-
-
Save stas-sl/533663f341c33160ae118aeaf5bfe157 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
I0331 10:11:54.822957 29371 solver.cpp:280] Solving mixed_lstm | |
I0331 10:11:54.822969 29371 solver.cpp:281] Learning Rate Policy: fixed | |
I0331 10:11:55.173683 29371 solver.cpp:229] Iteration 0, loss = 13.7452 | |
I0331 10:11:55.173739 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0 | |
I0331 10:11:55.173756 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0 | |
I0331 10:11:55.173769 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.0217391 | |
I0331 10:11:55.173785 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 4.35526 (* 0.3 = 1.30658 loss) | |
I0331 10:11:55.173800 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 4.39893 (* 0.3 = 1.31968 loss) | |
I0331 10:11:55.173812 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0 | |
I0331 10:11:55.173825 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0 | |
I0331 10:11:55.173861 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.0217391 | |
I0331 10:11:55.173877 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 4.26857 (* 0.3 = 1.28057 loss) | |
I0331 10:11:55.173892 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 4.49503 (* 0.3 = 1.34851 loss) | |
I0331 10:11:55.173903 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0 | |
I0331 10:11:55.173915 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.0625 | |
I0331 10:11:55.173928 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0 | |
I0331 10:11:55.173941 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 4.37604 (* 1 = 4.37604 loss) | |
I0331 10:11:55.173954 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 4.11383 (* 1 = 4.11383 loss) | |
I0331 10:11:55.173974 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 10:11:55.173985 29371 solver.cpp:245] Train net output #16: total_confidence = 1.74006e-35 | |
I0331 10:11:55.174007 29371 sgd_solver.cpp:106] Iteration 0, lr = 0.005 | |
I0331 10:11:55.191337 29371 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 40.5927 > 30) by scale factor 0.73905 | |
I0331 10:11:55.470224 29371 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 39.5023 > 30) by scale factor 0.759449 | |
I0331 10:11:55.734731 29371 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 41.3474 > 30) by scale factor 0.725559 | |
I0331 10:11:55.995108 29371 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 36.3043 > 30) by scale factor 0.826349 | |
I0331 10:11:56.256428 29371 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 35.2955 > 30) by scale factor 0.849967 | |
I0331 10:11:56.773097 29371 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 30.9924 > 30) by scale factor 0.967979 | |
I0331 10:14:04.634908 29371 solver.cpp:229] Iteration 500, loss = 8.88836 | |
I0331 10:14:04.635278 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0 | |
I0331 10:14:04.635308 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.75 | |
I0331 10:14:04.635332 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.113636 | |
I0331 10:14:04.635360 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 4.08394 (* 0.3 = 1.22518 loss) | |
I0331 10:14:04.635386 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.60149 (* 0.3 = 0.480448 loss) | |
I0331 10:14:04.635411 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0 | |
I0331 10:14:04.635433 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.75 | |
I0331 10:14:04.635459 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.0909091 | |
I0331 10:14:04.635485 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 4.11438 (* 0.3 = 1.23431 loss) | |
I0331 10:14:04.635512 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.40173 (* 0.3 = 0.420521 loss) | |
I0331 10:14:04.635543 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0681818 | |
I0331 10:14:04.635565 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.738636 | |
I0331 10:14:04.635586 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.0909091 | |
I0331 10:14:04.635610 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.7923 (* 1 = 3.7923 loss) | |
I0331 10:14:04.635637 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 1.16224 (* 1 = 1.16224 loss) | |
I0331 10:14:04.635658 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 10:14:04.635678 29371 solver.cpp:245] Train net output #16: total_confidence = 2.35854e-07 | |
I0331 10:14:04.635699 29371 sgd_solver.cpp:106] Iteration 500, lr = 0.005 | |
I0331 10:16:13.984201 29371 solver.cpp:229] Iteration 1000, loss = 8.02997 | |
I0331 10:16:13.984338 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0 | |
I0331 10:16:13.984359 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.772727 | |
I0331 10:16:13.984380 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.075 | |
I0331 10:16:13.984396 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.95025 (* 0.3 = 1.18508 loss) | |
I0331 10:16:13.984411 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.25821 (* 0.3 = 0.377464 loss) | |
I0331 10:16:13.984423 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.025 | |
I0331 10:16:13.984436 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.778409 | |
I0331 10:16:13.984447 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.125 | |
I0331 10:16:13.984460 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.8443 (* 0.3 = 1.15329 loss) | |
I0331 10:16:13.984474 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.2145 (* 0.3 = 0.36435 loss) | |
I0331 10:16:13.984486 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.075 | |
I0331 10:16:13.984498 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.778409 | |
I0331 10:16:13.984510 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.2 | |
I0331 10:16:13.984524 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.49915 (* 1 = 3.49915 loss) | |
I0331 10:16:13.984537 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.930087 (* 1 = 0.930087 loss) | |
I0331 10:16:13.984549 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 10:16:13.984561 29371 solver.cpp:245] Train net output #16: total_confidence = 1.0362e-05 | |
I0331 10:16:13.984573 29371 sgd_solver.cpp:106] Iteration 1000, lr = 0.005 | |
I0331 10:18:23.289726 29371 solver.cpp:229] Iteration 1500, loss = 7.693 | |
I0331 10:18:23.289849 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0232558 | |
I0331 10:18:23.289867 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.761364 | |
I0331 10:18:23.289880 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.116279 | |
I0331 10:18:23.289896 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 4.11007 (* 0.3 = 1.23302 loss) | |
I0331 10:18:23.289911 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.18658 (* 0.3 = 0.355974 loss) | |
I0331 10:18:23.289923 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0465116 | |
I0331 10:18:23.289935 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.767045 | |
I0331 10:18:23.289947 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.186047 | |
I0331 10:18:23.289960 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.95413 (* 0.3 = 1.18624 loss) | |
I0331 10:18:23.289974 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.08103 (* 0.3 = 0.32431 loss) | |
I0331 10:18:23.289986 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0465116 | |
I0331 10:18:23.289999 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.744318 | |
I0331 10:18:23.290010 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.162791 | |
I0331 10:18:23.290024 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.7655 (* 1 = 3.7655 loss) | |
I0331 10:18:23.290037 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 1.04576 (* 1 = 1.04576 loss) | |
I0331 10:18:23.290048 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 10:18:23.290060 29371 solver.cpp:245] Train net output #16: total_confidence = 1.44522e-06 | |
I0331 10:18:23.290072 29371 sgd_solver.cpp:106] Iteration 1500, lr = 0.005 | |
I0331 10:20:32.550717 29371 solver.cpp:229] Iteration 2000, loss = 7.52533 | |
I0331 10:20:32.550849 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0232558 | |
I0331 10:20:32.550870 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.761364 | |
I0331 10:20:32.550884 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.162791 | |
I0331 10:20:32.550899 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.72586 (* 0.3 = 1.11776 loss) | |
I0331 10:20:32.550914 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.04487 (* 0.3 = 0.313462 loss) | |
I0331 10:20:32.550925 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0 | |
I0331 10:20:32.550937 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.755682 | |
I0331 10:20:32.550950 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.0930233 | |
I0331 10:20:32.550963 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.69437 (* 0.3 = 1.10831 loss) | |
I0331 10:20:32.550976 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.11525 (* 0.3 = 0.334575 loss) | |
I0331 10:20:32.550988 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.139535 | |
I0331 10:20:32.551000 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.778409 | |
I0331 10:20:32.551012 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.255814 | |
I0331 10:20:32.551025 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.42807 (* 1 = 3.42807 loss) | |
I0331 10:20:32.551039 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.95957 (* 1 = 0.95957 loss) | |
I0331 10:20:32.551051 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 10:20:32.551062 29371 solver.cpp:245] Train net output #16: total_confidence = 1.97138e-05 | |
I0331 10:20:32.551074 29371 sgd_solver.cpp:106] Iteration 2000, lr = 0.005 | |
I0331 10:22:41.874975 29371 solver.cpp:229] Iteration 2500, loss = 7.4327 | |
I0331 10:22:41.875097 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0277778 | |
I0331 10:22:41.875118 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.772727 | |
I0331 10:22:41.875129 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.194444 | |
I0331 10:22:41.875144 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.79261 (* 0.3 = 1.13778 loss) | |
I0331 10:22:41.875159 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.06754 (* 0.3 = 0.320262 loss) | |
I0331 10:22:41.875171 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0555556 | |
I0331 10:22:41.875185 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.767045 | |
I0331 10:22:41.875196 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.166667 | |
I0331 10:22:41.875210 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.87865 (* 0.3 = 1.1636 loss) | |
I0331 10:22:41.875236 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.09747 (* 0.3 = 0.329241 loss) | |
I0331 10:22:41.875249 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0555556 | |
I0331 10:22:41.875262 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.761364 | |
I0331 10:22:41.875273 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.194444 | |
I0331 10:22:41.875286 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.29159 (* 1 = 3.29159 loss) | |
I0331 10:22:41.875300 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.920495 (* 1 = 0.920495 loss) | |
I0331 10:22:41.875313 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 10:22:41.875324 29371 solver.cpp:245] Train net output #16: total_confidence = 1.08607e-05 | |
I0331 10:22:41.875335 29371 sgd_solver.cpp:106] Iteration 2500, lr = 0.005 | |
I0331 10:24:51.110877 29371 solver.cpp:229] Iteration 3000, loss = 7.31331 | |
I0331 10:24:51.111007 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0217391 | |
I0331 10:24:51.111026 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.744318 | |
I0331 10:24:51.111038 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.130435 | |
I0331 10:24:51.111063 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.99443 (* 0.3 = 1.19833 loss) | |
I0331 10:24:51.111076 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.16851 (* 0.3 = 0.350552 loss) | |
I0331 10:24:51.111089 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0652174 | |
I0331 10:24:51.111101 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.755682 | |
I0331 10:24:51.111112 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.152174 | |
I0331 10:24:51.111138 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 4.12463 (* 0.3 = 1.23739 loss) | |
I0331 10:24:51.111155 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.19478 (* 0.3 = 0.358433 loss) | |
I0331 10:24:51.111167 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0217391 | |
I0331 10:24:51.111179 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.738636 | |
I0331 10:24:51.111191 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.195652 | |
I0331 10:24:51.111204 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.93893 (* 1 = 3.93893 loss) | |
I0331 10:24:51.111217 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 1.08926 (* 1 = 1.08926 loss) | |
I0331 10:24:51.111229 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 10:24:51.111240 29371 solver.cpp:245] Train net output #16: total_confidence = 0.000390162 | |
I0331 10:24:51.111253 29371 sgd_solver.cpp:106] Iteration 3000, lr = 0.005 | |
I0331 10:27:00.330831 29371 solver.cpp:229] Iteration 3500, loss = 7.23063 | |
I0331 10:27:00.330986 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0526316 | |
I0331 10:27:00.331006 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.789773 | |
I0331 10:27:00.331019 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.157895 | |
I0331 10:27:00.331037 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.54758 (* 0.3 = 1.06427 loss) | |
I0331 10:27:00.331050 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.04461 (* 0.3 = 0.313382 loss) | |
I0331 10:27:00.331063 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0263158 | |
I0331 10:27:00.331074 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.778409 | |
I0331 10:27:00.331110 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.131579 | |
I0331 10:27:00.331127 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.61339 (* 0.3 = 1.08402 loss) | |
I0331 10:27:00.331141 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.910106 (* 0.3 = 0.273032 loss) | |
I0331 10:27:00.331154 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0526316 | |
I0331 10:27:00.331166 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.761364 | |
I0331 10:27:00.331179 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.157895 | |
I0331 10:27:00.331193 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.38577 (* 1 = 3.38577 loss) | |
I0331 10:27:00.331207 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.97128 (* 1 = 0.97128 loss) | |
I0331 10:27:00.331219 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 10:27:00.331231 29371 solver.cpp:245] Train net output #16: total_confidence = 3.77281e-06 | |
I0331 10:27:00.331244 29371 sgd_solver.cpp:106] Iteration 3500, lr = 0.005 | |
I0331 10:29:09.724510 29371 solver.cpp:229] Iteration 4000, loss = 7.15319 | |
I0331 10:29:09.724674 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0888889 | |
I0331 10:29:09.724695 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.744318 | |
I0331 10:29:09.724709 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.177778 | |
I0331 10:29:09.724728 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.39427 (* 0.3 = 1.01828 loss) | |
I0331 10:29:09.724743 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.0609 (* 0.3 = 0.318272 loss) | |
I0331 10:29:09.724756 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0666667 | |
I0331 10:29:09.724768 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.738636 | |
I0331 10:29:09.724779 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.155556 | |
I0331 10:29:09.724793 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.35826 (* 0.3 = 1.00748 loss) | |
I0331 10:29:09.724807 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.02936 (* 0.3 = 0.308809 loss) | |
I0331 10:29:09.724818 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0444444 | |
I0331 10:29:09.724831 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.755682 | |
I0331 10:29:09.724843 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.2 | |
I0331 10:29:09.724856 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.18783 (* 1 = 3.18783 loss) | |
I0331 10:29:09.724870 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.897842 (* 1 = 0.897842 loss) | |
I0331 10:29:09.724882 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 10:29:09.724895 29371 solver.cpp:245] Train net output #16: total_confidence = 4.79103e-06 | |
I0331 10:29:09.724907 29371 sgd_solver.cpp:106] Iteration 4000, lr = 0.005 | |
I0331 10:31:18.922924 29371 solver.cpp:229] Iteration 4500, loss = 7.11114 | |
I0331 10:31:18.923033 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0816327 | |
I0331 10:31:18.923053 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.698864 | |
I0331 10:31:18.923065 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.22449 | |
I0331 10:31:18.923082 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.26065 (* 0.3 = 0.978196 loss) | |
I0331 10:31:18.923100 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.17328 (* 0.3 = 0.351984 loss) | |
I0331 10:31:18.923113 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0816327 | |
I0331 10:31:18.923126 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.732955 | |
I0331 10:31:18.923138 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.265306 | |
I0331 10:31:18.923151 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.2895 (* 0.3 = 0.986849 loss) | |
I0331 10:31:18.923179 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.11202 (* 0.3 = 0.333607 loss) | |
I0331 10:31:18.923192 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.102041 | |
I0331 10:31:18.923205 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.75 | |
I0331 10:31:18.923223 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.285714 | |
I0331 10:31:18.923235 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.0201 (* 1 = 3.0201 loss) | |
I0331 10:31:18.923249 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.929249 (* 1 = 0.929249 loss) | |
I0331 10:31:18.923261 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 10:31:18.923280 29371 solver.cpp:245] Train net output #16: total_confidence = 2.40988e-05 | |
I0331 10:31:18.923291 29371 sgd_solver.cpp:106] Iteration 4500, lr = 0.005 | |
I0331 10:33:28.079797 29371 solver.cpp:338] Iteration 5000, Testing net (#0) | |
I0331 10:33:57.943186 29371 solver.cpp:393] Test loss: 6.7187 | |
I0331 10:33:57.943243 29371 solver.cpp:406] Test net output #0: loss1/accuracy = 0.0826361 | |
I0331 10:33:57.943260 29371 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.776182 | |
I0331 10:33:57.943272 29371 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.245423 | |
I0331 10:33:57.943289 29371 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 4.3204 (* 0.3 = 1.29612 loss) | |
I0331 10:33:57.943302 29371 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 1.08667 (* 0.3 = 0.326 loss) | |
I0331 10:33:57.943315 29371 solver.cpp:406] Test net output #5: loss2/accuracy = 0.104623 | |
I0331 10:33:57.943327 29371 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.780363 | |
I0331 10:33:57.943339 29371 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.284835 | |
I0331 10:33:57.943352 29371 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 3.56291 (* 0.3 = 1.06887 loss) | |
I0331 10:33:57.943367 29371 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.892749 (* 0.3 = 0.267825 loss) | |
I0331 10:33:57.943378 29371 solver.cpp:406] Test net output #10: loss3/accuracy = 0.103399 | |
I0331 10:33:57.943390 29371 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.77409 | |
I0331 10:33:57.943403 29371 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.297888 | |
I0331 10:33:57.943415 29371 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 2.96033 (* 1 = 2.96033 loss) | |
I0331 10:33:57.943428 29371 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.799546 (* 1 = 0.799546 loss) | |
I0331 10:33:57.943440 29371 solver.cpp:406] Test net output #15: total_accuracy = 0.001 | |
I0331 10:33:57.943452 29371 solver.cpp:406] Test net output #16: total_confidence = 0.000117102 | |
I0331 10:33:58.094144 29371 solver.cpp:229] Iteration 5000, loss = 7.04981 | |
I0331 10:33:58.094254 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0833333 | |
I0331 10:33:58.094274 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.715909 | |
I0331 10:33:58.094287 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.270833 | |
I0331 10:33:58.094302 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.18465 (* 0.3 = 0.955395 loss) | |
I0331 10:33:58.094316 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.17613 (* 0.3 = 0.352839 loss) | |
I0331 10:33:58.094329 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0625 | |
I0331 10:33:58.094341 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.744318 | |
I0331 10:33:58.094353 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.145833 | |
I0331 10:33:58.094367 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.24585 (* 0.3 = 0.973756 loss) | |
I0331 10:33:58.094380 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.963131 (* 0.3 = 0.288939 loss) | |
I0331 10:33:58.094393 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.125 | |
I0331 10:33:58.094404 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.761364 | |
I0331 10:33:58.094416 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.25 | |
I0331 10:33:58.094430 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.08983 (* 1 = 3.08983 loss) | |
I0331 10:33:58.094444 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.904983 (* 1 = 0.904983 loss) | |
I0331 10:33:58.094456 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 10:33:58.094467 29371 solver.cpp:245] Train net output #16: total_confidence = 2.90156e-05 | |
I0331 10:33:58.094480 29371 sgd_solver.cpp:106] Iteration 5000, lr = 0.005 | |
I0331 10:36:07.409035 29371 solver.cpp:229] Iteration 5500, loss = 7.01439 | |
I0331 10:36:07.409169 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0204082 | |
I0331 10:36:07.409189 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.727273 | |
I0331 10:36:07.409201 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.122449 | |
I0331 10:36:07.409219 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.95194 (* 0.3 = 1.18558 loss) | |
I0331 10:36:07.409234 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.25419 (* 0.3 = 0.376258 loss) | |
I0331 10:36:07.409245 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0204082 | |
I0331 10:36:07.409257 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.727273 | |
I0331 10:36:07.409268 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.0612245 | |
I0331 10:36:07.409282 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 4.10045 (* 0.3 = 1.23013 loss) | |
I0331 10:36:07.409296 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.26425 (* 0.3 = 0.379275 loss) | |
I0331 10:36:07.409307 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0408163 | |
I0331 10:36:07.409320 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.727273 | |
I0331 10:36:07.409332 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.102041 | |
I0331 10:36:07.409346 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 4.01884 (* 1 = 4.01884 loss) | |
I0331 10:36:07.409360 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 1.23177 (* 1 = 1.23177 loss) | |
I0331 10:36:07.409373 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 10:36:07.409384 29371 solver.cpp:245] Train net output #16: total_confidence = 0.00010573 | |
I0331 10:36:07.409395 29371 sgd_solver.cpp:106] Iteration 5500, lr = 0.005 | |
I0331 10:38:16.717413 29371 solver.cpp:229] Iteration 6000, loss = 7.02953 | |
I0331 10:38:16.717535 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0625 | |
I0331 10:38:16.717555 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.744318 | |
I0331 10:38:16.717568 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.208333 | |
I0331 10:38:16.717584 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.37843 (* 0.3 = 1.01353 loss) | |
I0331 10:38:16.717599 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.985016 (* 0.3 = 0.295505 loss) | |
I0331 10:38:16.717612 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0833333 | |
I0331 10:38:16.717623 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.75 | |
I0331 10:38:16.717635 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.229167 | |
I0331 10:38:16.717649 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.2813 (* 0.3 = 0.98439 loss) | |
I0331 10:38:16.717664 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.995757 (* 0.3 = 0.298727 loss) | |
I0331 10:38:16.717675 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0833333 | |
I0331 10:38:16.717687 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.75 | |
I0331 10:38:16.717700 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.1875 | |
I0331 10:38:16.717713 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.24508 (* 1 = 3.24508 loss) | |
I0331 10:38:16.717727 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.943073 (* 1 = 0.943073 loss) | |
I0331 10:38:16.717739 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 10:38:16.717751 29371 solver.cpp:245] Train net output #16: total_confidence = 1.349e-06 | |
I0331 10:38:16.717762 29371 sgd_solver.cpp:106] Iteration 6000, lr = 0.005 | |
I0331 10:40:25.936784 29371 solver.cpp:229] Iteration 6500, loss = 6.96014 | |
I0331 10:40:25.936947 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0727273 | |
I0331 10:40:25.936974 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.704545 | |
I0331 10:40:25.936986 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.272727 | |
I0331 10:40:25.937002 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.25086 (* 0.3 = 0.975257 loss) | |
I0331 10:40:25.937017 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.08928 (* 0.3 = 0.326783 loss) | |
I0331 10:40:25.937031 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0909091 | |
I0331 10:40:25.937042 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.710227 | |
I0331 10:40:25.937054 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.236364 | |
I0331 10:40:25.937068 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.18615 (* 0.3 = 0.955845 loss) | |
I0331 10:40:25.937085 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.15237 (* 0.3 = 0.345711 loss) | |
I0331 10:40:25.937103 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0727273 | |
I0331 10:40:25.937125 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.710227 | |
I0331 10:40:25.937137 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.2 | |
I0331 10:40:25.937151 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.22716 (* 1 = 3.22716 loss) | |
I0331 10:40:25.937165 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 1.03092 (* 1 = 1.03092 loss) | |
I0331 10:40:25.937186 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 10:40:25.937197 29371 solver.cpp:245] Train net output #16: total_confidence = 1.47977e-05 | |
I0331 10:40:25.937209 29371 sgd_solver.cpp:106] Iteration 6500, lr = 0.005 | |
I0331 10:42:35.044544 29371 solver.cpp:229] Iteration 7000, loss = 6.91925 | |
I0331 10:42:35.044667 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0408163 | |
I0331 10:42:35.044688 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.732955 | |
I0331 10:42:35.044702 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.204082 | |
I0331 10:42:35.044720 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.28497 (* 0.3 = 0.98549 loss) | |
I0331 10:42:35.044749 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.99096 (* 0.3 = 0.297288 loss) | |
I0331 10:42:35.044766 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0816327 | |
I0331 10:42:35.044780 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.744318 | |
I0331 10:42:35.044791 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.204082 | |
I0331 10:42:35.044806 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.22523 (* 0.3 = 0.967569 loss) | |
I0331 10:42:35.044819 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.0295 (* 0.3 = 0.30885 loss) | |
I0331 10:42:35.044839 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0816327 | |
I0331 10:42:35.044852 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.744318 | |
I0331 10:42:35.044863 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.204082 | |
I0331 10:42:35.044878 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.10647 (* 1 = 3.10647 loss) | |
I0331 10:42:35.044899 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.930912 (* 1 = 0.930912 loss) | |
I0331 10:42:35.044910 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 10:42:35.044922 29371 solver.cpp:245] Train net output #16: total_confidence = 1.03245e-06 | |
I0331 10:42:35.044935 29371 sgd_solver.cpp:106] Iteration 7000, lr = 0.005 | |
I0331 10:44:44.320749 29371 solver.cpp:229] Iteration 7500, loss = 6.88459 | |
I0331 10:44:44.320874 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0444444 | |
I0331 10:44:44.320894 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.732955 | |
I0331 10:44:44.320906 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.2 | |
I0331 10:44:44.320922 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.55548 (* 0.3 = 1.06664 loss) | |
I0331 10:44:44.320942 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.1354 (* 0.3 = 0.340619 loss) | |
I0331 10:44:44.320955 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0666667 | |
I0331 10:44:44.320967 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.738636 | |
I0331 10:44:44.320979 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.133333 | |
I0331 10:44:44.320993 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.64615 (* 0.3 = 1.09385 loss) | |
I0331 10:44:44.321007 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.12334 (* 0.3 = 0.337002 loss) | |
I0331 10:44:44.321020 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0666667 | |
I0331 10:44:44.321033 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.744318 | |
I0331 10:44:44.321044 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.2 | |
I0331 10:44:44.321066 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.64231 (* 1 = 3.64231 loss) | |
I0331 10:44:44.321082 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 1.08986 (* 1 = 1.08986 loss) | |
I0331 10:44:44.321095 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 10:44:44.321108 29371 solver.cpp:245] Train net output #16: total_confidence = 9.749e-07 | |
I0331 10:44:44.321135 29371 sgd_solver.cpp:106] Iteration 7500, lr = 0.005 | |
I0331 10:46:53.639705 29371 solver.cpp:229] Iteration 8000, loss = 6.83412 | |
I0331 10:46:53.639816 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0625 | |
I0331 10:46:53.639834 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.738636 | |
I0331 10:46:53.639847 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.166667 | |
I0331 10:46:53.639863 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.61377 (* 0.3 = 1.08413 loss) | |
I0331 10:46:53.639878 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.07457 (* 0.3 = 0.322371 loss) | |
I0331 10:46:53.639890 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0625 | |
I0331 10:46:53.639904 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.744318 | |
I0331 10:46:53.639915 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.145833 | |
I0331 10:46:53.639930 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.43387 (* 0.3 = 1.03016 loss) | |
I0331 10:46:53.639943 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.04034 (* 0.3 = 0.312103 loss) | |
I0331 10:46:53.639955 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0625 | |
I0331 10:46:53.639968 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.738636 | |
I0331 10:46:53.639979 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.229167 | |
I0331 10:46:53.639993 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.32582 (* 1 = 3.32582 loss) | |
I0331 10:46:53.640007 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 1.00869 (* 1 = 1.00869 loss) | |
I0331 10:46:53.640019 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 10:46:53.640030 29371 solver.cpp:245] Train net output #16: total_confidence = 6.89496e-07 | |
I0331 10:46:53.640043 29371 sgd_solver.cpp:106] Iteration 8000, lr = 0.005 | |
I0331 10:49:02.839650 29371 solver.cpp:229] Iteration 8500, loss = 6.81751 | |
I0331 10:49:02.839810 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0909091 | |
I0331 10:49:02.839830 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.767045 | |
I0331 10:49:02.839844 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.181818 | |
I0331 10:49:02.839860 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.49278 (* 0.3 = 1.04783 loss) | |
I0331 10:49:02.839874 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.971314 (* 0.3 = 0.291394 loss) | |
I0331 10:49:02.839887 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0454545 | |
I0331 10:49:02.839900 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.75 | |
I0331 10:49:02.839912 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.136364 | |
I0331 10:49:02.839926 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.28868 (* 0.3 = 0.986604 loss) | |
I0331 10:49:02.839941 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.997508 (* 0.3 = 0.299252 loss) | |
I0331 10:49:02.839953 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.159091 | |
I0331 10:49:02.839967 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.784091 | |
I0331 10:49:02.839978 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.227273 | |
I0331 10:49:02.839993 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.1571 (* 1 = 3.1571 loss) | |
I0331 10:49:02.840005 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.856876 (* 1 = 0.856876 loss) | |
I0331 10:49:02.840018 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 10:49:02.840029 29371 solver.cpp:245] Train net output #16: total_confidence = 2.94559e-05 | |
I0331 10:49:02.840042 29371 sgd_solver.cpp:106] Iteration 8500, lr = 0.005 | |
I0331 10:51:12.199910 29371 solver.cpp:229] Iteration 9000, loss = 6.81623 | |
I0331 10:51:12.200037 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0408163 | |
I0331 10:51:12.200057 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.721591 | |
I0331 10:51:12.200070 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.163265 | |
I0331 10:51:12.200088 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.36092 (* 0.3 = 1.00828 loss) | |
I0331 10:51:12.200103 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.06913 (* 0.3 = 0.32074 loss) | |
I0331 10:51:12.200116 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.102041 | |
I0331 10:51:12.200129 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.75 | |
I0331 10:51:12.200141 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.163265 | |
I0331 10:51:12.200155 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.29754 (* 0.3 = 0.989261 loss) | |
I0331 10:51:12.200170 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.00462 (* 0.3 = 0.301385 loss) | |
I0331 10:51:12.200182 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0612245 | |
I0331 10:51:12.200194 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.738636 | |
I0331 10:51:12.200206 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.204082 | |
I0331 10:51:12.200219 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.18989 (* 1 = 3.18989 loss) | |
I0331 10:51:12.200233 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.917042 (* 1 = 0.917042 loss) | |
I0331 10:51:12.200245 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 10:51:12.200258 29371 solver.cpp:245] Train net output #16: total_confidence = 1.8716e-05 | |
I0331 10:51:12.200269 29371 sgd_solver.cpp:106] Iteration 9000, lr = 0.005 | |
I0331 10:53:21.340693 29371 solver.cpp:229] Iteration 9500, loss = 6.85728 | |
I0331 10:53:21.340852 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.097561 | |
I0331 10:53:21.340883 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.772727 | |
I0331 10:53:21.340896 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.243902 | |
I0331 10:53:21.340912 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.17213 (* 0.3 = 0.951639 loss) | |
I0331 10:53:21.340929 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.944764 (* 0.3 = 0.283429 loss) | |
I0331 10:53:21.340951 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.121951 | |
I0331 10:53:21.340966 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.784091 | |
I0331 10:53:21.340980 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.268293 | |
I0331 10:53:21.340993 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.12326 (* 0.3 = 0.936979 loss) | |
I0331 10:53:21.341007 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.867427 (* 0.3 = 0.260228 loss) | |
I0331 10:53:21.341019 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0243902 | |
I0331 10:53:21.341032 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.761364 | |
I0331 10:53:21.341043 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.243902 | |
I0331 10:53:21.341058 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.99402 (* 1 = 2.99402 loss) | |
I0331 10:53:21.341071 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.81767 (* 1 = 0.81767 loss) | |
I0331 10:53:21.341085 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 10:53:21.341100 29371 solver.cpp:245] Train net output #16: total_confidence = 0.000347855 | |
I0331 10:53:21.341122 29371 sgd_solver.cpp:106] Iteration 9500, lr = 0.005 | |
I0331 10:55:30.364259 29371 solver.cpp:338] Iteration 10000, Testing net (#0) | |
I0331 10:56:00.182315 29371 solver.cpp:393] Test loss: 6.21063 | |
I0331 10:56:00.182363 29371 solver.cpp:406] Test net output #0: loss1/accuracy = 0.128677 | |
I0331 10:56:00.182379 29371 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.785227 | |
I0331 10:56:00.182390 29371 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.335342 | |
I0331 10:56:00.182406 29371 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 3.67625 (* 0.3 = 1.10288 loss) | |
I0331 10:56:00.182420 29371 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.926278 (* 0.3 = 0.277883 loss) | |
I0331 10:56:00.182432 29371 solver.cpp:406] Test net output #5: loss2/accuracy = 0.134199 | |
I0331 10:56:00.182445 29371 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.787136 | |
I0331 10:56:00.182456 29371 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.330217 | |
I0331 10:56:00.182469 29371 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 3.48941 (* 0.3 = 1.04682 loss) | |
I0331 10:56:00.182483 29371 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.876604 (* 0.3 = 0.262981 loss) | |
I0331 10:56:00.182495 29371 solver.cpp:406] Test net output #10: loss3/accuracy = 0.127345 | |
I0331 10:56:00.182507 29371 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.781682 | |
I0331 10:56:00.182518 29371 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.325004 | |
I0331 10:56:00.182531 29371 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 2.79364 (* 1 = 2.79364 loss) | |
I0331 10:56:00.182545 29371 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.726433 (* 1 = 0.726433 loss) | |
I0331 10:56:00.182556 29371 solver.cpp:406] Test net output #15: total_accuracy = 0.001 | |
I0331 10:56:00.182569 29371 solver.cpp:406] Test net output #16: total_confidence = 0.000218828 | |
I0331 10:56:00.334219 29371 solver.cpp:229] Iteration 10000, loss = 6.79001 | |
I0331 10:56:00.334259 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0869565 | |
I0331 10:56:00.334276 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.755682 | |
I0331 10:56:00.334290 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.195652 | |
I0331 10:56:00.334305 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.30251 (* 0.3 = 0.990753 loss) | |
I0331 10:56:00.334319 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.954561 (* 0.3 = 0.286368 loss) | |
I0331 10:56:00.334331 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0869565 | |
I0331 10:56:00.334345 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.75 | |
I0331 10:56:00.334357 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.195652 | |
I0331 10:56:00.334372 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.23312 (* 0.3 = 0.969935 loss) | |
I0331 10:56:00.334389 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.01066 (* 0.3 = 0.303198 loss) | |
I0331 10:56:00.334401 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.130435 | |
I0331 10:56:00.334414 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.755682 | |
I0331 10:56:00.334425 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.23913 | |
I0331 10:56:00.334439 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.06273 (* 1 = 3.06273 loss) | |
I0331 10:56:00.334453 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.935906 (* 1 = 0.935906 loss) | |
I0331 10:56:00.334465 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 10:56:00.334477 29371 solver.cpp:245] Train net output #16: total_confidence = 2.13249e-06 | |
I0331 10:56:00.334489 29371 sgd_solver.cpp:106] Iteration 10000, lr = 0.005 | |
I0331 10:58:09.439512 29371 solver.cpp:229] Iteration 10500, loss = 6.7527 | |
I0331 10:58:09.439671 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.097561 | |
I0331 10:58:09.439692 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.772727 | |
I0331 10:58:09.439712 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.195122 | |
I0331 10:58:09.439733 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.30281 (* 0.3 = 0.990842 loss) | |
I0331 10:58:09.439748 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.925296 (* 0.3 = 0.277589 loss) | |
I0331 10:58:09.439759 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0731707 | |
I0331 10:58:09.439772 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.767045 | |
I0331 10:58:09.439784 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.243902 | |
I0331 10:58:09.439797 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.22846 (* 0.3 = 0.968537 loss) | |
I0331 10:58:09.439811 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.904582 (* 0.3 = 0.271375 loss) | |
I0331 10:58:09.439823 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.146341 | |
I0331 10:58:09.439836 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.784091 | |
I0331 10:58:09.439847 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.170732 | |
I0331 10:58:09.439862 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.09379 (* 1 = 3.09379 loss) | |
I0331 10:58:09.439875 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.851398 (* 1 = 0.851398 loss) | |
I0331 10:58:09.439888 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 10:58:09.439898 29371 solver.cpp:245] Train net output #16: total_confidence = 5.17733e-05 | |
I0331 10:58:09.439911 29371 sgd_solver.cpp:106] Iteration 10500, lr = 0.005 | |
I0331 11:00:18.731660 29371 solver.cpp:229] Iteration 11000, loss = 6.70253 | |
I0331 11:00:18.731801 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.15 | |
I0331 11:00:18.731822 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.778409 | |
I0331 11:00:18.731842 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.2 | |
I0331 11:00:18.731856 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.25866 (* 0.3 = 0.977599 loss) | |
I0331 11:00:18.731871 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.90788 (* 0.3 = 0.272364 loss) | |
I0331 11:00:18.731884 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.15 | |
I0331 11:00:18.731895 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.801136 | |
I0331 11:00:18.731907 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.25 | |
I0331 11:00:18.731921 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.09592 (* 0.3 = 0.928777 loss) | |
I0331 11:00:18.731935 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.816151 (* 0.3 = 0.244845 loss) | |
I0331 11:00:18.731948 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.175 | |
I0331 11:00:18.731961 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.801136 | |
I0331 11:00:18.731973 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.3 | |
I0331 11:00:18.731987 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.95703 (* 1 = 2.95703 loss) | |
I0331 11:00:18.732000 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.777933 (* 1 = 0.777933 loss) | |
I0331 11:00:18.732012 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 11:00:18.732028 29371 solver.cpp:245] Train net output #16: total_confidence = 7.88455e-05 | |
I0331 11:00:18.732039 29371 sgd_solver.cpp:106] Iteration 11000, lr = 0.005 | |
I0331 11:02:27.889907 29371 solver.cpp:229] Iteration 11500, loss = 6.70198 | |
I0331 11:02:27.890039 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0392157 | |
I0331 11:02:27.890059 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.710227 | |
I0331 11:02:27.890071 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.196078 | |
I0331 11:02:27.890090 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.33383 (* 0.3 = 1.00015 loss) | |
I0331 11:02:27.890105 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.062 (* 0.3 = 0.3186 loss) | |
I0331 11:02:27.890118 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0784314 | |
I0331 11:02:27.890130 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.732955 | |
I0331 11:02:27.890142 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.196078 | |
I0331 11:02:27.890156 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.12421 (* 0.3 = 0.937264 loss) | |
I0331 11:02:27.890171 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.981691 (* 0.3 = 0.294507 loss) | |
I0331 11:02:27.890182 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0588235 | |
I0331 11:02:27.890194 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.715909 | |
I0331 11:02:27.890208 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.176471 | |
I0331 11:02:27.890221 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.14975 (* 1 = 3.14975 loss) | |
I0331 11:02:27.890234 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.99047 (* 1 = 0.99047 loss) | |
I0331 11:02:27.890246 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 11:02:27.890259 29371 solver.cpp:245] Train net output #16: total_confidence = 9.42174e-07 | |
I0331 11:02:27.890278 29371 sgd_solver.cpp:106] Iteration 11500, lr = 0.005 | |
I0331 11:04:37.039273 29371 solver.cpp:229] Iteration 12000, loss = 6.66236 | |
I0331 11:04:37.039433 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.06 | |
I0331 11:04:37.039455 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.727273 | |
I0331 11:04:37.039469 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.2 | |
I0331 11:04:37.039484 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.43726 (* 0.3 = 1.03118 loss) | |
I0331 11:04:37.039499 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.0345 (* 0.3 = 0.31035 loss) | |
I0331 11:04:37.039511 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.08 | |
I0331 11:04:37.039525 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.732955 | |
I0331 11:04:37.039536 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.28 | |
I0331 11:04:37.039551 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.38264 (* 0.3 = 1.01479 loss) | |
I0331 11:04:37.039564 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.04615 (* 0.3 = 0.313845 loss) | |
I0331 11:04:37.039577 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.14 | |
I0331 11:04:37.039589 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.75 | |
I0331 11:04:37.039602 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.24 | |
I0331 11:04:37.039615 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.18246 (* 1 = 3.18246 loss) | |
I0331 11:04:37.039629 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.94441 (* 1 = 0.94441 loss) | |
I0331 11:04:37.039641 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 11:04:37.039654 29371 solver.cpp:245] Train net output #16: total_confidence = 1.85191e-05 | |
I0331 11:04:37.039666 29371 sgd_solver.cpp:106] Iteration 12000, lr = 0.005 | |
I0331 11:06:46.445688 29371 solver.cpp:229] Iteration 12500, loss = 6.6551 | |
I0331 11:06:46.445806 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.025641 | |
I0331 11:06:46.445825 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.772727 | |
I0331 11:06:46.445838 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.230769 | |
I0331 11:06:46.445854 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.23485 (* 0.3 = 0.970456 loss) | |
I0331 11:06:46.445869 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.866016 (* 0.3 = 0.259805 loss) | |
I0331 11:06:46.445881 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0769231 | |
I0331 11:06:46.445894 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.789773 | |
I0331 11:06:46.445906 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.153846 | |
I0331 11:06:46.445919 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.27191 (* 0.3 = 0.981574 loss) | |
I0331 11:06:46.445933 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.82112 (* 0.3 = 0.246336 loss) | |
I0331 11:06:46.445945 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0512821 | |
I0331 11:06:46.445957 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.784091 | |
I0331 11:06:46.445969 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.179487 | |
I0331 11:06:46.445982 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.344 (* 1 = 3.344 loss) | |
I0331 11:06:46.445996 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.837673 (* 1 = 0.837673 loss) | |
I0331 11:06:46.446008 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 11:06:46.446020 29371 solver.cpp:245] Train net output #16: total_confidence = 0.000845842 | |
I0331 11:06:46.446033 29371 sgd_solver.cpp:106] Iteration 12500, lr = 0.005 | |
I0331 11:08:55.742089 29371 solver.cpp:229] Iteration 13000, loss = 6.65604 | |
I0331 11:08:55.742221 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0930233 | |
I0331 11:08:55.742241 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.772727 | |
I0331 11:08:55.742254 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.27907 | |
I0331 11:08:55.742269 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.05957 (* 0.3 = 0.91787 loss) | |
I0331 11:08:55.742285 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.859095 (* 0.3 = 0.257729 loss) | |
I0331 11:08:55.742296 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.162791 | |
I0331 11:08:55.742312 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.778409 | |
I0331 11:08:55.742324 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.348837 | |
I0331 11:08:55.742337 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.9947 (* 0.3 = 0.898411 loss) | |
I0331 11:08:55.742352 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.890718 (* 0.3 = 0.267215 loss) | |
I0331 11:08:55.742363 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.139535 | |
I0331 11:08:55.742375 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.767045 | |
I0331 11:08:55.742393 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.302326 | |
I0331 11:08:55.742408 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.89083 (* 1 = 2.89083 loss) | |
I0331 11:08:55.742422 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.848455 (* 1 = 0.848455 loss) | |
I0331 11:08:55.742439 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 11:08:55.742458 29371 solver.cpp:245] Train net output #16: total_confidence = 4.98174e-06 | |
I0331 11:08:55.742472 29371 sgd_solver.cpp:106] Iteration 13000, lr = 0.005 | |
I0331 11:11:04.714826 29371 solver.cpp:229] Iteration 13500, loss = 6.60027 | |
I0331 11:11:04.714963 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.04 | |
I0331 11:11:04.714983 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.727273 | |
I0331 11:11:04.714997 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.1 | |
I0331 11:11:04.715013 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.54095 (* 0.3 = 1.06228 loss) | |
I0331 11:11:04.715028 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.05427 (* 0.3 = 0.31628 loss) | |
I0331 11:11:04.715039 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.06 | |
I0331 11:11:04.715050 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.727273 | |
I0331 11:11:04.715062 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.18 | |
I0331 11:11:04.715076 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.38635 (* 0.3 = 1.01591 loss) | |
I0331 11:11:04.715108 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.0811 (* 0.3 = 0.324331 loss) | |
I0331 11:11:04.715121 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.06 | |
I0331 11:11:04.715134 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.721591 | |
I0331 11:11:04.715145 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.16 | |
I0331 11:11:04.715159 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.4508 (* 1 = 3.4508 loss) | |
I0331 11:11:04.715173 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 1.05537 (* 1 = 1.05537 loss) | |
I0331 11:11:04.715183 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 11:11:04.715195 29371 solver.cpp:245] Train net output #16: total_confidence = 8.1446e-05 | |
I0331 11:11:04.715207 29371 sgd_solver.cpp:106] Iteration 13500, lr = 0.005 | |
I0331 11:13:13.897949 29371 solver.cpp:229] Iteration 14000, loss = 6.58724 | |
I0331 11:13:13.898285 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0392157 | |
I0331 11:13:13.898308 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.715909 | |
I0331 11:13:13.898320 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.176471 | |
I0331 11:13:13.898336 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.45695 (* 0.3 = 1.03708 loss) | |
I0331 11:13:13.898350 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.07358 (* 0.3 = 0.322073 loss) | |
I0331 11:13:13.898363 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0784314 | |
I0331 11:13:13.898375 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.732955 | |
I0331 11:13:13.898387 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.137255 | |
I0331 11:13:13.898401 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.44257 (* 0.3 = 1.03277 loss) | |
I0331 11:13:13.898416 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.07349 (* 0.3 = 0.322046 loss) | |
I0331 11:13:13.898427 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0392157 | |
I0331 11:13:13.898438 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.721591 | |
I0331 11:13:13.898450 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.156863 | |
I0331 11:13:13.898464 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.26095 (* 1 = 3.26095 loss) | |
I0331 11:13:13.898478 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 1.01067 (* 1 = 1.01067 loss) | |
I0331 11:13:13.898489 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 11:13:13.898501 29371 solver.cpp:245] Train net output #16: total_confidence = 1.48358e-05 | |
I0331 11:13:13.898514 29371 sgd_solver.cpp:106] Iteration 14000, lr = 0.005 | |
I0331 11:15:22.951712 29371 solver.cpp:229] Iteration 14500, loss = 6.60763 | |
I0331 11:15:22.951830 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.116279 | |
I0331 11:15:22.951850 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.755682 | |
I0331 11:15:22.951864 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.27907 | |
I0331 11:15:22.951879 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.34055 (* 0.3 = 1.00217 loss) | |
I0331 11:15:22.951894 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.02655 (* 0.3 = 0.307965 loss) | |
I0331 11:15:22.951905 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0930233 | |
I0331 11:15:22.951918 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.772727 | |
I0331 11:15:22.951930 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.232558 | |
I0331 11:15:22.951943 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.26111 (* 0.3 = 0.978332 loss) | |
I0331 11:15:22.951957 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.959646 (* 0.3 = 0.287894 loss) | |
I0331 11:15:22.951969 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.162791 | |
I0331 11:15:22.951982 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.778409 | |
I0331 11:15:22.951993 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.209302 | |
I0331 11:15:22.952008 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.22468 (* 1 = 3.22468 loss) | |
I0331 11:15:22.952021 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.940293 (* 1 = 0.940293 loss) | |
I0331 11:15:22.952033 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 11:15:22.952044 29371 solver.cpp:245] Train net output #16: total_confidence = 2.88512e-06 | |
I0331 11:15:22.952056 29371 sgd_solver.cpp:106] Iteration 14500, lr = 0.005 | |
I0331 11:17:31.730821 29371 solver.cpp:338] Iteration 15000, Testing net (#0) | |
I0331 11:18:01.572352 29371 solver.cpp:393] Test loss: 5.88051 | |
I0331 11:18:01.572398 29371 solver.cpp:406] Test net output #0: loss1/accuracy = 0.138376 | |
I0331 11:18:01.572414 29371 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.7875 | |
I0331 11:18:01.572427 29371 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.34844 | |
I0331 11:18:01.572443 29371 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 3.35363 (* 0.3 = 1.00609 loss) | |
I0331 11:18:01.572458 29371 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.84464 (* 0.3 = 0.253392 loss) | |
I0331 11:18:01.572470 29371 solver.cpp:406] Test net output #5: loss2/accuracy = 0.135904 | |
I0331 11:18:01.572482 29371 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.786773 | |
I0331 11:18:01.572494 29371 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.342 | |
I0331 11:18:01.572509 29371 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 3.02528 (* 0.3 = 0.907583 loss) | |
I0331 11:18:01.572522 29371 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.761654 (* 0.3 = 0.228496 loss) | |
I0331 11:18:01.572535 29371 solver.cpp:406] Test net output #10: loss3/accuracy = 0.14738 | |
I0331 11:18:01.572546 29371 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.784136 | |
I0331 11:18:01.572557 29371 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.357339 | |
I0331 11:18:01.572572 29371 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 2.74995 (* 1 = 2.74995 loss) | |
I0331 11:18:01.572585 29371 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.734985 (* 1 = 0.734985 loss) | |
I0331 11:18:01.572597 29371 solver.cpp:406] Test net output #15: total_accuracy = 0 | |
I0331 11:18:01.572608 29371 solver.cpp:406] Test net output #16: total_confidence = 7.62009e-05 | |
I0331 11:18:01.724376 29371 solver.cpp:229] Iteration 15000, loss = 6.57596 | |
I0331 11:18:01.724427 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0192308 | |
I0331 11:18:01.724444 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.710227 | |
I0331 11:18:01.724457 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.192308 | |
I0331 11:18:01.724472 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.73629 (* 0.3 = 1.12089 loss) | |
I0331 11:18:01.724489 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.14076 (* 0.3 = 0.342228 loss) | |
I0331 11:18:01.724501 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0384615 | |
I0331 11:18:01.724514 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.710227 | |
I0331 11:18:01.724526 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.153846 | |
I0331 11:18:01.724539 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.53299 (* 0.3 = 1.0599 loss) | |
I0331 11:18:01.724553 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.09205 (* 0.3 = 0.327614 loss) | |
I0331 11:18:01.724565 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0961538 | |
I0331 11:18:01.724577 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.727273 | |
I0331 11:18:01.724588 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.211538 | |
I0331 11:18:01.724602 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.26367 (* 1 = 3.26367 loss) | |
I0331 11:18:01.724616 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 1.01677 (* 1 = 1.01677 loss) | |
I0331 11:18:01.724627 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 11:18:01.724639 29371 solver.cpp:245] Train net output #16: total_confidence = 5.59422e-07 | |
I0331 11:18:01.724655 29371 sgd_solver.cpp:106] Iteration 15000, lr = 0.005 | |
I0331 11:20:10.748051 29371 solver.cpp:229] Iteration 15500, loss = 6.58627 | |
I0331 11:20:10.748425 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.1 | |
I0331 11:20:10.748456 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.755682 | |
I0331 11:20:10.748478 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.3 | |
I0331 11:20:10.748505 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.13237 (* 0.3 = 0.93971 loss) | |
I0331 11:20:10.748529 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.929001 (* 0.3 = 0.2787 loss) | |
I0331 11:20:10.748551 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.15 | |
I0331 11:20:10.748571 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.789773 | |
I0331 11:20:10.748592 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.275 | |
I0331 11:20:10.748615 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.06583 (* 0.3 = 0.919748 loss) | |
I0331 11:20:10.748641 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.840736 (* 0.3 = 0.252221 loss) | |
I0331 11:20:10.748663 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.1 | |
I0331 11:20:10.748684 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.778409 | |
I0331 11:20:10.748704 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.375 | |
I0331 11:20:10.748728 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.88582 (* 1 = 2.88582 loss) | |
I0331 11:20:10.748752 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.780122 (* 1 = 0.780122 loss) | |
I0331 11:20:10.748774 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 11:20:10.748795 29371 solver.cpp:245] Train net output #16: total_confidence = 9.16993e-05 | |
I0331 11:20:10.748814 29371 sgd_solver.cpp:106] Iteration 15500, lr = 0.005 | |
I0331 11:22:20.037324 29371 solver.cpp:229] Iteration 16000, loss = 6.52745 | |
I0331 11:22:20.037437 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0652174 | |
I0331 11:22:20.037457 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.755682 | |
I0331 11:22:20.037470 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.152174 | |
I0331 11:22:20.037487 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.23584 (* 0.3 = 0.970752 loss) | |
I0331 11:22:20.037502 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.903882 (* 0.3 = 0.271165 loss) | |
I0331 11:22:20.037513 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0869565 | |
I0331 11:22:20.037525 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.755682 | |
I0331 11:22:20.037538 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.173913 | |
I0331 11:22:20.037551 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.3759 (* 0.3 = 1.01277 loss) | |
I0331 11:22:20.037564 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.936139 (* 0.3 = 0.280842 loss) | |
I0331 11:22:20.037576 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0652174 | |
I0331 11:22:20.037588 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.75 | |
I0331 11:22:20.037600 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.195652 | |
I0331 11:22:20.037614 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.29372 (* 1 = 3.29372 loss) | |
I0331 11:22:20.037627 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.911802 (* 1 = 0.911802 loss) | |
I0331 11:22:20.037639 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 11:22:20.037657 29371 solver.cpp:245] Train net output #16: total_confidence = 0.000374582 | |
I0331 11:22:20.037669 29371 sgd_solver.cpp:106] Iteration 16000, lr = 0.005 | |
I0331 11:24:29.104840 29371 solver.cpp:229] Iteration 16500, loss = 6.52296 | |
I0331 11:24:29.104979 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.142857 | |
I0331 11:24:29.104998 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.761364 | |
I0331 11:24:29.105020 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.285714 | |
I0331 11:24:29.105038 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.36063 (* 0.3 = 1.00819 loss) | |
I0331 11:24:29.105064 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.989709 (* 0.3 = 0.296913 loss) | |
I0331 11:24:29.105079 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.183673 | |
I0331 11:24:29.105095 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.772727 | |
I0331 11:24:29.105108 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.326531 | |
I0331 11:24:29.105121 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.34549 (* 0.3 = 1.00365 loss) | |
I0331 11:24:29.105135 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.969666 (* 0.3 = 0.2909 loss) | |
I0331 11:24:29.105147 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.183673 | |
I0331 11:24:29.105160 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.761364 | |
I0331 11:24:29.105172 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.387755 | |
I0331 11:24:29.105185 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.19224 (* 1 = 3.19224 loss) | |
I0331 11:24:29.105200 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.962334 (* 1 = 0.962334 loss) | |
I0331 11:24:29.105211 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 11:24:29.105222 29371 solver.cpp:245] Train net output #16: total_confidence = 2.02467e-05 | |
I0331 11:24:29.105235 29371 sgd_solver.cpp:106] Iteration 16500, lr = 0.005 | |
I0331 11:26:38.468819 29371 solver.cpp:229] Iteration 17000, loss = 6.52171 | |
I0331 11:26:38.468937 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0638298 | |
I0331 11:26:38.468957 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.738636 | |
I0331 11:26:38.468977 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.297872 | |
I0331 11:26:38.468992 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.86743 (* 0.3 = 1.16023 loss) | |
I0331 11:26:38.469007 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.14609 (* 0.3 = 0.343826 loss) | |
I0331 11:26:38.469019 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0638298 | |
I0331 11:26:38.469032 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.738636 | |
I0331 11:26:38.469043 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.212766 | |
I0331 11:26:38.469056 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 4.04833 (* 0.3 = 1.2145 loss) | |
I0331 11:26:38.469070 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.1875 (* 0.3 = 0.35625 loss) | |
I0331 11:26:38.469085 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0851064 | |
I0331 11:26:38.469099 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.744318 | |
I0331 11:26:38.469110 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.234043 | |
I0331 11:26:38.469123 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.78926 (* 1 = 3.78926 loss) | |
I0331 11:26:38.469137 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 1.12393 (* 1 = 1.12393 loss) | |
I0331 11:26:38.469149 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 11:26:38.469161 29371 solver.cpp:245] Train net output #16: total_confidence = 0.000198103 | |
I0331 11:26:38.469173 29371 sgd_solver.cpp:106] Iteration 17000, lr = 0.005 | |
I0331 11:28:47.638075 29371 solver.cpp:229] Iteration 17500, loss = 6.42424 | |
I0331 11:28:47.638207 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.05 | |
I0331 11:28:47.638227 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.738636 | |
I0331 11:28:47.638241 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.225 | |
I0331 11:28:47.638264 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 4.01245 (* 0.3 = 1.20374 loss) | |
I0331 11:28:47.638284 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.24099 (* 0.3 = 0.372297 loss) | |
I0331 11:28:47.638303 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.05 | |
I0331 11:28:47.638316 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.75 | |
I0331 11:28:47.638329 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.225 | |
I0331 11:28:47.638342 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.86421 (* 0.3 = 1.15926 loss) | |
I0331 11:28:47.638356 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.17127 (* 0.3 = 0.35138 loss) | |
I0331 11:28:47.638368 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.075 | |
I0331 11:28:47.638381 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.75 | |
I0331 11:28:47.638392 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.25 | |
I0331 11:28:47.638406 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.7467 (* 1 = 3.7467 loss) | |
I0331 11:28:47.638419 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 1.05844 (* 1 = 1.05844 loss) | |
I0331 11:28:47.638432 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 11:28:47.638442 29371 solver.cpp:245] Train net output #16: total_confidence = 0.000331391 | |
I0331 11:28:47.638454 29371 sgd_solver.cpp:106] Iteration 17500, lr = 0.005 | |
I0331 11:30:56.714853 29371 solver.cpp:229] Iteration 18000, loss = 6.44845 | |
I0331 11:30:56.714990 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.111111 | |
I0331 11:30:56.715010 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.761364 | |
I0331 11:30:56.715023 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.244444 | |
I0331 11:30:56.715039 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.14151 (* 0.3 = 0.942453 loss) | |
I0331 11:30:56.715054 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.904879 (* 0.3 = 0.271464 loss) | |
I0331 11:30:56.715066 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.133333 | |
I0331 11:30:56.715078 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.767045 | |
I0331 11:30:56.715108 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.288889 | |
I0331 11:30:56.715123 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.14408 (* 0.3 = 0.943225 loss) | |
I0331 11:30:56.715137 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.940586 (* 0.3 = 0.282176 loss) | |
I0331 11:30:56.715149 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.111111 | |
I0331 11:30:56.715162 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.767045 | |
I0331 11:30:56.715173 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.311111 | |
I0331 11:30:56.715188 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.01983 (* 1 = 3.01983 loss) | |
I0331 11:30:56.715200 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.86118 (* 1 = 0.86118 loss) | |
I0331 11:30:56.715212 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 11:30:56.715224 29371 solver.cpp:245] Train net output #16: total_confidence = 7.28542e-06 | |
I0331 11:30:56.715237 29371 sgd_solver.cpp:106] Iteration 18000, lr = 0.005 | |
I0331 11:33:05.658865 29371 solver.cpp:229] Iteration 18500, loss = 6.41203 | |
I0331 11:33:05.659234 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0625 | |
I0331 11:33:05.659263 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.744318 | |
I0331 11:33:05.659286 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.208333 | |
I0331 11:33:05.659313 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.38254 (* 0.3 = 1.01476 loss) | |
I0331 11:33:05.659338 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.960928 (* 0.3 = 0.288278 loss) | |
I0331 11:33:05.659360 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.104167 | |
I0331 11:33:05.659382 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.755682 | |
I0331 11:33:05.659402 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.208333 | |
I0331 11:33:05.659427 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.35059 (* 0.3 = 1.00518 loss) | |
I0331 11:33:05.659452 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.00659 (* 0.3 = 0.301977 loss) | |
I0331 11:33:05.659472 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0833333 | |
I0331 11:33:05.659494 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.75 | |
I0331 11:33:05.659515 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.270833 | |
I0331 11:33:05.659539 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.23724 (* 1 = 3.23724 loss) | |
I0331 11:33:05.659564 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.931142 (* 1 = 0.931142 loss) | |
I0331 11:33:05.659585 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 11:33:05.659605 29371 solver.cpp:245] Train net output #16: total_confidence = 3.03388e-05 | |
I0331 11:33:05.659626 29371 sgd_solver.cpp:106] Iteration 18500, lr = 0.005 | |
I0331 11:35:14.691890 29371 solver.cpp:229] Iteration 19000, loss = 6.4003 | |
I0331 11:35:14.692021 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.142857 | |
I0331 11:35:14.692041 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.772727 | |
I0331 11:35:14.692054 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.261905 | |
I0331 11:35:14.692070 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.5825 (* 0.3 = 1.07475 loss) | |
I0331 11:35:14.692087 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.03737 (* 0.3 = 0.31121 loss) | |
I0331 11:35:14.692101 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0952381 | |
I0331 11:35:14.692113 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.767045 | |
I0331 11:35:14.692126 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.261905 | |
I0331 11:35:14.692139 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.42495 (* 0.3 = 1.02749 loss) | |
I0331 11:35:14.692152 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.957461 (* 0.3 = 0.287238 loss) | |
I0331 11:35:14.692164 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.119048 | |
I0331 11:35:14.692176 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.772727 | |
I0331 11:35:14.692188 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.285714 | |
I0331 11:35:14.692201 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.47238 (* 1 = 3.47238 loss) | |
I0331 11:35:14.692215 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.953992 (* 1 = 0.953992 loss) | |
I0331 11:35:14.692229 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 11:35:14.692239 29371 solver.cpp:245] Train net output #16: total_confidence = 5.01732e-05 | |
I0331 11:35:14.692252 29371 sgd_solver.cpp:106] Iteration 19000, lr = 0.005 | |
I0331 11:37:23.771651 29371 solver.cpp:229] Iteration 19500, loss = 6.42031 | |
I0331 11:37:23.771790 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0952381 | |
I0331 11:37:23.771811 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.761364 | |
I0331 11:37:23.771833 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.285714 | |
I0331 11:37:23.771849 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.32304 (* 0.3 = 0.996911 loss) | |
I0331 11:37:23.771863 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.952886 (* 0.3 = 0.285866 loss) | |
I0331 11:37:23.771877 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0714286 | |
I0331 11:37:23.771888 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.761364 | |
I0331 11:37:23.771900 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.309524 | |
I0331 11:37:23.771914 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.19792 (* 0.3 = 0.959377 loss) | |
I0331 11:37:23.771929 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.930767 (* 0.3 = 0.27923 loss) | |
I0331 11:37:23.771950 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.142857 | |
I0331 11:37:23.771961 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.778409 | |
I0331 11:37:23.771973 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.309524 | |
I0331 11:37:23.771991 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.13913 (* 1 = 3.13913 loss) | |
I0331 11:37:23.772023 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.872003 (* 1 = 0.872003 loss) | |
I0331 11:37:23.772056 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 11:37:23.772078 29371 solver.cpp:245] Train net output #16: total_confidence = 0.000402748 | |
I0331 11:37:23.772105 29371 sgd_solver.cpp:106] Iteration 19500, lr = 0.005 | |
I0331 11:39:32.614279 29371 solver.cpp:338] Iteration 20000, Testing net (#0) | |
I0331 11:40:02.364620 29371 solver.cpp:393] Test loss: 6.81304 | |
I0331 11:40:02.364670 29371 solver.cpp:406] Test net output #0: loss1/accuracy = 0.119562 | |
I0331 11:40:02.364688 29371 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.782773 | |
I0331 11:40:02.364701 29371 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.304496 | |
I0331 11:40:02.364717 29371 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 3.40198 (* 0.3 = 1.02059 loss) | |
I0331 11:40:02.364732 29371 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.859039 (* 0.3 = 0.257712 loss) | |
I0331 11:40:02.364743 29371 solver.cpp:406] Test net output #5: loss2/accuracy = 0.090269 | |
I0331 11:40:02.364756 29371 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.775046 | |
I0331 11:40:02.364768 29371 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.248366 | |
I0331 11:40:02.364781 29371 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 3.45116 (* 0.3 = 1.03535 loss) | |
I0331 11:40:02.364794 29371 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.890512 (* 0.3 = 0.267154 loss) | |
I0331 11:40:02.364806 29371 solver.cpp:406] Test net output #10: loss3/accuracy = 0.0969321 | |
I0331 11:40:02.364819 29371 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.771954 | |
I0331 11:40:02.364830 29371 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.276718 | |
I0331 11:40:02.364843 29371 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 3.33988 (* 1 = 3.33988 loss) | |
I0331 11:40:02.364856 29371 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.892348 (* 1 = 0.892348 loss) | |
I0331 11:40:02.364868 29371 solver.cpp:406] Test net output #15: total_accuracy = 0 | |
I0331 11:40:02.364879 29371 solver.cpp:406] Test net output #16: total_confidence = 0.000166657 | |
I0331 11:40:02.515489 29371 solver.cpp:229] Iteration 20000, loss = 6.33894 | |
I0331 11:40:02.515528 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0697674 | |
I0331 11:40:02.515544 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.755682 | |
I0331 11:40:02.515558 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.186047 | |
I0331 11:40:02.515573 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.42843 (* 0.3 = 1.02853 loss) | |
I0331 11:40:02.515586 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.968865 (* 0.3 = 0.29066 loss) | |
I0331 11:40:02.515599 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0232558 | |
I0331 11:40:02.515610 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.744318 | |
I0331 11:40:02.515622 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.232558 | |
I0331 11:40:02.515636 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.3915 (* 0.3 = 1.01745 loss) | |
I0331 11:40:02.515653 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.936576 (* 0.3 = 0.280973 loss) | |
I0331 11:40:02.515666 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0930233 | |
I0331 11:40:02.515678 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.767045 | |
I0331 11:40:02.515689 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.27907 | |
I0331 11:40:02.515703 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.22926 (* 1 = 3.22926 loss) | |
I0331 11:40:02.515717 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.903762 (* 1 = 0.903762 loss) | |
I0331 11:40:02.515728 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 11:40:02.515740 29371 solver.cpp:245] Train net output #16: total_confidence = 0.000964639 | |
I0331 11:40:02.515753 29371 sgd_solver.cpp:106] Iteration 20000, lr = 0.005 | |
I0331 11:42:11.423058 29371 solver.cpp:229] Iteration 20500, loss = 6.36647 | |
I0331 11:42:11.423202 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0833333 | |
I0331 11:42:11.423223 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.75 | |
I0331 11:42:11.423244 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.208333 | |
I0331 11:42:11.423260 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.13144 (* 0.3 = 0.939431 loss) | |
I0331 11:42:11.423274 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.904795 (* 0.3 = 0.271438 loss) | |
I0331 11:42:11.423287 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0416667 | |
I0331 11:42:11.423300 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.732955 | |
I0331 11:42:11.423311 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.229167 | |
I0331 11:42:11.423324 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.11136 (* 0.3 = 0.933407 loss) | |
I0331 11:42:11.423338 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.897604 (* 0.3 = 0.269281 loss) | |
I0331 11:42:11.423351 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0416667 | |
I0331 11:42:11.423362 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.738636 | |
I0331 11:42:11.423374 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.25 | |
I0331 11:42:11.423388 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.92357 (* 1 = 2.92357 loss) | |
I0331 11:42:11.423401 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.829513 (* 1 = 0.829513 loss) | |
I0331 11:42:11.423413 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 11:42:11.423424 29371 solver.cpp:245] Train net output #16: total_confidence = 0.000118272 | |
I0331 11:42:11.423437 29371 sgd_solver.cpp:106] Iteration 20500, lr = 0.005 | |
I0331 11:44:20.437943 29371 solver.cpp:229] Iteration 21000, loss = 6.32762 | |
I0331 11:44:20.438102 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.162162 | |
I0331 11:44:20.438140 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.778409 | |
I0331 11:44:20.438164 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.27027 | |
I0331 11:44:20.438191 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.03612 (* 0.3 = 0.910836 loss) | |
I0331 11:44:20.438217 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.919047 (* 0.3 = 0.275714 loss) | |
I0331 11:44:20.438240 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.135135 | |
I0331 11:44:20.438263 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.789773 | |
I0331 11:44:20.438285 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.324324 | |
I0331 11:44:20.438311 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.96892 (* 0.3 = 0.890675 loss) | |
I0331 11:44:20.438338 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.849045 (* 0.3 = 0.254714 loss) | |
I0331 11:44:20.438359 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.135135 | |
I0331 11:44:20.438380 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.784091 | |
I0331 11:44:20.438402 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.351351 | |
I0331 11:44:20.438427 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.831 (* 1 = 2.831 loss) | |
I0331 11:44:20.438452 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.82658 (* 1 = 0.82658 loss) | |
I0331 11:44:20.438472 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 11:44:20.438494 29371 solver.cpp:245] Train net output #16: total_confidence = 0.00120338 | |
I0331 11:44:20.438515 29371 sgd_solver.cpp:106] Iteration 21000, lr = 0.005 | |
I0331 11:46:29.664868 29371 solver.cpp:229] Iteration 21500, loss = 6.3404 | |
I0331 11:46:29.664988 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.113636 | |
I0331 11:46:29.665009 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.761364 | |
I0331 11:46:29.665022 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.25 | |
I0331 11:46:29.665040 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.8948 (* 0.3 = 0.868441 loss) | |
I0331 11:46:29.665053 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.817344 (* 0.3 = 0.245203 loss) | |
I0331 11:46:29.665066 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.204545 | |
I0331 11:46:29.665078 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.789773 | |
I0331 11:46:29.665093 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.227273 | |
I0331 11:46:29.665107 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.78721 (* 0.3 = 0.836164 loss) | |
I0331 11:46:29.665122 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.784034 (* 0.3 = 0.23521 loss) | |
I0331 11:46:29.665133 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0909091 | |
I0331 11:46:29.665145 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.767045 | |
I0331 11:46:29.665156 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.25 | |
I0331 11:46:29.665169 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.67742 (* 1 = 2.67742 loss) | |
I0331 11:46:29.665184 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.721794 (* 1 = 0.721794 loss) | |
I0331 11:46:29.665195 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 11:46:29.665207 29371 solver.cpp:245] Train net output #16: total_confidence = 8.99648e-05 | |
I0331 11:46:29.665220 29371 sgd_solver.cpp:106] Iteration 21500, lr = 0.005 | |
I0331 11:48:38.752599 29371 solver.cpp:229] Iteration 22000, loss = 6.30076 | |
I0331 11:48:38.752724 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.117647 | |
I0331 11:48:38.752745 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.738636 | |
I0331 11:48:38.752758 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.215686 | |
I0331 11:48:38.752774 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.05886 (* 0.3 = 0.917659 loss) | |
I0331 11:48:38.752789 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.978632 (* 0.3 = 0.29359 loss) | |
I0331 11:48:38.752800 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.137255 | |
I0331 11:48:38.752813 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.744318 | |
I0331 11:48:38.752825 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.313726 | |
I0331 11:48:38.752838 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.01704 (* 0.3 = 0.905111 loss) | |
I0331 11:48:38.752852 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.9339 (* 0.3 = 0.28017 loss) | |
I0331 11:48:38.752864 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.176471 | |
I0331 11:48:38.752876 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.761364 | |
I0331 11:48:38.752888 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.392157 | |
I0331 11:48:38.752902 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.77976 (* 1 = 2.77976 loss) | |
I0331 11:48:38.752917 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.857426 (* 1 = 0.857426 loss) | |
I0331 11:48:38.752928 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 11:48:38.752939 29371 solver.cpp:245] Train net output #16: total_confidence = 0.000172198 | |
I0331 11:48:38.752951 29371 sgd_solver.cpp:106] Iteration 22000, lr = 0.005 | |
I0331 11:50:47.816555 29371 solver.cpp:229] Iteration 22500, loss = 6.24734 | |
I0331 11:50:47.816675 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.186047 | |
I0331 11:50:47.816705 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.772727 | |
I0331 11:50:47.816730 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.395349 | |
I0331 11:50:47.816757 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.80236 (* 0.3 = 0.840707 loss) | |
I0331 11:50:47.816784 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.839492 (* 0.3 = 0.251848 loss) | |
I0331 11:50:47.816810 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.186047 | |
I0331 11:50:47.816833 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.784091 | |
I0331 11:50:47.816854 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.395349 | |
I0331 11:50:47.816879 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.76827 (* 0.3 = 0.83048 loss) | |
I0331 11:50:47.816905 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.779879 (* 0.3 = 0.233964 loss) | |
I0331 11:50:47.816927 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.162791 | |
I0331 11:50:47.816948 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.784091 | |
I0331 11:50:47.816969 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.488372 | |
I0331 11:50:47.816993 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.64152 (* 1 = 2.64152 loss) | |
I0331 11:50:47.817018 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.742239 (* 1 = 0.742239 loss) | |
I0331 11:50:47.817040 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 11:50:47.817060 29371 solver.cpp:245] Train net output #16: total_confidence = 0.000215241 | |
I0331 11:50:47.817085 29371 sgd_solver.cpp:106] Iteration 22500, lr = 0.005 | |
I0331 11:52:56.803467 29371 solver.cpp:229] Iteration 23000, loss = 6.17095 | |
I0331 11:52:56.803616 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0980392 | |
I0331 11:52:56.803642 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.732955 | |
I0331 11:52:56.803660 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.333333 | |
I0331 11:52:56.803684 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.07964 (* 0.3 = 0.923892 loss) | |
I0331 11:52:56.803705 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.986803 (* 0.3 = 0.296041 loss) | |
I0331 11:52:56.803722 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.176471 | |
I0331 11:52:56.803740 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.738636 | |
I0331 11:52:56.803757 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.352941 | |
I0331 11:52:56.803776 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.05142 (* 0.3 = 0.915427 loss) | |
I0331 11:52:56.803797 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.0433 (* 0.3 = 0.312991 loss) | |
I0331 11:52:56.803815 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.137255 | |
I0331 11:52:56.803836 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.738636 | |
I0331 11:52:56.803858 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.392157 | |
I0331 11:52:56.803884 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.95245 (* 1 = 2.95245 loss) | |
I0331 11:52:56.803912 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.937721 (* 1 = 0.937721 loss) | |
I0331 11:52:56.803932 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 11:52:56.803954 29371 solver.cpp:245] Train net output #16: total_confidence = 5.24693e-06 | |
I0331 11:52:56.803987 29371 sgd_solver.cpp:106] Iteration 23000, lr = 0.005 | |
I0331 11:55:05.648454 29371 solver.cpp:229] Iteration 23500, loss = 6.21126 | |
I0331 11:55:05.648608 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0833333 | |
I0331 11:55:05.648629 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.75 | |
I0331 11:55:05.648643 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.3125 | |
I0331 11:55:05.648659 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.02583 (* 0.3 = 0.907749 loss) | |
I0331 11:55:05.648674 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.878588 (* 0.3 = 0.263576 loss) | |
I0331 11:55:05.648686 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.166667 | |
I0331 11:55:05.648699 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.772727 | |
I0331 11:55:05.648710 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.333333 | |
I0331 11:55:05.648725 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.89876 (* 0.3 = 0.869628 loss) | |
I0331 11:55:05.648737 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.837305 (* 0.3 = 0.251192 loss) | |
I0331 11:55:05.648751 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.125 | |
I0331 11:55:05.648762 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.755682 | |
I0331 11:55:05.648774 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.354167 | |
I0331 11:55:05.648788 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.71961 (* 1 = 2.71961 loss) | |
I0331 11:55:05.648802 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.791434 (* 1 = 0.791434 loss) | |
I0331 11:55:05.648814 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 11:55:05.648825 29371 solver.cpp:245] Train net output #16: total_confidence = 0.000107772 | |
I0331 11:55:05.648838 29371 sgd_solver.cpp:106] Iteration 23500, lr = 0.005 | |
I0331 11:57:14.934633 29371 solver.cpp:229] Iteration 24000, loss = 6.19615 | |
I0331 11:57:14.934806 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0487805 | |
I0331 11:57:14.934846 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.772727 | |
I0331 11:57:14.934872 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.292683 | |
I0331 11:57:14.934895 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.11811 (* 0.3 = 0.935433 loss) | |
I0331 11:57:14.934911 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.813413 (* 0.3 = 0.244024 loss) | |
I0331 11:57:14.934923 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.121951 | |
I0331 11:57:14.934937 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.784091 | |
I0331 11:57:14.934949 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.365854 | |
I0331 11:57:14.934963 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.88862 (* 0.3 = 0.866587 loss) | |
I0331 11:57:14.934976 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.753864 (* 0.3 = 0.226159 loss) | |
I0331 11:57:14.934988 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.146341 | |
I0331 11:57:14.935000 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.784091 | |
I0331 11:57:14.935012 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.317073 | |
I0331 11:57:14.935026 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.78008 (* 1 = 2.78008 loss) | |
I0331 11:57:14.935039 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.753644 (* 1 = 0.753644 loss) | |
I0331 11:57:14.935051 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 11:57:14.935063 29371 solver.cpp:245] Train net output #16: total_confidence = 9.91696e-05 | |
I0331 11:57:14.935076 29371 sgd_solver.cpp:106] Iteration 24000, lr = 0.005 | |
I0331 11:59:24.043004 29371 solver.cpp:229] Iteration 24500, loss = 6.18117 | |
I0331 11:59:24.043082 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.133333 | |
I0331 11:59:24.043103 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.75 | |
I0331 11:59:24.043117 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.266667 | |
I0331 11:59:24.043148 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.32774 (* 0.3 = 0.998321 loss) | |
I0331 11:59:24.043165 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.998225 (* 0.3 = 0.299468 loss) | |
I0331 11:59:24.043177 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.222222 | |
I0331 11:59:24.043190 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.772727 | |
I0331 11:59:24.043200 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.377778 | |
I0331 11:59:24.043215 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.22758 (* 0.3 = 0.968273 loss) | |
I0331 11:59:24.043227 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.967581 (* 0.3 = 0.290274 loss) | |
I0331 11:59:24.043239 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.266667 | |
I0331 11:59:24.043251 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.778409 | |
I0331 11:59:24.043263 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.444444 | |
I0331 11:59:24.043277 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.97293 (* 1 = 2.97293 loss) | |
I0331 11:59:24.043290 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.896119 (* 1 = 0.896119 loss) | |
I0331 11:59:24.043303 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 11:59:24.043313 29371 solver.cpp:245] Train net output #16: total_confidence = 0.000667035 | |
I0331 11:59:24.043326 29371 sgd_solver.cpp:106] Iteration 24500, lr = 0.005 | |
I0331 12:01:33.549535 29371 solver.cpp:338] Iteration 25000, Testing net (#0) | |
I0331 12:02:03.387682 29371 solver.cpp:393] Test loss: 5.98537 | |
I0331 12:02:03.387732 29371 solver.cpp:406] Test net output #0: loss1/accuracy = 0.136854 | |
I0331 12:02:03.387748 29371 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.786455 | |
I0331 12:02:03.387760 29371 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.354266 | |
I0331 12:02:03.387776 29371 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 2.97385 (* 0.3 = 0.892156 loss) | |
I0331 12:02:03.387790 29371 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.758902 (* 0.3 = 0.227671 loss) | |
I0331 12:02:03.387802 29371 solver.cpp:406] Test net output #5: loss2/accuracy = 0.134996 | |
I0331 12:02:03.387814 29371 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.786 | |
I0331 12:02:03.387825 29371 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.331848 | |
I0331 12:02:03.387840 29371 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 2.99386 (* 0.3 = 0.898159 loss) | |
I0331 12:02:03.387853 29371 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.765033 (* 0.3 = 0.22951 loss) | |
I0331 12:02:03.387866 29371 solver.cpp:406] Test net output #10: loss3/accuracy = 0.144693 | |
I0331 12:02:03.387877 29371 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.785773 | |
I0331 12:02:03.387888 29371 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.384902 | |
I0331 12:02:03.387902 29371 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 2.96506 (* 1 = 2.96506 loss) | |
I0331 12:02:03.387915 29371 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.77281 (* 1 = 0.77281 loss) | |
I0331 12:02:03.387926 29371 solver.cpp:406] Test net output #15: total_accuracy = 0 | |
I0331 12:02:03.387938 29371 solver.cpp:406] Test net output #16: total_confidence = 0.00147571 | |
I0331 12:02:03.539115 29371 solver.cpp:229] Iteration 25000, loss = 6.15388 | |
I0331 12:02:03.539165 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0612245 | |
I0331 12:02:03.539180 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.721591 | |
I0331 12:02:03.539192 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.142857 | |
I0331 12:02:03.539207 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.49006 (* 0.3 = 1.04702 loss) | |
I0331 12:02:03.539222 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.11959 (* 0.3 = 0.335876 loss) | |
I0331 12:02:03.539233 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.102041 | |
I0331 12:02:03.539245 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.744318 | |
I0331 12:02:03.539258 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.22449 | |
I0331 12:02:03.539271 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.44179 (* 0.3 = 1.03254 loss) | |
I0331 12:02:03.539285 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.0654 (* 0.3 = 0.319621 loss) | |
I0331 12:02:03.539297 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.122449 | |
I0331 12:02:03.539309 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.738636 | |
I0331 12:02:03.539320 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.326531 | |
I0331 12:02:03.539335 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.24491 (* 1 = 3.24491 loss) | |
I0331 12:02:03.539347 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 1.01257 (* 1 = 1.01257 loss) | |
I0331 12:02:03.539360 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 12:02:03.539371 29371 solver.cpp:245] Train net output #16: total_confidence = 5.27663e-05 | |
I0331 12:02:03.539382 29371 sgd_solver.cpp:106] Iteration 25000, lr = 0.005 | |
I0331 12:04:12.387660 29371 solver.cpp:229] Iteration 25500, loss = 6.16887 | |
I0331 12:04:12.387804 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.102564 | |
I0331 12:04:12.387835 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.784091 | |
I0331 12:04:12.387858 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.230769 | |
I0331 12:04:12.387886 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.19141 (* 0.3 = 0.957424 loss) | |
I0331 12:04:12.387913 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.842914 (* 0.3 = 0.252874 loss) | |
I0331 12:04:12.387938 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.102564 | |
I0331 12:04:12.387961 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.784091 | |
I0331 12:04:12.387982 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.25641 | |
I0331 12:04:12.388006 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.03819 (* 0.3 = 0.911456 loss) | |
I0331 12:04:12.388031 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.795598 (* 0.3 = 0.238679 loss) | |
I0331 12:04:12.388053 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.205128 | |
I0331 12:04:12.388073 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.806818 | |
I0331 12:04:12.388099 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.435897 | |
I0331 12:04:12.388124 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.78519 (* 1 = 2.78519 loss) | |
I0331 12:04:12.388150 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.723668 (* 1 = 0.723668 loss) | |
I0331 12:04:12.388171 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 12:04:12.388191 29371 solver.cpp:245] Train net output #16: total_confidence = 9.60823e-05 | |
I0331 12:04:12.388213 29371 sgd_solver.cpp:106] Iteration 25500, lr = 0.005 | |
I0331 12:06:21.407563 29371 solver.cpp:229] Iteration 26000, loss = 6.11499 | |
I0331 12:06:21.407680 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0714286 | |
I0331 12:06:21.407699 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.767045 | |
I0331 12:06:21.407711 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.261905 | |
I0331 12:06:21.407728 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.17363 (* 0.3 = 0.95209 loss) | |
I0331 12:06:21.407743 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.871933 (* 0.3 = 0.26158 loss) | |
I0331 12:06:21.407755 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0952381 | |
I0331 12:06:21.407768 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.772727 | |
I0331 12:06:21.407780 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.214286 | |
I0331 12:06:21.407794 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.28118 (* 0.3 = 0.984355 loss) | |
I0331 12:06:21.407809 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.884799 (* 0.3 = 0.26544 loss) | |
I0331 12:06:21.407820 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.214286 | |
I0331 12:06:21.407846 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.795455 | |
I0331 12:06:21.407860 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.380952 | |
I0331 12:06:21.407874 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.91866 (* 1 = 2.91866 loss) | |
I0331 12:06:21.407888 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.784071 (* 1 = 0.784071 loss) | |
I0331 12:06:21.407909 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 12:06:21.407920 29371 solver.cpp:245] Train net output #16: total_confidence = 0.00165875 | |
I0331 12:06:21.407933 29371 sgd_solver.cpp:106] Iteration 26000, lr = 0.005 | |
I0331 12:08:31.114663 29371 solver.cpp:229] Iteration 26500, loss = 6.06823 | |
I0331 12:08:31.114814 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.06 | |
I0331 12:08:31.114852 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.727273 | |
I0331 12:08:31.114877 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.18 | |
I0331 12:08:31.114907 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.17162 (* 0.3 = 0.951485 loss) | |
I0331 12:08:31.114926 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.989832 (* 0.3 = 0.29695 loss) | |
I0331 12:08:31.114939 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.12 | |
I0331 12:08:31.114953 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.727273 | |
I0331 12:08:31.114964 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.22 | |
I0331 12:08:31.114977 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.18628 (* 0.3 = 0.955885 loss) | |
I0331 12:08:31.114991 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.01571 (* 0.3 = 0.304713 loss) | |
I0331 12:08:31.115003 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.2 | |
I0331 12:08:31.115015 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.75 | |
I0331 12:08:31.115027 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.38 | |
I0331 12:08:31.115042 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.79165 (* 1 = 2.79165 loss) | |
I0331 12:08:31.115077 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.902947 (* 1 = 0.902947 loss) | |
I0331 12:08:31.115129 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 12:08:31.115152 29371 solver.cpp:245] Train net output #16: total_confidence = 9.44554e-05 | |
I0331 12:08:31.115175 29371 sgd_solver.cpp:106] Iteration 26500, lr = 0.005 | |
I0331 12:10:40.218683 29371 solver.cpp:229] Iteration 27000, loss = 6.05843 | |
I0331 12:10:40.218801 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.152174 | |
I0331 12:10:40.218830 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.772727 | |
I0331 12:10:40.218854 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.304348 | |
I0331 12:10:40.218881 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.77739 (* 0.3 = 0.833217 loss) | |
I0331 12:10:40.218909 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.789514 (* 0.3 = 0.236854 loss) | |
I0331 12:10:40.218931 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.130435 | |
I0331 12:10:40.218955 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.772727 | |
I0331 12:10:40.218977 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.282609 | |
I0331 12:10:40.219003 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.79661 (* 0.3 = 0.838982 loss) | |
I0331 12:10:40.219027 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.775566 (* 0.3 = 0.23267 loss) | |
I0331 12:10:40.219048 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.152174 | |
I0331 12:10:40.219069 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.772727 | |
I0331 12:10:40.219089 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.391304 | |
I0331 12:10:40.219135 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.55339 (* 1 = 2.55339 loss) | |
I0331 12:10:40.219162 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.730481 (* 1 = 0.730481 loss) | |
I0331 12:10:40.219184 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 12:10:40.219205 29371 solver.cpp:245] Train net output #16: total_confidence = 0.000225542 | |
I0331 12:10:40.219226 29371 sgd_solver.cpp:106] Iteration 27000, lr = 0.005 | |
I0331 12:12:49.312083 29371 solver.cpp:229] Iteration 27500, loss = 6.01024 | |
I0331 12:12:49.312245 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.142857 | |
I0331 12:12:49.312265 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.767045 | |
I0331 12:12:49.312288 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.333333 | |
I0331 12:12:49.312302 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.86777 (* 0.3 = 1.16033 loss) | |
I0331 12:12:49.312317 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.11632 (* 0.3 = 0.334896 loss) | |
I0331 12:12:49.312330 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.142857 | |
I0331 12:12:49.312342 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.761364 | |
I0331 12:12:49.312353 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.309524 | |
I0331 12:12:49.312368 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.54759 (* 0.3 = 1.06428 loss) | |
I0331 12:12:49.312382 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.06773 (* 0.3 = 0.32032 loss) | |
I0331 12:12:49.312394 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.214286 | |
I0331 12:12:49.312407 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.772727 | |
I0331 12:12:49.312418 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.357143 | |
I0331 12:12:49.312432 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.79944 (* 1 = 2.79944 loss) | |
I0331 12:12:49.312451 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.917792 (* 1 = 0.917792 loss) | |
I0331 12:12:49.312482 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 12:12:49.312505 29371 solver.cpp:245] Train net output #16: total_confidence = 1.17351e-05 | |
I0331 12:12:49.312536 29371 sgd_solver.cpp:106] Iteration 27500, lr = 0.005 | |
I0331 12:14:58.382386 29371 solver.cpp:229] Iteration 28000, loss = 6.04725 | |
I0331 12:14:58.382499 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.12 | |
I0331 12:14:58.382520 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.75 | |
I0331 12:14:58.382534 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.28 | |
I0331 12:14:58.382550 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.94116 (* 0.3 = 0.882349 loss) | |
I0331 12:14:58.382563 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.903129 (* 0.3 = 0.270939 loss) | |
I0331 12:14:58.382575 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.22 | |
I0331 12:14:58.382588 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.778409 | |
I0331 12:14:58.382601 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.42 | |
I0331 12:14:58.382614 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.92698 (* 0.3 = 0.878094 loss) | |
I0331 12:14:58.382628 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.897841 (* 0.3 = 0.269352 loss) | |
I0331 12:14:58.382640 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.2 | |
I0331 12:14:58.382652 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.755682 | |
I0331 12:14:58.382664 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.34 | |
I0331 12:14:58.382679 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.65721 (* 1 = 2.65721 loss) | |
I0331 12:14:58.382694 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.814149 (* 1 = 0.814149 loss) | |
I0331 12:14:58.382714 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 12:14:58.382733 29371 solver.cpp:245] Train net output #16: total_confidence = 0.000445462 | |
I0331 12:14:58.382746 29371 sgd_solver.cpp:106] Iteration 28000, lr = 0.005 | |
I0331 12:17:07.321985 29371 solver.cpp:229] Iteration 28500, loss = 5.96416 | |
I0331 12:17:07.322130 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.163265 | |
I0331 12:17:07.322150 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.767045 | |
I0331 12:17:07.322163 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.326531 | |
I0331 12:17:07.322178 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.92997 (* 0.3 = 0.878991 loss) | |
I0331 12:17:07.322193 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.889532 (* 0.3 = 0.26686 loss) | |
I0331 12:17:07.322206 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.183673 | |
I0331 12:17:07.322217 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.767045 | |
I0331 12:17:07.322229 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.285714 | |
I0331 12:17:07.322242 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.90215 (* 0.3 = 0.870645 loss) | |
I0331 12:17:07.322257 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.890859 (* 0.3 = 0.267258 loss) | |
I0331 12:17:07.322268 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.22449 | |
I0331 12:17:07.322280 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.767045 | |
I0331 12:17:07.322293 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.428571 | |
I0331 12:17:07.322305 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.69472 (* 1 = 2.69472 loss) | |
I0331 12:17:07.322319 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.834801 (* 1 = 0.834801 loss) | |
I0331 12:17:07.322331 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 12:17:07.322342 29371 solver.cpp:245] Train net output #16: total_confidence = 0.000271263 | |
I0331 12:17:07.322355 29371 sgd_solver.cpp:106] Iteration 28500, lr = 0.005 | |
I0331 12:19:16.421744 29371 solver.cpp:229] Iteration 29000, loss = 5.91779 | |
I0331 12:19:16.421890 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.170213 | |
I0331 12:19:16.421913 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.772727 | |
I0331 12:19:16.421926 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.319149 | |
I0331 12:19:16.421943 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.90692 (* 0.3 = 0.872075 loss) | |
I0331 12:19:16.421957 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.88323 (* 0.3 = 0.264969 loss) | |
I0331 12:19:16.421970 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.212766 | |
I0331 12:19:16.421983 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.789773 | |
I0331 12:19:16.421994 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.361702 | |
I0331 12:19:16.422008 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.78828 (* 0.3 = 0.836485 loss) | |
I0331 12:19:16.422022 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.818113 (* 0.3 = 0.245434 loss) | |
I0331 12:19:16.422034 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.191489 | |
I0331 12:19:16.422046 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.755682 | |
I0331 12:19:16.422058 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.489362 | |
I0331 12:19:16.422071 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.49456 (* 1 = 2.49456 loss) | |
I0331 12:19:16.422088 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.816798 (* 1 = 0.816798 loss) | |
I0331 12:19:16.422101 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 12:19:16.422112 29371 solver.cpp:245] Train net output #16: total_confidence = 0.000612754 | |
I0331 12:19:16.422124 29371 sgd_solver.cpp:106] Iteration 29000, lr = 0.005 | |
I0331 12:21:25.826736 29371 solver.cpp:229] Iteration 29500, loss = 5.85328 | |
I0331 12:21:25.826887 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.162791 | |
I0331 12:21:25.826908 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.784091 | |
I0331 12:21:25.826927 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.372093 | |
I0331 12:21:25.826942 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.65572 (* 0.3 = 0.796715 loss) | |
I0331 12:21:25.826957 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.757823 (* 0.3 = 0.227347 loss) | |
I0331 12:21:25.826969 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.139535 | |
I0331 12:21:25.826982 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.767045 | |
I0331 12:21:25.826994 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.395349 | |
I0331 12:21:25.827008 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.66292 (* 0.3 = 0.798875 loss) | |
I0331 12:21:25.827021 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.780585 (* 0.3 = 0.234176 loss) | |
I0331 12:21:25.827033 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.27907 | |
I0331 12:21:25.827045 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.818182 | |
I0331 12:21:25.827057 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.581395 | |
I0331 12:21:25.827080 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.40841 (* 1 = 2.40841 loss) | |
I0331 12:21:25.827131 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.663006 (* 1 = 0.663006 loss) | |
I0331 12:21:25.827164 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 12:21:25.827188 29371 solver.cpp:245] Train net output #16: total_confidence = 0.000806462 | |
I0331 12:21:25.827208 29371 sgd_solver.cpp:106] Iteration 29500, lr = 0.005 | |
I0331 12:23:34.627172 29371 solver.cpp:338] Iteration 30000, Testing net (#0) | |
I0331 12:24:04.502223 29371 solver.cpp:393] Test loss: 5.97971 | |
I0331 12:24:04.502275 29371 solver.cpp:406] Test net output #0: loss1/accuracy = 0.101121 | |
I0331 12:24:04.502302 29371 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.779501 | |
I0331 12:24:04.502326 29371 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.309562 | |
I0331 12:24:04.502351 29371 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 3.79926 (* 0.3 = 1.13978 loss) | |
I0331 12:24:04.502378 29371 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.95043 (* 0.3 = 0.285129 loss) | |
I0331 12:24:04.502401 29371 solver.cpp:406] Test net output #5: loss2/accuracy = 0.124875 | |
I0331 12:24:04.502427 29371 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.784682 | |
I0331 12:24:04.502449 29371 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.35136 | |
I0331 12:24:04.502473 29371 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 3.20875 (* 0.3 = 0.962625 loss) | |
I0331 12:24:04.502506 29371 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.802385 (* 0.3 = 0.240716 loss) | |
I0331 12:24:04.502528 29371 solver.cpp:406] Test net output #10: loss3/accuracy = 0.217384 | |
I0331 12:24:04.502550 29371 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.806409 | |
I0331 12:24:04.502576 29371 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.518481 | |
I0331 12:24:04.502600 29371 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 2.67593 (* 1 = 2.67593 loss) | |
I0331 12:24:04.502625 29371 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.67554 (* 1 = 0.67554 loss) | |
I0331 12:24:04.502646 29371 solver.cpp:406] Test net output #15: total_accuracy = 0.002 | |
I0331 12:24:04.502667 29371 solver.cpp:406] Test net output #16: total_confidence = 0.00711783 | |
I0331 12:24:04.655555 29371 solver.cpp:229] Iteration 30000, loss = 5.91057 | |
I0331 12:24:04.655719 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0833333 | |
I0331 12:24:04.655757 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.744318 | |
I0331 12:24:04.655781 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.291667 | |
I0331 12:24:04.655808 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.94349 (* 0.3 = 0.883048 loss) | |
I0331 12:24:04.655835 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.892354 (* 0.3 = 0.267706 loss) | |
I0331 12:24:04.655859 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.166667 | |
I0331 12:24:04.655886 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.761364 | |
I0331 12:24:04.655908 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.395833 | |
I0331 12:24:04.655936 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.88335 (* 0.3 = 0.865004 loss) | |
I0331 12:24:04.655971 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.865113 (* 0.3 = 0.259534 loss) | |
I0331 12:24:04.655992 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.166667 | |
I0331 12:24:04.656023 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.761364 | |
I0331 12:24:04.656044 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.416667 | |
I0331 12:24:04.656069 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.69112 (* 1 = 2.69112 loss) | |
I0331 12:24:04.656097 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.821748 (* 1 = 0.821748 loss) | |
I0331 12:24:04.656119 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 12:24:04.656139 29371 solver.cpp:245] Train net output #16: total_confidence = 0.000213524 | |
I0331 12:24:04.656162 29371 sgd_solver.cpp:106] Iteration 30000, lr = 0.005 | |
I0331 12:26:13.611245 29371 solver.cpp:229] Iteration 30500, loss = 5.89275 | |
I0331 12:26:13.611359 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.205128 | |
I0331 12:26:13.611379 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.801136 | |
I0331 12:26:13.611392 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.25641 | |
I0331 12:26:13.611407 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.0066 (* 0.3 = 0.901981 loss) | |
I0331 12:26:13.611423 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.829607 (* 0.3 = 0.248882 loss) | |
I0331 12:26:13.611434 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.179487 | |
I0331 12:26:13.611446 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.795455 | |
I0331 12:26:13.611459 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.307692 | |
I0331 12:26:13.611471 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.92507 (* 0.3 = 0.87752 loss) | |
I0331 12:26:13.611485 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.81979 (* 0.3 = 0.245937 loss) | |
I0331 12:26:13.611498 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.358974 | |
I0331 12:26:13.611510 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.835227 | |
I0331 12:26:13.611521 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.564103 | |
I0331 12:26:13.611536 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.26415 (* 1 = 2.26415 loss) | |
I0331 12:26:13.611548 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.604817 (* 1 = 0.604817 loss) | |
I0331 12:26:13.611560 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 12:26:13.611572 29371 solver.cpp:245] Train net output #16: total_confidence = 0.00177635 | |
I0331 12:26:13.611583 29371 sgd_solver.cpp:106] Iteration 30500, lr = 0.005 | |
I0331 12:28:22.558701 29371 solver.cpp:229] Iteration 31000, loss = 5.83801 | |
I0331 12:28:22.558848 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.14 | |
I0331 12:28:22.558877 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.755682 | |
I0331 12:28:22.558902 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.42 | |
I0331 12:28:22.558928 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.01822 (* 0.3 = 0.905465 loss) | |
I0331 12:28:22.558954 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.876719 (* 0.3 = 0.263016 loss) | |
I0331 12:28:22.558977 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.14 | |
I0331 12:28:22.559002 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.755682 | |
I0331 12:28:22.559023 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.46 | |
I0331 12:28:22.559049 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.87246 (* 0.3 = 0.861738 loss) | |
I0331 12:28:22.559075 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.841918 (* 0.3 = 0.252575 loss) | |
I0331 12:28:22.559116 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.2 | |
I0331 12:28:22.559140 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.772727 | |
I0331 12:28:22.559160 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.44 | |
I0331 12:28:22.559186 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.65042 (* 1 = 2.65042 loss) | |
I0331 12:28:22.559211 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.771782 (* 1 = 0.771782 loss) | |
I0331 12:28:22.559232 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 12:28:22.559253 29371 solver.cpp:245] Train net output #16: total_confidence = 0.000554102 | |
I0331 12:28:22.559274 29371 sgd_solver.cpp:106] Iteration 31000, lr = 0.005 | |
I0331 12:30:31.701535 29371 solver.cpp:229] Iteration 31500, loss = 5.826 | |
I0331 12:30:31.701642 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.108696 | |
I0331 12:30:31.701663 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.767045 | |
I0331 12:30:31.701674 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.326087 | |
I0331 12:30:31.701690 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.0958 (* 0.3 = 0.928741 loss) | |
I0331 12:30:31.701705 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.887209 (* 0.3 = 0.266163 loss) | |
I0331 12:30:31.701717 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.130435 | |
I0331 12:30:31.701730 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.767045 | |
I0331 12:30:31.701741 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.369565 | |
I0331 12:30:31.701755 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.00263 (* 0.3 = 0.900788 loss) | |
I0331 12:30:31.701768 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.8741 (* 0.3 = 0.26223 loss) | |
I0331 12:30:31.701781 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.195652 | |
I0331 12:30:31.701792 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.772727 | |
I0331 12:30:31.701804 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.391304 | |
I0331 12:30:31.701833 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.73061 (* 1 = 2.73061 loss) | |
I0331 12:30:31.701848 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.773517 (* 1 = 0.773517 loss) | |
I0331 12:30:31.701860 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 12:30:31.701871 29371 solver.cpp:245] Train net output #16: total_confidence = 0.000448331 | |
I0331 12:30:31.701886 29371 sgd_solver.cpp:106] Iteration 31500, lr = 0.005 | |
I0331 12:32:40.712070 29371 solver.cpp:229] Iteration 32000, loss = 5.81077 | |
I0331 12:32:40.712213 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0816327 | |
I0331 12:32:40.712232 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.732955 | |
I0331 12:32:40.712250 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.183673 | |
I0331 12:32:40.712266 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.9903 (* 0.3 = 0.89709 loss) | |
I0331 12:32:40.712281 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.906256 (* 0.3 = 0.271877 loss) | |
I0331 12:32:40.712293 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0816327 | |
I0331 12:32:40.712306 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.738636 | |
I0331 12:32:40.712317 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.244898 | |
I0331 12:32:40.712332 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.90167 (* 0.3 = 0.870501 loss) | |
I0331 12:32:40.712345 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.873605 (* 0.3 = 0.262082 loss) | |
I0331 12:32:40.712357 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.306122 | |
I0331 12:32:40.712369 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.795455 | |
I0331 12:32:40.712381 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.55102 | |
I0331 12:32:40.712395 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.48312 (* 1 = 2.48312 loss) | |
I0331 12:32:40.712409 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.75132 (* 1 = 0.75132 loss) | |
I0331 12:32:40.712429 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 12:32:40.712441 29371 solver.cpp:245] Train net output #16: total_confidence = 0.000457783 | |
I0331 12:32:40.712453 29371 sgd_solver.cpp:106] Iteration 32000, lr = 0.005 | |
I0331 12:34:49.725615 29371 solver.cpp:229] Iteration 32500, loss = 5.72218 | |
I0331 12:34:49.725735 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.108696 | |
I0331 12:34:49.725765 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.755682 | |
I0331 12:34:49.725790 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.326087 | |
I0331 12:34:49.725817 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.91419 (* 0.3 = 0.874256 loss) | |
I0331 12:34:49.725843 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.862525 (* 0.3 = 0.258758 loss) | |
I0331 12:34:49.725867 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.195652 | |
I0331 12:34:49.725893 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.784091 | |
I0331 12:34:49.725915 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.304348 | |
I0331 12:34:49.725941 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.86462 (* 0.3 = 0.859387 loss) | |
I0331 12:34:49.725975 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.810444 (* 0.3 = 0.243133 loss) | |
I0331 12:34:49.725996 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.173913 | |
I0331 12:34:49.726018 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.767045 | |
I0331 12:34:49.726048 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.5 | |
I0331 12:34:49.726073 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.7178 (* 1 = 2.7178 loss) | |
I0331 12:34:49.726104 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.782867 (* 1 = 0.782867 loss) | |
I0331 12:34:49.726125 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 12:34:49.726145 29371 solver.cpp:245] Train net output #16: total_confidence = 0.000861774 | |
I0331 12:34:49.726167 29371 sgd_solver.cpp:106] Iteration 32500, lr = 0.005 | |
I0331 12:36:58.692569 29371 solver.cpp:229] Iteration 33000, loss = 5.77488 | |
I0331 12:36:58.692705 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.190476 | |
I0331 12:36:58.692735 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.789773 | |
I0331 12:36:58.692767 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.404762 | |
I0331 12:36:58.692798 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.74502 (* 0.3 = 0.823505 loss) | |
I0331 12:36:58.692816 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.782477 (* 0.3 = 0.234743 loss) | |
I0331 12:36:58.692829 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.142857 | |
I0331 12:36:58.692842 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.784091 | |
I0331 12:36:58.692854 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.404762 | |
I0331 12:36:58.692867 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.76913 (* 0.3 = 0.83074 loss) | |
I0331 12:36:58.692889 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.744396 (* 0.3 = 0.223319 loss) | |
I0331 12:36:58.692901 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.261905 | |
I0331 12:36:58.692914 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.806818 | |
I0331 12:36:58.692926 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.571429 | |
I0331 12:36:58.692948 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.41024 (* 1 = 2.41024 loss) | |
I0331 12:36:58.692961 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.671635 (* 1 = 0.671635 loss) | |
I0331 12:36:58.692973 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 12:36:58.692986 29371 solver.cpp:245] Train net output #16: total_confidence = 0.00452107 | |
I0331 12:36:58.692997 29371 sgd_solver.cpp:106] Iteration 33000, lr = 0.005 | |
I0331 12:39:07.728839 29371 solver.cpp:229] Iteration 33500, loss = 5.74099 | |
I0331 12:39:07.728961 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.128205 | |
I0331 12:39:07.728981 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.789773 | |
I0331 12:39:07.728994 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.358974 | |
I0331 12:39:07.729010 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.26172 (* 0.3 = 0.978516 loss) | |
I0331 12:39:07.729024 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.857831 (* 0.3 = 0.257349 loss) | |
I0331 12:39:07.729038 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.25641 | |
I0331 12:39:07.729049 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.801136 | |
I0331 12:39:07.729061 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.461538 | |
I0331 12:39:07.729075 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.85876 (* 0.3 = 0.857627 loss) | |
I0331 12:39:07.729091 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.828452 (* 0.3 = 0.248536 loss) | |
I0331 12:39:07.729104 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.282051 | |
I0331 12:39:07.729116 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.795455 | |
I0331 12:39:07.729128 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.564103 | |
I0331 12:39:07.729141 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.48599 (* 1 = 2.48599 loss) | |
I0331 12:39:07.729156 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.729366 (* 1 = 0.729366 loss) | |
I0331 12:39:07.729167 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 12:39:07.729179 29371 solver.cpp:245] Train net output #16: total_confidence = 0.015633 | |
I0331 12:39:07.729194 29371 sgd_solver.cpp:106] Iteration 33500, lr = 0.005 | |
I0331 12:41:16.840293 29371 solver.cpp:229] Iteration 34000, loss = 5.65443 | |
I0331 12:41:16.840431 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0697674 | |
I0331 12:41:16.840452 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.738636 | |
I0331 12:41:16.840466 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.209302 | |
I0331 12:41:16.840481 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.37725 (* 0.3 = 1.01318 loss) | |
I0331 12:41:16.840495 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.98816 (* 0.3 = 0.296448 loss) | |
I0331 12:41:16.840508 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.139535 | |
I0331 12:41:16.840522 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.755682 | |
I0331 12:41:16.840533 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.348837 | |
I0331 12:41:16.840546 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.03276 (* 0.3 = 0.909827 loss) | |
I0331 12:41:16.840560 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.934052 (* 0.3 = 0.280216 loss) | |
I0331 12:41:16.840572 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.232558 | |
I0331 12:41:16.840584 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.761364 | |
I0331 12:41:16.840596 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.395349 | |
I0331 12:41:16.840610 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.67385 (* 1 = 2.67385 loss) | |
I0331 12:41:16.840623 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.883859 (* 1 = 0.883859 loss) | |
I0331 12:41:16.840636 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 12:41:16.840646 29371 solver.cpp:245] Train net output #16: total_confidence = 0.000252774 | |
I0331 12:41:16.840659 29371 sgd_solver.cpp:106] Iteration 34000, lr = 0.005 | |
I0331 12:43:25.961925 29371 solver.cpp:229] Iteration 34500, loss = 5.66662 | |
I0331 12:43:25.962025 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.097561 | |
I0331 12:43:25.962045 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.772727 | |
I0331 12:43:25.962059 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.243902 | |
I0331 12:43:25.962074 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.93541 (* 0.3 = 0.880622 loss) | |
I0331 12:43:25.962088 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.825639 (* 0.3 = 0.247692 loss) | |
I0331 12:43:25.962100 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.121951 | |
I0331 12:43:25.962112 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.778409 | |
I0331 12:43:25.962124 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.317073 | |
I0331 12:43:25.962138 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.77733 (* 0.3 = 0.833199 loss) | |
I0331 12:43:25.962152 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.784126 (* 0.3 = 0.235238 loss) | |
I0331 12:43:25.962163 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.146341 | |
I0331 12:43:25.962175 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.761364 | |
I0331 12:43:25.962188 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.317073 | |
I0331 12:43:25.962200 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.71156 (* 1 = 2.71156 loss) | |
I0331 12:43:25.962214 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.802093 (* 1 = 0.802093 loss) | |
I0331 12:43:25.962226 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 12:43:25.962239 29371 solver.cpp:245] Train net output #16: total_confidence = 0.00148779 | |
I0331 12:43:25.962250 29371 sgd_solver.cpp:106] Iteration 34500, lr = 0.005 | |
I0331 12:45:34.738037 29371 solver.cpp:338] Iteration 35000, Testing net (#0) | |
I0331 12:46:04.546177 29371 solver.cpp:393] Test loss: 5.38048 | |
I0331 12:46:04.546224 29371 solver.cpp:406] Test net output #0: loss1/accuracy = 0.111671 | |
I0331 12:46:04.546241 29371 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.780091 | |
I0331 12:46:04.546254 29371 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.325042 | |
I0331 12:46:04.546269 29371 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 3.12414 (* 0.3 = 0.937242 loss) | |
I0331 12:46:04.546284 29371 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.802482 (* 0.3 = 0.240745 loss) | |
I0331 12:46:04.546296 29371 solver.cpp:406] Test net output #5: loss2/accuracy = 0.186054 | |
I0331 12:46:04.546308 29371 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.792727 | |
I0331 12:46:04.546319 29371 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.430612 | |
I0331 12:46:04.546332 29371 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 2.74593 (* 0.3 = 0.82378 loss) | |
I0331 12:46:04.546346 29371 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.74043 (* 0.3 = 0.222129 loss) | |
I0331 12:46:04.546358 29371 solver.cpp:406] Test net output #10: loss3/accuracy = 0.293353 | |
I0331 12:46:04.546370 29371 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.794181 | |
I0331 12:46:04.546382 29371 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.568883 | |
I0331 12:46:04.546396 29371 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 2.42644 (* 1 = 2.42644 loss) | |
I0331 12:46:04.546409 29371 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.730142 (* 1 = 0.730142 loss) | |
I0331 12:46:04.546421 29371 solver.cpp:406] Test net output #15: total_accuracy = 0 | |
I0331 12:46:04.546432 29371 solver.cpp:406] Test net output #16: total_confidence = 0.00332237 | |
I0331 12:46:04.698402 29371 solver.cpp:229] Iteration 35000, loss = 5.63686 | |
I0331 12:46:04.698446 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.117647 | |
I0331 12:46:04.698465 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.727273 | |
I0331 12:46:04.698478 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.352941 | |
I0331 12:46:04.698493 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.93648 (* 0.3 = 0.880945 loss) | |
I0331 12:46:04.698508 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.956977 (* 0.3 = 0.287093 loss) | |
I0331 12:46:04.698520 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.196078 | |
I0331 12:46:04.698532 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.75 | |
I0331 12:46:04.698544 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.392157 | |
I0331 12:46:04.698559 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.81535 (* 0.3 = 0.844605 loss) | |
I0331 12:46:04.698572 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.90261 (* 0.3 = 0.270783 loss) | |
I0331 12:46:04.698585 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.313726 | |
I0331 12:46:04.698596 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.784091 | |
I0331 12:46:04.698616 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.568627 | |
I0331 12:46:04.698637 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.49579 (* 1 = 2.49579 loss) | |
I0331 12:46:04.698652 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.796976 (* 1 = 0.796976 loss) | |
I0331 12:46:04.698663 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 12:46:04.698674 29371 solver.cpp:245] Train net output #16: total_confidence = 0.0197156 | |
I0331 12:46:04.698690 29371 sgd_solver.cpp:106] Iteration 35000, lr = 0.005 | |
I0331 12:48:13.778801 29371 solver.cpp:229] Iteration 35500, loss = 5.65028 | |
I0331 12:48:13.778941 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0909091 | |
I0331 12:48:13.778983 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.710227 | |
I0331 12:48:13.779009 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.327273 | |
I0331 12:48:13.779039 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.90107 (* 0.3 = 0.870322 loss) | |
I0331 12:48:13.779057 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.962906 (* 0.3 = 0.288872 loss) | |
I0331 12:48:13.779068 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.145455 | |
I0331 12:48:13.779095 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.732955 | |
I0331 12:48:13.779112 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.418182 | |
I0331 12:48:13.779126 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.75448 (* 0.3 = 0.826343 loss) | |
I0331 12:48:13.779140 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.895814 (* 0.3 = 0.268744 loss) | |
I0331 12:48:13.779152 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.218182 | |
I0331 12:48:13.779165 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.75 | |
I0331 12:48:13.779176 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.509091 | |
I0331 12:48:13.779191 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.45972 (* 1 = 2.45972 loss) | |
I0331 12:48:13.779203 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.819457 (* 1 = 0.819457 loss) | |
I0331 12:48:13.779216 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 12:48:13.779228 29371 solver.cpp:245] Train net output #16: total_confidence = 0.00408887 | |
I0331 12:48:13.779240 29371 sgd_solver.cpp:106] Iteration 35500, lr = 0.005 | |
I0331 12:50:22.816627 29371 solver.cpp:229] Iteration 36000, loss = 5.58667 | |
I0331 12:50:22.816748 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.125 | |
I0331 12:50:22.816772 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.75 | |
I0331 12:50:22.816797 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.395833 | |
I0331 12:50:22.816822 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.91216 (* 0.3 = 0.873649 loss) | |
I0331 12:50:22.816838 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.850259 (* 0.3 = 0.255078 loss) | |
I0331 12:50:22.816849 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.1875 | |
I0331 12:50:22.816861 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.767045 | |
I0331 12:50:22.816874 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.354167 | |
I0331 12:50:22.816887 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.85303 (* 0.3 = 0.855908 loss) | |
I0331 12:50:22.816901 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.832061 (* 0.3 = 0.249618 loss) | |
I0331 12:50:22.816912 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.229167 | |
I0331 12:50:22.816925 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.778409 | |
I0331 12:50:22.816942 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.5 | |
I0331 12:50:22.816968 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.46525 (* 1 = 2.46525 loss) | |
I0331 12:50:22.816983 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.737888 (* 1 = 0.737888 loss) | |
I0331 12:50:22.816995 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 12:50:22.817008 29371 solver.cpp:245] Train net output #16: total_confidence = 0.000203606 | |
I0331 12:50:22.817019 29371 sgd_solver.cpp:106] Iteration 36000, lr = 0.005 | |
I0331 12:52:31.719971 29371 solver.cpp:229] Iteration 36500, loss = 5.56492 | |
I0331 12:52:31.720123 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.1 | |
I0331 12:52:31.720158 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.727273 | |
I0331 12:52:31.720181 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.38 | |
I0331 12:52:31.720208 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.0973 (* 0.3 = 0.929191 loss) | |
I0331 12:52:31.720235 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.971274 (* 0.3 = 0.291382 loss) | |
I0331 12:52:31.720257 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.14 | |
I0331 12:52:31.720281 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.738636 | |
I0331 12:52:31.720304 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.38 | |
I0331 12:52:31.720329 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.1702 (* 0.3 = 0.95106 loss) | |
I0331 12:52:31.720355 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.01105 (* 0.3 = 0.303316 loss) | |
I0331 12:52:31.720376 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.26 | |
I0331 12:52:31.720397 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.778409 | |
I0331 12:52:31.720418 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.48 | |
I0331 12:52:31.720443 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.70125 (* 1 = 2.70125 loss) | |
I0331 12:52:31.720468 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.857953 (* 1 = 0.857953 loss) | |
I0331 12:52:31.720489 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 12:52:31.720509 29371 solver.cpp:245] Train net output #16: total_confidence = 0.000299618 | |
I0331 12:52:31.720531 29371 sgd_solver.cpp:106] Iteration 36500, lr = 0.005 | |
I0331 12:54:40.632700 29371 solver.cpp:229] Iteration 37000, loss = 5.53589 | |
I0331 12:54:40.632810 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.153846 | |
I0331 12:54:40.632830 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.75 | |
I0331 12:54:40.632843 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.423077 | |
I0331 12:54:40.632859 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.01618 (* 0.3 = 0.904853 loss) | |
I0331 12:54:40.632874 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.928478 (* 0.3 = 0.278544 loss) | |
I0331 12:54:40.632886 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.230769 | |
I0331 12:54:40.632899 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.772727 | |
I0331 12:54:40.632911 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.346154 | |
I0331 12:54:40.632925 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.8897 (* 0.3 = 0.866909 loss) | |
I0331 12:54:40.632938 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.877269 (* 0.3 = 0.263181 loss) | |
I0331 12:54:40.632951 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.326923 | |
I0331 12:54:40.632963 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.795455 | |
I0331 12:54:40.632974 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.519231 | |
I0331 12:54:40.632988 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.41936 (* 1 = 2.41936 loss) | |
I0331 12:54:40.633005 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.744244 (* 1 = 0.744244 loss) | |
I0331 12:54:40.633018 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 12:54:40.633029 29371 solver.cpp:245] Train net output #16: total_confidence = 0.0129744 | |
I0331 12:54:40.633041 29371 sgd_solver.cpp:106] Iteration 37000, lr = 0.005 | |
I0331 12:56:49.745440 29371 solver.cpp:229] Iteration 37500, loss = 5.46121 | |
I0331 12:56:49.745584 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.186047 | |
I0331 12:56:49.745604 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.795455 | |
I0331 12:56:49.745625 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.465116 | |
I0331 12:56:49.745640 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.69881 (* 0.3 = 0.809644 loss) | |
I0331 12:56:49.745654 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.732574 (* 0.3 = 0.219772 loss) | |
I0331 12:56:49.745667 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.139535 | |
I0331 12:56:49.745679 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.767045 | |
I0331 12:56:49.745692 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.418605 | |
I0331 12:56:49.745707 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.75062 (* 0.3 = 0.825186 loss) | |
I0331 12:56:49.745720 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.774306 (* 0.3 = 0.232292 loss) | |
I0331 12:56:49.745733 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.348837 | |
I0331 12:56:49.745744 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.829545 | |
I0331 12:56:49.745762 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.604651 | |
I0331 12:56:49.745795 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.10478 (* 1 = 2.10478 loss) | |
I0331 12:56:49.745823 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.563853 (* 1 = 0.563853 loss) | |
I0331 12:56:49.745853 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 12:56:49.745874 29371 solver.cpp:245] Train net output #16: total_confidence = 0.00128202 | |
I0331 12:56:49.745898 29371 sgd_solver.cpp:106] Iteration 37500, lr = 0.005 | |
I0331 12:58:58.637933 29371 solver.cpp:229] Iteration 38000, loss = 5.45555 | |
I0331 12:58:58.638073 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.113208 | |
I0331 12:58:58.638094 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.732955 | |
I0331 12:58:58.638108 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.301887 | |
I0331 12:58:58.638123 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.94098 (* 0.3 = 0.882293 loss) | |
I0331 12:58:58.638137 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.900849 (* 0.3 = 0.270255 loss) | |
I0331 12:58:58.638150 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.113208 | |
I0331 12:58:58.638162 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.732955 | |
I0331 12:58:58.638175 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.339623 | |
I0331 12:58:58.638187 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.85597 (* 0.3 = 0.856793 loss) | |
I0331 12:58:58.638201 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.882017 (* 0.3 = 0.264605 loss) | |
I0331 12:58:58.638214 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.301887 | |
I0331 12:58:58.638226 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.789773 | |
I0331 12:58:58.638237 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.490566 | |
I0331 12:58:58.638258 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.41854 (* 1 = 2.41854 loss) | |
I0331 12:58:58.638273 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.749289 (* 1 = 0.749289 loss) | |
I0331 12:58:58.638284 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 12:58:58.638296 29371 solver.cpp:245] Train net output #16: total_confidence = 0.000503433 | |
I0331 12:58:58.638309 29371 sgd_solver.cpp:106] Iteration 38000, lr = 0.005 | |
I0331 13:01:07.546794 29371 solver.cpp:229] Iteration 38500, loss = 5.46201 | |
I0331 13:01:07.547001 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.177778 | |
I0331 13:01:07.547031 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.789773 | |
I0331 13:01:07.547044 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.488889 | |
I0331 13:01:07.547060 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.45948 (* 0.3 = 0.737845 loss) | |
I0331 13:01:07.547075 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.681835 (* 0.3 = 0.204551 loss) | |
I0331 13:01:07.547112 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.2 | |
I0331 13:01:07.547125 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.795455 | |
I0331 13:01:07.547138 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.466667 | |
I0331 13:01:07.547158 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.35083 (* 0.3 = 0.705249 loss) | |
I0331 13:01:07.547173 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.63832 (* 0.3 = 0.191496 loss) | |
I0331 13:01:07.547185 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.355556 | |
I0331 13:01:07.547197 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.835227 | |
I0331 13:01:07.547209 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.644444 | |
I0331 13:01:07.547222 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.92767 (* 1 = 1.92767 loss) | |
I0331 13:01:07.547236 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.520827 (* 1 = 0.520827 loss) | |
I0331 13:01:07.547248 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 13:01:07.547260 29371 solver.cpp:245] Train net output #16: total_confidence = 0.0097491 | |
I0331 13:01:07.547273 29371 sgd_solver.cpp:106] Iteration 38500, lr = 0.005 | |
I0331 13:03:16.385848 29371 solver.cpp:229] Iteration 39000, loss = 5.4072 | |
I0331 13:03:16.385969 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.147059 | |
I0331 13:03:16.386000 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.789773 | |
I0331 13:03:16.386024 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.323529 | |
I0331 13:03:16.386052 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.93531 (* 0.3 = 0.880593 loss) | |
I0331 13:03:16.386078 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.889576 (* 0.3 = 0.266873 loss) | |
I0331 13:03:16.386106 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.205882 | |
I0331 13:03:16.386131 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.789773 | |
I0331 13:03:16.386153 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.382353 | |
I0331 13:03:16.386179 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.77231 (* 0.3 = 0.831694 loss) | |
I0331 13:03:16.386204 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.869528 (* 0.3 = 0.260858 loss) | |
I0331 13:03:16.386226 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.352941 | |
I0331 13:03:16.386247 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.823864 | |
I0331 13:03:16.386268 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.558824 | |
I0331 13:03:16.386293 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.25911 (* 1 = 2.25911 loss) | |
I0331 13:03:16.386319 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.670424 (* 1 = 0.670424 loss) | |
I0331 13:03:16.386340 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 13:03:16.386363 29371 solver.cpp:245] Train net output #16: total_confidence = 0.00291117 | |
I0331 13:03:16.386382 29371 sgd_solver.cpp:106] Iteration 39000, lr = 0.005 | |
I0331 13:05:25.319320 29371 solver.cpp:229] Iteration 39500, loss = 5.38711 | |
I0331 13:05:25.319552 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.177778 | |
I0331 13:05:25.319573 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.784091 | |
I0331 13:05:25.319586 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.4 | |
I0331 13:05:25.319602 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.82269 (* 0.3 = 0.846806 loss) | |
I0331 13:05:25.319617 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.782351 (* 0.3 = 0.234705 loss) | |
I0331 13:05:25.319630 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.155556 | |
I0331 13:05:25.319643 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.778409 | |
I0331 13:05:25.319654 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.377778 | |
I0331 13:05:25.319669 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.73573 (* 0.3 = 0.820719 loss) | |
I0331 13:05:25.319682 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.743716 (* 0.3 = 0.223115 loss) | |
I0331 13:05:25.319694 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.377778 | |
I0331 13:05:25.319706 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.835227 | |
I0331 13:05:25.319718 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.577778 | |
I0331 13:05:25.319732 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.17211 (* 1 = 2.17211 loss) | |
I0331 13:05:25.319746 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.589946 (* 1 = 0.589946 loss) | |
I0331 13:05:25.319758 29371 solver.cpp:245] Train net output #15: total_accuracy = 0.125 | |
I0331 13:05:25.319771 29371 solver.cpp:245] Train net output #16: total_confidence = 0.00479922 | |
I0331 13:05:25.319783 29371 sgd_solver.cpp:106] Iteration 39500, lr = 0.005 | |
I0331 13:07:34.081239 29371 solver.cpp:338] Iteration 40000, Testing net (#0) | |
I0331 13:08:03.911134 29371 solver.cpp:393] Test loss: 4.75808 | |
I0331 13:08:03.911190 29371 solver.cpp:406] Test net output #0: loss1/accuracy = 0.172732 | |
I0331 13:08:03.911216 29371 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.794273 | |
I0331 13:08:03.911247 29371 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.428678 | |
I0331 13:08:03.911273 29371 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 2.74806 (* 0.3 = 0.824418 loss) | |
I0331 13:08:03.911301 29371 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.709788 (* 0.3 = 0.212936 loss) | |
I0331 13:08:03.911325 29371 solver.cpp:406] Test net output #5: loss2/accuracy = 0.233808 | |
I0331 13:08:03.911347 29371 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.804227 | |
I0331 13:08:03.911370 29371 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.515468 | |
I0331 13:08:03.911393 29371 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 2.48586 (* 0.3 = 0.745757 loss) | |
I0331 13:08:03.911419 29371 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.678703 (* 0.3 = 0.203611 loss) | |
I0331 13:08:03.911440 29371 solver.cpp:406] Test net output #10: loss3/accuracy = 0.353608 | |
I0331 13:08:03.911469 29371 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.826228 | |
I0331 13:08:03.911490 29371 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.648739 | |
I0331 13:08:03.911521 29371 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 2.16972 (* 1 = 2.16972 loss) | |
I0331 13:08:03.911545 29371 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.601638 (* 1 = 0.601638 loss) | |
I0331 13:08:03.911566 29371 solver.cpp:406] Test net output #15: total_accuracy = 0.006 | |
I0331 13:08:03.911586 29371 solver.cpp:406] Test net output #16: total_confidence = 0.0078531 | |
I0331 13:08:04.063030 29371 solver.cpp:229] Iteration 40000, loss = 5.39392 | |
I0331 13:08:04.063089 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.108696 | |
I0331 13:08:04.063140 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.75 | |
I0331 13:08:04.063169 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.217391 | |
I0331 13:08:04.063196 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.08495 (* 0.3 = 0.925486 loss) | |
I0331 13:08:04.063223 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.891613 (* 0.3 = 0.267484 loss) | |
I0331 13:08:04.063251 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.173913 | |
I0331 13:08:04.063272 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.767045 | |
I0331 13:08:04.063297 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.391304 | |
I0331 13:08:04.063324 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.7802 (* 0.3 = 0.83406 loss) | |
I0331 13:08:04.063351 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.86658 (* 0.3 = 0.259974 loss) | |
I0331 13:08:04.063374 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.304348 | |
I0331 13:08:04.063395 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.789773 | |
I0331 13:08:04.063416 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.565217 | |
I0331 13:08:04.063442 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.41976 (* 1 = 2.41976 loss) | |
I0331 13:08:04.063467 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.734282 (* 1 = 0.734282 loss) | |
I0331 13:08:04.063488 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 13:08:04.063509 29371 solver.cpp:245] Train net output #16: total_confidence = 0.000350728 | |
I0331 13:08:04.063530 29371 sgd_solver.cpp:106] Iteration 40000, lr = 0.005 | |
I0331 13:10:12.927534 29371 solver.cpp:229] Iteration 40500, loss = 5.3804 | |
I0331 13:10:12.927718 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.190476 | |
I0331 13:10:12.927747 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.778409 | |
I0331 13:10:12.927760 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.380952 | |
I0331 13:10:12.927778 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.65428 (* 0.3 = 0.796285 loss) | |
I0331 13:10:12.927793 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.799676 (* 0.3 = 0.239903 loss) | |
I0331 13:10:12.927805 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.261905 | |
I0331 13:10:12.927817 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.801136 | |
I0331 13:10:12.927829 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.452381 | |
I0331 13:10:12.927842 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.47725 (* 0.3 = 0.743175 loss) | |
I0331 13:10:12.927856 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.733821 (* 0.3 = 0.220146 loss) | |
I0331 13:10:12.927868 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.333333 | |
I0331 13:10:12.927881 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.818182 | |
I0331 13:10:12.927893 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.547619 | |
I0331 13:10:12.927906 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.09337 (* 1 = 2.09337 loss) | |
I0331 13:10:12.927920 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.603453 (* 1 = 0.603453 loss) | |
I0331 13:10:12.927932 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 13:10:12.927944 29371 solver.cpp:245] Train net output #16: total_confidence = 0.0080738 | |
I0331 13:10:12.927958 29371 sgd_solver.cpp:106] Iteration 40500, lr = 0.005 | |
I0331 13:12:21.724748 29371 solver.cpp:229] Iteration 41000, loss = 5.30569 | |
I0331 13:12:21.724915 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.122449 | |
I0331 13:12:21.724946 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.744318 | |
I0331 13:12:21.724967 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.22449 | |
I0331 13:12:21.724995 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.91367 (* 0.3 = 0.874102 loss) | |
I0331 13:12:21.725021 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.891153 (* 0.3 = 0.267346 loss) | |
I0331 13:12:21.725042 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.163265 | |
I0331 13:12:21.725066 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.761364 | |
I0331 13:12:21.725090 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.306122 | |
I0331 13:12:21.725116 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.75288 (* 0.3 = 0.825863 loss) | |
I0331 13:12:21.725142 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.816843 (* 0.3 = 0.245053 loss) | |
I0331 13:12:21.725163 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.265306 | |
I0331 13:12:21.725185 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.778409 | |
I0331 13:12:21.725206 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.489796 | |
I0331 13:12:21.725231 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.40783 (* 1 = 2.40783 loss) | |
I0331 13:12:21.725256 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.747992 (* 1 = 0.747992 loss) | |
I0331 13:12:21.725283 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 13:12:21.725304 29371 solver.cpp:245] Train net output #16: total_confidence = 0.0156767 | |
I0331 13:12:21.725327 29371 sgd_solver.cpp:106] Iteration 41000, lr = 0.005 | |
I0331 13:14:30.950438 29371 solver.cpp:229] Iteration 41500, loss = 5.29524 | |
I0331 13:14:30.950563 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.2 | |
I0331 13:14:30.950583 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.784091 | |
I0331 13:14:30.950597 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.425 | |
I0331 13:14:30.950611 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.96211 (* 0.3 = 0.888632 loss) | |
I0331 13:14:30.950626 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.870314 (* 0.3 = 0.261094 loss) | |
I0331 13:14:30.950639 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.225 | |
I0331 13:14:30.950650 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.778409 | |
I0331 13:14:30.950662 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.5 | |
I0331 13:14:30.950676 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.80557 (* 0.3 = 0.841672 loss) | |
I0331 13:14:30.950690 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.849719 (* 0.3 = 0.254916 loss) | |
I0331 13:14:30.950702 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.35 | |
I0331 13:14:30.950714 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.818182 | |
I0331 13:14:30.950726 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.7 | |
I0331 13:14:30.950741 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.12044 (* 1 = 2.12044 loss) | |
I0331 13:14:30.950754 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.627509 (* 1 = 0.627509 loss) | |
I0331 13:14:30.950775 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 13:14:30.950786 29371 solver.cpp:245] Train net output #16: total_confidence = 0.00865234 | |
I0331 13:14:30.950799 29371 sgd_solver.cpp:106] Iteration 41500, lr = 0.005 | |
I0331 13:16:40.269407 29371 solver.cpp:229] Iteration 42000, loss = 5.30019 | |
I0331 13:16:40.269538 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.170213 | |
I0331 13:16:40.269573 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.778409 | |
I0331 13:16:40.269608 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.404255 | |
I0331 13:16:40.269637 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.83941 (* 0.3 = 0.851823 loss) | |
I0331 13:16:40.269668 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.779474 (* 0.3 = 0.233842 loss) | |
I0331 13:16:40.269695 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.191489 | |
I0331 13:16:40.269718 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.784091 | |
I0331 13:16:40.269740 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.489362 | |
I0331 13:16:40.269772 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.67488 (* 0.3 = 0.802464 loss) | |
I0331 13:16:40.269798 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.732487 (* 0.3 = 0.219746 loss) | |
I0331 13:16:40.269825 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.276596 | |
I0331 13:16:40.269847 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.806818 | |
I0331 13:16:40.269868 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.638298 | |
I0331 13:16:40.269894 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.09616 (* 1 = 2.09616 loss) | |
I0331 13:16:40.269919 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.577424 (* 1 = 0.577424 loss) | |
I0331 13:16:40.269942 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 13:16:40.269963 29371 solver.cpp:245] Train net output #16: total_confidence = 0.00189793 | |
I0331 13:16:40.269984 29371 sgd_solver.cpp:106] Iteration 42000, lr = 0.005 | |
I0331 13:18:49.289007 29371 solver.cpp:229] Iteration 42500, loss = 5.26448 | |
I0331 13:18:49.289120 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.12963 | |
I0331 13:18:49.289140 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.732955 | |
I0331 13:18:49.289152 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.240741 | |
I0331 13:18:49.289168 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.32924 (* 0.3 = 0.998771 loss) | |
I0331 13:18:49.289183 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.04729 (* 0.3 = 0.314188 loss) | |
I0331 13:18:49.289196 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0925926 | |
I0331 13:18:49.289207 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.721591 | |
I0331 13:18:49.289219 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.277778 | |
I0331 13:18:49.289233 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.1425 (* 0.3 = 0.942749 loss) | |
I0331 13:18:49.289247 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.989877 (* 0.3 = 0.296963 loss) | |
I0331 13:18:49.289259 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.222222 | |
I0331 13:18:49.289271 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.755682 | |
I0331 13:18:49.289283 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.462963 | |
I0331 13:18:49.289297 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.58349 (* 1 = 2.58349 loss) | |
I0331 13:18:49.289310 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.820795 (* 1 = 0.820795 loss) | |
I0331 13:18:49.289322 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 13:18:49.289333 29371 solver.cpp:245] Train net output #16: total_confidence = 0.000121884 | |
I0331 13:18:49.289346 29371 sgd_solver.cpp:106] Iteration 42500, lr = 0.005 | |
I0331 13:20:58.290822 29371 solver.cpp:229] Iteration 43000, loss = 5.18891 | |
I0331 13:20:58.290966 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.173913 | |
I0331 13:20:58.290987 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.767045 | |
I0331 13:20:58.291008 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.456522 | |
I0331 13:20:58.291023 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.66859 (* 0.3 = 0.800577 loss) | |
I0331 13:20:58.291038 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.798773 (* 0.3 = 0.239632 loss) | |
I0331 13:20:58.291050 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.26087 | |
I0331 13:20:58.291062 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.801136 | |
I0331 13:20:58.291074 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.521739 | |
I0331 13:20:58.291108 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.67547 (* 0.3 = 0.802642 loss) | |
I0331 13:20:58.291124 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.76563 (* 0.3 = 0.229689 loss) | |
I0331 13:20:58.291136 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.347826 | |
I0331 13:20:58.291148 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.806818 | |
I0331 13:20:58.291160 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.717391 | |
I0331 13:20:58.291174 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.01593 (* 1 = 2.01593 loss) | |
I0331 13:20:58.291188 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.591982 (* 1 = 0.591982 loss) | |
I0331 13:20:58.291199 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 13:20:58.291211 29371 solver.cpp:245] Train net output #16: total_confidence = 0.00409673 | |
I0331 13:20:58.291224 29371 sgd_solver.cpp:106] Iteration 43000, lr = 0.005 | |
I0331 13:23:07.316581 29371 solver.cpp:229] Iteration 43500, loss = 5.20925 | |
I0331 13:23:07.316704 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.2 | |
I0331 13:23:07.316725 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.767045 | |
I0331 13:23:07.316736 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.38 | |
I0331 13:23:07.316753 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.68536 (* 0.3 = 0.805607 loss) | |
I0331 13:23:07.316768 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.819042 (* 0.3 = 0.245713 loss) | |
I0331 13:23:07.316781 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.32 | |
I0331 13:23:07.316792 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.789773 | |
I0331 13:23:07.316804 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.52 | |
I0331 13:23:07.316818 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.45619 (* 0.3 = 0.736856 loss) | |
I0331 13:23:07.316833 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.799921 (* 0.3 = 0.239976 loss) | |
I0331 13:23:07.316844 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.4 | |
I0331 13:23:07.316856 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.801136 | |
I0331 13:23:07.316869 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.6 | |
I0331 13:23:07.316882 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.01706 (* 1 = 2.01706 loss) | |
I0331 13:23:07.316903 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.642854 (* 1 = 0.642854 loss) | |
I0331 13:23:07.316915 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 13:23:07.316926 29371 solver.cpp:245] Train net output #16: total_confidence = 0.00707683 | |
I0331 13:23:07.316938 29371 sgd_solver.cpp:106] Iteration 43500, lr = 0.005 | |
I0331 13:25:16.314532 29371 solver.cpp:229] Iteration 44000, loss = 5.19647 | |
I0331 13:25:16.314682 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.166667 | |
I0331 13:25:16.314702 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.772727 | |
I0331 13:25:16.314716 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.428571 | |
I0331 13:25:16.314733 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.70024 (* 0.3 = 0.810072 loss) | |
I0331 13:25:16.314746 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.832567 (* 0.3 = 0.24977 loss) | |
I0331 13:25:16.314759 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.285714 | |
I0331 13:25:16.314771 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.801136 | |
I0331 13:25:16.314782 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.547619 | |
I0331 13:25:16.314796 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.36025 (* 0.3 = 0.708075 loss) | |
I0331 13:25:16.314810 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.734002 (* 0.3 = 0.220201 loss) | |
I0331 13:25:16.314822 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.380952 | |
I0331 13:25:16.314834 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.818182 | |
I0331 13:25:16.314846 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.642857 | |
I0331 13:25:16.314859 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.05706 (* 1 = 2.05706 loss) | |
I0331 13:25:16.314873 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.675382 (* 1 = 0.675382 loss) | |
I0331 13:25:16.314885 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 13:25:16.314896 29371 solver.cpp:245] Train net output #16: total_confidence = 0.00403129 | |
I0331 13:25:16.314909 29371 sgd_solver.cpp:106] Iteration 44000, lr = 0.005 | |
I0331 13:27:25.325610 29371 solver.cpp:229] Iteration 44500, loss = 5.14168 | |
I0331 13:27:25.325728 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.229167 | |
I0331 13:27:25.325757 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.784091 | |
I0331 13:27:25.325781 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.416667 | |
I0331 13:27:25.325808 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.87106 (* 0.3 = 0.861318 loss) | |
I0331 13:27:25.325832 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.862424 (* 0.3 = 0.258727 loss) | |
I0331 13:27:25.325855 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.1875 | |
I0331 13:27:25.325877 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.778409 | |
I0331 13:27:25.325902 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.354167 | |
I0331 13:27:25.325929 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.87489 (* 0.3 = 0.862467 loss) | |
I0331 13:27:25.325955 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.832833 (* 0.3 = 0.24985 loss) | |
I0331 13:27:25.325978 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.479167 | |
I0331 13:27:25.326007 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.846591 | |
I0331 13:27:25.326030 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.645833 | |
I0331 13:27:25.326061 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.19622 (* 1 = 2.19622 loss) | |
I0331 13:27:25.326086 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.630787 (* 1 = 0.630787 loss) | |
I0331 13:27:25.326107 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 13:27:25.326128 29371 solver.cpp:245] Train net output #16: total_confidence = 0.0300244 | |
I0331 13:27:25.326149 29371 sgd_solver.cpp:106] Iteration 44500, lr = 0.005 | |
I0331 13:29:34.085047 29371 solver.cpp:338] Iteration 45000, Testing net (#0) | |
I0331 13:30:03.913430 29371 solver.cpp:393] Test loss: 5.01479 | |
I0331 13:30:03.913496 29371 solver.cpp:406] Test net output #0: loss1/accuracy = 0.164358 | |
I0331 13:30:03.913512 29371 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.79309 | |
I0331 13:30:03.913524 29371 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.418829 | |
I0331 13:30:03.913542 29371 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 2.84187 (* 0.3 = 0.85256 loss) | |
I0331 13:30:03.913555 29371 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.726923 (* 0.3 = 0.218077 loss) | |
I0331 13:30:03.913568 29371 solver.cpp:406] Test net output #5: loss2/accuracy = 0.198907 | |
I0331 13:30:03.913579 29371 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.802136 | |
I0331 13:30:03.913591 29371 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.491042 | |
I0331 13:30:03.913604 29371 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 2.6961 (* 0.3 = 0.808829 loss) | |
I0331 13:30:03.913619 29371 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.683398 (* 0.3 = 0.205019 loss) | |
I0331 13:30:03.913630 29371 solver.cpp:406] Test net output #10: loss3/accuracy = 0.351451 | |
I0331 13:30:03.913642 29371 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.835501 | |
I0331 13:30:03.913655 29371 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.62488 | |
I0331 13:30:03.913671 29371 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 2.32861 (* 1 = 2.32861 loss) | |
I0331 13:30:03.913686 29371 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.601692 (* 1 = 0.601692 loss) | |
I0331 13:30:03.913697 29371 solver.cpp:406] Test net output #15: total_accuracy = 0.012 | |
I0331 13:30:03.913710 29371 solver.cpp:406] Test net output #16: total_confidence = 0.0187454 | |
I0331 13:30:04.066773 29371 solver.cpp:229] Iteration 45000, loss = 5.09795 | |
I0331 13:30:04.066834 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.177778 | |
I0331 13:30:04.066851 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.784091 | |
I0331 13:30:04.066864 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.466667 | |
I0331 13:30:04.066880 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.50835 (* 0.3 = 0.752504 loss) | |
I0331 13:30:04.066895 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.697829 (* 0.3 = 0.209349 loss) | |
I0331 13:30:04.066907 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.244444 | |
I0331 13:30:04.066920 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.806818 | |
I0331 13:30:04.066931 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.422222 | |
I0331 13:30:04.066944 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.36958 (* 0.3 = 0.710873 loss) | |
I0331 13:30:04.066958 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.642474 (* 0.3 = 0.192742 loss) | |
I0331 13:30:04.066970 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.4 | |
I0331 13:30:04.066983 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.835227 | |
I0331 13:30:04.066995 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.777778 | |
I0331 13:30:04.067008 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.81876 (* 1 = 1.81876 loss) | |
I0331 13:30:04.067023 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.503701 (* 1 = 0.503701 loss) | |
I0331 13:30:04.067034 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 13:30:04.067046 29371 solver.cpp:245] Train net output #16: total_confidence = 0.00234327 | |
I0331 13:30:04.067059 29371 sgd_solver.cpp:106] Iteration 45000, lr = 0.005 | |
I0331 13:32:13.129164 29371 solver.cpp:229] Iteration 45500, loss = 5.12126 | |
I0331 13:32:13.129313 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.195652 | |
I0331 13:32:13.129333 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.778409 | |
I0331 13:32:13.129353 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.391304 | |
I0331 13:32:13.129369 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.75493 (* 0.3 = 0.826479 loss) | |
I0331 13:32:13.129382 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.852181 (* 0.3 = 0.255654 loss) | |
I0331 13:32:13.129395 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.130435 | |
I0331 13:32:13.129407 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.767045 | |
I0331 13:32:13.129420 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.369565 | |
I0331 13:32:13.129433 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.76736 (* 0.3 = 0.830208 loss) | |
I0331 13:32:13.129447 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.819725 (* 0.3 = 0.245918 loss) | |
I0331 13:32:13.129459 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.23913 | |
I0331 13:32:13.129472 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.789773 | |
I0331 13:32:13.129483 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.478261 | |
I0331 13:32:13.129497 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.42488 (* 1 = 2.42488 loss) | |
I0331 13:32:13.129510 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.692877 (* 1 = 0.692877 loss) | |
I0331 13:32:13.129523 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 13:32:13.129534 29371 solver.cpp:245] Train net output #16: total_confidence = 0.010011 | |
I0331 13:32:13.129546 29371 sgd_solver.cpp:106] Iteration 45500, lr = 0.005 | |
I0331 13:34:21.979229 29371 solver.cpp:229] Iteration 46000, loss = 5.11314 | |
I0331 13:34:21.979362 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.25 | |
I0331 13:34:21.979382 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.778409 | |
I0331 13:34:21.979394 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.416667 | |
I0331 13:34:21.979409 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.75789 (* 0.3 = 0.827366 loss) | |
I0331 13:34:21.979424 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.882047 (* 0.3 = 0.264614 loss) | |
I0331 13:34:21.979436 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.1875 | |
I0331 13:34:21.979455 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.761364 | |
I0331 13:34:21.979467 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.479167 | |
I0331 13:34:21.979481 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.72007 (* 0.3 = 0.816021 loss) | |
I0331 13:34:21.979496 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.835127 (* 0.3 = 0.250538 loss) | |
I0331 13:34:21.979513 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.354167 | |
I0331 13:34:21.979526 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.801136 | |
I0331 13:34:21.979537 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.625 | |
I0331 13:34:21.979552 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.0663 (* 1 = 2.0663 loss) | |
I0331 13:34:21.979565 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.645984 (* 1 = 0.645984 loss) | |
I0331 13:34:21.979576 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 13:34:21.979588 29371 solver.cpp:245] Train net output #16: total_confidence = 0.00900507 | |
I0331 13:34:21.979600 29371 sgd_solver.cpp:106] Iteration 46000, lr = 0.005 | |
I0331 13:36:30.987176 29371 solver.cpp:229] Iteration 46500, loss = 5.05653 | |
I0331 13:36:30.987342 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.166667 | |
I0331 13:36:30.987362 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.784091 | |
I0331 13:36:30.987382 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.277778 | |
I0331 13:36:30.987398 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.0321 (* 0.3 = 0.909631 loss) | |
I0331 13:36:30.987413 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.917148 (* 0.3 = 0.275144 loss) | |
I0331 13:36:30.987426 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.166667 | |
I0331 13:36:30.987437 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.789773 | |
I0331 13:36:30.987449 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.388889 | |
I0331 13:36:30.987463 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.04339 (* 0.3 = 0.913018 loss) | |
I0331 13:36:30.987476 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.858075 (* 0.3 = 0.257423 loss) | |
I0331 13:36:30.987488 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.277778 | |
I0331 13:36:30.987500 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.8125 | |
I0331 13:36:30.987512 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.472222 | |
I0331 13:36:30.987526 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.61126 (* 1 = 2.61126 loss) | |
I0331 13:36:30.987540 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.74808 (* 1 = 0.74808 loss) | |
I0331 13:36:30.987560 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 13:36:30.987571 29371 solver.cpp:245] Train net output #16: total_confidence = 0.0164234 | |
I0331 13:36:30.987583 29371 sgd_solver.cpp:106] Iteration 46500, lr = 0.005 | |
I0331 13:38:40.556927 29371 solver.cpp:229] Iteration 47000, loss = 5.03262 | |
I0331 13:38:40.557040 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.148936 | |
I0331 13:38:40.557060 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.761364 | |
I0331 13:38:40.557072 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.468085 | |
I0331 13:38:40.557091 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.76462 (* 0.3 = 0.829386 loss) | |
I0331 13:38:40.557109 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.802224 (* 0.3 = 0.240667 loss) | |
I0331 13:38:40.557122 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.297872 | |
I0331 13:38:40.557134 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.806818 | |
I0331 13:38:40.557147 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.595745 | |
I0331 13:38:40.557159 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.44516 (* 0.3 = 0.733548 loss) | |
I0331 13:38:40.557174 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.722693 (* 0.3 = 0.216808 loss) | |
I0331 13:38:40.557186 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.468085 | |
I0331 13:38:40.557199 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.846591 | |
I0331 13:38:40.557210 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.723404 | |
I0331 13:38:40.557224 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.87191 (* 1 = 1.87191 loss) | |
I0331 13:38:40.557237 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.559467 (* 1 = 0.559467 loss) | |
I0331 13:38:40.557250 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 13:38:40.557261 29371 solver.cpp:245] Train net output #16: total_confidence = 0.0029352 | |
I0331 13:38:40.557273 29371 sgd_solver.cpp:106] Iteration 47000, lr = 0.005 | |
I0331 13:40:49.449348 29371 solver.cpp:229] Iteration 47500, loss = 5.04858 | |
I0331 13:40:49.449492 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.27907 | |
I0331 13:40:49.449513 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.806818 | |
I0331 13:40:49.449534 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.511628 | |
I0331 13:40:49.449550 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.51901 (* 0.3 = 0.755702 loss) | |
I0331 13:40:49.449564 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.704053 (* 0.3 = 0.211216 loss) | |
I0331 13:40:49.449578 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.255814 | |
I0331 13:40:49.449589 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.801136 | |
I0331 13:40:49.449601 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.511628 | |
I0331 13:40:49.449615 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.45159 (* 0.3 = 0.735477 loss) | |
I0331 13:40:49.449630 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.680367 (* 0.3 = 0.20411 loss) | |
I0331 13:40:49.449641 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.511628 | |
I0331 13:40:49.449653 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.869318 | |
I0331 13:40:49.449666 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.674419 | |
I0331 13:40:49.449681 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.7489 (* 1 = 1.7489 loss) | |
I0331 13:40:49.449707 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.47192 (* 1 = 0.47192 loss) | |
I0331 13:40:49.449719 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 13:40:49.449731 29371 solver.cpp:245] Train net output #16: total_confidence = 0.00196203 | |
I0331 13:40:49.449745 29371 sgd_solver.cpp:106] Iteration 47500, lr = 0.005 | |
I0331 13:42:58.462447 29371 solver.cpp:229] Iteration 48000, loss = 4.96852 | |
I0331 13:42:58.462568 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.106383 | |
I0331 13:42:58.462599 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.75 | |
I0331 13:42:58.462622 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.361702 | |
I0331 13:42:58.462651 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.79858 (* 0.3 = 0.839575 loss) | |
I0331 13:42:58.462677 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.817552 (* 0.3 = 0.245266 loss) | |
I0331 13:42:58.462702 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.234043 | |
I0331 13:42:58.462726 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.784091 | |
I0331 13:42:58.462749 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.382979 | |
I0331 13:42:58.462774 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.77589 (* 0.3 = 0.832766 loss) | |
I0331 13:42:58.462807 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.800151 (* 0.3 = 0.240045 loss) | |
I0331 13:42:58.462829 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.446809 | |
I0331 13:42:58.462852 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.840909 | |
I0331 13:42:58.462880 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.659574 | |
I0331 13:42:58.462905 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.28899 (* 1 = 2.28899 loss) | |
I0331 13:42:58.462929 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.661347 (* 1 = 0.661347 loss) | |
I0331 13:42:58.462951 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 13:42:58.462971 29371 solver.cpp:245] Train net output #16: total_confidence = 0.00335675 | |
I0331 13:42:58.462993 29371 sgd_solver.cpp:106] Iteration 48000, lr = 0.005 | |
I0331 13:45:07.430141 29371 solver.cpp:229] Iteration 48500, loss = 4.9715 | |
I0331 13:45:07.430284 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.139535 | |
I0331 13:45:07.430305 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.784091 | |
I0331 13:45:07.430325 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.325581 | |
I0331 13:45:07.430341 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.1167 (* 0.3 = 0.935011 loss) | |
I0331 13:45:07.430356 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.827803 (* 0.3 = 0.248341 loss) | |
I0331 13:45:07.430368 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.186047 | |
I0331 13:45:07.430380 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.784091 | |
I0331 13:45:07.430392 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.488372 | |
I0331 13:45:07.430405 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.78098 (* 0.3 = 0.834293 loss) | |
I0331 13:45:07.430419 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.77153 (* 0.3 = 0.231459 loss) | |
I0331 13:45:07.430431 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.348837 | |
I0331 13:45:07.430444 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.823864 | |
I0331 13:45:07.430454 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.534884 | |
I0331 13:45:07.430469 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.30488 (* 1 = 2.30488 loss) | |
I0331 13:45:07.430481 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.62956 (* 1 = 0.62956 loss) | |
I0331 13:45:07.430493 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 13:45:07.430505 29371 solver.cpp:245] Train net output #16: total_confidence = 0.011141 | |
I0331 13:45:07.430517 29371 sgd_solver.cpp:106] Iteration 48500, lr = 0.005 | |
I0331 13:47:16.492389 29371 solver.cpp:229] Iteration 49000, loss = 5.00834 | |
I0331 13:47:16.492511 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.130435 | |
I0331 13:47:16.492530 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.761364 | |
I0331 13:47:16.492543 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.391304 | |
I0331 13:47:16.492559 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.88582 (* 0.3 = 0.865745 loss) | |
I0331 13:47:16.492573 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.82721 (* 0.3 = 0.248163 loss) | |
I0331 13:47:16.492586 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.23913 | |
I0331 13:47:16.492599 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.795455 | |
I0331 13:47:16.492610 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.586957 | |
I0331 13:47:16.492624 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.55852 (* 0.3 = 0.767557 loss) | |
I0331 13:47:16.492637 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.714665 (* 0.3 = 0.2144 loss) | |
I0331 13:47:16.492650 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.413043 | |
I0331 13:47:16.492661 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.823864 | |
I0331 13:47:16.492673 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.652174 | |
I0331 13:47:16.492687 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.10952 (* 1 = 2.10952 loss) | |
I0331 13:47:16.492700 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.628384 (* 1 = 0.628384 loss) | |
I0331 13:47:16.492712 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 13:47:16.492724 29371 solver.cpp:245] Train net output #16: total_confidence = 0.0213996 | |
I0331 13:47:16.492736 29371 sgd_solver.cpp:106] Iteration 49000, lr = 0.005 | |
I0331 13:49:25.353772 29371 solver.cpp:229] Iteration 49500, loss = 4.94579 | |
I0331 13:49:25.353926 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.102041 | |
I0331 13:49:25.353957 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.732955 | |
I0331 13:49:25.353981 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.346939 | |
I0331 13:49:25.354008 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.89682 (* 0.3 = 0.869045 loss) | |
I0331 13:49:25.354037 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.898451 (* 0.3 = 0.269535 loss) | |
I0331 13:49:25.354063 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.22449 | |
I0331 13:49:25.354089 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.778409 | |
I0331 13:49:25.354110 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.489796 | |
I0331 13:49:25.354135 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.63283 (* 0.3 = 0.789849 loss) | |
I0331 13:49:25.354161 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.779649 (* 0.3 = 0.233895 loss) | |
I0331 13:49:25.354184 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.408163 | |
I0331 13:49:25.354205 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.818182 | |
I0331 13:49:25.354226 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.673469 | |
I0331 13:49:25.354251 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.92699 (* 1 = 1.92699 loss) | |
I0331 13:49:25.354276 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.621433 (* 1 = 0.621433 loss) | |
I0331 13:49:25.354298 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 13:49:25.354320 29371 solver.cpp:245] Train net output #16: total_confidence = 0.0108848 | |
I0331 13:49:25.354342 29371 sgd_solver.cpp:106] Iteration 49500, lr = 0.005 | |
I0331 13:51:34.121227 29371 solver.cpp:456] Snapshotting to binary proto file /mnt/snapshots/mixed_lstm9_bn_iter_50000.caffemodel | |
I0331 13:51:34.479971 29371 sgd_solver.cpp:273] Snapshotting solver state to binary proto file /mnt/snapshots/mixed_lstm9_bn_iter_50000.solverstate | |
I0331 13:51:34.643651 29371 solver.cpp:338] Iteration 50000, Testing net (#0) | |
I0331 13:52:04.488386 29371 solver.cpp:393] Test loss: 4.22538 | |
I0331 13:52:04.488497 29371 solver.cpp:406] Test net output #0: loss1/accuracy = 0.218422 | |
I0331 13:52:04.488517 29371 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.802773 | |
I0331 13:52:04.488529 29371 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.49147 | |
I0331 13:52:04.488545 29371 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 2.56629 (* 0.3 = 0.769886 loss) | |
I0331 13:52:04.488560 29371 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.681408 (* 0.3 = 0.204422 loss) | |
I0331 13:52:04.488574 29371 solver.cpp:406] Test net output #5: loss2/accuracy = 0.263571 | |
I0331 13:52:04.488586 29371 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.815546 | |
I0331 13:52:04.488598 29371 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.586897 | |
I0331 13:52:04.488612 29371 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 2.35038 (* 0.3 = 0.705114 loss) | |
I0331 13:52:04.488627 29371 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.605716 (* 0.3 = 0.181715 loss) | |
I0331 13:52:04.488639 29371 solver.cpp:406] Test net output #10: loss3/accuracy = 0.450717 | |
I0331 13:52:04.488652 29371 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.85432 | |
I0331 13:52:04.488664 29371 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.725485 | |
I0331 13:52:04.488677 29371 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 1.85952 (* 1 = 1.85952 loss) | |
I0331 13:52:04.488692 29371 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.504732 (* 1 = 0.504732 loss) | |
I0331 13:52:04.488704 29371 solver.cpp:406] Test net output #15: total_accuracy = 0.025 | |
I0331 13:52:04.488716 29371 solver.cpp:406] Test net output #16: total_confidence = 0.0226501 | |
I0331 13:52:04.639446 29371 solver.cpp:229] Iteration 50000, loss = 4.92794 | |
I0331 13:52:04.639494 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.27027 | |
I0331 13:52:04.639513 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.806818 | |
I0331 13:52:04.639525 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.405405 | |
I0331 13:52:04.639541 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.7282 (* 0.3 = 0.81846 loss) | |
I0331 13:52:04.639556 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.791269 (* 0.3 = 0.237381 loss) | |
I0331 13:52:04.639569 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.189189 | |
I0331 13:52:04.639582 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.772727 | |
I0331 13:52:04.639595 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.486486 | |
I0331 13:52:04.639608 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.48578 (* 0.3 = 0.745733 loss) | |
I0331 13:52:04.639622 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.826903 (* 0.3 = 0.248071 loss) | |
I0331 13:52:04.639637 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.324324 | |
I0331 13:52:04.639650 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.8125 | |
I0331 13:52:04.639663 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.459459 | |
I0331 13:52:04.639678 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.18576 (* 1 = 2.18576 loss) | |
I0331 13:52:04.639691 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.668048 (* 1 = 0.668048 loss) | |
I0331 13:52:04.639704 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 13:52:04.639724 29371 solver.cpp:245] Train net output #16: total_confidence = 0.0021761 | |
I0331 13:52:04.639736 29371 sgd_solver.cpp:106] Iteration 50000, lr = 0.005 | |
I0331 13:54:13.553247 29371 solver.cpp:229] Iteration 50500, loss = 4.92417 | |
I0331 13:54:13.553372 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.266667 | |
I0331 13:54:13.553392 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.801136 | |
I0331 13:54:13.553406 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.488889 | |
I0331 13:54:13.553421 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.61698 (* 0.3 = 0.785094 loss) | |
I0331 13:54:13.553436 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.763436 (* 0.3 = 0.229031 loss) | |
I0331 13:54:13.553449 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.377778 | |
I0331 13:54:13.553462 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.840909 | |
I0331 13:54:13.553474 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.577778 | |
I0331 13:54:13.553489 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.36963 (* 0.3 = 0.71089 loss) | |
I0331 13:54:13.553503 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.64289 (* 0.3 = 0.192867 loss) | |
I0331 13:54:13.553516 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.577778 | |
I0331 13:54:13.553535 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.886364 | |
I0331 13:54:13.553549 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.733333 | |
I0331 13:54:13.553562 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.56254 (* 1 = 1.56254 loss) | |
I0331 13:54:13.553577 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.442972 (* 1 = 0.442972 loss) | |
I0331 13:54:13.553589 29371 solver.cpp:245] Train net output #15: total_accuracy = 0.125 | |
I0331 13:54:13.553601 29371 solver.cpp:245] Train net output #16: total_confidence = 0.0545503 | |
I0331 13:54:13.553614 29371 sgd_solver.cpp:106] Iteration 50500, lr = 0.005 | |
I0331 13:56:22.554276 29371 solver.cpp:229] Iteration 51000, loss = 4.92949 | |
I0331 13:56:22.554420 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0714286 | |
I0331 13:56:22.554442 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.698864 | |
I0331 13:56:22.554464 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.267857 | |
I0331 13:56:22.554481 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.0785 (* 0.3 = 0.923551 loss) | |
I0331 13:56:22.554496 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.02335 (* 0.3 = 0.307006 loss) | |
I0331 13:56:22.554508 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.160714 | |
I0331 13:56:22.554522 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.715909 | |
I0331 13:56:22.554533 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.339286 | |
I0331 13:56:22.554548 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.02848 (* 0.3 = 0.908545 loss) | |
I0331 13:56:22.554561 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.03933 (* 0.3 = 0.311799 loss) | |
I0331 13:56:22.554574 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.321429 | |
I0331 13:56:22.554586 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.772727 | |
I0331 13:56:22.554599 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.517857 | |
I0331 13:56:22.554612 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.40854 (* 1 = 2.40854 loss) | |
I0331 13:56:22.554626 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.813587 (* 1 = 0.813587 loss) | |
I0331 13:56:22.554638 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 13:56:22.554651 29371 solver.cpp:245] Train net output #16: total_confidence = 0.0121725 | |
I0331 13:56:22.554662 29371 sgd_solver.cpp:106] Iteration 51000, lr = 0.005 | |
I0331 13:58:31.398998 29371 solver.cpp:229] Iteration 51500, loss = 4.78701 | |
I0331 13:58:31.399149 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.288889 | |
I0331 13:58:31.399178 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.801136 | |
I0331 13:58:31.399199 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.511111 | |
I0331 13:58:31.399227 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.44643 (* 0.3 = 0.733929 loss) | |
I0331 13:58:31.399253 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.715411 (* 0.3 = 0.214623 loss) | |
I0331 13:58:31.399276 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.355556 | |
I0331 13:58:31.399299 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.829545 | |
I0331 13:58:31.399322 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.577778 | |
I0331 13:58:31.399348 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.187 (* 0.3 = 0.656099 loss) | |
I0331 13:58:31.399372 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.620507 (* 0.3 = 0.186152 loss) | |
I0331 13:58:31.399399 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.511111 | |
I0331 13:58:31.399421 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.869318 | |
I0331 13:58:31.399443 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.822222 | |
I0331 13:58:31.399469 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.49285 (* 1 = 1.49285 loss) | |
I0331 13:58:31.399494 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.414822 (* 1 = 0.414822 loss) | |
I0331 13:58:31.399516 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 13:58:31.399538 29371 solver.cpp:245] Train net output #16: total_confidence = 0.0278136 | |
I0331 13:58:31.399559 29371 sgd_solver.cpp:106] Iteration 51500, lr = 0.005 | |
I0331 14:00:40.523910 29371 solver.cpp:229] Iteration 52000, loss = 4.86122 | |
I0331 14:00:40.524036 29371 solver.cpp:245] Train net output #0: loss1/accuracy = 0.22 | |
I0331 14:00:40.524057 29371 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.767045 | |
I0331 14:00:40.524070 29371 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.42 | |
I0331 14:00:40.524086 29371 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.42168 (* 0.3 = 1.0265 loss) | |
I0331 14:00:40.524101 29371 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.02074 (* 0.3 = 0.306223 loss) | |
I0331 14:00:40.524114 29371 solver.cpp:245] Train net output #5: loss2/accuracy = 0.28 | |
I0331 14:00:40.524127 29371 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.778409 | |
I0331 14:00:40.524139 29371 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.46 | |
I0331 14:00:40.524153 29371 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.36284 (* 0.3 = 1.00885 loss) | |
I0331 14:00:40.524168 29371 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.02121 (* 0.3 = 0.306363 loss) | |
I0331 14:00:40.524180 29371 solver.cpp:245] Train net output #10: loss3/accuracy = 0.36 | |
I0331 14:00:40.524193 29371 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.806818 | |
I0331 14:00:40.524204 29371 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.64 | |
I0331 14:00:40.524219 29371 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.94014 (* 1 = 2.94014 loss) | |
I0331 14:00:40.524232 29371 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.877003 (* 1 = 0.877003 loss) | |
I0331 14:00:40.524245 29371 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 14:00:40.524256 29371 solver.cpp:245] Train net output #16: total_confidence = 0.0147455 | |
I0331 14:00:40.524269 29371 sgd_solver.cpp:106] Iteration 52000, lr = 0.005 | |
I0331 14:01:41.565475 29371 solver.cpp:456] Snapshotting to binary proto file /mnt/snapshots/mixed_lstm9_bn_iter_52237.caffemodel | |
I0331 14:01:41.862465 29371 sgd_solver.cpp:273] Snapshotting solver state to binary proto file /mnt/snapshots/mixed_lstm9_bn_iter_52237.solverstate | |
I0331 14:01:42.025131 29371 solver.cpp:302] Optimization stopped early. | |
I0331 14:01:42.025187 29371 caffe.cpp:222] Optimization Done. | |
I0331 14:02:47.620702 30833 solver.cpp:280] Solving mixed_lstm | |
I0331 14:02:47.620714 30833 solver.cpp:281] Learning Rate Policy: fixed | |
I0331 14:02:47.971550 30833 solver.cpp:229] Iteration 0, loss = 4.24602 | |
I0331 14:02:47.971597 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.146341 | |
I0331 14:02:47.971614 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.755682 | |
I0331 14:02:47.971627 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.439024 | |
I0331 14:02:47.971647 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.52419 (* 0.3 = 0.757257 loss) | |
I0331 14:02:47.971662 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.836962 (* 0.3 = 0.251089 loss) | |
I0331 14:02:47.971701 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.195122 | |
I0331 14:02:47.971716 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.767045 | |
I0331 14:02:47.971729 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.512195 | |
I0331 14:02:47.971742 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.42359 (* 0.3 = 0.727077 loss) | |
I0331 14:02:47.971756 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.784851 (* 0.3 = 0.235455 loss) | |
I0331 14:02:47.971768 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.390244 | |
I0331 14:02:47.971779 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.818182 | |
I0331 14:02:47.971792 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.780488 | |
I0331 14:02:47.971807 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.70794 (* 1 = 1.70794 loss) | |
I0331 14:02:47.971820 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.567192 (* 1 = 0.567192 loss) | |
I0331 14:02:47.971832 30833 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 14:02:47.971843 30833 solver.cpp:245] Train net output #16: total_confidence = 0.0169351 | |
I0331 14:02:47.971861 30833 sgd_solver.cpp:106] Iteration 0, lr = 0.05 | |
I0331 14:04:56.378499 30833 solver.cpp:229] Iteration 500, loss = 6.64907 | |
I0331 14:04:56.378809 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.111111 | |
I0331 14:04:56.378829 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.755682 | |
I0331 14:04:56.378842 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.244444 | |
I0331 14:04:56.378857 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.14804 (* 0.3 = 0.944412 loss) | |
I0331 14:04:56.378872 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.954351 (* 0.3 = 0.286305 loss) | |
I0331 14:04:56.378885 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.133333 | |
I0331 14:04:56.378897 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.744318 | |
I0331 14:04:56.378908 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.311111 | |
I0331 14:04:56.378921 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.04441 (* 0.3 = 0.913322 loss) | |
I0331 14:04:56.378936 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.94686 (* 0.3 = 0.284058 loss) | |
I0331 14:04:56.378947 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.177778 | |
I0331 14:04:56.378958 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.761364 | |
I0331 14:04:56.378970 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.4 | |
I0331 14:04:56.378983 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.66199 (* 1 = 2.66199 loss) | |
I0331 14:04:56.378998 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.809095 (* 1 = 0.809095 loss) | |
I0331 14:04:56.379009 30833 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 14:04:56.379020 30833 solver.cpp:245] Train net output #16: total_confidence = 0.000294867 | |
I0331 14:04:56.379032 30833 sgd_solver.cpp:106] Iteration 500, lr = 0.05 | |
I0331 14:07:04.796340 30833 solver.cpp:229] Iteration 1000, loss = 6.09704 | |
I0331 14:07:04.796499 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0681818 | |
I0331 14:07:04.796519 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.75 | |
I0331 14:07:04.796532 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.272727 | |
I0331 14:07:04.796548 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.40946 (* 0.3 = 1.02284 loss) | |
I0331 14:07:04.796563 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.967074 (* 0.3 = 0.290122 loss) | |
I0331 14:07:04.796576 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.204545 | |
I0331 14:07:04.796587 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.772727 | |
I0331 14:07:04.796599 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.363636 | |
I0331 14:07:04.796613 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.11236 (* 0.3 = 0.933709 loss) | |
I0331 14:07:04.796627 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.949143 (* 0.3 = 0.284743 loss) | |
I0331 14:07:04.796638 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.227273 | |
I0331 14:07:04.796653 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.784091 | |
I0331 14:07:04.796665 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.522727 | |
I0331 14:07:04.796679 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.90443 (* 1 = 2.90443 loss) | |
I0331 14:07:04.796692 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.818631 (* 1 = 0.818631 loss) | |
I0331 14:07:04.796705 30833 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 14:07:04.796716 30833 solver.cpp:245] Train net output #16: total_confidence = 0.000550399 | |
I0331 14:07:04.796728 30833 sgd_solver.cpp:106] Iteration 1000, lr = 0.05 | |
I0331 14:09:13.289876 30833 solver.cpp:229] Iteration 1500, loss = 5.92157 | |
I0331 14:09:13.289991 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.113636 | |
I0331 14:09:13.290011 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.767045 | |
I0331 14:09:13.290024 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.295455 | |
I0331 14:09:13.290040 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.77568 (* 0.3 = 1.13271 loss) | |
I0331 14:09:13.290055 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.03922 (* 0.3 = 0.311767 loss) | |
I0331 14:09:13.290066 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.113636 | |
I0331 14:09:13.290078 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.761364 | |
I0331 14:09:13.290091 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.340909 | |
I0331 14:09:13.290107 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.365 (* 0.3 = 1.0095 loss) | |
I0331 14:09:13.290120 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.910731 (* 0.3 = 0.273219 loss) | |
I0331 14:09:13.290132 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.204545 | |
I0331 14:09:13.290144 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.778409 | |
I0331 14:09:13.290156 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.477273 | |
I0331 14:09:13.290170 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.9549 (* 1 = 2.9549 loss) | |
I0331 14:09:13.290184 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.825655 (* 1 = 0.825655 loss) | |
I0331 14:09:13.290195 30833 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 14:09:13.290206 30833 solver.cpp:245] Train net output #16: total_confidence = 0.00292817 | |
I0331 14:09:13.290218 30833 sgd_solver.cpp:106] Iteration 1500, lr = 0.05 | |
I0331 14:11:21.636018 30833 solver.cpp:229] Iteration 2000, loss = 5.82502 | |
I0331 14:11:21.636174 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0512821 | |
I0331 14:11:21.636195 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.761364 | |
I0331 14:11:21.636217 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.205128 | |
I0331 14:11:21.636234 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.15539 (* 0.3 = 0.946617 loss) | |
I0331 14:11:21.636247 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.838046 (* 0.3 = 0.251414 loss) | |
I0331 14:11:21.636260 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0512821 | |
I0331 14:11:21.636271 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.767045 | |
I0331 14:11:21.636283 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.25641 | |
I0331 14:11:21.636296 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.15354 (* 0.3 = 0.946062 loss) | |
I0331 14:11:21.636310 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.874854 (* 0.3 = 0.262456 loss) | |
I0331 14:11:21.636322 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.153846 | |
I0331 14:11:21.636334 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.761364 | |
I0331 14:11:21.636346 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.358974 | |
I0331 14:11:21.636360 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.96532 (* 1 = 2.96532 loss) | |
I0331 14:11:21.636373 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.880641 (* 1 = 0.880641 loss) | |
I0331 14:11:21.636385 30833 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 14:11:21.636396 30833 solver.cpp:245] Train net output #16: total_confidence = 0.0150364 | |
I0331 14:11:21.636409 30833 sgd_solver.cpp:106] Iteration 2000, lr = 0.05 | |
I0331 14:13:30.012887 30833 solver.cpp:229] Iteration 2500, loss = 5.67648 | |
I0331 14:13:30.013020 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.159091 | |
I0331 14:13:30.013041 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.778409 | |
I0331 14:13:30.013053 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.363636 | |
I0331 14:13:30.013069 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.83164 (* 0.3 = 0.849492 loss) | |
I0331 14:13:30.013087 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.841017 (* 0.3 = 0.252305 loss) | |
I0331 14:13:30.013100 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.159091 | |
I0331 14:13:30.013113 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.767045 | |
I0331 14:13:30.013124 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.340909 | |
I0331 14:13:30.013139 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.70749 (* 0.3 = 0.812248 loss) | |
I0331 14:13:30.013151 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.864661 (* 0.3 = 0.259398 loss) | |
I0331 14:13:30.013164 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.386364 | |
I0331 14:13:30.013175 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.835227 | |
I0331 14:13:30.013187 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.659091 | |
I0331 14:13:30.013201 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.93313 (* 1 = 1.93313 loss) | |
I0331 14:13:30.013216 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.591129 (* 1 = 0.591129 loss) | |
I0331 14:13:30.013226 30833 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 14:13:30.013238 30833 solver.cpp:245] Train net output #16: total_confidence = 0.00360238 | |
I0331 14:13:30.013250 30833 sgd_solver.cpp:106] Iteration 2500, lr = 0.05 | |
I0331 14:15:38.385095 30833 solver.cpp:229] Iteration 3000, loss = 5.46103 | |
I0331 14:15:38.385236 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.104167 | |
I0331 14:15:38.385256 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.727273 | |
I0331 14:15:38.385277 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.291667 | |
I0331 14:15:38.385293 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.949 (* 0.3 = 0.8847 loss) | |
I0331 14:15:38.385306 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.02765 (* 0.3 = 0.308294 loss) | |
I0331 14:15:38.385318 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.25 | |
I0331 14:15:38.385330 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.761364 | |
I0331 14:15:38.385342 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.416667 | |
I0331 14:15:38.385355 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.84522 (* 0.3 = 0.853566 loss) | |
I0331 14:15:38.385370 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.939056 (* 0.3 = 0.281717 loss) | |
I0331 14:15:38.385380 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.229167 | |
I0331 14:15:38.385392 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.772727 | |
I0331 14:15:38.385404 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.4375 | |
I0331 14:15:38.385417 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.44687 (* 1 = 2.44687 loss) | |
I0331 14:15:38.385431 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.77577 (* 1 = 0.77577 loss) | |
I0331 14:15:38.385442 30833 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 14:15:38.385453 30833 solver.cpp:245] Train net output #16: total_confidence = 0.00365073 | |
I0331 14:15:38.385465 30833 sgd_solver.cpp:106] Iteration 3000, lr = 0.05 | |
I0331 14:17:46.717217 30833 solver.cpp:229] Iteration 3500, loss = 5.39617 | |
I0331 14:17:46.717334 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.113636 | |
I0331 14:17:46.717353 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.767045 | |
I0331 14:17:46.717366 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.5 | |
I0331 14:17:46.717382 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.71555 (* 0.3 = 0.814666 loss) | |
I0331 14:17:46.717396 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.726761 (* 0.3 = 0.218028 loss) | |
I0331 14:17:46.717409 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.227273 | |
I0331 14:17:46.717422 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.789773 | |
I0331 14:17:46.717433 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.363636 | |
I0331 14:17:46.717447 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.67775 (* 0.3 = 0.803324 loss) | |
I0331 14:17:46.717459 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.733304 (* 0.3 = 0.219991 loss) | |
I0331 14:17:46.717471 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.340909 | |
I0331 14:17:46.717483 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.823864 | |
I0331 14:17:46.717494 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.659091 | |
I0331 14:17:46.717509 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.89085 (* 1 = 1.89085 loss) | |
I0331 14:17:46.717521 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.502916 (* 1 = 0.502916 loss) | |
I0331 14:17:46.717533 30833 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 14:17:46.717545 30833 solver.cpp:245] Train net output #16: total_confidence = 0.0171254 | |
I0331 14:17:46.717556 30833 sgd_solver.cpp:106] Iteration 3500, lr = 0.05 | |
I0331 14:19:55.053354 30833 solver.cpp:229] Iteration 4000, loss = 5.33029 | |
I0331 14:19:55.053510 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.23913 | |
I0331 14:19:55.053532 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.784091 | |
I0331 14:19:55.053553 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.413043 | |
I0331 14:19:55.053573 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.73323 (* 0.3 = 0.819969 loss) | |
I0331 14:19:55.053602 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.824063 (* 0.3 = 0.247219 loss) | |
I0331 14:19:55.053617 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.304348 | |
I0331 14:19:55.053630 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.789773 | |
I0331 14:19:55.053642 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.543478 | |
I0331 14:19:55.053655 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.51275 (* 0.3 = 0.753826 loss) | |
I0331 14:19:55.053669 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.778477 (* 0.3 = 0.233543 loss) | |
I0331 14:19:55.053684 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.434783 | |
I0331 14:19:55.053697 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.829545 | |
I0331 14:19:55.053709 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.652174 | |
I0331 14:19:55.053722 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.01767 (* 1 = 2.01767 loss) | |
I0331 14:19:55.053736 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.613835 (* 1 = 0.613835 loss) | |
I0331 14:19:55.053748 30833 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 14:19:55.053760 30833 solver.cpp:245] Train net output #16: total_confidence = 0.00748734 | |
I0331 14:19:55.053771 30833 sgd_solver.cpp:106] Iteration 4000, lr = 0.05 | |
I0331 14:22:03.480247 30833 solver.cpp:229] Iteration 4500, loss = 5.28591 | |
I0331 14:22:03.480365 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0677966 | |
I0331 14:22:03.480384 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.676136 | |
I0331 14:22:03.480397 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.338983 | |
I0331 14:22:03.480412 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.06984 (* 0.3 = 0.920952 loss) | |
I0331 14:22:03.480427 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.08385 (* 0.3 = 0.325156 loss) | |
I0331 14:22:03.480439 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.118644 | |
I0331 14:22:03.480451 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.698864 | |
I0331 14:22:03.480468 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.355932 | |
I0331 14:22:03.480492 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.14063 (* 0.3 = 0.942189 loss) | |
I0331 14:22:03.480509 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.08472 (* 0.3 = 0.325417 loss) | |
I0331 14:22:03.480520 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.288136 | |
I0331 14:22:03.480532 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.755682 | |
I0331 14:22:03.480545 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.457627 | |
I0331 14:22:03.480557 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.62995 (* 1 = 2.62995 loss) | |
I0331 14:22:03.480571 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.897101 (* 1 = 0.897101 loss) | |
I0331 14:22:03.480583 30833 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 14:22:03.480594 30833 solver.cpp:245] Train net output #16: total_confidence = 0.00121279 | |
I0331 14:22:03.480607 30833 sgd_solver.cpp:106] Iteration 4500, lr = 0.05 | |
I0331 14:24:11.670492 30833 solver.cpp:338] Iteration 5000, Testing net (#0) | |
I0331 14:24:41.475078 30833 solver.cpp:393] Test loss: 6.73922 | |
I0331 14:24:41.475137 30833 solver.cpp:406] Test net output #0: loss1/accuracy = 0.0846785 | |
I0331 14:24:41.475153 30833 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.767636 | |
I0331 14:24:41.475165 30833 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.215428 | |
I0331 14:24:41.475180 30833 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 3.87344 (* 0.3 = 1.16203 loss) | |
I0331 14:24:41.475194 30833 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 1.01342 (* 0.3 = 0.304026 loss) | |
I0331 14:24:41.475208 30833 solver.cpp:406] Test net output #5: loss2/accuracy = 0.151448 | |
I0331 14:24:41.475219 30833 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.783818 | |
I0331 14:24:41.475230 30833 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.309599 | |
I0331 14:24:41.475244 30833 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 3.57977 (* 0.3 = 1.07393 loss) | |
I0331 14:24:41.475257 30833 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.92941 (* 0.3 = 0.278823 loss) | |
I0331 14:24:41.475268 30833 solver.cpp:406] Test net output #10: loss3/accuracy = 0.265756 | |
I0331 14:24:41.475281 30833 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.796364 | |
I0331 14:24:41.475291 30833 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.470356 | |
I0331 14:24:41.475304 30833 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 3.07264 (* 1 = 3.07264 loss) | |
I0331 14:24:41.475318 30833 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.847765 (* 1 = 0.847765 loss) | |
I0331 14:24:41.475330 30833 solver.cpp:406] Test net output #15: total_accuracy = 0.006 | |
I0331 14:24:41.475342 30833 solver.cpp:406] Test net output #16: total_confidence = 0.012321 | |
I0331 14:24:41.625422 30833 solver.cpp:229] Iteration 5000, loss = 5.21903 | |
I0331 14:24:41.625468 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.255319 | |
I0331 14:24:41.625483 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.789773 | |
I0331 14:24:41.625496 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.404255 | |
I0331 14:24:41.625511 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.86535 (* 0.3 = 0.859606 loss) | |
I0331 14:24:41.625525 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.823656 (* 0.3 = 0.247097 loss) | |
I0331 14:24:41.625538 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0851064 | |
I0331 14:24:41.625551 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.75 | |
I0331 14:24:41.625563 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.361702 | |
I0331 14:24:41.625577 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.89942 (* 0.3 = 0.869827 loss) | |
I0331 14:24:41.625591 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.833443 (* 0.3 = 0.250033 loss) | |
I0331 14:24:41.625607 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.297872 | |
I0331 14:24:41.625624 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.789773 | |
I0331 14:24:41.625644 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.531915 | |
I0331 14:24:41.625658 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.39149 (* 1 = 2.39149 loss) | |
I0331 14:24:41.625672 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.724027 (* 1 = 0.724027 loss) | |
I0331 14:24:41.625684 30833 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 14:24:41.625704 30833 solver.cpp:245] Train net output #16: total_confidence = 0.000678832 | |
I0331 14:24:41.625715 30833 sgd_solver.cpp:106] Iteration 5000, lr = 0.05 | |
I0331 14:26:50.026554 30833 solver.cpp:229] Iteration 5500, loss = 5.15018 | |
I0331 14:26:50.026700 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.227273 | |
I0331 14:26:50.026720 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.795455 | |
I0331 14:26:50.026732 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.454545 | |
I0331 14:26:50.026749 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.59752 (* 0.3 = 0.779257 loss) | |
I0331 14:26:50.026763 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.739084 (* 0.3 = 0.221725 loss) | |
I0331 14:26:50.026777 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.25 | |
I0331 14:26:50.026789 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.801136 | |
I0331 14:26:50.026801 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.522727 | |
I0331 14:26:50.026814 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.52681 (* 0.3 = 0.758042 loss) | |
I0331 14:26:50.026829 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.723596 (* 0.3 = 0.217079 loss) | |
I0331 14:26:50.026840 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.454545 | |
I0331 14:26:50.026852 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.852273 | |
I0331 14:26:50.026865 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.659091 | |
I0331 14:26:50.026878 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.92305 (* 1 = 1.92305 loss) | |
I0331 14:26:50.026891 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.555217 (* 1 = 0.555217 loss) | |
I0331 14:26:50.026903 30833 solver.cpp:245] Train net output #15: total_accuracy = 0.125 | |
I0331 14:26:50.026916 30833 solver.cpp:245] Train net output #16: total_confidence = 0.0135831 | |
I0331 14:26:50.026927 30833 sgd_solver.cpp:106] Iteration 5500, lr = 0.05 | |
I0331 14:28:58.305781 30833 solver.cpp:229] Iteration 6000, loss = 5.08182 | |
I0331 14:28:58.305903 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.148936 | |
I0331 14:28:58.305923 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.755682 | |
I0331 14:28:58.305937 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.382979 | |
I0331 14:28:58.305953 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.96292 (* 0.3 = 0.888877 loss) | |
I0331 14:28:58.305966 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.910554 (* 0.3 = 0.273166 loss) | |
I0331 14:28:58.305979 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.191489 | |
I0331 14:28:58.305991 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.778409 | |
I0331 14:28:58.306002 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.297872 | |
I0331 14:28:58.306016 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.89445 (* 0.3 = 0.868336 loss) | |
I0331 14:28:58.306030 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.849366 (* 0.3 = 0.25481 loss) | |
I0331 14:28:58.306042 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.276596 | |
I0331 14:28:58.306054 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.806818 | |
I0331 14:28:58.306066 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.468085 | |
I0331 14:28:58.306079 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.36271 (* 1 = 2.36271 loss) | |
I0331 14:28:58.306107 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.668872 (* 1 = 0.668872 loss) | |
I0331 14:28:58.306120 30833 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 14:28:58.306133 30833 solver.cpp:245] Train net output #16: total_confidence = 0.0257377 | |
I0331 14:28:58.306144 30833 sgd_solver.cpp:106] Iteration 6000, lr = 0.05 | |
I0331 14:31:06.645843 30833 solver.cpp:229] Iteration 6500, loss = 5.03548 | |
I0331 14:31:06.645992 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.22449 | |
I0331 14:31:06.646011 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.784091 | |
I0331 14:31:06.646023 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.367347 | |
I0331 14:31:06.646045 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.02935 (* 0.3 = 0.908806 loss) | |
I0331 14:31:06.646059 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.878445 (* 0.3 = 0.263533 loss) | |
I0331 14:31:06.646072 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.306122 | |
I0331 14:31:06.646087 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.806818 | |
I0331 14:31:06.646100 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.469388 | |
I0331 14:31:06.646113 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.03402 (* 0.3 = 0.910205 loss) | |
I0331 14:31:06.646126 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.886855 (* 0.3 = 0.266057 loss) | |
I0331 14:31:06.646138 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.408163 | |
I0331 14:31:06.646150 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.823864 | |
I0331 14:31:06.646162 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.591837 | |
I0331 14:31:06.646175 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.42876 (* 1 = 2.42876 loss) | |
I0331 14:31:06.646189 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.717023 (* 1 = 0.717023 loss) | |
I0331 14:31:06.646201 30833 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 14:31:06.646214 30833 solver.cpp:245] Train net output #16: total_confidence = 0.0177702 | |
I0331 14:31:06.646225 30833 sgd_solver.cpp:106] Iteration 6500, lr = 0.05 | |
I0331 14:33:14.989632 30833 solver.cpp:229] Iteration 7000, loss = 4.91872 | |
I0331 14:33:14.989756 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.26 | |
I0331 14:33:14.989775 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.789773 | |
I0331 14:33:14.989787 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.4 | |
I0331 14:33:14.989804 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.80566 (* 0.3 = 0.841699 loss) | |
I0331 14:33:14.989819 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.822797 (* 0.3 = 0.246839 loss) | |
I0331 14:33:14.989831 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.24 | |
I0331 14:33:14.989843 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.778409 | |
I0331 14:33:14.989856 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.48 | |
I0331 14:33:14.989868 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.73416 (* 0.3 = 0.820249 loss) | |
I0331 14:33:14.989882 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.810427 (* 0.3 = 0.243128 loss) | |
I0331 14:33:14.989894 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.26 | |
I0331 14:33:14.989905 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.778409 | |
I0331 14:33:14.989917 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.54 | |
I0331 14:33:14.989931 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.41686 (* 1 = 2.41686 loss) | |
I0331 14:33:14.989945 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.746085 (* 1 = 0.746085 loss) | |
I0331 14:33:14.989964 30833 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 14:33:14.989975 30833 solver.cpp:245] Train net output #16: total_confidence = 0.00851621 | |
I0331 14:33:14.989987 30833 sgd_solver.cpp:106] Iteration 7000, lr = 0.05 | |
I0331 14:35:23.233705 30833 solver.cpp:229] Iteration 7500, loss = 4.89486 | |
I0331 14:35:23.233850 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.191489 | |
I0331 14:35:23.233871 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.761364 | |
I0331 14:35:23.233892 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.510638 | |
I0331 14:35:23.233908 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.44819 (* 0.3 = 0.734457 loss) | |
I0331 14:35:23.233923 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.750568 (* 0.3 = 0.22517 loss) | |
I0331 14:35:23.233935 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.319149 | |
I0331 14:35:23.233948 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.784091 | |
I0331 14:35:23.233959 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.595745 | |
I0331 14:35:23.233973 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.23208 (* 0.3 = 0.669625 loss) | |
I0331 14:35:23.233989 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.730046 (* 0.3 = 0.219014 loss) | |
I0331 14:35:23.234000 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.489362 | |
I0331 14:35:23.234011 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.846591 | |
I0331 14:35:23.234030 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.787234 | |
I0331 14:35:23.234043 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.59095 (* 1 = 1.59095 loss) | |
I0331 14:35:23.234057 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.499945 (* 1 = 0.499945 loss) | |
I0331 14:35:23.234069 30833 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 14:35:23.234091 30833 solver.cpp:245] Train net output #16: total_confidence = 0.0246471 | |
I0331 14:35:23.234103 30833 sgd_solver.cpp:106] Iteration 7500, lr = 0.05 | |
I0331 14:37:31.633882 30833 solver.cpp:229] Iteration 8000, loss = 4.85201 | |
I0331 14:37:31.634009 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.227273 | |
I0331 14:37:31.634030 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.801136 | |
I0331 14:37:31.634043 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.318182 | |
I0331 14:37:31.634059 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.00128 (* 0.3 = 0.900384 loss) | |
I0331 14:37:31.634073 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.836002 (* 0.3 = 0.250801 loss) | |
I0331 14:37:31.634088 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.181818 | |
I0331 14:37:31.634109 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.778409 | |
I0331 14:37:31.634120 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.477273 | |
I0331 14:37:31.634135 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.84064 (* 0.3 = 0.852193 loss) | |
I0331 14:37:31.634148 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.798208 (* 0.3 = 0.239462 loss) | |
I0331 14:37:31.634166 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.204545 | |
I0331 14:37:31.634177 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.789773 | |
I0331 14:37:31.634188 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.454545 | |
I0331 14:37:31.634202 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.82451 (* 1 = 2.82451 loss) | |
I0331 14:37:31.634215 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.781171 (* 1 = 0.781171 loss) | |
I0331 14:37:31.634227 30833 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 14:37:31.634238 30833 solver.cpp:245] Train net output #16: total_confidence = 0.051551 | |
I0331 14:37:31.634250 30833 sgd_solver.cpp:106] Iteration 8000, lr = 0.05 | |
I0331 14:39:40.006124 30833 solver.cpp:229] Iteration 8500, loss = 4.78383 | |
I0331 14:39:40.006230 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.181818 | |
I0331 14:39:40.006256 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.789773 | |
I0331 14:39:40.006269 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.409091 | |
I0331 14:39:40.006285 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.0144 (* 0.3 = 0.904321 loss) | |
I0331 14:39:40.006299 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.82509 (* 0.3 = 0.247527 loss) | |
I0331 14:39:40.006320 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.159091 | |
I0331 14:39:40.006332 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.789773 | |
I0331 14:39:40.006345 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.363636 | |
I0331 14:39:40.006358 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.97404 (* 0.3 = 0.892211 loss) | |
I0331 14:39:40.006371 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.778747 (* 0.3 = 0.233624 loss) | |
I0331 14:39:40.006383 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.318182 | |
I0331 14:39:40.006395 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.829545 | |
I0331 14:39:40.006407 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.545455 | |
I0331 14:39:40.006422 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.66394 (* 1 = 2.66394 loss) | |
I0331 14:39:40.006434 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.713224 (* 1 = 0.713224 loss) | |
I0331 14:39:40.006446 30833 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 14:39:40.006458 30833 solver.cpp:245] Train net output #16: total_confidence = 0.0110679 | |
I0331 14:39:40.006470 30833 sgd_solver.cpp:106] Iteration 8500, lr = 0.05 | |
I0331 14:41:48.337544 30833 solver.cpp:229] Iteration 9000, loss = 4.73846 | |
I0331 14:41:48.337683 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.145833 | |
I0331 14:41:48.337703 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.755682 | |
I0331 14:41:48.337716 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.291667 | |
I0331 14:41:48.337733 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.17189 (* 0.3 = 0.951566 loss) | |
I0331 14:41:48.337748 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.916176 (* 0.3 = 0.274853 loss) | |
I0331 14:41:48.337759 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.208333 | |
I0331 14:41:48.337772 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.778409 | |
I0331 14:41:48.337785 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.416667 | |
I0331 14:41:48.337797 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.95901 (* 0.3 = 0.887702 loss) | |
I0331 14:41:48.337811 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.849282 (* 0.3 = 0.254784 loss) | |
I0331 14:41:48.337824 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.333333 | |
I0331 14:41:48.337836 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.806818 | |
I0331 14:41:48.337847 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.5 | |
I0331 14:41:48.337862 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.5645 (* 1 = 2.5645 loss) | |
I0331 14:41:48.337875 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.738579 (* 1 = 0.738579 loss) | |
I0331 14:41:48.337888 30833 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 14:41:48.337899 30833 solver.cpp:245] Train net output #16: total_confidence = 0.0133058 | |
I0331 14:41:48.337913 30833 sgd_solver.cpp:106] Iteration 9000, lr = 0.05 | |
I0331 14:43:56.680702 30833 solver.cpp:229] Iteration 9500, loss = 4.69158 | |
I0331 14:43:56.680842 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.23913 | |
I0331 14:43:56.680862 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.767045 | |
I0331 14:43:56.680876 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.347826 | |
I0331 14:43:56.680894 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.06792 (* 0.3 = 0.920375 loss) | |
I0331 14:43:56.680915 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.941894 (* 0.3 = 0.282568 loss) | |
I0331 14:43:56.680935 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.173913 | |
I0331 14:43:56.680948 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.744318 | |
I0331 14:43:56.680960 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.369565 | |
I0331 14:43:56.680974 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.03944 (* 0.3 = 0.911831 loss) | |
I0331 14:43:56.680987 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.975006 (* 0.3 = 0.292502 loss) | |
I0331 14:43:56.680999 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.369565 | |
I0331 14:43:56.681011 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.801136 | |
I0331 14:43:56.681023 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.543478 | |
I0331 14:43:56.681037 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.53121 (* 1 = 2.53121 loss) | |
I0331 14:43:56.681051 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.781847 (* 1 = 0.781847 loss) | |
I0331 14:43:56.681062 30833 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 14:43:56.681074 30833 solver.cpp:245] Train net output #16: total_confidence = 0.0170888 | |
I0331 14:43:56.681089 30833 sgd_solver.cpp:106] Iteration 9500, lr = 0.05 | |
I0331 14:46:04.899308 30833 solver.cpp:338] Iteration 10000, Testing net (#0) | |
I0331 14:46:34.655771 30833 solver.cpp:393] Test loss: 4.54261 | |
I0331 14:46:34.655815 30833 solver.cpp:406] Test net output #0: loss1/accuracy = 0.226432 | |
I0331 14:46:34.655832 30833 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.798273 | |
I0331 14:46:34.655843 30833 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.474629 | |
I0331 14:46:34.655859 30833 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 2.67742 (* 0.3 = 0.803227 loss) | |
I0331 14:46:34.655874 30833 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.724737 (* 0.3 = 0.217421 loss) | |
I0331 14:46:34.655885 30833 solver.cpp:406] Test net output #5: loss2/accuracy = 0.306462 | |
I0331 14:46:34.655897 30833 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.818137 | |
I0331 14:46:34.655908 30833 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.592001 | |
I0331 14:46:34.655922 30833 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 2.40093 (* 0.3 = 0.720279 loss) | |
I0331 14:46:34.655936 30833 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.646232 (* 0.3 = 0.19387 loss) | |
I0331 14:46:34.655947 30833 solver.cpp:406] Test net output #10: loss3/accuracy = 0.427507 | |
I0331 14:46:34.655958 30833 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.846456 | |
I0331 14:46:34.655978 30833 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.690929 | |
I0331 14:46:34.655992 30833 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 2.04594 (* 1 = 2.04594 loss) | |
I0331 14:46:34.656007 30833 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.561876 (* 1 = 0.561876 loss) | |
I0331 14:46:34.656019 30833 solver.cpp:406] Test net output #15: total_accuracy = 0.029 | |
I0331 14:46:34.656038 30833 solver.cpp:406] Test net output #16: total_confidence = 0.0449764 | |
I0331 14:46:34.807433 30833 solver.cpp:229] Iteration 10000, loss = 4.66354 | |
I0331 14:46:34.807495 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.222222 | |
I0331 14:46:34.807512 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.795455 | |
I0331 14:46:34.807525 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.422222 | |
I0331 14:46:34.807544 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.56397 (* 0.3 = 0.76919 loss) | |
I0331 14:46:34.807574 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.718749 (* 0.3 = 0.215625 loss) | |
I0331 14:46:34.807591 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.222222 | |
I0331 14:46:34.807605 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.778409 | |
I0331 14:46:34.807616 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.555556 | |
I0331 14:46:34.807629 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.37118 (* 0.3 = 0.711355 loss) | |
I0331 14:46:34.807643 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.709948 (* 0.3 = 0.212984 loss) | |
I0331 14:46:34.807659 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.533333 | |
I0331 14:46:34.807672 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.869318 | |
I0331 14:46:34.807683 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.755556 | |
I0331 14:46:34.807698 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.67265 (* 1 = 1.67265 loss) | |
I0331 14:46:34.807711 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.477699 (* 1 = 0.477699 loss) | |
I0331 14:46:34.807723 30833 solver.cpp:245] Train net output #15: total_accuracy = 0.125 | |
I0331 14:46:34.807735 30833 solver.cpp:245] Train net output #16: total_confidence = 0.0946325 | |
I0331 14:46:34.807747 30833 sgd_solver.cpp:106] Iteration 10000, lr = 0.05 | |
I0331 14:48:43.155448 30833 solver.cpp:229] Iteration 10500, loss = 4.58027 | |
I0331 14:48:43.155621 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.121951 | |
I0331 14:48:43.155658 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.778409 | |
I0331 14:48:43.155683 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.365854 | |
I0331 14:48:43.155702 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.95077 (* 0.3 = 0.885231 loss) | |
I0331 14:48:43.155717 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.788321 (* 0.3 = 0.236496 loss) | |
I0331 14:48:43.155730 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.243902 | |
I0331 14:48:43.155741 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.8125 | |
I0331 14:48:43.155753 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.560976 | |
I0331 14:48:43.155767 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.64947 (* 0.3 = 0.794841 loss) | |
I0331 14:48:43.155781 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.681089 (* 0.3 = 0.204327 loss) | |
I0331 14:48:43.155792 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.536585 | |
I0331 14:48:43.155804 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.886364 | |
I0331 14:48:43.155817 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.780488 | |
I0331 14:48:43.155830 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.64954 (* 1 = 1.64954 loss) | |
I0331 14:48:43.155843 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.419525 (* 1 = 0.419525 loss) | |
I0331 14:48:43.155855 30833 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 14:48:43.155866 30833 solver.cpp:245] Train net output #16: total_confidence = 0.0140806 | |
I0331 14:48:43.155879 30833 sgd_solver.cpp:106] Iteration 10500, lr = 0.05 | |
I0331 14:50:51.462749 30833 solver.cpp:229] Iteration 11000, loss = 4.55398 | |
I0331 14:50:51.462915 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.166667 | |
I0331 14:50:51.462944 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.732955 | |
I0331 14:50:51.462955 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.37037 | |
I0331 14:50:51.462971 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.98994 (* 0.3 = 0.896984 loss) | |
I0331 14:50:51.462986 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.985061 (* 0.3 = 0.295518 loss) | |
I0331 14:50:51.462998 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.296296 | |
I0331 14:50:51.463011 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.778409 | |
I0331 14:50:51.463022 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.537037 | |
I0331 14:50:51.463037 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.86914 (* 0.3 = 0.860743 loss) | |
I0331 14:50:51.463049 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.938499 (* 0.3 = 0.28155 loss) | |
I0331 14:50:51.463063 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.333333 | |
I0331 14:50:51.463073 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.784091 | |
I0331 14:50:51.463099 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.555556 | |
I0331 14:50:51.463116 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.57946 (* 1 = 2.57946 loss) | |
I0331 14:50:51.463130 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.84873 (* 1 = 0.84873 loss) | |
I0331 14:50:51.463141 30833 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 14:50:51.463153 30833 solver.cpp:245] Train net output #16: total_confidence = 0.0293562 | |
I0331 14:50:51.463166 30833 sgd_solver.cpp:106] Iteration 11000, lr = 0.05 | |
I0331 14:52:59.742735 30833 solver.cpp:229] Iteration 11500, loss = 4.52761 | |
I0331 14:52:59.742846 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.204082 | |
I0331 14:52:59.742864 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.767045 | |
I0331 14:52:59.742877 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.530612 | |
I0331 14:52:59.742893 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.51624 (* 0.3 = 0.754872 loss) | |
I0331 14:52:59.742908 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.778426 (* 0.3 = 0.233528 loss) | |
I0331 14:52:59.742920 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.306122 | |
I0331 14:52:59.742933 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.784091 | |
I0331 14:52:59.742944 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.510204 | |
I0331 14:52:59.742959 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.52178 (* 0.3 = 0.756535 loss) | |
I0331 14:52:59.742971 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.817511 (* 0.3 = 0.245253 loss) | |
I0331 14:52:59.742985 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.44898 | |
I0331 14:52:59.742995 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.823864 | |
I0331 14:52:59.743007 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.653061 | |
I0331 14:52:59.743021 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.25121 (* 1 = 2.25121 loss) | |
I0331 14:52:59.743034 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.693052 (* 1 = 0.693052 loss) | |
I0331 14:52:59.743046 30833 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 14:52:59.743057 30833 solver.cpp:245] Train net output #16: total_confidence = 0.0134283 | |
I0331 14:52:59.743069 30833 sgd_solver.cpp:106] Iteration 11500, lr = 0.05 | |
I0331 14:55:08.255499 30833 solver.cpp:229] Iteration 12000, loss = 4.5202 | |
I0331 14:55:08.255651 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.148936 | |
I0331 14:55:08.255672 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.767045 | |
I0331 14:55:08.255693 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.340426 | |
I0331 14:55:08.255709 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.01304 (* 0.3 = 0.903911 loss) | |
I0331 14:55:08.255724 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.872657 (* 0.3 = 0.261797 loss) | |
I0331 14:55:08.255736 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.170213 | |
I0331 14:55:08.255749 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.761364 | |
I0331 14:55:08.255761 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.276596 | |
I0331 14:55:08.255775 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.01407 (* 0.3 = 0.90422 loss) | |
I0331 14:55:08.255789 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.906295 (* 0.3 = 0.271888 loss) | |
I0331 14:55:08.255801 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.255319 | |
I0331 14:55:08.255813 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.795455 | |
I0331 14:55:08.255825 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.553191 | |
I0331 14:55:08.255838 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.31274 (* 1 = 2.31274 loss) | |
I0331 14:55:08.255852 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.677382 (* 1 = 0.677382 loss) | |
I0331 14:55:08.255863 30833 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 14:55:08.255875 30833 solver.cpp:245] Train net output #16: total_confidence = 0.00738938 | |
I0331 14:55:08.255887 30833 sgd_solver.cpp:106] Iteration 12000, lr = 0.05 | |
I0331 14:57:17.183115 30833 solver.cpp:229] Iteration 12500, loss = 4.43867 | |
I0331 14:57:17.183204 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.122449 | |
I0331 14:57:17.183223 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.75 | |
I0331 14:57:17.183236 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.265306 | |
I0331 14:57:17.183251 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.37841 (* 0.3 = 1.01352 loss) | |
I0331 14:57:17.183266 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.980252 (* 0.3 = 0.294076 loss) | |
I0331 14:57:17.183279 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.142857 | |
I0331 14:57:17.183290 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.761364 | |
I0331 14:57:17.183302 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.367347 | |
I0331 14:57:17.183323 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.75468 (* 0.3 = 1.1264 loss) | |
I0331 14:57:17.183337 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.06723 (* 0.3 = 0.32017 loss) | |
I0331 14:57:17.183349 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.244898 | |
I0331 14:57:17.183362 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.789773 | |
I0331 14:57:17.183378 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.510204 | |
I0331 14:57:17.183393 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.72232 (* 1 = 2.72232 loss) | |
I0331 14:57:17.183405 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.771782 (* 1 = 0.771782 loss) | |
I0331 14:57:17.183418 30833 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 14:57:17.183429 30833 solver.cpp:245] Train net output #16: total_confidence = 0.00419322 | |
I0331 14:57:17.183440 30833 sgd_solver.cpp:106] Iteration 12500, lr = 0.05 | |
I0331 14:59:25.469430 30833 solver.cpp:229] Iteration 13000, loss = 4.47065 | |
I0331 14:59:25.469585 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.234043 | |
I0331 14:59:25.469605 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.789773 | |
I0331 14:59:25.469625 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.531915 | |
I0331 14:59:25.469641 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.41824 (* 0.3 = 0.725472 loss) | |
I0331 14:59:25.469656 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.678096 (* 0.3 = 0.203429 loss) | |
I0331 14:59:25.469668 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.361702 | |
I0331 14:59:25.469681 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.829545 | |
I0331 14:59:25.469692 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.595745 | |
I0331 14:59:25.469707 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.22173 (* 0.3 = 0.66652 loss) | |
I0331 14:59:25.469720 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.616299 (* 0.3 = 0.18489 loss) | |
I0331 14:59:25.469732 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.489362 | |
I0331 14:59:25.469744 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.852273 | |
I0331 14:59:25.469756 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.744681 | |
I0331 14:59:25.469770 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.57518 (* 1 = 1.57518 loss) | |
I0331 14:59:25.469784 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.45788 (* 1 = 0.45788 loss) | |
I0331 14:59:25.469801 30833 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 14:59:25.469820 30833 solver.cpp:245] Train net output #16: total_confidence = 0.0341073 | |
I0331 14:59:25.469833 30833 sgd_solver.cpp:106] Iteration 13000, lr = 0.05 | |
I0331 15:01:33.854226 30833 solver.cpp:229] Iteration 13500, loss = 4.44677 | |
I0331 15:01:33.854470 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.181818 | |
I0331 15:01:33.854491 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.784091 | |
I0331 15:01:33.854504 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.393939 | |
I0331 15:01:33.854519 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.79991 (* 0.3 = 0.839972 loss) | |
I0331 15:01:33.854534 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.893624 (* 0.3 = 0.268087 loss) | |
I0331 15:01:33.854547 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.333333 | |
I0331 15:01:33.854558 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.818182 | |
I0331 15:01:33.854570 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.545455 | |
I0331 15:01:33.854583 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.454 (* 0.3 = 0.7362 loss) | |
I0331 15:01:33.854598 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.804078 (* 0.3 = 0.241223 loss) | |
I0331 15:01:33.854609 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.424242 | |
I0331 15:01:33.854624 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.818182 | |
I0331 15:01:33.854636 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.727273 | |
I0331 15:01:33.854650 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.10602 (* 1 = 2.10602 loss) | |
I0331 15:01:33.854663 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.772567 (* 1 = 0.772567 loss) | |
I0331 15:01:33.854676 30833 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 15:01:33.854687 30833 solver.cpp:245] Train net output #16: total_confidence = 0.00325553 | |
I0331 15:01:33.854699 30833 sgd_solver.cpp:106] Iteration 13500, lr = 0.05 | |
I0331 15:03:42.164531 30833 solver.cpp:229] Iteration 14000, loss = 4.35588 | |
I0331 15:03:42.164687 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.395349 | |
I0331 15:03:42.164716 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.840909 | |
I0331 15:03:42.164729 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.651163 | |
I0331 15:03:42.164746 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.3021 (* 0.3 = 0.69063 loss) | |
I0331 15:03:42.164760 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.630476 (* 0.3 = 0.189143 loss) | |
I0331 15:03:42.164772 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.418605 | |
I0331 15:03:42.164784 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.835227 | |
I0331 15:03:42.164796 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.744186 | |
I0331 15:03:42.164809 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.1175 (* 0.3 = 0.635251 loss) | |
I0331 15:03:42.164824 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.58361 (* 0.3 = 0.175083 loss) | |
I0331 15:03:42.164836 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.581395 | |
I0331 15:03:42.164847 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.880682 | |
I0331 15:03:42.164860 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.860465 | |
I0331 15:03:42.164873 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.42751 (* 1 = 1.42751 loss) | |
I0331 15:03:42.164886 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.398335 (* 1 = 0.398335 loss) | |
I0331 15:03:42.164898 30833 solver.cpp:245] Train net output #15: total_accuracy = 0.125 | |
I0331 15:03:42.164911 30833 solver.cpp:245] Train net output #16: total_confidence = 0.0269497 | |
I0331 15:03:42.164922 30833 sgd_solver.cpp:106] Iteration 14000, lr = 0.05 | |
I0331 15:05:50.501094 30833 solver.cpp:229] Iteration 14500, loss = 4.36541 | |
I0331 15:05:50.501224 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.157895 | |
I0331 15:05:50.501243 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.715909 | |
I0331 15:05:50.501256 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.245614 | |
I0331 15:05:50.501271 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.02043 (* 0.3 = 0.906128 loss) | |
I0331 15:05:50.501286 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.02007 (* 0.3 = 0.306022 loss) | |
I0331 15:05:50.501298 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.22807 | |
I0331 15:05:50.501312 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.744318 | |
I0331 15:05:50.501322 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.508772 | |
I0331 15:05:50.501337 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.68033 (* 0.3 = 0.804098 loss) | |
I0331 15:05:50.501349 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.908021 (* 0.3 = 0.272406 loss) | |
I0331 15:05:50.501361 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.385965 | |
I0331 15:05:50.501374 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.784091 | |
I0331 15:05:50.501385 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.614035 | |
I0331 15:05:50.501399 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.13107 (* 1 = 2.13107 loss) | |
I0331 15:05:50.501412 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.723368 (* 1 = 0.723368 loss) | |
I0331 15:05:50.501425 30833 solver.cpp:245] Train net output #15: total_accuracy = 0.125 | |
I0331 15:05:50.501436 30833 solver.cpp:245] Train net output #16: total_confidence = 0.0863376 | |
I0331 15:05:50.501447 30833 sgd_solver.cpp:106] Iteration 14500, lr = 0.05 | |
I0331 15:07:58.918556 30833 solver.cpp:338] Iteration 15000, Testing net (#0) | |
I0331 15:08:28.648844 30833 solver.cpp:393] Test loss: 3.76422 | |
I0331 15:08:28.648895 30833 solver.cpp:406] Test net output #0: loss1/accuracy = 0.277931 | |
I0331 15:08:28.648911 30833 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.809273 | |
I0331 15:08:28.648923 30833 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.567616 | |
I0331 15:08:28.648938 30833 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 2.36707 (* 0.3 = 0.71012 loss) | |
I0331 15:08:28.648953 30833 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.645704 (* 0.3 = 0.193711 loss) | |
I0331 15:08:28.648964 30833 solver.cpp:406] Test net output #5: loss2/accuracy = 0.399977 | |
I0331 15:08:28.648977 30833 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.847866 | |
I0331 15:08:28.648988 30833 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.712306 | |
I0331 15:08:28.649001 30833 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.99301 (* 0.3 = 0.597902 loss) | |
I0331 15:08:28.649014 30833 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.518553 (* 0.3 = 0.155566 loss) | |
I0331 15:08:28.649026 30833 solver.cpp:406] Test net output #10: loss3/accuracy = 0.556537 | |
I0331 15:08:28.649039 30833 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.882048 | |
I0331 15:08:28.649049 30833 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.784059 | |
I0331 15:08:28.649062 30833 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 1.66449 (* 1 = 1.66449 loss) | |
I0331 15:08:28.649075 30833 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.442433 (* 1 = 0.442433 loss) | |
I0331 15:08:28.649090 30833 solver.cpp:406] Test net output #15: total_accuracy = 0.084 | |
I0331 15:08:28.649102 30833 solver.cpp:406] Test net output #16: total_confidence = 0.119041 | |
I0331 15:08:28.800690 30833 solver.cpp:229] Iteration 15000, loss = 4.32311 | |
I0331 15:08:28.800748 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.380952 | |
I0331 15:08:28.800766 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.806818 | |
I0331 15:08:28.800779 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.595238 | |
I0331 15:08:28.800796 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.3548 (* 0.3 = 0.706439 loss) | |
I0331 15:08:28.800811 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.721912 (* 0.3 = 0.216574 loss) | |
I0331 15:08:28.800822 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.380952 | |
I0331 15:08:28.800838 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.806818 | |
I0331 15:08:28.800850 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.690476 | |
I0331 15:08:28.800864 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.08594 (* 0.3 = 0.625783 loss) | |
I0331 15:08:28.800879 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.661326 (* 0.3 = 0.198398 loss) | |
I0331 15:08:28.800891 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.619048 | |
I0331 15:08:28.800902 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.892045 | |
I0331 15:08:28.800915 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.857143 | |
I0331 15:08:28.800928 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.15659 (* 1 = 1.15659 loss) | |
I0331 15:08:28.800942 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.351903 (* 1 = 0.351903 loss) | |
I0331 15:08:28.800954 30833 solver.cpp:245] Train net output #15: total_accuracy = 0.125 | |
I0331 15:08:28.800966 30833 solver.cpp:245] Train net output #16: total_confidence = 0.10664 | |
I0331 15:08:28.800979 30833 sgd_solver.cpp:106] Iteration 15000, lr = 0.05 | |
I0331 15:10:36.974414 30833 solver.cpp:229] Iteration 15500, loss = 4.20944 | |
I0331 15:10:36.974553 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.311111 | |
I0331 15:10:36.974581 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.801136 | |
I0331 15:10:36.974613 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.511111 | |
I0331 15:10:36.974647 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.43264 (* 0.3 = 0.729792 loss) | |
I0331 15:10:36.974669 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.702713 (* 0.3 = 0.210814 loss) | |
I0331 15:10:36.974683 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.466667 | |
I0331 15:10:36.974694 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.829545 | |
I0331 15:10:36.974706 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.6 | |
I0331 15:10:36.974720 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.13287 (* 0.3 = 0.63986 loss) | |
I0331 15:10:36.974733 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.649698 (* 0.3 = 0.19491 loss) | |
I0331 15:10:36.974745 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.6 | |
I0331 15:10:36.974757 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.880682 | |
I0331 15:10:36.974768 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.8 | |
I0331 15:10:36.974782 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.1831 (* 1 = 1.1831 loss) | |
I0331 15:10:36.974795 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.362929 (* 1 = 0.362929 loss) | |
I0331 15:10:36.974807 30833 solver.cpp:245] Train net output #15: total_accuracy = 0.25 | |
I0331 15:10:36.974819 30833 solver.cpp:245] Train net output #16: total_confidence = 0.092648 | |
I0331 15:10:36.974831 30833 sgd_solver.cpp:106] Iteration 15500, lr = 0.05 | |
I0331 15:12:45.462532 30833 solver.cpp:229] Iteration 16000, loss = 4.27627 | |
I0331 15:12:45.462759 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.340426 | |
I0331 15:12:45.462779 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.801136 | |
I0331 15:12:45.462792 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.553191 | |
I0331 15:12:45.462808 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.34865 (* 0.3 = 0.704594 loss) | |
I0331 15:12:45.462824 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.711107 (* 0.3 = 0.213332 loss) | |
I0331 15:12:45.462836 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.340426 | |
I0331 15:12:45.462848 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.795455 | |
I0331 15:12:45.462859 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.574468 | |
I0331 15:12:45.462873 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.41239 (* 0.3 = 0.723716 loss) | |
I0331 15:12:45.462888 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.744407 (* 0.3 = 0.223322 loss) | |
I0331 15:12:45.462899 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.425532 | |
I0331 15:12:45.462911 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.806818 | |
I0331 15:12:45.462924 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.617021 | |
I0331 15:12:45.462936 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.06563 (* 1 = 2.06563 loss) | |
I0331 15:12:45.462950 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.661263 (* 1 = 0.661263 loss) | |
I0331 15:12:45.462962 30833 solver.cpp:245] Train net output #15: total_accuracy = 0.125 | |
I0331 15:12:45.462975 30833 solver.cpp:245] Train net output #16: total_confidence = 0.0655041 | |
I0331 15:12:45.462986 30833 sgd_solver.cpp:106] Iteration 16000, lr = 0.05 | |
I0331 15:14:53.690562 30833 solver.cpp:229] Iteration 16500, loss = 4.12448 | |
I0331 15:14:53.690713 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.292683 | |
I0331 15:14:53.690742 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.8125 | |
I0331 15:14:53.690754 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.463415 | |
I0331 15:14:53.690770 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.41529 (* 0.3 = 0.724587 loss) | |
I0331 15:14:53.690785 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.678429 (* 0.3 = 0.203529 loss) | |
I0331 15:14:53.690798 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.487805 | |
I0331 15:14:53.690810 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.852273 | |
I0331 15:14:53.690821 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.658537 | |
I0331 15:14:53.690835 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.92108 (* 0.3 = 0.576323 loss) | |
I0331 15:14:53.690848 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.569106 (* 0.3 = 0.170732 loss) | |
I0331 15:14:53.690860 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.536585 | |
I0331 15:14:53.690872 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.857955 | |
I0331 15:14:53.690884 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.780488 | |
I0331 15:14:53.690897 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.23563 (* 1 = 1.23563 loss) | |
I0331 15:14:53.690912 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.372331 (* 1 = 0.372331 loss) | |
I0331 15:14:53.690923 30833 solver.cpp:245] Train net output #15: total_accuracy = 0.125 | |
I0331 15:14:53.690935 30833 solver.cpp:245] Train net output #16: total_confidence = 0.151016 | |
I0331 15:14:53.690946 30833 sgd_solver.cpp:106] Iteration 16500, lr = 0.05 | |
I0331 15:17:01.982213 30833 solver.cpp:229] Iteration 17000, loss = 4.17168 | |
I0331 15:17:01.982323 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.192308 | |
I0331 15:17:01.982343 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.761364 | |
I0331 15:17:01.982357 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.307692 | |
I0331 15:17:01.982372 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.19046 (* 0.3 = 0.957138 loss) | |
I0331 15:17:01.982386 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.963534 (* 0.3 = 0.28906 loss) | |
I0331 15:17:01.982398 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.211538 | |
I0331 15:17:01.982410 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.767045 | |
I0331 15:17:01.982422 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.365385 | |
I0331 15:17:01.982436 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.91056 (* 0.3 = 0.873167 loss) | |
I0331 15:17:01.982450 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.88238 (* 0.3 = 0.264714 loss) | |
I0331 15:17:01.982461 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.480769 | |
I0331 15:17:01.982475 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.846591 | |
I0331 15:17:01.982487 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.596154 | |
I0331 15:17:01.982512 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.02312 (* 1 = 2.02312 loss) | |
I0331 15:17:01.982542 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.609883 (* 1 = 0.609883 loss) | |
I0331 15:17:01.982554 30833 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 15:17:01.982566 30833 solver.cpp:245] Train net output #16: total_confidence = 0.0221853 | |
I0331 15:17:01.982578 30833 sgd_solver.cpp:106] Iteration 17000, lr = 0.05 | |
I0331 15:19:10.419070 30833 solver.cpp:229] Iteration 17500, loss = 4.14048 | |
I0331 15:19:10.419220 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0952381 | |
I0331 15:19:10.419240 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.744318 | |
I0331 15:19:10.419261 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.380952 | |
I0331 15:19:10.419277 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.80184 (* 0.3 = 0.840551 loss) | |
I0331 15:19:10.419292 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.820701 (* 0.3 = 0.24621 loss) | |
I0331 15:19:10.419304 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.309524 | |
I0331 15:19:10.419317 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.8125 | |
I0331 15:19:10.419328 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.595238 | |
I0331 15:19:10.419342 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.16946 (* 0.3 = 0.650838 loss) | |
I0331 15:19:10.419356 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.607474 (* 0.3 = 0.182242 loss) | |
I0331 15:19:10.419368 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.5 | |
I0331 15:19:10.419380 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.863636 | |
I0331 15:19:10.419391 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.761905 | |
I0331 15:19:10.419405 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.67982 (* 1 = 1.67982 loss) | |
I0331 15:19:10.419419 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.486492 (* 1 = 0.486492 loss) | |
I0331 15:19:10.419430 30833 solver.cpp:245] Train net output #15: total_accuracy = 0.125 | |
I0331 15:19:10.419442 30833 solver.cpp:245] Train net output #16: total_confidence = 0.0632114 | |
I0331 15:19:10.419455 30833 sgd_solver.cpp:106] Iteration 17500, lr = 0.05 | |
I0331 15:21:18.801589 30833 solver.cpp:229] Iteration 18000, loss = 4.13569 | |
I0331 15:21:18.801720 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.2 | |
I0331 15:21:18.801739 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.778409 | |
I0331 15:21:18.801753 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.4 | |
I0331 15:21:18.801769 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.80436 (* 0.3 = 0.841308 loss) | |
I0331 15:21:18.801784 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.851323 (* 0.3 = 0.255397 loss) | |
I0331 15:21:18.801796 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.177778 | |
I0331 15:21:18.801807 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.761364 | |
I0331 15:21:18.801820 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.377778 | |
I0331 15:21:18.801832 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.81784 (* 0.3 = 0.845351 loss) | |
I0331 15:21:18.801846 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.865367 (* 0.3 = 0.25961 loss) | |
I0331 15:21:18.801858 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.377778 | |
I0331 15:21:18.801869 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.801136 | |
I0331 15:21:18.801882 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.577778 | |
I0331 15:21:18.801895 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.03557 (* 1 = 2.03557 loss) | |
I0331 15:21:18.801908 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.642305 (* 1 = 0.642305 loss) | |
I0331 15:21:18.801920 30833 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 15:21:18.801933 30833 solver.cpp:245] Train net output #16: total_confidence = 0.0433667 | |
I0331 15:21:18.801944 30833 sgd_solver.cpp:106] Iteration 18000, lr = 0.05 | |
I0331 15:23:27.006252 30833 solver.cpp:229] Iteration 18500, loss = 4.16682 | |
I0331 15:23:27.006431 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.25 | |
I0331 15:23:27.006469 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.795455 | |
I0331 15:23:27.006492 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.444444 | |
I0331 15:23:27.006520 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.46714 (* 0.3 = 0.740143 loss) | |
I0331 15:23:27.006538 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.71485 (* 0.3 = 0.214455 loss) | |
I0331 15:23:27.006551 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.361111 | |
I0331 15:23:27.006563 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.823864 | |
I0331 15:23:27.006575 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.583333 | |
I0331 15:23:27.006588 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.14269 (* 0.3 = 0.642806 loss) | |
I0331 15:23:27.006603 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.67488 (* 0.3 = 0.202464 loss) | |
I0331 15:23:27.006614 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.666667 | |
I0331 15:23:27.006626 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.914773 | |
I0331 15:23:27.006639 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.805556 | |
I0331 15:23:27.006652 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.21584 (* 1 = 1.21584 loss) | |
I0331 15:23:27.006666 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.35364 (* 1 = 0.35364 loss) | |
I0331 15:23:27.006678 30833 solver.cpp:245] Train net output #15: total_accuracy = 0.375 | |
I0331 15:23:27.006690 30833 solver.cpp:245] Train net output #16: total_confidence = 0.164147 | |
I0331 15:23:27.006702 30833 sgd_solver.cpp:106] Iteration 18500, lr = 0.05 | |
I0331 15:25:35.457944 30833 solver.cpp:229] Iteration 19000, loss = 4.0781 | |
I0331 15:25:35.458086 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.234043 | |
I0331 15:25:35.458106 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.784091 | |
I0331 15:25:35.458120 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.489362 | |
I0331 15:25:35.458137 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.60638 (* 0.3 = 0.781915 loss) | |
I0331 15:25:35.458151 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.756356 (* 0.3 = 0.226907 loss) | |
I0331 15:25:35.458163 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.468085 | |
I0331 15:25:35.458175 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.829545 | |
I0331 15:25:35.458187 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.680851 | |
I0331 15:25:35.458201 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.01921 (* 0.3 = 0.605763 loss) | |
I0331 15:25:35.458215 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.616906 (* 0.3 = 0.185072 loss) | |
I0331 15:25:35.458227 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.638298 | |
I0331 15:25:35.458240 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.903409 | |
I0331 15:25:35.458250 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.829787 | |
I0331 15:25:35.458264 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.30768 (* 1 = 1.30768 loss) | |
I0331 15:25:35.458279 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.37756 (* 1 = 0.37756 loss) | |
I0331 15:25:35.458292 30833 solver.cpp:245] Train net output #15: total_accuracy = 0.125 | |
I0331 15:25:35.458312 30833 solver.cpp:245] Train net output #16: total_confidence = 0.141337 | |
I0331 15:25:35.458324 30833 sgd_solver.cpp:106] Iteration 19000, lr = 0.05 | |
I0331 15:27:43.799993 30833 solver.cpp:229] Iteration 19500, loss = 4.05507 | |
I0331 15:27:43.800142 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.173913 | |
I0331 15:27:43.800161 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.761364 | |
I0331 15:27:43.800174 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.413043 | |
I0331 15:27:43.800199 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.93772 (* 0.3 = 0.881317 loss) | |
I0331 15:27:43.800215 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.900039 (* 0.3 = 0.270012 loss) | |
I0331 15:27:43.800226 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.26087 | |
I0331 15:27:43.800240 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.778409 | |
I0331 15:27:43.800251 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.521739 | |
I0331 15:27:43.800266 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.65088 (* 0.3 = 0.795265 loss) | |
I0331 15:27:43.800279 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.802977 (* 0.3 = 0.240893 loss) | |
I0331 15:27:43.800292 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.456522 | |
I0331 15:27:43.800302 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.857955 | |
I0331 15:27:43.800314 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.630435 | |
I0331 15:27:43.800328 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.24696 (* 1 = 2.24696 loss) | |
I0331 15:27:43.800341 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.615054 (* 1 = 0.615054 loss) | |
I0331 15:27:43.800353 30833 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 15:27:43.800364 30833 solver.cpp:245] Train net output #16: total_confidence = 0.0799842 | |
I0331 15:27:43.800376 30833 sgd_solver.cpp:106] Iteration 19500, lr = 0.05 | |
I0331 15:29:52.022130 30833 solver.cpp:338] Iteration 20000, Testing net (#0) | |
I0331 15:30:21.782045 30833 solver.cpp:393] Test loss: 3.49304 | |
I0331 15:30:21.782094 30833 solver.cpp:406] Test net output #0: loss1/accuracy = 0.289679 | |
I0331 15:30:21.782109 30833 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.816955 | |
I0331 15:30:21.782121 30833 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.564894 | |
I0331 15:30:21.782136 30833 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 2.54961 (* 0.3 = 0.764882 loss) | |
I0331 15:30:21.782150 30833 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.675547 (* 0.3 = 0.202664 loss) | |
I0331 15:30:21.782162 30833 solver.cpp:406] Test net output #5: loss2/accuracy = 0.459066 | |
I0331 15:30:21.782174 30833 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.830547 | |
I0331 15:30:21.782186 30833 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.738938 | |
I0331 15:30:21.782198 30833 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.85701 (* 0.3 = 0.557104 loss) | |
I0331 15:30:21.782212 30833 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.586171 (* 0.3 = 0.175851 loss) | |
I0331 15:30:21.782224 30833 solver.cpp:406] Test net output #10: loss3/accuracy = 0.62627 | |
I0331 15:30:21.782235 30833 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.880593 | |
I0331 15:30:21.782246 30833 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.823604 | |
I0331 15:30:21.782259 30833 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 1.35968 (* 1 = 1.35968 loss) | |
I0331 15:30:21.782272 30833 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.432853 (* 1 = 0.432853 loss) | |
I0331 15:30:21.782284 30833 solver.cpp:406] Test net output #15: total_accuracy = 0.097 | |
I0331 15:30:21.782295 30833 solver.cpp:406] Test net output #16: total_confidence = 0.114111 | |
I0331 15:30:21.933578 30833 solver.cpp:229] Iteration 20000, loss = 4.01855 | |
I0331 15:30:21.933624 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.297872 | |
I0331 15:30:21.933640 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.795455 | |
I0331 15:30:21.933652 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.531915 | |
I0331 15:30:21.933668 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.41103 (* 0.3 = 0.723309 loss) | |
I0331 15:30:21.933682 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.716025 (* 0.3 = 0.214808 loss) | |
I0331 15:30:21.933694 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.361702 | |
I0331 15:30:21.933706 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.818182 | |
I0331 15:30:21.933718 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.744681 | |
I0331 15:30:21.933732 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.88836 (* 0.3 = 0.566507 loss) | |
I0331 15:30:21.933745 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.574079 (* 0.3 = 0.172224 loss) | |
I0331 15:30:21.933758 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.744681 | |
I0331 15:30:21.933769 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.920455 | |
I0331 15:30:21.933787 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.829787 | |
I0331 15:30:21.933804 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.987179 (* 1 = 0.987179 loss) | |
I0331 15:30:21.933817 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.303212 (* 1 = 0.303212 loss) | |
I0331 15:30:21.933830 30833 solver.cpp:245] Train net output #15: total_accuracy = 0.25 | |
I0331 15:30:21.933840 30833 solver.cpp:245] Train net output #16: total_confidence = 0.152004 | |
I0331 15:30:21.933852 30833 sgd_solver.cpp:106] Iteration 20000, lr = 0.05 | |
I0331 15:32:30.181273 30833 solver.cpp:229] Iteration 20500, loss = 4.02224 | |
I0331 15:32:30.181403 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.285714 | |
I0331 15:32:30.181422 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.784091 | |
I0331 15:32:30.181435 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.489796 | |
I0331 15:32:30.181459 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.92992 (* 0.3 = 0.878977 loss) | |
I0331 15:32:30.181474 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.878913 (* 0.3 = 0.263674 loss) | |
I0331 15:32:30.181486 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.285714 | |
I0331 15:32:30.181499 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.789773 | |
I0331 15:32:30.181510 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.44898 | |
I0331 15:32:30.181524 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.72747 (* 0.3 = 0.818242 loss) | |
I0331 15:32:30.181537 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.802128 (* 0.3 = 0.240638 loss) | |
I0331 15:32:30.181550 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.55102 | |
I0331 15:32:30.181561 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.852273 | |
I0331 15:32:30.181572 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.77551 | |
I0331 15:32:30.181586 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.65601 (* 1 = 1.65601 loss) | |
I0331 15:32:30.181599 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.540818 (* 1 = 0.540818 loss) | |
I0331 15:32:30.181612 30833 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 15:32:30.181622 30833 solver.cpp:245] Train net output #16: total_confidence = 0.0152233 | |
I0331 15:32:30.181634 30833 sgd_solver.cpp:106] Iteration 20500, lr = 0.05 | |
I0331 15:34:38.474385 30833 solver.cpp:229] Iteration 21000, loss = 3.98619 | |
I0331 15:34:38.474541 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.340909 | |
I0331 15:34:38.474562 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.806818 | |
I0331 15:34:38.474575 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.522727 | |
I0331 15:34:38.474594 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.5301 (* 0.3 = 0.759029 loss) | |
I0331 15:34:38.474609 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.792053 (* 0.3 = 0.237616 loss) | |
I0331 15:34:38.474624 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.295455 | |
I0331 15:34:38.474640 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.795455 | |
I0331 15:34:38.474653 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.522727 | |
I0331 15:34:38.474668 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.24762 (* 0.3 = 0.674287 loss) | |
I0331 15:34:38.474680 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.681556 (* 0.3 = 0.204467 loss) | |
I0331 15:34:38.474694 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.454545 | |
I0331 15:34:38.474705 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.846591 | |
I0331 15:34:38.474717 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.75 | |
I0331 15:34:38.474731 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.64547 (* 1 = 1.64547 loss) | |
I0331 15:34:38.474745 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.502386 (* 1 = 0.502386 loss) | |
I0331 15:34:38.474757 30833 solver.cpp:245] Train net output #15: total_accuracy = 0.25 | |
I0331 15:34:38.474769 30833 solver.cpp:245] Train net output #16: total_confidence = 0.0798219 | |
I0331 15:34:38.474781 30833 sgd_solver.cpp:106] Iteration 21000, lr = 0.05 | |
I0331 15:36:46.973562 30833 solver.cpp:229] Iteration 21500, loss = 3.9237 | |
I0331 15:36:46.973675 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.255319 | |
I0331 15:36:46.973695 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.801136 | |
I0331 15:36:46.973707 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.425532 | |
I0331 15:36:46.973723 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.01765 (* 0.3 = 0.905296 loss) | |
I0331 15:36:46.973737 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.838396 (* 0.3 = 0.251519 loss) | |
I0331 15:36:46.973750 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.191489 | |
I0331 15:36:46.973762 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.784091 | |
I0331 15:36:46.973774 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.489362 | |
I0331 15:36:46.973788 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.80188 (* 0.3 = 0.840563 loss) | |
I0331 15:36:46.973801 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.768203 (* 0.3 = 0.230461 loss) | |
I0331 15:36:46.973814 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.510638 | |
I0331 15:36:46.973824 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.869318 | |
I0331 15:36:46.973836 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.808511 | |
I0331 15:36:46.973850 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.50091 (* 1 = 1.50091 loss) | |
I0331 15:36:46.973863 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.416986 (* 1 = 0.416986 loss) | |
I0331 15:36:46.973875 30833 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 15:36:46.973886 30833 solver.cpp:245] Train net output #16: total_confidence = 0.0331543 | |
I0331 15:36:46.973897 30833 sgd_solver.cpp:106] Iteration 21500, lr = 0.05 | |
I0331 15:38:55.750946 30833 solver.cpp:229] Iteration 22000, loss = 4.01777 | |
I0331 15:38:55.751087 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.302326 | |
I0331 15:38:55.751107 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.818182 | |
I0331 15:38:55.751127 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.581395 | |
I0331 15:38:55.751142 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.28421 (* 0.3 = 0.685262 loss) | |
I0331 15:38:55.751157 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.623868 (* 0.3 = 0.18716 loss) | |
I0331 15:38:55.751169 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.395349 | |
I0331 15:38:55.751183 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.806818 | |
I0331 15:38:55.751194 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.744186 | |
I0331 15:38:55.751219 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.79213 (* 0.3 = 0.53764 loss) | |
I0331 15:38:55.751235 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.570915 (* 0.3 = 0.171275 loss) | |
I0331 15:38:55.751247 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.55814 | |
I0331 15:38:55.751260 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.857955 | |
I0331 15:38:55.751271 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.813953 | |
I0331 15:38:55.751284 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.20954 (* 1 = 1.20954 loss) | |
I0331 15:38:55.751298 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.379969 (* 1 = 0.379969 loss) | |
I0331 15:38:55.751310 30833 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 15:38:55.751322 30833 solver.cpp:245] Train net output #16: total_confidence = 0.0554934 | |
I0331 15:38:55.751333 30833 sgd_solver.cpp:106] Iteration 22000, lr = 0.05 | |
I0331 15:41:04.162755 30833 solver.cpp:229] Iteration 22500, loss = 3.84244 | |
I0331 15:41:04.162883 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.159091 | |
I0331 15:41:04.162902 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.767045 | |
I0331 15:41:04.162915 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.454545 | |
I0331 15:41:04.162930 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.80886 (* 0.3 = 0.842659 loss) | |
I0331 15:41:04.162945 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.852786 (* 0.3 = 0.255836 loss) | |
I0331 15:41:04.162957 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.295455 | |
I0331 15:41:04.162969 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.784091 | |
I0331 15:41:04.162981 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.522727 | |
I0331 15:41:04.162995 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.34702 (* 0.3 = 0.704106 loss) | |
I0331 15:41:04.163009 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.767773 (* 0.3 = 0.230332 loss) | |
I0331 15:41:04.163020 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.613636 | |
I0331 15:41:04.163033 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.880682 | |
I0331 15:41:04.163043 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.795455 | |
I0331 15:41:04.163064 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.47666 (* 1 = 1.47666 loss) | |
I0331 15:41:04.163079 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.526908 (* 1 = 0.526908 loss) | |
I0331 15:41:04.163105 30833 solver.cpp:245] Train net output #15: total_accuracy = 0.25 | |
I0331 15:41:04.163117 30833 solver.cpp:245] Train net output #16: total_confidence = 0.138594 | |
I0331 15:41:04.163128 30833 sgd_solver.cpp:106] Iteration 22500, lr = 0.05 | |
I0331 15:43:12.462443 30833 solver.cpp:229] Iteration 23000, loss = 3.88875 | |
I0331 15:43:12.462602 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.23913 | |
I0331 15:43:12.462641 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.789773 | |
I0331 15:43:12.462666 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.413043 | |
I0331 15:43:12.462689 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.7604 (* 0.3 = 0.828121 loss) | |
I0331 15:43:12.462704 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.791546 (* 0.3 = 0.237464 loss) | |
I0331 15:43:12.462718 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.26087 | |
I0331 15:43:12.462729 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.789773 | |
I0331 15:43:12.462741 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.521739 | |
I0331 15:43:12.462754 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.76687 (* 0.3 = 0.830062 loss) | |
I0331 15:43:12.462769 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.815582 (* 0.3 = 0.244675 loss) | |
I0331 15:43:12.462780 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.521739 | |
I0331 15:43:12.462792 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.869318 | |
I0331 15:43:12.462803 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.73913 | |
I0331 15:43:12.462817 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.61165 (* 1 = 1.61165 loss) | |
I0331 15:43:12.462831 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.461034 (* 1 = 0.461034 loss) | |
I0331 15:43:12.462842 30833 solver.cpp:245] Train net output #15: total_accuracy = 0.125 | |
I0331 15:43:12.462855 30833 solver.cpp:245] Train net output #16: total_confidence = 0.122027 | |
I0331 15:43:12.462867 30833 sgd_solver.cpp:106] Iteration 23000, lr = 0.05 | |
I0331 15:45:21.383771 30833 solver.cpp:229] Iteration 23500, loss = 3.82012 | |
I0331 15:45:21.384054 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.28 | |
I0331 15:45:21.384075 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.772727 | |
I0331 15:45:21.384090 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.4 | |
I0331 15:45:21.384115 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.52856 (* 0.3 = 0.758568 loss) | |
I0331 15:45:21.384153 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.784367 (* 0.3 = 0.23531 loss) | |
I0331 15:45:21.384169 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.34 | |
I0331 15:45:21.384181 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.806818 | |
I0331 15:45:21.384193 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.46 | |
I0331 15:45:21.384215 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.59785 (* 0.3 = 0.779355 loss) | |
I0331 15:45:21.384228 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.765982 (* 0.3 = 0.229795 loss) | |
I0331 15:45:21.384240 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.46 | |
I0331 15:45:21.384253 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.829545 | |
I0331 15:45:21.384263 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.74 | |
I0331 15:45:21.384277 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.74627 (* 1 = 1.74627 loss) | |
I0331 15:45:21.384290 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.573439 (* 1 = 0.573439 loss) | |
I0331 15:45:21.384302 30833 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 15:45:21.384315 30833 solver.cpp:245] Train net output #16: total_confidence = 0.066935 | |
I0331 15:45:21.384325 30833 sgd_solver.cpp:106] Iteration 23500, lr = 0.05 | |
I0331 15:47:29.720731 30833 solver.cpp:229] Iteration 24000, loss = 3.85473 | |
I0331 15:47:29.720876 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.326531 | |
I0331 15:47:29.720896 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.795455 | |
I0331 15:47:29.720916 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.571429 | |
I0331 15:47:29.720932 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.24049 (* 0.3 = 0.672147 loss) | |
I0331 15:47:29.720952 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.691848 (* 0.3 = 0.207554 loss) | |
I0331 15:47:29.720973 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.367347 | |
I0331 15:47:29.720986 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.8125 | |
I0331 15:47:29.720999 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.632653 | |
I0331 15:47:29.721012 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.90126 (* 0.3 = 0.570377 loss) | |
I0331 15:47:29.721026 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.571497 (* 0.3 = 0.171449 loss) | |
I0331 15:47:29.721038 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.653061 | |
I0331 15:47:29.721050 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.897727 | |
I0331 15:47:29.721062 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.857143 | |
I0331 15:47:29.721076 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.08437 (* 1 = 1.08437 loss) | |
I0331 15:47:29.721093 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.321856 (* 1 = 0.321856 loss) | |
I0331 15:47:29.721104 30833 solver.cpp:245] Train net output #15: total_accuracy = 0.25 | |
I0331 15:47:29.721117 30833 solver.cpp:245] Train net output #16: total_confidence = 0.155403 | |
I0331 15:47:29.721129 30833 sgd_solver.cpp:106] Iteration 24000, lr = 0.05 | |
I0331 15:49:38.177618 30833 solver.cpp:229] Iteration 24500, loss = 3.89224 | |
I0331 15:49:38.177736 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.267857 | |
I0331 15:49:38.177763 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.767045 | |
I0331 15:49:38.177777 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.482143 | |
I0331 15:49:38.177793 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.65027 (* 0.3 = 0.795081 loss) | |
I0331 15:49:38.177808 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.861002 (* 0.3 = 0.258301 loss) | |
I0331 15:49:38.177820 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.267857 | |
I0331 15:49:38.177832 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.761364 | |
I0331 15:49:38.177844 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.589286 | |
I0331 15:49:38.177857 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.60245 (* 0.3 = 0.780736 loss) | |
I0331 15:49:38.177871 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.845886 (* 0.3 = 0.253766 loss) | |
I0331 15:49:38.177883 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.482143 | |
I0331 15:49:38.177896 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.835227 | |
I0331 15:49:38.177907 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.785714 | |
I0331 15:49:38.177920 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.6155 (* 1 = 1.6155 loss) | |
I0331 15:49:38.177934 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.538254 (* 1 = 0.538254 loss) | |
I0331 15:49:38.177947 30833 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 15:49:38.177958 30833 solver.cpp:245] Train net output #16: total_confidence = 0.0526562 | |
I0331 15:49:38.177969 30833 sgd_solver.cpp:106] Iteration 24500, lr = 0.05 | |
I0331 15:51:46.481861 30833 solver.cpp:338] Iteration 25000, Testing net (#0) | |
I0331 15:52:16.220532 30833 solver.cpp:393] Test loss: 3.6671 | |
I0331 15:52:16.220577 30833 solver.cpp:406] Test net output #0: loss1/accuracy = 0.300315 | |
I0331 15:52:16.220593 30833 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.823864 | |
I0331 15:52:16.220605 30833 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.579975 | |
I0331 15:52:16.220620 30833 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 2.46529 (* 0.3 = 0.739587 loss) | |
I0331 15:52:16.220635 30833 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.635226 (* 0.3 = 0.190568 loss) | |
I0331 15:52:16.220648 30833 solver.cpp:406] Test net output #5: loss2/accuracy = 0.470451 | |
I0331 15:52:16.220659 30833 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.860821 | |
I0331 15:52:16.220670 30833 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.732638 | |
I0331 15:52:16.220685 30833 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.87896 (* 0.3 = 0.563687 loss) | |
I0331 15:52:16.220697 30833 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.50128 (* 0.3 = 0.150384 loss) | |
I0331 15:52:16.220710 30833 solver.cpp:406] Test net output #10: loss3/accuracy = 0.600488 | |
I0331 15:52:16.220721 30833 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.899184 | |
I0331 15:52:16.220731 30833 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.787468 | |
I0331 15:52:16.220746 30833 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 1.61045 (* 1 = 1.61045 loss) | |
I0331 15:52:16.220758 30833 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.412429 (* 1 = 0.412429 loss) | |
I0331 15:52:16.220770 30833 solver.cpp:406] Test net output #15: total_accuracy = 0.187 | |
I0331 15:52:16.220782 30833 solver.cpp:406] Test net output #16: total_confidence = 0.193059 | |
I0331 15:52:16.371376 30833 solver.cpp:229] Iteration 25000, loss = 3.80848 | |
I0331 15:52:16.371422 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.204082 | |
I0331 15:52:16.371438 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.772727 | |
I0331 15:52:16.371450 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.428571 | |
I0331 15:52:16.371465 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.71733 (* 0.3 = 0.815198 loss) | |
I0331 15:52:16.371479 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.797956 (* 0.3 = 0.239387 loss) | |
I0331 15:52:16.371491 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.285714 | |
I0331 15:52:16.371505 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.778409 | |
I0331 15:52:16.371516 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.469388 | |
I0331 15:52:16.371529 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.75147 (* 0.3 = 0.825442 loss) | |
I0331 15:52:16.371543 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.839858 (* 0.3 = 0.251958 loss) | |
I0331 15:52:16.371556 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.469388 | |
I0331 15:52:16.371567 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.835227 | |
I0331 15:52:16.371578 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.55102 | |
I0331 15:52:16.371592 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.1445 (* 1 = 2.1445 loss) | |
I0331 15:52:16.371609 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.647818 (* 1 = 0.647818 loss) | |
I0331 15:52:16.371621 30833 solver.cpp:245] Train net output #15: total_accuracy = 0.375 | |
I0331 15:52:16.371634 30833 solver.cpp:245] Train net output #16: total_confidence = 0.142649 | |
I0331 15:52:16.371645 30833 sgd_solver.cpp:106] Iteration 25000, lr = 0.05 | |
I0331 15:54:25.434267 30833 solver.cpp:229] Iteration 25500, loss = 3.79104 | |
I0331 15:54:25.434455 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.326087 | |
I0331 15:54:25.434486 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.801136 | |
I0331 15:54:25.434499 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.543478 | |
I0331 15:54:25.434516 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.03708 (* 0.3 = 0.611124 loss) | |
I0331 15:54:25.434533 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.620471 (* 0.3 = 0.186141 loss) | |
I0331 15:54:25.434561 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.391304 | |
I0331 15:54:25.434574 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.829545 | |
I0331 15:54:25.434587 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.673913 | |
I0331 15:54:25.434600 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.8344 (* 0.3 = 0.550321 loss) | |
I0331 15:54:25.434614 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.517046 (* 0.3 = 0.155114 loss) | |
I0331 15:54:25.434626 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.478261 | |
I0331 15:54:25.434639 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.857955 | |
I0331 15:54:25.434651 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.782609 | |
I0331 15:54:25.434665 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.57455 (* 1 = 1.57455 loss) | |
I0331 15:54:25.434679 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.462591 (* 1 = 0.462591 loss) | |
I0331 15:54:25.434690 30833 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 15:54:25.434702 30833 solver.cpp:245] Train net output #16: total_confidence = 0.144367 | |
I0331 15:54:25.434715 30833 sgd_solver.cpp:106] Iteration 25500, lr = 0.05 | |
I0331 15:56:33.860862 30833 solver.cpp:229] Iteration 26000, loss = 3.70207 | |
I0331 15:56:33.861094 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.272727 | |
I0331 15:56:33.861114 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.772727 | |
I0331 15:56:33.861125 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.431818 | |
I0331 15:56:33.861141 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.67567 (* 0.3 = 0.802701 loss) | |
I0331 15:56:33.861155 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.811129 (* 0.3 = 0.243339 loss) | |
I0331 15:56:33.861168 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.431818 | |
I0331 15:56:33.861179 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.823864 | |
I0331 15:56:33.861191 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.636364 | |
I0331 15:56:33.861204 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.18754 (* 0.3 = 0.656262 loss) | |
I0331 15:56:33.861218 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.678535 (* 0.3 = 0.20356 loss) | |
I0331 15:56:33.861230 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.545455 | |
I0331 15:56:33.861243 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.869318 | |
I0331 15:56:33.861253 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.681818 | |
I0331 15:56:33.861268 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.56798 (* 1 = 1.56798 loss) | |
I0331 15:56:33.861280 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.447297 (* 1 = 0.447297 loss) | |
I0331 15:56:33.861292 30833 solver.cpp:245] Train net output #15: total_accuracy = 0.25 | |
I0331 15:56:33.861304 30833 solver.cpp:245] Train net output #16: total_confidence = 0.165023 | |
I0331 15:56:33.861315 30833 sgd_solver.cpp:106] Iteration 26000, lr = 0.05 | |
I0331 15:58:42.228175 30833 solver.cpp:229] Iteration 26500, loss = 3.75081 | |
I0331 15:58:42.228332 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.255319 | |
I0331 15:58:42.228359 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.789773 | |
I0331 15:58:42.228373 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.617021 | |
I0331 15:58:42.228387 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.22227 (* 0.3 = 0.666682 loss) | |
I0331 15:58:42.228412 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.655958 (* 0.3 = 0.196788 loss) | |
I0331 15:58:42.228430 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.319149 | |
I0331 15:58:42.228442 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.801136 | |
I0331 15:58:42.228454 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.702128 | |
I0331 15:58:42.228467 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.8314 (* 0.3 = 0.549421 loss) | |
I0331 15:58:42.228482 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.573278 (* 0.3 = 0.171984 loss) | |
I0331 15:58:42.228493 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.659574 | |
I0331 15:58:42.228505 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.897727 | |
I0331 15:58:42.228516 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.87234 | |
I0331 15:58:42.228530 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.11695 (* 1 = 1.11695 loss) | |
I0331 15:58:42.228543 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.360001 (* 1 = 0.360001 loss) | |
I0331 15:58:42.228555 30833 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 15:58:42.228566 30833 solver.cpp:245] Train net output #16: total_confidence = 0.111043 | |
I0331 15:58:42.228579 30833 sgd_solver.cpp:106] Iteration 26500, lr = 0.05 | |
I0331 16:00:50.708986 30833 solver.cpp:229] Iteration 27000, loss = 3.71757 | |
I0331 16:00:50.709108 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.2 | |
I0331 16:00:50.709127 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.789773 | |
I0331 16:00:50.709141 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.425 | |
I0331 16:00:50.709156 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.63826 (* 0.3 = 0.791478 loss) | |
I0331 16:00:50.709170 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.725623 (* 0.3 = 0.217687 loss) | |
I0331 16:00:50.709182 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.3 | |
I0331 16:00:50.709194 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.8125 | |
I0331 16:00:50.709206 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.625 | |
I0331 16:00:50.709219 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.24311 (* 0.3 = 0.672932 loss) | |
I0331 16:00:50.709233 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.620121 (* 0.3 = 0.186036 loss) | |
I0331 16:00:50.709245 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.65 | |
I0331 16:00:50.709256 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.897727 | |
I0331 16:00:50.709269 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.7 | |
I0331 16:00:50.709281 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.36242 (* 1 = 1.36242 loss) | |
I0331 16:00:50.709295 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.390177 (* 1 = 0.390177 loss) | |
I0331 16:00:50.709307 30833 solver.cpp:245] Train net output #15: total_accuracy = 0.125 | |
I0331 16:00:50.709318 30833 solver.cpp:245] Train net output #16: total_confidence = 0.101959 | |
I0331 16:00:50.709331 30833 sgd_solver.cpp:106] Iteration 27000, lr = 0.05 | |
I0331 16:02:59.145120 30833 solver.cpp:229] Iteration 27500, loss = 3.70181 | |
I0331 16:02:59.145265 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.288889 | |
I0331 16:02:59.145284 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.801136 | |
I0331 16:02:59.145298 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.488889 | |
I0331 16:02:59.145313 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.87723 (* 0.3 = 0.863169 loss) | |
I0331 16:02:59.145328 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.807726 (* 0.3 = 0.242318 loss) | |
I0331 16:02:59.145347 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.4 | |
I0331 16:02:59.145359 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.8125 | |
I0331 16:02:59.145371 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.644444 | |
I0331 16:02:59.145385 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.29594 (* 0.3 = 0.688782 loss) | |
I0331 16:02:59.145406 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.689587 (* 0.3 = 0.206876 loss) | |
I0331 16:02:59.145426 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.688889 | |
I0331 16:02:59.145439 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.903409 | |
I0331 16:02:59.145452 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.777778 | |
I0331 16:02:59.145465 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.33471 (* 1 = 1.33471 loss) | |
I0331 16:02:59.145480 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.412062 (* 1 = 0.412062 loss) | |
I0331 16:02:59.145493 30833 solver.cpp:245] Train net output #15: total_accuracy = 0.25 | |
I0331 16:02:59.145504 30833 solver.cpp:245] Train net output #16: total_confidence = 0.130441 | |
I0331 16:02:59.145516 30833 sgd_solver.cpp:106] Iteration 27500, lr = 0.05 | |
I0331 16:05:07.450763 30833 solver.cpp:229] Iteration 28000, loss = 3.76232 | |
I0331 16:05:07.450891 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.285714 | |
I0331 16:05:07.450911 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.801136 | |
I0331 16:05:07.450922 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.530612 | |
I0331 16:05:07.450938 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.95022 (* 0.3 = 0.885065 loss) | |
I0331 16:05:07.450953 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.870016 (* 0.3 = 0.261005 loss) | |
I0331 16:05:07.450965 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.387755 | |
I0331 16:05:07.450978 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.823864 | |
I0331 16:05:07.450990 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.612245 | |
I0331 16:05:07.451004 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.52162 (* 0.3 = 0.756487 loss) | |
I0331 16:05:07.451017 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.74434 (* 0.3 = 0.223302 loss) | |
I0331 16:05:07.451030 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.571429 | |
I0331 16:05:07.451041 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.857955 | |
I0331 16:05:07.451052 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.714286 | |
I0331 16:05:07.451066 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.73004 (* 1 = 1.73004 loss) | |
I0331 16:05:07.451105 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.545703 (* 1 = 0.545703 loss) | |
I0331 16:05:07.451133 30833 solver.cpp:245] Train net output #15: total_accuracy = 0.125 | |
I0331 16:05:07.451165 30833 solver.cpp:245] Train net output #16: total_confidence = 0.0850027 | |
I0331 16:05:07.451187 30833 sgd_solver.cpp:106] Iteration 28000, lr = 0.05 | |
I0331 16:07:15.901681 30833 solver.cpp:229] Iteration 28500, loss = 3.70106 | |
I0331 16:07:15.901825 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.27027 | |
I0331 16:07:15.901845 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.778409 | |
I0331 16:07:15.901865 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.540541 | |
I0331 16:07:15.901881 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.37819 (* 0.3 = 0.713457 loss) | |
I0331 16:07:15.901896 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.744204 (* 0.3 = 0.223261 loss) | |
I0331 16:07:15.901909 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.351351 | |
I0331 16:07:15.901921 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.795455 | |
I0331 16:07:15.901933 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.648649 | |
I0331 16:07:15.901947 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.13 (* 0.3 = 0.638999 loss) | |
I0331 16:07:15.901960 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.689803 (* 0.3 = 0.206941 loss) | |
I0331 16:07:15.901973 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.702703 | |
I0331 16:07:15.901983 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.909091 | |
I0331 16:07:15.901995 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.810811 | |
I0331 16:07:15.902009 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.04427 (* 1 = 1.04427 loss) | |
I0331 16:07:15.902022 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.347893 (* 1 = 0.347893 loss) | |
I0331 16:07:15.902034 30833 solver.cpp:245] Train net output #15: total_accuracy = 0.25 | |
I0331 16:07:15.902045 30833 solver.cpp:245] Train net output #16: total_confidence = 0.251065 | |
I0331 16:07:15.902057 30833 sgd_solver.cpp:106] Iteration 28500, lr = 0.05 | |
I0331 16:09:24.288419 30833 solver.cpp:229] Iteration 29000, loss = 3.68289 | |
I0331 16:09:24.288533 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.269231 | |
I0331 16:09:24.288553 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.778409 | |
I0331 16:09:24.288565 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.461538 | |
I0331 16:09:24.288581 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.59602 (* 0.3 = 0.778806 loss) | |
I0331 16:09:24.288595 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.797424 (* 0.3 = 0.239227 loss) | |
I0331 16:09:24.288609 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.288462 | |
I0331 16:09:24.288620 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.784091 | |
I0331 16:09:24.288631 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.538462 | |
I0331 16:09:24.288645 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.42306 (* 0.3 = 0.726919 loss) | |
I0331 16:09:24.288660 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.746727 (* 0.3 = 0.224018 loss) | |
I0331 16:09:24.288671 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.480769 | |
I0331 16:09:24.288682 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.835227 | |
I0331 16:09:24.288693 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.711538 | |
I0331 16:09:24.288707 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.76042 (* 1 = 1.76042 loss) | |
I0331 16:09:24.288720 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.560407 (* 1 = 0.560407 loss) | |
I0331 16:09:24.288733 30833 solver.cpp:245] Train net output #15: total_accuracy = 0.125 | |
I0331 16:09:24.288744 30833 solver.cpp:245] Train net output #16: total_confidence = 0.0924889 | |
I0331 16:09:24.288756 30833 sgd_solver.cpp:106] Iteration 29000, lr = 0.05 | |
I0331 16:11:33.050727 30833 solver.cpp:229] Iteration 29500, loss = 3.62499 | |
I0331 16:11:33.050876 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.276596 | |
I0331 16:11:33.050904 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.795455 | |
I0331 16:11:33.050916 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.510638 | |
I0331 16:11:33.050931 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.39411 (* 0.3 = 0.718235 loss) | |
I0331 16:11:33.050956 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.704153 (* 0.3 = 0.211246 loss) | |
I0331 16:11:33.050967 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.489362 | |
I0331 16:11:33.050979 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.863636 | |
I0331 16:11:33.050992 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.680851 | |
I0331 16:11:33.051004 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.90896 (* 0.3 = 0.572688 loss) | |
I0331 16:11:33.051018 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.546237 (* 0.3 = 0.163871 loss) | |
I0331 16:11:33.051030 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.638298 | |
I0331 16:11:33.051041 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.869318 | |
I0331 16:11:33.051054 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.744681 | |
I0331 16:11:33.051066 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.35217 (* 1 = 1.35217 loss) | |
I0331 16:11:33.051080 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.471177 (* 1 = 0.471177 loss) | |
I0331 16:11:33.051110 30833 solver.cpp:245] Train net output #15: total_accuracy = 0.125 | |
I0331 16:11:33.051121 30833 solver.cpp:245] Train net output #16: total_confidence = 0.134925 | |
I0331 16:11:33.051133 30833 sgd_solver.cpp:106] Iteration 29500, lr = 0.05 | |
I0331 16:13:41.771999 30833 solver.cpp:338] Iteration 30000, Testing net (#0) | |
I0331 16:14:11.532569 30833 solver.cpp:393] Test loss: 3.21744 | |
I0331 16:14:11.532618 30833 solver.cpp:406] Test net output #0: loss1/accuracy = 0.380815 | |
I0331 16:14:11.532634 30833 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.841139 | |
I0331 16:14:11.532647 30833 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.661215 | |
I0331 16:14:11.532662 30833 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 2.1839 (* 0.3 = 0.655169 loss) | |
I0331 16:14:11.532677 30833 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.567265 (* 0.3 = 0.170179 loss) | |
I0331 16:14:11.532690 30833 solver.cpp:406] Test net output #5: loss2/accuracy = 0.485388 | |
I0331 16:14:11.532701 30833 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.871867 | |
I0331 16:14:11.532712 30833 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.776283 | |
I0331 16:14:11.532726 30833 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.7742 (* 0.3 = 0.532259 loss) | |
I0331 16:14:11.532739 30833 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.447147 (* 0.3 = 0.134144 loss) | |
I0331 16:14:11.532750 30833 solver.cpp:406] Test net output #10: loss3/accuracy = 0.649869 | |
I0331 16:14:11.532763 30833 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.91182 | |
I0331 16:14:11.532773 30833 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.834636 | |
I0331 16:14:11.532786 30833 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 1.37575 (* 1 = 1.37575 loss) | |
I0331 16:14:11.532799 30833 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.349943 (* 1 = 0.349943 loss) | |
I0331 16:14:11.532811 30833 solver.cpp:406] Test net output #15: total_accuracy = 0.218 | |
I0331 16:14:11.532822 30833 solver.cpp:406] Test net output #16: total_confidence = 0.302196 | |
I0331 16:14:11.683243 30833 solver.cpp:229] Iteration 30000, loss = 3.68079 | |
I0331 16:14:11.683284 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.1875 | |
I0331 16:14:11.683300 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.767045 | |
I0331 16:14:11.683312 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.479167 | |
I0331 16:14:11.683327 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.61592 (* 0.3 = 0.784776 loss) | |
I0331 16:14:11.683342 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.782977 (* 0.3 = 0.234893 loss) | |
I0331 16:14:11.683356 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.166667 | |
I0331 16:14:11.683367 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.767045 | |
I0331 16:14:11.683379 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.479167 | |
I0331 16:14:11.683393 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.54401 (* 0.3 = 0.763202 loss) | |
I0331 16:14:11.683406 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.728053 (* 0.3 = 0.218416 loss) | |
I0331 16:14:11.683418 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.458333 | |
I0331 16:14:11.683430 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.840909 | |
I0331 16:14:11.683441 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.666667 | |
I0331 16:14:11.683455 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.90671 (* 1 = 1.90671 loss) | |
I0331 16:14:11.683468 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.557145 (* 1 = 0.557145 loss) | |
I0331 16:14:11.683480 30833 solver.cpp:245] Train net output #15: total_accuracy = 0.125 | |
I0331 16:14:11.683492 30833 solver.cpp:245] Train net output #16: total_confidence = 0.0364392 | |
I0331 16:14:11.683504 30833 sgd_solver.cpp:106] Iteration 30000, lr = 0.05 | |
I0331 16:16:19.920083 30833 solver.cpp:229] Iteration 30500, loss = 3.58471 | |
I0331 16:16:19.920402 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.288889 | |
I0331 16:16:19.920421 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.818182 | |
I0331 16:16:19.920434 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.488889 | |
I0331 16:16:19.920450 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.46769 (* 0.3 = 0.740306 loss) | |
I0331 16:16:19.920465 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.663631 (* 0.3 = 0.199089 loss) | |
I0331 16:16:19.920477 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.333333 | |
I0331 16:16:19.920490 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.818182 | |
I0331 16:16:19.920501 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.577778 | |
I0331 16:16:19.920514 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.26749 (* 0.3 = 0.680247 loss) | |
I0331 16:16:19.920528 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.641335 (* 0.3 = 0.1924 loss) | |
I0331 16:16:19.920542 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.533333 | |
I0331 16:16:19.920552 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.863636 | |
I0331 16:16:19.920564 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.822222 | |
I0331 16:16:19.920578 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.30236 (* 1 = 1.30236 loss) | |
I0331 16:16:19.920591 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.370069 (* 1 = 0.370069 loss) | |
I0331 16:16:19.920603 30833 solver.cpp:245] Train net output #15: total_accuracy = 0.125 | |
I0331 16:16:19.920614 30833 solver.cpp:245] Train net output #16: total_confidence = 0.0922499 | |
I0331 16:16:19.920626 30833 sgd_solver.cpp:106] Iteration 30500, lr = 0.05 | |
I0331 16:18:28.355360 30833 solver.cpp:229] Iteration 31000, loss = 3.64064 | |
I0331 16:18:28.355505 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.358974 | |
I0331 16:18:28.355525 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.835227 | |
I0331 16:18:28.355545 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.564103 | |
I0331 16:18:28.355561 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.32839 (* 0.3 = 0.698517 loss) | |
I0331 16:18:28.355587 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.633988 (* 0.3 = 0.190196 loss) | |
I0331 16:18:28.355602 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.307692 | |
I0331 16:18:28.355614 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.823864 | |
I0331 16:18:28.355626 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.512821 | |
I0331 16:18:28.355640 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.1961 (* 0.3 = 0.658829 loss) | |
I0331 16:18:28.355654 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.613052 (* 0.3 = 0.183915 loss) | |
I0331 16:18:28.355666 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.487179 | |
I0331 16:18:28.355679 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.875 | |
I0331 16:18:28.355690 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.692308 | |
I0331 16:18:28.355703 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.5043 (* 1 = 1.5043 loss) | |
I0331 16:18:28.355717 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.391891 (* 1 = 0.391891 loss) | |
I0331 16:18:28.355728 30833 solver.cpp:245] Train net output #15: total_accuracy = 0.125 | |
I0331 16:18:28.355741 30833 solver.cpp:245] Train net output #16: total_confidence = 0.159545 | |
I0331 16:18:28.355752 30833 sgd_solver.cpp:106] Iteration 31000, lr = 0.05 | |
I0331 16:20:36.468720 30833 solver.cpp:229] Iteration 31500, loss = 3.62638 | |
I0331 16:20:36.468852 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.282609 | |
I0331 16:20:36.468880 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.789773 | |
I0331 16:20:36.468902 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.586957 | |
I0331 16:20:36.468940 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.36468 (* 0.3 = 0.709403 loss) | |
I0331 16:20:36.468971 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.70644 (* 0.3 = 0.211932 loss) | |
I0331 16:20:36.468986 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.391304 | |
I0331 16:20:36.468998 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.8125 | |
I0331 16:20:36.469009 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.76087 | |
I0331 16:20:36.469023 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.978 (* 0.3 = 0.5934 loss) | |
I0331 16:20:36.469038 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.628851 (* 0.3 = 0.188655 loss) | |
I0331 16:20:36.469051 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.630435 | |
I0331 16:20:36.469063 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.886364 | |
I0331 16:20:36.469074 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.73913 | |
I0331 16:20:36.469090 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.38627 (* 1 = 1.38627 loss) | |
I0331 16:20:36.469105 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.433005 (* 1 = 0.433005 loss) | |
I0331 16:20:36.469116 30833 solver.cpp:245] Train net output #15: total_accuracy = 0.25 | |
I0331 16:20:36.469128 30833 solver.cpp:245] Train net output #16: total_confidence = 0.144842 | |
I0331 16:20:36.469140 30833 sgd_solver.cpp:106] Iteration 31500, lr = 0.05 | |
I0331 16:22:44.924576 30833 solver.cpp:229] Iteration 32000, loss = 3.60735 | |
I0331 16:22:44.924718 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.452381 | |
I0331 16:22:44.924739 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.840909 | |
I0331 16:22:44.924759 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.714286 | |
I0331 16:22:44.924775 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.07783 (* 0.3 = 0.623348 loss) | |
I0331 16:22:44.924790 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.582335 (* 0.3 = 0.174701 loss) | |
I0331 16:22:44.924803 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.452381 | |
I0331 16:22:44.924815 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.852273 | |
I0331 16:22:44.924826 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.785714 | |
I0331 16:22:44.924840 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.92358 (* 0.3 = 0.577074 loss) | |
I0331 16:22:44.924854 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.522393 (* 0.3 = 0.156718 loss) | |
I0331 16:22:44.924866 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.761905 | |
I0331 16:22:44.924878 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.926136 | |
I0331 16:22:44.924890 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.857143 | |
I0331 16:22:44.924903 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.873023 (* 1 = 0.873023 loss) | |
I0331 16:22:44.924917 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.251158 (* 1 = 0.251158 loss) | |
I0331 16:22:44.924929 30833 solver.cpp:245] Train net output #15: total_accuracy = 0.5 | |
I0331 16:22:44.924940 30833 solver.cpp:245] Train net output #16: total_confidence = 0.313801 | |
I0331 16:22:44.924952 30833 sgd_solver.cpp:106] Iteration 32000, lr = 0.05 | |
I0331 16:24:53.261831 30833 solver.cpp:229] Iteration 32500, loss = 3.55733 | |
I0331 16:24:53.261946 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.235294 | |
I0331 16:24:53.261966 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.772727 | |
I0331 16:24:53.261978 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.529412 | |
I0331 16:24:53.261994 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.73332 (* 0.3 = 0.819997 loss) | |
I0331 16:24:53.262009 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.830469 (* 0.3 = 0.249141 loss) | |
I0331 16:24:53.262022 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.352941 | |
I0331 16:24:53.262033 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.8125 | |
I0331 16:24:53.262045 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.588235 | |
I0331 16:24:53.262058 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.46311 (* 0.3 = 0.738934 loss) | |
I0331 16:24:53.262073 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.7315 (* 0.3 = 0.21945 loss) | |
I0331 16:24:53.262087 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.627451 | |
I0331 16:24:53.262099 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.869318 | |
I0331 16:24:53.262111 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.862745 | |
I0331 16:24:53.262125 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.51577 (* 1 = 1.51577 loss) | |
I0331 16:24:53.262140 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.486409 (* 1 = 0.486409 loss) | |
I0331 16:24:53.262151 30833 solver.cpp:245] Train net output #15: total_accuracy = 0.125 | |
I0331 16:24:53.262162 30833 solver.cpp:245] Train net output #16: total_confidence = 0.0643552 | |
I0331 16:24:53.262174 30833 sgd_solver.cpp:106] Iteration 32500, lr = 0.05 | |
I0331 16:27:01.625883 30833 solver.cpp:229] Iteration 33000, loss = 3.50032 | |
I0331 16:27:01.626036 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.363636 | |
I0331 16:27:01.626057 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.823864 | |
I0331 16:27:01.626078 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.477273 | |
I0331 16:27:01.626096 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.30524 (* 0.3 = 0.691571 loss) | |
I0331 16:27:01.626114 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.667098 (* 0.3 = 0.200129 loss) | |
I0331 16:27:01.626128 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.340909 | |
I0331 16:27:01.626142 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.818182 | |
I0331 16:27:01.626152 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.659091 | |
I0331 16:27:01.626166 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.0353 (* 0.3 = 0.610589 loss) | |
I0331 16:27:01.626180 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.559049 (* 0.3 = 0.167715 loss) | |
I0331 16:27:01.626193 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.477273 | |
I0331 16:27:01.626204 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.857955 | |
I0331 16:27:01.626215 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.840909 | |
I0331 16:27:01.626230 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.47184 (* 1 = 1.47184 loss) | |
I0331 16:27:01.626243 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.405841 (* 1 = 0.405841 loss) | |
I0331 16:27:01.626262 30833 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 16:27:01.626274 30833 solver.cpp:245] Train net output #16: total_confidence = 0.0664544 | |
I0331 16:27:01.626286 30833 sgd_solver.cpp:106] Iteration 33000, lr = 0.05 | |
I0331 16:29:10.065448 30833 solver.cpp:229] Iteration 33500, loss = 3.57174 | |
I0331 16:29:10.065558 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.25 | |
I0331 16:29:10.065577 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.795455 | |
I0331 16:29:10.065590 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.477273 | |
I0331 16:29:10.065606 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.52785 (* 0.3 = 0.758356 loss) | |
I0331 16:29:10.065621 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.699578 (* 0.3 = 0.209874 loss) | |
I0331 16:29:10.065634 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.363636 | |
I0331 16:29:10.065647 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.818182 | |
I0331 16:29:10.065659 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.636364 | |
I0331 16:29:10.065672 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.26156 (* 0.3 = 0.678468 loss) | |
I0331 16:29:10.065686 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.640423 (* 0.3 = 0.192127 loss) | |
I0331 16:29:10.065698 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.431818 | |
I0331 16:29:10.065709 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.846591 | |
I0331 16:29:10.065721 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.659091 | |
I0331 16:29:10.065734 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.90563 (* 1 = 1.90563 loss) | |
I0331 16:29:10.065748 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.525037 (* 1 = 0.525037 loss) | |
I0331 16:29:10.065759 30833 solver.cpp:245] Train net output #15: total_accuracy = 0.125 | |
I0331 16:29:10.065771 30833 solver.cpp:245] Train net output #16: total_confidence = 0.0561105 | |
I0331 16:29:10.065783 30833 sgd_solver.cpp:106] Iteration 33500, lr = 0.05 | |
I0331 16:31:18.417491 30833 solver.cpp:229] Iteration 34000, loss = 3.48928 | |
I0331 16:31:18.417639 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.325 | |
I0331 16:31:18.417659 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.784091 | |
I0331 16:31:18.417678 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.475 | |
I0331 16:31:18.417695 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.31951 (* 0.3 = 0.695854 loss) | |
I0331 16:31:18.417709 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.755554 (* 0.3 = 0.226666 loss) | |
I0331 16:31:18.417721 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.425 | |
I0331 16:31:18.417733 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.806818 | |
I0331 16:31:18.417744 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.7 | |
I0331 16:31:18.417758 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.98126 (* 0.3 = 0.594379 loss) | |
I0331 16:31:18.417773 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.641614 (* 0.3 = 0.192484 loss) | |
I0331 16:31:18.417784 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.725 | |
I0331 16:31:18.417795 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.914773 | |
I0331 16:31:18.417807 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.875 | |
I0331 16:31:18.417820 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.293 (* 1 = 1.293 loss) | |
I0331 16:31:18.417834 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.356172 (* 1 = 0.356172 loss) | |
I0331 16:31:18.417845 30833 solver.cpp:245] Train net output #15: total_accuracy = 0.25 | |
I0331 16:31:18.417857 30833 solver.cpp:245] Train net output #16: total_confidence = 0.285068 | |
I0331 16:31:18.417868 30833 sgd_solver.cpp:106] Iteration 34000, lr = 0.05 | |
I0331 16:33:26.869297 30833 solver.cpp:229] Iteration 34500, loss = 3.52718 | |
I0331 16:33:26.869401 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.265306 | |
I0331 16:33:26.869421 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.778409 | |
I0331 16:33:26.869432 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.469388 | |
I0331 16:33:26.869448 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.73983 (* 0.3 = 0.82195 loss) | |
I0331 16:33:26.869463 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.830486 (* 0.3 = 0.249146 loss) | |
I0331 16:33:26.869475 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.469388 | |
I0331 16:33:26.869488 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.840909 | |
I0331 16:33:26.869499 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.632653 | |
I0331 16:33:26.869513 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.09497 (* 0.3 = 0.62849 loss) | |
I0331 16:33:26.869527 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.634349 (* 0.3 = 0.190305 loss) | |
I0331 16:33:26.869539 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.44898 | |
I0331 16:33:26.869559 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.840909 | |
I0331 16:33:26.869570 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.653061 | |
I0331 16:33:26.869587 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.91852 (* 1 = 1.91852 loss) | |
I0331 16:33:26.869612 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.557778 (* 1 = 0.557778 loss) | |
I0331 16:33:26.869626 30833 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 16:33:26.869637 30833 solver.cpp:245] Train net output #16: total_confidence = 0.191329 | |
I0331 16:33:26.869649 30833 sgd_solver.cpp:106] Iteration 34500, lr = 0.05 | |
I0331 16:35:36.074234 30833 solver.cpp:338] Iteration 35000, Testing net (#0) | |
I0331 16:36:05.617636 30833 solver.cpp:393] Test loss: 2.98348 | |
I0331 16:36:05.617694 30833 solver.cpp:406] Test net output #0: loss1/accuracy = 0.407317 | |
I0331 16:36:05.617710 30833 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.838412 | |
I0331 16:36:05.617722 30833 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.673205 | |
I0331 16:36:05.617738 30833 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 2.07123 (* 0.3 = 0.62137 loss) | |
I0331 16:36:05.617753 30833 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.578037 (* 0.3 = 0.173411 loss) | |
I0331 16:36:05.617764 30833 solver.cpp:406] Test net output #5: loss2/accuracy = 0.554664 | |
I0331 16:36:05.617776 30833 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.880821 | |
I0331 16:36:05.617787 30833 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.800434 | |
I0331 16:36:05.617800 30833 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.56205 (* 0.3 = 0.468616 loss) | |
I0331 16:36:05.617813 30833 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.42163 (* 0.3 = 0.126489 loss) | |
I0331 16:36:05.617825 30833 solver.cpp:406] Test net output #10: loss3/accuracy = 0.694184 | |
I0331 16:36:05.617837 30833 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.919683 | |
I0331 16:36:05.617848 30833 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.846168 | |
I0331 16:36:05.617861 30833 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 1.26305 (* 1 = 1.26305 loss) | |
I0331 16:36:05.617874 30833 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.330542 (* 1 = 0.330542 loss) | |
I0331 16:36:05.617887 30833 solver.cpp:406] Test net output #15: total_accuracy = 0.302 | |
I0331 16:36:05.617897 30833 solver.cpp:406] Test net output #16: total_confidence = 0.319886 | |
I0331 16:36:05.768681 30833 solver.cpp:229] Iteration 35000, loss = 3.53365 | |
I0331 16:36:05.768721 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.285714 | |
I0331 16:36:05.768738 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.806818 | |
I0331 16:36:05.768749 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.357143 | |
I0331 16:36:05.768764 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.84044 (* 0.3 = 0.852131 loss) | |
I0331 16:36:05.768779 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.783073 (* 0.3 = 0.234922 loss) | |
I0331 16:36:05.768791 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.214286 | |
I0331 16:36:05.768803 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.778409 | |
I0331 16:36:05.768815 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.5 | |
I0331 16:36:05.768828 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.65415 (* 0.3 = 0.796246 loss) | |
I0331 16:36:05.768842 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.749453 (* 0.3 = 0.224836 loss) | |
I0331 16:36:05.768853 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.333333 | |
I0331 16:36:05.768865 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.818182 | |
I0331 16:36:05.768877 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.571429 | |
I0331 16:36:05.768890 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.26016 (* 1 = 2.26016 loss) | |
I0331 16:36:05.768904 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.652646 (* 1 = 0.652646 loss) | |
I0331 16:36:05.768916 30833 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 16:36:05.768928 30833 solver.cpp:245] Train net output #16: total_confidence = 0.0465938 | |
I0331 16:36:05.768940 30833 sgd_solver.cpp:106] Iteration 35000, lr = 0.05 | |
I0331 16:38:14.303848 30833 solver.cpp:229] Iteration 35500, loss = 3.48919 | |
I0331 16:38:14.303992 30833 solver.cpp:245] Train net output #0: loss1/accuracy = 0.333333 | |
I0331 16:38:14.304011 30833 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.835227 | |
I0331 16:38:14.304033 30833 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.564103 | |
I0331 16:38:14.304049 30833 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.3691 (* 0.3 = 0.710731 loss) | |
I0331 16:38:14.304062 30833 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.639052 (* 0.3 = 0.191716 loss) | |
I0331 16:38:14.304075 30833 solver.cpp:245] Train net output #5: loss2/accuracy = 0.384615 | |
I0331 16:38:14.304087 30833 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.835227 | |
I0331 16:38:14.304098 30833 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.615385 | |
I0331 16:38:14.304113 30833 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.12196 (* 0.3 = 0.636587 loss) | |
I0331 16:38:14.304127 30833 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.608983 (* 0.3 = 0.182695 loss) | |
I0331 16:38:14.304138 30833 solver.cpp:245] Train net output #10: loss3/accuracy = 0.512821 | |
I0331 16:38:14.304150 30833 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.875 | |
I0331 16:38:14.304162 30833 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.74359 | |
I0331 16:38:14.304182 30833 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.53808 (* 1 = 1.53808 loss) | |
I0331 16:38:14.304194 30833 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.393185 (* 1 = 0.393185 loss) | |
I0331 16:38:14.304206 30833 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0331 16:38:14.304217 30833 solver.cpp:245] Train net output #16: total_confidence = 0.0559362 | |
I0331 16:38:14.304229 30833 sgd_solver.cpp:106] Iteration 35500, lr = 0.05 | |
I0331 16:40:22.661485 30833 solver.cpp:229] Iteration 36000, loss = 3.48891 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment