Created
July 14, 2015 03:08
-
-
Save stardust2602/79c818add4f7100397dd to your computer and use it in GitHub Desktop.
Caffe script to compute accuracy and confusion matrix based on training input ( .txt file )
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/python | |
# -*- coding: utf-8 -*- | |
import sys | |
import caffe | |
import numpy as np | |
import argparse | |
from collections import defaultdict | |
TRAIN_DATA_ROOT='/path/to/training/images/' | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--proto', type=str, required=True) | |
parser.add_argument('--model', type=str, required=True) | |
parser.add_argument('--meanfile', type=str, required=True) | |
parser.add_argument('--labelfile', type=str, required=True) | |
args = parser.parse_args() | |
proto_data = open(args.meanfile, 'rb').read() | |
a = caffe.io.caffe_pb2.BlobProto.FromString(proto_data) | |
mean = caffe.io.blobproto_to_array(a)[0] | |
net = caffe.Classifier(args.proto, args.model, | |
mean=mean, | |
channel_swap=(2,1,0), | |
raw_scale=255, | |
image_dims=(256, 256)) | |
caffe.set_mode_gpu() | |
count = 0 | |
correct = 0 | |
matrix = defaultdict(int) # (real,pred) -> int | |
labels_set = set() | |
net = caffe.Net(args.proto, args.model, caffe.TEST) | |
f = open(args.labelfile, "r") | |
for line in f.readlines(): | |
parts = line.split() | |
example_image = parts[0] | |
label = int(parts[1]) | |
input_image = caffe.io.load_image(TRAIN_DATA_ROOT + example_image) | |
prediction = net.predict([input_image]) | |
plabel = int(prediction[0].argmax()) | |
count += 1 | |
iscorrect = label == plabel | |
correct += (1 if iscorrect else 0) | |
matrix[(label, plabel)] += 1 | |
labels_set.update([label, plabel]) | |
if not iscorrect: | |
print("\rError: expected %i but predicted %i" \ | |
% (label, plabel)) | |
sys.stdout.write("\rAccuracy: %.1f%%" % (100.*correct/count)) | |
sys.stdout.flush() | |
print(", %i/%i corrects" % (correct, count)) | |
print "" | |
print "Confusion matrix:" | |
print "(r , p) | count" | |
for l in labels_set: | |
for pl in labels_set: | |
print "(%i , %i) | %i" % (l, pl, matrix[(l,pl)]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment