Created
September 13, 2016 03:23
-
-
Save sriharsha0806/29bf29426e0dcc0b24f61ae68af4d19c to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
""" | |
Created on Mon Sep 12 10:31:29 2016 | |
@author: sriharsha | |
""" | |
import cv2 | |
import numpy as np | |
from matplotlib import pyplot as plt | |
img = cv2.imread('Fig0343(a)(skeleton_orig).tif',0) | |
cv2.imshow('img',img) | |
cv2.waitKey(10000) | |
laplacian = cv2.Laplacian(img,cv2.CV_64F) | |
sharp = img + laplacian | |
sobel_x = cv2.Sobel(img,cv2.CV_64F,1,0) | |
sobel_y = cv2.Sobel(img,cv2.CV_64F,0,1) | |
sobel = np.hypot(sobel_x,sobel_y) | |
avg_sobel = cv2.blur(sobel,(5,5)) | |
sobel_mask = np.multiply(sharp,avg_sobel) | |
sum_sobel = sobel_mask+img | |
power_law = np.power(sum_sobel,0.5); | |
plt.figure(1) | |
plt.subplot(2,2,1),plt.imshow(img, cmap = plt.cm.binary),plt.title('original Image') | |
plt.xticks([]),plt.yticks([]) | |
plt.subplot(2,2,2),plt.imshow(laplacian, cmap = plt.cm.binary),plt.title('Laplacian') | |
plt.xticks([]),plt.yticks([]) | |
plt.subplot(2,2,3),plt.imshow(sharp, cmap = plt.cm.binary),plt.title('sharpened image') | |
plt.xticks([]),plt.yticks([]) | |
plt.subplot(2,2,4),plt.imshow(sobel, cmap = plt.cm.binary),plt.title('sobel gradient of Original Image') | |
plt.xticks([]),plt.yticks([]) | |
plt.figure(2) | |
plt.subplot(2,2,1),plt.imshow(avg_sobel, cmap = plt.cm.binary),plt.title('sobel image avg mask') | |
plt.xticks([]),plt.yticks([]) | |
plt.subplot(2,2,2),plt.imshow(sobel_mask, cmap = plt.cm.binary),plt.title('Masking sobel with sharp') | |
plt.xticks([]),plt.yticks([]) | |
plt.subplot(2,2,3),plt.imshow(sum_sobel, cmap = plt.cm.binary),plt.title('sum of original+sum_sobel') | |
plt.xticks([]),plt.yticks([]) | |
plt.subplot(2,2,4),plt.imshow(power_law, cmap = plt.cm.binary),plt.title('power law transformation') | |
plt.xticks([]),plt.yticks([]) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment