Created
April 15, 2016 01:20
-
-
Save stanaka/56799bcf13b422d686c2aa573a2869d7 to your computer and use it in GitHub Desktop.
Simple Anomaly Detection for Mackerel
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#! /usr/bin/env ruby | |
require "mackerel" | |
require "net/http" | |
require "uri" | |
require "pp" | |
require "date" | |
@mackerel_api_key = "<APIKEY>" | |
service = "<SERVICE>" | |
roles = nil # or specify a target role | |
target_period = 5 * 60 # sec | |
training_period = 3 * 60 * 60 # sec | |
start_time = Time.now - target_period | |
target_time = [ | |
start_time - training_period, | |
start_time, | |
start_time + target_period, | |
] | |
epsilon = 0.1 | |
class Array | |
def avg | |
inject(0.0){|r,i| r+=i.to_f }/size | |
end | |
def variance | |
a = avg | |
inject(0.0){|r,i| r+=(i.to_f-a)**2 }/size | |
end | |
def derivative | |
arr = inject([[], nil]) do |arr, key| | |
if arr[1] != nil | |
arr[0] << key - arr[1] | |
end | |
[arr[0], key] | |
end | |
arr[0] | |
end | |
def derivative_avg | |
derivative.avg | |
end | |
def derivative_variance | |
arr = derivative | |
a = arr.avg | |
arr.inject(0.0){|r,i| r+=(i.to_f-a)**2 }/arr.size | |
end | |
def standard_deviation | |
Math.sqrt(variance) | |
end | |
def derivative_standard_deviation | |
Math.sqrt(derivative_variance) | |
end | |
end | |
def get_metrics(host_id, metric, from_dt, until_dt) | |
base_url = 'https://mackerel.io/api/v0/hosts/' | |
url = "#{base_url}#{host_id}/metrics?name=#{metric}&from=#{from_dt.to_i}&to=#{until_dt.to_i}" | |
uri = URI.parse(url) | |
https = Net::HTTP.new(uri.host, uri.port) | |
https.use_ssl = true | |
req = Net::HTTP::Get.new(URI(url).request_uri) | |
req = Net::HTTP::Get.new(URI(url).request_uri) | |
req["X-Api-Key"] = @mackerel_api_key | |
res = https.request(req) | |
body = JSON.parse res.body | |
return body["metrics"] | |
end | |
metrics_threshold = { | |
"loadavg5" => {:threshold => 0.5, :name => 'loadavg5'}, | |
"memory.used" => {:threshold => 1_000_000_000, :name => 'memory'}, | |
"memory.swap_cached" => {:threshold => 1_000_000_000, :name => 'memory'}, | |
"cpu.user.percentage" => {:threshold => 20, :name => 'cpu'}, | |
"cpu.iowait.percentage" => {:threshold => 10, :name => 'cpu'}, | |
"cpu.system.percentage" => {:threshold => 10, :name => 'cpu'}, | |
"custom.access.latency.api.percentile_99" => {:threshold => 0, :name => 'custom.access.latency.api.*'}, | |
"custom.access.latency.web.percentile_99" => {:threshold => 0, :name => 'custom.access.latency.web.*'}, | |
} | |
metrics_variance = {} | |
def calc_standard_deviation(host, metric, target_time) | |
metrics = {} | |
results = get_metrics(host.id, metric, target_time[0], target_time[2]) | |
learn_data = [] | |
test_data = [] | |
if results == nil | |
return metrics | |
end | |
results.each do |dp| | |
if dp["time"] < target_time[1].to_i | |
learn_data.push dp["value"] | |
else | |
test_data.push dp["value"] | |
end | |
end | |
metrics["#{host.id}_#{metric}"] = { | |
:learn_data => learn_data, | |
:test_data => test_data, | |
:derivative_standard_deviation => learn_data.derivative_standard_deviation, | |
:derivative_standard_deviation_test => test_data.derivative_standard_deviation, | |
:avg => learn_data.avg, | |
:derivative_avg => learn_data.derivative_avg, | |
:host_name => host.name, | |
:host_id => host.id, | |
:target_metric => metric, | |
:metric => metric, | |
} | |
return metrics | |
end | |
def gaussian_destribution(x, mu, sigma) | |
x = x.to_f | |
mu = mu.to_f | |
sigma = sigma.to_f | |
Math.exp(-(((x-mu)/sigma)**2)/2)/(sigma.abs * Math.sqrt(2*Math::PI)) | |
end | |
@mackerel = Mackerel::Client.new(:mackerel_api_key => @mackerel_api_key) | |
hosts = @mackerel.get_hosts(:service => service, :roles => roles) | |
puts "Num of hosts: #{hosts.size}\n" | |
hosts.each do |host| | |
metrics_threshold.keys.each do |metric| | |
metrics_variance = metrics_variance.merge(calc_standard_deviation(host, metric, target_time)) | |
end | |
end | |
result_metrics = [] | |
metrics_variance.each do |k,v| | |
if v[:derivative_standard_deviation].nan? | |
next | |
end | |
if metrics_threshold[v[:metric]] != nil && v[:derivative_standard_deviation] < metrics_threshold[v[:metric]][:threshold].to_f | |
next | |
end | |
flag = false | |
v[:test_data].derivative.each do |d| | |
p = gaussian_destribution(d, v[:derivative_avg], v[:derivative_standard_deviation]) | |
if p < epsilon | |
if v[:p] == nil || v[:p] > p | |
v[:p] = p | |
end | |
flag = true | |
end | |
end | |
if flag | |
v[:test_data] = v[:test_data].derivative.sort | |
v[:learn_data] = v[:learn_data].derivative.sort | |
if metrics_threshold[v[:metric]] != nil | |
v[:url] = sprintf("https://mackerel.io/orgs/hatena/hosts/%s/-/graphs/%s", v[:host_id], metrics_threshold[v[:metric]][:name]) | |
v[:graph_name] = metrics_threshold[v[:metric]][:name] | |
end | |
result_metrics.push(v) | |
end | |
end | |
result_metrics.sort{ |a,b| a[:p] <=> b[:p] }.each do |v| | |
printf "<ul>" | |
printf "<li>hostname: %s</li>", v[:host_name] | |
printf "<li>p: %f</li>", v[:p] | |
printf "<li>stddev: %.2f(train), %.2f(test)</li>", v[:derivative_standard_deviation], v[:derivative_standard_deviation_test] | |
printf "<li>matric: %s</li>", v[:target_metric] | |
printf "<iframe src='https://mackerel.io/embed/orgs/hatena/hosts/%s?graph=%s#t=%s,%s' height='200' width='400' frameborder='0'></iframe>", v[:host_id], v[:graph_name], | |
target_time[1].getutc.strftime("%Y-%m-%dT%H:%M:%SZ"), target_time[2].getutc.strftime("%Y-%m-%dT%H:%M:%SZ") | |
printf "</ul>" | |
end |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment