-
-
Save st1vms/420184132f3ebc9c793c64865a71b1a7 to your computer and use it in GitHub Desktop.
Python code implementing Sieve of Atkin algorithm for getting list of primes up to limit.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import math | |
def atkin(nmax:int) -> list[int]: | |
""" | |
Returns a list of prime numbers below the number `nmax` | |
""" | |
is_prime = dict([(i, False) for i in range(5, nmax+1)]) | |
for x in range(1, int(math.sqrt(nmax))+1): | |
for y in range(1, int(math.sqrt(nmax))+1): | |
n = 4*x**2 + y**2 | |
if (n <= nmax) and ((n % 12 == 1) or (n % 12 == 5)): | |
is_prime[n] = not is_prime[n] | |
n = 3*x**2 + y**2 | |
if (n <= nmax) and (n % 12 == 7): | |
is_prime[n] = not is_prime[n] | |
n = 3*x**2 - y**2 | |
if (x > y) and (n <= nmax) and (n % 12 == 11): | |
is_prime[n] = not is_prime[n] | |
for n in range(5, int(math.sqrt(nmax))+1): | |
if is_prime[n]: | |
ik = 1 | |
while (ik * n**2 <= nmax): | |
is_prime[ik * n**2] = False | |
ik += 1 | |
primes = [] | |
for i in range(nmax + 1): | |
if i in [0, 1, 4]: pass | |
elif i in [2,3] or is_prime[i]: primes.append(i) | |
else: pass | |
return primes |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment