Created
December 20, 2015 13:27
-
-
Save stanaka/00d20c3f3d5d66bd375c to your computer and use it in GitHub Desktop.
Regression analysis with Mackerel
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
import requests | |
import time | |
import json | |
from StringIO import StringIO | |
import re | |
import sys | |
import os | |
import pandas as pd | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import logging | |
logging.basicConfig() | |
logger = logging.getLogger(__name__) | |
logger.setLevel(level=logging.DEBUG) | |
MACKEREL_APIKEY = os.environ.get("MACKEREL_APIKEY") | |
BASEURL="https://mackerel.io" | |
HOSTNAME="testserver" | |
epoch_time = int(time.time()) | |
duration = 60 * 60 * 24 | |
def fetch_hosts(): | |
headers = {'X-Api-Key': MACKEREL_APIKEY} | |
payload = {'name': HOSTNAME} | |
r = requests.get(BASEURL+"/api/v0/hosts", headers=headers, params=payload) | |
hosts = json.load(StringIO(r.content)) | |
return hosts['hosts'] | |
def fetch_metrics(hostid, name, time_from, time_to): | |
payload = {'name': name, 'from': time_from, 'to': time_to} | |
headers = {'X-Api-Key': MACKEREL_APIKEY} | |
r = requests.get(BASEURL+"/api/v0/hosts/"+hostid+"/metrics", params=payload, headers=headers) | |
metrics = json.load(StringIO(r.content)) | |
if metrics.has_key('metrics'): | |
return metrics['metrics'] | |
else: | |
return [] | |
def import_df(metrics): | |
# {u'metrics': [{u'value': 6.85, u'time': 1450575540}, {u'value': 7.03, u'time': 1450575600}]} | |
times = [] | |
values = [] | |
for metric in metrics: | |
times.append(metric['time'] - (epoch_time - duration)) | |
values.append(metric['value']) | |
df = pd.DataFrame({'time': times, 'value': values}) | |
plt.plot(times, values, 'bo') | |
model = pd.ols(y=df['value'], x=df['time'], intercept=True) | |
print model | |
plt.plot(model.x['x'], model.y_fitted, 'g-') | |
plt.show() | |
return model | |
def prepare_targets(): | |
dat = {} | |
hosts = fetch_hosts() | |
for host in hosts: | |
if not dat.has_key(host['name']): | |
dat[host['name']] = {'id': host['id']} | |
meta = host['meta'] | |
if meta.has_key('filesystem'): | |
dat[host['name']]['filesystem'] = meta['filesystem'].keys() | |
return dat | |
def process_targets(dat): | |
for hostname in dat.keys(): | |
logger.info('fetching %s', hostname) | |
record = {'hostname': hostname, 'fs': [], 'nearest': sys.maxint} | |
if not dat[hostname].has_key('filesystem'): | |
continue | |
for fs in dat[hostname]['filesystem']: | |
(fs, count) = re.subn(r"^/dev/", "", fs) | |
if count == 0: | |
continue | |
metric_name = "filesystem." + fs + ".used" | |
metrics = fetch_metrics(dat[hostname]['id'], metric_name, epoch_time, epoch_time - duration) | |
if len(metrics) == 0: | |
logger.info("skip the fs: %s" % (metric_name)) | |
continue | |
import_df(metrics) | |
if __name__ == "__main__": | |
dat = prepare_targets() | |
res = process_targets(dat) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment