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.203 : Tensor = aten::batch_norm(%input.201, %self.kp_detector.fg_encoder.layer4.0.bn1.weight, %self.kp_detector.fg_encoder.layer4.0.bn1.bias, %self.kp_detector.fg_encoder.layer4.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer4.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %266 : Tensor = aten::relu(%input.203), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(8192,1:8,512,32) -> Half(4096,1:8,512,64) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - =============== Computing costs for | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(65536,256,16,1) -> Float(32768,64,8,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(65536,1,4096,256) -> Float(32768,1,4096,512) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(16384,1:4,1024,64) -> Float(8192,1:4,1024,128) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(65536,256,16,1) -> Half(32768,64,8,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(32768,256:2,16,1) -> Half(16384,64:2,8,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.315 : Tensor = aten::_convolution(%342, %self.kp_detector.fg_encoder.layer4.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.317 : Tensor = aten::batch_norm(%input.315, %self.kp_detector.fg_encoder.layer4.0.bn1.weight, %self.kp_detector.fg_encoder.layer4.0.bn1.bias, %self.kp_detector.fg_encoder.layer4.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer4.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %345 : Tensor = aten::relu(%input.317), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.315 : Tensor = aten::_convolution(%342, %self.kp_detector.fg_encoder.layer4.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.317 : Tensor = aten::batch_norm(%input.315, %self.kp_detector.fg_encoder.layer4.0.bn1.weight, %self.kp_detector.fg_encoder.layer4.0.bn1.bias, %self.kp_detector.fg_encoder.layer4.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer4.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %345 : Tensor = aten::relu(%input.317), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(16384,1:4,1024,64) -> Half(8192,1:4,1024,128) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.315 : Tensor = aten::_convolution(%342, %self.kp_detector.fg_encoder.layer4.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.317 : Tensor = aten::batch_norm(%input.315, %self.kp_detector.fg_encoder.layer4.0.bn1.weight, %self.kp_detector.fg_encoder.layer4.0.bn1.bias, %self.kp_detector.fg_encoder.layer4.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer4.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %345 : Tensor = aten::relu(%input.317), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.315 : Tensor = aten::_convolution(%342, %self.kp_detector.fg_encoder.layer4.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.317 : Tensor = aten::batch_norm(%input.315, %self.kp_detector.fg_encoder.layer4.0.bn1.weight, %self.kp_detector.fg_encoder.layer4.0.bn1.bias, %self.kp_detector.fg_encoder.layer4.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer4.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %345 : Tensor = aten::relu(%input.317), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(8192,1:8,512,32) -> Float(32768,64,8,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.315 : Tensor = aten::_convolution(%342, %self.kp_detector.fg_encoder.layer4.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.317 : Tensor = aten::batch_norm(%input.315, %self.kp_detector.fg_encoder.layer4.0.bn1.weight, %self.kp_detector.fg_encoder.layer4.0.bn1.bias, %self.kp_detector.fg_encoder.layer4.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer4.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %345 : Tensor = aten::relu(%input.317), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.315 : Tensor = aten::_convolution(%342, %self.kp_detector.fg_encoder.layer4.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.317 : Tensor = aten::batch_norm(%input.315, %self.kp_detector.fg_encoder.layer4.0.bn1.weight, %self.kp_detector.fg_encoder.layer4.0.bn1.bias, %self.kp_detector.fg_encoder.layer4.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer4.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %345 : Tensor = aten::relu(%input.317), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(8192,1:8,512,32) -> Half(4096,1:8,512,64) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - =============== Computing costs for | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(32768,64,8,1) -> Float(32768,64,8,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(32768,1,4096,512) -> Float(32768,1,4096,512) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(8192,1:4,1024,128) -> Float(8192,1:4,1024,128) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(32768,64,8,1) -> Half(32768,64,8,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(16384,64:2,8,1) -> Half(16384,64:2,8,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.321 : Tensor = aten::_convolution(%345, %self.kp_detector.fg_encoder.layer4.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.45 : Tensor = aten::batch_norm(%input.321, %self.kp_detector.fg_encoder.layer4.0.bn2.weight, %self.kp_detector.fg_encoder.layer4.0.bn2.bias, %self.kp_detector.fg_encoder.layer4.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer4.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.321 : Tensor = aten::_convolution(%345, %self.kp_detector.fg_encoder.layer4.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.45 : Tensor = aten::batch_norm(%input.321, %self.kp_detector.fg_encoder.layer4.0.bn2.weight, %self.kp_detector.fg_encoder.layer4.0.bn2.bias, %self.kp_detector.fg_encoder.layer4.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer4.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(8192,1:4,1024,128) -> Half(8192,1:4,1024,128) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.321 : Tensor = aten::_convolution(%345, %self.kp_detector.fg_encoder.layer4.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.45 : Tensor = aten::batch_norm(%input.321, %self.kp_detector.fg_encoder.layer4.0.bn2.weight, %self.kp_detector.fg_encoder.layer4.0.bn2.bias, %self.kp_detector.fg_encoder.layer4.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer4.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.321 : Tensor = aten::_convolution(%345, %self.kp_detector.fg_encoder.layer4.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.45 : Tensor = aten::batch_norm(%input.321, %self.kp_detector.fg_encoder.layer4.0.bn2.weight, %self.kp_detector.fg_encoder.layer4.0.bn2.bias, %self.kp_detector.fg_encoder.layer4.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer4.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(4096,1:8,512,64) -> Float(32768,64,8,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.321 : Tensor = aten::_convolution(%345, %self.kp_detector.fg_encoder.layer4.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.45 : Tensor = aten::batch_norm(%input.321, %self.kp_detector.fg_encoder.layer4.0.bn2.weight, %self.kp_detector.fg_encoder.layer4.0.bn2.bias, %self.kp_detector.fg_encoder.layer4.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer4.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.321 : Tensor = aten::_convolution(%345, %self.kp_detector.fg_encoder.layer4.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.45 : Tensor = aten::batch_norm(%input.321, %self.kp_detector.fg_encoder.layer4.0.bn2.weight, %self.kp_detector.fg_encoder.layer4.0.bn2.bias, %self.kp_detector.fg_encoder.layer4.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer4.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(4096,1:8,512,64) -> Half(4096,1:8,512,64) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - =============== Computing costs for | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(32768,64,8,1) -> Float(32768,64,8,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(32768,1,4096,512) -> Float(32768,1,4096,512) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(8192,1:4,1024,128) -> Float(8192,1:4,1024,128) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(32768,64,8,1) -> Half(32768,64,8,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(16384,64:2,8,1) -> Half(16384,64:2,8,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.207 : Tensor = aten::_convolution(%266, %self.kp_detector.fg_encoder.layer4.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.29 : Tensor = aten::batch_norm(%input.207, %self.kp_detector.fg_encoder.layer4.0.bn2.weight, %self.kp_detector.fg_encoder.layer4.0.bn2.bias, %self.kp_detector.fg_encoder.layer4.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer4.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.207 : Tensor = aten::_convolution(%266, %self.kp_detector.fg_encoder.layer4.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.29 : Tensor = aten::batch_norm(%input.207, %self.kp_detector.fg_encoder.layer4.0.bn2.weight, %self.kp_detector.fg_encoder.layer4.0.bn2.bias, %self.kp_detector.fg_encoder.layer4.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer4.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(8192,1:4,1024,128) -> Half(8192,1:4,1024,128) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.207 : Tensor = aten::_convolution(%266, %self.kp_detector.fg_encoder.layer4.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.29 : Tensor = aten::batch_norm(%input.207, %self.kp_detector.fg_encoder.layer4.0.bn2.weight, %self.kp_detector.fg_encoder.layer4.0.bn2.bias, %self.kp_detector.fg_encoder.layer4.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer4.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.207 : Tensor = aten::_convolution(%266, %self.kp_detector.fg_encoder.layer4.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.29 : Tensor = aten::batch_norm(%input.207, %self.kp_detector.fg_encoder.layer4.0.bn2.weight, %self.kp_detector.fg_encoder.layer4.0.bn2.bias, %self.kp_detector.fg_encoder.layer4.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer4.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(4096,1:8,512,64) -> Float(32768,64,8,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.207 : Tensor = aten::_convolution(%266, %self.kp_detector.fg_encoder.layer4.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.29 : Tensor = aten::batch_norm(%input.207, %self.kp_detector.fg_encoder.layer4.0.bn2.weight, %self.kp_detector.fg_encoder.layer4.0.bn2.bias, %self.kp_detector.fg_encoder.layer4.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer4.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.207 : Tensor = aten::_convolution(%266, %self.kp_detector.fg_encoder.layer4.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.29 : Tensor = aten::batch_norm(%input.207, %self.kp_detector.fg_encoder.layer4.0.bn2.weight, %self.kp_detector.fg_encoder.layer4.0.bn2.bias, %self.kp_detector.fg_encoder.layer4.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer4.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(4096,1:8,512,64) -> Half(4096,1:8,512,64) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - =============== Computing costs for | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(65536,256,16,1), Float(32768,64,8,1) -> Float(32768,64,8,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(65536,1,4096,256), Float(32768,1,4096,512) -> Float(32768,1,4096,512) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(16384,1:4,1024,64), Float(8192,1:4,1024,128) -> Float(8192,1:4,1024,128) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(65536,256,16,1), Half(32768,64,8,1) -> Half(32768,64,8,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(32768,256:2,16,1), Half(16384,64:2,8,1) -> Half(16384,64:2,8,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.323 : Tensor = aten::_convolution(%342, %self.kp_detector.fg_encoder.layer4.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.downsample/__module.kp_detector.fg_encoder.layer4.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity : Tensor = aten::batch_norm(%input.323, %self.kp_detector.fg_encoder.layer4.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer4.0.bn2.bias, %self.kp_detector.fg_encoder.layer4.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer4.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.downsample/__module.kp_detector.fg_encoder.layer4.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %350 : Tensor = aten::add(%out.45, %identity, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %351 : Tensor = aten::relu(%350), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.323 : Tensor = aten::_convolution(%342, %self.kp_detector.fg_encoder.layer4.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.downsample/__module.kp_detector.fg_encoder.layer4.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity : Tensor = aten::batch_norm(%input.323, %self.kp_detector.fg_encoder.layer4.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer4.0.bn2.bias, %self.kp_detector.fg_encoder.layer4.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer4.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.downsample/__module.kp_detector.fg_encoder.layer4.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %350 : Tensor = aten::add(%out.45, %identity, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %351 : Tensor = aten::relu(%350), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(16384,1:4,1024,64), Half(8192,1:4,1024,128) -> Half(8192,1:4,1024,128) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.323 : Tensor = aten::_convolution(%342, %self.kp_detector.fg_encoder.layer4.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.downsample/__module.kp_detector.fg_encoder.layer4.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity : Tensor = aten::batch_norm(%input.323, %self.kp_detector.fg_encoder.layer4.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer4.0.bn2.bias, %self.kp_detector.fg_encoder.layer4.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer4.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.downsample/__module.kp_detector.fg_encoder.layer4.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %350 : Tensor = aten::add(%out.45, %identity, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %351 : Tensor = aten::relu(%350), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.323 : Tensor = aten::_convolution(%342, %self.kp_detector.fg_encoder.layer4.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.downsample/__module.kp_detector.fg_encoder.layer4.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity : Tensor = aten::batch_norm(%input.323, %self.kp_detector.fg_encoder.layer4.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer4.0.bn2.bias, %self.kp_detector.fg_encoder.layer4.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer4.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.downsample/__module.kp_detector.fg_encoder.layer4.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %350 : Tensor = aten::add(%out.45, %identity, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %351 : Tensor = aten::relu(%350), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(8192,1:8,512,32), Float(32768,64,8,1) -> Float(32768,64,8,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.323 : Tensor = aten::_convolution(%342, %self.kp_detector.fg_encoder.layer4.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.downsample/__module.kp_detector.fg_encoder.layer4.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity : Tensor = aten::batch_norm(%input.323, %self.kp_detector.fg_encoder.layer4.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer4.0.bn2.bias, %self.kp_detector.fg_encoder.layer4.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer4.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.downsample/__module.kp_detector.fg_encoder.layer4.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %350 : Tensor = aten::add(%out.45, %identity, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %351 : Tensor = aten::relu(%350), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.323 : Tensor = aten::_convolution(%342, %self.kp_detector.fg_encoder.layer4.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.downsample/__module.kp_detector.fg_encoder.layer4.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity : Tensor = aten::batch_norm(%input.323, %self.kp_detector.fg_encoder.layer4.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer4.0.bn2.bias, %self.kp_detector.fg_encoder.layer4.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer4.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.downsample/__module.kp_detector.fg_encoder.layer4.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %350 : Tensor = aten::add(%out.45, %identity, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %351 : Tensor = aten::relu(%350), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(8192,1:8,512,32), Half(4096,1:8,512,64) -> Half(4096,1:8,512,64) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - =============== Computing costs for | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(65536,256,16,1), Float(32768,64,8,1) -> Float(32768,64,8,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(65536,1,4096,256), Float(32768,1,4096,512) -> Float(32768,1,4096,512) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(16384,1:4,1024,64), Float(8192,1:4,1024,128) -> Float(8192,1:4,1024,128) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(65536,256,16,1), Half(32768,64,8,1) -> Half(32768,64,8,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(32768,256:2,16,1), Half(16384,64:2,8,1) -> Half(16384,64:2,8,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.209 : Tensor = aten::_convolution(%263, %self.kp_detector.fg_encoder.layer4.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.downsample/__module.kp_detector.fg_encoder.layer4.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.11 : Tensor = aten::batch_norm(%input.209, %self.kp_detector.fg_encoder.layer4.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer4.0.bn2.bias, %self.kp_detector.fg_encoder.layer4.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer4.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.downsample/__module.kp_detector.fg_encoder.layer4.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %271 : Tensor = aten::add(%out.29, %identity.11, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %272 : Tensor = aten::relu(%271), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.209 : Tensor = aten::_convolution(%263, %self.kp_detector.fg_encoder.layer4.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.downsample/__module.kp_detector.fg_encoder.layer4.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.11 : Tensor = aten::batch_norm(%input.209, %self.kp_detector.fg_encoder.layer4.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer4.0.bn2.bias, %self.kp_detector.fg_encoder.layer4.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer4.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.downsample/__module.kp_detector.fg_encoder.layer4.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %271 : Tensor = aten::add(%out.29, %identity.11, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %272 : Tensor = aten::relu(%271), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(16384,1:4,1024,64), Half(8192,1:4,1024,128) -> Half(8192,1:4,1024,128) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.209 : Tensor = aten::_convolution(%263, %self.kp_detector.fg_encoder.layer4.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.downsample/__module.kp_detector.fg_encoder.layer4.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.11 : Tensor = aten::batch_norm(%input.209, %self.kp_detector.fg_encoder.layer4.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer4.0.bn2.bias, %self.kp_detector.fg_encoder.layer4.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer4.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.downsample/__module.kp_detector.fg_encoder.layer4.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %271 : Tensor = aten::add(%out.29, %identity.11, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %272 : Tensor = aten::relu(%271), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.209 : Tensor = aten::_convolution(%263, %self.kp_detector.fg_encoder.layer4.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.downsample/__module.kp_detector.fg_encoder.layer4.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.11 : Tensor = aten::batch_norm(%input.209, %self.kp_detector.fg_encoder.layer4.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer4.0.bn2.bias, %self.kp_detector.fg_encoder.layer4.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer4.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.downsample/__module.kp_detector.fg_encoder.layer4.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %271 : Tensor = aten::add(%out.29, %identity.11, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %272 : Tensor = aten::relu(%271), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(8192,1:8,512,32), Float(32768,64,8,1) -> Float(32768,64,8,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.209 : Tensor = aten::_convolution(%263, %self.kp_detector.fg_encoder.layer4.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.downsample/__module.kp_detector.fg_encoder.layer4.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.11 : Tensor = aten::batch_norm(%input.209, %self.kp_detector.fg_encoder.layer4.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer4.0.bn2.bias, %self.kp_detector.fg_encoder.layer4.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer4.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.downsample/__module.kp_detector.fg_encoder.layer4.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %271 : Tensor = aten::add(%out.29, %identity.11, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %272 : Tensor = aten::relu(%271), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.209 : Tensor = aten::_convolution(%263, %self.kp_detector.fg_encoder.layer4.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.downsample/__module.kp_detector.fg_encoder.layer4.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.11 : Tensor = aten::batch_norm(%input.209, %self.kp_detector.fg_encoder.layer4.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer4.0.bn2.bias, %self.kp_detector.fg_encoder.layer4.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer4.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.downsample/__module.kp_detector.fg_encoder.layer4.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %271 : Tensor = aten::add(%out.29, %identity.11, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %272 : Tensor = aten::relu(%271), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(8192,1:8,512,32), Half(4096,1:8,512,64) -> Half(4096,1:8,512,64) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - =============== Computing costs for | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(32768,64,8,1) -> Float(32768,64,8,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(32768,1,4096,512) -> Float(32768,1,4096,512) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(8192,1:4,1024,128) -> Float(8192,1:4,1024,128) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(32768,64,8,1) -> Half(32768,64,8,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(16384,64:2,8,1) -> Half(16384,64:2,8,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.215 : Tensor = aten::_convolution(%272, %self.kp_detector.fg_encoder.layer4.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.217 : Tensor = aten::batch_norm(%input.215, %self.kp_detector.fg_encoder.layer4.1.bn1.weight, %self.kp_detector.fg_encoder.layer4.1.bn1.bias, %self.kp_detector.fg_encoder.layer4.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer4.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %275 : Tensor = aten::relu(%input.217), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.215 : Tensor = aten::_convolution(%272, %self.kp_detector.fg_encoder.layer4.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.217 : Tensor = aten::batch_norm(%input.215, %self.kp_detector.fg_encoder.layer4.1.bn1.weight, %self.kp_detector.fg_encoder.layer4.1.bn1.bias, %self.kp_detector.fg_encoder.layer4.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer4.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %275 : Tensor = aten::relu(%input.217), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(8192,1:4,1024,128) -> Half(8192,1:4,1024,128) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.215 : Tensor = aten::_convolution(%272, %self.kp_detector.fg_encoder.layer4.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.217 : Tensor = aten::batch_norm(%input.215, %self.kp_detector.fg_encoder.layer4.1.bn1.weight, %self.kp_detector.fg_encoder.layer4.1.bn1.bias, %self.kp_detector.fg_encoder.layer4.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer4.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %275 : Tensor = aten::relu(%input.217), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.215 : Tensor = aten::_convolution(%272, %self.kp_detector.fg_encoder.layer4.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.217 : Tensor = aten::batch_norm(%input.215, %self.kp_detector.fg_encoder.layer4.1.bn1.weight, %self.kp_detector.fg_encoder.layer4.1.bn1.bias, %self.kp_detector.fg_encoder.layer4.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer4.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %275 : Tensor = aten::relu(%input.217), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(4096,1:8,512,64) -> Float(32768,64,8,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.215 : Tensor = aten::_convolution(%272, %self.kp_detector.fg_encoder.layer4.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.217 : Tensor = aten::batch_norm(%input.215, %self.kp_detector.fg_encoder.layer4.1.bn1.weight, %self.kp_detector.fg_encoder.layer4.1.bn1.bias, %self.kp_detector.fg_encoder.layer4.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer4.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %275 : Tensor = aten::relu(%input.217), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.215 : Tensor = aten::_convolution(%272, %self.kp_detector.fg_encoder.layer4.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.217 : Tensor = aten::batch_norm(%input.215, %self.kp_detector.fg_encoder.layer4.1.bn1.weight, %self.kp_detector.fg_encoder.layer4.1.bn1.bias, %self.kp_detector.fg_encoder.layer4.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer4.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %275 : Tensor = aten::relu(%input.217), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(4096,1:8,512,64) -> Half(4096,1:8,512,64) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - =============== Computing costs for | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(32768,64,8,1) -> Float(32768,64,8,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(32768,1,4096,512) -> Float(32768,1,4096,512) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(8192,1:4,1024,128) -> Float(8192,1:4,1024,128) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(32768,64,8,1) -> Half(32768,64,8,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(16384,64:2,8,1) -> Half(16384,64:2,8,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.329 : Tensor = aten::_convolution(%351, %self.kp_detector.fg_encoder.layer4.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.331 : Tensor = aten::batch_norm(%input.329, %self.kp_detector.fg_encoder.layer4.1.bn1.weight, %self.kp_detector.fg_encoder.layer4.1.bn1.bias, %self.kp_detector.fg_encoder.layer4.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer4.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %354 : Tensor = aten::relu(%input.331), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.329 : Tensor = aten::_convolution(%351, %self.kp_detector.fg_encoder.layer4.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.331 : Tensor = aten::batch_norm(%input.329, %self.kp_detector.fg_encoder.layer4.1.bn1.weight, %self.kp_detector.fg_encoder.layer4.1.bn1.bias, %self.kp_detector.fg_encoder.layer4.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer4.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %354 : Tensor = aten::relu(%input.331), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(8192,1:4,1024,128) -> Half(8192,1:4,1024,128) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.329 : Tensor = aten::_convolution(%351, %self.kp_detector.fg_encoder.layer4.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.331 : Tensor = aten::batch_norm(%input.329, %self.kp_detector.fg_encoder.layer4.1.bn1.weight, %self.kp_detector.fg_encoder.layer4.1.bn1.bias, %self.kp_detector.fg_encoder.layer4.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer4.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %354 : Tensor = aten::relu(%input.331), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.329 : Tensor = aten::_convolution(%351, %self.kp_detector.fg_encoder.layer4.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.331 : Tensor = aten::batch_norm(%input.329, %self.kp_detector.fg_encoder.layer4.1.bn1.weight, %self.kp_detector.fg_encoder.layer4.1.bn1.bias, %self.kp_detector.fg_encoder.layer4.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer4.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %354 : Tensor = aten::relu(%input.331), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(4096,1:8,512,64) -> Float(32768,64,8,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.329 : Tensor = aten::_convolution(%351, %self.kp_detector.fg_encoder.layer4.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.331 : Tensor = aten::batch_norm(%input.329, %self.kp_detector.fg_encoder.layer4.1.bn1.weight, %self.kp_detector.fg_encoder.layer4.1.bn1.bias, %self.kp_detector.fg_encoder.layer4.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer4.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %354 : Tensor = aten::relu(%input.331), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.329 : Tensor = aten::_convolution(%351, %self.kp_detector.fg_encoder.layer4.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.331 : Tensor = aten::batch_norm(%input.329, %self.kp_detector.fg_encoder.layer4.1.bn1.weight, %self.kp_detector.fg_encoder.layer4.1.bn1.bias, %self.kp_detector.fg_encoder.layer4.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer4.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %354 : Tensor = aten::relu(%input.331), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(4096,1:8,512,64) -> Half(4096,1:8,512,64) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - =============== Computing costs for | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(32768,64,8,1), Float(32768,64,8,1) -> Float(32768,64,8,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(32768,1,4096,512), Float(32768,1,4096,512) -> Float(32768,1,4096,512) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(8192,1:4,1024,128), Float(8192,1:4,1024,128) -> Float(8192,1:4,1024,128) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(32768,64,8,1), Half(32768,64,8,1) -> Half(32768,64,8,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(16384,64:2,8,1), Half(16384,64:2,8,1) -> Half(16384,64:2,8,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.335 : Tensor = aten::_convolution(%354, %self.kp_detector.fg_encoder.layer4.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.47 : Tensor = aten::batch_norm(%input.335, %self.kp_detector.fg_encoder.layer4.1.bn2.weight, %self.kp_detector.fg_encoder.layer4.1.bn2.bias, %self.kp_detector.fg_encoder.layer4.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer4.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %357 : Tensor = aten::add(%out.47, %351, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %358 : Tensor = aten::relu(%357), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.335 : Tensor = aten::_convolution(%354, %self.kp_detector.fg_encoder.layer4.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.47 : Tensor = aten::batch_norm(%input.335, %self.kp_detector.fg_encoder.layer4.1.bn2.weight, %self.kp_detector.fg_encoder.layer4.1.bn2.bias, %self.kp_detector.fg_encoder.layer4.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer4.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %357 : Tensor = aten::add(%out.47, %351, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %358 : Tensor = aten::relu(%357), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(8192,1:4,1024,128), Half(8192,1:4,1024,128) -> Half(8192,1:4,1024,128) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.335 : Tensor = aten::_convolution(%354, %self.kp_detector.fg_encoder.layer4.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.47 : Tensor = aten::batch_norm(%input.335, %self.kp_detector.fg_encoder.layer4.1.bn2.weight, %self.kp_detector.fg_encoder.layer4.1.bn2.bias, %self.kp_detector.fg_encoder.layer4.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer4.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %357 : Tensor = aten::add(%out.47, %351, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %358 : Tensor = aten::relu(%357), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.335 : Tensor = aten::_convolution(%354, %self.kp_detector.fg_encoder.layer4.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.47 : Tensor = aten::batch_norm(%input.335, %self.kp_detector.fg_encoder.layer4.1.bn2.weight, %self.kp_detector.fg_encoder.layer4.1.bn2.bias, %self.kp_detector.fg_encoder.layer4.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer4.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %357 : Tensor = aten::add(%out.47, %351, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %358 : Tensor = aten::relu(%357), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(4096,1:8,512,64), Float(32768,64,8,1) -> Float(32768,64,8,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.335 : Tensor = aten::_convolution(%354, %self.kp_detector.fg_encoder.layer4.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.47 : Tensor = aten::batch_norm(%input.335, %self.kp_detector.fg_encoder.layer4.1.bn2.weight, %self.kp_detector.fg_encoder.layer4.1.bn2.bias, %self.kp_detector.fg_encoder.layer4.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer4.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %357 : Tensor = aten::add(%out.47, %351, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %358 : Tensor = aten::relu(%357), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.335 : Tensor = aten::_convolution(%354, %self.kp_detector.fg_encoder.layer4.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.47 : Tensor = aten::batch_norm(%input.335, %self.kp_detector.fg_encoder.layer4.1.bn2.weight, %self.kp_detector.fg_encoder.layer4.1.bn2.bias, %self.kp_detector.fg_encoder.layer4.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer4.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %357 : Tensor = aten::add(%out.47, %351, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %358 : Tensor = aten::relu(%357), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(4096,1:8,512,64), Half(4096,1:8,512,64) -> Half(4096,1:8,512,64) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - =============== Computing costs for | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(32768,64,8,1) -> Float(512,1,1,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(8192,1:4,1024,128) -> Float(128,1:4,128,128) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(32768,64,8,1) -> Half(512,1,1,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(16384,64:2,8,1) -> Half(256,1:2,1,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(4096,1:8,512,64) -> Half(64,1:8,64,64) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - =============== Computing costs for | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(32768,64,8,1), Float(32768,64,8,1) -> Float(32768,64,8,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(32768,1,4096,512), Float(32768,1,4096,512) -> Float(32768,1,4096,512) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(8192,1:4,1024,128), Float(8192,1:4,1024,128) -> Float(8192,1:4,1024,128) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(32768,64,8,1), Half(32768,64,8,1) -> Half(32768,64,8,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(16384,64:2,8,1), Half(16384,64:2,8,1) -> Half(16384,64:2,8,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.221 : Tensor = aten::_convolution(%275, %self.kp_detector.fg_encoder.layer4.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.31 : Tensor = aten::batch_norm(%input.221, %self.kp_detector.fg_encoder.layer4.1.bn2.weight, %self.kp_detector.fg_encoder.layer4.1.bn2.bias, %self.kp_detector.fg_encoder.layer4.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer4.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %278 : Tensor = aten::add(%out.31, %272, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %279 : Tensor = aten::relu(%278), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.221 : Tensor = aten::_convolution(%275, %self.kp_detector.fg_encoder.layer4.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.31 : Tensor = aten::batch_norm(%input.221, %self.kp_detector.fg_encoder.layer4.1.bn2.weight, %self.kp_detector.fg_encoder.layer4.1.bn2.bias, %self.kp_detector.fg_encoder.layer4.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer4.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %278 : Tensor = aten::add(%out.31, %272, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %279 : Tensor = aten::relu(%278), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(8192,1:4,1024,128), Half(8192,1:4,1024,128) -> Half(8192,1:4,1024,128) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.221 : Tensor = aten::_convolution(%275, %self.kp_detector.fg_encoder.layer4.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.31 : Tensor = aten::batch_norm(%input.221, %self.kp_detector.fg_encoder.layer4.1.bn2.weight, %self.kp_detector.fg_encoder.layer4.1.bn2.bias, %self.kp_detector.fg_encoder.layer4.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer4.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %278 : Tensor = aten::add(%out.31, %272, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %279 : Tensor = aten::relu(%278), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.221 : Tensor = aten::_convolution(%275, %self.kp_detector.fg_encoder.layer4.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.31 : Tensor = aten::batch_norm(%input.221, %self.kp_detector.fg_encoder.layer4.1.bn2.weight, %self.kp_detector.fg_encoder.layer4.1.bn2.bias, %self.kp_detector.fg_encoder.layer4.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer4.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %278 : Tensor = aten::add(%out.31, %272, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %279 : Tensor = aten::relu(%278), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(4096,1:8,512,64), Float(32768,64,8,1) -> Float(32768,64,8,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.221 : Tensor = aten::_convolution(%275, %self.kp_detector.fg_encoder.layer4.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.31 : Tensor = aten::batch_norm(%input.221, %self.kp_detector.fg_encoder.layer4.1.bn2.weight, %self.kp_detector.fg_encoder.layer4.1.bn2.bias, %self.kp_detector.fg_encoder.layer4.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer4.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %278 : Tensor = aten::add(%out.31, %272, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %279 : Tensor = aten::relu(%278), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %input.221 : Tensor = aten::_convolution(%275, %self.kp_detector.fg_encoder.layer4.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.31 : Tensor = aten::batch_norm(%input.221, %self.kp_detector.fg_encoder.layer4.1.bn2.weight, %self.kp_detector.fg_encoder.layer4.1.bn2.bias, %self.kp_detector.fg_encoder.layer4.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer4.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %278 : Tensor = aten::add(%out.31, %272, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %279 : Tensor = aten::relu(%278), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(4096,1:8,512,64), Half(4096,1:8,512,64) -> Half(4096,1:8,512,64) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - =============== Computing costs for | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(32768,64,8,1) -> Float(512,1,1,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(8192,1:4,1024,128) -> Float(128,1:4,128,128) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(32768,64,8,1) -> Half(512,1,1,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(16384,64:2,8,1) -> Half(256,1:2,1,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(4096,1:8,512,64) -> Half(64,1:8,64,64) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - =============== Computing costs for | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(512,1,1,1) -> Float(100,1,1,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm50_xmma_cublas_gemvx_f32f32_f32_f32_tn_n_int32_unit_n_launch_param64x2x1_strided_copyx_unit_stride | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm50_xmma_cublas_gemvx_f32f32_f32_f32_tn_n_int32_unit_n_launch_param64x2x1_strided_copyx_unit_stride | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm50_xmma_cublas_gemvx_f32f32_f32_f32_tn_n_int32_unit_n_launch_param64x2x1_strided_copyx_unit_stride | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm50_xmma_cublas_gemvx_f32f32_f32_f32_tn_n_int32_unit_n_launch_param64x2x1_strided_copyx_unit_stride | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm50_xmma_cublas_gemvx_f32f32_f32_f32_tn_n_int32_unit_n_launch_param64x2x1_strided_unit_stride | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm50_xmma_cublas_gemvx_f32f32_f32_f32_tn_n_int32_unit_n_launch_param64x2x1_strided_unit_stride | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm50_xmma_cublas_gemvx_f32f32_f32_f32_tn_n_int32_unit_n_launch_param64x2x1_strided_unit_stride | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm50_xmma_cublas_gemvx_f32f32_f32_f32_tn_n_int32_unit_n_launch_param64x2x1_strided_unit_stride | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm50_xmma_cublas_gemvx_f32f32_f32_f32_tn_n_int32_unit_n_launch_param4x32x32_strided_copyx_unit_stride | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm50_xmma_cublas_gemvx_f32f32_f32_f32_tn_n_int32_unit_n_launch_param4x32x32_strided_copyx_unit_stride | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm50_xmma_cublas_gemvx_f32f32_f32_f32_tn_n_int32_unit_n_launch_param4x32x32_strided_copyx_unit_stride | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm50_xmma_cublas_gemvx_f32f32_f32_f32_tn_n_int32_unit_n_launch_param4x32x32_strided_copyx_unit_stride | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm50_xmma_cublas_gemvx_f32f32_f32_f32_tn_n_int32_unit_n_launch_param16x32x32_strided_copyx_unit_stride | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm50_xmma_cublas_gemvx_f32f32_f32_f32_tn_n_int32_unit_n_launch_param16x32x32_strided_copyx_unit_stride | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm50_xmma_cublas_gemvx_f32f32_f32_f32_tn_n_int32_unit_n_launch_param16x32x32_strided_copyx_unit_stride | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm50_xmma_cublas_gemvx_f32f32_f32_f32_tn_n_int32_unit_n_launch_param16x32x32_strided_copyx_unit_stride | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm50_xmma_cublas_gemvx_f32f32_f32_f32_tn_n_int32_unit_n_launch_param4x32x32_strided_unit_stride | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm50_xmma_cublas_gemvx_f32f32_f32_f32_tn_n_int32_unit_n_launch_param4x32x32_strided_unit_stride | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm50_xmma_cublas_gemvx_f32f32_f32_f32_tn_n_int32_unit_n_launch_param4x32x32_strided_unit_stride | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm50_xmma_cublas_gemvx_f32f32_f32_f32_tn_n_int32_unit_n_launch_param4x32x32_strided_unit_stride | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm50_xmma_cublas_gemvx_f32f32_f32_f32_tn_n_int32_unit_n_launch_param8x32x32_strided_unit_stride | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm50_xmma_cublas_gemvx_f32f32_f32_f32_tn_n_int32_unit_n_launch_param8x32x32_strided_unit_stride | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm50_xmma_cublas_gemvx_f32f32_f32_f32_tn_n_int32_unit_n_launch_param8x32x32_strided_unit_stride | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm50_xmma_cublas_gemvx_f32f32_f32_f32_tn_n_int32_unit_n_launch_param8x32x32_strided_unit_stride | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm70_xmma_gemm_as_conv1x1_f32f32_f32_f32_tn_n_simt_small_batch_bias_relu | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm50_xmma_cublas_gemvx_f32f32_f32_f32_tn_n_int32_unit_n_launch_param8x32x32_strided_copyx_unit_stride | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm50_xmma_cublas_gemvx_f32f32_f32_f32_tn_n_int32_unit_n_launch_param8x32x32_strided_copyx_unit_stride | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm50_xmma_cublas_gemvx_f32f32_f32_f32_tn_n_int32_unit_n_launch_param8x32x32_strided_copyx_unit_stride | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm50_xmma_cublas_gemvx_f32f32_f32_f32_tn_n_int32_unit_n_launch_param8x32x32_strided_copyx_unit_stride | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm50_xmma_cublas_gemvx_f32f32_f32_f32_tn_n_int32_unit_n_launch_param16x32x32_strided_unit_stride | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm50_xmma_cublas_gemvx_f32f32_f32_f32_tn_n_int32_unit_n_launch_param16x32x32_strided_unit_stride | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm50_xmma_cublas_gemvx_f32f32_f32_f32_tn_n_int32_unit_n_launch_param16x32x32_strided_unit_stride | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm50_xmma_cublas_gemvx_f32f32_f32_f32_tn_n_int32_unit_n_launch_param16x32x32_strided_unit_stride | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %362 : Tensor = aten::matmul(%input.341, %361) + [Freeze Tensor %363 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 252) [Shuffle] + unsqueeze_node_after_[Freeze Tensor %363 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 252) [Shuffle]_(Unnamed Layer* 252) [Shuffle]_output + %364 : Tensor = aten::add(%363, %362, %365) + PWN(%fg_kp.15 : Tensor = aten::sigmoid(%364), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0): 33 available tactics, 33 unparsable, 0 pruned, 33 remaining after tactic pruning. | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(512,1,512,512) -> Float(100,1,100,100) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(128,1:4,128,128) -> Float(25,1:4,25,25) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %362 : Tensor = aten::matmul(%input.341, %361) + [Freeze Tensor %363 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 252) [Shuffle] + unsqueeze_node_after_[Freeze Tensor %363 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 252) [Shuffle]_(Unnamed Layer* 252) [Shuffle]_output + %364 : Tensor = aten::add(%363, %362, %365) + PWN(%fg_kp.15 : Tensor = aten::sigmoid(%364), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0): 14 available tactics, 2 unparsable, 6 pruned, 8 remaining after tactic pruning. | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(512,1,1,1) -> Half(100,1,1,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(256,1:2,1,1) -> Half(100,1,1,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %362 : Tensor = aten::matmul(%input.341, %361) + [Freeze Tensor %363 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 252) [Shuffle] + unsqueeze_node_after_[Freeze Tensor %363 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 252) [Shuffle]_(Unnamed Layer* 252) [Shuffle]_output + %364 : Tensor = aten::add(%363, %362, %365) + PWN(%fg_kp.15 : Tensor = aten::sigmoid(%364), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0) (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %362 : Tensor = aten::matmul(%input.341, %361) + [Freeze Tensor %363 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 252) [Shuffle] + unsqueeze_node_after_[Freeze Tensor %363 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 252) [Shuffle]_(Unnamed Layer* 252) [Shuffle]_output + %364 : Tensor = aten::add(%363, %362, %365) + PWN(%fg_kp.15 : Tensor = aten::sigmoid(%364), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0) (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(256,1:2,1,1) -> Half(50,1:2,1,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %362 : Tensor = aten::matmul(%input.341, %361) + [Freeze Tensor %363 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 252) [Shuffle] + unsqueeze_node_after_[Freeze Tensor %363 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 252) [Shuffle]_(Unnamed Layer* 252) [Shuffle]_output + %364 : Tensor = aten::add(%363, %362, %365) + PWN(%fg_kp.15 : Tensor = aten::sigmoid(%364), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0) (FusedConvActConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - FusedConvActConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %362 : Tensor = aten::matmul(%input.341, %361) + [Freeze Tensor %363 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 252) [Shuffle] + unsqueeze_node_after_[Freeze Tensor %363 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 252) [Shuffle]_(Unnamed Layer* 252) [Shuffle]_output + %364 : Tensor = aten::add(%363, %362, %365) + PWN(%fg_kp.15 : Tensor = aten::sigmoid(%364), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0) (CublasConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CublasConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %362 : Tensor = aten::matmul(%input.341, %361) + [Freeze Tensor %363 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 252) [Shuffle] + unsqueeze_node_after_[Freeze Tensor %363 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 252) [Shuffle]_(Unnamed Layer* 252) [Shuffle]_output + %364 : Tensor = aten::add(%363, %362, %365) + PWN(%fg_kp.15 : Tensor = aten::sigmoid(%364), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0) (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %362 : Tensor = aten::matmul(%input.341, %361) + [Freeze Tensor %363 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 252) [Shuffle] + unsqueeze_node_after_[Freeze Tensor %363 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 252) [Shuffle]_(Unnamed Layer* 252) [Shuffle]_output + %364 : Tensor = aten::add(%363, %362, %365) + PWN(%fg_kp.15 : Tensor = aten::sigmoid(%364), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0) (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(128,1:4,128,128) -> Half(25,1:4,25,25) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %362 : Tensor = aten::matmul(%input.341, %361) + [Freeze Tensor %363 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 252) [Shuffle] + unsqueeze_node_after_[Freeze Tensor %363 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 252) [Shuffle]_(Unnamed Layer* 252) [Shuffle]_output + %364 : Tensor = aten::add(%363, %362, %365) + PWN(%fg_kp.15 : Tensor = aten::sigmoid(%364), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0) (CublasConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CublasConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %362 : Tensor = aten::matmul(%input.341, %361) + [Freeze Tensor %363 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 252) [Shuffle] + unsqueeze_node_after_[Freeze Tensor %363 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 252) [Shuffle]_(Unnamed Layer* 252) [Shuffle]_output + %364 : Tensor = aten::add(%363, %362, %365) + PWN(%fg_kp.15 : Tensor = aten::sigmoid(%364), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0) (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %362 : Tensor = aten::matmul(%input.341, %361) + [Freeze Tensor %363 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 252) [Shuffle] + unsqueeze_node_after_[Freeze Tensor %363 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 252) [Shuffle]_(Unnamed Layer* 252) [Shuffle]_output + %364 : Tensor = aten::add(%363, %362, %365) + PWN(%fg_kp.15 : Tensor = aten::sigmoid(%364), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0) (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(64,1:8,64,64) -> Float(100,1,1,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %362 : Tensor = aten::matmul(%input.341, %361) + [Freeze Tensor %363 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 252) [Shuffle] + unsqueeze_node_after_[Freeze Tensor %363 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 252) [Shuffle]_(Unnamed Layer* 252) [Shuffle]_output + %364 : Tensor = aten::add(%363, %362, %365) + PWN(%fg_kp.15 : Tensor = aten::sigmoid(%364), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0) (CublasConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CublasConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %362 : Tensor = aten::matmul(%input.341, %361) + [Freeze Tensor %363 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 252) [Shuffle] + unsqueeze_node_after_[Freeze Tensor %363 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 252) [Shuffle]_(Unnamed Layer* 252) [Shuffle]_output + %364 : Tensor = aten::add(%363, %362, %365) + PWN(%fg_kp.15 : Tensor = aten::sigmoid(%364), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0) (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %362 : Tensor = aten::matmul(%input.341, %361) + [Freeze Tensor %363 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 252) [Shuffle] + unsqueeze_node_after_[Freeze Tensor %363 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 252) [Shuffle]_(Unnamed Layer* 252) [Shuffle]_output + %364 : Tensor = aten::add(%363, %362, %365) + PWN(%fg_kp.15 : Tensor = aten::sigmoid(%364), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0) (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(64,1:8,64,64) -> Half(13,1:8,13,13) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(32,1:16,32,32) -> Half(7,1:16,7,7) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %362 : Tensor = aten::matmul(%input.341, %361) + [Freeze Tensor %363 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 252) [Shuffle] + unsqueeze_node_after_[Freeze Tensor %363 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 252) [Shuffle]_(Unnamed Layer* 252) [Shuffle]_output + %364 : Tensor = aten::add(%363, %362, %365) + PWN(%fg_kp.15 : Tensor = aten::sigmoid(%364), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0) (CublasConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CublasConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - =============== Computing costs for | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(512,1,1,1) -> Float(100,1,1,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm50_xmma_cublas_gemvx_f32f32_f32_f32_tn_n_int32_unit_n_launch_param64x2x1_strided_copyx_unit_stride | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm50_xmma_cublas_gemvx_f32f32_f32_f32_tn_n_int32_unit_n_launch_param64x2x1_strided_copyx_unit_stride | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm50_xmma_cublas_gemvx_f32f32_f32_f32_tn_n_int32_unit_n_launch_param64x2x1_strided_copyx_unit_stride | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm50_xmma_cublas_gemvx_f32f32_f32_f32_tn_n_int32_unit_n_launch_param64x2x1_strided_copyx_unit_stride | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm50_xmma_cublas_gemvx_f32f32_f32_f32_tn_n_int32_unit_n_launch_param64x2x1_strided_unit_stride | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm50_xmma_cublas_gemvx_f32f32_f32_f32_tn_n_int32_unit_n_launch_param64x2x1_strided_unit_stride | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm50_xmma_cublas_gemvx_f32f32_f32_f32_tn_n_int32_unit_n_launch_param64x2x1_strided_unit_stride | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm50_xmma_cublas_gemvx_f32f32_f32_f32_tn_n_int32_unit_n_launch_param64x2x1_strided_unit_stride | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm50_xmma_cublas_gemvx_f32f32_f32_f32_tn_n_int32_unit_n_launch_param4x32x32_strided_copyx_unit_stride | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm50_xmma_cublas_gemvx_f32f32_f32_f32_tn_n_int32_unit_n_launch_param4x32x32_strided_copyx_unit_stride | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm50_xmma_cublas_gemvx_f32f32_f32_f32_tn_n_int32_unit_n_launch_param4x32x32_strided_copyx_unit_stride | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm50_xmma_cublas_gemvx_f32f32_f32_f32_tn_n_int32_unit_n_launch_param4x32x32_strided_copyx_unit_stride | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm50_xmma_cublas_gemvx_f32f32_f32_f32_tn_n_int32_unit_n_launch_param16x32x32_strided_copyx_unit_stride | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm50_xmma_cublas_gemvx_f32f32_f32_f32_tn_n_int32_unit_n_launch_param16x32x32_strided_copyx_unit_stride | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm50_xmma_cublas_gemvx_f32f32_f32_f32_tn_n_int32_unit_n_launch_param16x32x32_strided_copyx_unit_stride | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm50_xmma_cublas_gemvx_f32f32_f32_f32_tn_n_int32_unit_n_launch_param16x32x32_strided_copyx_unit_stride | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm50_xmma_cublas_gemvx_f32f32_f32_f32_tn_n_int32_unit_n_launch_param4x32x32_strided_unit_stride | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm50_xmma_cublas_gemvx_f32f32_f32_f32_tn_n_int32_unit_n_launch_param4x32x32_strided_unit_stride | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm50_xmma_cublas_gemvx_f32f32_f32_f32_tn_n_int32_unit_n_launch_param4x32x32_strided_unit_stride | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm50_xmma_cublas_gemvx_f32f32_f32_f32_tn_n_int32_unit_n_launch_param4x32x32_strided_unit_stride | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm50_xmma_cublas_gemvx_f32f32_f32_f32_tn_n_int32_unit_n_launch_param8x32x32_strided_unit_stride | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm50_xmma_cublas_gemvx_f32f32_f32_f32_tn_n_int32_unit_n_launch_param8x32x32_strided_unit_stride | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm50_xmma_cublas_gemvx_f32f32_f32_f32_tn_n_int32_unit_n_launch_param8x32x32_strided_unit_stride | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm50_xmma_cublas_gemvx_f32f32_f32_f32_tn_n_int32_unit_n_launch_param8x32x32_strided_unit_stride | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm70_xmma_gemm_as_conv1x1_f32f32_f32_f32_tn_n_simt_small_batch_bias_relu | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm50_xmma_cublas_gemvx_f32f32_f32_f32_tn_n_int32_unit_n_launch_param8x32x32_strided_copyx_unit_stride | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm50_xmma_cublas_gemvx_f32f32_f32_f32_tn_n_int32_unit_n_launch_param8x32x32_strided_copyx_unit_stride | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm50_xmma_cublas_gemvx_f32f32_f32_f32_tn_n_int32_unit_n_launch_param8x32x32_strided_copyx_unit_stride | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm50_xmma_cublas_gemvx_f32f32_f32_f32_tn_n_int32_unit_n_launch_param8x32x32_strided_copyx_unit_stride | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm50_xmma_cublas_gemvx_f32f32_f32_f32_tn_n_int32_unit_n_launch_param16x32x32_strided_unit_stride | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm50_xmma_cublas_gemvx_f32f32_f32_f32_tn_n_int32_unit_n_launch_param16x32x32_strided_unit_stride | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm50_xmma_cublas_gemvx_f32f32_f32_f32_tn_n_int32_unit_n_launch_param16x32x32_strided_unit_stride | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Unrecognized MMA instruction source format or shape: sm50_xmma_cublas_gemvx_f32f32_f32_f32_tn_n_int32_unit_n_launch_param16x32x32_strided_unit_stride | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %283 : Tensor = aten::matmul(%input.227, %282) + [Freeze Tensor %284 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 168) [Shuffle] + unsqueeze_node_after_[Freeze Tensor %284 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 168) [Shuffle]_(Unnamed Layer* 168) [Shuffle]_output + %285 : Tensor = aten::add(%284, %283, %365) + PWN(%fg_kp.9 : Tensor = aten::sigmoid(%285), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0): 33 available tactics, 33 unparsable, 0 pruned, 33 remaining after tactic pruning. | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(512,1,512,512) -> Float(100,1,100,100) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(128,1:4,128,128) -> Float(25,1:4,25,25) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %283 : Tensor = aten::matmul(%input.227, %282) + [Freeze Tensor %284 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 168) [Shuffle] + unsqueeze_node_after_[Freeze Tensor %284 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 168) [Shuffle]_(Unnamed Layer* 168) [Shuffle]_output + %285 : Tensor = aten::add(%284, %283, %365) + PWN(%fg_kp.9 : Tensor = aten::sigmoid(%285), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0): 14 available tactics, 2 unparsable, 6 pruned, 8 remaining after tactic pruning. | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(512,1,1,1) -> Half(100,1,1,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(256,1:2,1,1) -> Half(100,1,1,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %283 : Tensor = aten::matmul(%input.227, %282) + [Freeze Tensor %284 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 168) [Shuffle] + unsqueeze_node_after_[Freeze Tensor %284 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 168) [Shuffle]_(Unnamed Layer* 168) [Shuffle]_output + %285 : Tensor = aten::add(%284, %283, %365) + PWN(%fg_kp.9 : Tensor = aten::sigmoid(%285), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0) (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %283 : Tensor = aten::matmul(%input.227, %282) + [Freeze Tensor %284 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 168) [Shuffle] + unsqueeze_node_after_[Freeze Tensor %284 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 168) [Shuffle]_(Unnamed Layer* 168) [Shuffle]_output + %285 : Tensor = aten::add(%284, %283, %365) + PWN(%fg_kp.9 : Tensor = aten::sigmoid(%285), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0) (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(256,1:2,1,1) -> Half(50,1:2,1,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %283 : Tensor = aten::matmul(%input.227, %282) + [Freeze Tensor %284 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 168) [Shuffle] + unsqueeze_node_after_[Freeze Tensor %284 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 168) [Shuffle]_(Unnamed Layer* 168) [Shuffle]_output + %285 : Tensor = aten::add(%284, %283, %365) + PWN(%fg_kp.9 : Tensor = aten::sigmoid(%285), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0) (FusedConvActConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - FusedConvActConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %283 : Tensor = aten::matmul(%input.227, %282) + [Freeze Tensor %284 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 168) [Shuffle] + unsqueeze_node_after_[Freeze Tensor %284 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 168) [Shuffle]_(Unnamed Layer* 168) [Shuffle]_output + %285 : Tensor = aten::add(%284, %283, %365) + PWN(%fg_kp.9 : Tensor = aten::sigmoid(%285), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0) (CublasConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CublasConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %283 : Tensor = aten::matmul(%input.227, %282) + [Freeze Tensor %284 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 168) [Shuffle] + unsqueeze_node_after_[Freeze Tensor %284 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 168) [Shuffle]_(Unnamed Layer* 168) [Shuffle]_output + %285 : Tensor = aten::add(%284, %283, %365) + PWN(%fg_kp.9 : Tensor = aten::sigmoid(%285), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0) (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %283 : Tensor = aten::matmul(%input.227, %282) + [Freeze Tensor %284 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 168) [Shuffle] + unsqueeze_node_after_[Freeze Tensor %284 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 168) [Shuffle]_(Unnamed Layer* 168) [Shuffle]_output + %285 : Tensor = aten::add(%284, %283, %365) + PWN(%fg_kp.9 : Tensor = aten::sigmoid(%285), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0) (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(128,1:4,128,128) -> Half(25,1:4,25,25) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %283 : Tensor = aten::matmul(%input.227, %282) + [Freeze Tensor %284 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 168) [Shuffle] + unsqueeze_node_after_[Freeze Tensor %284 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 168) [Shuffle]_(Unnamed Layer* 168) [Shuffle]_output + %285 : Tensor = aten::add(%284, %283, %365) + PWN(%fg_kp.9 : Tensor = aten::sigmoid(%285), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0) (CublasConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CublasConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %283 : Tensor = aten::matmul(%input.227, %282) + [Freeze Tensor %284 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 168) [Shuffle] + unsqueeze_node_after_[Freeze Tensor %284 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 168) [Shuffle]_(Unnamed Layer* 168) [Shuffle]_output + %285 : Tensor = aten::add(%284, %283, %365) + PWN(%fg_kp.9 : Tensor = aten::sigmoid(%285), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0) (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %283 : Tensor = aten::matmul(%input.227, %282) + [Freeze Tensor %284 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 168) [Shuffle] + unsqueeze_node_after_[Freeze Tensor %284 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 168) [Shuffle]_(Unnamed Layer* 168) [Shuffle]_output + %285 : Tensor = aten::add(%284, %283, %365) + PWN(%fg_kp.9 : Tensor = aten::sigmoid(%285), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0) (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(64,1:8,64,64) -> Float(100,1,1,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %283 : Tensor = aten::matmul(%input.227, %282) + [Freeze Tensor %284 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 168) [Shuffle] + unsqueeze_node_after_[Freeze Tensor %284 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 168) [Shuffle]_(Unnamed Layer* 168) [Shuffle]_output + %285 : Tensor = aten::add(%284, %283, %365) + PWN(%fg_kp.9 : Tensor = aten::sigmoid(%285), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0) (CublasConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CublasConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %283 : Tensor = aten::matmul(%input.227, %282) + [Freeze Tensor %284 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 168) [Shuffle] + unsqueeze_node_after_[Freeze Tensor %284 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 168) [Shuffle]_(Unnamed Layer* 168) [Shuffle]_output + %285 : Tensor = aten::add(%284, %283, %365) + PWN(%fg_kp.9 : Tensor = aten::sigmoid(%285), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0) (CaskConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %283 : Tensor = aten::matmul(%input.227, %282) + [Freeze Tensor %284 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 168) [Shuffle] + unsqueeze_node_after_[Freeze Tensor %284 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 168) [Shuffle]_(Unnamed Layer* 168) [Shuffle]_output + %285 : Tensor = aten::add(%284, %283, %365) + PWN(%fg_kp.9 : Tensor = aten::sigmoid(%285), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0) (CaskFlattenConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CaskFlattenConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(64,1:8,64,64) -> Half(13,1:8,13,13) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(32,1:16,32,32) -> Half(7,1:16,7,7) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %283 : Tensor = aten::matmul(%input.227, %282) + [Freeze Tensor %284 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 168) [Shuffle] + unsqueeze_node_after_[Freeze Tensor %284 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 168) [Shuffle]_(Unnamed Layer* 168) [Shuffle]_output + %285 : Tensor = aten::add(%284, %283, %365) + PWN(%fg_kp.9 : Tensor = aten::sigmoid(%285), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0) (CublasConvolution) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - CublasConvolution has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - =============== Computing costs for | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(100,1,1,1), Float(1,1,1,1) -> Float(100,1,1,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %368 : Tensor = aten::mul(%fg_kp.15, %206), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0 (ElementWise) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000001 Time: 0.00248043 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Fastest Tactic: 0x0000000000000001 Time: 0.00248043 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - >>>>>>>>>>>>>>> Chose Runner Type: ElementWise Tactic: 0x0000000000000001 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(25,1:4,25,25), Float(1,1:4,1,1) -> Float(25,1:4,25,25) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %368 : Tensor = aten::mul(%fg_kp.15, %206), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0 (ElementWise) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000001 Time: 0.0024401 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000002 Time: 0.00315794 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Fastest Tactic: 0x0000000000000001 Time: 0.0024401 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - >>>>>>>>>>>>>>> Chose Runner Type: ElementWise Tactic: 0x0000000000000001 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(4,1:32,1,1), Float(1,1:32,1,1) -> Float(4,1:32,1,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %368 : Tensor = aten::mul(%fg_kp.15, %206), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0 (ElementWise) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000001 Time: 0.00257649 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Fastest Tactic: 0x0000000000000001 Time: 0.00257649 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - >>>>>>>>>>>>>>> Chose Runner Type: ElementWise Tactic: 0x0000000000000001 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(100,1,1,1), Half(1,1,1,1) -> Half(100,1,1,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %368 : Tensor = aten::mul(%fg_kp.15, %206), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0 (ElementWise) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000001 Time: 0.00273889 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Fastest Tactic: 0x0000000000000001 Time: 0.00273889 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - >>>>>>>>>>>>>>> Chose Runner Type: ElementWise Tactic: 0x0000000000000001 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(50,1:2,1,1), Half(1,1:2,1,1) -> Half(50,1:2,1,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %368 : Tensor = aten::mul(%fg_kp.15, %206), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0 (ElementWise) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000001 Time: 0.00275658 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Fastest Tactic: 0x0000000000000001 Time: 0.00275658 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - >>>>>>>>>>>>>>> Chose Runner Type: ElementWise Tactic: 0x0000000000000001 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(13,1:8,13,13), Half(1,1:8,1,1) -> Half(13,1:8,13,13) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %368 : Tensor = aten::mul(%fg_kp.15, %206), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0 (ElementWise) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000001 Time: 0.00288956 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Fastest Tactic: 0x0000000000000001 Time: 0.00288956 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - >>>>>>>>>>>>>>> Chose Runner Type: ElementWise Tactic: 0x0000000000000001 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - =============== Computing costs for | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(100,1,1,1) -> Float(100,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(100,1,1,1) -> Half(100,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - =============== Computing costs for | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(100,1), Float(1,1) -> Float(100,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %fg_kp : Tensor = aten::sub(%368, %208, %365), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0 (ElementWise) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000001 Time: 0.00244866 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Fastest Tactic: 0x0000000000000001 Time: 0.00244866 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - >>>>>>>>>>>>>>> Chose Runner Type: ElementWise Tactic: 0x0000000000000001 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(100,1), Half(1,1) -> Half(100,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %fg_kp : Tensor = aten::sub(%368, %208, %365), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0 (ElementWise) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000001 Time: 0.00273993 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Fastest Tactic: 0x0000000000000001 Time: 0.00273993 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - >>>>>>>>>>>>>>> Chose Runner Type: ElementWise Tactic: 0x0000000000000001 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - =============== Computing costs for | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(100,1) -> Float(100,2,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(100,1) -> Half(100,2,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - =============== Computing costs for | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(100,1,1,1), Float(1,1,1,1) -> Float(100,1,1,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %289 : Tensor = aten::mul(%fg_kp.9, %206), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0 (ElementWise) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000001 Time: 0.00244679 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Fastest Tactic: 0x0000000000000001 Time: 0.00244679 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - >>>>>>>>>>>>>>> Chose Runner Type: ElementWise Tactic: 0x0000000000000001 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(25,1:4,25,25), Float(1,1:4,1,1) -> Float(25,1:4,25,25) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %289 : Tensor = aten::mul(%fg_kp.9, %206), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0 (ElementWise) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000001 Time: 0.00244267 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000002 Time: 0.00315874 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Fastest Tactic: 0x0000000000000001 Time: 0.00244267 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - >>>>>>>>>>>>>>> Chose Runner Type: ElementWise Tactic: 0x0000000000000001 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(4,1:32,1,1), Float(1,1:32,1,1) -> Float(4,1:32,1,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %289 : Tensor = aten::mul(%fg_kp.9, %206), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0 (ElementWise) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000001 Time: 0.00262694 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Fastest Tactic: 0x0000000000000001 Time: 0.00262694 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - >>>>>>>>>>>>>>> Chose Runner Type: ElementWise Tactic: 0x0000000000000001 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(100,1,1,1), Half(1,1,1,1) -> Half(100,1,1,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %289 : Tensor = aten::mul(%fg_kp.9, %206), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0 (ElementWise) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000001 Time: 0.0027534 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Fastest Tactic: 0x0000000000000001 Time: 0.0027534 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - >>>>>>>>>>>>>>> Chose Runner Type: ElementWise Tactic: 0x0000000000000001 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(50,1:2,1,1), Half(1,1:2,1,1) -> Half(50,1:2,1,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %289 : Tensor = aten::mul(%fg_kp.9, %206), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0 (ElementWise) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000001 Time: 0.00275086 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Fastest Tactic: 0x0000000000000001 Time: 0.00275086 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - >>>>>>>>>>>>>>> Chose Runner Type: ElementWise Tactic: 0x0000000000000001 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(13,1:8,13,13), Half(1,1:8,1,1) -> Half(13,1:8,13,13) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %289 : Tensor = aten::mul(%fg_kp.9, %206), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0 (ElementWise) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000001 Time: 0.00286806 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Fastest Tactic: 0x0000000000000001 Time: 0.00286806 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - >>>>>>>>>>>>>>> Chose Runner Type: ElementWise Tactic: 0x0000000000000001 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - =============== Computing costs for | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(100,1,1,1) -> Float(100,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(100,1,1,1) -> Half(100,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - =============== Computing costs for | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(100,1), Float(1,1) -> Float(100,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %fg_kp.11 : Tensor = aten::sub(%289, %208, %365), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0 (ElementWise) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000001 Time: 0.00245796 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Fastest Tactic: 0x0000000000000001 Time: 0.00245796 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - >>>>>>>>>>>>>>> Chose Runner Type: ElementWise Tactic: 0x0000000000000001 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(100,1), Half(1,1) -> Half(100,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %fg_kp.11 : Tensor = aten::sub(%289, %208, %365), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0 (ElementWise) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000001 Time: 0.00274326 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Fastest Tactic: 0x0000000000000001 Time: 0.00274326 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - >>>>>>>>>>>>>>> Chose Runner Type: ElementWise Tactic: 0x0000000000000001 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - =============== Computing costs for | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(100,1) -> Float(100,2,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(100,1) -> Half(100,2,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - =============== Computing costs for | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(100,2,1) -> Float(2,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(100,2,1) -> Half(2,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - =============== Computing costs for | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(2,1), Float(2,1), Float(1,1) -> Float(2,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: PWN(%mean_diff : Tensor = aten::sub(%372, %374, %365) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:503:0, %376 : Tensor = aten::pow(%mean_diff, %21) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:503:0) (PointWiseV2) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000000 Time: 0.00256624 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000001 Time: 0.00264399 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000002 Time: 0.00257206 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000003 Time: 0.00266778 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000004 Time: 0.00276981 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000005 Time: 0.00256456 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000006 Time: 0.00287116 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000007 Time: 0.00303835 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000008 Time: 0.00290811 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000009 Time: 0.00288653 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x000000000000001c Time: 0.00276267 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Fastest Tactic: 0x0000000000000005 Time: 0.00256456 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: PWN(%mean_diff : Tensor = aten::sub(%372, %374, %365) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:503:0, %376 : Tensor = aten::pow(%mean_diff, %21) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:503:0) (PointWise) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - PointWise has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - >>>>>>>>>>>>>>> Chose Runner Type: PointWiseV2 Tactic: 0x0000000000000005 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(2,1), Half(2,1), Half(1,1) -> Half(2,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: PWN(%mean_diff : Tensor = aten::sub(%372, %374, %365) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:503:0, %376 : Tensor = aten::pow(%mean_diff, %21) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:503:0) (PointWiseV2) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000000 Time: 0.00275641 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000001 Time: 0.00319563 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000002 Time: 0.00270357 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000003 Time: 0.00288202 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000004 Time: 0.00293811 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000005 Time: 0.00269875 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000006 Time: 0.00300973 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000007 Time: 0.00307396 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000008 Time: 0.002931 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000009 Time: 0.00284203 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x000000000000001c Time: 0.00272676 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Fastest Tactic: 0x0000000000000005 Time: 0.00269875 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: PWN(%mean_diff : Tensor = aten::sub(%372, %374, %365) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:503:0, %376 : Tensor = aten::pow(%mean_diff, %21) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:503:0) (PointWise) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - PointWise has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - >>>>>>>>>>>>>>> Chose Runner Type: PointWiseV2 Tactic: 0x0000000000000005 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - =============== Computing costs for | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(2,1) -> Float() *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %377 : Tensor = aten::sum(%376, %5) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:503:0 (Reduce) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000001 Time: 0.00272702 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000003 Time: 0.00273556 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000004 Time: 0.0047055 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000007 Time: 0.00272512 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000008 Time: 0.0047907 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Fastest Tactic: 0x0000000000000007 Time: 0.00272512 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - >>>>>>>>>>>>>>> Chose Runner Type: Reduce Tactic: 0x0000000000000007 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(2,1) -> Half() *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %377 : Tensor = aten::sum(%376, %5) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:503:0 (Reduce) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000001 Time: 0.00273399 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000003 Time: 0.00274133 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000004 Time: 0.00477943 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000007 Time: 0.00273434 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000008 Time: 0.00479421 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Fastest Tactic: 0x0000000000000001 Time: 0.00273399 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - >>>>>>>>>>>>>>> Chose Runner Type: Reduce Tactic: 0x0000000000000001 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - =============== Computing costs for | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(), Float() -> Float() *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %adapt_movement_scale : Tensor = aten::mul(%377, %206) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:503:0 (ElementWise) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000001 Time: 0.0026055 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Fastest Tactic: 0x0000000000000001 Time: 0.0026055 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - >>>>>>>>>>>>>>> Chose Runner Type: ElementWise Tactic: 0x0000000000000001 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(), Half() -> Half() *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: %adapt_movement_scale : Tensor = aten::mul(%377, %206) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:503:0 (ElementWise) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000001 Time: 0.00257067 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Fastest Tactic: 0x0000000000000001 Time: 0.00257067 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - >>>>>>>>>>>>>>> Chose Runner Type: ElementWise Tactic: 0x0000000000000001 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - =============== Computing costs for | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float() -> Float(1,1,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: (Unnamed Layer* 276) [Shuffle] (Shuffle) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000000 Time: 0.00239831 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Fastest Tactic: 0x0000000000000000 Time: 0.00239831 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - >>>>>>>>>>>>>>> Chose Runner Type: Shuffle Tactic: 0x0000000000000000 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half() -> Half(1,1,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: (Unnamed Layer* 276) [Shuffle] (Shuffle) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000000 Time: 0.00250245 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Fastest Tactic: 0x0000000000000000 Time: 0.00250245 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - >>>>>>>>>>>>>>> Chose Runner Type: Shuffle Tactic: 0x0000000000000000 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - =============== Computing costs for | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(100,2,1), Float(100,2,1), Float(1,1,1), Float(100,2,1) -> Float(100,2,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: PWN(PWN(%kp_value_diff.1 : Tensor = aten::sub(%371, %292, %365) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:510:0, %380 : Tensor = aten::mul(%kp_value_diff.1, %adapt_movement_scale) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:511:0), %kp.1 : Tensor = aten::add(%380, %211, %365) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:511:0) (PointWiseV2) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000000 Time: 0.00271766 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000001 Time: 0.00291775 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000002 Time: 0.0027009 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000003 Time: 0.00303302 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000004 Time: 0.00358664 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000005 Time: 0.00289864 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000006 Time: 0.00316307 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000007 Time: 0.00319736 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000008 Time: 0.00302866 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000009 Time: 0.00290708 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x000000000000001c Time: 0.00270908 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Fastest Tactic: 0x0000000000000002 Time: 0.0027009 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: PWN(PWN(%kp_value_diff.1 : Tensor = aten::sub(%371, %292, %365) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:510:0, %380 : Tensor = aten::mul(%kp_value_diff.1, %adapt_movement_scale) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:511:0), %kp.1 : Tensor = aten::add(%380, %211, %365) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:511:0) (PointWise) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - PointWise has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - >>>>>>>>>>>>>>> Chose Runner Type: PointWiseV2 Tactic: 0x0000000000000002 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(1,2,1), Float(1,2,1), Float(1,1,1), Float(1,2,1) -> Float(1,2,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: PWN(PWN(%kp_value_diff.1 : Tensor = aten::sub(%371, %292, %365) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:510:0, %380 : Tensor = aten::mul(%kp_value_diff.1, %adapt_movement_scale) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:511:0), %kp.1 : Tensor = aten::add(%380, %211, %365) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:511:0) (PointWiseV2) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - PointWiseV2 has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: PWN(PWN(%kp_value_diff.1 : Tensor = aten::sub(%371, %292, %365) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:510:0, %380 : Tensor = aten::mul(%kp_value_diff.1, %adapt_movement_scale) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:511:0), %kp.1 : Tensor = aten::add(%380, %211, %365) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:511:0) (PointWise) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - PointWise has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(1:4,2,1), Float(1:4,2,1), Float(1:4,1,1), Float(1:4,2,1) -> Float(1:4,2,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: PWN(PWN(%kp_value_diff.1 : Tensor = aten::sub(%371, %292, %365) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:510:0, %380 : Tensor = aten::mul(%kp_value_diff.1, %adapt_movement_scale) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:511:0), %kp.1 : Tensor = aten::add(%380, %211, %365) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:511:0) (PointWiseV2) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x000000000000001c Time: 0.00317364 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x000000000000001d Time: 0.0031938 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x000000000000001e Time: 0.00290616 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Fastest Tactic: 0x000000000000001e Time: 0.00290616 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: PWN(PWN(%kp_value_diff.1 : Tensor = aten::sub(%371, %292, %365) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:510:0, %380 : Tensor = aten::mul(%kp_value_diff.1, %adapt_movement_scale) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:511:0), %kp.1 : Tensor = aten::add(%380, %211, %365) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:511:0) (PointWise) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - PointWise has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - >>>>>>>>>>>>>>> Chose Runner Type: PointWiseV2 Tactic: 0x000000000000001e | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(100:32,2,1), Float(100:32,2,1), Float(1:32,1,1), Float(100:32,2,1) -> Float(100:32,2,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: PWN(PWN(%kp_value_diff.1 : Tensor = aten::sub(%371, %292, %365) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:510:0, %380 : Tensor = aten::mul(%kp_value_diff.1, %adapt_movement_scale) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:511:0), %kp.1 : Tensor = aten::add(%380, %211, %365) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:511:0) (PointWiseV2) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000018 Time: 0.00337756 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000019 Time: 0.00392571 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x000000000000001a Time: 0.0041704 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x000000000000001b Time: 0.00440926 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x000000000000001f Time: 0.00334059 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Fastest Tactic: 0x000000000000001f Time: 0.00334059 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: PWN(PWN(%kp_value_diff.1 : Tensor = aten::sub(%371, %292, %365) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:510:0, %380 : Tensor = aten::mul(%kp_value_diff.1, %adapt_movement_scale) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:511:0), %kp.1 : Tensor = aten::add(%380, %211, %365) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:511:0) (PointWise) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - PointWise has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - >>>>>>>>>>>>>>> Chose Runner Type: PointWiseV2 Tactic: 0x000000000000001f | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(100,2,1), Half(100,2,1), Half(1,1,1), Half(100,2,1) -> Half(100,2,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: PWN(PWN(%kp_value_diff.1 : Tensor = aten::sub(%371, %292, %365) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:510:0, %380 : Tensor = aten::mul(%kp_value_diff.1, %adapt_movement_scale) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:511:0), %kp.1 : Tensor = aten::add(%380, %211, %365) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:511:0) (PointWiseV2) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000000 Time: 0.00278284 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000001 Time: 0.00291209 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000002 Time: 0.00272173 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000003 Time: 0.00307494 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000004 Time: 0.0030629 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000005 Time: 0.00286523 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000006 Time: 0.0032581 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000007 Time: 0.00329778 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000008 Time: 0.00301655 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000009 Time: 0.00291525 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x000000000000001c Time: 0.00274868 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Fastest Tactic: 0x0000000000000002 Time: 0.00272173 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: PWN(PWN(%kp_value_diff.1 : Tensor = aten::sub(%371, %292, %365) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:510:0, %380 : Tensor = aten::mul(%kp_value_diff.1, %adapt_movement_scale) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:511:0), %kp.1 : Tensor = aten::add(%380, %211, %365) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:511:0) (PointWise) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - PointWise has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - >>>>>>>>>>>>>>> Chose Runner Type: PointWiseV2 Tactic: 0x0000000000000002 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(100:2,2,1), Half(100:2,2,1), Half(1:2,1,1), Half(100:2,2,1) -> Half(100:2,2,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: PWN(PWN(%kp_value_diff.1 : Tensor = aten::sub(%371, %292, %365) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:510:0, %380 : Tensor = aten::mul(%kp_value_diff.1, %adapt_movement_scale) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:511:0), %kp.1 : Tensor = aten::add(%380, %211, %365) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:511:0) (PointWiseV2) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000000 Time: 0.00294671 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000001 Time: 0.00302049 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000002 Time: 0.00312085 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000003 Time: 0.00317867 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000004 Time: 0.00318802 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000005 Time: 0.00301146 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000006 Time: 0.00353976 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000007 Time: 0.00338435 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000008 Time: 0.00333349 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000009 Time: 0.0031869 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x000000000000000a Time: 0.00286277 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x000000000000000b Time: 0.00296411 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x000000000000000c Time: 0.00289232 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x000000000000000d Time: 0.00300353 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x000000000000000e Time: 0.00304805 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x000000000000000f Time: 0.00290375 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000010 Time: 0.00335637 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000011 Time: 0.00319675 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000012 Time: 0.00309699 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x0000000000000013 Time: 0.00314288 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x000000000000001c Time: 0.00297251 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x000000000000001d Time: 0.00289122 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Fastest Tactic: 0x000000000000000a Time: 0.00286277 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: PWN(PWN(%kp_value_diff.1 : Tensor = aten::sub(%371, %292, %365) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:510:0, %380 : Tensor = aten::mul(%kp_value_diff.1, %adapt_movement_scale) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:511:0), %kp.1 : Tensor = aten::add(%380, %211, %365) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:511:0) (PointWise) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - PointWise has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - >>>>>>>>>>>>>>> Chose Runner Type: PointWiseV2 Tactic: 0x000000000000000a | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(1:8,2,1), Half(1:8,2,1), Half(1:8,1,1), Half(1:8,2,1) -> Half(1:8,2,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: PWN(PWN(%kp_value_diff.1 : Tensor = aten::sub(%371, %292, %365) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:510:0, %380 : Tensor = aten::mul(%kp_value_diff.1, %adapt_movement_scale) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:511:0), %kp.1 : Tensor = aten::add(%380, %211, %365) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:511:0) (PointWiseV2) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x000000000000001c Time: 0.00335531 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x000000000000001d Time: 0.00308662 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x000000000000001e Time: 0.00287412 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x000000000000001f Time: 0.00305889 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Fastest Tactic: 0x000000000000001e Time: 0.00287412 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: PWN(PWN(%kp_value_diff.1 : Tensor = aten::sub(%371, %292, %365) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:510:0, %380 : Tensor = aten::mul(%kp_value_diff.1, %adapt_movement_scale) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:511:0), %kp.1 : Tensor = aten::add(%380, %211, %365) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:511:0) (PointWise) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - PointWise has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - >>>>>>>>>>>>>>> Chose Runner Type: PointWiseV2 Tactic: 0x000000000000001e | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(1:16,2,1), Half(1:16,2,1), Half(1:16,1,1), Half(1:16,2,1) -> Half(1:16,2,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: PWN(PWN(%kp_value_diff.1 : Tensor = aten::sub(%371, %292, %365) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:510:0, %380 : Tensor = aten::mul(%kp_value_diff.1, %adapt_movement_scale) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:511:0), %kp.1 : Tensor = aten::add(%380, %211, %365) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:511:0) (PointWiseV2) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x000000000000001d Time: 0.00353842 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x000000000000001e Time: 0.00317162 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Tactic: 0x000000000000001f Time: 0.00299324 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Fastest Tactic: 0x000000000000001f Time: 0.00299324 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - --------------- Timing Runner: PWN(PWN(%kp_value_diff.1 : Tensor = aten::sub(%371, %292, %365) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:510:0, %380 : Tensor = aten::mul(%kp_value_diff.1, %adapt_movement_scale) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:511:0), %kp.1 : Tensor = aten::add(%380, %211, %365) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:511:0) (PointWise) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - PointWise has no valid tactics for this config, skipping | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - >>>>>>>>>>>>>>> Chose Runner Type: PointWiseV2 Tactic: 0x000000000000001f | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - =============== Computing costs for | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(100,2,1) -> Float(100,2,2,2,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(1,2,1) -> Float(100,2,1,2,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(1:4,2,1) -> Float(100,2,1:4,2,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Float(100:32,2,1) -> Float(100,2,2:32,2,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(100,2,1) -> Half(100,2,2,2,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(100:2,2,1) -> Half(100,2,2:2,2,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(1:4,2,1) -> Half(100,2,1:4,2,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(1:8,2,1) -> Half(100,2,1:8,2,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - *************** Autotuning format combination: Half(1:16,2,1) -> Half(100,2,1:16,2,1) *************** | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Adding reformat layer: Reformatted Input Tensor 0 to unsqueeze_node_after_{ForeignNode[(Unnamed Layer* 1) [Shuffle]...%input.115 : Tensor = aten::select(%19, %21, %16) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:529:0]}_(Unnamed Layer* 88) [Shuffle]_output ((Unnamed Layer* 88) [Shuffle]_output) from Float(1,1) to Half(1,1) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Adding reformat layer: Reformatted Input Tensor 0 to %input.3 : Tensor = aten::_convolution(%10, %self.kp_detector.fg_encoder.conv1.weight, %5, %25, %26, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.5 : Tensor = aten::batch_norm(%input.3, %self.kp_detector.fg_encoder.bn1.weight, %self.kp_detector.fg_encoder.bn1.bias, %self.kp_detector.fg_encoder.bn1.running_mean, %self.kp_detector.fg_encoder.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %37 : Tensor = aten::relu(%input.5), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (output_1) from Float(196608,65536,256,1) to Half(65536,1:8,256,1) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Adding reformat layer: Reformatted Input Tensor 0 to %198 : Tensor = aten::matmul(%input.113, %196) + [Freeze Tensor %199 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 83) [Shuffle] + unsqueeze_node_after_[Freeze Tensor %199 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 83) [Shuffle]_(Unnamed Layer* 83) [Shuffle]_output + %201 : Tensor = aten::add(%199, %198, %365) + PWN(%fg_kp.3 : Tensor = aten::sigmoid(%201), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0) ((Unnamed Layer* 77) [Reduce]_output) from Half(64,1:8,64,64) to Half(512,1,1,1) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Adding reformat layer: Reformatted Input Tensor 0 to %input.231 : Tensor = aten::_convolution(%22, %self.kp_detector.fg_encoder.conv1.weight, %5, %25, %26, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.233 : Tensor = aten::batch_norm(%input.231, %self.kp_detector.fg_encoder.bn1.weight, %self.kp_detector.fg_encoder.bn1.bias, %self.kp_detector.fg_encoder.bn1.running_mean, %self.kp_detector.fg_encoder.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %295 : Tensor = aten::relu(%input.233), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 || %input.117 : Tensor = aten::_convolution(%input.115, %self.kp_detector.fg_encoder.conv1.weight, %5, %25, %26, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.119 : Tensor = aten::batch_norm(%input.117, %self.kp_detector.fg_encoder.bn1.weight, %self.kp_detector.fg_encoder.bn1.bias, %self.kp_detector.fg_encoder.bn1.running_mean, %self.kp_detector.fg_encoder.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %216 : Tensor = aten::relu(%input.119), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 ((Unnamed Layer* 10) [Shuffle]_output) from Float(196608,65536,256,1) to Half(131072,65536:2,256,1) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Adding reformat layer: Reformatted Input Tensor 0 to %fg_kp.5 : Tensor = aten::sub(%205, %208, %365), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0 ((Unnamed Layer* 89) [ElementWise]_output) from Half(100,1) to Float(100,1) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Adding reformat layer: Reformatted Input Tensor 0 to %212 : Tensor = aten::reshape(%211, %213) (output_2) from Float(100,2,1) to Float(1,2,1) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Adding reformat layer: Reformatted Output Tensor 0 to %212 : Tensor = aten::reshape(%211, %213) (output_4) from Float(100,2,1,2,1) to Float(100,2,2,2,1) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Adding reformat layer: Reformatted Output Tensor 0 to %input.123 : Tensor = aten::max_pool2d(%216, %26, %25, %27, %27, %4), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.maxpool # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:780:0 ((Unnamed Layer* 99) [Pooling]_output) from Half(131072,4096:2,64,1) to Half(32768,1:8,512,8) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Adding reformat layer: Reformatted Output Tensor 0 to %input.237 : Tensor = aten::max_pool2d(%295, %26, %25, %27, %27, %4), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.maxpool # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:780:0 ((Unnamed Layer* 183) [Pooling]_output) from Half(131072,4096:2,64,1) to Half(32768,1:8,512,8) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Adding reformat layer: Reformatted Input Tensor 0 to %362 : Tensor = aten::matmul(%input.341, %361) + [Freeze Tensor %363 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 252) [Shuffle] + unsqueeze_node_after_[Freeze Tensor %363 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 252) [Shuffle]_(Unnamed Layer* 252) [Shuffle]_output + %364 : Tensor = aten::add(%363, %362, %365) + PWN(%fg_kp.15 : Tensor = aten::sigmoid(%364), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0) ((Unnamed Layer* 246) [Reduce]_output) from Half(64,1:8,64,64) to Half(512,1,1,1) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Adding reformat layer: Reformatted Input Tensor 0 to %283 : Tensor = aten::matmul(%input.227, %282) + [Freeze Tensor %284 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 168) [Shuffle] + unsqueeze_node_after_[Freeze Tensor %284 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 168) [Shuffle]_(Unnamed Layer* 168) [Shuffle]_output + %285 : Tensor = aten::add(%284, %283, %365) + PWN(%fg_kp.9 : Tensor = aten::sigmoid(%285), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0) ((Unnamed Layer* 162) [Reduce]_output) from Half(64,1:8,64,64) to Half(512,1,1,1) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Adding reformat layer: Reformatted Input Tensor 0 to %368 : Tensor = aten::mul(%fg_kp.15, %206), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0 (%fg_kp.15 : Tensor = aten::sigmoid(%364), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0_out_tensor) from Half(100,1,1,1) to Float(100,1,1,1) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Adding reformat layer: Reformatted Input Tensor 0 to %289 : Tensor = aten::mul(%fg_kp.9, %206), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0 (%fg_kp.9 : Tensor = aten::sigmoid(%285), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0_out_tensor) from Half(100,1,1,1) to Float(100,1,1,1) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Adding reformat layer: Reformatted Input Tensor 0 to %382 : Tensor = aten::reshape(%kp.1, %213) (output_0) from Float(100,2,1) to Float(1,2,1) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Adding reformat layer: Reformatted Output Tensor 0 to %382 : Tensor = aten::reshape(%kp.1, %213) (output_3) from Float(100,2,1,2,1) to Float(100,2,2,2,1) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - For layer unsqueeze_node_after_{ForeignNode[(Unnamed Layer* 1) [Shuffle]...%input.115 : Tensor = aten::select(%19, %21, %16) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:529:0]}_(Unnamed Layer* 88) [Shuffle]_output a non-conforming implementation was chosen than was requested i.e. requested layer computation precision and output precision types were ignored because it resulted in faster network performance. Set BuilderFlag::kPREFER_PRECISION_CONSTRAINTS to encourage choosing a conforming implementation, or set BuilderFlag::kOBEY_PRECISION_CONSTRAINTS to require choosing a conforming implementation. | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - For layer %368 : Tensor = aten::mul(%fg_kp.15, %206), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0 a non-conforming implementation was chosen than was requested i.e. requested layer computation precision and output precision types were ignored because it resulted in faster network performance. Set BuilderFlag::kPREFER_PRECISION_CONSTRAINTS to encourage choosing a conforming implementation, or set BuilderFlag::kOBEY_PRECISION_CONSTRAINTS to require choosing a conforming implementation. | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - For layer %289 : Tensor = aten::mul(%fg_kp.9, %206), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0 a non-conforming implementation was chosen than was requested i.e. requested layer computation precision and output precision types were ignored because it resulted in faster network performance. Set BuilderFlag::kPREFER_PRECISION_CONSTRAINTS to encourage choosing a conforming implementation, or set BuilderFlag::kOBEY_PRECISION_CONSTRAINTS to require choosing a conforming implementation. | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Formats and tactics selection completed in 35.3149 seconds. | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - After reformat layers: 109 layers | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Total number of blocks in pre-optimized block assignment: 113 | |
INFO: [Torch-TensorRT TorchScript Conversion Context] - Total Activation Memory: 25471377408 | |
INFO: [Torch-TensorRT TorchScript Conversion Context] - Detected 2 inputs and 5 output network tensors. | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %input.3 : Tensor = aten::_convolution(%10, %self.kp_detector.fg_encoder.conv1.weight, %5, %25, %26, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.5 : Tensor = aten::batch_norm(%input.3, %self.kp_detector.fg_encoder.bn1.weight, %self.kp_detector.fg_encoder.bn1.bias, %self.kp_detector.fg_encoder.bn1.running_mean, %self.kp_detector.fg_encoder.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %37 : Tensor = aten::relu(%input.5), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set Tactic Name: sm80_xmma_fprop_image_first_layer_f16f16_f32_f16_nhwckrsc_nhwc_hmma_k64c8r7s7_stride2x2_tile16x64x16_tensor1688 Tactic: 0x603af898ad7e47f4 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %input.9 : Tensor = aten::max_pool2d(%37, %26, %25, %27, %27, %4), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.maxpool # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:780:0 Set Tactic Name: sm50_xmma_pooling_coalescedC_NHWC_kMAX_3_False Tactic: 0xdb415cba6b0e9137 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %input.11 : Tensor = aten::_convolution(%input.9, %self.kp_detector.fg_encoder.layer1.0.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.13 : Tensor = aten::batch_norm(%input.11, %self.kp_detector.fg_encoder.layer1.0.bn1.weight, %self.kp_detector.fg_encoder.layer1.0.bn1.bias, %self.kp_detector.fg_encoder.layer1.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer1.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %46 : Tensor = aten::relu(%input.13), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set Tactic Name: sm80_xmma_fprop_implicit_gemm_f16f16_f16f16_f16_nhwckrsc_nhwc_tilesize64x64x64_stage4_warpsize2x2x1_g1_tensor16x8x16_t1r3s3_aACCESS Tactic: 0x30e8a8d7a953e5e9 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %input.17 : Tensor = aten::_convolution(%46, %self.kp_detector.fg_encoder.layer1.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.1 : Tensor = aten::batch_norm(%input.17, %self.kp_detector.fg_encoder.layer1.0.bn2.weight, %self.kp_detector.fg_encoder.layer1.0.bn2.bias, %self.kp_detector.fg_encoder.layer1.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer1.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %54 : Tensor = aten::add(%out.1, %input.9, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %55 : Tensor = aten::relu(%54), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set Tactic Name: sm80_xmma_fprop_implicit_gemm_f16f16_f16f16_f16_nhwckrsc_nhwc_tilesize64x64x64_stage4_warpsize2x2x1_g1_tensor16x8x16_t1r3s3_aACCESS Tactic: 0x30e8a8d7a953e5e9 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %input.23 : Tensor = aten::_convolution(%55, %self.kp_detector.fg_encoder.layer1.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.25 : Tensor = aten::batch_norm(%input.23, %self.kp_detector.fg_encoder.layer1.1.bn1.weight, %self.kp_detector.fg_encoder.layer1.1.bn1.bias, %self.kp_detector.fg_encoder.layer1.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer1.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %63 : Tensor = aten::relu(%input.25), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set Tactic Name: sm80_xmma_fprop_implicit_gemm_f16f16_f16f16_f16_nhwckrsc_nhwc_tilesize64x64x64_stage4_warpsize2x2x1_g1_tensor16x8x16_t1r3s3_aACCESS Tactic: 0x30e8a8d7a953e5e9 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %input.29 : Tensor = aten::_convolution(%63, %self.kp_detector.fg_encoder.layer1.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.3 : Tensor = aten::batch_norm(%input.29, %self.kp_detector.fg_encoder.layer1.1.bn2.weight, %self.kp_detector.fg_encoder.layer1.1.bn2.bias, %self.kp_detector.fg_encoder.layer1.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer1.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %71 : Tensor = aten::add(%out.3, %55, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %72 : Tensor = aten::relu(%71), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set Tactic Name: sm80_xmma_fprop_implicit_gemm_f16f16_f16f16_f16_nhwckrsc_nhwc_tilesize64x64x64_stage4_warpsize2x2x1_g1_tensor16x8x16_t1r3s3_aACCESS Tactic: 0x30e8a8d7a953e5e9 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %input.35 : Tensor = aten::_convolution(%72, %self.kp_detector.fg_encoder.layer2.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.37 : Tensor = aten::batch_norm(%input.35, %self.kp_detector.fg_encoder.layer2.0.bn1.weight, %self.kp_detector.fg_encoder.layer2.0.bn1.bias, %self.kp_detector.fg_encoder.layer2.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer2.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %80 : Tensor = aten::relu(%input.37), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set Tactic Name: sm80_xmma_fprop_implicit_gemm_indexed_f16f16_f16f16_f16_nhwckrsc_nhwc_tilesize64x32x64_stage5_warpsize2x2x1_g1_tensor16x8x16 Tactic: 0xe1ff5ad20f5c6bf6 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %input.41 : Tensor = aten::_convolution(%80, %self.kp_detector.fg_encoder.layer2.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.5 : Tensor = aten::batch_norm(%input.41, %self.kp_detector.fg_encoder.layer2.0.bn2.weight, %self.kp_detector.fg_encoder.layer2.0.bn2.bias, %self.kp_detector.fg_encoder.layer2.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer2.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 Set Tactic Name: sm80_xmma_fprop_implicit_gemm_indexed_f16f16_f16f16_f16_nhwckrsc_nhwc_tilesize64x32x64_stage5_warpsize2x2x1_g1_tensor16x8x16 Tactic: 0xe1ff5ad20f5c6bf6 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %input.43 : Tensor = aten::_convolution(%72, %self.kp_detector.fg_encoder.layer2.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.downsample/__module.kp_detector.fg_encoder.layer2.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.1 : Tensor = aten::batch_norm(%input.43, %self.kp_detector.fg_encoder.layer2.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer2.0.bn2.bias, %self.kp_detector.fg_encoder.layer2.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer2.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.downsample/__module.kp_detector.fg_encoder.layer2.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %94 : Tensor = aten::add(%out.5, %identity.1, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %95 : Tensor = aten::relu(%94), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set Tactic Name: sm80_xmma_fprop_implicit_gemm_f16f16_f16f16_f16_nhwckrsc_nhwc_tilesize64x32x64_stage5_warpsize2x2x1_g1_tensor16x8x16_t1r1s1 Tactic: 0x2aa016c86360697f | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %input.49 : Tensor = aten::_convolution(%95, %self.kp_detector.fg_encoder.layer2.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.51 : Tensor = aten::batch_norm(%input.49, %self.kp_detector.fg_encoder.layer2.1.bn1.weight, %self.kp_detector.fg_encoder.layer2.1.bn1.bias, %self.kp_detector.fg_encoder.layer2.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer2.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %103 : Tensor = aten::relu(%input.51), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set Tactic Name: sm80_xmma_fprop_implicit_gemm_indexed_f16f16_f16f16_f16_nhwckrsc_nhwc_tilesize64x32x64_stage5_warpsize2x2x1_g1_tensor16x8x16 Tactic: 0xe1ff5ad20f5c6bf6 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %input.55 : Tensor = aten::_convolution(%103, %self.kp_detector.fg_encoder.layer2.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.7 : Tensor = aten::batch_norm(%input.55, %self.kp_detector.fg_encoder.layer2.1.bn2.weight, %self.kp_detector.fg_encoder.layer2.1.bn2.bias, %self.kp_detector.fg_encoder.layer2.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer2.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %111 : Tensor = aten::add(%out.7, %95, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %112 : Tensor = aten::relu(%111), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set Tactic Name: sm80_xmma_fprop_implicit_gemm_indexed_f16f16_f16f16_f16_nhwckrsc_nhwc_tilesize64x32x64_stage5_warpsize2x2x1_g1_tensor16x8x16 Tactic: 0xe1ff5ad20f5c6bf6 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %input.61 : Tensor = aten::_convolution(%112, %self.kp_detector.fg_encoder.layer3.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.63 : Tensor = aten::batch_norm(%input.61, %self.kp_detector.fg_encoder.layer3.0.bn1.weight, %self.kp_detector.fg_encoder.layer3.0.bn1.bias, %self.kp_detector.fg_encoder.layer3.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer3.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %120 : Tensor = aten::relu(%input.63), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set Tactic Name: sm80_xmma_fprop_implicit_gemm_f16f16_f16f16_f16_nhwckrsc_nhwc_tilesize64x32x64_stage5_warpsize2x2x1_g1_tensor16x8x16_t1r3s3 Tactic: 0xa033e20ae9f412b2 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %input.67 : Tensor = aten::_convolution(%120, %self.kp_detector.fg_encoder.layer3.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.9 : Tensor = aten::batch_norm(%input.67, %self.kp_detector.fg_encoder.layer3.0.bn2.weight, %self.kp_detector.fg_encoder.layer3.0.bn2.bias, %self.kp_detector.fg_encoder.layer3.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer3.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 Set Tactic Name: sm80_xmma_fprop_implicit_gemm_f16f16_f16f16_f16_nhwckrsc_nhwc_tilesize64x32x64_stage5_warpsize2x2x1_g1_tensor16x8x16_t1r3s3 Tactic: 0xa033e20ae9f412b2 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %input.69 : Tensor = aten::_convolution(%112, %self.kp_detector.fg_encoder.layer3.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.downsample/__module.kp_detector.fg_encoder.layer3.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.3 : Tensor = aten::batch_norm(%input.69, %self.kp_detector.fg_encoder.layer3.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer3.0.bn2.bias, %self.kp_detector.fg_encoder.layer3.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer3.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.downsample/__module.kp_detector.fg_encoder.layer3.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %134 : Tensor = aten::add(%out.9, %identity.3, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %135 : Tensor = aten::relu(%134), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set Tactic Name: sm80_xmma_fprop_implicit_gemm_f16f16_f16f16_f16_nhwckrsc_nhwc_tilesize64x32x64_stage5_warpsize2x2x1_g1_tensor16x8x16_t1r1s1 Tactic: 0x2aa016c86360697f | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %input.75 : Tensor = aten::_convolution(%135, %self.kp_detector.fg_encoder.layer3.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.77 : Tensor = aten::batch_norm(%input.75, %self.kp_detector.fg_encoder.layer3.1.bn1.weight, %self.kp_detector.fg_encoder.layer3.1.bn1.bias, %self.kp_detector.fg_encoder.layer3.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer3.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %143 : Tensor = aten::relu(%input.77), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set Tactic Name: sm80_xmma_fprop_implicit_gemm_f16f16_f16f16_f16_nhwckrsc_nhwc_tilesize64x32x64_stage5_warpsize2x2x1_g1_tensor16x8x16_t1r3s3 Tactic: 0xa033e20ae9f412b2 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %input.81 : Tensor = aten::_convolution(%143, %self.kp_detector.fg_encoder.layer3.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.11 : Tensor = aten::batch_norm(%input.81, %self.kp_detector.fg_encoder.layer3.1.bn2.weight, %self.kp_detector.fg_encoder.layer3.1.bn2.bias, %self.kp_detector.fg_encoder.layer3.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer3.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %151 : Tensor = aten::add(%out.11, %135, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %152 : Tensor = aten::relu(%151), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set Tactic Name: sm80_xmma_fprop_implicit_gemm_f16f16_f16f16_f16_nhwckrsc_nhwc_tilesize64x32x64_stage5_warpsize2x2x1_g1_tensor16x8x16_t1r3s3 Tactic: 0xa033e20ae9f412b2 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %input.87 : Tensor = aten::_convolution(%152, %self.kp_detector.fg_encoder.layer4.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.89 : Tensor = aten::batch_norm(%input.87, %self.kp_detector.fg_encoder.layer4.0.bn1.weight, %self.kp_detector.fg_encoder.layer4.0.bn1.bias, %self.kp_detector.fg_encoder.layer4.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer4.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %160 : Tensor = aten::relu(%input.89), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set Tactic Name: sm80_xmma_fprop_implicit_gemm_f16f16_f16f16_f16_nhwckrsc_nhwc_tilesize64x32x64_stage5_warpsize2x2x1_g1_tensor16x8x16_t1r3s3 Tactic: 0xa033e20ae9f412b2 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %input.93 : Tensor = aten::_convolution(%160, %self.kp_detector.fg_encoder.layer4.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.13 : Tensor = aten::batch_norm(%input.93, %self.kp_detector.fg_encoder.layer4.0.bn2.weight, %self.kp_detector.fg_encoder.layer4.0.bn2.bias, %self.kp_detector.fg_encoder.layer4.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer4.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 Set Tactic Name: sm80_xmma_fprop_implicit_gemm_f16f16_f16f16_f16_nhwckrsc_nhwc_tilesize64x32x64_stage5_warpsize2x2x1_g1_tensor16x8x16_t1r3s3 Tactic: 0xa033e20ae9f412b2 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %input.95 : Tensor = aten::_convolution(%152, %self.kp_detector.fg_encoder.layer4.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.downsample/__module.kp_detector.fg_encoder.layer4.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.5 : Tensor = aten::batch_norm(%input.95, %self.kp_detector.fg_encoder.layer4.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer4.0.bn2.bias, %self.kp_detector.fg_encoder.layer4.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer4.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.downsample/__module.kp_detector.fg_encoder.layer4.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %174 : Tensor = aten::add(%out.13, %identity.5, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %175 : Tensor = aten::relu(%174), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set Tactic Name: sm80_xmma_fprop_implicit_gemm_f16f16_f16f16_f16_nhwckrsc_nhwc_tilesize64x32x64_stage5_warpsize2x2x1_g1_tensor16x8x16_t1r1s1 Tactic: 0x2aa016c86360697f | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %input.101 : Tensor = aten::_convolution(%175, %self.kp_detector.fg_encoder.layer4.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.103 : Tensor = aten::batch_norm(%input.101, %self.kp_detector.fg_encoder.layer4.1.bn1.weight, %self.kp_detector.fg_encoder.layer4.1.bn1.bias, %self.kp_detector.fg_encoder.layer4.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer4.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %183 : Tensor = aten::relu(%input.103), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set Tactic Name: sm80_xmma_fprop_implicit_gemm_f16f16_f16f16_f16_nhwckrsc_nhwc_tilesize64x32x64_stage5_warpsize2x2x1_g1_tensor16x8x16_t1r3s3 Tactic: 0xa033e20ae9f412b2 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %input.107 : Tensor = aten::_convolution(%183, %self.kp_detector.fg_encoder.layer4.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.15 : Tensor = aten::batch_norm(%input.107, %self.kp_detector.fg_encoder.layer4.1.bn2.weight, %self.kp_detector.fg_encoder.layer4.1.bn2.bias, %self.kp_detector.fg_encoder.layer4.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer4.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %191 : Tensor = aten::add(%out.15, %175, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %192 : Tensor = aten::relu(%191), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set Tactic Name: sm80_xmma_fprop_implicit_gemm_f16f16_f16f16_f16_nhwckrsc_nhwc_tilesize64x32x64_stage5_warpsize2x2x1_g1_tensor16x8x16_t1r3s3 Tactic: 0xa033e20ae9f412b2 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %x.5 : Tensor = aten::adaptive_avg_pool2d(%192, %27), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.avgpool # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1213:0 Set Tactic Name: sm50_xmma_pooling_fw_4d_FP16FP32NHWC_Average_FastDiv_CAlign4 Tactic: 0x56d7b61f084f251e | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %input.231 : Tensor = aten::_convolution(%22, %self.kp_detector.fg_encoder.conv1.weight, %5, %25, %26, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.233 : Tensor = aten::batch_norm(%input.231, %self.kp_detector.fg_encoder.bn1.weight, %self.kp_detector.fg_encoder.bn1.bias, %self.kp_detector.fg_encoder.bn1.running_mean, %self.kp_detector.fg_encoder.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %295 : Tensor = aten::relu(%input.233), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 || %input.117 : Tensor = aten::_convolution(%input.115, %self.kp_detector.fg_encoder.conv1.weight, %5, %25, %26, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.119 : Tensor = aten::batch_norm(%input.117, %self.kp_detector.fg_encoder.bn1.weight, %self.kp_detector.fg_encoder.bn1.bias, %self.kp_detector.fg_encoder.bn1.running_mean, %self.kp_detector.fg_encoder.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %216 : Tensor = aten::relu(%input.119), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set Tactic Name: ampere_fp16x2_hcudnn_fp16x2_128x64_relu_medium_nn_v1 Tactic: 0x4cfee77ea8c324db | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %input.123 : Tensor = aten::max_pool2d(%216, %26, %25, %27, %27, %4), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.maxpool # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:780:0 Set Tactic Name: sm50_xmma_pooling_CHWPacked_NCxHW2_kMAX Tactic: 0xc8ae100b63fd8921 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %input.125 : Tensor = aten::_convolution(%input.123, %self.kp_detector.fg_encoder.layer1.0.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.127 : Tensor = aten::batch_norm(%input.125, %self.kp_detector.fg_encoder.layer1.0.bn1.weight, %self.kp_detector.fg_encoder.layer1.0.bn1.bias, %self.kp_detector.fg_encoder.layer1.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer1.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %220 : Tensor = aten::relu(%input.127), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set Tactic Name: sm80_xmma_fprop_implicit_gemm_f16f16_f16f16_f16_nhwckrsc_nhwc_tilesize64x64x64_stage4_warpsize2x2x1_g1_tensor16x8x16_t1r3s3_aACCESS Tactic: 0x30e8a8d7a953e5e9 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %input.237 : Tensor = aten::max_pool2d(%295, %26, %25, %27, %27, %4), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.maxpool # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:780:0 Set Tactic Name: sm50_xmma_pooling_CHWPacked_NCxHW2_kMAX Tactic: 0xc8ae100b63fd8921 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %input.239 : Tensor = aten::_convolution(%input.237, %self.kp_detector.fg_encoder.layer1.0.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.241 : Tensor = aten::batch_norm(%input.239, %self.kp_detector.fg_encoder.layer1.0.bn1.weight, %self.kp_detector.fg_encoder.layer1.0.bn1.bias, %self.kp_detector.fg_encoder.layer1.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer1.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %299 : Tensor = aten::relu(%input.241), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set Tactic Name: sm80_xmma_fprop_implicit_gemm_f16f16_f16f16_f16_nhwckrsc_nhwc_tilesize64x64x64_stage4_warpsize2x2x1_g1_tensor16x8x16_t1r3s3_aACCESS Tactic: 0x30e8a8d7a953e5e9 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %input.245 : Tensor = aten::_convolution(%299, %self.kp_detector.fg_encoder.layer1.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.33 : Tensor = aten::batch_norm(%input.245, %self.kp_detector.fg_encoder.layer1.0.bn2.weight, %self.kp_detector.fg_encoder.layer1.0.bn2.bias, %self.kp_detector.fg_encoder.layer1.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer1.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %302 : Tensor = aten::add(%out.33, %input.237, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %303 : Tensor = aten::relu(%302), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set Tactic Name: sm80_xmma_fprop_implicit_gemm_f16f16_f16f16_f16_nhwckrsc_nhwc_tilesize64x64x64_stage4_warpsize2x2x1_g1_tensor16x8x16_t1r3s3_aACCESS Tactic: 0x30e8a8d7a953e5e9 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %input.131 : Tensor = aten::_convolution(%220, %self.kp_detector.fg_encoder.layer1.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.17 : Tensor = aten::batch_norm(%input.131, %self.kp_detector.fg_encoder.layer1.0.bn2.weight, %self.kp_detector.fg_encoder.layer1.0.bn2.bias, %self.kp_detector.fg_encoder.layer1.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer1.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %223 : Tensor = aten::add(%out.17, %input.123, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %224 : Tensor = aten::relu(%223), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set Tactic Name: sm80_xmma_fprop_implicit_gemm_f16f16_f16f16_f16_nhwckrsc_nhwc_tilesize64x64x64_stage4_warpsize2x2x1_g1_tensor16x8x16_t1r3s3_aACCESS Tactic: 0x30e8a8d7a953e5e9 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %input.137 : Tensor = aten::_convolution(%224, %self.kp_detector.fg_encoder.layer1.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.139 : Tensor = aten::batch_norm(%input.137, %self.kp_detector.fg_encoder.layer1.1.bn1.weight, %self.kp_detector.fg_encoder.layer1.1.bn1.bias, %self.kp_detector.fg_encoder.layer1.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer1.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %227 : Tensor = aten::relu(%input.139), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set Tactic Name: sm80_xmma_fprop_implicit_gemm_f16f16_f16f16_f16_nhwckrsc_nhwc_tilesize64x64x64_stage4_warpsize2x2x1_g1_tensor16x8x16_t1r3s3_aACCESS Tactic: 0x30e8a8d7a953e5e9 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %input.251 : Tensor = aten::_convolution(%303, %self.kp_detector.fg_encoder.layer1.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.253 : Tensor = aten::batch_norm(%input.251, %self.kp_detector.fg_encoder.layer1.1.bn1.weight, %self.kp_detector.fg_encoder.layer1.1.bn1.bias, %self.kp_detector.fg_encoder.layer1.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer1.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %306 : Tensor = aten::relu(%input.253), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set Tactic Name: sm80_xmma_fprop_implicit_gemm_f16f16_f16f16_f16_nhwckrsc_nhwc_tilesize64x64x64_stage4_warpsize2x2x1_g1_tensor16x8x16_t1r3s3_aACCESS Tactic: 0x30e8a8d7a953e5e9 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %input.257 : Tensor = aten::_convolution(%306, %self.kp_detector.fg_encoder.layer1.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.35 : Tensor = aten::batch_norm(%input.257, %self.kp_detector.fg_encoder.layer1.1.bn2.weight, %self.kp_detector.fg_encoder.layer1.1.bn2.bias, %self.kp_detector.fg_encoder.layer1.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer1.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %309 : Tensor = aten::add(%out.35, %303, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %310 : Tensor = aten::relu(%309), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set Tactic Name: sm80_xmma_fprop_implicit_gemm_f16f16_f16f16_f16_nhwckrsc_nhwc_tilesize64x64x64_stage4_warpsize2x2x1_g1_tensor16x8x16_t1r3s3_aACCESS Tactic: 0x30e8a8d7a953e5e9 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %input.143 : Tensor = aten::_convolution(%227, %self.kp_detector.fg_encoder.layer1.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.19 : Tensor = aten::batch_norm(%input.143, %self.kp_detector.fg_encoder.layer1.1.bn2.weight, %self.kp_detector.fg_encoder.layer1.1.bn2.bias, %self.kp_detector.fg_encoder.layer1.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer1.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %230 : Tensor = aten::add(%out.19, %224, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %231 : Tensor = aten::relu(%230), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set Tactic Name: sm80_xmma_fprop_implicit_gemm_f16f16_f16f16_f16_nhwckrsc_nhwc_tilesize64x64x64_stage4_warpsize2x2x1_g1_tensor16x8x16_t1r3s3_aACCESS Tactic: 0x30e8a8d7a953e5e9 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %input.149 : Tensor = aten::_convolution(%231, %self.kp_detector.fg_encoder.layer2.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.151 : Tensor = aten::batch_norm(%input.149, %self.kp_detector.fg_encoder.layer2.0.bn1.weight, %self.kp_detector.fg_encoder.layer2.0.bn1.bias, %self.kp_detector.fg_encoder.layer2.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer2.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %234 : Tensor = aten::relu(%input.151), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set Tactic Name: sm80_xmma_fprop_implicit_gemm_indexed_f16f16_f16f16_f16_nhwckrsc_nhwc_tilesize64x32x64_stage5_warpsize2x2x1_g1_tensor16x8x16 Tactic: 0xe1ff5ad20f5c6bf6 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %input.263 : Tensor = aten::_convolution(%310, %self.kp_detector.fg_encoder.layer2.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.265 : Tensor = aten::batch_norm(%input.263, %self.kp_detector.fg_encoder.layer2.0.bn1.weight, %self.kp_detector.fg_encoder.layer2.0.bn1.bias, %self.kp_detector.fg_encoder.layer2.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer2.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %313 : Tensor = aten::relu(%input.265), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set Tactic Name: sm80_xmma_fprop_implicit_gemm_indexed_f16f16_f16f16_f16_nhwckrsc_nhwc_tilesize64x32x64_stage5_warpsize2x2x1_g1_tensor16x8x16 Tactic: 0xe1ff5ad20f5c6bf6 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %input.269 : Tensor = aten::_convolution(%313, %self.kp_detector.fg_encoder.layer2.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.37 : Tensor = aten::batch_norm(%input.269, %self.kp_detector.fg_encoder.layer2.0.bn2.weight, %self.kp_detector.fg_encoder.layer2.0.bn2.bias, %self.kp_detector.fg_encoder.layer2.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer2.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 Set Tactic Name: sm80_xmma_fprop_implicit_gemm_indexed_f16f16_f16f16_f16_nhwckrsc_nhwc_tilesize64x32x64_stage5_warpsize2x2x1_g1_tensor16x8x16 Tactic: 0xe1ff5ad20f5c6bf6 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %input.155 : Tensor = aten::_convolution(%234, %self.kp_detector.fg_encoder.layer2.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.21 : Tensor = aten::batch_norm(%input.155, %self.kp_detector.fg_encoder.layer2.0.bn2.weight, %self.kp_detector.fg_encoder.layer2.0.bn2.bias, %self.kp_detector.fg_encoder.layer2.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer2.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 Set Tactic Name: sm80_xmma_fprop_implicit_gemm_indexed_f16f16_f16f16_f16_nhwckrsc_nhwc_tilesize64x32x64_stage5_warpsize2x2x1_g1_tensor16x8x16 Tactic: 0xe1ff5ad20f5c6bf6 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %input.271 : Tensor = aten::_convolution(%310, %self.kp_detector.fg_encoder.layer2.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.downsample/__module.kp_detector.fg_encoder.layer2.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.13 : Tensor = aten::batch_norm(%input.271, %self.kp_detector.fg_encoder.layer2.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer2.0.bn2.bias, %self.kp_detector.fg_encoder.layer2.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer2.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.downsample/__module.kp_detector.fg_encoder.layer2.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %318 : Tensor = aten::add(%out.37, %identity.13, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %319 : Tensor = aten::relu(%318), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set Tactic Name: sm80_xmma_fprop_implicit_gemm_f16f16_f16f16_f16_nhwckrsc_nhwc_tilesize64x32x64_stage5_warpsize2x2x1_g1_tensor16x8x16_t1r1s1 Tactic: 0x2aa016c86360697f | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %input.157 : Tensor = aten::_convolution(%231, %self.kp_detector.fg_encoder.layer2.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.downsample/__module.kp_detector.fg_encoder.layer2.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.7 : Tensor = aten::batch_norm(%input.157, %self.kp_detector.fg_encoder.layer2.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer2.0.bn2.bias, %self.kp_detector.fg_encoder.layer2.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer2.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.downsample/__module.kp_detector.fg_encoder.layer2.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %239 : Tensor = aten::add(%out.21, %identity.7, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %240 : Tensor = aten::relu(%239), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set Tactic Name: sm80_xmma_fprop_implicit_gemm_f16f16_f16f16_f16_nhwckrsc_nhwc_tilesize64x32x64_stage5_warpsize2x2x1_g1_tensor16x8x16_t1r1s1 Tactic: 0x2aa016c86360697f | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %input.163 : Tensor = aten::_convolution(%240, %self.kp_detector.fg_encoder.layer2.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.165 : Tensor = aten::batch_norm(%input.163, %self.kp_detector.fg_encoder.layer2.1.bn1.weight, %self.kp_detector.fg_encoder.layer2.1.bn1.bias, %self.kp_detector.fg_encoder.layer2.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer2.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %243 : Tensor = aten::relu(%input.165), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set Tactic Name: sm80_xmma_fprop_implicit_gemm_indexed_f16f16_f16f16_f16_nhwckrsc_nhwc_tilesize64x32x64_stage5_warpsize2x2x1_g1_tensor16x8x16 Tactic: 0xe1ff5ad20f5c6bf6 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %input.277 : Tensor = aten::_convolution(%319, %self.kp_detector.fg_encoder.layer2.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.279 : Tensor = aten::batch_norm(%input.277, %self.kp_detector.fg_encoder.layer2.1.bn1.weight, %self.kp_detector.fg_encoder.layer2.1.bn1.bias, %self.kp_detector.fg_encoder.layer2.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer2.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %322 : Tensor = aten::relu(%input.279), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set Tactic Name: sm80_xmma_fprop_implicit_gemm_indexed_f16f16_f16f16_f16_nhwckrsc_nhwc_tilesize64x32x64_stage5_warpsize2x2x1_g1_tensor16x8x16 Tactic: 0xe1ff5ad20f5c6bf6 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %input.283 : Tensor = aten::_convolution(%322, %self.kp_detector.fg_encoder.layer2.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.39 : Tensor = aten::batch_norm(%input.283, %self.kp_detector.fg_encoder.layer2.1.bn2.weight, %self.kp_detector.fg_encoder.layer2.1.bn2.bias, %self.kp_detector.fg_encoder.layer2.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer2.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %325 : Tensor = aten::add(%out.39, %319, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %326 : Tensor = aten::relu(%325), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set Tactic Name: sm80_xmma_fprop_implicit_gemm_indexed_f16f16_f16f16_f16_nhwckrsc_nhwc_tilesize64x32x64_stage5_warpsize2x2x1_g1_tensor16x8x16 Tactic: 0xe1ff5ad20f5c6bf6 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %input.169 : Tensor = aten::_convolution(%243, %self.kp_detector.fg_encoder.layer2.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.23 : Tensor = aten::batch_norm(%input.169, %self.kp_detector.fg_encoder.layer2.1.bn2.weight, %self.kp_detector.fg_encoder.layer2.1.bn2.bias, %self.kp_detector.fg_encoder.layer2.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer2.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %246 : Tensor = aten::add(%out.23, %240, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %247 : Tensor = aten::relu(%246), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set Tactic Name: sm80_xmma_fprop_implicit_gemm_indexed_f16f16_f16f16_f16_nhwckrsc_nhwc_tilesize64x32x64_stage5_warpsize2x2x1_g1_tensor16x8x16 Tactic: 0xe1ff5ad20f5c6bf6 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %input.175 : Tensor = aten::_convolution(%247, %self.kp_detector.fg_encoder.layer3.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.177 : Tensor = aten::batch_norm(%input.175, %self.kp_detector.fg_encoder.layer3.0.bn1.weight, %self.kp_detector.fg_encoder.layer3.0.bn1.bias, %self.kp_detector.fg_encoder.layer3.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer3.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %250 : Tensor = aten::relu(%input.177), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set Tactic Name: sm80_xmma_fprop_implicit_gemm_f16f16_f16f16_f16_nhwckrsc_nhwc_tilesize64x32x64_stage5_warpsize2x2x1_g1_tensor16x8x16_t1r3s3 Tactic: 0xa033e20ae9f412b2 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %input.289 : Tensor = aten::_convolution(%326, %self.kp_detector.fg_encoder.layer3.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.291 : Tensor = aten::batch_norm(%input.289, %self.kp_detector.fg_encoder.layer3.0.bn1.weight, %self.kp_detector.fg_encoder.layer3.0.bn1.bias, %self.kp_detector.fg_encoder.layer3.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer3.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %329 : Tensor = aten::relu(%input.291), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set Tactic Name: sm80_xmma_fprop_implicit_gemm_f16f16_f16f16_f16_nhwckrsc_nhwc_tilesize64x32x64_stage5_warpsize2x2x1_g1_tensor16x8x16_t1r3s3 Tactic: 0xa033e20ae9f412b2 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %input.295 : Tensor = aten::_convolution(%329, %self.kp_detector.fg_encoder.layer3.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.41 : Tensor = aten::batch_norm(%input.295, %self.kp_detector.fg_encoder.layer3.0.bn2.weight, %self.kp_detector.fg_encoder.layer3.0.bn2.bias, %self.kp_detector.fg_encoder.layer3.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer3.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 Set Tactic Name: sm80_xmma_fprop_implicit_gemm_f16f16_f16f16_f16_nhwckrsc_nhwc_tilesize64x32x64_stage5_warpsize2x2x1_g1_tensor16x8x16_t1r3s3 Tactic: 0xa033e20ae9f412b2 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %input.181 : Tensor = aten::_convolution(%250, %self.kp_detector.fg_encoder.layer3.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.25 : Tensor = aten::batch_norm(%input.181, %self.kp_detector.fg_encoder.layer3.0.bn2.weight, %self.kp_detector.fg_encoder.layer3.0.bn2.bias, %self.kp_detector.fg_encoder.layer3.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer3.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 Set Tactic Name: sm80_xmma_fprop_implicit_gemm_f16f16_f16f16_f16_nhwckrsc_nhwc_tilesize64x32x64_stage5_warpsize2x2x1_g1_tensor16x8x16_t1r3s3 Tactic: 0xa033e20ae9f412b2 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %input.297 : Tensor = aten::_convolution(%326, %self.kp_detector.fg_encoder.layer3.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.downsample/__module.kp_detector.fg_encoder.layer3.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.15 : Tensor = aten::batch_norm(%input.297, %self.kp_detector.fg_encoder.layer3.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer3.0.bn2.bias, %self.kp_detector.fg_encoder.layer3.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer3.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.downsample/__module.kp_detector.fg_encoder.layer3.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %334 : Tensor = aten::add(%out.41, %identity.15, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %335 : Tensor = aten::relu(%334), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set Tactic Name: sm80_xmma_fprop_implicit_gemm_f16f16_f16f16_f16_nhwckrsc_nhwc_tilesize64x32x64_stage5_warpsize2x2x1_g1_tensor16x8x16_t1r1s1 Tactic: 0x2aa016c86360697f | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %input.183 : Tensor = aten::_convolution(%247, %self.kp_detector.fg_encoder.layer3.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.downsample/__module.kp_detector.fg_encoder.layer3.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.9 : Tensor = aten::batch_norm(%input.183, %self.kp_detector.fg_encoder.layer3.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer3.0.bn2.bias, %self.kp_detector.fg_encoder.layer3.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer3.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.downsample/__module.kp_detector.fg_encoder.layer3.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %255 : Tensor = aten::add(%out.25, %identity.9, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %256 : Tensor = aten::relu(%255), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set Tactic Name: sm80_xmma_fprop_implicit_gemm_f16f16_f16f16_f16_nhwckrsc_nhwc_tilesize64x32x64_stage5_warpsize2x2x1_g1_tensor16x8x16_t1r1s1 Tactic: 0x2aa016c86360697f | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %input.189 : Tensor = aten::_convolution(%256, %self.kp_detector.fg_encoder.layer3.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.191 : Tensor = aten::batch_norm(%input.189, %self.kp_detector.fg_encoder.layer3.1.bn1.weight, %self.kp_detector.fg_encoder.layer3.1.bn1.bias, %self.kp_detector.fg_encoder.layer3.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer3.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %259 : Tensor = aten::relu(%input.191), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set Tactic Name: sm80_xmma_fprop_implicit_gemm_f16f16_f16f16_f16_nhwckrsc_nhwc_tilesize64x32x64_stage5_warpsize2x2x1_g1_tensor16x8x16_t1r3s3 Tactic: 0xa033e20ae9f412b2 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %input.303 : Tensor = aten::_convolution(%335, %self.kp_detector.fg_encoder.layer3.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.305 : Tensor = aten::batch_norm(%input.303, %self.kp_detector.fg_encoder.layer3.1.bn1.weight, %self.kp_detector.fg_encoder.layer3.1.bn1.bias, %self.kp_detector.fg_encoder.layer3.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer3.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %338 : Tensor = aten::relu(%input.305), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set Tactic Name: sm80_xmma_fprop_implicit_gemm_f16f16_f16f16_f16_nhwckrsc_nhwc_tilesize64x32x64_stage5_warpsize2x2x1_g1_tensor16x8x16_t1r3s3 Tactic: 0xa033e20ae9f412b2 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %input.309 : Tensor = aten::_convolution(%338, %self.kp_detector.fg_encoder.layer3.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.43 : Tensor = aten::batch_norm(%input.309, %self.kp_detector.fg_encoder.layer3.1.bn2.weight, %self.kp_detector.fg_encoder.layer3.1.bn2.bias, %self.kp_detector.fg_encoder.layer3.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer3.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %341 : Tensor = aten::add(%out.43, %335, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %342 : Tensor = aten::relu(%341), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set Tactic Name: sm80_xmma_fprop_implicit_gemm_f16f16_f16f16_f16_nhwckrsc_nhwc_tilesize64x32x64_stage5_warpsize2x2x1_g1_tensor16x8x16_t1r3s3 Tactic: 0xa033e20ae9f412b2 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %input.195 : Tensor = aten::_convolution(%259, %self.kp_detector.fg_encoder.layer3.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.27 : Tensor = aten::batch_norm(%input.195, %self.kp_detector.fg_encoder.layer3.1.bn2.weight, %self.kp_detector.fg_encoder.layer3.1.bn2.bias, %self.kp_detector.fg_encoder.layer3.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer3.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %262 : Tensor = aten::add(%out.27, %256, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %263 : Tensor = aten::relu(%262), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set Tactic Name: sm80_xmma_fprop_implicit_gemm_f16f16_f16f16_f16_nhwckrsc_nhwc_tilesize64x32x64_stage5_warpsize2x2x1_g1_tensor16x8x16_t1r3s3 Tactic: 0xa033e20ae9f412b2 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %input.201 : Tensor = aten::_convolution(%263, %self.kp_detector.fg_encoder.layer4.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.203 : Tensor = aten::batch_norm(%input.201, %self.kp_detector.fg_encoder.layer4.0.bn1.weight, %self.kp_detector.fg_encoder.layer4.0.bn1.bias, %self.kp_detector.fg_encoder.layer4.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer4.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %266 : Tensor = aten::relu(%input.203), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set Tactic Name: sm80_xmma_fprop_implicit_gemm_f16f16_f16f16_f16_nhwckrsc_nhwc_tilesize64x32x64_stage5_warpsize2x2x1_g1_tensor16x8x16_t1r3s3 Tactic: 0xa033e20ae9f412b2 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %input.315 : Tensor = aten::_convolution(%342, %self.kp_detector.fg_encoder.layer4.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.317 : Tensor = aten::batch_norm(%input.315, %self.kp_detector.fg_encoder.layer4.0.bn1.weight, %self.kp_detector.fg_encoder.layer4.0.bn1.bias, %self.kp_detector.fg_encoder.layer4.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer4.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %345 : Tensor = aten::relu(%input.317), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set Tactic Name: sm80_xmma_fprop_implicit_gemm_f16f16_f16f16_f16_nhwckrsc_nhwc_tilesize64x32x64_stage5_warpsize2x2x1_g1_tensor16x8x16_t1r3s3 Tactic: 0xa033e20ae9f412b2 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %input.321 : Tensor = aten::_convolution(%345, %self.kp_detector.fg_encoder.layer4.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.45 : Tensor = aten::batch_norm(%input.321, %self.kp_detector.fg_encoder.layer4.0.bn2.weight, %self.kp_detector.fg_encoder.layer4.0.bn2.bias, %self.kp_detector.fg_encoder.layer4.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer4.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 Set Tactic Name: sm80_xmma_fprop_implicit_gemm_f16f16_f16f16_f16_nhwckrsc_nhwc_tilesize64x32x64_stage5_warpsize2x2x1_g1_tensor16x8x16_t1r3s3 Tactic: 0xa033e20ae9f412b2 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %input.207 : Tensor = aten::_convolution(%266, %self.kp_detector.fg_encoder.layer4.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.29 : Tensor = aten::batch_norm(%input.207, %self.kp_detector.fg_encoder.layer4.0.bn2.weight, %self.kp_detector.fg_encoder.layer4.0.bn2.bias, %self.kp_detector.fg_encoder.layer4.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer4.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 Set Tactic Name: sm80_xmma_fprop_implicit_gemm_f16f16_f16f16_f16_nhwckrsc_nhwc_tilesize64x32x64_stage5_warpsize2x2x1_g1_tensor16x8x16_t1r3s3 Tactic: 0xa033e20ae9f412b2 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %input.323 : Tensor = aten::_convolution(%342, %self.kp_detector.fg_encoder.layer4.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.downsample/__module.kp_detector.fg_encoder.layer4.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity : Tensor = aten::batch_norm(%input.323, %self.kp_detector.fg_encoder.layer4.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer4.0.bn2.bias, %self.kp_detector.fg_encoder.layer4.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer4.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.downsample/__module.kp_detector.fg_encoder.layer4.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %350 : Tensor = aten::add(%out.45, %identity, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %351 : Tensor = aten::relu(%350), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set Tactic Name: sm80_xmma_fprop_implicit_gemm_f16f16_f16f16_f16_nhwckrsc_nhwc_tilesize64x32x64_stage5_warpsize2x2x1_g1_tensor16x8x16_t1r1s1 Tactic: 0x2aa016c86360697f | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %input.209 : Tensor = aten::_convolution(%263, %self.kp_detector.fg_encoder.layer4.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.downsample/__module.kp_detector.fg_encoder.layer4.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.11 : Tensor = aten::batch_norm(%input.209, %self.kp_detector.fg_encoder.layer4.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer4.0.bn2.bias, %self.kp_detector.fg_encoder.layer4.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer4.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.downsample/__module.kp_detector.fg_encoder.layer4.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %271 : Tensor = aten::add(%out.29, %identity.11, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %272 : Tensor = aten::relu(%271), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set Tactic Name: sm80_xmma_fprop_implicit_gemm_f16f16_f16f16_f16_nhwckrsc_nhwc_tilesize64x32x64_stage5_warpsize2x2x1_g1_tensor16x8x16_t1r1s1 Tactic: 0x2aa016c86360697f | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %input.215 : Tensor = aten::_convolution(%272, %self.kp_detector.fg_encoder.layer4.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.217 : Tensor = aten::batch_norm(%input.215, %self.kp_detector.fg_encoder.layer4.1.bn1.weight, %self.kp_detector.fg_encoder.layer4.1.bn1.bias, %self.kp_detector.fg_encoder.layer4.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer4.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %275 : Tensor = aten::relu(%input.217), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set Tactic Name: sm80_xmma_fprop_implicit_gemm_f16f16_f16f16_f16_nhwckrsc_nhwc_tilesize64x32x64_stage5_warpsize2x2x1_g1_tensor16x8x16_t1r3s3 Tactic: 0xa033e20ae9f412b2 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %input.329 : Tensor = aten::_convolution(%351, %self.kp_detector.fg_encoder.layer4.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.331 : Tensor = aten::batch_norm(%input.329, %self.kp_detector.fg_encoder.layer4.1.bn1.weight, %self.kp_detector.fg_encoder.layer4.1.bn1.bias, %self.kp_detector.fg_encoder.layer4.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer4.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %354 : Tensor = aten::relu(%input.331), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set Tactic Name: sm80_xmma_fprop_implicit_gemm_f16f16_f16f16_f16_nhwckrsc_nhwc_tilesize64x32x64_stage5_warpsize2x2x1_g1_tensor16x8x16_t1r3s3 Tactic: 0xa033e20ae9f412b2 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %input.335 : Tensor = aten::_convolution(%354, %self.kp_detector.fg_encoder.layer4.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.47 : Tensor = aten::batch_norm(%input.335, %self.kp_detector.fg_encoder.layer4.1.bn2.weight, %self.kp_detector.fg_encoder.layer4.1.bn2.bias, %self.kp_detector.fg_encoder.layer4.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer4.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %357 : Tensor = aten::add(%out.47, %351, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %358 : Tensor = aten::relu(%357), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set Tactic Name: sm80_xmma_fprop_implicit_gemm_f16f16_f16f16_f16_nhwckrsc_nhwc_tilesize64x32x64_stage5_warpsize2x2x1_g1_tensor16x8x16_t1r3s3 Tactic: 0xa033e20ae9f412b2 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %x.9 : Tensor = aten::adaptive_avg_pool2d(%358, %27), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.avgpool # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1213:0 Set Tactic Name: sm50_xmma_pooling_fw_4d_FP16FP32NHWC_Average_FastDiv_CAlign4 Tactic: 0x56d7b61f084f251e | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %input.221 : Tensor = aten::_convolution(%275, %self.kp_detector.fg_encoder.layer4.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.31 : Tensor = aten::batch_norm(%input.221, %self.kp_detector.fg_encoder.layer4.1.bn2.weight, %self.kp_detector.fg_encoder.layer4.1.bn2.bias, %self.kp_detector.fg_encoder.layer4.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer4.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %278 : Tensor = aten::add(%out.31, %272, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %279 : Tensor = aten::relu(%278), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set Tactic Name: sm80_xmma_fprop_implicit_gemm_f16f16_f16f16_f16_nhwckrsc_nhwc_tilesize64x32x64_stage5_warpsize2x2x1_g1_tensor16x8x16_t1r3s3 Tactic: 0xa033e20ae9f412b2 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - %x.7 : Tensor = aten::adaptive_avg_pool2d(%279, %27), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.avgpool # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1213:0 Set Tactic Name: sm50_xmma_pooling_fw_4d_FP16FP32NHWC_Average_FastDiv_CAlign4 Tactic: 0x56d7b61f084f251e | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: {ForeignNode[(Unnamed Layer* 1) [Shuffle]...%input.115 : Tensor = aten::select(%19, %21, %16) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:529:0]} Host Persistent: 24 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %input.3 : Tensor = aten::_convolution(%10, %self.kp_detector.fg_encoder.conv1.weight, %5, %25, %26, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.5 : Tensor = aten::batch_norm(%input.3, %self.kp_detector.fg_encoder.bn1.weight, %self.kp_detector.fg_encoder.bn1.bias, %self.kp_detector.fg_encoder.bn1.running_mean, %self.kp_detector.fg_encoder.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %37 : Tensor = aten::relu(%input.5), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Host Persistent: 1792 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %input.9 : Tensor = aten::max_pool2d(%37, %26, %25, %27, %27, %4), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.maxpool # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:780:0 Host Persistent: 1280 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %input.11 : Tensor = aten::_convolution(%input.9, %self.kp_detector.fg_encoder.layer1.0.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.13 : Tensor = aten::batch_norm(%input.11, %self.kp_detector.fg_encoder.layer1.0.bn1.weight, %self.kp_detector.fg_encoder.layer1.0.bn1.bias, %self.kp_detector.fg_encoder.layer1.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer1.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %46 : Tensor = aten::relu(%input.13), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Host Persistent: 3264 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %input.17 : Tensor = aten::_convolution(%46, %self.kp_detector.fg_encoder.layer1.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.1 : Tensor = aten::batch_norm(%input.17, %self.kp_detector.fg_encoder.layer1.0.bn2.weight, %self.kp_detector.fg_encoder.layer1.0.bn2.bias, %self.kp_detector.fg_encoder.layer1.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer1.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %54 : Tensor = aten::add(%out.1, %input.9, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %55 : Tensor = aten::relu(%54), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Host Persistent: 3264 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %input.23 : Tensor = aten::_convolution(%55, %self.kp_detector.fg_encoder.layer1.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.25 : Tensor = aten::batch_norm(%input.23, %self.kp_detector.fg_encoder.layer1.1.bn1.weight, %self.kp_detector.fg_encoder.layer1.1.bn1.bias, %self.kp_detector.fg_encoder.layer1.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer1.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %63 : Tensor = aten::relu(%input.25), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Host Persistent: 3264 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %input.29 : Tensor = aten::_convolution(%63, %self.kp_detector.fg_encoder.layer1.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.3 : Tensor = aten::batch_norm(%input.29, %self.kp_detector.fg_encoder.layer1.1.bn2.weight, %self.kp_detector.fg_encoder.layer1.1.bn2.bias, %self.kp_detector.fg_encoder.layer1.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer1.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %71 : Tensor = aten::add(%out.3, %55, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %72 : Tensor = aten::relu(%71), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Host Persistent: 3264 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %input.35 : Tensor = aten::_convolution(%72, %self.kp_detector.fg_encoder.layer2.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.37 : Tensor = aten::batch_norm(%input.35, %self.kp_detector.fg_encoder.layer2.0.bn1.weight, %self.kp_detector.fg_encoder.layer2.0.bn1.bias, %self.kp_detector.fg_encoder.layer2.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer2.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %80 : Tensor = aten::relu(%input.37), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Host Persistent: 2624 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %input.41 : Tensor = aten::_convolution(%80, %self.kp_detector.fg_encoder.layer2.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.5 : Tensor = aten::batch_norm(%input.41, %self.kp_detector.fg_encoder.layer2.0.bn2.weight, %self.kp_detector.fg_encoder.layer2.0.bn2.bias, %self.kp_detector.fg_encoder.layer2.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer2.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 Host Persistent: 2624 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %input.43 : Tensor = aten::_convolution(%72, %self.kp_detector.fg_encoder.layer2.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.downsample/__module.kp_detector.fg_encoder.layer2.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.1 : Tensor = aten::batch_norm(%input.43, %self.kp_detector.fg_encoder.layer2.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer2.0.bn2.bias, %self.kp_detector.fg_encoder.layer2.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer2.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.downsample/__module.kp_detector.fg_encoder.layer2.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %94 : Tensor = aten::add(%out.5, %identity.1, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %95 : Tensor = aten::relu(%94), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Host Persistent: 3264 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %input.49 : Tensor = aten::_convolution(%95, %self.kp_detector.fg_encoder.layer2.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.51 : Tensor = aten::batch_norm(%input.49, %self.kp_detector.fg_encoder.layer2.1.bn1.weight, %self.kp_detector.fg_encoder.layer2.1.bn1.bias, %self.kp_detector.fg_encoder.layer2.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer2.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %103 : Tensor = aten::relu(%input.51), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Host Persistent: 2624 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %input.55 : Tensor = aten::_convolution(%103, %self.kp_detector.fg_encoder.layer2.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.7 : Tensor = aten::batch_norm(%input.55, %self.kp_detector.fg_encoder.layer2.1.bn2.weight, %self.kp_detector.fg_encoder.layer2.1.bn2.bias, %self.kp_detector.fg_encoder.layer2.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer2.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %111 : Tensor = aten::add(%out.7, %95, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %112 : Tensor = aten::relu(%111), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Host Persistent: 2624 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %input.61 : Tensor = aten::_convolution(%112, %self.kp_detector.fg_encoder.layer3.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.63 : Tensor = aten::batch_norm(%input.61, %self.kp_detector.fg_encoder.layer3.0.bn1.weight, %self.kp_detector.fg_encoder.layer3.0.bn1.bias, %self.kp_detector.fg_encoder.layer3.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer3.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %120 : Tensor = aten::relu(%input.63), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Host Persistent: 3264 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %input.67 : Tensor = aten::_convolution(%120, %self.kp_detector.fg_encoder.layer3.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.9 : Tensor = aten::batch_norm(%input.67, %self.kp_detector.fg_encoder.layer3.0.bn2.weight, %self.kp_detector.fg_encoder.layer3.0.bn2.bias, %self.kp_detector.fg_encoder.layer3.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer3.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 Host Persistent: 3264 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %input.69 : Tensor = aten::_convolution(%112, %self.kp_detector.fg_encoder.layer3.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.downsample/__module.kp_detector.fg_encoder.layer3.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.3 : Tensor = aten::batch_norm(%input.69, %self.kp_detector.fg_encoder.layer3.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer3.0.bn2.bias, %self.kp_detector.fg_encoder.layer3.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer3.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.downsample/__module.kp_detector.fg_encoder.layer3.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %134 : Tensor = aten::add(%out.9, %identity.3, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %135 : Tensor = aten::relu(%134), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Host Persistent: 3264 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %input.75 : Tensor = aten::_convolution(%135, %self.kp_detector.fg_encoder.layer3.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.77 : Tensor = aten::batch_norm(%input.75, %self.kp_detector.fg_encoder.layer3.1.bn1.weight, %self.kp_detector.fg_encoder.layer3.1.bn1.bias, %self.kp_detector.fg_encoder.layer3.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer3.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %143 : Tensor = aten::relu(%input.77), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Host Persistent: 3264 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %input.81 : Tensor = aten::_convolution(%143, %self.kp_detector.fg_encoder.layer3.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.11 : Tensor = aten::batch_norm(%input.81, %self.kp_detector.fg_encoder.layer3.1.bn2.weight, %self.kp_detector.fg_encoder.layer3.1.bn2.bias, %self.kp_detector.fg_encoder.layer3.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer3.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %151 : Tensor = aten::add(%out.11, %135, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %152 : Tensor = aten::relu(%151), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Host Persistent: 3264 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %input.87 : Tensor = aten::_convolution(%152, %self.kp_detector.fg_encoder.layer4.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.89 : Tensor = aten::batch_norm(%input.87, %self.kp_detector.fg_encoder.layer4.0.bn1.weight, %self.kp_detector.fg_encoder.layer4.0.bn1.bias, %self.kp_detector.fg_encoder.layer4.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer4.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %160 : Tensor = aten::relu(%input.89), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Host Persistent: 3264 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %input.93 : Tensor = aten::_convolution(%160, %self.kp_detector.fg_encoder.layer4.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.13 : Tensor = aten::batch_norm(%input.93, %self.kp_detector.fg_encoder.layer4.0.bn2.weight, %self.kp_detector.fg_encoder.layer4.0.bn2.bias, %self.kp_detector.fg_encoder.layer4.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer4.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 Host Persistent: 3264 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %input.95 : Tensor = aten::_convolution(%152, %self.kp_detector.fg_encoder.layer4.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.downsample/__module.kp_detector.fg_encoder.layer4.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.5 : Tensor = aten::batch_norm(%input.95, %self.kp_detector.fg_encoder.layer4.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer4.0.bn2.bias, %self.kp_detector.fg_encoder.layer4.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer4.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.downsample/__module.kp_detector.fg_encoder.layer4.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %174 : Tensor = aten::add(%out.13, %identity.5, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %175 : Tensor = aten::relu(%174), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Host Persistent: 3264 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %input.101 : Tensor = aten::_convolution(%175, %self.kp_detector.fg_encoder.layer4.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.103 : Tensor = aten::batch_norm(%input.101, %self.kp_detector.fg_encoder.layer4.1.bn1.weight, %self.kp_detector.fg_encoder.layer4.1.bn1.bias, %self.kp_detector.fg_encoder.layer4.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer4.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %183 : Tensor = aten::relu(%input.103), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Host Persistent: 3264 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %input.107 : Tensor = aten::_convolution(%183, %self.kp_detector.fg_encoder.layer4.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.15 : Tensor = aten::batch_norm(%input.107, %self.kp_detector.fg_encoder.layer4.1.bn2.weight, %self.kp_detector.fg_encoder.layer4.1.bn2.bias, %self.kp_detector.fg_encoder.layer4.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer4.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %191 : Tensor = aten::add(%out.15, %175, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %192 : Tensor = aten::relu(%191), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Host Persistent: 3264 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %x.5 : Tensor = aten::adaptive_avg_pool2d(%192, %27), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.avgpool # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1213:0 Host Persistent: 1408 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %198 : Tensor = aten::matmul(%input.113, %196) + [Freeze Tensor %199 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 83) [Shuffle] + unsqueeze_node_after_[Freeze Tensor %199 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 83) [Shuffle]_(Unnamed Layer* 83) [Shuffle]_output + %201 : Tensor = aten::add(%199, %198, %365) + PWN(%fg_kp.3 : Tensor = aten::sigmoid(%201), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0) Host Persistent: 340 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %input.231 : Tensor = aten::_convolution(%22, %self.kp_detector.fg_encoder.conv1.weight, %5, %25, %26, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.233 : Tensor = aten::batch_norm(%input.231, %self.kp_detector.fg_encoder.bn1.weight, %self.kp_detector.fg_encoder.bn1.bias, %self.kp_detector.fg_encoder.bn1.running_mean, %self.kp_detector.fg_encoder.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %295 : Tensor = aten::relu(%input.233), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 || %input.117 : Tensor = aten::_convolution(%input.115, %self.kp_detector.fg_encoder.conv1.weight, %5, %25, %26, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.119 : Tensor = aten::batch_norm(%input.117, %self.kp_detector.fg_encoder.bn1.weight, %self.kp_detector.fg_encoder.bn1.bias, %self.kp_detector.fg_encoder.bn1.running_mean, %self.kp_detector.fg_encoder.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %216 : Tensor = aten::relu(%input.119), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Host Persistent: 2176 Device Persistent: 98816 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %input.123 : Tensor = aten::max_pool2d(%216, %26, %25, %27, %27, %4), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.maxpool # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:780:0 Host Persistent: 1280 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %input.125 : Tensor = aten::_convolution(%input.123, %self.kp_detector.fg_encoder.layer1.0.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.127 : Tensor = aten::batch_norm(%input.125, %self.kp_detector.fg_encoder.layer1.0.bn1.weight, %self.kp_detector.fg_encoder.layer1.0.bn1.bias, %self.kp_detector.fg_encoder.layer1.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer1.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %220 : Tensor = aten::relu(%input.127), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Host Persistent: 3264 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %input.237 : Tensor = aten::max_pool2d(%295, %26, %25, %27, %27, %4), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.maxpool # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:780:0 Host Persistent: 1280 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %input.239 : Tensor = aten::_convolution(%input.237, %self.kp_detector.fg_encoder.layer1.0.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.241 : Tensor = aten::batch_norm(%input.239, %self.kp_detector.fg_encoder.layer1.0.bn1.weight, %self.kp_detector.fg_encoder.layer1.0.bn1.bias, %self.kp_detector.fg_encoder.layer1.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer1.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %299 : Tensor = aten::relu(%input.241), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Host Persistent: 3264 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %input.245 : Tensor = aten::_convolution(%299, %self.kp_detector.fg_encoder.layer1.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.33 : Tensor = aten::batch_norm(%input.245, %self.kp_detector.fg_encoder.layer1.0.bn2.weight, %self.kp_detector.fg_encoder.layer1.0.bn2.bias, %self.kp_detector.fg_encoder.layer1.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer1.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %302 : Tensor = aten::add(%out.33, %input.237, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %303 : Tensor = aten::relu(%302), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Host Persistent: 3264 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %input.131 : Tensor = aten::_convolution(%220, %self.kp_detector.fg_encoder.layer1.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.17 : Tensor = aten::batch_norm(%input.131, %self.kp_detector.fg_encoder.layer1.0.bn2.weight, %self.kp_detector.fg_encoder.layer1.0.bn2.bias, %self.kp_detector.fg_encoder.layer1.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer1.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %223 : Tensor = aten::add(%out.17, %input.123, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %224 : Tensor = aten::relu(%223), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Host Persistent: 3264 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %input.137 : Tensor = aten::_convolution(%224, %self.kp_detector.fg_encoder.layer1.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.139 : Tensor = aten::batch_norm(%input.137, %self.kp_detector.fg_encoder.layer1.1.bn1.weight, %self.kp_detector.fg_encoder.layer1.1.bn1.bias, %self.kp_detector.fg_encoder.layer1.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer1.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %227 : Tensor = aten::relu(%input.139), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Host Persistent: 3264 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %input.251 : Tensor = aten::_convolution(%303, %self.kp_detector.fg_encoder.layer1.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.253 : Tensor = aten::batch_norm(%input.251, %self.kp_detector.fg_encoder.layer1.1.bn1.weight, %self.kp_detector.fg_encoder.layer1.1.bn1.bias, %self.kp_detector.fg_encoder.layer1.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer1.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %306 : Tensor = aten::relu(%input.253), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Host Persistent: 3264 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %input.257 : Tensor = aten::_convolution(%306, %self.kp_detector.fg_encoder.layer1.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.35 : Tensor = aten::batch_norm(%input.257, %self.kp_detector.fg_encoder.layer1.1.bn2.weight, %self.kp_detector.fg_encoder.layer1.1.bn2.bias, %self.kp_detector.fg_encoder.layer1.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer1.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %309 : Tensor = aten::add(%out.35, %303, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %310 : Tensor = aten::relu(%309), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Host Persistent: 3264 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %input.143 : Tensor = aten::_convolution(%227, %self.kp_detector.fg_encoder.layer1.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.19 : Tensor = aten::batch_norm(%input.143, %self.kp_detector.fg_encoder.layer1.1.bn2.weight, %self.kp_detector.fg_encoder.layer1.1.bn2.bias, %self.kp_detector.fg_encoder.layer1.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer1.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %230 : Tensor = aten::add(%out.19, %224, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %231 : Tensor = aten::relu(%230), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Host Persistent: 3264 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %input.149 : Tensor = aten::_convolution(%231, %self.kp_detector.fg_encoder.layer2.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.151 : Tensor = aten::batch_norm(%input.149, %self.kp_detector.fg_encoder.layer2.0.bn1.weight, %self.kp_detector.fg_encoder.layer2.0.bn1.bias, %self.kp_detector.fg_encoder.layer2.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer2.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %234 : Tensor = aten::relu(%input.151), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Host Persistent: 2624 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %input.263 : Tensor = aten::_convolution(%310, %self.kp_detector.fg_encoder.layer2.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.265 : Tensor = aten::batch_norm(%input.263, %self.kp_detector.fg_encoder.layer2.0.bn1.weight, %self.kp_detector.fg_encoder.layer2.0.bn1.bias, %self.kp_detector.fg_encoder.layer2.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer2.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %313 : Tensor = aten::relu(%input.265), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Host Persistent: 2624 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %input.269 : Tensor = aten::_convolution(%313, %self.kp_detector.fg_encoder.layer2.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.37 : Tensor = aten::batch_norm(%input.269, %self.kp_detector.fg_encoder.layer2.0.bn2.weight, %self.kp_detector.fg_encoder.layer2.0.bn2.bias, %self.kp_detector.fg_encoder.layer2.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer2.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 Host Persistent: 2624 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %input.155 : Tensor = aten::_convolution(%234, %self.kp_detector.fg_encoder.layer2.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.21 : Tensor = aten::batch_norm(%input.155, %self.kp_detector.fg_encoder.layer2.0.bn2.weight, %self.kp_detector.fg_encoder.layer2.0.bn2.bias, %self.kp_detector.fg_encoder.layer2.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer2.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 Host Persistent: 2624 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %input.271 : Tensor = aten::_convolution(%310, %self.kp_detector.fg_encoder.layer2.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.downsample/__module.kp_detector.fg_encoder.layer2.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.13 : Tensor = aten::batch_norm(%input.271, %self.kp_detector.fg_encoder.layer2.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer2.0.bn2.bias, %self.kp_detector.fg_encoder.layer2.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer2.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.downsample/__module.kp_detector.fg_encoder.layer2.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %318 : Tensor = aten::add(%out.37, %identity.13, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %319 : Tensor = aten::relu(%318), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Host Persistent: 3264 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %input.157 : Tensor = aten::_convolution(%231, %self.kp_detector.fg_encoder.layer2.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.downsample/__module.kp_detector.fg_encoder.layer2.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.7 : Tensor = aten::batch_norm(%input.157, %self.kp_detector.fg_encoder.layer2.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer2.0.bn2.bias, %self.kp_detector.fg_encoder.layer2.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer2.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.downsample/__module.kp_detector.fg_encoder.layer2.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %239 : Tensor = aten::add(%out.21, %identity.7, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %240 : Tensor = aten::relu(%239), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Host Persistent: 3264 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %input.163 : Tensor = aten::_convolution(%240, %self.kp_detector.fg_encoder.layer2.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.165 : Tensor = aten::batch_norm(%input.163, %self.kp_detector.fg_encoder.layer2.1.bn1.weight, %self.kp_detector.fg_encoder.layer2.1.bn1.bias, %self.kp_detector.fg_encoder.layer2.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer2.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %243 : Tensor = aten::relu(%input.165), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Host Persistent: 2624 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %input.277 : Tensor = aten::_convolution(%319, %self.kp_detector.fg_encoder.layer2.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.279 : Tensor = aten::batch_norm(%input.277, %self.kp_detector.fg_encoder.layer2.1.bn1.weight, %self.kp_detector.fg_encoder.layer2.1.bn1.bias, %self.kp_detector.fg_encoder.layer2.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer2.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %322 : Tensor = aten::relu(%input.279), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Host Persistent: 2624 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %input.283 : Tensor = aten::_convolution(%322, %self.kp_detector.fg_encoder.layer2.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.39 : Tensor = aten::batch_norm(%input.283, %self.kp_detector.fg_encoder.layer2.1.bn2.weight, %self.kp_detector.fg_encoder.layer2.1.bn2.bias, %self.kp_detector.fg_encoder.layer2.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer2.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %325 : Tensor = aten::add(%out.39, %319, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %326 : Tensor = aten::relu(%325), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Host Persistent: 2624 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %input.169 : Tensor = aten::_convolution(%243, %self.kp_detector.fg_encoder.layer2.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.23 : Tensor = aten::batch_norm(%input.169, %self.kp_detector.fg_encoder.layer2.1.bn2.weight, %self.kp_detector.fg_encoder.layer2.1.bn2.bias, %self.kp_detector.fg_encoder.layer2.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer2.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %246 : Tensor = aten::add(%out.23, %240, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %247 : Tensor = aten::relu(%246), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Host Persistent: 2624 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %input.175 : Tensor = aten::_convolution(%247, %self.kp_detector.fg_encoder.layer3.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.177 : Tensor = aten::batch_norm(%input.175, %self.kp_detector.fg_encoder.layer3.0.bn1.weight, %self.kp_detector.fg_encoder.layer3.0.bn1.bias, %self.kp_detector.fg_encoder.layer3.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer3.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %250 : Tensor = aten::relu(%input.177), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Host Persistent: 3264 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %input.289 : Tensor = aten::_convolution(%326, %self.kp_detector.fg_encoder.layer3.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.291 : Tensor = aten::batch_norm(%input.289, %self.kp_detector.fg_encoder.layer3.0.bn1.weight, %self.kp_detector.fg_encoder.layer3.0.bn1.bias, %self.kp_detector.fg_encoder.layer3.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer3.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %329 : Tensor = aten::relu(%input.291), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Host Persistent: 3264 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %input.295 : Tensor = aten::_convolution(%329, %self.kp_detector.fg_encoder.layer3.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.41 : Tensor = aten::batch_norm(%input.295, %self.kp_detector.fg_encoder.layer3.0.bn2.weight, %self.kp_detector.fg_encoder.layer3.0.bn2.bias, %self.kp_detector.fg_encoder.layer3.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer3.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 Host Persistent: 3264 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %input.181 : Tensor = aten::_convolution(%250, %self.kp_detector.fg_encoder.layer3.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.25 : Tensor = aten::batch_norm(%input.181, %self.kp_detector.fg_encoder.layer3.0.bn2.weight, %self.kp_detector.fg_encoder.layer3.0.bn2.bias, %self.kp_detector.fg_encoder.layer3.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer3.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 Host Persistent: 3264 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %input.297 : Tensor = aten::_convolution(%326, %self.kp_detector.fg_encoder.layer3.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.downsample/__module.kp_detector.fg_encoder.layer3.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.15 : Tensor = aten::batch_norm(%input.297, %self.kp_detector.fg_encoder.layer3.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer3.0.bn2.bias, %self.kp_detector.fg_encoder.layer3.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer3.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.downsample/__module.kp_detector.fg_encoder.layer3.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %334 : Tensor = aten::add(%out.41, %identity.15, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %335 : Tensor = aten::relu(%334), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Host Persistent: 3264 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %input.183 : Tensor = aten::_convolution(%247, %self.kp_detector.fg_encoder.layer3.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.downsample/__module.kp_detector.fg_encoder.layer3.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.9 : Tensor = aten::batch_norm(%input.183, %self.kp_detector.fg_encoder.layer3.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer3.0.bn2.bias, %self.kp_detector.fg_encoder.layer3.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer3.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.downsample/__module.kp_detector.fg_encoder.layer3.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %255 : Tensor = aten::add(%out.25, %identity.9, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %256 : Tensor = aten::relu(%255), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Host Persistent: 3264 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %input.189 : Tensor = aten::_convolution(%256, %self.kp_detector.fg_encoder.layer3.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.191 : Tensor = aten::batch_norm(%input.189, %self.kp_detector.fg_encoder.layer3.1.bn1.weight, %self.kp_detector.fg_encoder.layer3.1.bn1.bias, %self.kp_detector.fg_encoder.layer3.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer3.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %259 : Tensor = aten::relu(%input.191), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Host Persistent: 3264 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %input.303 : Tensor = aten::_convolution(%335, %self.kp_detector.fg_encoder.layer3.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.305 : Tensor = aten::batch_norm(%input.303, %self.kp_detector.fg_encoder.layer3.1.bn1.weight, %self.kp_detector.fg_encoder.layer3.1.bn1.bias, %self.kp_detector.fg_encoder.layer3.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer3.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %338 : Tensor = aten::relu(%input.305), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Host Persistent: 3264 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %input.309 : Tensor = aten::_convolution(%338, %self.kp_detector.fg_encoder.layer3.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.43 : Tensor = aten::batch_norm(%input.309, %self.kp_detector.fg_encoder.layer3.1.bn2.weight, %self.kp_detector.fg_encoder.layer3.1.bn2.bias, %self.kp_detector.fg_encoder.layer3.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer3.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %341 : Tensor = aten::add(%out.43, %335, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %342 : Tensor = aten::relu(%341), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Host Persistent: 3264 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %input.195 : Tensor = aten::_convolution(%259, %self.kp_detector.fg_encoder.layer3.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.27 : Tensor = aten::batch_norm(%input.195, %self.kp_detector.fg_encoder.layer3.1.bn2.weight, %self.kp_detector.fg_encoder.layer3.1.bn2.bias, %self.kp_detector.fg_encoder.layer3.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer3.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %262 : Tensor = aten::add(%out.27, %256, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %263 : Tensor = aten::relu(%262), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Host Persistent: 3264 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %input.201 : Tensor = aten::_convolution(%263, %self.kp_detector.fg_encoder.layer4.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.203 : Tensor = aten::batch_norm(%input.201, %self.kp_detector.fg_encoder.layer4.0.bn1.weight, %self.kp_detector.fg_encoder.layer4.0.bn1.bias, %self.kp_detector.fg_encoder.layer4.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer4.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %266 : Tensor = aten::relu(%input.203), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Host Persistent: 3264 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %input.315 : Tensor = aten::_convolution(%342, %self.kp_detector.fg_encoder.layer4.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.317 : Tensor = aten::batch_norm(%input.315, %self.kp_detector.fg_encoder.layer4.0.bn1.weight, %self.kp_detector.fg_encoder.layer4.0.bn1.bias, %self.kp_detector.fg_encoder.layer4.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer4.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %345 : Tensor = aten::relu(%input.317), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Host Persistent: 3264 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %input.321 : Tensor = aten::_convolution(%345, %self.kp_detector.fg_encoder.layer4.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.45 : Tensor = aten::batch_norm(%input.321, %self.kp_detector.fg_encoder.layer4.0.bn2.weight, %self.kp_detector.fg_encoder.layer4.0.bn2.bias, %self.kp_detector.fg_encoder.layer4.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer4.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 Host Persistent: 3264 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %input.207 : Tensor = aten::_convolution(%266, %self.kp_detector.fg_encoder.layer4.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.29 : Tensor = aten::batch_norm(%input.207, %self.kp_detector.fg_encoder.layer4.0.bn2.weight, %self.kp_detector.fg_encoder.layer4.0.bn2.bias, %self.kp_detector.fg_encoder.layer4.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer4.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 Host Persistent: 3264 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %input.323 : Tensor = aten::_convolution(%342, %self.kp_detector.fg_encoder.layer4.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.downsample/__module.kp_detector.fg_encoder.layer4.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity : Tensor = aten::batch_norm(%input.323, %self.kp_detector.fg_encoder.layer4.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer4.0.bn2.bias, %self.kp_detector.fg_encoder.layer4.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer4.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.downsample/__module.kp_detector.fg_encoder.layer4.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %350 : Tensor = aten::add(%out.45, %identity, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %351 : Tensor = aten::relu(%350), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Host Persistent: 3264 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %input.209 : Tensor = aten::_convolution(%263, %self.kp_detector.fg_encoder.layer4.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.downsample/__module.kp_detector.fg_encoder.layer4.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.11 : Tensor = aten::batch_norm(%input.209, %self.kp_detector.fg_encoder.layer4.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer4.0.bn2.bias, %self.kp_detector.fg_encoder.layer4.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer4.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.downsample/__module.kp_detector.fg_encoder.layer4.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %271 : Tensor = aten::add(%out.29, %identity.11, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %272 : Tensor = aten::relu(%271), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Host Persistent: 3264 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %input.215 : Tensor = aten::_convolution(%272, %self.kp_detector.fg_encoder.layer4.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.217 : Tensor = aten::batch_norm(%input.215, %self.kp_detector.fg_encoder.layer4.1.bn1.weight, %self.kp_detector.fg_encoder.layer4.1.bn1.bias, %self.kp_detector.fg_encoder.layer4.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer4.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %275 : Tensor = aten::relu(%input.217), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Host Persistent: 3264 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %input.329 : Tensor = aten::_convolution(%351, %self.kp_detector.fg_encoder.layer4.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.331 : Tensor = aten::batch_norm(%input.329, %self.kp_detector.fg_encoder.layer4.1.bn1.weight, %self.kp_detector.fg_encoder.layer4.1.bn1.bias, %self.kp_detector.fg_encoder.layer4.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer4.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %354 : Tensor = aten::relu(%input.331), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Host Persistent: 3264 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %input.335 : Tensor = aten::_convolution(%354, %self.kp_detector.fg_encoder.layer4.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.47 : Tensor = aten::batch_norm(%input.335, %self.kp_detector.fg_encoder.layer4.1.bn2.weight, %self.kp_detector.fg_encoder.layer4.1.bn2.bias, %self.kp_detector.fg_encoder.layer4.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer4.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %357 : Tensor = aten::add(%out.47, %351, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %358 : Tensor = aten::relu(%357), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Host Persistent: 3264 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %x.9 : Tensor = aten::adaptive_avg_pool2d(%358, %27), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.avgpool # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1213:0 Host Persistent: 1408 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %input.221 : Tensor = aten::_convolution(%275, %self.kp_detector.fg_encoder.layer4.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.31 : Tensor = aten::batch_norm(%input.221, %self.kp_detector.fg_encoder.layer4.1.bn2.weight, %self.kp_detector.fg_encoder.layer4.1.bn2.bias, %self.kp_detector.fg_encoder.layer4.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer4.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %278 : Tensor = aten::add(%out.31, %272, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %279 : Tensor = aten::relu(%278), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Host Persistent: 3264 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %x.7 : Tensor = aten::adaptive_avg_pool2d(%279, %27), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.avgpool # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1213:0 Host Persistent: 1408 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %362 : Tensor = aten::matmul(%input.341, %361) + [Freeze Tensor %363 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 252) [Shuffle] + unsqueeze_node_after_[Freeze Tensor %363 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 252) [Shuffle]_(Unnamed Layer* 252) [Shuffle]_output + %364 : Tensor = aten::add(%363, %362, %365) + PWN(%fg_kp.15 : Tensor = aten::sigmoid(%364), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0) Host Persistent: 340 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: %283 : Tensor = aten::matmul(%input.227, %282) + [Freeze Tensor %284 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 168) [Shuffle] + unsqueeze_node_after_[Freeze Tensor %284 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 168) [Shuffle]_(Unnamed Layer* 168) [Shuffle]_output + %285 : Tensor = aten::add(%284, %283, %365) + PWN(%fg_kp.9 : Tensor = aten::sigmoid(%285), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0) Host Persistent: 340 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: PWN(%mean_diff : Tensor = aten::sub(%372, %374, %365) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:503:0, %376 : Tensor = aten::pow(%mean_diff, %21) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:503:0) Host Persistent: 436 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Layer: PWN(PWN(%kp_value_diff.1 : Tensor = aten::sub(%371, %292, %365) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:510:0, %380 : Tensor = aten::mul(%kp_value_diff.1, %adapt_movement_scale) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:511:0), %kp.1 : Tensor = aten::add(%380, %211, %365) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:511:0) Host Persistent: 580 Device Persistent: 0 Scratch Memory: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Skipped printing memory information for 38 layers with 0 memory size i.e. Host Persistent + Device Persistent + Scratch Memory == 0. | |
INFO: [Torch-TensorRT TorchScript Conversion Context] - Total Host Persistent Memory: 192528 | |
INFO: [Torch-TensorRT TorchScript Conversion Context] - Total Device Persistent Memory: 98816 | |
INFO: [Torch-TensorRT TorchScript Conversion Context] - Total Scratch Memory: 0 | |
INFO: [Torch-TensorRT TorchScript Conversion Context] - [MemUsageStats] Peak memory usage of TRT CPU/GPU memory allocators: CPU 201 MiB, GPU 1111 MiB | |
INFO: [Torch-TensorRT TorchScript Conversion Context] - [BlockAssignment] Started assigning block shifts. This will take 112 steps to complete. | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - STILL ALIVE: Started step 26 of 112 | |
INFO: [Torch-TensorRT TorchScript Conversion Context] - [BlockAssignment] Algorithm ShiftNTopDown took 4.82091ms to assign 15 blocks to 112 nodes requiring 7344640 bytes. | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Total number of blocks in optimized block assignment: 15 | |
INFO: [Torch-TensorRT TorchScript Conversion Context] - Total Activation Memory: 7344640 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %input.3 : Tensor = aten::_convolution(%10, %self.kp_detector.fg_encoder.conv1.weight, %5, %25, %26, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.5 : Tensor = aten::batch_norm(%input.3, %self.kp_detector.fg_encoder.bn1.weight, %self.kp_detector.fg_encoder.bn1.bias, %self.kp_detector.fg_encoder.bn1.running_mean, %self.kp_detector.fg_encoder.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %37 : Tensor = aten::relu(%input.5), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set kernel index: 0 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %input.9 : Tensor = aten::max_pool2d(%37, %26, %25, %27, %27, %4), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.maxpool # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:780:0 Set kernel index: 1 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %input.11 : Tensor = aten::_convolution(%input.9, %self.kp_detector.fg_encoder.layer1.0.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.13 : Tensor = aten::batch_norm(%input.11, %self.kp_detector.fg_encoder.layer1.0.bn1.weight, %self.kp_detector.fg_encoder.layer1.0.bn1.bias, %self.kp_detector.fg_encoder.layer1.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer1.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %46 : Tensor = aten::relu(%input.13), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set kernel index: 2 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %input.17 : Tensor = aten::_convolution(%46, %self.kp_detector.fg_encoder.layer1.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.1 : Tensor = aten::batch_norm(%input.17, %self.kp_detector.fg_encoder.layer1.0.bn2.weight, %self.kp_detector.fg_encoder.layer1.0.bn2.bias, %self.kp_detector.fg_encoder.layer1.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer1.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %54 : Tensor = aten::add(%out.1, %input.9, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %55 : Tensor = aten::relu(%54), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set kernel index: 2 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %input.23 : Tensor = aten::_convolution(%55, %self.kp_detector.fg_encoder.layer1.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.25 : Tensor = aten::batch_norm(%input.23, %self.kp_detector.fg_encoder.layer1.1.bn1.weight, %self.kp_detector.fg_encoder.layer1.1.bn1.bias, %self.kp_detector.fg_encoder.layer1.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer1.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %63 : Tensor = aten::relu(%input.25), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set kernel index: 2 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %input.29 : Tensor = aten::_convolution(%63, %self.kp_detector.fg_encoder.layer1.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.3 : Tensor = aten::batch_norm(%input.29, %self.kp_detector.fg_encoder.layer1.1.bn2.weight, %self.kp_detector.fg_encoder.layer1.1.bn2.bias, %self.kp_detector.fg_encoder.layer1.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer1.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %71 : Tensor = aten::add(%out.3, %55, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %72 : Tensor = aten::relu(%71), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set kernel index: 2 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %input.35 : Tensor = aten::_convolution(%72, %self.kp_detector.fg_encoder.layer2.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.37 : Tensor = aten::batch_norm(%input.35, %self.kp_detector.fg_encoder.layer2.0.bn1.weight, %self.kp_detector.fg_encoder.layer2.0.bn1.bias, %self.kp_detector.fg_encoder.layer2.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer2.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %80 : Tensor = aten::relu(%input.37), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set kernel index: 3 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %input.41 : Tensor = aten::_convolution(%80, %self.kp_detector.fg_encoder.layer2.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.5 : Tensor = aten::batch_norm(%input.41, %self.kp_detector.fg_encoder.layer2.0.bn2.weight, %self.kp_detector.fg_encoder.layer2.0.bn2.bias, %self.kp_detector.fg_encoder.layer2.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer2.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 Set kernel index: 3 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %input.43 : Tensor = aten::_convolution(%72, %self.kp_detector.fg_encoder.layer2.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.downsample/__module.kp_detector.fg_encoder.layer2.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.1 : Tensor = aten::batch_norm(%input.43, %self.kp_detector.fg_encoder.layer2.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer2.0.bn2.bias, %self.kp_detector.fg_encoder.layer2.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer2.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.downsample/__module.kp_detector.fg_encoder.layer2.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %94 : Tensor = aten::add(%out.5, %identity.1, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %95 : Tensor = aten::relu(%94), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set kernel index: 4 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %input.49 : Tensor = aten::_convolution(%95, %self.kp_detector.fg_encoder.layer2.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.51 : Tensor = aten::batch_norm(%input.49, %self.kp_detector.fg_encoder.layer2.1.bn1.weight, %self.kp_detector.fg_encoder.layer2.1.bn1.bias, %self.kp_detector.fg_encoder.layer2.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer2.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %103 : Tensor = aten::relu(%input.51), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set kernel index: 3 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %input.55 : Tensor = aten::_convolution(%103, %self.kp_detector.fg_encoder.layer2.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.7 : Tensor = aten::batch_norm(%input.55, %self.kp_detector.fg_encoder.layer2.1.bn2.weight, %self.kp_detector.fg_encoder.layer2.1.bn2.bias, %self.kp_detector.fg_encoder.layer2.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer2.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %111 : Tensor = aten::add(%out.7, %95, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %112 : Tensor = aten::relu(%111), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set kernel index: 3 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %input.61 : Tensor = aten::_convolution(%112, %self.kp_detector.fg_encoder.layer3.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.63 : Tensor = aten::batch_norm(%input.61, %self.kp_detector.fg_encoder.layer3.0.bn1.weight, %self.kp_detector.fg_encoder.layer3.0.bn1.bias, %self.kp_detector.fg_encoder.layer3.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer3.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %120 : Tensor = aten::relu(%input.63), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set kernel index: 5 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %input.67 : Tensor = aten::_convolution(%120, %self.kp_detector.fg_encoder.layer3.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.9 : Tensor = aten::batch_norm(%input.67, %self.kp_detector.fg_encoder.layer3.0.bn2.weight, %self.kp_detector.fg_encoder.layer3.0.bn2.bias, %self.kp_detector.fg_encoder.layer3.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer3.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 Set kernel index: 5 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %input.69 : Tensor = aten::_convolution(%112, %self.kp_detector.fg_encoder.layer3.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.downsample/__module.kp_detector.fg_encoder.layer3.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.3 : Tensor = aten::batch_norm(%input.69, %self.kp_detector.fg_encoder.layer3.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer3.0.bn2.bias, %self.kp_detector.fg_encoder.layer3.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer3.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.downsample/__module.kp_detector.fg_encoder.layer3.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %134 : Tensor = aten::add(%out.9, %identity.3, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %135 : Tensor = aten::relu(%134), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set kernel index: 4 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %input.75 : Tensor = aten::_convolution(%135, %self.kp_detector.fg_encoder.layer3.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.77 : Tensor = aten::batch_norm(%input.75, %self.kp_detector.fg_encoder.layer3.1.bn1.weight, %self.kp_detector.fg_encoder.layer3.1.bn1.bias, %self.kp_detector.fg_encoder.layer3.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer3.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %143 : Tensor = aten::relu(%input.77), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set kernel index: 5 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %input.81 : Tensor = aten::_convolution(%143, %self.kp_detector.fg_encoder.layer3.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.11 : Tensor = aten::batch_norm(%input.81, %self.kp_detector.fg_encoder.layer3.1.bn2.weight, %self.kp_detector.fg_encoder.layer3.1.bn2.bias, %self.kp_detector.fg_encoder.layer3.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer3.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %151 : Tensor = aten::add(%out.11, %135, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %152 : Tensor = aten::relu(%151), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set kernel index: 5 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %input.87 : Tensor = aten::_convolution(%152, %self.kp_detector.fg_encoder.layer4.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.89 : Tensor = aten::batch_norm(%input.87, %self.kp_detector.fg_encoder.layer4.0.bn1.weight, %self.kp_detector.fg_encoder.layer4.0.bn1.bias, %self.kp_detector.fg_encoder.layer4.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer4.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %160 : Tensor = aten::relu(%input.89), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set kernel index: 5 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %input.93 : Tensor = aten::_convolution(%160, %self.kp_detector.fg_encoder.layer4.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.13 : Tensor = aten::batch_norm(%input.93, %self.kp_detector.fg_encoder.layer4.0.bn2.weight, %self.kp_detector.fg_encoder.layer4.0.bn2.bias, %self.kp_detector.fg_encoder.layer4.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer4.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 Set kernel index: 5 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %input.95 : Tensor = aten::_convolution(%152, %self.kp_detector.fg_encoder.layer4.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.downsample/__module.kp_detector.fg_encoder.layer4.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.5 : Tensor = aten::batch_norm(%input.95, %self.kp_detector.fg_encoder.layer4.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer4.0.bn2.bias, %self.kp_detector.fg_encoder.layer4.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer4.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.downsample/__module.kp_detector.fg_encoder.layer4.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %174 : Tensor = aten::add(%out.13, %identity.5, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %175 : Tensor = aten::relu(%174), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set kernel index: 4 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %input.101 : Tensor = aten::_convolution(%175, %self.kp_detector.fg_encoder.layer4.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.103 : Tensor = aten::batch_norm(%input.101, %self.kp_detector.fg_encoder.layer4.1.bn1.weight, %self.kp_detector.fg_encoder.layer4.1.bn1.bias, %self.kp_detector.fg_encoder.layer4.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer4.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %183 : Tensor = aten::relu(%input.103), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set kernel index: 5 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %input.107 : Tensor = aten::_convolution(%183, %self.kp_detector.fg_encoder.layer4.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.15 : Tensor = aten::batch_norm(%input.107, %self.kp_detector.fg_encoder.layer4.1.bn2.weight, %self.kp_detector.fg_encoder.layer4.1.bn2.bias, %self.kp_detector.fg_encoder.layer4.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer4.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %191 : Tensor = aten::add(%out.15, %175, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %192 : Tensor = aten::relu(%191), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set kernel index: 5 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %x.5 : Tensor = aten::adaptive_avg_pool2d(%192, %27), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.avgpool # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1213:0 Set kernel index: 6 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %input.231 : Tensor = aten::_convolution(%22, %self.kp_detector.fg_encoder.conv1.weight, %5, %25, %26, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.233 : Tensor = aten::batch_norm(%input.231, %self.kp_detector.fg_encoder.bn1.weight, %self.kp_detector.fg_encoder.bn1.bias, %self.kp_detector.fg_encoder.bn1.running_mean, %self.kp_detector.fg_encoder.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %295 : Tensor = aten::relu(%input.233), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 || %input.117 : Tensor = aten::_convolution(%input.115, %self.kp_detector.fg_encoder.conv1.weight, %5, %25, %26, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.119 : Tensor = aten::batch_norm(%input.117, %self.kp_detector.fg_encoder.bn1.weight, %self.kp_detector.fg_encoder.bn1.bias, %self.kp_detector.fg_encoder.bn1.running_mean, %self.kp_detector.fg_encoder.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %216 : Tensor = aten::relu(%input.119), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set kernel index: 7 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %input.123 : Tensor = aten::max_pool2d(%216, %26, %25, %27, %27, %4), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.maxpool # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:780:0 Set kernel index: 8 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %input.125 : Tensor = aten::_convolution(%input.123, %self.kp_detector.fg_encoder.layer1.0.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.127 : Tensor = aten::batch_norm(%input.125, %self.kp_detector.fg_encoder.layer1.0.bn1.weight, %self.kp_detector.fg_encoder.layer1.0.bn1.bias, %self.kp_detector.fg_encoder.layer1.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer1.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %220 : Tensor = aten::relu(%input.127), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set kernel index: 2 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %input.237 : Tensor = aten::max_pool2d(%295, %26, %25, %27, %27, %4), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.maxpool # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:780:0 Set kernel index: 8 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %input.239 : Tensor = aten::_convolution(%input.237, %self.kp_detector.fg_encoder.layer1.0.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.241 : Tensor = aten::batch_norm(%input.239, %self.kp_detector.fg_encoder.layer1.0.bn1.weight, %self.kp_detector.fg_encoder.layer1.0.bn1.bias, %self.kp_detector.fg_encoder.layer1.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer1.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %299 : Tensor = aten::relu(%input.241), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set kernel index: 2 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %input.245 : Tensor = aten::_convolution(%299, %self.kp_detector.fg_encoder.layer1.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.33 : Tensor = aten::batch_norm(%input.245, %self.kp_detector.fg_encoder.layer1.0.bn2.weight, %self.kp_detector.fg_encoder.layer1.0.bn2.bias, %self.kp_detector.fg_encoder.layer1.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer1.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %302 : Tensor = aten::add(%out.33, %input.237, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %303 : Tensor = aten::relu(%302), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set kernel index: 2 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %input.131 : Tensor = aten::_convolution(%220, %self.kp_detector.fg_encoder.layer1.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.17 : Tensor = aten::batch_norm(%input.131, %self.kp_detector.fg_encoder.layer1.0.bn2.weight, %self.kp_detector.fg_encoder.layer1.0.bn2.bias, %self.kp_detector.fg_encoder.layer1.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer1.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %223 : Tensor = aten::add(%out.17, %input.123, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %224 : Tensor = aten::relu(%223), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set kernel index: 2 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %input.137 : Tensor = aten::_convolution(%224, %self.kp_detector.fg_encoder.layer1.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.139 : Tensor = aten::batch_norm(%input.137, %self.kp_detector.fg_encoder.layer1.1.bn1.weight, %self.kp_detector.fg_encoder.layer1.1.bn1.bias, %self.kp_detector.fg_encoder.layer1.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer1.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %227 : Tensor = aten::relu(%input.139), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set kernel index: 2 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %input.251 : Tensor = aten::_convolution(%303, %self.kp_detector.fg_encoder.layer1.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.253 : Tensor = aten::batch_norm(%input.251, %self.kp_detector.fg_encoder.layer1.1.bn1.weight, %self.kp_detector.fg_encoder.layer1.1.bn1.bias, %self.kp_detector.fg_encoder.layer1.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer1.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %306 : Tensor = aten::relu(%input.253), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set kernel index: 2 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %input.257 : Tensor = aten::_convolution(%306, %self.kp_detector.fg_encoder.layer1.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.35 : Tensor = aten::batch_norm(%input.257, %self.kp_detector.fg_encoder.layer1.1.bn2.weight, %self.kp_detector.fg_encoder.layer1.1.bn2.bias, %self.kp_detector.fg_encoder.layer1.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer1.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %309 : Tensor = aten::add(%out.35, %303, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %310 : Tensor = aten::relu(%309), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set kernel index: 2 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %input.143 : Tensor = aten::_convolution(%227, %self.kp_detector.fg_encoder.layer1.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.19 : Tensor = aten::batch_norm(%input.143, %self.kp_detector.fg_encoder.layer1.1.bn2.weight, %self.kp_detector.fg_encoder.layer1.1.bn2.bias, %self.kp_detector.fg_encoder.layer1.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer1.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %230 : Tensor = aten::add(%out.19, %224, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %231 : Tensor = aten::relu(%230), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set kernel index: 2 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %input.149 : Tensor = aten::_convolution(%231, %self.kp_detector.fg_encoder.layer2.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.151 : Tensor = aten::batch_norm(%input.149, %self.kp_detector.fg_encoder.layer2.0.bn1.weight, %self.kp_detector.fg_encoder.layer2.0.bn1.bias, %self.kp_detector.fg_encoder.layer2.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer2.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %234 : Tensor = aten::relu(%input.151), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set kernel index: 3 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %input.263 : Tensor = aten::_convolution(%310, %self.kp_detector.fg_encoder.layer2.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.265 : Tensor = aten::batch_norm(%input.263, %self.kp_detector.fg_encoder.layer2.0.bn1.weight, %self.kp_detector.fg_encoder.layer2.0.bn1.bias, %self.kp_detector.fg_encoder.layer2.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer2.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %313 : Tensor = aten::relu(%input.265), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set kernel index: 3 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %input.269 : Tensor = aten::_convolution(%313, %self.kp_detector.fg_encoder.layer2.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.37 : Tensor = aten::batch_norm(%input.269, %self.kp_detector.fg_encoder.layer2.0.bn2.weight, %self.kp_detector.fg_encoder.layer2.0.bn2.bias, %self.kp_detector.fg_encoder.layer2.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer2.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 Set kernel index: 3 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %input.155 : Tensor = aten::_convolution(%234, %self.kp_detector.fg_encoder.layer2.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.21 : Tensor = aten::batch_norm(%input.155, %self.kp_detector.fg_encoder.layer2.0.bn2.weight, %self.kp_detector.fg_encoder.layer2.0.bn2.bias, %self.kp_detector.fg_encoder.layer2.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer2.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 Set kernel index: 3 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %input.271 : Tensor = aten::_convolution(%310, %self.kp_detector.fg_encoder.layer2.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.downsample/__module.kp_detector.fg_encoder.layer2.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.13 : Tensor = aten::batch_norm(%input.271, %self.kp_detector.fg_encoder.layer2.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer2.0.bn2.bias, %self.kp_detector.fg_encoder.layer2.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer2.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.downsample/__module.kp_detector.fg_encoder.layer2.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %318 : Tensor = aten::add(%out.37, %identity.13, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %319 : Tensor = aten::relu(%318), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set kernel index: 4 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %input.157 : Tensor = aten::_convolution(%231, %self.kp_detector.fg_encoder.layer2.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.downsample/__module.kp_detector.fg_encoder.layer2.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.7 : Tensor = aten::batch_norm(%input.157, %self.kp_detector.fg_encoder.layer2.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer2.0.bn2.bias, %self.kp_detector.fg_encoder.layer2.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer2.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.downsample/__module.kp_detector.fg_encoder.layer2.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %239 : Tensor = aten::add(%out.21, %identity.7, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %240 : Tensor = aten::relu(%239), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set kernel index: 4 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %input.163 : Tensor = aten::_convolution(%240, %self.kp_detector.fg_encoder.layer2.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.165 : Tensor = aten::batch_norm(%input.163, %self.kp_detector.fg_encoder.layer2.1.bn1.weight, %self.kp_detector.fg_encoder.layer2.1.bn1.bias, %self.kp_detector.fg_encoder.layer2.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer2.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %243 : Tensor = aten::relu(%input.165), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set kernel index: 3 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %input.277 : Tensor = aten::_convolution(%319, %self.kp_detector.fg_encoder.layer2.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.279 : Tensor = aten::batch_norm(%input.277, %self.kp_detector.fg_encoder.layer2.1.bn1.weight, %self.kp_detector.fg_encoder.layer2.1.bn1.bias, %self.kp_detector.fg_encoder.layer2.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer2.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %322 : Tensor = aten::relu(%input.279), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set kernel index: 3 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %input.283 : Tensor = aten::_convolution(%322, %self.kp_detector.fg_encoder.layer2.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.39 : Tensor = aten::batch_norm(%input.283, %self.kp_detector.fg_encoder.layer2.1.bn2.weight, %self.kp_detector.fg_encoder.layer2.1.bn2.bias, %self.kp_detector.fg_encoder.layer2.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer2.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %325 : Tensor = aten::add(%out.39, %319, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %326 : Tensor = aten::relu(%325), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set kernel index: 3 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %input.169 : Tensor = aten::_convolution(%243, %self.kp_detector.fg_encoder.layer2.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.23 : Tensor = aten::batch_norm(%input.169, %self.kp_detector.fg_encoder.layer2.1.bn2.weight, %self.kp_detector.fg_encoder.layer2.1.bn2.bias, %self.kp_detector.fg_encoder.layer2.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer2.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %246 : Tensor = aten::add(%out.23, %240, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %247 : Tensor = aten::relu(%246), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set kernel index: 3 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %input.175 : Tensor = aten::_convolution(%247, %self.kp_detector.fg_encoder.layer3.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.177 : Tensor = aten::batch_norm(%input.175, %self.kp_detector.fg_encoder.layer3.0.bn1.weight, %self.kp_detector.fg_encoder.layer3.0.bn1.bias, %self.kp_detector.fg_encoder.layer3.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer3.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %250 : Tensor = aten::relu(%input.177), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set kernel index: 5 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %input.289 : Tensor = aten::_convolution(%326, %self.kp_detector.fg_encoder.layer3.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.291 : Tensor = aten::batch_norm(%input.289, %self.kp_detector.fg_encoder.layer3.0.bn1.weight, %self.kp_detector.fg_encoder.layer3.0.bn1.bias, %self.kp_detector.fg_encoder.layer3.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer3.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %329 : Tensor = aten::relu(%input.291), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set kernel index: 5 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %input.295 : Tensor = aten::_convolution(%329, %self.kp_detector.fg_encoder.layer3.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.41 : Tensor = aten::batch_norm(%input.295, %self.kp_detector.fg_encoder.layer3.0.bn2.weight, %self.kp_detector.fg_encoder.layer3.0.bn2.bias, %self.kp_detector.fg_encoder.layer3.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer3.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 Set kernel index: 5 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %input.181 : Tensor = aten::_convolution(%250, %self.kp_detector.fg_encoder.layer3.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.25 : Tensor = aten::batch_norm(%input.181, %self.kp_detector.fg_encoder.layer3.0.bn2.weight, %self.kp_detector.fg_encoder.layer3.0.bn2.bias, %self.kp_detector.fg_encoder.layer3.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer3.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 Set kernel index: 5 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %input.297 : Tensor = aten::_convolution(%326, %self.kp_detector.fg_encoder.layer3.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.downsample/__module.kp_detector.fg_encoder.layer3.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.15 : Tensor = aten::batch_norm(%input.297, %self.kp_detector.fg_encoder.layer3.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer3.0.bn2.bias, %self.kp_detector.fg_encoder.layer3.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer3.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.downsample/__module.kp_detector.fg_encoder.layer3.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %334 : Tensor = aten::add(%out.41, %identity.15, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %335 : Tensor = aten::relu(%334), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set kernel index: 4 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %input.183 : Tensor = aten::_convolution(%247, %self.kp_detector.fg_encoder.layer3.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.downsample/__module.kp_detector.fg_encoder.layer3.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.9 : Tensor = aten::batch_norm(%input.183, %self.kp_detector.fg_encoder.layer3.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer3.0.bn2.bias, %self.kp_detector.fg_encoder.layer3.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer3.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.downsample/__module.kp_detector.fg_encoder.layer3.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %255 : Tensor = aten::add(%out.25, %identity.9, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %256 : Tensor = aten::relu(%255), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set kernel index: 4 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %input.189 : Tensor = aten::_convolution(%256, %self.kp_detector.fg_encoder.layer3.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.191 : Tensor = aten::batch_norm(%input.189, %self.kp_detector.fg_encoder.layer3.1.bn1.weight, %self.kp_detector.fg_encoder.layer3.1.bn1.bias, %self.kp_detector.fg_encoder.layer3.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer3.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %259 : Tensor = aten::relu(%input.191), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set kernel index: 5 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %input.303 : Tensor = aten::_convolution(%335, %self.kp_detector.fg_encoder.layer3.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.305 : Tensor = aten::batch_norm(%input.303, %self.kp_detector.fg_encoder.layer3.1.bn1.weight, %self.kp_detector.fg_encoder.layer3.1.bn1.bias, %self.kp_detector.fg_encoder.layer3.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer3.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %338 : Tensor = aten::relu(%input.305), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set kernel index: 5 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %input.309 : Tensor = aten::_convolution(%338, %self.kp_detector.fg_encoder.layer3.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.43 : Tensor = aten::batch_norm(%input.309, %self.kp_detector.fg_encoder.layer3.1.bn2.weight, %self.kp_detector.fg_encoder.layer3.1.bn2.bias, %self.kp_detector.fg_encoder.layer3.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer3.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %341 : Tensor = aten::add(%out.43, %335, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %342 : Tensor = aten::relu(%341), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set kernel index: 5 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %input.195 : Tensor = aten::_convolution(%259, %self.kp_detector.fg_encoder.layer3.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.27 : Tensor = aten::batch_norm(%input.195, %self.kp_detector.fg_encoder.layer3.1.bn2.weight, %self.kp_detector.fg_encoder.layer3.1.bn2.bias, %self.kp_detector.fg_encoder.layer3.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer3.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %262 : Tensor = aten::add(%out.27, %256, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %263 : Tensor = aten::relu(%262), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set kernel index: 5 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %input.201 : Tensor = aten::_convolution(%263, %self.kp_detector.fg_encoder.layer4.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.203 : Tensor = aten::batch_norm(%input.201, %self.kp_detector.fg_encoder.layer4.0.bn1.weight, %self.kp_detector.fg_encoder.layer4.0.bn1.bias, %self.kp_detector.fg_encoder.layer4.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer4.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %266 : Tensor = aten::relu(%input.203), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set kernel index: 5 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %input.315 : Tensor = aten::_convolution(%342, %self.kp_detector.fg_encoder.layer4.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.317 : Tensor = aten::batch_norm(%input.315, %self.kp_detector.fg_encoder.layer4.0.bn1.weight, %self.kp_detector.fg_encoder.layer4.0.bn1.bias, %self.kp_detector.fg_encoder.layer4.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer4.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %345 : Tensor = aten::relu(%input.317), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set kernel index: 5 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %input.321 : Tensor = aten::_convolution(%345, %self.kp_detector.fg_encoder.layer4.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.45 : Tensor = aten::batch_norm(%input.321, %self.kp_detector.fg_encoder.layer4.0.bn2.weight, %self.kp_detector.fg_encoder.layer4.0.bn2.bias, %self.kp_detector.fg_encoder.layer4.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer4.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 Set kernel index: 5 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %input.207 : Tensor = aten::_convolution(%266, %self.kp_detector.fg_encoder.layer4.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.29 : Tensor = aten::batch_norm(%input.207, %self.kp_detector.fg_encoder.layer4.0.bn2.weight, %self.kp_detector.fg_encoder.layer4.0.bn2.bias, %self.kp_detector.fg_encoder.layer4.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer4.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 Set kernel index: 5 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %input.323 : Tensor = aten::_convolution(%342, %self.kp_detector.fg_encoder.layer4.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.downsample/__module.kp_detector.fg_encoder.layer4.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity : Tensor = aten::batch_norm(%input.323, %self.kp_detector.fg_encoder.layer4.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer4.0.bn2.bias, %self.kp_detector.fg_encoder.layer4.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer4.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.downsample/__module.kp_detector.fg_encoder.layer4.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %350 : Tensor = aten::add(%out.45, %identity, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %351 : Tensor = aten::relu(%350), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set kernel index: 4 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %input.209 : Tensor = aten::_convolution(%263, %self.kp_detector.fg_encoder.layer4.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.downsample/__module.kp_detector.fg_encoder.layer4.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.11 : Tensor = aten::batch_norm(%input.209, %self.kp_detector.fg_encoder.layer4.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer4.0.bn2.bias, %self.kp_detector.fg_encoder.layer4.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer4.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.downsample/__module.kp_detector.fg_encoder.layer4.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %271 : Tensor = aten::add(%out.29, %identity.11, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %272 : Tensor = aten::relu(%271), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set kernel index: 4 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %input.215 : Tensor = aten::_convolution(%272, %self.kp_detector.fg_encoder.layer4.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.217 : Tensor = aten::batch_norm(%input.215, %self.kp_detector.fg_encoder.layer4.1.bn1.weight, %self.kp_detector.fg_encoder.layer4.1.bn1.bias, %self.kp_detector.fg_encoder.layer4.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer4.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %275 : Tensor = aten::relu(%input.217), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set kernel index: 5 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %input.329 : Tensor = aten::_convolution(%351, %self.kp_detector.fg_encoder.layer4.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.331 : Tensor = aten::batch_norm(%input.329, %self.kp_detector.fg_encoder.layer4.1.bn1.weight, %self.kp_detector.fg_encoder.layer4.1.bn1.bias, %self.kp_detector.fg_encoder.layer4.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer4.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %354 : Tensor = aten::relu(%input.331), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set kernel index: 5 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %input.335 : Tensor = aten::_convolution(%354, %self.kp_detector.fg_encoder.layer4.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.47 : Tensor = aten::batch_norm(%input.335, %self.kp_detector.fg_encoder.layer4.1.bn2.weight, %self.kp_detector.fg_encoder.layer4.1.bn2.bias, %self.kp_detector.fg_encoder.layer4.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer4.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %357 : Tensor = aten::add(%out.47, %351, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %358 : Tensor = aten::relu(%357), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set kernel index: 5 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %x.9 : Tensor = aten::adaptive_avg_pool2d(%358, %27), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.avgpool # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1213:0 Set kernel index: 6 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %input.221 : Tensor = aten::_convolution(%275, %self.kp_detector.fg_encoder.layer4.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.31 : Tensor = aten::batch_norm(%input.221, %self.kp_detector.fg_encoder.layer4.1.bn2.weight, %self.kp_detector.fg_encoder.layer4.1.bn2.bias, %self.kp_detector.fg_encoder.layer4.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer4.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %278 : Tensor = aten::add(%out.31, %272, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %279 : Tensor = aten::relu(%278), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 Set kernel index: 5 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: %x.7 : Tensor = aten::adaptive_avg_pool2d(%279, %27), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.avgpool # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1213:0 Set kernel index: 6 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: PWN(%mean_diff : Tensor = aten::sub(%372, %374, %365) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:503:0, %376 : Tensor = aten::pow(%mean_diff, %21) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:503:0) Set kernel index: 9 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Finalize: PWN(PWN(%kp_value_diff.1 : Tensor = aten::sub(%371, %292, %365) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:510:0, %380 : Tensor = aten::mul(%kp_value_diff.1, %adapt_movement_scale) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:511:0), %kp.1 : Tensor = aten::add(%380, %211, %365) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:511:0) Set kernel index: 10 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Total number of generated kernels selected for the engine: 11 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Kernel: 0 CASK_STATIC | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Kernel: 1 CASK_STATIC | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Kernel: 2 CASK_STATIC | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Kernel: 3 CASK_STATIC | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Kernel: 4 CASK_STATIC | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Kernel: 5 CASK_STATIC | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Kernel: 6 CASK_STATIC | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Kernel: 7 CASK_STATIC | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Kernel: 8 CASK_STATIC | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Kernel: 9 TRT_SERIALIZABLE:generatedNativePointwise | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Kernel: 10 TRT_SERIALIZABLE:generatedNativePointwise | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Disabling unused tactic source: CUDNN | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Disabling unused tactic source: JIT_CONVOLUTIONS | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Trying to load shared library libcublas.so.11 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Loaded shared library libcublas.so.11 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Using cublas as plugin tactic source | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Trying to load shared library libcublasLt.so.11 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Loaded shared library libcublasLt.so.11 | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Using cublasLt as core library tactic source | |
INFO: [Torch-TensorRT TorchScript Conversion Context] - [MemUsageChange] Init cuBLAS/cuBLASLt: CPU +1, GPU +8, now: CPU 4482, GPU 13857 (MiB) | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Engine generation completed in 35.5369 seconds. | |
WARNING: [Torch-TensorRT TorchScript Conversion Context] - TensorRT encountered issues when converting weights between types and that could affect accuracy. | |
WARNING: [Torch-TensorRT TorchScript Conversion Context] - If this is not the desired behavior, please modify the weights or retrain with regularization to adjust the magnitude of the weights. | |
WARNING: [Torch-TensorRT TorchScript Conversion Context] - Check verbose logs for the list of affected weights. | |
WARNING: [Torch-TensorRT TorchScript Conversion Context] - - 63 weights are affected by this issue: Detected subnormal FP16 values. | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - List of affected weights: %198 : Tensor = aten::matmul(%input.113, %196) + [Freeze Tensor %199 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 83) [Shuffle] + unsqueeze_node_after_[Freeze Tensor %199 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 83) [Shuffle]_(Unnamed Layer* 83) [Shuffle]_output + %201 : Tensor = aten::add(%199, %198, %365) + PWN(%fg_kp.3 : Tensor = aten::sigmoid(%201), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0).weight, %283 : Tensor = aten::matmul(%input.227, %282) + [Freeze Tensor %284 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 168) [Shuffle] + unsqueeze_node_after_[Freeze Tensor %284 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 168) [Shuffle]_(Unnamed Layer* 168) [Shuffle]_output + %285 : Tensor = aten::add(%284, %283, %365) + PWN(%fg_kp.9 : Tensor = aten::sigmoid(%285), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0).weight, %362 : Tensor = aten::matmul(%input.341, %361) + [Freeze Tensor %363 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 252) [Shuffle] + unsqueeze_node_after_[Freeze Tensor %363 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 252) [Shuffle]_(Unnamed Layer* 252) [Shuffle]_output + %364 : Tensor = aten::add(%363, %362, %365) + PWN(%fg_kp.15 : Tensor = aten::sigmoid(%364), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0).weight, %input.101 : Tensor = aten::_convolution(%175, %self.kp_detector.fg_encoder.layer4.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.103 : Tensor = aten::batch_norm(%input.101, %self.kp_detector.fg_encoder.layer4.1.bn1.weight, %self.kp_detector.fg_encoder.layer4.1.bn1.bias, %self.kp_detector.fg_encoder.layer4.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer4.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %183 : Tensor = aten::relu(%input.103), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.107 : Tensor = aten::_convolution(%183, %self.kp_detector.fg_encoder.layer4.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.15 : Tensor = aten::batch_norm(%input.107, %self.kp_detector.fg_encoder.layer4.1.bn2.weight, %self.kp_detector.fg_encoder.layer4.1.bn2.bias, %self.kp_detector.fg_encoder.layer4.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer4.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %191 : Tensor = aten::add(%out.15, %175, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %192 : Tensor = aten::relu(%191), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.11 : Tensor = aten::_convolution(%input.9, %self.kp_detector.fg_encoder.layer1.0.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.13 : Tensor = aten::batch_norm(%input.11, %self.kp_detector.fg_encoder.layer1.0.bn1.weight, %self.kp_detector.fg_encoder.layer1.0.bn1.bias, %self.kp_detector.fg_encoder.layer1.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer1.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %46 : Tensor = aten::relu(%input.13), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.125 : Tensor = aten::_convolution(%input.123, %self.kp_detector.fg_encoder.layer1.0.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.127 : Tensor = aten::batch_norm(%input.125, %self.kp_detector.fg_encoder.layer1.0.bn1.weight, %self.kp_detector.fg_encoder.layer1.0.bn1.bias, %self.kp_detector.fg_encoder.layer1.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer1.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %220 : Tensor = aten::relu(%input.127), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.131 : Tensor = aten::_convolution(%220, %self.kp_detector.fg_encoder.layer1.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.17 : Tensor = aten::batch_norm(%input.131, %self.kp_detector.fg_encoder.layer1.0.bn2.weight, %self.kp_detector.fg_encoder.layer1.0.bn2.bias, %self.kp_detector.fg_encoder.layer1.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer1.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %223 : Tensor = aten::add(%out.17, %input.123, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %224 : Tensor = aten::relu(%223), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.137 : Tensor = aten::_convolution(%224, %self.kp_detector.fg_encoder.layer1.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.139 : Tensor = aten::batch_norm(%input.137, %self.kp_detector.fg_encoder.layer1.1.bn1.weight, %self.kp_detector.fg_encoder.layer1.1.bn1.bias, %self.kp_detector.fg_encoder.layer1.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer1.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %227 : Tensor = aten::relu(%input.139), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.143 : Tensor = aten::_convolution(%227, %self.kp_detector.fg_encoder.layer1.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.19 : Tensor = aten::batch_norm(%input.143, %self.kp_detector.fg_encoder.layer1.1.bn2.weight, %self.kp_detector.fg_encoder.layer1.1.bn2.bias, %self.kp_detector.fg_encoder.layer1.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer1.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %230 : Tensor = aten::add(%out.19, %224, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %231 : Tensor = aten::relu(%230), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.149 : Tensor = aten::_convolution(%231, %self.kp_detector.fg_encoder.layer2.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.151 : Tensor = aten::batch_norm(%input.149, %self.kp_detector.fg_encoder.layer2.0.bn1.weight, %self.kp_detector.fg_encoder.layer2.0.bn1.bias, %self.kp_detector.fg_encoder.layer2.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer2.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %234 : Tensor = aten::relu(%input.151), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.155 : Tensor = aten::_convolution(%234, %self.kp_detector.fg_encoder.layer2.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.21 : Tensor = aten::batch_norm(%input.155, %self.kp_detector.fg_encoder.layer2.0.bn2.weight, %self.kp_detector.fg_encoder.layer2.0.bn2.bias, %self.kp_detector.fg_encoder.layer2.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer2.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0.weight, %input.157 : Tensor = aten::_convolution(%231, %self.kp_detector.fg_encoder.layer2.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.downsample/__module.kp_detector.fg_encoder.layer2.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.7 : Tensor = aten::batch_norm(%input.157, %self.kp_detector.fg_encoder.layer2.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer2.0.bn2.bias, %self.kp_detector.fg_encoder.layer2.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer2.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.downsample/__module.kp_detector.fg_encoder.layer2.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %239 : Tensor = aten::add(%out.21, %identity.7, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %240 : Tensor = aten::relu(%239), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.bias, %input.157 : Tensor = aten::_convolution(%231, %self.kp_detector.fg_encoder.layer2.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.downsample/__module.kp_detector.fg_encoder.layer2.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.7 : Tensor = aten::batch_norm(%input.157, %self.kp_detector.fg_encoder.layer2.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer2.0.bn2.bias, %self.kp_detector.fg_encoder.layer2.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer2.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.downsample/__module.kp_detector.fg_encoder.layer2.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %239 : Tensor = aten::add(%out.21, %identity.7, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %240 : Tensor = aten::relu(%239), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.163 : Tensor = aten::_convolution(%240, %self.kp_detector.fg_encoder.layer2.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.165 : Tensor = aten::batch_norm(%input.163, %self.kp_detector.fg_encoder.layer2.1.bn1.weight, %self.kp_detector.fg_encoder.layer2.1.bn1.bias, %self.kp_detector.fg_encoder.layer2.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer2.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %243 : Tensor = aten::relu(%input.165), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.169 : Tensor = aten::_convolution(%243, %self.kp_detector.fg_encoder.layer2.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.23 : Tensor = aten::batch_norm(%input.169, %self.kp_detector.fg_encoder.layer2.1.bn2.weight, %self.kp_detector.fg_encoder.layer2.1.bn2.bias, %self.kp_detector.fg_encoder.layer2.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer2.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %246 : Tensor = aten::add(%out.23, %240, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %247 : Tensor = aten::relu(%246), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.17 : Tensor = aten::_convolution(%46, %self.kp_detector.fg_encoder.layer1.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.1 : Tensor = aten::batch_norm(%input.17, %self.kp_detector.fg_encoder.layer1.0.bn2.weight, %self.kp_detector.fg_encoder.layer1.0.bn2.bias, %self.kp_detector.fg_encoder.layer1.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer1.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %54 : Tensor = aten::add(%out.1, %input.9, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %55 : Tensor = aten::relu(%54), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.175 : Tensor = aten::_convolution(%247, %self.kp_detector.fg_encoder.layer3.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.177 : Tensor = aten::batch_norm(%input.175, %self.kp_detector.fg_encoder.layer3.0.bn1.weight, %self.kp_detector.fg_encoder.layer3.0.bn1.bias, %self.kp_detector.fg_encoder.layer3.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer3.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %250 : Tensor = aten::relu(%input.177), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.181 : Tensor = aten::_convolution(%250, %self.kp_detector.fg_encoder.layer3.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.25 : Tensor = aten::batch_norm(%input.181, %self.kp_detector.fg_encoder.layer3.0.bn2.weight, %self.kp_detector.fg_encoder.layer3.0.bn2.bias, %self.kp_detector.fg_encoder.layer3.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer3.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0.weight, %input.183 : Tensor = aten::_convolution(%247, %self.kp_detector.fg_encoder.layer3.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.downsample/__module.kp_detector.fg_encoder.layer3.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.9 : Tensor = aten::batch_norm(%input.183, %self.kp_detector.fg_encoder.layer3.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer3.0.bn2.bias, %self.kp_detector.fg_encoder.layer3.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer3.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.downsample/__module.kp_detector.fg_encoder.layer3.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %255 : Tensor = aten::add(%out.25, %identity.9, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %256 : Tensor = aten::relu(%255), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.189 : Tensor = aten::_convolution(%256, %self.kp_detector.fg_encoder.layer3.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.191 : Tensor = aten::batch_norm(%input.189, %self.kp_detector.fg_encoder.layer3.1.bn1.weight, %self.kp_detector.fg_encoder.layer3.1.bn1.bias, %self.kp_detector.fg_encoder.layer3.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer3.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %259 : Tensor = aten::relu(%input.191), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.195 : Tensor = aten::_convolution(%259, %self.kp_detector.fg_encoder.layer3.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.27 : Tensor = aten::batch_norm(%input.195, %self.kp_detector.fg_encoder.layer3.1.bn2.weight, %self.kp_detector.fg_encoder.layer3.1.bn2.bias, %self.kp_detector.fg_encoder.layer3.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer3.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %262 : Tensor = aten::add(%out.27, %256, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %263 : Tensor = aten::relu(%262), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.201 : Tensor = aten::_convolution(%263, %self.kp_detector.fg_encoder.layer4.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.203 : Tensor = aten::batch_norm(%input.201, %self.kp_detector.fg_encoder.layer4.0.bn1.weight, %self.kp_detector.fg_encoder.layer4.0.bn1.bias, %self.kp_detector.fg_encoder.layer4.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer4.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %266 : Tensor = aten::relu(%input.203), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.207 : Tensor = aten::_convolution(%266, %self.kp_detector.fg_encoder.layer4.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.29 : Tensor = aten::batch_norm(%input.207, %self.kp_detector.fg_encoder.layer4.0.bn2.weight, %self.kp_detector.fg_encoder.layer4.0.bn2.bias, %self.kp_detector.fg_encoder.layer4.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer4.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0.weight, %input.209 : Tensor = aten::_convolution(%263, %self.kp_detector.fg_encoder.layer4.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.downsample/__module.kp_detector.fg_encoder.layer4.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.11 : Tensor = aten::batch_norm(%input.209, %self.kp_detector.fg_encoder.layer4.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer4.0.bn2.bias, %self.kp_detector.fg_encoder.layer4.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer4.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.downsample/__module.kp_detector.fg_encoder.layer4.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %271 : Tensor = aten::add(%out.29, %identity.11, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %272 : Tensor = aten::relu(%271), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.215 : Tensor = aten::_convolution(%272, %self.kp_detector.fg_encoder.layer4.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.217 : Tensor = aten::batch_norm(%input.215, %self.kp_detector.fg_encoder.layer4.1.bn1.weight, %self.kp_detector.fg_encoder.layer4.1.bn1.bias, %self.kp_detector.fg_encoder.layer4.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer4.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %275 : Tensor = aten::relu(%input.217), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.221 : Tensor = aten::_convolution(%275, %self.kp_detector.fg_encoder.layer4.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.31 : Tensor = aten::batch_norm(%input.221, %self.kp_detector.fg_encoder.layer4.1.bn2.weight, %self.kp_detector.fg_encoder.layer4.1.bn2.bias, %self.kp_detector.fg_encoder.layer4.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer4.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %278 : Tensor = aten::add(%out.31, %272, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %279 : Tensor = aten::relu(%278), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.23 : Tensor = aten::_convolution(%55, %self.kp_detector.fg_encoder.layer1.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.25 : Tensor = aten::batch_norm(%input.23, %self.kp_detector.fg_encoder.layer1.1.bn1.weight, %self.kp_detector.fg_encoder.layer1.1.bn1.bias, %self.kp_detector.fg_encoder.layer1.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer1.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %63 : Tensor = aten::relu(%input.25), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.239 : Tensor = aten::_convolution(%input.237, %self.kp_detector.fg_encoder.layer1.0.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.241 : Tensor = aten::batch_norm(%input.239, %self.kp_detector.fg_encoder.layer1.0.bn1.weight, %self.kp_detector.fg_encoder.layer1.0.bn1.bias, %self.kp_detector.fg_encoder.layer1.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer1.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %299 : Tensor = aten::relu(%input.241), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.245 : Tensor = aten::_convolution(%299, %self.kp_detector.fg_encoder.layer1.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.33 : Tensor = aten::batch_norm(%input.245, %self.kp_detector.fg_encoder.layer1.0.bn2.weight, %self.kp_detector.fg_encoder.layer1.0.bn2.bias, %self.kp_detector.fg_encoder.layer1.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer1.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %302 : Tensor = aten::add(%out.33, %input.237, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %303 : Tensor = aten::relu(%302), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.251 : Tensor = aten::_convolution(%303, %self.kp_detector.fg_encoder.layer1.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.253 : Tensor = aten::batch_norm(%input.251, %self.kp_detector.fg_encoder.layer1.1.bn1.weight, %self.kp_detector.fg_encoder.layer1.1.bn1.bias, %self.kp_detector.fg_encoder.layer1.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer1.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %306 : Tensor = aten::relu(%input.253), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.257 : Tensor = aten::_convolution(%306, %self.kp_detector.fg_encoder.layer1.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.35 : Tensor = aten::batch_norm(%input.257, %self.kp_detector.fg_encoder.layer1.1.bn2.weight, %self.kp_detector.fg_encoder.layer1.1.bn2.bias, %self.kp_detector.fg_encoder.layer1.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer1.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %309 : Tensor = aten::add(%out.35, %303, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %310 : Tensor = aten::relu(%309), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.263 : Tensor = aten::_convolution(%310, %self.kp_detector.fg_encoder.layer2.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.265 : Tensor = aten::batch_norm(%input.263, %self.kp_detector.fg_encoder.layer2.0.bn1.weight, %self.kp_detector.fg_encoder.layer2.0.bn1.bias, %self.kp_detector.fg_encoder.layer2.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer2.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %313 : Tensor = aten::relu(%input.265), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.269 : Tensor = aten::_convolution(%313, %self.kp_detector.fg_encoder.layer2.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.37 : Tensor = aten::batch_norm(%input.269, %self.kp_detector.fg_encoder.layer2.0.bn2.weight, %self.kp_detector.fg_encoder.layer2.0.bn2.bias, %self.kp_detector.fg_encoder.layer2.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer2.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0.weight, %input.271 : Tensor = aten::_convolution(%310, %self.kp_detector.fg_encoder.layer2.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.downsample/__module.kp_detector.fg_encoder.layer2.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.13 : Tensor = aten::batch_norm(%input.271, %self.kp_detector.fg_encoder.layer2.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer2.0.bn2.bias, %self.kp_detector.fg_encoder.layer2.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer2.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.downsample/__module.kp_detector.fg_encoder.layer2.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %318 : Tensor = aten::add(%out.37, %identity.13, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %319 : Tensor = aten::relu(%318), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.bias, %input.271 : Tensor = aten::_convolution(%310, %self.kp_detector.fg_encoder.layer2.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.downsample/__module.kp_detector.fg_encoder.layer2.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.13 : Tensor = aten::batch_norm(%input.271, %self.kp_detector.fg_encoder.layer2.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer2.0.bn2.bias, %self.kp_detector.fg_encoder.layer2.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer2.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.downsample/__module.kp_detector.fg_encoder.layer2.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %318 : Tensor = aten::add(%out.37, %identity.13, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %319 : Tensor = aten::relu(%318), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.277 : Tensor = aten::_convolution(%319, %self.kp_detector.fg_encoder.layer2.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.279 : Tensor = aten::batch_norm(%input.277, %self.kp_detector.fg_encoder.layer2.1.bn1.weight, %self.kp_detector.fg_encoder.layer2.1.bn1.bias, %self.kp_detector.fg_encoder.layer2.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer2.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %322 : Tensor = aten::relu(%input.279), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.283 : Tensor = aten::_convolution(%322, %self.kp_detector.fg_encoder.layer2.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.39 : Tensor = aten::batch_norm(%input.283, %self.kp_detector.fg_encoder.layer2.1.bn2.weight, %self.kp_detector.fg_encoder.layer2.1.bn2.bias, %self.kp_detector.fg_encoder.layer2.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer2.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %325 : Tensor = aten::add(%out.39, %319, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %326 : Tensor = aten::relu(%325), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.289 : Tensor = aten::_convolution(%326, %self.kp_detector.fg_encoder.layer3.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.291 : Tensor = aten::batch_norm(%input.289, %self.kp_detector.fg_encoder.layer3.0.bn1.weight, %self.kp_detector.fg_encoder.layer3.0.bn1.bias, %self.kp_detector.fg_encoder.layer3.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer3.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %329 : Tensor = aten::relu(%input.291), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.29 : Tensor = aten::_convolution(%63, %self.kp_detector.fg_encoder.layer1.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.3 : Tensor = aten::batch_norm(%input.29, %self.kp_detector.fg_encoder.layer1.1.bn2.weight, %self.kp_detector.fg_encoder.layer1.1.bn2.bias, %self.kp_detector.fg_encoder.layer1.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer1.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %71 : Tensor = aten::add(%out.3, %55, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %72 : Tensor = aten::relu(%71), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.295 : Tensor = aten::_convolution(%329, %self.kp_detector.fg_encoder.layer3.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.41 : Tensor = aten::batch_norm(%input.295, %self.kp_detector.fg_encoder.layer3.0.bn2.weight, %self.kp_detector.fg_encoder.layer3.0.bn2.bias, %self.kp_detector.fg_encoder.layer3.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer3.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0.weight, %input.297 : Tensor = aten::_convolution(%326, %self.kp_detector.fg_encoder.layer3.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.downsample/__module.kp_detector.fg_encoder.layer3.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.15 : Tensor = aten::batch_norm(%input.297, %self.kp_detector.fg_encoder.layer3.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer3.0.bn2.bias, %self.kp_detector.fg_encoder.layer3.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer3.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.downsample/__module.kp_detector.fg_encoder.layer3.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %334 : Tensor = aten::add(%out.41, %identity.15, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %335 : Tensor = aten::relu(%334), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.303 : Tensor = aten::_convolution(%335, %self.kp_detector.fg_encoder.layer3.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.305 : Tensor = aten::batch_norm(%input.303, %self.kp_detector.fg_encoder.layer3.1.bn1.weight, %self.kp_detector.fg_encoder.layer3.1.bn1.bias, %self.kp_detector.fg_encoder.layer3.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer3.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %338 : Tensor = aten::relu(%input.305), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.309 : Tensor = aten::_convolution(%338, %self.kp_detector.fg_encoder.layer3.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.43 : Tensor = aten::batch_norm(%input.309, %self.kp_detector.fg_encoder.layer3.1.bn2.weight, %self.kp_detector.fg_encoder.layer3.1.bn2.bias, %self.kp_detector.fg_encoder.layer3.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer3.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %341 : Tensor = aten::add(%out.43, %335, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %342 : Tensor = aten::relu(%341), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.315 : Tensor = aten::_convolution(%342, %self.kp_detector.fg_encoder.layer4.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.317 : Tensor = aten::batch_norm(%input.315, %self.kp_detector.fg_encoder.layer4.0.bn1.weight, %self.kp_detector.fg_encoder.layer4.0.bn1.bias, %self.kp_detector.fg_encoder.layer4.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer4.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %345 : Tensor = aten::relu(%input.317), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.321 : Tensor = aten::_convolution(%345, %self.kp_detector.fg_encoder.layer4.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.45 : Tensor = aten::batch_norm(%input.321, %self.kp_detector.fg_encoder.layer4.0.bn2.weight, %self.kp_detector.fg_encoder.layer4.0.bn2.bias, %self.kp_detector.fg_encoder.layer4.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer4.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0.weight, %input.323 : Tensor = aten::_convolution(%342, %self.kp_detector.fg_encoder.layer4.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.downsample/__module.kp_detector.fg_encoder.layer4.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity : Tensor = aten::batch_norm(%input.323, %self.kp_detector.fg_encoder.layer4.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer4.0.bn2.bias, %self.kp_detector.fg_encoder.layer4.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer4.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.downsample/__module.kp_detector.fg_encoder.layer4.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %350 : Tensor = aten::add(%out.45, %identity, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %351 : Tensor = aten::relu(%350), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.329 : Tensor = aten::_convolution(%351, %self.kp_detector.fg_encoder.layer4.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.331 : Tensor = aten::batch_norm(%input.329, %self.kp_detector.fg_encoder.layer4.1.bn1.weight, %self.kp_detector.fg_encoder.layer4.1.bn1.bias, %self.kp_detector.fg_encoder.layer4.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer4.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %354 : Tensor = aten::relu(%input.331), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.335 : Tensor = aten::_convolution(%354, %self.kp_detector.fg_encoder.layer4.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.47 : Tensor = aten::batch_norm(%input.335, %self.kp_detector.fg_encoder.layer4.1.bn2.weight, %self.kp_detector.fg_encoder.layer4.1.bn2.bias, %self.kp_detector.fg_encoder.layer4.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer4.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %357 : Tensor = aten::add(%out.47, %351, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %358 : Tensor = aten::relu(%357), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.35 : Tensor = aten::_convolution(%72, %self.kp_detector.fg_encoder.layer2.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.37 : Tensor = aten::batch_norm(%input.35, %self.kp_detector.fg_encoder.layer2.0.bn1.weight, %self.kp_detector.fg_encoder.layer2.0.bn1.bias, %self.kp_detector.fg_encoder.layer2.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer2.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %80 : Tensor = aten::relu(%input.37), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.41 : Tensor = aten::_convolution(%80, %self.kp_detector.fg_encoder.layer2.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.5 : Tensor = aten::batch_norm(%input.41, %self.kp_detector.fg_encoder.layer2.0.bn2.weight, %self.kp_detector.fg_encoder.layer2.0.bn2.bias, %self.kp_detector.fg_encoder.layer2.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer2.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0.weight, %input.43 : Tensor = aten::_convolution(%72, %self.kp_detector.fg_encoder.layer2.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.downsample/__module.kp_detector.fg_encoder.layer2.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.1 : Tensor = aten::batch_norm(%input.43, %self.kp_detector.fg_encoder.layer2.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer2.0.bn2.bias, %self.kp_detector.fg_encoder.layer2.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer2.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.downsample/__module.kp_detector.fg_encoder.layer2.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %94 : Tensor = aten::add(%out.5, %identity.1, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %95 : Tensor = aten::relu(%94), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.bias, %input.43 : Tensor = aten::_convolution(%72, %self.kp_detector.fg_encoder.layer2.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.downsample/__module.kp_detector.fg_encoder.layer2.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.1 : Tensor = aten::batch_norm(%input.43, %self.kp_detector.fg_encoder.layer2.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer2.0.bn2.bias, %self.kp_detector.fg_encoder.layer2.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer2.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.downsample/__module.kp_detector.fg_encoder.layer2.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %94 : Tensor = aten::add(%out.5, %identity.1, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %95 : Tensor = aten::relu(%94), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.49 : Tensor = aten::_convolution(%95, %self.kp_detector.fg_encoder.layer2.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.51 : Tensor = aten::batch_norm(%input.49, %self.kp_detector.fg_encoder.layer2.1.bn1.weight, %self.kp_detector.fg_encoder.layer2.1.bn1.bias, %self.kp_detector.fg_encoder.layer2.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer2.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %103 : Tensor = aten::relu(%input.51), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.55 : Tensor = aten::_convolution(%103, %self.kp_detector.fg_encoder.layer2.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.7 : Tensor = aten::batch_norm(%input.55, %self.kp_detector.fg_encoder.layer2.1.bn2.weight, %self.kp_detector.fg_encoder.layer2.1.bn2.bias, %self.kp_detector.fg_encoder.layer2.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer2.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %111 : Tensor = aten::add(%out.7, %95, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %112 : Tensor = aten::relu(%111), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.61 : Tensor = aten::_convolution(%112, %self.kp_detector.fg_encoder.layer3.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.63 : Tensor = aten::batch_norm(%input.61, %self.kp_detector.fg_encoder.layer3.0.bn1.weight, %self.kp_detector.fg_encoder.layer3.0.bn1.bias, %self.kp_detector.fg_encoder.layer3.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer3.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %120 : Tensor = aten::relu(%input.63), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.67 : Tensor = aten::_convolution(%120, %self.kp_detector.fg_encoder.layer3.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.9 : Tensor = aten::batch_norm(%input.67, %self.kp_detector.fg_encoder.layer3.0.bn2.weight, %self.kp_detector.fg_encoder.layer3.0.bn2.bias, %self.kp_detector.fg_encoder.layer3.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer3.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0.weight, %input.69 : Tensor = aten::_convolution(%112, %self.kp_detector.fg_encoder.layer3.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.downsample/__module.kp_detector.fg_encoder.layer3.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.3 : Tensor = aten::batch_norm(%input.69, %self.kp_detector.fg_encoder.layer3.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer3.0.bn2.bias, %self.kp_detector.fg_encoder.layer3.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer3.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.downsample/__module.kp_detector.fg_encoder.layer3.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %134 : Tensor = aten::add(%out.9, %identity.3, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %135 : Tensor = aten::relu(%134), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.75 : Tensor = aten::_convolution(%135, %self.kp_detector.fg_encoder.layer3.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.77 : Tensor = aten::batch_norm(%input.75, %self.kp_detector.fg_encoder.layer3.1.bn1.weight, %self.kp_detector.fg_encoder.layer3.1.bn1.bias, %self.kp_detector.fg_encoder.layer3.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer3.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %143 : Tensor = aten::relu(%input.77), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.81 : Tensor = aten::_convolution(%143, %self.kp_detector.fg_encoder.layer3.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.11 : Tensor = aten::batch_norm(%input.81, %self.kp_detector.fg_encoder.layer3.1.bn2.weight, %self.kp_detector.fg_encoder.layer3.1.bn2.bias, %self.kp_detector.fg_encoder.layer3.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer3.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %151 : Tensor = aten::add(%out.11, %135, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %152 : Tensor = aten::relu(%151), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.87 : Tensor = aten::_convolution(%152, %self.kp_detector.fg_encoder.layer4.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.89 : Tensor = aten::batch_norm(%input.87, %self.kp_detector.fg_encoder.layer4.0.bn1.weight, %self.kp_detector.fg_encoder.layer4.0.bn1.bias, %self.kp_detector.fg_encoder.layer4.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer4.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %160 : Tensor = aten::relu(%input.89), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.93 : Tensor = aten::_convolution(%160, %self.kp_detector.fg_encoder.layer4.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.13 : Tensor = aten::batch_norm(%input.93, %self.kp_detector.fg_encoder.layer4.0.bn2.weight, %self.kp_detector.fg_encoder.layer4.0.bn2.bias, %self.kp_detector.fg_encoder.layer4.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer4.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0.weight, %input.95 : Tensor = aten::_convolution(%152, %self.kp_detector.fg_encoder.layer4.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.downsample/__module.kp_detector.fg_encoder.layer4.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.5 : Tensor = aten::batch_norm(%input.95, %self.kp_detector.fg_encoder.layer4.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer4.0.bn2.bias, %self.kp_detector.fg_encoder.layer4.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer4.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.downsample/__module.kp_detector.fg_encoder.layer4.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %174 : Tensor = aten::add(%out.13, %identity.5, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %175 : Tensor = aten::relu(%174), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight | |
WARNING: [Torch-TensorRT TorchScript Conversion Context] - - 27 weights are affected by this issue: Detected values less than smallest positive FP16 subnormal value and converted them to the FP16 minimum subnormalized value. | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - List of affected weights: %input.101 : Tensor = aten::_convolution(%175, %self.kp_detector.fg_encoder.layer4.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.103 : Tensor = aten::batch_norm(%input.101, %self.kp_detector.fg_encoder.layer4.1.bn1.weight, %self.kp_detector.fg_encoder.layer4.1.bn1.bias, %self.kp_detector.fg_encoder.layer4.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer4.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %183 : Tensor = aten::relu(%input.103), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.bias, %input.101 : Tensor = aten::_convolution(%175, %self.kp_detector.fg_encoder.layer4.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.103 : Tensor = aten::batch_norm(%input.101, %self.kp_detector.fg_encoder.layer4.1.bn1.weight, %self.kp_detector.fg_encoder.layer4.1.bn1.bias, %self.kp_detector.fg_encoder.layer4.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer4.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %183 : Tensor = aten::relu(%input.103), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.107 : Tensor = aten::_convolution(%183, %self.kp_detector.fg_encoder.layer4.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.15 : Tensor = aten::batch_norm(%input.107, %self.kp_detector.fg_encoder.layer4.1.bn2.weight, %self.kp_detector.fg_encoder.layer4.1.bn2.bias, %self.kp_detector.fg_encoder.layer4.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer4.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %191 : Tensor = aten::add(%out.15, %175, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %192 : Tensor = aten::relu(%191), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.131 : Tensor = aten::_convolution(%220, %self.kp_detector.fg_encoder.layer1.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.17 : Tensor = aten::batch_norm(%input.131, %self.kp_detector.fg_encoder.layer1.0.bn2.weight, %self.kp_detector.fg_encoder.layer1.0.bn2.bias, %self.kp_detector.fg_encoder.layer1.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer1.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %223 : Tensor = aten::add(%out.17, %input.123, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %224 : Tensor = aten::relu(%223), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.17 : Tensor = aten::_convolution(%46, %self.kp_detector.fg_encoder.layer1.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.1 : Tensor = aten::batch_norm(%input.17, %self.kp_detector.fg_encoder.layer1.0.bn2.weight, %self.kp_detector.fg_encoder.layer1.0.bn2.bias, %self.kp_detector.fg_encoder.layer1.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer1.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %54 : Tensor = aten::add(%out.1, %input.9, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %55 : Tensor = aten::relu(%54), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.181 : Tensor = aten::_convolution(%250, %self.kp_detector.fg_encoder.layer3.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.25 : Tensor = aten::batch_norm(%input.181, %self.kp_detector.fg_encoder.layer3.0.bn2.weight, %self.kp_detector.fg_encoder.layer3.0.bn2.bias, %self.kp_detector.fg_encoder.layer3.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer3.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0.weight, %input.189 : Tensor = aten::_convolution(%256, %self.kp_detector.fg_encoder.layer3.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.191 : Tensor = aten::batch_norm(%input.189, %self.kp_detector.fg_encoder.layer3.1.bn1.weight, %self.kp_detector.fg_encoder.layer3.1.bn1.bias, %self.kp_detector.fg_encoder.layer3.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer3.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %259 : Tensor = aten::relu(%input.191), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.195 : Tensor = aten::_convolution(%259, %self.kp_detector.fg_encoder.layer3.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.27 : Tensor = aten::batch_norm(%input.195, %self.kp_detector.fg_encoder.layer3.1.bn2.weight, %self.kp_detector.fg_encoder.layer3.1.bn2.bias, %self.kp_detector.fg_encoder.layer3.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer3.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %262 : Tensor = aten::add(%out.27, %256, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %263 : Tensor = aten::relu(%262), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.201 : Tensor = aten::_convolution(%263, %self.kp_detector.fg_encoder.layer4.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.203 : Tensor = aten::batch_norm(%input.201, %self.kp_detector.fg_encoder.layer4.0.bn1.weight, %self.kp_detector.fg_encoder.layer4.0.bn1.bias, %self.kp_detector.fg_encoder.layer4.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer4.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %266 : Tensor = aten::relu(%input.203), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.207 : Tensor = aten::_convolution(%266, %self.kp_detector.fg_encoder.layer4.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.29 : Tensor = aten::batch_norm(%input.207, %self.kp_detector.fg_encoder.layer4.0.bn2.weight, %self.kp_detector.fg_encoder.layer4.0.bn2.bias, %self.kp_detector.fg_encoder.layer4.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer4.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0.weight, %input.215 : Tensor = aten::_convolution(%272, %self.kp_detector.fg_encoder.layer4.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.217 : Tensor = aten::batch_norm(%input.215, %self.kp_detector.fg_encoder.layer4.1.bn1.weight, %self.kp_detector.fg_encoder.layer4.1.bn1.bias, %self.kp_detector.fg_encoder.layer4.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer4.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %275 : Tensor = aten::relu(%input.217), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.bias, %input.215 : Tensor = aten::_convolution(%272, %self.kp_detector.fg_encoder.layer4.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.217 : Tensor = aten::batch_norm(%input.215, %self.kp_detector.fg_encoder.layer4.1.bn1.weight, %self.kp_detector.fg_encoder.layer4.1.bn1.bias, %self.kp_detector.fg_encoder.layer4.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer4.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %275 : Tensor = aten::relu(%input.217), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.221 : Tensor = aten::_convolution(%275, %self.kp_detector.fg_encoder.layer4.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.31 : Tensor = aten::batch_norm(%input.221, %self.kp_detector.fg_encoder.layer4.1.bn2.weight, %self.kp_detector.fg_encoder.layer4.1.bn2.bias, %self.kp_detector.fg_encoder.layer4.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer4.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %278 : Tensor = aten::add(%out.31, %272, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %279 : Tensor = aten::relu(%278), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.245 : Tensor = aten::_convolution(%299, %self.kp_detector.fg_encoder.layer1.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.33 : Tensor = aten::batch_norm(%input.245, %self.kp_detector.fg_encoder.layer1.0.bn2.weight, %self.kp_detector.fg_encoder.layer1.0.bn2.bias, %self.kp_detector.fg_encoder.layer1.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer1.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %302 : Tensor = aten::add(%out.33, %input.237, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %303 : Tensor = aten::relu(%302), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.295 : Tensor = aten::_convolution(%329, %self.kp_detector.fg_encoder.layer3.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.41 : Tensor = aten::batch_norm(%input.295, %self.kp_detector.fg_encoder.layer3.0.bn2.weight, %self.kp_detector.fg_encoder.layer3.0.bn2.bias, %self.kp_detector.fg_encoder.layer3.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer3.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0.weight, %input.303 : Tensor = aten::_convolution(%335, %self.kp_detector.fg_encoder.layer3.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.305 : Tensor = aten::batch_norm(%input.303, %self.kp_detector.fg_encoder.layer3.1.bn1.weight, %self.kp_detector.fg_encoder.layer3.1.bn1.bias, %self.kp_detector.fg_encoder.layer3.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer3.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %338 : Tensor = aten::relu(%input.305), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.309 : Tensor = aten::_convolution(%338, %self.kp_detector.fg_encoder.layer3.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.43 : Tensor = aten::batch_norm(%input.309, %self.kp_detector.fg_encoder.layer3.1.bn2.weight, %self.kp_detector.fg_encoder.layer3.1.bn2.bias, %self.kp_detector.fg_encoder.layer3.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer3.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %341 : Tensor = aten::add(%out.43, %335, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %342 : Tensor = aten::relu(%341), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.315 : Tensor = aten::_convolution(%342, %self.kp_detector.fg_encoder.layer4.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.317 : Tensor = aten::batch_norm(%input.315, %self.kp_detector.fg_encoder.layer4.0.bn1.weight, %self.kp_detector.fg_encoder.layer4.0.bn1.bias, %self.kp_detector.fg_encoder.layer4.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer4.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %345 : Tensor = aten::relu(%input.317), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.321 : Tensor = aten::_convolution(%345, %self.kp_detector.fg_encoder.layer4.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.45 : Tensor = aten::batch_norm(%input.321, %self.kp_detector.fg_encoder.layer4.0.bn2.weight, %self.kp_detector.fg_encoder.layer4.0.bn2.bias, %self.kp_detector.fg_encoder.layer4.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer4.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0.weight, %input.329 : Tensor = aten::_convolution(%351, %self.kp_detector.fg_encoder.layer4.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.331 : Tensor = aten::batch_norm(%input.329, %self.kp_detector.fg_encoder.layer4.1.bn1.weight, %self.kp_detector.fg_encoder.layer4.1.bn1.bias, %self.kp_detector.fg_encoder.layer4.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer4.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %354 : Tensor = aten::relu(%input.331), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.bias, %input.329 : Tensor = aten::_convolution(%351, %self.kp_detector.fg_encoder.layer4.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.331 : Tensor = aten::batch_norm(%input.329, %self.kp_detector.fg_encoder.layer4.1.bn1.weight, %self.kp_detector.fg_encoder.layer4.1.bn1.bias, %self.kp_detector.fg_encoder.layer4.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer4.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %354 : Tensor = aten::relu(%input.331), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.335 : Tensor = aten::_convolution(%354, %self.kp_detector.fg_encoder.layer4.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.47 : Tensor = aten::batch_norm(%input.335, %self.kp_detector.fg_encoder.layer4.1.bn2.weight, %self.kp_detector.fg_encoder.layer4.1.bn2.bias, %self.kp_detector.fg_encoder.layer4.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer4.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %357 : Tensor = aten::add(%out.47, %351, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %358 : Tensor = aten::relu(%357), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.67 : Tensor = aten::_convolution(%120, %self.kp_detector.fg_encoder.layer3.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.9 : Tensor = aten::batch_norm(%input.67, %self.kp_detector.fg_encoder.layer3.0.bn2.weight, %self.kp_detector.fg_encoder.layer3.0.bn2.bias, %self.kp_detector.fg_encoder.layer3.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer3.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0.weight, %input.75 : Tensor = aten::_convolution(%135, %self.kp_detector.fg_encoder.layer3.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.77 : Tensor = aten::batch_norm(%input.75, %self.kp_detector.fg_encoder.layer3.1.bn1.weight, %self.kp_detector.fg_encoder.layer3.1.bn1.bias, %self.kp_detector.fg_encoder.layer3.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer3.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %143 : Tensor = aten::relu(%input.77), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.81 : Tensor = aten::_convolution(%143, %self.kp_detector.fg_encoder.layer3.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.11 : Tensor = aten::batch_norm(%input.81, %self.kp_detector.fg_encoder.layer3.1.bn2.weight, %self.kp_detector.fg_encoder.layer3.1.bn2.bias, %self.kp_detector.fg_encoder.layer3.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer3.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %151 : Tensor = aten::add(%out.11, %135, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %152 : Tensor = aten::relu(%151), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.87 : Tensor = aten::_convolution(%152, %self.kp_detector.fg_encoder.layer4.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.89 : Tensor = aten::batch_norm(%input.87, %self.kp_detector.fg_encoder.layer4.0.bn1.weight, %self.kp_detector.fg_encoder.layer4.0.bn1.bias, %self.kp_detector.fg_encoder.layer4.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer4.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %160 : Tensor = aten::relu(%input.89), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0.weight, %input.93 : Tensor = aten::_convolution(%160, %self.kp_detector.fg_encoder.layer4.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.13 : Tensor = aten::batch_norm(%input.93, %self.kp_detector.fg_encoder.layer4.0.bn2.weight, %self.kp_detector.fg_encoder.layer4.0.bn2.bias, %self.kp_detector.fg_encoder.layer4.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer4.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0.weight | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Deleting timing cache: 961 entries, served 4916 hits since creation. | |
DEBUG: [Torch-TensorRT TorchScript Conversion Context] - Engine Layer Information: | |
Layer(Myelin): {ForeignNode[(Unnamed Layer* 1) [Shuffle]...%input.115 : Tensor = aten::select(%19, %21, %16) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:529:0]}, Tactic: 0x0000000000000000, input_0 (Float[1,256,256,3]) -> (Unnamed Layer* 273) [Identity]_output (Float[]), (Unnamed Layer* 269) [Shuffle]_output (Float[1,1]), (Unnamed Layer* 261) [Shuffle]_output (Float[1,1]), (Unnamed Layer* 257) [Shuffle]_output (Float[1,1]), (Unnamed Layer* 177) [Shuffle]_output (Float[1,1]), (Unnamed Layer* 173) [Shuffle]_output (Float[1,1]), (Unnamed Layer* 92) [Shuffle]_output (Float[1,1]), (Unnamed Layer* 88) [Shuffle]_output (Float[1,1]), (Unnamed Layer* 10) [Shuffle]_output (Float[1,3,256,256]) | |
Layer(NoOp): unsqueeze_node_after_{ForeignNode[(Unnamed Layer* 1) [Shuffle]...%input.115 : Tensor = aten::select(%19, %21, %16) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:529:0]}_(Unnamed Layer* 173) [Shuffle]_output, Tactic: 0x0000000000000000, (Unnamed Layer* 173) [Shuffle]_output (Float[1,1]) -> unsqueeze_tensor_after_{ForeignNode[(Unnamed Layer* 1) [Shuffle]...%input.115 : Tensor = aten::select(%19, %21, %16) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:529:0]}_(Unnamed Layer* 173) [Shuffle]_output_out_tensor (Float[1,1,1,1]) | |
Layer(NoOp): unsqueeze_node_after_{ForeignNode[(Unnamed Layer* 1) [Shuffle]...%input.115 : Tensor = aten::select(%19, %21, %16) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:529:0]}_(Unnamed Layer* 257) [Shuffle]_output, Tactic: 0x0000000000000000, (Unnamed Layer* 257) [Shuffle]_output (Float[1,1]) -> unsqueeze_tensor_after_{ForeignNode[(Unnamed Layer* 1) [Shuffle]...%input.115 : Tensor = aten::select(%19, %21, %16) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:529:0]}_(Unnamed Layer* 257) [Shuffle]_output_out_tensor (Float[1,1,1,1]) | |
Layer(Reformat): Reformatting CopyNode for Input Tensor 0 to unsqueeze_node_after_{ForeignNode[(Unnamed Layer* 1) [Shuffle]...%input.115 : Tensor = aten::select(%19, %21, %16) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:529:0]}_(Unnamed Layer* 88) [Shuffle]_output, Tactic: 0x00000000000003e8, (Unnamed Layer* 88) [Shuffle]_output (Float[1,1]) -> Reformatted Input Tensor 0 to unsqueeze_node_after_{ForeignNode[(Unnamed Layer* 1) [Shuffle]...%input.115 : Tensor = aten::select(%19, %21, %16) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:529:0]}_(Unnamed Layer* 88) [Shuffle]_output (Half[1,1]) | |
Layer(NoOp): unsqueeze_node_after_{ForeignNode[(Unnamed Layer* 1) [Shuffle]...%input.115 : Tensor = aten::select(%19, %21, %16) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:529:0]}_(Unnamed Layer* 88) [Shuffle]_output, Tactic: 0x0000000000000000, Reformatted Input Tensor 0 to unsqueeze_node_after_{ForeignNode[(Unnamed Layer* 1) [Shuffle]...%input.115 : Tensor = aten::select(%19, %21, %16) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:529:0]}_(Unnamed Layer* 88) [Shuffle]_output (Half[1,1]) -> unsqueeze_tensor_after_{ForeignNode[(Unnamed Layer* 1) [Shuffle]...%input.115 : Tensor = aten::select(%19, %21, %16) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:529:0]}_(Unnamed Layer* 88) [Shuffle]_output_out_tensor (Half[1,1,1,1]) | |
Layer(Shuffle): %source : Tensor = aten::permute(%6, %9) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:524:0, Tactic: 0x0000000000000000, input_1 (Float[1,256,256,3]) -> output_1 (Float[1,3,256,256]) | |
Layer(Reformat): Reformatting CopyNode for Input Tensor 0 to %input.3 : Tensor = aten::_convolution(%10, %self.kp_detector.fg_encoder.conv1.weight, %5, %25, %26, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.5 : Tensor = aten::batch_norm(%input.3, %self.kp_detector.fg_encoder.bn1.weight, %self.kp_detector.fg_encoder.bn1.bias, %self.kp_detector.fg_encoder.bn1.running_mean, %self.kp_detector.fg_encoder.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %37 : Tensor = aten::relu(%input.5), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0, Tactic: 0x0000000000000000, output_1 (Float[1,3,256,256]) -> Reformatted Input Tensor 0 to %input.3 : Tensor = aten::_convolution(%10, %self.kp_detector.fg_encoder.conv1.weight, %5, %25, %26, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.5 : Tensor = aten::batch_norm(%input.3, %self.kp_detector.fg_encoder.bn1.weight, %self.kp_detector.fg_encoder.bn1.bias, %self.kp_detector.fg_encoder.bn1.running_mean, %self.kp_detector.fg_encoder.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %37 : Tensor = aten::relu(%input.5), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (Half[1,3:8,256,256]) | |
Layer(CaskConvolution): %input.3 : Tensor = aten::_convolution(%10, %self.kp_detector.fg_encoder.conv1.weight, %5, %25, %26, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.5 : Tensor = aten::batch_norm(%input.3, %self.kp_detector.fg_encoder.bn1.weight, %self.kp_detector.fg_encoder.bn1.bias, %self.kp_detector.fg_encoder.bn1.running_mean, %self.kp_detector.fg_encoder.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %37 : Tensor = aten::relu(%input.5), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0, Tactic: 0x603af898ad7e47f4, Reformatted Input Tensor 0 to %input.3 : Tensor = aten::_convolution(%10, %self.kp_detector.fg_encoder.conv1.weight, %5, %25, %26, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.5 : Tensor = aten::batch_norm(%input.3, %self.kp_detector.fg_encoder.bn1.weight, %self.kp_detector.fg_encoder.bn1.bias, %self.kp_detector.fg_encoder.bn1.running_mean, %self.kp_detector.fg_encoder.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %37 : Tensor = aten::relu(%input.5), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (Half[1,3:8,256,256]) -> (Unnamed Layer* 13) [Activation]_output (Half[1,64:8,128,128]) | |
Layer(CaskPooling): %input.9 : Tensor = aten::max_pool2d(%37, %26, %25, %27, %27, %4), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.maxpool # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:780:0, Tactic: 0xdb415cba6b0e9137, (Unnamed Layer* 13) [Activation]_output (Half[1,64:8,128,128]) -> (Unnamed Layer* 14) [Pooling]_output (Half[1,64:8,64,64]) | |
Layer(CaskConvolution): %input.11 : Tensor = aten::_convolution(%input.9, %self.kp_detector.fg_encoder.layer1.0.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.13 : Tensor = aten::batch_norm(%input.11, %self.kp_detector.fg_encoder.layer1.0.bn1.weight, %self.kp_detector.fg_encoder.layer1.0.bn1.bias, %self.kp_detector.fg_encoder.layer1.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer1.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %46 : Tensor = aten::relu(%input.13), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0, Tactic: 0x30e8a8d7a953e5e9, (Unnamed Layer* 14) [Pooling]_output (Half[1,64:8,64,64]) -> (Unnamed Layer* 17) [Activation]_output (Half[1,64:8,64,64]) | |
Layer(CaskConvolution): %input.17 : Tensor = aten::_convolution(%46, %self.kp_detector.fg_encoder.layer1.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.1 : Tensor = aten::batch_norm(%input.17, %self.kp_detector.fg_encoder.layer1.0.bn2.weight, %self.kp_detector.fg_encoder.layer1.0.bn2.bias, %self.kp_detector.fg_encoder.layer1.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer1.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %54 : Tensor = aten::add(%out.1, %input.9, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %55 : Tensor = aten::relu(%54), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0, Tactic: 0x30e8a8d7a953e5e9, (Unnamed Layer* 17) [Activation]_output (Half[1,64:8,64,64]), (Unnamed Layer* 14) [Pooling]_output (Half[1,64:8,64,64]) -> (Unnamed Layer* 21) [Activation]_output (Half[1,64:8,64,64]) | |
Layer(CaskConvolution): %input.23 : Tensor = aten::_convolution(%55, %self.kp_detector.fg_encoder.layer1.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.25 : Tensor = aten::batch_norm(%input.23, %self.kp_detector.fg_encoder.layer1.1.bn1.weight, %self.kp_detector.fg_encoder.layer1.1.bn1.bias, %self.kp_detector.fg_encoder.layer1.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer1.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %63 : Tensor = aten::relu(%input.25), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0, Tactic: 0x30e8a8d7a953e5e9, (Unnamed Layer* 21) [Activation]_output (Half[1,64:8,64,64]) -> (Unnamed Layer* 24) [Activation]_output (Half[1,64:8,64,64]) | |
Layer(CaskConvolution): %input.29 : Tensor = aten::_convolution(%63, %self.kp_detector.fg_encoder.layer1.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.3 : Tensor = aten::batch_norm(%input.29, %self.kp_detector.fg_encoder.layer1.1.bn2.weight, %self.kp_detector.fg_encoder.layer1.1.bn2.bias, %self.kp_detector.fg_encoder.layer1.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer1.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %71 : Tensor = aten::add(%out.3, %55, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %72 : Tensor = aten::relu(%71), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0, Tactic: 0x30e8a8d7a953e5e9, (Unnamed Layer* 24) [Activation]_output (Half[1,64:8,64,64]), (Unnamed Layer* 21) [Activation]_output (Half[1,64:8,64,64]) -> (Unnamed Layer* 28) [Activation]_output (Half[1,64:8,64,64]) | |
Layer(CaskConvolution): %input.35 : Tensor = aten::_convolution(%72, %self.kp_detector.fg_encoder.layer2.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.37 : Tensor = aten::batch_norm(%input.35, %self.kp_detector.fg_encoder.layer2.0.bn1.weight, %self.kp_detector.fg_encoder.layer2.0.bn1.bias, %self.kp_detector.fg_encoder.layer2.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer2.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %80 : Tensor = aten::relu(%input.37), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0, Tactic: 0xe1ff5ad20f5c6bf6, (Unnamed Layer* 28) [Activation]_output (Half[1,64:8,64,64]) -> (Unnamed Layer* 31) [Activation]_output (Half[1,128:8,32,32]) | |
Layer(CaskConvolution): %input.41 : Tensor = aten::_convolution(%80, %self.kp_detector.fg_encoder.layer2.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.5 : Tensor = aten::batch_norm(%input.41, %self.kp_detector.fg_encoder.layer2.0.bn2.weight, %self.kp_detector.fg_encoder.layer2.0.bn2.bias, %self.kp_detector.fg_encoder.layer2.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer2.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0, Tactic: 0xe1ff5ad20f5c6bf6, (Unnamed Layer* 31) [Activation]_output (Half[1,128:8,32,32]) -> (Unnamed Layer* 35) [Scale]_output (Half[1,128:8,32,32]) | |
Layer(CaskConvolution): %input.43 : Tensor = aten::_convolution(%72, %self.kp_detector.fg_encoder.layer2.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.downsample/__module.kp_detector.fg_encoder.layer2.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.1 : Tensor = aten::batch_norm(%input.43, %self.kp_detector.fg_encoder.layer2.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer2.0.bn2.bias, %self.kp_detector.fg_encoder.layer2.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer2.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.downsample/__module.kp_detector.fg_encoder.layer2.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %94 : Tensor = aten::add(%out.5, %identity.1, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %95 : Tensor = aten::relu(%94), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0, Tactic: 0x2aa016c86360697f, (Unnamed Layer* 28) [Activation]_output (Half[1,64:8,64,64]), (Unnamed Layer* 35) [Scale]_output (Half[1,128:8,32,32]) -> (Unnamed Layer* 37) [Activation]_output (Half[1,128:8,32,32]) | |
Layer(CaskConvolution): %input.49 : Tensor = aten::_convolution(%95, %self.kp_detector.fg_encoder.layer2.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.51 : Tensor = aten::batch_norm(%input.49, %self.kp_detector.fg_encoder.layer2.1.bn1.weight, %self.kp_detector.fg_encoder.layer2.1.bn1.bias, %self.kp_detector.fg_encoder.layer2.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer2.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %103 : Tensor = aten::relu(%input.51), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0, Tactic: 0xe1ff5ad20f5c6bf6, (Unnamed Layer* 37) [Activation]_output (Half[1,128:8,32,32]) -> (Unnamed Layer* 40) [Activation]_output (Half[1,128:8,32,32]) | |
Layer(CaskConvolution): %input.55 : Tensor = aten::_convolution(%103, %self.kp_detector.fg_encoder.layer2.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.7 : Tensor = aten::batch_norm(%input.55, %self.kp_detector.fg_encoder.layer2.1.bn2.weight, %self.kp_detector.fg_encoder.layer2.1.bn2.bias, %self.kp_detector.fg_encoder.layer2.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer2.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %111 : Tensor = aten::add(%out.7, %95, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %112 : Tensor = aten::relu(%111), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0, Tactic: 0xe1ff5ad20f5c6bf6, (Unnamed Layer* 40) [Activation]_output (Half[1,128:8,32,32]), (Unnamed Layer* 37) [Activation]_output (Half[1,128:8,32,32]) -> (Unnamed Layer* 44) [Activation]_output (Half[1,128:8,32,32]) | |
Layer(CaskConvolution): %input.61 : Tensor = aten::_convolution(%112, %self.kp_detector.fg_encoder.layer3.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.63 : Tensor = aten::batch_norm(%input.61, %self.kp_detector.fg_encoder.layer3.0.bn1.weight, %self.kp_detector.fg_encoder.layer3.0.bn1.bias, %self.kp_detector.fg_encoder.layer3.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer3.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %120 : Tensor = aten::relu(%input.63), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0, Tactic: 0xa033e20ae9f412b2, (Unnamed Layer* 44) [Activation]_output (Half[1,128:8,32,32]) -> (Unnamed Layer* 47) [Activation]_output (Half[1,256:8,16,16]) | |
Layer(CaskConvolution): %input.67 : Tensor = aten::_convolution(%120, %self.kp_detector.fg_encoder.layer3.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.9 : Tensor = aten::batch_norm(%input.67, %self.kp_detector.fg_encoder.layer3.0.bn2.weight, %self.kp_detector.fg_encoder.layer3.0.bn2.bias, %self.kp_detector.fg_encoder.layer3.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer3.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0, Tactic: 0xa033e20ae9f412b2, (Unnamed Layer* 47) [Activation]_output (Half[1,256:8,16,16]) -> (Unnamed Layer* 51) [Scale]_output (Half[1,256:8,16,16]) | |
Layer(CaskConvolution): %input.69 : Tensor = aten::_convolution(%112, %self.kp_detector.fg_encoder.layer3.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.downsample/__module.kp_detector.fg_encoder.layer3.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.3 : Tensor = aten::batch_norm(%input.69, %self.kp_detector.fg_encoder.layer3.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer3.0.bn2.bias, %self.kp_detector.fg_encoder.layer3.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer3.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.downsample/__module.kp_detector.fg_encoder.layer3.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %134 : Tensor = aten::add(%out.9, %identity.3, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %135 : Tensor = aten::relu(%134), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0, Tactic: 0x2aa016c86360697f, (Unnamed Layer* 44) [Activation]_output (Half[1,128:8,32,32]), (Unnamed Layer* 51) [Scale]_output (Half[1,256:8,16,16]) -> (Unnamed Layer* 53) [Activation]_output (Half[1,256:8,16,16]) | |
Layer(CaskConvolution): %input.75 : Tensor = aten::_convolution(%135, %self.kp_detector.fg_encoder.layer3.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.77 : Tensor = aten::batch_norm(%input.75, %self.kp_detector.fg_encoder.layer3.1.bn1.weight, %self.kp_detector.fg_encoder.layer3.1.bn1.bias, %self.kp_detector.fg_encoder.layer3.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer3.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %143 : Tensor = aten::relu(%input.77), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0, Tactic: 0xa033e20ae9f412b2, (Unnamed Layer* 53) [Activation]_output (Half[1,256:8,16,16]) -> (Unnamed Layer* 56) [Activation]_output (Half[1,256:8,16,16]) | |
Layer(CaskConvolution): %input.81 : Tensor = aten::_convolution(%143, %self.kp_detector.fg_encoder.layer3.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.11 : Tensor = aten::batch_norm(%input.81, %self.kp_detector.fg_encoder.layer3.1.bn2.weight, %self.kp_detector.fg_encoder.layer3.1.bn2.bias, %self.kp_detector.fg_encoder.layer3.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer3.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %151 : Tensor = aten::add(%out.11, %135, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %152 : Tensor = aten::relu(%151), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0, Tactic: 0xa033e20ae9f412b2, (Unnamed Layer* 56) [Activation]_output (Half[1,256:8,16,16]), (Unnamed Layer* 53) [Activation]_output (Half[1,256:8,16,16]) -> (Unnamed Layer* 60) [Activation]_output (Half[1,256:8,16,16]) | |
Layer(CaskConvolution): %input.87 : Tensor = aten::_convolution(%152, %self.kp_detector.fg_encoder.layer4.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.89 : Tensor = aten::batch_norm(%input.87, %self.kp_detector.fg_encoder.layer4.0.bn1.weight, %self.kp_detector.fg_encoder.layer4.0.bn1.bias, %self.kp_detector.fg_encoder.layer4.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer4.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %160 : Tensor = aten::relu(%input.89), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0, Tactic: 0xa033e20ae9f412b2, (Unnamed Layer* 60) [Activation]_output (Half[1,256:8,16,16]) -> (Unnamed Layer* 63) [Activation]_output (Half[1,512:8,8,8]) | |
Layer(CaskConvolution): %input.93 : Tensor = aten::_convolution(%160, %self.kp_detector.fg_encoder.layer4.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.13 : Tensor = aten::batch_norm(%input.93, %self.kp_detector.fg_encoder.layer4.0.bn2.weight, %self.kp_detector.fg_encoder.layer4.0.bn2.bias, %self.kp_detector.fg_encoder.layer4.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer4.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0, Tactic: 0xa033e20ae9f412b2, (Unnamed Layer* 63) [Activation]_output (Half[1,512:8,8,8]) -> (Unnamed Layer* 67) [Scale]_output (Half[1,512:8,8,8]) | |
Layer(CaskConvolution): %input.95 : Tensor = aten::_convolution(%152, %self.kp_detector.fg_encoder.layer4.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.downsample/__module.kp_detector.fg_encoder.layer4.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.5 : Tensor = aten::batch_norm(%input.95, %self.kp_detector.fg_encoder.layer4.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer4.0.bn2.bias, %self.kp_detector.fg_encoder.layer4.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer4.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.downsample/__module.kp_detector.fg_encoder.layer4.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %174 : Tensor = aten::add(%out.13, %identity.5, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %175 : Tensor = aten::relu(%174), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0, Tactic: 0x2aa016c86360697f, (Unnamed Layer* 60) [Activation]_output (Half[1,256:8,16,16]), (Unnamed Layer* 67) [Scale]_output (Half[1,512:8,8,8]) -> (Unnamed Layer* 69) [Activation]_output (Half[1,512:8,8,8]) | |
Layer(CaskConvolution): %input.101 : Tensor = aten::_convolution(%175, %self.kp_detector.fg_encoder.layer4.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.103 : Tensor = aten::batch_norm(%input.101, %self.kp_detector.fg_encoder.layer4.1.bn1.weight, %self.kp_detector.fg_encoder.layer4.1.bn1.bias, %self.kp_detector.fg_encoder.layer4.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer4.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %183 : Tensor = aten::relu(%input.103), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0, Tactic: 0xa033e20ae9f412b2, (Unnamed Layer* 69) [Activation]_output (Half[1,512:8,8,8]) -> (Unnamed Layer* 72) [Activation]_output (Half[1,512:8,8,8]) | |
Layer(CaskConvolution): %input.107 : Tensor = aten::_convolution(%183, %self.kp_detector.fg_encoder.layer4.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.15 : Tensor = aten::batch_norm(%input.107, %self.kp_detector.fg_encoder.layer4.1.bn2.weight, %self.kp_detector.fg_encoder.layer4.1.bn2.bias, %self.kp_detector.fg_encoder.layer4.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer4.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %191 : Tensor = aten::add(%out.15, %175, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %192 : Tensor = aten::relu(%191), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0, Tactic: 0xa033e20ae9f412b2, (Unnamed Layer* 72) [Activation]_output (Half[1,512:8,8,8]), (Unnamed Layer* 69) [Activation]_output (Half[1,512:8,8,8]) -> (Unnamed Layer* 76) [Activation]_output (Half[1,512:8,8,8]) | |
Layer(CaskPooling): %x.5 : Tensor = aten::adaptive_avg_pool2d(%192, %27), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.avgpool # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1213:0, Tactic: 0x56d7b61f084f251e, (Unnamed Layer* 76) [Activation]_output (Half[1,512:8,8,8]) -> (Unnamed Layer* 77) [Reduce]_output (Half[1,512:8,1,1]) | |
Layer(NoOp): Reformatting CopyNode for Input Tensor 0 to %198 : Tensor = aten::matmul(%input.113, %196) + [Freeze Tensor %199 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 83) [Shuffle] + unsqueeze_node_after_[Freeze Tensor %199 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 83) [Shuffle]_(Unnamed Layer* 83) [Shuffle]_output + %201 : Tensor = aten::add(%199, %198, %365) + PWN(%fg_kp.3 : Tensor = aten::sigmoid(%201), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0), Tactic: 0x0000000000000000, (Unnamed Layer* 77) [Reduce]_output (Half[1,512:8,1,1]) -> Reformatted Input Tensor 0 to %198 : Tensor = aten::matmul(%input.113, %196) + [Freeze Tensor %199 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 83) [Shuffle] + unsqueeze_node_after_[Freeze Tensor %199 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 83) [Shuffle]_(Unnamed Layer* 83) [Shuffle]_output + %201 : Tensor = aten::add(%199, %198, %365) + PWN(%fg_kp.3 : Tensor = aten::sigmoid(%201), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0) (Half[1,512,1,1]) | |
Layer(CublasConvolution): %198 : Tensor = aten::matmul(%input.113, %196) + [Freeze Tensor %199 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 83) [Shuffle] + unsqueeze_node_after_[Freeze Tensor %199 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 83) [Shuffle]_(Unnamed Layer* 83) [Shuffle]_output + %201 : Tensor = aten::add(%199, %198, %365) + PWN(%fg_kp.3 : Tensor = aten::sigmoid(%201), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0), Tactic: 0x0000000000000002, Reformatted Input Tensor 0 to %198 : Tensor = aten::matmul(%input.113, %196) + [Freeze Tensor %199 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 83) [Shuffle] + unsqueeze_node_after_[Freeze Tensor %199 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 83) [Shuffle]_(Unnamed Layer* 83) [Shuffle]_output + %201 : Tensor = aten::add(%199, %198, %365) + PWN(%fg_kp.3 : Tensor = aten::sigmoid(%201), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0) (Half[1,512,1,1]) -> %fg_kp.3 : Tensor = aten::sigmoid(%201), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0_out_tensor (Half[1,100,1,1]) | |
Layer(Reformat): Reformatting CopyNode for Input Tensor 0 to %input.231 : Tensor = aten::_convolution(%22, %self.kp_detector.fg_encoder.conv1.weight, %5, %25, %26, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.233 : Tensor = aten::batch_norm(%input.231, %self.kp_detector.fg_encoder.bn1.weight, %self.kp_detector.fg_encoder.bn1.bias, %self.kp_detector.fg_encoder.bn1.running_mean, %self.kp_detector.fg_encoder.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %295 : Tensor = aten::relu(%input.233), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 || %input.117 : Tensor = aten::_convolution(%input.115, %self.kp_detector.fg_encoder.conv1.weight, %5, %25, %26, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.119 : Tensor = aten::batch_norm(%input.117, %self.kp_detector.fg_encoder.bn1.weight, %self.kp_detector.fg_encoder.bn1.bias, %self.kp_detector.fg_encoder.bn1.running_mean, %self.kp_detector.fg_encoder.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %216 : Tensor = aten::relu(%input.119), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0, Tactic: 0x0000000000000000, (Unnamed Layer* 10) [Shuffle]_output (Float[1,3,256,256]) -> Reformatted Input Tensor 0 to %input.231 : Tensor = aten::_convolution(%22, %self.kp_detector.fg_encoder.conv1.weight, %5, %25, %26, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.233 : Tensor = aten::batch_norm(%input.231, %self.kp_detector.fg_encoder.bn1.weight, %self.kp_detector.fg_encoder.bn1.bias, %self.kp_detector.fg_encoder.bn1.running_mean, %self.kp_detector.fg_encoder.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %295 : Tensor = aten::relu(%input.233), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 || %input.117 : Tensor = aten::_convolution(%input.115, %self.kp_detector.fg_encoder.conv1.weight, %5, %25, %26, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.119 : Tensor = aten::batch_norm(%input.117, %self.kp_detector.fg_encoder.bn1.weight, %self.kp_detector.fg_encoder.bn1.bias, %self.kp_detector.fg_encoder.bn1.running_mean, %self.kp_detector.fg_encoder.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %216 : Tensor = aten::relu(%input.119), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (Half[1,3:2,256,256]) | |
Layer(CaskConvolution): %input.231 : Tensor = aten::_convolution(%22, %self.kp_detector.fg_encoder.conv1.weight, %5, %25, %26, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.233 : Tensor = aten::batch_norm(%input.231, %self.kp_detector.fg_encoder.bn1.weight, %self.kp_detector.fg_encoder.bn1.bias, %self.kp_detector.fg_encoder.bn1.running_mean, %self.kp_detector.fg_encoder.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %295 : Tensor = aten::relu(%input.233), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 || %input.117 : Tensor = aten::_convolution(%input.115, %self.kp_detector.fg_encoder.conv1.weight, %5, %25, %26, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.119 : Tensor = aten::batch_norm(%input.117, %self.kp_detector.fg_encoder.bn1.weight, %self.kp_detector.fg_encoder.bn1.bias, %self.kp_detector.fg_encoder.bn1.running_mean, %self.kp_detector.fg_encoder.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %216 : Tensor = aten::relu(%input.119), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0, Tactic: 0x4cfee77ea8c324db, Reformatted Input Tensor 0 to %input.231 : Tensor = aten::_convolution(%22, %self.kp_detector.fg_encoder.conv1.weight, %5, %25, %26, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.233 : Tensor = aten::batch_norm(%input.231, %self.kp_detector.fg_encoder.bn1.weight, %self.kp_detector.fg_encoder.bn1.bias, %self.kp_detector.fg_encoder.bn1.running_mean, %self.kp_detector.fg_encoder.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %295 : Tensor = aten::relu(%input.233), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 || %input.117 : Tensor = aten::_convolution(%input.115, %self.kp_detector.fg_encoder.conv1.weight, %5, %25, %26, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.119 : Tensor = aten::batch_norm(%input.117, %self.kp_detector.fg_encoder.bn1.weight, %self.kp_detector.fg_encoder.bn1.bias, %self.kp_detector.fg_encoder.bn1.running_mean, %self.kp_detector.fg_encoder.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %216 : Tensor = aten::relu(%input.119), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (Half[1,3:2,256,256]) -> %input.231 : Tensor = aten::_convolution(%22, %self.kp_detector.fg_encoder.conv1.weight, %5, %25, %26, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.233 : Tensor = aten::batch_norm(%input.231, %self.kp_detector.fg_encoder.bn1.weight, %self.kp_detector.fg_encoder.bn1.bias, %self.kp_detector.fg_encoder.bn1.running_mean, %self.kp_detector.fg_encoder.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %295 : Tensor = aten::relu(%input.233), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 || %input.117 : Tensor = aten::_convolution(%input.115, %self.kp_detector.fg_encoder.conv1.weight, %5, %25, %26, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.119 : Tensor = aten::batch_norm(%input.117, %self.kp_detector.fg_encoder.bn1.weight, %self.kp_detector.fg_encoder.bn1.bias, %self.kp_detector.fg_encoder.bn1.running_mean, %self.kp_detector.fg_encoder.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %216 : Tensor = aten::relu(%input.119), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (Half[1,128:2,128,128]) | |
Layer(ElementWise): %205 : Tensor = aten::mul(%fg_kp.3, %206), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0, Tactic: 0x0000000000000001, %fg_kp.3 : Tensor = aten::sigmoid(%201), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0_out_tensor (Half[1,100,1,1]), unsqueeze_tensor_after_{ForeignNode[(Unnamed Layer* 1) [Shuffle]...%input.115 : Tensor = aten::select(%19, %21, %16) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:529:0]}_(Unnamed Layer* 88) [Shuffle]_output_out_tensor (Half[1,1,1,1]) -> %205 : Tensor = aten::mul(%fg_kp.3, %206), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0_out_tensor (Half[1,100,1,1]) | |
Layer(NoOp): copied_squeeze_after_%205 : Tensor = aten::mul(%fg_kp.3, %206), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0, Tactic: 0x0000000000000000, %205 : Tensor = aten::mul(%fg_kp.3, %206), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0_out_tensor (Half[1,100,1,1]) -> (Unnamed Layer* 89) [ElementWise]_output (Half[1,100]) | |
Layer(Reformat): Reformatting CopyNode for Input Tensor 0 to %fg_kp.5 : Tensor = aten::sub(%205, %208, %365), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0, Tactic: 0x00000000000003e8, (Unnamed Layer* 89) [ElementWise]_output (Half[1,100]) -> Reformatted Input Tensor 0 to %fg_kp.5 : Tensor = aten::sub(%205, %208, %365), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0 (Float[1,100]) | |
Layer(ElementWise): %fg_kp.5 : Tensor = aten::sub(%205, %208, %365), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0, Tactic: 0x0000000000000001, Reformatted Input Tensor 0 to %fg_kp.5 : Tensor = aten::sub(%205, %208, %365), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0 (Float[1,100]), (Unnamed Layer* 92) [Shuffle]_output (Float[1,1]) -> (Unnamed Layer* 93) [ElementWise]_output (Float[1,100]) | |
Layer(NoOp): %211 : Tensor = aten::reshape(%fg_kp.5, %209), Tactic: 0x0000000000000000, (Unnamed Layer* 93) [ElementWise]_output (Float[1,100]) -> output_2 (Float[1,50,2]) | |
Layer(Reduce): %374 : Tensor = aten::mean(%211, %373, %4, %5) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:503:0, Tactic: 0x0000000000000008, output_2 (Float[1,50,2]) -> (Unnamed Layer* 265) [Reduce]_output (Float[1,2]) | |
Layer(Reformat): Reformatting CopyNode for Input Tensor 0 to %212 : Tensor = aten::reshape(%211, %213), Tactic: 0x0000000000000000, output_2 (Float[1,50,2]) -> Reformatted Input Tensor 0 to %212 : Tensor = aten::reshape(%211, %213) (Float[1,50,2]) | |
Layer(NoOp): %212 : Tensor = aten::reshape(%211, %213), Tactic: 0x0000000000000000, Reformatted Input Tensor 0 to %212 : Tensor = aten::reshape(%211, %213) (Float[1,50,2]) -> Reformatted Output Tensor 0 to %212 : Tensor = aten::reshape(%211, %213) (Float[1,50,1,1,2]) | |
Layer(Reformat): Reformatting CopyNode for Output Tensor 0 to %212 : Tensor = aten::reshape(%211, %213), Tactic: 0x00000000000003e8, Reformatted Output Tensor 0 to %212 : Tensor = aten::reshape(%211, %213) (Float[1,50,1,1,2]) -> output_4 (Float[1,50,1,1,2]) | |
Layer(CaskPooling): %input.123 : Tensor = aten::max_pool2d(%216, %26, %25, %27, %27, %4), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.maxpool # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:780:0, Tactic: 0xc8ae100b63fd8921, %input.231 : Tensor = aten::_convolution(%22, %self.kp_detector.fg_encoder.conv1.weight, %5, %25, %26, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.233 : Tensor = aten::batch_norm(%input.231, %self.kp_detector.fg_encoder.bn1.weight, %self.kp_detector.fg_encoder.bn1.bias, %self.kp_detector.fg_encoder.bn1.running_mean, %self.kp_detector.fg_encoder.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %295 : Tensor = aten::relu(%input.233), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 || %input.117 : Tensor = aten::_convolution(%input.115, %self.kp_detector.fg_encoder.conv1.weight, %5, %25, %26, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.119 : Tensor = aten::batch_norm(%input.117, %self.kp_detector.fg_encoder.bn1.weight, %self.kp_detector.fg_encoder.bn1.bias, %self.kp_detector.fg_encoder.bn1.running_mean, %self.kp_detector.fg_encoder.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %216 : Tensor = aten::relu(%input.119), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (Half[1,64:2,128,128]) -> Reformatted Output Tensor 0 to %input.123 : Tensor = aten::max_pool2d(%216, %26, %25, %27, %27, %4), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.maxpool # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:780:0 (Half[1,64:2,64,64]) | |
Layer(Reformat): Reformatting CopyNode for Output Tensor 0 to %input.123 : Tensor = aten::max_pool2d(%216, %26, %25, %27, %27, %4), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.maxpool # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:780:0, Tactic: 0x0000000000000000, Reformatted Output Tensor 0 to %input.123 : Tensor = aten::max_pool2d(%216, %26, %25, %27, %27, %4), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.maxpool # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:780:0 (Half[1,64:2,64,64]) -> (Unnamed Layer* 99) [Pooling]_output (Half[1,64:8,64,64]) | |
Layer(CaskConvolution): %input.125 : Tensor = aten::_convolution(%input.123, %self.kp_detector.fg_encoder.layer1.0.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.127 : Tensor = aten::batch_norm(%input.125, %self.kp_detector.fg_encoder.layer1.0.bn1.weight, %self.kp_detector.fg_encoder.layer1.0.bn1.bias, %self.kp_detector.fg_encoder.layer1.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer1.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %220 : Tensor = aten::relu(%input.127), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0, Tactic: 0x30e8a8d7a953e5e9, (Unnamed Layer* 99) [Pooling]_output (Half[1,64:8,64,64]) -> (Unnamed Layer* 102) [Activation]_output (Half[1,64:8,64,64]) | |
Layer(CaskPooling): %input.237 : Tensor = aten::max_pool2d(%295, %26, %25, %27, %27, %4), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.maxpool # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:780:0, Tactic: 0xc8ae100b63fd8921, %input.231 : Tensor = aten::_convolution(%22, %self.kp_detector.fg_encoder.conv1.weight, %5, %25, %26, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.233 : Tensor = aten::batch_norm(%input.231, %self.kp_detector.fg_encoder.bn1.weight, %self.kp_detector.fg_encoder.bn1.bias, %self.kp_detector.fg_encoder.bn1.running_mean, %self.kp_detector.fg_encoder.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %295 : Tensor = aten::relu(%input.233), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 || %input.117 : Tensor = aten::_convolution(%input.115, %self.kp_detector.fg_encoder.conv1.weight, %5, %25, %26, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.119 : Tensor = aten::batch_norm(%input.117, %self.kp_detector.fg_encoder.bn1.weight, %self.kp_detector.fg_encoder.bn1.bias, %self.kp_detector.fg_encoder.bn1.running_mean, %self.kp_detector.fg_encoder.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %216 : Tensor = aten::relu(%input.119), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0 (Half[1,64:2,128,128]) -> Reformatted Output Tensor 0 to %input.237 : Tensor = aten::max_pool2d(%295, %26, %25, %27, %27, %4), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.maxpool # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:780:0 (Half[1,64:2,64,64]) | |
Layer(Reformat): Reformatting CopyNode for Output Tensor 0 to %input.237 : Tensor = aten::max_pool2d(%295, %26, %25, %27, %27, %4), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.maxpool # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:780:0, Tactic: 0x0000000000000000, Reformatted Output Tensor 0 to %input.237 : Tensor = aten::max_pool2d(%295, %26, %25, %27, %27, %4), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.maxpool # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:780:0 (Half[1,64:2,64,64]) -> (Unnamed Layer* 183) [Pooling]_output (Half[1,64:8,64,64]) | |
Layer(CaskConvolution): %input.239 : Tensor = aten::_convolution(%input.237, %self.kp_detector.fg_encoder.layer1.0.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.241 : Tensor = aten::batch_norm(%input.239, %self.kp_detector.fg_encoder.layer1.0.bn1.weight, %self.kp_detector.fg_encoder.layer1.0.bn1.bias, %self.kp_detector.fg_encoder.layer1.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer1.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %299 : Tensor = aten::relu(%input.241), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0, Tactic: 0x30e8a8d7a953e5e9, (Unnamed Layer* 183) [Pooling]_output (Half[1,64:8,64,64]) -> (Unnamed Layer* 186) [Activation]_output (Half[1,64:8,64,64]) | |
Layer(CaskConvolution): %input.245 : Tensor = aten::_convolution(%299, %self.kp_detector.fg_encoder.layer1.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.33 : Tensor = aten::batch_norm(%input.245, %self.kp_detector.fg_encoder.layer1.0.bn2.weight, %self.kp_detector.fg_encoder.layer1.0.bn2.bias, %self.kp_detector.fg_encoder.layer1.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer1.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %302 : Tensor = aten::add(%out.33, %input.237, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %303 : Tensor = aten::relu(%302), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0, Tactic: 0x30e8a8d7a953e5e9, (Unnamed Layer* 186) [Activation]_output (Half[1,64:8,64,64]), (Unnamed Layer* 183) [Pooling]_output (Half[1,64:8,64,64]) -> (Unnamed Layer* 190) [Activation]_output (Half[1,64:8,64,64]) | |
Layer(CaskConvolution): %input.131 : Tensor = aten::_convolution(%220, %self.kp_detector.fg_encoder.layer1.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.17 : Tensor = aten::batch_norm(%input.131, %self.kp_detector.fg_encoder.layer1.0.bn2.weight, %self.kp_detector.fg_encoder.layer1.0.bn2.bias, %self.kp_detector.fg_encoder.layer1.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer1.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %223 : Tensor = aten::add(%out.17, %input.123, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %224 : Tensor = aten::relu(%223), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.0/__module.kp_detector.fg_encoder.layer1.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0, Tactic: 0x30e8a8d7a953e5e9, (Unnamed Layer* 102) [Activation]_output (Half[1,64:8,64,64]), (Unnamed Layer* 99) [Pooling]_output (Half[1,64:8,64,64]) -> (Unnamed Layer* 106) [Activation]_output (Half[1,64:8,64,64]) | |
Layer(CaskConvolution): %input.137 : Tensor = aten::_convolution(%224, %self.kp_detector.fg_encoder.layer1.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.139 : Tensor = aten::batch_norm(%input.137, %self.kp_detector.fg_encoder.layer1.1.bn1.weight, %self.kp_detector.fg_encoder.layer1.1.bn1.bias, %self.kp_detector.fg_encoder.layer1.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer1.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %227 : Tensor = aten::relu(%input.139), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0, Tactic: 0x30e8a8d7a953e5e9, (Unnamed Layer* 106) [Activation]_output (Half[1,64:8,64,64]) -> (Unnamed Layer* 109) [Activation]_output (Half[1,64:8,64,64]) | |
Layer(CaskConvolution): %input.251 : Tensor = aten::_convolution(%303, %self.kp_detector.fg_encoder.layer1.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.253 : Tensor = aten::batch_norm(%input.251, %self.kp_detector.fg_encoder.layer1.1.bn1.weight, %self.kp_detector.fg_encoder.layer1.1.bn1.bias, %self.kp_detector.fg_encoder.layer1.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer1.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %306 : Tensor = aten::relu(%input.253), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0, Tactic: 0x30e8a8d7a953e5e9, (Unnamed Layer* 190) [Activation]_output (Half[1,64:8,64,64]) -> (Unnamed Layer* 193) [Activation]_output (Half[1,64:8,64,64]) | |
Layer(CaskConvolution): %input.257 : Tensor = aten::_convolution(%306, %self.kp_detector.fg_encoder.layer1.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.35 : Tensor = aten::batch_norm(%input.257, %self.kp_detector.fg_encoder.layer1.1.bn2.weight, %self.kp_detector.fg_encoder.layer1.1.bn2.bias, %self.kp_detector.fg_encoder.layer1.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer1.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %309 : Tensor = aten::add(%out.35, %303, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %310 : Tensor = aten::relu(%309), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0, Tactic: 0x30e8a8d7a953e5e9, (Unnamed Layer* 193) [Activation]_output (Half[1,64:8,64,64]), (Unnamed Layer* 190) [Activation]_output (Half[1,64:8,64,64]) -> (Unnamed Layer* 197) [Activation]_output (Half[1,64:8,64,64]) | |
Layer(CaskConvolution): %input.143 : Tensor = aten::_convolution(%227, %self.kp_detector.fg_encoder.layer1.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.19 : Tensor = aten::batch_norm(%input.143, %self.kp_detector.fg_encoder.layer1.1.bn2.weight, %self.kp_detector.fg_encoder.layer1.1.bn2.bias, %self.kp_detector.fg_encoder.layer1.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer1.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %230 : Tensor = aten::add(%out.19, %224, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %231 : Tensor = aten::relu(%230), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer1/__module.kp_detector.fg_encoder.layer1.1/__module.kp_detector.fg_encoder.layer1.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0, Tactic: 0x30e8a8d7a953e5e9, (Unnamed Layer* 109) [Activation]_output (Half[1,64:8,64,64]), (Unnamed Layer* 106) [Activation]_output (Half[1,64:8,64,64]) -> (Unnamed Layer* 113) [Activation]_output (Half[1,64:8,64,64]) | |
Layer(CaskConvolution): %input.149 : Tensor = aten::_convolution(%231, %self.kp_detector.fg_encoder.layer2.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.151 : Tensor = aten::batch_norm(%input.149, %self.kp_detector.fg_encoder.layer2.0.bn1.weight, %self.kp_detector.fg_encoder.layer2.0.bn1.bias, %self.kp_detector.fg_encoder.layer2.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer2.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %234 : Tensor = aten::relu(%input.151), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0, Tactic: 0xe1ff5ad20f5c6bf6, (Unnamed Layer* 113) [Activation]_output (Half[1,64:8,64,64]) -> (Unnamed Layer* 116) [Activation]_output (Half[1,128:8,32,32]) | |
Layer(CaskConvolution): %input.263 : Tensor = aten::_convolution(%310, %self.kp_detector.fg_encoder.layer2.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.265 : Tensor = aten::batch_norm(%input.263, %self.kp_detector.fg_encoder.layer2.0.bn1.weight, %self.kp_detector.fg_encoder.layer2.0.bn1.bias, %self.kp_detector.fg_encoder.layer2.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer2.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %313 : Tensor = aten::relu(%input.265), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0, Tactic: 0xe1ff5ad20f5c6bf6, (Unnamed Layer* 197) [Activation]_output (Half[1,64:8,64,64]) -> (Unnamed Layer* 200) [Activation]_output (Half[1,128:8,32,32]) | |
Layer(CaskConvolution): %input.269 : Tensor = aten::_convolution(%313, %self.kp_detector.fg_encoder.layer2.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.37 : Tensor = aten::batch_norm(%input.269, %self.kp_detector.fg_encoder.layer2.0.bn2.weight, %self.kp_detector.fg_encoder.layer2.0.bn2.bias, %self.kp_detector.fg_encoder.layer2.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer2.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0, Tactic: 0xe1ff5ad20f5c6bf6, (Unnamed Layer* 200) [Activation]_output (Half[1,128:8,32,32]) -> (Unnamed Layer* 204) [Scale]_output (Half[1,128:8,32,32]) | |
Layer(CaskConvolution): %input.155 : Tensor = aten::_convolution(%234, %self.kp_detector.fg_encoder.layer2.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.21 : Tensor = aten::batch_norm(%input.155, %self.kp_detector.fg_encoder.layer2.0.bn2.weight, %self.kp_detector.fg_encoder.layer2.0.bn2.bias, %self.kp_detector.fg_encoder.layer2.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer2.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0, Tactic: 0xe1ff5ad20f5c6bf6, (Unnamed Layer* 116) [Activation]_output (Half[1,128:8,32,32]) -> (Unnamed Layer* 120) [Scale]_output (Half[1,128:8,32,32]) | |
Layer(CaskConvolution): %input.271 : Tensor = aten::_convolution(%310, %self.kp_detector.fg_encoder.layer2.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.downsample/__module.kp_detector.fg_encoder.layer2.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.13 : Tensor = aten::batch_norm(%input.271, %self.kp_detector.fg_encoder.layer2.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer2.0.bn2.bias, %self.kp_detector.fg_encoder.layer2.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer2.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.downsample/__module.kp_detector.fg_encoder.layer2.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %318 : Tensor = aten::add(%out.37, %identity.13, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %319 : Tensor = aten::relu(%318), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0, Tactic: 0x2aa016c86360697f, (Unnamed Layer* 197) [Activation]_output (Half[1,64:8,64,64]), (Unnamed Layer* 204) [Scale]_output (Half[1,128:8,32,32]) -> (Unnamed Layer* 206) [Activation]_output (Half[1,128:8,32,32]) | |
Layer(CaskConvolution): %input.157 : Tensor = aten::_convolution(%231, %self.kp_detector.fg_encoder.layer2.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.downsample/__module.kp_detector.fg_encoder.layer2.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.7 : Tensor = aten::batch_norm(%input.157, %self.kp_detector.fg_encoder.layer2.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer2.0.bn2.bias, %self.kp_detector.fg_encoder.layer2.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer2.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.downsample/__module.kp_detector.fg_encoder.layer2.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %239 : Tensor = aten::add(%out.21, %identity.7, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %240 : Tensor = aten::relu(%239), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.0/__module.kp_detector.fg_encoder.layer2.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0, Tactic: 0x2aa016c86360697f, (Unnamed Layer* 113) [Activation]_output (Half[1,64:8,64,64]), (Unnamed Layer* 120) [Scale]_output (Half[1,128:8,32,32]) -> (Unnamed Layer* 122) [Activation]_output (Half[1,128:8,32,32]) | |
Layer(CaskConvolution): %input.163 : Tensor = aten::_convolution(%240, %self.kp_detector.fg_encoder.layer2.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.165 : Tensor = aten::batch_norm(%input.163, %self.kp_detector.fg_encoder.layer2.1.bn1.weight, %self.kp_detector.fg_encoder.layer2.1.bn1.bias, %self.kp_detector.fg_encoder.layer2.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer2.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %243 : Tensor = aten::relu(%input.165), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0, Tactic: 0xe1ff5ad20f5c6bf6, (Unnamed Layer* 122) [Activation]_output (Half[1,128:8,32,32]) -> (Unnamed Layer* 125) [Activation]_output (Half[1,128:8,32,32]) | |
Layer(CaskConvolution): %input.277 : Tensor = aten::_convolution(%319, %self.kp_detector.fg_encoder.layer2.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.279 : Tensor = aten::batch_norm(%input.277, %self.kp_detector.fg_encoder.layer2.1.bn1.weight, %self.kp_detector.fg_encoder.layer2.1.bn1.bias, %self.kp_detector.fg_encoder.layer2.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer2.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %322 : Tensor = aten::relu(%input.279), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0, Tactic: 0xe1ff5ad20f5c6bf6, (Unnamed Layer* 206) [Activation]_output (Half[1,128:8,32,32]) -> (Unnamed Layer* 209) [Activation]_output (Half[1,128:8,32,32]) | |
Layer(CaskConvolution): %input.283 : Tensor = aten::_convolution(%322, %self.kp_detector.fg_encoder.layer2.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.39 : Tensor = aten::batch_norm(%input.283, %self.kp_detector.fg_encoder.layer2.1.bn2.weight, %self.kp_detector.fg_encoder.layer2.1.bn2.bias, %self.kp_detector.fg_encoder.layer2.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer2.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %325 : Tensor = aten::add(%out.39, %319, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %326 : Tensor = aten::relu(%325), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0, Tactic: 0xe1ff5ad20f5c6bf6, (Unnamed Layer* 209) [Activation]_output (Half[1,128:8,32,32]), (Unnamed Layer* 206) [Activation]_output (Half[1,128:8,32,32]) -> (Unnamed Layer* 213) [Activation]_output (Half[1,128:8,32,32]) | |
Layer(CaskConvolution): %input.169 : Tensor = aten::_convolution(%243, %self.kp_detector.fg_encoder.layer2.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.23 : Tensor = aten::batch_norm(%input.169, %self.kp_detector.fg_encoder.layer2.1.bn2.weight, %self.kp_detector.fg_encoder.layer2.1.bn2.bias, %self.kp_detector.fg_encoder.layer2.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer2.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %246 : Tensor = aten::add(%out.23, %240, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %247 : Tensor = aten::relu(%246), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer2/__module.kp_detector.fg_encoder.layer2.1/__module.kp_detector.fg_encoder.layer2.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0, Tactic: 0xe1ff5ad20f5c6bf6, (Unnamed Layer* 125) [Activation]_output (Half[1,128:8,32,32]), (Unnamed Layer* 122) [Activation]_output (Half[1,128:8,32,32]) -> (Unnamed Layer* 129) [Activation]_output (Half[1,128:8,32,32]) | |
Layer(CaskConvolution): %input.175 : Tensor = aten::_convolution(%247, %self.kp_detector.fg_encoder.layer3.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.177 : Tensor = aten::batch_norm(%input.175, %self.kp_detector.fg_encoder.layer3.0.bn1.weight, %self.kp_detector.fg_encoder.layer3.0.bn1.bias, %self.kp_detector.fg_encoder.layer3.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer3.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %250 : Tensor = aten::relu(%input.177), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0, Tactic: 0xa033e20ae9f412b2, (Unnamed Layer* 129) [Activation]_output (Half[1,128:8,32,32]) -> (Unnamed Layer* 132) [Activation]_output (Half[1,256:8,16,16]) | |
Layer(CaskConvolution): %input.289 : Tensor = aten::_convolution(%326, %self.kp_detector.fg_encoder.layer3.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.291 : Tensor = aten::batch_norm(%input.289, %self.kp_detector.fg_encoder.layer3.0.bn1.weight, %self.kp_detector.fg_encoder.layer3.0.bn1.bias, %self.kp_detector.fg_encoder.layer3.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer3.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %329 : Tensor = aten::relu(%input.291), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0, Tactic: 0xa033e20ae9f412b2, (Unnamed Layer* 213) [Activation]_output (Half[1,128:8,32,32]) -> (Unnamed Layer* 216) [Activation]_output (Half[1,256:8,16,16]) | |
Layer(CaskConvolution): %input.295 : Tensor = aten::_convolution(%329, %self.kp_detector.fg_encoder.layer3.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.41 : Tensor = aten::batch_norm(%input.295, %self.kp_detector.fg_encoder.layer3.0.bn2.weight, %self.kp_detector.fg_encoder.layer3.0.bn2.bias, %self.kp_detector.fg_encoder.layer3.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer3.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0, Tactic: 0xa033e20ae9f412b2, (Unnamed Layer* 216) [Activation]_output (Half[1,256:8,16,16]) -> (Unnamed Layer* 220) [Scale]_output (Half[1,256:8,16,16]) | |
Layer(CaskConvolution): %input.181 : Tensor = aten::_convolution(%250, %self.kp_detector.fg_encoder.layer3.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.25 : Tensor = aten::batch_norm(%input.181, %self.kp_detector.fg_encoder.layer3.0.bn2.weight, %self.kp_detector.fg_encoder.layer3.0.bn2.bias, %self.kp_detector.fg_encoder.layer3.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer3.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0, Tactic: 0xa033e20ae9f412b2, (Unnamed Layer* 132) [Activation]_output (Half[1,256:8,16,16]) -> (Unnamed Layer* 136) [Scale]_output (Half[1,256:8,16,16]) | |
Layer(CaskConvolution): %input.297 : Tensor = aten::_convolution(%326, %self.kp_detector.fg_encoder.layer3.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.downsample/__module.kp_detector.fg_encoder.layer3.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.15 : Tensor = aten::batch_norm(%input.297, %self.kp_detector.fg_encoder.layer3.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer3.0.bn2.bias, %self.kp_detector.fg_encoder.layer3.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer3.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.downsample/__module.kp_detector.fg_encoder.layer3.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %334 : Tensor = aten::add(%out.41, %identity.15, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %335 : Tensor = aten::relu(%334), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0, Tactic: 0x2aa016c86360697f, (Unnamed Layer* 213) [Activation]_output (Half[1,128:8,32,32]), (Unnamed Layer* 220) [Scale]_output (Half[1,256:8,16,16]) -> (Unnamed Layer* 222) [Activation]_output (Half[1,256:8,16,16]) | |
Layer(CaskConvolution): %input.183 : Tensor = aten::_convolution(%247, %self.kp_detector.fg_encoder.layer3.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.downsample/__module.kp_detector.fg_encoder.layer3.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.9 : Tensor = aten::batch_norm(%input.183, %self.kp_detector.fg_encoder.layer3.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer3.0.bn2.bias, %self.kp_detector.fg_encoder.layer3.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer3.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.downsample/__module.kp_detector.fg_encoder.layer3.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %255 : Tensor = aten::add(%out.25, %identity.9, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %256 : Tensor = aten::relu(%255), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.0/__module.kp_detector.fg_encoder.layer3.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0, Tactic: 0x2aa016c86360697f, (Unnamed Layer* 129) [Activation]_output (Half[1,128:8,32,32]), (Unnamed Layer* 136) [Scale]_output (Half[1,256:8,16,16]) -> (Unnamed Layer* 138) [Activation]_output (Half[1,256:8,16,16]) | |
Layer(CaskConvolution): %input.189 : Tensor = aten::_convolution(%256, %self.kp_detector.fg_encoder.layer3.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.191 : Tensor = aten::batch_norm(%input.189, %self.kp_detector.fg_encoder.layer3.1.bn1.weight, %self.kp_detector.fg_encoder.layer3.1.bn1.bias, %self.kp_detector.fg_encoder.layer3.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer3.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %259 : Tensor = aten::relu(%input.191), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0, Tactic: 0xa033e20ae9f412b2, (Unnamed Layer* 138) [Activation]_output (Half[1,256:8,16,16]) -> (Unnamed Layer* 141) [Activation]_output (Half[1,256:8,16,16]) | |
Layer(CaskConvolution): %input.303 : Tensor = aten::_convolution(%335, %self.kp_detector.fg_encoder.layer3.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.305 : Tensor = aten::batch_norm(%input.303, %self.kp_detector.fg_encoder.layer3.1.bn1.weight, %self.kp_detector.fg_encoder.layer3.1.bn1.bias, %self.kp_detector.fg_encoder.layer3.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer3.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %338 : Tensor = aten::relu(%input.305), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0, Tactic: 0xa033e20ae9f412b2, (Unnamed Layer* 222) [Activation]_output (Half[1,256:8,16,16]) -> (Unnamed Layer* 225) [Activation]_output (Half[1,256:8,16,16]) | |
Layer(CaskConvolution): %input.309 : Tensor = aten::_convolution(%338, %self.kp_detector.fg_encoder.layer3.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.43 : Tensor = aten::batch_norm(%input.309, %self.kp_detector.fg_encoder.layer3.1.bn2.weight, %self.kp_detector.fg_encoder.layer3.1.bn2.bias, %self.kp_detector.fg_encoder.layer3.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer3.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %341 : Tensor = aten::add(%out.43, %335, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %342 : Tensor = aten::relu(%341), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0, Tactic: 0xa033e20ae9f412b2, (Unnamed Layer* 225) [Activation]_output (Half[1,256:8,16,16]), (Unnamed Layer* 222) [Activation]_output (Half[1,256:8,16,16]) -> (Unnamed Layer* 229) [Activation]_output (Half[1,256:8,16,16]) | |
Layer(CaskConvolution): %input.195 : Tensor = aten::_convolution(%259, %self.kp_detector.fg_encoder.layer3.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.27 : Tensor = aten::batch_norm(%input.195, %self.kp_detector.fg_encoder.layer3.1.bn2.weight, %self.kp_detector.fg_encoder.layer3.1.bn2.bias, %self.kp_detector.fg_encoder.layer3.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer3.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %262 : Tensor = aten::add(%out.27, %256, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %263 : Tensor = aten::relu(%262), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer3/__module.kp_detector.fg_encoder.layer3.1/__module.kp_detector.fg_encoder.layer3.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0, Tactic: 0xa033e20ae9f412b2, (Unnamed Layer* 141) [Activation]_output (Half[1,256:8,16,16]), (Unnamed Layer* 138) [Activation]_output (Half[1,256:8,16,16]) -> (Unnamed Layer* 145) [Activation]_output (Half[1,256:8,16,16]) | |
Layer(CaskConvolution): %input.201 : Tensor = aten::_convolution(%263, %self.kp_detector.fg_encoder.layer4.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.203 : Tensor = aten::batch_norm(%input.201, %self.kp_detector.fg_encoder.layer4.0.bn1.weight, %self.kp_detector.fg_encoder.layer4.0.bn1.bias, %self.kp_detector.fg_encoder.layer4.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer4.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %266 : Tensor = aten::relu(%input.203), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0, Tactic: 0xa033e20ae9f412b2, (Unnamed Layer* 145) [Activation]_output (Half[1,256:8,16,16]) -> (Unnamed Layer* 148) [Activation]_output (Half[1,512:8,8,8]) | |
Layer(CaskConvolution): %input.315 : Tensor = aten::_convolution(%342, %self.kp_detector.fg_encoder.layer4.0.conv1.weight, %5, %25, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.317 : Tensor = aten::batch_norm(%input.315, %self.kp_detector.fg_encoder.layer4.0.bn1.weight, %self.kp_detector.fg_encoder.layer4.0.bn1.bias, %self.kp_detector.fg_encoder.layer4.0.bn1.running_mean, %self.kp_detector.fg_encoder.layer4.0.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %345 : Tensor = aten::relu(%input.317), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0, Tactic: 0xa033e20ae9f412b2, (Unnamed Layer* 229) [Activation]_output (Half[1,256:8,16,16]) -> (Unnamed Layer* 232) [Activation]_output (Half[1,512:8,8,8]) | |
Layer(CaskConvolution): %input.321 : Tensor = aten::_convolution(%345, %self.kp_detector.fg_encoder.layer4.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.45 : Tensor = aten::batch_norm(%input.321, %self.kp_detector.fg_encoder.layer4.0.bn2.weight, %self.kp_detector.fg_encoder.layer4.0.bn2.bias, %self.kp_detector.fg_encoder.layer4.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer4.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0, Tactic: 0xa033e20ae9f412b2, (Unnamed Layer* 232) [Activation]_output (Half[1,512:8,8,8]) -> (Unnamed Layer* 236) [Scale]_output (Half[1,512:8,8,8]) | |
Layer(CaskConvolution): %input.207 : Tensor = aten::_convolution(%266, %self.kp_detector.fg_encoder.layer4.0.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.29 : Tensor = aten::batch_norm(%input.207, %self.kp_detector.fg_encoder.layer4.0.bn2.weight, %self.kp_detector.fg_encoder.layer4.0.bn2.bias, %self.kp_detector.fg_encoder.layer4.0.bn2.running_mean, %self.kp_detector.fg_encoder.layer4.0.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0, Tactic: 0xa033e20ae9f412b2, (Unnamed Layer* 148) [Activation]_output (Half[1,512:8,8,8]) -> (Unnamed Layer* 152) [Scale]_output (Half[1,512:8,8,8]) | |
Layer(CaskConvolution): %input.323 : Tensor = aten::_convolution(%342, %self.kp_detector.fg_encoder.layer4.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.downsample/__module.kp_detector.fg_encoder.layer4.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity : Tensor = aten::batch_norm(%input.323, %self.kp_detector.fg_encoder.layer4.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer4.0.bn2.bias, %self.kp_detector.fg_encoder.layer4.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer4.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.downsample/__module.kp_detector.fg_encoder.layer4.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %350 : Tensor = aten::add(%out.45, %identity, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %351 : Tensor = aten::relu(%350), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0, Tactic: 0x2aa016c86360697f, (Unnamed Layer* 229) [Activation]_output (Half[1,256:8,16,16]), (Unnamed Layer* 236) [Scale]_output (Half[1,512:8,8,8]) -> (Unnamed Layer* 238) [Activation]_output (Half[1,512:8,8,8]) | |
Layer(CaskConvolution): %input.209 : Tensor = aten::_convolution(%263, %self.kp_detector.fg_encoder.layer4.0.downsample.0.weight, %5, %25, %28, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.downsample/__module.kp_detector.fg_encoder.layer4.0.downsample.0 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %identity.11 : Tensor = aten::batch_norm(%input.209, %self.kp_detector.fg_encoder.layer4.0.downsample.1.weight, %self.kp_detector.fg_encoder.layer4.0.bn2.bias, %self.kp_detector.fg_encoder.layer4.0.downsample.1.running_mean, %self.kp_detector.fg_encoder.layer4.0.downsample.1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.downsample/__module.kp_detector.fg_encoder.layer4.0.downsample.1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %271 : Tensor = aten::add(%out.29, %identity.11, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %272 : Tensor = aten::relu(%271), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.0/__module.kp_detector.fg_encoder.layer4.0.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0, Tactic: 0x2aa016c86360697f, (Unnamed Layer* 145) [Activation]_output (Half[1,256:8,16,16]), (Unnamed Layer* 152) [Scale]_output (Half[1,512:8,8,8]) -> (Unnamed Layer* 154) [Activation]_output (Half[1,512:8,8,8]) | |
Layer(CaskConvolution): %input.215 : Tensor = aten::_convolution(%272, %self.kp_detector.fg_encoder.layer4.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.217 : Tensor = aten::batch_norm(%input.215, %self.kp_detector.fg_encoder.layer4.1.bn1.weight, %self.kp_detector.fg_encoder.layer4.1.bn1.bias, %self.kp_detector.fg_encoder.layer4.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer4.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %275 : Tensor = aten::relu(%input.217), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0, Tactic: 0xa033e20ae9f412b2, (Unnamed Layer* 154) [Activation]_output (Half[1,512:8,8,8]) -> (Unnamed Layer* 157) [Activation]_output (Half[1,512:8,8,8]) | |
Layer(CaskConvolution): %input.329 : Tensor = aten::_convolution(%351, %self.kp_detector.fg_encoder.layer4.1.conv1.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.conv1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %input.331 : Tensor = aten::batch_norm(%input.329, %self.kp_detector.fg_encoder.layer4.1.bn1.weight, %self.kp_detector.fg_encoder.layer4.1.bn1.bias, %self.kp_detector.fg_encoder.layer4.1.bn1.running_mean, %self.kp_detector.fg_encoder.layer4.1.bn1.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.bn1 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %354 : Tensor = aten::relu(%input.331), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0, Tactic: 0xa033e20ae9f412b2, (Unnamed Layer* 238) [Activation]_output (Half[1,512:8,8,8]) -> (Unnamed Layer* 241) [Activation]_output (Half[1,512:8,8,8]) | |
Layer(CaskConvolution): %input.335 : Tensor = aten::_convolution(%354, %self.kp_detector.fg_encoder.layer4.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.47 : Tensor = aten::batch_norm(%input.335, %self.kp_detector.fg_encoder.layer4.1.bn2.weight, %self.kp_detector.fg_encoder.layer4.1.bn2.bias, %self.kp_detector.fg_encoder.layer4.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer4.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %357 : Tensor = aten::add(%out.47, %351, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %358 : Tensor = aten::relu(%357), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0, Tactic: 0xa033e20ae9f412b2, (Unnamed Layer* 241) [Activation]_output (Half[1,512:8,8,8]), (Unnamed Layer* 238) [Activation]_output (Half[1,512:8,8,8]) -> (Unnamed Layer* 245) [Activation]_output (Half[1,512:8,8,8]) | |
Layer(CaskPooling): %x.9 : Tensor = aten::adaptive_avg_pool2d(%358, %27), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.avgpool # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1213:0, Tactic: 0x56d7b61f084f251e, (Unnamed Layer* 245) [Activation]_output (Half[1,512:8,8,8]) -> (Unnamed Layer* 246) [Reduce]_output (Half[1,512:8,1,1]) | |
Layer(CaskConvolution): %input.221 : Tensor = aten::_convolution(%275, %self.kp_detector.fg_encoder.layer4.1.conv2.weight, %5, %27, %27, %27, %4, %28, %365, %4, %4, %29, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.conv2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py:458:0 + %out.31 : Tensor = aten::batch_norm(%input.221, %self.kp_detector.fg_encoder.layer4.1.bn2.weight, %self.kp_detector.fg_encoder.layer4.1.bn2.bias, %self.kp_detector.fg_encoder.layer4.1.bn2.running_mean, %self.kp_detector.fg_encoder.layer4.1.bn2.running_var, %4, %35, %36, %29), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.bn2 # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:2435:0 + %278 : Tensor = aten::add(%out.31, %272, %365), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1 # /home/joy/.venv/lib/python3.10/site-packages/torchvision/models/resnet.py:96:0 + %279 : Tensor = aten::relu(%278), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.layer4/__module.kp_detector.fg_encoder.layer4.1/__module.kp_detector.fg_encoder.layer4.1.relu # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1453:0, Tactic: 0xa033e20ae9f412b2, (Unnamed Layer* 157) [Activation]_output (Half[1,512:8,8,8]), (Unnamed Layer* 154) [Activation]_output (Half[1,512:8,8,8]) -> (Unnamed Layer* 161) [Activation]_output (Half[1,512:8,8,8]) | |
Layer(CaskPooling): %x.7 : Tensor = aten::adaptive_avg_pool2d(%279, %27), scope: __module.kp_detector/__module.kp_detector.fg_encoder/__module.kp_detector.fg_encoder.avgpool # /home/joy/.venv/lib/python3.10/site-packages/torch/nn/functional.py:1213:0, Tactic: 0x56d7b61f084f251e, (Unnamed Layer* 161) [Activation]_output (Half[1,512:8,8,8]) -> (Unnamed Layer* 162) [Reduce]_output (Half[1,512:8,1,1]) | |
Layer(NoOp): Reformatting CopyNode for Input Tensor 0 to %362 : Tensor = aten::matmul(%input.341, %361) + [Freeze Tensor %363 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 252) [Shuffle] + unsqueeze_node_after_[Freeze Tensor %363 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 252) [Shuffle]_(Unnamed Layer* 252) [Shuffle]_output + %364 : Tensor = aten::add(%363, %362, %365) + PWN(%fg_kp.15 : Tensor = aten::sigmoid(%364), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0), Tactic: 0x0000000000000000, (Unnamed Layer* 246) [Reduce]_output (Half[1,512:8,1,1]) -> Reformatted Input Tensor 0 to %362 : Tensor = aten::matmul(%input.341, %361) + [Freeze Tensor %363 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 252) [Shuffle] + unsqueeze_node_after_[Freeze Tensor %363 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 252) [Shuffle]_(Unnamed Layer* 252) [Shuffle]_output + %364 : Tensor = aten::add(%363, %362, %365) + PWN(%fg_kp.15 : Tensor = aten::sigmoid(%364), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0) (Half[1,512,1,1]) | |
Layer(CublasConvolution): %362 : Tensor = aten::matmul(%input.341, %361) + [Freeze Tensor %363 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 252) [Shuffle] + unsqueeze_node_after_[Freeze Tensor %363 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 252) [Shuffle]_(Unnamed Layer* 252) [Shuffle]_output + %364 : Tensor = aten::add(%363, %362, %365) + PWN(%fg_kp.15 : Tensor = aten::sigmoid(%364), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0), Tactic: 0x0000000000000002, Reformatted Input Tensor 0 to %362 : Tensor = aten::matmul(%input.341, %361) + [Freeze Tensor %363 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 252) [Shuffle] + unsqueeze_node_after_[Freeze Tensor %363 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 252) [Shuffle]_(Unnamed Layer* 252) [Shuffle]_output + %364 : Tensor = aten::add(%363, %362, %365) + PWN(%fg_kp.15 : Tensor = aten::sigmoid(%364), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0) (Half[1,512,1,1]) -> %fg_kp.15 : Tensor = aten::sigmoid(%364), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0_out_tensor (Half[1,100,1,1]) | |
Layer(NoOp): Reformatting CopyNode for Input Tensor 0 to %283 : Tensor = aten::matmul(%input.227, %282) + [Freeze Tensor %284 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 168) [Shuffle] + unsqueeze_node_after_[Freeze Tensor %284 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 168) [Shuffle]_(Unnamed Layer* 168) [Shuffle]_output + %285 : Tensor = aten::add(%284, %283, %365) + PWN(%fg_kp.9 : Tensor = aten::sigmoid(%285), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0), Tactic: 0x0000000000000000, (Unnamed Layer* 162) [Reduce]_output (Half[1,512:8,1,1]) -> Reformatted Input Tensor 0 to %283 : Tensor = aten::matmul(%input.227, %282) + [Freeze Tensor %284 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 168) [Shuffle] + unsqueeze_node_after_[Freeze Tensor %284 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 168) [Shuffle]_(Unnamed Layer* 168) [Shuffle]_output + %285 : Tensor = aten::add(%284, %283, %365) + PWN(%fg_kp.9 : Tensor = aten::sigmoid(%285), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0) (Half[1,512,1,1]) | |
Layer(CublasConvolution): %283 : Tensor = aten::matmul(%input.227, %282) + [Freeze Tensor %284 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 168) [Shuffle] + unsqueeze_node_after_[Freeze Tensor %284 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 168) [Shuffle]_(Unnamed Layer* 168) [Shuffle]_output + %285 : Tensor = aten::add(%284, %283, %365) + PWN(%fg_kp.9 : Tensor = aten::sigmoid(%285), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0), Tactic: 0x0000000000000002, Reformatted Input Tensor 0 to %283 : Tensor = aten::matmul(%input.227, %282) + [Freeze Tensor %284 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 168) [Shuffle] + unsqueeze_node_after_[Freeze Tensor %284 : Tensor = trt::const(%self.kp_detector.fg_encoder.fc.bias) ] + (Unnamed Layer* 168) [Shuffle]_(Unnamed Layer* 168) [Shuffle]_output + %285 : Tensor = aten::add(%284, %283, %365) + PWN(%fg_kp.9 : Tensor = aten::sigmoid(%285), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0) (Half[1,512,1,1]) -> %fg_kp.9 : Tensor = aten::sigmoid(%285), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0_out_tensor (Half[1,100,1,1]) | |
Layer(Reformat): Reformatting CopyNode for Input Tensor 0 to %368 : Tensor = aten::mul(%fg_kp.15, %206), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0, Tactic: 0x00000000000003e8, %fg_kp.15 : Tensor = aten::sigmoid(%364), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0_out_tensor (Half[1,100,1,1]) -> Reformatted Input Tensor 0 to %368 : Tensor = aten::mul(%fg_kp.15, %206), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0 (Float[1,100,1,1]) | |
Layer(ElementWise): %368 : Tensor = aten::mul(%fg_kp.15, %206), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0, Tactic: 0x0000000000000001, Reformatted Input Tensor 0 to %368 : Tensor = aten::mul(%fg_kp.15, %206), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0 (Float[1,100,1,1]), unsqueeze_tensor_after_{ForeignNode[(Unnamed Layer* 1) [Shuffle]...%input.115 : Tensor = aten::select(%19, %21, %16) # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:529:0]}_(Unnamed Layer* 257) [Shuffle]_output_out_tensor (Float[1,1,1,1]) -> %368 : Tensor = aten::mul(%fg_kp.15, %206), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0_out_tensor (Float[1,100,1,1]) | |
Layer(NoOp): copied_squeeze_after_%368 : Tensor = aten::mul(%fg_kp.15, %206), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0, Tactic: 0x0000000000000000, %368 : Tensor = aten::mul(%fg_kp.15, %206), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0_out_tensor (Float[1,100,1,1]) -> (Unnamed Layer* 258) [ElementWise]_output (Float[1,100]) | |
Layer(ElementWise): %fg_kp : Tensor = aten::sub(%368, %208, %365), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0, Tactic: 0x0000000000000001, (Unnamed Layer* 258) [ElementWise]_output (Float[1,100]), (Unnamed Layer* 261) [Shuffle]_output (Float[1,1]) -> (Unnamed Layer* 262) [ElementWise]_output (Float[1,100]) | |
Layer(NoOp): %371 : Tensor = aten::reshape(%fg_kp, %370), Tactic: 0x0000000000000000, (Unnamed Layer* 262) [ElementWise]_output (Float[1,100]) -> (Unnamed Layer* 263) [Shuffle]_output (Float[1,50,2]) | |
Layer(Reformat): Reformatting CopyNode for Input Tensor 0 to %289 : Tensor = aten::mul(%fg_kp.9, %206), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0, Tactic: 0x00000000000003e8, %fg_kp.9 : Tensor = aten::sigmoid(%285), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0_out_tensor (Half[1,100,1,1]) -> Reformatted Input Tensor 0 to %289 : Tensor = aten::mul(%fg_kp.9, %206), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0 (Float[1,100,1,1]) | |
Layer(ElementWise): %289 : Tensor = aten::mul(%fg_kp.9, %206), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0, Tactic: 0x0000000000000001, Reformatted Input Tensor 0 to %289 : Tensor = aten::mul(%fg_kp.9, %206), scope: __module.kp_detector # /home/joy/remote/stable-diffusion-backend/personalize/thin_plate_spline_motion_model/tpsnn.py:43:0 (Float[1,100,1,1]), unsqueeze_tensor_after_{Foreign |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment