Created
July 2, 2018 02:49
-
-
Save ssisaias/fc49e7983a244b8c29b8f069f263216a to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import nltk | |
import csv | |
import pickle | |
from nltk.tokenize import word_tokenize | |
from nltk.corpus import stopwords | |
class Analise (object): | |
def __init__(self): | |
self.stop_words = set(stopwords.words("portuguese")) | |
self.dataPath_treino = 'output.txt' | |
self.stopwordsnltk = nltk.corpus.stopwords.words('portuguese') | |
def getBaseTeste(self): | |
dados = [] | |
with open(self.dataPath_teste, 'r', encoding="utf8") as file: | |
reader = csv.reader(file) | |
for row in reader: | |
dados.append((row[0], row[1])) | |
return dados | |
def getBase(self): | |
dados = [] | |
with open(self.dataPath_treino, 'r', encoding="utf8") as file: | |
reader = csv.reader(file) | |
for row in reader: | |
dados.append((row[0],row[1])) | |
return dados | |
def removerStopWords(self,texto): | |
frases_stop = [] | |
for(palavras,emocao) in texto: | |
frase = ' '.join([word for word in word_tokenize(palavras) if word not in self.stop_words]) | |
frases_stop.append((frase,emocao)) | |
return frases_stop | |
def aplicastemmer(self,texto): | |
stemmer = nltk.stem.RSLPStemmer() | |
frasesstemming =[] | |
for (palavras,emocao) in texto: | |
comstemming = [str(stemmer.stem(p)) for p in palavras.split() if p not in self.stopwordsnltk] | |
frasesstemming.append((comstemming,emocao)) | |
return frasesstemming |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment