Skip to content

Instantly share code, notes, and snippets.

@sstelfox
Last active May 24, 2017 17:41
Show Gist options
  • Save sstelfox/38b1aefbbb145dc95be41c2bd79efcc1 to your computer and use it in GitHub Desktop.
Save sstelfox/38b1aefbbb145dc95be41c2bd79efcc1 to your computer and use it in GitHub Desktop.
Quick unoptimized model to perform certain stat operations
module Statistics
def self.sum(data)
data.inject(0.0) { |s, val| s + val }
end
def self.mean(data)
sum(data) / data.size
end
def self.median(data)
data.sort[data.size / 2]
end
def self.mode(data)
val_counts = data.group_by { |v| v }.map { |k, v| [k, v.count] }.sort_by { |k, v| v }.reverse
val_counts.select { |k, v| v == val_counts[0][1] }.map { |k, _| k }
end
def self.stddev(data)
Math.sqrt(variance(data).abs)
end
def self.variance(data)
mu = mean(data)
squared_diff = data.map { |val| (mu - val) ** 2 }
sum(squared_diff) / (data.size == 1 ? 1 : data.size - 1)
end
def self.dot_product(x, y)
(0...x.size).inject(0) { |s, i| s + (x[i] * y[i]) }
end
def self.linear_reg(x, y)
m = s_xy(x, y) / s_xx(x)
b = mean(y) - (m * mean(x))
[ m, b ]
end
def self.s_xy(x, y)
dot_product(x, y) - sum(x) * sum(y) / x.size
end
def self.s_xx(x)
dot_product(x, x) - sum(x) ** 2 / x.size
end
def self.sse(x, y, m, b)
dot_product(y, y) - m * dot_product(x, y) - b * sum(y)
end
def self.sst(y)
dot_product(y, y) - sum(y) ** 2 / y.size
end
def self.r(x, y)
s_xy(x, y) / (Math.sqrt(s_xx(x)) * Math.sqrt(s_xx(y)))
end
def self.r_squared(x, y, m, b)
1 - sse(x, y, m, b) / sst(y)
end
end
@tmossey
Copy link

tmossey commented May 24, 2017

Small but important change to the variance calculation:

@@ -26,1 +26,1
- sum(data) / (data.size - 1)
+ sum(squared_diff) / (data.size - 1)

This helps to avoid infinite standard deviation in cases where the mean and variance exist in the real number domain.

@tmossey
Copy link

tmossey commented May 24, 2017

It's also worth noting that using N-1 (instead of N) is good for finding sample variance and standard deviation, but in the case data.size = 1 (which implies the data is not a sample), unbiased population variance and standard deviation (N) should be used instead to avoid undefined values.

@sstelfox
Copy link
Author

Thanks man. Updated the gist to take both of those into account

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment