Created
July 2, 2018 02:34
-
-
Save ssisaias/b9521c910d66c440c9e90d21f5360536 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import nltk | |
import csv | |
import pickle | |
from nltk.tokenize import word_tokenize | |
from nltk.corpus import stopwords | |
from sklearn.naive_bayes import MultinomialNB | |
from myclassify import Analise | |
from pandas import DataFrame | |
import numpy | |
from sklearn.feature_extraction.text import CountVectorizer | |
#Here we have the validation steps and a way to load the classifier. | |
#Load classifier and vectorizer | |
with open('classifier.pickle', 'rb') as handle: | |
classifier = pickle.load(handle) | |
with open('count_vectorizer.pickle', 'rb') as handle: | |
count_vectorizer = pickle.load(handle) | |
dados = [] | |
x = [] | |
y = [] | |
with open('output_results_processed.txt','r',encoding='utf8') as file: | |
reader = csv.reader(file) | |
for row in reader: | |
dados.append((row[0],row[1])) | |
preprocessor = Analise() | |
preprocessor.stop_words = set(stopwords.words("portuguese")) | |
preprocessor.stopwordsnltk = nltk.corpus.stopwords.words('portuguese') | |
classification_data = preprocessor.removerStopWords(dados) | |
classification_data = preprocessor.aplicastemmer(classification_data) | |
x = [] | |
for item in classification_data: | |
frase = "" | |
for witem in item[0]: | |
frase += witem + " " | |
x.append(frase) | |
y = [] | |
for item in classification_data: | |
y.append(item[1]) | |
## Classification | |
teste = x | |
teste_counts = count_vectorizer.transform(teste) | |
predictions = classifier.predict(teste_counts) | |
predictions | |
markups = y | |
diferencas = predictions == markups | |
acertos = [a for a in diferencas if a] | |
rate = 100.0 * len(acertos)/len(predictions) | |
rate | |
#scikit-metrics (Use this one) | |
from sklearn.metrics import classification_report | |
target_names = ['Class 0 (neutro)','Class 1 (neg)'] | |
print(classification_report(markups,predictions,target_names=target_names)) | |
#Metodo antigo | |
#from sklearn.metrics import recall_score | |
#from sklearn.metrics import precision_score | |
## Precision, recall | |
# recall | |
#round(100*recall_score(markups, predictions,average='macro'),3) | |
#round(100*recall_score(markups, predictions,average='micro'),3) | |
#round(100*recall_score(markups, predictions,average='weighted'),3) | |
#recall_score(markups, predictions,average=None) | |
# precision | |
#round(100*precision_score(markups, predictions, average='macro'),3) | |
#round(100*precision_score(markups, predictions,average='micro'),3) | |
#round(100*precision_score(markups, predictions,average='weighted'),3) | |
#precision_score(markups, predictions,average=None) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment