Created
June 25, 2019 16:03
-
-
Save sscdotopen/564799f70cca650eb87c683469b92c6b to your computer and use it in GitHub Desktop.
Serializing nested data in Spark
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import org.apache.spark.sql.{Row, SaveMode} | |
import org.apache.spark.sql.types._ | |
val attributesType = new MapType(StringType, StringType, valueContainsNull = false) | |
val historyEntryType = new StructType() | |
.add("intervalStart", LongType) | |
.add("intervalEnd", LongType) | |
.add("type", StringType) | |
.add("attributes", attributesType) | |
val schema = new StructType() | |
.add("id", LongType) | |
.add("history", ArrayType(historyEntryType)) | |
val data = Array( | |
Row(1L, Array( | |
Row(1L, 5L, "person", Map("name" -> "John")), | |
Row(5L, 7L, "person", Map("name" -> "Jim")) | |
)), | |
Row(2L, Array( | |
Row(1L, 5L, "person", Map("type" -> "person", "name" -> "Smith")), | |
Row(5L, 7L, "person", Map("name" -> "Miller")) | |
)) | |
) | |
val rdd = session.sparkContext.parallelize(data, numSlices = 2) | |
val df = session.sqlContext.createDataFrame(rdd, schema) | |
println(s"Dataframe has ${df.count()} rows.") | |
val collected = df.collect() | |
collected.foreach { println } | |
df.write.mode(SaveMode.Overwrite).parquet("/tmp/test.pqt") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment