Created
May 29, 2020 21:51
-
-
Save sskorol/09346db0830ee53eb7cfacd45059be9f to your computer and use it in GitHub Desktop.
Spacy POS/TAG training based on Navec data and Pymorphy2 analysis
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
spacy==2.2.4 | |
pymorphy2==0.8 | |
pandas==1.0.3 | |
tabulate==0.8.7 | |
navec==0.9.0 | |
attrs==19.3.0 | |
tqdm==4.46.0 | |
plac==1.1.3 | |
thinc==7.4.0 | |
pathlib==1.0.1 | |
setuptools==46.4.0 | |
srsly==1.0.2 | |
wasabi==0.6.0 | |
attr==0.3.1 | |
numpy==1.18.4 | |
cupy-cuda101==7.4.0 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# coding: utf8 | |
from __future__ import unicode_literals, division, print_function | |
import plac | |
import os | |
import tqdm | |
from thinc.neural._classes.model import Model | |
from timeit import default_timer as timer | |
import shutil | |
import srsly | |
from wasabi import msg | |
import contextlib | |
import random | |
from spacy._ml import create_default_optimizer | |
from spacy.util import use_gpu as set_gpu | |
from spacy.attrs import PROB, IS_OOV, CLUSTER, LANG | |
from spacy.gold import GoldCorpus | |
from spacy.compat import path2str | |
from spacy import util | |
from spacy import about | |
import pymorphy2 | |
import numpy as np | |
from navec import Navec | |
from spacy.language import Language | |
from spacy.vectors import Vectors | |
from spacy.vocab import Vocab | |
from pathlib import Path | |
class RussianLanguage(Language): | |
lang = 'ru' | |
def tags_from(word): | |
return str(word.tag).split(' ')[0] | |
def prepare_model(model, output_dir): | |
morph_analyzer = pymorphy2.MorphAnalyzer() | |
navec_model = Navec.load(model) | |
print('Loaded Navec model') | |
known_tags = [tag for tag in morph_analyzer.TagClass.KNOWN_GRAMMEMES] | |
vectors_dims = 300 + len(known_tags) | |
words = navec_model.vocab.words | |
vocabulary = Vocab() | |
vocabulary.vectors = Vectors(shape=(len(words), vectors_dims), name='navec_lex') | |
added_vectors = 0 | |
added_lexemes = 0 | |
for word in words: | |
parsed_word = morph_analyzer.parse(word) | |
word_tags = tags_from(parsed_word[0]) | |
# retrieve unique lexemes for a given word filtered by similar tags | |
lexemes = set([lexeme.word for lexeme in parsed_word[0].lexeme if word_tags == tags_from(lexeme)]) | |
# check if at least 1 lexeme is absent in a vocabulary (returned list will have -1 values) | |
rows = vocabulary.vectors.find(keys=lexemes) | |
if any(row == -1 for row in rows): | |
# find a vector for each lexeme if exists | |
vectors = [] | |
for lexeme in lexemes: | |
vector = navec_model.get(lexeme) | |
if vector is not None: | |
vectors.append(vector) | |
if len(vectors) > 0: | |
tags_cipher = [+(tag in word_tags) for tag in known_tags] | |
# create mean vector merged with tags | |
mean_vector = np.append(np.unique(vectors, axis=0).mean(axis=0), tags_cipher, axis=0) | |
# filter lexemes by indices which reflect -1 values returned by vocab's rows lookup | |
unique_lexemes = [lexeme for idx, lexeme in enumerate(lexemes) if rows[idx] == -1] | |
# add a new vector and a first hash from paradigm | |
vector_row = vocabulary.vectors.add(unique_lexemes.pop(), vector=mean_vector) | |
# map other lexemes' hashes with the above vector | |
for lexeme in unique_lexemes: | |
vocabulary.vectors.add(lexeme, row=vector_row) | |
# collect stats | |
added_lexemes += (len(unique_lexemes) + 1) | |
added_vectors += 1 | |
print('Vectors:', added_vectors, 'Lexemes:', added_lexemes) | |
removed_vectors = vocabulary.vectors.resize(shape=(added_vectors, vectors_dims)) | |
print('Resized vocabulary to', added_vectors) | |
print('Removed vectors:', removed_vectors) | |
nlp = RussianLanguage(vocabulary) | |
nlp.to_disk(output_dir) | |
print('Saved model to disk') | |
@plac.annotations( | |
# fmt: off | |
lang=("Model language", "positional", None, str), | |
output_path=("Output directory to store model in", "positional", None, Path), | |
train_path=("Location of JSON-formatted training data", "positional", None, Path), | |
dev_path=("Location of JSON-formatted development data", "positional", None, Path), | |
navec_path=("Location of Navec archive", "positional", None, Path), | |
raw_text=("Path to jsonl file with unlabelled text documents.", "option", "rt", Path), | |
base_model=("Name of model to update (optional)", "option", "b", str), | |
pipeline=("Comma-separated names of pipeline components", "option", "p", str), | |
replace_components=("Replace components from base model", "flag", "R", bool), | |
vectors=("Model to load vectors from", "option", "v", str), | |
width=("Width of CNN layers of Tok2Vec component", "option", "cw", int), | |
conv_depth=("Depth of CNN layers of Tok2Vec component", "option", "cd", int), | |
cnn_window=("Window size for CNN layers of Tok2Vec component", "option", "cW", int), | |
cnn_pieces=("Maxout size for CNN layers of Tok2Vec component. 1 for Mish", "option", "cP", int), | |
use_chars=("Whether to use character-based embedding of Tok2Vec component", "flag", "chr", bool), | |
bilstm_depth=("Depth of BiLSTM layers of Tok2Vec component (requires PyTorch)", "option", "lstm", int), | |
embed_rows=("Number of embedding rows of Tok2Vec component", "option", "er", int), | |
n_iter=("Number of iterations", "option", "n", int), | |
n_early_stopping=("Maximum number of training epochs without dev accuracy improvement", "option", "ne", int), | |
n_examples=("Number of examples", "option", "ns", int), | |
use_gpu=("Use GPU", "option", "g", int), | |
version=("Model version", "option", "V", str), | |
meta_path=("Optional path to meta.json to use as base.", "option", "m", Path), | |
init_tok2vec=("Path to pretrained weights for the token-to-vector parts of the models. See 'spacy pretrain'. Experimental.", "option", "t2v", Path), | |
parser_multitasks=("Side objectives for parser CNN, e.g. 'dep' or 'dep,tag'", "option", "pt", str), | |
entity_multitasks=("Side objectives for NER CNN, e.g. 'dep' or 'dep,tag'", "option", "et", str), | |
noise_level=("Amount of corruption for data augmentation", "option", "nl", float), | |
orth_variant_level=("Amount of orthography variation for data augmentation", "option", "ovl", float), | |
eval_beam_widths=("Beam widths to evaluate, e.g. 4,8", "option", "bw", str), | |
gold_preproc=("Use gold preprocessing", "flag", "G", bool), | |
learn_tokens=("Make parser learn gold-standard tokenization", "flag", "T", bool), | |
textcat_multilabel=("Textcat classes aren't mutually exclusive (multilabel)", "flag", "TML", bool), | |
textcat_arch=("Textcat model architecture", "option", "ta", str), | |
textcat_positive_label=("Textcat positive label for binary classes with two labels", "option", "tpl", str), | |
tag_map_path=("Location of JSON-formatted tag map", "option", "tm", Path), | |
verbose=("Display more information for debug", "flag", "VV", bool), | |
debug=("Run data diagnostics before training", "flag", "D", bool), | |
# fmt: on | |
) | |
def train( | |
lang='ru', | |
output_path='./data/model-ru', | |
train_path='./data/UD_Russian-SynTagRus/ru_syntagrus-ud-train.json', | |
dev_path='./data/UD_Russian-SynTagRus/ru_syntagrus-ud-test.json', | |
navec_path='./data/navec_hudlit_v1_12B_500K_300d_100q.tar', | |
raw_text=None, | |
base_model='./ru', | |
pipeline="tagger,parser", | |
replace_components=False, | |
vectors=None, | |
width=150, | |
conv_depth=4, | |
cnn_window=1, | |
cnn_pieces=3, | |
use_chars=False, | |
bilstm_depth=0, | |
embed_rows=2000, | |
n_iter=30, | |
n_early_stopping=None, | |
n_examples=0, | |
use_gpu=0, | |
version="0.0.1", | |
meta_path=None, | |
init_tok2vec=None, | |
parser_multitasks="", | |
entity_multitasks="", | |
noise_level=0.0, | |
orth_variant_level=0.0, | |
eval_beam_widths="", | |
gold_preproc=False, | |
learn_tokens=False, | |
textcat_multilabel=False, | |
textcat_arch="bow", | |
textcat_positive_label=None, | |
tag_map_path=None, | |
verbose=False, | |
debug=False, | |
): | |
""" | |
Train or update a spaCy model. Requires data to be formatted in spaCy's | |
JSON format. To convert data from other formats, use the `spacy convert` | |
command. | |
""" | |
util.fix_random_seed() | |
util.set_env_log(verbose) | |
# prepare a model for POS/TAG | |
navec_path = util.ensure_path(navec_path) | |
prepare_model(navec_path, base_model) | |
# Make sure all files and paths exists if they are needed | |
train_path = util.ensure_path(train_path) | |
dev_path = util.ensure_path(dev_path) | |
meta_path = util.ensure_path(meta_path) | |
output_path = util.ensure_path(output_path) | |
if raw_text is not None: | |
raw_text = list(srsly.read_jsonl(raw_text)) | |
if not train_path or not train_path.exists(): | |
msg.fail("Training data not found", train_path, exits=1) | |
if not dev_path or not dev_path.exists(): | |
msg.fail("Development data not found", dev_path, exits=1) | |
if meta_path is not None and not meta_path.exists(): | |
msg.fail("Can't find model meta.json", meta_path, exits=1) | |
meta = srsly.read_json(meta_path) if meta_path else {} | |
if output_path.exists() and [p for p in output_path.iterdir() if p.is_dir()]: | |
msg.warn( | |
"Output directory is not empty", | |
"This can lead to unintended side effects when saving the model. " | |
"Please use an empty directory or a different path instead. If " | |
"the specified output path doesn't exist, the directory will be " | |
"created for you.", | |
) | |
if not output_path.exists(): | |
output_path.mkdir() | |
msg.good("Created output directory: {}".format(output_path)) | |
tag_map = {} | |
if tag_map_path is not None: | |
tag_map = srsly.read_json(tag_map_path) | |
# Take dropout and batch size as generators of values -- dropout | |
# starts high and decays sharply, to force the optimizer to explore. | |
# Batch size starts at 1 and grows, so that we make updates quickly | |
# at the beginning of training. | |
dropout_rates = util.decaying( | |
util.env_opt("dropout_from", 0.2), | |
util.env_opt("dropout_to", 0.2), | |
util.env_opt("dropout_decay", 0.0), | |
) | |
batch_sizes = util.compounding( | |
util.env_opt("batch_from", 100.0), | |
util.env_opt("batch_to", 1000.0), | |
util.env_opt("batch_compound", 1.001), | |
) | |
if not eval_beam_widths: | |
eval_beam_widths = [1] | |
else: | |
eval_beam_widths = [int(bw) for bw in eval_beam_widths.split(",")] | |
if 1 not in eval_beam_widths: | |
eval_beam_widths.append(1) | |
eval_beam_widths.sort() | |
has_beam_widths = eval_beam_widths != [1] | |
# Set up the base model and pipeline. If a base model is specified, load | |
# the model and make sure the pipeline matches the pipeline setting. If | |
# training starts from a blank model, intitalize the language class. | |
pipeline = [p.strip() for p in pipeline.split(",")] | |
disabled_pipes = None | |
pipes_added = False | |
msg.text("Training pipeline: {}".format(pipeline)) | |
if use_gpu >= 0: | |
activated_gpu = None | |
try: | |
activated_gpu = set_gpu(use_gpu) | |
except Exception as e: | |
msg.warn("Exception: {}".format(e)) | |
if activated_gpu is not None: | |
msg.text("Using GPU: {}".format(use_gpu)) | |
else: | |
msg.warn("Unable to activate GPU: {}".format(use_gpu)) | |
msg.text("Using CPU only") | |
use_gpu = -1 | |
if base_model: | |
msg.text("Starting with base model '{}'".format(base_model)) | |
nlp = util.load_model(base_model) | |
if nlp.lang != lang: | |
msg.fail( | |
"Model language ('{}') doesn't match language specified as " | |
"`lang` argument ('{}') ".format(nlp.lang, lang), | |
exits=1, | |
) | |
for pipe in pipeline: | |
pipe_cfg = {} | |
if pipe == "parser": | |
pipe_cfg = {"learn_tokens": learn_tokens} | |
elif pipe == "textcat": | |
pipe_cfg = { | |
"exclusive_classes": not textcat_multilabel, | |
"architecture": textcat_arch, | |
"positive_label": textcat_positive_label, | |
} | |
if pipe not in nlp.pipe_names: | |
msg.text("Adding component to base model '{}'".format(pipe)) | |
nlp.add_pipe(nlp.create_pipe(pipe, config=pipe_cfg)) | |
pipes_added = True | |
elif replace_components: | |
msg.text("Replacing component from base model '{}'".format(pipe)) | |
nlp.replace_pipe(pipe, nlp.create_pipe(pipe, config=pipe_cfg)) | |
pipes_added = True | |
else: | |
if pipe == "textcat": | |
textcat_cfg = nlp.get_pipe("textcat").cfg | |
base_cfg = { | |
"exclusive_classes": textcat_cfg["exclusive_classes"], | |
"architecture": textcat_cfg["architecture"], | |
"positive_label": textcat_cfg["positive_label"], | |
} | |
if base_cfg != pipe_cfg: | |
msg.fail( | |
"The base textcat model configuration does" | |
"not match the provided training options. " | |
"Existing cfg: {}, provided cfg: {}".format( | |
base_cfg, pipe_cfg | |
), | |
exits=1, | |
) | |
msg.text("Extending component from base model '{}'".format(pipe)) | |
disabled_pipes = nlp.disable_pipes( | |
[p for p in nlp.pipe_names if p not in pipeline] | |
) | |
else: | |
msg.text("Starting with blank model '{}'".format(lang)) | |
lang_cls = util.get_lang_class(lang) | |
nlp = lang_cls() | |
for pipe in pipeline: | |
if pipe == "parser": | |
pipe_cfg = {"learn_tokens": learn_tokens} | |
elif pipe == "textcat": | |
pipe_cfg = { | |
"exclusive_classes": not textcat_multilabel, | |
"architecture": textcat_arch, | |
"positive_label": textcat_positive_label, | |
} | |
else: | |
pipe_cfg = {} | |
nlp.add_pipe(nlp.create_pipe(pipe, config=pipe_cfg)) | |
# Update tag map with provided mapping | |
nlp.vocab.morphology.tag_map.update(tag_map) | |
if vectors: | |
msg.text("Loading vector from model '{}'".format(vectors)) | |
_load_vectors(nlp, vectors) | |
# Multitask objectives | |
multitask_options = [("parser", parser_multitasks), ("ner", entity_multitasks)] | |
for pipe_name, multitasks in multitask_options: | |
if multitasks: | |
if pipe_name not in pipeline: | |
msg.fail( | |
"Can't use multitask objective without '{}' in the " | |
"pipeline".format(pipe_name) | |
) | |
pipe = nlp.get_pipe(pipe_name) | |
for objective in multitasks.split(","): | |
pipe.add_multitask_objective(objective) | |
# Prepare training corpus | |
msg.text("Counting training words (limit={})".format(n_examples)) | |
corpus = GoldCorpus(train_path, dev_path, limit=n_examples) | |
n_train_words = corpus.count_train() | |
if base_model and not pipes_added: | |
# Start with an existing model, use default optimizer | |
optimizer = create_default_optimizer(Model.ops) | |
else: | |
# Start with a blank model, call begin_training | |
cfg = {"device": use_gpu} | |
cfg["conv_depth"] = conv_depth | |
cfg["token_vector_width"] = width | |
cfg["bilstm_depth"] = bilstm_depth | |
cfg["cnn_maxout_pieces"] = cnn_pieces | |
cfg["embed_size"] = embed_rows | |
cfg["conv_window"] = cnn_window | |
cfg["subword_features"] = not use_chars | |
cfg["pretrained_vectors"] = nlp.vocab.vectors.name | |
cfg["pretrained_dims"] = 300 | |
optimizer = nlp.begin_training(lambda: corpus.train_tuples, **cfg) | |
nlp._optimizer = None | |
# Load in pretrained weights | |
if init_tok2vec is not None: | |
components = _load_pretrained_tok2vec(nlp, init_tok2vec) | |
msg.text("Loaded pretrained tok2vec for: {}".format(components)) | |
# Verify textcat config | |
if "textcat" in pipeline: | |
textcat_labels = nlp.get_pipe("textcat").cfg.get("labels", []) | |
if textcat_positive_label and textcat_positive_label not in textcat_labels: | |
msg.fail( | |
"The textcat_positive_label (tpl) '{}' does not match any " | |
"label in the training data.".format(textcat_positive_label), | |
exits=1, | |
) | |
if textcat_positive_label and len(textcat_labels) != 2: | |
msg.fail( | |
"A textcat_positive_label (tpl) '{}' was provided for training " | |
"data that does not appear to be a binary classification " | |
"problem with two labels.".format(textcat_positive_label), | |
exits=1, | |
) | |
train_docs = corpus.train_docs( | |
nlp, | |
noise_level=noise_level, | |
gold_preproc=gold_preproc, | |
max_length=0, | |
ignore_misaligned=True, | |
) | |
train_labels = set() | |
if textcat_multilabel: | |
multilabel_found = False | |
for text, gold in train_docs: | |
train_labels.update(gold.cats.keys()) | |
if list(gold.cats.values()).count(1.0) != 1: | |
multilabel_found = True | |
if not multilabel_found and not base_model: | |
msg.warn( | |
"The textcat training instances look like they have " | |
"mutually-exclusive classes. Remove the flag " | |
"'--textcat-multilabel' to train a classifier with " | |
"mutually-exclusive classes." | |
) | |
if not textcat_multilabel: | |
for text, gold in train_docs: | |
train_labels.update(gold.cats.keys()) | |
if list(gold.cats.values()).count(1.0) != 1 and not base_model: | |
msg.warn( | |
"Some textcat training instances do not have exactly " | |
"one positive label. Modifying training options to " | |
"include the flag '--textcat-multilabel' for classes " | |
"that are not mutually exclusive." | |
) | |
nlp.get_pipe("textcat").cfg["exclusive_classes"] = False | |
textcat_multilabel = True | |
break | |
if base_model and set(textcat_labels) != train_labels: | |
msg.fail( | |
"Cannot extend textcat model using data with different " | |
"labels. Base model labels: {}, training data labels: " | |
"{}.".format(textcat_labels, list(train_labels)), | |
exits=1, | |
) | |
if textcat_multilabel: | |
msg.text( | |
"Textcat evaluation score: ROC AUC score macro-averaged across " | |
"the labels '{}'".format(", ".join(textcat_labels)) | |
) | |
elif textcat_positive_label and len(textcat_labels) == 2: | |
msg.text( | |
"Textcat evaluation score: F1-score for the " | |
"label '{}'".format(textcat_positive_label) | |
) | |
elif len(textcat_labels) > 1: | |
if len(textcat_labels) == 2: | |
msg.warn( | |
"If the textcat component is a binary classifier with " | |
"exclusive classes, provide '--textcat-positive-label' for " | |
"an evaluation on the positive class." | |
) | |
msg.text( | |
"Textcat evaluation score: F1-score macro-averaged across " | |
"the labels '{}'".format(", ".join(textcat_labels)) | |
) | |
else: | |
msg.fail( | |
"Unsupported textcat configuration. Use `spacy debug-data` " | |
"for more information." | |
) | |
# fmt: off | |
row_head, output_stats = _configure_training_output(pipeline, use_gpu, has_beam_widths) | |
row_widths = [len(w) for w in row_head] | |
row_settings = {"widths": row_widths, "aligns": tuple(["r" for i in row_head]), "spacing": 2} | |
# fmt: on | |
print("") | |
msg.row(row_head, **row_settings) | |
msg.row(["-" * width for width in row_settings["widths"]], **row_settings) | |
try: | |
iter_since_best = 0 | |
best_score = 0.0 | |
for i in range(n_iter): | |
train_docs = corpus.train_docs( | |
nlp, | |
noise_level=noise_level, | |
orth_variant_level=orth_variant_level, | |
gold_preproc=gold_preproc, | |
max_length=0, | |
ignore_misaligned=True, | |
) | |
if raw_text: | |
random.shuffle(raw_text) | |
raw_batches = util.minibatch( | |
(nlp.make_doc(rt["text"]) for rt in raw_text), size=8 | |
) | |
words_seen = 0 | |
with tqdm.tqdm(total=n_train_words, leave=False) as pbar: | |
losses = {} | |
for batch in util.minibatch_by_words(train_docs, size=batch_sizes): | |
if not batch: | |
continue | |
docs, golds = zip(*batch) | |
try: | |
nlp.update( | |
docs, | |
golds, | |
sgd=optimizer, | |
drop=next(dropout_rates), | |
losses=losses, | |
) | |
except ValueError as e: | |
err = "Error during training" | |
if init_tok2vec: | |
err += " Did you provide the same parameters during 'train' as during 'pretrain'?" | |
msg.fail(err, "Original error message: {}".format(e), exits=1) | |
if raw_text: | |
# If raw text is available, perform 'rehearsal' updates, | |
# which use unlabelled data to reduce overfitting. | |
raw_batch = list(next(raw_batches)) | |
nlp.rehearse(raw_batch, sgd=optimizer, losses=losses) | |
if not int(os.environ.get("LOG_FRIENDLY", 0)): | |
pbar.update(sum(len(doc) for doc in docs)) | |
words_seen += sum(len(doc) for doc in docs) | |
with nlp.use_params(optimizer.averages): | |
util.set_env_log(False) | |
epoch_model_path = output_path / ("model%d" % i) | |
nlp.to_disk(epoch_model_path) | |
nlp_loaded = util.load_model_from_path(epoch_model_path) | |
for beam_width in eval_beam_widths: | |
for name, component in nlp_loaded.pipeline: | |
if hasattr(component, "cfg"): | |
component.cfg["beam_width"] = beam_width | |
dev_docs = list( | |
corpus.dev_docs( | |
nlp_loaded, | |
gold_preproc=gold_preproc, | |
ignore_misaligned=True, | |
) | |
) | |
nwords = sum(len(doc_gold[0]) for doc_gold in dev_docs) | |
start_time = timer() | |
scorer = nlp_loaded.evaluate(dev_docs, verbose=verbose) | |
end_time = timer() | |
if use_gpu < 0: | |
gpu_wps = None | |
cpu_wps = nwords / (end_time - start_time) | |
else: | |
gpu_wps = nwords / (end_time - start_time) | |
# Only evaluate on CPU in the first iteration (for | |
# timing) if GPU is enabled | |
if i == 0: | |
with Model.use_device("cpu"): | |
nlp_loaded = util.load_model_from_path(epoch_model_path) | |
for name, component in nlp_loaded.pipeline: | |
if hasattr(component, "cfg"): | |
component.cfg["beam_width"] = beam_width | |
dev_docs = list( | |
corpus.dev_docs( | |
nlp_loaded, | |
gold_preproc=gold_preproc, | |
ignore_misaligned=True, | |
) | |
) | |
start_time = timer() | |
scorer = nlp_loaded.evaluate(dev_docs, verbose=verbose) | |
end_time = timer() | |
cpu_wps = nwords / (end_time - start_time) | |
acc_loc = output_path / ("model%d" % i) / "accuracy.json" | |
srsly.write_json(acc_loc, scorer.scores) | |
# Update model meta.json | |
meta["lang"] = nlp.lang | |
meta["pipeline"] = nlp.pipe_names | |
meta["spacy_version"] = ">=%s" % about.__version__ | |
if beam_width == 1: | |
meta["speed"] = { | |
"nwords": nwords, | |
"cpu": cpu_wps, | |
"gpu": gpu_wps, | |
} | |
meta.setdefault("accuracy", {}) | |
for component in nlp.pipe_names: | |
for metric in _get_metrics(component): | |
meta["accuracy"][metric] = scorer.scores[metric] | |
else: | |
meta.setdefault("beam_accuracy", {}) | |
meta.setdefault("beam_speed", {}) | |
for component in nlp.pipe_names: | |
for metric in _get_metrics(component): | |
meta["beam_accuracy"][metric] = scorer.scores[metric] | |
meta["beam_speed"][beam_width] = { | |
"nwords": nwords, | |
"cpu": cpu_wps, | |
"gpu": gpu_wps, | |
} | |
meta["vectors"] = { | |
"width": nlp.vocab.vectors_length, | |
"vectors": len(nlp.vocab.vectors), | |
"keys": nlp.vocab.vectors.n_keys, | |
"name": nlp.vocab.vectors.name, | |
} | |
meta.setdefault("name", "model%d" % i) | |
meta.setdefault("version", version) | |
meta["labels"] = nlp.meta["labels"] | |
meta_loc = output_path / ("model%d" % i) / "meta.json" | |
srsly.write_json(meta_loc, meta) | |
util.set_env_log(verbose) | |
progress = _get_progress( | |
i, | |
losses, | |
scorer.scores, | |
output_stats, | |
beam_width=beam_width if has_beam_widths else None, | |
cpu_wps=cpu_wps, | |
gpu_wps=gpu_wps, | |
) | |
if i == 0 and "textcat" in pipeline: | |
textcats_per_cat = scorer.scores.get("textcats_per_cat", {}) | |
for cat, cat_score in textcats_per_cat.items(): | |
if cat_score.get("roc_auc_score", 0) < 0: | |
msg.warn( | |
"Textcat ROC AUC score is undefined due to " | |
"only one value in label '{}'.".format(cat) | |
) | |
msg.row(progress, **row_settings) | |
# Early stopping | |
if n_early_stopping is not None: | |
current_score = _score_for_model(meta) | |
if current_score < best_score: | |
iter_since_best += 1 | |
else: | |
iter_since_best = 0 | |
best_score = current_score | |
if iter_since_best >= n_early_stopping: | |
msg.text( | |
"Early stopping, best iteration " | |
"is: {}".format(i - iter_since_best) | |
) | |
msg.text( | |
"Best score = {}; Final iteration " | |
"score = {}".format(best_score, current_score) | |
) | |
break | |
except Exception as e: | |
msg.warn( | |
"Aborting and saving the final best model. " | |
"Encountered exception: {}".format(e), | |
exits=1, | |
) | |
finally: | |
best_pipes = nlp.pipe_names | |
if disabled_pipes: | |
disabled_pipes.restore() | |
with nlp.use_params(optimizer.averages): | |
final_model_path = output_path / "model-final" | |
nlp.to_disk(final_model_path) | |
meta_loc = output_path / "model-final" / "meta.json" | |
final_meta = srsly.read_json(meta_loc) | |
final_meta.setdefault("accuracy", {}) | |
final_meta["accuracy"].update(meta.get("accuracy", {})) | |
final_meta.setdefault("speed", {}) | |
final_meta["speed"].setdefault("cpu", None) | |
final_meta["speed"].setdefault("gpu", None) | |
meta.setdefault("speed", {}) | |
meta["speed"].setdefault("cpu", None) | |
meta["speed"].setdefault("gpu", None) | |
# combine cpu and gpu speeds with the base model speeds | |
if final_meta["speed"]["cpu"] and meta["speed"]["cpu"]: | |
speed = _get_total_speed( | |
[final_meta["speed"]["cpu"], meta["speed"]["cpu"]] | |
) | |
final_meta["speed"]["cpu"] = speed | |
if final_meta["speed"]["gpu"] and meta["speed"]["gpu"]: | |
speed = _get_total_speed( | |
[final_meta["speed"]["gpu"], meta["speed"]["gpu"]] | |
) | |
final_meta["speed"]["gpu"] = speed | |
# if there were no speeds to update, overwrite with meta | |
if ( | |
final_meta["speed"]["cpu"] is None | |
and final_meta["speed"]["gpu"] is None | |
): | |
final_meta["speed"].update(meta["speed"]) | |
# note: beam speeds are not combined with the base model | |
if has_beam_widths: | |
final_meta.setdefault("beam_accuracy", {}) | |
final_meta["beam_accuracy"].update(meta.get("beam_accuracy", {})) | |
final_meta.setdefault("beam_speed", {}) | |
final_meta["beam_speed"].update(meta.get("beam_speed", {})) | |
srsly.write_json(meta_loc, final_meta) | |
msg.good("Saved model to output directory", final_model_path) | |
with msg.loading("Creating best model..."): | |
best_model_path = _collate_best_model(final_meta, output_path, best_pipes) | |
msg.good("Created best model", best_model_path) | |
def _score_for_model(meta): | |
""" Returns mean score between tasks in pipeline that can be used for early stopping. """ | |
mean_acc = list() | |
pipes = meta["pipeline"] | |
acc = meta["accuracy"] | |
if "tagger" in pipes: | |
mean_acc.append(acc["tags_acc"]) | |
if "parser" in pipes: | |
mean_acc.append((acc["uas"] + acc["las"]) / 2) | |
if "ner" in pipes: | |
mean_acc.append((acc["ents_p"] + acc["ents_r"] + acc["ents_f"]) / 3) | |
if "textcat" in pipes: | |
mean_acc.append(acc["textcat_score"]) | |
return sum(mean_acc) / len(mean_acc) | |
@contextlib.contextmanager | |
def _create_progress_bar(total): | |
if int(os.environ.get("LOG_FRIENDLY", 0)): | |
yield | |
else: | |
pbar = tqdm.tqdm(total=total, leave=False) | |
yield pbar | |
def _load_vectors(nlp, vectors): | |
util.load_model(vectors, vocab=nlp.vocab) | |
for lex in nlp.vocab: | |
values = {} | |
for attr, func in nlp.vocab.lex_attr_getters.items(): | |
# These attrs are expected to be set by data. Others should | |
# be set by calling the language functions. | |
if attr not in (CLUSTER, PROB, IS_OOV, LANG): | |
values[lex.vocab.strings[attr]] = func(lex.orth_) | |
lex.set_attrs(**values) | |
lex.is_oov = False | |
def _load_pretrained_tok2vec(nlp, loc): | |
"""Load pretrained weights for the 'token-to-vector' part of the component | |
models, which is typically a CNN. See 'spacy pretrain'. Experimental. | |
""" | |
with loc.open("rb") as file_: | |
weights_data = file_.read() | |
loaded = [] | |
for name, component in nlp.pipeline: | |
if hasattr(component, "model") and hasattr(component.model, "tok2vec"): | |
component.tok2vec.from_bytes(weights_data) | |
loaded.append(name) | |
return loaded | |
def _collate_best_model(meta, output_path, components): | |
bests = {} | |
meta.setdefault("accuracy", {}) | |
for component in components: | |
bests[component] = _find_best(output_path, component) | |
best_dest = output_path / "model-best" | |
shutil.copytree(path2str(output_path / "model-final"), path2str(best_dest)) | |
for component, best_component_src in bests.items(): | |
shutil.rmtree(path2str(best_dest / component)) | |
shutil.copytree( | |
path2str(best_component_src / component), path2str(best_dest / component) | |
) | |
accs = srsly.read_json(best_component_src / "accuracy.json") | |
for metric in _get_metrics(component): | |
meta["accuracy"][metric] = accs[metric] | |
srsly.write_json(best_dest / "meta.json", meta) | |
return best_dest | |
def _find_best(experiment_dir, component): | |
accuracies = [] | |
for epoch_model in experiment_dir.iterdir(): | |
if epoch_model.is_dir() and epoch_model.parts[-1] != "model-final": | |
accs = srsly.read_json(epoch_model / "accuracy.json") | |
scores = [accs.get(metric, 0.0) for metric in _get_metrics(component)] | |
# remove per_type dicts from score list for max() comparison | |
scores = [score for score in scores if isinstance(score, float)] | |
accuracies.append((scores, epoch_model)) | |
if accuracies: | |
return max(accuracies)[1] | |
else: | |
return None | |
def _get_metrics(component): | |
if component == "parser": | |
return ("las", "uas", "las_per_type", "token_acc") | |
elif component == "tagger": | |
return ("tags_acc", "token_acc") | |
elif component == "ner": | |
return ("ents_f", "ents_p", "ents_r", "ents_per_type", "token_acc") | |
elif component == "textcat": | |
return ("textcat_score", "token_acc") | |
return ("token_acc",) | |
def _configure_training_output(pipeline, use_gpu, has_beam_widths): | |
row_head = ["Itn"] | |
output_stats = [] | |
for pipe in pipeline: | |
if pipe == "tagger": | |
row_head.extend(["Tag Loss ", " Tag % "]) | |
output_stats.extend(["tag_loss", "tags_acc"]) | |
elif pipe == "parser": | |
row_head.extend(["Dep Loss ", " UAS ", " LAS "]) | |
output_stats.extend(["dep_loss", "uas", "las"]) | |
elif pipe == "ner": | |
row_head.extend(["NER Loss ", "NER P ", "NER R ", "NER F "]) | |
output_stats.extend(["ner_loss", "ents_p", "ents_r", "ents_f"]) | |
elif pipe == "textcat": | |
row_head.extend(["Textcat Loss", "Textcat"]) | |
output_stats.extend(["textcat_loss", "textcat_score"]) | |
row_head.extend(["Token %", "CPU WPS"]) | |
output_stats.extend(["token_acc", "cpu_wps"]) | |
if use_gpu >= 0: | |
row_head.extend(["GPU WPS"]) | |
output_stats.extend(["gpu_wps"]) | |
if has_beam_widths: | |
row_head.insert(1, "Beam W.") | |
return row_head, output_stats | |
def _get_progress( | |
itn, losses, dev_scores, output_stats, beam_width=None, cpu_wps=0.0, gpu_wps=0.0 | |
): | |
scores = {} | |
for stat in output_stats: | |
scores[stat] = 0.0 | |
scores["dep_loss"] = losses.get("parser", 0.0) | |
scores["ner_loss"] = losses.get("ner", 0.0) | |
scores["tag_loss"] = losses.get("tagger", 0.0) | |
scores["textcat_loss"] = losses.get("textcat", 0.0) | |
scores["cpu_wps"] = cpu_wps | |
scores["gpu_wps"] = gpu_wps or 0.0 | |
scores.update(dev_scores) | |
formatted_scores = [] | |
for stat in output_stats: | |
format_spec = "{:.3f}" | |
if stat.endswith("_wps"): | |
format_spec = "{:.0f}" | |
formatted_scores.append(format_spec.format(scores[stat])) | |
result = [itn + 1] | |
result.extend(formatted_scores) | |
if beam_width is not None: | |
result.insert(1, beam_width) | |
return result | |
def _get_total_speed(speeds): | |
seconds_per_word = 0.0 | |
for words_per_second in speeds: | |
if words_per_second is None: | |
return None | |
seconds_per_word += 1.0 / words_per_second | |
return 1.0 / seconds_per_word | |
if __name__ == "__main__": | |
plac.call(train) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment