Created
April 4, 2018 07:25
-
-
Save starhopp3r/c4ccd78b0200883c3f5254f14b65ccc8 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
from torch.autograd import Variable | |
# Datatype of tensors | |
dtype = torch.FloatTensor | |
# Hidden nodes | |
hidden_nodes = 10 | |
# Variables | |
x_logic = torch.IntTensor([[0, 0], [0, 1], [1, 0], [1, 1]]) | |
y_logic = torch.IntTensor([[0], [1], [1], [0]]) | |
X = Variable(x_logic.type(dtype), requires_grad=False) | |
y = Variable(y_logic.type(dtype), requires_grad=False) | |
# Weights | |
layer_1_w = torch.rand(X.shape[1], hidden_nodes).type(dtype) | |
w1 = Variable(layer_1_w, requires_grad=True) | |
layer_2_w = torch.rand(w1.shape[1], y.shape[1]).type(dtype) | |
w2 = Variable(layer_2_w, requires_grad=True) | |
# Learning rate | |
learning_rate = 1e-2 | |
for i in range(1000): | |
y_pred = X.mm(w1).clamp(min=0).mm(w2) | |
loss = (y_pred - y).pow(2).sum() | |
print(i, loss.data[0]) | |
loss.backward() | |
w1.data -= learning_rate * w1.grad.data | |
w2.data -= learning_rate * w2.grad.data | |
w1.grad.data.zero_() | |
w2.grad.data.zero_() | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment