Skip to content

Instantly share code, notes, and snippets.

@sriharsha0806
Last active December 23, 2017 20:00
Show Gist options
  • Save sriharsha0806/21ff0c00a83468618c14219a8d8aee79 to your computer and use it in GitHub Desktop.
Save sriharsha0806/21ff0c00a83468618c14219a8d8aee79 to your computer and use it in GitHub Desktop.
name: "segnet"
input:"data"
input_dim: 1
input_dim: 3
input_dim: 224
input_dim: 224
layer {
name: "norm"
type: "LRN"
bottom: "data"
top: "norm"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "conv1"
type: "Convolution"
bottom: "norm"
top: "conv1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
kernel_size: 7
pad: 3
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
}
}
}
layer {
bottom: "conv1"
top: "conv1"
name: "conv1_bn"
type: "BN"
bn_param {
bn_mode: INFERENCE
scale_filler {
type: "constant"
value: 1
}
shift_filler {
type: "constant"
value: 0.001
}
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "conv1"
top: "conv1"
}
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
top: "pool1_mask"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv2"
type: "Convolution"
bottom: "pool1"
top: "conv2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
kernel_size: 7
pad: 3
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
}
}
}
layer {
bottom: "conv2"
top: "conv2"
name: "conv2_bn"
type: "BN"
bn_param {
bn_mode: INFERENCE
scale_filler {
type: "constant"
value: 1
}
shift_filler {
type: "constant"
value: 0.001
}
}
}
layer {
name: "relu2"
type: "ReLU"
bottom: "conv2"
top: "conv2"
}
layer {
name: "pool2"
type: "Pooling"
bottom: "conv2"
top: "pool2"
top: "pool2_mask"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv3"
type: "Convolution"
bottom: "pool2"
top: "conv3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
kernel_size: 7
pad: 3
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
}
}
}
layer {
bottom: "conv3"
top: "conv3"
name: "conv3_bn"
type: "BN"
bn_param {
bn_mode: INFERENCE
scale_filler {
type: "constant"
value: 1
}
shift_filler {
type: "constant"
value: 0.001
}
}
}
layer {
name: "relu3"
type: "ReLU"
bottom: "conv3"
top: "conv3"
}
layer {
name: "pool3"
type: "Pooling"
bottom: "conv3"
top: "pool3"
top: "pool3_mask"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv4"
type: "Convolution"
bottom: "pool3"
top: "conv4"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
kernel_size: 7
pad: 3
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
}
}
}
layer {
bottom: "conv4"
top: "conv4"
name: "conv4_bn"
type: "BN"
bn_param {
bn_mode: INFERENCE
scale_filler {
type: "constant"
value: 1
}
shift_filler {
type: "constant"
value: 0.001
}
}
}
layer {
name: "relu4"
type: "ReLU"
bottom: "conv4"
top: "conv4"
}
layer {
name: "pool4"
type: "Pooling"
bottom: "conv4"
top: "pool4"
top: "pool4_mask"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "upsample4"
type: "Upsample"
bottom: "pool4"
bottom: "pool4_mask"
top: "upsample4"
upsample_param {
scale: 2
pad_out_h: true
}
}
layer {
name: "conv_decode4"
type: "Convolution"
bottom: "upsample4"
top: "conv_decode4"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
kernel_size: 7
pad: 3
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
}
}
}
layer {
bottom: "conv_decode4"
top: "conv_decode4"
name: "conv_decode4_bn"
type: "BN"
bn_param {
bn_mode: INFERENCE
scale_filler {
type: "constant"
value: 1
}
shift_filler {
type: "constant"
value: 0.001
}
}
}
layer {
name: "upsample3"
type: "Upsample"
bottom: "conv_decode4"
bottom: "pool3_mask"
top: "upsample3"
upsample_param {
scale: 2
}
}
layer {
name: "conv_decode3"
type: "Convolution"
bottom: "upsample3"
top: "conv_decode3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
kernel_size: 7
pad: 3
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
}
}
}
layer {
bottom: "conv_decode3"
top: "conv_decode3"
name: "conv_decode3_bn"
type: "BN"
bn_param {
bn_mode: INFERENCE
scale_filler {
type: "constant"
value: 1
}
shift_filler {
type: "constant"
value: 0.001
}
}
}
layer {
name: "upsample2"
type: "Upsample"
bottom: "conv_decode3"
bottom: "pool2_mask"
top: "upsample2"
upsample_param {
scale: 2
}
}
layer {
name: "conv_decode2"
type: "Convolution"
bottom: "upsample2"
top: "conv_decode2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
kernel_size: 7
pad: 3
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
}
}
}
layer {
bottom: "conv_decode2"
top: "conv_decode2"
name: "conv_decode2_bn"
type: "BN"
bn_param {
bn_mode: INFERENCE
scale_filler {
type: "constant"
value: 1
}
shift_filler {
type: "constant"
value: 0.001
}
}
}
layer {
name: "upsample1"
type: "Upsample"
bottom: "conv_decode2"
bottom: "pool1_mask"
top: "upsample1"
upsample_param {
scale: 2
}
}
layer {
name: "conv_decode1"
type: "Convolution"
bottom: "upsample1"
top: "conv_decode1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
kernel_size: 7
pad: 3
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
}
}
}
layer {
bottom: "conv_decode1"
top: "conv_decode1"
name: "conv_decode1_bn"
type: "BN"
bn_param {
bn_mode: INFERENCE
scale_filler {
type: "constant"
value: 1
}
shift_filler {
type: "constant"
value: 0.001
}
}
}
layer {
name: "conv_classifier"
type: "Convolution"
bottom: "conv_decode1"
top: "conv_classifier"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 11
kernel_size: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "prob"
type: "Softmax"
bottom: "conv_classifier"
top: "prob"
softmax_param {engine: CAFFE}
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment