Created
June 4, 2019 01:12
-
-
Save ssajous/90f96c2ca82771637c1a0fe41401902d to your computer and use it in GitHub Desktop.
Backward Elimination
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import statsmodels.formula.api as sm | |
def backwardElimination(x, sl): | |
numVars = len(x[0]) | |
for i in range(0, numVars): | |
regressor_OLS = sm.OLS(y, x).fit() | |
maxVar = max(regressor_OLS.pvalues).astype(float) | |
if maxVar > sl: | |
for j in range(0, numVars - i): | |
if (regressor_OLS.pvalues[j].astype(float) == maxVar): | |
x = np.delete(x, j, 1) | |
regressor_OLS.summary() | |
return x | |
SL = 0.05 | |
X_opt = X[:, [0, 1, 2, 3, 4, 5]] | |
X_Modeled = backwardElimination(X_opt, SL) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import statsmodels.formula.api as sm | |
def backwardElimination(x, SL): | |
numVars = len(x[0]) | |
temp = np.zeros((50,6)).astype(int) | |
for i in range(0, numVars): | |
regressor_OLS = sm.OLS(y, x).fit() | |
maxVar = max(regressor_OLS.pvalues).astype(float) | |
adjR_before = regressor_OLS.rsquared_adj.astype(float) | |
if maxVar > SL: | |
for j in range(0, numVars - i): | |
if (regressor_OLS.pvalues[j].astype(float) == maxVar): | |
temp[:,j] = x[:, j] | |
x = np.delete(x, j, 1) | |
tmp_regressor = sm.OLS(y, x).fit() | |
adjR_after = tmp_regressor.rsquared_adj.astype(float) | |
if (adjR_before >= adjR_after): | |
x_rollback = np.hstack((x, temp[:,[0,j]])) | |
x_rollback = np.delete(x_rollback, j, 1) | |
print (regressor_OLS.summary()) | |
return x_rollback | |
else: | |
continue | |
regressor_OLS.summary() | |
return x | |
SL = 0.05 | |
X_opt = X[:, [0, 1, 2, 3, 4, 5]] | |
X_Modeled = backwardElimination(X_opt, SL) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment