Last active
April 7, 2016 12:11
-
-
Save stas-sl/4670dc8e78ab01f84dddf795cc960774 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
I0407 12:20:09.825912 32304 solver.cpp:280] Solving | |
I0407 12:20:09.825924 32304 solver.cpp:281] Learning Rate Policy: poly | |
I0407 12:20:10.069551 32304 solver.cpp:229] Iteration 0, loss = 4.30406 | |
I0407 12:20:10.069617 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0 | |
I0407 12:20:10.069638 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 12:20:10.069651 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 12:20:10.069664 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0 | |
I0407 12:20:10.069674 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0 | |
I0407 12:20:10.069711 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0 | |
I0407 12:20:10.069725 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0 | |
I0407 12:20:10.069736 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0 | |
I0407 12:20:10.069747 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0 | |
I0407 12:20:10.069759 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0 | |
I0407 12:20:10.069771 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 0 | |
I0407 12:20:10.069782 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 0 | |
I0407 12:20:10.069793 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 0 | |
I0407 12:20:10.069805 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 0 | |
I0407 12:20:10.069816 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 0 | |
I0407 12:20:10.069828 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 0 | |
I0407 12:20:10.069839 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 0 | |
I0407 12:20:10.069850 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 0 | |
I0407 12:20:10.069861 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 0 | |
I0407 12:20:10.069872 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 0 | |
I0407 12:20:10.069883 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 0 | |
I0407 12:20:10.069895 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 0 | |
I0407 12:20:10.069914 32304 solver.cpp:245] Train net output #22: loss/loss01 = 4.30407 (* 0.0454545 = 0.19564 loss) | |
I0407 12:20:10.069929 32304 solver.cpp:245] Train net output #23: loss/loss02 = 4.30394 (* 0.0454545 = 0.195634 loss) | |
I0407 12:20:10.069943 32304 solver.cpp:245] Train net output #24: loss/loss03 = 4.3041 (* 0.0454545 = 0.195641 loss) | |
I0407 12:20:10.069957 32304 solver.cpp:245] Train net output #25: loss/loss04 = 4.30411 (* 0.0454545 = 0.195641 loss) | |
I0407 12:20:10.069970 32304 solver.cpp:245] Train net output #26: loss/loss05 = 4.30407 (* 0.0454545 = 0.19564 loss) | |
I0407 12:20:10.069984 32304 solver.cpp:245] Train net output #27: loss/loss06 = 4.30415 (* 0.0454545 = 0.195643 loss) | |
I0407 12:20:10.069998 32304 solver.cpp:245] Train net output #28: loss/loss07 = 4.30406 (* 0.0454545 = 0.195639 loss) | |
I0407 12:20:10.070011 32304 solver.cpp:245] Train net output #29: loss/loss08 = 4.30406 (* 0.0454545 = 0.195639 loss) | |
I0407 12:20:10.070025 32304 solver.cpp:245] Train net output #30: loss/loss09 = 4.30429 (* 0.0454545 = 0.19565 loss) | |
I0407 12:20:10.070039 32304 solver.cpp:245] Train net output #31: loss/loss10 = 4.30432 (* 0.0454545 = 0.195651 loss) | |
I0407 12:20:10.070052 32304 solver.cpp:245] Train net output #32: loss/loss11 = 4.30414 (* 0.0454545 = 0.195643 loss) | |
I0407 12:20:10.070071 32304 solver.cpp:245] Train net output #33: loss/loss12 = 4.30418 (* 0.0454545 = 0.195644 loss) | |
I0407 12:20:10.070086 32304 solver.cpp:245] Train net output #34: loss/loss13 = 4.30363 (* 0.0454545 = 0.19562 loss) | |
I0407 12:20:10.070101 32304 solver.cpp:245] Train net output #35: loss/loss14 = 4.30404 (* 0.0454545 = 0.195638 loss) | |
I0407 12:20:10.070114 32304 solver.cpp:245] Train net output #36: loss/loss15 = 4.30432 (* 0.0454545 = 0.195651 loss) | |
I0407 12:20:10.070127 32304 solver.cpp:245] Train net output #37: loss/loss16 = 4.30364 (* 0.0454545 = 0.19562 loss) | |
I0407 12:20:10.070142 32304 solver.cpp:245] Train net output #38: loss/loss17 = 4.30361 (* 0.0454545 = 0.195619 loss) | |
I0407 12:20:10.070155 32304 solver.cpp:245] Train net output #39: loss/loss18 = 4.30437 (* 0.0454545 = 0.195653 loss) | |
I0407 12:20:10.070168 32304 solver.cpp:245] Train net output #40: loss/loss19 = 4.30412 (* 0.0454545 = 0.195642 loss) | |
I0407 12:20:10.070183 32304 solver.cpp:245] Train net output #41: loss/loss20 = 4.30433 (* 0.0454545 = 0.195651 loss) | |
I0407 12:20:10.070195 32304 solver.cpp:245] Train net output #42: loss/loss21 = 4.30374 (* 0.0454545 = 0.195625 loss) | |
I0407 12:20:10.070220 32304 solver.cpp:245] Train net output #43: loss/loss22 = 4.30399 (* 0.0454545 = 0.195636 loss) | |
I0407 12:20:10.070232 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 12:20:10.070243 32304 solver.cpp:245] Train net output #45: total_confidence = 7.67211e-42 | |
I0407 12:20:10.070268 32304 sgd_solver.cpp:106] Iteration 0, lr = 0.01 | |
I0407 12:22:23.474257 32304 solver.cpp:229] Iteration 500, loss = 2.0143 | |
I0407 12:22:23.474453 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.03125 | |
I0407 12:22:23.474473 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 12:22:23.474488 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 12:22:23.474498 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0 | |
I0407 12:22:23.474510 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0 | |
I0407 12:22:23.474521 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125 | |
I0407 12:22:23.474534 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0407 12:22:23.474545 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375 | |
I0407 12:22:23.474557 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0407 12:22:23.474570 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0407 12:22:23.474581 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 12:22:23.474592 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 12:22:23.474604 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 12:22:23.474617 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 12:22:23.474628 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 12:22:23.474640 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 12:22:23.474652 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 12:22:23.474663 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 12:22:23.474674 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 12:22:23.474685 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 12:22:23.474697 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 12:22:23.474709 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 12:22:23.474725 32304 solver.cpp:245] Train net output #22: loss/loss01 = 4.18064 (* 0.0454545 = 0.190029 loss) | |
I0407 12:22:23.474738 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.94447 (* 0.0454545 = 0.179294 loss) | |
I0407 12:22:23.474752 32304 solver.cpp:245] Train net output #24: loss/loss03 = 4.20165 (* 0.0454545 = 0.190984 loss) | |
I0407 12:22:23.474766 32304 solver.cpp:245] Train net output #25: loss/loss04 = 4 (* 0.0454545 = 0.181818 loss) | |
I0407 12:22:23.474781 32304 solver.cpp:245] Train net output #26: loss/loss05 = 4.13148 (* 0.0454545 = 0.187795 loss) | |
I0407 12:22:23.474793 32304 solver.cpp:245] Train net output #27: loss/loss06 = 3.18788 (* 0.0454545 = 0.144904 loss) | |
I0407 12:22:23.474807 32304 solver.cpp:245] Train net output #28: loss/loss07 = 3.46623 (* 0.0454545 = 0.157556 loss) | |
I0407 12:22:23.474822 32304 solver.cpp:245] Train net output #29: loss/loss08 = 1.04117 (* 0.0454545 = 0.0473259 loss) | |
I0407 12:22:23.474835 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.223171 (* 0.0454545 = 0.0101441 loss) | |
I0407 12:22:23.474848 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.227835 (* 0.0454545 = 0.0103561 loss) | |
I0407 12:22:23.474863 32304 solver.cpp:245] Train net output #32: loss/loss11 = 0.000821093 (* 0.0454545 = 3.73224e-05 loss) | |
I0407 12:22:23.474876 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.000812151 (* 0.0454545 = 3.69159e-05 loss) | |
I0407 12:22:23.474890 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.000825878 (* 0.0454545 = 3.75399e-05 loss) | |
I0407 12:22:23.474905 32304 solver.cpp:245] Train net output #35: loss/loss14 = 0.000834139 (* 0.0454545 = 3.79154e-05 loss) | |
I0407 12:22:23.474920 32304 solver.cpp:245] Train net output #36: loss/loss15 = 0.00085137 (* 0.0454545 = 3.86986e-05 loss) | |
I0407 12:22:23.474934 32304 solver.cpp:245] Train net output #37: loss/loss16 = 0.000823922 (* 0.0454545 = 3.7451e-05 loss) | |
I0407 12:22:23.474949 32304 solver.cpp:245] Train net output #38: loss/loss17 = 0.000829594 (* 0.0454545 = 3.77088e-05 loss) | |
I0407 12:22:23.474982 32304 solver.cpp:245] Train net output #39: loss/loss18 = 0.000800383 (* 0.0454545 = 3.6381e-05 loss) | |
I0407 12:22:23.474997 32304 solver.cpp:245] Train net output #40: loss/loss19 = 0.000825226 (* 0.0454545 = 3.75103e-05 loss) | |
I0407 12:22:23.475010 32304 solver.cpp:245] Train net output #41: loss/loss20 = 0.000804606 (* 0.0454545 = 3.6573e-05 loss) | |
I0407 12:22:23.475024 32304 solver.cpp:245] Train net output #42: loss/loss21 = 0.000831463 (* 0.0454545 = 3.77938e-05 loss) | |
I0407 12:22:23.475039 32304 solver.cpp:245] Train net output #43: loss/loss22 = 0.000808299 (* 0.0454545 = 3.67409e-05 loss) | |
I0407 12:22:23.475050 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 12:22:23.475064 32304 solver.cpp:245] Train net output #45: total_confidence = 4.66638e-09 | |
I0407 12:22:23.475078 32304 sgd_solver.cpp:106] Iteration 500, lr = 0.00999 | |
I0407 12:23:49.824404 32304 solver.cpp:229] Iteration 1000, loss = 1.26772 | |
I0407 12:23:49.824553 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 12:23:49.824573 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 12:23:49.824585 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0407 12:23:49.824599 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125 | |
I0407 12:23:49.824610 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.0625 | |
I0407 12:23:49.824623 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125 | |
I0407 12:23:49.824635 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.59375 | |
I0407 12:23:49.824646 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375 | |
I0407 12:23:49.824658 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625 | |
I0407 12:23:49.824671 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0407 12:23:49.824681 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 12:23:49.824693 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 12:23:49.824705 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 12:23:49.824717 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 12:23:49.824728 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 12:23:49.824740 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 12:23:49.824751 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 12:23:49.824762 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 12:23:49.824774 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 12:23:49.824785 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 12:23:49.824797 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 12:23:49.824808 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 12:23:49.824823 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.69766 (* 0.0454545 = 0.168076 loss) | |
I0407 12:23:49.824838 32304 solver.cpp:245] Train net output #23: loss/loss02 = 4.26349 (* 0.0454545 = 0.193795 loss) | |
I0407 12:23:49.824851 32304 solver.cpp:245] Train net output #24: loss/loss03 = 4.09787 (* 0.0454545 = 0.186267 loss) | |
I0407 12:23:49.824865 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.97539 (* 0.0454545 = 0.1807 loss) | |
I0407 12:23:49.824879 32304 solver.cpp:245] Train net output #26: loss/loss05 = 4.00708 (* 0.0454545 = 0.18214 loss) | |
I0407 12:23:49.824892 32304 solver.cpp:245] Train net output #27: loss/loss06 = 3.27293 (* 0.0454545 = 0.148769 loss) | |
I0407 12:23:49.824906 32304 solver.cpp:245] Train net output #28: loss/loss07 = 3.0471 (* 0.0454545 = 0.138505 loss) | |
I0407 12:23:49.824923 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.948792 (* 0.0454545 = 0.0431269 loss) | |
I0407 12:23:49.824937 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.658232 (* 0.0454545 = 0.0299196 loss) | |
I0407 12:23:49.824951 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.522186 (* 0.0454545 = 0.0237357 loss) | |
I0407 12:23:49.824965 32304 solver.cpp:245] Train net output #32: loss/loss11 = 0.000490595 (* 0.0454545 = 2.22998e-05 loss) | |
I0407 12:23:49.824980 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.000473515 (* 0.0454545 = 2.15234e-05 loss) | |
I0407 12:23:49.824993 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.000469622 (* 0.0454545 = 2.13464e-05 loss) | |
I0407 12:23:49.825007 32304 solver.cpp:245] Train net output #35: loss/loss14 = 0.000465248 (* 0.0454545 = 2.11476e-05 loss) | |
I0407 12:23:49.825021 32304 solver.cpp:245] Train net output #36: loss/loss15 = 0.000478604 (* 0.0454545 = 2.17547e-05 loss) | |
I0407 12:23:49.825036 32304 solver.cpp:245] Train net output #37: loss/loss16 = 0.000488342 (* 0.0454545 = 2.21974e-05 loss) | |
I0407 12:23:49.825049 32304 solver.cpp:245] Train net output #38: loss/loss17 = 0.00048748 (* 0.0454545 = 2.21582e-05 loss) | |
I0407 12:23:49.825076 32304 solver.cpp:245] Train net output #39: loss/loss18 = 0.000472075 (* 0.0454545 = 2.1458e-05 loss) | |
I0407 12:23:49.825091 32304 solver.cpp:245] Train net output #40: loss/loss19 = 0.000473624 (* 0.0454545 = 2.15284e-05 loss) | |
I0407 12:23:49.825105 32304 solver.cpp:245] Train net output #41: loss/loss20 = 0.000476492 (* 0.0454545 = 2.16587e-05 loss) | |
I0407 12:23:49.825120 32304 solver.cpp:245] Train net output #42: loss/loss21 = 0.000479562 (* 0.0454545 = 2.17983e-05 loss) | |
I0407 12:23:49.825134 32304 solver.cpp:245] Train net output #43: loss/loss22 = 0.000468949 (* 0.0454545 = 2.13159e-05 loss) | |
I0407 12:23:49.825146 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 12:23:49.825158 32304 solver.cpp:245] Train net output #45: total_confidence = 2.68859e-08 | |
I0407 12:23:49.825172 32304 sgd_solver.cpp:106] Iteration 1000, lr = 0.00998 | |
I0407 12:25:11.535065 32304 solver.cpp:229] Iteration 1500, loss = 1.23664 | |
I0407 12:25:11.535243 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 12:25:11.535279 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0407 12:25:11.535305 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 12:25:11.535327 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 12:25:11.535367 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.03125 | |
I0407 12:25:11.535395 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0407 12:25:11.535419 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0407 12:25:11.535441 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0407 12:25:11.535464 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0407 12:25:11.535486 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 12:25:11.535507 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 12:25:11.535528 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 12:25:11.535550 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 12:25:11.535574 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 12:25:11.535596 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 12:25:11.535619 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 12:25:11.535640 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 12:25:11.535662 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 12:25:11.535684 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 12:25:11.535707 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 12:25:11.535728 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 12:25:11.535753 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 12:25:11.535781 32304 solver.cpp:245] Train net output #22: loss/loss01 = 4.11474 (* 0.0454545 = 0.187033 loss) | |
I0407 12:25:11.535809 32304 solver.cpp:245] Train net output #23: loss/loss02 = 4.00535 (* 0.0454545 = 0.182061 loss) | |
I0407 12:25:11.535836 32304 solver.cpp:245] Train net output #24: loss/loss03 = 4.19491 (* 0.0454545 = 0.190678 loss) | |
I0407 12:25:11.535863 32304 solver.cpp:245] Train net output #25: loss/loss04 = 4.09272 (* 0.0454545 = 0.186033 loss) | |
I0407 12:25:11.535897 32304 solver.cpp:245] Train net output #26: loss/loss05 = 4.02348 (* 0.0454545 = 0.182885 loss) | |
I0407 12:25:11.535930 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.93325 (* 0.0454545 = 0.133329 loss) | |
I0407 12:25:11.535950 32304 solver.cpp:245] Train net output #28: loss/loss07 = 2.00432 (* 0.0454545 = 0.0911054 loss) | |
I0407 12:25:11.535965 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.679386 (* 0.0454545 = 0.0308812 loss) | |
I0407 12:25:11.535979 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.263788 (* 0.0454545 = 0.0119904 loss) | |
I0407 12:25:11.535994 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.0199751 (* 0.0454545 = 0.000907959 loss) | |
I0407 12:25:11.536008 32304 solver.cpp:245] Train net output #32: loss/loss11 = 0.000505204 (* 0.0454545 = 2.29638e-05 loss) | |
I0407 12:25:11.536022 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.000504179 (* 0.0454545 = 2.29172e-05 loss) | |
I0407 12:25:11.536036 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.000497386 (* 0.0454545 = 2.26085e-05 loss) | |
I0407 12:25:11.536051 32304 solver.cpp:245] Train net output #35: loss/loss14 = 0.000491688 (* 0.0454545 = 2.23494e-05 loss) | |
I0407 12:25:11.536064 32304 solver.cpp:245] Train net output #36: loss/loss15 = 0.000498138 (* 0.0454545 = 2.26426e-05 loss) | |
I0407 12:25:11.536078 32304 solver.cpp:245] Train net output #37: loss/loss16 = 0.000499396 (* 0.0454545 = 2.26998e-05 loss) | |
I0407 12:25:11.536092 32304 solver.cpp:245] Train net output #38: loss/loss17 = 0.000493848 (* 0.0454545 = 2.24476e-05 loss) | |
I0407 12:25:11.536125 32304 solver.cpp:245] Train net output #39: loss/loss18 = 0.000504339 (* 0.0454545 = 2.29245e-05 loss) | |
I0407 12:25:11.536141 32304 solver.cpp:245] Train net output #40: loss/loss19 = 0.000499358 (* 0.0454545 = 2.26981e-05 loss) | |
I0407 12:25:11.536154 32304 solver.cpp:245] Train net output #41: loss/loss20 = 0.000495203 (* 0.0454545 = 2.25092e-05 loss) | |
I0407 12:25:11.536170 32304 solver.cpp:245] Train net output #42: loss/loss21 = 0.000500192 (* 0.0454545 = 2.2736e-05 loss) | |
I0407 12:25:11.536182 32304 solver.cpp:245] Train net output #43: loss/loss22 = 0.000488204 (* 0.0454545 = 2.21911e-05 loss) | |
I0407 12:25:11.536195 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 12:25:11.536206 32304 solver.cpp:245] Train net output #45: total_confidence = 3.98502e-08 | |
I0407 12:25:11.536221 32304 sgd_solver.cpp:106] Iteration 1500, lr = 0.00997 | |
I0407 12:26:29.127930 32304 solver.cpp:229] Iteration 2000, loss = 1.20731 | |
I0407 12:26:29.128075 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.03125 | |
I0407 12:26:29.128096 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 12:26:29.128109 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0407 12:26:29.128121 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125 | |
I0407 12:26:29.128134 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.0625 | |
I0407 12:26:29.128144 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625 | |
I0407 12:26:29.128156 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625 | |
I0407 12:26:29.128168 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375 | |
I0407 12:26:29.128180 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 12:26:29.128191 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 12:26:29.128202 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 12:26:29.128214 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 12:26:29.128226 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 12:26:29.128238 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 12:26:29.128249 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 12:26:29.128260 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 12:26:29.128273 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 12:26:29.128283 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 12:26:29.128294 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 12:26:29.128305 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 12:26:29.128317 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 12:26:29.128329 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 12:26:29.128343 32304 solver.cpp:245] Train net output #22: loss/loss01 = 4.05749 (* 0.0454545 = 0.184431 loss) | |
I0407 12:26:29.128358 32304 solver.cpp:245] Train net output #23: loss/loss02 = 4.07136 (* 0.0454545 = 0.185062 loss) | |
I0407 12:26:29.128372 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.92102 (* 0.0454545 = 0.178228 loss) | |
I0407 12:26:29.128386 32304 solver.cpp:245] Train net output #25: loss/loss04 = 4.01917 (* 0.0454545 = 0.182689 loss) | |
I0407 12:26:29.128398 32304 solver.cpp:245] Train net output #26: loss/loss05 = 4.00457 (* 0.0454545 = 0.182026 loss) | |
I0407 12:26:29.128412 32304 solver.cpp:245] Train net output #27: loss/loss06 = 3.01885 (* 0.0454545 = 0.13722 loss) | |
I0407 12:26:29.128427 32304 solver.cpp:245] Train net output #28: loss/loss07 = 2.39069 (* 0.0454545 = 0.108668 loss) | |
I0407 12:26:29.128440 32304 solver.cpp:245] Train net output #29: loss/loss08 = 1.00523 (* 0.0454545 = 0.0456922 loss) | |
I0407 12:26:29.128453 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.532893 (* 0.0454545 = 0.0242224 loss) | |
I0407 12:26:29.128468 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.0174102 (* 0.0454545 = 0.000791371 loss) | |
I0407 12:26:29.128481 32304 solver.cpp:245] Train net output #32: loss/loss11 = 0.000708007 (* 0.0454545 = 3.21821e-05 loss) | |
I0407 12:26:29.128495 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.000706536 (* 0.0454545 = 3.21153e-05 loss) | |
I0407 12:26:29.128510 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.000709158 (* 0.0454545 = 3.22345e-05 loss) | |
I0407 12:26:29.128523 32304 solver.cpp:245] Train net output #35: loss/loss14 = 0.000701596 (* 0.0454545 = 3.18907e-05 loss) | |
I0407 12:26:29.128537 32304 solver.cpp:245] Train net output #36: loss/loss15 = 0.000723607 (* 0.0454545 = 3.28912e-05 loss) | |
I0407 12:26:29.128551 32304 solver.cpp:245] Train net output #37: loss/loss16 = 0.000720892 (* 0.0454545 = 3.27678e-05 loss) | |
I0407 12:26:29.128566 32304 solver.cpp:245] Train net output #38: loss/loss17 = 0.000727574 (* 0.0454545 = 3.30716e-05 loss) | |
I0407 12:26:29.128597 32304 solver.cpp:245] Train net output #39: loss/loss18 = 0.00070631 (* 0.0454545 = 3.2105e-05 loss) | |
I0407 12:26:29.128612 32304 solver.cpp:245] Train net output #40: loss/loss19 = 0.00068794 (* 0.0454545 = 3.127e-05 loss) | |
I0407 12:26:29.128626 32304 solver.cpp:245] Train net output #41: loss/loss20 = 0.00070613 (* 0.0454545 = 3.20968e-05 loss) | |
I0407 12:26:29.128641 32304 solver.cpp:245] Train net output #42: loss/loss21 = 0.0007029 (* 0.0454545 = 3.195e-05 loss) | |
I0407 12:26:29.128655 32304 solver.cpp:245] Train net output #43: loss/loss22 = 0.000720051 (* 0.0454545 = 3.27296e-05 loss) | |
I0407 12:26:29.128667 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 12:26:29.128679 32304 solver.cpp:245] Train net output #45: total_confidence = 4.71931e-08 | |
I0407 12:26:29.128692 32304 sgd_solver.cpp:106] Iteration 2000, lr = 0.00996 | |
I0407 12:27:45.564164 32304 solver.cpp:229] Iteration 2500, loss = 1.19892 | |
I0407 12:27:45.564308 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 12:27:45.564329 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 12:27:45.564342 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 12:27:45.564362 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125 | |
I0407 12:27:45.564373 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.03125 | |
I0407 12:27:45.564384 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625 | |
I0407 12:27:45.564396 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0407 12:27:45.564409 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0407 12:27:45.564420 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0407 12:27:45.564432 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0407 12:27:45.564443 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 12:27:45.564455 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 12:27:45.564466 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 12:27:45.564478 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 12:27:45.564497 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 12:27:45.564508 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 12:27:45.564520 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 12:27:45.564532 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 12:27:45.564543 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 12:27:45.564559 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 12:27:45.564570 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 12:27:45.564581 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 12:27:45.564597 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.81302 (* 0.0454545 = 0.173319 loss) | |
I0407 12:27:45.564612 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.7516 (* 0.0454545 = 0.170527 loss) | |
I0407 12:27:45.564625 32304 solver.cpp:245] Train net output #24: loss/loss03 = 4.2194 (* 0.0454545 = 0.191791 loss) | |
I0407 12:27:45.564638 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.93634 (* 0.0454545 = 0.178925 loss) | |
I0407 12:27:45.564652 32304 solver.cpp:245] Train net output #26: loss/loss05 = 4.09091 (* 0.0454545 = 0.185951 loss) | |
I0407 12:27:45.564666 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.82298 (* 0.0454545 = 0.128318 loss) | |
I0407 12:27:45.564679 32304 solver.cpp:245] Train net output #28: loss/loss07 = 2.0546 (* 0.0454545 = 0.0933911 loss) | |
I0407 12:27:45.564697 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.602191 (* 0.0454545 = 0.0273723 loss) | |
I0407 12:27:45.564710 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.218529 (* 0.0454545 = 0.00993312 loss) | |
I0407 12:27:45.564724 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.22974 (* 0.0454545 = 0.0104427 loss) | |
I0407 12:27:45.564738 32304 solver.cpp:245] Train net output #32: loss/loss11 = 0.00121821 (* 0.0454545 = 5.53734e-05 loss) | |
I0407 12:27:45.564759 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.00120117 (* 0.0454545 = 5.45986e-05 loss) | |
I0407 12:27:45.564772 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.00122883 (* 0.0454545 = 5.58558e-05 loss) | |
I0407 12:27:45.564786 32304 solver.cpp:245] Train net output #35: loss/loss14 = 0.00122205 (* 0.0454545 = 5.55478e-05 loss) | |
I0407 12:27:45.564800 32304 solver.cpp:245] Train net output #36: loss/loss15 = 0.00121609 (* 0.0454545 = 5.5277e-05 loss) | |
I0407 12:27:45.564815 32304 solver.cpp:245] Train net output #37: loss/loss16 = 0.00124584 (* 0.0454545 = 5.66292e-05 loss) | |
I0407 12:27:45.564828 32304 solver.cpp:245] Train net output #38: loss/loss17 = 0.00124706 (* 0.0454545 = 5.66844e-05 loss) | |
I0407 12:27:45.564859 32304 solver.cpp:245] Train net output #39: loss/loss18 = 0.00121587 (* 0.0454545 = 5.5267e-05 loss) | |
I0407 12:27:45.564874 32304 solver.cpp:245] Train net output #40: loss/loss19 = 0.00122863 (* 0.0454545 = 5.5847e-05 loss) | |
I0407 12:27:45.564888 32304 solver.cpp:245] Train net output #41: loss/loss20 = 0.00121812 (* 0.0454545 = 5.5369e-05 loss) | |
I0407 12:27:45.564903 32304 solver.cpp:245] Train net output #42: loss/loss21 = 0.00122209 (* 0.0454545 = 5.55497e-05 loss) | |
I0407 12:27:45.564915 32304 solver.cpp:245] Train net output #43: loss/loss22 = 0.00121066 (* 0.0454545 = 5.50301e-05 loss) | |
I0407 12:27:45.564931 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 12:27:45.564942 32304 solver.cpp:245] Train net output #45: total_confidence = 7.27128e-08 | |
I0407 12:27:45.564962 32304 sgd_solver.cpp:106] Iteration 2500, lr = 0.00995 | |
I0407 12:29:01.267943 32304 solver.cpp:229] Iteration 3000, loss = 1.19266 | |
I0407 12:29:01.268126 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.03125 | |
I0407 12:29:01.268156 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 12:29:01.268168 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 12:29:01.268180 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 12:29:01.268193 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.0625 | |
I0407 12:29:01.268204 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.21875 | |
I0407 12:29:01.268216 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.5 | |
I0407 12:29:01.268229 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.71875 | |
I0407 12:29:01.268240 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.875 | |
I0407 12:29:01.268252 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0407 12:29:01.268265 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 12:29:01.268276 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 12:29:01.268288 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 12:29:01.268299 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 12:29:01.268311 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 12:29:01.268322 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 12:29:01.268333 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 12:29:01.268344 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 12:29:01.268355 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 12:29:01.268368 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 12:29:01.268379 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 12:29:01.268390 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 12:29:01.268406 32304 solver.cpp:245] Train net output #22: loss/loss01 = 4.14847 (* 0.0454545 = 0.188567 loss) | |
I0407 12:29:01.268421 32304 solver.cpp:245] Train net output #23: loss/loss02 = 4.09765 (* 0.0454545 = 0.186257 loss) | |
I0407 12:29:01.268435 32304 solver.cpp:245] Train net output #24: loss/loss03 = 4.00209 (* 0.0454545 = 0.181913 loss) | |
I0407 12:29:01.268448 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.98447 (* 0.0454545 = 0.181112 loss) | |
I0407 12:29:01.268461 32304 solver.cpp:245] Train net output #26: loss/loss05 = 4.06968 (* 0.0454545 = 0.184985 loss) | |
I0407 12:29:01.268476 32304 solver.cpp:245] Train net output #27: loss/loss06 = 3.51329 (* 0.0454545 = 0.159695 loss) | |
I0407 12:29:01.268489 32304 solver.cpp:245] Train net output #28: loss/loss07 = 2.8334 (* 0.0454545 = 0.128791 loss) | |
I0407 12:29:01.268503 32304 solver.cpp:245] Train net output #29: loss/loss08 = 1.62427 (* 0.0454545 = 0.0738304 loss) | |
I0407 12:29:01.268517 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.80327 (* 0.0454545 = 0.0365123 loss) | |
I0407 12:29:01.268530 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.415718 (* 0.0454545 = 0.0188963 loss) | |
I0407 12:29:01.268544 32304 solver.cpp:245] Train net output #32: loss/loss11 = 0.000738587 (* 0.0454545 = 3.35722e-05 loss) | |
I0407 12:29:01.268558 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.00072699 (* 0.0454545 = 3.3045e-05 loss) | |
I0407 12:29:01.268573 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.000725413 (* 0.0454545 = 3.29733e-05 loss) | |
I0407 12:29:01.268586 32304 solver.cpp:245] Train net output #35: loss/loss14 = 0.000713091 (* 0.0454545 = 3.24132e-05 loss) | |
I0407 12:29:01.268601 32304 solver.cpp:245] Train net output #36: loss/loss15 = 0.00074435 (* 0.0454545 = 3.38341e-05 loss) | |
I0407 12:29:01.268622 32304 solver.cpp:245] Train net output #37: loss/loss16 = 0.000743226 (* 0.0454545 = 3.3783e-05 loss) | |
I0407 12:29:01.268636 32304 solver.cpp:245] Train net output #38: loss/loss17 = 0.000743904 (* 0.0454545 = 3.38138e-05 loss) | |
I0407 12:29:01.268663 32304 solver.cpp:245] Train net output #39: loss/loss18 = 0.000727551 (* 0.0454545 = 3.30705e-05 loss) | |
I0407 12:29:01.268678 32304 solver.cpp:245] Train net output #40: loss/loss19 = 0.000740102 (* 0.0454545 = 3.3641e-05 loss) | |
I0407 12:29:01.268699 32304 solver.cpp:245] Train net output #41: loss/loss20 = 0.000721387 (* 0.0454545 = 3.27903e-05 loss) | |
I0407 12:29:01.268713 32304 solver.cpp:245] Train net output #42: loss/loss21 = 0.000741564 (* 0.0454545 = 3.37074e-05 loss) | |
I0407 12:29:01.268728 32304 solver.cpp:245] Train net output #43: loss/loss22 = 0.000722842 (* 0.0454545 = 3.28565e-05 loss) | |
I0407 12:29:01.268739 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 12:29:01.268751 32304 solver.cpp:245] Train net output #45: total_confidence = 7.20107e-08 | |
I0407 12:29:01.268769 32304 sgd_solver.cpp:106] Iteration 3000, lr = 0.00994 | |
I0407 12:30:16.183094 32304 solver.cpp:229] Iteration 3500, loss = 1.18104 | |
I0407 12:30:16.183244 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0 | |
I0407 12:30:16.183265 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 12:30:16.183277 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.15625 | |
I0407 12:30:16.183291 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125 | |
I0407 12:30:16.183303 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.21875 | |
I0407 12:30:16.183315 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.28125 | |
I0407 12:30:16.183327 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.65625 | |
I0407 12:30:16.183339 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 12:30:16.183351 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 12:30:16.183379 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 12:30:16.183393 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 12:30:16.183404 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 12:30:16.183418 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 12:30:16.183429 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 12:30:16.183439 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 12:30:16.183451 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 12:30:16.183462 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 12:30:16.183475 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 12:30:16.183486 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 12:30:16.183497 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 12:30:16.183508 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 12:30:16.183521 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 12:30:16.183537 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.99525 (* 0.0454545 = 0.181602 loss) | |
I0407 12:30:16.183550 32304 solver.cpp:245] Train net output #23: loss/loss02 = 4.15301 (* 0.0454545 = 0.188773 loss) | |
I0407 12:30:16.183564 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.92377 (* 0.0454545 = 0.178353 loss) | |
I0407 12:30:16.183578 32304 solver.cpp:245] Train net output #25: loss/loss04 = 4.05085 (* 0.0454545 = 0.18413 loss) | |
I0407 12:30:16.183593 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.86581 (* 0.0454545 = 0.175719 loss) | |
I0407 12:30:16.183606 32304 solver.cpp:245] Train net output #27: loss/loss06 = 3.50374 (* 0.0454545 = 0.159261 loss) | |
I0407 12:30:16.183620 32304 solver.cpp:245] Train net output #28: loss/loss07 = 2.09121 (* 0.0454545 = 0.0950551 loss) | |
I0407 12:30:16.183634 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.82091 (* 0.0454545 = 0.0373141 loss) | |
I0407 12:30:16.183647 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.0477853 (* 0.0454545 = 0.00217206 loss) | |
I0407 12:30:16.183661 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.016161 (* 0.0454545 = 0.000734592 loss) | |
I0407 12:30:16.183676 32304 solver.cpp:245] Train net output #32: loss/loss11 = 0.000422762 (* 0.0454545 = 1.92165e-05 loss) | |
I0407 12:30:16.183689 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.000408989 (* 0.0454545 = 1.85904e-05 loss) | |
I0407 12:30:16.183703 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.000416637 (* 0.0454545 = 1.8938e-05 loss) | |
I0407 12:30:16.183717 32304 solver.cpp:245] Train net output #35: loss/loss14 = 0.000416785 (* 0.0454545 = 1.89448e-05 loss) | |
I0407 12:30:16.183732 32304 solver.cpp:245] Train net output #36: loss/loss15 = 0.000419601 (* 0.0454545 = 1.90728e-05 loss) | |
I0407 12:30:16.183744 32304 solver.cpp:245] Train net output #37: loss/loss16 = 0.00042529 (* 0.0454545 = 1.93314e-05 loss) | |
I0407 12:30:16.183758 32304 solver.cpp:245] Train net output #38: loss/loss17 = 0.000419825 (* 0.0454545 = 1.90829e-05 loss) | |
I0407 12:30:16.183791 32304 solver.cpp:245] Train net output #39: loss/loss18 = 0.000422241 (* 0.0454545 = 1.91928e-05 loss) | |
I0407 12:30:16.183805 32304 solver.cpp:245] Train net output #40: loss/loss19 = 0.000417211 (* 0.0454545 = 1.89641e-05 loss) | |
I0407 12:30:16.183820 32304 solver.cpp:245] Train net output #41: loss/loss20 = 0.000421187 (* 0.0454545 = 1.91448e-05 loss) | |
I0407 12:30:16.183833 32304 solver.cpp:245] Train net output #42: loss/loss21 = 0.000415347 (* 0.0454545 = 1.88794e-05 loss) | |
I0407 12:30:16.183847 32304 solver.cpp:245] Train net output #43: loss/loss22 = 0.000410226 (* 0.0454545 = 1.86466e-05 loss) | |
I0407 12:30:16.183859 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 12:30:16.183871 32304 solver.cpp:245] Train net output #45: total_confidence = 5.36788e-08 | |
I0407 12:30:16.183886 32304 sgd_solver.cpp:106] Iteration 3500, lr = 0.00993 | |
I0407 12:31:30.619607 32304 solver.cpp:229] Iteration 4000, loss = 1.17466 | |
I0407 12:31:30.619747 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 12:31:30.619767 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0407 12:31:30.619781 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0407 12:31:30.619792 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375 | |
I0407 12:31:30.619806 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.15625 | |
I0407 12:31:30.619817 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375 | |
I0407 12:31:30.619829 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0407 12:31:30.619840 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 12:31:30.619853 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0407 12:31:30.619863 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 12:31:30.619875 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 12:31:30.619886 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 12:31:30.619899 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 12:31:30.619910 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 12:31:30.619921 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 12:31:30.619932 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 12:31:30.619943 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 12:31:30.619956 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 12:31:30.619966 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 12:31:30.619978 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 12:31:30.619989 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 12:31:30.620000 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 12:31:30.620017 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.77438 (* 0.0454545 = 0.171563 loss) | |
I0407 12:31:30.620030 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.90407 (* 0.0454545 = 0.177458 loss) | |
I0407 12:31:30.620044 32304 solver.cpp:245] Train net output #24: loss/loss03 = 4.04361 (* 0.0454545 = 0.1838 loss) | |
I0407 12:31:30.620059 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.91976 (* 0.0454545 = 0.178171 loss) | |
I0407 12:31:30.620085 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.97482 (* 0.0454545 = 0.180674 loss) | |
I0407 12:31:30.620110 32304 solver.cpp:245] Train net output #27: loss/loss06 = 3.25777 (* 0.0454545 = 0.14808 loss) | |
I0407 12:31:30.620126 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.91153 (* 0.0454545 = 0.0868878 loss) | |
I0407 12:31:30.620138 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.424502 (* 0.0454545 = 0.0192956 loss) | |
I0407 12:31:30.620152 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.229537 (* 0.0454545 = 0.0104335 loss) | |
I0407 12:31:30.620167 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.0134987 (* 0.0454545 = 0.000613578 loss) | |
I0407 12:31:30.620182 32304 solver.cpp:245] Train net output #32: loss/loss11 = 0.000429615 (* 0.0454545 = 1.9528e-05 loss) | |
I0407 12:31:30.620198 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.00043214 (* 0.0454545 = 1.96427e-05 loss) | |
I0407 12:31:30.620213 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.000430642 (* 0.0454545 = 1.95746e-05 loss) | |
I0407 12:31:30.620228 32304 solver.cpp:245] Train net output #35: loss/loss14 = 0.000431972 (* 0.0454545 = 1.96351e-05 loss) | |
I0407 12:31:30.620241 32304 solver.cpp:245] Train net output #36: loss/loss15 = 0.000424682 (* 0.0454545 = 1.93037e-05 loss) | |
I0407 12:31:30.620254 32304 solver.cpp:245] Train net output #37: loss/loss16 = 0.000428989 (* 0.0454545 = 1.94995e-05 loss) | |
I0407 12:31:30.620268 32304 solver.cpp:245] Train net output #38: loss/loss17 = 0.000424718 (* 0.0454545 = 1.93054e-05 loss) | |
I0407 12:31:30.620301 32304 solver.cpp:245] Train net output #39: loss/loss18 = 0.000425363 (* 0.0454545 = 1.93347e-05 loss) | |
I0407 12:31:30.620316 32304 solver.cpp:245] Train net output #40: loss/loss19 = 0.000426001 (* 0.0454545 = 1.93637e-05 loss) | |
I0407 12:31:30.620329 32304 solver.cpp:245] Train net output #41: loss/loss20 = 0.000422961 (* 0.0454545 = 1.92255e-05 loss) | |
I0407 12:31:30.620342 32304 solver.cpp:245] Train net output #42: loss/loss21 = 0.000431076 (* 0.0454545 = 1.95944e-05 loss) | |
I0407 12:31:30.620357 32304 solver.cpp:245] Train net output #43: loss/loss22 = 0.0004344 (* 0.0454545 = 1.97455e-05 loss) | |
I0407 12:31:30.620368 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 12:31:30.620380 32304 solver.cpp:245] Train net output #45: total_confidence = 1.16314e-07 | |
I0407 12:31:30.620395 32304 sgd_solver.cpp:106] Iteration 4000, lr = 0.00992 | |
I0407 12:32:46.624099 32304 solver.cpp:229] Iteration 4500, loss = 1.17085 | |
I0407 12:32:46.624194 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.03125 | |
I0407 12:32:46.624214 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 12:32:46.624228 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 12:32:46.624239 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125 | |
I0407 12:32:46.624251 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.40625 | |
I0407 12:32:46.624264 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.59375 | |
I0407 12:32:46.624275 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.65625 | |
I0407 12:32:46.624287 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375 | |
I0407 12:32:46.624299 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625 | |
I0407 12:32:46.624310 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.90625 | |
I0407 12:32:46.624322 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 12:32:46.624333 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 12:32:46.624346 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 12:32:46.624357 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 12:32:46.624369 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 12:32:46.624380 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 12:32:46.624392 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 12:32:46.624403 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 12:32:46.624414 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 12:32:46.624426 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 12:32:46.624438 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 12:32:46.624449 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 12:32:46.624465 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.90805 (* 0.0454545 = 0.177639 loss) | |
I0407 12:32:46.624480 32304 solver.cpp:245] Train net output #23: loss/loss02 = 4.02798 (* 0.0454545 = 0.18309 loss) | |
I0407 12:32:46.624493 32304 solver.cpp:245] Train net output #24: loss/loss03 = 4.21417 (* 0.0454545 = 0.191553 loss) | |
I0407 12:32:46.624506 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.98033 (* 0.0454545 = 0.180924 loss) | |
I0407 12:32:46.624519 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.50098 (* 0.0454545 = 0.159135 loss) | |
I0407 12:32:46.624533 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.24061 (* 0.0454545 = 0.101846 loss) | |
I0407 12:32:46.624547 32304 solver.cpp:245] Train net output #28: loss/loss07 = 2.01879 (* 0.0454545 = 0.0917632 loss) | |
I0407 12:32:46.624562 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.967614 (* 0.0454545 = 0.0439824 loss) | |
I0407 12:32:46.624575 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.557235 (* 0.0454545 = 0.0253289 loss) | |
I0407 12:32:46.624588 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.601343 (* 0.0454545 = 0.0273338 loss) | |
I0407 12:32:46.624603 32304 solver.cpp:245] Train net output #32: loss/loss11 = 0.000947406 (* 0.0454545 = 4.30639e-05 loss) | |
I0407 12:32:46.624617 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.000928938 (* 0.0454545 = 4.22244e-05 loss) | |
I0407 12:32:46.624631 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.000931879 (* 0.0454545 = 4.23581e-05 loss) | |
I0407 12:32:46.624644 32304 solver.cpp:245] Train net output #35: loss/loss14 = 0.000959022 (* 0.0454545 = 4.35919e-05 loss) | |
I0407 12:32:46.624658 32304 solver.cpp:245] Train net output #36: loss/loss15 = 0.000921981 (* 0.0454545 = 4.19082e-05 loss) | |
I0407 12:32:46.624672 32304 solver.cpp:245] Train net output #37: loss/loss16 = 0.000944025 (* 0.0454545 = 4.29102e-05 loss) | |
I0407 12:32:46.624686 32304 solver.cpp:245] Train net output #38: loss/loss17 = 0.00095566 (* 0.0454545 = 4.34391e-05 loss) | |
I0407 12:32:46.624716 32304 solver.cpp:245] Train net output #39: loss/loss18 = 0.000919401 (* 0.0454545 = 4.1791e-05 loss) | |
I0407 12:32:46.624732 32304 solver.cpp:245] Train net output #40: loss/loss19 = 0.000928263 (* 0.0454545 = 4.21938e-05 loss) | |
I0407 12:32:46.624745 32304 solver.cpp:245] Train net output #41: loss/loss20 = 0.000947601 (* 0.0454545 = 4.30728e-05 loss) | |
I0407 12:32:46.624759 32304 solver.cpp:245] Train net output #42: loss/loss21 = 0.000927157 (* 0.0454545 = 4.21435e-05 loss) | |
I0407 12:32:46.624774 32304 solver.cpp:245] Train net output #43: loss/loss22 = 0.000946088 (* 0.0454545 = 4.3004e-05 loss) | |
I0407 12:32:46.624786 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 12:32:46.624797 32304 solver.cpp:245] Train net output #45: total_confidence = 1.43383e-07 | |
I0407 12:32:46.624811 32304 sgd_solver.cpp:106] Iteration 4500, lr = 0.00991 | |
I0407 12:34:00.316678 32304 solver.cpp:338] Iteration 5000, Testing net (#0) | |
I0407 12:34:12.183802 32304 solver.cpp:393] Test loss: 1.02799 | |
I0407 12:34:12.183862 32304 solver.cpp:406] Test net output #0: loss/accuracy01 = 0.511 | |
I0407 12:34:12.183879 32304 solver.cpp:406] Test net output #1: loss/accuracy02 = 0.062 | |
I0407 12:34:12.183893 32304 solver.cpp:406] Test net output #2: loss/accuracy03 = 0.068 | |
I0407 12:34:12.183905 32304 solver.cpp:406] Test net output #3: loss/accuracy04 = 0.012 | |
I0407 12:34:12.183919 32304 solver.cpp:406] Test net output #4: loss/accuracy05 = 0.207 | |
I0407 12:34:12.183933 32304 solver.cpp:406] Test net output #5: loss/accuracy06 = 0.501 | |
I0407 12:34:12.183943 32304 solver.cpp:406] Test net output #6: loss/accuracy07 = 0.894 | |
I0407 12:34:12.183955 32304 solver.cpp:406] Test net output #7: loss/accuracy08 = 0.97 | |
I0407 12:34:12.183966 32304 solver.cpp:406] Test net output #8: loss/accuracy09 = 0.995 | |
I0407 12:34:12.183977 32304 solver.cpp:406] Test net output #9: loss/accuracy10 = 0.998 | |
I0407 12:34:12.183990 32304 solver.cpp:406] Test net output #10: loss/accuracy11 = 1 | |
I0407 12:34:12.184000 32304 solver.cpp:406] Test net output #11: loss/accuracy12 = 1 | |
I0407 12:34:12.184012 32304 solver.cpp:406] Test net output #12: loss/accuracy13 = 1 | |
I0407 12:34:12.184023 32304 solver.cpp:406] Test net output #13: loss/accuracy14 = 1 | |
I0407 12:34:12.184034 32304 solver.cpp:406] Test net output #14: loss/accuracy15 = 1 | |
I0407 12:34:12.184046 32304 solver.cpp:406] Test net output #15: loss/accuracy16 = 1 | |
I0407 12:34:12.184056 32304 solver.cpp:406] Test net output #16: loss/accuracy17 = 1 | |
I0407 12:34:12.184067 32304 solver.cpp:406] Test net output #17: loss/accuracy18 = 1 | |
I0407 12:34:12.184078 32304 solver.cpp:406] Test net output #18: loss/accuracy19 = 1 | |
I0407 12:34:12.184090 32304 solver.cpp:406] Test net output #19: loss/accuracy20 = 1 | |
I0407 12:34:12.184101 32304 solver.cpp:406] Test net output #20: loss/accuracy21 = 1 | |
I0407 12:34:12.184113 32304 solver.cpp:406] Test net output #21: loss/accuracy22 = 1 | |
I0407 12:34:12.184128 32304 solver.cpp:406] Test net output #22: loss/loss01 = 3.18957 (* 0.0454545 = 0.14498 loss) | |
I0407 12:34:12.184144 32304 solver.cpp:406] Test net output #23: loss/loss02 = 3.68944 (* 0.0454545 = 0.167702 loss) | |
I0407 12:34:12.184156 32304 solver.cpp:406] Test net output #24: loss/loss03 = 4.01099 (* 0.0454545 = 0.182318 loss) | |
I0407 12:34:12.184170 32304 solver.cpp:406] Test net output #25: loss/loss04 = 3.90182 (* 0.0454545 = 0.177356 loss) | |
I0407 12:34:12.184183 32304 solver.cpp:406] Test net output #26: loss/loss05 = 3.92507 (* 0.0454545 = 0.178412 loss) | |
I0407 12:34:12.184196 32304 solver.cpp:406] Test net output #27: loss/loss06 = 2.54965 (* 0.0454545 = 0.115893 loss) | |
I0407 12:34:12.184209 32304 solver.cpp:406] Test net output #28: loss/loss07 = 0.941849 (* 0.0454545 = 0.0428113 loss) | |
I0407 12:34:12.184222 32304 solver.cpp:406] Test net output #29: loss/loss08 = 0.298501 (* 0.0454545 = 0.0135682 loss) | |
I0407 12:34:12.184237 32304 solver.cpp:406] Test net output #30: loss/loss09 = 0.0730203 (* 0.0454545 = 0.0033191 loss) | |
I0407 12:34:12.184250 32304 solver.cpp:406] Test net output #31: loss/loss10 = 0.0311105 (* 0.0454545 = 0.00141411 loss) | |
I0407 12:34:12.184264 32304 solver.cpp:406] Test net output #32: loss/loss11 = 0.000406098 (* 0.0454545 = 1.8459e-05 loss) | |
I0407 12:34:12.184278 32304 solver.cpp:406] Test net output #33: loss/loss12 = 0.000400885 (* 0.0454545 = 1.8222e-05 loss) | |
I0407 12:34:12.184291 32304 solver.cpp:406] Test net output #34: loss/loss13 = 0.000406289 (* 0.0454545 = 1.84677e-05 loss) | |
I0407 12:34:12.184305 32304 solver.cpp:406] Test net output #35: loss/loss14 = 0.000404574 (* 0.0454545 = 1.83897e-05 loss) | |
I0407 12:34:12.184319 32304 solver.cpp:406] Test net output #36: loss/loss15 = 0.000404385 (* 0.0454545 = 1.83811e-05 loss) | |
I0407 12:34:12.184332 32304 solver.cpp:406] Test net output #37: loss/loss16 = 0.000404669 (* 0.0454545 = 1.8394e-05 loss) | |
I0407 12:34:12.184346 32304 solver.cpp:406] Test net output #38: loss/loss17 = 0.000403631 (* 0.0454545 = 1.83469e-05 loss) | |
I0407 12:34:12.184393 32304 solver.cpp:406] Test net output #39: loss/loss18 = 0.000404048 (* 0.0454545 = 1.83658e-05 loss) | |
I0407 12:34:12.184409 32304 solver.cpp:406] Test net output #40: loss/loss19 = 0.000403554 (* 0.0454545 = 1.83434e-05 loss) | |
I0407 12:34:12.184423 32304 solver.cpp:406] Test net output #41: loss/loss20 = 0.00040514 (* 0.0454545 = 1.84154e-05 loss) | |
I0407 12:34:12.184438 32304 solver.cpp:406] Test net output #42: loss/loss21 = 0.000403396 (* 0.0454545 = 1.83362e-05 loss) | |
I0407 12:34:12.184451 32304 solver.cpp:406] Test net output #43: loss/loss22 = 0.000405912 (* 0.0454545 = 1.84506e-05 loss) | |
I0407 12:34:12.184463 32304 solver.cpp:406] Test net output #44: total_accuracy = 0 | |
I0407 12:34:12.184475 32304 solver.cpp:406] Test net output #45: total_confidence = 3.67987e-07 | |
I0407 12:34:12.219660 32304 solver.cpp:229] Iteration 5000, loss = 1.16957 | |
I0407 12:34:12.219717 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 12:34:12.219735 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0407 12:34:12.219748 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0407 12:34:12.219760 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0 | |
I0407 12:34:12.219772 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.21875 | |
I0407 12:34:12.219784 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0407 12:34:12.219796 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875 | |
I0407 12:34:12.219808 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 12:34:12.219820 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0407 12:34:12.219835 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0407 12:34:12.219858 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 12:34:12.219880 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 12:34:12.219902 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 12:34:12.219923 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 12:34:12.219944 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 12:34:12.219974 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 12:34:12.219988 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 12:34:12.220000 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 12:34:12.220011 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 12:34:12.220022 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 12:34:12.220034 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 12:34:12.220046 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 12:34:12.220062 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.88541 (* 0.0454545 = 0.17661 loss) | |
I0407 12:34:12.220077 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.86529 (* 0.0454545 = 0.175695 loss) | |
I0407 12:34:12.220091 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.97672 (* 0.0454545 = 0.18076 loss) | |
I0407 12:34:12.220116 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.9315 (* 0.0454545 = 0.178705 loss) | |
I0407 12:34:12.220147 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.77379 (* 0.0454545 = 0.171536 loss) | |
I0407 12:34:12.220176 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.84556 (* 0.0454545 = 0.129344 loss) | |
I0407 12:34:12.220194 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.73083 (* 0.0454545 = 0.0786743 loss) | |
I0407 12:34:12.220208 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.834465 (* 0.0454545 = 0.0379302 loss) | |
I0407 12:34:12.220222 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.265347 (* 0.0454545 = 0.0120612 loss) | |
I0407 12:34:12.220237 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.289552 (* 0.0454545 = 0.0131615 loss) | |
I0407 12:34:12.220273 32304 solver.cpp:245] Train net output #32: loss/loss11 = 0.000411549 (* 0.0454545 = 1.87068e-05 loss) | |
I0407 12:34:12.220289 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.000412992 (* 0.0454545 = 1.87724e-05 loss) | |
I0407 12:34:12.220304 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.000417731 (* 0.0454545 = 1.89878e-05 loss) | |
I0407 12:34:12.220317 32304 solver.cpp:245] Train net output #35: loss/loss14 = 0.000419737 (* 0.0454545 = 1.9079e-05 loss) | |
I0407 12:34:12.220331 32304 solver.cpp:245] Train net output #36: loss/loss15 = 0.000421235 (* 0.0454545 = 1.91471e-05 loss) | |
I0407 12:34:12.220345 32304 solver.cpp:245] Train net output #37: loss/loss16 = 0.00042681 (* 0.0454545 = 1.94005e-05 loss) | |
I0407 12:34:12.220360 32304 solver.cpp:245] Train net output #38: loss/loss17 = 0.000415686 (* 0.0454545 = 1.88948e-05 loss) | |
I0407 12:34:12.220372 32304 solver.cpp:245] Train net output #39: loss/loss18 = 0.000398535 (* 0.0454545 = 1.81152e-05 loss) | |
I0407 12:34:12.220386 32304 solver.cpp:245] Train net output #40: loss/loss19 = 0.000414276 (* 0.0454545 = 1.88307e-05 loss) | |
I0407 12:34:12.220399 32304 solver.cpp:245] Train net output #41: loss/loss20 = 0.000416906 (* 0.0454545 = 1.89503e-05 loss) | |
I0407 12:34:12.220412 32304 solver.cpp:245] Train net output #42: loss/loss21 = 0.000419003 (* 0.0454545 = 1.90456e-05 loss) | |
I0407 12:34:12.220427 32304 solver.cpp:245] Train net output #43: loss/loss22 = 0.000401184 (* 0.0454545 = 1.82356e-05 loss) | |
I0407 12:34:12.220438 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 12:34:12.220449 32304 solver.cpp:245] Train net output #45: total_confidence = 3.60229e-07 | |
I0407 12:34:12.220464 32304 sgd_solver.cpp:106] Iteration 5000, lr = 0.0099 | |
I0407 12:35:26.158509 32304 solver.cpp:229] Iteration 5500, loss = 1.1667 | |
I0407 12:35:26.158653 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.03125 | |
I0407 12:35:26.158682 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 12:35:26.158696 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 12:35:26.158709 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375 | |
I0407 12:35:26.158720 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125 | |
I0407 12:35:26.158732 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0407 12:35:26.158745 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.5625 | |
I0407 12:35:26.158764 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375 | |
I0407 12:35:26.158776 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625 | |
I0407 12:35:26.158787 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0407 12:35:26.158799 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 12:35:26.158810 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 12:35:26.158823 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 12:35:26.158834 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 12:35:26.158845 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 12:35:26.158857 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 12:35:26.158869 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 12:35:26.158880 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 12:35:26.158891 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 12:35:26.158902 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 12:35:26.158915 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 12:35:26.158929 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 12:35:26.158946 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.9415 (* 0.0454545 = 0.179159 loss) | |
I0407 12:35:26.158959 32304 solver.cpp:245] Train net output #23: loss/loss02 = 4.12022 (* 0.0454545 = 0.187283 loss) | |
I0407 12:35:26.158980 32304 solver.cpp:245] Train net output #24: loss/loss03 = 4.13614 (* 0.0454545 = 0.188006 loss) | |
I0407 12:35:26.158994 32304 solver.cpp:245] Train net output #25: loss/loss04 = 4.02197 (* 0.0454545 = 0.182817 loss) | |
I0407 12:35:26.159008 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.61876 (* 0.0454545 = 0.164489 loss) | |
I0407 12:35:26.159020 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.90736 (* 0.0454545 = 0.132153 loss) | |
I0407 12:35:26.159042 32304 solver.cpp:245] Train net output #28: loss/loss07 = 2.48835 (* 0.0454545 = 0.113107 loss) | |
I0407 12:35:26.159056 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.98904 (* 0.0454545 = 0.0449563 loss) | |
I0407 12:35:26.159070 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.648744 (* 0.0454545 = 0.0294884 loss) | |
I0407 12:35:26.159085 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.462304 (* 0.0454545 = 0.0210138 loss) | |
I0407 12:35:26.159098 32304 solver.cpp:245] Train net output #32: loss/loss11 = 0.000555089 (* 0.0454545 = 2.52313e-05 loss) | |
I0407 12:35:26.159112 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.000559372 (* 0.0454545 = 2.5426e-05 loss) | |
I0407 12:35:26.159132 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.000567596 (* 0.0454545 = 2.57998e-05 loss) | |
I0407 12:35:26.159145 32304 solver.cpp:245] Train net output #35: loss/loss14 = 0.000557174 (* 0.0454545 = 2.53261e-05 loss) | |
I0407 12:35:26.159158 32304 solver.cpp:245] Train net output #36: loss/loss15 = 0.000559473 (* 0.0454545 = 2.54306e-05 loss) | |
I0407 12:35:26.159173 32304 solver.cpp:245] Train net output #37: loss/loss16 = 0.000545992 (* 0.0454545 = 2.48178e-05 loss) | |
I0407 12:35:26.159193 32304 solver.cpp:245] Train net output #38: loss/loss17 = 0.000557796 (* 0.0454545 = 2.53544e-05 loss) | |
I0407 12:35:26.159224 32304 solver.cpp:245] Train net output #39: loss/loss18 = 0.00056676 (* 0.0454545 = 2.57618e-05 loss) | |
I0407 12:35:26.159240 32304 solver.cpp:245] Train net output #40: loss/loss19 = 0.00055462 (* 0.0454545 = 2.521e-05 loss) | |
I0407 12:35:26.159255 32304 solver.cpp:245] Train net output #41: loss/loss20 = 0.000566455 (* 0.0454545 = 2.57479e-05 loss) | |
I0407 12:35:26.159268 32304 solver.cpp:245] Train net output #42: loss/loss21 = 0.000562946 (* 0.0454545 = 2.55885e-05 loss) | |
I0407 12:35:26.159281 32304 solver.cpp:245] Train net output #43: loss/loss22 = 0.000564383 (* 0.0454545 = 2.56538e-05 loss) | |
I0407 12:35:26.159293 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 12:35:26.159306 32304 solver.cpp:245] Train net output #45: total_confidence = 2.72196e-07 | |
I0407 12:35:26.159333 32304 sgd_solver.cpp:106] Iteration 5500, lr = 0.00989 | |
I0407 12:36:38.895735 32304 solver.cpp:229] Iteration 6000, loss = 1.16152 | |
I0407 12:36:38.895845 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.03125 | |
I0407 12:36:38.895866 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 12:36:38.895879 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 12:36:38.895890 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 12:36:38.895903 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0407 12:36:38.895915 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375 | |
I0407 12:36:38.895926 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0407 12:36:38.895939 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0407 12:36:38.895951 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 12:36:38.895962 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 12:36:38.895974 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 12:36:38.895985 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 12:36:38.895997 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 12:36:38.896008 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 12:36:38.896019 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 12:36:38.896030 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 12:36:38.896041 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 12:36:38.896054 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 12:36:38.896064 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 12:36:38.896075 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 12:36:38.896087 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 12:36:38.896098 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 12:36:38.896114 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.6616 (* 0.0454545 = 0.166436 loss) | |
I0407 12:36:38.896145 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.89099 (* 0.0454545 = 0.176863 loss) | |
I0407 12:36:38.896167 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.89617 (* 0.0454545 = 0.177098 loss) | |
I0407 12:36:38.896183 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.87326 (* 0.0454545 = 0.176057 loss) | |
I0407 12:36:38.896196 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.65102 (* 0.0454545 = 0.165955 loss) | |
I0407 12:36:38.896210 32304 solver.cpp:245] Train net output #27: loss/loss06 = 3.05084 (* 0.0454545 = 0.138675 loss) | |
I0407 12:36:38.896224 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.32771 (* 0.0454545 = 0.0603506 loss) | |
I0407 12:36:38.896239 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.695931 (* 0.0454545 = 0.0316332 loss) | |
I0407 12:36:38.896252 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.0421042 (* 0.0454545 = 0.00191383 loss) | |
I0407 12:36:38.896267 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.0155951 (* 0.0454545 = 0.000708868 loss) | |
I0407 12:36:38.896281 32304 solver.cpp:245] Train net output #32: loss/loss11 = 0.000361046 (* 0.0454545 = 1.64112e-05 loss) | |
I0407 12:36:38.896296 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.000343916 (* 0.0454545 = 1.56325e-05 loss) | |
I0407 12:36:38.896309 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.000351553 (* 0.0454545 = 1.59797e-05 loss) | |
I0407 12:36:38.896323 32304 solver.cpp:245] Train net output #35: loss/loss14 = 0.000354718 (* 0.0454545 = 1.61236e-05 loss) | |
I0407 12:36:38.896337 32304 solver.cpp:245] Train net output #36: loss/loss15 = 0.000357903 (* 0.0454545 = 1.62683e-05 loss) | |
I0407 12:36:38.896352 32304 solver.cpp:245] Train net output #37: loss/loss16 = 0.000349797 (* 0.0454545 = 1.58999e-05 loss) | |
I0407 12:36:38.896365 32304 solver.cpp:245] Train net output #38: loss/loss17 = 0.000357156 (* 0.0454545 = 1.62344e-05 loss) | |
I0407 12:36:38.896396 32304 solver.cpp:245] Train net output #39: loss/loss18 = 0.000361773 (* 0.0454545 = 1.64442e-05 loss) | |
I0407 12:36:38.896411 32304 solver.cpp:245] Train net output #40: loss/loss19 = 0.000357877 (* 0.0454545 = 1.62671e-05 loss) | |
I0407 12:36:38.896425 32304 solver.cpp:245] Train net output #41: loss/loss20 = 0.000359385 (* 0.0454545 = 1.63357e-05 loss) | |
I0407 12:36:38.896438 32304 solver.cpp:245] Train net output #42: loss/loss21 = 0.000363899 (* 0.0454545 = 1.65409e-05 loss) | |
I0407 12:36:38.896452 32304 solver.cpp:245] Train net output #43: loss/loss22 = 0.000373879 (* 0.0454545 = 1.69945e-05 loss) | |
I0407 12:36:38.896463 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 12:36:38.896476 32304 solver.cpp:245] Train net output #45: total_confidence = 2.50444e-07 | |
I0407 12:36:38.896489 32304 sgd_solver.cpp:106] Iteration 6000, lr = 0.00988 | |
I0407 12:37:51.982652 32304 solver.cpp:229] Iteration 6500, loss = 1.15957 | |
I0407 12:37:51.982841 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0407 12:37:51.982862 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 12:37:51.982880 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 12:37:51.982893 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 12:37:51.982905 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125 | |
I0407 12:37:51.982919 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0407 12:37:51.982939 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.65625 | |
I0407 12:37:51.982950 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375 | |
I0407 12:37:51.982962 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0407 12:37:51.982974 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 12:37:51.982985 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 12:37:51.983005 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 12:37:51.983016 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 12:37:51.983027 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 12:37:51.983038 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 12:37:51.983049 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 12:37:51.983060 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 12:37:51.983072 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 12:37:51.983083 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 12:37:51.983094 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 12:37:51.983106 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 12:37:51.983117 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 12:37:51.983141 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.82889 (* 0.0454545 = 0.174041 loss) | |
I0407 12:37:51.983155 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.97756 (* 0.0454545 = 0.180798 loss) | |
I0407 12:37:51.983170 32304 solver.cpp:245] Train net output #24: loss/loss03 = 4.08898 (* 0.0454545 = 0.185863 loss) | |
I0407 12:37:51.983182 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.8943 (* 0.0454545 = 0.177014 loss) | |
I0407 12:37:51.983196 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.71896 (* 0.0454545 = 0.169044 loss) | |
I0407 12:37:51.983217 32304 solver.cpp:245] Train net output #27: loss/loss06 = 3.15009 (* 0.0454545 = 0.143186 loss) | |
I0407 12:37:51.983229 32304 solver.cpp:245] Train net output #28: loss/loss07 = 2.14272 (* 0.0454545 = 0.0973963 loss) | |
I0407 12:37:51.983243 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.990116 (* 0.0454545 = 0.0450053 loss) | |
I0407 12:37:51.983258 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.205082 (* 0.0454545 = 0.00932189 loss) | |
I0407 12:37:51.983279 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.0199406 (* 0.0454545 = 0.000906391 loss) | |
I0407 12:37:51.983294 32304 solver.cpp:245] Train net output #32: loss/loss11 = 0.000517626 (* 0.0454545 = 2.35285e-05 loss) | |
I0407 12:37:51.983307 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.000511826 (* 0.0454545 = 2.32648e-05 loss) | |
I0407 12:37:51.983335 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.000509906 (* 0.0454545 = 2.31775e-05 loss) | |
I0407 12:37:51.983360 32304 solver.cpp:245] Train net output #35: loss/loss14 = 0.000510497 (* 0.0454545 = 2.32044e-05 loss) | |
I0407 12:37:51.983373 32304 solver.cpp:245] Train net output #36: loss/loss15 = 0.000508185 (* 0.0454545 = 2.30993e-05 loss) | |
I0407 12:37:51.983387 32304 solver.cpp:245] Train net output #37: loss/loss16 = 0.000516618 (* 0.0454545 = 2.34827e-05 loss) | |
I0407 12:37:51.983402 32304 solver.cpp:245] Train net output #38: loss/loss17 = 0.000508504 (* 0.0454545 = 2.31138e-05 loss) | |
I0407 12:37:51.983430 32304 solver.cpp:245] Train net output #39: loss/loss18 = 0.000507597 (* 0.0454545 = 2.30726e-05 loss) | |
I0407 12:37:51.983445 32304 solver.cpp:245] Train net output #40: loss/loss19 = 0.00050904 (* 0.0454545 = 2.31382e-05 loss) | |
I0407 12:37:51.983459 32304 solver.cpp:245] Train net output #41: loss/loss20 = 0.000511597 (* 0.0454545 = 2.32544e-05 loss) | |
I0407 12:37:51.983474 32304 solver.cpp:245] Train net output #42: loss/loss21 = 0.000516407 (* 0.0454545 = 2.3473e-05 loss) | |
I0407 12:37:51.983487 32304 solver.cpp:245] Train net output #43: loss/loss22 = 0.000518495 (* 0.0454545 = 2.3568e-05 loss) | |
I0407 12:37:51.983500 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 12:37:51.983510 32304 solver.cpp:245] Train net output #45: total_confidence = 2.63321e-07 | |
I0407 12:37:51.983527 32304 sgd_solver.cpp:106] Iteration 6500, lr = 0.00987 | |
I0407 12:39:04.537638 32304 solver.cpp:229] Iteration 7000, loss = 1.15549 | |
I0407 12:39:04.537758 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 12:39:04.537778 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 12:39:04.537791 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 12:39:04.537804 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0 | |
I0407 12:39:04.537816 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125 | |
I0407 12:39:04.537828 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.46875 | |
I0407 12:39:04.537839 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.78125 | |
I0407 12:39:04.537852 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 12:39:04.537863 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0407 12:39:04.537874 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0407 12:39:04.537886 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 12:39:04.537897 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 12:39:04.537909 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 12:39:04.537920 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 12:39:04.537932 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 12:39:04.537943 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 12:39:04.537955 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 12:39:04.537966 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 12:39:04.537977 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 12:39:04.537988 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 12:39:04.538000 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 12:39:04.538012 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 12:39:04.538028 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.79878 (* 0.0454545 = 0.172672 loss) | |
I0407 12:39:04.538041 32304 solver.cpp:245] Train net output #23: loss/loss02 = 4.13976 (* 0.0454545 = 0.188171 loss) | |
I0407 12:39:04.538055 32304 solver.cpp:245] Train net output #24: loss/loss03 = 4.10121 (* 0.0454545 = 0.186419 loss) | |
I0407 12:39:04.538069 32304 solver.cpp:245] Train net output #25: loss/loss04 = 4.09522 (* 0.0454545 = 0.186146 loss) | |
I0407 12:39:04.538086 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.61822 (* 0.0454545 = 0.164464 loss) | |
I0407 12:39:04.538100 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.74574 (* 0.0454545 = 0.124806 loss) | |
I0407 12:39:04.538115 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.41164 (* 0.0454545 = 0.0641654 loss) | |
I0407 12:39:04.538128 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.389344 (* 0.0454545 = 0.0176975 loss) | |
I0407 12:39:04.538142 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.330339 (* 0.0454545 = 0.0150154 loss) | |
I0407 12:39:04.538156 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.246965 (* 0.0454545 = 0.0112257 loss) | |
I0407 12:39:04.538171 32304 solver.cpp:245] Train net output #32: loss/loss11 = 0.000303094 (* 0.0454545 = 1.3777e-05 loss) | |
I0407 12:39:04.538184 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.000303327 (* 0.0454545 = 1.37876e-05 loss) | |
I0407 12:39:04.538202 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.000313641 (* 0.0454545 = 1.42564e-05 loss) | |
I0407 12:39:04.538216 32304 solver.cpp:245] Train net output #35: loss/loss14 = 0.00031227 (* 0.0454545 = 1.41941e-05 loss) | |
I0407 12:39:04.538230 32304 solver.cpp:245] Train net output #36: loss/loss15 = 0.000309135 (* 0.0454545 = 1.40516e-05 loss) | |
I0407 12:39:04.538244 32304 solver.cpp:245] Train net output #37: loss/loss16 = 0.000305636 (* 0.0454545 = 1.38925e-05 loss) | |
I0407 12:39:04.538259 32304 solver.cpp:245] Train net output #38: loss/loss17 = 0.000298547 (* 0.0454545 = 1.35703e-05 loss) | |
I0407 12:39:04.538290 32304 solver.cpp:245] Train net output #39: loss/loss18 = 0.000311424 (* 0.0454545 = 1.41557e-05 loss) | |
I0407 12:39:04.538303 32304 solver.cpp:245] Train net output #40: loss/loss19 = 0.000303264 (* 0.0454545 = 1.37847e-05 loss) | |
I0407 12:39:04.538317 32304 solver.cpp:245] Train net output #41: loss/loss20 = 0.000313182 (* 0.0454545 = 1.42356e-05 loss) | |
I0407 12:39:04.538331 32304 solver.cpp:245] Train net output #42: loss/loss21 = 0.000308335 (* 0.0454545 = 1.40152e-05 loss) | |
I0407 12:39:04.538346 32304 solver.cpp:245] Train net output #43: loss/loss22 = 0.000313592 (* 0.0454545 = 1.42542e-05 loss) | |
I0407 12:39:04.538358 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 12:39:04.538369 32304 solver.cpp:245] Train net output #45: total_confidence = 2.50809e-07 | |
I0407 12:39:04.538384 32304 sgd_solver.cpp:106] Iteration 7000, lr = 0.00986 | |
I0407 12:40:17.110080 32304 solver.cpp:229] Iteration 7500, loss = 1.14889 | |
I0407 12:40:17.110216 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.03125 | |
I0407 12:40:17.110237 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0407 12:40:17.110250 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 12:40:17.110262 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 12:40:17.110275 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0407 12:40:17.110286 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125 | |
I0407 12:40:17.110298 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0407 12:40:17.110311 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 12:40:17.110322 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 12:40:17.110333 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 12:40:17.110344 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 12:40:17.110357 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 12:40:17.110368 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 12:40:17.110381 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 12:40:17.110394 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 12:40:17.110404 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 12:40:17.110415 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 12:40:17.110427 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 12:40:17.110438 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 12:40:17.110450 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 12:40:17.110461 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 12:40:17.110473 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 12:40:17.110489 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.80748 (* 0.0454545 = 0.173067 loss) | |
I0407 12:40:17.110503 32304 solver.cpp:245] Train net output #23: loss/loss02 = 4.19831 (* 0.0454545 = 0.190832 loss) | |
I0407 12:40:17.110517 32304 solver.cpp:245] Train net output #24: loss/loss03 = 4.13764 (* 0.0454545 = 0.188075 loss) | |
I0407 12:40:17.110532 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.88762 (* 0.0454545 = 0.17671 loss) | |
I0407 12:40:17.110545 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.76201 (* 0.0454545 = 0.171001 loss) | |
I0407 12:40:17.110558 32304 solver.cpp:245] Train net output #27: loss/loss06 = 3.1556 (* 0.0454545 = 0.143437 loss) | |
I0407 12:40:17.110572 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.97984 (* 0.0454545 = 0.0899927 loss) | |
I0407 12:40:17.110586 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.407387 (* 0.0454545 = 0.0185176 loss) | |
I0407 12:40:17.110600 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.0373078 (* 0.0454545 = 0.00169581 loss) | |
I0407 12:40:17.110615 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.0165968 (* 0.0454545 = 0.000754399 loss) | |
I0407 12:40:17.110628 32304 solver.cpp:245] Train net output #32: loss/loss11 = 0.000314402 (* 0.0454545 = 1.4291e-05 loss) | |
I0407 12:40:17.110642 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.000317453 (* 0.0454545 = 1.44297e-05 loss) | |
I0407 12:40:17.110656 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.000311356 (* 0.0454545 = 1.41525e-05 loss) | |
I0407 12:40:17.110671 32304 solver.cpp:245] Train net output #35: loss/loss14 = 0.000315988 (* 0.0454545 = 1.43631e-05 loss) | |
I0407 12:40:17.110684 32304 solver.cpp:245] Train net output #36: loss/loss15 = 0.000315313 (* 0.0454545 = 1.43324e-05 loss) | |
I0407 12:40:17.110697 32304 solver.cpp:245] Train net output #37: loss/loss16 = 0.000317243 (* 0.0454545 = 1.44201e-05 loss) | |
I0407 12:40:17.110712 32304 solver.cpp:245] Train net output #38: loss/loss17 = 0.000314914 (* 0.0454545 = 1.43143e-05 loss) | |
I0407 12:40:17.110743 32304 solver.cpp:245] Train net output #39: loss/loss18 = 0.000313566 (* 0.0454545 = 1.4253e-05 loss) | |
I0407 12:40:17.110757 32304 solver.cpp:245] Train net output #40: loss/loss19 = 0.000314607 (* 0.0454545 = 1.43003e-05 loss) | |
I0407 12:40:17.110771 32304 solver.cpp:245] Train net output #41: loss/loss20 = 0.00031399 (* 0.0454545 = 1.42723e-05 loss) | |
I0407 12:40:17.110785 32304 solver.cpp:245] Train net output #42: loss/loss21 = 0.000321604 (* 0.0454545 = 1.46184e-05 loss) | |
I0407 12:40:17.110800 32304 solver.cpp:245] Train net output #43: loss/loss22 = 0.000313587 (* 0.0454545 = 1.42539e-05 loss) | |
I0407 12:40:17.110812 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 12:40:17.110823 32304 solver.cpp:245] Train net output #45: total_confidence = 2.9779e-07 | |
I0407 12:40:17.110838 32304 sgd_solver.cpp:106] Iteration 7500, lr = 0.00985 | |
I0407 12:41:29.144441 32304 solver.cpp:229] Iteration 8000, loss = 1.15006 | |
I0407 12:41:29.144589 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 12:41:29.144610 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 12:41:29.144623 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0407 12:41:29.144635 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125 | |
I0407 12:41:29.144647 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.09375 | |
I0407 12:41:29.144659 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.25 | |
I0407 12:41:29.144671 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625 | |
I0407 12:41:29.144683 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.78125 | |
I0407 12:41:29.144695 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.875 | |
I0407 12:41:29.144706 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0407 12:41:29.144718 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 12:41:29.144729 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 12:41:29.144742 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 12:41:29.144752 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 12:41:29.144764 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 12:41:29.144775 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 12:41:29.144788 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 12:41:29.144798 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 12:41:29.144810 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 12:41:29.144821 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 12:41:29.144832 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 12:41:29.144845 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 12:41:29.144860 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.81065 (* 0.0454545 = 0.173211 loss) | |
I0407 12:41:29.144875 32304 solver.cpp:245] Train net output #23: loss/loss02 = 4.0179 (* 0.0454545 = 0.182632 loss) | |
I0407 12:41:29.144888 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.97328 (* 0.0454545 = 0.180604 loss) | |
I0407 12:41:29.144902 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.87517 (* 0.0454545 = 0.176144 loss) | |
I0407 12:41:29.144915 32304 solver.cpp:245] Train net output #26: loss/loss05 = 4.05054 (* 0.0454545 = 0.184116 loss) | |
I0407 12:41:29.144932 32304 solver.cpp:245] Train net output #27: loss/loss06 = 3.4431 (* 0.0454545 = 0.156505 loss) | |
I0407 12:41:29.144947 32304 solver.cpp:245] Train net output #28: loss/loss07 = 2.31716 (* 0.0454545 = 0.105326 loss) | |
I0407 12:41:29.144960 32304 solver.cpp:245] Train net output #29: loss/loss08 = 1.24544 (* 0.0454545 = 0.0566108 loss) | |
I0407 12:41:29.144974 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.811652 (* 0.0454545 = 0.0368933 loss) | |
I0407 12:41:29.144987 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.418769 (* 0.0454545 = 0.019035 loss) | |
I0407 12:41:29.145002 32304 solver.cpp:245] Train net output #32: loss/loss11 = 0.000697765 (* 0.0454545 = 3.17166e-05 loss) | |
I0407 12:41:29.145016 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.00068914 (* 0.0454545 = 3.13246e-05 loss) | |
I0407 12:41:29.145030 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.000697888 (* 0.0454545 = 3.17222e-05 loss) | |
I0407 12:41:29.145043 32304 solver.cpp:245] Train net output #35: loss/loss14 = 0.000689626 (* 0.0454545 = 3.13466e-05 loss) | |
I0407 12:41:29.145057 32304 solver.cpp:245] Train net output #36: loss/loss15 = 0.000701506 (* 0.0454545 = 3.18866e-05 loss) | |
I0407 12:41:29.145071 32304 solver.cpp:245] Train net output #37: loss/loss16 = 0.000687836 (* 0.0454545 = 3.12653e-05 loss) | |
I0407 12:41:29.145086 32304 solver.cpp:245] Train net output #38: loss/loss17 = 0.000692998 (* 0.0454545 = 3.14999e-05 loss) | |
I0407 12:41:29.145115 32304 solver.cpp:245] Train net output #39: loss/loss18 = 0.00068982 (* 0.0454545 = 3.13555e-05 loss) | |
I0407 12:41:29.145131 32304 solver.cpp:245] Train net output #40: loss/loss19 = 0.000694798 (* 0.0454545 = 3.15817e-05 loss) | |
I0407 12:41:29.145145 32304 solver.cpp:245] Train net output #41: loss/loss20 = 0.000693987 (* 0.0454545 = 3.15449e-05 loss) | |
I0407 12:41:29.145159 32304 solver.cpp:245] Train net output #42: loss/loss21 = 0.00068946 (* 0.0454545 = 3.13391e-05 loss) | |
I0407 12:41:29.145174 32304 solver.cpp:245] Train net output #43: loss/loss22 = 0.000688382 (* 0.0454545 = 3.12901e-05 loss) | |
I0407 12:41:29.145185 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 12:41:29.145197 32304 solver.cpp:245] Train net output #45: total_confidence = 1.86273e-07 | |
I0407 12:41:29.145211 32304 sgd_solver.cpp:106] Iteration 8000, lr = 0.00984 | |
I0407 12:42:42.605814 32304 solver.cpp:229] Iteration 8500, loss = 1.14496 | |
I0407 12:42:42.605962 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.03125 | |
I0407 12:42:42.605984 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0407 12:42:42.605998 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0407 12:42:42.606009 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 12:42:42.606022 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125 | |
I0407 12:42:42.606034 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0407 12:42:42.606046 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625 | |
I0407 12:42:42.606057 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 12:42:42.606070 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 12:42:42.606084 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0407 12:42:42.606097 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 12:42:42.606108 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 12:42:42.606122 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 12:42:42.606132 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 12:42:42.606144 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 12:42:42.606155 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 12:42:42.606166 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 12:42:42.606178 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 12:42:42.606189 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 12:42:42.606201 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 12:42:42.606212 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 12:42:42.606225 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 12:42:42.606240 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.80991 (* 0.0454545 = 0.173178 loss) | |
I0407 12:42:42.606254 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.91702 (* 0.0454545 = 0.178047 loss) | |
I0407 12:42:42.606268 32304 solver.cpp:245] Train net output #24: loss/loss03 = 4.11918 (* 0.0454545 = 0.187235 loss) | |
I0407 12:42:42.606282 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.89953 (* 0.0454545 = 0.177251 loss) | |
I0407 12:42:42.606297 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.61506 (* 0.0454545 = 0.164321 loss) | |
I0407 12:42:42.606309 32304 solver.cpp:245] Train net output #27: loss/loss06 = 3.2225 (* 0.0454545 = 0.146477 loss) | |
I0407 12:42:42.606323 32304 solver.cpp:245] Train net output #28: loss/loss07 = 2.28889 (* 0.0454545 = 0.10404 loss) | |
I0407 12:42:42.606338 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.946521 (* 0.0454545 = 0.0430237 loss) | |
I0407 12:42:42.606351 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.398307 (* 0.0454545 = 0.0181049 loss) | |
I0407 12:42:42.606365 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.237103 (* 0.0454545 = 0.0107774 loss) | |
I0407 12:42:42.606379 32304 solver.cpp:245] Train net output #32: loss/loss11 = 0.000250063 (* 0.0454545 = 1.13665e-05 loss) | |
I0407 12:42:42.606394 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.00024798 (* 0.0454545 = 1.12718e-05 loss) | |
I0407 12:42:42.606407 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.000251866 (* 0.0454545 = 1.14485e-05 loss) | |
I0407 12:42:42.606421 32304 solver.cpp:245] Train net output #35: loss/loss14 = 0.000248801 (* 0.0454545 = 1.13091e-05 loss) | |
I0407 12:42:42.606436 32304 solver.cpp:245] Train net output #36: loss/loss15 = 0.000251637 (* 0.0454545 = 1.1438e-05 loss) | |
I0407 12:42:42.606449 32304 solver.cpp:245] Train net output #37: loss/loss16 = 0.000247645 (* 0.0454545 = 1.12566e-05 loss) | |
I0407 12:42:42.606463 32304 solver.cpp:245] Train net output #38: loss/loss17 = 0.000248377 (* 0.0454545 = 1.12899e-05 loss) | |
I0407 12:42:42.606492 32304 solver.cpp:245] Train net output #39: loss/loss18 = 0.000252392 (* 0.0454545 = 1.14723e-05 loss) | |
I0407 12:42:42.606525 32304 solver.cpp:245] Train net output #40: loss/loss19 = 0.000253594 (* 0.0454545 = 1.1527e-05 loss) | |
I0407 12:42:42.606541 32304 solver.cpp:245] Train net output #41: loss/loss20 = 0.000247073 (* 0.0454545 = 1.12306e-05 loss) | |
I0407 12:42:42.606555 32304 solver.cpp:245] Train net output #42: loss/loss21 = 0.000250983 (* 0.0454545 = 1.14083e-05 loss) | |
I0407 12:42:42.606570 32304 solver.cpp:245] Train net output #43: loss/loss22 = 0.000244505 (* 0.0454545 = 1.11139e-05 loss) | |
I0407 12:42:42.606581 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 12:42:42.606593 32304 solver.cpp:245] Train net output #45: total_confidence = 4.65583e-07 | |
I0407 12:42:42.606607 32304 sgd_solver.cpp:106] Iteration 8500, lr = 0.00983 | |
I0407 12:43:54.874897 32304 solver.cpp:229] Iteration 9000, loss = 1.15044 | |
I0407 12:43:54.875046 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0 | |
I0407 12:43:54.875066 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 12:43:54.875079 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0407 12:43:54.875092 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125 | |
I0407 12:43:54.875103 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.15625 | |
I0407 12:43:54.875115 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125 | |
I0407 12:43:54.875128 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0407 12:43:54.875138 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 12:43:54.875159 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0407 12:43:54.875170 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0407 12:43:54.875181 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 12:43:54.875193 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 12:43:54.875205 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 12:43:54.875217 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 12:43:54.875236 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 12:43:54.875247 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 12:43:54.875257 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 12:43:54.875269 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 12:43:54.875280 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 12:43:54.875291 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 12:43:54.875303 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 12:43:54.875313 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 12:43:54.875344 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.95831 (* 0.0454545 = 0.179923 loss) | |
I0407 12:43:54.875360 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.86887 (* 0.0454545 = 0.175858 loss) | |
I0407 12:43:54.875375 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.97132 (* 0.0454545 = 0.180514 loss) | |
I0407 12:43:54.875388 32304 solver.cpp:245] Train net output #25: loss/loss04 = 4.0901 (* 0.0454545 = 0.185914 loss) | |
I0407 12:43:54.875401 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.63569 (* 0.0454545 = 0.165259 loss) | |
I0407 12:43:54.875416 32304 solver.cpp:245] Train net output #27: loss/loss06 = 3.43806 (* 0.0454545 = 0.156275 loss) | |
I0407 12:43:54.875429 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.53019 (* 0.0454545 = 0.0695542 loss) | |
I0407 12:43:54.875442 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.45009 (* 0.0454545 = 0.0204586 loss) | |
I0407 12:43:54.875457 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.234797 (* 0.0454545 = 0.0106726 loss) | |
I0407 12:43:54.875469 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.231475 (* 0.0454545 = 0.0105216 loss) | |
I0407 12:43:54.875484 32304 solver.cpp:245] Train net output #32: loss/loss11 = 0.000439177 (* 0.0454545 = 1.99626e-05 loss) | |
I0407 12:43:54.875499 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.000428826 (* 0.0454545 = 1.94921e-05 loss) | |
I0407 12:43:54.875512 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.000428384 (* 0.0454545 = 1.9472e-05 loss) | |
I0407 12:43:54.875526 32304 solver.cpp:245] Train net output #35: loss/loss14 = 0.000427731 (* 0.0454545 = 1.94423e-05 loss) | |
I0407 12:43:54.875540 32304 solver.cpp:245] Train net output #36: loss/loss15 = 0.00043877 (* 0.0454545 = 1.99441e-05 loss) | |
I0407 12:43:54.875553 32304 solver.cpp:245] Train net output #37: loss/loss16 = 0.000441436 (* 0.0454545 = 2.00653e-05 loss) | |
I0407 12:43:54.875567 32304 solver.cpp:245] Train net output #38: loss/loss17 = 0.000438306 (* 0.0454545 = 1.9923e-05 loss) | |
I0407 12:43:54.875600 32304 solver.cpp:245] Train net output #39: loss/loss18 = 0.000436142 (* 0.0454545 = 1.98247e-05 loss) | |
I0407 12:43:54.875615 32304 solver.cpp:245] Train net output #40: loss/loss19 = 0.000433418 (* 0.0454545 = 1.97008e-05 loss) | |
I0407 12:43:54.875629 32304 solver.cpp:245] Train net output #41: loss/loss20 = 0.000431682 (* 0.0454545 = 1.96219e-05 loss) | |
I0407 12:43:54.875643 32304 solver.cpp:245] Train net output #42: loss/loss21 = 0.000436207 (* 0.0454545 = 1.98276e-05 loss) | |
I0407 12:43:54.875656 32304 solver.cpp:245] Train net output #43: loss/loss22 = 0.000426104 (* 0.0454545 = 1.93684e-05 loss) | |
I0407 12:43:54.875669 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 12:43:54.875680 32304 solver.cpp:245] Train net output #45: total_confidence = 1.90111e-07 | |
I0407 12:43:54.875695 32304 sgd_solver.cpp:106] Iteration 9000, lr = 0.00982 | |
I0407 12:45:07.056236 32304 solver.cpp:229] Iteration 9500, loss = 1.14678 | |
I0407 12:45:07.056432 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 12:45:07.056453 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0407 12:45:07.056466 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 12:45:07.056478 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125 | |
I0407 12:45:07.056490 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0407 12:45:07.056502 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.28125 | |
I0407 12:45:07.056514 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625 | |
I0407 12:45:07.056526 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375 | |
I0407 12:45:07.056538 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.875 | |
I0407 12:45:07.056550 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.90625 | |
I0407 12:45:07.056565 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 12:45:07.056577 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 12:45:07.056589 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 12:45:07.056601 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 12:45:07.056612 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 12:45:07.056623 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 12:45:07.056634 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 12:45:07.056645 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 12:45:07.056665 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 12:45:07.056676 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 12:45:07.056689 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 12:45:07.056699 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 12:45:07.056715 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.72311 (* 0.0454545 = 0.169232 loss) | |
I0407 12:45:07.056738 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.94429 (* 0.0454545 = 0.179286 loss) | |
I0407 12:45:07.056752 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.85895 (* 0.0454545 = 0.175407 loss) | |
I0407 12:45:07.056766 32304 solver.cpp:245] Train net output #25: loss/loss04 = 4.07724 (* 0.0454545 = 0.185329 loss) | |
I0407 12:45:07.056779 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.55533 (* 0.0454545 = 0.161606 loss) | |
I0407 12:45:07.056792 32304 solver.cpp:245] Train net output #27: loss/loss06 = 3.20156 (* 0.0454545 = 0.145526 loss) | |
I0407 12:45:07.056807 32304 solver.cpp:245] Train net output #28: loss/loss07 = 2.20264 (* 0.0454545 = 0.10012 loss) | |
I0407 12:45:07.056819 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.854239 (* 0.0454545 = 0.038829 loss) | |
I0407 12:45:07.056833 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.753499 (* 0.0454545 = 0.03425 loss) | |
I0407 12:45:07.056848 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.650582 (* 0.0454545 = 0.0295719 loss) | |
I0407 12:45:07.056862 32304 solver.cpp:245] Train net output #32: loss/loss11 = 0.000687669 (* 0.0454545 = 3.12577e-05 loss) | |
I0407 12:45:07.056876 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.000679532 (* 0.0454545 = 3.08878e-05 loss) | |
I0407 12:45:07.056890 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.000663475 (* 0.0454545 = 3.0158e-05 loss) | |
I0407 12:45:07.056905 32304 solver.cpp:245] Train net output #35: loss/loss14 = 0.000668629 (* 0.0454545 = 3.03922e-05 loss) | |
I0407 12:45:07.056922 32304 solver.cpp:245] Train net output #36: loss/loss15 = 0.0006551 (* 0.0454545 = 2.97773e-05 loss) | |
I0407 12:45:07.056937 32304 solver.cpp:245] Train net output #37: loss/loss16 = 0.000652968 (* 0.0454545 = 2.96804e-05 loss) | |
I0407 12:45:07.056951 32304 solver.cpp:245] Train net output #38: loss/loss17 = 0.000639437 (* 0.0454545 = 2.90653e-05 loss) | |
I0407 12:45:07.062273 32304 solver.cpp:245] Train net output #39: loss/loss18 = 0.000655921 (* 0.0454545 = 2.98146e-05 loss) | |
I0407 12:45:07.062297 32304 solver.cpp:245] Train net output #40: loss/loss19 = 0.000662369 (* 0.0454545 = 3.01077e-05 loss) | |
I0407 12:45:07.062317 32304 solver.cpp:245] Train net output #41: loss/loss20 = 0.000655812 (* 0.0454545 = 2.98096e-05 loss) | |
I0407 12:45:07.062331 32304 solver.cpp:245] Train net output #42: loss/loss21 = 0.000650431 (* 0.0454545 = 2.9565e-05 loss) | |
I0407 12:45:07.062345 32304 solver.cpp:245] Train net output #43: loss/loss22 = 0.000649896 (* 0.0454545 = 2.95407e-05 loss) | |
I0407 12:45:07.062358 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 12:45:07.062369 32304 solver.cpp:245] Train net output #45: total_confidence = 2.4749e-07 | |
I0407 12:45:07.062384 32304 sgd_solver.cpp:106] Iteration 9500, lr = 0.00981 | |
I0407 12:46:19.240777 32304 solver.cpp:338] Iteration 10000, Testing net (#0) | |
I0407 12:46:27.311863 32304 solver.cpp:393] Test loss: 1.02304 | |
I0407 12:46:27.311929 32304 solver.cpp:406] Test net output #0: loss/accuracy01 = 0.002 | |
I0407 12:46:27.311947 32304 solver.cpp:406] Test net output #1: loss/accuracy02 = 0.094 | |
I0407 12:46:27.311959 32304 solver.cpp:406] Test net output #2: loss/accuracy03 = 0.068 | |
I0407 12:46:27.311971 32304 solver.cpp:406] Test net output #3: loss/accuracy04 = 0.07 | |
I0407 12:46:27.311983 32304 solver.cpp:406] Test net output #4: loss/accuracy05 = 0.213 | |
I0407 12:46:27.311995 32304 solver.cpp:406] Test net output #5: loss/accuracy06 = 0.502 | |
I0407 12:46:27.312006 32304 solver.cpp:406] Test net output #6: loss/accuracy07 = 0.894 | |
I0407 12:46:27.312018 32304 solver.cpp:406] Test net output #7: loss/accuracy08 = 0.97 | |
I0407 12:46:27.312029 32304 solver.cpp:406] Test net output #8: loss/accuracy09 = 0.995 | |
I0407 12:46:27.312041 32304 solver.cpp:406] Test net output #9: loss/accuracy10 = 0.998 | |
I0407 12:46:27.312052 32304 solver.cpp:406] Test net output #10: loss/accuracy11 = 1 | |
I0407 12:46:27.312063 32304 solver.cpp:406] Test net output #11: loss/accuracy12 = 1 | |
I0407 12:46:27.312075 32304 solver.cpp:406] Test net output #12: loss/accuracy13 = 1 | |
I0407 12:46:27.312086 32304 solver.cpp:406] Test net output #13: loss/accuracy14 = 1 | |
I0407 12:46:27.312098 32304 solver.cpp:406] Test net output #14: loss/accuracy15 = 1 | |
I0407 12:46:27.312108 32304 solver.cpp:406] Test net output #15: loss/accuracy16 = 1 | |
I0407 12:46:27.312120 32304 solver.cpp:406] Test net output #16: loss/accuracy17 = 1 | |
I0407 12:46:27.312131 32304 solver.cpp:406] Test net output #17: loss/accuracy18 = 1 | |
I0407 12:46:27.312142 32304 solver.cpp:406] Test net output #18: loss/accuracy19 = 1 | |
I0407 12:46:27.312153 32304 solver.cpp:406] Test net output #19: loss/accuracy20 = 1 | |
I0407 12:46:27.312165 32304 solver.cpp:406] Test net output #20: loss/accuracy21 = 1 | |
I0407 12:46:27.312175 32304 solver.cpp:406] Test net output #21: loss/accuracy22 = 1 | |
I0407 12:46:27.312191 32304 solver.cpp:406] Test net output #22: loss/loss01 = 3.39182 (* 0.0454545 = 0.154173 loss) | |
I0407 12:46:27.312206 32304 solver.cpp:406] Test net output #23: loss/loss02 = 3.71564 (* 0.0454545 = 0.168893 loss) | |
I0407 12:46:27.312218 32304 solver.cpp:406] Test net output #24: loss/loss03 = 3.93239 (* 0.0454545 = 0.178745 loss) | |
I0407 12:46:27.312232 32304 solver.cpp:406] Test net output #25: loss/loss04 = 3.82176 (* 0.0454545 = 0.173716 loss) | |
I0407 12:46:27.312245 32304 solver.cpp:406] Test net output #26: loss/loss05 = 3.78885 (* 0.0454545 = 0.17222 loss) | |
I0407 12:46:27.312259 32304 solver.cpp:406] Test net output #27: loss/loss06 = 2.54097 (* 0.0454545 = 0.115499 loss) | |
I0407 12:46:27.312273 32304 solver.cpp:406] Test net output #28: loss/loss07 = 0.893392 (* 0.0454545 = 0.0406087 loss) | |
I0407 12:46:27.312285 32304 solver.cpp:406] Test net output #29: loss/loss08 = 0.308662 (* 0.0454545 = 0.0140301 loss) | |
I0407 12:46:27.312299 32304 solver.cpp:406] Test net output #30: loss/loss09 = 0.0755589 (* 0.0454545 = 0.00343449 loss) | |
I0407 12:46:27.312314 32304 solver.cpp:406] Test net output #31: loss/loss10 = 0.0343514 (* 0.0454545 = 0.00156143 loss) | |
I0407 12:46:27.312327 32304 solver.cpp:406] Test net output #32: loss/loss11 = 0.000301931 (* 0.0454545 = 1.37241e-05 loss) | |
I0407 12:46:27.312341 32304 solver.cpp:406] Test net output #33: loss/loss12 = 0.000302494 (* 0.0454545 = 1.37497e-05 loss) | |
I0407 12:46:27.312355 32304 solver.cpp:406] Test net output #34: loss/loss13 = 0.000301247 (* 0.0454545 = 1.36931e-05 loss) | |
I0407 12:46:27.312368 32304 solver.cpp:406] Test net output #35: loss/loss14 = 0.000296181 (* 0.0454545 = 1.34628e-05 loss) | |
I0407 12:46:27.312382 32304 solver.cpp:406] Test net output #36: loss/loss15 = 0.000295907 (* 0.0454545 = 1.34503e-05 loss) | |
I0407 12:46:27.312397 32304 solver.cpp:406] Test net output #37: loss/loss16 = 0.000297148 (* 0.0454545 = 1.35067e-05 loss) | |
I0407 12:46:27.312409 32304 solver.cpp:406] Test net output #38: loss/loss17 = 0.0002927 (* 0.0454545 = 1.33046e-05 loss) | |
I0407 12:46:27.312459 32304 solver.cpp:406] Test net output #39: loss/loss18 = 0.000295707 (* 0.0454545 = 1.34412e-05 loss) | |
I0407 12:46:27.312474 32304 solver.cpp:406] Test net output #40: loss/loss19 = 0.000295452 (* 0.0454545 = 1.34296e-05 loss) | |
I0407 12:46:27.312487 32304 solver.cpp:406] Test net output #41: loss/loss20 = 0.00029803 (* 0.0454545 = 1.35468e-05 loss) | |
I0407 12:46:27.312501 32304 solver.cpp:406] Test net output #42: loss/loss21 = 0.000295397 (* 0.0454545 = 1.34271e-05 loss) | |
I0407 12:46:27.312515 32304 solver.cpp:406] Test net output #43: loss/loss22 = 0.000295115 (* 0.0454545 = 1.34143e-05 loss) | |
I0407 12:46:27.312527 32304 solver.cpp:406] Test net output #44: total_accuracy = 0 | |
I0407 12:46:27.312538 32304 solver.cpp:406] Test net output #45: total_confidence = 3.85436e-07 | |
I0407 12:46:27.347630 32304 solver.cpp:229] Iteration 10000, loss = 1.14363 | |
I0407 12:46:27.347683 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.03125 | |
I0407 12:46:27.347703 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 12:46:27.347718 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0407 12:46:27.347729 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125 | |
I0407 12:46:27.347741 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0407 12:46:27.347754 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125 | |
I0407 12:46:27.347765 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0407 12:46:27.347777 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0407 12:46:27.347790 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 12:46:27.347800 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0407 12:46:27.347812 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 12:46:27.347825 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 12:46:27.347836 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 12:46:27.347847 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 12:46:27.347858 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 12:46:27.347870 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 12:46:27.347882 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 12:46:27.347893 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 12:46:27.347904 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 12:46:27.347915 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 12:46:27.347928 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 12:46:27.347939 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 12:46:27.347954 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.88658 (* 0.0454545 = 0.176663 loss) | |
I0407 12:46:27.347968 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.97577 (* 0.0454545 = 0.180717 loss) | |
I0407 12:46:27.347981 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.88081 (* 0.0454545 = 0.1764 loss) | |
I0407 12:46:27.347995 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.97871 (* 0.0454545 = 0.18085 loss) | |
I0407 12:46:27.348009 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.83197 (* 0.0454545 = 0.17418 loss) | |
I0407 12:46:27.348023 32304 solver.cpp:245] Train net output #27: loss/loss06 = 3.40787 (* 0.0454545 = 0.154903 loss) | |
I0407 12:46:27.348037 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.65345 (* 0.0454545 = 0.0751568 loss) | |
I0407 12:46:27.348050 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.700909 (* 0.0454545 = 0.0318595 loss) | |
I0407 12:46:27.348063 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.522103 (* 0.0454545 = 0.0237319 loss) | |
I0407 12:46:27.348080 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.247131 (* 0.0454545 = 0.0112332 loss) | |
I0407 12:46:27.348121 32304 solver.cpp:245] Train net output #32: loss/loss11 = 0.000314942 (* 0.0454545 = 1.43156e-05 loss) | |
I0407 12:46:27.348137 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.000319644 (* 0.0454545 = 1.45293e-05 loss) | |
I0407 12:46:27.348151 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.000312148 (* 0.0454545 = 1.41886e-05 loss) | |
I0407 12:46:27.348165 32304 solver.cpp:245] Train net output #35: loss/loss14 = 0.000303596 (* 0.0454545 = 1.37998e-05 loss) | |
I0407 12:46:27.348179 32304 solver.cpp:245] Train net output #36: loss/loss15 = 0.000308778 (* 0.0454545 = 1.40354e-05 loss) | |
I0407 12:46:27.348193 32304 solver.cpp:245] Train net output #37: loss/loss16 = 0.000305129 (* 0.0454545 = 1.38695e-05 loss) | |
I0407 12:46:27.348207 32304 solver.cpp:245] Train net output #38: loss/loss17 = 0.000296677 (* 0.0454545 = 1.34853e-05 loss) | |
I0407 12:46:27.348222 32304 solver.cpp:245] Train net output #39: loss/loss18 = 0.000300678 (* 0.0454545 = 1.36672e-05 loss) | |
I0407 12:46:27.348235 32304 solver.cpp:245] Train net output #40: loss/loss19 = 0.00030581 (* 0.0454545 = 1.39004e-05 loss) | |
I0407 12:46:27.348249 32304 solver.cpp:245] Train net output #41: loss/loss20 = 0.0003076 (* 0.0454545 = 1.39818e-05 loss) | |
I0407 12:46:27.348263 32304 solver.cpp:245] Train net output #42: loss/loss21 = 0.000301053 (* 0.0454545 = 1.36842e-05 loss) | |
I0407 12:46:27.348278 32304 solver.cpp:245] Train net output #43: loss/loss22 = 0.000301231 (* 0.0454545 = 1.36923e-05 loss) | |
I0407 12:46:27.348289 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 12:46:27.348300 32304 solver.cpp:245] Train net output #45: total_confidence = 3.87051e-07 | |
I0407 12:46:27.348315 32304 sgd_solver.cpp:106] Iteration 10000, lr = 0.0098 | |
I0407 12:47:39.401563 32304 solver.cpp:229] Iteration 10500, loss = 1.13767 | |
I0407 12:47:39.401710 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.03125 | |
I0407 12:47:39.401731 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0407 12:47:39.401744 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0407 12:47:39.401757 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125 | |
I0407 12:47:39.401768 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.21875 | |
I0407 12:47:39.401780 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0407 12:47:39.401793 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875 | |
I0407 12:47:39.401804 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 12:47:39.401816 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625 | |
I0407 12:47:39.401829 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 12:47:39.401840 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 12:47:39.401852 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 12:47:39.401864 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 12:47:39.401875 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 12:47:39.401886 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 12:47:39.401897 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 12:47:39.401909 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 12:47:39.401923 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 12:47:39.401935 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 12:47:39.401947 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 12:47:39.401958 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 12:47:39.401969 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 12:47:39.401985 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.86765 (* 0.0454545 = 0.175802 loss) | |
I0407 12:47:39.401999 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.98933 (* 0.0454545 = 0.181333 loss) | |
I0407 12:47:39.402012 32304 solver.cpp:245] Train net output #24: loss/loss03 = 4.01847 (* 0.0454545 = 0.182658 loss) | |
I0407 12:47:39.402026 32304 solver.cpp:245] Train net output #25: loss/loss04 = 4.01197 (* 0.0454545 = 0.182362 loss) | |
I0407 12:47:39.402040 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.83496 (* 0.0454545 = 0.174316 loss) | |
I0407 12:47:39.402053 32304 solver.cpp:245] Train net output #27: loss/loss06 = 3.14108 (* 0.0454545 = 0.142776 loss) | |
I0407 12:47:39.402067 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.84664 (* 0.0454545 = 0.0839383 loss) | |
I0407 12:47:39.402081 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.793755 (* 0.0454545 = 0.0360798 loss) | |
I0407 12:47:39.402094 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.619149 (* 0.0454545 = 0.0281431 loss) | |
I0407 12:47:39.402107 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.00819994 (* 0.0454545 = 0.000372724 loss) | |
I0407 12:47:39.402122 32304 solver.cpp:245] Train net output #32: loss/loss11 = 7.02942e-05 (* 0.0454545 = 3.19519e-06 loss) | |
I0407 12:47:39.402135 32304 solver.cpp:245] Train net output #33: loss/loss12 = 7.17249e-05 (* 0.0454545 = 3.26022e-06 loss) | |
I0407 12:47:39.402149 32304 solver.cpp:245] Train net output #34: loss/loss13 = 7.03108e-05 (* 0.0454545 = 3.19595e-06 loss) | |
I0407 12:47:39.402163 32304 solver.cpp:245] Train net output #35: loss/loss14 = 6.81234e-05 (* 0.0454545 = 3.09652e-06 loss) | |
I0407 12:47:39.402178 32304 solver.cpp:245] Train net output #36: loss/loss15 = 6.95492e-05 (* 0.0454545 = 3.16133e-06 loss) | |
I0407 12:47:39.402190 32304 solver.cpp:245] Train net output #37: loss/loss16 = 6.94988e-05 (* 0.0454545 = 3.15903e-06 loss) | |
I0407 12:47:39.402204 32304 solver.cpp:245] Train net output #38: loss/loss17 = 6.8977e-05 (* 0.0454545 = 3.13532e-06 loss) | |
I0407 12:47:39.402235 32304 solver.cpp:245] Train net output #39: loss/loss18 = 6.84387e-05 (* 0.0454545 = 3.11085e-06 loss) | |
I0407 12:47:39.402250 32304 solver.cpp:245] Train net output #40: loss/loss19 = 6.93628e-05 (* 0.0454545 = 3.15286e-06 loss) | |
I0407 12:47:39.402263 32304 solver.cpp:245] Train net output #41: loss/loss20 = 7.06558e-05 (* 0.0454545 = 3.21163e-06 loss) | |
I0407 12:47:39.402277 32304 solver.cpp:245] Train net output #42: loss/loss21 = 6.94669e-05 (* 0.0454545 = 3.15758e-06 loss) | |
I0407 12:47:39.402292 32304 solver.cpp:245] Train net output #43: loss/loss22 = 6.9739e-05 (* 0.0454545 = 3.16996e-06 loss) | |
I0407 12:47:39.402303 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 12:47:39.402314 32304 solver.cpp:245] Train net output #45: total_confidence = 4.6848e-07 | |
I0407 12:47:39.402329 32304 sgd_solver.cpp:106] Iteration 10500, lr = 0.00979 | |
I0407 12:48:53.763520 32304 solver.cpp:229] Iteration 11000, loss = 1.14074 | |
I0407 12:48:53.763665 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.1875 | |
I0407 12:48:53.763685 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0407 12:48:53.763698 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 12:48:53.763710 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0407 12:48:53.763722 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0407 12:48:53.763734 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125 | |
I0407 12:48:53.763746 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625 | |
I0407 12:48:53.763757 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375 | |
I0407 12:48:53.763769 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0407 12:48:53.763782 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 12:48:53.763792 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 12:48:53.763803 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 12:48:53.763815 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 12:48:53.763828 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 12:48:53.763839 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 12:48:53.763850 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 12:48:53.763861 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 12:48:53.763872 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 12:48:53.763883 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 12:48:53.763895 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 12:48:53.763906 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 12:48:53.763919 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 12:48:53.763936 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.6994 (* 0.0454545 = 0.168155 loss) | |
I0407 12:48:53.763950 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.98261 (* 0.0454545 = 0.181028 loss) | |
I0407 12:48:53.763964 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.87028 (* 0.0454545 = 0.175922 loss) | |
I0407 12:48:53.763978 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.86304 (* 0.0454545 = 0.175593 loss) | |
I0407 12:48:53.763991 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.73816 (* 0.0454545 = 0.169917 loss) | |
I0407 12:48:53.764004 32304 solver.cpp:245] Train net output #27: loss/loss06 = 3.3573 (* 0.0454545 = 0.152605 loss) | |
I0407 12:48:53.764019 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.99769 (* 0.0454545 = 0.0908042 loss) | |
I0407 12:48:53.764031 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.837797 (* 0.0454545 = 0.0380817 loss) | |
I0407 12:48:53.764045 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.241517 (* 0.0454545 = 0.010978 loss) | |
I0407 12:48:53.764060 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.0210889 (* 0.0454545 = 0.000958588 loss) | |
I0407 12:48:53.764073 32304 solver.cpp:245] Train net output #32: loss/loss11 = 0.000615445 (* 0.0454545 = 2.79748e-05 loss) | |
I0407 12:48:53.764087 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.00061342 (* 0.0454545 = 2.78827e-05 loss) | |
I0407 12:48:53.764101 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.0006057 (* 0.0454545 = 2.75318e-05 loss) | |
I0407 12:48:53.764116 32304 solver.cpp:245] Train net output #35: loss/loss14 = 0.000605447 (* 0.0454545 = 2.75203e-05 loss) | |
I0407 12:48:53.764128 32304 solver.cpp:245] Train net output #36: loss/loss15 = 0.000606496 (* 0.0454545 = 2.7568e-05 loss) | |
I0407 12:48:53.764142 32304 solver.cpp:245] Train net output #37: loss/loss16 = 0.000610184 (* 0.0454545 = 2.77356e-05 loss) | |
I0407 12:48:53.764156 32304 solver.cpp:245] Train net output #38: loss/loss17 = 0.000579744 (* 0.0454545 = 2.6352e-05 loss) | |
I0407 12:48:53.764188 32304 solver.cpp:245] Train net output #39: loss/loss18 = 0.000594763 (* 0.0454545 = 2.70347e-05 loss) | |
I0407 12:48:53.764201 32304 solver.cpp:245] Train net output #40: loss/loss19 = 0.000586364 (* 0.0454545 = 2.66529e-05 loss) | |
I0407 12:48:53.764215 32304 solver.cpp:245] Train net output #41: loss/loss20 = 0.000590947 (* 0.0454545 = 2.68612e-05 loss) | |
I0407 12:48:53.764230 32304 solver.cpp:245] Train net output #42: loss/loss21 = 0.000587761 (* 0.0454545 = 2.67164e-05 loss) | |
I0407 12:48:53.764243 32304 solver.cpp:245] Train net output #43: loss/loss22 = 0.000586336 (* 0.0454545 = 2.66516e-05 loss) | |
I0407 12:48:53.764255 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 12:48:53.764266 32304 solver.cpp:245] Train net output #45: total_confidence = 2.23949e-07 | |
I0407 12:48:53.764281 32304 sgd_solver.cpp:106] Iteration 11000, lr = 0.00978 | |
I0407 12:50:05.746598 32304 solver.cpp:229] Iteration 11500, loss = 1.13678 | |
I0407 12:50:05.746736 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0407 12:50:05.746757 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0407 12:50:05.746769 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0407 12:50:05.746781 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 12:50:05.746794 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.40625 | |
I0407 12:50:05.746806 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5 | |
I0407 12:50:05.746819 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0407 12:50:05.746829 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 12:50:05.746841 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 12:50:05.746853 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 12:50:05.746865 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 12:50:05.746876 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 12:50:05.746888 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 12:50:05.746899 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 12:50:05.746911 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 12:50:05.746925 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 12:50:05.746937 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 12:50:05.746948 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 12:50:05.746960 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 12:50:05.746971 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 12:50:05.746983 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 12:50:05.746994 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 12:50:05.747010 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.76228 (* 0.0454545 = 0.171013 loss) | |
I0407 12:50:05.747025 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.8555 (* 0.0454545 = 0.17525 loss) | |
I0407 12:50:05.747040 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.92111 (* 0.0454545 = 0.178232 loss) | |
I0407 12:50:05.747053 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.85121 (* 0.0454545 = 0.175055 loss) | |
I0407 12:50:05.747066 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.13208 (* 0.0454545 = 0.142367 loss) | |
I0407 12:50:05.747081 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.436 (* 0.0454545 = 0.110727 loss) | |
I0407 12:50:05.747094 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.85264 (* 0.0454545 = 0.0842111 loss) | |
I0407 12:50:05.747108 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.853314 (* 0.0454545 = 0.038787 loss) | |
I0407 12:50:05.747123 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.454596 (* 0.0454545 = 0.0206635 loss) | |
I0407 12:50:05.747138 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.0119632 (* 0.0454545 = 0.00054378 loss) | |
I0407 12:50:05.747165 32304 solver.cpp:245] Train net output #32: loss/loss11 = 0.000165724 (* 0.0454545 = 7.5329e-06 loss) | |
I0407 12:50:05.747189 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.000168268 (* 0.0454545 = 7.64855e-06 loss) | |
I0407 12:50:05.747205 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.000165362 (* 0.0454545 = 7.51647e-06 loss) | |
I0407 12:50:05.747218 32304 solver.cpp:245] Train net output #35: loss/loss14 = 0.000166201 (* 0.0454545 = 7.55461e-06 loss) | |
I0407 12:50:05.747232 32304 solver.cpp:245] Train net output #36: loss/loss15 = 0.00016779 (* 0.0454545 = 7.62683e-06 loss) | |
I0407 12:50:05.747246 32304 solver.cpp:245] Train net output #37: loss/loss16 = 0.000162111 (* 0.0454545 = 7.36867e-06 loss) | |
I0407 12:50:05.747262 32304 solver.cpp:245] Train net output #38: loss/loss17 = 0.000155133 (* 0.0454545 = 7.05151e-06 loss) | |
I0407 12:50:05.747293 32304 solver.cpp:245] Train net output #39: loss/loss18 = 0.000160095 (* 0.0454545 = 7.27706e-06 loss) | |
I0407 12:50:05.747308 32304 solver.cpp:245] Train net output #40: loss/loss19 = 0.00016096 (* 0.0454545 = 7.31635e-06 loss) | |
I0407 12:50:05.747337 32304 solver.cpp:245] Train net output #41: loss/loss20 = 0.000162468 (* 0.0454545 = 7.3849e-06 loss) | |
I0407 12:50:05.747354 32304 solver.cpp:245] Train net output #42: loss/loss21 = 0.000161029 (* 0.0454545 = 7.31948e-06 loss) | |
I0407 12:50:05.747367 32304 solver.cpp:245] Train net output #43: loss/loss22 = 0.00016155 (* 0.0454545 = 7.34318e-06 loss) | |
I0407 12:50:05.747380 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 12:50:05.747391 32304 solver.cpp:245] Train net output #45: total_confidence = 5.81777e-07 | |
I0407 12:50:05.747406 32304 sgd_solver.cpp:106] Iteration 11500, lr = 0.00977 | |
I0407 12:51:17.512676 32304 solver.cpp:229] Iteration 12000, loss = 1.13521 | |
I0407 12:51:17.512845 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.21875 | |
I0407 12:51:17.512866 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 12:51:17.512878 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0407 12:51:17.512890 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125 | |
I0407 12:51:17.512902 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0407 12:51:17.512914 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375 | |
I0407 12:51:17.512929 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.5625 | |
I0407 12:51:17.512941 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.78125 | |
I0407 12:51:17.512953 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 12:51:17.512964 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0407 12:51:17.512975 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 12:51:17.512987 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 12:51:17.513000 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 12:51:17.513010 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 12:51:17.513022 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 12:51:17.513033 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 12:51:17.513044 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 12:51:17.513056 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 12:51:17.513067 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 12:51:17.513078 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 12:51:17.513089 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 12:51:17.513101 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 12:51:17.513116 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.66973 (* 0.0454545 = 0.166806 loss) | |
I0407 12:51:17.513131 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.89817 (* 0.0454545 = 0.177189 loss) | |
I0407 12:51:17.513145 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.82759 (* 0.0454545 = 0.173982 loss) | |
I0407 12:51:17.513159 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.8895 (* 0.0454545 = 0.176795 loss) | |
I0407 12:51:17.513172 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.63073 (* 0.0454545 = 0.165033 loss) | |
I0407 12:51:17.513185 32304 solver.cpp:245] Train net output #27: loss/loss06 = 3.10668 (* 0.0454545 = 0.141213 loss) | |
I0407 12:51:17.513200 32304 solver.cpp:245] Train net output #28: loss/loss07 = 2.56309 (* 0.0454545 = 0.116504 loss) | |
I0407 12:51:17.513212 32304 solver.cpp:245] Train net output #29: loss/loss08 = 1.10902 (* 0.0454545 = 0.0504102 loss) | |
I0407 12:51:17.513226 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.406374 (* 0.0454545 = 0.0184715 loss) | |
I0407 12:51:17.513241 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.212828 (* 0.0454545 = 0.00967398 loss) | |
I0407 12:51:17.513254 32304 solver.cpp:245] Train net output #32: loss/loss11 = 0.000569602 (* 0.0454545 = 2.5891e-05 loss) | |
I0407 12:51:17.513269 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.00057588 (* 0.0454545 = 2.61764e-05 loss) | |
I0407 12:51:17.513283 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.000558275 (* 0.0454545 = 2.53762e-05 loss) | |
I0407 12:51:17.513298 32304 solver.cpp:245] Train net output #35: loss/loss14 = 0.000559878 (* 0.0454545 = 2.5449e-05 loss) | |
I0407 12:51:17.513311 32304 solver.cpp:245] Train net output #36: loss/loss15 = 0.000566423 (* 0.0454545 = 2.57465e-05 loss) | |
I0407 12:51:17.513325 32304 solver.cpp:245] Train net output #37: loss/loss16 = 0.0005562 (* 0.0454545 = 2.52818e-05 loss) | |
I0407 12:51:17.513339 32304 solver.cpp:245] Train net output #38: loss/loss17 = 0.000558121 (* 0.0454545 = 2.53691e-05 loss) | |
I0407 12:51:17.513365 32304 solver.cpp:245] Train net output #39: loss/loss18 = 0.000549762 (* 0.0454545 = 2.49892e-05 loss) | |
I0407 12:51:17.513381 32304 solver.cpp:245] Train net output #40: loss/loss19 = 0.000553909 (* 0.0454545 = 2.51777e-05 loss) | |
I0407 12:51:17.513394 32304 solver.cpp:245] Train net output #41: loss/loss20 = 0.000557469 (* 0.0454545 = 2.53395e-05 loss) | |
I0407 12:51:17.513408 32304 solver.cpp:245] Train net output #42: loss/loss21 = 0.000548548 (* 0.0454545 = 2.4934e-05 loss) | |
I0407 12:51:17.513422 32304 solver.cpp:245] Train net output #43: loss/loss22 = 0.000547689 (* 0.0454545 = 2.4895e-05 loss) | |
I0407 12:51:17.513433 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 12:51:17.513445 32304 solver.cpp:245] Train net output #45: total_confidence = 2.19033e-07 | |
I0407 12:51:17.513460 32304 sgd_solver.cpp:106] Iteration 12000, lr = 0.00976 | |
I0407 12:52:28.828668 32304 solver.cpp:229] Iteration 12500, loss = 1.13642 | |
I0407 12:52:28.828804 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.03125 | |
I0407 12:52:28.828824 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 12:52:28.828836 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 12:52:28.828848 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125 | |
I0407 12:52:28.828860 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.15625 | |
I0407 12:52:28.828872 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375 | |
I0407 12:52:28.828883 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0407 12:52:28.828896 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.78125 | |
I0407 12:52:28.828907 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.84375 | |
I0407 12:52:28.828922 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0407 12:52:28.828934 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 12:52:28.828945 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 12:52:28.828956 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 12:52:28.828968 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 12:52:28.828979 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 12:52:28.828990 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 12:52:28.829001 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 12:52:28.829012 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 12:52:28.829023 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 12:52:28.829035 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 12:52:28.829046 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 12:52:28.829057 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 12:52:28.829073 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.92166 (* 0.0454545 = 0.178257 loss) | |
I0407 12:52:28.829087 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.8468 (* 0.0454545 = 0.174854 loss) | |
I0407 12:52:28.829102 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.94098 (* 0.0454545 = 0.179135 loss) | |
I0407 12:52:28.829121 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.98817 (* 0.0454545 = 0.181281 loss) | |
I0407 12:52:28.829146 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.8659 (* 0.0454545 = 0.175723 loss) | |
I0407 12:52:28.829162 32304 solver.cpp:245] Train net output #27: loss/loss06 = 3.11866 (* 0.0454545 = 0.141757 loss) | |
I0407 12:52:28.829192 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.60451 (* 0.0454545 = 0.0729324 loss) | |
I0407 12:52:28.829216 32304 solver.cpp:245] Train net output #29: loss/loss08 = 1.24991 (* 0.0454545 = 0.0568142 loss) | |
I0407 12:52:28.829231 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.966181 (* 0.0454545 = 0.0439173 loss) | |
I0407 12:52:28.829244 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.397371 (* 0.0454545 = 0.0180623 loss) | |
I0407 12:52:28.829262 32304 solver.cpp:245] Train net output #32: loss/loss11 = 0.000669788 (* 0.0454545 = 3.04449e-05 loss) | |
I0407 12:52:28.829277 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.000675009 (* 0.0454545 = 3.06822e-05 loss) | |
I0407 12:52:28.829291 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.000655578 (* 0.0454545 = 2.9799e-05 loss) | |
I0407 12:52:28.829313 32304 solver.cpp:245] Train net output #35: loss/loss14 = 0.00065918 (* 0.0454545 = 2.99627e-05 loss) | |
I0407 12:52:28.829327 32304 solver.cpp:245] Train net output #36: loss/loss15 = 0.000653914 (* 0.0454545 = 2.97234e-05 loss) | |
I0407 12:52:28.829341 32304 solver.cpp:245] Train net output #37: loss/loss16 = 0.000638033 (* 0.0454545 = 2.90015e-05 loss) | |
I0407 12:52:28.829355 32304 solver.cpp:245] Train net output #38: loss/loss17 = 0.000639912 (* 0.0454545 = 2.90869e-05 loss) | |
I0407 12:52:28.829387 32304 solver.cpp:245] Train net output #39: loss/loss18 = 0.000650657 (* 0.0454545 = 2.95753e-05 loss) | |
I0407 12:52:28.829402 32304 solver.cpp:245] Train net output #40: loss/loss19 = 0.000629187 (* 0.0454545 = 2.85994e-05 loss) | |
I0407 12:52:28.829416 32304 solver.cpp:245] Train net output #41: loss/loss20 = 0.000653489 (* 0.0454545 = 2.9704e-05 loss) | |
I0407 12:52:28.829430 32304 solver.cpp:245] Train net output #42: loss/loss21 = 0.00065289 (* 0.0454545 = 2.96768e-05 loss) | |
I0407 12:52:28.829453 32304 solver.cpp:245] Train net output #43: loss/loss22 = 0.000653695 (* 0.0454545 = 2.97134e-05 loss) | |
I0407 12:52:28.829465 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 12:52:28.829483 32304 solver.cpp:245] Train net output #45: total_confidence = 3.35254e-07 | |
I0407 12:52:28.829516 32304 sgd_solver.cpp:106] Iteration 12500, lr = 0.00975 | |
I0407 12:53:41.075163 32304 solver.cpp:229] Iteration 13000, loss = 1.12854 | |
I0407 12:53:41.075307 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.15625 | |
I0407 12:53:41.075327 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 12:53:41.075340 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0407 12:53:41.075353 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125 | |
I0407 12:53:41.075366 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0407 12:53:41.075377 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0407 12:53:41.075388 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875 | |
I0407 12:53:41.075400 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 12:53:41.075412 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0407 12:53:41.075424 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0407 12:53:41.075435 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 12:53:41.075448 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 12:53:41.075459 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 12:53:41.075470 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 12:53:41.075482 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 12:53:41.075495 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 12:53:41.075505 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 12:53:41.075516 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 12:53:41.075528 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 12:53:41.075539 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 12:53:41.075551 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 12:53:41.075562 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 12:53:41.075578 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.76399 (* 0.0454545 = 0.17109 loss) | |
I0407 12:53:41.075592 32304 solver.cpp:245] Train net output #23: loss/loss02 = 4.01692 (* 0.0454545 = 0.182587 loss) | |
I0407 12:53:41.075606 32304 solver.cpp:245] Train net output #24: loss/loss03 = 4.0409 (* 0.0454545 = 0.183677 loss) | |
I0407 12:53:41.075619 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.86731 (* 0.0454545 = 0.175787 loss) | |
I0407 12:53:41.075634 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.73454 (* 0.0454545 = 0.169752 loss) | |
I0407 12:53:41.075647 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.9815 (* 0.0454545 = 0.135523 loss) | |
I0407 12:53:41.075660 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.68755 (* 0.0454545 = 0.0767067 loss) | |
I0407 12:53:41.075675 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.725003 (* 0.0454545 = 0.0329547 loss) | |
I0407 12:53:41.075688 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.236804 (* 0.0454545 = 0.0107638 loss) | |
I0407 12:53:41.075701 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.242391 (* 0.0454545 = 0.0110178 loss) | |
I0407 12:53:41.075716 32304 solver.cpp:245] Train net output #32: loss/loss11 = 0.000410011 (* 0.0454545 = 1.86369e-05 loss) | |
I0407 12:53:41.075729 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.000410588 (* 0.0454545 = 1.86631e-05 loss) | |
I0407 12:53:41.075743 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.000413714 (* 0.0454545 = 1.88052e-05 loss) | |
I0407 12:53:41.075757 32304 solver.cpp:245] Train net output #35: loss/loss14 = 0.00039744 (* 0.0454545 = 1.80655e-05 loss) | |
I0407 12:53:41.075772 32304 solver.cpp:245] Train net output #36: loss/loss15 = 0.000405761 (* 0.0454545 = 1.84437e-05 loss) | |
I0407 12:53:41.075785 32304 solver.cpp:245] Train net output #37: loss/loss16 = 0.000403384 (* 0.0454545 = 1.83356e-05 loss) | |
I0407 12:53:41.075798 32304 solver.cpp:245] Train net output #38: loss/loss17 = 0.000394309 (* 0.0454545 = 1.79231e-05 loss) | |
I0407 12:53:41.075834 32304 solver.cpp:245] Train net output #39: loss/loss18 = 0.000401757 (* 0.0454545 = 1.82617e-05 loss) | |
I0407 12:53:41.075863 32304 solver.cpp:245] Train net output #40: loss/loss19 = 0.000393122 (* 0.0454545 = 1.78692e-05 loss) | |
I0407 12:53:41.075882 32304 solver.cpp:245] Train net output #41: loss/loss20 = 0.000403367 (* 0.0454545 = 1.83349e-05 loss) | |
I0407 12:53:41.075896 32304 solver.cpp:245] Train net output #42: loss/loss21 = 0.00039621 (* 0.0454545 = 1.80096e-05 loss) | |
I0407 12:53:41.075911 32304 solver.cpp:245] Train net output #43: loss/loss22 = 0.000404288 (* 0.0454545 = 1.83767e-05 loss) | |
I0407 12:53:41.075927 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 12:53:41.075938 32304 solver.cpp:245] Train net output #45: total_confidence = 2.91587e-07 | |
I0407 12:53:41.075953 32304 sgd_solver.cpp:106] Iteration 13000, lr = 0.00974 | |
I0407 12:54:52.999969 32304 solver.cpp:229] Iteration 13500, loss = 1.13014 | |
I0407 12:54:53.000134 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 12:54:53.000155 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 12:54:53.000169 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 12:54:53.000181 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 12:54:53.000193 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0407 12:54:53.000205 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5625 | |
I0407 12:54:53.000216 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.90625 | |
I0407 12:54:53.000228 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.96875 | |
I0407 12:54:53.000241 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0407 12:54:53.000252 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 12:54:53.000262 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 12:54:53.000274 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 12:54:53.000290 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 12:54:53.000315 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 12:54:53.000331 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 12:54:53.000342 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 12:54:53.000355 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 12:54:53.000365 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 12:54:53.000376 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 12:54:53.000388 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 12:54:53.000401 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 12:54:53.000411 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 12:54:53.000427 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.88831 (* 0.0454545 = 0.176742 loss) | |
I0407 12:54:53.000442 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.92207 (* 0.0454545 = 0.178276 loss) | |
I0407 12:54:53.000457 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.98251 (* 0.0454545 = 0.181023 loss) | |
I0407 12:54:53.000469 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.86811 (* 0.0454545 = 0.175823 loss) | |
I0407 12:54:53.000483 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.67674 (* 0.0454545 = 0.167125 loss) | |
I0407 12:54:53.000496 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.4084 (* 0.0454545 = 0.109473 loss) | |
I0407 12:54:53.000510 32304 solver.cpp:245] Train net output #28: loss/loss07 = 0.812194 (* 0.0454545 = 0.0369179 loss) | |
I0407 12:54:53.000524 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.247532 (* 0.0454545 = 0.0112514 loss) | |
I0407 12:54:53.000538 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.190389 (* 0.0454545 = 0.00865405 loss) | |
I0407 12:54:53.000551 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.0196044 (* 0.0454545 = 0.000891111 loss) | |
I0407 12:54:53.000566 32304 solver.cpp:245] Train net output #32: loss/loss11 = 0.000444755 (* 0.0454545 = 2.02161e-05 loss) | |
I0407 12:54:53.000579 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.000449766 (* 0.0454545 = 2.04439e-05 loss) | |
I0407 12:54:53.000593 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.000432993 (* 0.0454545 = 1.96815e-05 loss) | |
I0407 12:54:53.000607 32304 solver.cpp:245] Train net output #35: loss/loss14 = 0.00043181 (* 0.0454545 = 1.96277e-05 loss) | |
I0407 12:54:53.000620 32304 solver.cpp:245] Train net output #36: loss/loss15 = 0.00042766 (* 0.0454545 = 1.94391e-05 loss) | |
I0407 12:54:53.000635 32304 solver.cpp:245] Train net output #37: loss/loss16 = 0.000427163 (* 0.0454545 = 1.94165e-05 loss) | |
I0407 12:54:53.000648 32304 solver.cpp:245] Train net output #38: loss/loss17 = 0.00043617 (* 0.0454545 = 1.98259e-05 loss) | |
I0407 12:54:53.000676 32304 solver.cpp:245] Train net output #39: loss/loss18 = 0.000424108 (* 0.0454545 = 1.92776e-05 loss) | |
I0407 12:54:53.000691 32304 solver.cpp:245] Train net output #40: loss/loss19 = 0.000426783 (* 0.0454545 = 1.93992e-05 loss) | |
I0407 12:54:53.000705 32304 solver.cpp:245] Train net output #41: loss/loss20 = 0.000428324 (* 0.0454545 = 1.94693e-05 loss) | |
I0407 12:54:53.000723 32304 solver.cpp:245] Train net output #42: loss/loss21 = 0.000422863 (* 0.0454545 = 1.9221e-05 loss) | |
I0407 12:54:53.000738 32304 solver.cpp:245] Train net output #43: loss/loss22 = 0.000414585 (* 0.0454545 = 1.88448e-05 loss) | |
I0407 12:54:53.000751 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 12:54:53.000761 32304 solver.cpp:245] Train net output #45: total_confidence = 3.10917e-07 | |
I0407 12:54:53.000777 32304 sgd_solver.cpp:106] Iteration 13500, lr = 0.00973 | |
I0407 12:56:05.249766 32304 solver.cpp:229] Iteration 14000, loss = 1.12447 | |
I0407 12:56:05.249884 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0407 12:56:05.249905 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 12:56:05.249917 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 12:56:05.249929 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0 | |
I0407 12:56:05.249941 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.15625 | |
I0407 12:56:05.249953 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.28125 | |
I0407 12:56:05.249965 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.78125 | |
I0407 12:56:05.249976 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0407 12:56:05.249989 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 12:56:05.250000 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 12:56:05.250011 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 12:56:05.250023 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 12:56:05.250035 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 12:56:05.250046 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 12:56:05.250057 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 12:56:05.250069 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 12:56:05.250085 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 12:56:05.250097 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 12:56:05.250108 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 12:56:05.250119 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 12:56:05.250130 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 12:56:05.250143 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 12:56:05.250159 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.55637 (* 0.0454545 = 0.161653 loss) | |
I0407 12:56:05.250172 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.74476 (* 0.0454545 = 0.170216 loss) | |
I0407 12:56:05.250186 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.8887 (* 0.0454545 = 0.176759 loss) | |
I0407 12:56:05.250200 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.97477 (* 0.0454545 = 0.180671 loss) | |
I0407 12:56:05.250214 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.83111 (* 0.0454545 = 0.174142 loss) | |
I0407 12:56:05.250227 32304 solver.cpp:245] Train net output #27: loss/loss06 = 3.30182 (* 0.0454545 = 0.150083 loss) | |
I0407 12:56:05.250241 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.36846 (* 0.0454545 = 0.0622029 loss) | |
I0407 12:56:05.250255 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.685604 (* 0.0454545 = 0.0311638 loss) | |
I0407 12:56:05.250269 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.0185948 (* 0.0454545 = 0.000845219 loss) | |
I0407 12:56:05.250283 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.00622797 (* 0.0454545 = 0.000283089 loss) | |
I0407 12:56:05.250298 32304 solver.cpp:245] Train net output #32: loss/loss11 = 4.79846e-05 (* 0.0454545 = 2.18112e-06 loss) | |
I0407 12:56:05.250313 32304 solver.cpp:245] Train net output #33: loss/loss12 = 4.71909e-05 (* 0.0454545 = 2.14504e-06 loss) | |
I0407 12:56:05.250326 32304 solver.cpp:245] Train net output #34: loss/loss13 = 4.82902e-05 (* 0.0454545 = 2.19501e-06 loss) | |
I0407 12:56:05.250339 32304 solver.cpp:245] Train net output #35: loss/loss14 = 4.69562e-05 (* 0.0454545 = 2.13437e-06 loss) | |
I0407 12:56:05.250357 32304 solver.cpp:245] Train net output #36: loss/loss15 = 4.73028e-05 (* 0.0454545 = 2.15013e-06 loss) | |
I0407 12:56:05.250373 32304 solver.cpp:245] Train net output #37: loss/loss16 = 4.69488e-05 (* 0.0454545 = 2.13404e-06 loss) | |
I0407 12:56:05.250387 32304 solver.cpp:245] Train net output #38: loss/loss17 = 4.63936e-05 (* 0.0454545 = 2.1088e-06 loss) | |
I0407 12:56:05.250432 32304 solver.cpp:245] Train net output #39: loss/loss18 = 4.61924e-05 (* 0.0454545 = 2.09965e-06 loss) | |
I0407 12:56:05.250459 32304 solver.cpp:245] Train net output #40: loss/loss19 = 4.69265e-05 (* 0.0454545 = 2.13302e-06 loss) | |
I0407 12:56:05.250476 32304 solver.cpp:245] Train net output #41: loss/loss20 = 4.68556e-05 (* 0.0454545 = 2.1298e-06 loss) | |
I0407 12:56:05.250490 32304 solver.cpp:245] Train net output #42: loss/loss21 = 4.58197e-05 (* 0.0454545 = 2.08271e-06 loss) | |
I0407 12:56:05.250504 32304 solver.cpp:245] Train net output #43: loss/loss22 = 4.66955e-05 (* 0.0454545 = 2.12252e-06 loss) | |
I0407 12:56:05.250516 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 12:56:05.250527 32304 solver.cpp:245] Train net output #45: total_confidence = 7.49931e-07 | |
I0407 12:56:05.250542 32304 sgd_solver.cpp:106] Iteration 14000, lr = 0.00972 | |
I0407 12:57:18.307550 32304 solver.cpp:229] Iteration 14500, loss = 1.12587 | |
I0407 12:57:18.307687 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.03125 | |
I0407 12:57:18.307706 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 12:57:18.307719 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0407 12:57:18.307732 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375 | |
I0407 12:57:18.307744 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125 | |
I0407 12:57:18.307756 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5625 | |
I0407 12:57:18.307768 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.875 | |
I0407 12:57:18.307780 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.96875 | |
I0407 12:57:18.307791 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0407 12:57:18.307803 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0407 12:57:18.307816 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 12:57:18.307827 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 12:57:18.307838 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 12:57:18.307850 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 12:57:18.307862 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 12:57:18.307873 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 12:57:18.307885 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 12:57:18.307898 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 12:57:18.307909 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 12:57:18.307922 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 12:57:18.307935 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 12:57:18.307946 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 12:57:18.307963 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.60099 (* 0.0454545 = 0.163681 loss) | |
I0407 12:57:18.307977 32304 solver.cpp:245] Train net output #23: loss/loss02 = 4.07002 (* 0.0454545 = 0.185001 loss) | |
I0407 12:57:18.307991 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.92394 (* 0.0454545 = 0.178361 loss) | |
I0407 12:57:18.308007 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.83378 (* 0.0454545 = 0.174263 loss) | |
I0407 12:57:18.308019 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.22042 (* 0.0454545 = 0.146383 loss) | |
I0407 12:57:18.308033 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.28258 (* 0.0454545 = 0.103754 loss) | |
I0407 12:57:18.308048 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.11224 (* 0.0454545 = 0.0505564 loss) | |
I0407 12:57:18.308061 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.19507 (* 0.0454545 = 0.00886683 loss) | |
I0407 12:57:18.308084 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.244889 (* 0.0454545 = 0.0111313 loss) | |
I0407 12:57:18.308099 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.251546 (* 0.0454545 = 0.0114339 loss) | |
I0407 12:57:18.308112 32304 solver.cpp:245] Train net output #32: loss/loss11 = 4.57996e-05 (* 0.0454545 = 2.0818e-06 loss) | |
I0407 12:57:18.308126 32304 solver.cpp:245] Train net output #33: loss/loss12 = 4.38607e-05 (* 0.0454545 = 1.99367e-06 loss) | |
I0407 12:57:18.308140 32304 solver.cpp:245] Train net output #34: loss/loss13 = 4.54047e-05 (* 0.0454545 = 2.06385e-06 loss) | |
I0407 12:57:18.308154 32304 solver.cpp:245] Train net output #35: loss/loss14 = 4.43738e-05 (* 0.0454545 = 2.01699e-06 loss) | |
I0407 12:57:18.308171 32304 solver.cpp:245] Train net output #36: loss/loss15 = 4.4053e-05 (* 0.0454545 = 2.00241e-06 loss) | |
I0407 12:57:18.308184 32304 solver.cpp:245] Train net output #37: loss/loss16 = 4.55651e-05 (* 0.0454545 = 2.07114e-06 loss) | |
I0407 12:57:18.308198 32304 solver.cpp:245] Train net output #38: loss/loss17 = 4.42397e-05 (* 0.0454545 = 2.0109e-06 loss) | |
I0407 12:57:18.308240 32304 solver.cpp:245] Train net output #39: loss/loss18 = 4.37438e-05 (* 0.0454545 = 1.98835e-06 loss) | |
I0407 12:57:18.308255 32304 solver.cpp:245] Train net output #40: loss/loss19 = 4.5746e-05 (* 0.0454545 = 2.07937e-06 loss) | |
I0407 12:57:18.308269 32304 solver.cpp:245] Train net output #41: loss/loss20 = 4.57215e-05 (* 0.0454545 = 2.07825e-06 loss) | |
I0407 12:57:18.308284 32304 solver.cpp:245] Train net output #42: loss/loss21 = 4.45118e-05 (* 0.0454545 = 2.02326e-06 loss) | |
I0407 12:57:18.308296 32304 solver.cpp:245] Train net output #43: loss/loss22 = 4.44108e-05 (* 0.0454545 = 2.01867e-06 loss) | |
I0407 12:57:18.308308 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 12:57:18.308320 32304 solver.cpp:245] Train net output #45: total_confidence = 9.60734e-07 | |
I0407 12:57:18.308336 32304 sgd_solver.cpp:106] Iteration 14500, lr = 0.00971 | |
I0407 12:58:30.513821 32304 solver.cpp:338] Iteration 15000, Testing net (#0) | |
I0407 12:58:38.626343 32304 solver.cpp:393] Test loss: 0.98699 | |
I0407 12:58:38.626404 32304 solver.cpp:406] Test net output #0: loss/accuracy01 = 0.266 | |
I0407 12:58:38.626428 32304 solver.cpp:406] Test net output #1: loss/accuracy02 = 0.101 | |
I0407 12:58:38.626449 32304 solver.cpp:406] Test net output #2: loss/accuracy03 = 0.074 | |
I0407 12:58:38.626471 32304 solver.cpp:406] Test net output #3: loss/accuracy04 = 0.045 | |
I0407 12:58:38.626492 32304 solver.cpp:406] Test net output #4: loss/accuracy05 = 0.212 | |
I0407 12:58:38.626512 32304 solver.cpp:406] Test net output #5: loss/accuracy06 = 0.501 | |
I0407 12:58:38.626531 32304 solver.cpp:406] Test net output #6: loss/accuracy07 = 0.894 | |
I0407 12:58:38.626551 32304 solver.cpp:406] Test net output #7: loss/accuracy08 = 0.97 | |
I0407 12:58:38.626572 32304 solver.cpp:406] Test net output #8: loss/accuracy09 = 0.995 | |
I0407 12:58:38.626593 32304 solver.cpp:406] Test net output #9: loss/accuracy10 = 0.998 | |
I0407 12:58:38.626612 32304 solver.cpp:406] Test net output #10: loss/accuracy11 = 1 | |
I0407 12:58:38.626632 32304 solver.cpp:406] Test net output #11: loss/accuracy12 = 1 | |
I0407 12:58:38.626652 32304 solver.cpp:406] Test net output #12: loss/accuracy13 = 1 | |
I0407 12:58:38.626673 32304 solver.cpp:406] Test net output #13: loss/accuracy14 = 1 | |
I0407 12:58:38.626696 32304 solver.cpp:406] Test net output #14: loss/accuracy15 = 1 | |
I0407 12:58:38.626716 32304 solver.cpp:406] Test net output #15: loss/accuracy16 = 1 | |
I0407 12:58:38.626736 32304 solver.cpp:406] Test net output #16: loss/accuracy17 = 1 | |
I0407 12:58:38.626757 32304 solver.cpp:406] Test net output #17: loss/accuracy18 = 1 | |
I0407 12:58:38.626777 32304 solver.cpp:406] Test net output #18: loss/accuracy19 = 1 | |
I0407 12:58:38.626798 32304 solver.cpp:406] Test net output #19: loss/accuracy20 = 1 | |
I0407 12:58:38.626818 32304 solver.cpp:406] Test net output #20: loss/accuracy21 = 1 | |
I0407 12:58:38.626837 32304 solver.cpp:406] Test net output #21: loss/accuracy22 = 1 | |
I0407 12:58:38.626864 32304 solver.cpp:406] Test net output #22: loss/loss01 = 3.26276 (* 0.0454545 = 0.148307 loss) | |
I0407 12:58:38.626889 32304 solver.cpp:406] Test net output #23: loss/loss02 = 3.6041 (* 0.0454545 = 0.163823 loss) | |
I0407 12:58:38.626915 32304 solver.cpp:406] Test net output #24: loss/loss03 = 3.70176 (* 0.0454545 = 0.168262 loss) | |
I0407 12:58:38.626945 32304 solver.cpp:406] Test net output #25: loss/loss04 = 3.75403 (* 0.0454545 = 0.170638 loss) | |
I0407 12:58:38.626970 32304 solver.cpp:406] Test net output #26: loss/loss05 = 3.66268 (* 0.0454545 = 0.166485 loss) | |
I0407 12:58:38.626994 32304 solver.cpp:406] Test net output #27: loss/loss06 = 2.45865 (* 0.0454545 = 0.111757 loss) | |
I0407 12:58:38.627017 32304 solver.cpp:406] Test net output #28: loss/loss07 = 0.911953 (* 0.0454545 = 0.0414524 loss) | |
I0407 12:58:38.627041 32304 solver.cpp:406] Test net output #29: loss/loss08 = 0.276891 (* 0.0454545 = 0.012586 loss) | |
I0407 12:58:38.627068 32304 solver.cpp:406] Test net output #30: loss/loss09 = 0.0549173 (* 0.0454545 = 0.00249624 loss) | |
I0407 12:58:38.627092 32304 solver.cpp:406] Test net output #31: loss/loss10 = 0.0254111 (* 0.0454545 = 0.00115505 loss) | |
I0407 12:58:38.627118 32304 solver.cpp:406] Test net output #32: loss/loss11 = 5.39416e-05 (* 0.0454545 = 2.45189e-06 loss) | |
I0407 12:58:38.627143 32304 solver.cpp:406] Test net output #33: loss/loss12 = 5.40329e-05 (* 0.0454545 = 2.45604e-06 loss) | |
I0407 12:58:38.627168 32304 solver.cpp:406] Test net output #34: loss/loss13 = 5.46662e-05 (* 0.0454545 = 2.48483e-06 loss) | |
I0407 12:58:38.627193 32304 solver.cpp:406] Test net output #35: loss/loss14 = 5.41745e-05 (* 0.0454545 = 2.46248e-06 loss) | |
I0407 12:58:38.627219 32304 solver.cpp:406] Test net output #36: loss/loss15 = 5.31443e-05 (* 0.0454545 = 2.41565e-06 loss) | |
I0407 12:58:38.627244 32304 solver.cpp:406] Test net output #37: loss/loss16 = 5.30951e-05 (* 0.0454545 = 2.41342e-06 loss) | |
I0407 12:58:38.627274 32304 solver.cpp:406] Test net output #38: loss/loss17 = 5.24283e-05 (* 0.0454545 = 2.38311e-06 loss) | |
I0407 12:58:38.627360 32304 solver.cpp:406] Test net output #39: loss/loss18 = 5.27454e-05 (* 0.0454545 = 2.39752e-06 loss) | |
I0407 12:58:38.627389 32304 solver.cpp:406] Test net output #40: loss/loss19 = 5.27395e-05 (* 0.0454545 = 2.39725e-06 loss) | |
I0407 12:58:38.627415 32304 solver.cpp:406] Test net output #41: loss/loss20 = 5.35108e-05 (* 0.0454545 = 2.43231e-06 loss) | |
I0407 12:58:38.627440 32304 solver.cpp:406] Test net output #42: loss/loss21 = 5.23556e-05 (* 0.0454545 = 2.3798e-06 loss) | |
I0407 12:58:38.627467 32304 solver.cpp:406] Test net output #43: loss/loss22 = 5.32623e-05 (* 0.0454545 = 2.42101e-06 loss) | |
I0407 12:58:38.627488 32304 solver.cpp:406] Test net output #44: total_accuracy = 0 | |
I0407 12:58:38.627512 32304 solver.cpp:406] Test net output #45: total_confidence = 1.04936e-06 | |
I0407 12:58:38.661734 32304 solver.cpp:229] Iteration 15000, loss = 1.12355 | |
I0407 12:58:38.661794 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.03125 | |
I0407 12:58:38.661821 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 12:58:38.661842 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0407 12:58:38.661864 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125 | |
I0407 12:58:38.661885 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.375 | |
I0407 12:58:38.661906 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5625 | |
I0407 12:58:38.661928 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.78125 | |
I0407 12:58:38.661952 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 12:58:38.661972 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625 | |
I0407 12:58:38.661994 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 12:58:38.662015 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 12:58:38.662036 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 12:58:38.662060 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 12:58:38.662087 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 12:58:38.662109 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 12:58:38.662132 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 12:58:38.662153 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 12:58:38.662173 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 12:58:38.662194 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 12:58:38.662214 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 12:58:38.662235 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 12:58:38.662257 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 12:58:38.662288 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.57599 (* 0.0454545 = 0.162545 loss) | |
I0407 12:58:38.662317 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.80582 (* 0.0454545 = 0.172992 loss) | |
I0407 12:58:38.662341 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.81019 (* 0.0454545 = 0.173191 loss) | |
I0407 12:58:38.662367 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.73905 (* 0.0454545 = 0.169957 loss) | |
I0407 12:58:38.662392 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.20142 (* 0.0454545 = 0.145519 loss) | |
I0407 12:58:38.662417 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.31695 (* 0.0454545 = 0.105316 loss) | |
I0407 12:58:38.662442 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.33144 (* 0.0454545 = 0.0605201 loss) | |
I0407 12:58:38.662467 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.690827 (* 0.0454545 = 0.0314012 loss) | |
I0407 12:58:38.662492 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.531585 (* 0.0454545 = 0.024163 loss) | |
I0407 12:58:38.662518 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.0128052 (* 0.0454545 = 0.000582054 loss) | |
I0407 12:58:38.662575 32304 solver.cpp:245] Train net output #32: loss/loss11 = 0.00021113 (* 0.0454545 = 9.59684e-06 loss) | |
I0407 12:58:38.662601 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.000215069 (* 0.0454545 = 9.77588e-06 loss) | |
I0407 12:58:38.662627 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.000219362 (* 0.0454545 = 9.971e-06 loss) | |
I0407 12:58:38.662653 32304 solver.cpp:245] Train net output #35: loss/loss14 = 0.00021373 (* 0.0454545 = 9.71502e-06 loss) | |
I0407 12:58:38.662680 32304 solver.cpp:245] Train net output #36: loss/loss15 = 0.000213396 (* 0.0454545 = 9.6998e-06 loss) | |
I0407 12:58:38.662706 32304 solver.cpp:245] Train net output #37: loss/loss16 = 0.000213721 (* 0.0454545 = 9.71461e-06 loss) | |
I0407 12:58:38.662736 32304 solver.cpp:245] Train net output #38: loss/loss17 = 0.000209375 (* 0.0454545 = 9.51703e-06 loss) | |
I0407 12:58:38.662765 32304 solver.cpp:245] Train net output #39: loss/loss18 = 0.000211698 (* 0.0454545 = 9.62262e-06 loss) | |
I0407 12:58:38.662792 32304 solver.cpp:245] Train net output #40: loss/loss19 = 0.000210923 (* 0.0454545 = 9.58742e-06 loss) | |
I0407 12:58:38.662819 32304 solver.cpp:245] Train net output #41: loss/loss20 = 0.000208066 (* 0.0454545 = 9.45755e-06 loss) | |
I0407 12:58:38.662845 32304 solver.cpp:245] Train net output #42: loss/loss21 = 0.000204302 (* 0.0454545 = 9.28647e-06 loss) | |
I0407 12:58:38.662873 32304 solver.cpp:245] Train net output #43: loss/loss22 = 0.000209248 (* 0.0454545 = 9.51128e-06 loss) | |
I0407 12:58:38.662894 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 12:58:38.662915 32304 solver.cpp:245] Train net output #45: total_confidence = 1.07446e-06 | |
I0407 12:58:38.662940 32304 sgd_solver.cpp:106] Iteration 15000, lr = 0.0097 | |
I0407 12:59:50.798575 32304 solver.cpp:229] Iteration 15500, loss = 1.11427 | |
I0407 12:59:50.798735 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0407 12:59:50.798758 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0407 12:59:50.798770 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 12:59:50.798782 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375 | |
I0407 12:59:50.798794 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0407 12:59:50.798806 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.25 | |
I0407 12:59:50.798818 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625 | |
I0407 12:59:50.798830 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 12:59:50.798842 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0407 12:59:50.798853 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 12:59:50.798866 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 12:59:50.798877 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 12:59:50.798888 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 12:59:50.798899 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 12:59:50.798912 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 12:59:50.798925 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 12:59:50.798938 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 12:59:50.798949 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 12:59:50.798959 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 12:59:50.798971 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 12:59:50.798986 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 12:59:50.799010 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 12:59:50.799033 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.51083 (* 0.0454545 = 0.159583 loss) | |
I0407 12:59:50.799049 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.59325 (* 0.0454545 = 0.16333 loss) | |
I0407 12:59:50.799063 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.68259 (* 0.0454545 = 0.167391 loss) | |
I0407 12:59:50.799077 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.58703 (* 0.0454545 = 0.163047 loss) | |
I0407 12:59:50.799090 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.59534 (* 0.0454545 = 0.163424 loss) | |
I0407 12:59:50.799103 32304 solver.cpp:245] Train net output #27: loss/loss06 = 3.26616 (* 0.0454545 = 0.148462 loss) | |
I0407 12:59:50.799118 32304 solver.cpp:245] Train net output #28: loss/loss07 = 2.02044 (* 0.0454545 = 0.0918383 loss) | |
I0407 12:59:50.799130 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.357361 (* 0.0454545 = 0.0162437 loss) | |
I0407 12:59:50.799145 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.187516 (* 0.0454545 = 0.00852346 loss) | |
I0407 12:59:50.799160 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.0102851 (* 0.0454545 = 0.000467506 loss) | |
I0407 12:59:50.799173 32304 solver.cpp:245] Train net output #32: loss/loss11 = 4.75849e-05 (* 0.0454545 = 2.16295e-06 loss) | |
I0407 12:59:50.799186 32304 solver.cpp:245] Train net output #33: loss/loss12 = 4.88441e-05 (* 0.0454545 = 2.22019e-06 loss) | |
I0407 12:59:50.799204 32304 solver.cpp:245] Train net output #34: loss/loss13 = 5.02118e-05 (* 0.0454545 = 2.28235e-06 loss) | |
I0407 12:59:50.799219 32304 solver.cpp:245] Train net output #35: loss/loss14 = 4.68582e-05 (* 0.0454545 = 2.12992e-06 loss) | |
I0407 12:59:50.799233 32304 solver.cpp:245] Train net output #36: loss/loss15 = 4.78269e-05 (* 0.0454545 = 2.17395e-06 loss) | |
I0407 12:59:50.799247 32304 solver.cpp:245] Train net output #37: loss/loss16 = 4.81885e-05 (* 0.0454545 = 2.19039e-06 loss) | |
I0407 12:59:50.799260 32304 solver.cpp:245] Train net output #38: loss/loss17 = 4.6389e-05 (* 0.0454545 = 2.10859e-06 loss) | |
I0407 12:59:50.799288 32304 solver.cpp:245] Train net output #39: loss/loss18 = 4.79426e-05 (* 0.0454545 = 2.17921e-06 loss) | |
I0407 12:59:50.799304 32304 solver.cpp:245] Train net output #40: loss/loss19 = 4.54352e-05 (* 0.0454545 = 2.06523e-06 loss) | |
I0407 12:59:50.799340 32304 solver.cpp:245] Train net output #41: loss/loss20 = 4.60013e-05 (* 0.0454545 = 2.09097e-06 loss) | |
I0407 12:59:50.799358 32304 solver.cpp:245] Train net output #42: loss/loss21 = 4.53196e-05 (* 0.0454545 = 2.05998e-06 loss) | |
I0407 12:59:50.799372 32304 solver.cpp:245] Train net output #43: loss/loss22 = 4.85276e-05 (* 0.0454545 = 2.2058e-06 loss) | |
I0407 12:59:50.799384 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 12:59:50.799396 32304 solver.cpp:245] Train net output #45: total_confidence = 5.86139e-07 | |
I0407 12:59:50.799412 32304 sgd_solver.cpp:106] Iteration 15500, lr = 0.00969 | |
I0407 13:01:03.729580 32304 solver.cpp:229] Iteration 16000, loss = 1.09447 | |
I0407 13:01:03.729776 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0407 13:01:03.729807 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0407 13:01:03.729828 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0407 13:01:03.729849 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 13:01:03.729871 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.40625 | |
I0407 13:01:03.729892 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.53125 | |
I0407 13:01:03.729913 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0407 13:01:03.729939 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.96875 | |
I0407 13:01:03.729961 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 13:01:03.729982 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 13:01:03.730003 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 13:01:03.730026 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 13:01:03.730046 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 13:01:03.730069 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 13:01:03.730093 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 13:01:03.730114 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 13:01:03.730136 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 13:01:03.730157 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 13:01:03.730178 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 13:01:03.730198 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 13:01:03.730221 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 13:01:03.730240 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 13:01:03.730268 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.63995 (* 0.0454545 = 0.165452 loss) | |
I0407 13:01:03.730295 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.85499 (* 0.0454545 = 0.175227 loss) | |
I0407 13:01:03.730320 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.86772 (* 0.0454545 = 0.175805 loss) | |
I0407 13:01:03.730347 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.96145 (* 0.0454545 = 0.180066 loss) | |
I0407 13:01:03.730373 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.24708 (* 0.0454545 = 0.147595 loss) | |
I0407 13:01:03.730398 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.64341 (* 0.0454545 = 0.120155 loss) | |
I0407 13:01:03.730423 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.79255 (* 0.0454545 = 0.0814794 loss) | |
I0407 13:01:03.730449 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.270611 (* 0.0454545 = 0.0123005 loss) | |
I0407 13:01:03.730476 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.0247869 (* 0.0454545 = 0.00112668 loss) | |
I0407 13:01:03.730502 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.0082991 (* 0.0454545 = 0.000377232 loss) | |
I0407 13:01:03.730530 32304 solver.cpp:245] Train net output #32: loss/loss11 = 4.73585e-05 (* 0.0454545 = 2.15266e-06 loss) | |
I0407 13:01:03.730556 32304 solver.cpp:245] Train net output #33: loss/loss12 = 5.00976e-05 (* 0.0454545 = 2.27717e-06 loss) | |
I0407 13:01:03.730581 32304 solver.cpp:245] Train net output #34: loss/loss13 = 4.73227e-05 (* 0.0454545 = 2.15103e-06 loss) | |
I0407 13:01:03.730607 32304 solver.cpp:245] Train net output #35: loss/loss14 = 4.56735e-05 (* 0.0454545 = 2.07607e-06 loss) | |
I0407 13:01:03.730634 32304 solver.cpp:245] Train net output #36: loss/loss15 = 5.04389e-05 (* 0.0454545 = 2.29268e-06 loss) | |
I0407 13:01:03.730661 32304 solver.cpp:245] Train net output #37: loss/loss16 = 4.64614e-05 (* 0.0454545 = 2.11188e-06 loss) | |
I0407 13:01:03.730687 32304 solver.cpp:245] Train net output #38: loss/loss17 = 4.43579e-05 (* 0.0454545 = 2.01627e-06 loss) | |
I0407 13:01:03.730738 32304 solver.cpp:245] Train net output #39: loss/loss18 = 4.65176e-05 (* 0.0454545 = 2.11444e-06 loss) | |
I0407 13:01:03.730769 32304 solver.cpp:245] Train net output #40: loss/loss19 = 4.38083e-05 (* 0.0454545 = 1.99128e-06 loss) | |
I0407 13:01:03.730798 32304 solver.cpp:245] Train net output #41: loss/loss20 = 4.68643e-05 (* 0.0454545 = 2.13019e-06 loss) | |
I0407 13:01:03.730824 32304 solver.cpp:245] Train net output #42: loss/loss21 = 4.51613e-05 (* 0.0454545 = 2.05279e-06 loss) | |
I0407 13:01:03.730852 32304 solver.cpp:245] Train net output #43: loss/loss22 = 4.47472e-05 (* 0.0454545 = 2.03396e-06 loss) | |
I0407 13:01:03.730877 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 13:01:03.730903 32304 solver.cpp:245] Train net output #45: total_confidence = 1.51786e-05 | |
I0407 13:01:03.730928 32304 sgd_solver.cpp:106] Iteration 16000, lr = 0.00968 | |
I0407 13:02:15.661108 32304 solver.cpp:229] Iteration 16500, loss = 1.08709 | |
I0407 13:02:15.661239 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0407 13:02:15.661259 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 13:02:15.661273 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 13:02:15.661284 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 13:02:15.661296 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.15625 | |
I0407 13:02:15.661309 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0407 13:02:15.661320 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.5625 | |
I0407 13:02:15.661331 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 13:02:15.661344 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 13:02:15.661355 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0407 13:02:15.661366 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 13:02:15.661377 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 13:02:15.661389 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 13:02:15.661401 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 13:02:15.661412 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 13:02:15.661423 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 13:02:15.661435 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 13:02:15.661447 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 13:02:15.661458 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 13:02:15.661468 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 13:02:15.661480 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 13:02:15.661491 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 13:02:15.661507 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.39154 (* 0.0454545 = 0.154161 loss) | |
I0407 13:02:15.661522 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.86248 (* 0.0454545 = 0.175567 loss) | |
I0407 13:02:15.661536 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.67656 (* 0.0454545 = 0.167116 loss) | |
I0407 13:02:15.661550 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.57576 (* 0.0454545 = 0.162535 loss) | |
I0407 13:02:15.661563 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.76299 (* 0.0454545 = 0.171045 loss) | |
I0407 13:02:15.661577 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.84917 (* 0.0454545 = 0.129508 loss) | |
I0407 13:02:15.661591 32304 solver.cpp:245] Train net output #28: loss/loss07 = 2.13804 (* 0.0454545 = 0.0971838 loss) | |
I0407 13:02:15.661604 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.648027 (* 0.0454545 = 0.0294558 loss) | |
I0407 13:02:15.661618 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.343457 (* 0.0454545 = 0.0156117 loss) | |
I0407 13:02:15.661633 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.402069 (* 0.0454545 = 0.0182759 loss) | |
I0407 13:02:15.661646 32304 solver.cpp:245] Train net output #32: loss/loss11 = 0.000230636 (* 0.0454545 = 1.04835e-05 loss) | |
I0407 13:02:15.661660 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.000234747 (* 0.0454545 = 1.06703e-05 loss) | |
I0407 13:02:15.661674 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.000227985 (* 0.0454545 = 1.03629e-05 loss) | |
I0407 13:02:15.661692 32304 solver.cpp:245] Train net output #35: loss/loss14 = 0.000215813 (* 0.0454545 = 9.8097e-06 loss) | |
I0407 13:02:15.661706 32304 solver.cpp:245] Train net output #36: loss/loss15 = 0.000235417 (* 0.0454545 = 1.07008e-05 loss) | |
I0407 13:02:15.661720 32304 solver.cpp:245] Train net output #37: loss/loss16 = 0.000226342 (* 0.0454545 = 1.02883e-05 loss) | |
I0407 13:02:15.661734 32304 solver.cpp:245] Train net output #38: loss/loss17 = 0.000204814 (* 0.0454545 = 9.30971e-06 loss) | |
I0407 13:02:15.661767 32304 solver.cpp:245] Train net output #39: loss/loss18 = 0.000216996 (* 0.0454545 = 9.86347e-06 loss) | |
I0407 13:02:15.661782 32304 solver.cpp:245] Train net output #40: loss/loss19 = 0.000196647 (* 0.0454545 = 8.9385e-06 loss) | |
I0407 13:02:15.661795 32304 solver.cpp:245] Train net output #41: loss/loss20 = 0.000239289 (* 0.0454545 = 1.08768e-05 loss) | |
I0407 13:02:15.661809 32304 solver.cpp:245] Train net output #42: loss/loss21 = 0.000226839 (* 0.0454545 = 1.03108e-05 loss) | |
I0407 13:02:15.661823 32304 solver.cpp:245] Train net output #43: loss/loss22 = 0.000216447 (* 0.0454545 = 9.83848e-06 loss) | |
I0407 13:02:15.661834 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 13:02:15.661846 32304 solver.cpp:245] Train net output #45: total_confidence = 2.10976e-05 | |
I0407 13:02:15.661861 32304 sgd_solver.cpp:106] Iteration 16500, lr = 0.00967 | |
I0407 13:03:27.846272 32304 solver.cpp:229] Iteration 17000, loss = 1.08178 | |
I0407 13:03:27.846431 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0 | |
I0407 13:03:27.846459 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0407 13:03:27.846482 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0407 13:03:27.846501 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.21875 | |
I0407 13:03:27.846524 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.34375 | |
I0407 13:03:27.846544 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0407 13:03:27.846565 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.78125 | |
I0407 13:03:27.846587 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0407 13:03:27.846608 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 13:03:27.846631 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0407 13:03:27.846652 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 13:03:27.846671 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 13:03:27.846693 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 13:03:27.846716 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 13:03:27.846740 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 13:03:27.846760 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 13:03:27.846782 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 13:03:27.846803 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 13:03:27.846823 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 13:03:27.846844 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 13:03:27.846866 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 13:03:27.846887 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 13:03:27.846915 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.88297 (* 0.0454545 = 0.176499 loss) | |
I0407 13:03:27.846942 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.7447 (* 0.0454545 = 0.170214 loss) | |
I0407 13:03:27.846967 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.75763 (* 0.0454545 = 0.170801 loss) | |
I0407 13:03:27.846993 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.69891 (* 0.0454545 = 0.168132 loss) | |
I0407 13:03:27.847036 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.1404 (* 0.0454545 = 0.142745 loss) | |
I0407 13:03:27.847064 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.63241 (* 0.0454545 = 0.119655 loss) | |
I0407 13:03:27.847095 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.15032 (* 0.0454545 = 0.0522874 loss) | |
I0407 13:03:27.847122 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.482208 (* 0.0454545 = 0.0219185 loss) | |
I0407 13:03:27.847148 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.323908 (* 0.0454545 = 0.0147231 loss) | |
I0407 13:03:27.847174 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.375251 (* 0.0454545 = 0.0170569 loss) | |
I0407 13:03:27.847200 32304 solver.cpp:245] Train net output #32: loss/loss11 = 0.000120932 (* 0.0454545 = 5.49691e-06 loss) | |
I0407 13:03:27.847228 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.000118039 (* 0.0454545 = 5.36541e-06 loss) | |
I0407 13:03:27.847254 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.000118112 (* 0.0454545 = 5.36872e-06 loss) | |
I0407 13:03:27.847278 32304 solver.cpp:245] Train net output #35: loss/loss14 = 0.000111331 (* 0.0454545 = 5.06048e-06 loss) | |
I0407 13:03:27.847304 32304 solver.cpp:245] Train net output #36: loss/loss15 = 0.000114975 (* 0.0454545 = 5.22613e-06 loss) | |
I0407 13:03:27.847353 32304 solver.cpp:245] Train net output #37: loss/loss16 = 0.000114669 (* 0.0454545 = 5.21224e-06 loss) | |
I0407 13:03:27.847383 32304 solver.cpp:245] Train net output #38: loss/loss17 = 0.000104382 (* 0.0454545 = 4.74465e-06 loss) | |
I0407 13:03:27.847429 32304 solver.cpp:245] Train net output #39: loss/loss18 = 0.000116089 (* 0.0454545 = 5.27679e-06 loss) | |
I0407 13:03:27.847457 32304 solver.cpp:245] Train net output #40: loss/loss19 = 0.000100941 (* 0.0454545 = 4.58822e-06 loss) | |
I0407 13:03:27.847486 32304 solver.cpp:245] Train net output #41: loss/loss20 = 0.000123713 (* 0.0454545 = 5.62334e-06 loss) | |
I0407 13:03:27.847515 32304 solver.cpp:245] Train net output #42: loss/loss21 = 0.000116706 (* 0.0454545 = 5.30483e-06 loss) | |
I0407 13:03:27.847544 32304 solver.cpp:245] Train net output #43: loss/loss22 = 0.000113506 (* 0.0454545 = 5.15938e-06 loss) | |
I0407 13:03:27.847566 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 13:03:27.847587 32304 solver.cpp:245] Train net output #45: total_confidence = 1.00219e-05 | |
I0407 13:03:27.847612 32304 sgd_solver.cpp:106] Iteration 17000, lr = 0.00966 | |
I0407 13:04:39.758139 32304 solver.cpp:229] Iteration 17500, loss = 1.07743 | |
I0407 13:04:39.758301 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 13:04:39.758329 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0407 13:04:39.758352 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0407 13:04:39.758381 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125 | |
I0407 13:04:39.758404 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.0625 | |
I0407 13:04:39.758425 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.28125 | |
I0407 13:04:39.758445 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.78125 | |
I0407 13:04:39.758476 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 13:04:39.758496 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0407 13:04:39.758518 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 13:04:39.758539 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 13:04:39.758560 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 13:04:39.758581 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 13:04:39.758605 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 13:04:39.758627 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 13:04:39.758648 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 13:04:39.758668 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 13:04:39.758690 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 13:04:39.758718 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 13:04:39.758738 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 13:04:39.758759 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 13:04:39.758788 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 13:04:39.758816 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.51511 (* 0.0454545 = 0.159778 loss) | |
I0407 13:04:39.758843 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.71469 (* 0.0454545 = 0.168849 loss) | |
I0407 13:04:39.758867 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.80191 (* 0.0454545 = 0.172814 loss) | |
I0407 13:04:39.758900 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.63728 (* 0.0454545 = 0.165331 loss) | |
I0407 13:04:39.758929 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.76095 (* 0.0454545 = 0.170952 loss) | |
I0407 13:04:39.758965 32304 solver.cpp:245] Train net output #27: loss/loss06 = 3.21217 (* 0.0454545 = 0.146008 loss) | |
I0407 13:04:39.758992 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.12876 (* 0.0454545 = 0.0513073 loss) | |
I0407 13:04:39.759017 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.361488 (* 0.0454545 = 0.0164313 loss) | |
I0407 13:04:39.759044 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.183225 (* 0.0454545 = 0.00832842 loss) | |
I0407 13:04:39.759070 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.00448206 (* 0.0454545 = 0.00020373 loss) | |
I0407 13:04:39.759096 32304 solver.cpp:245] Train net output #32: loss/loss11 = 2.97729e-05 (* 0.0454545 = 1.35332e-06 loss) | |
I0407 13:04:39.759124 32304 solver.cpp:245] Train net output #33: loss/loss12 = 2.92047e-05 (* 0.0454545 = 1.32749e-06 loss) | |
I0407 13:04:39.759150 32304 solver.cpp:245] Train net output #34: loss/loss13 = 2.88358e-05 (* 0.0454545 = 1.31072e-06 loss) | |
I0407 13:04:39.759183 32304 solver.cpp:245] Train net output #35: loss/loss14 = 2.75932e-05 (* 0.0454545 = 1.25424e-06 loss) | |
I0407 13:04:39.759210 32304 solver.cpp:245] Train net output #36: loss/loss15 = 2.87315e-05 (* 0.0454545 = 1.30598e-06 loss) | |
I0407 13:04:39.759237 32304 solver.cpp:245] Train net output #37: loss/loss16 = 2.9391e-05 (* 0.0454545 = 1.33596e-06 loss) | |
I0407 13:04:39.759269 32304 solver.cpp:245] Train net output #38: loss/loss17 = 2.42475e-05 (* 0.0454545 = 1.10216e-06 loss) | |
I0407 13:04:39.759348 32304 solver.cpp:245] Train net output #39: loss/loss18 = 2.81074e-05 (* 0.0454545 = 1.27761e-06 loss) | |
I0407 13:04:39.759379 32304 solver.cpp:245] Train net output #40: loss/loss19 = 2.45344e-05 (* 0.0454545 = 1.1152e-06 loss) | |
I0407 13:04:39.759407 32304 solver.cpp:245] Train net output #41: loss/loss20 = 3.05423e-05 (* 0.0454545 = 1.38829e-06 loss) | |
I0407 13:04:39.759436 32304 solver.cpp:245] Train net output #42: loss/loss21 = 2.76641e-05 (* 0.0454545 = 1.25746e-06 loss) | |
I0407 13:04:39.759467 32304 solver.cpp:245] Train net output #43: loss/loss22 = 2.77125e-05 (* 0.0454545 = 1.25966e-06 loss) | |
I0407 13:04:39.759491 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 13:04:39.759513 32304 solver.cpp:245] Train net output #45: total_confidence = 5.39093e-05 | |
I0407 13:04:39.759542 32304 sgd_solver.cpp:106] Iteration 17500, lr = 0.00965 | |
I0407 13:05:52.230103 32304 solver.cpp:229] Iteration 18000, loss = 1.07548 | |
I0407 13:05:52.230270 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 13:05:52.230295 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0407 13:05:52.230321 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 13:05:52.230336 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 13:05:52.230350 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.125 | |
I0407 13:05:52.230361 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.25 | |
I0407 13:05:52.230373 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0407 13:05:52.230384 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 13:05:52.230396 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0407 13:05:52.230408 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 13:05:52.230420 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 13:05:52.230432 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 13:05:52.230443 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 13:05:52.230454 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 13:05:52.230474 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 13:05:52.230497 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 13:05:52.230516 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 13:05:52.230536 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 13:05:52.230552 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 13:05:52.230564 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 13:05:52.230576 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 13:05:52.230587 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 13:05:52.230603 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.94299 (* 0.0454545 = 0.179227 loss) | |
I0407 13:05:52.230618 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.94119 (* 0.0454545 = 0.179145 loss) | |
I0407 13:05:52.230631 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.8703 (* 0.0454545 = 0.175923 loss) | |
I0407 13:05:52.230645 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.93693 (* 0.0454545 = 0.178951 loss) | |
I0407 13:05:52.230659 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.77511 (* 0.0454545 = 0.171596 loss) | |
I0407 13:05:52.230672 32304 solver.cpp:245] Train net output #27: loss/loss06 = 3.54211 (* 0.0454545 = 0.161005 loss) | |
I0407 13:05:52.230685 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.54734 (* 0.0454545 = 0.0703338 loss) | |
I0407 13:05:52.230700 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.525245 (* 0.0454545 = 0.0238748 loss) | |
I0407 13:05:52.230713 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.243535 (* 0.0454545 = 0.0110698 loss) | |
I0407 13:05:52.230728 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.0181648 (* 0.0454545 = 0.00082567 loss) | |
I0407 13:05:52.230742 32304 solver.cpp:245] Train net output #32: loss/loss11 = 0.000460941 (* 0.0454545 = 2.09519e-05 loss) | |
I0407 13:05:52.230756 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.000440406 (* 0.0454545 = 2.00185e-05 loss) | |
I0407 13:05:52.230770 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.000455956 (* 0.0454545 = 2.07253e-05 loss) | |
I0407 13:05:52.230784 32304 solver.cpp:245] Train net output #35: loss/loss14 = 0.000437028 (* 0.0454545 = 1.98649e-05 loss) | |
I0407 13:05:52.230798 32304 solver.cpp:245] Train net output #36: loss/loss15 = 0.000442168 (* 0.0454545 = 2.00985e-05 loss) | |
I0407 13:05:52.230813 32304 solver.cpp:245] Train net output #37: loss/loss16 = 0.000450935 (* 0.0454545 = 2.04971e-05 loss) | |
I0407 13:05:52.230826 32304 solver.cpp:245] Train net output #38: loss/loss17 = 0.00042334 (* 0.0454545 = 1.92427e-05 loss) | |
I0407 13:05:52.230859 32304 solver.cpp:245] Train net output #39: loss/loss18 = 0.000445286 (* 0.0454545 = 2.02403e-05 loss) | |
I0407 13:05:52.230873 32304 solver.cpp:245] Train net output #40: loss/loss19 = 0.000405578 (* 0.0454545 = 1.84354e-05 loss) | |
I0407 13:05:52.230887 32304 solver.cpp:245] Train net output #41: loss/loss20 = 0.000463266 (* 0.0454545 = 2.10575e-05 loss) | |
I0407 13:05:52.230901 32304 solver.cpp:245] Train net output #42: loss/loss21 = 0.000443044 (* 0.0454545 = 2.01384e-05 loss) | |
I0407 13:05:52.230914 32304 solver.cpp:245] Train net output #43: loss/loss22 = 0.000437491 (* 0.0454545 = 1.98859e-05 loss) | |
I0407 13:05:52.230931 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 13:05:52.230942 32304 solver.cpp:245] Train net output #45: total_confidence = 2.97196e-06 | |
I0407 13:05:52.230957 32304 sgd_solver.cpp:106] Iteration 18000, lr = 0.00964 | |
I0407 13:07:05.062777 32304 solver.cpp:229] Iteration 18500, loss = 1.06481 | |
I0407 13:07:05.062933 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 13:07:05.062953 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 13:07:05.062966 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 13:07:05.062978 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 13:07:05.062991 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.125 | |
I0407 13:07:05.063004 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375 | |
I0407 13:07:05.063015 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0407 13:07:05.063027 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0407 13:07:05.063040 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0407 13:07:05.063051 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 13:07:05.063063 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 13:07:05.063074 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 13:07:05.063086 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 13:07:05.063097 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 13:07:05.063108 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 13:07:05.063119 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 13:07:05.063132 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 13:07:05.063143 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 13:07:05.063154 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 13:07:05.063166 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 13:07:05.063179 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 13:07:05.063189 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 13:07:05.063205 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.70428 (* 0.0454545 = 0.168376 loss) | |
I0407 13:07:05.063220 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.75331 (* 0.0454545 = 0.170605 loss) | |
I0407 13:07:05.063235 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.89899 (* 0.0454545 = 0.177227 loss) | |
I0407 13:07:05.063248 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.50627 (* 0.0454545 = 0.159376 loss) | |
I0407 13:07:05.063261 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.57656 (* 0.0454545 = 0.162571 loss) | |
I0407 13:07:05.063276 32304 solver.cpp:245] Train net output #27: loss/loss06 = 3.25075 (* 0.0454545 = 0.147761 loss) | |
I0407 13:07:05.063289 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.54956 (* 0.0454545 = 0.0704346 loss) | |
I0407 13:07:05.063303 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.458681 (* 0.0454545 = 0.0208491 loss) | |
I0407 13:07:05.063335 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.195106 (* 0.0454545 = 0.00886845 loss) | |
I0407 13:07:05.063354 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.0119287 (* 0.0454545 = 0.000542214 loss) | |
I0407 13:07:05.063367 32304 solver.cpp:245] Train net output #32: loss/loss11 = 8.26711e-05 (* 0.0454545 = 3.75778e-06 loss) | |
I0407 13:07:05.063382 32304 solver.cpp:245] Train net output #33: loss/loss12 = 8.15325e-05 (* 0.0454545 = 3.70602e-06 loss) | |
I0407 13:07:05.063396 32304 solver.cpp:245] Train net output #34: loss/loss13 = 8.43214e-05 (* 0.0454545 = 3.83279e-06 loss) | |
I0407 13:07:05.063410 32304 solver.cpp:245] Train net output #35: loss/loss14 = 8.06887e-05 (* 0.0454545 = 3.66767e-06 loss) | |
I0407 13:07:05.063424 32304 solver.cpp:245] Train net output #36: loss/loss15 = 8.08396e-05 (* 0.0454545 = 3.67453e-06 loss) | |
I0407 13:07:05.063438 32304 solver.cpp:245] Train net output #37: loss/loss16 = 8.05399e-05 (* 0.0454545 = 3.66091e-06 loss) | |
I0407 13:07:05.063452 32304 solver.cpp:245] Train net output #38: loss/loss17 = 7.48016e-05 (* 0.0454545 = 3.40008e-06 loss) | |
I0407 13:07:05.063484 32304 solver.cpp:245] Train net output #39: loss/loss18 = 8.10833e-05 (* 0.0454545 = 3.6856e-06 loss) | |
I0407 13:07:05.063500 32304 solver.cpp:245] Train net output #40: loss/loss19 = 7.48264e-05 (* 0.0454545 = 3.4012e-06 loss) | |
I0407 13:07:05.063514 32304 solver.cpp:245] Train net output #41: loss/loss20 = 8.7166e-05 (* 0.0454545 = 3.96209e-06 loss) | |
I0407 13:07:05.063529 32304 solver.cpp:245] Train net output #42: loss/loss21 = 8.21589e-05 (* 0.0454545 = 3.73449e-06 loss) | |
I0407 13:07:05.063542 32304 solver.cpp:245] Train net output #43: loss/loss22 = 8.08841e-05 (* 0.0454545 = 3.67655e-06 loss) | |
I0407 13:07:05.063555 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 13:07:05.063565 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000139739 | |
I0407 13:07:05.063580 32304 sgd_solver.cpp:106] Iteration 18500, lr = 0.00963 | |
I0407 13:08:17.650177 32304 solver.cpp:229] Iteration 19000, loss = 1.06155 | |
I0407 13:08:17.650333 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 13:08:17.650353 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 13:08:17.650367 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.1875 | |
I0407 13:08:17.650379 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 13:08:17.650391 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.125 | |
I0407 13:08:17.650403 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125 | |
I0407 13:08:17.650415 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.65625 | |
I0407 13:08:17.650427 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 13:08:17.650439 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 13:08:17.650451 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0407 13:08:17.650463 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 13:08:17.650475 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 13:08:17.650492 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 13:08:17.650513 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 13:08:17.650537 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 13:08:17.650562 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 13:08:17.650586 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 13:08:17.650612 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 13:08:17.650635 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 13:08:17.650658 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 13:08:17.650684 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 13:08:17.650710 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 13:08:17.650743 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.48602 (* 0.0454545 = 0.158456 loss) | |
I0407 13:08:17.650769 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.63165 (* 0.0454545 = 0.165075 loss) | |
I0407 13:08:17.650794 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.72839 (* 0.0454545 = 0.169472 loss) | |
I0407 13:08:17.650820 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.67044 (* 0.0454545 = 0.166838 loss) | |
I0407 13:08:17.650848 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.64869 (* 0.0454545 = 0.16585 loss) | |
I0407 13:08:17.650881 32304 solver.cpp:245] Train net output #27: loss/loss06 = 3.13381 (* 0.0454545 = 0.142446 loss) | |
I0407 13:08:17.650910 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.78952 (* 0.0454545 = 0.0813416 loss) | |
I0407 13:08:17.650944 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.407068 (* 0.0454545 = 0.0185031 loss) | |
I0407 13:08:17.650977 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.389785 (* 0.0454545 = 0.0177175 loss) | |
I0407 13:08:17.651010 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.404496 (* 0.0454545 = 0.0183862 loss) | |
I0407 13:08:17.651042 32304 solver.cpp:245] Train net output #32: loss/loss11 = 0.00045426 (* 0.0454545 = 2.06482e-05 loss) | |
I0407 13:08:17.651077 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.000424403 (* 0.0454545 = 1.92911e-05 loss) | |
I0407 13:08:17.651110 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.000439689 (* 0.0454545 = 1.99859e-05 loss) | |
I0407 13:08:17.651139 32304 solver.cpp:245] Train net output #35: loss/loss14 = 0.000420219 (* 0.0454545 = 1.91009e-05 loss) | |
I0407 13:08:17.651165 32304 solver.cpp:245] Train net output #36: loss/loss15 = 0.000459429 (* 0.0454545 = 2.08831e-05 loss) | |
I0407 13:08:17.651190 32304 solver.cpp:245] Train net output #37: loss/loss16 = 0.000445554 (* 0.0454545 = 2.02524e-05 loss) | |
I0407 13:08:17.651214 32304 solver.cpp:245] Train net output #38: loss/loss17 = 0.000411047 (* 0.0454545 = 1.86839e-05 loss) | |
I0407 13:08:17.651259 32304 solver.cpp:245] Train net output #39: loss/loss18 = 0.000432739 (* 0.0454545 = 1.967e-05 loss) | |
I0407 13:08:17.651291 32304 solver.cpp:245] Train net output #40: loss/loss19 = 0.00042319 (* 0.0454545 = 1.92359e-05 loss) | |
I0407 13:08:17.651342 32304 solver.cpp:245] Train net output #41: loss/loss20 = 0.000464106 (* 0.0454545 = 2.10957e-05 loss) | |
I0407 13:08:17.651378 32304 solver.cpp:245] Train net output #42: loss/loss21 = 0.000433624 (* 0.0454545 = 1.97102e-05 loss) | |
I0407 13:08:17.651410 32304 solver.cpp:245] Train net output #43: loss/loss22 = 0.000419706 (* 0.0454545 = 1.90775e-05 loss) | |
I0407 13:08:17.651437 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 13:08:17.651464 32304 solver.cpp:245] Train net output #45: total_confidence = 2.137e-05 | |
I0407 13:08:17.651495 32304 sgd_solver.cpp:106] Iteration 19000, lr = 0.00962 | |
I0407 13:09:28.365523 32304 solver.cpp:229] Iteration 19500, loss = 1.05412 | |
I0407 13:09:28.365666 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.03125 | |
I0407 13:09:28.365686 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 13:09:28.365700 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0407 13:09:28.365711 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375 | |
I0407 13:09:28.365723 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.15625 | |
I0407 13:09:28.365736 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625 | |
I0407 13:09:28.365746 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.84375 | |
I0407 13:09:28.365758 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.96875 | |
I0407 13:09:28.365769 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0407 13:09:28.365782 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0407 13:09:28.365792 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 13:09:28.365804 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 13:09:28.365816 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 13:09:28.365828 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 13:09:28.365839 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 13:09:28.365851 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 13:09:28.365862 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 13:09:28.365874 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 13:09:28.365885 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 13:09:28.365896 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 13:09:28.365907 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 13:09:28.365921 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 13:09:28.365943 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.46512 (* 0.0454545 = 0.157505 loss) | |
I0407 13:09:28.365970 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.51448 (* 0.0454545 = 0.159749 loss) | |
I0407 13:09:28.365998 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.65916 (* 0.0454545 = 0.166325 loss) | |
I0407 13:09:28.366020 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.60531 (* 0.0454545 = 0.163878 loss) | |
I0407 13:09:28.366044 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.53149 (* 0.0454545 = 0.160522 loss) | |
I0407 13:09:28.366068 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.73712 (* 0.0454545 = 0.124415 loss) | |
I0407 13:09:28.366094 32304 solver.cpp:245] Train net output #28: loss/loss07 = 0.978403 (* 0.0454545 = 0.0444729 loss) | |
I0407 13:09:28.366111 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.194826 (* 0.0454545 = 0.00885573 loss) | |
I0407 13:09:28.366125 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.201541 (* 0.0454545 = 0.00916095 loss) | |
I0407 13:09:28.366139 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.219996 (* 0.0454545 = 0.00999983 loss) | |
I0407 13:09:28.366153 32304 solver.cpp:245] Train net output #32: loss/loss11 = 0.000216648 (* 0.0454545 = 9.84765e-06 loss) | |
I0407 13:09:28.366168 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.000195975 (* 0.0454545 = 8.90795e-06 loss) | |
I0407 13:09:28.366181 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.000216876 (* 0.0454545 = 9.85798e-06 loss) | |
I0407 13:09:28.366195 32304 solver.cpp:245] Train net output #35: loss/loss14 = 0.000204178 (* 0.0454545 = 9.28082e-06 loss) | |
I0407 13:09:28.366210 32304 solver.cpp:245] Train net output #36: loss/loss15 = 0.000208135 (* 0.0454545 = 9.4607e-06 loss) | |
I0407 13:09:28.366225 32304 solver.cpp:245] Train net output #37: loss/loss16 = 0.00021079 (* 0.0454545 = 9.58138e-06 loss) | |
I0407 13:09:28.366238 32304 solver.cpp:245] Train net output #38: loss/loss17 = 0.00020476 (* 0.0454545 = 9.3073e-06 loss) | |
I0407 13:09:28.366271 32304 solver.cpp:245] Train net output #39: loss/loss18 = 0.000212781 (* 0.0454545 = 9.67185e-06 loss) | |
I0407 13:09:28.366286 32304 solver.cpp:245] Train net output #40: loss/loss19 = 0.000203256 (* 0.0454545 = 9.2389e-06 loss) | |
I0407 13:09:28.366299 32304 solver.cpp:245] Train net output #41: loss/loss20 = 0.000224097 (* 0.0454545 = 1.01862e-05 loss) | |
I0407 13:09:28.366313 32304 solver.cpp:245] Train net output #42: loss/loss21 = 0.000211914 (* 0.0454545 = 9.63245e-06 loss) | |
I0407 13:09:28.366328 32304 solver.cpp:245] Train net output #43: loss/loss22 = 0.000201713 (* 0.0454545 = 9.16875e-06 loss) | |
I0407 13:09:28.366339 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 13:09:28.366351 32304 solver.cpp:245] Train net output #45: total_confidence = 1.06164e-05 | |
I0407 13:09:28.366367 32304 sgd_solver.cpp:106] Iteration 19500, lr = 0.00961 | |
I0407 13:10:41.752387 32304 solver.cpp:338] Iteration 20000, Testing net (#0) | |
I0407 13:10:49.810289 32304 solver.cpp:393] Test loss: 0.940548 | |
I0407 13:10:49.810351 32304 solver.cpp:406] Test net output #0: loss/accuracy01 = 0.066 | |
I0407 13:10:49.810369 32304 solver.cpp:406] Test net output #1: loss/accuracy02 = 0.097 | |
I0407 13:10:49.810381 32304 solver.cpp:406] Test net output #2: loss/accuracy03 = 0.072 | |
I0407 13:10:49.810394 32304 solver.cpp:406] Test net output #3: loss/accuracy04 = 0.096 | |
I0407 13:10:49.810405 32304 solver.cpp:406] Test net output #4: loss/accuracy05 = 0.213 | |
I0407 13:10:49.810417 32304 solver.cpp:406] Test net output #5: loss/accuracy06 = 0.501 | |
I0407 13:10:49.810430 32304 solver.cpp:406] Test net output #6: loss/accuracy07 = 0.894 | |
I0407 13:10:49.810441 32304 solver.cpp:406] Test net output #7: loss/accuracy08 = 0.97 | |
I0407 13:10:49.810451 32304 solver.cpp:406] Test net output #8: loss/accuracy09 = 0.995 | |
I0407 13:10:49.810463 32304 solver.cpp:406] Test net output #9: loss/accuracy10 = 0.998 | |
I0407 13:10:49.810474 32304 solver.cpp:406] Test net output #10: loss/accuracy11 = 1 | |
I0407 13:10:49.810485 32304 solver.cpp:406] Test net output #11: loss/accuracy12 = 1 | |
I0407 13:10:49.810497 32304 solver.cpp:406] Test net output #12: loss/accuracy13 = 1 | |
I0407 13:10:49.810508 32304 solver.cpp:406] Test net output #13: loss/accuracy14 = 1 | |
I0407 13:10:49.810519 32304 solver.cpp:406] Test net output #14: loss/accuracy15 = 1 | |
I0407 13:10:49.810530 32304 solver.cpp:406] Test net output #15: loss/accuracy16 = 1 | |
I0407 13:10:49.810542 32304 solver.cpp:406] Test net output #16: loss/accuracy17 = 1 | |
I0407 13:10:49.810554 32304 solver.cpp:406] Test net output #17: loss/accuracy18 = 1 | |
I0407 13:10:49.810564 32304 solver.cpp:406] Test net output #18: loss/accuracy19 = 1 | |
I0407 13:10:49.810575 32304 solver.cpp:406] Test net output #19: loss/accuracy20 = 1 | |
I0407 13:10:49.810587 32304 solver.cpp:406] Test net output #20: loss/accuracy21 = 1 | |
I0407 13:10:49.810598 32304 solver.cpp:406] Test net output #21: loss/accuracy22 = 1 | |
I0407 13:10:49.810614 32304 solver.cpp:406] Test net output #22: loss/loss01 = 3.47632 (* 0.0454545 = 0.158014 loss) | |
I0407 13:10:49.810628 32304 solver.cpp:406] Test net output #23: loss/loss02 = 3.45262 (* 0.0454545 = 0.156937 loss) | |
I0407 13:10:49.810642 32304 solver.cpp:406] Test net output #24: loss/loss03 = 3.41067 (* 0.0454545 = 0.15503 loss) | |
I0407 13:10:49.810655 32304 solver.cpp:406] Test net output #25: loss/loss04 = 3.39505 (* 0.0454545 = 0.15432 loss) | |
I0407 13:10:49.810669 32304 solver.cpp:406] Test net output #26: loss/loss05 = 3.40316 (* 0.0454545 = 0.154689 loss) | |
I0407 13:10:49.810683 32304 solver.cpp:406] Test net output #27: loss/loss06 = 2.40369 (* 0.0454545 = 0.109259 loss) | |
I0407 13:10:49.810696 32304 solver.cpp:406] Test net output #28: loss/loss07 = 0.823994 (* 0.0454545 = 0.0374543 loss) | |
I0407 13:10:49.810719 32304 solver.cpp:406] Test net output #29: loss/loss08 = 0.253687 (* 0.0454545 = 0.0115312 loss) | |
I0407 13:10:49.810734 32304 solver.cpp:406] Test net output #30: loss/loss09 = 0.04729 (* 0.0454545 = 0.00214954 loss) | |
I0407 13:10:49.810746 32304 solver.cpp:406] Test net output #31: loss/loss10 = 0.0224433 (* 0.0454545 = 0.00102015 loss) | |
I0407 13:10:49.810760 32304 solver.cpp:406] Test net output #32: loss/loss11 = 0.000268761 (* 0.0454545 = 1.22164e-05 loss) | |
I0407 13:10:49.810775 32304 solver.cpp:406] Test net output #33: loss/loss12 = 0.000245358 (* 0.0454545 = 1.11526e-05 loss) | |
I0407 13:10:49.810788 32304 solver.cpp:406] Test net output #34: loss/loss13 = 0.000274862 (* 0.0454545 = 1.24937e-05 loss) | |
I0407 13:10:49.810806 32304 solver.cpp:406] Test net output #35: loss/loss14 = 0.000253517 (* 0.0454545 = 1.15235e-05 loss) | |
I0407 13:10:49.810820 32304 solver.cpp:406] Test net output #36: loss/loss15 = 0.000261973 (* 0.0454545 = 1.19078e-05 loss) | |
I0407 13:10:49.810834 32304 solver.cpp:406] Test net output #37: loss/loss16 = 0.000260054 (* 0.0454545 = 1.18206e-05 loss) | |
I0407 13:10:49.810847 32304 solver.cpp:406] Test net output #38: loss/loss17 = 0.000241896 (* 0.0454545 = 1.09953e-05 loss) | |
I0407 13:10:49.810900 32304 solver.cpp:406] Test net output #39: loss/loss18 = 0.000269478 (* 0.0454545 = 1.2249e-05 loss) | |
I0407 13:10:49.810915 32304 solver.cpp:406] Test net output #40: loss/loss19 = 0.000245819 (* 0.0454545 = 1.11736e-05 loss) | |
I0407 13:10:49.810933 32304 solver.cpp:406] Test net output #41: loss/loss20 = 0.000277784 (* 0.0454545 = 1.26266e-05 loss) | |
I0407 13:10:49.810947 32304 solver.cpp:406] Test net output #42: loss/loss21 = 0.000258288 (* 0.0454545 = 1.17404e-05 loss) | |
I0407 13:10:49.810961 32304 solver.cpp:406] Test net output #43: loss/loss22 = 0.000257337 (* 0.0454545 = 1.16971e-05 loss) | |
I0407 13:10:49.810972 32304 solver.cpp:406] Test net output #44: total_accuracy = 0.001 | |
I0407 13:10:49.810984 32304 solver.cpp:406] Test net output #45: total_confidence = 3.90288e-05 | |
I0407 13:10:49.845671 32304 solver.cpp:229] Iteration 20000, loss = 1.04859 | |
I0407 13:10:49.845736 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.15625 | |
I0407 13:10:49.845754 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0407 13:10:49.845767 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0407 13:10:49.845779 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375 | |
I0407 13:10:49.845791 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0407 13:10:49.845803 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0407 13:10:49.845815 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.84375 | |
I0407 13:10:49.845826 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 13:10:49.845839 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0407 13:10:49.845850 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 13:10:49.845862 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 13:10:49.845873 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 13:10:49.845885 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 13:10:49.845897 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 13:10:49.845909 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 13:10:49.845921 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 13:10:49.845932 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 13:10:49.845944 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 13:10:49.845955 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 13:10:49.845966 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 13:10:49.845978 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 13:10:49.845995 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 13:10:49.846035 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.30585 (* 0.0454545 = 0.150266 loss) | |
I0407 13:10:49.846063 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.69567 (* 0.0454545 = 0.167985 loss) | |
I0407 13:10:49.846096 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.53456 (* 0.0454545 = 0.160662 loss) | |
I0407 13:10:49.846117 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.83411 (* 0.0454545 = 0.174278 loss) | |
I0407 13:10:49.846130 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.42679 (* 0.0454545 = 0.155763 loss) | |
I0407 13:10:49.846144 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.48457 (* 0.0454545 = 0.112935 loss) | |
I0407 13:10:49.846158 32304 solver.cpp:245] Train net output #28: loss/loss07 = 0.860367 (* 0.0454545 = 0.0391076 loss) | |
I0407 13:10:49.846171 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.602182 (* 0.0454545 = 0.0273719 loss) | |
I0407 13:10:49.846185 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.172972 (* 0.0454545 = 0.00786237 loss) | |
I0407 13:10:49.846226 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.00986224 (* 0.0454545 = 0.000448284 loss) | |
I0407 13:10:49.846242 32304 solver.cpp:245] Train net output #32: loss/loss11 = 5.3998e-05 (* 0.0454545 = 2.45446e-06 loss) | |
I0407 13:10:49.846256 32304 solver.cpp:245] Train net output #33: loss/loss12 = 5.07841e-05 (* 0.0454545 = 2.30837e-06 loss) | |
I0407 13:10:49.846271 32304 solver.cpp:245] Train net output #34: loss/loss13 = 5.78435e-05 (* 0.0454545 = 2.62925e-06 loss) | |
I0407 13:10:49.846283 32304 solver.cpp:245] Train net output #35: loss/loss14 = 5.31373e-05 (* 0.0454545 = 2.41533e-06 loss) | |
I0407 13:10:49.846297 32304 solver.cpp:245] Train net output #36: loss/loss15 = 5.44806e-05 (* 0.0454545 = 2.47639e-06 loss) | |
I0407 13:10:49.846312 32304 solver.cpp:245] Train net output #37: loss/loss16 = 5.25223e-05 (* 0.0454545 = 2.38738e-06 loss) | |
I0407 13:10:49.846325 32304 solver.cpp:245] Train net output #38: loss/loss17 = 4.92374e-05 (* 0.0454545 = 2.23806e-06 loss) | |
I0407 13:10:49.846339 32304 solver.cpp:245] Train net output #39: loss/loss18 = 5.35376e-05 (* 0.0454545 = 2.43353e-06 loss) | |
I0407 13:10:49.846354 32304 solver.cpp:245] Train net output #40: loss/loss19 = 5.27236e-05 (* 0.0454545 = 2.39653e-06 loss) | |
I0407 13:10:49.846366 32304 solver.cpp:245] Train net output #41: loss/loss20 = 5.69384e-05 (* 0.0454545 = 2.58811e-06 loss) | |
I0407 13:10:49.846380 32304 solver.cpp:245] Train net output #42: loss/loss21 = 5.25691e-05 (* 0.0454545 = 2.38951e-06 loss) | |
I0407 13:10:49.846395 32304 solver.cpp:245] Train net output #43: loss/loss22 = 5.34521e-05 (* 0.0454545 = 2.42964e-06 loss) | |
I0407 13:10:49.846412 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 13:10:49.846446 32304 solver.cpp:245] Train net output #45: total_confidence = 5.20062e-05 | |
I0407 13:10:49.846474 32304 sgd_solver.cpp:106] Iteration 20000, lr = 0.0096 | |
I0407 13:12:01.369567 32304 solver.cpp:229] Iteration 20500, loss = 1.04538 | |
I0407 13:12:01.369738 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0407 13:12:01.369767 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 13:12:01.369788 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 13:12:01.369810 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625 | |
I0407 13:12:01.369832 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.15625 | |
I0407 13:12:01.369853 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.25 | |
I0407 13:12:01.369874 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0407 13:12:01.369895 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 13:12:01.369920 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0407 13:12:01.369943 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0407 13:12:01.369963 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 13:12:01.369984 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 13:12:01.370004 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 13:12:01.370026 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 13:12:01.370050 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 13:12:01.370071 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 13:12:01.370095 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 13:12:01.370115 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 13:12:01.370134 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 13:12:01.370156 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 13:12:01.370177 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 13:12:01.370196 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 13:12:01.370223 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.46333 (* 0.0454545 = 0.157424 loss) | |
I0407 13:12:01.370249 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.83943 (* 0.0454545 = 0.174519 loss) | |
I0407 13:12:01.370275 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.88669 (* 0.0454545 = 0.176668 loss) | |
I0407 13:12:01.370301 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.60904 (* 0.0454545 = 0.164047 loss) | |
I0407 13:12:01.370326 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.51237 (* 0.0454545 = 0.159653 loss) | |
I0407 13:12:01.370352 32304 solver.cpp:245] Train net output #27: loss/loss06 = 3.40391 (* 0.0454545 = 0.154723 loss) | |
I0407 13:12:01.370393 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.68306 (* 0.0454545 = 0.0765028 loss) | |
I0407 13:12:01.370422 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.494337 (* 0.0454545 = 0.0224699 loss) | |
I0407 13:12:01.370448 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.178321 (* 0.0454545 = 0.0081055 loss) | |
I0407 13:12:01.370474 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.200152 (* 0.0454545 = 0.00909783 loss) | |
I0407 13:12:01.370501 32304 solver.cpp:245] Train net output #32: loss/loss11 = 0.000580706 (* 0.0454545 = 2.63957e-05 loss) | |
I0407 13:12:01.370527 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.000535188 (* 0.0454545 = 2.43267e-05 loss) | |
I0407 13:12:01.370553 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.000605625 (* 0.0454545 = 2.75284e-05 loss) | |
I0407 13:12:01.370579 32304 solver.cpp:245] Train net output #35: loss/loss14 = 0.000526134 (* 0.0454545 = 2.39152e-05 loss) | |
I0407 13:12:01.370604 32304 solver.cpp:245] Train net output #36: loss/loss15 = 0.000565845 (* 0.0454545 = 2.57202e-05 loss) | |
I0407 13:12:01.370630 32304 solver.cpp:245] Train net output #37: loss/loss16 = 0.000561883 (* 0.0454545 = 2.55401e-05 loss) | |
I0407 13:12:01.370656 32304 solver.cpp:245] Train net output #38: loss/loss17 = 0.000547644 (* 0.0454545 = 2.48929e-05 loss) | |
I0407 13:12:01.370702 32304 solver.cpp:245] Train net output #39: loss/loss18 = 0.00059504 (* 0.0454545 = 2.70473e-05 loss) | |
I0407 13:12:01.370730 32304 solver.cpp:245] Train net output #40: loss/loss19 = 0.000551821 (* 0.0454545 = 2.50828e-05 loss) | |
I0407 13:12:01.370767 32304 solver.cpp:245] Train net output #41: loss/loss20 = 0.00059032 (* 0.0454545 = 2.68327e-05 loss) | |
I0407 13:12:01.370797 32304 solver.cpp:245] Train net output #42: loss/loss21 = 0.000574286 (* 0.0454545 = 2.61039e-05 loss) | |
I0407 13:12:01.370827 32304 solver.cpp:245] Train net output #43: loss/loss22 = 0.000544677 (* 0.0454545 = 2.47581e-05 loss) | |
I0407 13:12:01.370851 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 13:12:01.370872 32304 solver.cpp:245] Train net output #45: total_confidence = 8.98801e-05 | |
I0407 13:12:01.370896 32304 sgd_solver.cpp:106] Iteration 20500, lr = 0.00959 | |
I0407 13:13:13.786046 32304 solver.cpp:229] Iteration 21000, loss = 1.03751 | |
I0407 13:13:13.786197 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.15625 | |
I0407 13:13:13.786217 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 13:13:13.786231 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 13:13:13.786243 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625 | |
I0407 13:13:13.786255 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.15625 | |
I0407 13:13:13.786267 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375 | |
I0407 13:13:13.786278 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.65625 | |
I0407 13:13:13.786289 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0407 13:13:13.786301 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0407 13:13:13.786314 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 13:13:13.786324 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 13:13:13.786336 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 13:13:13.786347 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 13:13:13.786360 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 13:13:13.786370 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 13:13:13.786382 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 13:13:13.786393 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 13:13:13.786412 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 13:13:13.786437 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 13:13:13.786451 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 13:13:13.786463 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 13:13:13.786478 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 13:13:13.786502 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.46957 (* 0.0454545 = 0.157708 loss) | |
I0407 13:13:13.786530 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.48705 (* 0.0454545 = 0.158502 loss) | |
I0407 13:13:13.786557 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.54422 (* 0.0454545 = 0.161101 loss) | |
I0407 13:13:13.786584 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.41736 (* 0.0454545 = 0.155334 loss) | |
I0407 13:13:13.786602 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.33659 (* 0.0454545 = 0.151663 loss) | |
I0407 13:13:13.786615 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.97824 (* 0.0454545 = 0.135374 loss) | |
I0407 13:13:13.786629 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.86642 (* 0.0454545 = 0.0848371 loss) | |
I0407 13:13:13.786643 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.712933 (* 0.0454545 = 0.0324061 loss) | |
I0407 13:13:13.786658 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.26014 (* 0.0454545 = 0.0118246 loss) | |
I0407 13:13:13.786672 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.0287164 (* 0.0454545 = 0.00130529 loss) | |
I0407 13:13:13.786686 32304 solver.cpp:245] Train net output #32: loss/loss11 = 0.000436527 (* 0.0454545 = 1.98421e-05 loss) | |
I0407 13:13:13.786700 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.000405512 (* 0.0454545 = 1.84323e-05 loss) | |
I0407 13:13:13.786715 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.000435371 (* 0.0454545 = 1.97896e-05 loss) | |
I0407 13:13:13.786727 32304 solver.cpp:245] Train net output #35: loss/loss14 = 0.000387669 (* 0.0454545 = 1.76213e-05 loss) | |
I0407 13:13:13.786741 32304 solver.cpp:245] Train net output #36: loss/loss15 = 0.000424267 (* 0.0454545 = 1.92849e-05 loss) | |
I0407 13:13:13.786756 32304 solver.cpp:245] Train net output #37: loss/loss16 = 0.000416823 (* 0.0454545 = 1.89465e-05 loss) | |
I0407 13:13:13.786769 32304 solver.cpp:245] Train net output #38: loss/loss17 = 0.000409382 (* 0.0454545 = 1.86083e-05 loss) | |
I0407 13:13:13.786801 32304 solver.cpp:245] Train net output #39: loss/loss18 = 0.00041957 (* 0.0454545 = 1.90714e-05 loss) | |
I0407 13:13:13.786816 32304 solver.cpp:245] Train net output #40: loss/loss19 = 0.000388396 (* 0.0454545 = 1.76543e-05 loss) | |
I0407 13:13:13.786830 32304 solver.cpp:245] Train net output #41: loss/loss20 = 0.000439211 (* 0.0454545 = 1.99641e-05 loss) | |
I0407 13:13:13.786844 32304 solver.cpp:245] Train net output #42: loss/loss21 = 0.000423408 (* 0.0454545 = 1.92458e-05 loss) | |
I0407 13:13:13.786859 32304 solver.cpp:245] Train net output #43: loss/loss22 = 0.000408142 (* 0.0454545 = 1.85519e-05 loss) | |
I0407 13:13:13.786870 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 13:13:13.786885 32304 solver.cpp:245] Train net output #45: total_confidence = 4.92164e-05 | |
I0407 13:13:13.786901 32304 sgd_solver.cpp:106] Iteration 21000, lr = 0.00958 | |
I0407 13:14:25.239230 32304 solver.cpp:229] Iteration 21500, loss = 1.03822 | |
I0407 13:14:25.239367 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 13:14:25.239399 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0407 13:14:25.239416 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0407 13:14:25.239429 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125 | |
I0407 13:14:25.239441 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.21875 | |
I0407 13:14:25.239454 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.25 | |
I0407 13:14:25.239465 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.5 | |
I0407 13:14:25.239477 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.75 | |
I0407 13:14:25.239488 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625 | |
I0407 13:14:25.239500 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0407 13:14:25.239511 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 13:14:25.239524 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 13:14:25.239536 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 13:14:25.239547 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 13:14:25.239559 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 13:14:25.239572 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 13:14:25.239583 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 13:14:25.239594 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 13:14:25.239605 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 13:14:25.239617 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 13:14:25.239629 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 13:14:25.239640 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 13:14:25.239655 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.20068 (* 0.0454545 = 0.145485 loss) | |
I0407 13:14:25.239670 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.55099 (* 0.0454545 = 0.161409 loss) | |
I0407 13:14:25.239683 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.3139 (* 0.0454545 = 0.150632 loss) | |
I0407 13:14:25.239697 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.5155 (* 0.0454545 = 0.159795 loss) | |
I0407 13:14:25.239711 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.4291 (* 0.0454545 = 0.155868 loss) | |
I0407 13:14:25.239724 32304 solver.cpp:245] Train net output #27: loss/loss06 = 3.40058 (* 0.0454545 = 0.154572 loss) | |
I0407 13:14:25.239738 32304 solver.cpp:245] Train net output #28: loss/loss07 = 2.5338 (* 0.0454545 = 0.115173 loss) | |
I0407 13:14:25.239753 32304 solver.cpp:245] Train net output #29: loss/loss08 = 1.44952 (* 0.0454545 = 0.0658872 loss) | |
I0407 13:14:25.239765 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.574276 (* 0.0454545 = 0.0261034 loss) | |
I0407 13:14:25.239780 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.190023 (* 0.0454545 = 0.00863741 loss) | |
I0407 13:14:25.239794 32304 solver.cpp:245] Train net output #32: loss/loss11 = 3.85495e-05 (* 0.0454545 = 1.75225e-06 loss) | |
I0407 13:14:25.239809 32304 solver.cpp:245] Train net output #33: loss/loss12 = 3.80893e-05 (* 0.0454545 = 1.73133e-06 loss) | |
I0407 13:14:25.239822 32304 solver.cpp:245] Train net output #34: loss/loss13 = 4.04906e-05 (* 0.0454545 = 1.84048e-06 loss) | |
I0407 13:14:25.239836 32304 solver.cpp:245] Train net output #35: loss/loss14 = 3.63495e-05 (* 0.0454545 = 1.65225e-06 loss) | |
I0407 13:14:25.239850 32304 solver.cpp:245] Train net output #36: loss/loss15 = 3.91549e-05 (* 0.0454545 = 1.77977e-06 loss) | |
I0407 13:14:25.239864 32304 solver.cpp:245] Train net output #37: loss/loss16 = 3.72139e-05 (* 0.0454545 = 1.69154e-06 loss) | |
I0407 13:14:25.239878 32304 solver.cpp:245] Train net output #38: loss/loss17 = 3.75975e-05 (* 0.0454545 = 1.70898e-06 loss) | |
I0407 13:14:25.239912 32304 solver.cpp:245] Train net output #39: loss/loss18 = 4.03788e-05 (* 0.0454545 = 1.8354e-06 loss) | |
I0407 13:14:25.239926 32304 solver.cpp:245] Train net output #40: loss/loss19 = 3.67742e-05 (* 0.0454545 = 1.67156e-06 loss) | |
I0407 13:14:25.239940 32304 solver.cpp:245] Train net output #41: loss/loss20 = 3.88737e-05 (* 0.0454545 = 1.76698e-06 loss) | |
I0407 13:14:25.239953 32304 solver.cpp:245] Train net output #42: loss/loss21 = 3.80521e-05 (* 0.0454545 = 1.72964e-06 loss) | |
I0407 13:14:25.239967 32304 solver.cpp:245] Train net output #43: loss/loss22 = 3.76888e-05 (* 0.0454545 = 1.71313e-06 loss) | |
I0407 13:14:25.239979 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 13:14:25.239991 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000446414 | |
I0407 13:14:25.240005 32304 sgd_solver.cpp:106] Iteration 21500, lr = 0.00957 | |
I0407 13:15:37.242390 32304 solver.cpp:229] Iteration 22000, loss = 1.03683 | |
I0407 13:15:37.242516 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 13:15:37.242537 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 13:15:37.242549 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0407 13:15:37.242563 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375 | |
I0407 13:15:37.242573 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0407 13:15:37.242585 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0407 13:15:37.242597 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.59375 | |
I0407 13:15:37.242609 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 13:15:37.242620 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0407 13:15:37.242632 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 13:15:37.242645 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 13:15:37.242655 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 13:15:37.242667 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 13:15:37.242678 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 13:15:37.242691 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 13:15:37.242702 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 13:15:37.242713 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 13:15:37.242725 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 13:15:37.242736 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 13:15:37.242748 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 13:15:37.242759 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 13:15:37.242770 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 13:15:37.242786 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.66012 (* 0.0454545 = 0.166369 loss) | |
I0407 13:15:37.242800 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.62016 (* 0.0454545 = 0.164553 loss) | |
I0407 13:15:37.242815 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.70131 (* 0.0454545 = 0.168241 loss) | |
I0407 13:15:37.242828 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.59612 (* 0.0454545 = 0.16346 loss) | |
I0407 13:15:37.242841 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.49064 (* 0.0454545 = 0.158666 loss) | |
I0407 13:15:37.242856 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.6608 (* 0.0454545 = 0.120945 loss) | |
I0407 13:15:37.242869 32304 solver.cpp:245] Train net output #28: loss/loss07 = 2.04255 (* 0.0454545 = 0.092843 loss) | |
I0407 13:15:37.242882 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.784398 (* 0.0454545 = 0.0356545 loss) | |
I0407 13:15:37.242897 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.260894 (* 0.0454545 = 0.0118588 loss) | |
I0407 13:15:37.242910 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.00736546 (* 0.0454545 = 0.000334793 loss) | |
I0407 13:15:37.242928 32304 solver.cpp:245] Train net output #32: loss/loss11 = 9.47445e-05 (* 0.0454545 = 4.30657e-06 loss) | |
I0407 13:15:37.242943 32304 solver.cpp:245] Train net output #33: loss/loss12 = 9.3605e-05 (* 0.0454545 = 4.25477e-06 loss) | |
I0407 13:15:37.242956 32304 solver.cpp:245] Train net output #34: loss/loss13 = 9.77815e-05 (* 0.0454545 = 4.44461e-06 loss) | |
I0407 13:15:37.242969 32304 solver.cpp:245] Train net output #35: loss/loss14 = 8.88392e-05 (* 0.0454545 = 4.03814e-06 loss) | |
I0407 13:15:37.242983 32304 solver.cpp:245] Train net output #36: loss/loss15 = 9.55883e-05 (* 0.0454545 = 4.34492e-06 loss) | |
I0407 13:15:37.242997 32304 solver.cpp:245] Train net output #37: loss/loss16 = 9.24036e-05 (* 0.0454545 = 4.20017e-06 loss) | |
I0407 13:15:37.243011 32304 solver.cpp:245] Train net output #38: loss/loss17 = 9.56145e-05 (* 0.0454545 = 4.34612e-06 loss) | |
I0407 13:15:37.243042 32304 solver.cpp:245] Train net output #39: loss/loss18 = 9.90272e-05 (* 0.0454545 = 4.50123e-06 loss) | |
I0407 13:15:37.243057 32304 solver.cpp:245] Train net output #40: loss/loss19 = 9.05126e-05 (* 0.0454545 = 4.11421e-06 loss) | |
I0407 13:15:37.243072 32304 solver.cpp:245] Train net output #41: loss/loss20 = 9.81752e-05 (* 0.0454545 = 4.46251e-06 loss) | |
I0407 13:15:37.243085 32304 solver.cpp:245] Train net output #42: loss/loss21 = 9.71212e-05 (* 0.0454545 = 4.4146e-06 loss) | |
I0407 13:15:37.243099 32304 solver.cpp:245] Train net output #43: loss/loss22 = 9.34866e-05 (* 0.0454545 = 4.24939e-06 loss) | |
I0407 13:15:37.243111 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 13:15:37.243122 32304 solver.cpp:245] Train net output #45: total_confidence = 1.41722e-05 | |
I0407 13:15:37.243137 32304 sgd_solver.cpp:106] Iteration 22000, lr = 0.00956 | |
I0407 13:16:49.308630 32304 solver.cpp:229] Iteration 22500, loss = 1.02372 | |
I0407 13:16:49.308823 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 13:16:49.308845 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0407 13:16:49.308859 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0407 13:16:49.308872 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125 | |
I0407 13:16:49.308884 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0407 13:16:49.308897 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375 | |
I0407 13:16:49.308908 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875 | |
I0407 13:16:49.308923 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375 | |
I0407 13:16:49.308935 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0407 13:16:49.308948 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 13:16:49.308959 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 13:16:49.308971 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 13:16:49.308982 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 13:16:49.308993 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 13:16:49.309005 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 13:16:49.309016 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 13:16:49.309027 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 13:16:49.309039 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 13:16:49.309051 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 13:16:49.309062 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 13:16:49.309072 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 13:16:49.309084 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 13:16:49.309100 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.6413 (* 0.0454545 = 0.165514 loss) | |
I0407 13:16:49.309115 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.69438 (* 0.0454545 = 0.167926 loss) | |
I0407 13:16:49.309128 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.44998 (* 0.0454545 = 0.156817 loss) | |
I0407 13:16:49.309142 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.66196 (* 0.0454545 = 0.166453 loss) | |
I0407 13:16:49.309156 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.55881 (* 0.0454545 = 0.161764 loss) | |
I0407 13:16:49.309170 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.6356 (* 0.0454545 = 0.1198 loss) | |
I0407 13:16:49.309183 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.28714 (* 0.0454545 = 0.0585064 loss) | |
I0407 13:16:49.309197 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.769406 (* 0.0454545 = 0.034973 loss) | |
I0407 13:16:49.309211 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.214245 (* 0.0454545 = 0.00973841 loss) | |
I0407 13:16:49.309226 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.0378356 (* 0.0454545 = 0.0017198 loss) | |
I0407 13:16:49.309240 32304 solver.cpp:245] Train net output #32: loss/loss11 = 0.000100981 (* 0.0454545 = 4.59003e-06 loss) | |
I0407 13:16:49.309257 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.000102503 (* 0.0454545 = 4.65922e-06 loss) | |
I0407 13:16:49.309283 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.000107313 (* 0.0454545 = 4.87785e-06 loss) | |
I0407 13:16:49.309308 32304 solver.cpp:245] Train net output #35: loss/loss14 = 9.69178e-05 (* 0.0454545 = 4.40535e-06 loss) | |
I0407 13:16:49.309324 32304 solver.cpp:245] Train net output #36: loss/loss15 = 0.000102897 (* 0.0454545 = 4.67715e-06 loss) | |
I0407 13:16:49.309337 32304 solver.cpp:245] Train net output #37: loss/loss16 = 9.91088e-05 (* 0.0454545 = 4.50494e-06 loss) | |
I0407 13:16:49.309351 32304 solver.cpp:245] Train net output #38: loss/loss17 = 0.000101542 (* 0.0454545 = 4.61553e-06 loss) | |
I0407 13:16:49.309381 32304 solver.cpp:245] Train net output #39: loss/loss18 = 0.000106468 (* 0.0454545 = 4.83944e-06 loss) | |
I0407 13:16:49.309396 32304 solver.cpp:245] Train net output #40: loss/loss19 = 9.78829e-05 (* 0.0454545 = 4.44922e-06 loss) | |
I0407 13:16:49.309409 32304 solver.cpp:245] Train net output #41: loss/loss20 = 0.000107401 (* 0.0454545 = 4.88188e-06 loss) | |
I0407 13:16:49.309423 32304 solver.cpp:245] Train net output #42: loss/loss21 = 0.000103135 (* 0.0454545 = 4.68795e-06 loss) | |
I0407 13:16:49.309437 32304 solver.cpp:245] Train net output #43: loss/loss22 = 9.78449e-05 (* 0.0454545 = 4.4475e-06 loss) | |
I0407 13:16:49.309453 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 13:16:49.309465 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000139507 | |
I0407 13:16:49.309480 32304 sgd_solver.cpp:106] Iteration 22500, lr = 0.00955 | |
I0407 13:18:01.458328 32304 solver.cpp:229] Iteration 23000, loss = 1.02853 | |
I0407 13:18:01.458484 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0407 13:18:01.458504 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0407 13:18:01.458518 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 13:18:01.458530 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875 | |
I0407 13:18:01.458542 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125 | |
I0407 13:18:01.458554 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0407 13:18:01.458566 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.65625 | |
I0407 13:18:01.458577 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.8125 | |
I0407 13:18:01.458590 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 13:18:01.458601 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0407 13:18:01.458613 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 13:18:01.458626 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 13:18:01.458637 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 13:18:01.458648 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 13:18:01.458660 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 13:18:01.458672 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 13:18:01.458683 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 13:18:01.458693 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 13:18:01.458704 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 13:18:01.458716 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 13:18:01.458736 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 13:18:01.458747 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 13:18:01.458762 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.50801 (* 0.0454545 = 0.159455 loss) | |
I0407 13:18:01.458777 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.53313 (* 0.0454545 = 0.160597 loss) | |
I0407 13:18:01.458799 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.61154 (* 0.0454545 = 0.164161 loss) | |
I0407 13:18:01.458812 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.16777 (* 0.0454545 = 0.143989 loss) | |
I0407 13:18:01.458827 32304 solver.cpp:245] Train net output #26: loss/loss05 = 2.98736 (* 0.0454545 = 0.135789 loss) | |
I0407 13:18:01.458840 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.61498 (* 0.0454545 = 0.118863 loss) | |
I0407 13:18:01.458863 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.84497 (* 0.0454545 = 0.0838622 loss) | |
I0407 13:18:01.458876 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.930319 (* 0.0454545 = 0.0422872 loss) | |
I0407 13:18:01.458890 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.420145 (* 0.0454545 = 0.0190975 loss) | |
I0407 13:18:01.458904 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.188205 (* 0.0454545 = 0.00855479 loss) | |
I0407 13:18:01.458930 32304 solver.cpp:245] Train net output #32: loss/loss11 = 0.0001126 (* 0.0454545 = 5.11816e-06 loss) | |
I0407 13:18:01.458945 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.000123021 (* 0.0454545 = 5.59188e-06 loss) | |
I0407 13:18:01.458959 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.00011103 (* 0.0454545 = 5.04681e-06 loss) | |
I0407 13:18:01.458974 32304 solver.cpp:245] Train net output #35: loss/loss14 = 0.0001115 (* 0.0454545 = 5.0682e-06 loss) | |
I0407 13:18:01.458988 32304 solver.cpp:245] Train net output #36: loss/loss15 = 0.000124273 (* 0.0454545 = 5.64878e-06 loss) | |
I0407 13:18:01.459002 32304 solver.cpp:245] Train net output #37: loss/loss16 = 0.000112088 (* 0.0454545 = 5.09492e-06 loss) | |
I0407 13:18:01.459017 32304 solver.cpp:245] Train net output #38: loss/loss17 = 0.000105888 (* 0.0454545 = 4.81309e-06 loss) | |
I0407 13:18:01.459049 32304 solver.cpp:245] Train net output #39: loss/loss18 = 0.000132025 (* 0.0454545 = 6.00113e-06 loss) | |
I0407 13:18:01.459065 32304 solver.cpp:245] Train net output #40: loss/loss19 = 0.000110832 (* 0.0454545 = 5.03784e-06 loss) | |
I0407 13:18:01.459079 32304 solver.cpp:245] Train net output #41: loss/loss20 = 0.000121565 (* 0.0454545 = 5.52569e-06 loss) | |
I0407 13:18:01.459092 32304 solver.cpp:245] Train net output #42: loss/loss21 = 0.000112168 (* 0.0454545 = 5.09854e-06 loss) | |
I0407 13:18:01.459106 32304 solver.cpp:245] Train net output #43: loss/loss22 = 0.000114407 (* 0.0454545 = 5.20033e-06 loss) | |
I0407 13:18:01.459118 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 13:18:01.459131 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000549973 | |
I0407 13:18:01.459146 32304 sgd_solver.cpp:106] Iteration 23000, lr = 0.00954 | |
I0407 13:19:13.318948 32304 solver.cpp:229] Iteration 23500, loss = 1.02289 | |
I0407 13:19:13.319069 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0407 13:19:13.319092 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 13:19:13.319104 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0407 13:19:13.319116 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625 | |
I0407 13:19:13.319128 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0407 13:19:13.319140 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125 | |
I0407 13:19:13.319152 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.59375 | |
I0407 13:19:13.319164 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.8125 | |
I0407 13:19:13.319176 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625 | |
I0407 13:19:13.319188 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.90625 | |
I0407 13:19:13.319200 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 13:19:13.319211 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 13:19:13.319223 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 13:19:13.319234 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 13:19:13.319245 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 13:19:13.319257 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 13:19:13.319268 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 13:19:13.319279 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 13:19:13.319291 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 13:19:13.319303 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 13:19:13.319314 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 13:19:13.319339 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 13:19:13.319356 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.51316 (* 0.0454545 = 0.159689 loss) | |
I0407 13:19:13.319371 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.60498 (* 0.0454545 = 0.163863 loss) | |
I0407 13:19:13.319385 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.62557 (* 0.0454545 = 0.164799 loss) | |
I0407 13:19:13.319398 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.51034 (* 0.0454545 = 0.159561 loss) | |
I0407 13:19:13.319411 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.5338 (* 0.0454545 = 0.160627 loss) | |
I0407 13:19:13.319425 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.70442 (* 0.0454545 = 0.122928 loss) | |
I0407 13:19:13.319439 32304 solver.cpp:245] Train net output #28: loss/loss07 = 2.0637 (* 0.0454545 = 0.0938044 loss) | |
I0407 13:19:13.319458 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.851031 (* 0.0454545 = 0.0386832 loss) | |
I0407 13:19:13.319473 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.402976 (* 0.0454545 = 0.0183171 loss) | |
I0407 13:19:13.319486 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.471666 (* 0.0454545 = 0.0214393 loss) | |
I0407 13:19:13.319501 32304 solver.cpp:245] Train net output #32: loss/loss11 = 9.14532e-05 (* 0.0454545 = 4.15697e-06 loss) | |
I0407 13:19:13.319515 32304 solver.cpp:245] Train net output #33: loss/loss12 = 9.34949e-05 (* 0.0454545 = 4.24977e-06 loss) | |
I0407 13:19:13.319530 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.000104455 (* 0.0454545 = 4.74797e-06 loss) | |
I0407 13:19:13.319543 32304 solver.cpp:245] Train net output #35: loss/loss14 = 8.84368e-05 (* 0.0454545 = 4.01985e-06 loss) | |
I0407 13:19:13.319558 32304 solver.cpp:245] Train net output #36: loss/loss15 = 9.28659e-05 (* 0.0454545 = 4.22118e-06 loss) | |
I0407 13:19:13.319572 32304 solver.cpp:245] Train net output #37: loss/loss16 = 9.25341e-05 (* 0.0454545 = 4.20609e-06 loss) | |
I0407 13:19:13.319586 32304 solver.cpp:245] Train net output #38: loss/loss17 = 9.4681e-05 (* 0.0454545 = 4.30368e-06 loss) | |
I0407 13:19:13.319619 32304 solver.cpp:245] Train net output #39: loss/loss18 = 9.02718e-05 (* 0.0454545 = 4.10326e-06 loss) | |
I0407 13:19:13.319634 32304 solver.cpp:245] Train net output #40: loss/loss19 = 9.2807e-05 (* 0.0454545 = 4.2185e-06 loss) | |
I0407 13:19:13.319648 32304 solver.cpp:245] Train net output #41: loss/loss20 = 9.71346e-05 (* 0.0454545 = 4.41521e-06 loss) | |
I0407 13:19:13.319663 32304 solver.cpp:245] Train net output #42: loss/loss21 = 9.4537e-05 (* 0.0454545 = 4.29713e-06 loss) | |
I0407 13:19:13.319677 32304 solver.cpp:245] Train net output #43: loss/loss22 = 8.74206e-05 (* 0.0454545 = 3.97366e-06 loss) | |
I0407 13:19:13.319689 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 13:19:13.319701 32304 solver.cpp:245] Train net output #45: total_confidence = 4.01709e-05 | |
I0407 13:19:13.319715 32304 sgd_solver.cpp:106] Iteration 23500, lr = 0.00953 | |
I0407 13:20:25.209117 32304 solver.cpp:229] Iteration 24000, loss = 1.01323 | |
I0407 13:20:25.209269 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0407 13:20:25.209290 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 13:20:25.209303 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0407 13:20:25.209316 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0407 13:20:25.209328 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.34375 | |
I0407 13:20:25.209341 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5 | |
I0407 13:20:25.209352 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0407 13:20:25.209364 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.96875 | |
I0407 13:20:25.209377 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 13:20:25.209388 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 13:20:25.209399 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 13:20:25.209410 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 13:20:25.209422 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 13:20:25.209434 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 13:20:25.209445 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 13:20:25.209457 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 13:20:25.209468 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 13:20:25.209480 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 13:20:25.209491 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 13:20:25.209501 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 13:20:25.209513 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 13:20:25.209524 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 13:20:25.209540 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.06491 (* 0.0454545 = 0.139314 loss) | |
I0407 13:20:25.209555 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.43759 (* 0.0454545 = 0.156254 loss) | |
I0407 13:20:25.209568 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.38337 (* 0.0454545 = 0.15379 loss) | |
I0407 13:20:25.209583 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.39538 (* 0.0454545 = 0.154335 loss) | |
I0407 13:20:25.209601 32304 solver.cpp:245] Train net output #26: loss/loss05 = 2.69657 (* 0.0454545 = 0.122571 loss) | |
I0407 13:20:25.209630 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.10419 (* 0.0454545 = 0.0956449 loss) | |
I0407 13:20:25.209655 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.43878 (* 0.0454545 = 0.0653992 loss) | |
I0407 13:20:25.209681 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.227054 (* 0.0454545 = 0.0103206 loss) | |
I0407 13:20:25.209704 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.0253408 (* 0.0454545 = 0.00115186 loss) | |
I0407 13:20:25.209728 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.00908488 (* 0.0454545 = 0.000412949 loss) | |
I0407 13:20:25.209753 32304 solver.cpp:245] Train net output #32: loss/loss11 = 3.67949e-05 (* 0.0454545 = 1.6725e-06 loss) | |
I0407 13:20:25.209776 32304 solver.cpp:245] Train net output #33: loss/loss12 = 4.45565e-05 (* 0.0454545 = 2.0253e-06 loss) | |
I0407 13:20:25.209800 32304 solver.cpp:245] Train net output #34: loss/loss13 = 4.02694e-05 (* 0.0454545 = 1.83043e-06 loss) | |
I0407 13:20:25.209822 32304 solver.cpp:245] Train net output #35: loss/loss14 = 3.6974e-05 (* 0.0454545 = 1.68064e-06 loss) | |
I0407 13:20:25.209846 32304 solver.cpp:245] Train net output #36: loss/loss15 = 3.84161e-05 (* 0.0454545 = 1.74619e-06 loss) | |
I0407 13:20:25.209869 32304 solver.cpp:245] Train net output #37: loss/loss16 = 3.71456e-05 (* 0.0454545 = 1.68843e-06 loss) | |
I0407 13:20:25.209893 32304 solver.cpp:245] Train net output #38: loss/loss17 = 3.74898e-05 (* 0.0454545 = 1.70408e-06 loss) | |
I0407 13:20:25.209942 32304 solver.cpp:245] Train net output #39: loss/loss18 = 3.94632e-05 (* 0.0454545 = 1.79378e-06 loss) | |
I0407 13:20:25.209967 32304 solver.cpp:245] Train net output #40: loss/loss19 = 3.58614e-05 (* 0.0454545 = 1.63007e-06 loss) | |
I0407 13:20:25.209991 32304 solver.cpp:245] Train net output #41: loss/loss20 = 4.23163e-05 (* 0.0454545 = 1.92347e-06 loss) | |
I0407 13:20:25.210014 32304 solver.cpp:245] Train net output #42: loss/loss21 = 3.96269e-05 (* 0.0454545 = 1.80122e-06 loss) | |
I0407 13:20:25.210039 32304 solver.cpp:245] Train net output #43: loss/loss22 = 3.75105e-05 (* 0.0454545 = 1.70502e-06 loss) | |
I0407 13:20:25.210059 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 13:20:25.210078 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000291219 | |
I0407 13:20:25.210100 32304 sgd_solver.cpp:106] Iteration 24000, lr = 0.00952 | |
I0407 13:21:37.615422 32304 solver.cpp:229] Iteration 24500, loss = 1.01255 | |
I0407 13:21:37.615607 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0407 13:21:37.615629 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0407 13:21:37.615643 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 13:21:37.615655 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 13:21:37.615667 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.09375 | |
I0407 13:21:37.615679 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0407 13:21:37.615690 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.84375 | |
I0407 13:21:37.615702 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0407 13:21:37.615715 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0407 13:21:37.615726 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 13:21:37.615737 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 13:21:37.615749 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 13:21:37.615761 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 13:21:37.615773 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 13:21:37.615784 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 13:21:37.615795 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 13:21:37.615808 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 13:21:37.615818 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 13:21:37.615829 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 13:21:37.615840 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 13:21:37.615852 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 13:21:37.615864 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 13:21:37.615880 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.38196 (* 0.0454545 = 0.153725 loss) | |
I0407 13:21:37.615893 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.43986 (* 0.0454545 = 0.156357 loss) | |
I0407 13:21:37.615907 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.4043 (* 0.0454545 = 0.154741 loss) | |
I0407 13:21:37.615923 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.58306 (* 0.0454545 = 0.162866 loss) | |
I0407 13:21:37.615937 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.50431 (* 0.0454545 = 0.159287 loss) | |
I0407 13:21:37.615952 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.70558 (* 0.0454545 = 0.122981 loss) | |
I0407 13:21:37.615965 32304 solver.cpp:245] Train net output #28: loss/loss07 = 0.985227 (* 0.0454545 = 0.044783 loss) | |
I0407 13:21:37.615979 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.530126 (* 0.0454545 = 0.0240967 loss) | |
I0407 13:21:37.615993 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.27065 (* 0.0454545 = 0.0123023 loss) | |
I0407 13:21:37.616008 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.0137747 (* 0.0454545 = 0.000626124 loss) | |
I0407 13:21:37.616022 32304 solver.cpp:245] Train net output #32: loss/loss11 = 3.3935e-05 (* 0.0454545 = 1.5425e-06 loss) | |
I0407 13:21:37.616037 32304 solver.cpp:245] Train net output #33: loss/loss12 = 3.88154e-05 (* 0.0454545 = 1.76434e-06 loss) | |
I0407 13:21:37.616051 32304 solver.cpp:245] Train net output #34: loss/loss13 = 4.13713e-05 (* 0.0454545 = 1.88051e-06 loss) | |
I0407 13:21:37.616065 32304 solver.cpp:245] Train net output #35: loss/loss14 = 3.6636e-05 (* 0.0454545 = 1.66527e-06 loss) | |
I0407 13:21:37.616080 32304 solver.cpp:245] Train net output #36: loss/loss15 = 3.57678e-05 (* 0.0454545 = 1.62581e-06 loss) | |
I0407 13:21:37.616093 32304 solver.cpp:245] Train net output #37: loss/loss16 = 3.43224e-05 (* 0.0454545 = 1.56011e-06 loss) | |
I0407 13:21:37.616107 32304 solver.cpp:245] Train net output #38: loss/loss17 = 3.83982e-05 (* 0.0454545 = 1.74537e-06 loss) | |
I0407 13:21:37.616135 32304 solver.cpp:245] Train net output #39: loss/loss18 = 3.58871e-05 (* 0.0454545 = 1.63123e-06 loss) | |
I0407 13:21:37.616150 32304 solver.cpp:245] Train net output #40: loss/loss19 = 3.6554e-05 (* 0.0454545 = 1.66155e-06 loss) | |
I0407 13:21:37.616164 32304 solver.cpp:245] Train net output #41: loss/loss20 = 3.79362e-05 (* 0.0454545 = 1.72437e-06 loss) | |
I0407 13:21:37.616178 32304 solver.cpp:245] Train net output #42: loss/loss21 = 3.81971e-05 (* 0.0454545 = 1.73623e-06 loss) | |
I0407 13:21:37.616191 32304 solver.cpp:245] Train net output #43: loss/loss22 = 3.77201e-05 (* 0.0454545 = 1.71455e-06 loss) | |
I0407 13:21:37.616204 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 13:21:37.616215 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000121226 | |
I0407 13:21:37.616241 32304 sgd_solver.cpp:106] Iteration 24500, lr = 0.00951 | |
I0407 13:22:49.690958 32304 solver.cpp:338] Iteration 25000, Testing net (#0) | |
I0407 13:22:57.726039 32304 solver.cpp:393] Test loss: 0.99194 | |
I0407 13:22:57.726102 32304 solver.cpp:406] Test net output #0: loss/accuracy01 = 0.104 | |
I0407 13:22:57.726119 32304 solver.cpp:406] Test net output #1: loss/accuracy02 = 0.054 | |
I0407 13:22:57.726131 32304 solver.cpp:406] Test net output #2: loss/accuracy03 = 0.068 | |
I0407 13:22:57.726143 32304 solver.cpp:406] Test net output #3: loss/accuracy04 = 0.096 | |
I0407 13:22:57.726155 32304 solver.cpp:406] Test net output #4: loss/accuracy05 = 0.203 | |
I0407 13:22:57.726166 32304 solver.cpp:406] Test net output #5: loss/accuracy06 = 0.488 | |
I0407 13:22:57.726178 32304 solver.cpp:406] Test net output #6: loss/accuracy07 = 0.893 | |
I0407 13:22:57.726189 32304 solver.cpp:406] Test net output #7: loss/accuracy08 = 0.97 | |
I0407 13:22:57.726200 32304 solver.cpp:406] Test net output #8: loss/accuracy09 = 0.995 | |
I0407 13:22:57.726212 32304 solver.cpp:406] Test net output #9: loss/accuracy10 = 0.998 | |
I0407 13:22:57.726223 32304 solver.cpp:406] Test net output #10: loss/accuracy11 = 1 | |
I0407 13:22:57.726234 32304 solver.cpp:406] Test net output #11: loss/accuracy12 = 1 | |
I0407 13:22:57.726245 32304 solver.cpp:406] Test net output #12: loss/accuracy13 = 1 | |
I0407 13:22:57.726258 32304 solver.cpp:406] Test net output #13: loss/accuracy14 = 1 | |
I0407 13:22:57.726269 32304 solver.cpp:406] Test net output #14: loss/accuracy15 = 1 | |
I0407 13:22:57.726279 32304 solver.cpp:406] Test net output #15: loss/accuracy16 = 1 | |
I0407 13:22:57.726290 32304 solver.cpp:406] Test net output #16: loss/accuracy17 = 1 | |
I0407 13:22:57.726301 32304 solver.cpp:406] Test net output #17: loss/accuracy18 = 1 | |
I0407 13:22:57.726312 32304 solver.cpp:406] Test net output #18: loss/accuracy19 = 1 | |
I0407 13:22:57.726323 32304 solver.cpp:406] Test net output #19: loss/accuracy20 = 1 | |
I0407 13:22:57.726335 32304 solver.cpp:406] Test net output #20: loss/accuracy21 = 1 | |
I0407 13:22:57.726346 32304 solver.cpp:406] Test net output #21: loss/accuracy22 = 1 | |
I0407 13:22:57.726361 32304 solver.cpp:406] Test net output #22: loss/loss01 = 3.69973 (* 0.0454545 = 0.168169 loss) | |
I0407 13:22:57.726375 32304 solver.cpp:406] Test net output #23: loss/loss02 = 3.76164 (* 0.0454545 = 0.170984 loss) | |
I0407 13:22:57.726388 32304 solver.cpp:406] Test net output #24: loss/loss03 = 3.69009 (* 0.0454545 = 0.167731 loss) | |
I0407 13:22:57.726402 32304 solver.cpp:406] Test net output #25: loss/loss04 = 3.62941 (* 0.0454545 = 0.164973 loss) | |
I0407 13:22:57.726415 32304 solver.cpp:406] Test net output #26: loss/loss05 = 3.3769 (* 0.0454545 = 0.153496 loss) | |
I0407 13:22:57.726429 32304 solver.cpp:406] Test net output #27: loss/loss06 = 2.43767 (* 0.0454545 = 0.110803 loss) | |
I0407 13:22:57.726443 32304 solver.cpp:406] Test net output #28: loss/loss07 = 0.848177 (* 0.0454545 = 0.0385535 loss) | |
I0407 13:22:57.726455 32304 solver.cpp:406] Test net output #29: loss/loss08 = 0.276639 (* 0.0454545 = 0.0125745 loss) | |
I0407 13:22:57.726469 32304 solver.cpp:406] Test net output #30: loss/loss09 = 0.0689382 (* 0.0454545 = 0.00313356 loss) | |
I0407 13:22:57.726483 32304 solver.cpp:406] Test net output #31: loss/loss10 = 0.0305771 (* 0.0454545 = 0.00138987 loss) | |
I0407 13:22:57.726497 32304 solver.cpp:406] Test net output #32: loss/loss11 = 0.000231318 (* 0.0454545 = 1.05144e-05 loss) | |
I0407 13:22:57.726511 32304 solver.cpp:406] Test net output #33: loss/loss12 = 0.000251525 (* 0.0454545 = 1.14329e-05 loss) | |
I0407 13:22:57.726524 32304 solver.cpp:406] Test net output #34: loss/loss13 = 0.000263892 (* 0.0454545 = 1.19951e-05 loss) | |
I0407 13:22:57.726537 32304 solver.cpp:406] Test net output #35: loss/loss14 = 0.000238452 (* 0.0454545 = 1.08387e-05 loss) | |
I0407 13:22:57.726552 32304 solver.cpp:406] Test net output #36: loss/loss15 = 0.000235261 (* 0.0454545 = 1.06937e-05 loss) | |
I0407 13:22:57.726564 32304 solver.cpp:406] Test net output #37: loss/loss16 = 0.000229597 (* 0.0454545 = 1.04362e-05 loss) | |
I0407 13:22:57.726578 32304 solver.cpp:406] Test net output #38: loss/loss17 = 0.000249063 (* 0.0454545 = 1.13211e-05 loss) | |
I0407 13:22:57.726630 32304 solver.cpp:406] Test net output #39: loss/loss18 = 0.000240062 (* 0.0454545 = 1.09119e-05 loss) | |
I0407 13:22:57.726645 32304 solver.cpp:406] Test net output #40: loss/loss19 = 0.000245767 (* 0.0454545 = 1.11712e-05 loss) | |
I0407 13:22:57.726660 32304 solver.cpp:406] Test net output #41: loss/loss20 = 0.000254883 (* 0.0454545 = 1.15856e-05 loss) | |
I0407 13:22:57.726673 32304 solver.cpp:406] Test net output #42: loss/loss21 = 0.000250086 (* 0.0454545 = 1.13676e-05 loss) | |
I0407 13:22:57.726686 32304 solver.cpp:406] Test net output #43: loss/loss22 = 0.000248612 (* 0.0454545 = 1.13006e-05 loss) | |
I0407 13:22:57.726698 32304 solver.cpp:406] Test net output #44: total_accuracy = 0 | |
I0407 13:22:57.726709 32304 solver.cpp:406] Test net output #45: total_confidence = 0.000123411 | |
I0407 13:22:57.760888 32304 solver.cpp:229] Iteration 25000, loss = 1.00302 | |
I0407 13:22:57.760951 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 13:22:57.760968 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 13:22:57.760982 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0407 13:22:57.760994 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125 | |
I0407 13:22:57.761006 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0407 13:22:57.761018 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0407 13:22:57.761030 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.78125 | |
I0407 13:22:57.761042 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.96875 | |
I0407 13:22:57.761054 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0407 13:22:57.761065 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 13:22:57.761080 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 13:22:57.761092 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 13:22:57.761104 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 13:22:57.761116 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 13:22:57.761127 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 13:22:57.761138 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 13:22:57.761150 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 13:22:57.761162 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 13:22:57.761173 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 13:22:57.761184 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 13:22:57.761195 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 13:22:57.761207 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 13:22:57.761222 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.8001 (* 0.0454545 = 0.172732 loss) | |
I0407 13:22:57.761237 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.80302 (* 0.0454545 = 0.172864 loss) | |
I0407 13:22:57.761251 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.7124 (* 0.0454545 = 0.168745 loss) | |
I0407 13:22:57.761265 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.71417 (* 0.0454545 = 0.168826 loss) | |
I0407 13:22:57.761278 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.44978 (* 0.0454545 = 0.156808 loss) | |
I0407 13:22:57.761292 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.67017 (* 0.0454545 = 0.121371 loss) | |
I0407 13:22:57.761306 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.20918 (* 0.0454545 = 0.0549629 loss) | |
I0407 13:22:57.761319 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.318289 (* 0.0454545 = 0.0144677 loss) | |
I0407 13:22:57.761339 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.188808 (* 0.0454545 = 0.0085822 loss) | |
I0407 13:22:57.761353 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.0226767 (* 0.0454545 = 0.00103076 loss) | |
I0407 13:22:57.761394 32304 solver.cpp:245] Train net output #32: loss/loss11 = 2.63151e-05 (* 0.0454545 = 1.19614e-06 loss) | |
I0407 13:22:57.761409 32304 solver.cpp:245] Train net output #33: loss/loss12 = 3.20342e-05 (* 0.0454545 = 1.4561e-06 loss) | |
I0407 13:22:57.761423 32304 solver.cpp:245] Train net output #34: loss/loss13 = 3.21646e-05 (* 0.0454545 = 1.46203e-06 loss) | |
I0407 13:22:57.761437 32304 solver.cpp:245] Train net output #35: loss/loss14 = 2.77234e-05 (* 0.0454545 = 1.26015e-06 loss) | |
I0407 13:22:57.761451 32304 solver.cpp:245] Train net output #36: loss/loss15 = 3.01174e-05 (* 0.0454545 = 1.36897e-06 loss) | |
I0407 13:22:57.761466 32304 solver.cpp:245] Train net output #37: loss/loss16 = 2.72801e-05 (* 0.0454545 = 1.24e-06 loss) | |
I0407 13:22:57.761479 32304 solver.cpp:245] Train net output #38: loss/loss17 = 3.01805e-05 (* 0.0454545 = 1.37184e-06 loss) | |
I0407 13:22:57.761493 32304 solver.cpp:245] Train net output #39: loss/loss18 = 3.14439e-05 (* 0.0454545 = 1.42927e-06 loss) | |
I0407 13:22:57.761507 32304 solver.cpp:245] Train net output #40: loss/loss19 = 2.82263e-05 (* 0.0454545 = 1.28301e-06 loss) | |
I0407 13:22:57.761521 32304 solver.cpp:245] Train net output #41: loss/loss20 = 3.34409e-05 (* 0.0454545 = 1.52004e-06 loss) | |
I0407 13:22:57.761535 32304 solver.cpp:245] Train net output #42: loss/loss21 = 2.97372e-05 (* 0.0454545 = 1.35169e-06 loss) | |
I0407 13:22:57.761549 32304 solver.cpp:245] Train net output #43: loss/loss22 = 3.144e-05 (* 0.0454545 = 1.42909e-06 loss) | |
I0407 13:22:57.761561 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 13:22:57.761572 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000129044 | |
I0407 13:22:57.761587 32304 sgd_solver.cpp:106] Iteration 25000, lr = 0.0095 | |
I0407 13:24:10.289223 32304 solver.cpp:229] Iteration 25500, loss = 0.993754 | |
I0407 13:24:10.289366 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.15625 | |
I0407 13:24:10.289386 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 13:24:10.289400 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0407 13:24:10.289412 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375 | |
I0407 13:24:10.289424 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.21875 | |
I0407 13:24:10.289436 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0407 13:24:10.289448 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0407 13:24:10.289459 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 13:24:10.289471 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0407 13:24:10.289484 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0407 13:24:10.289495 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 13:24:10.289506 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 13:24:10.289517 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 13:24:10.289530 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 13:24:10.289541 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 13:24:10.289552 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 13:24:10.289563 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 13:24:10.289574 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 13:24:10.289585 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 13:24:10.289597 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 13:24:10.289608 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 13:24:10.289619 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 13:24:10.289634 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.3195 (* 0.0454545 = 0.150886 loss) | |
I0407 13:24:10.289649 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.638 (* 0.0454545 = 0.165364 loss) | |
I0407 13:24:10.289662 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.41261 (* 0.0454545 = 0.155119 loss) | |
I0407 13:24:10.289676 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.40627 (* 0.0454545 = 0.154831 loss) | |
I0407 13:24:10.289690 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.31182 (* 0.0454545 = 0.150537 loss) | |
I0407 13:24:10.289703 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.81513 (* 0.0454545 = 0.12796 loss) | |
I0407 13:24:10.289717 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.37769 (* 0.0454545 = 0.0626225 loss) | |
I0407 13:24:10.289734 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.535179 (* 0.0454545 = 0.0243263 loss) | |
I0407 13:24:10.289749 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.180635 (* 0.0454545 = 0.0082107 loss) | |
I0407 13:24:10.289762 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.195268 (* 0.0454545 = 0.0088758 loss) | |
I0407 13:24:10.289777 32304 solver.cpp:245] Train net output #32: loss/loss11 = 4.34422e-05 (* 0.0454545 = 1.97465e-06 loss) | |
I0407 13:24:10.289791 32304 solver.cpp:245] Train net output #33: loss/loss12 = 5.19839e-05 (* 0.0454545 = 2.3629e-06 loss) | |
I0407 13:24:10.289806 32304 solver.cpp:245] Train net output #34: loss/loss13 = 5.14078e-05 (* 0.0454545 = 2.33672e-06 loss) | |
I0407 13:24:10.289820 32304 solver.cpp:245] Train net output #35: loss/loss14 = 4.62963e-05 (* 0.0454545 = 2.10438e-06 loss) | |
I0407 13:24:10.289834 32304 solver.cpp:245] Train net output #36: loss/loss15 = 4.60055e-05 (* 0.0454545 = 2.09116e-06 loss) | |
I0407 13:24:10.289847 32304 solver.cpp:245] Train net output #37: loss/loss16 = 4.53425e-05 (* 0.0454545 = 2.06102e-06 loss) | |
I0407 13:24:10.289861 32304 solver.cpp:245] Train net output #38: loss/loss17 = 4.96103e-05 (* 0.0454545 = 2.25502e-06 loss) | |
I0407 13:24:10.289892 32304 solver.cpp:245] Train net output #39: loss/loss18 = 4.82915e-05 (* 0.0454545 = 2.19507e-06 loss) | |
I0407 13:24:10.289907 32304 solver.cpp:245] Train net output #40: loss/loss19 = 4.78201e-05 (* 0.0454545 = 2.17364e-06 loss) | |
I0407 13:24:10.289924 32304 solver.cpp:245] Train net output #41: loss/loss20 = 5.33291e-05 (* 0.0454545 = 2.42405e-06 loss) | |
I0407 13:24:10.289939 32304 solver.cpp:245] Train net output #42: loss/loss21 = 4.91594e-05 (* 0.0454545 = 2.23452e-06 loss) | |
I0407 13:24:10.289952 32304 solver.cpp:245] Train net output #43: loss/loss22 = 4.96905e-05 (* 0.0454545 = 2.25866e-06 loss) | |
I0407 13:24:10.289964 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 13:24:10.289975 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000211766 | |
I0407 13:24:10.289990 32304 sgd_solver.cpp:106] Iteration 25500, lr = 0.00949 | |
I0407 13:25:22.879989 32304 solver.cpp:229] Iteration 26000, loss = 0.986286 | |
I0407 13:25:22.880182 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 13:25:22.880203 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 13:25:22.880215 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 13:25:22.880228 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375 | |
I0407 13:25:22.880239 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0407 13:25:22.880251 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625 | |
I0407 13:25:22.880264 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625 | |
I0407 13:25:22.880275 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.78125 | |
I0407 13:25:22.880286 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 13:25:22.880298 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 13:25:22.880309 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 13:25:22.880321 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 13:25:22.880332 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 13:25:22.880344 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 13:25:22.880357 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 13:25:22.880367 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 13:25:22.880378 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 13:25:22.880390 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 13:25:22.880401 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 13:25:22.880412 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 13:25:22.880424 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 13:25:22.880435 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 13:25:22.880451 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.30216 (* 0.0454545 = 0.150098 loss) | |
I0407 13:25:22.880465 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.41773 (* 0.0454545 = 0.155351 loss) | |
I0407 13:25:22.880480 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.32597 (* 0.0454545 = 0.151181 loss) | |
I0407 13:25:22.880492 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.25263 (* 0.0454545 = 0.147847 loss) | |
I0407 13:25:22.880506 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.09153 (* 0.0454545 = 0.140524 loss) | |
I0407 13:25:22.880520 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.60405 (* 0.0454545 = 0.118366 loss) | |
I0407 13:25:22.880534 32304 solver.cpp:245] Train net output #28: loss/loss07 = 2.09939 (* 0.0454545 = 0.0954266 loss) | |
I0407 13:25:22.880548 32304 solver.cpp:245] Train net output #29: loss/loss08 = 1.23421 (* 0.0454545 = 0.0561005 loss) | |
I0407 13:25:22.880561 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.386559 (* 0.0454545 = 0.0175708 loss) | |
I0407 13:25:22.880575 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.0185425 (* 0.0454545 = 0.00084284 loss) | |
I0407 13:25:22.880589 32304 solver.cpp:245] Train net output #32: loss/loss11 = 6.73443e-05 (* 0.0454545 = 3.06111e-06 loss) | |
I0407 13:25:22.880604 32304 solver.cpp:245] Train net output #33: loss/loss12 = 7.94077e-05 (* 0.0454545 = 3.60944e-06 loss) | |
I0407 13:25:22.880617 32304 solver.cpp:245] Train net output #34: loss/loss13 = 7.56348e-05 (* 0.0454545 = 3.43794e-06 loss) | |
I0407 13:25:22.880631 32304 solver.cpp:245] Train net output #35: loss/loss14 = 6.49743e-05 (* 0.0454545 = 2.95338e-06 loss) | |
I0407 13:25:22.880645 32304 solver.cpp:245] Train net output #36: loss/loss15 = 7.49458e-05 (* 0.0454545 = 3.40663e-06 loss) | |
I0407 13:25:22.880659 32304 solver.cpp:245] Train net output #37: loss/loss16 = 6.91778e-05 (* 0.0454545 = 3.14444e-06 loss) | |
I0407 13:25:22.880672 32304 solver.cpp:245] Train net output #38: loss/loss17 = 7.41668e-05 (* 0.0454545 = 3.37122e-06 loss) | |
I0407 13:25:22.880702 32304 solver.cpp:245] Train net output #39: loss/loss18 = 7.85697e-05 (* 0.0454545 = 3.57135e-06 loss) | |
I0407 13:25:22.880717 32304 solver.cpp:245] Train net output #40: loss/loss19 = 6.81121e-05 (* 0.0454545 = 3.096e-06 loss) | |
I0407 13:25:22.880730 32304 solver.cpp:245] Train net output #41: loss/loss20 = 8.30527e-05 (* 0.0454545 = 3.77512e-06 loss) | |
I0407 13:25:22.880744 32304 solver.cpp:245] Train net output #42: loss/loss21 = 6.62485e-05 (* 0.0454545 = 3.0113e-06 loss) | |
I0407 13:25:22.880759 32304 solver.cpp:245] Train net output #43: loss/loss22 = 7.41294e-05 (* 0.0454545 = 3.36952e-06 loss) | |
I0407 13:25:22.880769 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 13:25:22.880781 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000433173 | |
I0407 13:25:22.880795 32304 sgd_solver.cpp:106] Iteration 26000, lr = 0.00948 | |
I0407 13:26:35.368341 32304 solver.cpp:229] Iteration 26500, loss = 0.98321 | |
I0407 13:26:35.368439 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0 | |
I0407 13:26:35.368458 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0407 13:26:35.368471 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.15625 | |
I0407 13:26:35.368484 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875 | |
I0407 13:26:35.368496 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.375 | |
I0407 13:26:35.368508 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5625 | |
I0407 13:26:35.368520 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0407 13:26:35.368531 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 13:26:35.368542 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0407 13:26:35.368554 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 13:26:35.368566 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 13:26:35.368577 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 13:26:35.368588 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 13:26:35.368599 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 13:26:35.368610 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 13:26:35.368621 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 13:26:35.368633 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 13:26:35.368644 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 13:26:35.368656 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 13:26:35.368667 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 13:26:35.368680 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 13:26:35.368691 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 13:26:35.368707 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.24149 (* 0.0454545 = 0.147341 loss) | |
I0407 13:26:35.368721 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.24262 (* 0.0454545 = 0.147392 loss) | |
I0407 13:26:35.368736 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.21302 (* 0.0454545 = 0.146046 loss) | |
I0407 13:26:35.368749 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.01062 (* 0.0454545 = 0.136846 loss) | |
I0407 13:26:35.368762 32304 solver.cpp:245] Train net output #26: loss/loss05 = 2.73561 (* 0.0454545 = 0.124346 loss) | |
I0407 13:26:35.368780 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.17396 (* 0.0454545 = 0.0988165 loss) | |
I0407 13:26:35.368794 32304 solver.cpp:245] Train net output #28: loss/loss07 = 0.94158 (* 0.0454545 = 0.0427991 loss) | |
I0407 13:26:35.368808 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.385728 (* 0.0454545 = 0.0175331 loss) | |
I0407 13:26:35.368823 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.178235 (* 0.0454545 = 0.00810158 loss) | |
I0407 13:26:35.368835 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.00831369 (* 0.0454545 = 0.000377895 loss) | |
I0407 13:26:35.368850 32304 solver.cpp:245] Train net output #32: loss/loss11 = 9.21412e-05 (* 0.0454545 = 4.18824e-06 loss) | |
I0407 13:26:35.368863 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.000108491 (* 0.0454545 = 4.9314e-06 loss) | |
I0407 13:26:35.368877 32304 solver.cpp:245] Train net output #34: loss/loss13 = 9.73857e-05 (* 0.0454545 = 4.42662e-06 loss) | |
I0407 13:26:35.368891 32304 solver.cpp:245] Train net output #35: loss/loss14 = 8.82243e-05 (* 0.0454545 = 4.0102e-06 loss) | |
I0407 13:26:35.368906 32304 solver.cpp:245] Train net output #36: loss/loss15 = 9.64185e-05 (* 0.0454545 = 4.38266e-06 loss) | |
I0407 13:26:35.368918 32304 solver.cpp:245] Train net output #37: loss/loss16 = 0.000105032 (* 0.0454545 = 4.77419e-06 loss) | |
I0407 13:26:35.368932 32304 solver.cpp:245] Train net output #38: loss/loss17 = 0.000101879 (* 0.0454545 = 4.63087e-06 loss) | |
I0407 13:26:35.368963 32304 solver.cpp:245] Train net output #39: loss/loss18 = 0.000121503 (* 0.0454545 = 5.52285e-06 loss) | |
I0407 13:26:35.368978 32304 solver.cpp:245] Train net output #40: loss/loss19 = 9.08957e-05 (* 0.0454545 = 4.13162e-06 loss) | |
I0407 13:26:35.368993 32304 solver.cpp:245] Train net output #41: loss/loss20 = 0.000130542 (* 0.0454545 = 5.93371e-06 loss) | |
I0407 13:26:35.369006 32304 solver.cpp:245] Train net output #42: loss/loss21 = 0.000100264 (* 0.0454545 = 4.55745e-06 loss) | |
I0407 13:26:35.369019 32304 solver.cpp:245] Train net output #43: loss/loss22 = 0.000103502 (* 0.0454545 = 4.70462e-06 loss) | |
I0407 13:26:35.369031 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 13:26:35.369043 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000331798 | |
I0407 13:26:35.369057 32304 sgd_solver.cpp:106] Iteration 26500, lr = 0.00947 | |
I0407 13:27:48.037508 32304 solver.cpp:229] Iteration 27000, loss = 0.975591 | |
I0407 13:27:48.037631 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 13:27:48.037650 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0407 13:27:48.037664 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 13:27:48.037677 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375 | |
I0407 13:27:48.037688 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0407 13:27:48.037700 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625 | |
I0407 13:27:48.037713 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0407 13:27:48.037724 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 13:27:48.037736 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0407 13:27:48.037747 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0407 13:27:48.037760 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 13:27:48.037771 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 13:27:48.037782 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 13:27:48.037794 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 13:27:48.037806 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 13:27:48.037817 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 13:27:48.037828 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 13:27:48.037839 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 13:27:48.037850 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 13:27:48.037861 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 13:27:48.037873 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 13:27:48.037884 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 13:27:48.037900 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.51124 (* 0.0454545 = 0.159602 loss) | |
I0407 13:27:48.037914 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.39601 (* 0.0454545 = 0.154364 loss) | |
I0407 13:27:48.037931 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.52555 (* 0.0454545 = 0.160252 loss) | |
I0407 13:27:48.037945 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.39038 (* 0.0454545 = 0.154108 loss) | |
I0407 13:27:48.037960 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.2946 (* 0.0454545 = 0.149755 loss) | |
I0407 13:27:48.037973 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.5596 (* 0.0454545 = 0.116345 loss) | |
I0407 13:27:48.037986 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.186 (* 0.0454545 = 0.053909 loss) | |
I0407 13:27:48.038000 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.293614 (* 0.0454545 = 0.0133461 loss) | |
I0407 13:27:48.038014 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.203128 (* 0.0454545 = 0.00923308 loss) | |
I0407 13:27:48.038028 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.193726 (* 0.0454545 = 0.00880571 loss) | |
I0407 13:27:48.038043 32304 solver.cpp:245] Train net output #32: loss/loss11 = 3.47277e-05 (* 0.0454545 = 1.57853e-06 loss) | |
I0407 13:27:48.038056 32304 solver.cpp:245] Train net output #33: loss/loss12 = 3.84271e-05 (* 0.0454545 = 1.74669e-06 loss) | |
I0407 13:27:48.038070 32304 solver.cpp:245] Train net output #34: loss/loss13 = 4.07967e-05 (* 0.0454545 = 1.8544e-06 loss) | |
I0407 13:27:48.038084 32304 solver.cpp:245] Train net output #35: loss/loss14 = 3.89083e-05 (* 0.0454545 = 1.76856e-06 loss) | |
I0407 13:27:48.038099 32304 solver.cpp:245] Train net output #36: loss/loss15 = 3.1491e-05 (* 0.0454545 = 1.43141e-06 loss) | |
I0407 13:27:48.038112 32304 solver.cpp:245] Train net output #37: loss/loss16 = 3.66814e-05 (* 0.0454545 = 1.66734e-06 loss) | |
I0407 13:27:48.038125 32304 solver.cpp:245] Train net output #38: loss/loss17 = 4.18015e-05 (* 0.0454545 = 1.90007e-06 loss) | |
I0407 13:27:48.038157 32304 solver.cpp:245] Train net output #39: loss/loss18 = 3.72261e-05 (* 0.0454545 = 1.6921e-06 loss) | |
I0407 13:27:48.038172 32304 solver.cpp:245] Train net output #40: loss/loss19 = 3.8622e-05 (* 0.0454545 = 1.75555e-06 loss) | |
I0407 13:27:48.038187 32304 solver.cpp:245] Train net output #41: loss/loss20 = 4.07722e-05 (* 0.0454545 = 1.85328e-06 loss) | |
I0407 13:27:48.038200 32304 solver.cpp:245] Train net output #42: loss/loss21 = 4.37633e-05 (* 0.0454545 = 1.98924e-06 loss) | |
I0407 13:27:48.038215 32304 solver.cpp:245] Train net output #43: loss/loss22 = 3.59677e-05 (* 0.0454545 = 1.6349e-06 loss) | |
I0407 13:27:48.038226 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 13:27:48.038239 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000191768 | |
I0407 13:27:48.038254 32304 sgd_solver.cpp:106] Iteration 27000, lr = 0.00946 | |
I0407 13:29:00.652282 32304 solver.cpp:229] Iteration 27500, loss = 0.97062 | |
I0407 13:29:00.652410 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0407 13:29:00.652431 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 13:29:00.652443 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0407 13:29:00.652456 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625 | |
I0407 13:29:00.652467 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.21875 | |
I0407 13:29:00.652479 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.46875 | |
I0407 13:29:00.652492 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.78125 | |
I0407 13:29:00.652503 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0407 13:29:00.652515 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 13:29:00.652526 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 13:29:00.652539 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 13:29:00.652549 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 13:29:00.652561 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 13:29:00.652573 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 13:29:00.652585 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 13:29:00.652596 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 13:29:00.652607 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 13:29:00.652619 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 13:29:00.652631 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 13:29:00.652642 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 13:29:00.652653 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 13:29:00.652664 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 13:29:00.652680 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.08412 (* 0.0454545 = 0.140187 loss) | |
I0407 13:29:00.652694 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.42185 (* 0.0454545 = 0.155539 loss) | |
I0407 13:29:00.652709 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.47124 (* 0.0454545 = 0.157784 loss) | |
I0407 13:29:00.652722 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.33021 (* 0.0454545 = 0.151373 loss) | |
I0407 13:29:00.652735 32304 solver.cpp:245] Train net output #26: loss/loss05 = 2.95927 (* 0.0454545 = 0.134512 loss) | |
I0407 13:29:00.652750 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.64413 (* 0.0454545 = 0.120188 loss) | |
I0407 13:29:00.652763 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.24673 (* 0.0454545 = 0.0566696 loss) | |
I0407 13:29:00.652776 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.515057 (* 0.0454545 = 0.0234117 loss) | |
I0407 13:29:00.652791 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.31669 (* 0.0454545 = 0.014395 loss) | |
I0407 13:29:00.652806 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.0112899 (* 0.0454545 = 0.000513179 loss) | |
I0407 13:29:00.652819 32304 solver.cpp:245] Train net output #32: loss/loss11 = 2.21762e-05 (* 0.0454545 = 1.00801e-06 loss) | |
I0407 13:29:00.652833 32304 solver.cpp:245] Train net output #33: loss/loss12 = 2.32696e-05 (* 0.0454545 = 1.05771e-06 loss) | |
I0407 13:29:00.652848 32304 solver.cpp:245] Train net output #34: loss/loss13 = 2.37168e-05 (* 0.0454545 = 1.07804e-06 loss) | |
I0407 13:29:00.652860 32304 solver.cpp:245] Train net output #35: loss/loss14 = 2.21317e-05 (* 0.0454545 = 1.00599e-06 loss) | |
I0407 13:29:00.652874 32304 solver.cpp:245] Train net output #36: loss/loss15 = 2.25338e-05 (* 0.0454545 = 1.02426e-06 loss) | |
I0407 13:29:00.652889 32304 solver.cpp:245] Train net output #37: loss/loss16 = 2.28675e-05 (* 0.0454545 = 1.03943e-06 loss) | |
I0407 13:29:00.652902 32304 solver.cpp:245] Train net output #38: loss/loss17 = 2.29213e-05 (* 0.0454545 = 1.04188e-06 loss) | |
I0407 13:29:00.652936 32304 solver.cpp:245] Train net output #39: loss/loss18 = 2.36049e-05 (* 0.0454545 = 1.07295e-06 loss) | |
I0407 13:29:00.652952 32304 solver.cpp:245] Train net output #40: loss/loss19 = 2.3292e-05 (* 0.0454545 = 1.05873e-06 loss) | |
I0407 13:29:00.652966 32304 solver.cpp:245] Train net output #41: loss/loss20 = 2.65113e-05 (* 0.0454545 = 1.20506e-06 loss) | |
I0407 13:29:00.652981 32304 solver.cpp:245] Train net output #42: loss/loss21 = 2.33724e-05 (* 0.0454545 = 1.06238e-06 loss) | |
I0407 13:29:00.652993 32304 solver.cpp:245] Train net output #43: loss/loss22 = 2.41787e-05 (* 0.0454545 = 1.09903e-06 loss) | |
I0407 13:29:00.653005 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 13:29:00.653017 32304 solver.cpp:245] Train net output #45: total_confidence = 9.0066e-05 | |
I0407 13:29:00.653031 32304 sgd_solver.cpp:106] Iteration 27500, lr = 0.00945 | |
I0407 13:30:12.959508 32304 solver.cpp:229] Iteration 28000, loss = 0.964748 | |
I0407 13:30:12.959671 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 13:30:12.959692 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.21875 | |
I0407 13:30:12.959704 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0407 13:30:12.959717 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625 | |
I0407 13:30:12.959728 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125 | |
I0407 13:30:12.959740 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625 | |
I0407 13:30:12.959753 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.65625 | |
I0407 13:30:12.959764 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 13:30:12.959776 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0407 13:30:12.959789 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 13:30:12.959800 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 13:30:12.959811 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 13:30:12.959823 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 13:30:12.959835 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 13:30:12.959846 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 13:30:12.959858 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 13:30:12.959869 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 13:30:12.959882 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 13:30:12.959892 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 13:30:12.959903 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 13:30:12.959915 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 13:30:12.959929 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 13:30:12.959945 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.14164 (* 0.0454545 = 0.142802 loss) | |
I0407 13:30:12.959960 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.06028 (* 0.0454545 = 0.139104 loss) | |
I0407 13:30:12.959975 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.35158 (* 0.0454545 = 0.152344 loss) | |
I0407 13:30:12.959988 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.27331 (* 0.0454545 = 0.148787 loss) | |
I0407 13:30:12.960002 32304 solver.cpp:245] Train net output #26: loss/loss05 = 2.94709 (* 0.0454545 = 0.133959 loss) | |
I0407 13:30:12.960016 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.54417 (* 0.0454545 = 0.115644 loss) | |
I0407 13:30:12.960029 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.44762 (* 0.0454545 = 0.0658008 loss) | |
I0407 13:30:12.960042 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.460368 (* 0.0454545 = 0.0209258 loss) | |
I0407 13:30:12.960057 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.214261 (* 0.0454545 = 0.00973913 loss) | |
I0407 13:30:12.960072 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.0147743 (* 0.0454545 = 0.000671559 loss) | |
I0407 13:30:12.960086 32304 solver.cpp:245] Train net output #32: loss/loss11 = 8.27172e-05 (* 0.0454545 = 3.75987e-06 loss) | |
I0407 13:30:12.960100 32304 solver.cpp:245] Train net output #33: loss/loss12 = 9.04408e-05 (* 0.0454545 = 4.11095e-06 loss) | |
I0407 13:30:12.960114 32304 solver.cpp:245] Train net output #34: loss/loss13 = 8.68564e-05 (* 0.0454545 = 3.94802e-06 loss) | |
I0407 13:30:12.960127 32304 solver.cpp:245] Train net output #35: loss/loss14 = 8.12321e-05 (* 0.0454545 = 3.69237e-06 loss) | |
I0407 13:30:12.960141 32304 solver.cpp:245] Train net output #36: loss/loss15 = 8.5055e-05 (* 0.0454545 = 3.86614e-06 loss) | |
I0407 13:30:12.960156 32304 solver.cpp:245] Train net output #37: loss/loss16 = 8.22663e-05 (* 0.0454545 = 3.73938e-06 loss) | |
I0407 13:30:12.960170 32304 solver.cpp:245] Train net output #38: loss/loss17 = 8.85744e-05 (* 0.0454545 = 4.02611e-06 loss) | |
I0407 13:30:12.960196 32304 solver.cpp:245] Train net output #39: loss/loss18 = 8.38797e-05 (* 0.0454545 = 3.81271e-06 loss) | |
I0407 13:30:12.960216 32304 solver.cpp:245] Train net output #40: loss/loss19 = 8.82313e-05 (* 0.0454545 = 4.01051e-06 loss) | |
I0407 13:30:12.960230 32304 solver.cpp:245] Train net output #41: loss/loss20 = 9.10634e-05 (* 0.0454545 = 4.13925e-06 loss) | |
I0407 13:30:12.960244 32304 solver.cpp:245] Train net output #42: loss/loss21 = 8.56422e-05 (* 0.0454545 = 3.89283e-06 loss) | |
I0407 13:30:12.960258 32304 solver.cpp:245] Train net output #43: loss/loss22 = 8.74416e-05 (* 0.0454545 = 3.97462e-06 loss) | |
I0407 13:30:12.960269 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 13:30:12.960281 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000169566 | |
I0407 13:30:12.960296 32304 sgd_solver.cpp:106] Iteration 28000, lr = 0.00944 | |
I0407 13:31:25.750957 32304 solver.cpp:229] Iteration 28500, loss = 0.957366 | |
I0407 13:31:25.751101 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 13:31:25.751119 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.15625 | |
I0407 13:31:25.751132 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 13:31:25.751145 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.21875 | |
I0407 13:31:25.751157 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125 | |
I0407 13:31:25.751169 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0407 13:31:25.751181 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0407 13:31:25.751194 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0407 13:31:25.751205 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0407 13:31:25.751219 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0407 13:31:25.751230 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 13:31:25.751241 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 13:31:25.751253 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 13:31:25.751265 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 13:31:25.751276 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 13:31:25.751287 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 13:31:25.751298 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 13:31:25.751310 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 13:31:25.751341 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 13:31:25.751355 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 13:31:25.751368 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 13:31:25.751379 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 13:31:25.751395 32304 solver.cpp:245] Train net output #22: loss/loss01 = 2.96089 (* 0.0454545 = 0.134586 loss) | |
I0407 13:31:25.751410 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.18128 (* 0.0454545 = 0.144604 loss) | |
I0407 13:31:25.751423 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.2089 (* 0.0454545 = 0.145859 loss) | |
I0407 13:31:25.751437 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.17222 (* 0.0454545 = 0.144192 loss) | |
I0407 13:31:25.751451 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.09549 (* 0.0454545 = 0.140704 loss) | |
I0407 13:31:25.751466 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.16166 (* 0.0454545 = 0.0982572 loss) | |
I0407 13:31:25.751478 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.4619 (* 0.0454545 = 0.0664498 loss) | |
I0407 13:31:25.751492 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.732453 (* 0.0454545 = 0.0332933 loss) | |
I0407 13:31:25.751507 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.15194 (* 0.0454545 = 0.00690636 loss) | |
I0407 13:31:25.751520 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.175768 (* 0.0454545 = 0.00798947 loss) | |
I0407 13:31:25.751534 32304 solver.cpp:245] Train net output #32: loss/loss11 = 9.05886e-05 (* 0.0454545 = 4.11766e-06 loss) | |
I0407 13:31:25.751549 32304 solver.cpp:245] Train net output #33: loss/loss12 = 8.84033e-05 (* 0.0454545 = 4.01833e-06 loss) | |
I0407 13:31:25.751564 32304 solver.cpp:245] Train net output #34: loss/loss13 = 9.92619e-05 (* 0.0454545 = 4.51191e-06 loss) | |
I0407 13:31:25.751577 32304 solver.cpp:245] Train net output #35: loss/loss14 = 9.67049e-05 (* 0.0454545 = 4.39568e-06 loss) | |
I0407 13:31:25.751591 32304 solver.cpp:245] Train net output #36: loss/loss15 = 7.97055e-05 (* 0.0454545 = 3.62298e-06 loss) | |
I0407 13:31:25.751605 32304 solver.cpp:245] Train net output #37: loss/loss16 = 9.851e-05 (* 0.0454545 = 4.47773e-06 loss) | |
I0407 13:31:25.751619 32304 solver.cpp:245] Train net output #38: loss/loss17 = 9.72587e-05 (* 0.0454545 = 4.42085e-06 loss) | |
I0407 13:31:25.751652 32304 solver.cpp:245] Train net output #39: loss/loss18 = 9.34522e-05 (* 0.0454545 = 4.24783e-06 loss) | |
I0407 13:31:25.751667 32304 solver.cpp:245] Train net output #40: loss/loss19 = 9.66275e-05 (* 0.0454545 = 4.39216e-06 loss) | |
I0407 13:31:25.751682 32304 solver.cpp:245] Train net output #41: loss/loss20 = 0.000102842 (* 0.0454545 = 4.67462e-06 loss) | |
I0407 13:31:25.751695 32304 solver.cpp:245] Train net output #42: loss/loss21 = 0.000105184 (* 0.0454545 = 4.7811e-06 loss) | |
I0407 13:31:25.751709 32304 solver.cpp:245] Train net output #43: loss/loss22 = 8.9013e-05 (* 0.0454545 = 4.04604e-06 loss) | |
I0407 13:31:25.751721 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 13:31:25.751732 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000467223 | |
I0407 13:31:25.751747 32304 sgd_solver.cpp:106] Iteration 28500, lr = 0.00943 | |
I0407 13:32:37.975294 32304 solver.cpp:229] Iteration 29000, loss = 0.954226 | |
I0407 13:32:37.975431 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.15625 | |
I0407 13:32:37.975450 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 13:32:37.975466 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0407 13:32:37.975478 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0407 13:32:37.975491 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.21875 | |
I0407 13:32:37.975502 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.28125 | |
I0407 13:32:37.975513 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.65625 | |
I0407 13:32:37.975525 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 13:32:37.975538 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 13:32:37.975548 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 13:32:37.975560 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 13:32:37.975571 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 13:32:37.975584 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 13:32:37.975594 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 13:32:37.975606 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 13:32:37.975618 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 13:32:37.975630 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 13:32:37.975641 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 13:32:37.975653 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 13:32:37.975664 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 13:32:37.975677 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 13:32:37.975687 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 13:32:37.975703 32304 solver.cpp:245] Train net output #22: loss/loss01 = 2.90367 (* 0.0454545 = 0.131985 loss) | |
I0407 13:32:37.975718 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.44356 (* 0.0454545 = 0.156525 loss) | |
I0407 13:32:37.975731 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.61474 (* 0.0454545 = 0.164306 loss) | |
I0407 13:32:37.975745 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.45862 (* 0.0454545 = 0.15721 loss) | |
I0407 13:32:37.975759 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.34376 (* 0.0454545 = 0.151989 loss) | |
I0407 13:32:37.975774 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.96795 (* 0.0454545 = 0.134907 loss) | |
I0407 13:32:37.975787 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.619 (* 0.0454545 = 0.0735909 loss) | |
I0407 13:32:37.975801 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.451256 (* 0.0454545 = 0.0205116 loss) | |
I0407 13:32:37.975816 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.0549465 (* 0.0454545 = 0.00249757 loss) | |
I0407 13:32:37.975829 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.0148268 (* 0.0454545 = 0.000673946 loss) | |
I0407 13:32:37.975843 32304 solver.cpp:245] Train net output #32: loss/loss11 = 4.04778e-05 (* 0.0454545 = 1.8399e-06 loss) | |
I0407 13:32:37.975858 32304 solver.cpp:245] Train net output #33: loss/loss12 = 4.33035e-05 (* 0.0454545 = 1.96834e-06 loss) | |
I0407 13:32:37.975872 32304 solver.cpp:245] Train net output #34: loss/loss13 = 4.30156e-05 (* 0.0454545 = 1.95525e-06 loss) | |
I0407 13:32:37.975885 32304 solver.cpp:245] Train net output #35: loss/loss14 = 4.209e-05 (* 0.0454545 = 1.91318e-06 loss) | |
I0407 13:32:37.975899 32304 solver.cpp:245] Train net output #36: loss/loss15 = 4.03712e-05 (* 0.0454545 = 1.83506e-06 loss) | |
I0407 13:32:37.975914 32304 solver.cpp:245] Train net output #37: loss/loss16 = 4.19035e-05 (* 0.0454545 = 1.9047e-06 loss) | |
I0407 13:32:37.975927 32304 solver.cpp:245] Train net output #38: loss/loss17 = 4.22103e-05 (* 0.0454545 = 1.91865e-06 loss) | |
I0407 13:32:37.975958 32304 solver.cpp:245] Train net output #39: loss/loss18 = 4.29851e-05 (* 0.0454545 = 1.95387e-06 loss) | |
I0407 13:32:37.975973 32304 solver.cpp:245] Train net output #40: loss/loss19 = 4.23462e-05 (* 0.0454545 = 1.92483e-06 loss) | |
I0407 13:32:37.975987 32304 solver.cpp:245] Train net output #41: loss/loss20 = 4.38556e-05 (* 0.0454545 = 1.99344e-06 loss) | |
I0407 13:32:37.976001 32304 solver.cpp:245] Train net output #42: loss/loss21 = 4.47619e-05 (* 0.0454545 = 2.03463e-06 loss) | |
I0407 13:32:37.976016 32304 solver.cpp:245] Train net output #43: loss/loss22 = 4.03617e-05 (* 0.0454545 = 1.83462e-06 loss) | |
I0407 13:32:37.976027 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 13:32:37.976038 32304 solver.cpp:245] Train net output #45: total_confidence = 0.0001657 | |
I0407 13:32:37.976053 32304 sgd_solver.cpp:106] Iteration 29000, lr = 0.00942 | |
I0407 13:33:50.265240 32304 solver.cpp:229] Iteration 29500, loss = 0.94894 | |
I0407 13:33:50.265360 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 13:33:50.265380 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0407 13:33:50.265393 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 13:33:50.265405 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375 | |
I0407 13:33:50.265418 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125 | |
I0407 13:33:50.265429 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.46875 | |
I0407 13:33:50.265440 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0407 13:33:50.265452 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.78125 | |
I0407 13:33:50.265463 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 13:33:50.265475 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 13:33:50.265486 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 13:33:50.265498 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 13:33:50.265509 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 13:33:50.265522 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 13:33:50.265532 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 13:33:50.265543 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 13:33:50.265554 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 13:33:50.265565 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 13:33:50.265576 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 13:33:50.265588 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 13:33:50.265599 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 13:33:50.265610 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 13:33:50.265626 32304 solver.cpp:245] Train net output #22: loss/loss01 = 2.9629 (* 0.0454545 = 0.134677 loss) | |
I0407 13:33:50.265640 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.15032 (* 0.0454545 = 0.143196 loss) | |
I0407 13:33:50.265655 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.18963 (* 0.0454545 = 0.144983 loss) | |
I0407 13:33:50.265667 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.18837 (* 0.0454545 = 0.144926 loss) | |
I0407 13:33:50.265681 32304 solver.cpp:245] Train net output #26: loss/loss05 = 2.69102 (* 0.0454545 = 0.122319 loss) | |
I0407 13:33:50.265696 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.29939 (* 0.0454545 = 0.104518 loss) | |
I0407 13:33:50.265709 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.56213 (* 0.0454545 = 0.0710061 loss) | |
I0407 13:33:50.265723 32304 solver.cpp:245] Train net output #29: loss/loss08 = 1.11844 (* 0.0454545 = 0.0508383 loss) | |
I0407 13:33:50.265736 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.0420853 (* 0.0454545 = 0.00191297 loss) | |
I0407 13:33:50.265751 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.0106255 (* 0.0454545 = 0.000482976 loss) | |
I0407 13:33:50.265765 32304 solver.cpp:245] Train net output #32: loss/loss11 = 0.000105946 (* 0.0454545 = 4.81575e-06 loss) | |
I0407 13:33:50.265784 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.000109617 (* 0.0454545 = 4.98261e-06 loss) | |
I0407 13:33:50.265799 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.000106241 (* 0.0454545 = 4.82912e-06 loss) | |
I0407 13:33:50.265812 32304 solver.cpp:245] Train net output #35: loss/loss14 = 0.000104392 (* 0.0454545 = 4.74511e-06 loss) | |
I0407 13:33:50.265826 32304 solver.cpp:245] Train net output #36: loss/loss15 = 0.000107461 (* 0.0454545 = 4.88459e-06 loss) | |
I0407 13:33:50.265841 32304 solver.cpp:245] Train net output #37: loss/loss16 = 0.00010966 (* 0.0454545 = 4.98456e-06 loss) | |
I0407 13:33:50.265854 32304 solver.cpp:245] Train net output #38: loss/loss17 = 0.000104226 (* 0.0454545 = 4.73756e-06 loss) | |
I0407 13:33:50.265884 32304 solver.cpp:245] Train net output #39: loss/loss18 = 0.000106322 (* 0.0454545 = 4.83284e-06 loss) | |
I0407 13:33:50.265899 32304 solver.cpp:245] Train net output #40: loss/loss19 = 0.000104541 (* 0.0454545 = 4.75186e-06 loss) | |
I0407 13:33:50.265913 32304 solver.cpp:245] Train net output #41: loss/loss20 = 0.000112816 (* 0.0454545 = 5.12798e-06 loss) | |
I0407 13:33:50.265928 32304 solver.cpp:245] Train net output #42: loss/loss21 = 0.000110799 (* 0.0454545 = 5.03633e-06 loss) | |
I0407 13:33:50.265941 32304 solver.cpp:245] Train net output #43: loss/loss22 = 0.000106281 (* 0.0454545 = 4.83095e-06 loss) | |
I0407 13:33:50.265952 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 13:33:50.265964 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000160591 | |
I0407 13:33:50.265980 32304 sgd_solver.cpp:106] Iteration 29500, lr = 0.00941 | |
I0407 13:35:02.240625 32304 solver.cpp:338] Iteration 30000, Testing net (#0) | |
I0407 13:35:10.318712 32304 solver.cpp:393] Test loss: 0.867534 | |
I0407 13:35:10.318781 32304 solver.cpp:406] Test net output #0: loss/accuracy01 = 0.132 | |
I0407 13:35:10.318797 32304 solver.cpp:406] Test net output #1: loss/accuracy02 = 0.06 | |
I0407 13:35:10.318810 32304 solver.cpp:406] Test net output #2: loss/accuracy03 = 0.08 | |
I0407 13:35:10.318821 32304 solver.cpp:406] Test net output #3: loss/accuracy04 = 0.119 | |
I0407 13:35:10.318833 32304 solver.cpp:406] Test net output #4: loss/accuracy05 = 0.213 | |
I0407 13:35:10.318852 32304 solver.cpp:406] Test net output #5: loss/accuracy06 = 0.498 | |
I0407 13:35:10.318864 32304 solver.cpp:406] Test net output #6: loss/accuracy07 = 0.893 | |
I0407 13:35:10.318876 32304 solver.cpp:406] Test net output #7: loss/accuracy08 = 0.97 | |
I0407 13:35:10.318887 32304 solver.cpp:406] Test net output #8: loss/accuracy09 = 0.995 | |
I0407 13:35:10.318898 32304 solver.cpp:406] Test net output #9: loss/accuracy10 = 0.998 | |
I0407 13:35:10.318910 32304 solver.cpp:406] Test net output #10: loss/accuracy11 = 1 | |
I0407 13:35:10.318924 32304 solver.cpp:406] Test net output #11: loss/accuracy12 = 1 | |
I0407 13:35:10.318936 32304 solver.cpp:406] Test net output #12: loss/accuracy13 = 1 | |
I0407 13:35:10.318948 32304 solver.cpp:406] Test net output #13: loss/accuracy14 = 1 | |
I0407 13:35:10.318958 32304 solver.cpp:406] Test net output #14: loss/accuracy15 = 1 | |
I0407 13:35:10.318969 32304 solver.cpp:406] Test net output #15: loss/accuracy16 = 1 | |
I0407 13:35:10.318980 32304 solver.cpp:406] Test net output #16: loss/accuracy17 = 1 | |
I0407 13:35:10.318992 32304 solver.cpp:406] Test net output #17: loss/accuracy18 = 1 | |
I0407 13:35:10.319003 32304 solver.cpp:406] Test net output #18: loss/accuracy19 = 1 | |
I0407 13:35:10.319015 32304 solver.cpp:406] Test net output #19: loss/accuracy20 = 1 | |
I0407 13:35:10.319025 32304 solver.cpp:406] Test net output #20: loss/accuracy21 = 1 | |
I0407 13:35:10.319036 32304 solver.cpp:406] Test net output #21: loss/accuracy22 = 1 | |
I0407 13:35:10.319052 32304 solver.cpp:406] Test net output #22: loss/loss01 = 3.10093 (* 0.0454545 = 0.140951 loss) | |
I0407 13:35:10.319067 32304 solver.cpp:406] Test net output #23: loss/loss02 = 3.24237 (* 0.0454545 = 0.147381 loss) | |
I0407 13:35:10.319080 32304 solver.cpp:406] Test net output #24: loss/loss03 = 3.2709 (* 0.0454545 = 0.148677 loss) | |
I0407 13:35:10.319093 32304 solver.cpp:406] Test net output #25: loss/loss04 = 3.19948 (* 0.0454545 = 0.145431 loss) | |
I0407 13:35:10.319106 32304 solver.cpp:406] Test net output #26: loss/loss05 = 3.01777 (* 0.0454545 = 0.137171 loss) | |
I0407 13:35:10.319120 32304 solver.cpp:406] Test net output #27: loss/loss06 = 2.15525 (* 0.0454545 = 0.0979661 loss) | |
I0407 13:35:10.319133 32304 solver.cpp:406] Test net output #28: loss/loss07 = 0.767671 (* 0.0454545 = 0.0348941 loss) | |
I0407 13:35:10.319146 32304 solver.cpp:406] Test net output #29: loss/loss08 = 0.248451 (* 0.0454545 = 0.0112932 loss) | |
I0407 13:35:10.319160 32304 solver.cpp:406] Test net output #30: loss/loss09 = 0.0553376 (* 0.0454545 = 0.00251535 loss) | |
I0407 13:35:10.319175 32304 solver.cpp:406] Test net output #31: loss/loss10 = 0.0260548 (* 0.0454545 = 0.00118431 loss) | |
I0407 13:35:10.319188 32304 solver.cpp:406] Test net output #32: loss/loss11 = 0.000123575 (* 0.0454545 = 5.61705e-06 loss) | |
I0407 13:35:10.319202 32304 solver.cpp:406] Test net output #33: loss/loss12 = 0.000141707 (* 0.0454545 = 6.44125e-06 loss) | |
I0407 13:35:10.319216 32304 solver.cpp:406] Test net output #34: loss/loss13 = 0.000129401 (* 0.0454545 = 5.88185e-06 loss) | |
I0407 13:35:10.319231 32304 solver.cpp:406] Test net output #35: loss/loss14 = 0.000120391 (* 0.0454545 = 5.47231e-06 loss) | |
I0407 13:35:10.319244 32304 solver.cpp:406] Test net output #36: loss/loss15 = 0.000122087 (* 0.0454545 = 5.5494e-06 loss) | |
I0407 13:35:10.319257 32304 solver.cpp:406] Test net output #37: loss/loss16 = 0.00012118 (* 0.0454545 = 5.50817e-06 loss) | |
I0407 13:35:10.319272 32304 solver.cpp:406] Test net output #38: loss/loss17 = 0.000132018 (* 0.0454545 = 6.00081e-06 loss) | |
I0407 13:35:10.319341 32304 solver.cpp:406] Test net output #39: loss/loss18 = 0.000129011 (* 0.0454545 = 5.86416e-06 loss) | |
I0407 13:35:10.319358 32304 solver.cpp:406] Test net output #40: loss/loss19 = 0.000139865 (* 0.0454545 = 6.3575e-06 loss) | |
I0407 13:35:10.319372 32304 solver.cpp:406] Test net output #41: loss/loss20 = 0.000125648 (* 0.0454545 = 5.71128e-06 loss) | |
I0407 13:35:10.319386 32304 solver.cpp:406] Test net output #42: loss/loss21 = 0.000130777 (* 0.0454545 = 5.94441e-06 loss) | |
I0407 13:35:10.319399 32304 solver.cpp:406] Test net output #43: loss/loss22 = 0.000133542 (* 0.0454545 = 6.07009e-06 loss) | |
I0407 13:35:10.319411 32304 solver.cpp:406] Test net output #44: total_accuracy = 0 | |
I0407 13:35:10.319423 32304 solver.cpp:406] Test net output #45: total_confidence = 0.000156932 | |
I0407 13:35:10.353775 32304 solver.cpp:229] Iteration 30000, loss = 0.948149 | |
I0407 13:35:10.353834 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.1875 | |
I0407 13:35:10.353852 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 13:35:10.353864 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0407 13:35:10.353876 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375 | |
I0407 13:35:10.353888 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125 | |
I0407 13:35:10.353900 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625 | |
I0407 13:35:10.353912 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625 | |
I0407 13:35:10.353924 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 13:35:10.353936 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 13:35:10.353947 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 13:35:10.353960 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 13:35:10.353971 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 13:35:10.353982 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 13:35:10.353994 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 13:35:10.354006 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 13:35:10.354017 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 13:35:10.354028 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 13:35:10.354040 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 13:35:10.354051 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 13:35:10.354063 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 13:35:10.354076 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 13:35:10.354089 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 13:35:10.354104 32304 solver.cpp:245] Train net output #22: loss/loss01 = 2.74876 (* 0.0454545 = 0.124944 loss) | |
I0407 13:35:10.354120 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.19796 (* 0.0454545 = 0.145362 loss) | |
I0407 13:35:10.354132 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.13872 (* 0.0454545 = 0.142669 loss) | |
I0407 13:35:10.354146 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.19208 (* 0.0454545 = 0.145095 loss) | |
I0407 13:35:10.354161 32304 solver.cpp:245] Train net output #26: loss/loss05 = 2.71375 (* 0.0454545 = 0.123352 loss) | |
I0407 13:35:10.354174 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.19357 (* 0.0454545 = 0.0997076 loss) | |
I0407 13:35:10.354188 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.80544 (* 0.0454545 = 0.0820654 loss) | |
I0407 13:35:10.354202 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.505936 (* 0.0454545 = 0.0229971 loss) | |
I0407 13:35:10.354215 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.351246 (* 0.0454545 = 0.0159657 loss) | |
I0407 13:35:10.354229 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.0168943 (* 0.0454545 = 0.000767922 loss) | |
I0407 13:35:10.354269 32304 solver.cpp:245] Train net output #32: loss/loss11 = 7.13938e-05 (* 0.0454545 = 3.24517e-06 loss) | |
I0407 13:35:10.354284 32304 solver.cpp:245] Train net output #33: loss/loss12 = 8.16598e-05 (* 0.0454545 = 3.71181e-06 loss) | |
I0407 13:35:10.354302 32304 solver.cpp:245] Train net output #34: loss/loss13 = 7.30982e-05 (* 0.0454545 = 3.32265e-06 loss) | |
I0407 13:35:10.354317 32304 solver.cpp:245] Train net output #35: loss/loss14 = 6.68132e-05 (* 0.0454545 = 3.03696e-06 loss) | |
I0407 13:35:10.354331 32304 solver.cpp:245] Train net output #36: loss/loss15 = 7.15674e-05 (* 0.0454545 = 3.25306e-06 loss) | |
I0407 13:35:10.354346 32304 solver.cpp:245] Train net output #37: loss/loss16 = 6.9024e-05 (* 0.0454545 = 3.13746e-06 loss) | |
I0407 13:35:10.354359 32304 solver.cpp:245] Train net output #38: loss/loss17 = 7.66909e-05 (* 0.0454545 = 3.48595e-06 loss) | |
I0407 13:35:10.354373 32304 solver.cpp:245] Train net output #39: loss/loss18 = 7.56857e-05 (* 0.0454545 = 3.44026e-06 loss) | |
I0407 13:35:10.354387 32304 solver.cpp:245] Train net output #40: loss/loss19 = 7.95538e-05 (* 0.0454545 = 3.61608e-06 loss) | |
I0407 13:35:10.354401 32304 solver.cpp:245] Train net output #41: loss/loss20 = 7.48043e-05 (* 0.0454545 = 3.4002e-06 loss) | |
I0407 13:35:10.354415 32304 solver.cpp:245] Train net output #42: loss/loss21 = 7.30519e-05 (* 0.0454545 = 3.32054e-06 loss) | |
I0407 13:35:10.354429 32304 solver.cpp:245] Train net output #43: loss/loss22 = 7.66277e-05 (* 0.0454545 = 3.48308e-06 loss) | |
I0407 13:35:10.354441 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 13:35:10.354452 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000448959 | |
I0407 13:35:10.354467 32304 sgd_solver.cpp:106] Iteration 30000, lr = 0.0094 | |
I0407 13:36:22.040558 32304 solver.cpp:229] Iteration 30500, loss = 0.949707 | |
I0407 13:36:22.040712 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 13:36:22.040732 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.15625 | |
I0407 13:36:22.040745 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0407 13:36:22.040757 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625 | |
I0407 13:36:22.040769 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125 | |
I0407 13:36:22.040781 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625 | |
I0407 13:36:22.040793 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875 | |
I0407 13:36:22.040804 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 13:36:22.040817 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0407 13:36:22.040828 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 13:36:22.040840 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 13:36:22.040851 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 13:36:22.040863 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 13:36:22.040874 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 13:36:22.040886 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 13:36:22.040899 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 13:36:22.040910 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 13:36:22.040925 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 13:36:22.040935 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 13:36:22.040947 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 13:36:22.040958 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 13:36:22.040971 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 13:36:22.040985 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.06023 (* 0.0454545 = 0.139101 loss) | |
I0407 13:36:22.041000 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.18639 (* 0.0454545 = 0.144836 loss) | |
I0407 13:36:22.041013 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.38229 (* 0.0454545 = 0.15374 loss) | |
I0407 13:36:22.041028 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.12957 (* 0.0454545 = 0.142253 loss) | |
I0407 13:36:22.041041 32304 solver.cpp:245] Train net output #26: loss/loss05 = 2.75365 (* 0.0454545 = 0.125166 loss) | |
I0407 13:36:22.041055 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.17413 (* 0.0454545 = 0.0988243 loss) | |
I0407 13:36:22.041069 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.13862 (* 0.0454545 = 0.0517555 loss) | |
I0407 13:36:22.041082 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.568721 (* 0.0454545 = 0.0258509 loss) | |
I0407 13:36:22.041097 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.190513 (* 0.0454545 = 0.00865969 loss) | |
I0407 13:36:22.041111 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.0151867 (* 0.0454545 = 0.000690306 loss) | |
I0407 13:36:22.041126 32304 solver.cpp:245] Train net output #32: loss/loss11 = 1.22117e-05 (* 0.0454545 = 5.55079e-07 loss) | |
I0407 13:36:22.041139 32304 solver.cpp:245] Train net output #33: loss/loss12 = 1.2968e-05 (* 0.0454545 = 5.89454e-07 loss) | |
I0407 13:36:22.041153 32304 solver.cpp:245] Train net output #34: loss/loss13 = 1.12171e-05 (* 0.0454545 = 5.09866e-07 loss) | |
I0407 13:36:22.041167 32304 solver.cpp:245] Train net output #35: loss/loss14 = 1.05241e-05 (* 0.0454545 = 4.78369e-07 loss) | |
I0407 13:36:22.041182 32304 solver.cpp:245] Train net output #36: loss/loss15 = 1.18131e-05 (* 0.0454545 = 5.36959e-07 loss) | |
I0407 13:36:22.041194 32304 solver.cpp:245] Train net output #37: loss/loss16 = 1.13474e-05 (* 0.0454545 = 5.15793e-07 loss) | |
I0407 13:36:22.041209 32304 solver.cpp:245] Train net output #38: loss/loss17 = 1.25284e-05 (* 0.0454545 = 5.69473e-07 loss) | |
I0407 13:36:22.041240 32304 solver.cpp:245] Train net output #39: loss/loss18 = 1.24986e-05 (* 0.0454545 = 5.68117e-07 loss) | |
I0407 13:36:22.041255 32304 solver.cpp:245] Train net output #40: loss/loss19 = 1.27669e-05 (* 0.0454545 = 5.80312e-07 loss) | |
I0407 13:36:22.041270 32304 solver.cpp:245] Train net output #41: loss/loss20 = 1.17945e-05 (* 0.0454545 = 5.36113e-07 loss) | |
I0407 13:36:22.041283 32304 solver.cpp:245] Train net output #42: loss/loss21 = 1.14741e-05 (* 0.0454545 = 5.21551e-07 loss) | |
I0407 13:36:22.041297 32304 solver.cpp:245] Train net output #43: loss/loss22 = 1.2331e-05 (* 0.0454545 = 5.60498e-07 loss) | |
I0407 13:36:22.041309 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 13:36:22.041321 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000331867 | |
I0407 13:36:22.041337 32304 sgd_solver.cpp:106] Iteration 30500, lr = 0.00939 | |
I0407 13:37:34.167735 32304 solver.cpp:229] Iteration 31000, loss = 0.947322 | |
I0407 13:37:34.167868 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0407 13:37:34.167887 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 13:37:34.167901 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 13:37:34.167913 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0407 13:37:34.167928 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0407 13:37:34.167940 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.25 | |
I0407 13:37:34.167953 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0407 13:37:34.167964 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 13:37:34.167975 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0407 13:37:34.167987 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0407 13:37:34.167999 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 13:37:34.168010 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 13:37:34.168022 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 13:37:34.168033 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 13:37:34.168045 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 13:37:34.168056 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 13:37:34.168067 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 13:37:34.168079 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 13:37:34.168090 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 13:37:34.168102 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 13:37:34.168113 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 13:37:34.168124 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 13:37:34.168141 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.05824 (* 0.0454545 = 0.139011 loss) | |
I0407 13:37:34.168155 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.40469 (* 0.0454545 = 0.154759 loss) | |
I0407 13:37:34.168169 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.40172 (* 0.0454545 = 0.154623 loss) | |
I0407 13:37:34.168184 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.14483 (* 0.0454545 = 0.142947 loss) | |
I0407 13:37:34.168196 32304 solver.cpp:245] Train net output #26: loss/loss05 = 2.96722 (* 0.0454545 = 0.134874 loss) | |
I0407 13:37:34.168210 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.98045 (* 0.0454545 = 0.135475 loss) | |
I0407 13:37:34.168223 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.43265 (* 0.0454545 = 0.0651206 loss) | |
I0407 13:37:34.168237 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.460628 (* 0.0454545 = 0.0209376 loss) | |
I0407 13:37:34.168251 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.23873 (* 0.0454545 = 0.0108514 loss) | |
I0407 13:37:34.168265 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.198315 (* 0.0454545 = 0.00901431 loss) | |
I0407 13:37:34.168279 32304 solver.cpp:245] Train net output #32: loss/loss11 = 0.000288871 (* 0.0454545 = 1.31305e-05 loss) | |
I0407 13:37:34.168293 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.000311822 (* 0.0454545 = 1.41737e-05 loss) | |
I0407 13:37:34.168306 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.000341756 (* 0.0454545 = 1.55344e-05 loss) | |
I0407 13:37:34.168320 32304 solver.cpp:245] Train net output #35: loss/loss14 = 0.000317135 (* 0.0454545 = 1.44152e-05 loss) | |
I0407 13:37:34.168334 32304 solver.cpp:245] Train net output #36: loss/loss15 = 0.000264854 (* 0.0454545 = 1.20388e-05 loss) | |
I0407 13:37:34.168349 32304 solver.cpp:245] Train net output #37: loss/loss16 = 0.000332465 (* 0.0454545 = 1.5112e-05 loss) | |
I0407 13:37:34.168362 32304 solver.cpp:245] Train net output #38: loss/loss17 = 0.000345696 (* 0.0454545 = 1.57135e-05 loss) | |
I0407 13:37:34.168392 32304 solver.cpp:245] Train net output #39: loss/loss18 = 0.000314836 (* 0.0454545 = 1.43107e-05 loss) | |
I0407 13:37:34.168408 32304 solver.cpp:245] Train net output #40: loss/loss19 = 0.000306556 (* 0.0454545 = 1.39344e-05 loss) | |
I0407 13:37:34.168421 32304 solver.cpp:245] Train net output #41: loss/loss20 = 0.000325359 (* 0.0454545 = 1.4789e-05 loss) | |
I0407 13:37:34.168436 32304 solver.cpp:245] Train net output #42: loss/loss21 = 0.000344832 (* 0.0454545 = 1.56742e-05 loss) | |
I0407 13:37:34.168449 32304 solver.cpp:245] Train net output #43: loss/loss22 = 0.000286873 (* 0.0454545 = 1.30397e-05 loss) | |
I0407 13:37:34.168462 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 13:37:34.168473 32304 solver.cpp:245] Train net output #45: total_confidence = 5.70818e-05 | |
I0407 13:37:34.168488 32304 sgd_solver.cpp:106] Iteration 31000, lr = 0.00938 | |
I0407 13:38:46.081976 32304 solver.cpp:229] Iteration 31500, loss = 0.942455 | |
I0407 13:38:46.082151 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0407 13:38:46.082182 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0407 13:38:46.082201 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0407 13:38:46.082213 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375 | |
I0407 13:38:46.082224 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.34375 | |
I0407 13:38:46.082237 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5625 | |
I0407 13:38:46.082248 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0407 13:38:46.082260 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 13:38:46.082273 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0407 13:38:46.082283 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 13:38:46.082295 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 13:38:46.082307 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 13:38:46.082319 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 13:38:46.082330 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 13:38:46.082341 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 13:38:46.082353 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 13:38:46.082365 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 13:38:46.082376 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 13:38:46.082387 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 13:38:46.082398 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 13:38:46.082409 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 13:38:46.082420 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 13:38:46.082437 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.0562 (* 0.0454545 = 0.138918 loss) | |
I0407 13:38:46.082450 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.4583 (* 0.0454545 = 0.157195 loss) | |
I0407 13:38:46.082464 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.71364 (* 0.0454545 = 0.168802 loss) | |
I0407 13:38:46.082479 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.67581 (* 0.0454545 = 0.167082 loss) | |
I0407 13:38:46.082491 32304 solver.cpp:245] Train net output #26: loss/loss05 = 2.77229 (* 0.0454545 = 0.126013 loss) | |
I0407 13:38:46.082505 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.09534 (* 0.0454545 = 0.0952427 loss) | |
I0407 13:38:46.082520 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.38974 (* 0.0454545 = 0.06317 loss) | |
I0407 13:38:46.082532 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.492872 (* 0.0454545 = 0.0224033 loss) | |
I0407 13:38:46.082547 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.211805 (* 0.0454545 = 0.00962748 loss) | |
I0407 13:38:46.082561 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.00413233 (* 0.0454545 = 0.000187833 loss) | |
I0407 13:38:46.082576 32304 solver.cpp:245] Train net output #32: loss/loss11 = 3.65923e-05 (* 0.0454545 = 1.66329e-06 loss) | |
I0407 13:38:46.082589 32304 solver.cpp:245] Train net output #33: loss/loss12 = 3.7479e-05 (* 0.0454545 = 1.70359e-06 loss) | |
I0407 13:38:46.082603 32304 solver.cpp:245] Train net output #34: loss/loss13 = 3.49529e-05 (* 0.0454545 = 1.58877e-06 loss) | |
I0407 13:38:46.082617 32304 solver.cpp:245] Train net output #35: loss/loss14 = 3.54148e-05 (* 0.0454545 = 1.60977e-06 loss) | |
I0407 13:38:46.082631 32304 solver.cpp:245] Train net output #36: loss/loss15 = 3.46212e-05 (* 0.0454545 = 1.57369e-06 loss) | |
I0407 13:38:46.082645 32304 solver.cpp:245] Train net output #37: loss/loss16 = 3.87443e-05 (* 0.0454545 = 1.76111e-06 loss) | |
I0407 13:38:46.082659 32304 solver.cpp:245] Train net output #38: loss/loss17 = 3.79858e-05 (* 0.0454545 = 1.72663e-06 loss) | |
I0407 13:38:46.082690 32304 solver.cpp:245] Train net output #39: loss/loss18 = 4.01486e-05 (* 0.0454545 = 1.82494e-06 loss) | |
I0407 13:38:46.082706 32304 solver.cpp:245] Train net output #40: loss/loss19 = 3.68864e-05 (* 0.0454545 = 1.67666e-06 loss) | |
I0407 13:38:46.082720 32304 solver.cpp:245] Train net output #41: loss/loss20 = 3.73115e-05 (* 0.0454545 = 1.69598e-06 loss) | |
I0407 13:38:46.082733 32304 solver.cpp:245] Train net output #42: loss/loss21 = 3.64452e-05 (* 0.0454545 = 1.6566e-06 loss) | |
I0407 13:38:46.082748 32304 solver.cpp:245] Train net output #43: loss/loss22 = 3.55971e-05 (* 0.0454545 = 1.61805e-06 loss) | |
I0407 13:38:46.082761 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 13:38:46.082772 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000632982 | |
I0407 13:38:46.082787 32304 sgd_solver.cpp:106] Iteration 31500, lr = 0.00937 | |
I0407 13:39:58.203217 32304 solver.cpp:229] Iteration 32000, loss = 0.938183 | |
I0407 13:39:58.203358 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 13:39:58.203379 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0407 13:39:58.203392 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0407 13:39:58.203404 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625 | |
I0407 13:39:58.203418 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0407 13:39:58.203428 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375 | |
I0407 13:39:58.203440 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.65625 | |
I0407 13:39:58.203451 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0407 13:39:58.203464 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0407 13:39:58.203475 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 13:39:58.203487 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 13:39:58.203498 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 13:39:58.203510 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 13:39:58.203521 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 13:39:58.203533 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 13:39:58.203544 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 13:39:58.203557 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 13:39:58.203567 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 13:39:58.203578 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 13:39:58.203590 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 13:39:58.203601 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 13:39:58.203613 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 13:39:58.203629 32304 solver.cpp:245] Train net output #22: loss/loss01 = 2.86191 (* 0.0454545 = 0.130087 loss) | |
I0407 13:39:58.203644 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.0184 (* 0.0454545 = 0.1372 loss) | |
I0407 13:39:58.203656 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.40848 (* 0.0454545 = 0.154931 loss) | |
I0407 13:39:58.203670 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.14904 (* 0.0454545 = 0.143138 loss) | |
I0407 13:39:58.203683 32304 solver.cpp:245] Train net output #26: loss/loss05 = 2.83182 (* 0.0454545 = 0.128719 loss) | |
I0407 13:39:58.203697 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.53765 (* 0.0454545 = 0.115348 loss) | |
I0407 13:39:58.203711 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.54608 (* 0.0454545 = 0.0702762 loss) | |
I0407 13:39:58.203724 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.511049 (* 0.0454545 = 0.0232295 loss) | |
I0407 13:39:58.203738 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.271568 (* 0.0454545 = 0.012344 loss) | |
I0407 13:39:58.203753 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.0188422 (* 0.0454545 = 0.000856462 loss) | |
I0407 13:39:58.203768 32304 solver.cpp:245] Train net output #32: loss/loss11 = 3.98163e-05 (* 0.0454545 = 1.80983e-06 loss) | |
I0407 13:39:58.203781 32304 solver.cpp:245] Train net output #33: loss/loss12 = 3.71328e-05 (* 0.0454545 = 1.68785e-06 loss) | |
I0407 13:39:58.203795 32304 solver.cpp:245] Train net output #34: loss/loss13 = 4.22094e-05 (* 0.0454545 = 1.91861e-06 loss) | |
I0407 13:39:58.203809 32304 solver.cpp:245] Train net output #35: loss/loss14 = 4.11493e-05 (* 0.0454545 = 1.87042e-06 loss) | |
I0407 13:39:58.203824 32304 solver.cpp:245] Train net output #36: loss/loss15 = 3.39733e-05 (* 0.0454545 = 1.54424e-06 loss) | |
I0407 13:39:58.203836 32304 solver.cpp:245] Train net output #37: loss/loss16 = 3.88218e-05 (* 0.0454545 = 1.76463e-06 loss) | |
I0407 13:39:58.203850 32304 solver.cpp:245] Train net output #38: loss/loss17 = 4.10333e-05 (* 0.0454545 = 1.86515e-06 loss) | |
I0407 13:39:58.203883 32304 solver.cpp:245] Train net output #39: loss/loss18 = 3.66931e-05 (* 0.0454545 = 1.66787e-06 loss) | |
I0407 13:39:58.203898 32304 solver.cpp:245] Train net output #40: loss/loss19 = 4.11636e-05 (* 0.0454545 = 1.87107e-06 loss) | |
I0407 13:39:58.203912 32304 solver.cpp:245] Train net output #41: loss/loss20 = 4.07946e-05 (* 0.0454545 = 1.8543e-06 loss) | |
I0407 13:39:58.203928 32304 solver.cpp:245] Train net output #42: loss/loss21 = 4.05085e-05 (* 0.0454545 = 1.8413e-06 loss) | |
I0407 13:39:58.203943 32304 solver.cpp:245] Train net output #43: loss/loss22 = 3.82118e-05 (* 0.0454545 = 1.7369e-06 loss) | |
I0407 13:39:58.203954 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 13:39:58.203966 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000680656 | |
I0407 13:39:58.203981 32304 sgd_solver.cpp:106] Iteration 32000, lr = 0.00936 | |
I0407 13:41:10.822811 32304 solver.cpp:229] Iteration 32500, loss = 0.93924 | |
I0407 13:41:10.822958 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 13:41:10.822978 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125 | |
I0407 13:41:10.822990 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0407 13:41:10.823004 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875 | |
I0407 13:41:10.823015 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.21875 | |
I0407 13:41:10.823027 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0407 13:41:10.823038 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0407 13:41:10.823050 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 13:41:10.823062 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 13:41:10.823073 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0407 13:41:10.823086 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 13:41:10.823096 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 13:41:10.823108 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 13:41:10.823119 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 13:41:10.823132 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 13:41:10.823143 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 13:41:10.823154 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 13:41:10.823165 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 13:41:10.823176 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 13:41:10.823187 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 13:41:10.823199 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 13:41:10.823210 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 13:41:10.823226 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.06403 (* 0.0454545 = 0.139274 loss) | |
I0407 13:41:10.823240 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.32171 (* 0.0454545 = 0.150987 loss) | |
I0407 13:41:10.823254 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.42242 (* 0.0454545 = 0.155564 loss) | |
I0407 13:41:10.823267 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.23221 (* 0.0454545 = 0.146919 loss) | |
I0407 13:41:10.823282 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.03826 (* 0.0454545 = 0.138103 loss) | |
I0407 13:41:10.823295 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.75426 (* 0.0454545 = 0.125194 loss) | |
I0407 13:41:10.823309 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.08334 (* 0.0454545 = 0.0492426 loss) | |
I0407 13:41:10.823339 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.566801 (* 0.0454545 = 0.0257637 loss) | |
I0407 13:41:10.823355 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.269307 (* 0.0454545 = 0.0122412 loss) | |
I0407 13:41:10.823370 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.167831 (* 0.0454545 = 0.00762867 loss) | |
I0407 13:41:10.823385 32304 solver.cpp:245] Train net output #32: loss/loss11 = 5.87605e-05 (* 0.0454545 = 2.67093e-06 loss) | |
I0407 13:41:10.823400 32304 solver.cpp:245] Train net output #33: loss/loss12 = 6.12268e-05 (* 0.0454545 = 2.78304e-06 loss) | |
I0407 13:41:10.823413 32304 solver.cpp:245] Train net output #34: loss/loss13 = 5.53377e-05 (* 0.0454545 = 2.51535e-06 loss) | |
I0407 13:41:10.823427 32304 solver.cpp:245] Train net output #35: loss/loss14 = 5.54386e-05 (* 0.0454545 = 2.51994e-06 loss) | |
I0407 13:41:10.823441 32304 solver.cpp:245] Train net output #36: loss/loss15 = 5.70057e-05 (* 0.0454545 = 2.59117e-06 loss) | |
I0407 13:41:10.823456 32304 solver.cpp:245] Train net output #37: loss/loss16 = 5.44774e-05 (* 0.0454545 = 2.47625e-06 loss) | |
I0407 13:41:10.823468 32304 solver.cpp:245] Train net output #38: loss/loss17 = 5.95128e-05 (* 0.0454545 = 2.70513e-06 loss) | |
I0407 13:41:10.823503 32304 solver.cpp:245] Train net output #39: loss/loss18 = 6.23266e-05 (* 0.0454545 = 2.83303e-06 loss) | |
I0407 13:41:10.823518 32304 solver.cpp:245] Train net output #40: loss/loss19 = 6.36656e-05 (* 0.0454545 = 2.89389e-06 loss) | |
I0407 13:41:10.823531 32304 solver.cpp:245] Train net output #41: loss/loss20 = 5.5761e-05 (* 0.0454545 = 2.53459e-06 loss) | |
I0407 13:41:10.823545 32304 solver.cpp:245] Train net output #42: loss/loss21 = 5.48927e-05 (* 0.0454545 = 2.49512e-06 loss) | |
I0407 13:41:10.823559 32304 solver.cpp:245] Train net output #43: loss/loss22 = 6.1978e-05 (* 0.0454545 = 2.81718e-06 loss) | |
I0407 13:41:10.823570 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 13:41:10.823582 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000522443 | |
I0407 13:41:10.823598 32304 sgd_solver.cpp:106] Iteration 32500, lr = 0.00935 | |
I0407 13:42:23.465224 32304 solver.cpp:229] Iteration 33000, loss = 0.934448 | |
I0407 13:42:23.465373 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 13:42:23.465392 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0407 13:42:23.465406 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 13:42:23.465418 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625 | |
I0407 13:42:23.465430 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0407 13:42:23.465442 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0407 13:42:23.465454 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.78125 | |
I0407 13:42:23.465466 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.96875 | |
I0407 13:42:23.465478 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 13:42:23.465489 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 13:42:23.465502 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 13:42:23.465512 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 13:42:23.465523 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 13:42:23.465535 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 13:42:23.465548 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 13:42:23.465559 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 13:42:23.465569 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 13:42:23.465581 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 13:42:23.465592 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 13:42:23.465603 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 13:42:23.465615 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 13:42:23.465626 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 13:42:23.465641 32304 solver.cpp:245] Train net output #22: loss/loss01 = 2.89411 (* 0.0454545 = 0.13155 loss) | |
I0407 13:42:23.465656 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.30758 (* 0.0454545 = 0.150345 loss) | |
I0407 13:42:23.465670 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.16173 (* 0.0454545 = 0.143715 loss) | |
I0407 13:42:23.465683 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.02122 (* 0.0454545 = 0.137328 loss) | |
I0407 13:42:23.465698 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.03122 (* 0.0454545 = 0.137783 loss) | |
I0407 13:42:23.465710 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.4293 (* 0.0454545 = 0.110423 loss) | |
I0407 13:42:23.465724 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.05216 (* 0.0454545 = 0.0478253 loss) | |
I0407 13:42:23.465739 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.214823 (* 0.0454545 = 0.00976469 loss) | |
I0407 13:42:23.465752 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.0463909 (* 0.0454545 = 0.00210868 loss) | |
I0407 13:42:23.465766 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.0181804 (* 0.0454545 = 0.000826383 loss) | |
I0407 13:42:23.465780 32304 solver.cpp:245] Train net output #32: loss/loss11 = 0.0002236 (* 0.0454545 = 1.01636e-05 loss) | |
I0407 13:42:23.465795 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.000228196 (* 0.0454545 = 1.03725e-05 loss) | |
I0407 13:42:23.465809 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.000238022 (* 0.0454545 = 1.08192e-05 loss) | |
I0407 13:42:23.465823 32304 solver.cpp:245] Train net output #35: loss/loss14 = 0.00024341 (* 0.0454545 = 1.10641e-05 loss) | |
I0407 13:42:23.465837 32304 solver.cpp:245] Train net output #36: loss/loss15 = 0.000207538 (* 0.0454545 = 9.43355e-06 loss) | |
I0407 13:42:23.465850 32304 solver.cpp:245] Train net output #37: loss/loss16 = 0.000232784 (* 0.0454545 = 1.05811e-05 loss) | |
I0407 13:42:23.465864 32304 solver.cpp:245] Train net output #38: loss/loss17 = 0.000262369 (* 0.0454545 = 1.19259e-05 loss) | |
I0407 13:42:23.465895 32304 solver.cpp:245] Train net output #39: loss/loss18 = 0.000226473 (* 0.0454545 = 1.02942e-05 loss) | |
I0407 13:42:23.465910 32304 solver.cpp:245] Train net output #40: loss/loss19 = 0.0002526 (* 0.0454545 = 1.14818e-05 loss) | |
I0407 13:42:23.465929 32304 solver.cpp:245] Train net output #41: loss/loss20 = 0.000241935 (* 0.0454545 = 1.0997e-05 loss) | |
I0407 13:42:23.465942 32304 solver.cpp:245] Train net output #42: loss/loss21 = 0.000237136 (* 0.0454545 = 1.07789e-05 loss) | |
I0407 13:42:23.465956 32304 solver.cpp:245] Train net output #43: loss/loss22 = 0.000227269 (* 0.0454545 = 1.03304e-05 loss) | |
I0407 13:42:23.465967 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 13:42:23.465980 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000134776 | |
I0407 13:42:23.465994 32304 sgd_solver.cpp:106] Iteration 33000, lr = 0.00934 | |
I0407 13:43:36.270655 32304 solver.cpp:229] Iteration 33500, loss = 0.929889 | |
I0407 13:43:36.270854 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0407 13:43:36.270875 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 13:43:36.270889 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 13:43:36.270910 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625 | |
I0407 13:43:36.270925 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0407 13:43:36.270937 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625 | |
I0407 13:43:36.270949 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625 | |
I0407 13:43:36.270961 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0407 13:43:36.270973 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 13:43:36.270992 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 13:43:36.271003 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 13:43:36.271014 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 13:43:36.271025 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 13:43:36.271036 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 13:43:36.271056 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 13:43:36.271069 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 13:43:36.271080 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 13:43:36.271090 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 13:43:36.271102 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 13:43:36.271113 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 13:43:36.271124 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 13:43:36.271136 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 13:43:36.271152 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.16088 (* 0.0454545 = 0.143676 loss) | |
I0407 13:43:36.271167 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.11426 (* 0.0454545 = 0.141557 loss) | |
I0407 13:43:36.271180 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.37813 (* 0.0454545 = 0.153552 loss) | |
I0407 13:43:36.271193 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.15693 (* 0.0454545 = 0.143497 loss) | |
I0407 13:43:36.271208 32304 solver.cpp:245] Train net output #26: loss/loss05 = 2.82886 (* 0.0454545 = 0.128585 loss) | |
I0407 13:43:36.271221 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.43617 (* 0.0454545 = 0.110735 loss) | |
I0407 13:43:36.271234 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.80095 (* 0.0454545 = 0.0818613 loss) | |
I0407 13:43:36.271248 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.530511 (* 0.0454545 = 0.0241141 loss) | |
I0407 13:43:36.271262 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.373328 (* 0.0454545 = 0.0169694 loss) | |
I0407 13:43:36.271276 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.0118293 (* 0.0454545 = 0.000537695 loss) | |
I0407 13:43:36.271291 32304 solver.cpp:245] Train net output #32: loss/loss11 = 7.28313e-05 (* 0.0454545 = 3.31051e-06 loss) | |
I0407 13:43:36.271306 32304 solver.cpp:245] Train net output #33: loss/loss12 = 7.62197e-05 (* 0.0454545 = 3.46453e-06 loss) | |
I0407 13:43:36.271339 32304 solver.cpp:245] Train net output #34: loss/loss13 = 6.64366e-05 (* 0.0454545 = 3.01985e-06 loss) | |
I0407 13:43:36.271364 32304 solver.cpp:245] Train net output #35: loss/loss14 = 6.28038e-05 (* 0.0454545 = 2.85472e-06 loss) | |
I0407 13:43:36.271378 32304 solver.cpp:245] Train net output #36: loss/loss15 = 6.80333e-05 (* 0.0454545 = 3.09242e-06 loss) | |
I0407 13:43:36.271410 32304 solver.cpp:245] Train net output #37: loss/loss16 = 6.35794e-05 (* 0.0454545 = 2.88997e-06 loss) | |
I0407 13:43:36.271426 32304 solver.cpp:245] Train net output #38: loss/loss17 = 7.20127e-05 (* 0.0454545 = 3.2733e-06 loss) | |
I0407 13:43:36.271457 32304 solver.cpp:245] Train net output #39: loss/loss18 = 7.17297e-05 (* 0.0454545 = 3.26044e-06 loss) | |
I0407 13:43:36.271472 32304 solver.cpp:245] Train net output #40: loss/loss19 = 7.57893e-05 (* 0.0454545 = 3.44497e-06 loss) | |
I0407 13:43:36.271486 32304 solver.cpp:245] Train net output #41: loss/loss20 = 6.60289e-05 (* 0.0454545 = 3.00131e-06 loss) | |
I0407 13:43:36.271505 32304 solver.cpp:245] Train net output #42: loss/loss21 = 6.31388e-05 (* 0.0454545 = 2.86995e-06 loss) | |
I0407 13:43:36.271519 32304 solver.cpp:245] Train net output #43: loss/loss22 = 7.28362e-05 (* 0.0454545 = 3.31074e-06 loss) | |
I0407 13:43:36.271531 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 13:43:36.271544 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000331504 | |
I0407 13:43:36.271559 32304 sgd_solver.cpp:106] Iteration 33500, lr = 0.00933 | |
I0407 13:44:48.804777 32304 solver.cpp:229] Iteration 34000, loss = 0.931419 | |
I0407 13:44:48.804903 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 13:44:48.804925 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0407 13:44:48.804939 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.15625 | |
I0407 13:44:48.804951 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0407 13:44:48.804963 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.21875 | |
I0407 13:44:48.804975 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625 | |
I0407 13:44:48.804986 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.65625 | |
I0407 13:44:48.804997 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375 | |
I0407 13:44:48.805009 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 13:44:48.805022 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 13:44:48.805032 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 13:44:48.805043 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 13:44:48.805054 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 13:44:48.805066 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 13:44:48.805078 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 13:44:48.805088 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 13:44:48.805099 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 13:44:48.805111 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 13:44:48.805122 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 13:44:48.805133 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 13:44:48.805145 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 13:44:48.805156 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 13:44:48.805172 32304 solver.cpp:245] Train net output #22: loss/loss01 = 2.72385 (* 0.0454545 = 0.123811 loss) | |
I0407 13:44:48.805193 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.0542 (* 0.0454545 = 0.138827 loss) | |
I0407 13:44:48.805220 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.28632 (* 0.0454545 = 0.149378 loss) | |
I0407 13:44:48.805238 32304 solver.cpp:245] Train net output #25: loss/loss04 = 2.98243 (* 0.0454545 = 0.135565 loss) | |
I0407 13:44:48.805251 32304 solver.cpp:245] Train net output #26: loss/loss05 = 2.92764 (* 0.0454545 = 0.133075 loss) | |
I0407 13:44:48.805264 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.374 (* 0.0454545 = 0.107909 loss) | |
I0407 13:44:48.805284 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.43073 (* 0.0454545 = 0.0650331 loss) | |
I0407 13:44:48.805311 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.555632 (* 0.0454545 = 0.025256 loss) | |
I0407 13:44:48.805330 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.0476405 (* 0.0454545 = 0.00216548 loss) | |
I0407 13:44:48.805344 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.0162039 (* 0.0454545 = 0.000736542 loss) | |
I0407 13:44:48.805358 32304 solver.cpp:245] Train net output #32: loss/loss11 = 8.4842e-05 (* 0.0454545 = 3.85645e-06 loss) | |
I0407 13:44:48.805372 32304 solver.cpp:245] Train net output #33: loss/loss12 = 8.98867e-05 (* 0.0454545 = 4.08576e-06 loss) | |
I0407 13:44:48.805387 32304 solver.cpp:245] Train net output #34: loss/loss13 = 8.42342e-05 (* 0.0454545 = 3.82883e-06 loss) | |
I0407 13:44:48.805400 32304 solver.cpp:245] Train net output #35: loss/loss14 = 7.986e-05 (* 0.0454545 = 3.63e-06 loss) | |
I0407 13:44:48.805414 32304 solver.cpp:245] Train net output #36: loss/loss15 = 8.85458e-05 (* 0.0454545 = 4.02481e-06 loss) | |
I0407 13:44:48.805428 32304 solver.cpp:245] Train net output #37: loss/loss16 = 8.3578e-05 (* 0.0454545 = 3.799e-06 loss) | |
I0407 13:44:48.805443 32304 solver.cpp:245] Train net output #38: loss/loss17 = 8.54802e-05 (* 0.0454545 = 3.88547e-06 loss) | |
I0407 13:44:48.805474 32304 solver.cpp:245] Train net output #39: loss/loss18 = 8.81695e-05 (* 0.0454545 = 4.00771e-06 loss) | |
I0407 13:44:48.805490 32304 solver.cpp:245] Train net output #40: loss/loss19 = 8.64674e-05 (* 0.0454545 = 3.93034e-06 loss) | |
I0407 13:44:48.805502 32304 solver.cpp:245] Train net output #41: loss/loss20 = 8.34312e-05 (* 0.0454545 = 3.79233e-06 loss) | |
I0407 13:44:48.805516 32304 solver.cpp:245] Train net output #42: loss/loss21 = 8.0082e-05 (* 0.0454545 = 3.64009e-06 loss) | |
I0407 13:44:48.805531 32304 solver.cpp:245] Train net output #43: loss/loss22 = 8.59054e-05 (* 0.0454545 = 3.90479e-06 loss) | |
I0407 13:44:48.805542 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 13:44:48.805554 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000204873 | |
I0407 13:44:48.805568 32304 sgd_solver.cpp:106] Iteration 34000, lr = 0.00932 | |
I0407 13:46:01.347008 32304 solver.cpp:229] Iteration 34500, loss = 0.929962 | |
I0407 13:46:01.347131 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.03125 | |
I0407 13:46:01.347152 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0407 13:46:01.347165 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0407 13:46:01.347177 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125 | |
I0407 13:46:01.347189 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0407 13:46:01.347201 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.25 | |
I0407 13:46:01.347213 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.78125 | |
I0407 13:46:01.347225 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.96875 | |
I0407 13:46:01.347237 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 13:46:01.347249 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 13:46:01.347260 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 13:46:01.347271 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 13:46:01.347283 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 13:46:01.347295 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 13:46:01.347306 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 13:46:01.347333 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 13:46:01.347349 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 13:46:01.347360 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 13:46:01.347373 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 13:46:01.347383 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 13:46:01.347395 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 13:46:01.347406 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 13:46:01.347422 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.3425 (* 0.0454545 = 0.151932 loss) | |
I0407 13:46:01.347437 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.1382 (* 0.0454545 = 0.142645 loss) | |
I0407 13:46:01.347451 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.27198 (* 0.0454545 = 0.148726 loss) | |
I0407 13:46:01.347465 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.50078 (* 0.0454545 = 0.159126 loss) | |
I0407 13:46:01.347478 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.46812 (* 0.0454545 = 0.157642 loss) | |
I0407 13:46:01.347491 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.98119 (* 0.0454545 = 0.135509 loss) | |
I0407 13:46:01.347506 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.09983 (* 0.0454545 = 0.0499921 loss) | |
I0407 13:46:01.347519 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.2688 (* 0.0454545 = 0.0122182 loss) | |
I0407 13:46:01.347534 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.03065 (* 0.0454545 = 0.00139318 loss) | |
I0407 13:46:01.347548 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.0125314 (* 0.0454545 = 0.00056961 loss) | |
I0407 13:46:01.347563 32304 solver.cpp:245] Train net output #32: loss/loss11 = 4.68857e-05 (* 0.0454545 = 2.13117e-06 loss) | |
I0407 13:46:01.347578 32304 solver.cpp:245] Train net output #33: loss/loss12 = 5.05856e-05 (* 0.0454545 = 2.29935e-06 loss) | |
I0407 13:46:01.347591 32304 solver.cpp:245] Train net output #34: loss/loss13 = 5.04449e-05 (* 0.0454545 = 2.29295e-06 loss) | |
I0407 13:46:01.347605 32304 solver.cpp:245] Train net output #35: loss/loss14 = 4.58552e-05 (* 0.0454545 = 2.08433e-06 loss) | |
I0407 13:46:01.347620 32304 solver.cpp:245] Train net output #36: loss/loss15 = 4.62495e-05 (* 0.0454545 = 2.10225e-06 loss) | |
I0407 13:46:01.347633 32304 solver.cpp:245] Train net output #37: loss/loss16 = 4.53316e-05 (* 0.0454545 = 2.06053e-06 loss) | |
I0407 13:46:01.347647 32304 solver.cpp:245] Train net output #38: loss/loss17 = 5.49209e-05 (* 0.0454545 = 2.4964e-06 loss) | |
I0407 13:46:01.347681 32304 solver.cpp:245] Train net output #39: loss/loss18 = 4.6027e-05 (* 0.0454545 = 2.09214e-06 loss) | |
I0407 13:46:01.347695 32304 solver.cpp:245] Train net output #40: loss/loss19 = 5.50447e-05 (* 0.0454545 = 2.50203e-06 loss) | |
I0407 13:46:01.347709 32304 solver.cpp:245] Train net output #41: loss/loss20 = 4.57699e-05 (* 0.0454545 = 2.08045e-06 loss) | |
I0407 13:46:01.347723 32304 solver.cpp:245] Train net output #42: loss/loss21 = 4.89805e-05 (* 0.0454545 = 2.22639e-06 loss) | |
I0407 13:46:01.347738 32304 solver.cpp:245] Train net output #43: loss/loss22 = 5.03075e-05 (* 0.0454545 = 2.2867e-06 loss) | |
I0407 13:46:01.347749 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 13:46:01.347761 32304 solver.cpp:245] Train net output #45: total_confidence = 6.97724e-05 | |
I0407 13:46:01.347775 32304 sgd_solver.cpp:106] Iteration 34500, lr = 0.00931 | |
I0407 13:47:14.295279 32304 solver.cpp:338] Iteration 35000, Testing net (#0) | |
I0407 13:47:22.313153 32304 solver.cpp:393] Test loss: 0.877214 | |
I0407 13:47:22.313208 32304 solver.cpp:406] Test net output #0: loss/accuracy01 = 0.167 | |
I0407 13:47:22.313225 32304 solver.cpp:406] Test net output #1: loss/accuracy02 = 0.039 | |
I0407 13:47:22.313237 32304 solver.cpp:406] Test net output #2: loss/accuracy03 = 0.082 | |
I0407 13:47:22.313249 32304 solver.cpp:406] Test net output #3: loss/accuracy04 = 0.118 | |
I0407 13:47:22.313261 32304 solver.cpp:406] Test net output #4: loss/accuracy05 = 0.214 | |
I0407 13:47:22.313273 32304 solver.cpp:406] Test net output #5: loss/accuracy06 = 0.497 | |
I0407 13:47:22.313284 32304 solver.cpp:406] Test net output #6: loss/accuracy07 = 0.894 | |
I0407 13:47:22.313297 32304 solver.cpp:406] Test net output #7: loss/accuracy08 = 0.97 | |
I0407 13:47:22.313308 32304 solver.cpp:406] Test net output #8: loss/accuracy09 = 0.995 | |
I0407 13:47:22.313319 32304 solver.cpp:406] Test net output #9: loss/accuracy10 = 0.998 | |
I0407 13:47:22.313330 32304 solver.cpp:406] Test net output #10: loss/accuracy11 = 1 | |
I0407 13:47:22.313341 32304 solver.cpp:406] Test net output #11: loss/accuracy12 = 1 | |
I0407 13:47:22.313354 32304 solver.cpp:406] Test net output #12: loss/accuracy13 = 1 | |
I0407 13:47:22.313364 32304 solver.cpp:406] Test net output #13: loss/accuracy14 = 1 | |
I0407 13:47:22.313375 32304 solver.cpp:406] Test net output #14: loss/accuracy15 = 1 | |
I0407 13:47:22.313386 32304 solver.cpp:406] Test net output #15: loss/accuracy16 = 1 | |
I0407 13:47:22.313397 32304 solver.cpp:406] Test net output #16: loss/accuracy17 = 1 | |
I0407 13:47:22.313408 32304 solver.cpp:406] Test net output #17: loss/accuracy18 = 1 | |
I0407 13:47:22.313419 32304 solver.cpp:406] Test net output #18: loss/accuracy19 = 1 | |
I0407 13:47:22.313431 32304 solver.cpp:406] Test net output #19: loss/accuracy20 = 1 | |
I0407 13:47:22.313441 32304 solver.cpp:406] Test net output #20: loss/accuracy21 = 1 | |
I0407 13:47:22.313452 32304 solver.cpp:406] Test net output #21: loss/accuracy22 = 1 | |
I0407 13:47:22.313467 32304 solver.cpp:406] Test net output #22: loss/loss01 = 3.222 (* 0.0454545 = 0.146455 loss) | |
I0407 13:47:22.313482 32304 solver.cpp:406] Test net output #23: loss/loss02 = 3.30097 (* 0.0454545 = 0.150044 loss) | |
I0407 13:47:22.313495 32304 solver.cpp:406] Test net output #24: loss/loss03 = 3.29835 (* 0.0454545 = 0.149925 loss) | |
I0407 13:47:22.313508 32304 solver.cpp:406] Test net output #25: loss/loss04 = 3.21299 (* 0.0454545 = 0.146045 loss) | |
I0407 13:47:22.313522 32304 solver.cpp:406] Test net output #26: loss/loss05 = 3.05126 (* 0.0454545 = 0.138694 loss) | |
I0407 13:47:22.313535 32304 solver.cpp:406] Test net output #27: loss/loss06 = 2.10717 (* 0.0454545 = 0.0957804 loss) | |
I0407 13:47:22.313549 32304 solver.cpp:406] Test net output #28: loss/loss07 = 0.758318 (* 0.0454545 = 0.034469 loss) | |
I0407 13:47:22.313562 32304 solver.cpp:406] Test net output #29: loss/loss08 = 0.257515 (* 0.0454545 = 0.0117052 loss) | |
I0407 13:47:22.313577 32304 solver.cpp:406] Test net output #30: loss/loss09 = 0.0602569 (* 0.0454545 = 0.00273895 loss) | |
I0407 13:47:22.313591 32304 solver.cpp:406] Test net output #31: loss/loss10 = 0.0277779 (* 0.0454545 = 0.00126263 loss) | |
I0407 13:47:22.313606 32304 solver.cpp:406] Test net output #32: loss/loss11 = 0.000179748 (* 0.0454545 = 8.17038e-06 loss) | |
I0407 13:47:22.313619 32304 solver.cpp:406] Test net output #33: loss/loss12 = 0.00018137 (* 0.0454545 = 8.24409e-06 loss) | |
I0407 13:47:22.313633 32304 solver.cpp:406] Test net output #34: loss/loss13 = 0.000172487 (* 0.0454545 = 7.84033e-06 loss) | |
I0407 13:47:22.313647 32304 solver.cpp:406] Test net output #35: loss/loss14 = 0.000165504 (* 0.0454545 = 7.5229e-06 loss) | |
I0407 13:47:22.313660 32304 solver.cpp:406] Test net output #36: loss/loss15 = 0.0001788 (* 0.0454545 = 8.12728e-06 loss) | |
I0407 13:47:22.313674 32304 solver.cpp:406] Test net output #37: loss/loss16 = 0.000169022 (* 0.0454545 = 7.68284e-06 loss) | |
I0407 13:47:22.313688 32304 solver.cpp:406] Test net output #38: loss/loss17 = 0.000182377 (* 0.0454545 = 8.28986e-06 loss) | |
I0407 13:47:22.313741 32304 solver.cpp:406] Test net output #39: loss/loss18 = 0.000177631 (* 0.0454545 = 8.07413e-06 loss) | |
I0407 13:47:22.313757 32304 solver.cpp:406] Test net output #40: loss/loss19 = 0.00018944 (* 0.0454545 = 8.61091e-06 loss) | |
I0407 13:47:22.313771 32304 solver.cpp:406] Test net output #41: loss/loss20 = 0.000169082 (* 0.0454545 = 7.68553e-06 loss) | |
I0407 13:47:22.313784 32304 solver.cpp:406] Test net output #42: loss/loss21 = 0.000162889 (* 0.0454545 = 7.40405e-06 loss) | |
I0407 13:47:22.313797 32304 solver.cpp:406] Test net output #43: loss/loss22 = 0.000177537 (* 0.0454545 = 8.06984e-06 loss) | |
I0407 13:47:22.313809 32304 solver.cpp:406] Test net output #44: total_accuracy = 0.001 | |
I0407 13:47:22.313822 32304 solver.cpp:406] Test net output #45: total_confidence = 0.000198732 | |
I0407 13:47:22.348479 32304 solver.cpp:229] Iteration 35000, loss = 0.930399 | |
I0407 13:47:22.348536 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 13:47:22.348553 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0407 13:47:22.348567 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 13:47:22.348578 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0407 13:47:22.348590 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125 | |
I0407 13:47:22.348603 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0407 13:47:22.348614 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0407 13:47:22.348625 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0407 13:47:22.348637 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 13:47:22.348649 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0407 13:47:22.348661 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 13:47:22.348673 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 13:47:22.348685 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 13:47:22.348696 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 13:47:22.348707 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 13:47:22.348719 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 13:47:22.348731 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 13:47:22.348742 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 13:47:22.348753 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 13:47:22.348764 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 13:47:22.348776 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 13:47:22.348788 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 13:47:22.348803 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.26429 (* 0.0454545 = 0.148377 loss) | |
I0407 13:47:22.348817 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.36548 (* 0.0454545 = 0.152976 loss) | |
I0407 13:47:22.348831 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.41788 (* 0.0454545 = 0.155358 loss) | |
I0407 13:47:22.348845 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.53175 (* 0.0454545 = 0.160534 loss) | |
I0407 13:47:22.348858 32304 solver.cpp:245] Train net output #26: loss/loss05 = 2.97183 (* 0.0454545 = 0.135083 loss) | |
I0407 13:47:22.348872 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.63807 (* 0.0454545 = 0.119912 loss) | |
I0407 13:47:22.348886 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.19446 (* 0.0454545 = 0.0542934 loss) | |
I0407 13:47:22.348899 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.564887 (* 0.0454545 = 0.0256767 loss) | |
I0407 13:47:22.348913 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.379675 (* 0.0454545 = 0.0172579 loss) | |
I0407 13:47:22.348951 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.259343 (* 0.0454545 = 0.0117883 loss) | |
I0407 13:47:22.348968 32304 solver.cpp:245] Train net output #32: loss/loss11 = 0.000204512 (* 0.0454545 = 9.29598e-06 loss) | |
I0407 13:47:22.348981 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.000200643 (* 0.0454545 = 9.12016e-06 loss) | |
I0407 13:47:22.348995 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.000201863 (* 0.0454545 = 9.1756e-06 loss) | |
I0407 13:47:22.349009 32304 solver.cpp:245] Train net output #35: loss/loss14 = 0.000195747 (* 0.0454545 = 8.89757e-06 loss) | |
I0407 13:47:22.349023 32304 solver.cpp:245] Train net output #36: loss/loss15 = 0.000197411 (* 0.0454545 = 8.97323e-06 loss) | |
I0407 13:47:22.349037 32304 solver.cpp:245] Train net output #37: loss/loss16 = 0.000204239 (* 0.0454545 = 9.2836e-06 loss) | |
I0407 13:47:22.349051 32304 solver.cpp:245] Train net output #38: loss/loss17 = 0.00021676 (* 0.0454545 = 9.85271e-06 loss) | |
I0407 13:47:22.349066 32304 solver.cpp:245] Train net output #39: loss/loss18 = 0.000212071 (* 0.0454545 = 9.63958e-06 loss) | |
I0407 13:47:22.349082 32304 solver.cpp:245] Train net output #40: loss/loss19 = 0.000205359 (* 0.0454545 = 9.33451e-06 loss) | |
I0407 13:47:22.349097 32304 solver.cpp:245] Train net output #41: loss/loss20 = 0.000195562 (* 0.0454545 = 8.8892e-06 loss) | |
I0407 13:47:22.349112 32304 solver.cpp:245] Train net output #42: loss/loss21 = 0.00017963 (* 0.0454545 = 8.16499e-06 loss) | |
I0407 13:47:22.349125 32304 solver.cpp:245] Train net output #43: loss/loss22 = 0.000188456 (* 0.0454545 = 8.56619e-06 loss) | |
I0407 13:47:22.349138 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 13:47:22.349149 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000802239 | |
I0407 13:47:22.349164 32304 sgd_solver.cpp:106] Iteration 35000, lr = 0.0093 | |
I0407 13:48:33.937492 32304 solver.cpp:229] Iteration 35500, loss = 0.922157 | |
I0407 13:48:33.937654 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.03125 | |
I0407 13:48:33.937675 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 13:48:33.937687 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0407 13:48:33.937700 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 13:48:33.937712 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.15625 | |
I0407 13:48:33.937724 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0407 13:48:33.937736 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875 | |
I0407 13:48:33.937747 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.8125 | |
I0407 13:48:33.937759 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625 | |
I0407 13:48:33.937773 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0407 13:48:33.937795 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 13:48:33.937813 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 13:48:33.937826 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 13:48:33.937839 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 13:48:33.937849 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 13:48:33.937860 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 13:48:33.937875 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 13:48:33.937897 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 13:48:33.937911 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 13:48:33.937925 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 13:48:33.937937 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 13:48:33.937949 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 13:48:33.937965 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.25237 (* 0.0454545 = 0.147835 loss) | |
I0407 13:48:33.937979 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.61533 (* 0.0454545 = 0.164333 loss) | |
I0407 13:48:33.937994 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.4957 (* 0.0454545 = 0.158896 loss) | |
I0407 13:48:33.938007 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.44348 (* 0.0454545 = 0.156522 loss) | |
I0407 13:48:33.938020 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.30423 (* 0.0454545 = 0.150192 loss) | |
I0407 13:48:33.938035 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.77395 (* 0.0454545 = 0.126089 loss) | |
I0407 13:48:33.938047 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.49737 (* 0.0454545 = 0.0680622 loss) | |
I0407 13:48:33.938061 32304 solver.cpp:245] Train net output #29: loss/loss08 = 1.06296 (* 0.0454545 = 0.0483166 loss) | |
I0407 13:48:33.938074 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.572737 (* 0.0454545 = 0.0260335 loss) | |
I0407 13:48:33.938088 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.471125 (* 0.0454545 = 0.0214148 loss) | |
I0407 13:48:33.938102 32304 solver.cpp:245] Train net output #32: loss/loss11 = 0.00015981 (* 0.0454545 = 7.26409e-06 loss) | |
I0407 13:48:33.938118 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.00015924 (* 0.0454545 = 7.23819e-06 loss) | |
I0407 13:48:33.938135 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.000164567 (* 0.0454545 = 7.48034e-06 loss) | |
I0407 13:48:33.938149 32304 solver.cpp:245] Train net output #35: loss/loss14 = 0.000157593 (* 0.0454545 = 7.16332e-06 loss) | |
I0407 13:48:33.938163 32304 solver.cpp:245] Train net output #36: loss/loss15 = 0.00015782 (* 0.0454545 = 7.17363e-06 loss) | |
I0407 13:48:33.938184 32304 solver.cpp:245] Train net output #37: loss/loss16 = 0.000163391 (* 0.0454545 = 7.42686e-06 loss) | |
I0407 13:48:33.938210 32304 solver.cpp:245] Train net output #38: loss/loss17 = 0.000171031 (* 0.0454545 = 7.77412e-06 loss) | |
I0407 13:48:33.938241 32304 solver.cpp:245] Train net output #39: loss/loss18 = 0.000154238 (* 0.0454545 = 7.01081e-06 loss) | |
I0407 13:48:33.938256 32304 solver.cpp:245] Train net output #40: loss/loss19 = 0.000172697 (* 0.0454545 = 7.84988e-06 loss) | |
I0407 13:48:33.938268 32304 solver.cpp:245] Train net output #41: loss/loss20 = 0.000158463 (* 0.0454545 = 7.20288e-06 loss) | |
I0407 13:48:33.938282 32304 solver.cpp:245] Train net output #42: loss/loss21 = 0.000165781 (* 0.0454545 = 7.5355e-06 loss) | |
I0407 13:48:33.938297 32304 solver.cpp:245] Train net output #43: loss/loss22 = 0.000161482 (* 0.0454545 = 7.34011e-06 loss) | |
I0407 13:48:33.938308 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 13:48:33.938319 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000207774 | |
I0407 13:48:33.938334 32304 sgd_solver.cpp:106] Iteration 35500, lr = 0.00929 | |
I0407 13:49:46.382741 32304 solver.cpp:229] Iteration 36000, loss = 0.923775 | |
I0407 13:49:46.382877 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 13:49:46.382897 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0407 13:49:46.382911 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 13:49:46.382926 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375 | |
I0407 13:49:46.382938 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125 | |
I0407 13:49:46.382951 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.53125 | |
I0407 13:49:46.382962 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.875 | |
I0407 13:49:46.382973 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.96875 | |
I0407 13:49:46.382985 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0407 13:49:46.382997 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0407 13:49:46.383008 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 13:49:46.383019 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 13:49:46.383030 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 13:49:46.383043 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 13:49:46.383054 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 13:49:46.383065 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 13:49:46.383077 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 13:49:46.383088 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 13:49:46.383100 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 13:49:46.383111 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 13:49:46.383122 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 13:49:46.383133 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 13:49:46.383150 32304 solver.cpp:245] Train net output #22: loss/loss01 = 2.86135 (* 0.0454545 = 0.130062 loss) | |
I0407 13:49:46.383164 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.14047 (* 0.0454545 = 0.142749 loss) | |
I0407 13:49:46.383178 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.15857 (* 0.0454545 = 0.143571 loss) | |
I0407 13:49:46.383191 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.18477 (* 0.0454545 = 0.144762 loss) | |
I0407 13:49:46.383205 32304 solver.cpp:245] Train net output #26: loss/loss05 = 2.96104 (* 0.0454545 = 0.134593 loss) | |
I0407 13:49:46.383219 32304 solver.cpp:245] Train net output #27: loss/loss06 = 1.71097 (* 0.0454545 = 0.0777712 loss) | |
I0407 13:49:46.383232 32304 solver.cpp:245] Train net output #28: loss/loss07 = 0.585727 (* 0.0454545 = 0.026624 loss) | |
I0407 13:49:46.383247 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.199673 (* 0.0454545 = 0.00907604 loss) | |
I0407 13:49:46.383261 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.280562 (* 0.0454545 = 0.0127528 loss) | |
I0407 13:49:46.383275 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.2295 (* 0.0454545 = 0.0104318 loss) | |
I0407 13:49:46.383290 32304 solver.cpp:245] Train net output #32: loss/loss11 = 9.47874e-05 (* 0.0454545 = 4.30852e-06 loss) | |
I0407 13:49:46.383303 32304 solver.cpp:245] Train net output #33: loss/loss12 = 9.88539e-05 (* 0.0454545 = 4.49336e-06 loss) | |
I0407 13:49:46.383332 32304 solver.cpp:245] Train net output #34: loss/loss13 = 9.48191e-05 (* 0.0454545 = 4.30996e-06 loss) | |
I0407 13:49:46.383348 32304 solver.cpp:245] Train net output #35: loss/loss14 = 9.59313e-05 (* 0.0454545 = 4.36052e-06 loss) | |
I0407 13:49:46.383363 32304 solver.cpp:245] Train net output #36: loss/loss15 = 9.53127e-05 (* 0.0454545 = 4.3324e-06 loss) | |
I0407 13:49:46.383376 32304 solver.cpp:245] Train net output #37: loss/loss16 = 9.58846e-05 (* 0.0454545 = 4.35839e-06 loss) | |
I0407 13:49:46.383390 32304 solver.cpp:245] Train net output #38: loss/loss17 = 9.40367e-05 (* 0.0454545 = 4.27439e-06 loss) | |
I0407 13:49:46.383422 32304 solver.cpp:245] Train net output #39: loss/loss18 = 9.77886e-05 (* 0.0454545 = 4.44494e-06 loss) | |
I0407 13:49:46.383438 32304 solver.cpp:245] Train net output #40: loss/loss19 = 0.000108207 (* 0.0454545 = 4.91852e-06 loss) | |
I0407 13:49:46.383452 32304 solver.cpp:245] Train net output #41: loss/loss20 = 9.64122e-05 (* 0.0454545 = 4.38237e-06 loss) | |
I0407 13:49:46.383466 32304 solver.cpp:245] Train net output #42: loss/loss21 = 9.4398e-05 (* 0.0454545 = 4.29082e-06 loss) | |
I0407 13:49:46.383479 32304 solver.cpp:245] Train net output #43: loss/loss22 = 9.73846e-05 (* 0.0454545 = 4.42657e-06 loss) | |
I0407 13:49:46.383491 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 13:49:46.383503 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000458509 | |
I0407 13:49:46.383518 32304 sgd_solver.cpp:106] Iteration 36000, lr = 0.00928 | |
I0407 13:51:00.078649 32304 solver.cpp:229] Iteration 36500, loss = 0.921246 | |
I0407 13:51:00.078814 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.15625 | |
I0407 13:51:00.078835 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 13:51:00.078847 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 13:51:00.078860 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375 | |
I0407 13:51:00.078872 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.09375 | |
I0407 13:51:00.078884 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.21875 | |
I0407 13:51:00.078896 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.53125 | |
I0407 13:51:00.078908 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0407 13:51:00.078922 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625 | |
I0407 13:51:00.078934 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0407 13:51:00.078946 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 13:51:00.078958 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 13:51:00.078970 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 13:51:00.078982 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 13:51:00.078994 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 13:51:00.079005 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 13:51:00.079016 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 13:51:00.079027 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 13:51:00.079040 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 13:51:00.079051 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 13:51:00.079061 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 13:51:00.079073 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 13:51:00.079089 32304 solver.cpp:245] Train net output #22: loss/loss01 = 2.77372 (* 0.0454545 = 0.126078 loss) | |
I0407 13:51:00.079103 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.21289 (* 0.0454545 = 0.14604 loss) | |
I0407 13:51:00.079118 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.22158 (* 0.0454545 = 0.146435 loss) | |
I0407 13:51:00.079131 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.19557 (* 0.0454545 = 0.145253 loss) | |
I0407 13:51:00.079145 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.2034 (* 0.0454545 = 0.145609 loss) | |
I0407 13:51:00.079159 32304 solver.cpp:245] Train net output #27: loss/loss06 = 3.40946 (* 0.0454545 = 0.154975 loss) | |
I0407 13:51:00.079172 32304 solver.cpp:245] Train net output #28: loss/loss07 = 2.30726 (* 0.0454545 = 0.104876 loss) | |
I0407 13:51:00.079186 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.489063 (* 0.0454545 = 0.0222302 loss) | |
I0407 13:51:00.079201 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.534736 (* 0.0454545 = 0.0243062 loss) | |
I0407 13:51:00.079215 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.362215 (* 0.0454545 = 0.0164643 loss) | |
I0407 13:51:00.079229 32304 solver.cpp:245] Train net output #32: loss/loss11 = 4.11348e-05 (* 0.0454545 = 1.86976e-06 loss) | |
I0407 13:51:00.079243 32304 solver.cpp:245] Train net output #33: loss/loss12 = 3.9568e-05 (* 0.0454545 = 1.79854e-06 loss) | |
I0407 13:51:00.079257 32304 solver.cpp:245] Train net output #34: loss/loss13 = 3.84113e-05 (* 0.0454545 = 1.74597e-06 loss) | |
I0407 13:51:00.079272 32304 solver.cpp:245] Train net output #35: loss/loss14 = 3.73196e-05 (* 0.0454545 = 1.69635e-06 loss) | |
I0407 13:51:00.079284 32304 solver.cpp:245] Train net output #36: loss/loss15 = 3.98195e-05 (* 0.0454545 = 1.80998e-06 loss) | |
I0407 13:51:00.079298 32304 solver.cpp:245] Train net output #37: loss/loss16 = 3.68223e-05 (* 0.0454545 = 1.67374e-06 loss) | |
I0407 13:51:00.079313 32304 solver.cpp:245] Train net output #38: loss/loss17 = 4.2463e-05 (* 0.0454545 = 1.93014e-06 loss) | |
I0407 13:51:00.079358 32304 solver.cpp:245] Train net output #39: loss/loss18 = 3.94694e-05 (* 0.0454545 = 1.79406e-06 loss) | |
I0407 13:51:00.079375 32304 solver.cpp:245] Train net output #40: loss/loss19 = 4.28262e-05 (* 0.0454545 = 1.94665e-06 loss) | |
I0407 13:51:00.079388 32304 solver.cpp:245] Train net output #41: loss/loss20 = 3.65503e-05 (* 0.0454545 = 1.66138e-06 loss) | |
I0407 13:51:00.079402 32304 solver.cpp:245] Train net output #42: loss/loss21 = 3.88695e-05 (* 0.0454545 = 1.7668e-06 loss) | |
I0407 13:51:00.079416 32304 solver.cpp:245] Train net output #43: loss/loss22 = 3.87707e-05 (* 0.0454545 = 1.76231e-06 loss) | |
I0407 13:51:00.079427 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 13:51:00.079439 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000178152 | |
I0407 13:51:00.079453 32304 sgd_solver.cpp:106] Iteration 36500, lr = 0.00927 | |
I0407 13:52:12.680615 32304 solver.cpp:229] Iteration 37000, loss = 0.919658 | |
I0407 13:52:12.680763 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.1875 | |
I0407 13:52:12.680783 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125 | |
I0407 13:52:12.680796 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0407 13:52:12.680809 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 13:52:12.680821 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.15625 | |
I0407 13:52:12.680833 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.28125 | |
I0407 13:52:12.680845 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0407 13:52:12.680856 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0407 13:52:12.680868 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 13:52:12.680881 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0407 13:52:12.680891 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 13:52:12.680903 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 13:52:12.680914 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 13:52:12.680929 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 13:52:12.680943 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 13:52:12.680953 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 13:52:12.680965 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 13:52:12.680976 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 13:52:12.680987 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 13:52:12.680999 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 13:52:12.681010 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 13:52:12.681021 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 13:52:12.681037 32304 solver.cpp:245] Train net output #22: loss/loss01 = 2.70364 (* 0.0454545 = 0.122893 loss) | |
I0407 13:52:12.681052 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.18581 (* 0.0454545 = 0.14481 loss) | |
I0407 13:52:12.681066 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.34463 (* 0.0454545 = 0.152029 loss) | |
I0407 13:52:12.681079 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.17205 (* 0.0454545 = 0.144184 loss) | |
I0407 13:52:12.681093 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.18285 (* 0.0454545 = 0.144675 loss) | |
I0407 13:52:12.681107 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.81065 (* 0.0454545 = 0.127757 loss) | |
I0407 13:52:12.681120 32304 solver.cpp:245] Train net output #28: loss/loss07 = 0.893346 (* 0.0454545 = 0.0406066 loss) | |
I0407 13:52:12.681133 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.478635 (* 0.0454545 = 0.0217562 loss) | |
I0407 13:52:12.681148 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.335785 (* 0.0454545 = 0.015263 loss) | |
I0407 13:52:12.681161 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.165635 (* 0.0454545 = 0.00752888 loss) | |
I0407 13:52:12.681176 32304 solver.cpp:245] Train net output #32: loss/loss11 = 0.000242197 (* 0.0454545 = 1.1009e-05 loss) | |
I0407 13:52:12.681190 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.00027421 (* 0.0454545 = 1.24641e-05 loss) | |
I0407 13:52:12.681205 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.000260564 (* 0.0454545 = 1.18438e-05 loss) | |
I0407 13:52:12.681218 32304 solver.cpp:245] Train net output #35: loss/loss14 = 0.000260457 (* 0.0454545 = 1.18389e-05 loss) | |
I0407 13:52:12.681232 32304 solver.cpp:245] Train net output #36: loss/loss15 = 0.000250315 (* 0.0454545 = 1.1378e-05 loss) | |
I0407 13:52:12.681246 32304 solver.cpp:245] Train net output #37: loss/loss16 = 0.000260603 (* 0.0454545 = 1.18456e-05 loss) | |
I0407 13:52:12.681264 32304 solver.cpp:245] Train net output #38: loss/loss17 = 0.000257093 (* 0.0454545 = 1.1686e-05 loss) | |
I0407 13:52:12.681293 32304 solver.cpp:245] Train net output #39: loss/loss18 = 0.000288404 (* 0.0454545 = 1.31093e-05 loss) | |
I0407 13:52:12.681308 32304 solver.cpp:245] Train net output #40: loss/loss19 = 0.000238595 (* 0.0454545 = 1.08452e-05 loss) | |
I0407 13:52:12.681321 32304 solver.cpp:245] Train net output #41: loss/loss20 = 0.000245699 (* 0.0454545 = 1.11681e-05 loss) | |
I0407 13:52:12.681335 32304 solver.cpp:245] Train net output #42: loss/loss21 = 0.000240917 (* 0.0454545 = 1.09508e-05 loss) | |
I0407 13:52:12.681349 32304 solver.cpp:245] Train net output #43: loss/loss22 = 0.000246062 (* 0.0454545 = 1.11846e-05 loss) | |
I0407 13:52:12.681361 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 13:52:12.681372 32304 solver.cpp:245] Train net output #45: total_confidence = 7.73229e-05 | |
I0407 13:52:12.681387 32304 sgd_solver.cpp:106] Iteration 37000, lr = 0.00926 | |
I0407 13:53:25.045647 32304 solver.cpp:229] Iteration 37500, loss = 0.920059 | |
I0407 13:53:25.045790 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0407 13:53:25.045814 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 13:53:25.045838 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0407 13:53:25.045858 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0407 13:53:25.045871 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.09375 | |
I0407 13:53:25.045883 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.25 | |
I0407 13:53:25.045894 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0407 13:53:25.045912 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0407 13:53:25.045938 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 13:53:25.045953 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 13:53:25.045965 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 13:53:25.045976 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 13:53:25.045989 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 13:53:25.046000 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 13:53:25.046010 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 13:53:25.046021 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 13:53:25.046032 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 13:53:25.046044 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 13:53:25.046056 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 13:53:25.046066 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 13:53:25.046077 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 13:53:25.046089 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 13:53:25.046105 32304 solver.cpp:245] Train net output #22: loss/loss01 = 2.97811 (* 0.0454545 = 0.135369 loss) | |
I0407 13:53:25.046119 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.14131 (* 0.0454545 = 0.142787 loss) | |
I0407 13:53:25.046133 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.25665 (* 0.0454545 = 0.148029 loss) | |
I0407 13:53:25.046146 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.23714 (* 0.0454545 = 0.147143 loss) | |
I0407 13:53:25.046160 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.32342 (* 0.0454545 = 0.151064 loss) | |
I0407 13:53:25.046174 32304 solver.cpp:245] Train net output #27: loss/loss06 = 3.34686 (* 0.0454545 = 0.15213 loss) | |
I0407 13:53:25.046186 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.33402 (* 0.0454545 = 0.0606373 loss) | |
I0407 13:53:25.046202 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.614059 (* 0.0454545 = 0.0279118 loss) | |
I0407 13:53:25.046229 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.0753382 (* 0.0454545 = 0.00342446 loss) | |
I0407 13:53:25.046249 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.024135 (* 0.0454545 = 0.00109704 loss) | |
I0407 13:53:25.046264 32304 solver.cpp:245] Train net output #32: loss/loss11 = 4.44404e-05 (* 0.0454545 = 2.02002e-06 loss) | |
I0407 13:53:25.046279 32304 solver.cpp:245] Train net output #33: loss/loss12 = 4.63365e-05 (* 0.0454545 = 2.1062e-06 loss) | |
I0407 13:53:25.046294 32304 solver.cpp:245] Train net output #34: loss/loss13 = 4.12174e-05 (* 0.0454545 = 1.87352e-06 loss) | |
I0407 13:53:25.046308 32304 solver.cpp:245] Train net output #35: loss/loss14 = 4.29328e-05 (* 0.0454545 = 1.95149e-06 loss) | |
I0407 13:53:25.046322 32304 solver.cpp:245] Train net output #36: loss/loss15 = 3.84751e-05 (* 0.0454545 = 1.74887e-06 loss) | |
I0407 13:53:25.046336 32304 solver.cpp:245] Train net output #37: loss/loss16 = 4.09292e-05 (* 0.0454545 = 1.86042e-06 loss) | |
I0407 13:53:25.046350 32304 solver.cpp:245] Train net output #38: loss/loss17 = 4.13848e-05 (* 0.0454545 = 1.88113e-06 loss) | |
I0407 13:53:25.046381 32304 solver.cpp:245] Train net output #39: loss/loss18 = 4.33315e-05 (* 0.0454545 = 1.96961e-06 loss) | |
I0407 13:53:25.046396 32304 solver.cpp:245] Train net output #40: loss/loss19 = 4.31607e-05 (* 0.0454545 = 1.96185e-06 loss) | |
I0407 13:53:25.046411 32304 solver.cpp:245] Train net output #41: loss/loss20 = 4.32967e-05 (* 0.0454545 = 1.96803e-06 loss) | |
I0407 13:53:25.046424 32304 solver.cpp:245] Train net output #42: loss/loss21 = 3.835e-05 (* 0.0454545 = 1.74318e-06 loss) | |
I0407 13:53:25.046438 32304 solver.cpp:245] Train net output #43: loss/loss22 = 4.2273e-05 (* 0.0454545 = 1.9215e-06 loss) | |
I0407 13:53:25.046450 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 13:53:25.046463 32304 solver.cpp:245] Train net output #45: total_confidence = 7.71073e-05 | |
I0407 13:53:25.046476 32304 sgd_solver.cpp:106] Iteration 37500, lr = 0.00925 | |
I0407 13:54:37.238514 32304 solver.cpp:229] Iteration 38000, loss = 0.918864 | |
I0407 13:54:37.238639 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 13:54:37.238659 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0407 13:54:37.238672 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 13:54:37.238684 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0407 13:54:37.238697 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0407 13:54:37.238708 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375 | |
I0407 13:54:37.238720 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0407 13:54:37.238732 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375 | |
I0407 13:54:37.238744 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0407 13:54:37.238756 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0407 13:54:37.238767 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 13:54:37.238783 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 13:54:37.238807 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 13:54:37.238826 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 13:54:37.238837 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 13:54:37.238848 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 13:54:37.238860 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 13:54:37.238872 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 13:54:37.238883 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 13:54:37.238894 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 13:54:37.238905 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 13:54:37.238919 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 13:54:37.238936 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.31116 (* 0.0454545 = 0.150507 loss) | |
I0407 13:54:37.238950 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.40943 (* 0.0454545 = 0.154974 loss) | |
I0407 13:54:37.238965 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.65322 (* 0.0454545 = 0.166056 loss) | |
I0407 13:54:37.238977 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.19243 (* 0.0454545 = 0.145111 loss) | |
I0407 13:54:37.238991 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.04325 (* 0.0454545 = 0.138329 loss) | |
I0407 13:54:37.239006 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.55227 (* 0.0454545 = 0.116012 loss) | |
I0407 13:54:37.239018 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.35185 (* 0.0454545 = 0.0614479 loss) | |
I0407 13:54:37.239032 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.903946 (* 0.0454545 = 0.0410885 loss) | |
I0407 13:54:37.239045 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.213716 (* 0.0454545 = 0.00971438 loss) | |
I0407 13:54:37.239059 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.23395 (* 0.0454545 = 0.0106341 loss) | |
I0407 13:54:37.239073 32304 solver.cpp:245] Train net output #32: loss/loss11 = 0.000166876 (* 0.0454545 = 7.58526e-06 loss) | |
I0407 13:54:37.239087 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.000179639 (* 0.0454545 = 8.1654e-06 loss) | |
I0407 13:54:37.239101 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.000158321 (* 0.0454545 = 7.19643e-06 loss) | |
I0407 13:54:37.239115 32304 solver.cpp:245] Train net output #35: loss/loss14 = 0.000167206 (* 0.0454545 = 7.60026e-06 loss) | |
I0407 13:54:37.239130 32304 solver.cpp:245] Train net output #36: loss/loss15 = 0.000155525 (* 0.0454545 = 7.06932e-06 loss) | |
I0407 13:54:37.239143 32304 solver.cpp:245] Train net output #37: loss/loss16 = 0.000162734 (* 0.0454545 = 7.39698e-06 loss) | |
I0407 13:54:37.239157 32304 solver.cpp:245] Train net output #38: loss/loss17 = 0.000178058 (* 0.0454545 = 8.09355e-06 loss) | |
I0407 13:54:37.239189 32304 solver.cpp:245] Train net output #39: loss/loss18 = 0.000173682 (* 0.0454545 = 7.89466e-06 loss) | |
I0407 13:54:37.239204 32304 solver.cpp:245] Train net output #40: loss/loss19 = 0.000177175 (* 0.0454545 = 8.0534e-06 loss) | |
I0407 13:54:37.239218 32304 solver.cpp:245] Train net output #41: loss/loss20 = 0.000164726 (* 0.0454545 = 7.48753e-06 loss) | |
I0407 13:54:37.239233 32304 solver.cpp:245] Train net output #42: loss/loss21 = 0.000156923 (* 0.0454545 = 7.13286e-06 loss) | |
I0407 13:54:37.239246 32304 solver.cpp:245] Train net output #43: loss/loss22 = 0.000171455 (* 0.0454545 = 7.79342e-06 loss) | |
I0407 13:54:37.239259 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 13:54:37.239269 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000219415 | |
I0407 13:54:37.239284 32304 sgd_solver.cpp:106] Iteration 38000, lr = 0.00924 | |
I0407 13:55:49.822857 32304 solver.cpp:229] Iteration 38500, loss = 0.91155 | |
I0407 13:55:49.822981 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0407 13:55:49.823001 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0407 13:55:49.823014 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 13:55:49.823026 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625 | |
I0407 13:55:49.823038 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125 | |
I0407 13:55:49.823050 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375 | |
I0407 13:55:49.823061 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625 | |
I0407 13:55:49.823073 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.8125 | |
I0407 13:55:49.823084 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625 | |
I0407 13:55:49.823096 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0407 13:55:49.823108 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 13:55:49.823120 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 13:55:49.823132 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 13:55:49.823143 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 13:55:49.823154 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 13:55:49.823165 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 13:55:49.823178 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 13:55:49.823189 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 13:55:49.823199 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 13:55:49.823210 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 13:55:49.823222 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 13:55:49.823233 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 13:55:49.823248 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.31858 (* 0.0454545 = 0.150844 loss) | |
I0407 13:55:49.823262 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.31532 (* 0.0454545 = 0.150696 loss) | |
I0407 13:55:49.823276 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.48703 (* 0.0454545 = 0.158501 loss) | |
I0407 13:55:49.823290 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.26466 (* 0.0454545 = 0.148394 loss) | |
I0407 13:55:49.823304 32304 solver.cpp:245] Train net output #26: loss/loss05 = 2.93028 (* 0.0454545 = 0.133195 loss) | |
I0407 13:55:49.823339 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.71106 (* 0.0454545 = 0.12323 loss) | |
I0407 13:55:49.823357 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.6732 (* 0.0454545 = 0.0760546 loss) | |
I0407 13:55:49.823371 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.947036 (* 0.0454545 = 0.0430471 loss) | |
I0407 13:55:49.823385 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.603464 (* 0.0454545 = 0.0274302 loss) | |
I0407 13:55:49.823400 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.431129 (* 0.0454545 = 0.0195967 loss) | |
I0407 13:55:49.823413 32304 solver.cpp:245] Train net output #32: loss/loss11 = 8.36394e-05 (* 0.0454545 = 3.80179e-06 loss) | |
I0407 13:55:49.823427 32304 solver.cpp:245] Train net output #33: loss/loss12 = 7.89906e-05 (* 0.0454545 = 3.59048e-06 loss) | |
I0407 13:55:49.823441 32304 solver.cpp:245] Train net output #34: loss/loss13 = 8.02296e-05 (* 0.0454545 = 3.6468e-06 loss) | |
I0407 13:55:49.823456 32304 solver.cpp:245] Train net output #35: loss/loss14 = 8.54057e-05 (* 0.0454545 = 3.88208e-06 loss) | |
I0407 13:55:49.823469 32304 solver.cpp:245] Train net output #36: loss/loss15 = 8.16421e-05 (* 0.0454545 = 3.711e-06 loss) | |
I0407 13:55:49.823483 32304 solver.cpp:245] Train net output #37: loss/loss16 = 8.49476e-05 (* 0.0454545 = 3.86125e-06 loss) | |
I0407 13:55:49.823498 32304 solver.cpp:245] Train net output #38: loss/loss17 = 8.41331e-05 (* 0.0454545 = 3.82423e-06 loss) | |
I0407 13:55:49.823529 32304 solver.cpp:245] Train net output #39: loss/loss18 = 9.04979e-05 (* 0.0454545 = 4.11354e-06 loss) | |
I0407 13:55:49.823544 32304 solver.cpp:245] Train net output #40: loss/loss19 = 8.42429e-05 (* 0.0454545 = 3.82922e-06 loss) | |
I0407 13:55:49.823557 32304 solver.cpp:245] Train net output #41: loss/loss20 = 8.31608e-05 (* 0.0454545 = 3.78003e-06 loss) | |
I0407 13:55:49.823571 32304 solver.cpp:245] Train net output #42: loss/loss21 = 7.78894e-05 (* 0.0454545 = 3.54043e-06 loss) | |
I0407 13:55:49.823585 32304 solver.cpp:245] Train net output #43: loss/loss22 = 8.03881e-05 (* 0.0454545 = 3.65401e-06 loss) | |
I0407 13:55:49.823597 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 13:55:49.823608 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000466444 | |
I0407 13:55:49.823623 32304 sgd_solver.cpp:106] Iteration 38500, lr = 0.00923 | |
I0407 13:57:01.975953 32304 solver.cpp:229] Iteration 39000, loss = 0.914318 | |
I0407 13:57:01.976104 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 13:57:01.976125 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125 | |
I0407 13:57:01.976140 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 13:57:01.976151 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125 | |
I0407 13:57:01.976163 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125 | |
I0407 13:57:01.976176 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.53125 | |
I0407 13:57:01.976187 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0407 13:57:01.976199 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 13:57:01.976212 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 13:57:01.976222 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 13:57:01.976234 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 13:57:01.976245 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 13:57:01.976256 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 13:57:01.976268 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 13:57:01.976279 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 13:57:01.976290 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 13:57:01.976301 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 13:57:01.976313 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 13:57:01.976325 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 13:57:01.976336 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 13:57:01.976347 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 13:57:01.976358 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 13:57:01.976374 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.28313 (* 0.0454545 = 0.149233 loss) | |
I0407 13:57:01.976388 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.39067 (* 0.0454545 = 0.154122 loss) | |
I0407 13:57:01.976402 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.35001 (* 0.0454545 = 0.152273 loss) | |
I0407 13:57:01.976416 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.43753 (* 0.0454545 = 0.156251 loss) | |
I0407 13:57:01.976430 32304 solver.cpp:245] Train net output #26: loss/loss05 = 2.92573 (* 0.0454545 = 0.132988 loss) | |
I0407 13:57:01.976444 32304 solver.cpp:245] Train net output #27: loss/loss06 = 1.93996 (* 0.0454545 = 0.0881802 loss) | |
I0407 13:57:01.976457 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.17273 (* 0.0454545 = 0.053306 loss) | |
I0407 13:57:01.976471 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.354498 (* 0.0454545 = 0.0161135 loss) | |
I0407 13:57:01.976485 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.0183919 (* 0.0454545 = 0.000835997 loss) | |
I0407 13:57:01.976500 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.00707137 (* 0.0454545 = 0.000321426 loss) | |
I0407 13:57:01.976514 32304 solver.cpp:245] Train net output #32: loss/loss11 = 7.40655e-05 (* 0.0454545 = 3.36661e-06 loss) | |
I0407 13:57:01.976528 32304 solver.cpp:245] Train net output #33: loss/loss12 = 7.47697e-05 (* 0.0454545 = 3.39862e-06 loss) | |
I0407 13:57:01.976542 32304 solver.cpp:245] Train net output #34: loss/loss13 = 7.10077e-05 (* 0.0454545 = 3.22762e-06 loss) | |
I0407 13:57:01.976557 32304 solver.cpp:245] Train net output #35: loss/loss14 = 7.44106e-05 (* 0.0454545 = 3.3823e-06 loss) | |
I0407 13:57:01.976570 32304 solver.cpp:245] Train net output #36: loss/loss15 = 7.63198e-05 (* 0.0454545 = 3.46908e-06 loss) | |
I0407 13:57:01.976584 32304 solver.cpp:245] Train net output #37: loss/loss16 = 7.02888e-05 (* 0.0454545 = 3.19495e-06 loss) | |
I0407 13:57:01.976598 32304 solver.cpp:245] Train net output #38: loss/loss17 = 7.37327e-05 (* 0.0454545 = 3.35149e-06 loss) | |
I0407 13:57:01.976639 32304 solver.cpp:245] Train net output #39: loss/loss18 = 6.86576e-05 (* 0.0454545 = 3.1208e-06 loss) | |
I0407 13:57:01.976655 32304 solver.cpp:245] Train net output #40: loss/loss19 = 7.43227e-05 (* 0.0454545 = 3.3783e-06 loss) | |
I0407 13:57:01.976668 32304 solver.cpp:245] Train net output #41: loss/loss20 = 7.18402e-05 (* 0.0454545 = 3.26546e-06 loss) | |
I0407 13:57:01.976682 32304 solver.cpp:245] Train net output #42: loss/loss21 = 6.74986e-05 (* 0.0454545 = 3.06812e-06 loss) | |
I0407 13:57:01.976696 32304 solver.cpp:245] Train net output #43: loss/loss22 = 7.37221e-05 (* 0.0454545 = 3.35101e-06 loss) | |
I0407 13:57:01.976708 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 13:57:01.976719 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000298672 | |
I0407 13:57:01.976734 32304 sgd_solver.cpp:106] Iteration 39000, lr = 0.00922 | |
I0407 13:58:14.786272 32304 solver.cpp:229] Iteration 39500, loss = 0.913471 | |
I0407 13:58:14.786403 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 13:58:14.786423 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0407 13:58:14.786437 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 13:58:14.786448 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625 | |
I0407 13:58:14.786460 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.375 | |
I0407 13:58:14.786473 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.53125 | |
I0407 13:58:14.786484 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.9375 | |
I0407 13:58:14.786495 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 1 | |
I0407 13:58:14.786507 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 13:58:14.786519 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 13:58:14.786530 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 13:58:14.786541 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 13:58:14.786552 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 13:58:14.786563 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 13:58:14.786576 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 13:58:14.786586 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 13:58:14.786598 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 13:58:14.786609 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 13:58:14.786620 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 13:58:14.786633 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 13:58:14.786643 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 13:58:14.786655 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 13:58:14.786671 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.33736 (* 0.0454545 = 0.151698 loss) | |
I0407 13:58:14.786695 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.20066 (* 0.0454545 = 0.145485 loss) | |
I0407 13:58:14.786721 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.20141 (* 0.0454545 = 0.145519 loss) | |
I0407 13:58:14.786748 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.23152 (* 0.0454545 = 0.146887 loss) | |
I0407 13:58:14.786775 32304 solver.cpp:245] Train net output #26: loss/loss05 = 2.5764 (* 0.0454545 = 0.117109 loss) | |
I0407 13:58:14.786799 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.02523 (* 0.0454545 = 0.0920557 loss) | |
I0407 13:58:14.786814 32304 solver.cpp:245] Train net output #28: loss/loss07 = 0.483419 (* 0.0454545 = 0.0219736 loss) | |
I0407 13:58:14.786828 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.0618144 (* 0.0454545 = 0.00280975 loss) | |
I0407 13:58:14.786842 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.0232591 (* 0.0454545 = 0.00105723 loss) | |
I0407 13:58:14.786856 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.00867527 (* 0.0454545 = 0.000394331 loss) | |
I0407 13:58:14.786871 32304 solver.cpp:245] Train net output #32: loss/loss11 = 8.57836e-05 (* 0.0454545 = 3.89926e-06 loss) | |
I0407 13:58:14.786885 32304 solver.cpp:245] Train net output #33: loss/loss12 = 8.90448e-05 (* 0.0454545 = 4.04749e-06 loss) | |
I0407 13:58:14.786900 32304 solver.cpp:245] Train net output #34: loss/loss13 = 9.11906e-05 (* 0.0454545 = 4.14503e-06 loss) | |
I0407 13:58:14.786912 32304 solver.cpp:245] Train net output #35: loss/loss14 = 8.46787e-05 (* 0.0454545 = 3.84903e-06 loss) | |
I0407 13:58:14.786931 32304 solver.cpp:245] Train net output #36: loss/loss15 = 8.29302e-05 (* 0.0454545 = 3.76956e-06 loss) | |
I0407 13:58:14.786944 32304 solver.cpp:245] Train net output #37: loss/loss16 = 8.23858e-05 (* 0.0454545 = 3.74481e-06 loss) | |
I0407 13:58:14.786958 32304 solver.cpp:245] Train net output #38: loss/loss17 = 9.55305e-05 (* 0.0454545 = 4.3423e-06 loss) | |
I0407 13:58:14.786990 32304 solver.cpp:245] Train net output #39: loss/loss18 = 8.94467e-05 (* 0.0454545 = 4.06576e-06 loss) | |
I0407 13:58:14.787005 32304 solver.cpp:245] Train net output #40: loss/loss19 = 8.90792e-05 (* 0.0454545 = 4.04905e-06 loss) | |
I0407 13:58:14.787019 32304 solver.cpp:245] Train net output #41: loss/loss20 = 8.11414e-05 (* 0.0454545 = 3.68825e-06 loss) | |
I0407 13:58:14.787032 32304 solver.cpp:245] Train net output #42: loss/loss21 = 8.10345e-05 (* 0.0454545 = 3.68338e-06 loss) | |
I0407 13:58:14.787046 32304 solver.cpp:245] Train net output #43: loss/loss22 = 8.77619e-05 (* 0.0454545 = 3.98918e-06 loss) | |
I0407 13:58:14.787058 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 13:58:14.787070 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000421694 | |
I0407 13:58:14.787084 32304 sgd_solver.cpp:106] Iteration 39500, lr = 0.00921 | |
I0407 13:59:26.986021 32304 solver.cpp:338] Iteration 40000, Testing net (#0) | |
I0407 13:59:35.004961 32304 solver.cpp:393] Test loss: 0.844008 | |
I0407 13:59:35.005020 32304 solver.cpp:406] Test net output #0: loss/accuracy01 = 0.107 | |
I0407 13:59:35.005038 32304 solver.cpp:406] Test net output #1: loss/accuracy02 = 0.074 | |
I0407 13:59:35.005050 32304 solver.cpp:406] Test net output #2: loss/accuracy03 = 0.087 | |
I0407 13:59:35.005062 32304 solver.cpp:406] Test net output #3: loss/accuracy04 = 0.144 | |
I0407 13:59:35.005074 32304 solver.cpp:406] Test net output #4: loss/accuracy05 = 0.234 | |
I0407 13:59:35.005085 32304 solver.cpp:406] Test net output #5: loss/accuracy06 = 0.5 | |
I0407 13:59:35.005097 32304 solver.cpp:406] Test net output #6: loss/accuracy07 = 0.889 | |
I0407 13:59:35.005108 32304 solver.cpp:406] Test net output #7: loss/accuracy08 = 0.97 | |
I0407 13:59:35.005120 32304 solver.cpp:406] Test net output #8: loss/accuracy09 = 0.995 | |
I0407 13:59:35.005131 32304 solver.cpp:406] Test net output #9: loss/accuracy10 = 0.998 | |
I0407 13:59:35.005143 32304 solver.cpp:406] Test net output #10: loss/accuracy11 = 1 | |
I0407 13:59:35.005156 32304 solver.cpp:406] Test net output #11: loss/accuracy12 = 1 | |
I0407 13:59:35.005167 32304 solver.cpp:406] Test net output #12: loss/accuracy13 = 1 | |
I0407 13:59:35.005178 32304 solver.cpp:406] Test net output #13: loss/accuracy14 = 1 | |
I0407 13:59:35.005189 32304 solver.cpp:406] Test net output #14: loss/accuracy15 = 1 | |
I0407 13:59:35.005200 32304 solver.cpp:406] Test net output #15: loss/accuracy16 = 1 | |
I0407 13:59:35.005211 32304 solver.cpp:406] Test net output #16: loss/accuracy17 = 1 | |
I0407 13:59:35.005223 32304 solver.cpp:406] Test net output #17: loss/accuracy18 = 1 | |
I0407 13:59:35.005234 32304 solver.cpp:406] Test net output #18: loss/accuracy19 = 1 | |
I0407 13:59:35.005245 32304 solver.cpp:406] Test net output #19: loss/accuracy20 = 1 | |
I0407 13:59:35.005256 32304 solver.cpp:406] Test net output #20: loss/accuracy21 = 1 | |
I0407 13:59:35.005267 32304 solver.cpp:406] Test net output #21: loss/accuracy22 = 1 | |
I0407 13:59:35.005283 32304 solver.cpp:406] Test net output #22: loss/loss01 = 3.22695 (* 0.0454545 = 0.146679 loss) | |
I0407 13:59:35.005297 32304 solver.cpp:406] Test net output #23: loss/loss02 = 3.16772 (* 0.0454545 = 0.143987 loss) | |
I0407 13:59:35.005311 32304 solver.cpp:406] Test net output #24: loss/loss03 = 3.20733 (* 0.0454545 = 0.145788 loss) | |
I0407 13:59:35.005324 32304 solver.cpp:406] Test net output #25: loss/loss04 = 3.10167 (* 0.0454545 = 0.140985 loss) | |
I0407 13:59:35.005338 32304 solver.cpp:406] Test net output #26: loss/loss05 = 2.94509 (* 0.0454545 = 0.133868 loss) | |
I0407 13:59:35.005352 32304 solver.cpp:406] Test net output #27: loss/loss06 = 1.93243 (* 0.0454545 = 0.0878378 loss) | |
I0407 13:59:35.005365 32304 solver.cpp:406] Test net output #28: loss/loss07 = 0.668483 (* 0.0454545 = 0.0303856 loss) | |
I0407 13:59:35.005378 32304 solver.cpp:406] Test net output #29: loss/loss08 = 0.245943 (* 0.0454545 = 0.0111792 loss) | |
I0407 13:59:35.005393 32304 solver.cpp:406] Test net output #30: loss/loss09 = 0.0497487 (* 0.0454545 = 0.00226131 loss) | |
I0407 13:59:35.005406 32304 solver.cpp:406] Test net output #31: loss/loss10 = 0.0221417 (* 0.0454545 = 0.00100644 loss) | |
I0407 13:59:35.005420 32304 solver.cpp:406] Test net output #32: loss/loss11 = 5.93416e-05 (* 0.0454545 = 2.69735e-06 loss) | |
I0407 13:59:35.005434 32304 solver.cpp:406] Test net output #33: loss/loss12 = 5.62443e-05 (* 0.0454545 = 2.55656e-06 loss) | |
I0407 13:59:35.005448 32304 solver.cpp:406] Test net output #34: loss/loss13 = 5.44241e-05 (* 0.0454545 = 2.47382e-06 loss) | |
I0407 13:59:35.005463 32304 solver.cpp:406] Test net output #35: loss/loss14 = 5.34802e-05 (* 0.0454545 = 2.43092e-06 loss) | |
I0407 13:59:35.005476 32304 solver.cpp:406] Test net output #36: loss/loss15 = 5.54529e-05 (* 0.0454545 = 2.52059e-06 loss) | |
I0407 13:59:35.005491 32304 solver.cpp:406] Test net output #37: loss/loss16 = 5.36453e-05 (* 0.0454545 = 2.43842e-06 loss) | |
I0407 13:59:35.005504 32304 solver.cpp:406] Test net output #38: loss/loss17 = 5.53946e-05 (* 0.0454545 = 2.51794e-06 loss) | |
I0407 13:59:35.005553 32304 solver.cpp:406] Test net output #39: loss/loss18 = 5.59895e-05 (* 0.0454545 = 2.54498e-06 loss) | |
I0407 13:59:35.005569 32304 solver.cpp:406] Test net output #40: loss/loss19 = 5.94053e-05 (* 0.0454545 = 2.70024e-06 loss) | |
I0407 13:59:35.005584 32304 solver.cpp:406] Test net output #41: loss/loss20 = 5.26847e-05 (* 0.0454545 = 2.39476e-06 loss) | |
I0407 13:59:35.005596 32304 solver.cpp:406] Test net output #42: loss/loss21 = 5.51093e-05 (* 0.0454545 = 2.50497e-06 loss) | |
I0407 13:59:35.005611 32304 solver.cpp:406] Test net output #43: loss/loss22 = 5.79437e-05 (* 0.0454545 = 2.63381e-06 loss) | |
I0407 13:59:35.005623 32304 solver.cpp:406] Test net output #44: total_accuracy = 0.001 | |
I0407 13:59:35.005635 32304 solver.cpp:406] Test net output #45: total_confidence = 0.000199412 | |
I0407 13:59:35.040200 32304 solver.cpp:229] Iteration 40000, loss = 0.909501 | |
I0407 13:59:35.040258 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.15625 | |
I0407 13:59:35.040276 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 13:59:35.040287 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 13:59:35.040303 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0407 13:59:35.040316 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.34375 | |
I0407 13:59:35.040328 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.53125 | |
I0407 13:59:35.040340 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0407 13:59:35.040351 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 13:59:35.040364 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 13:59:35.040375 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 13:59:35.040386 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 13:59:35.040398 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 13:59:35.040411 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 13:59:35.040422 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 13:59:35.040433 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 13:59:35.040444 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 13:59:35.040455 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 13:59:35.040467 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 13:59:35.040478 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 13:59:35.040489 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 13:59:35.040500 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 13:59:35.040511 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 13:59:35.040526 32304 solver.cpp:245] Train net output #22: loss/loss01 = 2.61991 (* 0.0454545 = 0.119087 loss) | |
I0407 13:59:35.040541 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.23063 (* 0.0454545 = 0.146847 loss) | |
I0407 13:59:35.040555 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.13383 (* 0.0454545 = 0.142447 loss) | |
I0407 13:59:35.040568 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.00495 (* 0.0454545 = 0.136589 loss) | |
I0407 13:59:35.040581 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.17745 (* 0.0454545 = 0.14443 loss) | |
I0407 13:59:35.040594 32304 solver.cpp:245] Train net output #27: loss/loss06 = 1.82417 (* 0.0454545 = 0.082917 loss) | |
I0407 13:59:35.040608 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.00888 (* 0.0454545 = 0.0458584 loss) | |
I0407 13:59:35.040621 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.289548 (* 0.0454545 = 0.0131613 loss) | |
I0407 13:59:35.040635 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.0496558 (* 0.0454545 = 0.00225708 loss) | |
I0407 13:59:35.040649 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.0152194 (* 0.0454545 = 0.000691789 loss) | |
I0407 13:59:35.040688 32304 solver.cpp:245] Train net output #32: loss/loss11 = 4.58194e-05 (* 0.0454545 = 2.0827e-06 loss) | |
I0407 13:59:35.040704 32304 solver.cpp:245] Train net output #33: loss/loss12 = 4.76117e-05 (* 0.0454545 = 2.16417e-06 loss) | |
I0407 13:59:35.040717 32304 solver.cpp:245] Train net output #34: loss/loss13 = 4.29056e-05 (* 0.0454545 = 1.95026e-06 loss) | |
I0407 13:59:35.040731 32304 solver.cpp:245] Train net output #35: loss/loss14 = 4.46806e-05 (* 0.0454545 = 2.03093e-06 loss) | |
I0407 13:59:35.040745 32304 solver.cpp:245] Train net output #36: loss/loss15 = 4.49526e-05 (* 0.0454545 = 2.0433e-06 loss) | |
I0407 13:59:35.040760 32304 solver.cpp:245] Train net output #37: loss/loss16 = 4.21195e-05 (* 0.0454545 = 1.91452e-06 loss) | |
I0407 13:59:35.040774 32304 solver.cpp:245] Train net output #38: loss/loss17 = 4.26821e-05 (* 0.0454545 = 1.9401e-06 loss) | |
I0407 13:59:35.040788 32304 solver.cpp:245] Train net output #39: loss/loss18 = 4.68618e-05 (* 0.0454545 = 2.13008e-06 loss) | |
I0407 13:59:35.040802 32304 solver.cpp:245] Train net output #40: loss/loss19 = 4.25212e-05 (* 0.0454545 = 1.93278e-06 loss) | |
I0407 13:59:35.040817 32304 solver.cpp:245] Train net output #41: loss/loss20 = 4.53831e-05 (* 0.0454545 = 2.06287e-06 loss) | |
I0407 13:59:35.040829 32304 solver.cpp:245] Train net output #42: loss/loss21 = 4.0707e-05 (* 0.0454545 = 1.85032e-06 loss) | |
I0407 13:59:35.040843 32304 solver.cpp:245] Train net output #43: loss/loss22 = 4.4821e-05 (* 0.0454545 = 2.03732e-06 loss) | |
I0407 13:59:35.040855 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 13:59:35.040868 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000381905 | |
I0407 13:59:35.040881 32304 sgd_solver.cpp:106] Iteration 40000, lr = 0.0092 | |
I0407 14:00:47.123718 32304 solver.cpp:229] Iteration 40500, loss = 0.908417 | |
I0407 14:00:47.123904 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 14:00:47.123929 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 14:00:47.123941 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0407 14:00:47.123955 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125 | |
I0407 14:00:47.123966 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0407 14:00:47.123978 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125 | |
I0407 14:00:47.123991 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.65625 | |
I0407 14:00:47.124001 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375 | |
I0407 14:00:47.124013 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 14:00:47.124025 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0407 14:00:47.124037 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 14:00:47.124048 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 14:00:47.124060 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 14:00:47.124071 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 14:00:47.124083 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 14:00:47.124094 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 14:00:47.124105 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 14:00:47.124117 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 14:00:47.124128 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 14:00:47.124140 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 14:00:47.124151 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 14:00:47.124162 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 14:00:47.124178 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.0024 (* 0.0454545 = 0.136473 loss) | |
I0407 14:00:47.124192 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.21576 (* 0.0454545 = 0.146171 loss) | |
I0407 14:00:47.124207 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.35983 (* 0.0454545 = 0.152719 loss) | |
I0407 14:00:47.124220 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.19432 (* 0.0454545 = 0.145196 loss) | |
I0407 14:00:47.124234 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.04686 (* 0.0454545 = 0.138494 loss) | |
I0407 14:00:47.124248 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.55715 (* 0.0454545 = 0.116234 loss) | |
I0407 14:00:47.124261 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.58802 (* 0.0454545 = 0.0721827 loss) | |
I0407 14:00:47.124274 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.795162 (* 0.0454545 = 0.0361437 loss) | |
I0407 14:00:47.124289 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.439685 (* 0.0454545 = 0.0199857 loss) | |
I0407 14:00:47.124302 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.219688 (* 0.0454545 = 0.0099858 loss) | |
I0407 14:00:47.124316 32304 solver.cpp:245] Train net output #32: loss/loss11 = 2.47127e-05 (* 0.0454545 = 1.1233e-06 loss) | |
I0407 14:00:47.124331 32304 solver.cpp:245] Train net output #33: loss/loss12 = 2.30026e-05 (* 0.0454545 = 1.04558e-06 loss) | |
I0407 14:00:47.124346 32304 solver.cpp:245] Train net output #34: loss/loss13 = 2.2401e-05 (* 0.0454545 = 1.01823e-06 loss) | |
I0407 14:00:47.124358 32304 solver.cpp:245] Train net output #35: loss/loss14 = 2.23414e-05 (* 0.0454545 = 1.01552e-06 loss) | |
I0407 14:00:47.124372 32304 solver.cpp:245] Train net output #36: loss/loss15 = 2.36361e-05 (* 0.0454545 = 1.07437e-06 loss) | |
I0407 14:00:47.124387 32304 solver.cpp:245] Train net output #37: loss/loss16 = 2.10971e-05 (* 0.0454545 = 9.58958e-07 loss) | |
I0407 14:00:47.124410 32304 solver.cpp:245] Train net output #38: loss/loss17 = 2.43104e-05 (* 0.0454545 = 1.10502e-06 loss) | |
I0407 14:00:47.124440 32304 solver.cpp:245] Train net output #39: loss/loss18 = 2.3379e-05 (* 0.0454545 = 1.06268e-06 loss) | |
I0407 14:00:47.124455 32304 solver.cpp:245] Train net output #40: loss/loss19 = 2.6326e-05 (* 0.0454545 = 1.19664e-06 loss) | |
I0407 14:00:47.124469 32304 solver.cpp:245] Train net output #41: loss/loss20 = 2.21142e-05 (* 0.0454545 = 1.00519e-06 loss) | |
I0407 14:00:47.124482 32304 solver.cpp:245] Train net output #42: loss/loss21 = 2.3446e-05 (* 0.0454545 = 1.06573e-06 loss) | |
I0407 14:00:47.124496 32304 solver.cpp:245] Train net output #43: loss/loss22 = 2.24866e-05 (* 0.0454545 = 1.02212e-06 loss) | |
I0407 14:00:47.124508 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 14:00:47.124521 32304 solver.cpp:245] Train net output #45: total_confidence = 2.26994e-06 | |
I0407 14:00:47.124536 32304 sgd_solver.cpp:106] Iteration 40500, lr = 0.00919 | |
I0407 14:01:59.800271 32304 solver.cpp:229] Iteration 41000, loss = 0.905246 | |
I0407 14:01:59.800385 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.1875 | |
I0407 14:01:59.800403 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 14:01:59.800416 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0407 14:01:59.800428 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875 | |
I0407 14:01:59.800441 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0407 14:01:59.800452 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5 | |
I0407 14:01:59.800464 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625 | |
I0407 14:01:59.800477 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 14:01:59.800489 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 14:01:59.800500 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0407 14:01:59.800513 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 14:01:59.800523 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 14:01:59.800534 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 14:01:59.800545 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 14:01:59.800557 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 14:01:59.800568 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 14:01:59.800580 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 14:01:59.800591 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 14:01:59.800602 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 14:01:59.800613 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 14:01:59.800624 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 14:01:59.800637 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 14:01:59.800652 32304 solver.cpp:245] Train net output #22: loss/loss01 = 2.70247 (* 0.0454545 = 0.12284 loss) | |
I0407 14:01:59.800665 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.03304 (* 0.0454545 = 0.137865 loss) | |
I0407 14:01:59.800679 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.19791 (* 0.0454545 = 0.14536 loss) | |
I0407 14:01:59.800693 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.07534 (* 0.0454545 = 0.139788 loss) | |
I0407 14:01:59.800706 32304 solver.cpp:245] Train net output #26: loss/loss05 = 2.61905 (* 0.0454545 = 0.119048 loss) | |
I0407 14:01:59.800720 32304 solver.cpp:245] Train net output #27: loss/loss06 = 1.9144 (* 0.0454545 = 0.0870182 loss) | |
I0407 14:01:59.800734 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.6909 (* 0.0454545 = 0.0768589 loss) | |
I0407 14:01:59.800747 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.611211 (* 0.0454545 = 0.0277823 loss) | |
I0407 14:01:59.800760 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.427957 (* 0.0454545 = 0.0194526 loss) | |
I0407 14:01:59.800775 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.432832 (* 0.0454545 = 0.0196742 loss) | |
I0407 14:01:59.800788 32304 solver.cpp:245] Train net output #32: loss/loss11 = 6.96271e-05 (* 0.0454545 = 3.16487e-06 loss) | |
I0407 14:01:59.800802 32304 solver.cpp:245] Train net output #33: loss/loss12 = 7.07784e-05 (* 0.0454545 = 3.2172e-06 loss) | |
I0407 14:01:59.800817 32304 solver.cpp:245] Train net output #34: loss/loss13 = 6.44537e-05 (* 0.0454545 = 2.92971e-06 loss) | |
I0407 14:01:59.800830 32304 solver.cpp:245] Train net output #35: loss/loss14 = 6.75797e-05 (* 0.0454545 = 3.07181e-06 loss) | |
I0407 14:01:59.800843 32304 solver.cpp:245] Train net output #36: loss/loss15 = 6.93494e-05 (* 0.0454545 = 3.15225e-06 loss) | |
I0407 14:01:59.800858 32304 solver.cpp:245] Train net output #37: loss/loss16 = 6.26952e-05 (* 0.0454545 = 2.84978e-06 loss) | |
I0407 14:01:59.800871 32304 solver.cpp:245] Train net output #38: loss/loss17 = 6.36078e-05 (* 0.0454545 = 2.89126e-06 loss) | |
I0407 14:01:59.800902 32304 solver.cpp:245] Train net output #39: loss/loss18 = 7.14066e-05 (* 0.0454545 = 3.24576e-06 loss) | |
I0407 14:01:59.800917 32304 solver.cpp:245] Train net output #40: loss/loss19 = 6.71232e-05 (* 0.0454545 = 3.05105e-06 loss) | |
I0407 14:01:59.800931 32304 solver.cpp:245] Train net output #41: loss/loss20 = 6.55492e-05 (* 0.0454545 = 2.97951e-06 loss) | |
I0407 14:01:59.800945 32304 solver.cpp:245] Train net output #42: loss/loss21 = 6.51354e-05 (* 0.0454545 = 2.9607e-06 loss) | |
I0407 14:01:59.800958 32304 solver.cpp:245] Train net output #43: loss/loss22 = 6.84685e-05 (* 0.0454545 = 3.1122e-06 loss) | |
I0407 14:01:59.800971 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 14:01:59.800982 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000483439 | |
I0407 14:01:59.800997 32304 sgd_solver.cpp:106] Iteration 41000, lr = 0.00918 | |
I0407 14:03:11.888018 32304 solver.cpp:229] Iteration 41500, loss = 0.902875 | |
I0407 14:03:11.888173 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 14:03:11.888193 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.15625 | |
I0407 14:03:11.888207 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0407 14:03:11.888219 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625 | |
I0407 14:03:11.888232 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.21875 | |
I0407 14:03:11.888243 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125 | |
I0407 14:03:11.888255 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.59375 | |
I0407 14:03:11.888267 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375 | |
I0407 14:03:11.888279 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0407 14:03:11.888291 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0407 14:03:11.888303 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 14:03:11.888314 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 14:03:11.888326 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 14:03:11.888339 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 14:03:11.888350 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 14:03:11.888362 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 14:03:11.888373 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 14:03:11.888386 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 14:03:11.888396 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 14:03:11.888408 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 14:03:11.888420 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 14:03:11.888432 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 14:03:11.888447 32304 solver.cpp:245] Train net output #22: loss/loss01 = 2.87965 (* 0.0454545 = 0.130893 loss) | |
I0407 14:03:11.888463 32304 solver.cpp:245] Train net output #23: loss/loss02 = 2.95749 (* 0.0454545 = 0.134431 loss) | |
I0407 14:03:11.888476 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.10052 (* 0.0454545 = 0.140933 loss) | |
I0407 14:03:11.888489 32304 solver.cpp:245] Train net output #25: loss/loss04 = 2.92719 (* 0.0454545 = 0.133054 loss) | |
I0407 14:03:11.888504 32304 solver.cpp:245] Train net output #26: loss/loss05 = 2.62017 (* 0.0454545 = 0.119099 loss) | |
I0407 14:03:11.888519 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.50024 (* 0.0454545 = 0.113647 loss) | |
I0407 14:03:11.888532 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.58789 (* 0.0454545 = 0.0721769 loss) | |
I0407 14:03:11.888545 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.891386 (* 0.0454545 = 0.0405176 loss) | |
I0407 14:03:11.888559 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.334731 (* 0.0454545 = 0.015215 loss) | |
I0407 14:03:11.888574 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.286904 (* 0.0454545 = 0.0130411 loss) | |
I0407 14:03:11.888588 32304 solver.cpp:245] Train net output #32: loss/loss11 = 0.000214563 (* 0.0454545 = 9.75289e-06 loss) | |
I0407 14:03:11.888603 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.000217428 (* 0.0454545 = 9.88308e-06 loss) | |
I0407 14:03:11.888617 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.000202829 (* 0.0454545 = 9.21951e-06 loss) | |
I0407 14:03:11.888631 32304 solver.cpp:245] Train net output #35: loss/loss14 = 0.000208036 (* 0.0454545 = 9.45619e-06 loss) | |
I0407 14:03:11.888645 32304 solver.cpp:245] Train net output #36: loss/loss15 = 0.000209169 (* 0.0454545 = 9.50769e-06 loss) | |
I0407 14:03:11.888659 32304 solver.cpp:245] Train net output #37: loss/loss16 = 0.000196821 (* 0.0454545 = 8.94639e-06 loss) | |
I0407 14:03:11.888674 32304 solver.cpp:245] Train net output #38: loss/loss17 = 0.000205702 (* 0.0454545 = 9.35011e-06 loss) | |
I0407 14:03:11.888705 32304 solver.cpp:245] Train net output #39: loss/loss18 = 0.0002231 (* 0.0454545 = 1.01409e-05 loss) | |
I0407 14:03:11.888720 32304 solver.cpp:245] Train net output #40: loss/loss19 = 0.000211231 (* 0.0454545 = 9.60142e-06 loss) | |
I0407 14:03:11.888734 32304 solver.cpp:245] Train net output #41: loss/loss20 = 0.000203451 (* 0.0454545 = 9.24776e-06 loss) | |
I0407 14:03:11.888748 32304 solver.cpp:245] Train net output #42: loss/loss21 = 0.000199879 (* 0.0454545 = 9.08542e-06 loss) | |
I0407 14:03:11.888761 32304 solver.cpp:245] Train net output #43: loss/loss22 = 0.000211151 (* 0.0454545 = 9.59777e-06 loss) | |
I0407 14:03:11.888773 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 14:03:11.888785 32304 solver.cpp:245] Train net output #45: total_confidence = 9.70183e-05 | |
I0407 14:03:11.888799 32304 sgd_solver.cpp:106] Iteration 41500, lr = 0.00917 | |
I0407 14:04:23.670900 32304 solver.cpp:229] Iteration 42000, loss = 0.903969 | |
I0407 14:04:23.671028 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 14:04:23.671047 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0407 14:04:23.671061 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 14:04:23.671072 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0407 14:04:23.671084 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0407 14:04:23.671097 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5 | |
I0407 14:04:23.671108 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.90625 | |
I0407 14:04:23.671119 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 1 | |
I0407 14:04:23.671130 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 14:04:23.671142 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 14:04:23.671154 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 14:04:23.671165 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 14:04:23.671177 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 14:04:23.671188 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 14:04:23.671200 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 14:04:23.671211 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 14:04:23.671222 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 14:04:23.671234 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 14:04:23.671246 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 14:04:23.671257 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 14:04:23.671268 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 14:04:23.671279 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 14:04:23.671295 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.04596 (* 0.0454545 = 0.138453 loss) | |
I0407 14:04:23.671309 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.26976 (* 0.0454545 = 0.148626 loss) | |
I0407 14:04:23.671341 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.32702 (* 0.0454545 = 0.151228 loss) | |
I0407 14:04:23.671357 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.15346 (* 0.0454545 = 0.143339 loss) | |
I0407 14:04:23.671370 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.07541 (* 0.0454545 = 0.139791 loss) | |
I0407 14:04:23.671385 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.09856 (* 0.0454545 = 0.095389 loss) | |
I0407 14:04:23.671398 32304 solver.cpp:245] Train net output #28: loss/loss07 = 0.637397 (* 0.0454545 = 0.0289726 loss) | |
I0407 14:04:23.671412 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.0861825 (* 0.0454545 = 0.00391739 loss) | |
I0407 14:04:23.671427 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.0218657 (* 0.0454545 = 0.000993893 loss) | |
I0407 14:04:23.671442 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.00951638 (* 0.0454545 = 0.000432563 loss) | |
I0407 14:04:23.671455 32304 solver.cpp:245] Train net output #32: loss/loss11 = 0.000116907 (* 0.0454545 = 5.31398e-06 loss) | |
I0407 14:04:23.671469 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.000124566 (* 0.0454545 = 5.66207e-06 loss) | |
I0407 14:04:23.671483 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.000118037 (* 0.0454545 = 5.36533e-06 loss) | |
I0407 14:04:23.671496 32304 solver.cpp:245] Train net output #35: loss/loss14 = 0.00011782 (* 0.0454545 = 5.35544e-06 loss) | |
I0407 14:04:23.671511 32304 solver.cpp:245] Train net output #36: loss/loss15 = 0.000119887 (* 0.0454545 = 5.44942e-06 loss) | |
I0407 14:04:23.671525 32304 solver.cpp:245] Train net output #37: loss/loss16 = 0.000110302 (* 0.0454545 = 5.01373e-06 loss) | |
I0407 14:04:23.671538 32304 solver.cpp:245] Train net output #38: loss/loss17 = 0.000119708 (* 0.0454545 = 5.44125e-06 loss) | |
I0407 14:04:23.671571 32304 solver.cpp:245] Train net output #39: loss/loss18 = 0.000123696 (* 0.0454545 = 5.62256e-06 loss) | |
I0407 14:04:23.671587 32304 solver.cpp:245] Train net output #40: loss/loss19 = 0.000125698 (* 0.0454545 = 5.71355e-06 loss) | |
I0407 14:04:23.671600 32304 solver.cpp:245] Train net output #41: loss/loss20 = 0.000118075 (* 0.0454545 = 5.36702e-06 loss) | |
I0407 14:04:23.671614 32304 solver.cpp:245] Train net output #42: loss/loss21 = 0.000112373 (* 0.0454545 = 5.10785e-06 loss) | |
I0407 14:04:23.671628 32304 solver.cpp:245] Train net output #43: loss/loss22 = 0.000119235 (* 0.0454545 = 5.41978e-06 loss) | |
I0407 14:04:23.671640 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 14:04:23.671653 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000319996 | |
I0407 14:04:23.671668 32304 sgd_solver.cpp:106] Iteration 42000, lr = 0.00916 | |
I0407 14:05:35.547704 32304 solver.cpp:229] Iteration 42500, loss = 0.90328 | |
I0407 14:05:35.547850 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0407 14:05:35.547871 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 14:05:35.547884 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0407 14:05:35.547896 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875 | |
I0407 14:05:35.547909 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.21875 | |
I0407 14:05:35.547922 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0407 14:05:35.547935 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0407 14:05:35.547947 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375 | |
I0407 14:05:35.547958 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0407 14:05:35.547971 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 14:05:35.547983 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 14:05:35.547996 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 14:05:35.548007 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 14:05:35.548019 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 14:05:35.548030 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 14:05:35.548043 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 14:05:35.548054 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 14:05:35.548065 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 14:05:35.548076 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 14:05:35.548089 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 14:05:35.548099 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 14:05:35.548110 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 14:05:35.548126 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.15597 (* 0.0454545 = 0.143453 loss) | |
I0407 14:05:35.548141 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.21097 (* 0.0454545 = 0.145953 loss) | |
I0407 14:05:35.548154 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.20779 (* 0.0454545 = 0.145809 loss) | |
I0407 14:05:35.548168 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.0043 (* 0.0454545 = 0.136559 loss) | |
I0407 14:05:35.548182 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.10484 (* 0.0454545 = 0.141129 loss) | |
I0407 14:05:35.548197 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.30298 (* 0.0454545 = 0.104681 loss) | |
I0407 14:05:35.548210 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.2696 (* 0.0454545 = 0.057709 loss) | |
I0407 14:05:35.548223 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.707992 (* 0.0454545 = 0.0321814 loss) | |
I0407 14:05:35.548238 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.137714 (* 0.0454545 = 0.00625971 loss) | |
I0407 14:05:35.548251 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.0224387 (* 0.0454545 = 0.00101994 loss) | |
I0407 14:05:35.548266 32304 solver.cpp:245] Train net output #32: loss/loss11 = 5.49876e-05 (* 0.0454545 = 2.49943e-06 loss) | |
I0407 14:05:35.548280 32304 solver.cpp:245] Train net output #33: loss/loss12 = 5.9733e-05 (* 0.0454545 = 2.71514e-06 loss) | |
I0407 14:05:35.548295 32304 solver.cpp:245] Train net output #34: loss/loss13 = 5.44901e-05 (* 0.0454545 = 2.47682e-06 loss) | |
I0407 14:05:35.548308 32304 solver.cpp:245] Train net output #35: loss/loss14 = 5.33839e-05 (* 0.0454545 = 2.42654e-06 loss) | |
I0407 14:05:35.548323 32304 solver.cpp:245] Train net output #36: loss/loss15 = 5.48163e-05 (* 0.0454545 = 2.49165e-06 loss) | |
I0407 14:05:35.548337 32304 solver.cpp:245] Train net output #37: loss/loss16 = 5.20409e-05 (* 0.0454545 = 2.3655e-06 loss) | |
I0407 14:05:35.548352 32304 solver.cpp:245] Train net output #38: loss/loss17 = 5.5064e-05 (* 0.0454545 = 2.50291e-06 loss) | |
I0407 14:05:35.548379 32304 solver.cpp:245] Train net output #39: loss/loss18 = 5.77924e-05 (* 0.0454545 = 2.62693e-06 loss) | |
I0407 14:05:35.548394 32304 solver.cpp:245] Train net output #40: loss/loss19 = 5.42778e-05 (* 0.0454545 = 2.46717e-06 loss) | |
I0407 14:05:35.548408 32304 solver.cpp:245] Train net output #41: loss/loss20 = 5.37774e-05 (* 0.0454545 = 2.44443e-06 loss) | |
I0407 14:05:35.548423 32304 solver.cpp:245] Train net output #42: loss/loss21 = 4.97e-05 (* 0.0454545 = 2.25909e-06 loss) | |
I0407 14:05:35.548436 32304 solver.cpp:245] Train net output #43: loss/loss22 = 5.5275e-05 (* 0.0454545 = 2.5125e-06 loss) | |
I0407 14:05:35.548449 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 14:05:35.548460 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000510023 | |
I0407 14:05:35.548475 32304 sgd_solver.cpp:106] Iteration 42500, lr = 0.00915 | |
I0407 14:06:47.707361 32304 solver.cpp:229] Iteration 43000, loss = 0.901816 | |
I0407 14:06:47.707517 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.1875 | |
I0407 14:06:47.707545 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0407 14:06:47.707567 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0407 14:06:47.707587 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.21875 | |
I0407 14:06:47.707609 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.21875 | |
I0407 14:06:47.707629 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375 | |
I0407 14:06:47.707650 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0407 14:06:47.707671 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 14:06:47.707692 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 14:06:47.707713 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 14:06:47.707734 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 14:06:47.707753 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 14:06:47.707775 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 14:06:47.707797 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 14:06:47.707820 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 14:06:47.707841 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 14:06:47.707862 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 14:06:47.707883 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 14:06:47.707911 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 14:06:47.707937 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 14:06:47.707958 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 14:06:47.707986 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 14:06:47.708014 32304 solver.cpp:245] Train net output #22: loss/loss01 = 2.95954 (* 0.0454545 = 0.134524 loss) | |
I0407 14:06:47.708039 32304 solver.cpp:245] Train net output #23: loss/loss02 = 2.99881 (* 0.0454545 = 0.13631 loss) | |
I0407 14:06:47.708073 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.06728 (* 0.0454545 = 0.139422 loss) | |
I0407 14:06:47.708099 32304 solver.cpp:245] Train net output #25: loss/loss04 = 2.90998 (* 0.0454545 = 0.132272 loss) | |
I0407 14:06:47.708123 32304 solver.cpp:245] Train net output #26: loss/loss05 = 2.76962 (* 0.0454545 = 0.125892 loss) | |
I0407 14:06:47.708158 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.15633 (* 0.0454545 = 0.0980151 loss) | |
I0407 14:06:47.708183 32304 solver.cpp:245] Train net output #28: loss/loss07 = 0.851161 (* 0.0454545 = 0.0386891 loss) | |
I0407 14:06:47.708207 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.415586 (* 0.0454545 = 0.0188903 loss) | |
I0407 14:06:47.708233 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.0186331 (* 0.0454545 = 0.000846958 loss) | |
I0407 14:06:47.708259 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.00616803 (* 0.0454545 = 0.000280365 loss) | |
I0407 14:06:47.708286 32304 solver.cpp:245] Train net output #32: loss/loss11 = 5.85128e-05 (* 0.0454545 = 2.65967e-06 loss) | |
I0407 14:06:47.708310 32304 solver.cpp:245] Train net output #33: loss/loss12 = 5.82911e-05 (* 0.0454545 = 2.64959e-06 loss) | |
I0407 14:06:47.708335 32304 solver.cpp:245] Train net output #34: loss/loss13 = 5.81476e-05 (* 0.0454545 = 2.64308e-06 loss) | |
I0407 14:06:47.708361 32304 solver.cpp:245] Train net output #35: loss/loss14 = 5.81493e-05 (* 0.0454545 = 2.64315e-06 loss) | |
I0407 14:06:47.708387 32304 solver.cpp:245] Train net output #36: loss/loss15 = 5.67855e-05 (* 0.0454545 = 2.58116e-06 loss) | |
I0407 14:06:47.708413 32304 solver.cpp:245] Train net output #37: loss/loss16 = 5.20391e-05 (* 0.0454545 = 2.36541e-06 loss) | |
I0407 14:06:47.708438 32304 solver.cpp:245] Train net output #38: loss/loss17 = 5.5042e-05 (* 0.0454545 = 2.50191e-06 loss) | |
I0407 14:06:47.708487 32304 solver.cpp:245] Train net output #39: loss/loss18 = 5.05057e-05 (* 0.0454545 = 2.29572e-06 loss) | |
I0407 14:06:47.708515 32304 solver.cpp:245] Train net output #40: loss/loss19 = 5.78998e-05 (* 0.0454545 = 2.63181e-06 loss) | |
I0407 14:06:47.708546 32304 solver.cpp:245] Train net output #41: loss/loss20 = 5.42301e-05 (* 0.0454545 = 2.465e-06 loss) | |
I0407 14:06:47.708575 32304 solver.cpp:245] Train net output #42: loss/loss21 = 5.36971e-05 (* 0.0454545 = 2.44078e-06 loss) | |
I0407 14:06:47.708600 32304 solver.cpp:245] Train net output #43: loss/loss22 = 5.4336e-05 (* 0.0454545 = 2.46982e-06 loss) | |
I0407 14:06:47.708624 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 14:06:47.708657 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000556161 | |
I0407 14:06:47.708683 32304 sgd_solver.cpp:106] Iteration 43000, lr = 0.00914 | |
I0407 14:07:59.899155 32304 solver.cpp:229] Iteration 43500, loss = 0.900689 | |
I0407 14:07:59.899287 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0407 14:07:59.899338 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0407 14:07:59.899368 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.15625 | |
I0407 14:07:59.899389 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0407 14:07:59.899410 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.21875 | |
I0407 14:07:59.899431 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.53125 | |
I0407 14:07:59.899452 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0407 14:07:59.899473 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375 | |
I0407 14:07:59.899494 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625 | |
I0407 14:07:59.899514 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0407 14:07:59.899536 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 14:07:59.899559 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 14:07:59.899583 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 14:07:59.899605 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 14:07:59.899626 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 14:07:59.899646 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 14:07:59.899667 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 14:07:59.899688 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 14:07:59.899710 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 14:07:59.899730 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 14:07:59.899750 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 14:07:59.899770 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 14:07:59.899798 32304 solver.cpp:245] Train net output #22: loss/loss01 = 2.82876 (* 0.0454545 = 0.12858 loss) | |
I0407 14:07:59.899824 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.09861 (* 0.0454545 = 0.140846 loss) | |
I0407 14:07:59.899850 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.00672 (* 0.0454545 = 0.136669 loss) | |
I0407 14:07:59.899875 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.06595 (* 0.0454545 = 0.139361 loss) | |
I0407 14:07:59.899900 32304 solver.cpp:245] Train net output #26: loss/loss05 = 2.99938 (* 0.0454545 = 0.136335 loss) | |
I0407 14:07:59.899929 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.13152 (* 0.0454545 = 0.0968871 loss) | |
I0407 14:07:59.899955 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.42683 (* 0.0454545 = 0.0648561 loss) | |
I0407 14:07:59.899979 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.880571 (* 0.0454545 = 0.0400259 loss) | |
I0407 14:07:59.900005 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.660581 (* 0.0454545 = 0.0300264 loss) | |
I0407 14:07:59.900032 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.368543 (* 0.0454545 = 0.016752 loss) | |
I0407 14:07:59.900058 32304 solver.cpp:245] Train net output #32: loss/loss11 = 0.000129107 (* 0.0454545 = 5.86852e-06 loss) | |
I0407 14:07:59.900084 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.00013399 (* 0.0454545 = 6.09046e-06 loss) | |
I0407 14:07:59.900110 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.000134384 (* 0.0454545 = 6.10834e-06 loss) | |
I0407 14:07:59.900135 32304 solver.cpp:245] Train net output #35: loss/loss14 = 0.000128313 (* 0.0454545 = 5.83241e-06 loss) | |
I0407 14:07:59.900161 32304 solver.cpp:245] Train net output #36: loss/loss15 = 0.000122037 (* 0.0454545 = 5.54714e-06 loss) | |
I0407 14:07:59.900185 32304 solver.cpp:245] Train net output #37: loss/loss16 = 0.000119328 (* 0.0454545 = 5.42399e-06 loss) | |
I0407 14:07:59.900212 32304 solver.cpp:245] Train net output #38: loss/loss17 = 0.000118623 (* 0.0454545 = 5.39194e-06 loss) | |
I0407 14:07:59.900262 32304 solver.cpp:245] Train net output #39: loss/loss18 = 0.000122817 (* 0.0454545 = 5.58261e-06 loss) | |
I0407 14:07:59.900292 32304 solver.cpp:245] Train net output #40: loss/loss19 = 0.000127559 (* 0.0454545 = 5.79815e-06 loss) | |
I0407 14:07:59.900326 32304 solver.cpp:245] Train net output #41: loss/loss20 = 0.000126107 (* 0.0454545 = 5.73214e-06 loss) | |
I0407 14:07:59.900353 32304 solver.cpp:245] Train net output #42: loss/loss21 = 0.000121233 (* 0.0454545 = 5.51061e-06 loss) | |
I0407 14:07:59.900380 32304 solver.cpp:245] Train net output #43: loss/loss22 = 0.00012343 (* 0.0454545 = 5.61046e-06 loss) | |
I0407 14:07:59.900403 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 14:07:59.900424 32304 solver.cpp:245] Train net output #45: total_confidence = 0.00047863 | |
I0407 14:07:59.900449 32304 sgd_solver.cpp:106] Iteration 43500, lr = 0.00913 | |
I0407 14:09:12.647136 32304 solver.cpp:229] Iteration 44000, loss = 0.895979 | |
I0407 14:09:12.647275 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.21875 | |
I0407 14:09:12.647295 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 14:09:12.647308 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 14:09:12.647320 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.21875 | |
I0407 14:09:12.647332 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125 | |
I0407 14:09:12.647344 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625 | |
I0407 14:09:12.647356 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.65625 | |
I0407 14:09:12.647368 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0407 14:09:12.647380 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 14:09:12.647403 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 14:09:12.647418 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 14:09:12.647429 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 14:09:12.647440 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 14:09:12.647452 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 14:09:12.647464 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 14:09:12.647475 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 14:09:12.647486 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 14:09:12.647498 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 14:09:12.647510 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 14:09:12.647521 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 14:09:12.647531 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 14:09:12.647543 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 14:09:12.647558 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.08701 (* 0.0454545 = 0.140319 loss) | |
I0407 14:09:12.647573 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.37621 (* 0.0454545 = 0.153464 loss) | |
I0407 14:09:12.647588 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.32406 (* 0.0454545 = 0.151094 loss) | |
I0407 14:09:12.647601 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.30098 (* 0.0454545 = 0.150044 loss) | |
I0407 14:09:12.647614 32304 solver.cpp:245] Train net output #26: loss/loss05 = 2.80256 (* 0.0454545 = 0.127389 loss) | |
I0407 14:09:12.647629 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.37226 (* 0.0454545 = 0.10783 loss) | |
I0407 14:09:12.647642 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.54985 (* 0.0454545 = 0.0704478 loss) | |
I0407 14:09:12.647655 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.608544 (* 0.0454545 = 0.0276611 loss) | |
I0407 14:09:12.647670 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.497509 (* 0.0454545 = 0.022614 loss) | |
I0407 14:09:12.647683 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.0163257 (* 0.0454545 = 0.000742077 loss) | |
I0407 14:09:12.647697 32304 solver.cpp:245] Train net output #32: loss/loss11 = 0.000131653 (* 0.0454545 = 5.98425e-06 loss) | |
I0407 14:09:12.647711 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.000150787 (* 0.0454545 = 6.85396e-06 loss) | |
I0407 14:09:12.647724 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.000139013 (* 0.0454545 = 6.31879e-06 loss) | |
I0407 14:09:12.647738 32304 solver.cpp:245] Train net output #35: loss/loss14 = 0.000130397 (* 0.0454545 = 5.92714e-06 loss) | |
I0407 14:09:12.647753 32304 solver.cpp:245] Train net output #36: loss/loss15 = 0.000135927 (* 0.0454545 = 6.1785e-06 loss) | |
I0407 14:09:12.647766 32304 solver.cpp:245] Train net output #37: loss/loss16 = 0.0001361 (* 0.0454545 = 6.18638e-06 loss) | |
I0407 14:09:12.647780 32304 solver.cpp:245] Train net output #38: loss/loss17 = 0.000136127 (* 0.0454545 = 6.18761e-06 loss) | |
I0407 14:09:12.647812 32304 solver.cpp:245] Train net output #39: loss/loss18 = 0.000149379 (* 0.0454545 = 6.78994e-06 loss) | |
I0407 14:09:12.647827 32304 solver.cpp:245] Train net output #40: loss/loss19 = 0.000144546 (* 0.0454545 = 6.57027e-06 loss) | |
I0407 14:09:12.647841 32304 solver.cpp:245] Train net output #41: loss/loss20 = 0.000132166 (* 0.0454545 = 6.00756e-06 loss) | |
I0407 14:09:12.647855 32304 solver.cpp:245] Train net output #42: loss/loss21 = 0.000122054 (* 0.0454545 = 5.54792e-06 loss) | |
I0407 14:09:12.647868 32304 solver.cpp:245] Train net output #43: loss/loss22 = 0.000131629 (* 0.0454545 = 5.98314e-06 loss) | |
I0407 14:09:12.647881 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 14:09:12.647891 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000313848 | |
I0407 14:09:12.647907 32304 sgd_solver.cpp:106] Iteration 44000, lr = 0.00912 | |
I0407 14:10:25.344609 32304 solver.cpp:229] Iteration 44500, loss = 0.89885 | |
I0407 14:10:25.344781 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0407 14:10:25.344801 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0407 14:10:25.344815 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 14:10:25.344827 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375 | |
I0407 14:10:25.344840 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.15625 | |
I0407 14:10:25.344851 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375 | |
I0407 14:10:25.344862 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875 | |
I0407 14:10:25.344874 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0407 14:10:25.344885 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 14:10:25.344897 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 14:10:25.344909 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 14:10:25.344924 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 14:10:25.344936 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 14:10:25.344949 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 14:10:25.344959 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 14:10:25.344971 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 14:10:25.344983 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 14:10:25.344995 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 14:10:25.345006 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 14:10:25.345017 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 14:10:25.345029 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 14:10:25.345041 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 14:10:25.345057 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.04466 (* 0.0454545 = 0.138394 loss) | |
I0407 14:10:25.345082 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.14068 (* 0.0454545 = 0.142758 loss) | |
I0407 14:10:25.345108 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.41568 (* 0.0454545 = 0.155258 loss) | |
I0407 14:10:25.345134 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.37207 (* 0.0454545 = 0.153276 loss) | |
I0407 14:10:25.345156 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.30803 (* 0.0454545 = 0.150365 loss) | |
I0407 14:10:25.345180 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.7752 (* 0.0454545 = 0.126145 loss) | |
I0407 14:10:25.345204 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.40303 (* 0.0454545 = 0.063774 loss) | |
I0407 14:10:25.345226 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.521199 (* 0.0454545 = 0.0236908 loss) | |
I0407 14:10:25.345240 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.43024 (* 0.0454545 = 0.0195563 loss) | |
I0407 14:10:25.345255 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.00885201 (* 0.0454545 = 0.000402364 loss) | |
I0407 14:10:25.345270 32304 solver.cpp:245] Train net output #32: loss/loss11 = 0.000124628 (* 0.0454545 = 5.66492e-06 loss) | |
I0407 14:10:25.345284 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.000120352 (* 0.0454545 = 5.47053e-06 loss) | |
I0407 14:10:25.345299 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.000122457 (* 0.0454545 = 5.56624e-06 loss) | |
I0407 14:10:25.345312 32304 solver.cpp:245] Train net output #35: loss/loss14 = 0.000119008 (* 0.0454545 = 5.40944e-06 loss) | |
I0407 14:10:25.345326 32304 solver.cpp:245] Train net output #36: loss/loss15 = 0.000109666 (* 0.0454545 = 4.98484e-06 loss) | |
I0407 14:10:25.345340 32304 solver.cpp:245] Train net output #37: loss/loss16 = 0.000121948 (* 0.0454545 = 5.5431e-06 loss) | |
I0407 14:10:25.345355 32304 solver.cpp:245] Train net output #38: loss/loss17 = 0.000123125 (* 0.0454545 = 5.59661e-06 loss) | |
I0407 14:10:25.345383 32304 solver.cpp:245] Train net output #39: loss/loss18 = 0.000117233 (* 0.0454545 = 5.32878e-06 loss) | |
I0407 14:10:25.345398 32304 solver.cpp:245] Train net output #40: loss/loss19 = 0.000121239 (* 0.0454545 = 5.51088e-06 loss) | |
I0407 14:10:25.345412 32304 solver.cpp:245] Train net output #41: loss/loss20 = 0.000115931 (* 0.0454545 = 5.26959e-06 loss) | |
I0407 14:10:25.345425 32304 solver.cpp:245] Train net output #42: loss/loss21 = 0.00011828 (* 0.0454545 = 5.37639e-06 loss) | |
I0407 14:10:25.345440 32304 solver.cpp:245] Train net output #43: loss/loss22 = 0.000118441 (* 0.0454545 = 5.38369e-06 loss) | |
I0407 14:10:25.345453 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 14:10:25.345463 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000130686 | |
I0407 14:10:25.345479 32304 sgd_solver.cpp:106] Iteration 44500, lr = 0.00911 | |
I0407 14:11:37.751458 32304 solver.cpp:338] Iteration 45000, Testing net (#0) | |
I0407 14:11:45.793267 32304 solver.cpp:393] Test loss: 0.815135 | |
I0407 14:11:45.793330 32304 solver.cpp:406] Test net output #0: loss/accuracy01 = 0.169 | |
I0407 14:11:45.793346 32304 solver.cpp:406] Test net output #1: loss/accuracy02 = 0.072 | |
I0407 14:11:45.793359 32304 solver.cpp:406] Test net output #2: loss/accuracy03 = 0.101 | |
I0407 14:11:45.793371 32304 solver.cpp:406] Test net output #3: loss/accuracy04 = 0.131 | |
I0407 14:11:45.793382 32304 solver.cpp:406] Test net output #4: loss/accuracy05 = 0.24 | |
I0407 14:11:45.793395 32304 solver.cpp:406] Test net output #5: loss/accuracy06 = 0.509 | |
I0407 14:11:45.793406 32304 solver.cpp:406] Test net output #6: loss/accuracy07 = 0.894 | |
I0407 14:11:45.793417 32304 solver.cpp:406] Test net output #7: loss/accuracy08 = 0.97 | |
I0407 14:11:45.793428 32304 solver.cpp:406] Test net output #8: loss/accuracy09 = 0.995 | |
I0407 14:11:45.793439 32304 solver.cpp:406] Test net output #9: loss/accuracy10 = 0.998 | |
I0407 14:11:45.793452 32304 solver.cpp:406] Test net output #10: loss/accuracy11 = 1 | |
I0407 14:11:45.793463 32304 solver.cpp:406] Test net output #11: loss/accuracy12 = 1 | |
I0407 14:11:45.793474 32304 solver.cpp:406] Test net output #12: loss/accuracy13 = 1 | |
I0407 14:11:45.793485 32304 solver.cpp:406] Test net output #13: loss/accuracy14 = 1 | |
I0407 14:11:45.793496 32304 solver.cpp:406] Test net output #14: loss/accuracy15 = 1 | |
I0407 14:11:45.793509 32304 solver.cpp:406] Test net output #15: loss/accuracy16 = 1 | |
I0407 14:11:45.793519 32304 solver.cpp:406] Test net output #16: loss/accuracy17 = 1 | |
I0407 14:11:45.793530 32304 solver.cpp:406] Test net output #17: loss/accuracy18 = 1 | |
I0407 14:11:45.793542 32304 solver.cpp:406] Test net output #18: loss/accuracy19 = 1 | |
I0407 14:11:45.793553 32304 solver.cpp:406] Test net output #19: loss/accuracy20 = 1 | |
I0407 14:11:45.793565 32304 solver.cpp:406] Test net output #20: loss/accuracy21 = 1 | |
I0407 14:11:45.793576 32304 solver.cpp:406] Test net output #21: loss/accuracy22 = 1 | |
I0407 14:11:45.793592 32304 solver.cpp:406] Test net output #22: loss/loss01 = 3.07765 (* 0.0454545 = 0.139893 loss) | |
I0407 14:11:45.793606 32304 solver.cpp:406] Test net output #23: loss/loss02 = 3.13017 (* 0.0454545 = 0.14228 loss) | |
I0407 14:11:45.793620 32304 solver.cpp:406] Test net output #24: loss/loss03 = 3.13812 (* 0.0454545 = 0.142642 loss) | |
I0407 14:11:45.793633 32304 solver.cpp:406] Test net output #25: loss/loss04 = 3.03093 (* 0.0454545 = 0.13777 loss) | |
I0407 14:11:45.793648 32304 solver.cpp:406] Test net output #26: loss/loss05 = 2.85499 (* 0.0454545 = 0.129772 loss) | |
I0407 14:11:45.793661 32304 solver.cpp:406] Test net output #27: loss/loss06 = 1.82201 (* 0.0454545 = 0.0828185 loss) | |
I0407 14:11:45.793684 32304 solver.cpp:406] Test net output #28: loss/loss07 = 0.5857 (* 0.0454545 = 0.0266227 loss) | |
I0407 14:11:45.793699 32304 solver.cpp:406] Test net output #29: loss/loss08 = 0.220985 (* 0.0454545 = 0.0100448 loss) | |
I0407 14:11:45.793712 32304 solver.cpp:406] Test net output #30: loss/loss09 = 0.04956 (* 0.0454545 = 0.00225273 loss) | |
I0407 14:11:45.793725 32304 solver.cpp:406] Test net output #31: loss/loss10 = 0.0216682 (* 0.0454545 = 0.00098492 loss) | |
I0407 14:11:45.793740 32304 solver.cpp:406] Test net output #32: loss/loss11 = 0.000103995 (* 0.0454545 = 4.72705e-06 loss) | |
I0407 14:11:45.793753 32304 solver.cpp:406] Test net output #33: loss/loss12 = 9.77353e-05 (* 0.0454545 = 4.44251e-06 loss) | |
I0407 14:11:45.793768 32304 solver.cpp:406] Test net output #34: loss/loss13 = 0.000100777 (* 0.0454545 = 4.58076e-06 loss) | |
I0407 14:11:45.793782 32304 solver.cpp:406] Test net output #35: loss/loss14 = 9.53461e-05 (* 0.0454545 = 4.33391e-06 loss) | |
I0407 14:11:45.793797 32304 solver.cpp:406] Test net output #36: loss/loss15 = 9.74283e-05 (* 0.0454545 = 4.42856e-06 loss) | |
I0407 14:11:45.793810 32304 solver.cpp:406] Test net output #37: loss/loss16 = 9.65076e-05 (* 0.0454545 = 4.38671e-06 loss) | |
I0407 14:11:45.793823 32304 solver.cpp:406] Test net output #38: loss/loss17 = 0.000100363 (* 0.0454545 = 4.56198e-06 loss) | |
I0407 14:11:45.793874 32304 solver.cpp:406] Test net output #39: loss/loss18 = 9.77951e-05 (* 0.0454545 = 4.44523e-06 loss) | |
I0407 14:11:45.793890 32304 solver.cpp:406] Test net output #40: loss/loss19 = 0.000104409 (* 0.0454545 = 4.74587e-06 loss) | |
I0407 14:11:45.793905 32304 solver.cpp:406] Test net output #41: loss/loss20 = 9.46184e-05 (* 0.0454545 = 4.30084e-06 loss) | |
I0407 14:11:45.793920 32304 solver.cpp:406] Test net output #42: loss/loss21 = 0.000101186 (* 0.0454545 = 4.59938e-06 loss) | |
I0407 14:11:45.793936 32304 solver.cpp:406] Test net output #43: loss/loss22 = 0.000103247 (* 0.0454545 = 4.69305e-06 loss) | |
I0407 14:11:45.793947 32304 solver.cpp:406] Test net output #44: total_accuracy = 0.001 | |
I0407 14:11:45.793958 32304 solver.cpp:406] Test net output #45: total_confidence = 0.000332729 | |
I0407 14:11:45.828754 32304 solver.cpp:229] Iteration 45000, loss = 0.895029 | |
I0407 14:11:45.828822 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0407 14:11:45.828840 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0407 14:11:45.828853 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0407 14:11:45.828866 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125 | |
I0407 14:11:45.828877 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125 | |
I0407 14:11:45.828889 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375 | |
I0407 14:11:45.828901 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0407 14:11:45.828912 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.96875 | |
I0407 14:11:45.828924 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0407 14:11:45.828935 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 14:11:45.828948 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 14:11:45.828958 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 14:11:45.828970 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 14:11:45.828981 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 14:11:45.828994 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 14:11:45.829005 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 14:11:45.829016 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 14:11:45.829027 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 14:11:45.829040 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 14:11:45.829051 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 14:11:45.829062 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 14:11:45.829077 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 14:11:45.829093 32304 solver.cpp:245] Train net output #22: loss/loss01 = 2.92188 (* 0.0454545 = 0.132813 loss) | |
I0407 14:11:45.829107 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.48629 (* 0.0454545 = 0.158468 loss) | |
I0407 14:11:45.829121 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.34175 (* 0.0454545 = 0.151898 loss) | |
I0407 14:11:45.829134 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.24386 (* 0.0454545 = 0.147448 loss) | |
I0407 14:11:45.829149 32304 solver.cpp:245] Train net output #26: loss/loss05 = 2.71737 (* 0.0454545 = 0.123517 loss) | |
I0407 14:11:45.829161 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.76338 (* 0.0454545 = 0.125608 loss) | |
I0407 14:11:45.829175 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.20365 (* 0.0454545 = 0.0547112 loss) | |
I0407 14:11:45.829188 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.190768 (* 0.0454545 = 0.00867128 loss) | |
I0407 14:11:45.829202 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.210451 (* 0.0454545 = 0.00956598 loss) | |
I0407 14:11:45.829244 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.00756931 (* 0.0454545 = 0.00034406 loss) | |
I0407 14:11:45.829260 32304 solver.cpp:245] Train net output #32: loss/loss11 = 3.75439e-05 (* 0.0454545 = 1.70654e-06 loss) | |
I0407 14:11:45.829274 32304 solver.cpp:245] Train net output #33: loss/loss12 = 3.48611e-05 (* 0.0454545 = 1.5846e-06 loss) | |
I0407 14:11:45.829288 32304 solver.cpp:245] Train net output #34: loss/loss13 = 3.74677e-05 (* 0.0454545 = 1.70308e-06 loss) | |
I0407 14:11:45.829303 32304 solver.cpp:245] Train net output #35: loss/loss14 = 3.74343e-05 (* 0.0454545 = 1.70156e-06 loss) | |
I0407 14:11:45.829316 32304 solver.cpp:245] Train net output #36: loss/loss15 = 3.56435e-05 (* 0.0454545 = 1.62016e-06 loss) | |
I0407 14:11:45.829329 32304 solver.cpp:245] Train net output #37: loss/loss16 = 3.34679e-05 (* 0.0454545 = 1.52127e-06 loss) | |
I0407 14:11:45.829344 32304 solver.cpp:245] Train net output #38: loss/loss17 = 3.78999e-05 (* 0.0454545 = 1.72272e-06 loss) | |
I0407 14:11:45.829357 32304 solver.cpp:245] Train net output #39: loss/loss18 = 3.24394e-05 (* 0.0454545 = 1.47452e-06 loss) | |
I0407 14:11:45.829370 32304 solver.cpp:245] Train net output #40: loss/loss19 = 3.95801e-05 (* 0.0454545 = 1.79909e-06 loss) | |
I0407 14:11:45.829385 32304 solver.cpp:245] Train net output #41: loss/loss20 = 3.50475e-05 (* 0.0454545 = 1.59307e-06 loss) | |
I0407 14:11:45.829397 32304 solver.cpp:245] Train net output #42: loss/loss21 = 3.75961e-05 (* 0.0454545 = 1.70891e-06 loss) | |
I0407 14:11:45.829411 32304 solver.cpp:245] Train net output #43: loss/loss22 = 3.52375e-05 (* 0.0454545 = 1.60171e-06 loss) | |
I0407 14:11:45.829422 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 14:11:45.829434 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000194324 | |
I0407 14:11:45.829448 32304 sgd_solver.cpp:106] Iteration 45000, lr = 0.0091 | |
I0407 14:12:57.979995 32304 solver.cpp:229] Iteration 45500, loss = 0.887809 | |
I0407 14:12:57.980130 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.03125 | |
I0407 14:12:57.980159 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125 | |
I0407 14:12:57.980180 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.1875 | |
I0407 14:12:57.980202 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625 | |
I0407 14:12:57.980223 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.21875 | |
I0407 14:12:57.980245 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0407 14:12:57.980267 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0407 14:12:57.980288 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375 | |
I0407 14:12:57.980309 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 14:12:57.980330 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0407 14:12:57.980350 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 14:12:57.980371 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 14:12:57.980394 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 14:12:57.980419 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 14:12:57.980442 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 14:12:57.980461 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 14:12:57.980482 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 14:12:57.980504 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 14:12:57.980523 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 14:12:57.980545 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 14:12:57.980566 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 14:12:57.980587 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 14:12:57.980613 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.35891 (* 0.0454545 = 0.152678 loss) | |
I0407 14:12:57.980638 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.30269 (* 0.0454545 = 0.150122 loss) | |
I0407 14:12:57.980664 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.1927 (* 0.0454545 = 0.145123 loss) | |
I0407 14:12:57.980690 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.44721 (* 0.0454545 = 0.156692 loss) | |
I0407 14:12:57.980715 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.04432 (* 0.0454545 = 0.138378 loss) | |
I0407 14:12:57.980741 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.56344 (* 0.0454545 = 0.11652 loss) | |
I0407 14:12:57.980770 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.11259 (* 0.0454545 = 0.0505722 loss) | |
I0407 14:12:57.980797 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.757077 (* 0.0454545 = 0.0344126 loss) | |
I0407 14:12:57.980821 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.285822 (* 0.0454545 = 0.0129919 loss) | |
I0407 14:12:57.980846 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.15578 (* 0.0454545 = 0.00708093 loss) | |
I0407 14:12:57.980872 32304 solver.cpp:245] Train net output #32: loss/loss11 = 0.000170026 (* 0.0454545 = 7.72845e-06 loss) | |
I0407 14:12:57.980898 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.00018316 (* 0.0454545 = 8.32546e-06 loss) | |
I0407 14:12:57.980924 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.000181393 (* 0.0454545 = 8.24513e-06 loss) | |
I0407 14:12:57.980950 32304 solver.cpp:245] Train net output #35: loss/loss14 = 0.000155601 (* 0.0454545 = 7.07278e-06 loss) | |
I0407 14:12:57.980976 32304 solver.cpp:245] Train net output #36: loss/loss15 = 0.000163019 (* 0.0454545 = 7.40998e-06 loss) | |
I0407 14:12:57.981001 32304 solver.cpp:245] Train net output #37: loss/loss16 = 0.000157224 (* 0.0454545 = 7.14656e-06 loss) | |
I0407 14:12:57.981027 32304 solver.cpp:245] Train net output #38: loss/loss17 = 0.000172014 (* 0.0454545 = 7.81881e-06 loss) | |
I0407 14:12:57.981076 32304 solver.cpp:245] Train net output #39: loss/loss18 = 0.000190678 (* 0.0454545 = 8.66719e-06 loss) | |
I0407 14:12:57.981103 32304 solver.cpp:245] Train net output #40: loss/loss19 = 0.000161843 (* 0.0454545 = 7.35652e-06 loss) | |
I0407 14:12:57.981135 32304 solver.cpp:245] Train net output #41: loss/loss20 = 0.000153625 (* 0.0454545 = 6.98295e-06 loss) | |
I0407 14:12:57.981165 32304 solver.cpp:245] Train net output #42: loss/loss21 = 0.000167269 (* 0.0454545 = 7.60315e-06 loss) | |
I0407 14:12:57.981195 32304 solver.cpp:245] Train net output #43: loss/loss22 = 0.000163627 (* 0.0454545 = 7.43759e-06 loss) | |
I0407 14:12:57.981217 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 14:12:57.981240 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000102689 | |
I0407 14:12:57.981262 32304 sgd_solver.cpp:106] Iteration 45500, lr = 0.00909 | |
I0407 14:14:10.027988 32304 solver.cpp:229] Iteration 46000, loss = 0.894094 | |
I0407 14:14:10.028175 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.21875 | |
I0407 14:14:10.028204 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.21875 | |
I0407 14:14:10.028225 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0407 14:14:10.028247 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.21875 | |
I0407 14:14:10.028270 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0407 14:14:10.028291 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.46875 | |
I0407 14:14:10.028311 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.78125 | |
I0407 14:14:10.028332 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0407 14:14:10.028354 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 14:14:10.028376 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0407 14:14:10.028396 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 14:14:10.028416 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 14:14:10.028439 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 14:14:10.028461 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 14:14:10.028483 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 14:14:10.028504 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 14:14:10.028525 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 14:14:10.028547 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 14:14:10.028566 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 14:14:10.028586 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 14:14:10.028609 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 14:14:10.028630 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 14:14:10.028657 32304 solver.cpp:245] Train net output #22: loss/loss01 = 2.56829 (* 0.0454545 = 0.11674 loss) | |
I0407 14:14:10.028679 32304 solver.cpp:245] Train net output #23: loss/loss02 = 2.96698 (* 0.0454545 = 0.134863 loss) | |
I0407 14:14:10.028702 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.15282 (* 0.0454545 = 0.14331 loss) | |
I0407 14:14:10.028728 32304 solver.cpp:245] Train net output #25: loss/loss04 = 2.85076 (* 0.0454545 = 0.12958 loss) | |
I0407 14:14:10.028753 32304 solver.cpp:245] Train net output #26: loss/loss05 = 2.78256 (* 0.0454545 = 0.12648 loss) | |
I0407 14:14:10.028780 32304 solver.cpp:245] Train net output #27: loss/loss06 = 1.8958 (* 0.0454545 = 0.0861726 loss) | |
I0407 14:14:10.028806 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.07198 (* 0.0454545 = 0.0487262 loss) | |
I0407 14:14:10.028831 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.404085 (* 0.0454545 = 0.0183675 loss) | |
I0407 14:14:10.028856 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.333038 (* 0.0454545 = 0.0151381 loss) | |
I0407 14:14:10.028882 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.14581 (* 0.0454545 = 0.00662774 loss) | |
I0407 14:14:10.028908 32304 solver.cpp:245] Train net output #32: loss/loss11 = 4.09044e-05 (* 0.0454545 = 1.85929e-06 loss) | |
I0407 14:14:10.028937 32304 solver.cpp:245] Train net output #33: loss/loss12 = 3.97268e-05 (* 0.0454545 = 1.80577e-06 loss) | |
I0407 14:14:10.028964 32304 solver.cpp:245] Train net output #34: loss/loss13 = 3.86742e-05 (* 0.0454545 = 1.75792e-06 loss) | |
I0407 14:14:10.028991 32304 solver.cpp:245] Train net output #35: loss/loss14 = 3.57061e-05 (* 0.0454545 = 1.623e-06 loss) | |
I0407 14:14:10.029017 32304 solver.cpp:245] Train net output #36: loss/loss15 = 3.75845e-05 (* 0.0454545 = 1.70838e-06 loss) | |
I0407 14:14:10.029044 32304 solver.cpp:245] Train net output #37: loss/loss16 = 3.38657e-05 (* 0.0454545 = 1.53935e-06 loss) | |
I0407 14:14:10.029069 32304 solver.cpp:245] Train net output #38: loss/loss17 = 3.77446e-05 (* 0.0454545 = 1.71566e-06 loss) | |
I0407 14:14:10.029114 32304 solver.cpp:245] Train net output #39: loss/loss18 = 3.79066e-05 (* 0.0454545 = 1.72303e-06 loss) | |
I0407 14:14:10.029141 32304 solver.cpp:245] Train net output #40: loss/loss19 = 3.68091e-05 (* 0.0454545 = 1.67314e-06 loss) | |
I0407 14:14:10.029167 32304 solver.cpp:245] Train net output #41: loss/loss20 = 3.62819e-05 (* 0.0454545 = 1.64918e-06 loss) | |
I0407 14:14:10.029197 32304 solver.cpp:245] Train net output #42: loss/loss21 = 3.40855e-05 (* 0.0454545 = 1.54934e-06 loss) | |
I0407 14:14:10.029224 32304 solver.cpp:245] Train net output #43: loss/loss22 = 3.514e-05 (* 0.0454545 = 1.59727e-06 loss) | |
I0407 14:14:10.029247 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 14:14:10.029268 32304 solver.cpp:245] Train net output #45: total_confidence = 0.00081676 | |
I0407 14:14:10.029290 32304 sgd_solver.cpp:106] Iteration 46000, lr = 0.00908 | |
I0407 14:15:22.015135 32304 solver.cpp:229] Iteration 46500, loss = 0.893956 | |
I0407 14:15:22.015293 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0407 14:15:22.015314 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.15625 | |
I0407 14:15:22.015329 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0407 14:15:22.015341 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375 | |
I0407 14:15:22.015353 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.21875 | |
I0407 14:15:22.015365 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.28125 | |
I0407 14:15:22.015377 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625 | |
I0407 14:15:22.015388 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 14:15:22.015400 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0407 14:15:22.015424 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0407 14:15:22.015439 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 14:15:22.015450 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 14:15:22.015462 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 14:15:22.015475 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 14:15:22.015486 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 14:15:22.015497 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 14:15:22.015509 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 14:15:22.015521 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 14:15:22.015532 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 14:15:22.015543 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 14:15:22.015555 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 14:15:22.015566 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 14:15:22.015583 32304 solver.cpp:245] Train net output #22: loss/loss01 = 2.79066 (* 0.0454545 = 0.126848 loss) | |
I0407 14:15:22.015597 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.16584 (* 0.0454545 = 0.143902 loss) | |
I0407 14:15:22.015610 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.25606 (* 0.0454545 = 0.148003 loss) | |
I0407 14:15:22.015625 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.31815 (* 0.0454545 = 0.150825 loss) | |
I0407 14:15:22.015638 32304 solver.cpp:245] Train net output #26: loss/loss05 = 2.88481 (* 0.0454545 = 0.131128 loss) | |
I0407 14:15:22.015651 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.763 (* 0.0454545 = 0.125591 loss) | |
I0407 14:15:22.015666 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.70878 (* 0.0454545 = 0.0776719 loss) | |
I0407 14:15:22.015679 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.678533 (* 0.0454545 = 0.0308424 loss) | |
I0407 14:15:22.015694 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.185019 (* 0.0454545 = 0.00840995 loss) | |
I0407 14:15:22.015708 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.186598 (* 0.0454545 = 0.00848174 loss) | |
I0407 14:15:22.015722 32304 solver.cpp:245] Train net output #32: loss/loss11 = 0.000302834 (* 0.0454545 = 1.37652e-05 loss) | |
I0407 14:15:22.015736 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.000318264 (* 0.0454545 = 1.44666e-05 loss) | |
I0407 14:15:22.015750 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.000315989 (* 0.0454545 = 1.43631e-05 loss) | |
I0407 14:15:22.015763 32304 solver.cpp:245] Train net output #35: loss/loss14 = 0.000368418 (* 0.0454545 = 1.67463e-05 loss) | |
I0407 14:15:22.015777 32304 solver.cpp:245] Train net output #36: loss/loss15 = 0.000326199 (* 0.0454545 = 1.48272e-05 loss) | |
I0407 14:15:22.015790 32304 solver.cpp:245] Train net output #37: loss/loss16 = 0.000313607 (* 0.0454545 = 1.42549e-05 loss) | |
I0407 14:15:22.015805 32304 solver.cpp:245] Train net output #38: loss/loss17 = 0.00033116 (* 0.0454545 = 1.50527e-05 loss) | |
I0407 14:15:22.015838 32304 solver.cpp:245] Train net output #39: loss/loss18 = 0.000329779 (* 0.0454545 = 1.49899e-05 loss) | |
I0407 14:15:22.015853 32304 solver.cpp:245] Train net output #40: loss/loss19 = 0.000312088 (* 0.0454545 = 1.41858e-05 loss) | |
I0407 14:15:22.015867 32304 solver.cpp:245] Train net output #41: loss/loss20 = 0.000294701 (* 0.0454545 = 1.33955e-05 loss) | |
I0407 14:15:22.015880 32304 solver.cpp:245] Train net output #42: loss/loss21 = 0.000293731 (* 0.0454545 = 1.33514e-05 loss) | |
I0407 14:15:22.015894 32304 solver.cpp:245] Train net output #43: loss/loss22 = 0.000310016 (* 0.0454545 = 1.40916e-05 loss) | |
I0407 14:15:22.015907 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 14:15:22.015918 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000581102 | |
I0407 14:15:22.015933 32304 sgd_solver.cpp:106] Iteration 46500, lr = 0.00907 | |
I0407 14:16:33.973507 32304 solver.cpp:229] Iteration 47000, loss = 0.89777 | |
I0407 14:16:33.973629 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 14:16:33.973649 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.15625 | |
I0407 14:16:33.973662 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0407 14:16:33.973675 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625 | |
I0407 14:16:33.973686 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125 | |
I0407 14:16:33.973697 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375 | |
I0407 14:16:33.973709 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0407 14:16:33.973721 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0407 14:16:33.973733 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 14:16:33.973744 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 14:16:33.973757 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 14:16:33.973767 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 14:16:33.973779 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 14:16:33.973790 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 14:16:33.973803 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 14:16:33.973814 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 14:16:33.973824 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 14:16:33.973836 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 14:16:33.973847 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 14:16:33.973858 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 14:16:33.973871 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 14:16:33.973891 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 14:16:33.973920 32304 solver.cpp:245] Train net output #22: loss/loss01 = 2.85117 (* 0.0454545 = 0.129599 loss) | |
I0407 14:16:33.973948 32304 solver.cpp:245] Train net output #23: loss/loss02 = 2.96495 (* 0.0454545 = 0.13477 loss) | |
I0407 14:16:33.973970 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.05021 (* 0.0454545 = 0.138646 loss) | |
I0407 14:16:33.973994 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.01989 (* 0.0454545 = 0.137268 loss) | |
I0407 14:16:33.974020 32304 solver.cpp:245] Train net output #26: loss/loss05 = 2.77949 (* 0.0454545 = 0.126341 loss) | |
I0407 14:16:33.974041 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.59186 (* 0.0454545 = 0.117812 loss) | |
I0407 14:16:33.974056 32304 solver.cpp:245] Train net output #28: loss/loss07 = 0.832971 (* 0.0454545 = 0.0378623 loss) | |
I0407 14:16:33.974071 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.469099 (* 0.0454545 = 0.0213227 loss) | |
I0407 14:16:33.974084 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.32642 (* 0.0454545 = 0.0148373 loss) | |
I0407 14:16:33.974098 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.0377108 (* 0.0454545 = 0.00171413 loss) | |
I0407 14:16:33.974113 32304 solver.cpp:245] Train net output #32: loss/loss11 = 0.000171775 (* 0.0454545 = 7.80795e-06 loss) | |
I0407 14:16:33.974128 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.000179775 (* 0.0454545 = 8.17157e-06 loss) | |
I0407 14:16:33.974140 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.000153662 (* 0.0454545 = 6.98463e-06 loss) | |
I0407 14:16:33.974155 32304 solver.cpp:245] Train net output #35: loss/loss14 = 0.000156431 (* 0.0454545 = 7.11051e-06 loss) | |
I0407 14:16:33.974169 32304 solver.cpp:245] Train net output #36: loss/loss15 = 0.000170914 (* 0.0454545 = 7.76881e-06 loss) | |
I0407 14:16:33.974184 32304 solver.cpp:245] Train net output #37: loss/loss16 = 0.000153425 (* 0.0454545 = 6.97385e-06 loss) | |
I0407 14:16:33.974197 32304 solver.cpp:245] Train net output #38: loss/loss17 = 0.000156835 (* 0.0454545 = 7.12885e-06 loss) | |
I0407 14:16:33.974230 32304 solver.cpp:245] Train net output #39: loss/loss18 = 0.000155878 (* 0.0454545 = 7.08536e-06 loss) | |
I0407 14:16:33.974244 32304 solver.cpp:245] Train net output #40: loss/loss19 = 0.000162395 (* 0.0454545 = 7.38159e-06 loss) | |
I0407 14:16:33.974258 32304 solver.cpp:245] Train net output #41: loss/loss20 = 0.000159831 (* 0.0454545 = 7.26504e-06 loss) | |
I0407 14:16:33.974272 32304 solver.cpp:245] Train net output #42: loss/loss21 = 0.000150387 (* 0.0454545 = 6.83578e-06 loss) | |
I0407 14:16:33.974287 32304 solver.cpp:245] Train net output #43: loss/loss22 = 0.000160743 (* 0.0454545 = 7.3065e-06 loss) | |
I0407 14:16:33.974306 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 14:16:33.974331 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000916057 | |
I0407 14:16:33.974361 32304 sgd_solver.cpp:106] Iteration 47000, lr = 0.00906 | |
I0407 14:17:45.579366 32304 solver.cpp:229] Iteration 47500, loss = 0.890176 | |
I0407 14:17:45.579500 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.21875 | |
I0407 14:17:45.579519 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0407 14:17:45.579532 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0407 14:17:45.579545 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375 | |
I0407 14:17:45.579557 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0407 14:17:45.579568 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0407 14:17:45.579581 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625 | |
I0407 14:17:45.579592 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.75 | |
I0407 14:17:45.579604 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 14:17:45.579615 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 14:17:45.579627 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 14:17:45.579638 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 14:17:45.579650 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 14:17:45.579661 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 14:17:45.579673 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 14:17:45.579684 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 14:17:45.579696 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 14:17:45.579707 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 14:17:45.579718 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 14:17:45.579730 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 14:17:45.579741 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 14:17:45.579753 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 14:17:45.579769 32304 solver.cpp:245] Train net output #22: loss/loss01 = 2.90908 (* 0.0454545 = 0.132231 loss) | |
I0407 14:17:45.579790 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.12059 (* 0.0454545 = 0.141845 loss) | |
I0407 14:17:45.579818 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.15932 (* 0.0454545 = 0.143605 loss) | |
I0407 14:17:45.579835 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.19704 (* 0.0454545 = 0.14532 loss) | |
I0407 14:17:45.579849 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.40064 (* 0.0454545 = 0.154575 loss) | |
I0407 14:17:45.579864 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.67436 (* 0.0454545 = 0.121562 loss) | |
I0407 14:17:45.579876 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.70567 (* 0.0454545 = 0.0775305 loss) | |
I0407 14:17:45.579890 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.96699 (* 0.0454545 = 0.0439541 loss) | |
I0407 14:17:45.579905 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.28585 (* 0.0454545 = 0.0129932 loss) | |
I0407 14:17:45.579921 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.0536572 (* 0.0454545 = 0.00243896 loss) | |
I0407 14:17:45.579936 32304 solver.cpp:245] Train net output #32: loss/loss11 = 8.6072e-05 (* 0.0454545 = 3.91236e-06 loss) | |
I0407 14:17:45.579951 32304 solver.cpp:245] Train net output #33: loss/loss12 = 9.21322e-05 (* 0.0454545 = 4.18783e-06 loss) | |
I0407 14:17:45.579964 32304 solver.cpp:245] Train net output #34: loss/loss13 = 9.65072e-05 (* 0.0454545 = 4.38669e-06 loss) | |
I0407 14:17:45.579978 32304 solver.cpp:245] Train net output #35: loss/loss14 = 9.15407e-05 (* 0.0454545 = 4.16094e-06 loss) | |
I0407 14:17:45.579993 32304 solver.cpp:245] Train net output #36: loss/loss15 = 8.84521e-05 (* 0.0454545 = 4.02055e-06 loss) | |
I0407 14:17:45.580005 32304 solver.cpp:245] Train net output #37: loss/loss16 = 8.72338e-05 (* 0.0454545 = 3.96517e-06 loss) | |
I0407 14:17:45.580019 32304 solver.cpp:245] Train net output #38: loss/loss17 = 9.57877e-05 (* 0.0454545 = 4.35399e-06 loss) | |
I0407 14:17:45.580051 32304 solver.cpp:245] Train net output #39: loss/loss18 = 9.34527e-05 (* 0.0454545 = 4.24785e-06 loss) | |
I0407 14:17:45.580066 32304 solver.cpp:245] Train net output #40: loss/loss19 = 9.40916e-05 (* 0.0454545 = 4.27689e-06 loss) | |
I0407 14:17:45.580080 32304 solver.cpp:245] Train net output #41: loss/loss20 = 7.78435e-05 (* 0.0454545 = 3.53834e-06 loss) | |
I0407 14:17:45.580095 32304 solver.cpp:245] Train net output #42: loss/loss21 = 8.66267e-05 (* 0.0454545 = 3.93758e-06 loss) | |
I0407 14:17:45.580107 32304 solver.cpp:245] Train net output #43: loss/loss22 = 8.02659e-05 (* 0.0454545 = 3.64845e-06 loss) | |
I0407 14:17:45.580119 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 14:17:45.580132 32304 solver.cpp:245] Train net output #45: total_confidence = 0.00197859 | |
I0407 14:17:45.580145 32304 sgd_solver.cpp:106] Iteration 47500, lr = 0.00905 | |
I0407 14:18:57.427652 32304 solver.cpp:229] Iteration 48000, loss = 0.888323 | |
I0407 14:18:57.427810 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.1875 | |
I0407 14:18:57.427839 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.21875 | |
I0407 14:18:57.427858 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0407 14:18:57.427880 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0407 14:18:57.427901 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0407 14:18:57.427925 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625 | |
I0407 14:18:57.427947 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0407 14:18:57.427968 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375 | |
I0407 14:18:57.427988 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 14:18:57.428007 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0407 14:18:57.428028 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 14:18:57.428048 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 14:18:57.428071 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 14:18:57.428093 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 14:18:57.428117 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 14:18:57.428139 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 14:18:57.428161 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 14:18:57.428182 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 14:18:57.428201 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 14:18:57.428222 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 14:18:57.428243 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 14:18:57.428263 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 14:18:57.428292 32304 solver.cpp:245] Train net output #22: loss/loss01 = 2.91296 (* 0.0454545 = 0.132407 loss) | |
I0407 14:18:57.428318 32304 solver.cpp:245] Train net output #23: loss/loss02 = 2.96151 (* 0.0454545 = 0.134614 loss) | |
I0407 14:18:57.428344 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.06899 (* 0.0454545 = 0.139499 loss) | |
I0407 14:18:57.428369 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.11442 (* 0.0454545 = 0.141565 loss) | |
I0407 14:18:57.428395 32304 solver.cpp:245] Train net output #26: loss/loss05 = 2.95085 (* 0.0454545 = 0.134129 loss) | |
I0407 14:18:57.428421 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.01231 (* 0.0454545 = 0.0914687 loss) | |
I0407 14:18:57.428445 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.21256 (* 0.0454545 = 0.0551163 loss) | |
I0407 14:18:57.428470 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.704093 (* 0.0454545 = 0.0320042 loss) | |
I0407 14:18:57.428496 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.375555 (* 0.0454545 = 0.0170707 loss) | |
I0407 14:18:57.428521 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.254523 (* 0.0454545 = 0.0115692 loss) | |
I0407 14:18:57.428547 32304 solver.cpp:245] Train net output #32: loss/loss11 = 3.00119e-05 (* 0.0454545 = 1.36418e-06 loss) | |
I0407 14:18:57.428573 32304 solver.cpp:245] Train net output #33: loss/loss12 = 2.87452e-05 (* 0.0454545 = 1.3066e-06 loss) | |
I0407 14:18:57.428598 32304 solver.cpp:245] Train net output #34: loss/loss13 = 2.97251e-05 (* 0.0454545 = 1.35114e-06 loss) | |
I0407 14:18:57.428625 32304 solver.cpp:245] Train net output #35: loss/loss14 = 2.93823e-05 (* 0.0454545 = 1.33556e-06 loss) | |
I0407 14:18:57.428650 32304 solver.cpp:245] Train net output #36: loss/loss15 = 2.85664e-05 (* 0.0454545 = 1.29847e-06 loss) | |
I0407 14:18:57.428676 32304 solver.cpp:245] Train net output #37: loss/loss16 = 2.71619e-05 (* 0.0454545 = 1.23463e-06 loss) | |
I0407 14:18:57.428701 32304 solver.cpp:245] Train net output #38: loss/loss17 = 3.01162e-05 (* 0.0454545 = 1.36892e-06 loss) | |
I0407 14:18:57.428745 32304 solver.cpp:245] Train net output #39: loss/loss18 = 2.90507e-05 (* 0.0454545 = 1.32049e-06 loss) | |
I0407 14:18:57.428772 32304 solver.cpp:245] Train net output #40: loss/loss19 = 3.2739e-05 (* 0.0454545 = 1.48814e-06 loss) | |
I0407 14:18:57.428798 32304 solver.cpp:245] Train net output #41: loss/loss20 = 2.74116e-05 (* 0.0454545 = 1.24598e-06 loss) | |
I0407 14:18:57.428827 32304 solver.cpp:245] Train net output #42: loss/loss21 = 2.76611e-05 (* 0.0454545 = 1.25732e-06 loss) | |
I0407 14:18:57.428853 32304 solver.cpp:245] Train net output #43: loss/loss22 = 2.84957e-05 (* 0.0454545 = 1.29526e-06 loss) | |
I0407 14:18:57.428876 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 14:18:57.428900 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000247302 | |
I0407 14:18:57.428927 32304 sgd_solver.cpp:106] Iteration 48000, lr = 0.00904 | |
I0407 14:20:09.899821 32304 solver.cpp:229] Iteration 48500, loss = 0.889778 | |
I0407 14:20:09.899938 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0407 14:20:09.899957 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125 | |
I0407 14:20:09.899971 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0407 14:20:09.899983 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375 | |
I0407 14:20:09.899996 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.125 | |
I0407 14:20:09.900007 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375 | |
I0407 14:20:09.900018 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875 | |
I0407 14:20:09.900030 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375 | |
I0407 14:20:09.900043 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625 | |
I0407 14:20:09.900054 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 14:20:09.900066 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 14:20:09.900080 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 14:20:09.900092 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 14:20:09.900104 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 14:20:09.900115 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 14:20:09.900127 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 14:20:09.900138 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 14:20:09.900151 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 14:20:09.900161 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 14:20:09.900172 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 14:20:09.900183 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 14:20:09.900195 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 14:20:09.900215 32304 solver.cpp:245] Train net output #22: loss/loss01 = 2.85868 (* 0.0454545 = 0.12994 loss) | |
I0407 14:20:09.900230 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.11641 (* 0.0454545 = 0.141655 loss) | |
I0407 14:20:09.900244 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.0441 (* 0.0454545 = 0.138368 loss) | |
I0407 14:20:09.900259 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.2679 (* 0.0454545 = 0.148541 loss) | |
I0407 14:20:09.900271 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.42046 (* 0.0454545 = 0.155475 loss) | |
I0407 14:20:09.900285 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.48962 (* 0.0454545 = 0.113165 loss) | |
I0407 14:20:09.900300 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.04765 (* 0.0454545 = 0.0476204 loss) | |
I0407 14:20:09.900312 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.634697 (* 0.0454545 = 0.0288498 loss) | |
I0407 14:20:09.900326 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.472007 (* 0.0454545 = 0.0214549 loss) | |
I0407 14:20:09.900339 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.0277259 (* 0.0454545 = 0.00126027 loss) | |
I0407 14:20:09.900354 32304 solver.cpp:245] Train net output #32: loss/loss11 = 0.000141184 (* 0.0454545 = 6.41744e-06 loss) | |
I0407 14:20:09.900377 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.00014292 (* 0.0454545 = 6.49637e-06 loss) | |
I0407 14:20:09.900406 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.000148105 (* 0.0454545 = 6.73204e-06 loss) | |
I0407 14:20:09.900424 32304 solver.cpp:245] Train net output #35: loss/loss14 = 0.000140633 (* 0.0454545 = 6.39241e-06 loss) | |
I0407 14:20:09.900439 32304 solver.cpp:245] Train net output #36: loss/loss15 = 0.000141267 (* 0.0454545 = 6.42122e-06 loss) | |
I0407 14:20:09.900452 32304 solver.cpp:245] Train net output #37: loss/loss16 = 0.00012737 (* 0.0454545 = 5.78955e-06 loss) | |
I0407 14:20:09.900466 32304 solver.cpp:245] Train net output #38: loss/loss17 = 0.000141716 (* 0.0454545 = 6.44165e-06 loss) | |
I0407 14:20:09.900498 32304 solver.cpp:245] Train net output #39: loss/loss18 = 0.000135896 (* 0.0454545 = 6.17711e-06 loss) | |
I0407 14:20:09.900513 32304 solver.cpp:245] Train net output #40: loss/loss19 = 0.000147483 (* 0.0454545 = 6.70377e-06 loss) | |
I0407 14:20:09.900527 32304 solver.cpp:245] Train net output #41: loss/loss20 = 0.000132775 (* 0.0454545 = 6.03523e-06 loss) | |
I0407 14:20:09.900540 32304 solver.cpp:245] Train net output #42: loss/loss21 = 0.0001333 (* 0.0454545 = 6.05908e-06 loss) | |
I0407 14:20:09.900555 32304 solver.cpp:245] Train net output #43: loss/loss22 = 0.000130694 (* 0.0454545 = 5.94062e-06 loss) | |
I0407 14:20:09.900568 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 14:20:09.900578 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000272426 | |
I0407 14:20:09.900593 32304 sgd_solver.cpp:106] Iteration 48500, lr = 0.00903 | |
I0407 14:21:22.290446 32304 solver.cpp:229] Iteration 49000, loss = 0.883549 | |
I0407 14:21:22.290609 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.21875 | |
I0407 14:21:22.290629 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0407 14:21:22.290643 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 14:21:22.290657 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625 | |
I0407 14:21:22.290668 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.21875 | |
I0407 14:21:22.290680 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.46875 | |
I0407 14:21:22.290693 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0407 14:21:22.290704 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 14:21:22.290715 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0407 14:21:22.290727 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0407 14:21:22.290738 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 14:21:22.290750 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 14:21:22.290761 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 14:21:22.290772 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 14:21:22.290784 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 14:21:22.290796 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 14:21:22.290807 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 14:21:22.290818 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 14:21:22.290829 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 14:21:22.290841 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 14:21:22.290853 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 14:21:22.290864 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 14:21:22.290880 32304 solver.cpp:245] Train net output #22: loss/loss01 = 2.58242 (* 0.0454545 = 0.117383 loss) | |
I0407 14:21:22.290895 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.05894 (* 0.0454545 = 0.139043 loss) | |
I0407 14:21:22.290909 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.23273 (* 0.0454545 = 0.146942 loss) | |
I0407 14:21:22.290925 32304 solver.cpp:245] Train net output #25: loss/loss04 = 2.90017 (* 0.0454545 = 0.131826 loss) | |
I0407 14:21:22.290940 32304 solver.cpp:245] Train net output #26: loss/loss05 = 2.6366 (* 0.0454545 = 0.119845 loss) | |
I0407 14:21:22.290954 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.34357 (* 0.0454545 = 0.106526 loss) | |
I0407 14:21:22.290967 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.05815 (* 0.0454545 = 0.0480976 loss) | |
I0407 14:21:22.290982 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.353768 (* 0.0454545 = 0.0160804 loss) | |
I0407 14:21:22.290995 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.109617 (* 0.0454545 = 0.00498261 loss) | |
I0407 14:21:22.291009 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.113981 (* 0.0454545 = 0.00518097 loss) | |
I0407 14:21:22.291023 32304 solver.cpp:245] Train net output #32: loss/loss11 = 5.72506e-05 (* 0.0454545 = 2.6023e-06 loss) | |
I0407 14:21:22.291038 32304 solver.cpp:245] Train net output #33: loss/loss12 = 6.36292e-05 (* 0.0454545 = 2.89224e-06 loss) | |
I0407 14:21:22.291051 32304 solver.cpp:245] Train net output #34: loss/loss13 = 5.71562e-05 (* 0.0454545 = 2.59801e-06 loss) | |
I0407 14:21:22.291065 32304 solver.cpp:245] Train net output #35: loss/loss14 = 5.73255e-05 (* 0.0454545 = 2.6057e-06 loss) | |
I0407 14:21:22.291079 32304 solver.cpp:245] Train net output #36: loss/loss15 = 5.62744e-05 (* 0.0454545 = 2.55793e-06 loss) | |
I0407 14:21:22.291093 32304 solver.cpp:245] Train net output #37: loss/loss16 = 5.45833e-05 (* 0.0454545 = 2.48106e-06 loss) | |
I0407 14:21:22.291107 32304 solver.cpp:245] Train net output #38: loss/loss17 = 5.44417e-05 (* 0.0454545 = 2.47462e-06 loss) | |
I0407 14:21:22.291138 32304 solver.cpp:245] Train net output #39: loss/loss18 = 5.48235e-05 (* 0.0454545 = 2.49198e-06 loss) | |
I0407 14:21:22.291153 32304 solver.cpp:245] Train net output #40: loss/loss19 = 5.51007e-05 (* 0.0454545 = 2.50458e-06 loss) | |
I0407 14:21:22.291167 32304 solver.cpp:245] Train net output #41: loss/loss20 = 5.03375e-05 (* 0.0454545 = 2.28807e-06 loss) | |
I0407 14:21:22.291182 32304 solver.cpp:245] Train net output #42: loss/loss21 = 5.29941e-05 (* 0.0454545 = 2.40883e-06 loss) | |
I0407 14:21:22.291195 32304 solver.cpp:245] Train net output #43: loss/loss22 = 5.50992e-05 (* 0.0454545 = 2.50451e-06 loss) | |
I0407 14:21:22.291208 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 14:21:22.291218 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000606422 | |
I0407 14:21:22.291234 32304 sgd_solver.cpp:106] Iteration 49000, lr = 0.00902 | |
I0407 14:22:34.399117 32304 solver.cpp:229] Iteration 49500, loss = 0.881177 | |
I0407 14:22:34.399260 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.15625 | |
I0407 14:22:34.399279 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 14:22:34.399292 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0407 14:22:34.399304 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 14:22:34.399317 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.15625 | |
I0407 14:22:34.399329 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.28125 | |
I0407 14:22:34.399341 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0407 14:22:34.399353 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0407 14:22:34.399365 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 14:22:34.399392 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 14:22:34.399406 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 14:22:34.399418 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 14:22:34.399430 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 14:22:34.399441 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 14:22:34.399453 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 14:22:34.399464 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 14:22:34.399476 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 14:22:34.399494 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 14:22:34.399505 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 14:22:34.399518 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 14:22:34.399528 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 14:22:34.399540 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 14:22:34.399564 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.0935 (* 0.0454545 = 0.140614 loss) | |
I0407 14:22:34.399580 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.32523 (* 0.0454545 = 0.151147 loss) | |
I0407 14:22:34.399595 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.53443 (* 0.0454545 = 0.160656 loss) | |
I0407 14:22:34.399622 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.42994 (* 0.0454545 = 0.155906 loss) | |
I0407 14:22:34.399646 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.24044 (* 0.0454545 = 0.147293 loss) | |
I0407 14:22:34.399667 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.65906 (* 0.0454545 = 0.120867 loss) | |
I0407 14:22:34.399682 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.32132 (* 0.0454545 = 0.0600598 loss) | |
I0407 14:22:34.399694 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.508779 (* 0.0454545 = 0.0231263 loss) | |
I0407 14:22:34.399708 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.407103 (* 0.0454545 = 0.0185047 loss) | |
I0407 14:22:34.399729 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.0226558 (* 0.0454545 = 0.00102981 loss) | |
I0407 14:22:34.399744 32304 solver.cpp:245] Train net output #32: loss/loss11 = 7.70534e-05 (* 0.0454545 = 3.50243e-06 loss) | |
I0407 14:22:34.399758 32304 solver.cpp:245] Train net output #33: loss/loss12 = 7.616e-05 (* 0.0454545 = 3.46182e-06 loss) | |
I0407 14:22:34.399772 32304 solver.cpp:245] Train net output #34: loss/loss13 = 7.74462e-05 (* 0.0454545 = 3.52028e-06 loss) | |
I0407 14:22:34.399786 32304 solver.cpp:245] Train net output #35: loss/loss14 = 7.01044e-05 (* 0.0454545 = 3.18657e-06 loss) | |
I0407 14:22:34.399801 32304 solver.cpp:245] Train net output #36: loss/loss15 = 7.21501e-05 (* 0.0454545 = 3.27955e-06 loss) | |
I0407 14:22:34.399816 32304 solver.cpp:245] Train net output #37: loss/loss16 = 7.38156e-05 (* 0.0454545 = 3.35525e-06 loss) | |
I0407 14:22:34.399829 32304 solver.cpp:245] Train net output #38: loss/loss17 = 6.89749e-05 (* 0.0454545 = 3.13522e-06 loss) | |
I0407 14:22:34.399865 32304 solver.cpp:245] Train net output #39: loss/loss18 = 7.06429e-05 (* 0.0454545 = 3.21104e-06 loss) | |
I0407 14:22:34.399880 32304 solver.cpp:245] Train net output #40: loss/loss19 = 7.54559e-05 (* 0.0454545 = 3.42981e-06 loss) | |
I0407 14:22:34.399894 32304 solver.cpp:245] Train net output #41: loss/loss20 = 6.55174e-05 (* 0.0454545 = 2.97806e-06 loss) | |
I0407 14:22:34.399907 32304 solver.cpp:245] Train net output #42: loss/loss21 = 7.1365e-05 (* 0.0454545 = 3.24386e-06 loss) | |
I0407 14:22:34.399924 32304 solver.cpp:245] Train net output #43: loss/loss22 = 6.8617e-05 (* 0.0454545 = 3.11895e-06 loss) | |
I0407 14:22:34.399937 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 14:22:34.399950 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000111713 | |
I0407 14:22:34.399963 32304 sgd_solver.cpp:106] Iteration 49500, lr = 0.00901 | |
I0407 14:23:46.371624 32304 solver.cpp:338] Iteration 50000, Testing net (#0) | |
I0407 14:23:54.356832 32304 solver.cpp:393] Test loss: 0.784114 | |
I0407 14:23:54.356894 32304 solver.cpp:406] Test net output #0: loss/accuracy01 = 0.228 | |
I0407 14:23:54.356911 32304 solver.cpp:406] Test net output #1: loss/accuracy02 = 0.089 | |
I0407 14:23:54.356927 32304 solver.cpp:406] Test net output #2: loss/accuracy03 = 0.104 | |
I0407 14:23:54.356940 32304 solver.cpp:406] Test net output #3: loss/accuracy04 = 0.142 | |
I0407 14:23:54.356951 32304 solver.cpp:406] Test net output #4: loss/accuracy05 = 0.236 | |
I0407 14:23:54.356963 32304 solver.cpp:406] Test net output #5: loss/accuracy06 = 0.523 | |
I0407 14:23:54.356974 32304 solver.cpp:406] Test net output #6: loss/accuracy07 = 0.892 | |
I0407 14:23:54.356986 32304 solver.cpp:406] Test net output #7: loss/accuracy08 = 0.97 | |
I0407 14:23:54.356997 32304 solver.cpp:406] Test net output #8: loss/accuracy09 = 0.995 | |
I0407 14:23:54.357008 32304 solver.cpp:406] Test net output #9: loss/accuracy10 = 0.998 | |
I0407 14:23:54.357019 32304 solver.cpp:406] Test net output #10: loss/accuracy11 = 1 | |
I0407 14:23:54.357030 32304 solver.cpp:406] Test net output #11: loss/accuracy12 = 1 | |
I0407 14:23:54.357043 32304 solver.cpp:406] Test net output #12: loss/accuracy13 = 1 | |
I0407 14:23:54.357053 32304 solver.cpp:406] Test net output #13: loss/accuracy14 = 1 | |
I0407 14:23:54.357064 32304 solver.cpp:406] Test net output #14: loss/accuracy15 = 1 | |
I0407 14:23:54.357075 32304 solver.cpp:406] Test net output #15: loss/accuracy16 = 1 | |
I0407 14:23:54.357086 32304 solver.cpp:406] Test net output #16: loss/accuracy17 = 1 | |
I0407 14:23:54.357098 32304 solver.cpp:406] Test net output #17: loss/accuracy18 = 1 | |
I0407 14:23:54.357110 32304 solver.cpp:406] Test net output #18: loss/accuracy19 = 1 | |
I0407 14:23:54.357125 32304 solver.cpp:406] Test net output #19: loss/accuracy20 = 1 | |
I0407 14:23:54.357146 32304 solver.cpp:406] Test net output #20: loss/accuracy21 = 1 | |
I0407 14:23:54.357164 32304 solver.cpp:406] Test net output #21: loss/accuracy22 = 1 | |
I0407 14:23:54.357189 32304 solver.cpp:406] Test net output #22: loss/loss01 = 2.90497 (* 0.0454545 = 0.132044 loss) | |
I0407 14:23:54.357213 32304 solver.cpp:406] Test net output #23: loss/loss02 = 3.06394 (* 0.0454545 = 0.13927 loss) | |
I0407 14:23:54.357240 32304 solver.cpp:406] Test net output #24: loss/loss03 = 3.05483 (* 0.0454545 = 0.138856 loss) | |
I0407 14:23:54.357260 32304 solver.cpp:406] Test net output #25: loss/loss04 = 2.95996 (* 0.0454545 = 0.134544 loss) | |
I0407 14:23:54.357275 32304 solver.cpp:406] Test net output #26: loss/loss05 = 2.72249 (* 0.0454545 = 0.12375 loss) | |
I0407 14:23:54.357287 32304 solver.cpp:406] Test net output #27: loss/loss06 = 1.74271 (* 0.0454545 = 0.0792142 loss) | |
I0407 14:23:54.357301 32304 solver.cpp:406] Test net output #28: loss/loss07 = 0.521814 (* 0.0454545 = 0.0237188 loss) | |
I0407 14:23:54.357314 32304 solver.cpp:406] Test net output #29: loss/loss08 = 0.206878 (* 0.0454545 = 0.00940354 loss) | |
I0407 14:23:54.357328 32304 solver.cpp:406] Test net output #30: loss/loss09 = 0.0498564 (* 0.0454545 = 0.0022662 loss) | |
I0407 14:23:54.357342 32304 solver.cpp:406] Test net output #31: loss/loss10 = 0.0218698 (* 0.0454545 = 0.000994083 loss) | |
I0407 14:23:54.357357 32304 solver.cpp:406] Test net output #32: loss/loss11 = 0.000103864 (* 0.0454545 = 4.72109e-06 loss) | |
I0407 14:23:54.357369 32304 solver.cpp:406] Test net output #33: loss/loss12 = 0.000101576 (* 0.0454545 = 4.61708e-06 loss) | |
I0407 14:23:54.357383 32304 solver.cpp:406] Test net output #34: loss/loss13 = 9.85107e-05 (* 0.0454545 = 4.47776e-06 loss) | |
I0407 14:23:54.357398 32304 solver.cpp:406] Test net output #35: loss/loss14 = 9.75919e-05 (* 0.0454545 = 4.436e-06 loss) | |
I0407 14:23:54.357411 32304 solver.cpp:406] Test net output #36: loss/loss15 = 9.8213e-05 (* 0.0454545 = 4.46423e-06 loss) | |
I0407 14:23:54.357424 32304 solver.cpp:406] Test net output #37: loss/loss16 = 9.29934e-05 (* 0.0454545 = 4.22697e-06 loss) | |
I0407 14:23:54.357439 32304 solver.cpp:406] Test net output #38: loss/loss17 = 9.52293e-05 (* 0.0454545 = 4.3286e-06 loss) | |
I0407 14:23:54.357488 32304 solver.cpp:406] Test net output #39: loss/loss18 = 9.31758e-05 (* 0.0454545 = 4.23526e-06 loss) | |
I0407 14:23:54.357503 32304 solver.cpp:406] Test net output #40: loss/loss19 = 0.00010233 (* 0.0454545 = 4.65135e-06 loss) | |
I0407 14:23:54.357517 32304 solver.cpp:406] Test net output #41: loss/loss20 = 9.1415e-05 (* 0.0454545 = 4.15523e-06 loss) | |
I0407 14:23:54.357530 32304 solver.cpp:406] Test net output #42: loss/loss21 = 9.43549e-05 (* 0.0454545 = 4.28886e-06 loss) | |
I0407 14:23:54.357544 32304 solver.cpp:406] Test net output #43: loss/loss22 = 9.93736e-05 (* 0.0454545 = 4.51698e-06 loss) | |
I0407 14:23:54.357555 32304 solver.cpp:406] Test net output #44: total_accuracy = 0.006 | |
I0407 14:23:54.357568 32304 solver.cpp:406] Test net output #45: total_confidence = 0.000677494 | |
I0407 14:23:54.392468 32304 solver.cpp:229] Iteration 50000, loss = 0.881647 | |
I0407 14:23:54.392527 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 14:23:54.392544 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 14:23:54.392556 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 14:23:54.392570 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375 | |
I0407 14:23:54.392581 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125 | |
I0407 14:23:54.392593 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375 | |
I0407 14:23:54.392604 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0407 14:23:54.392616 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375 | |
I0407 14:23:54.392627 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0407 14:23:54.392639 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0407 14:23:54.392652 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 14:23:54.392663 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 14:23:54.392674 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 14:23:54.392685 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 14:23:54.392702 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 14:23:54.392724 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 14:23:54.392745 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 14:23:54.392765 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 14:23:54.392786 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 14:23:54.392809 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 14:23:54.392824 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 14:23:54.392835 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 14:23:54.392850 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.02019 (* 0.0454545 = 0.137281 loss) | |
I0407 14:23:54.392865 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.15497 (* 0.0454545 = 0.143408 loss) | |
I0407 14:23:54.392879 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.29793 (* 0.0454545 = 0.149906 loss) | |
I0407 14:23:54.392892 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.01229 (* 0.0454545 = 0.136922 loss) | |
I0407 14:23:54.392906 32304 solver.cpp:245] Train net output #26: loss/loss05 = 2.70362 (* 0.0454545 = 0.122892 loss) | |
I0407 14:23:54.392920 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.46548 (* 0.0454545 = 0.112067 loss) | |
I0407 14:23:54.392933 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.42976 (* 0.0454545 = 0.064989 loss) | |
I0407 14:23:54.392947 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.901443 (* 0.0454545 = 0.0409747 loss) | |
I0407 14:23:54.392961 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.197479 (* 0.0454545 = 0.00897634 loss) | |
I0407 14:23:54.393000 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.180178 (* 0.0454545 = 0.00818991 loss) | |
I0407 14:23:54.393016 32304 solver.cpp:245] Train net output #32: loss/loss11 = 6.44119e-05 (* 0.0454545 = 2.92781e-06 loss) | |
I0407 14:23:54.393030 32304 solver.cpp:245] Train net output #33: loss/loss12 = 6.62301e-05 (* 0.0454545 = 3.01046e-06 loss) | |
I0407 14:23:54.393044 32304 solver.cpp:245] Train net output #34: loss/loss13 = 5.98493e-05 (* 0.0454545 = 2.72042e-06 loss) | |
I0407 14:23:54.393059 32304 solver.cpp:245] Train net output #35: loss/loss14 = 6.59157e-05 (* 0.0454545 = 2.99617e-06 loss) | |
I0407 14:23:54.393075 32304 solver.cpp:245] Train net output #36: loss/loss15 = 6.14721e-05 (* 0.0454545 = 2.79419e-06 loss) | |
I0407 14:23:54.393090 32304 solver.cpp:245] Train net output #37: loss/loss16 = 5.52287e-05 (* 0.0454545 = 2.5104e-06 loss) | |
I0407 14:23:54.393103 32304 solver.cpp:245] Train net output #38: loss/loss17 = 5.98396e-05 (* 0.0454545 = 2.71998e-06 loss) | |
I0407 14:23:54.393117 32304 solver.cpp:245] Train net output #39: loss/loss18 = 6.04865e-05 (* 0.0454545 = 2.74939e-06 loss) | |
I0407 14:23:54.393131 32304 solver.cpp:245] Train net output #40: loss/loss19 = 6.04693e-05 (* 0.0454545 = 2.7486e-06 loss) | |
I0407 14:23:54.393144 32304 solver.cpp:245] Train net output #41: loss/loss20 = 5.66562e-05 (* 0.0454545 = 2.57528e-06 loss) | |
I0407 14:23:54.393158 32304 solver.cpp:245] Train net output #42: loss/loss21 = 5.62907e-05 (* 0.0454545 = 2.55867e-06 loss) | |
I0407 14:23:54.393172 32304 solver.cpp:245] Train net output #43: loss/loss22 = 6.21655e-05 (* 0.0454545 = 2.82571e-06 loss) | |
I0407 14:23:54.393187 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 14:23:54.393210 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000384079 | |
I0407 14:23:54.393236 32304 sgd_solver.cpp:106] Iteration 50000, lr = 0.009 | |
I0407 14:25:06.112782 32304 solver.cpp:229] Iteration 50500, loss = 0.881568 | |
I0407 14:25:06.112934 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.1875 | |
I0407 14:25:06.112956 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125 | |
I0407 14:25:06.112968 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0407 14:25:06.112980 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0407 14:25:06.112993 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125 | |
I0407 14:25:06.113004 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0407 14:25:06.113016 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0407 14:25:06.113029 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.96875 | |
I0407 14:25:06.113040 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0407 14:25:06.113051 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 14:25:06.113064 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 14:25:06.113075 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 14:25:06.113086 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 14:25:06.113097 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 14:25:06.113109 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 14:25:06.113121 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 14:25:06.113132 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 14:25:06.113144 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 14:25:06.113155 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 14:25:06.113167 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 14:25:06.113178 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 14:25:06.113189 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 14:25:06.113205 32304 solver.cpp:245] Train net output #22: loss/loss01 = 2.65594 (* 0.0454545 = 0.120725 loss) | |
I0407 14:25:06.113219 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.07905 (* 0.0454545 = 0.139957 loss) | |
I0407 14:25:06.113234 32304 solver.cpp:245] Train net output #24: loss/loss03 = 2.97997 (* 0.0454545 = 0.135453 loss) | |
I0407 14:25:06.113247 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.02931 (* 0.0454545 = 0.137696 loss) | |
I0407 14:25:06.113260 32304 solver.cpp:245] Train net output #26: loss/loss05 = 2.85487 (* 0.0454545 = 0.129767 loss) | |
I0407 14:25:06.113275 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.22711 (* 0.0454545 = 0.101232 loss) | |
I0407 14:25:06.113287 32304 solver.cpp:245] Train net output #28: loss/loss07 = 0.959122 (* 0.0454545 = 0.0435965 loss) | |
I0407 14:25:06.113301 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.125497 (* 0.0454545 = 0.0057044 loss) | |
I0407 14:25:06.113315 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.133611 (* 0.0454545 = 0.00607324 loss) | |
I0407 14:25:06.113329 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.0084647 (* 0.0454545 = 0.000384759 loss) | |
I0407 14:25:06.113343 32304 solver.cpp:245] Train net output #32: loss/loss11 = 6.24607e-05 (* 0.0454545 = 2.83912e-06 loss) | |
I0407 14:25:06.113358 32304 solver.cpp:245] Train net output #33: loss/loss12 = 6.01236e-05 (* 0.0454545 = 2.73289e-06 loss) | |
I0407 14:25:06.113371 32304 solver.cpp:245] Train net output #34: loss/loss13 = 5.90169e-05 (* 0.0454545 = 2.68259e-06 loss) | |
I0407 14:25:06.113385 32304 solver.cpp:245] Train net output #35: loss/loss14 = 5.88489e-05 (* 0.0454545 = 2.67495e-06 loss) | |
I0407 14:25:06.113399 32304 solver.cpp:245] Train net output #36: loss/loss15 = 5.84716e-05 (* 0.0454545 = 2.6578e-06 loss) | |
I0407 14:25:06.113414 32304 solver.cpp:245] Train net output #37: loss/loss16 = 6.05231e-05 (* 0.0454545 = 2.75105e-06 loss) | |
I0407 14:25:06.113427 32304 solver.cpp:245] Train net output #38: loss/loss17 = 5.72584e-05 (* 0.0454545 = 2.60265e-06 loss) | |
I0407 14:25:06.113459 32304 solver.cpp:245] Train net output #39: loss/loss18 = 5.68933e-05 (* 0.0454545 = 2.58606e-06 loss) | |
I0407 14:25:06.113474 32304 solver.cpp:245] Train net output #40: loss/loss19 = 6.30157e-05 (* 0.0454545 = 2.86435e-06 loss) | |
I0407 14:25:06.113488 32304 solver.cpp:245] Train net output #41: loss/loss20 = 5.97757e-05 (* 0.0454545 = 2.71708e-06 loss) | |
I0407 14:25:06.113502 32304 solver.cpp:245] Train net output #42: loss/loss21 = 5.91347e-05 (* 0.0454545 = 2.68794e-06 loss) | |
I0407 14:25:06.113517 32304 solver.cpp:245] Train net output #43: loss/loss22 = 5.85312e-05 (* 0.0454545 = 2.66051e-06 loss) | |
I0407 14:25:06.113528 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 14:25:06.113540 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000295619 | |
I0407 14:25:06.113554 32304 sgd_solver.cpp:106] Iteration 50500, lr = 0.00899 | |
I0407 14:26:18.239460 32304 solver.cpp:229] Iteration 51000, loss = 0.878018 | |
I0407 14:26:18.239629 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 14:26:18.239655 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 14:26:18.239668 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0407 14:26:18.239681 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375 | |
I0407 14:26:18.239693 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0407 14:26:18.239704 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0407 14:26:18.239717 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0407 14:26:18.239728 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375 | |
I0407 14:26:18.239740 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0407 14:26:18.239753 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0407 14:26:18.239764 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 14:26:18.239776 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 14:26:18.239789 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 14:26:18.239799 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 14:26:18.239811 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 14:26:18.239822 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 14:26:18.239835 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 14:26:18.239850 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 14:26:18.239862 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 14:26:18.239873 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 14:26:18.239886 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 14:26:18.239897 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 14:26:18.239924 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.10144 (* 0.0454545 = 0.140975 loss) | |
I0407 14:26:18.239939 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.35828 (* 0.0454545 = 0.152649 loss) | |
I0407 14:26:18.239953 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.25209 (* 0.0454545 = 0.147822 loss) | |
I0407 14:26:18.239967 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.19672 (* 0.0454545 = 0.145305 loss) | |
I0407 14:26:18.239981 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.02362 (* 0.0454545 = 0.137437 loss) | |
I0407 14:26:18.239995 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.55391 (* 0.0454545 = 0.116087 loss) | |
I0407 14:26:18.240008 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.44766 (* 0.0454545 = 0.0658028 loss) | |
I0407 14:26:18.240025 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.828571 (* 0.0454545 = 0.0376623 loss) | |
I0407 14:26:18.240039 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.163226 (* 0.0454545 = 0.00741936 loss) | |
I0407 14:26:18.240053 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.130193 (* 0.0454545 = 0.00591786 loss) | |
I0407 14:26:18.240068 32304 solver.cpp:245] Train net output #32: loss/loss11 = 0.000109243 (* 0.0454545 = 4.96561e-06 loss) | |
I0407 14:26:18.240087 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.000113606 (* 0.0454545 = 5.16391e-06 loss) | |
I0407 14:26:18.240102 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.000101866 (* 0.0454545 = 4.63029e-06 loss) | |
I0407 14:26:18.240115 32304 solver.cpp:245] Train net output #35: loss/loss14 = 9.81768e-05 (* 0.0454545 = 4.46258e-06 loss) | |
I0407 14:26:18.240129 32304 solver.cpp:245] Train net output #36: loss/loss15 = 0.000104562 (* 0.0454545 = 4.75284e-06 loss) | |
I0407 14:26:18.240150 32304 solver.cpp:245] Train net output #37: loss/loss16 = 9.82664e-05 (* 0.0454545 = 4.46666e-06 loss) | |
I0407 14:26:18.240164 32304 solver.cpp:245] Train net output #38: loss/loss17 = 0.000102711 (* 0.0454545 = 4.66867e-06 loss) | |
I0407 14:26:18.240201 32304 solver.cpp:245] Train net output #39: loss/loss18 = 0.000112087 (* 0.0454545 = 5.09487e-06 loss) | |
I0407 14:26:18.240216 32304 solver.cpp:245] Train net output #40: loss/loss19 = 0.000105197 (* 0.0454545 = 4.78167e-06 loss) | |
I0407 14:26:18.240231 32304 solver.cpp:245] Train net output #41: loss/loss20 = 0.00010228 (* 0.0454545 = 4.6491e-06 loss) | |
I0407 14:26:18.240244 32304 solver.cpp:245] Train net output #42: loss/loss21 = 9.58124e-05 (* 0.0454545 = 4.35511e-06 loss) | |
I0407 14:26:18.240258 32304 solver.cpp:245] Train net output #43: loss/loss22 = 0.000100848 (* 0.0454545 = 4.58398e-06 loss) | |
I0407 14:26:18.240270 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 14:26:18.240283 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000418362 | |
I0407 14:26:18.240298 32304 sgd_solver.cpp:106] Iteration 51000, lr = 0.00898 | |
I0407 14:27:30.177147 32304 solver.cpp:229] Iteration 51500, loss = 0.872754 | |
I0407 14:27:30.177314 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.28125 | |
I0407 14:27:30.177335 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0407 14:27:30.177348 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0407 14:27:30.177361 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0407 14:27:30.177372 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.21875 | |
I0407 14:27:30.177384 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0407 14:27:30.177402 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.78125 | |
I0407 14:27:30.177415 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.96875 | |
I0407 14:27:30.177428 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0407 14:27:30.177439 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 14:27:30.177450 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 14:27:30.177462 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 14:27:30.177474 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 14:27:30.177485 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 14:27:30.177505 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 14:27:30.177527 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 14:27:30.177547 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 14:27:30.177561 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 14:27:30.177572 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 14:27:30.177583 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 14:27:30.177594 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 14:27:30.177609 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 14:27:30.177625 32304 solver.cpp:245] Train net output #22: loss/loss01 = 2.63536 (* 0.0454545 = 0.119789 loss) | |
I0407 14:27:30.177640 32304 solver.cpp:245] Train net output #23: loss/loss02 = 2.93273 (* 0.0454545 = 0.133306 loss) | |
I0407 14:27:30.177654 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.05911 (* 0.0454545 = 0.13905 loss) | |
I0407 14:27:30.177669 32304 solver.cpp:245] Train net output #25: loss/loss04 = 2.77584 (* 0.0454545 = 0.126175 loss) | |
I0407 14:27:30.177681 32304 solver.cpp:245] Train net output #26: loss/loss05 = 2.77527 (* 0.0454545 = 0.126149 loss) | |
I0407 14:27:30.177695 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.07404 (* 0.0454545 = 0.0942744 loss) | |
I0407 14:27:30.177709 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.07143 (* 0.0454545 = 0.0487011 loss) | |
I0407 14:27:30.177723 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.180281 (* 0.0454545 = 0.00819459 loss) | |
I0407 14:27:30.177737 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.113333 (* 0.0454545 = 0.00515148 loss) | |
I0407 14:27:30.177752 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.00917779 (* 0.0454545 = 0.000417173 loss) | |
I0407 14:27:30.177767 32304 solver.cpp:245] Train net output #32: loss/loss11 = 6.15253e-05 (* 0.0454545 = 2.7966e-06 loss) | |
I0407 14:27:30.177780 32304 solver.cpp:245] Train net output #33: loss/loss12 = 5.95025e-05 (* 0.0454545 = 2.70466e-06 loss) | |
I0407 14:27:30.177794 32304 solver.cpp:245] Train net output #34: loss/loss13 = 5.69095e-05 (* 0.0454545 = 2.58679e-06 loss) | |
I0407 14:27:30.177809 32304 solver.cpp:245] Train net output #35: loss/loss14 = 5.40846e-05 (* 0.0454545 = 2.45839e-06 loss) | |
I0407 14:27:30.177821 32304 solver.cpp:245] Train net output #36: loss/loss15 = 5.70082e-05 (* 0.0454545 = 2.59128e-06 loss) | |
I0407 14:27:30.177835 32304 solver.cpp:245] Train net output #37: loss/loss16 = 5.35241e-05 (* 0.0454545 = 2.43292e-06 loss) | |
I0407 14:27:30.177850 32304 solver.cpp:245] Train net output #38: loss/loss17 = 5.61748e-05 (* 0.0454545 = 2.5534e-06 loss) | |
I0407 14:27:30.177877 32304 solver.cpp:245] Train net output #39: loss/loss18 = 6.47104e-05 (* 0.0454545 = 2.94138e-06 loss) | |
I0407 14:27:30.177906 32304 solver.cpp:245] Train net output #40: loss/loss19 = 5.50215e-05 (* 0.0454545 = 2.50098e-06 loss) | |
I0407 14:27:30.177922 32304 solver.cpp:245] Train net output #41: loss/loss20 = 4.97945e-05 (* 0.0454545 = 2.26339e-06 loss) | |
I0407 14:27:30.177937 32304 solver.cpp:245] Train net output #42: loss/loss21 = 5.20801e-05 (* 0.0454545 = 2.36728e-06 loss) | |
I0407 14:27:30.177950 32304 solver.cpp:245] Train net output #43: loss/loss22 = 5.22421e-05 (* 0.0454545 = 2.37464e-06 loss) | |
I0407 14:27:30.177963 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 14:27:30.177973 32304 solver.cpp:245] Train net output #45: total_confidence = 0.00012495 | |
I0407 14:27:30.177989 32304 sgd_solver.cpp:106] Iteration 51500, lr = 0.00897 | |
I0407 14:28:42.500881 32304 solver.cpp:229] Iteration 52000, loss = 0.873532 | |
I0407 14:28:42.501008 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.1875 | |
I0407 14:28:42.501026 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125 | |
I0407 14:28:42.501039 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0407 14:28:42.501051 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375 | |
I0407 14:28:42.501065 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0407 14:28:42.501085 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.25 | |
I0407 14:28:42.501097 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0407 14:28:42.501109 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 14:28:42.501121 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 14:28:42.501132 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 14:28:42.501152 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 14:28:42.501163 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 14:28:42.501173 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 14:28:42.501185 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 14:28:42.501197 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 14:28:42.501209 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 14:28:42.501220 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 14:28:42.501231 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 14:28:42.501242 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 14:28:42.501253 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 14:28:42.501266 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 14:28:42.501279 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 14:28:42.501296 32304 solver.cpp:245] Train net output #22: loss/loss01 = 2.76662 (* 0.0454545 = 0.125755 loss) | |
I0407 14:28:42.501309 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.15516 (* 0.0454545 = 0.143416 loss) | |
I0407 14:28:42.501323 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.27054 (* 0.0454545 = 0.148661 loss) | |
I0407 14:28:42.501344 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.02382 (* 0.0454545 = 0.137446 loss) | |
I0407 14:28:42.501358 32304 solver.cpp:245] Train net output #26: loss/loss05 = 2.715 (* 0.0454545 = 0.123409 loss) | |
I0407 14:28:42.501373 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.56258 (* 0.0454545 = 0.116481 loss) | |
I0407 14:28:42.501386 32304 solver.cpp:245] Train net output #28: loss/loss07 = 0.741756 (* 0.0454545 = 0.0337162 loss) | |
I0407 14:28:42.501400 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.235163 (* 0.0454545 = 0.0106892 loss) | |
I0407 14:28:42.501422 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.0147441 (* 0.0454545 = 0.000670184 loss) | |
I0407 14:28:42.501436 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.0052231 (* 0.0454545 = 0.000237414 loss) | |
I0407 14:28:42.501451 32304 solver.cpp:245] Train net output #32: loss/loss11 = 8.36877e-05 (* 0.0454545 = 3.80399e-06 loss) | |
I0407 14:28:42.501464 32304 solver.cpp:245] Train net output #33: loss/loss12 = 8.54372e-05 (* 0.0454545 = 3.88351e-06 loss) | |
I0407 14:28:42.501483 32304 solver.cpp:245] Train net output #34: loss/loss13 = 8.311e-05 (* 0.0454545 = 3.77773e-06 loss) | |
I0407 14:28:42.501498 32304 solver.cpp:245] Train net output #35: loss/loss14 = 7.96446e-05 (* 0.0454545 = 3.62021e-06 loss) | |
I0407 14:28:42.501513 32304 solver.cpp:245] Train net output #36: loss/loss15 = 7.61092e-05 (* 0.0454545 = 3.45951e-06 loss) | |
I0407 14:28:42.501530 32304 solver.cpp:245] Train net output #37: loss/loss16 = 7.92504e-05 (* 0.0454545 = 3.60229e-06 loss) | |
I0407 14:28:42.501544 32304 solver.cpp:245] Train net output #38: loss/loss17 = 8.25867e-05 (* 0.0454545 = 3.75394e-06 loss) | |
I0407 14:28:42.501581 32304 solver.cpp:245] Train net output #39: loss/loss18 = 8.49567e-05 (* 0.0454545 = 3.86167e-06 loss) | |
I0407 14:28:42.501596 32304 solver.cpp:245] Train net output #40: loss/loss19 = 8.80489e-05 (* 0.0454545 = 4.00223e-06 loss) | |
I0407 14:28:42.501610 32304 solver.cpp:245] Train net output #41: loss/loss20 = 7.87675e-05 (* 0.0454545 = 3.58034e-06 loss) | |
I0407 14:28:42.501626 32304 solver.cpp:245] Train net output #42: loss/loss21 = 7.94196e-05 (* 0.0454545 = 3.60998e-06 loss) | |
I0407 14:28:42.501641 32304 solver.cpp:245] Train net output #43: loss/loss22 = 7.74353e-05 (* 0.0454545 = 3.51978e-06 loss) | |
I0407 14:28:42.501652 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 14:28:42.501663 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000227295 | |
I0407 14:28:42.501678 32304 sgd_solver.cpp:106] Iteration 52000, lr = 0.00896 | |
I0407 14:29:54.880563 32304 solver.cpp:229] Iteration 52500, loss = 0.878897 | |
I0407 14:29:54.880678 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.28125 | |
I0407 14:29:54.880697 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0407 14:29:54.880712 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.1875 | |
I0407 14:29:54.880723 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.21875 | |
I0407 14:29:54.880735 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0407 14:29:54.880748 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.46875 | |
I0407 14:29:54.880759 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.65625 | |
I0407 14:29:54.880770 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 14:29:54.880782 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 14:29:54.880795 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 14:29:54.880806 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 14:29:54.880818 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 14:29:54.880830 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 14:29:54.880841 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 14:29:54.880852 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 14:29:54.880866 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 14:29:54.880877 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 14:29:54.880888 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 14:29:54.880900 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 14:29:54.880911 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 14:29:54.880923 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 14:29:54.880934 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 14:29:54.880950 32304 solver.cpp:245] Train net output #22: loss/loss01 = 2.67214 (* 0.0454545 = 0.121461 loss) | |
I0407 14:29:54.880964 32304 solver.cpp:245] Train net output #23: loss/loss02 = 2.99879 (* 0.0454545 = 0.136309 loss) | |
I0407 14:29:54.880978 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.09338 (* 0.0454545 = 0.140608 loss) | |
I0407 14:29:54.880991 32304 solver.cpp:245] Train net output #25: loss/loss04 = 2.97073 (* 0.0454545 = 0.135033 loss) | |
I0407 14:29:54.881006 32304 solver.cpp:245] Train net output #26: loss/loss05 = 2.82167 (* 0.0454545 = 0.128258 loss) | |
I0407 14:29:54.881019 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.03135 (* 0.0454545 = 0.0923341 loss) | |
I0407 14:29:54.881032 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.61326 (* 0.0454545 = 0.0733299 loss) | |
I0407 14:29:54.881047 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.598924 (* 0.0454545 = 0.0272238 loss) | |
I0407 14:29:54.881060 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.413194 (* 0.0454545 = 0.0187815 loss) | |
I0407 14:29:54.881078 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.00733759 (* 0.0454545 = 0.000333527 loss) | |
I0407 14:29:54.881093 32304 solver.cpp:245] Train net output #32: loss/loss11 = 7.16632e-05 (* 0.0454545 = 3.25742e-06 loss) | |
I0407 14:29:54.881106 32304 solver.cpp:245] Train net output #33: loss/loss12 = 7.6013e-05 (* 0.0454545 = 3.45514e-06 loss) | |
I0407 14:29:54.881120 32304 solver.cpp:245] Train net output #34: loss/loss13 = 7.63784e-05 (* 0.0454545 = 3.47175e-06 loss) | |
I0407 14:29:54.881134 32304 solver.cpp:245] Train net output #35: loss/loss14 = 6.48357e-05 (* 0.0454545 = 2.94708e-06 loss) | |
I0407 14:29:54.881148 32304 solver.cpp:245] Train net output #36: loss/loss15 = 7.02195e-05 (* 0.0454545 = 3.1918e-06 loss) | |
I0407 14:29:54.881162 32304 solver.cpp:245] Train net output #37: loss/loss16 = 6.54749e-05 (* 0.0454545 = 2.97613e-06 loss) | |
I0407 14:29:54.881176 32304 solver.cpp:245] Train net output #38: loss/loss17 = 6.8247e-05 (* 0.0454545 = 3.10214e-06 loss) | |
I0407 14:29:54.881207 32304 solver.cpp:245] Train net output #39: loss/loss18 = 7.04131e-05 (* 0.0454545 = 3.2006e-06 loss) | |
I0407 14:29:54.881223 32304 solver.cpp:245] Train net output #40: loss/loss19 = 7.14828e-05 (* 0.0454545 = 3.24922e-06 loss) | |
I0407 14:29:54.881237 32304 solver.cpp:245] Train net output #41: loss/loss20 = 6.89437e-05 (* 0.0454545 = 3.13381e-06 loss) | |
I0407 14:29:54.881250 32304 solver.cpp:245] Train net output #42: loss/loss21 = 6.93609e-05 (* 0.0454545 = 3.15277e-06 loss) | |
I0407 14:29:54.881264 32304 solver.cpp:245] Train net output #43: loss/loss22 = 6.35411e-05 (* 0.0454545 = 2.88823e-06 loss) | |
I0407 14:29:54.881276 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 14:29:54.881289 32304 solver.cpp:245] Train net output #45: total_confidence = 0.00183497 | |
I0407 14:29:54.881302 32304 sgd_solver.cpp:106] Iteration 52500, lr = 0.00895 | |
I0407 14:31:06.704205 32304 solver.cpp:229] Iteration 53000, loss = 0.872934 | |
I0407 14:31:06.704361 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.21875 | |
I0407 14:31:06.704382 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 14:31:06.704396 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0407 14:31:06.704407 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375 | |
I0407 14:31:06.704419 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.21875 | |
I0407 14:31:06.704432 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5 | |
I0407 14:31:06.704442 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0407 14:31:06.704454 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 14:31:06.704466 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0407 14:31:06.704478 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 14:31:06.704489 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 14:31:06.704501 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 14:31:06.704512 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 14:31:06.704524 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 14:31:06.704535 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 14:31:06.704546 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 14:31:06.704558 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 14:31:06.704569 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 14:31:06.704581 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 14:31:06.704592 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 14:31:06.704603 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 14:31:06.704615 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 14:31:06.704630 32304 solver.cpp:245] Train net output #22: loss/loss01 = 2.62545 (* 0.0454545 = 0.119338 loss) | |
I0407 14:31:06.704645 32304 solver.cpp:245] Train net output #23: loss/loss02 = 2.99151 (* 0.0454545 = 0.135978 loss) | |
I0407 14:31:06.704659 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.14224 (* 0.0454545 = 0.142829 loss) | |
I0407 14:31:06.704673 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.11065 (* 0.0454545 = 0.141393 loss) | |
I0407 14:31:06.704686 32304 solver.cpp:245] Train net output #26: loss/loss05 = 2.71512 (* 0.0454545 = 0.123415 loss) | |
I0407 14:31:06.704699 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.02415 (* 0.0454545 = 0.0920067 loss) | |
I0407 14:31:06.704713 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.46751 (* 0.0454545 = 0.0667051 loss) | |
I0407 14:31:06.704726 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.254038 (* 0.0454545 = 0.0115472 loss) | |
I0407 14:31:06.704741 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.196912 (* 0.0454545 = 0.00895057 loss) | |
I0407 14:31:06.704754 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.00553657 (* 0.0454545 = 0.000251662 loss) | |
I0407 14:31:06.704769 32304 solver.cpp:245] Train net output #32: loss/loss11 = 4.71829e-05 (* 0.0454545 = 2.14468e-06 loss) | |
I0407 14:31:06.704782 32304 solver.cpp:245] Train net output #33: loss/loss12 = 5.06204e-05 (* 0.0454545 = 2.30093e-06 loss) | |
I0407 14:31:06.704797 32304 solver.cpp:245] Train net output #34: loss/loss13 = 5.02745e-05 (* 0.0454545 = 2.2852e-06 loss) | |
I0407 14:31:06.704810 32304 solver.cpp:245] Train net output #35: loss/loss14 = 4.82391e-05 (* 0.0454545 = 2.19268e-06 loss) | |
I0407 14:31:06.704824 32304 solver.cpp:245] Train net output #36: loss/loss15 = 4.33488e-05 (* 0.0454545 = 1.9704e-06 loss) | |
I0407 14:31:06.704838 32304 solver.cpp:245] Train net output #37: loss/loss16 = 4.50259e-05 (* 0.0454545 = 2.04663e-06 loss) | |
I0407 14:31:06.704852 32304 solver.cpp:245] Train net output #38: loss/loss17 = 4.86836e-05 (* 0.0454545 = 2.21289e-06 loss) | |
I0407 14:31:06.704885 32304 solver.cpp:245] Train net output #39: loss/loss18 = 4.57693e-05 (* 0.0454545 = 2.08042e-06 loss) | |
I0407 14:31:06.704900 32304 solver.cpp:245] Train net output #40: loss/loss19 = 5.13942e-05 (* 0.0454545 = 2.3361e-06 loss) | |
I0407 14:31:06.704913 32304 solver.cpp:245] Train net output #41: loss/loss20 = 4.49249e-05 (* 0.0454545 = 2.04204e-06 loss) | |
I0407 14:31:06.704931 32304 solver.cpp:245] Train net output #42: loss/loss21 = 4.20557e-05 (* 0.0454545 = 1.91162e-06 loss) | |
I0407 14:31:06.704946 32304 solver.cpp:245] Train net output #43: loss/loss22 = 4.8404e-05 (* 0.0454545 = 2.20018e-06 loss) | |
I0407 14:31:06.704957 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 14:31:06.704969 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000316954 | |
I0407 14:31:06.704984 32304 sgd_solver.cpp:106] Iteration 53000, lr = 0.00894 | |
I0407 14:32:18.817621 32304 solver.cpp:229] Iteration 53500, loss = 0.873143 | |
I0407 14:32:18.817788 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.1875 | |
I0407 14:32:18.817809 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0407 14:32:18.817822 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 14:32:18.817834 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 14:32:18.817847 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.09375 | |
I0407 14:32:18.817858 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.21875 | |
I0407 14:32:18.817870 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.65625 | |
I0407 14:32:18.817883 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.78125 | |
I0407 14:32:18.817894 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 14:32:18.817905 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0407 14:32:18.817920 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 14:32:18.817932 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 14:32:18.817945 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 14:32:18.817956 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 14:32:18.817968 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 14:32:18.817980 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 14:32:18.817991 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 14:32:18.818002 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 14:32:18.818013 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 14:32:18.818025 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 14:32:18.818037 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 14:32:18.818048 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 14:32:18.818064 32304 solver.cpp:245] Train net output #22: loss/loss01 = 2.8972 (* 0.0454545 = 0.131691 loss) | |
I0407 14:32:18.818078 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.37873 (* 0.0454545 = 0.153579 loss) | |
I0407 14:32:18.818092 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.48603 (* 0.0454545 = 0.158456 loss) | |
I0407 14:32:18.818106 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.17825 (* 0.0454545 = 0.144466 loss) | |
I0407 14:32:18.818120 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.44662 (* 0.0454545 = 0.156664 loss) | |
I0407 14:32:18.818133 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.9331 (* 0.0454545 = 0.133323 loss) | |
I0407 14:32:18.818147 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.67786 (* 0.0454545 = 0.0762664 loss) | |
I0407 14:32:18.818161 32304 solver.cpp:245] Train net output #29: loss/loss08 = 1.15493 (* 0.0454545 = 0.0524968 loss) | |
I0407 14:32:18.818174 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.397822 (* 0.0454545 = 0.0180828 loss) | |
I0407 14:32:18.818188 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.173771 (* 0.0454545 = 0.00789866 loss) | |
I0407 14:32:18.818203 32304 solver.cpp:245] Train net output #32: loss/loss11 = 0.000178795 (* 0.0454545 = 8.12706e-06 loss) | |
I0407 14:32:18.818217 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.000186986 (* 0.0454545 = 8.49936e-06 loss) | |
I0407 14:32:18.818231 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.000192031 (* 0.0454545 = 8.7287e-06 loss) | |
I0407 14:32:18.818245 32304 solver.cpp:245] Train net output #35: loss/loss14 = 0.000169755 (* 0.0454545 = 7.71615e-06 loss) | |
I0407 14:32:18.818261 32304 solver.cpp:245] Train net output #36: loss/loss15 = 0.000161473 (* 0.0454545 = 7.33967e-06 loss) | |
I0407 14:32:18.818279 32304 solver.cpp:245] Train net output #37: loss/loss16 = 0.000166852 (* 0.0454545 = 7.58418e-06 loss) | |
I0407 14:32:18.818292 32304 solver.cpp:245] Train net output #38: loss/loss17 = 0.000194203 (* 0.0454545 = 8.82743e-06 loss) | |
I0407 14:32:18.818320 32304 solver.cpp:245] Train net output #39: loss/loss18 = 0.000160499 (* 0.0454545 = 7.29542e-06 loss) | |
I0407 14:32:18.818336 32304 solver.cpp:245] Train net output #40: loss/loss19 = 0.000183994 (* 0.0454545 = 8.36337e-06 loss) | |
I0407 14:32:18.818349 32304 solver.cpp:245] Train net output #41: loss/loss20 = 0.000171487 (* 0.0454545 = 7.79487e-06 loss) | |
I0407 14:32:18.818363 32304 solver.cpp:245] Train net output #42: loss/loss21 = 0.000167224 (* 0.0454545 = 7.60107e-06 loss) | |
I0407 14:32:18.818377 32304 solver.cpp:245] Train net output #43: loss/loss22 = 0.000156048 (* 0.0454545 = 7.0931e-06 loss) | |
I0407 14:32:18.818389 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 14:32:18.818402 32304 solver.cpp:245] Train net output #45: total_confidence = 3.05702e-06 | |
I0407 14:32:18.818416 32304 sgd_solver.cpp:106] Iteration 53500, lr = 0.00893 | |
I0407 14:33:31.012492 32304 solver.cpp:229] Iteration 54000, loss = 0.869842 | |
I0407 14:33:31.012632 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 14:33:31.012652 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 14:33:31.012666 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0407 14:33:31.012678 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0407 14:33:31.012691 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125 | |
I0407 14:33:31.012703 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125 | |
I0407 14:33:31.012714 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0407 14:33:31.012727 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 14:33:31.012738 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 14:33:31.012750 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 14:33:31.012761 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 14:33:31.012773 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 14:33:31.012784 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 14:33:31.012795 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 14:33:31.012809 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 14:33:31.012820 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 14:33:31.012831 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 14:33:31.012842 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 14:33:31.012855 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 14:33:31.012866 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 14:33:31.012876 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 14:33:31.012888 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 14:33:31.012904 32304 solver.cpp:245] Train net output #22: loss/loss01 = 2.81052 (* 0.0454545 = 0.127751 loss) | |
I0407 14:33:31.012922 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.23902 (* 0.0454545 = 0.147228 loss) | |
I0407 14:33:31.012936 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.02982 (* 0.0454545 = 0.137719 loss) | |
I0407 14:33:31.012950 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.08471 (* 0.0454545 = 0.140214 loss) | |
I0407 14:33:31.012964 32304 solver.cpp:245] Train net output #26: loss/loss05 = 2.8154 (* 0.0454545 = 0.127973 loss) | |
I0407 14:33:31.012977 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.94295 (* 0.0454545 = 0.13377 loss) | |
I0407 14:33:31.012990 32304 solver.cpp:245] Train net output #28: loss/loss07 = 0.911554 (* 0.0454545 = 0.0414343 loss) | |
I0407 14:33:31.013005 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.360241 (* 0.0454545 = 0.0163746 loss) | |
I0407 14:33:31.013018 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.0150945 (* 0.0454545 = 0.000686115 loss) | |
I0407 14:33:31.013032 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.00829908 (* 0.0454545 = 0.000377231 loss) | |
I0407 14:33:31.013046 32304 solver.cpp:245] Train net output #32: loss/loss11 = 8.13555e-05 (* 0.0454545 = 3.69798e-06 loss) | |
I0407 14:33:31.013061 32304 solver.cpp:245] Train net output #33: loss/loss12 = 8.29867e-05 (* 0.0454545 = 3.77212e-06 loss) | |
I0407 14:33:31.013074 32304 solver.cpp:245] Train net output #34: loss/loss13 = 8.08347e-05 (* 0.0454545 = 3.6743e-06 loss) | |
I0407 14:33:31.013088 32304 solver.cpp:245] Train net output #35: loss/loss14 = 7.16947e-05 (* 0.0454545 = 3.25885e-06 loss) | |
I0407 14:33:31.013101 32304 solver.cpp:245] Train net output #36: loss/loss15 = 8.10338e-05 (* 0.0454545 = 3.68336e-06 loss) | |
I0407 14:33:31.013115 32304 solver.cpp:245] Train net output #37: loss/loss16 = 7.33236e-05 (* 0.0454545 = 3.33289e-06 loss) | |
I0407 14:33:31.013129 32304 solver.cpp:245] Train net output #38: loss/loss17 = 8.23065e-05 (* 0.0454545 = 3.74121e-06 loss) | |
I0407 14:33:31.013160 32304 solver.cpp:245] Train net output #39: loss/loss18 = 7.94863e-05 (* 0.0454545 = 3.61301e-06 loss) | |
I0407 14:33:31.013175 32304 solver.cpp:245] Train net output #40: loss/loss19 = 8.2012e-05 (* 0.0454545 = 3.72782e-06 loss) | |
I0407 14:33:31.013190 32304 solver.cpp:245] Train net output #41: loss/loss20 = 7.17594e-05 (* 0.0454545 = 3.26179e-06 loss) | |
I0407 14:33:31.013203 32304 solver.cpp:245] Train net output #42: loss/loss21 = 7.16679e-05 (* 0.0454545 = 3.25763e-06 loss) | |
I0407 14:33:31.013217 32304 solver.cpp:245] Train net output #43: loss/loss22 = 7.35558e-05 (* 0.0454545 = 3.34345e-06 loss) | |
I0407 14:33:31.013228 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 14:33:31.013241 32304 solver.cpp:245] Train net output #45: total_confidence = 0.00117817 | |
I0407 14:33:31.013255 32304 sgd_solver.cpp:106] Iteration 54000, lr = 0.00892 | |
I0407 14:34:43.422291 32304 solver.cpp:229] Iteration 54500, loss = 0.870566 | |
I0407 14:34:43.422471 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.21875 | |
I0407 14:34:43.422492 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.15625 | |
I0407 14:34:43.422504 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0407 14:34:43.422516 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0407 14:34:43.422528 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.21875 | |
I0407 14:34:43.422540 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.21875 | |
I0407 14:34:43.422552 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.5 | |
I0407 14:34:43.422564 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0407 14:34:43.422575 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0407 14:34:43.422586 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 14:34:43.422598 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 14:34:43.422610 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 14:34:43.422621 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 14:34:43.422633 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 14:34:43.422644 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 14:34:43.422657 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 14:34:43.422668 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 14:34:43.422679 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 14:34:43.422690 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 14:34:43.422703 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 14:34:43.422713 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 14:34:43.422724 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 14:34:43.422740 32304 solver.cpp:245] Train net output #22: loss/loss01 = 2.68851 (* 0.0454545 = 0.122205 loss) | |
I0407 14:34:43.422755 32304 solver.cpp:245] Train net output #23: loss/loss02 = 2.97517 (* 0.0454545 = 0.135235 loss) | |
I0407 14:34:43.422768 32304 solver.cpp:245] Train net output #24: loss/loss03 = 2.82668 (* 0.0454545 = 0.128485 loss) | |
I0407 14:34:43.422782 32304 solver.cpp:245] Train net output #25: loss/loss04 = 2.99331 (* 0.0454545 = 0.136059 loss) | |
I0407 14:34:43.422796 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.05001 (* 0.0454545 = 0.138637 loss) | |
I0407 14:34:43.422809 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.31536 (* 0.0454545 = 0.105244 loss) | |
I0407 14:34:43.422823 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.92362 (* 0.0454545 = 0.0874372 loss) | |
I0407 14:34:43.422837 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.447919 (* 0.0454545 = 0.02036 loss) | |
I0407 14:34:43.422852 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.119094 (* 0.0454545 = 0.00541337 loss) | |
I0407 14:34:43.422865 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.0149981 (* 0.0454545 = 0.000681731 loss) | |
I0407 14:34:43.422879 32304 solver.cpp:245] Train net output #32: loss/loss11 = 6.01193e-05 (* 0.0454545 = 2.73269e-06 loss) | |
I0407 14:34:43.422894 32304 solver.cpp:245] Train net output #33: loss/loss12 = 6.46293e-05 (* 0.0454545 = 2.93769e-06 loss) | |
I0407 14:34:43.422907 32304 solver.cpp:245] Train net output #34: loss/loss13 = 6.28342e-05 (* 0.0454545 = 2.8561e-06 loss) | |
I0407 14:34:43.422924 32304 solver.cpp:245] Train net output #35: loss/loss14 = 6.22513e-05 (* 0.0454545 = 2.8296e-06 loss) | |
I0407 14:34:43.422940 32304 solver.cpp:245] Train net output #36: loss/loss15 = 6.15274e-05 (* 0.0454545 = 2.7967e-06 loss) | |
I0407 14:34:43.422952 32304 solver.cpp:245] Train net output #37: loss/loss16 = 5.69303e-05 (* 0.0454545 = 2.58774e-06 loss) | |
I0407 14:34:43.422966 32304 solver.cpp:245] Train net output #38: loss/loss17 = 5.52871e-05 (* 0.0454545 = 2.51305e-06 loss) | |
I0407 14:34:43.423007 32304 solver.cpp:245] Train net output #39: loss/loss18 = 5.96579e-05 (* 0.0454545 = 2.71172e-06 loss) | |
I0407 14:34:43.423023 32304 solver.cpp:245] Train net output #40: loss/loss19 = 5.91844e-05 (* 0.0454545 = 2.6902e-06 loss) | |
I0407 14:34:43.423038 32304 solver.cpp:245] Train net output #41: loss/loss20 = 5.49476e-05 (* 0.0454545 = 2.49762e-06 loss) | |
I0407 14:34:43.423050 32304 solver.cpp:245] Train net output #42: loss/loss21 = 5.92537e-05 (* 0.0454545 = 2.69335e-06 loss) | |
I0407 14:34:43.423064 32304 solver.cpp:245] Train net output #43: loss/loss22 = 5.4057e-05 (* 0.0454545 = 2.45714e-06 loss) | |
I0407 14:34:43.423084 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 14:34:43.423095 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000298022 | |
I0407 14:34:43.423110 32304 sgd_solver.cpp:106] Iteration 54500, lr = 0.00891 | |
I0407 14:35:55.451560 32304 solver.cpp:338] Iteration 55000, Testing net (#0) | |
I0407 14:36:03.511914 32304 solver.cpp:393] Test loss: 0.820077 | |
I0407 14:36:03.511979 32304 solver.cpp:406] Test net output #0: loss/accuracy01 = 0.105 | |
I0407 14:36:03.511996 32304 solver.cpp:406] Test net output #1: loss/accuracy02 = 0.093 | |
I0407 14:36:03.512009 32304 solver.cpp:406] Test net output #2: loss/accuracy03 = 0.089 | |
I0407 14:36:03.512022 32304 solver.cpp:406] Test net output #3: loss/accuracy04 = 0.131 | |
I0407 14:36:03.512033 32304 solver.cpp:406] Test net output #4: loss/accuracy05 = 0.254 | |
I0407 14:36:03.512044 32304 solver.cpp:406] Test net output #5: loss/accuracy06 = 0.498 | |
I0407 14:36:03.512056 32304 solver.cpp:406] Test net output #6: loss/accuracy07 = 0.894 | |
I0407 14:36:03.512068 32304 solver.cpp:406] Test net output #7: loss/accuracy08 = 0.97 | |
I0407 14:36:03.512079 32304 solver.cpp:406] Test net output #8: loss/accuracy09 = 0.995 | |
I0407 14:36:03.512090 32304 solver.cpp:406] Test net output #9: loss/accuracy10 = 0.998 | |
I0407 14:36:03.512102 32304 solver.cpp:406] Test net output #10: loss/accuracy11 = 1 | |
I0407 14:36:03.512114 32304 solver.cpp:406] Test net output #11: loss/accuracy12 = 1 | |
I0407 14:36:03.512125 32304 solver.cpp:406] Test net output #12: loss/accuracy13 = 1 | |
I0407 14:36:03.512136 32304 solver.cpp:406] Test net output #13: loss/accuracy14 = 1 | |
I0407 14:36:03.512148 32304 solver.cpp:406] Test net output #14: loss/accuracy15 = 1 | |
I0407 14:36:03.512159 32304 solver.cpp:406] Test net output #15: loss/accuracy16 = 1 | |
I0407 14:36:03.512171 32304 solver.cpp:406] Test net output #16: loss/accuracy17 = 1 | |
I0407 14:36:03.512181 32304 solver.cpp:406] Test net output #17: loss/accuracy18 = 1 | |
I0407 14:36:03.512192 32304 solver.cpp:406] Test net output #18: loss/accuracy19 = 1 | |
I0407 14:36:03.512203 32304 solver.cpp:406] Test net output #19: loss/accuracy20 = 1 | |
I0407 14:36:03.512217 32304 solver.cpp:406] Test net output #20: loss/accuracy21 = 1 | |
I0407 14:36:03.512238 32304 solver.cpp:406] Test net output #21: loss/accuracy22 = 1 | |
I0407 14:36:03.512265 32304 solver.cpp:406] Test net output #22: loss/loss01 = 3.30286 (* 0.0454545 = 0.15013 loss) | |
I0407 14:36:03.512282 32304 solver.cpp:406] Test net output #23: loss/loss02 = 3.1304 (* 0.0454545 = 0.142291 loss) | |
I0407 14:36:03.512296 32304 solver.cpp:406] Test net output #24: loss/loss03 = 3.13818 (* 0.0454545 = 0.142644 loss) | |
I0407 14:36:03.512310 32304 solver.cpp:406] Test net output #25: loss/loss04 = 3.04332 (* 0.0454545 = 0.138333 loss) | |
I0407 14:36:03.512323 32304 solver.cpp:406] Test net output #26: loss/loss05 = 2.78338 (* 0.0454545 = 0.126517 loss) | |
I0407 14:36:03.512337 32304 solver.cpp:406] Test net output #27: loss/loss06 = 1.84542 (* 0.0454545 = 0.0838829 loss) | |
I0407 14:36:03.512351 32304 solver.cpp:406] Test net output #28: loss/loss07 = 0.511843 (* 0.0454545 = 0.0232656 loss) | |
I0407 14:36:03.512365 32304 solver.cpp:406] Test net output #29: loss/loss08 = 0.212933 (* 0.0454545 = 0.00967875 loss) | |
I0407 14:36:03.512378 32304 solver.cpp:406] Test net output #30: loss/loss09 = 0.0504156 (* 0.0454545 = 0.00229162 loss) | |
I0407 14:36:03.512392 32304 solver.cpp:406] Test net output #31: loss/loss10 = 0.0216209 (* 0.0454545 = 0.000982767 loss) | |
I0407 14:36:03.512406 32304 solver.cpp:406] Test net output #32: loss/loss11 = 0.000117181 (* 0.0454545 = 5.32641e-06 loss) | |
I0407 14:36:03.512420 32304 solver.cpp:406] Test net output #33: loss/loss12 = 0.00011534 (* 0.0454545 = 5.24271e-06 loss) | |
I0407 14:36:03.512434 32304 solver.cpp:406] Test net output #34: loss/loss13 = 0.000108936 (* 0.0454545 = 4.95162e-06 loss) | |
I0407 14:36:03.512449 32304 solver.cpp:406] Test net output #35: loss/loss14 = 0.000107941 (* 0.0454545 = 4.90641e-06 loss) | |
I0407 14:36:03.512462 32304 solver.cpp:406] Test net output #36: loss/loss15 = 0.000106558 (* 0.0454545 = 4.84354e-06 loss) | |
I0407 14:36:03.512475 32304 solver.cpp:406] Test net output #37: loss/loss16 = 0.000108713 (* 0.0454545 = 4.94151e-06 loss) | |
I0407 14:36:03.512490 32304 solver.cpp:406] Test net output #38: loss/loss17 = 0.000109896 (* 0.0454545 = 4.99527e-06 loss) | |
I0407 14:36:03.512550 32304 solver.cpp:406] Test net output #39: loss/loss18 = 0.000109181 (* 0.0454545 = 4.96278e-06 loss) | |
I0407 14:36:03.512572 32304 solver.cpp:406] Test net output #40: loss/loss19 = 0.000111373 (* 0.0454545 = 5.06243e-06 loss) | |
I0407 14:36:03.512586 32304 solver.cpp:406] Test net output #41: loss/loss20 = 0.000108403 (* 0.0454545 = 4.9274e-06 loss) | |
I0407 14:36:03.512600 32304 solver.cpp:406] Test net output #42: loss/loss21 = 0.000106078 (* 0.0454545 = 4.82174e-06 loss) | |
I0407 14:36:03.512614 32304 solver.cpp:406] Test net output #43: loss/loss22 = 0.000103334 (* 0.0454545 = 4.697e-06 loss) | |
I0407 14:36:03.512626 32304 solver.cpp:406] Test net output #44: total_accuracy = 0.002 | |
I0407 14:36:03.512637 32304 solver.cpp:406] Test net output #45: total_confidence = 0.000277449 | |
I0407 14:36:03.547446 32304 solver.cpp:229] Iteration 55000, loss = 0.86821 | |
I0407 14:36:03.547507 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.25 | |
I0407 14:36:03.547523 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0407 14:36:03.547535 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 14:36:03.547549 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125 | |
I0407 14:36:03.547560 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125 | |
I0407 14:36:03.547572 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0407 14:36:03.547585 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.65625 | |
I0407 14:36:03.547596 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.8125 | |
I0407 14:36:03.547607 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 14:36:03.547619 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0407 14:36:03.547631 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 14:36:03.547642 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 14:36:03.547654 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 14:36:03.547667 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 14:36:03.547677 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 14:36:03.547689 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 14:36:03.547700 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 14:36:03.547711 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 14:36:03.547724 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 14:36:03.547734 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 14:36:03.547745 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 14:36:03.547757 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 14:36:03.547772 32304 solver.cpp:245] Train net output #22: loss/loss01 = 2.78559 (* 0.0454545 = 0.126618 loss) | |
I0407 14:36:03.547787 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.31862 (* 0.0454545 = 0.150846 loss) | |
I0407 14:36:03.547801 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.17065 (* 0.0454545 = 0.14412 loss) | |
I0407 14:36:03.547814 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.33761 (* 0.0454545 = 0.15171 loss) | |
I0407 14:36:03.547828 32304 solver.cpp:245] Train net output #26: loss/loss05 = 2.82013 (* 0.0454545 = 0.128188 loss) | |
I0407 14:36:03.547842 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.52697 (* 0.0454545 = 0.114862 loss) | |
I0407 14:36:03.547855 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.49698 (* 0.0454545 = 0.0680447 loss) | |
I0407 14:36:03.547869 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.812603 (* 0.0454545 = 0.0369365 loss) | |
I0407 14:36:03.547883 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.273748 (* 0.0454545 = 0.0124431 loss) | |
I0407 14:36:03.547922 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.294496 (* 0.0454545 = 0.0133862 loss) | |
I0407 14:36:03.547937 32304 solver.cpp:245] Train net output #32: loss/loss11 = 7.44618e-05 (* 0.0454545 = 3.38463e-06 loss) | |
I0407 14:36:03.547952 32304 solver.cpp:245] Train net output #33: loss/loss12 = 8.41659e-05 (* 0.0454545 = 3.82572e-06 loss) | |
I0407 14:36:03.547966 32304 solver.cpp:245] Train net output #34: loss/loss13 = 7.13449e-05 (* 0.0454545 = 3.24295e-06 loss) | |
I0407 14:36:03.547979 32304 solver.cpp:245] Train net output #35: loss/loss14 = 6.91534e-05 (* 0.0454545 = 3.14334e-06 loss) | |
I0407 14:36:03.547993 32304 solver.cpp:245] Train net output #36: loss/loss15 = 7.44601e-05 (* 0.0454545 = 3.38455e-06 loss) | |
I0407 14:36:03.548007 32304 solver.cpp:245] Train net output #37: loss/loss16 = 7.04438e-05 (* 0.0454545 = 3.20199e-06 loss) | |
I0407 14:36:03.548022 32304 solver.cpp:245] Train net output #38: loss/loss17 = 6.90888e-05 (* 0.0454545 = 3.1404e-06 loss) | |
I0407 14:36:03.548035 32304 solver.cpp:245] Train net output #39: loss/loss18 = 7.56304e-05 (* 0.0454545 = 3.43775e-06 loss) | |
I0407 14:36:03.548049 32304 solver.cpp:245] Train net output #40: loss/loss19 = 7.61199e-05 (* 0.0454545 = 3.46e-06 loss) | |
I0407 14:36:03.548069 32304 solver.cpp:245] Train net output #41: loss/loss20 = 7.149e-05 (* 0.0454545 = 3.24954e-06 loss) | |
I0407 14:36:03.548102 32304 solver.cpp:245] Train net output #42: loss/loss21 = 6.90588e-05 (* 0.0454545 = 3.13904e-06 loss) | |
I0407 14:36:03.548120 32304 solver.cpp:245] Train net output #43: loss/loss22 = 6.94026e-05 (* 0.0454545 = 3.15466e-06 loss) | |
I0407 14:36:03.548132 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 14:36:03.548144 32304 solver.cpp:245] Train net output #45: total_confidence = 0.00029282 | |
I0407 14:36:03.548158 32304 sgd_solver.cpp:106] Iteration 55000, lr = 0.0089 | |
I0407 14:37:15.540436 32304 solver.cpp:229] Iteration 55500, loss = 0.870484 | |
I0407 14:37:15.540601 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.1875 | |
I0407 14:37:15.540622 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125 | |
I0407 14:37:15.540637 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.15625 | |
I0407 14:37:15.540648 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0407 14:37:15.540660 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0407 14:37:15.540673 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625 | |
I0407 14:37:15.540684 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.78125 | |
I0407 14:37:15.540696 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 14:37:15.540709 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 14:37:15.540720 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0407 14:37:15.540731 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 14:37:15.540743 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 14:37:15.540755 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 14:37:15.540766 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 14:37:15.540777 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 14:37:15.540789 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 14:37:15.540802 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 14:37:15.540812 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 14:37:15.540824 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 14:37:15.540835 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 14:37:15.540846 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 14:37:15.540858 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 14:37:15.540874 32304 solver.cpp:245] Train net output #22: loss/loss01 = 2.62834 (* 0.0454545 = 0.11947 loss) | |
I0407 14:37:15.540889 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.11588 (* 0.0454545 = 0.141631 loss) | |
I0407 14:37:15.540902 32304 solver.cpp:245] Train net output #24: loss/loss03 = 2.89218 (* 0.0454545 = 0.131463 loss) | |
I0407 14:37:15.540915 32304 solver.cpp:245] Train net output #25: loss/loss04 = 2.93634 (* 0.0454545 = 0.13347 loss) | |
I0407 14:37:15.540932 32304 solver.cpp:245] Train net output #26: loss/loss05 = 2.78527 (* 0.0454545 = 0.126603 loss) | |
I0407 14:37:15.540946 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.41898 (* 0.0454545 = 0.109954 loss) | |
I0407 14:37:15.540961 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.10937 (* 0.0454545 = 0.0504261 loss) | |
I0407 14:37:15.540973 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.28788 (* 0.0454545 = 0.0130854 loss) | |
I0407 14:37:15.540987 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.34145 (* 0.0454545 = 0.0155205 loss) | |
I0407 14:37:15.541002 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.226643 (* 0.0454545 = 0.0103019 loss) | |
I0407 14:37:15.541015 32304 solver.cpp:245] Train net output #32: loss/loss11 = 7.01353e-05 (* 0.0454545 = 3.18797e-06 loss) | |
I0407 14:37:15.541029 32304 solver.cpp:245] Train net output #33: loss/loss12 = 6.65353e-05 (* 0.0454545 = 3.02433e-06 loss) | |
I0407 14:37:15.541043 32304 solver.cpp:245] Train net output #34: loss/loss13 = 6.37765e-05 (* 0.0454545 = 2.89893e-06 loss) | |
I0407 14:37:15.541057 32304 solver.cpp:245] Train net output #35: loss/loss14 = 6.23401e-05 (* 0.0454545 = 2.83364e-06 loss) | |
I0407 14:37:15.541082 32304 solver.cpp:245] Train net output #36: loss/loss15 = 6.50324e-05 (* 0.0454545 = 2.95602e-06 loss) | |
I0407 14:37:15.541110 32304 solver.cpp:245] Train net output #37: loss/loss16 = 6.11142e-05 (* 0.0454545 = 2.77792e-06 loss) | |
I0407 14:37:15.541138 32304 solver.cpp:245] Train net output #38: loss/loss17 = 6.65574e-05 (* 0.0454545 = 3.02534e-06 loss) | |
I0407 14:37:15.541177 32304 solver.cpp:245] Train net output #39: loss/loss18 = 6.70663e-05 (* 0.0454545 = 3.04847e-06 loss) | |
I0407 14:37:15.541194 32304 solver.cpp:245] Train net output #40: loss/loss19 = 6.4898e-05 (* 0.0454545 = 2.94991e-06 loss) | |
I0407 14:37:15.541208 32304 solver.cpp:245] Train net output #41: loss/loss20 = 6.30017e-05 (* 0.0454545 = 2.86371e-06 loss) | |
I0407 14:37:15.541223 32304 solver.cpp:245] Train net output #42: loss/loss21 = 6.19918e-05 (* 0.0454545 = 2.81781e-06 loss) | |
I0407 14:37:15.541247 32304 solver.cpp:245] Train net output #43: loss/loss22 = 5.92895e-05 (* 0.0454545 = 2.69498e-06 loss) | |
I0407 14:37:15.541270 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 14:37:15.541285 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000676997 | |
I0407 14:37:15.541299 32304 sgd_solver.cpp:106] Iteration 55500, lr = 0.00889 | |
I0407 14:38:27.762050 32304 solver.cpp:229] Iteration 56000, loss = 0.872649 | |
I0407 14:38:27.762169 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.25 | |
I0407 14:38:27.762189 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0407 14:38:27.762202 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0407 14:38:27.762215 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.25 | |
I0407 14:38:27.762228 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.46875 | |
I0407 14:38:27.762238 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.71875 | |
I0407 14:38:27.762250 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.90625 | |
I0407 14:38:27.762262 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.96875 | |
I0407 14:38:27.762274 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0407 14:38:27.762286 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 14:38:27.762297 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 14:38:27.762310 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 14:38:27.762320 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 14:38:27.762331 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 14:38:27.762343 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 14:38:27.762354 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 14:38:27.762367 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 14:38:27.762377 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 14:38:27.762388 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 14:38:27.762400 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 14:38:27.762411 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 14:38:27.762423 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 14:38:27.762439 32304 solver.cpp:245] Train net output #22: loss/loss01 = 2.55513 (* 0.0454545 = 0.116142 loss) | |
I0407 14:38:27.762452 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.038 (* 0.0454545 = 0.138091 loss) | |
I0407 14:38:27.762466 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.22268 (* 0.0454545 = 0.146486 loss) | |
I0407 14:38:27.762480 32304 solver.cpp:245] Train net output #25: loss/loss04 = 2.78353 (* 0.0454545 = 0.126524 loss) | |
I0407 14:38:27.762495 32304 solver.cpp:245] Train net output #26: loss/loss05 = 1.8828 (* 0.0454545 = 0.085582 loss) | |
I0407 14:38:27.762508 32304 solver.cpp:245] Train net output #27: loss/loss06 = 1.45229 (* 0.0454545 = 0.0660131 loss) | |
I0407 14:38:27.762521 32304 solver.cpp:245] Train net output #28: loss/loss07 = 0.468837 (* 0.0454545 = 0.0213108 loss) | |
I0407 14:38:27.762537 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.167093 (* 0.0454545 = 0.00759515 loss) | |
I0407 14:38:27.762550 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.128674 (* 0.0454545 = 0.00584882 loss) | |
I0407 14:38:27.762564 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.025258 (* 0.0454545 = 0.00114809 loss) | |
I0407 14:38:27.762578 32304 solver.cpp:245] Train net output #32: loss/loss11 = 0.000102139 (* 0.0454545 = 4.64268e-06 loss) | |
I0407 14:38:27.762593 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.000105878 (* 0.0454545 = 4.81263e-06 loss) | |
I0407 14:38:27.762606 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.000108798 (* 0.0454545 = 4.94536e-06 loss) | |
I0407 14:38:27.762619 32304 solver.cpp:245] Train net output #35: loss/loss14 = 0.000105918 (* 0.0454545 = 4.81447e-06 loss) | |
I0407 14:38:27.762634 32304 solver.cpp:245] Train net output #36: loss/loss15 = 0.00010257 (* 0.0454545 = 4.66227e-06 loss) | |
I0407 14:38:27.762647 32304 solver.cpp:245] Train net output #37: loss/loss16 = 9.86137e-05 (* 0.0454545 = 4.48244e-06 loss) | |
I0407 14:38:27.762661 32304 solver.cpp:245] Train net output #38: loss/loss17 = 0.000109122 (* 0.0454545 = 4.96011e-06 loss) | |
I0407 14:38:27.762692 32304 solver.cpp:245] Train net output #39: loss/loss18 = 0.000118975 (* 0.0454545 = 5.40794e-06 loss) | |
I0407 14:38:27.762707 32304 solver.cpp:245] Train net output #40: loss/loss19 = 0.000113182 (* 0.0454545 = 5.14465e-06 loss) | |
I0407 14:38:27.762722 32304 solver.cpp:245] Train net output #41: loss/loss20 = 0.000107909 (* 0.0454545 = 4.90497e-06 loss) | |
I0407 14:38:27.762735 32304 solver.cpp:245] Train net output #42: loss/loss21 = 0.000100483 (* 0.0454545 = 4.56742e-06 loss) | |
I0407 14:38:27.762749 32304 solver.cpp:245] Train net output #43: loss/loss22 = 0.000105751 (* 0.0454545 = 4.80684e-06 loss) | |
I0407 14:38:27.762760 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 14:38:27.762773 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000426408 | |
I0407 14:38:27.762787 32304 sgd_solver.cpp:106] Iteration 56000, lr = 0.00888 | |
I0407 14:39:40.254062 32304 solver.cpp:229] Iteration 56500, loss = 0.868728 | |
I0407 14:39:40.254240 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.21875 | |
I0407 14:39:40.254259 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125 | |
I0407 14:39:40.254273 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0407 14:39:40.254286 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125 | |
I0407 14:39:40.254297 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0407 14:39:40.254309 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625 | |
I0407 14:39:40.254322 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.78125 | |
I0407 14:39:40.254333 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0407 14:39:40.254344 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0407 14:39:40.254356 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 14:39:40.254369 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 14:39:40.254379 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 14:39:40.254391 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 14:39:40.254402 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 14:39:40.254415 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 14:39:40.254426 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 14:39:40.254437 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 14:39:40.254448 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 14:39:40.254459 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 14:39:40.254470 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 14:39:40.254482 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 14:39:40.254493 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 14:39:40.254509 32304 solver.cpp:245] Train net output #22: loss/loss01 = 2.83481 (* 0.0454545 = 0.128855 loss) | |
I0407 14:39:40.254524 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.2823 (* 0.0454545 = 0.149196 loss) | |
I0407 14:39:40.254539 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.53712 (* 0.0454545 = 0.160778 loss) | |
I0407 14:39:40.254551 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.543 (* 0.0454545 = 0.161045 loss) | |
I0407 14:39:40.254565 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.14797 (* 0.0454545 = 0.14309 loss) | |
I0407 14:39:40.254580 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.16947 (* 0.0454545 = 0.0986124 loss) | |
I0407 14:39:40.254593 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.18126 (* 0.0454545 = 0.0536938 loss) | |
I0407 14:39:40.254606 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.746982 (* 0.0454545 = 0.0339537 loss) | |
I0407 14:39:40.254621 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.226147 (* 0.0454545 = 0.0102794 loss) | |
I0407 14:39:40.254634 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.0197405 (* 0.0454545 = 0.000897296 loss) | |
I0407 14:39:40.254649 32304 solver.cpp:245] Train net output #32: loss/loss11 = 6.38945e-05 (* 0.0454545 = 2.9043e-06 loss) | |
I0407 14:39:40.254675 32304 solver.cpp:245] Train net output #33: loss/loss12 = 6.63709e-05 (* 0.0454545 = 3.01686e-06 loss) | |
I0407 14:39:40.254703 32304 solver.cpp:245] Train net output #34: loss/loss13 = 6.88365e-05 (* 0.0454545 = 3.12893e-06 loss) | |
I0407 14:39:40.254719 32304 solver.cpp:245] Train net output #35: loss/loss14 = 6.48173e-05 (* 0.0454545 = 2.94624e-06 loss) | |
I0407 14:39:40.254732 32304 solver.cpp:245] Train net output #36: loss/loss15 = 6.14858e-05 (* 0.0454545 = 2.79481e-06 loss) | |
I0407 14:39:40.254747 32304 solver.cpp:245] Train net output #37: loss/loss16 = 6.5138e-05 (* 0.0454545 = 2.96082e-06 loss) | |
I0407 14:39:40.254779 32304 solver.cpp:245] Train net output #38: loss/loss17 = 6.57285e-05 (* 0.0454545 = 2.98766e-06 loss) | |
I0407 14:39:40.254817 32304 solver.cpp:245] Train net output #39: loss/loss18 = 6.41483e-05 (* 0.0454545 = 2.91583e-06 loss) | |
I0407 14:39:40.254837 32304 solver.cpp:245] Train net output #40: loss/loss19 = 6.61793e-05 (* 0.0454545 = 3.00815e-06 loss) | |
I0407 14:39:40.254851 32304 solver.cpp:245] Train net output #41: loss/loss20 = 6.20138e-05 (* 0.0454545 = 2.81881e-06 loss) | |
I0407 14:39:40.254865 32304 solver.cpp:245] Train net output #42: loss/loss21 = 6.34398e-05 (* 0.0454545 = 2.88363e-06 loss) | |
I0407 14:39:40.254878 32304 solver.cpp:245] Train net output #43: loss/loss22 = 6.19352e-05 (* 0.0454545 = 2.81524e-06 loss) | |
I0407 14:39:40.254897 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 14:39:40.254909 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000245665 | |
I0407 14:39:40.254927 32304 sgd_solver.cpp:106] Iteration 56500, lr = 0.00887 | |
I0407 14:40:53.671731 32304 solver.cpp:229] Iteration 57000, loss = 0.868981 | |
I0407 14:40:53.671898 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0407 14:40:53.671921 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0407 14:40:53.671936 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0407 14:40:53.671947 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875 | |
I0407 14:40:53.671959 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125 | |
I0407 14:40:53.671972 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5 | |
I0407 14:40:53.671983 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.84375 | |
I0407 14:40:53.671994 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 14:40:53.672006 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0407 14:40:53.672019 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 14:40:53.672030 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 14:40:53.672042 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 14:40:53.672054 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 14:40:53.672065 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 14:40:53.672077 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 14:40:53.672089 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 14:40:53.672101 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 14:40:53.672112 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 14:40:53.672123 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 14:40:53.672134 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 14:40:53.672145 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 14:40:53.672157 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 14:40:53.672173 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.08706 (* 0.0454545 = 0.140321 loss) | |
I0407 14:40:53.672186 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.16958 (* 0.0454545 = 0.144072 loss) | |
I0407 14:40:53.672204 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.1895 (* 0.0454545 = 0.144977 loss) | |
I0407 14:40:53.672217 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.02073 (* 0.0454545 = 0.137306 loss) | |
I0407 14:40:53.672231 32304 solver.cpp:245] Train net output #26: loss/loss05 = 2.79223 (* 0.0454545 = 0.126919 loss) | |
I0407 14:40:53.672245 32304 solver.cpp:245] Train net output #27: loss/loss06 = 1.91505 (* 0.0454545 = 0.0870478 loss) | |
I0407 14:40:53.672260 32304 solver.cpp:245] Train net output #28: loss/loss07 = 0.768833 (* 0.0454545 = 0.034947 loss) | |
I0407 14:40:53.672272 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.242766 (* 0.0454545 = 0.0110348 loss) | |
I0407 14:40:53.672287 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.139249 (* 0.0454545 = 0.00632948 loss) | |
I0407 14:40:53.672302 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.00707093 (* 0.0454545 = 0.000321406 loss) | |
I0407 14:40:53.672317 32304 solver.cpp:245] Train net output #32: loss/loss11 = 0.000135186 (* 0.0454545 = 6.14484e-06 loss) | |
I0407 14:40:53.672330 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.000129401 (* 0.0454545 = 5.88186e-06 loss) | |
I0407 14:40:53.672343 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.000132245 (* 0.0454545 = 6.01113e-06 loss) | |
I0407 14:40:53.672358 32304 solver.cpp:245] Train net output #35: loss/loss14 = 0.00012644 (* 0.0454545 = 5.74729e-06 loss) | |
I0407 14:40:53.672372 32304 solver.cpp:245] Train net output #36: loss/loss15 = 0.000127369 (* 0.0454545 = 5.7895e-06 loss) | |
I0407 14:40:53.672386 32304 solver.cpp:245] Train net output #37: loss/loss16 = 0.000135118 (* 0.0454545 = 6.14173e-06 loss) | |
I0407 14:40:53.672400 32304 solver.cpp:245] Train net output #38: loss/loss17 = 0.000147378 (* 0.0454545 = 6.69899e-06 loss) | |
I0407 14:40:53.672430 32304 solver.cpp:245] Train net output #39: loss/loss18 = 0.000134168 (* 0.0454545 = 6.09855e-06 loss) | |
I0407 14:40:53.672444 32304 solver.cpp:245] Train net output #40: loss/loss19 = 0.000148461 (* 0.0454545 = 6.74825e-06 loss) | |
I0407 14:40:53.672458 32304 solver.cpp:245] Train net output #41: loss/loss20 = 0.000137691 (* 0.0454545 = 6.25867e-06 loss) | |
I0407 14:40:53.672472 32304 solver.cpp:245] Train net output #42: loss/loss21 = 0.000129994 (* 0.0454545 = 5.90884e-06 loss) | |
I0407 14:40:53.672485 32304 solver.cpp:245] Train net output #43: loss/loss22 = 0.000129944 (* 0.0454545 = 5.90654e-06 loss) | |
I0407 14:40:53.672497 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 14:40:53.672508 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000414799 | |
I0407 14:40:53.672523 32304 sgd_solver.cpp:106] Iteration 57000, lr = 0.00886 | |
I0407 14:42:06.364665 32304 solver.cpp:229] Iteration 57500, loss = 0.864472 | |
I0407 14:42:06.364864 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.25 | |
I0407 14:42:06.364883 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.15625 | |
I0407 14:42:06.364897 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.15625 | |
I0407 14:42:06.364909 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625 | |
I0407 14:42:06.364922 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.40625 | |
I0407 14:42:06.364933 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0407 14:42:06.364945 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0407 14:42:06.364956 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0407 14:42:06.364969 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0407 14:42:06.364980 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0407 14:42:06.364994 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 14:42:06.365005 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 14:42:06.365016 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 14:42:06.365028 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 14:42:06.365039 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 14:42:06.365051 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 14:42:06.365062 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 14:42:06.365077 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 14:42:06.365088 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 14:42:06.365100 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 14:42:06.365111 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 14:42:06.365123 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 14:42:06.365142 32304 solver.cpp:245] Train net output #22: loss/loss01 = 2.36931 (* 0.0454545 = 0.107696 loss) | |
I0407 14:42:06.365159 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.01448 (* 0.0454545 = 0.137022 loss) | |
I0407 14:42:06.365172 32304 solver.cpp:245] Train net output #24: loss/loss03 = 2.91967 (* 0.0454545 = 0.132712 loss) | |
I0407 14:42:06.365186 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.1787 (* 0.0454545 = 0.144486 loss) | |
I0407 14:42:06.365200 32304 solver.cpp:245] Train net output #26: loss/loss05 = 2.26955 (* 0.0454545 = 0.103161 loss) | |
I0407 14:42:06.365213 32304 solver.cpp:245] Train net output #27: loss/loss06 = 1.98659 (* 0.0454545 = 0.0902994 loss) | |
I0407 14:42:06.365227 32304 solver.cpp:245] Train net output #28: loss/loss07 = 0.736453 (* 0.0454545 = 0.0334751 loss) | |
I0407 14:42:06.365242 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.397465 (* 0.0454545 = 0.0180666 loss) | |
I0407 14:42:06.365255 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.111231 (* 0.0454545 = 0.00505597 loss) | |
I0407 14:42:06.365269 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.183123 (* 0.0454545 = 0.00832378 loss) | |
I0407 14:42:06.365284 32304 solver.cpp:245] Train net output #32: loss/loss11 = 0.000212441 (* 0.0454545 = 9.65642e-06 loss) | |
I0407 14:42:06.365298 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.000207651 (* 0.0454545 = 9.43868e-06 loss) | |
I0407 14:42:06.365313 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.000208501 (* 0.0454545 = 9.47731e-06 loss) | |
I0407 14:42:06.365326 32304 solver.cpp:245] Train net output #35: loss/loss14 = 0.000216421 (* 0.0454545 = 9.8373e-06 loss) | |
I0407 14:42:06.365340 32304 solver.cpp:245] Train net output #36: loss/loss15 = 0.00021295 (* 0.0454545 = 9.67956e-06 loss) | |
I0407 14:42:06.365355 32304 solver.cpp:245] Train net output #37: loss/loss16 = 0.000190536 (* 0.0454545 = 8.66075e-06 loss) | |
I0407 14:42:06.365368 32304 solver.cpp:245] Train net output #38: loss/loss17 = 0.000204367 (* 0.0454545 = 9.28942e-06 loss) | |
I0407 14:42:06.365399 32304 solver.cpp:245] Train net output #39: loss/loss18 = 0.000218454 (* 0.0454545 = 9.92974e-06 loss) | |
I0407 14:42:06.365414 32304 solver.cpp:245] Train net output #40: loss/loss19 = 0.000197334 (* 0.0454545 = 8.96971e-06 loss) | |
I0407 14:42:06.365428 32304 solver.cpp:245] Train net output #41: loss/loss20 = 0.000210242 (* 0.0454545 = 9.55645e-06 loss) | |
I0407 14:42:06.365442 32304 solver.cpp:245] Train net output #42: loss/loss21 = 0.000194665 (* 0.0454545 = 8.84841e-06 loss) | |
I0407 14:42:06.365456 32304 solver.cpp:245] Train net output #43: loss/loss22 = 0.000207563 (* 0.0454545 = 9.43467e-06 loss) | |
I0407 14:42:06.365468 32304 solver.cpp:245] Train net output #44: total_accuracy = 0.03125 | |
I0407 14:42:06.365479 32304 solver.cpp:245] Train net output #45: total_confidence = 0.0013992 | |
I0407 14:42:06.365494 32304 sgd_solver.cpp:106] Iteration 57500, lr = 0.00885 | |
I0407 14:43:19.491720 32304 solver.cpp:229] Iteration 58000, loss = 0.866649 | |
I0407 14:43:19.491869 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0407 14:43:19.491890 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0407 14:43:19.491904 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 14:43:19.491915 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375 | |
I0407 14:43:19.491931 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.15625 | |
I0407 14:43:19.491945 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375 | |
I0407 14:43:19.491955 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0407 14:43:19.491967 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.75 | |
I0407 14:43:19.491979 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.875 | |
I0407 14:43:19.491991 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0407 14:43:19.492002 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 14:43:19.492014 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 14:43:19.492025 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 14:43:19.492038 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 14:43:19.492049 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 14:43:19.492060 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 14:43:19.492071 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 14:43:19.492084 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 14:43:19.492094 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 14:43:19.492105 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 14:43:19.492116 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 14:43:19.492128 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 14:43:19.492156 32304 solver.cpp:245] Train net output #22: loss/loss01 = 2.94855 (* 0.0454545 = 0.134025 loss) | |
I0407 14:43:19.492187 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.28226 (* 0.0454545 = 0.149194 loss) | |
I0407 14:43:19.492204 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.24509 (* 0.0454545 = 0.147504 loss) | |
I0407 14:43:19.492218 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.24801 (* 0.0454545 = 0.147637 loss) | |
I0407 14:43:19.492233 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.0413 (* 0.0454545 = 0.138241 loss) | |
I0407 14:43:19.492246 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.55127 (* 0.0454545 = 0.115967 loss) | |
I0407 14:43:19.492259 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.27761 (* 0.0454545 = 0.0580732 loss) | |
I0407 14:43:19.492274 32304 solver.cpp:245] Train net output #29: loss/loss08 = 1.21122 (* 0.0454545 = 0.0550553 loss) | |
I0407 14:43:19.492287 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.66946 (* 0.0454545 = 0.03043 loss) | |
I0407 14:43:19.492300 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.128506 (* 0.0454545 = 0.00584117 loss) | |
I0407 14:43:19.492316 32304 solver.cpp:245] Train net output #32: loss/loss11 = 3.19517e-05 (* 0.0454545 = 1.45235e-06 loss) | |
I0407 14:43:19.492328 32304 solver.cpp:245] Train net output #33: loss/loss12 = 2.87812e-05 (* 0.0454545 = 1.30824e-06 loss) | |
I0407 14:43:19.492342 32304 solver.cpp:245] Train net output #34: loss/loss13 = 2.86807e-05 (* 0.0454545 = 1.30367e-06 loss) | |
I0407 14:43:19.492357 32304 solver.cpp:245] Train net output #35: loss/loss14 = 2.68606e-05 (* 0.0454545 = 1.22094e-06 loss) | |
I0407 14:43:19.492369 32304 solver.cpp:245] Train net output #36: loss/loss15 = 2.60037e-05 (* 0.0454545 = 1.18199e-06 loss) | |
I0407 14:43:19.492383 32304 solver.cpp:245] Train net output #37: loss/loss16 = 2.62367e-05 (* 0.0454545 = 1.19258e-06 loss) | |
I0407 14:43:19.492398 32304 solver.cpp:245] Train net output #38: loss/loss17 = 2.8837e-05 (* 0.0454545 = 1.31077e-06 loss) | |
I0407 14:43:19.492430 32304 solver.cpp:245] Train net output #39: loss/loss18 = 2.9001e-05 (* 0.0454545 = 1.31823e-06 loss) | |
I0407 14:43:19.492445 32304 solver.cpp:245] Train net output #40: loss/loss19 = 3.06739e-05 (* 0.0454545 = 1.39427e-06 loss) | |
I0407 14:43:19.492460 32304 solver.cpp:245] Train net output #41: loss/loss20 = 2.79169e-05 (* 0.0454545 = 1.26895e-06 loss) | |
I0407 14:43:19.492473 32304 solver.cpp:245] Train net output #42: loss/loss21 = 2.85241e-05 (* 0.0454545 = 1.29655e-06 loss) | |
I0407 14:43:19.492487 32304 solver.cpp:245] Train net output #43: loss/loss22 = 2.70898e-05 (* 0.0454545 = 1.23136e-06 loss) | |
I0407 14:43:19.492499 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 14:43:19.492511 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000103802 | |
I0407 14:43:19.492525 32304 sgd_solver.cpp:106] Iteration 58000, lr = 0.00884 | |
I0407 14:44:32.698731 32304 solver.cpp:229] Iteration 58500, loss = 0.863644 | |
I0407 14:44:32.698863 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.1875 | |
I0407 14:44:32.698884 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 14:44:32.698897 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0407 14:44:32.698909 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 14:44:32.698925 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.15625 | |
I0407 14:44:32.698945 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.28125 | |
I0407 14:44:32.698957 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.59375 | |
I0407 14:44:32.698969 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 14:44:32.698982 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.875 | |
I0407 14:44:32.698993 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.90625 | |
I0407 14:44:32.699005 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 14:44:32.699017 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 14:44:32.699028 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 14:44:32.699039 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 14:44:32.699051 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 14:44:32.699062 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 14:44:32.699074 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 14:44:32.699085 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 14:44:32.699097 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 14:44:32.699108 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 14:44:32.699120 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 14:44:32.699131 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 14:44:32.699146 32304 solver.cpp:245] Train net output #22: loss/loss01 = 2.54891 (* 0.0454545 = 0.11586 loss) | |
I0407 14:44:32.699169 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.02305 (* 0.0454545 = 0.137411 loss) | |
I0407 14:44:32.699183 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.13768 (* 0.0454545 = 0.142622 loss) | |
I0407 14:44:32.699198 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.11834 (* 0.0454545 = 0.141743 loss) | |
I0407 14:44:32.699211 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.043 (* 0.0454545 = 0.138318 loss) | |
I0407 14:44:32.699234 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.72191 (* 0.0454545 = 0.123723 loss) | |
I0407 14:44:32.699247 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.53244 (* 0.0454545 = 0.0696566 loss) | |
I0407 14:44:32.699260 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.524983 (* 0.0454545 = 0.0238629 loss) | |
I0407 14:44:32.699275 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.49497 (* 0.0454545 = 0.0224986 loss) | |
I0407 14:44:32.699288 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.452364 (* 0.0454545 = 0.020562 loss) | |
I0407 14:44:32.699303 32304 solver.cpp:245] Train net output #32: loss/loss11 = 8.589e-05 (* 0.0454545 = 3.90409e-06 loss) | |
I0407 14:44:32.699336 32304 solver.cpp:245] Train net output #33: loss/loss12 = 7.45212e-05 (* 0.0454545 = 3.38733e-06 loss) | |
I0407 14:44:32.699353 32304 solver.cpp:245] Train net output #34: loss/loss13 = 7.88665e-05 (* 0.0454545 = 3.58484e-06 loss) | |
I0407 14:44:32.699368 32304 solver.cpp:245] Train net output #35: loss/loss14 = 8.1438e-05 (* 0.0454545 = 3.70173e-06 loss) | |
I0407 14:44:32.699383 32304 solver.cpp:245] Train net output #36: loss/loss15 = 7.18026e-05 (* 0.0454545 = 3.26376e-06 loss) | |
I0407 14:44:32.699396 32304 solver.cpp:245] Train net output #37: loss/loss16 = 7.25511e-05 (* 0.0454545 = 3.29778e-06 loss) | |
I0407 14:44:32.699424 32304 solver.cpp:245] Train net output #38: loss/loss17 = 7.70812e-05 (* 0.0454545 = 3.50369e-06 loss) | |
I0407 14:44:32.699461 32304 solver.cpp:245] Train net output #39: loss/loss18 = 7.93807e-05 (* 0.0454545 = 3.60821e-06 loss) | |
I0407 14:44:32.699476 32304 solver.cpp:245] Train net output #40: loss/loss19 = 7.39626e-05 (* 0.0454545 = 3.36194e-06 loss) | |
I0407 14:44:32.699491 32304 solver.cpp:245] Train net output #41: loss/loss20 = 7.80406e-05 (* 0.0454545 = 3.5473e-06 loss) | |
I0407 14:44:32.699506 32304 solver.cpp:245] Train net output #42: loss/loss21 = 7.11862e-05 (* 0.0454545 = 3.23574e-06 loss) | |
I0407 14:44:32.699519 32304 solver.cpp:245] Train net output #43: loss/loss22 = 7.0604e-05 (* 0.0454545 = 3.20927e-06 loss) | |
I0407 14:44:32.699532 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 14:44:32.699542 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000234808 | |
I0407 14:44:32.699556 32304 sgd_solver.cpp:106] Iteration 58500, lr = 0.00883 | |
I0407 14:45:43.604168 32304 solver.cpp:229] Iteration 59000, loss = 0.867253 | |
I0407 14:45:43.604280 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.28125 | |
I0407 14:45:43.604298 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 14:45:43.604311 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0407 14:45:43.604323 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0407 14:45:43.604336 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125 | |
I0407 14:45:43.604348 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0407 14:45:43.604360 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.78125 | |
I0407 14:45:43.604372 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 14:45:43.604383 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 14:45:43.604395 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0407 14:45:43.604406 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 14:45:43.604418 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 14:45:43.604429 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 14:45:43.604441 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 14:45:43.604452 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 14:45:43.604465 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 14:45:43.604475 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 14:45:43.604487 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 14:45:43.604498 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 14:45:43.604509 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 14:45:43.604521 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 14:45:43.604532 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 14:45:43.604548 32304 solver.cpp:245] Train net output #22: loss/loss01 = 2.59628 (* 0.0454545 = 0.118013 loss) | |
I0407 14:45:43.604562 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.29057 (* 0.0454545 = 0.149571 loss) | |
I0407 14:45:43.604576 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.1016 (* 0.0454545 = 0.140982 loss) | |
I0407 14:45:43.604589 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.01723 (* 0.0454545 = 0.137147 loss) | |
I0407 14:45:43.604604 32304 solver.cpp:245] Train net output #26: loss/loss05 = 2.73797 (* 0.0454545 = 0.124453 loss) | |
I0407 14:45:43.604616 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.48988 (* 0.0454545 = 0.113176 loss) | |
I0407 14:45:43.604630 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.0857 (* 0.0454545 = 0.04935 loss) | |
I0407 14:45:43.604643 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.225972 (* 0.0454545 = 0.0102714 loss) | |
I0407 14:45:43.604657 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.417936 (* 0.0454545 = 0.0189971 loss) | |
I0407 14:45:43.604671 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.227451 (* 0.0454545 = 0.0103387 loss) | |
I0407 14:45:43.604686 32304 solver.cpp:245] Train net output #32: loss/loss11 = 4.08409e-05 (* 0.0454545 = 1.85641e-06 loss) | |
I0407 14:45:43.604699 32304 solver.cpp:245] Train net output #33: loss/loss12 = 4.26985e-05 (* 0.0454545 = 1.94084e-06 loss) | |
I0407 14:45:43.604713 32304 solver.cpp:245] Train net output #34: loss/loss13 = 4.26839e-05 (* 0.0454545 = 1.94018e-06 loss) | |
I0407 14:45:43.604727 32304 solver.cpp:245] Train net output #35: loss/loss14 = 4.47389e-05 (* 0.0454545 = 2.03359e-06 loss) | |
I0407 14:45:43.604742 32304 solver.cpp:245] Train net output #36: loss/loss15 = 3.98891e-05 (* 0.0454545 = 1.81314e-06 loss) | |
I0407 14:45:43.604754 32304 solver.cpp:245] Train net output #37: loss/loss16 = 3.88385e-05 (* 0.0454545 = 1.76539e-06 loss) | |
I0407 14:45:43.604768 32304 solver.cpp:245] Train net output #38: loss/loss17 = 4.38522e-05 (* 0.0454545 = 1.99328e-06 loss) | |
I0407 14:45:43.604799 32304 solver.cpp:245] Train net output #39: loss/loss18 = 4.17929e-05 (* 0.0454545 = 1.89968e-06 loss) | |
I0407 14:45:43.604815 32304 solver.cpp:245] Train net output #40: loss/loss19 = 4.44442e-05 (* 0.0454545 = 2.02019e-06 loss) | |
I0407 14:45:43.604828 32304 solver.cpp:245] Train net output #41: loss/loss20 = 4.38278e-05 (* 0.0454545 = 1.99217e-06 loss) | |
I0407 14:45:43.604841 32304 solver.cpp:245] Train net output #42: loss/loss21 = 4.34533e-05 (* 0.0454545 = 1.97515e-06 loss) | |
I0407 14:45:43.604856 32304 solver.cpp:245] Train net output #43: loss/loss22 = 4.2047e-05 (* 0.0454545 = 1.91123e-06 loss) | |
I0407 14:45:43.604867 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 14:45:43.604879 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000875343 | |
I0407 14:45:43.604892 32304 sgd_solver.cpp:106] Iteration 59000, lr = 0.00882 | |
I0407 14:46:56.781116 32304 solver.cpp:229] Iteration 59500, loss = 0.859938 | |
I0407 14:46:56.781224 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.15625 | |
I0407 14:46:56.781242 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 14:46:56.781256 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0407 14:46:56.781268 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0407 14:46:56.781281 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125 | |
I0407 14:46:56.781293 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0407 14:46:56.781304 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0407 14:46:56.781316 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 14:46:56.781328 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0407 14:46:56.781339 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 14:46:56.781353 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 14:46:56.781364 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 14:46:56.781375 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 14:46:56.781388 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 14:46:56.781399 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 14:46:56.781409 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 14:46:56.781421 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 14:46:56.781432 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 14:46:56.781443 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 14:46:56.781455 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 14:46:56.781466 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 14:46:56.781477 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 14:46:56.781493 32304 solver.cpp:245] Train net output #22: loss/loss01 = 2.80234 (* 0.0454545 = 0.127379 loss) | |
I0407 14:46:56.781508 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.12299 (* 0.0454545 = 0.141954 loss) | |
I0407 14:46:56.781522 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.11705 (* 0.0454545 = 0.141684 loss) | |
I0407 14:46:56.781535 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.02741 (* 0.0454545 = 0.13761 loss) | |
I0407 14:46:56.781549 32304 solver.cpp:245] Train net output #26: loss/loss05 = 2.75255 (* 0.0454545 = 0.125116 loss) | |
I0407 14:46:56.781563 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.31926 (* 0.0454545 = 0.105421 loss) | |
I0407 14:46:56.781577 32304 solver.cpp:245] Train net output #28: loss/loss07 = 0.84167 (* 0.0454545 = 0.0382577 loss) | |
I0407 14:46:56.781590 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.267765 (* 0.0454545 = 0.0121711 loss) | |
I0407 14:46:56.781605 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.137877 (* 0.0454545 = 0.00626713 loss) | |
I0407 14:46:56.781620 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.0225684 (* 0.0454545 = 0.00102584 loss) | |
I0407 14:46:56.781633 32304 solver.cpp:245] Train net output #32: loss/loss11 = 4.13264e-05 (* 0.0454545 = 1.87847e-06 loss) | |
I0407 14:46:56.781648 32304 solver.cpp:245] Train net output #33: loss/loss12 = 4.86111e-05 (* 0.0454545 = 2.2096e-06 loss) | |
I0407 14:46:56.781662 32304 solver.cpp:245] Train net output #34: loss/loss13 = 3.91654e-05 (* 0.0454545 = 1.78025e-06 loss) | |
I0407 14:46:56.781677 32304 solver.cpp:245] Train net output #35: loss/loss14 = 3.90424e-05 (* 0.0454545 = 1.77465e-06 loss) | |
I0407 14:46:56.781692 32304 solver.cpp:245] Train net output #36: loss/loss15 = 3.79454e-05 (* 0.0454545 = 1.72479e-06 loss) | |
I0407 14:46:56.781704 32304 solver.cpp:245] Train net output #37: loss/loss16 = 3.51395e-05 (* 0.0454545 = 1.59725e-06 loss) | |
I0407 14:46:56.781718 32304 solver.cpp:245] Train net output #38: loss/loss17 = 3.89975e-05 (* 0.0454545 = 1.77261e-06 loss) | |
I0407 14:46:56.781749 32304 solver.cpp:245] Train net output #39: loss/loss18 = 4.10952e-05 (* 0.0454545 = 1.86797e-06 loss) | |
I0407 14:46:56.781764 32304 solver.cpp:245] Train net output #40: loss/loss19 = 4.38436e-05 (* 0.0454545 = 1.99289e-06 loss) | |
I0407 14:46:56.781781 32304 solver.cpp:245] Train net output #41: loss/loss20 = 4.09427e-05 (* 0.0454545 = 1.86103e-06 loss) | |
I0407 14:46:56.781811 32304 solver.cpp:245] Train net output #42: loss/loss21 = 3.68478e-05 (* 0.0454545 = 1.6749e-06 loss) | |
I0407 14:46:56.781837 32304 solver.cpp:245] Train net output #43: loss/loss22 = 3.84409e-05 (* 0.0454545 = 1.74732e-06 loss) | |
I0407 14:46:56.781850 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 14:46:56.781862 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000720828 | |
I0407 14:46:56.781875 32304 sgd_solver.cpp:106] Iteration 59500, lr = 0.00881 | |
I0407 14:48:09.154619 32304 solver.cpp:338] Iteration 60000, Testing net (#0) | |
I0407 14:48:17.112709 32304 solver.cpp:393] Test loss: 0.74853 | |
I0407 14:48:17.112756 32304 solver.cpp:406] Test net output #0: loss/accuracy01 = 0.199 | |
I0407 14:48:17.112771 32304 solver.cpp:406] Test net output #1: loss/accuracy02 = 0.092 | |
I0407 14:48:17.112784 32304 solver.cpp:406] Test net output #2: loss/accuracy03 = 0.099 | |
I0407 14:48:17.112797 32304 solver.cpp:406] Test net output #3: loss/accuracy04 = 0.148 | |
I0407 14:48:17.112807 32304 solver.cpp:406] Test net output #4: loss/accuracy05 = 0.246 | |
I0407 14:48:17.112819 32304 solver.cpp:406] Test net output #5: loss/accuracy06 = 0.52 | |
I0407 14:48:17.112831 32304 solver.cpp:406] Test net output #6: loss/accuracy07 = 0.894 | |
I0407 14:48:17.112843 32304 solver.cpp:406] Test net output #7: loss/accuracy08 = 0.97 | |
I0407 14:48:17.112854 32304 solver.cpp:406] Test net output #8: loss/accuracy09 = 0.995 | |
I0407 14:48:17.112865 32304 solver.cpp:406] Test net output #9: loss/accuracy10 = 0.998 | |
I0407 14:48:17.112877 32304 solver.cpp:406] Test net output #10: loss/accuracy11 = 1 | |
I0407 14:48:17.112889 32304 solver.cpp:406] Test net output #11: loss/accuracy12 = 1 | |
I0407 14:48:17.112900 32304 solver.cpp:406] Test net output #12: loss/accuracy13 = 1 | |
I0407 14:48:17.112911 32304 solver.cpp:406] Test net output #13: loss/accuracy14 = 1 | |
I0407 14:48:17.112926 32304 solver.cpp:406] Test net output #14: loss/accuracy15 = 1 | |
I0407 14:48:17.112938 32304 solver.cpp:406] Test net output #15: loss/accuracy16 = 1 | |
I0407 14:48:17.112949 32304 solver.cpp:406] Test net output #16: loss/accuracy17 = 1 | |
I0407 14:48:17.112960 32304 solver.cpp:406] Test net output #17: loss/accuracy18 = 1 | |
I0407 14:48:17.112972 32304 solver.cpp:406] Test net output #18: loss/accuracy19 = 1 | |
I0407 14:48:17.112982 32304 solver.cpp:406] Test net output #19: loss/accuracy20 = 1 | |
I0407 14:48:17.112993 32304 solver.cpp:406] Test net output #20: loss/accuracy21 = 1 | |
I0407 14:48:17.113004 32304 solver.cpp:406] Test net output #21: loss/accuracy22 = 1 | |
I0407 14:48:17.113018 32304 solver.cpp:406] Test net output #22: loss/loss01 = 2.81672 (* 0.0454545 = 0.128033 loss) | |
I0407 14:48:17.113034 32304 solver.cpp:406] Test net output #23: loss/loss02 = 2.88041 (* 0.0454545 = 0.130928 loss) | |
I0407 14:48:17.113046 32304 solver.cpp:406] Test net output #24: loss/loss03 = 2.9132 (* 0.0454545 = 0.132418 loss) | |
I0407 14:48:17.113060 32304 solver.cpp:406] Test net output #25: loss/loss04 = 2.81634 (* 0.0454545 = 0.128016 loss) | |
I0407 14:48:17.113073 32304 solver.cpp:406] Test net output #26: loss/loss05 = 2.59295 (* 0.0454545 = 0.117861 loss) | |
I0407 14:48:17.113086 32304 solver.cpp:406] Test net output #27: loss/loss06 = 1.7304 (* 0.0454545 = 0.0786547 loss) | |
I0407 14:48:17.113100 32304 solver.cpp:406] Test net output #28: loss/loss07 = 0.440687 (* 0.0454545 = 0.0200312 loss) | |
I0407 14:48:17.113113 32304 solver.cpp:406] Test net output #29: loss/loss08 = 0.21469 (* 0.0454545 = 0.00975863 loss) | |
I0407 14:48:17.113127 32304 solver.cpp:406] Test net output #30: loss/loss09 = 0.0425814 (* 0.0454545 = 0.00193552 loss) | |
I0407 14:48:17.113142 32304 solver.cpp:406] Test net output #31: loss/loss10 = 0.0186495 (* 0.0454545 = 0.000847706 loss) | |
I0407 14:48:17.113154 32304 solver.cpp:406] Test net output #32: loss/loss11 = 8.45839e-05 (* 0.0454545 = 3.84472e-06 loss) | |
I0407 14:48:17.113168 32304 solver.cpp:406] Test net output #33: loss/loss12 = 9.04404e-05 (* 0.0454545 = 4.11093e-06 loss) | |
I0407 14:48:17.113183 32304 solver.cpp:406] Test net output #34: loss/loss13 = 9.01121e-05 (* 0.0454545 = 4.09601e-06 loss) | |
I0407 14:48:17.113196 32304 solver.cpp:406] Test net output #35: loss/loss14 = 8.49847e-05 (* 0.0454545 = 3.86294e-06 loss) | |
I0407 14:48:17.113210 32304 solver.cpp:406] Test net output #36: loss/loss15 = 8.19552e-05 (* 0.0454545 = 3.72524e-06 loss) | |
I0407 14:48:17.113224 32304 solver.cpp:406] Test net output #37: loss/loss16 = 9.03224e-05 (* 0.0454545 = 4.10556e-06 loss) | |
I0407 14:48:17.113239 32304 solver.cpp:406] Test net output #38: loss/loss17 = 8.57735e-05 (* 0.0454545 = 3.89879e-06 loss) | |
I0407 14:48:17.113287 32304 solver.cpp:406] Test net output #39: loss/loss18 = 8.57895e-05 (* 0.0454545 = 3.89952e-06 loss) | |
I0407 14:48:17.113302 32304 solver.cpp:406] Test net output #40: loss/loss19 = 8.88069e-05 (* 0.0454545 = 4.03668e-06 loss) | |
I0407 14:48:17.113317 32304 solver.cpp:406] Test net output #41: loss/loss20 = 8.6381e-05 (* 0.0454545 = 3.92641e-06 loss) | |
I0407 14:48:17.113330 32304 solver.cpp:406] Test net output #42: loss/loss21 = 8.23916e-05 (* 0.0454545 = 3.74507e-06 loss) | |
I0407 14:48:17.113343 32304 solver.cpp:406] Test net output #43: loss/loss22 = 8.52659e-05 (* 0.0454545 = 3.87572e-06 loss) | |
I0407 14:48:17.113355 32304 solver.cpp:406] Test net output #44: total_accuracy = 0 | |
I0407 14:48:17.113366 32304 solver.cpp:406] Test net output #45: total_confidence = 0.000479688 | |
I0407 14:48:17.147706 32304 solver.cpp:229] Iteration 60000, loss = 0.863005 | |
I0407 14:48:17.147748 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.25 | |
I0407 14:48:17.147765 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.21875 | |
I0407 14:48:17.147778 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0407 14:48:17.147790 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875 | |
I0407 14:48:17.147804 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.375 | |
I0407 14:48:17.147814 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5 | |
I0407 14:48:17.147826 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0407 14:48:17.147837 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0407 14:48:17.147850 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0407 14:48:17.147861 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0407 14:48:17.147872 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 14:48:17.147884 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 14:48:17.147896 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 14:48:17.147907 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 14:48:17.147918 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 14:48:17.147929 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 14:48:17.147940 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 14:48:17.147951 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 14:48:17.147963 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 14:48:17.147974 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 14:48:17.147985 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 14:48:17.147996 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 14:48:17.148010 32304 solver.cpp:245] Train net output #22: loss/loss01 = 2.66949 (* 0.0454545 = 0.12134 loss) | |
I0407 14:48:17.148025 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.01477 (* 0.0454545 = 0.137035 loss) | |
I0407 14:48:17.148038 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.0328 (* 0.0454545 = 0.137855 loss) | |
I0407 14:48:17.148052 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.07428 (* 0.0454545 = 0.13974 loss) | |
I0407 14:48:17.148066 32304 solver.cpp:245] Train net output #26: loss/loss05 = 2.55311 (* 0.0454545 = 0.11605 loss) | |
I0407 14:48:17.148082 32304 solver.cpp:245] Train net output #27: loss/loss06 = 1.91535 (* 0.0454545 = 0.0870616 loss) | |
I0407 14:48:17.148097 32304 solver.cpp:245] Train net output #28: loss/loss07 = 0.67837 (* 0.0454545 = 0.030835 loss) | |
I0407 14:48:17.148110 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.366902 (* 0.0454545 = 0.0166773 loss) | |
I0407 14:48:17.148124 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.137263 (* 0.0454545 = 0.00623921 loss) | |
I0407 14:48:17.148138 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.170393 (* 0.0454545 = 0.00774514 loss) | |
I0407 14:48:17.148172 32304 solver.cpp:245] Train net output #32: loss/loss11 = 4.98467e-05 (* 0.0454545 = 2.26576e-06 loss) | |
I0407 14:48:17.148187 32304 solver.cpp:245] Train net output #33: loss/loss12 = 4.82257e-05 (* 0.0454545 = 2.19208e-06 loss) | |
I0407 14:48:17.148201 32304 solver.cpp:245] Train net output #34: loss/loss13 = 4.94518e-05 (* 0.0454545 = 2.24781e-06 loss) | |
I0407 14:48:17.148216 32304 solver.cpp:245] Train net output #35: loss/loss14 = 4.34175e-05 (* 0.0454545 = 1.97352e-06 loss) | |
I0407 14:48:17.148229 32304 solver.cpp:245] Train net output #36: loss/loss15 = 4.12417e-05 (* 0.0454545 = 1.87462e-06 loss) | |
I0407 14:48:17.148243 32304 solver.cpp:245] Train net output #37: loss/loss16 = 4.59329e-05 (* 0.0454545 = 2.08786e-06 loss) | |
I0407 14:48:17.148257 32304 solver.cpp:245] Train net output #38: loss/loss17 = 4.2818e-05 (* 0.0454545 = 1.94627e-06 loss) | |
I0407 14:48:17.148270 32304 solver.cpp:245] Train net output #39: loss/loss18 = 4.89282e-05 (* 0.0454545 = 2.22401e-06 loss) | |
I0407 14:48:17.148284 32304 solver.cpp:245] Train net output #40: loss/loss19 = 4.77715e-05 (* 0.0454545 = 2.17143e-06 loss) | |
I0407 14:48:17.148298 32304 solver.cpp:245] Train net output #41: loss/loss20 = 4.51129e-05 (* 0.0454545 = 2.05059e-06 loss) | |
I0407 14:48:17.148311 32304 solver.cpp:245] Train net output #42: loss/loss21 = 4.74957e-05 (* 0.0454545 = 2.1589e-06 loss) | |
I0407 14:48:17.148325 32304 solver.cpp:245] Train net output #43: loss/loss22 = 3.95616e-05 (* 0.0454545 = 1.79825e-06 loss) | |
I0407 14:48:17.148337 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 14:48:17.148350 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000362798 | |
I0407 14:48:17.148363 32304 sgd_solver.cpp:106] Iteration 60000, lr = 0.0088 | |
I0407 14:49:28.047634 32304 solver.cpp:229] Iteration 60500, loss = 0.861302 | |
I0407 14:49:28.047794 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.3125 | |
I0407 14:49:28.047814 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125 | |
I0407 14:49:28.047827 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0407 14:49:28.047839 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0407 14:49:28.047852 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0407 14:49:28.047863 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625 | |
I0407 14:49:28.047875 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875 | |
I0407 14:49:28.047888 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 14:49:28.047899 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625 | |
I0407 14:49:28.047910 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0407 14:49:28.047925 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 14:49:28.047937 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 14:49:28.047950 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 14:49:28.047960 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 14:49:28.047971 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 14:49:28.047982 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 14:49:28.047993 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 14:49:28.048005 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 14:49:28.048017 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 14:49:28.048027 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 14:49:28.048038 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 14:49:28.048050 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 14:49:28.048065 32304 solver.cpp:245] Train net output #22: loss/loss01 = 2.96508 (* 0.0454545 = 0.134776 loss) | |
I0407 14:49:28.048080 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.25624 (* 0.0454545 = 0.148011 loss) | |
I0407 14:49:28.048094 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.48649 (* 0.0454545 = 0.158477 loss) | |
I0407 14:49:28.048107 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.46062 (* 0.0454545 = 0.157301 loss) | |
I0407 14:49:28.048121 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.03567 (* 0.0454545 = 0.137985 loss) | |
I0407 14:49:28.048135 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.18647 (* 0.0454545 = 0.0993848 loss) | |
I0407 14:49:28.048149 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.29567 (* 0.0454545 = 0.0588941 loss) | |
I0407 14:49:28.048163 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.700693 (* 0.0454545 = 0.0318497 loss) | |
I0407 14:49:28.048177 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.655561 (* 0.0454545 = 0.0297982 loss) | |
I0407 14:49:28.048190 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.37089 (* 0.0454545 = 0.0168586 loss) | |
I0407 14:49:28.048205 32304 solver.cpp:245] Train net output #32: loss/loss11 = 7.2047e-05 (* 0.0454545 = 3.27486e-06 loss) | |
I0407 14:49:28.048219 32304 solver.cpp:245] Train net output #33: loss/loss12 = 7.56412e-05 (* 0.0454545 = 3.43824e-06 loss) | |
I0407 14:49:28.048233 32304 solver.cpp:245] Train net output #34: loss/loss13 = 7.77615e-05 (* 0.0454545 = 3.53461e-06 loss) | |
I0407 14:49:28.048248 32304 solver.cpp:245] Train net output #35: loss/loss14 = 7.09596e-05 (* 0.0454545 = 3.22543e-06 loss) | |
I0407 14:49:28.048260 32304 solver.cpp:245] Train net output #36: loss/loss15 = 7.05478e-05 (* 0.0454545 = 3.20672e-06 loss) | |
I0407 14:49:28.048274 32304 solver.cpp:245] Train net output #37: loss/loss16 = 7.32876e-05 (* 0.0454545 = 3.33125e-06 loss) | |
I0407 14:49:28.048288 32304 solver.cpp:245] Train net output #38: loss/loss17 = 7.42506e-05 (* 0.0454545 = 3.37503e-06 loss) | |
I0407 14:49:28.048316 32304 solver.cpp:245] Train net output #39: loss/loss18 = 7.1906e-05 (* 0.0454545 = 3.26845e-06 loss) | |
I0407 14:49:28.048331 32304 solver.cpp:245] Train net output #40: loss/loss19 = 7.44379e-05 (* 0.0454545 = 3.38354e-06 loss) | |
I0407 14:49:28.048344 32304 solver.cpp:245] Train net output #41: loss/loss20 = 7.00515e-05 (* 0.0454545 = 3.18416e-06 loss) | |
I0407 14:49:28.048362 32304 solver.cpp:245] Train net output #42: loss/loss21 = 6.8362e-05 (* 0.0454545 = 3.10737e-06 loss) | |
I0407 14:49:28.048377 32304 solver.cpp:245] Train net output #43: loss/loss22 = 7.32309e-05 (* 0.0454545 = 3.32868e-06 loss) | |
I0407 14:49:28.048389 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 14:49:28.048400 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000149204 | |
I0407 14:49:28.048413 32304 sgd_solver.cpp:106] Iteration 60500, lr = 0.00879 | |
I0407 14:50:40.768414 32304 solver.cpp:229] Iteration 61000, loss = 0.858431 | |
I0407 14:50:40.768546 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.28125 | |
I0407 14:50:40.768566 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125 | |
I0407 14:50:40.768579 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 14:50:40.768591 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0407 14:50:40.768604 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125 | |
I0407 14:50:40.768615 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.46875 | |
I0407 14:50:40.768626 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.90625 | |
I0407 14:50:40.768638 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.96875 | |
I0407 14:50:40.768651 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 14:50:40.768662 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 14:50:40.768673 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 14:50:40.768685 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 14:50:40.768697 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 14:50:40.768708 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 14:50:40.768720 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 14:50:40.768731 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 14:50:40.768743 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 14:50:40.768754 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 14:50:40.768765 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 14:50:40.768776 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 14:50:40.768789 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 14:50:40.768800 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 14:50:40.768816 32304 solver.cpp:245] Train net output #22: loss/loss01 = 2.68302 (* 0.0454545 = 0.121956 loss) | |
I0407 14:50:40.768831 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.11159 (* 0.0454545 = 0.141436 loss) | |
I0407 14:50:40.768844 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.05992 (* 0.0454545 = 0.139087 loss) | |
I0407 14:50:40.768857 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.0002 (* 0.0454545 = 0.136373 loss) | |
I0407 14:50:40.768872 32304 solver.cpp:245] Train net output #26: loss/loss05 = 2.57657 (* 0.0454545 = 0.117117 loss) | |
I0407 14:50:40.768884 32304 solver.cpp:245] Train net output #27: loss/loss06 = 1.90042 (* 0.0454545 = 0.0863829 loss) | |
I0407 14:50:40.768898 32304 solver.cpp:245] Train net output #28: loss/loss07 = 0.483786 (* 0.0454545 = 0.0219903 loss) | |
I0407 14:50:40.768911 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.175446 (* 0.0454545 = 0.00797481 loss) | |
I0407 14:50:40.768929 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.0128552 (* 0.0454545 = 0.000584327 loss) | |
I0407 14:50:40.768944 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.00506674 (* 0.0454545 = 0.000230306 loss) | |
I0407 14:50:40.768957 32304 solver.cpp:245] Train net output #32: loss/loss11 = 0.000163378 (* 0.0454545 = 7.42626e-06 loss) | |
I0407 14:50:40.768971 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.000159572 (* 0.0454545 = 7.25328e-06 loss) | |
I0407 14:50:40.768985 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.000154866 (* 0.0454545 = 7.03938e-06 loss) | |
I0407 14:50:40.768998 32304 solver.cpp:245] Train net output #35: loss/loss14 = 0.000163536 (* 0.0454545 = 7.43343e-06 loss) | |
I0407 14:50:40.769012 32304 solver.cpp:245] Train net output #36: loss/loss15 = 0.000176629 (* 0.0454545 = 8.0286e-06 loss) | |
I0407 14:50:40.769026 32304 solver.cpp:245] Train net output #37: loss/loss16 = 0.000148057 (* 0.0454545 = 6.72987e-06 loss) | |
I0407 14:50:40.769040 32304 solver.cpp:245] Train net output #38: loss/loss17 = 0.000146983 (* 0.0454545 = 6.68106e-06 loss) | |
I0407 14:50:40.769073 32304 solver.cpp:245] Train net output #39: loss/loss18 = 0.000169465 (* 0.0454545 = 7.70297e-06 loss) | |
I0407 14:50:40.769088 32304 solver.cpp:245] Train net output #40: loss/loss19 = 0.000155778 (* 0.0454545 = 7.0808e-06 loss) | |
I0407 14:50:40.769101 32304 solver.cpp:245] Train net output #41: loss/loss20 = 0.000161259 (* 0.0454545 = 7.32996e-06 loss) | |
I0407 14:50:40.769115 32304 solver.cpp:245] Train net output #42: loss/loss21 = 0.000159061 (* 0.0454545 = 7.23005e-06 loss) | |
I0407 14:50:40.769129 32304 solver.cpp:245] Train net output #43: loss/loss22 = 0.000152868 (* 0.0454545 = 6.94853e-06 loss) | |
I0407 14:50:40.769140 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 14:50:40.769152 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000501369 | |
I0407 14:50:40.769166 32304 sgd_solver.cpp:106] Iteration 61000, lr = 0.00878 | |
I0407 14:51:53.186125 32304 solver.cpp:229] Iteration 61500, loss = 0.858871 | |
I0407 14:51:53.186311 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0407 14:51:53.186331 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0407 14:51:53.186343 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.1875 | |
I0407 14:51:53.186355 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0 | |
I0407 14:51:53.186367 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125 | |
I0407 14:51:53.186379 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0407 14:51:53.186390 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875 | |
I0407 14:51:53.186403 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0407 14:51:53.186414 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625 | |
I0407 14:51:53.186427 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.90625 | |
I0407 14:51:53.186439 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 14:51:53.186450 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 14:51:53.186462 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 14:51:53.186475 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 14:51:53.186497 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 14:51:53.186517 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 14:51:53.186532 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 14:51:53.186542 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 14:51:53.186554 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 14:51:53.186565 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 14:51:53.186578 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 14:51:53.186589 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 14:51:53.186604 32304 solver.cpp:245] Train net output #22: loss/loss01 = 2.69294 (* 0.0454545 = 0.122407 loss) | |
I0407 14:51:53.186622 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.04741 (* 0.0454545 = 0.138519 loss) | |
I0407 14:51:53.186636 32304 solver.cpp:245] Train net output #24: loss/loss03 = 2.97647 (* 0.0454545 = 0.135294 loss) | |
I0407 14:51:53.186650 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.10074 (* 0.0454545 = 0.140943 loss) | |
I0407 14:51:53.186663 32304 solver.cpp:245] Train net output #26: loss/loss05 = 2.84449 (* 0.0454545 = 0.129295 loss) | |
I0407 14:51:53.186677 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.00874 (* 0.0454545 = 0.0913065 loss) | |
I0407 14:51:53.186691 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.03411 (* 0.0454545 = 0.0470049 loss) | |
I0407 14:51:53.186704 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.399174 (* 0.0454545 = 0.0181443 loss) | |
I0407 14:51:53.186718 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.360443 (* 0.0454545 = 0.0163838 loss) | |
I0407 14:51:53.186733 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.380572 (* 0.0454545 = 0.0172987 loss) | |
I0407 14:51:53.186746 32304 solver.cpp:245] Train net output #32: loss/loss11 = 9.58436e-05 (* 0.0454545 = 4.35653e-06 loss) | |
I0407 14:51:53.186760 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.000101504 (* 0.0454545 = 4.6138e-06 loss) | |
I0407 14:51:53.186774 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.000100272 (* 0.0454545 = 4.5578e-06 loss) | |
I0407 14:51:53.186789 32304 solver.cpp:245] Train net output #35: loss/loss14 = 8.63404e-05 (* 0.0454545 = 3.92457e-06 loss) | |
I0407 14:51:53.186803 32304 solver.cpp:245] Train net output #36: loss/loss15 = 8.91475e-05 (* 0.0454545 = 4.05216e-06 loss) | |
I0407 14:51:53.186816 32304 solver.cpp:245] Train net output #37: loss/loss16 = 9.74129e-05 (* 0.0454545 = 4.42786e-06 loss) | |
I0407 14:51:53.186830 32304 solver.cpp:245] Train net output #38: loss/loss17 = 9.52811e-05 (* 0.0454545 = 4.33096e-06 loss) | |
I0407 14:51:53.186861 32304 solver.cpp:245] Train net output #39: loss/loss18 = 8.84055e-05 (* 0.0454545 = 4.01843e-06 loss) | |
I0407 14:51:53.186877 32304 solver.cpp:245] Train net output #40: loss/loss19 = 9.96459e-05 (* 0.0454545 = 4.52936e-06 loss) | |
I0407 14:51:53.186890 32304 solver.cpp:245] Train net output #41: loss/loss20 = 9.41331e-05 (* 0.0454545 = 4.27878e-06 loss) | |
I0407 14:51:53.186903 32304 solver.cpp:245] Train net output #42: loss/loss21 = 9.8226e-05 (* 0.0454545 = 4.46482e-06 loss) | |
I0407 14:51:53.186918 32304 solver.cpp:245] Train net output #43: loss/loss22 = 8.75581e-05 (* 0.0454545 = 3.97991e-06 loss) | |
I0407 14:51:53.186930 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 14:51:53.186941 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000396696 | |
I0407 14:51:53.186956 32304 sgd_solver.cpp:106] Iteration 61500, lr = 0.00877 | |
I0407 14:53:05.595129 32304 solver.cpp:229] Iteration 62000, loss = 0.859207 | |
I0407 14:53:05.595271 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.34375 | |
I0407 14:53:05.595293 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125 | |
I0407 14:53:05.595305 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 14:53:05.595336 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0407 14:53:05.595352 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.15625 | |
I0407 14:53:05.595366 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625 | |
I0407 14:53:05.595377 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.59375 | |
I0407 14:53:05.595388 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.8125 | |
I0407 14:53:05.595401 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0407 14:53:05.595412 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0407 14:53:05.595424 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 14:53:05.595437 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 14:53:05.595448 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 14:53:05.595459 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 14:53:05.595470 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 14:53:05.595481 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 14:53:05.595494 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 14:53:05.595504 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 14:53:05.595515 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 14:53:05.595526 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 14:53:05.595537 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 14:53:05.595548 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 14:53:05.595564 32304 solver.cpp:245] Train net output #22: loss/loss01 = 2.4504 (* 0.0454545 = 0.111382 loss) | |
I0407 14:53:05.595578 32304 solver.cpp:245] Train net output #23: loss/loss02 = 2.96462 (* 0.0454545 = 0.134755 loss) | |
I0407 14:53:05.595592 32304 solver.cpp:245] Train net output #24: loss/loss03 = 2.85905 (* 0.0454545 = 0.129957 loss) | |
I0407 14:53:05.595607 32304 solver.cpp:245] Train net output #25: loss/loss04 = 2.98142 (* 0.0454545 = 0.135519 loss) | |
I0407 14:53:05.595620 32304 solver.cpp:245] Train net output #26: loss/loss05 = 2.96161 (* 0.0454545 = 0.134619 loss) | |
I0407 14:53:05.595634 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.2989 (* 0.0454545 = 0.104496 loss) | |
I0407 14:53:05.595648 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.60671 (* 0.0454545 = 0.0730322 loss) | |
I0407 14:53:05.595661 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.655254 (* 0.0454545 = 0.0297843 loss) | |
I0407 14:53:05.595674 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.232507 (* 0.0454545 = 0.0105685 loss) | |
I0407 14:53:05.595688 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.160955 (* 0.0454545 = 0.00731615 loss) | |
I0407 14:53:05.595702 32304 solver.cpp:245] Train net output #32: loss/loss11 = 7.36724e-05 (* 0.0454545 = 3.34874e-06 loss) | |
I0407 14:53:05.595717 32304 solver.cpp:245] Train net output #33: loss/loss12 = 7.18781e-05 (* 0.0454545 = 3.26718e-06 loss) | |
I0407 14:53:05.595731 32304 solver.cpp:245] Train net output #34: loss/loss13 = 7.46493e-05 (* 0.0454545 = 3.39315e-06 loss) | |
I0407 14:53:05.595744 32304 solver.cpp:245] Train net output #35: loss/loss14 = 7.29685e-05 (* 0.0454545 = 3.31675e-06 loss) | |
I0407 14:53:05.595758 32304 solver.cpp:245] Train net output #36: loss/loss15 = 6.08953e-05 (* 0.0454545 = 2.76797e-06 loss) | |
I0407 14:53:05.595772 32304 solver.cpp:245] Train net output #37: loss/loss16 = 6.22531e-05 (* 0.0454545 = 2.82969e-06 loss) | |
I0407 14:53:05.595785 32304 solver.cpp:245] Train net output #38: loss/loss17 = 7.13273e-05 (* 0.0454545 = 3.24215e-06 loss) | |
I0407 14:53:05.595813 32304 solver.cpp:245] Train net output #39: loss/loss18 = 7.34039e-05 (* 0.0454545 = 3.33654e-06 loss) | |
I0407 14:53:05.595829 32304 solver.cpp:245] Train net output #40: loss/loss19 = 6.81685e-05 (* 0.0454545 = 3.09857e-06 loss) | |
I0407 14:53:05.595841 32304 solver.cpp:245] Train net output #41: loss/loss20 = 7.22651e-05 (* 0.0454545 = 3.28478e-06 loss) | |
I0407 14:53:05.595855 32304 solver.cpp:245] Train net output #42: loss/loss21 = 7.26799e-05 (* 0.0454545 = 3.30363e-06 loss) | |
I0407 14:53:05.595870 32304 solver.cpp:245] Train net output #43: loss/loss22 = 7.12491e-05 (* 0.0454545 = 3.23859e-06 loss) | |
I0407 14:53:05.595881 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 14:53:05.595892 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000314031 | |
I0407 14:53:05.595906 32304 sgd_solver.cpp:106] Iteration 62000, lr = 0.00876 | |
I0407 14:54:18.134879 32304 solver.cpp:229] Iteration 62500, loss = 0.856314 | |
I0407 14:54:18.134999 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.3125 | |
I0407 14:54:18.135017 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.21875 | |
I0407 14:54:18.135030 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 14:54:18.135042 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0407 14:54:18.135054 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0407 14:54:18.135066 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125 | |
I0407 14:54:18.135078 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625 | |
I0407 14:54:18.135090 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.8125 | |
I0407 14:54:18.135102 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0407 14:54:18.135114 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 14:54:18.135125 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 14:54:18.135138 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 14:54:18.135149 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 14:54:18.135160 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 14:54:18.135171 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 14:54:18.135182 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 14:54:18.135195 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 14:54:18.135205 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 14:54:18.135216 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 14:54:18.135227 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 14:54:18.135239 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 14:54:18.135251 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 14:54:18.135265 32304 solver.cpp:245] Train net output #22: loss/loss01 = 2.56588 (* 0.0454545 = 0.116631 loss) | |
I0407 14:54:18.135283 32304 solver.cpp:245] Train net output #23: loss/loss02 = 2.8717 (* 0.0454545 = 0.130532 loss) | |
I0407 14:54:18.135310 32304 solver.cpp:245] Train net output #24: loss/loss03 = 2.91493 (* 0.0454545 = 0.132497 loss) | |
I0407 14:54:18.135346 32304 solver.cpp:245] Train net output #25: loss/loss04 = 2.90737 (* 0.0454545 = 0.132153 loss) | |
I0407 14:54:18.135362 32304 solver.cpp:245] Train net output #26: loss/loss05 = 2.73156 (* 0.0454545 = 0.124162 loss) | |
I0407 14:54:18.135376 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.5901 (* 0.0454545 = 0.117732 loss) | |
I0407 14:54:18.135390 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.65157 (* 0.0454545 = 0.0750712 loss) | |
I0407 14:54:18.135403 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.779767 (* 0.0454545 = 0.0354439 loss) | |
I0407 14:54:18.135417 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.366575 (* 0.0454545 = 0.0166625 loss) | |
I0407 14:54:18.135431 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.056969 (* 0.0454545 = 0.0025895 loss) | |
I0407 14:54:18.135444 32304 solver.cpp:245] Train net output #32: loss/loss11 = 0.000114543 (* 0.0454545 = 5.20651e-06 loss) | |
I0407 14:54:18.135459 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.000119666 (* 0.0454545 = 5.43935e-06 loss) | |
I0407 14:54:18.135473 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.000106273 (* 0.0454545 = 4.83059e-06 loss) | |
I0407 14:54:18.135486 32304 solver.cpp:245] Train net output #35: loss/loss14 = 0.000109436 (* 0.0454545 = 4.97434e-06 loss) | |
I0407 14:54:18.135500 32304 solver.cpp:245] Train net output #36: loss/loss15 = 0.000102426 (* 0.0454545 = 4.65573e-06 loss) | |
I0407 14:54:18.135514 32304 solver.cpp:245] Train net output #37: loss/loss16 = 9.70727e-05 (* 0.0454545 = 4.4124e-06 loss) | |
I0407 14:54:18.135529 32304 solver.cpp:245] Train net output #38: loss/loss17 = 0.000113519 (* 0.0454545 = 5.15995e-06 loss) | |
I0407 14:54:18.135560 32304 solver.cpp:245] Train net output #39: loss/loss18 = 0.000115163 (* 0.0454545 = 5.23469e-06 loss) | |
I0407 14:54:18.135576 32304 solver.cpp:245] Train net output #40: loss/loss19 = 0.000109355 (* 0.0454545 = 4.97067e-06 loss) | |
I0407 14:54:18.135591 32304 solver.cpp:245] Train net output #41: loss/loss20 = 0.000117042 (* 0.0454545 = 5.32007e-06 loss) | |
I0407 14:54:18.135603 32304 solver.cpp:245] Train net output #42: loss/loss21 = 0.000111184 (* 0.0454545 = 5.05382e-06 loss) | |
I0407 14:54:18.135617 32304 solver.cpp:245] Train net output #43: loss/loss22 = 0.000107787 (* 0.0454545 = 4.8994e-06 loss) | |
I0407 14:54:18.135629 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 14:54:18.135640 32304 solver.cpp:245] Train net output #45: total_confidence = 0.00139227 | |
I0407 14:54:18.135653 32304 sgd_solver.cpp:106] Iteration 62500, lr = 0.00875 | |
I0407 14:55:30.278053 32304 solver.cpp:229] Iteration 63000, loss = 0.852652 | |
I0407 14:55:30.278195 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.25 | |
I0407 14:55:30.278216 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0407 14:55:30.278230 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0407 14:55:30.278242 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.21875 | |
I0407 14:55:30.278254 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.375 | |
I0407 14:55:30.278266 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.46875 | |
I0407 14:55:30.278278 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0407 14:55:30.278290 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 1 | |
I0407 14:55:30.278302 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 14:55:30.278313 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 14:55:30.278324 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 14:55:30.278337 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 14:55:30.278347 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 14:55:30.278358 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 14:55:30.278369 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 14:55:30.278381 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 14:55:30.278393 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 14:55:30.278403 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 14:55:30.278414 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 14:55:30.278425 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 14:55:30.278437 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 14:55:30.278448 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 14:55:30.278465 32304 solver.cpp:245] Train net output #22: loss/loss01 = 2.7597 (* 0.0454545 = 0.125441 loss) | |
I0407 14:55:30.278478 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.18685 (* 0.0454545 = 0.144857 loss) | |
I0407 14:55:30.278492 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.08609 (* 0.0454545 = 0.140277 loss) | |
I0407 14:55:30.278506 32304 solver.cpp:245] Train net output #25: loss/loss04 = 2.94834 (* 0.0454545 = 0.134016 loss) | |
I0407 14:55:30.278519 32304 solver.cpp:245] Train net output #26: loss/loss05 = 2.41446 (* 0.0454545 = 0.109748 loss) | |
I0407 14:55:30.278533 32304 solver.cpp:245] Train net output #27: loss/loss06 = 1.90147 (* 0.0454545 = 0.0864305 loss) | |
I0407 14:55:30.278548 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.26022 (* 0.0454545 = 0.0572827 loss) | |
I0407 14:55:30.278561 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.0324601 (* 0.0454545 = 0.00147546 loss) | |
I0407 14:55:30.278575 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.00560025 (* 0.0454545 = 0.000254557 loss) | |
I0407 14:55:30.278590 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.00149713 (* 0.0454545 = 6.80515e-05 loss) | |
I0407 14:55:30.278604 32304 solver.cpp:245] Train net output #32: loss/loss11 = 5.02297e-05 (* 0.0454545 = 2.28317e-06 loss) | |
I0407 14:55:30.278619 32304 solver.cpp:245] Train net output #33: loss/loss12 = 5.14533e-05 (* 0.0454545 = 2.33879e-06 loss) | |
I0407 14:55:30.278631 32304 solver.cpp:245] Train net output #34: loss/loss13 = 4.28379e-05 (* 0.0454545 = 1.94718e-06 loss) | |
I0407 14:55:30.278645 32304 solver.cpp:245] Train net output #35: loss/loss14 = 4.8027e-05 (* 0.0454545 = 2.18305e-06 loss) | |
I0407 14:55:30.278659 32304 solver.cpp:245] Train net output #36: loss/loss15 = 4.40366e-05 (* 0.0454545 = 2.00167e-06 loss) | |
I0407 14:55:30.278673 32304 solver.cpp:245] Train net output #37: loss/loss16 = 4.16351e-05 (* 0.0454545 = 1.8925e-06 loss) | |
I0407 14:55:30.278687 32304 solver.cpp:245] Train net output #38: loss/loss17 = 4.59478e-05 (* 0.0454545 = 2.08854e-06 loss) | |
I0407 14:55:30.278718 32304 solver.cpp:245] Train net output #39: loss/loss18 = 5.37153e-05 (* 0.0454545 = 2.4416e-06 loss) | |
I0407 14:55:30.278733 32304 solver.cpp:245] Train net output #40: loss/loss19 = 4.95628e-05 (* 0.0454545 = 2.25286e-06 loss) | |
I0407 14:55:30.278748 32304 solver.cpp:245] Train net output #41: loss/loss20 = 4.8576e-05 (* 0.0454545 = 2.208e-06 loss) | |
I0407 14:55:30.278761 32304 solver.cpp:245] Train net output #42: loss/loss21 = 4.69818e-05 (* 0.0454545 = 2.13554e-06 loss) | |
I0407 14:55:30.278775 32304 solver.cpp:245] Train net output #43: loss/loss22 = 5.04104e-05 (* 0.0454545 = 2.29138e-06 loss) | |
I0407 14:55:30.278787 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 14:55:30.278798 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000448706 | |
I0407 14:55:30.278811 32304 sgd_solver.cpp:106] Iteration 63000, lr = 0.00874 | |
I0407 14:56:42.484531 32304 solver.cpp:229] Iteration 63500, loss = 0.85685 | |
I0407 14:56:42.484650 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.1875 | |
I0407 14:56:42.484669 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.21875 | |
I0407 14:56:42.484683 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 14:56:42.484694 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0407 14:56:42.484707 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.21875 | |
I0407 14:56:42.484719 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.25 | |
I0407 14:56:42.484731 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875 | |
I0407 14:56:42.484743 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0407 14:56:42.484755 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 14:56:42.484766 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 14:56:42.484777 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 14:56:42.484789 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 14:56:42.484800 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 14:56:42.484812 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 14:56:42.484822 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 14:56:42.484834 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 14:56:42.484845 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 14:56:42.484858 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 14:56:42.484869 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 14:56:42.484880 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 14:56:42.484891 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 14:56:42.484904 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 14:56:42.484921 32304 solver.cpp:245] Train net output #22: loss/loss01 = 2.79888 (* 0.0454545 = 0.127222 loss) | |
I0407 14:56:42.484937 32304 solver.cpp:245] Train net output #23: loss/loss02 = 2.98881 (* 0.0454545 = 0.135855 loss) | |
I0407 14:56:42.484951 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.23666 (* 0.0454545 = 0.147121 loss) | |
I0407 14:56:42.484966 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.0625 (* 0.0454545 = 0.139205 loss) | |
I0407 14:56:42.484979 32304 solver.cpp:245] Train net output #26: loss/loss05 = 2.70597 (* 0.0454545 = 0.122999 loss) | |
I0407 14:56:42.484993 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.55704 (* 0.0454545 = 0.116229 loss) | |
I0407 14:56:42.485007 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.1421 (* 0.0454545 = 0.0519138 loss) | |
I0407 14:56:42.485019 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.491686 (* 0.0454545 = 0.0223494 loss) | |
I0407 14:56:42.485034 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.0119306 (* 0.0454545 = 0.000542301 loss) | |
I0407 14:56:42.485049 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.0051114 (* 0.0454545 = 0.000232336 loss) | |
I0407 14:56:42.485062 32304 solver.cpp:245] Train net output #32: loss/loss11 = 6.98735e-05 (* 0.0454545 = 3.17607e-06 loss) | |
I0407 14:56:42.485076 32304 solver.cpp:245] Train net output #33: loss/loss12 = 6.13412e-05 (* 0.0454545 = 2.78824e-06 loss) | |
I0407 14:56:42.485090 32304 solver.cpp:245] Train net output #34: loss/loss13 = 6.41229e-05 (* 0.0454545 = 2.91468e-06 loss) | |
I0407 14:56:42.485105 32304 solver.cpp:245] Train net output #35: loss/loss14 = 6.82585e-05 (* 0.0454545 = 3.10266e-06 loss) | |
I0407 14:56:42.485118 32304 solver.cpp:245] Train net output #36: loss/loss15 = 6.53318e-05 (* 0.0454545 = 2.96963e-06 loss) | |
I0407 14:56:42.485132 32304 solver.cpp:245] Train net output #37: loss/loss16 = 6.26882e-05 (* 0.0454545 = 2.84946e-06 loss) | |
I0407 14:56:42.485146 32304 solver.cpp:245] Train net output #38: loss/loss17 = 6.77666e-05 (* 0.0454545 = 3.0803e-06 loss) | |
I0407 14:56:42.485177 32304 solver.cpp:245] Train net output #39: loss/loss18 = 6.82923e-05 (* 0.0454545 = 3.10419e-06 loss) | |
I0407 14:56:42.485191 32304 solver.cpp:245] Train net output #40: loss/loss19 = 6.49384e-05 (* 0.0454545 = 2.95175e-06 loss) | |
I0407 14:56:42.485205 32304 solver.cpp:245] Train net output #41: loss/loss20 = 6.33402e-05 (* 0.0454545 = 2.8791e-06 loss) | |
I0407 14:56:42.485219 32304 solver.cpp:245] Train net output #42: loss/loss21 = 6.28447e-05 (* 0.0454545 = 2.85658e-06 loss) | |
I0407 14:56:42.485234 32304 solver.cpp:245] Train net output #43: loss/loss22 = 6.07751e-05 (* 0.0454545 = 2.76251e-06 loss) | |
I0407 14:56:42.485245 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 14:56:42.485256 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000341331 | |
I0407 14:56:42.485270 32304 sgd_solver.cpp:106] Iteration 63500, lr = 0.00873 | |
I0407 14:57:54.588377 32304 solver.cpp:229] Iteration 64000, loss = 0.850585 | |
I0407 14:57:54.588510 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.15625 | |
I0407 14:57:54.588531 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0407 14:57:54.588543 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0407 14:57:54.588557 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625 | |
I0407 14:57:54.588568 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.34375 | |
I0407 14:57:54.588580 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625 | |
I0407 14:57:54.588593 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0407 14:57:54.588603 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0407 14:57:54.588615 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0407 14:57:54.588626 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 14:57:54.588639 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 14:57:54.588649 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 14:57:54.588661 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 14:57:54.588672 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 14:57:54.588683 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 14:57:54.588695 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 14:57:54.588706 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 14:57:54.588717 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 14:57:54.588728 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 14:57:54.588739 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 14:57:54.588750 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 14:57:54.588762 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 14:57:54.588778 32304 solver.cpp:245] Train net output #22: loss/loss01 = 2.60098 (* 0.0454545 = 0.118226 loss) | |
I0407 14:57:54.588793 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.05795 (* 0.0454545 = 0.138998 loss) | |
I0407 14:57:54.588806 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.11844 (* 0.0454545 = 0.141747 loss) | |
I0407 14:57:54.588819 32304 solver.cpp:245] Train net output #25: loss/loss04 = 2.95665 (* 0.0454545 = 0.134393 loss) | |
I0407 14:57:54.588834 32304 solver.cpp:245] Train net output #26: loss/loss05 = 2.33634 (* 0.0454545 = 0.106197 loss) | |
I0407 14:57:54.588846 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.1112 (* 0.0454545 = 0.0959638 loss) | |
I0407 14:57:54.588860 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.10004 (* 0.0454545 = 0.0500017 loss) | |
I0407 14:57:54.588874 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.386515 (* 0.0454545 = 0.0175688 loss) | |
I0407 14:57:54.588888 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.175441 (* 0.0454545 = 0.00797458 loss) | |
I0407 14:57:54.588902 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.0135668 (* 0.0454545 = 0.000616673 loss) | |
I0407 14:57:54.588917 32304 solver.cpp:245] Train net output #32: loss/loss11 = 9.00863e-05 (* 0.0454545 = 4.09483e-06 loss) | |
I0407 14:57:54.588934 32304 solver.cpp:245] Train net output #33: loss/loss12 = 7.909e-05 (* 0.0454545 = 3.595e-06 loss) | |
I0407 14:57:54.588949 32304 solver.cpp:245] Train net output #34: loss/loss13 = 8.09939e-05 (* 0.0454545 = 3.68154e-06 loss) | |
I0407 14:57:54.588963 32304 solver.cpp:245] Train net output #35: loss/loss14 = 7.61562e-05 (* 0.0454545 = 3.46165e-06 loss) | |
I0407 14:57:54.588976 32304 solver.cpp:245] Train net output #36: loss/loss15 = 7.75981e-05 (* 0.0454545 = 3.52719e-06 loss) | |
I0407 14:57:54.588990 32304 solver.cpp:245] Train net output #37: loss/loss16 = 7.95487e-05 (* 0.0454545 = 3.61585e-06 loss) | |
I0407 14:57:54.589004 32304 solver.cpp:245] Train net output #38: loss/loss17 = 6.37628e-05 (* 0.0454545 = 2.89831e-06 loss) | |
I0407 14:57:54.589031 32304 solver.cpp:245] Train net output #39: loss/loss18 = 8.73207e-05 (* 0.0454545 = 3.96912e-06 loss) | |
I0407 14:57:54.589046 32304 solver.cpp:245] Train net output #40: loss/loss19 = 7.80453e-05 (* 0.0454545 = 3.54751e-06 loss) | |
I0407 14:57:54.589061 32304 solver.cpp:245] Train net output #41: loss/loss20 = 7.46749e-05 (* 0.0454545 = 3.39431e-06 loss) | |
I0407 14:57:54.589074 32304 solver.cpp:245] Train net output #42: loss/loss21 = 6.99466e-05 (* 0.0454545 = 3.17939e-06 loss) | |
I0407 14:57:54.589087 32304 solver.cpp:245] Train net output #43: loss/loss22 = 6.9941e-05 (* 0.0454545 = 3.17914e-06 loss) | |
I0407 14:57:54.589099 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 14:57:54.589112 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000423907 | |
I0407 14:57:54.589124 32304 sgd_solver.cpp:106] Iteration 64000, lr = 0.00872 | |
I0407 14:59:06.683472 32304 solver.cpp:229] Iteration 64500, loss = 0.850672 | |
I0407 14:59:06.683619 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0407 14:59:06.683639 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0407 14:59:06.683652 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0407 14:59:06.683665 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 14:59:06.683676 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.125 | |
I0407 14:59:06.683687 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625 | |
I0407 14:59:06.683699 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.875 | |
I0407 14:59:06.683712 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 14:59:06.683723 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 14:59:06.683735 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 14:59:06.683746 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 14:59:06.683758 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 14:59:06.683769 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 14:59:06.683780 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 14:59:06.683791 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 14:59:06.683802 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 14:59:06.683815 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 14:59:06.683825 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 14:59:06.683837 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 14:59:06.683848 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 14:59:06.683859 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 14:59:06.683871 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 14:59:06.683887 32304 solver.cpp:245] Train net output #22: loss/loss01 = 3.07035 (* 0.0454545 = 0.139562 loss) | |
I0407 14:59:06.683902 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.18164 (* 0.0454545 = 0.14462 loss) | |
I0407 14:59:06.683915 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.25657 (* 0.0454545 = 0.148026 loss) | |
I0407 14:59:06.683933 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.28923 (* 0.0454545 = 0.14951 loss) | |
I0407 14:59:06.683946 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.11273 (* 0.0454545 = 0.141488 loss) | |
I0407 14:59:06.683960 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.31593 (* 0.0454545 = 0.105269 loss) | |
I0407 14:59:06.683974 32304 solver.cpp:245] Train net output #28: loss/loss07 = 0.550537 (* 0.0454545 = 0.0250244 loss) | |
I0407 14:59:06.683987 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.259313 (* 0.0454545 = 0.011787 loss) | |
I0407 14:59:06.684001 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.0811856 (* 0.0454545 = 0.00369026 loss) | |
I0407 14:59:06.684015 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.0236179 (* 0.0454545 = 0.00107354 loss) | |
I0407 14:59:06.684031 32304 solver.cpp:245] Train net output #32: loss/loss11 = 0.000152127 (* 0.0454545 = 6.91484e-06 loss) | |
I0407 14:59:06.684044 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.000144789 (* 0.0454545 = 6.58131e-06 loss) | |
I0407 14:59:06.684057 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.000143248 (* 0.0454545 = 6.51127e-06 loss) | |
I0407 14:59:06.684072 32304 solver.cpp:245] Train net output #35: loss/loss14 = 0.000138491 (* 0.0454545 = 6.29503e-06 loss) | |
I0407 14:59:06.684087 32304 solver.cpp:245] Train net output #36: loss/loss15 = 0.000144002 (* 0.0454545 = 6.54557e-06 loss) | |
I0407 14:59:06.684099 32304 solver.cpp:245] Train net output #37: loss/loss16 = 0.000133377 (* 0.0454545 = 6.06259e-06 loss) | |
I0407 14:59:06.684113 32304 solver.cpp:245] Train net output #38: loss/loss17 = 0.000125773 (* 0.0454545 = 5.71696e-06 loss) | |
I0407 14:59:06.684144 32304 solver.cpp:245] Train net output #39: loss/loss18 = 0.000149667 (* 0.0454545 = 6.80304e-06 loss) | |
I0407 14:59:06.684159 32304 solver.cpp:245] Train net output #40: loss/loss19 = 0.000132986 (* 0.0454545 = 6.04483e-06 loss) | |
I0407 14:59:06.684173 32304 solver.cpp:245] Train net output #41: loss/loss20 = 0.0001304 (* 0.0454545 = 5.92729e-06 loss) | |
I0407 14:59:06.684187 32304 solver.cpp:245] Train net output #42: loss/loss21 = 0.000130617 (* 0.0454545 = 5.93714e-06 loss) | |
I0407 14:59:06.684201 32304 solver.cpp:245] Train net output #43: loss/loss22 = 0.000124749 (* 0.0454545 = 5.67042e-06 loss) | |
I0407 14:59:06.684213 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 14:59:06.684226 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000255986 | |
I0407 14:59:06.684239 32304 sgd_solver.cpp:106] Iteration 64500, lr = 0.00871 | |
I0407 15:00:18.813752 32304 solver.cpp:338] Iteration 65000, Testing net (#0) | |
I0407 15:00:26.789994 32304 solver.cpp:393] Test loss: 0.751224 | |
I0407 15:00:26.790040 32304 solver.cpp:406] Test net output #0: loss/accuracy01 = 0.22 | |
I0407 15:00:26.790057 32304 solver.cpp:406] Test net output #1: loss/accuracy02 = 0.109 | |
I0407 15:00:26.790071 32304 solver.cpp:406] Test net output #2: loss/accuracy03 = 0.118 | |
I0407 15:00:26.790082 32304 solver.cpp:406] Test net output #3: loss/accuracy04 = 0.151 | |
I0407 15:00:26.790093 32304 solver.cpp:406] Test net output #4: loss/accuracy05 = 0.254 | |
I0407 15:00:26.790105 32304 solver.cpp:406] Test net output #5: loss/accuracy06 = 0.526 | |
I0407 15:00:26.790117 32304 solver.cpp:406] Test net output #6: loss/accuracy07 = 0.897 | |
I0407 15:00:26.790127 32304 solver.cpp:406] Test net output #7: loss/accuracy08 = 0.97 | |
I0407 15:00:26.790138 32304 solver.cpp:406] Test net output #8: loss/accuracy09 = 0.995 | |
I0407 15:00:26.790150 32304 solver.cpp:406] Test net output #9: loss/accuracy10 = 0.998 | |
I0407 15:00:26.790161 32304 solver.cpp:406] Test net output #10: loss/accuracy11 = 1 | |
I0407 15:00:26.790172 32304 solver.cpp:406] Test net output #11: loss/accuracy12 = 1 | |
I0407 15:00:26.790184 32304 solver.cpp:406] Test net output #12: loss/accuracy13 = 1 | |
I0407 15:00:26.790195 32304 solver.cpp:406] Test net output #13: loss/accuracy14 = 1 | |
I0407 15:00:26.790206 32304 solver.cpp:406] Test net output #14: loss/accuracy15 = 1 | |
I0407 15:00:26.790217 32304 solver.cpp:406] Test net output #15: loss/accuracy16 = 1 | |
I0407 15:00:26.790228 32304 solver.cpp:406] Test net output #16: loss/accuracy17 = 1 | |
I0407 15:00:26.790240 32304 solver.cpp:406] Test net output #17: loss/accuracy18 = 1 | |
I0407 15:00:26.790251 32304 solver.cpp:406] Test net output #18: loss/accuracy19 = 1 | |
I0407 15:00:26.790262 32304 solver.cpp:406] Test net output #19: loss/accuracy20 = 1 | |
I0407 15:00:26.790273 32304 solver.cpp:406] Test net output #20: loss/accuracy21 = 1 | |
I0407 15:00:26.790284 32304 solver.cpp:406] Test net output #21: loss/accuracy22 = 1 | |
I0407 15:00:26.790299 32304 solver.cpp:406] Test net output #22: loss/loss01 = 2.77803 (* 0.0454545 = 0.126274 loss) | |
I0407 15:00:26.790313 32304 solver.cpp:406] Test net output #23: loss/loss02 = 2.93853 (* 0.0454545 = 0.13357 loss) | |
I0407 15:00:26.790328 32304 solver.cpp:406] Test net output #24: loss/loss03 = 2.92924 (* 0.0454545 = 0.133147 loss) | |
I0407 15:00:26.790340 32304 solver.cpp:406] Test net output #25: loss/loss04 = 2.86099 (* 0.0454545 = 0.130045 loss) | |
I0407 15:00:26.790354 32304 solver.cpp:406] Test net output #26: loss/loss05 = 2.62577 (* 0.0454545 = 0.119353 loss) | |
I0407 15:00:26.790367 32304 solver.cpp:406] Test net output #27: loss/loss06 = 1.68763 (* 0.0454545 = 0.0767104 loss) | |
I0407 15:00:26.790380 32304 solver.cpp:406] Test net output #28: loss/loss07 = 0.429252 (* 0.0454545 = 0.0195115 loss) | |
I0407 15:00:26.790395 32304 solver.cpp:406] Test net output #29: loss/loss08 = 0.201378 (* 0.0454545 = 0.00915356 loss) | |
I0407 15:00:26.790408 32304 solver.cpp:406] Test net output #30: loss/loss09 = 0.0523305 (* 0.0454545 = 0.00237866 loss) | |
I0407 15:00:26.790422 32304 solver.cpp:406] Test net output #31: loss/loss10 = 0.0228979 (* 0.0454545 = 0.00104081 loss) | |
I0407 15:00:26.790436 32304 solver.cpp:406] Test net output #32: loss/loss11 = 7.4944e-05 (* 0.0454545 = 3.40654e-06 loss) | |
I0407 15:00:26.790449 32304 solver.cpp:406] Test net output #33: loss/loss12 = 7.5806e-05 (* 0.0454545 = 3.44573e-06 loss) | |
I0407 15:00:26.790463 32304 solver.cpp:406] Test net output #34: loss/loss13 = 7.58695e-05 (* 0.0454545 = 3.44862e-06 loss) | |
I0407 15:00:26.790477 32304 solver.cpp:406] Test net output #35: loss/loss14 = 7.48943e-05 (* 0.0454545 = 3.40429e-06 loss) | |
I0407 15:00:26.790490 32304 solver.cpp:406] Test net output #36: loss/loss15 = 7.09186e-05 (* 0.0454545 = 3.22357e-06 loss) | |
I0407 15:00:26.790504 32304 solver.cpp:406] Test net output #37: loss/loss16 = 7.66309e-05 (* 0.0454545 = 3.48322e-06 loss) | |
I0407 15:00:26.790518 32304 solver.cpp:406] Test net output #38: loss/loss17 = 7.47564e-05 (* 0.0454545 = 3.39802e-06 loss) | |
I0407 15:00:26.790567 32304 solver.cpp:406] Test net output #39: loss/loss18 = 6.98005e-05 (* 0.0454545 = 3.17275e-06 loss) | |
I0407 15:00:26.790582 32304 solver.cpp:406] Test net output #40: loss/loss19 = 7.29501e-05 (* 0.0454545 = 3.31591e-06 loss) | |
I0407 15:00:26.790596 32304 solver.cpp:406] Test net output #41: loss/loss20 = 7.53733e-05 (* 0.0454545 = 3.42606e-06 loss) | |
I0407 15:00:26.790611 32304 solver.cpp:406] Test net output #42: loss/loss21 = 6.83761e-05 (* 0.0454545 = 3.108e-06 loss) | |
I0407 15:00:26.790624 32304 solver.cpp:406] Test net output #43: loss/loss22 = 7.333e-05 (* 0.0454545 = 3.33318e-06 loss) | |
I0407 15:00:26.790637 32304 solver.cpp:406] Test net output #44: total_accuracy = 0.001 | |
I0407 15:00:26.790647 32304 solver.cpp:406] Test net output #45: total_confidence = 0.000563006 | |
I0407 15:00:26.824812 32304 solver.cpp:229] Iteration 65000, loss = 0.846674 | |
I0407 15:00:26.824851 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.3125 | |
I0407 15:00:26.824867 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.25 | |
I0407 15:00:26.824880 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.1875 | |
I0407 15:00:26.824892 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.25 | |
I0407 15:00:26.824903 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.21875 | |
I0407 15:00:26.824916 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125 | |
I0407 15:00:26.824928 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625 | |
I0407 15:00:26.824939 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375 | |
I0407 15:00:26.824950 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0407 15:00:26.824962 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0407 15:00:26.824973 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:00:26.824985 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:00:26.824996 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:00:26.825008 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:00:26.825019 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:00:26.825031 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:00:26.825042 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:00:26.825052 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:00:26.825063 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:00:26.825078 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:00:26.825089 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:00:26.825100 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:00:26.825115 32304 solver.cpp:245] Train net output #22: loss/loss01 = 2.80358 (* 0.0454545 = 0.127436 loss) | |
I0407 15:00:26.825129 32304 solver.cpp:245] Train net output #23: loss/loss02 = 2.61543 (* 0.0454545 = 0.118883 loss) | |
I0407 15:00:26.825144 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.09636 (* 0.0454545 = 0.140744 loss) | |
I0407 15:00:26.825156 32304 solver.cpp:245] Train net output #25: loss/loss04 = 2.8554 (* 0.0454545 = 0.129791 loss) | |
I0407 15:00:26.825170 32304 solver.cpp:245] Train net output #26: loss/loss05 = 2.81525 (* 0.0454545 = 0.127966 loss) | |
I0407 15:00:26.825183 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.3381 (* 0.0454545 = 0.106277 loss) | |
I0407 15:00:26.825196 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.64966 (* 0.0454545 = 0.0749847 loss) | |
I0407 15:00:26.825211 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.607301 (* 0.0454545 = 0.0276046 loss) | |
I0407 15:00:26.825223 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.166366 (* 0.0454545 = 0.00756208 loss) | |
I0407 15:00:26.825254 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.133073 (* 0.0454545 = 0.00604876 loss) | |
I0407 15:00:26.825270 32304 solver.cpp:245] Train net output #32: loss/loss11 = 3.65549e-05 (* 0.0454545 = 1.66158e-06 loss) | |
I0407 15:00:26.825284 32304 solver.cpp:245] Train net output #33: loss/loss12 = 3.71361e-05 (* 0.0454545 = 1.688e-06 loss) | |
I0407 15:00:26.825299 32304 solver.cpp:245] Train net output #34: loss/loss13 = 3.32519e-05 (* 0.0454545 = 1.51145e-06 loss) | |
I0407 15:00:26.825314 32304 solver.cpp:245] Train net output #35: loss/loss14 = 3.65663e-05 (* 0.0454545 = 1.66211e-06 loss) | |
I0407 15:00:26.825327 32304 solver.cpp:245] Train net output #36: loss/loss15 = 3.67152e-05 (* 0.0454545 = 1.66887e-06 loss) | |
I0407 15:00:26.825340 32304 solver.cpp:245] Train net output #37: loss/loss16 = 3.15158e-05 (* 0.0454545 = 1.43253e-06 loss) | |
I0407 15:00:26.825355 32304 solver.cpp:245] Train net output #38: loss/loss17 = 3.2235e-05 (* 0.0454545 = 1.46523e-06 loss) | |
I0407 15:00:26.825368 32304 solver.cpp:245] Train net output #39: loss/loss18 = 3.60892e-05 (* 0.0454545 = 1.64042e-06 loss) | |
I0407 15:00:26.825382 32304 solver.cpp:245] Train net output #40: loss/loss19 = 3.56719e-05 (* 0.0454545 = 1.62145e-06 loss) | |
I0407 15:00:26.825397 32304 solver.cpp:245] Train net output #41: loss/loss20 = 3.48784e-05 (* 0.0454545 = 1.58538e-06 loss) | |
I0407 15:00:26.825410 32304 solver.cpp:245] Train net output #42: loss/loss21 = 3.24212e-05 (* 0.0454545 = 1.47369e-06 loss) | |
I0407 15:00:26.825423 32304 solver.cpp:245] Train net output #43: loss/loss22 = 3.27472e-05 (* 0.0454545 = 1.48851e-06 loss) | |
I0407 15:00:26.825435 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:00:26.825448 32304 solver.cpp:245] Train net output #45: total_confidence = 0.00139197 | |
I0407 15:00:26.825461 32304 sgd_solver.cpp:106] Iteration 65000, lr = 0.0087 | |
I0407 15:01:39.858453 32304 solver.cpp:229] Iteration 65500, loss = 0.852158 | |
I0407 15:01:39.858595 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.25 | |
I0407 15:01:39.858615 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 15:01:39.858629 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0407 15:01:39.858641 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.28125 | |
I0407 15:01:39.858654 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.21875 | |
I0407 15:01:39.858665 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625 | |
I0407 15:01:39.858677 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.5625 | |
I0407 15:01:39.858690 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 15:01:39.858701 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625 | |
I0407 15:01:39.858713 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0407 15:01:39.858726 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:01:39.858737 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:01:39.858748 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:01:39.858759 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:01:39.858770 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:01:39.858782 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:01:39.858793 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:01:39.858803 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:01:39.858815 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:01:39.858826 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:01:39.858837 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:01:39.858849 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:01:39.858865 32304 solver.cpp:245] Train net output #22: loss/loss01 = 2.60962 (* 0.0454545 = 0.118619 loss) | |
I0407 15:01:39.858878 32304 solver.cpp:245] Train net output #23: loss/loss02 = 2.89078 (* 0.0454545 = 0.131399 loss) | |
I0407 15:01:39.858892 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.05496 (* 0.0454545 = 0.138862 loss) | |
I0407 15:01:39.858906 32304 solver.cpp:245] Train net output #25: loss/loss04 = 2.90741 (* 0.0454545 = 0.132155 loss) | |
I0407 15:01:39.858922 32304 solver.cpp:245] Train net output #26: loss/loss05 = 2.60018 (* 0.0454545 = 0.11819 loss) | |
I0407 15:01:39.858937 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.66762 (* 0.0454545 = 0.121255 loss) | |
I0407 15:01:39.858950 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.83936 (* 0.0454545 = 0.0836071 loss) | |
I0407 15:01:39.858964 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.574745 (* 0.0454545 = 0.0261248 loss) | |
I0407 15:01:39.858978 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.424202 (* 0.0454545 = 0.0192819 loss) | |
I0407 15:01:39.858991 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.123639 (* 0.0454545 = 0.00561995 loss) | |
I0407 15:01:39.859006 32304 solver.cpp:245] Train net output #32: loss/loss11 = 8.01998e-05 (* 0.0454545 = 3.64544e-06 loss) | |
I0407 15:01:39.859020 32304 solver.cpp:245] Train net output #33: loss/loss12 = 8.51606e-05 (* 0.0454545 = 3.87094e-06 loss) | |
I0407 15:01:39.859035 32304 solver.cpp:245] Train net output #34: loss/loss13 = 7.71112e-05 (* 0.0454545 = 3.50505e-06 loss) | |
I0407 15:01:39.859048 32304 solver.cpp:245] Train net output #35: loss/loss14 = 8.16899e-05 (* 0.0454545 = 3.71318e-06 loss) | |
I0407 15:01:39.859062 32304 solver.cpp:245] Train net output #36: loss/loss15 = 7.07024e-05 (* 0.0454545 = 3.21375e-06 loss) | |
I0407 15:01:39.859076 32304 solver.cpp:245] Train net output #37: loss/loss16 = 6.81828e-05 (* 0.0454545 = 3.09922e-06 loss) | |
I0407 15:01:39.859089 32304 solver.cpp:245] Train net output #38: loss/loss17 = 6.78138e-05 (* 0.0454545 = 3.08245e-06 loss) | |
I0407 15:01:39.859117 32304 solver.cpp:245] Train net output #39: loss/loss18 = 7.48806e-05 (* 0.0454545 = 3.40366e-06 loss) | |
I0407 15:01:39.859132 32304 solver.cpp:245] Train net output #40: loss/loss19 = 7.34541e-05 (* 0.0454545 = 3.33882e-06 loss) | |
I0407 15:01:39.859145 32304 solver.cpp:245] Train net output #41: loss/loss20 = 7.36496e-05 (* 0.0454545 = 3.34771e-06 loss) | |
I0407 15:01:39.859159 32304 solver.cpp:245] Train net output #42: loss/loss21 = 6.96809e-05 (* 0.0454545 = 3.16731e-06 loss) | |
I0407 15:01:39.859172 32304 solver.cpp:245] Train net output #43: loss/loss22 = 7.17998e-05 (* 0.0454545 = 3.26363e-06 loss) | |
I0407 15:01:39.859184 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:01:39.859196 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000679538 | |
I0407 15:01:39.859210 32304 sgd_solver.cpp:106] Iteration 65500, lr = 0.00869 | |
I0407 15:02:53.939813 32304 solver.cpp:229] Iteration 66000, loss = 0.847152 | |
I0407 15:02:53.940101 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.25 | |
I0407 15:02:53.940121 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125 | |
I0407 15:02:53.940135 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.21875 | |
I0407 15:02:53.940147 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 15:02:53.940160 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.15625 | |
I0407 15:02:53.940181 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0407 15:02:53.940203 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875 | |
I0407 15:02:53.940218 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0407 15:02:53.940230 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625 | |
I0407 15:02:53.940243 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0407 15:02:53.940253 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:02:53.940265 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:02:53.940276 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:02:53.940289 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:02:53.940299 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:02:53.940310 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:02:53.940321 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:02:53.940333 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:02:53.940345 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:02:53.940356 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:02:53.940366 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:02:53.940378 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:02:53.940393 32304 solver.cpp:245] Train net output #22: loss/loss01 = 2.93097 (* 0.0454545 = 0.133226 loss) | |
I0407 15:02:53.940407 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.00872 (* 0.0454545 = 0.13676 loss) | |
I0407 15:02:53.940421 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.11235 (* 0.0454545 = 0.14147 loss) | |
I0407 15:02:53.940435 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.3768 (* 0.0454545 = 0.153491 loss) | |
I0407 15:02:53.940449 32304 solver.cpp:245] Train net output #26: loss/loss05 = 3.1463 (* 0.0454545 = 0.143014 loss) | |
I0407 15:02:53.940462 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.41549 (* 0.0454545 = 0.109795 loss) | |
I0407 15:02:53.940476 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.21036 (* 0.0454545 = 0.0550162 loss) | |
I0407 15:02:53.940490 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.409821 (* 0.0454545 = 0.0186282 loss) | |
I0407 15:02:53.940503 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.421244 (* 0.0454545 = 0.0191474 loss) | |
I0407 15:02:53.940517 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.217774 (* 0.0454545 = 0.0098988 loss) | |
I0407 15:02:53.940531 32304 solver.cpp:245] Train net output #32: loss/loss11 = 9.44928e-05 (* 0.0454545 = 4.29513e-06 loss) | |
I0407 15:02:53.940546 32304 solver.cpp:245] Train net output #33: loss/loss12 = 9.03593e-05 (* 0.0454545 = 4.10724e-06 loss) | |
I0407 15:02:53.940560 32304 solver.cpp:245] Train net output #34: loss/loss13 = 8.49584e-05 (* 0.0454545 = 3.86175e-06 loss) | |
I0407 15:02:53.940573 32304 solver.cpp:245] Train net output #35: loss/loss14 = 8.63894e-05 (* 0.0454545 = 3.92679e-06 loss) | |
I0407 15:02:53.940587 32304 solver.cpp:245] Train net output #36: loss/loss15 = 8.34481e-05 (* 0.0454545 = 3.7931e-06 loss) | |
I0407 15:02:53.940601 32304 solver.cpp:245] Train net output #37: loss/loss16 = 7.26942e-05 (* 0.0454545 = 3.30428e-06 loss) | |
I0407 15:02:53.940615 32304 solver.cpp:245] Train net output #38: loss/loss17 = 7.79911e-05 (* 0.0454545 = 3.54505e-06 loss) | |
I0407 15:02:53.940647 32304 solver.cpp:245] Train net output #39: loss/loss18 = 7.61931e-05 (* 0.0454545 = 3.46332e-06 loss) | |
I0407 15:02:53.940662 32304 solver.cpp:245] Train net output #40: loss/loss19 = 7.82159e-05 (* 0.0454545 = 3.55527e-06 loss) | |
I0407 15:02:53.940676 32304 solver.cpp:245] Train net output #41: loss/loss20 = 7.84636e-05 (* 0.0454545 = 3.56653e-06 loss) | |
I0407 15:02:53.940690 32304 solver.cpp:245] Train net output #42: loss/loss21 = 8.64167e-05 (* 0.0454545 = 3.92803e-06 loss) | |
I0407 15:02:53.940703 32304 solver.cpp:245] Train net output #43: loss/loss22 = 6.97528e-05 (* 0.0454545 = 3.17058e-06 loss) | |
I0407 15:02:53.940716 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:02:53.940726 32304 solver.cpp:245] Train net output #45: total_confidence = 0.00086436 | |
I0407 15:02:53.940739 32304 sgd_solver.cpp:106] Iteration 66000, lr = 0.00868 | |
I0407 15:04:06.356780 32304 solver.cpp:229] Iteration 66500, loss = 0.850381 | |
I0407 15:04:06.356880 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.28125 | |
I0407 15:04:06.356899 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0407 15:04:06.356912 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0407 15:04:06.356925 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0407 15:04:06.356936 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125 | |
I0407 15:04:06.356948 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0407 15:04:06.356961 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0407 15:04:06.356972 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 15:04:06.356983 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0407 15:04:06.356995 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 15:04:06.357007 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:04:06.357018 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:04:06.357029 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:04:06.357040 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:04:06.357051 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:04:06.357064 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:04:06.357077 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:04:06.357089 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:04:06.357100 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:04:06.357111 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:04:06.357122 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:04:06.357134 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:04:06.357151 32304 solver.cpp:245] Train net output #22: loss/loss01 = 2.20731 (* 0.0454545 = 0.100332 loss) | |
I0407 15:04:06.357164 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.00897 (* 0.0454545 = 0.136771 loss) | |
I0407 15:04:06.357178 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.08744 (* 0.0454545 = 0.140338 loss) | |
I0407 15:04:06.357192 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.03842 (* 0.0454545 = 0.13811 loss) | |
I0407 15:04:06.357205 32304 solver.cpp:245] Train net output #26: loss/loss05 = 2.79099 (* 0.0454545 = 0.126863 loss) | |
I0407 15:04:06.357219 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.06719 (* 0.0454545 = 0.093963 loss) | |
I0407 15:04:06.357233 32304 solver.cpp:245] Train net output #28: loss/loss07 = 0.805061 (* 0.0454545 = 0.0365937 loss) | |
I0407 15:04:06.357246 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.266289 (* 0.0454545 = 0.012104 loss) | |
I0407 15:04:06.357260 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.194756 (* 0.0454545 = 0.00885256 loss) | |
I0407 15:04:06.357275 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.00403786 (* 0.0454545 = 0.000183539 loss) | |
I0407 15:04:06.357288 32304 solver.cpp:245] Train net output #32: loss/loss11 = 2.86766e-05 (* 0.0454545 = 1.30348e-06 loss) | |
I0407 15:04:06.357302 32304 solver.cpp:245] Train net output #33: loss/loss12 = 2.89579e-05 (* 0.0454545 = 1.31627e-06 loss) | |
I0407 15:04:06.357316 32304 solver.cpp:245] Train net output #34: loss/loss13 = 2.59234e-05 (* 0.0454545 = 1.17834e-06 loss) | |
I0407 15:04:06.357331 32304 solver.cpp:245] Train net output #35: loss/loss14 = 2.806e-05 (* 0.0454545 = 1.27545e-06 loss) | |
I0407 15:04:06.357344 32304 solver.cpp:245] Train net output #36: loss/loss15 = 2.73615e-05 (* 0.0454545 = 1.24371e-06 loss) | |
I0407 15:04:06.357358 32304 solver.cpp:245] Train net output #37: loss/loss16 = 2.65046e-05 (* 0.0454545 = 1.20475e-06 loss) | |
I0407 15:04:06.357372 32304 solver.cpp:245] Train net output #38: loss/loss17 = 2.80062e-05 (* 0.0454545 = 1.27301e-06 loss) | |
I0407 15:04:06.357403 32304 solver.cpp:245] Train net output #39: loss/loss18 = 2.76725e-05 (* 0.0454545 = 1.25784e-06 loss) | |
I0407 15:04:06.357419 32304 solver.cpp:245] Train net output #40: loss/loss19 = 2.80433e-05 (* 0.0454545 = 1.27469e-06 loss) | |
I0407 15:04:06.357432 32304 solver.cpp:245] Train net output #41: loss/loss20 = 2.79576e-05 (* 0.0454545 = 1.2708e-06 loss) | |
I0407 15:04:06.357446 32304 solver.cpp:245] Train net output #42: loss/loss21 = 2.56458e-05 (* 0.0454545 = 1.16572e-06 loss) | |
I0407 15:04:06.357460 32304 solver.cpp:245] Train net output #43: loss/loss22 = 2.49418e-05 (* 0.0454545 = 1.13372e-06 loss) | |
I0407 15:04:06.357471 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:04:06.357483 32304 solver.cpp:245] Train net output #45: total_confidence = 0.00154345 | |
I0407 15:04:06.357507 32304 sgd_solver.cpp:106] Iteration 66500, lr = 0.00867 | |
I0407 15:05:18.559504 32304 solver.cpp:229] Iteration 67000, loss = 0.847989 | |
I0407 15:05:18.559631 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.3125 | |
I0407 15:05:18.559651 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0407 15:05:18.559664 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.1875 | |
I0407 15:05:18.559676 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625 | |
I0407 15:05:18.559689 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.46875 | |
I0407 15:05:18.559700 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0407 15:05:18.559711 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.78125 | |
I0407 15:05:18.559723 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0407 15:05:18.559736 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0407 15:05:18.559747 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 15:05:18.559758 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:05:18.559769 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:05:18.559780 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:05:18.559792 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:05:18.559803 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:05:18.559814 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:05:18.559825 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:05:18.559837 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:05:18.559849 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:05:18.559859 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:05:18.559870 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:05:18.559882 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:05:18.559897 32304 solver.cpp:245] Train net output #22: loss/loss01 = 2.28767 (* 0.0454545 = 0.103985 loss) | |
I0407 15:05:18.559911 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.12414 (* 0.0454545 = 0.142007 loss) | |
I0407 15:05:18.559926 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.09311 (* 0.0454545 = 0.140596 loss) | |
I0407 15:05:18.559938 32304 solver.cpp:245] Train net output #25: loss/loss04 = 2.81299 (* 0.0454545 = 0.127863 loss) | |
I0407 15:05:18.559952 32304 solver.cpp:245] Train net output #26: loss/loss05 = 1.9361 (* 0.0454545 = 0.0880044 loss) | |
I0407 15:05:18.559967 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.1008 (* 0.0454545 = 0.0954908 loss) | |
I0407 15:05:18.559980 32304 solver.cpp:245] Train net output #28: loss/loss07 = 0.971732 (* 0.0454545 = 0.0441696 loss) | |
I0407 15:05:18.559993 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.357065 (* 0.0454545 = 0.0162302 loss) | |
I0407 15:05:18.560008 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.150945 (* 0.0454545 = 0.00686116 loss) | |
I0407 15:05:18.560021 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.00322226 (* 0.0454545 = 0.000146466 loss) | |
I0407 15:05:18.560035 32304 solver.cpp:245] Train net output #32: loss/loss11 = 8.26675e-05 (* 0.0454545 = 3.75761e-06 loss) | |
I0407 15:05:18.560050 32304 solver.cpp:245] Train net output #33: loss/loss12 = 9.07038e-05 (* 0.0454545 = 4.1229e-06 loss) | |
I0407 15:05:18.560065 32304 solver.cpp:245] Train net output #34: loss/loss13 = 7.66612e-05 (* 0.0454545 = 3.4846e-06 loss) | |
I0407 15:05:18.560081 32304 solver.cpp:245] Train net output #35: loss/loss14 = 8.78773e-05 (* 0.0454545 = 3.99442e-06 loss) | |
I0407 15:05:18.560096 32304 solver.cpp:245] Train net output #36: loss/loss15 = 8.67346e-05 (* 0.0454545 = 3.94248e-06 loss) | |
I0407 15:05:18.560109 32304 solver.cpp:245] Train net output #37: loss/loss16 = 7.71247e-05 (* 0.0454545 = 3.50567e-06 loss) | |
I0407 15:05:18.560123 32304 solver.cpp:245] Train net output #38: loss/loss17 = 7.13525e-05 (* 0.0454545 = 3.2433e-06 loss) | |
I0407 15:05:18.560153 32304 solver.cpp:245] Train net output #39: loss/loss18 = 8.994e-05 (* 0.0454545 = 4.08818e-06 loss) | |
I0407 15:05:18.560173 32304 solver.cpp:245] Train net output #40: loss/loss19 = 8.58671e-05 (* 0.0454545 = 3.90305e-06 loss) | |
I0407 15:05:18.560187 32304 solver.cpp:245] Train net output #41: loss/loss20 = 9.27823e-05 (* 0.0454545 = 4.21738e-06 loss) | |
I0407 15:05:18.560201 32304 solver.cpp:245] Train net output #42: loss/loss21 = 7.45459e-05 (* 0.0454545 = 3.38845e-06 loss) | |
I0407 15:05:18.560214 32304 solver.cpp:245] Train net output #43: loss/loss22 = 7.85979e-05 (* 0.0454545 = 3.57263e-06 loss) | |
I0407 15:05:18.560226 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:05:18.560238 32304 solver.cpp:245] Train net output #45: total_confidence = 0.00227327 | |
I0407 15:05:18.560251 32304 sgd_solver.cpp:106] Iteration 67000, lr = 0.00866 | |
I0407 15:06:30.765231 32304 solver.cpp:229] Iteration 67500, loss = 0.843809 | |
I0407 15:06:30.765353 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.375 | |
I0407 15:06:30.765372 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 15:06:30.765385 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0407 15:06:30.765400 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875 | |
I0407 15:06:30.765413 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0407 15:06:30.765425 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375 | |
I0407 15:06:30.765437 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.78125 | |
I0407 15:06:30.765450 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375 | |
I0407 15:06:30.765461 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0407 15:06:30.765473 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 15:06:30.765485 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:06:30.765496 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:06:30.765507 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:06:30.765519 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:06:30.765530 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:06:30.765542 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:06:30.765552 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:06:30.765564 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:06:30.765575 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:06:30.765586 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:06:30.765597 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:06:30.765609 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:06:30.765625 32304 solver.cpp:245] Train net output #22: loss/loss01 = 2.4718 (* 0.0454545 = 0.112354 loss) | |
I0407 15:06:30.765640 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.02427 (* 0.0454545 = 0.137467 loss) | |
I0407 15:06:30.765652 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.1045 (* 0.0454545 = 0.141114 loss) | |
I0407 15:06:30.765666 32304 solver.cpp:245] Train net output #25: loss/loss04 = 2.9348 (* 0.0454545 = 0.1334 loss) | |
I0407 15:06:30.765681 32304 solver.cpp:245] Train net output #26: loss/loss05 = 2.57848 (* 0.0454545 = 0.117204 loss) | |
I0407 15:06:30.765693 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.3091 (* 0.0454545 = 0.104959 loss) | |
I0407 15:06:30.765707 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.09498 (* 0.0454545 = 0.0497716 loss) | |
I0407 15:06:30.765720 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.78772 (* 0.0454545 = 0.0358054 loss) | |
I0407 15:06:30.765734 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.141134 (* 0.0454545 = 0.00641519 loss) | |
I0407 15:06:30.765748 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.016371 (* 0.0454545 = 0.000744138 loss) | |
I0407 15:06:30.765763 32304 solver.cpp:245] Train net output #32: loss/loss11 = 0.000112144 (* 0.0454545 = 5.09746e-06 loss) | |
I0407 15:06:30.765776 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.000110107 (* 0.0454545 = 5.00486e-06 loss) | |
I0407 15:06:30.765790 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.00010816 (* 0.0454545 = 4.91637e-06 loss) | |
I0407 15:06:30.765805 32304 solver.cpp:245] Train net output #35: loss/loss14 = 0.00011346 (* 0.0454545 = 5.15727e-06 loss) | |
I0407 15:06:30.765820 32304 solver.cpp:245] Train net output #36: loss/loss15 = 0.000106706 (* 0.0454545 = 4.85028e-06 loss) | |
I0407 15:06:30.765833 32304 solver.cpp:245] Train net output #37: loss/loss16 = 0.000101808 (* 0.0454545 = 4.62765e-06 loss) | |
I0407 15:06:30.765846 32304 solver.cpp:245] Train net output #38: loss/loss17 = 9.84663e-05 (* 0.0454545 = 4.47574e-06 loss) | |
I0407 15:06:30.765874 32304 solver.cpp:245] Train net output #39: loss/loss18 = 0.000113811 (* 0.0454545 = 5.17322e-06 loss) | |
I0407 15:06:30.765889 32304 solver.cpp:245] Train net output #40: loss/loss19 = 0.0001117 (* 0.0454545 = 5.07728e-06 loss) | |
I0407 15:06:30.765903 32304 solver.cpp:245] Train net output #41: loss/loss20 = 0.00010829 (* 0.0454545 = 4.92229e-06 loss) | |
I0407 15:06:30.765918 32304 solver.cpp:245] Train net output #42: loss/loss21 = 0.000103323 (* 0.0454545 = 4.69648e-06 loss) | |
I0407 15:06:30.765930 32304 solver.cpp:245] Train net output #43: loss/loss22 = 9.93589e-05 (* 0.0454545 = 4.51631e-06 loss) | |
I0407 15:06:30.765943 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:06:30.765954 32304 solver.cpp:245] Train net output #45: total_confidence = 0.00113089 | |
I0407 15:06:30.765966 32304 sgd_solver.cpp:106] Iteration 67500, lr = 0.00865 | |
I0407 15:07:42.995110 32304 solver.cpp:229] Iteration 68000, loss = 0.8445 | |
I0407 15:07:42.995218 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.21875 | |
I0407 15:07:42.995235 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125 | |
I0407 15:07:42.995249 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0407 15:07:42.995260 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0407 15:07:42.995272 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125 | |
I0407 15:07:42.995285 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625 | |
I0407 15:07:42.995296 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875 | |
I0407 15:07:42.995308 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 15:07:42.995319 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0407 15:07:42.995332 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0407 15:07:42.995357 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:07:42.995371 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:07:42.995383 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:07:42.995395 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:07:42.995406 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:07:42.995417 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:07:42.995429 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:07:42.995440 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:07:42.995451 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:07:42.995463 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:07:42.995474 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:07:42.995486 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:07:42.995502 32304 solver.cpp:245] Train net output #22: loss/loss01 = 2.54708 (* 0.0454545 = 0.115777 loss) | |
I0407 15:07:42.995517 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.03012 (* 0.0454545 = 0.137733 loss) | |
I0407 15:07:42.995530 32304 solver.cpp:245] Train net output #24: loss/loss03 = 3.17673 (* 0.0454545 = 0.144397 loss) | |
I0407 15:07:42.995543 32304 solver.cpp:245] Train net output #25: loss/loss04 = 2.92661 (* 0.0454545 = 0.133028 loss) | |
I0407 15:07:42.995556 32304 solver.cpp:245] Train net output #26: loss/loss05 = 2.65506 (* 0.0454545 = 0.120684 loss) | |
I0407 15:07:42.995570 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.3528 (* 0.0454545 = 0.106946 loss) | |
I0407 15:07:42.995584 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.08068 (* 0.0454545 = 0.0491216 loss) | |
I0407 15:07:42.995597 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.587965 (* 0.0454545 = 0.0267257 loss) | |
I0407 15:07:42.995610 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.274432 (* 0.0454545 = 0.0124742 loss) | |
I0407 15:07:42.995625 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.240431 (* 0.0454545 = 0.0109287 loss) | |
I0407 15:07:42.995638 32304 solver.cpp:245] Train net output #32: loss/loss11 = 5.58641e-05 (* 0.0454545 = 2.53928e-06 loss) | |
I0407 15:07:42.995652 32304 solver.cpp:245] Train net output #33: loss/loss12 = 5.08679e-05 (* 0.0454545 = 2.31218e-06 loss) | |
I0407 15:07:42.995666 32304 solver.cpp:245] Train net output #34: loss/loss13 = 5.22279e-05 (* 0.0454545 = 2.374e-06 loss) | |
I0407 15:07:42.995679 32304 solver.cpp:245] Train net output #35: loss/loss14 = 5.25298e-05 (* 0.0454545 = 2.38772e-06 loss) | |
I0407 15:07:42.995693 32304 solver.cpp:245] Train net output #36: loss/loss15 = 4.88189e-05 (* 0.0454545 = 2.21904e-06 loss) | |
I0407 15:07:42.995707 32304 solver.cpp:245] Train net output #37: loss/loss16 = 4.55495e-05 (* 0.0454545 = 2.07043e-06 loss) | |
I0407 15:07:42.995721 32304 solver.cpp:245] Train net output #38: loss/loss17 = 4.95547e-05 (* 0.0454545 = 2.25249e-06 loss) | |
I0407 15:07:42.995753 32304 solver.cpp:245] Train net output #39: loss/loss18 = 4.55644e-05 (* 0.0454545 = 2.07111e-06 loss) | |
I0407 15:07:42.995767 32304 solver.cpp:245] Train net output #40: loss/loss19 = 4.97593e-05 (* 0.0454545 = 2.26179e-06 loss) | |
I0407 15:07:42.995780 32304 solver.cpp:245] Train net output #41: loss/loss20 = 5.1058e-05 (* 0.0454545 = 2.32082e-06 loss) | |
I0407 15:07:42.995795 32304 solver.cpp:245] Train net output #42: loss/loss21 = 4.74422e-05 (* 0.0454545 = 2.15646e-06 loss) | |
I0407 15:07:42.995807 32304 solver.cpp:245] Train net output #43: loss/loss22 = 4.48266e-05 (* 0.0454545 = 2.03757e-06 loss) | |
I0407 15:07:42.995822 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:07:42.995834 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000759899 | |
I0407 15:07:42.995848 32304 sgd_solver.cpp:106] Iteration 68000, lr = 0.00864 | |
I0407 15:08:54.982893 32304 solver.cpp:229] Iteration 68500, loss = 0.84276 | |
I0407 15:08:54.983001 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.1875 | |
I0407 15:08:54.983021 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0407 15:08:54.983037 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0407 15:08:54.983049 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375 | |
I0407 15:08:54.983062 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.21875 | |
I0407 15:08:54.983073 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625 | |
I0407 15:08:54.983085 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.78125 | |
I0407 15:08:54.983098 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0407 15:08:54.983108 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0407 15:08:54.983120 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 15:08:54.983132 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:08:54.983144 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:08:54.983156 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:08:54.983167 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:08:54.983178 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:08:54.983191 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:08:54.983201 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:08:54.983212 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:08:54.983223 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:08:54.983235 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:08:54.983247 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:08:54.983258 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:08:54.983273 32304 solver.cpp:245] Train net output #22: loss/loss01 = 2.75359 (* 0.0454545 = 0.125163 loss) | |
I0407 15:08:54.983288 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.01462 (* 0.0454545 = 0.137028 loss) | |
I0407 15:08:54.983301 32304 solver.cpp:245] Train net output #24: loss/loss03 = 2.89237 (* 0.0454545 = 0.131472 loss) | |
I0407 15:08:54.983315 32304 solver.cpp:245] Train net output #25: loss/loss04 = 2.97514 (* 0.0454545 = 0.135234 loss) | |
I0407 15:08:54.983351 32304 solver.cpp:245] Train net output #26: loss/loss05 = 2.63725 (* 0.0454545 = 0.119875 loss) | |
I0407 15:08:54.983366 32304 solver.cpp:245] Train net output #27: loss/loss06 = 2.29177 (* 0.0454545 = 0.104172 loss) | |
I0407 15:08:54.983379 32304 solver.cpp:245] Train net output #28: loss/loss07 = 0.926131 (* 0.0454545 = 0.0420969 loss) | |
I0407 15:08:54.983392 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.502783 (* 0.0454545 = 0.0228538 loss) | |
I0407 15:08:54.983407 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.0419899 (* 0.0454545 = 0.00190863 loss) | |
I0407 15:08:54.983422 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.018156 (* 0.0454545 = 0.000825274 loss) | |
I0407 15:08:54.983435 32304 solver.cpp:245] Train net output #32: loss/loss11 = 0.000168967 (* 0.0454545 = 7.6803e-06 loss) | |
I0407 15:08:54.983449 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.000181705 (* 0.0454545 = 8.25933e-06 loss) | |
I0407 15:08:54.983464 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.000169843 (* 0.0454545 = 7.72013e-06 loss) | |
I0407 15:08:54.983477 32304 solver.cpp:245] Train net output #35: loss/loss14 = 0.000169745 (* 0.0454545 = 7.71569e-06 loss) | |
I0407 15:08:54.983491 32304 solver.cpp:245] Train net output #36: loss/loss15 = 0.000160041 (* 0.0454545 = 7.27459e-06 loss) | |
I0407 15:08:54.983505 32304 solver.cpp:245] Train net output #37: loss/loss16 = 0.000162851 (* 0.0454545 = 7.4023e-06 loss) | |
I0407 15:08:54.983520 32304 solver.cpp:245] Train net output #38: loss/loss17 = 0.000153592 (* 0.0454545 = 6.98147e-06 loss) | |
I0407 15:08:54.983551 32304 solver.cpp:245] Train net output #39: loss/loss18 = 0.000182217 (* 0.0454545 = 8.2826e-06 loss) | |
I0407 15:08:54.983567 32304 solver.cpp:245] Train net output #40: loss/loss19 = 0.000173222 (* 0.0454545 = 7.87374e-06 loss) | |
I0407 15:08:54.983580 32304 solver.cpp:245] Train net output #41: loss/loss20 = 0.000180153 (* 0.0454545 = 8.18878e-06 loss) | |
I0407 15:08:54.983594 32304 solver.cpp:245] Train net output #42: loss/loss21 = 0.000167564 (* 0.0454545 = 7.61653e-06 loss) | |
I0407 15:08:54.983608 32304 solver.cpp:245] Train net output #43: loss/loss22 = 0.000161796 (* 0.0454545 = 7.35436e-06 loss) | |
I0407 15:08:54.983620 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:08:54.983631 32304 solver.cpp:245] Train net output #45: total_confidence = 0.000546207 | |
I0407 15:08:54.983645 32304 sgd_solver.cpp:106] Iteration 68500, lr = 0.00863 | |
I0407 15:10:07.033193 32304 solver.cpp:229] Iteration 69000, loss = 0.843415 | |
I0407 15:10:07.033313 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.21875 | |
I0407 15:10:07.033334 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0407 15:10:07.033347 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0407 15:10:07.033360 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.3125 | |
I0407 15:10:07.033371 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.46875 | |
I0407 15:10:07.033383 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.46875 | |
I0407 15:10:07.033396 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.875 | |
I0407 15:10:07.033406 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 15:10:07.033418 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0407 15:10:07.033430 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0407 15:10:07.033442 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:10:07.033453 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:10:07.033465 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:10:07.033476 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:10:07.033488 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:10:07.033499 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:10:07.033509 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:10:07.033521 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:10:07.033532 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:10:07.033543 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:10:07.033555 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:10:07.033566 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:10:07.033581 32304 solver.cpp:245] Train net output #22: loss/loss01 = 2.32451 (* 0.0454545 = 0.105659 loss) | |
I0407 15:10:07.033596 32304 solver.cpp:245] Train net output #23: loss/loss02 = 3.01975 (* 0.0454545 = 0.137261 loss) | |
I0407 15:10:07.033609 32304 solver.cpp:245] Train net output #24: loss/loss03 = 2.93249 (* 0.0454545 = 0.133295 loss) | |
I0407 15:10:07.033623 32304 solver.cpp:245] Train net output #25: loss/loss04 = 2.73401 (* 0.0454545 = 0.124273 loss) | |
I0407 15:10:07.033637 32304 solver.cpp:245] Train net output #26: loss/loss05 = 2.08952 (* 0.0454545 = 0.0949783 loss) | |
I0407 15:10:07.033650 32304 solver.cpp:245] Train net output #27: loss/loss06 = 1.71018 (* 0.0454545 = 0.0777354 loss) | |
I0407 15:10:07.033663 32304 solver.cpp:245] Train net output #28: loss/loss07 = 0.757835 (* 0.0454545 = 0.034447 loss) | |
I0407 15:10:07.033677 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.298781 (* 0.0454545 = 0.0135809 loss) | |
I0407 15:10:07.033691 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.120029 (* 0.0454545 = 0.00545585 loss) | |
I0407 15:10:07.033705 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.136168 (* 0.0454545 = 0.00618947 loss) | |
I0407 15:10:07.033720 32304 solver.cpp:245] Train net output #32: loss/loss11 = 8.04232e-05 (* 0.0454545 = 3.6556e-06 loss) | |
I0407 15:10:07.033735 32304 solver.cpp:245] Train net output #33: loss/loss12 = 7.62358e-05 (* 0.0454545 = 3.46526e-06 loss) | |
I0407 15:10:07.033748 32304 solver.cpp:245] Train net output #34: loss/loss13 = 7.20901e-05 (* 0.0454545 = 3.27682e-06 loss) | |
I0407 15:10:07.033761 32304 solver.cpp:245] Train net output #35: loss/loss14 = 7.41993e-05 (* 0.0454545 = 3.3727e-06 loss) | |
I0407 15:10:07.033776 32304 solver.cpp:245] Train net output #36: loss/loss15 = 7.17847e-05 (* 0.0454545 = 3.26294e-06 loss) | |
I0407 15:10:07.033789 32304 solver.cpp:245] Train net output #37: loss/loss16 = 6.73099e-05 (* 0.0454545 = 3.05954e-06 loss) | |
I0407 15:10:07.033803 32304 solver.cpp:245] Train net output #38: loss/loss17 = 6.95064e-05 (* 0.0454545 = 3.15938e-06 loss) | |
I0407 15:10:07.033833 32304 solver.cpp:245] Train net output #39: loss/loss18 = 7.75378e-05 (* 0.0454545 = 3.52445e-06 loss) | |
I0407 15:10:07.033849 32304 solver.cpp:245] Train net output #40: loss/loss19 = 6.89286e-05 (* 0.0454545 = 3.13312e-06 loss) | |
I0407 15:10:07.033862 32304 solver.cpp:245] Train net output #41: loss/loss20 = 6.98899e-05 (* 0.0454545 = 3.17681e-06 loss) | |
I0407 15:10:07.033876 32304 solver.cpp:245] Train net output #42: loss/loss21 = 6.70992e-05 (* 0.0454545 = 3.04996e-06 loss) | |
I0407 15:10:07.033890 32304 solver.cpp:245] Train net output #43: loss/loss22 = 6.48492e-05 (* 0.0454545 = 2.94769e-06 loss) | |
I0407 15:10:07.033902 32304 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0407 15:10:07.033915 32304 solver.cpp:245] Train net output #45: total_confidence = 0.00241359 | |
I0407 15:10:07.033926 32304 sgd_solver.cpp:106] Iteration 69000, lr = 0.00862 | |
I0407 15:11:19.843930 32304 solver.cpp:229] Iteration 69500, loss = 0.83685 | |
I0407 15:11:19.844060 32304 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.3125 | |
I0407 15:11:19.844082 32304 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0407 15:11:19.844096 32304 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0407 15:11:19.844110 32304 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375 | |
I0407 15:11:19.844121 32304 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.375 | |
I0407 15:11:19.844133 32304 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5 | |
I0407 15:11:19.844144 32304 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0407 15:11:19.844156 32304 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0407 15:11:19.844168 32304 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0407 15:11:19.844180 32304 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0407 15:11:19.844192 32304 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0407 15:11:19.844203 32304 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0407 15:11:19.844214 32304 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0407 15:11:19.844225 32304 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0407 15:11:19.844238 32304 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0407 15:11:19.844249 32304 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0407 15:11:19.844259 32304 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0407 15:11:19.844271 32304 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0407 15:11:19.844282 32304 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0407 15:11:19.844295 32304 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0407 15:11:19.844305 32304 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0407 15:11:19.844316 32304 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0407 15:11:19.844331 32304 solver.cpp:245] Train net output #22: loss/loss01 = 2.09646 (* 0.0454545 = 0.0952935 loss) | |
I0407 15:11:19.844347 32304 solver.cpp:245] Train net output #23: loss/loss02 = 2.86582 (* 0.0454545 = 0.130264 loss) | |
I0407 15:11:19.844360 32304 solver.cpp:245] Train net output #24: loss/loss03 = 2.99834 (* 0.0454545 = 0.136288 loss) | |
I0407 15:11:19.844373 32304 solver.cpp:245] Train net output #25: loss/loss04 = 3.05693 (* 0.0454545 = 0.138951 loss) | |
I0407 15:11:19.844388 32304 solver.cpp:245] Train net output #26: loss/loss05 = 2.38011 (* 0.0454545 = 0.108187 loss) | |
I0407 15:11:19.844401 32304 solver.cpp:245] Train net output #27: loss/loss06 = 1.8434 (* 0.0454545 = 0.0837908 loss) | |
I0407 15:11:19.844415 32304 solver.cpp:245] Train net output #28: loss/loss07 = 1.05611 (* 0.0454545 = 0.0480052 loss) | |
I0407 15:11:19.844429 32304 solver.cpp:245] Train net output #29: loss/loss08 = 0.349453 (* 0.0454545 = 0.0158842 loss) | |
I0407 15:11:19.844442 32304 solver.cpp:245] Train net output #30: loss/loss09 = 0.11797 (* 0.0454545 = 0.00536229 loss) | |
I0407 15:11:19.844456 32304 solver.cpp:245] Train net output #31: loss/loss10 = 0.0207696 (* 0.0454545 = 0.000944074 loss) | |
I0407 15:11:19.844470 32304 solver.cpp:245] Train net output #32: loss/loss11 = 0.000175005 (* 0.0454545 = 7.95477e-06 loss) | |
I0407 15:11:19.844485 32304 solver.cpp:245] Train net output #33: loss/loss12 = 0.000198686 (* 0.0454545 = 9.03119e-06 loss) | |
I0407 15:11:19.844499 32304 solver.cpp:245] Train net output #34: loss/loss13 = 0.000199518 (* 0.0454545 = 9.06898e-06 loss) | |
I0407 15:11:19.844513 32304 solver.cpp:245] Train net output #35: loss/loss14 = 0.00018256 (* 0.0454545 = 8.29819e-06 loss) | |
I0407 15:11:19.844527 32304 solver.cpp:245] Train net output #36: loss/loss15 = 0.000181166 (* 0.0454545 = 8.23482e-06 loss) | |
I0407 15:11:19.844540 32304 solver.cpp:245] Train net output #37: loss/loss16 = 0.000173913 (* 0.0454545 = 7.90516e-06 loss) | |
I0407 15:11:19.844554 32304 solver.cpp:245] Train net output #38: loss/loss17 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment