Skip to content

Instantly share code, notes, and snippets.

@sshleifer
Created April 22, 2020 13:57
Show Gist options
  • Save sshleifer/4d51e77d836f013a9dc8e4fb15d88049 to your computer and use it in GitHub Desktop.
Save sshleifer/4d51e77d836f013a9dc8e4fb15d88049 to your computer and use it in GitHub Desktop.
EN_DE_CONFIG = {
"bert-train-type-embeddings": "true",
"bert-type-vocab-size": "2",
"dec-cell": "gru",
"dec-cell-base-depth": "2",
"dec-cell-high-depth": "1",
"dec-depth": 6,
"dim-emb": "512",
"dim-rnn": "1024", #IGNORE
"dim-vocabs": ["58100", "58100"],
"enc-cell": "gru", # IGNORE
"enc-cell-depth": "1",
"enc-depth": 6,
"enc-type": "bidirectional",
"input-types": [],
"layer-normalization": "false",
"lemma-dim-emb": "0",
"right-left": "false",
"skip": "false",
"tied-embeddings": "false",
"tied-embeddings-all": "true", # "Tie all embedding layers and output layer"
"tied-embeddings-src": "false",
## FFN and AAN params identical
"transformer-aan-activation": "swish",
"transformer-aan-depth": "2", # What does AAN stand for?
"transformer-aan-nogate": "false",
"transformer-decoder-autoreg": "self-attention",
"transformer-dim-aan": "2048",
"transformer-dim-ffn": "2048",
"transformer-ffn-activation": "swish",
"transformer-ffn-depth": "2",
"transformer-guided-alignment-layer": "last",
"transformer-heads": 8,
"transformer-no-projection": "false", # Omit linear projection after multi-head attention (transformer)
"transformer-postprocess": "dan", #Dropout, add, normalize
"transformer-postprocess-emb": "d",# Operation after transformer embedding layer: d = dropout, a = add, n = normalize
"transformer-preprocess": "", # Operation before each transformer layer: d = dropout, a = add, n = normalize
"transformer-tied-layers": [],
"transformer-train-position-embeddings": "false", # Train positional embeddings instead of using static sinusoidal embeddings
"type": "transformer",
"ulr": "false",
"ulr-dim-emb": "0",
"ulr-trainable-transformation": "false",
"version": "v1.8.2 2111c28 2019-10-16 08:36:48 -0700",
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment