Created
October 26, 2020 17:29
-
-
Save sshleifer/d36089da7ef102b6106a59233863adc3 to your computer and use it in GitHub Desktop.
Timing Generate
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
import time | |
from tqdm import tqdm | |
from pathlib import Path | |
import pandas as pd | |
models = ['sshleifer/distilbart-cnn-12-3', | |
'sshleifer/distilbart-cnn-12-6', | |
'sshleifer/distilbart-cnn-6-6', | |
'sshleifer/distilbart-xsum-1-1', | |
'sshleifer/distilbart-xsum-12-1', | |
'sshleifer/distilbart-xsum-12-3', | |
'sshleifer/distilbart-xsum-12-6', | |
'sshleifer/distilbart-xsum-6-6', | |
'sshleifer/distilbart-xsum-9-6', | |
'facebook/bart-large-cnn', 'facebook/bart-large-xsum'] | |
pegs = ['sshleifer/distill-pegasus-cnn-16-4', | |
'sshleifer/distill-pegasus-xsum-16-4', | |
'sshleifer/distill-pegasus-xsum-16-8', | |
'google/pegasus-xsum', 'sshleifer/pegasus-cnn-ft-v2' | |
] | |
def time_generate(mname, batch, fp16=True, **gen_kwargs): | |
model = AutoModelForSeq2SeqLM.from_pretrained(mname).to(torch_device) | |
if fp16: | |
model = model.half() | |
start_time = time.time() | |
model.generate(**batch, **gen_kwargs) | |
tbatch = time.time() - start_time | |
bb1 = batch.input_ids[:1] | |
start_time = time.time() | |
model.generate(bb1, **gen_kwargs) | |
t1 = time.time() - start_time | |
return dict(m=mname, t1=t1, tbatch=tbatch) | |
BS=16 | |
peg_tok = AutoTokenizer.from_pretrained('google/pegasus-xsum') | |
bart_tok = AutoTokenizer.from_pretrained('facebook/bart-large') | |
data = Path('xsum/val.source').open().read().split('\n')[:BS] | |
torch_device = 'cuda' | |
# num_beams=8,6 are published defaults. | |
peg_batch = peg_tok.prepare_seq2seq_batch(data, max_length=512, return_tensors='pt', num_beams=8).to(torch_device) | |
bart_batch = bart_tok.prepare_seq2seq_batch(data, max_length=512, return_tensors='pt', num_beams=6).to(torch_device) | |
times = [time_generate(mname, bart_batch, fp16=True) for mname in tqdm(models)] | |
timesp2 = [time_generate(mname, peg_batch, fp16=False) for mname in tqdm(pegs)] | |
all_times = pd.concat([pd.DataFrame(timesp2), pd.DataFrame(times)]).sort_values('tbatch', ascending=False) | |
all_times.to_csv('generation_timings.csv', index=False) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment