-
-
Save sriharsha0806/38a0ba67648b8548553c135b8efa5ce5 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
name: "ENet" | |
input:"data" | |
input_dim: 1 | |
input_dim: 3 | |
input_dim: 512 | |
input_dim: 512 | |
layer { | |
name: "conv0_1" | |
type: "Convolution" | |
bottom: "data" | |
top: "conv0_1" | |
convolution_param { | |
num_output: 13 | |
bias_term: true | |
pad: 1 | |
kernel_size: 3 | |
stride: 2 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "pool0_1" | |
type: "Pooling" | |
bottom: "data" | |
top: "pool0_1" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "concat0_1" | |
type: "Concat" | |
bottom: "conv0_1" | |
bottom: "pool0_1" | |
top: "concat0_1" | |
concat_param { | |
axis: 1 | |
} | |
} | |
layer { | |
name: "bn0_1" | |
type: "BN" | |
bottom: "concat0_1" | |
top: "bn0_1" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 1.0 | |
decay_mult: 0.0 | |
} | |
bn_param { | |
scale_filler { | |
type: "constant" | |
value: 1.0 | |
} | |
shift_filler { | |
type: "constant" | |
value: 0.001 | |
} | |
bn_mode: INFERENCE | |
} | |
} | |
layer { | |
name: "prelu0_1" | |
type: "ReLU" | |
bottom: "bn0_1" | |
top: "prelu0_1" | |
} | |
layer { | |
name: "conv1_0_0" | |
type: "Convolution" | |
bottom: "prelu0_1" | |
top: "conv1_0_0" | |
convolution_param { | |
num_output: 16 | |
bias_term: true | |
kernel_size: 2 | |
stride: 2 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "prelu1_0_0" | |
type: "ReLU" | |
bottom: "conv1_0_0" | |
top: "prelu1_0_0" | |
} | |
layer { | |
name: "conv1_0_1" | |
type: "Convolution" | |
bottom: "prelu1_0_0" | |
top: "conv1_0_1" | |
convolution_param { | |
num_output: 16 | |
bias_term: true | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "prelu1_0_1" | |
type: "ReLU" | |
bottom: "conv1_0_1" | |
top: "prelu1_0_1" | |
} | |
layer { | |
name: "conv1_0_2" | |
type: "Convolution" | |
bottom: "prelu1_0_1" | |
top: "conv1_0_2" | |
convolution_param { | |
num_output: 64 | |
bias_term: true | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "pool1_0_4" | |
type: "Pooling" | |
bottom: "prelu0_1" | |
top: "pool1_0_4" | |
top: "pool1_0_4_mask" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "conv1_0_4" | |
type: "Convolution" | |
bottom: "pool1_0_4" | |
top: "conv1_0_4" | |
convolution_param { | |
num_output: 64 | |
bias_term: true | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "eltwise1_0_4" | |
type: "Eltwise" | |
bottom: "conv1_0_4" | |
bottom: "conv1_0_2" | |
top: "eltwise1_0_4" | |
} | |
layer { | |
name: "prelu1_0_4" | |
type: "ReLU" | |
bottom: "eltwise1_0_4" | |
top: "prelu1_0_4" | |
} | |
layer { | |
name: "conv1_1_0" | |
type: "Convolution" | |
bottom: "prelu1_0_4" | |
top: "conv1_1_0" | |
convolution_param { | |
num_output: 16 | |
bias_term: true | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "prelu1_1_0" | |
type: "ReLU" | |
bottom: "conv1_1_0" | |
top: "prelu1_1_0" | |
} | |
layer { | |
name: "conv1_1_1" | |
type: "Convolution" | |
bottom: "prelu1_1_0" | |
top: "conv1_1_1" | |
convolution_param { | |
num_output: 16 | |
bias_term: true | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "prelu1_1_1" | |
type: "ReLU" | |
bottom: "conv1_1_1" | |
top: "prelu1_1_1" | |
} | |
layer { | |
name: "conv1_1_2" | |
type: "Convolution" | |
bottom: "prelu1_1_1" | |
top: "conv1_1_2" | |
convolution_param { | |
num_output: 64 | |
bias_term: true | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "eltwise1_1_4" | |
type: "Eltwise" | |
bottom: "prelu1_0_4" | |
bottom: "conv1_1_2" | |
top: "eltwise1_1_4" | |
} | |
layer { | |
name: "prelu1_1_4" | |
type: "ReLU" | |
bottom: "eltwise1_1_4" | |
top: "prelu1_1_4" | |
} | |
layer { | |
name: "conv1_2_0" | |
type: "Convolution" | |
bottom: "prelu1_1_4" | |
top: "conv1_2_0" | |
convolution_param { | |
num_output: 16 | |
bias_term: true | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "prelu1_2_0" | |
type: "ReLU" | |
bottom: "conv1_2_0" | |
top: "prelu1_2_0" | |
} | |
layer { | |
name: "conv1_2_1" | |
type: "Convolution" | |
bottom: "prelu1_2_0" | |
top: "conv1_2_1" | |
convolution_param { | |
num_output: 16 | |
bias_term: true | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "prelu1_2_1" | |
type: "ReLU" | |
bottom: "conv1_2_1" | |
top: "prelu1_2_1" | |
} | |
layer { | |
name: "conv1_2_2" | |
type: "Convolution" | |
bottom: "prelu1_2_1" | |
top: "conv1_2_2" | |
convolution_param { | |
num_output: 64 | |
bias_term: true | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "eltwise1_2_4" | |
type: "Eltwise" | |
bottom: "prelu1_1_4" | |
bottom: "conv1_2_2" | |
top: "eltwise1_2_4" | |
} | |
layer { | |
name: "prelu1_2_4" | |
type: "ReLU" | |
bottom: "eltwise1_2_4" | |
top: "prelu1_2_4" | |
} | |
layer { | |
name: "conv1_3_0" | |
type: "Convolution" | |
bottom: "prelu1_2_4" | |
top: "conv1_3_0" | |
convolution_param { | |
num_output: 16 | |
bias_term: true | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "prelu1_3_0" | |
type: "ReLU" | |
bottom: "conv1_3_0" | |
top: "prelu1_3_0" | |
} | |
layer { | |
name: "conv1_3_1" | |
type: "Convolution" | |
bottom: "prelu1_3_0" | |
top: "conv1_3_1" | |
convolution_param { | |
num_output: 16 | |
bias_term: true | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "prelu1_3_1" | |
type: "ReLU" | |
bottom: "conv1_3_1" | |
top: "prelu1_3_1" | |
} | |
layer { | |
name: "conv1_3_2" | |
type: "Convolution" | |
bottom: "prelu1_3_1" | |
top: "conv1_3_2" | |
convolution_param { | |
num_output: 64 | |
bias_term: true | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "eltwise1_3_4" | |
type: "Eltwise" | |
bottom: "prelu1_2_4" | |
bottom: "conv1_3_2" | |
top: "eltwise1_3_4" | |
} | |
layer { | |
name: "prelu1_3_4" | |
type: "ReLU" | |
bottom: "eltwise1_3_4" | |
top: "prelu1_3_4" | |
} | |
layer { | |
name: "conv1_4_0" | |
type: "Convolution" | |
bottom: "prelu1_3_4" | |
top: "conv1_4_0" | |
convolution_param { | |
num_output: 16 | |
bias_term: true | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "prelu1_4_0" | |
type: "ReLU" | |
bottom: "conv1_4_0" | |
top: "prelu1_4_0" | |
} | |
layer { | |
name: "conv1_4_1" | |
type: "Convolution" | |
bottom: "prelu1_4_0" | |
top: "conv1_4_1" | |
convolution_param { | |
num_output: 16 | |
bias_term: true | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "prelu1_4_1" | |
type: "ReLU" | |
bottom: "conv1_4_1" | |
top: "prelu1_4_1" | |
} | |
layer { | |
name: "conv1_4_2" | |
type: "Convolution" | |
bottom: "prelu1_4_1" | |
top: "conv1_4_2" | |
convolution_param { | |
num_output: 64 | |
bias_term: true | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "eltwise1_4_4" | |
type: "Eltwise" | |
bottom: "prelu1_3_4" | |
bottom: "conv1_4_2" | |
top: "eltwise1_4_4" | |
} | |
layer { | |
name: "prelu1_4_4" | |
type: "ReLU" | |
bottom: "eltwise1_4_4" | |
top: "prelu1_4_4" | |
} | |
layer { | |
name: "conv2_0_0" | |
type: "Convolution" | |
bottom: "prelu1_4_4" | |
top: "conv2_0_0" | |
convolution_param { | |
num_output: 32 | |
bias_term: true | |
kernel_size: 2 | |
stride: 2 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "prelu2_0_0" | |
type: "ReLU" | |
bottom: "conv2_0_0" | |
top: "prelu2_0_0" | |
} | |
layer { | |
name: "conv2_0_1" | |
type: "Convolution" | |
bottom: "prelu2_0_0" | |
top: "conv2_0_1" | |
convolution_param { | |
num_output: 32 | |
bias_term: true | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "prelu2_0_1" | |
type: "ReLU" | |
bottom: "conv2_0_1" | |
top: "prelu2_0_1" | |
} | |
layer { | |
name: "conv2_0_2" | |
type: "Convolution" | |
bottom: "prelu2_0_1" | |
top: "conv2_0_2" | |
convolution_param { | |
num_output: 128 | |
bias_term: true | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "pool2_0_4" | |
type: "Pooling" | |
bottom: "prelu1_4_4" | |
top: "pool2_0_4" | |
top: "pool2_0_4_mask" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "conv2_0_4" | |
type: "Convolution" | |
bottom: "pool2_0_4" | |
top: "conv2_0_4" | |
convolution_param { | |
num_output: 128 | |
bias_term: true | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "eltwise2_0_4" | |
type: "Eltwise" | |
bottom: "conv2_0_4" | |
bottom: "conv2_0_2" | |
top: "eltwise2_0_4" | |
} | |
layer { | |
name: "prelu2_0_4" | |
type: "ReLU" | |
bottom: "eltwise2_0_4" | |
top: "prelu2_0_4" | |
} | |
layer { | |
name: "conv2_1_0" | |
type: "Convolution" | |
bottom: "prelu2_0_4" | |
top: "conv2_1_0" | |
convolution_param { | |
num_output: 32 | |
bias_term: true | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "prelu2_1_0" | |
type: "ReLU" | |
bottom: "conv2_1_0" | |
top: "prelu2_1_0" | |
} | |
layer { | |
name: "conv2_1_1" | |
type: "Convolution" | |
bottom: "prelu2_1_0" | |
top: "conv2_1_1" | |
convolution_param { | |
num_output: 32 | |
bias_term: true | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "prelu2_1_1" | |
type: "ReLU" | |
bottom: "conv2_1_1" | |
top: "prelu2_1_1" | |
} | |
layer { | |
name: "conv2_1_2" | |
type: "Convolution" | |
bottom: "prelu2_1_1" | |
top: "conv2_1_2" | |
convolution_param { | |
num_output: 128 | |
bias_term: true | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "eltwise2_1_4" | |
type: "Eltwise" | |
bottom: "prelu2_0_4" | |
bottom: "conv2_1_2" | |
top: "eltwise2_1_4" | |
} | |
layer { | |
name: "prelu2_1_4" | |
type: "ReLU" | |
bottom: "eltwise2_1_4" | |
top: "prelu2_1_4" | |
} | |
layer { | |
name: "conv2_2_0" | |
type: "Convolution" | |
bottom: "prelu2_1_4" | |
top: "conv2_2_0" | |
convolution_param { | |
num_output: 32 | |
bias_term: true | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "prelu2_2_0" | |
type: "ReLU" | |
bottom: "conv2_2_0" | |
top: "prelu2_2_0" | |
} | |
layer { | |
name: "conv2_2_1" | |
type: "Convolution" | |
bottom: "prelu2_2_0" | |
top: "conv2_2_1" | |
convolution_param { | |
num_output: 32 | |
bias_term: true | |
pad: 2 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
dilation: 2 | |
} | |
} | |
layer { | |
name: "prelu2_2_1" | |
type: "ReLU" | |
bottom: "conv2_2_1" | |
top: "prelu2_2_1" | |
} | |
layer { | |
name: "conv2_2_2" | |
type: "Convolution" | |
bottom: "prelu2_2_1" | |
top: "conv2_2_2" | |
convolution_param { | |
num_output: 128 | |
bias_term: true | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "eltwise2_2_4" | |
type: "Eltwise" | |
bottom: "prelu2_1_4" | |
bottom: "conv2_2_2" | |
top: "eltwise2_2_4" | |
} | |
layer { | |
name: "prelu2_2_4" | |
type: "ReLU" | |
bottom: "eltwise2_2_4" | |
top: "prelu2_2_4" | |
} | |
layer { | |
name: "conv2_3_0" | |
type: "Convolution" | |
bottom: "prelu2_2_4" | |
top: "conv2_3_0" | |
convolution_param { | |
num_output: 32 | |
bias_term: true | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "prelu2_3_0" | |
type: "ReLU" | |
bottom: "conv2_3_0" | |
top: "prelu2_3_0" | |
} | |
layer { | |
name: "conv2_3_1_a" | |
type: "Convolution" | |
bottom: "prelu2_3_0" | |
top: "conv2_3_1_a" | |
convolution_param { | |
num_output: 32 | |
bias_term: true | |
pad: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
kernel_h: 5 | |
kernel_w: 1 | |
} | |
} | |
layer { | |
name: "conv2_3_1" | |
type: "Convolution" | |
bottom: "conv2_3_1_a" | |
top: "conv2_3_1" | |
convolution_param { | |
num_output: 32 | |
bias_term: true | |
pad: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
kernel_h: 1 | |
kernel_w: 5 | |
} | |
} | |
layer { | |
name: "prelu2_3_1" | |
type: "ReLU" | |
bottom: "conv2_3_1" | |
top: "prelu2_3_1" | |
} | |
layer { | |
name: "conv2_3_2" | |
type: "Convolution" | |
bottom: "prelu2_3_1" | |
top: "conv2_3_2" | |
convolution_param { | |
num_output: 128 | |
bias_term: true | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "eltwise2_3_4" | |
type: "Eltwise" | |
bottom: "prelu2_2_4" | |
bottom: "conv2_3_2" | |
top: "eltwise2_3_4" | |
} | |
layer { | |
name: "prelu2_3_4" | |
type: "ReLU" | |
bottom: "eltwise2_3_4" | |
top: "prelu2_3_4" | |
} | |
layer { | |
name: "conv2_4_0" | |
type: "Convolution" | |
bottom: "prelu2_3_4" | |
top: "conv2_4_0" | |
convolution_param { | |
num_output: 32 | |
bias_term: true | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "prelu2_4_0" | |
type: "ReLU" | |
bottom: "conv2_4_0" | |
top: "prelu2_4_0" | |
} | |
layer { | |
name: "conv2_4_1" | |
type: "Convolution" | |
bottom: "prelu2_4_0" | |
top: "conv2_4_1" | |
convolution_param { | |
num_output: 32 | |
bias_term: true | |
pad: 4 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
dilation: 4 | |
} | |
} | |
layer { | |
name: "prelu2_4_1" | |
type: "ReLU" | |
bottom: "conv2_4_1" | |
top: "prelu2_4_1" | |
} | |
layer { | |
name: "conv2_4_2" | |
type: "Convolution" | |
bottom: "prelu2_4_1" | |
top: "conv2_4_2" | |
convolution_param { | |
num_output: 128 | |
bias_term: true | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "eltwise2_4_4" | |
type: "Eltwise" | |
bottom: "prelu2_3_4" | |
bottom: "conv2_4_2" | |
top: "eltwise2_4_4" | |
} | |
layer { | |
name: "prelu2_4_4" | |
type: "ReLU" | |
bottom: "eltwise2_4_4" | |
top: "prelu2_4_4" | |
} | |
layer { | |
name: "conv2_5_0" | |
type: "Convolution" | |
bottom: "prelu2_4_4" | |
top: "conv2_5_0" | |
convolution_param { | |
num_output: 32 | |
bias_term: true | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "prelu2_5_0" | |
type: "ReLU" | |
bottom: "conv2_5_0" | |
top: "prelu2_5_0" | |
} | |
layer { | |
name: "conv2_5_1" | |
type: "Convolution" | |
bottom: "prelu2_5_0" | |
top: "conv2_5_1" | |
convolution_param { | |
num_output: 32 | |
bias_term: true | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "prelu2_5_1" | |
type: "ReLU" | |
bottom: "conv2_5_1" | |
top: "prelu2_5_1" | |
} | |
layer { | |
name: "conv2_5_2" | |
type: "Convolution" | |
bottom: "prelu2_5_1" | |
top: "conv2_5_2" | |
convolution_param { | |
num_output: 128 | |
bias_term: true | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "eltwise2_5_4" | |
type: "Eltwise" | |
bottom: "prelu2_4_4" | |
bottom: "conv2_5_2" | |
top: "eltwise2_5_4" | |
} | |
layer { | |
name: "prelu2_5_4" | |
type: "ReLU" | |
bottom: "eltwise2_5_4" | |
top: "prelu2_5_4" | |
} | |
layer { | |
name: "conv2_6_0" | |
type: "Convolution" | |
bottom: "prelu2_5_4" | |
top: "conv2_6_0" | |
convolution_param { | |
num_output: 32 | |
bias_term: true | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "prelu2_6_0" | |
type: "ReLU" | |
bottom: "conv2_6_0" | |
top: "prelu2_6_0" | |
} | |
layer { | |
name: "conv2_6_1" | |
type: "Convolution" | |
bottom: "prelu2_6_0" | |
top: "conv2_6_1" | |
convolution_param { | |
num_output: 32 | |
bias_term: true | |
pad: 8 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
dilation: 8 | |
} | |
} | |
layer { | |
name: "prelu2_6_1" | |
type: "ReLU" | |
bottom: "conv2_6_1" | |
top: "prelu2_6_1" | |
} | |
layer { | |
name: "conv2_6_2" | |
type: "Convolution" | |
bottom: "prelu2_6_1" | |
top: "conv2_6_2" | |
convolution_param { | |
num_output: 128 | |
bias_term: true | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "eltwise2_6_4" | |
type: "Eltwise" | |
bottom: "prelu2_5_4" | |
bottom: "conv2_6_2" | |
top: "eltwise2_6_4" | |
} | |
layer { | |
name: "prelu2_6_4" | |
type: "ReLU" | |
bottom: "eltwise2_6_4" | |
top: "prelu2_6_4" | |
} | |
layer { | |
name: "conv2_7_0" | |
type: "Convolution" | |
bottom: "prelu2_6_4" | |
top: "conv2_7_0" | |
convolution_param { | |
num_output: 32 | |
bias_term: true | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "prelu2_7_0" | |
type: "ReLU" | |
bottom: "conv2_7_0" | |
top: "prelu2_7_0" | |
} | |
layer { | |
name: "conv2_7_1_a" | |
type: "Convolution" | |
bottom: "prelu2_7_0" | |
top: "conv2_7_1_a" | |
convolution_param { | |
num_output: 32 | |
bias_term: true | |
pad: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
kernel_h: 5 | |
kernel_w: 1 | |
} | |
} | |
layer { | |
name: "conv2_7_1" | |
type: "Convolution" | |
bottom: "conv2_7_1_a" | |
top: "conv2_7_1" | |
convolution_param { | |
num_output: 32 | |
bias_term: true | |
pad: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
kernel_h: 1 | |
kernel_w: 5 | |
} | |
} | |
layer { | |
name: "prelu2_7_1" | |
type: "ReLU" | |
bottom: "conv2_7_1" | |
top: "prelu2_7_1" | |
} | |
layer { | |
name: "conv2_7_2" | |
type: "Convolution" | |
bottom: "prelu2_7_1" | |
top: "conv2_7_2" | |
convolution_param { | |
num_output: 128 | |
bias_term: true | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "eltwise2_7_4" | |
type: "Eltwise" | |
bottom: "prelu2_6_4" | |
bottom: "conv2_7_2" | |
top: "eltwise2_7_4" | |
} | |
layer { | |
name: "prelu2_7_4" | |
type: "ReLU" | |
bottom: "eltwise2_7_4" | |
top: "prelu2_7_4" | |
} | |
layer { | |
name: "conv2_8_0" | |
type: "Convolution" | |
bottom: "prelu2_7_4" | |
top: "conv2_8_0" | |
convolution_param { | |
num_output: 32 | |
bias_term: true | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "prelu2_8_0" | |
type: "ReLU" | |
bottom: "conv2_8_0" | |
top: "prelu2_8_0" | |
} | |
layer { | |
name: "conv2_8_1" | |
type: "Convolution" | |
bottom: "prelu2_8_0" | |
top: "conv2_8_1" | |
convolution_param { | |
num_output: 32 | |
bias_term: true | |
pad: 16 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
dilation: 16 | |
} | |
} | |
layer { | |
name: "prelu2_8_1" | |
type: "ReLU" | |
bottom: "conv2_8_1" | |
top: "prelu2_8_1" | |
} | |
layer { | |
name: "conv2_8_2" | |
type: "Convolution" | |
bottom: "prelu2_8_1" | |
top: "conv2_8_2" | |
convolution_param { | |
num_output: 128 | |
bias_term: true | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "eltwise2_8_4" | |
type: "Eltwise" | |
bottom: "prelu2_7_4" | |
bottom: "conv2_8_2" | |
top: "eltwise2_8_4" | |
} | |
layer { | |
name: "prelu2_8_4" | |
type: "ReLU" | |
bottom: "eltwise2_8_4" | |
top: "prelu2_8_4" | |
} | |
layer { | |
name: "conv3_1_0" | |
type: "Convolution" | |
bottom: "prelu2_8_4" | |
top: "conv3_1_0" | |
convolution_param { | |
num_output: 32 | |
bias_term: true | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "prelu3_1_0" | |
type: "ReLU" | |
bottom: "conv3_1_0" | |
top: "prelu3_1_0" | |
} | |
layer { | |
name: "conv3_1_1" | |
type: "Convolution" | |
bottom: "prelu3_1_0" | |
top: "conv3_1_1" | |
convolution_param { | |
num_output: 32 | |
bias_term: true | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "prelu3_1_1" | |
type: "ReLU" | |
bottom: "conv3_1_1" | |
top: "prelu3_1_1" | |
} | |
layer { | |
name: "conv3_1_2" | |
type: "Convolution" | |
bottom: "prelu3_1_1" | |
top: "conv3_1_2" | |
convolution_param { | |
num_output: 128 | |
bias_term: true | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "eltwise3_1_4" | |
type: "Eltwise" | |
bottom: "prelu2_8_4" | |
bottom: "conv3_1_2" | |
top: "eltwise3_1_4" | |
} | |
layer { | |
name: "prelu3_1_4" | |
type: "ReLU" | |
bottom: "eltwise3_1_4" | |
top: "prelu3_1_4" | |
} | |
layer { | |
name: "conv3_2_0" | |
type: "Convolution" | |
bottom: "prelu3_1_4" | |
top: "conv3_2_0" | |
convolution_param { | |
num_output: 32 | |
bias_term: true | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "prelu3_2_0" | |
type: "ReLU" | |
bottom: "conv3_2_0" | |
top: "prelu3_2_0" | |
} | |
layer { | |
name: "conv3_2_1" | |
type: "Convolution" | |
bottom: "prelu3_2_0" | |
top: "conv3_2_1" | |
convolution_param { | |
num_output: 32 | |
bias_term: true | |
pad: 2 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
dilation: 2 | |
} | |
} | |
layer { | |
name: "prelu3_2_1" | |
type: "ReLU" | |
bottom: "conv3_2_1" | |
top: "prelu3_2_1" | |
} | |
layer { | |
name: "conv3_2_2" | |
type: "Convolution" | |
bottom: "prelu3_2_1" | |
top: "conv3_2_2" | |
convolution_param { | |
num_output: 128 | |
bias_term: true | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "eltwise3_2_4" | |
type: "Eltwise" | |
bottom: "prelu3_1_4" | |
bottom: "conv3_2_2" | |
top: "eltwise3_2_4" | |
} | |
layer { | |
name: "prelu3_2_4" | |
type: "ReLU" | |
bottom: "eltwise3_2_4" | |
top: "prelu3_2_4" | |
} | |
layer { | |
name: "conv3_3_0" | |
type: "Convolution" | |
bottom: "prelu3_2_4" | |
top: "conv3_3_0" | |
convolution_param { | |
num_output: 32 | |
bias_term: true | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "prelu3_3_0" | |
type: "ReLU" | |
bottom: "conv3_3_0" | |
top: "prelu3_3_0" | |
} | |
layer { | |
name: "conv3_3_1_a" | |
type: "Convolution" | |
bottom: "prelu3_3_0" | |
top: "conv3_3_1_a" | |
convolution_param { | |
num_output: 32 | |
bias_term: true | |
pad: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
kernel_h: 5 | |
kernel_w: 1 | |
} | |
} | |
layer { | |
name: "conv3_3_1" | |
type: "Convolution" | |
bottom: "conv3_3_1_a" | |
top: "conv3_3_1" | |
convolution_param { | |
num_output: 32 | |
bias_term: true | |
pad: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
kernel_h: 1 | |
kernel_w: 5 | |
} | |
} | |
layer { | |
name: "prelu3_3_1" | |
type: "ReLU" | |
bottom: "conv3_3_1" | |
top: "prelu3_3_1" | |
} | |
layer { | |
name: "conv3_3_2" | |
type: "Convolution" | |
bottom: "prelu3_3_1" | |
top: "conv3_3_2" | |
convolution_param { | |
num_output: 128 | |
bias_term: true | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "eltwise3_3_4" | |
type: "Eltwise" | |
bottom: "prelu3_2_4" | |
bottom: "conv3_3_2" | |
top: "eltwise3_3_4" | |
} | |
layer { | |
name: "prelu3_3_4" | |
type: "ReLU" | |
bottom: "eltwise3_3_4" | |
top: "prelu3_3_4" | |
} | |
layer { | |
name: "conv3_4_0" | |
type: "Convolution" | |
bottom: "prelu3_3_4" | |
top: "conv3_4_0" | |
convolution_param { | |
num_output: 32 | |
bias_term: true | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "prelu3_4_0" | |
type: "ReLU" | |
bottom: "conv3_4_0" | |
top: "prelu3_4_0" | |
} | |
layer { | |
name: "conv3_4_1" | |
type: "Convolution" | |
bottom: "prelu3_4_0" | |
top: "conv3_4_1" | |
convolution_param { | |
num_output: 32 | |
bias_term: true | |
pad: 4 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
dilation: 4 | |
} | |
} | |
layer { | |
name: "prelu3_4_1" | |
type: "ReLU" | |
bottom: "conv3_4_1" | |
top: "prelu3_4_1" | |
} | |
layer { | |
name: "conv3_4_2" | |
type: "Convolution" | |
bottom: "prelu3_4_1" | |
top: "conv3_4_2" | |
convolution_param { | |
num_output: 128 | |
bias_term: true | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "eltwise3_4_4" | |
type: "Eltwise" | |
bottom: "prelu3_3_4" | |
bottom: "conv3_4_2" | |
top: "eltwise3_4_4" | |
} | |
layer { | |
name: "prelu3_4_4" | |
type: "ReLU" | |
bottom: "eltwise3_4_4" | |
top: "prelu3_4_4" | |
} | |
layer { | |
name: "conv3_5_0" | |
type: "Convolution" | |
bottom: "prelu3_4_4" | |
top: "conv3_5_0" | |
convolution_param { | |
num_output: 32 | |
bias_term: true | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "prelu3_5_0" | |
type: "ReLU" | |
bottom: "conv3_5_0" | |
top: "prelu3_5_0" | |
} | |
layer { | |
name: "conv3_5_1" | |
type: "Convolution" | |
bottom: "prelu3_5_0" | |
top: "conv3_5_1" | |
convolution_param { | |
num_output: 32 | |
bias_term: true | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "prelu3_5_1" | |
type: "ReLU" | |
bottom: "conv3_5_1" | |
top: "prelu3_5_1" | |
} | |
layer { | |
name: "conv3_5_2" | |
type: "Convolution" | |
bottom: "prelu3_5_1" | |
top: "conv3_5_2" | |
convolution_param { | |
num_output: 128 | |
bias_term: true | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "eltwise3_5_4" | |
type: "Eltwise" | |
bottom: "prelu3_4_4" | |
bottom: "conv3_5_2" | |
top: "eltwise3_5_4" | |
} | |
layer { | |
name: "prelu3_5_4" | |
type: "ReLU" | |
bottom: "eltwise3_5_4" | |
top: "prelu3_5_4" | |
} | |
layer { | |
name: "conv3_6_0" | |
type: "Convolution" | |
bottom: "prelu3_5_4" | |
top: "conv3_6_0" | |
convolution_param { | |
num_output: 32 | |
bias_term: true | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "prelu3_6_0" | |
type: "ReLU" | |
bottom: "conv3_6_0" | |
top: "prelu3_6_0" | |
} | |
layer { | |
name: "conv3_6_1" | |
type: "Convolution" | |
bottom: "prelu3_6_0" | |
top: "conv3_6_1" | |
convolution_param { | |
num_output: 32 | |
bias_term: true | |
pad: 8 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
dilation: 8 | |
} | |
} | |
layer { | |
name: "prelu3_6_1" | |
type: "ReLU" | |
bottom: "conv3_6_1" | |
top: "prelu3_6_1" | |
} | |
layer { | |
name: "conv3_6_2" | |
type: "Convolution" | |
bottom: "prelu3_6_1" | |
top: "conv3_6_2" | |
convolution_param { | |
num_output: 128 | |
bias_term: true | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "eltwise3_6_4" | |
type: "Eltwise" | |
bottom: "prelu3_5_4" | |
bottom: "conv3_6_2" | |
top: "eltwise3_6_4" | |
} | |
layer { | |
name: "prelu3_6_4" | |
type: "ReLU" | |
bottom: "eltwise3_6_4" | |
top: "prelu3_6_4" | |
} | |
layer { | |
name: "conv3_7_0" | |
type: "Convolution" | |
bottom: "prelu3_6_4" | |
top: "conv3_7_0" | |
convolution_param { | |
num_output: 32 | |
bias_term: true | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "prelu3_7_0" | |
type: "ReLU" | |
bottom: "conv3_7_0" | |
top: "prelu3_7_0" | |
} | |
layer { | |
name: "conv3_7_1_a" | |
type: "Convolution" | |
bottom: "prelu3_7_0" | |
top: "conv3_7_1_a" | |
convolution_param { | |
num_output: 32 | |
bias_term: true | |
pad: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
kernel_h: 5 | |
kernel_w: 1 | |
} | |
} | |
layer { | |
name: "conv3_7_1" | |
type: "Convolution" | |
bottom: "conv3_7_1_a" | |
top: "conv3_7_1" | |
convolution_param { | |
num_output: 32 | |
bias_term: true | |
pad: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
kernel_h: 1 | |
kernel_w: 5 | |
} | |
} | |
layer { | |
name: "prelu3_7_1" | |
type: "ReLU" | |
bottom: "conv3_7_1" | |
top: "prelu3_7_1" | |
} | |
layer { | |
name: "conv3_7_2" | |
type: "Convolution" | |
bottom: "prelu3_7_1" | |
top: "conv3_7_2" | |
convolution_param { | |
num_output: 128 | |
bias_term: true | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "eltwise3_7_4" | |
type: "Eltwise" | |
bottom: "prelu3_6_4" | |
bottom: "conv3_7_2" | |
top: "eltwise3_7_4" | |
} | |
layer { | |
name: "prelu3_7_4" | |
type: "ReLU" | |
bottom: "eltwise3_7_4" | |
top: "prelu3_7_4" | |
} | |
layer { | |
name: "conv3_8_0" | |
type: "Convolution" | |
bottom: "prelu3_7_4" | |
top: "conv3_8_0" | |
convolution_param { | |
num_output: 32 | |
bias_term: true | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "prelu3_8_0" | |
type: "ReLU" | |
bottom: "conv3_8_0" | |
top: "prelu3_8_0" | |
} | |
layer { | |
name: "conv3_8_1" | |
type: "Convolution" | |
bottom: "prelu3_8_0" | |
top: "conv3_8_1" | |
convolution_param { | |
num_output: 32 | |
bias_term: true | |
pad: 16 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
dilation: 16 | |
} | |
} | |
layer { | |
name: "prelu3_8_1" | |
type: "ReLU" | |
bottom: "conv3_8_1" | |
top: "prelu3_8_1" | |
} | |
layer { | |
name: "conv3_8_2" | |
type: "Convolution" | |
bottom: "prelu3_8_1" | |
top: "conv3_8_2" | |
convolution_param { | |
num_output: 128 | |
bias_term: true | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "eltwise3_8_4" | |
type: "Eltwise" | |
bottom: "prelu3_7_4" | |
bottom: "conv3_8_2" | |
top: "eltwise3_8_4" | |
} | |
layer { | |
name: "prelu3_8_4" | |
type: "ReLU" | |
bottom: "eltwise3_8_4" | |
top: "prelu3_8_4" | |
} | |
layer { | |
name: "conv4_0_0" | |
type: "Convolution" | |
bottom: "prelu3_8_4" | |
top: "conv4_0_0" | |
convolution_param { | |
num_output: 16 | |
bias_term: true | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "prelu4_0_0" | |
type: "ReLU" | |
bottom: "conv4_0_0" | |
top: "prelu4_0_0" | |
} | |
layer { | |
name: "deconv4_0_1" | |
type: "Deconvolution" | |
bottom: "prelu4_0_0" | |
top: "deconv4_0_1" | |
convolution_param { | |
num_output: 16 | |
bias_term: true | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "bn4_0_1" | |
type: "BN" | |
bottom: "deconv4_0_1" | |
top: "bn4_0_1" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 1.0 | |
decay_mult: 0.0 | |
} | |
bn_param { | |
scale_filler { | |
type: "constant" | |
value: 1.0 | |
} | |
shift_filler { | |
type: "constant" | |
value: 0.001 | |
} | |
bn_mode: INFERENCE | |
} | |
} | |
layer { | |
name: "prelu4_0_1" | |
type: "ReLU" | |
bottom: "bn4_0_1" | |
top: "prelu4_0_1" | |
} | |
layer { | |
name: "conv4_0_2" | |
type: "Convolution" | |
bottom: "prelu4_0_1" | |
top: "conv4_0_2" | |
convolution_param { | |
num_output: 64 | |
bias_term: true | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "conv4_0_4" | |
type: "Convolution" | |
bottom: "prelu3_8_4" | |
top: "conv4_0_4" | |
convolution_param { | |
num_output: 64 | |
bias_term: true | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "upsample4_0_4" | |
type: "Upsample" | |
bottom: "conv4_0_4" | |
bottom: "pool2_0_4_mask" | |
top: "upsample4_0_4" | |
upsample_param { | |
scale: 2 | |
} | |
} | |
layer { | |
name: "eltwise4_0_4" | |
type: "Eltwise" | |
bottom: "upsample4_0_4" | |
bottom: "conv4_0_2" | |
top: "eltwise4_0_4" | |
} | |
layer { | |
name: "prelu4_0_4" | |
type: "ReLU" | |
bottom: "eltwise4_0_4" | |
top: "prelu4_0_4" | |
} | |
layer { | |
name: "conv4_1_0" | |
type: "Convolution" | |
bottom: "prelu4_0_4" | |
top: "conv4_1_0" | |
convolution_param { | |
num_output: 16 | |
bias_term: true | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "prelu4_1_0" | |
type: "ReLU" | |
bottom: "conv4_1_0" | |
top: "prelu4_1_0" | |
} | |
layer { | |
name: "conv4_1_1" | |
type: "Convolution" | |
bottom: "prelu4_1_0" | |
top: "conv4_1_1" | |
convolution_param { | |
num_output: 16 | |
bias_term: true | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "prelu4_1_1" | |
type: "ReLU" | |
bottom: "conv4_1_1" | |
top: "prelu4_1_1" | |
} | |
layer { | |
name: "conv4_1_2" | |
type: "Convolution" | |
bottom: "prelu4_1_1" | |
top: "conv4_1_2" | |
convolution_param { | |
num_output: 64 | |
bias_term: true | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "eltwise4_1_4" | |
type: "Eltwise" | |
bottom: "prelu4_0_4" | |
bottom: "conv4_1_2" | |
top: "eltwise4_1_4" | |
} | |
layer { | |
name: "prelu4_1_4" | |
type: "ReLU" | |
bottom: "eltwise4_1_4" | |
top: "prelu4_1_4" | |
} | |
layer { | |
name: "conv4_2_0" | |
type: "Convolution" | |
bottom: "prelu4_1_4" | |
top: "conv4_2_0" | |
convolution_param { | |
num_output: 16 | |
bias_term: true | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "prelu4_2_0" | |
type: "ReLU" | |
bottom: "conv4_2_0" | |
top: "prelu4_2_0" | |
} | |
layer { | |
name: "conv4_2_1" | |
type: "Convolution" | |
bottom: "prelu4_2_0" | |
top: "conv4_2_1" | |
convolution_param { | |
num_output: 16 | |
bias_term: true | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "prelu4_2_1" | |
type: "ReLU" | |
bottom: "conv4_2_1" | |
top: "prelu4_2_1" | |
} | |
layer { | |
name: "conv4_2_2" | |
type: "Convolution" | |
bottom: "prelu4_2_1" | |
top: "conv4_2_2" | |
convolution_param { | |
num_output: 64 | |
bias_term: true | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "eltwise4_2_4" | |
type: "Eltwise" | |
bottom: "prelu4_1_4" | |
bottom: "conv4_2_2" | |
top: "eltwise4_2_4" | |
} | |
layer { | |
name: "prelu4_2_4" | |
type: "ReLU" | |
bottom: "eltwise4_2_4" | |
top: "prelu4_2_4" | |
} | |
layer { | |
name: "conv5_0_0" | |
type: "Convolution" | |
bottom: "prelu4_2_4" | |
top: "conv5_0_0" | |
convolution_param { | |
num_output: 4 | |
bias_term: true | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "prelu5_0_0" | |
type: "ReLU" | |
bottom: "conv5_0_0" | |
top: "prelu5_0_0" | |
} | |
layer { | |
name: "deconv5_0_1" | |
type: "Deconvolution" | |
bottom: "prelu5_0_0" | |
top: "deconv5_0_1" | |
convolution_param { | |
num_output: 4 | |
bias_term: true | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "bn5_0_1" | |
type: "BN" | |
bottom: "deconv5_0_1" | |
top: "bn5_0_1" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 1.0 | |
decay_mult: 0.0 | |
} | |
bn_param { | |
scale_filler { | |
type: "constant" | |
value: 1.0 | |
} | |
shift_filler { | |
type: "constant" | |
value: 0.001 | |
} | |
bn_mode: INFERENCE | |
} | |
} | |
layer { | |
name: "prelu5_0_1" | |
type: "ReLU" | |
bottom: "bn5_0_1" | |
top: "prelu5_0_1" | |
} | |
layer { | |
name: "conv5_0_2" | |
type: "Convolution" | |
bottom: "prelu5_0_1" | |
top: "conv5_0_2" | |
convolution_param { | |
num_output: 16 | |
bias_term: true | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "conv5_0_4" | |
type: "Convolution" | |
bottom: "prelu4_2_4" | |
top: "conv5_0_4" | |
convolution_param { | |
num_output: 16 | |
bias_term: true | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "upsample5_0_4" | |
type: "Upsample" | |
bottom: "conv5_0_4" | |
bottom: "pool1_0_4_mask" | |
top: "upsample5_0_4" | |
upsample_param { | |
scale: 2 | |
} | |
} | |
layer { | |
name: "eltwise5_0_4" | |
type: "Eltwise" | |
bottom: "upsample5_0_4" | |
bottom: "conv5_0_2" | |
top: "eltwise5_0_4" | |
} | |
layer { | |
name: "prelu5_0_4" | |
type: "ReLU" | |
bottom: "eltwise5_0_4" | |
top: "prelu5_0_4" | |
} | |
layer { | |
name: "conv5_1_0" | |
type: "Convolution" | |
bottom: "prelu5_0_4" | |
top: "conv5_1_0" | |
convolution_param { | |
num_output: 4 | |
bias_term: true | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "prelu5_1_0" | |
type: "ReLU" | |
bottom: "conv5_1_0" | |
top: "prelu5_1_0" | |
} | |
layer { | |
name: "conv5_1_1" | |
type: "Convolution" | |
bottom: "prelu5_1_0" | |
top: "conv5_1_1" | |
convolution_param { | |
num_output: 4 | |
bias_term: true | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "prelu5_1_1" | |
type: "ReLU" | |
bottom: "conv5_1_1" | |
top: "prelu5_1_1" | |
} | |
layer { | |
name: "conv5_1_2" | |
type: "Convolution" | |
bottom: "prelu5_1_1" | |
top: "conv5_1_2" | |
convolution_param { | |
num_output: 16 | |
bias_term: true | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "eltwise5_1_4" | |
type: "Eltwise" | |
bottom: "prelu5_0_4" | |
bottom: "conv5_1_2" | |
top: "eltwise5_1_4" | |
} | |
layer { | |
name: "prelu5_1_4" | |
type: "ReLU" | |
bottom: "eltwise5_1_4" | |
top: "prelu5_1_4" | |
} | |
layer { | |
name: "deconv6_0_0" | |
type: "Deconvolution" | |
bottom: "prelu5_1_4" | |
top: "deconv6_0_0" | |
convolution_param { | |
num_output: 19 | |
bias_term: true | |
kernel_size: 2 | |
stride: 2 | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment