Skip to content

Instantly share code, notes, and snippets.

@stas-sl
Last active April 3, 2016 20:39
Show Gist options
  • Save stas-sl/8b9a6f046735ae006da6634321fe3832 to your computer and use it in GitHub Desktop.
Save stas-sl/8b9a6f046735ae006da6634321fe3832 to your computer and use it in GitHub Desktop.
This file has been truncated, but you can view the full file.
I0401 12:44:49.957870 6134 solver.cpp:280] Solving mixed_lstm
I0401 12:44:49.957882 6134 solver.cpp:281] Learning Rate Policy: fixed
I0401 12:44:50.306246 6134 solver.cpp:229] Iteration 0, loss = 13.7773
I0401 12:44:50.306291 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0
I0401 12:44:50.306309 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.181818
I0401 12:44:50.306321 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.0222222
I0401 12:44:50.306339 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 4.39462 (* 0.3 = 1.31839 loss)
I0401 12:44:50.306352 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 4.19871 (* 0.3 = 1.25961 loss)
I0401 12:44:50.306365 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0
I0401 12:44:50.306397 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0
I0401 12:44:50.306411 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0
I0401 12:44:50.306423 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 4.37531 (* 0.3 = 1.31259 loss)
I0401 12:44:50.306437 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 4.36735 (* 0.3 = 1.3102 loss)
I0401 12:44:50.306449 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0222222
I0401 12:44:50.306462 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.00568182
I0401 12:44:50.306473 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.0666667
I0401 12:44:50.306486 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 4.33032 (* 1 = 4.33032 loss)
I0401 12:44:50.306500 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 4.24617 (* 1 = 4.24617 loss)
I0401 12:44:50.306511 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 12:44:50.306522 6134 solver.cpp:245] Train net output #16: total_confidence = 1.19457e-35
I0401 12:44:50.306540 6134 sgd_solver.cpp:106] Iteration 0, lr = 0.01
I0401 12:44:50.324127 6134 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 36.1709 > 30) by scale factor 0.829395
I0401 12:44:50.601414 6134 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 37.4927 > 30) by scale factor 0.800156
I0401 12:44:50.861389 6134 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 31.9811 > 30) by scale factor 0.938054
I0401 12:44:51.120638 6134 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 32.4394 > 30) by scale factor 0.924802
I0401 12:46:58.867997 6134 solver.cpp:229] Iteration 500, loss = 8.63114
I0401 12:46:58.868300 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0
I0401 12:46:58.868319 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.727273
I0401 12:46:58.868332 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.0416667
I0401 12:46:58.868347 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 4.25996 (* 0.3 = 1.27799 loss)
I0401 12:46:58.868362 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.38435 (* 0.3 = 0.415306 loss)
I0401 12:46:58.868374 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0
I0401 12:46:58.868386 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.727273
I0401 12:46:58.868398 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.104167
I0401 12:46:58.868412 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 4.10623 (* 0.3 = 1.23187 loss)
I0401 12:46:58.868430 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.36563 (* 0.3 = 0.40969 loss)
I0401 12:46:58.868451 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0416667
I0401 12:46:58.868465 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.738636
I0401 12:46:58.868477 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.0833333
I0401 12:46:58.868490 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.71374 (* 1 = 3.71374 loss)
I0401 12:46:58.868505 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 1.0663 (* 1 = 1.0663 loss)
I0401 12:46:58.868516 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 12:46:58.868527 6134 solver.cpp:245] Train net output #16: total_confidence = 7.97661e-07
I0401 12:46:58.868540 6134 sgd_solver.cpp:106] Iteration 500, lr = 0.01
I0401 12:49:07.302662 6134 solver.cpp:229] Iteration 1000, loss = 7.86443
I0401 12:49:07.302811 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.116279
I0401 12:49:07.302831 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.784091
I0401 12:49:07.302845 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.209302
I0401 12:49:07.302860 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.45219 (* 0.3 = 1.03566 loss)
I0401 12:49:07.302875 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.16467 (* 0.3 = 0.3494 loss)
I0401 12:49:07.302886 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0465116
I0401 12:49:07.302899 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.767045
I0401 12:49:07.302911 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.186047
I0401 12:49:07.302924 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.46772 (* 0.3 = 1.04032 loss)
I0401 12:49:07.302937 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.05089 (* 0.3 = 0.315267 loss)
I0401 12:49:07.302949 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0232558
I0401 12:49:07.302961 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.755682
I0401 12:49:07.302973 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.255814
I0401 12:49:07.302986 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.30487 (* 1 = 3.30487 loss)
I0401 12:49:07.302999 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.890591 (* 1 = 0.890591 loss)
I0401 12:49:07.303011 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 12:49:07.303022 6134 solver.cpp:245] Train net output #16: total_confidence = 4.59384e-05
I0401 12:49:07.303037 6134 sgd_solver.cpp:106] Iteration 1000, lr = 0.01
I0401 12:51:15.845552 6134 solver.cpp:229] Iteration 1500, loss = 7.64125
I0401 12:51:15.845660 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0454545
I0401 12:51:15.845680 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.732955
I0401 12:51:15.845692 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.136364
I0401 12:51:15.845707 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.51853 (* 0.3 = 1.05556 loss)
I0401 12:51:15.845722 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.23506 (* 0.3 = 0.370518 loss)
I0401 12:51:15.845734 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0681818
I0401 12:51:15.845746 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.755682
I0401 12:51:15.845758 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.272727
I0401 12:51:15.845772 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.42376 (* 0.3 = 1.02713 loss)
I0401 12:51:15.845785 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.01984 (* 0.3 = 0.305953 loss)
I0401 12:51:15.845796 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0227273
I0401 12:51:15.845808 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.744318
I0401 12:51:15.845819 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.181818
I0401 12:51:15.845832 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.35834 (* 1 = 3.35834 loss)
I0401 12:51:15.845846 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.97117 (* 1 = 0.97117 loss)
I0401 12:51:15.845857 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 12:51:15.845868 6134 solver.cpp:245] Train net output #16: total_confidence = 3.35111e-05
I0401 12:51:15.845880 6134 sgd_solver.cpp:106] Iteration 1500, lr = 0.01
I0401 12:53:24.300691 6134 solver.cpp:229] Iteration 2000, loss = 7.50205
I0401 12:53:24.300822 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.131579
I0401 12:53:24.300843 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.801136
I0401 12:53:24.300856 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.210526
I0401 12:53:24.300871 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.87501 (* 0.3 = 1.1625 loss)
I0401 12:53:24.300885 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.1176 (* 0.3 = 0.33528 loss)
I0401 12:53:24.300897 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.105263
I0401 12:53:24.300910 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.795455
I0401 12:53:24.300921 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.157895
I0401 12:53:24.300935 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.80084 (* 0.3 = 1.14025 loss)
I0401 12:53:24.300957 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.06115 (* 0.3 = 0.318346 loss)
I0401 12:53:24.300973 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0
I0401 12:53:24.300984 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.755682
I0401 12:53:24.300997 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.131579
I0401 12:53:24.301009 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.74166 (* 1 = 3.74166 loss)
I0401 12:53:24.301023 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 1.04449 (* 1 = 1.04449 loss)
I0401 12:53:24.301033 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 12:53:24.301062 6134 solver.cpp:245] Train net output #16: total_confidence = 4.22573e-06
I0401 12:53:24.301077 6134 sgd_solver.cpp:106] Iteration 2000, lr = 0.01
I0401 12:55:32.811437 6134 solver.cpp:229] Iteration 2500, loss = 7.40309
I0401 12:55:32.811549 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0232558
I0401 12:55:32.811568 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.727273
I0401 12:55:32.811581 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.162791
I0401 12:55:32.811596 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.79671 (* 0.3 = 1.13901 loss)
I0401 12:55:32.811611 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.2318 (* 0.3 = 0.36954 loss)
I0401 12:55:32.811624 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0232558
I0401 12:55:32.811635 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.738636
I0401 12:55:32.811647 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.162791
I0401 12:55:32.811661 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.65853 (* 0.3 = 1.09756 loss)
I0401 12:55:32.811674 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.13254 (* 0.3 = 0.339763 loss)
I0401 12:55:32.811686 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0465116
I0401 12:55:32.811697 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.732955
I0401 12:55:32.811709 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.116279
I0401 12:55:32.811722 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.67876 (* 1 = 3.67876 loss)
I0401 12:55:32.811736 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 1.14378 (* 1 = 1.14378 loss)
I0401 12:55:32.811748 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 12:55:32.811759 6134 solver.cpp:245] Train net output #16: total_confidence = 1.95148e-06
I0401 12:55:32.811771 6134 sgd_solver.cpp:106] Iteration 2500, lr = 0.01
I0401 12:57:41.305498 6134 solver.cpp:229] Iteration 3000, loss = 7.29351
I0401 12:57:41.305788 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0392157
I0401 12:57:41.305809 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.721591
I0401 12:57:41.305822 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.137255
I0401 12:57:41.305838 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.58241 (* 0.3 = 1.07472 loss)
I0401 12:57:41.305852 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.17041 (* 0.3 = 0.351124 loss)
I0401 12:57:41.305865 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0588235
I0401 12:57:41.305876 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.727273
I0401 12:57:41.305888 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.196078
I0401 12:57:41.305902 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.67634 (* 0.3 = 1.1029 loss)
I0401 12:57:41.305915 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.17258 (* 0.3 = 0.351773 loss)
I0401 12:57:41.305927 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0980392
I0401 12:57:41.305939 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.738636
I0401 12:57:41.305950 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.117647
I0401 12:57:41.305964 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.56638 (* 1 = 3.56638 loss)
I0401 12:57:41.305979 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 1.09412 (* 1 = 1.09412 loss)
I0401 12:57:41.305996 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 12:57:41.306018 6134 solver.cpp:245] Train net output #16: total_confidence = 3.28912e-06
I0401 12:57:41.306041 6134 sgd_solver.cpp:106] Iteration 3000, lr = 0.01
I0401 12:59:49.774981 6134 solver.cpp:229] Iteration 3500, loss = 7.21689
I0401 12:59:49.775131 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0555556
I0401 12:59:49.775152 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.710227
I0401 12:59:49.775166 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.166667
I0401 12:59:49.775182 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.71542 (* 0.3 = 1.11463 loss)
I0401 12:59:49.775195 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.23676 (* 0.3 = 0.371028 loss)
I0401 12:59:49.775207 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.037037
I0401 12:59:49.775219 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.704545
I0401 12:59:49.775231 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.148148
I0401 12:59:49.775245 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.86867 (* 0.3 = 1.1606 loss)
I0401 12:59:49.775259 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.25572 (* 0.3 = 0.376717 loss)
I0401 12:59:49.775270 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.111111
I0401 12:59:49.775284 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.721591
I0401 12:59:49.775295 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.203704
I0401 12:59:49.775308 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.67225 (* 1 = 3.67225 loss)
I0401 12:59:49.775321 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 1.20688 (* 1 = 1.20688 loss)
I0401 12:59:49.775333 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 12:59:49.775344 6134 solver.cpp:245] Train net output #16: total_confidence = 7.09011e-07
I0401 12:59:49.775357 6134 sgd_solver.cpp:106] Iteration 3500, lr = 0.01
I0401 13:01:58.159101 6134 solver.cpp:229] Iteration 4000, loss = 7.10611
I0401 13:01:58.159226 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0227273
I0401 13:01:58.159246 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.744318
I0401 13:01:58.159260 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.136364
I0401 13:01:58.159274 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 4.09134 (* 0.3 = 1.2274 loss)
I0401 13:01:58.159288 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.13627 (* 0.3 = 0.340881 loss)
I0401 13:01:58.159301 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0909091
I0401 13:01:58.159312 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.767045
I0401 13:01:58.159324 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.227273
I0401 13:01:58.159337 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.97358 (* 0.3 = 1.19207 loss)
I0401 13:01:58.159350 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.11581 (* 0.3 = 0.334743 loss)
I0401 13:01:58.159363 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0454545
I0401 13:01:58.159374 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.744318
I0401 13:01:58.159385 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.181818
I0401 13:01:58.159399 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 4.14542 (* 1 = 4.14542 loss)
I0401 13:01:58.159411 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 1.17096 (* 1 = 1.17096 loss)
I0401 13:01:58.159423 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 13:01:58.159435 6134 solver.cpp:245] Train net output #16: total_confidence = 6.01958e-05
I0401 13:01:58.159446 6134 sgd_solver.cpp:106] Iteration 4000, lr = 0.01
I0401 13:04:06.616226 6134 solver.cpp:229] Iteration 4500, loss = 7.11091
I0401 13:04:06.616375 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0243902
I0401 13:04:06.616396 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.755682
I0401 13:04:06.616410 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.195122
I0401 13:04:06.616425 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.45376 (* 0.3 = 1.03613 loss)
I0401 13:04:06.616439 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.974194 (* 0.3 = 0.292258 loss)
I0401 13:04:06.616451 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0
I0401 13:04:06.616463 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.755682
I0401 13:04:06.616475 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.0731707
I0401 13:04:06.616489 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.68507 (* 0.3 = 1.10552 loss)
I0401 13:04:06.616503 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.995368 (* 0.3 = 0.29861 loss)
I0401 13:04:06.616515 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0487805
I0401 13:04:06.616530 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.755682
I0401 13:04:06.616542 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.146341
I0401 13:04:06.616555 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.43503 (* 1 = 3.43503 loss)
I0401 13:04:06.616569 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.976691 (* 1 = 0.976691 loss)
I0401 13:04:06.616581 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 13:04:06.616592 6134 solver.cpp:245] Train net output #16: total_confidence = 5.86373e-05
I0401 13:04:06.616605 6134 sgd_solver.cpp:106] Iteration 4500, lr = 0.01
I0401 13:06:14.928297 6134 solver.cpp:338] Iteration 5000, Testing net (#0)
I0401 13:06:44.721635 6134 solver.cpp:393] Test loss: 6.48153
I0401 13:06:44.721679 6134 solver.cpp:406] Test net output #0: loss1/accuracy = 0.105584
I0401 13:06:44.721695 6134 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.779636
I0401 13:06:44.721707 6134 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.304764
I0401 13:06:44.721724 6134 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 3.51898 (* 0.3 = 1.05569 loss)
I0401 13:06:44.721737 6134 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.888278 (* 0.3 = 0.266483 loss)
I0401 13:06:44.721750 6134 solver.cpp:406] Test net output #5: loss2/accuracy = 0.140229
I0401 13:06:44.721761 6134 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.787954
I0401 13:06:44.721772 6134 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.318096
I0401 13:06:44.721786 6134 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 3.57113 (* 0.3 = 1.07134 loss)
I0401 13:06:44.721801 6134 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.901538 (* 0.3 = 0.270461 loss)
I0401 13:06:44.721812 6134 solver.cpp:406] Test net output #10: loss3/accuracy = 0.143378
I0401 13:06:44.721823 6134 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.787227
I0401 13:06:44.721834 6134 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.350022
I0401 13:06:44.721848 6134 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 3.04125 (* 1 = 3.04125 loss)
I0401 13:06:44.721860 6134 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.776293 (* 1 = 0.776293 loss)
I0401 13:06:44.721873 6134 solver.cpp:406] Test net output #15: total_accuracy = 0.001
I0401 13:06:44.721884 6134 solver.cpp:406] Test net output #16: total_confidence = 0.000799455
I0401 13:06:44.871942 6134 solver.cpp:229] Iteration 5000, loss = 7.08775
I0401 13:06:44.871978 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0238095
I0401 13:06:44.871994 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.744318
I0401 13:06:44.872006 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.119048
I0401 13:06:44.872022 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.36235 (* 0.3 = 1.0087 loss)
I0401 13:06:44.872036 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.04216 (* 0.3 = 0.312649 loss)
I0401 13:06:44.872051 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0714286
I0401 13:06:44.872064 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.755682
I0401 13:06:44.872076 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.119048
I0401 13:06:44.872088 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.40962 (* 0.3 = 1.02288 loss)
I0401 13:06:44.872102 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.01223 (* 0.3 = 0.30367 loss)
I0401 13:06:44.872114 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0714286
I0401 13:06:44.872125 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.767045
I0401 13:06:44.872138 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.142857
I0401 13:06:44.872151 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.14789 (* 1 = 3.14789 loss)
I0401 13:06:44.872165 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.89757 (* 1 = 0.89757 loss)
I0401 13:06:44.872176 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 13:06:44.872187 6134 solver.cpp:245] Train net output #16: total_confidence = 1.3146e-05
I0401 13:06:44.872200 6134 sgd_solver.cpp:106] Iteration 5000, lr = 0.01
I0401 13:08:53.338459 6134 solver.cpp:229] Iteration 5500, loss = 6.98019
I0401 13:08:53.338604 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0697674
I0401 13:08:53.338625 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.755682
I0401 13:08:53.338639 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.0930233
I0401 13:08:53.338654 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.43841 (* 0.3 = 1.03152 loss)
I0401 13:08:53.338668 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.97645 (* 0.3 = 0.292935 loss)
I0401 13:08:53.338680 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0232558
I0401 13:08:53.338692 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.75
I0401 13:08:53.338704 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.162791
I0401 13:08:53.338717 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.63452 (* 0.3 = 1.09036 loss)
I0401 13:08:53.338732 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.00852 (* 0.3 = 0.302557 loss)
I0401 13:08:53.338742 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0232558
I0401 13:08:53.338754 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.744318
I0401 13:08:53.338765 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.116279
I0401 13:08:53.338779 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.42606 (* 1 = 3.42606 loss)
I0401 13:08:53.338793 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.96259 (* 1 = 0.96259 loss)
I0401 13:08:53.338804 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 13:08:53.338815 6134 solver.cpp:245] Train net output #16: total_confidence = 1.13981e-05
I0401 13:08:53.338827 6134 sgd_solver.cpp:106] Iteration 5500, lr = 0.01
I0401 13:11:01.703521 6134 solver.cpp:229] Iteration 6000, loss = 6.95745
I0401 13:11:01.703629 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0769231
I0401 13:11:01.703649 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.721591
I0401 13:11:01.703662 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.115385
I0401 13:11:01.703677 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 4.11588 (* 0.3 = 1.23477 loss)
I0401 13:11:01.703692 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.30326 (* 0.3 = 0.390977 loss)
I0401 13:11:01.703704 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0576923
I0401 13:11:01.703716 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.721591
I0401 13:11:01.703728 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.134615
I0401 13:11:01.703742 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.74357 (* 0.3 = 1.12307 loss)
I0401 13:11:01.703754 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.16968 (* 0.3 = 0.350905 loss)
I0401 13:11:01.703766 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0384615
I0401 13:11:01.703778 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.715909
I0401 13:11:01.703789 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.134615
I0401 13:11:01.703804 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.69385 (* 1 = 3.69385 loss)
I0401 13:11:01.703817 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 1.13357 (* 1 = 1.13357 loss)
I0401 13:11:01.703829 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 13:11:01.703840 6134 solver.cpp:245] Train net output #16: total_confidence = 1.18051e-05
I0401 13:11:01.703851 6134 sgd_solver.cpp:106] Iteration 6000, lr = 0.01
I0401 13:13:10.045214 6134 solver.cpp:229] Iteration 6500, loss = 6.90748
I0401 13:13:10.045346 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0
I0401 13:13:10.045366 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.772727
I0401 13:13:10.045378 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.176471
I0401 13:13:10.045395 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.62205 (* 0.3 = 1.08662 loss)
I0401 13:13:10.045410 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.946883 (* 0.3 = 0.284065 loss)
I0401 13:13:10.045423 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0
I0401 13:13:10.045434 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.761364
I0401 13:13:10.045446 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.0588235
I0401 13:13:10.045460 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.7926 (* 0.3 = 1.13778 loss)
I0401 13:13:10.045474 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.03574 (* 0.3 = 0.310723 loss)
I0401 13:13:10.045486 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0294118
I0401 13:13:10.045497 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.761364
I0401 13:13:10.045509 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.147059
I0401 13:13:10.045526 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.58827 (* 1 = 3.58827 loss)
I0401 13:13:10.045539 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.99052 (* 1 = 0.99052 loss)
I0401 13:13:10.045552 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 13:13:10.045562 6134 solver.cpp:245] Train net output #16: total_confidence = 1.84045e-06
I0401 13:13:10.045575 6134 sgd_solver.cpp:106] Iteration 6500, lr = 0.01
I0401 13:15:18.489142 6134 solver.cpp:229] Iteration 7000, loss = 6.88976
I0401 13:15:18.489253 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.15
I0401 13:15:18.489272 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.795455
I0401 13:15:18.489284 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.325
I0401 13:15:18.489300 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.99769 (* 0.3 = 0.899307 loss)
I0401 13:15:18.489315 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.795148 (* 0.3 = 0.238545 loss)
I0401 13:15:18.489326 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.075
I0401 13:15:18.489338 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.767045
I0401 13:15:18.489351 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.225
I0401 13:15:18.489363 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.07115 (* 0.3 = 0.921344 loss)
I0401 13:15:18.489377 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.895987 (* 0.3 = 0.268796 loss)
I0401 13:15:18.489388 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.1
I0401 13:15:18.489400 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.784091
I0401 13:15:18.489413 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.3
I0401 13:15:18.489425 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.88599 (* 1 = 2.88599 loss)
I0401 13:15:18.489439 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.772585 (* 1 = 0.772585 loss)
I0401 13:15:18.489450 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 13:15:18.489462 6134 solver.cpp:245] Train net output #16: total_confidence = 0.000124423
I0401 13:15:18.489475 6134 sgd_solver.cpp:106] Iteration 7000, lr = 0.01
I0401 13:17:27.034993 6134 solver.cpp:229] Iteration 7500, loss = 6.87051
I0401 13:17:27.035276 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.02
I0401 13:17:27.035298 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.721591
I0401 13:17:27.035310 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.12
I0401 13:17:27.035327 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.43534 (* 0.3 = 1.0306 loss)
I0401 13:17:27.035341 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.02762 (* 0.3 = 0.308286 loss)
I0401 13:17:27.035353 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.04
I0401 13:17:27.035365 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.721591
I0401 13:17:27.035377 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.16
I0401 13:17:27.035390 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.46977 (* 0.3 = 1.04093 loss)
I0401 13:17:27.035403 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.06672 (* 0.3 = 0.320016 loss)
I0401 13:17:27.035415 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.08
I0401 13:17:27.035428 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.738636
I0401 13:17:27.035439 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.2
I0401 13:17:27.035451 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.23281 (* 1 = 3.23281 loss)
I0401 13:17:27.035465 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.955508 (* 1 = 0.955508 loss)
I0401 13:17:27.035477 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 13:17:27.035488 6134 solver.cpp:245] Train net output #16: total_confidence = 4.60563e-06
I0401 13:17:27.035501 6134 sgd_solver.cpp:106] Iteration 7500, lr = 0.01
I0401 13:19:35.514016 6134 solver.cpp:229] Iteration 8000, loss = 6.85358
I0401 13:19:35.514122 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0612245
I0401 13:19:35.514140 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.738636
I0401 13:19:35.514153 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.22449
I0401 13:19:35.514168 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.61572 (* 0.3 = 1.08471 loss)
I0401 13:19:35.514183 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.06568 (* 0.3 = 0.319705 loss)
I0401 13:19:35.514195 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0612245
I0401 13:19:35.514207 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.732955
I0401 13:19:35.514219 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.244898
I0401 13:19:35.514231 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.67513 (* 0.3 = 1.10254 loss)
I0401 13:19:35.514245 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.09881 (* 0.3 = 0.329642 loss)
I0401 13:19:35.514257 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0612245
I0401 13:19:35.514268 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.738636
I0401 13:19:35.514281 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.183673
I0401 13:19:35.514293 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.6218 (* 1 = 3.6218 loss)
I0401 13:19:35.514307 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 1.05419 (* 1 = 1.05419 loss)
I0401 13:19:35.514318 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 13:19:35.514330 6134 solver.cpp:245] Train net output #16: total_confidence = 0.000183274
I0401 13:19:35.514341 6134 sgd_solver.cpp:106] Iteration 8000, lr = 0.01
I0401 13:21:44.015879 6134 solver.cpp:229] Iteration 8500, loss = 6.81192
I0401 13:21:44.016007 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0869565
I0401 13:21:44.016032 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.75
I0401 13:21:44.016046 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.326087
I0401 13:21:44.016062 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.00757 (* 0.3 = 0.902271 loss)
I0401 13:21:44.016075 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.927711 (* 0.3 = 0.278313 loss)
I0401 13:21:44.016091 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.108696
I0401 13:21:44.016103 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.75
I0401 13:21:44.016115 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.26087
I0401 13:21:44.016129 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.13177 (* 0.3 = 0.93953 loss)
I0401 13:21:44.016142 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.985022 (* 0.3 = 0.295506 loss)
I0401 13:21:44.016155 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0652174
I0401 13:21:44.016167 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.738636
I0401 13:21:44.016178 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.26087
I0401 13:21:44.016192 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.03434 (* 1 = 3.03434 loss)
I0401 13:21:44.016206 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.925309 (* 1 = 0.925309 loss)
I0401 13:21:44.016217 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 13:21:44.016228 6134 solver.cpp:245] Train net output #16: total_confidence = 9.67964e-06
I0401 13:21:44.016240 6134 sgd_solver.cpp:106] Iteration 8500, lr = 0.01
I0401 13:23:52.505467 6134 solver.cpp:229] Iteration 9000, loss = 6.75599
I0401 13:23:52.505576 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.133333
I0401 13:23:52.505595 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.761364
I0401 13:23:52.505609 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.311111
I0401 13:23:52.505625 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.99297 (* 0.3 = 0.89789 loss)
I0401 13:23:52.505638 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.91502 (* 0.3 = 0.274506 loss)
I0401 13:23:52.505650 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.111111
I0401 13:23:52.505663 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.755682
I0401 13:23:52.505674 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.244444
I0401 13:23:52.505687 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.06223 (* 0.3 = 0.91867 loss)
I0401 13:23:52.505702 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.896422 (* 0.3 = 0.268927 loss)
I0401 13:23:52.505713 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.133333
I0401 13:23:52.505724 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.772727
I0401 13:23:52.505736 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.377778
I0401 13:23:52.505749 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.9204 (* 1 = 2.9204 loss)
I0401 13:23:52.505764 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.861425 (* 1 = 0.861425 loss)
I0401 13:23:52.505774 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 13:23:52.505786 6134 solver.cpp:245] Train net output #16: total_confidence = 0.000434245
I0401 13:23:52.505797 6134 sgd_solver.cpp:106] Iteration 9000, lr = 0.01
I0401 13:26:01.022151 6134 solver.cpp:229] Iteration 9500, loss = 6.76842
I0401 13:26:01.022465 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0930233
I0401 13:26:01.022487 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.755682
I0401 13:26:01.022500 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.209302
I0401 13:26:01.022518 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 4.00866 (* 0.3 = 1.2026 loss)
I0401 13:26:01.022533 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.15429 (* 0.3 = 0.346286 loss)
I0401 13:26:01.022547 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.116279
I0401 13:26:01.022558 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.784091
I0401 13:26:01.022569 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.27907
I0401 13:26:01.022583 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.83016 (* 0.3 = 1.14905 loss)
I0401 13:26:01.022598 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.05824 (* 0.3 = 0.317472 loss)
I0401 13:26:01.022610 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0697674
I0401 13:26:01.022621 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.767045
I0401 13:26:01.022634 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.255814
I0401 13:26:01.022647 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.83008 (* 1 = 3.83008 loss)
I0401 13:26:01.022660 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 1.04035 (* 1 = 1.04035 loss)
I0401 13:26:01.022672 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 13:26:01.022683 6134 solver.cpp:245] Train net output #16: total_confidence = 4.44319e-05
I0401 13:26:01.022696 6134 sgd_solver.cpp:106] Iteration 9500, lr = 0.01
I0401 13:28:09.377058 6134 solver.cpp:338] Iteration 10000, Testing net (#0)
I0401 13:28:39.116127 6134 solver.cpp:393] Test loss: 6.09995
I0401 13:28:39.116170 6134 solver.cpp:406] Test net output #0: loss1/accuracy = 0.0993023
I0401 13:28:39.116186 6134 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.777682
I0401 13:28:39.116199 6134 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.281737
I0401 13:28:39.116214 6134 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 3.10383 (* 0.3 = 0.931149 loss)
I0401 13:28:39.116228 6134 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.782006 (* 0.3 = 0.234602 loss)
I0401 13:28:39.116240 6134 solver.cpp:406] Test net output #5: loss2/accuracy = 0.105045
I0401 13:28:39.116252 6134 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.779181
I0401 13:28:39.116263 6134 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.299468
I0401 13:28:39.116277 6134 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 3.32187 (* 0.3 = 0.99656 loss)
I0401 13:28:39.116291 6134 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.833804 (* 0.3 = 0.250141 loss)
I0401 13:28:39.116302 6134 solver.cpp:406] Test net output #10: loss3/accuracy = 0.101468
I0401 13:28:39.116314 6134 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.775591
I0401 13:28:39.116325 6134 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.293905
I0401 13:28:39.116339 6134 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 2.92605 (* 1 = 2.92605 loss)
I0401 13:28:39.116353 6134 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.761456 (* 1 = 0.761456 loss)
I0401 13:28:39.116364 6134 solver.cpp:406] Test net output #15: total_accuracy = 0
I0401 13:28:39.116375 6134 solver.cpp:406] Test net output #16: total_confidence = 0.000425581
I0401 13:28:39.267325 6134 solver.cpp:229] Iteration 10000, loss = 6.7372
I0401 13:28:39.267362 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0416667
I0401 13:28:39.267379 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.738636
I0401 13:28:39.267392 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.229167
I0401 13:28:39.267406 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.41505 (* 0.3 = 1.02451 loss)
I0401 13:28:39.267421 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.01102 (* 0.3 = 0.303306 loss)
I0401 13:28:39.267432 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.104167
I0401 13:28:39.267446 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.744318
I0401 13:28:39.267457 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.25
I0401 13:28:39.267470 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.28085 (* 0.3 = 0.984255 loss)
I0401 13:28:39.267483 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.978654 (* 0.3 = 0.293596 loss)
I0401 13:28:39.267496 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.104167
I0401 13:28:39.267508 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.75
I0401 13:28:39.267519 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.25
I0401 13:28:39.267532 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.23297 (* 1 = 3.23297 loss)
I0401 13:28:39.267546 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.941816 (* 1 = 0.941816 loss)
I0401 13:28:39.267557 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 13:28:39.267570 6134 solver.cpp:245] Train net output #16: total_confidence = 3.92164e-06
I0401 13:28:39.267582 6134 sgd_solver.cpp:106] Iteration 10000, lr = 0.01
I0401 13:30:47.659692 6134 solver.cpp:229] Iteration 10500, loss = 6.69848
I0401 13:30:47.659816 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0930233
I0401 13:30:47.659837 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.761364
I0401 13:30:47.659849 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.162791
I0401 13:30:47.659864 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.16975 (* 0.3 = 0.950926 loss)
I0401 13:30:47.659879 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.879164 (* 0.3 = 0.263749 loss)
I0401 13:30:47.659891 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.116279
I0401 13:30:47.659904 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.778409
I0401 13:30:47.659914 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.302326
I0401 13:30:47.659929 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.92261 (* 0.3 = 0.876783 loss)
I0401 13:30:47.659943 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.814878 (* 0.3 = 0.244463 loss)
I0401 13:30:47.659955 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.162791
I0401 13:30:47.659966 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.789773
I0401 13:30:47.659978 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.27907
I0401 13:30:47.659991 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.02839 (* 1 = 3.02839 loss)
I0401 13:30:47.660006 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.793209 (* 1 = 0.793209 loss)
I0401 13:30:47.660017 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 13:30:47.660028 6134 solver.cpp:245] Train net output #16: total_confidence = 0.000151129
I0401 13:30:47.660040 6134 sgd_solver.cpp:106] Iteration 10500, lr = 0.01
I0401 13:32:56.169900 6134 solver.cpp:229] Iteration 11000, loss = 6.6783
I0401 13:32:56.170035 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.130435
I0401 13:32:56.170056 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.772727
I0401 13:32:56.170069 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.26087
I0401 13:32:56.170084 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.92371 (* 0.3 = 0.877112 loss)
I0401 13:32:56.170099 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.843243 (* 0.3 = 0.252973 loss)
I0401 13:32:56.170111 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.152174
I0401 13:32:56.170123 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.778409
I0401 13:32:56.170135 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.217391
I0401 13:32:56.170147 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.04203 (* 0.3 = 0.912609 loss)
I0401 13:32:56.170161 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.856727 (* 0.3 = 0.257018 loss)
I0401 13:32:56.170173 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.130435
I0401 13:32:56.170184 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.772727
I0401 13:32:56.170195 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.282609
I0401 13:32:56.170209 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.91161 (* 1 = 2.91161 loss)
I0401 13:32:56.170223 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.804483 (* 1 = 0.804483 loss)
I0401 13:32:56.170234 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 13:32:56.170246 6134 solver.cpp:245] Train net output #16: total_confidence = 0.000167535
I0401 13:32:56.170258 6134 sgd_solver.cpp:106] Iteration 11000, lr = 0.01
I0401 13:35:04.630028 6134 solver.cpp:229] Iteration 11500, loss = 6.64544
I0401 13:35:04.630148 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0434783
I0401 13:35:04.630168 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.744318
I0401 13:35:04.630182 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.26087
I0401 13:35:04.630198 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.03007 (* 0.3 = 0.90902 loss)
I0401 13:35:04.630211 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.894923 (* 0.3 = 0.268477 loss)
I0401 13:35:04.630223 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0434783
I0401 13:35:04.630235 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.744318
I0401 13:35:04.630247 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.195652
I0401 13:35:04.630262 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.04383 (* 0.3 = 0.913149 loss)
I0401 13:35:04.630276 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.886182 (* 0.3 = 0.265855 loss)
I0401 13:35:04.630288 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.108696
I0401 13:35:04.630300 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.75
I0401 13:35:04.630311 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.195652
I0401 13:35:04.630326 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.94977 (* 1 = 2.94977 loss)
I0401 13:35:04.630339 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.886716 (* 1 = 0.886716 loss)
I0401 13:35:04.630352 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 13:35:04.630362 6134 solver.cpp:245] Train net output #16: total_confidence = 0.000104385
I0401 13:35:04.630374 6134 sgd_solver.cpp:106] Iteration 11500, lr = 0.01
I0401 13:37:13.119850 6134 solver.cpp:229] Iteration 12000, loss = 6.67639
I0401 13:37:13.120581 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.191489
I0401 13:37:13.120604 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.778409
I0401 13:37:13.120615 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.276596
I0401 13:37:13.120631 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.1482 (* 0.3 = 0.94446 loss)
I0401 13:37:13.120646 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.897649 (* 0.3 = 0.269295 loss)
I0401 13:37:13.120659 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.170213
I0401 13:37:13.120671 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.767045
I0401 13:37:13.120682 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.340426
I0401 13:37:13.120697 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.15494 (* 0.3 = 0.946483 loss)
I0401 13:37:13.120709 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.967485 (* 0.3 = 0.290245 loss)
I0401 13:37:13.120721 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.12766
I0401 13:37:13.120733 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.761364
I0401 13:37:13.120744 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.255319
I0401 13:37:13.120759 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.22467 (* 1 = 3.22467 loss)
I0401 13:37:13.120772 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.922504 (* 1 = 0.922504 loss)
I0401 13:37:13.120784 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 13:37:13.120795 6134 solver.cpp:245] Train net output #16: total_confidence = 0.000141357
I0401 13:37:13.120808 6134 sgd_solver.cpp:106] Iteration 12000, lr = 0.01
I0401 13:39:21.547664 6134 solver.cpp:229] Iteration 12500, loss = 6.61706
I0401 13:39:21.547793 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.121951
I0401 13:39:21.547813 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.772727
I0401 13:39:21.547826 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.317073
I0401 13:39:21.547842 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.83492 (* 0.3 = 0.850476 loss)
I0401 13:39:21.547855 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.799583 (* 0.3 = 0.239875 loss)
I0401 13:39:21.547868 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.097561
I0401 13:39:21.547880 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.772727
I0401 13:39:21.547893 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.317073
I0401 13:39:21.547905 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.89554 (* 0.3 = 0.868661 loss)
I0401 13:39:21.547919 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.804542 (* 0.3 = 0.241363 loss)
I0401 13:39:21.547930 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.195122
I0401 13:39:21.547942 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.801136
I0401 13:39:21.547953 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.317073
I0401 13:39:21.547967 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.76444 (* 1 = 2.76444 loss)
I0401 13:39:21.547981 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.72786 (* 1 = 0.72786 loss)
I0401 13:39:21.547992 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 13:39:21.548003 6134 solver.cpp:245] Train net output #16: total_confidence = 0.000145038
I0401 13:39:21.548015 6134 sgd_solver.cpp:106] Iteration 12500, lr = 0.01
I0401 13:41:30.160312 6134 solver.cpp:229] Iteration 13000, loss = 6.66031
I0401 13:41:30.160455 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.142857
I0401 13:41:30.160485 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.778409
I0401 13:41:30.160509 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.261905
I0401 13:41:30.160537 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.06373 (* 0.3 = 0.919118 loss)
I0401 13:41:30.160552 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.88797 (* 0.3 = 0.266391 loss)
I0401 13:41:30.160565 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.119048
I0401 13:41:30.160578 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.75
I0401 13:41:30.160588 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.357143
I0401 13:41:30.160603 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.07338 (* 0.3 = 0.922014 loss)
I0401 13:41:30.160615 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.0168 (* 0.3 = 0.30504 loss)
I0401 13:41:30.160627 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.142857
I0401 13:41:30.160640 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.778409
I0401 13:41:30.160650 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.285714
I0401 13:41:30.160665 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.90885 (* 1 = 2.90885 loss)
I0401 13:41:30.160677 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.844784 (* 1 = 0.844784 loss)
I0401 13:41:30.160689 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 13:41:30.160701 6134 solver.cpp:245] Train net output #16: total_confidence = 0.000100537
I0401 13:41:30.160712 6134 sgd_solver.cpp:106] Iteration 13000, lr = 0.01
I0401 13:43:38.648793 6134 solver.cpp:229] Iteration 13500, loss = 6.61744
I0401 13:43:38.648906 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.133333
I0401 13:43:38.648937 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.75
I0401 13:43:38.648962 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.244444
I0401 13:43:38.648989 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.14507 (* 0.3 = 0.943521 loss)
I0401 13:43:38.649019 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.971647 (* 0.3 = 0.291494 loss)
I0401 13:43:38.649058 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.111111
I0401 13:43:38.649085 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.75
I0401 13:43:38.649109 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.288889
I0401 13:43:38.649135 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.13077 (* 0.3 = 0.939232 loss)
I0401 13:43:38.649161 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.929451 (* 0.3 = 0.278835 loss)
I0401 13:43:38.649184 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.133333
I0401 13:43:38.649206 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.761364
I0401 13:43:38.649227 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.266667
I0401 13:43:38.649253 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.08032 (* 1 = 3.08032 loss)
I0401 13:43:38.649279 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.878164 (* 1 = 0.878164 loss)
I0401 13:43:38.649301 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 13:43:38.649322 6134 solver.cpp:245] Train net output #16: total_confidence = 6.79612e-05
I0401 13:43:38.649343 6134 sgd_solver.cpp:106] Iteration 13500, lr = 0.01
I0401 13:45:47.230180 6134 solver.cpp:229] Iteration 14000, loss = 6.54827
I0401 13:45:47.230305 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0
I0401 13:45:47.230324 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.727273
I0401 13:45:47.230337 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.170213
I0401 13:45:47.230352 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.40451 (* 0.3 = 1.02135 loss)
I0401 13:45:47.230367 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.01213 (* 0.3 = 0.303639 loss)
I0401 13:45:47.230379 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0
I0401 13:45:47.230391 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.721591
I0401 13:45:47.230402 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.191489
I0401 13:45:47.230417 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.35998 (* 0.3 = 1.00799 loss)
I0401 13:45:47.230429 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.00391 (* 0.3 = 0.301174 loss)
I0401 13:45:47.230440 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0212766
I0401 13:45:47.230453 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.732955
I0401 13:45:47.230463 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.0851064
I0401 13:45:47.230478 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.30757 (* 1 = 3.30757 loss)
I0401 13:45:47.230490 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 1.00783 (* 1 = 1.00783 loss)
I0401 13:45:47.230501 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 13:45:47.230512 6134 solver.cpp:245] Train net output #16: total_confidence = 1.37611e-06
I0401 13:45:47.230527 6134 sgd_solver.cpp:106] Iteration 14000, lr = 0.01
I0401 13:47:55.755676 6134 solver.cpp:229] Iteration 14500, loss = 6.51078
I0401 13:47:55.755910 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0731707
I0401 13:47:55.755929 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.744318
I0401 13:47:55.755941 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.243902
I0401 13:47:55.755957 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.13267 (* 0.3 = 0.939802 loss)
I0401 13:47:55.755971 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.01623 (* 0.3 = 0.304868 loss)
I0401 13:47:55.755983 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0243902
I0401 13:47:55.755995 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.738636
I0401 13:47:55.756007 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.292683
I0401 13:47:55.756021 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.01015 (* 0.3 = 0.903046 loss)
I0401 13:47:55.756034 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.950414 (* 0.3 = 0.285124 loss)
I0401 13:47:55.756047 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0731707
I0401 13:47:55.756058 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.75
I0401 13:47:55.756069 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.341463
I0401 13:47:55.756083 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.9942 (* 1 = 2.9942 loss)
I0401 13:47:55.756096 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.914748 (* 1 = 0.914748 loss)
I0401 13:47:55.756111 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 13:47:55.756122 6134 solver.cpp:245] Train net output #16: total_confidence = 3.24563e-05
I0401 13:47:55.756135 6134 sgd_solver.cpp:106] Iteration 14500, lr = 0.01
I0401 13:50:04.162964 6134 solver.cpp:338] Iteration 15000, Testing net (#0)
I0401 13:50:33.878303 6134 solver.cpp:393] Test loss: 6.42501
I0401 13:50:33.878360 6134 solver.cpp:406] Test net output #0: loss1/accuracy = 0.0867452
I0401 13:50:33.878376 6134 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.774682
I0401 13:50:33.878388 6134 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.249524
I0401 13:50:33.878404 6134 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 3.43181 (* 0.3 = 1.02954 loss)
I0401 13:50:33.878418 6134 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.864127 (* 0.3 = 0.259238 loss)
I0401 13:50:33.878430 6134 solver.cpp:406] Test net output #5: loss2/accuracy = 0.103944
I0401 13:50:33.878442 6134 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.777591
I0401 13:50:33.878453 6134 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.289435
I0401 13:50:33.878466 6134 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 3.24657 (* 0.3 = 0.973971 loss)
I0401 13:50:33.878479 6134 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.829063 (* 0.3 = 0.248719 loss)
I0401 13:50:33.878491 6134 solver.cpp:406] Test net output #10: loss3/accuracy = 0.110642
I0401 13:50:33.878502 6134 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.778818
I0401 13:50:33.878515 6134 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.311218
I0401 13:50:33.878530 6134 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 3.10868 (* 1 = 3.10868 loss)
I0401 13:50:33.878545 6134 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.804862 (* 1 = 0.804862 loss)
I0401 13:50:33.878556 6134 solver.cpp:406] Test net output #15: total_accuracy = 0
I0401 13:50:33.878567 6134 solver.cpp:406] Test net output #16: total_confidence = 0.000205893
I0401 13:50:34.030284 6134 solver.cpp:229] Iteration 15000, loss = 6.48884
I0401 13:50:34.030345 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0851064
I0401 13:50:34.030364 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.755682
I0401 13:50:34.030376 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.170213
I0401 13:50:34.030392 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.36107 (* 0.3 = 1.00832 loss)
I0401 13:50:34.030407 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.943656 (* 0.3 = 0.283097 loss)
I0401 13:50:34.030419 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.106383
I0401 13:50:34.030431 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.75
I0401 13:50:34.030443 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.191489
I0401 13:50:34.030457 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.29119 (* 0.3 = 0.987357 loss)
I0401 13:50:34.030470 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.985205 (* 0.3 = 0.295561 loss)
I0401 13:50:34.030483 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.106383
I0401 13:50:34.030494 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.755682
I0401 13:50:34.030509 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.212766
I0401 13:50:34.030524 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.18615 (* 1 = 3.18615 loss)
I0401 13:50:34.030537 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.917527 (* 1 = 0.917527 loss)
I0401 13:50:34.030550 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 13:50:34.030561 6134 solver.cpp:245] Train net output #16: total_confidence = 7.491e-06
I0401 13:50:34.030573 6134 sgd_solver.cpp:106] Iteration 15000, lr = 0.01
I0401 13:52:42.377859 6134 solver.cpp:229] Iteration 15500, loss = 6.48074
I0401 13:52:42.377984 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.12766
I0401 13:52:42.378003 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.75
I0401 13:52:42.378016 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.234043
I0401 13:52:42.378032 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.04257 (* 0.3 = 0.91277 loss)
I0401 13:52:42.378046 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.931176 (* 0.3 = 0.279353 loss)
I0401 13:52:42.378058 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.170213
I0401 13:52:42.378072 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.767045
I0401 13:52:42.378082 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.319149
I0401 13:52:42.378098 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.01987 (* 0.3 = 0.905961 loss)
I0401 13:52:42.378113 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.884767 (* 0.3 = 0.26543 loss)
I0401 13:52:42.378125 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.148936
I0401 13:52:42.378136 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.755682
I0401 13:52:42.378149 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.382979
I0401 13:52:42.378161 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.87586 (* 1 = 2.87586 loss)
I0401 13:52:42.378175 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.878418 (* 1 = 0.878418 loss)
I0401 13:52:42.378186 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 13:52:42.378198 6134 solver.cpp:245] Train net output #16: total_confidence = 6.54283e-06
I0401 13:52:42.378211 6134 sgd_solver.cpp:106] Iteration 15500, lr = 0.01
I0401 13:54:50.725260 6134 solver.cpp:229] Iteration 16000, loss = 6.47345
I0401 13:54:50.725365 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.139535
I0401 13:54:50.725384 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.789773
I0401 13:54:50.725396 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.27907
I0401 13:54:50.725412 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.99559 (* 0.3 = 0.898678 loss)
I0401 13:54:50.725426 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.785119 (* 0.3 = 0.235536 loss)
I0401 13:54:50.725438 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0697674
I0401 13:54:50.725450 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.772727
I0401 13:54:50.725462 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.255814
I0401 13:54:50.725476 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.02296 (* 0.3 = 0.906888 loss)
I0401 13:54:50.725491 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.797284 (* 0.3 = 0.239185 loss)
I0401 13:54:50.725502 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.209302
I0401 13:54:50.725514 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.795455
I0401 13:54:50.725529 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.418605
I0401 13:54:50.725543 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.82141 (* 1 = 2.82141 loss)
I0401 13:54:50.725556 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.774697 (* 1 = 0.774697 loss)
I0401 13:54:50.725569 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 13:54:50.725580 6134 solver.cpp:245] Train net output #16: total_confidence = 0.000154658
I0401 13:54:50.725592 6134 sgd_solver.cpp:106] Iteration 16000, lr = 0.01
I0401 13:56:59.262763 6134 solver.cpp:229] Iteration 16500, loss = 6.43571
I0401 13:56:59.263056 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0784314
I0401 13:56:59.263077 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.732955
I0401 13:56:59.263088 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.352941
I0401 13:56:59.263104 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.01052 (* 0.3 = 0.903156 loss)
I0401 13:56:59.263118 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.946859 (* 0.3 = 0.284058 loss)
I0401 13:56:59.263131 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0980392
I0401 13:56:59.263144 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.727273
I0401 13:56:59.263155 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.235294
I0401 13:56:59.263169 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.14041 (* 0.3 = 0.942122 loss)
I0401 13:56:59.263182 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.988132 (* 0.3 = 0.29644 loss)
I0401 13:56:59.263195 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.137255
I0401 13:56:59.263206 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.75
I0401 13:56:59.263217 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.392157
I0401 13:56:59.263231 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.86422 (* 1 = 2.86422 loss)
I0401 13:56:59.263245 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.904078 (* 1 = 0.904078 loss)
I0401 13:56:59.263257 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 13:56:59.263268 6134 solver.cpp:245] Train net output #16: total_confidence = 8.94474e-05
I0401 13:56:59.263280 6134 sgd_solver.cpp:106] Iteration 16500, lr = 0.01
I0401 13:59:07.818303 6134 solver.cpp:229] Iteration 17000, loss = 6.3994
I0401 13:59:07.818411 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.217391
I0401 13:59:07.818429 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.789773
I0401 13:59:07.818441 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.326087
I0401 13:59:07.818457 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.91126 (* 0.3 = 0.873378 loss)
I0401 13:59:07.818471 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.842408 (* 0.3 = 0.252723 loss)
I0401 13:59:07.818485 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.173913
I0401 13:59:07.818496 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.772727
I0401 13:59:07.818507 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.304348
I0401 13:59:07.818524 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.97308 (* 0.3 = 0.891924 loss)
I0401 13:59:07.818537 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.895719 (* 0.3 = 0.268716 loss)
I0401 13:59:07.818549 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.130435
I0401 13:59:07.818562 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.761364
I0401 13:59:07.818573 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.347826
I0401 13:59:07.818586 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.86259 (* 1 = 2.86259 loss)
I0401 13:59:07.818600 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.855918 (* 1 = 0.855918 loss)
I0401 13:59:07.818611 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 13:59:07.818624 6134 solver.cpp:245] Train net output #16: total_confidence = 0.000222226
I0401 13:59:07.818634 6134 sgd_solver.cpp:106] Iteration 17000, lr = 0.01
I0401 14:01:16.261456 6134 solver.cpp:229] Iteration 17500, loss = 6.38739
I0401 14:01:16.261582 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.08
I0401 14:01:16.261601 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.738636
I0401 14:01:16.261615 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.24
I0401 14:01:16.261629 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.94549 (* 0.3 = 0.883646 loss)
I0401 14:01:16.261644 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.873793 (* 0.3 = 0.262138 loss)
I0401 14:01:16.261656 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.08
I0401 14:01:16.261668 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.738636
I0401 14:01:16.261679 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.22
I0401 14:01:16.261693 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.13115 (* 0.3 = 0.939346 loss)
I0401 14:01:16.261706 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.919798 (* 0.3 = 0.275939 loss)
I0401 14:01:16.261718 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.16
I0401 14:01:16.261729 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.755682
I0401 14:01:16.261741 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.22
I0401 14:01:16.261754 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.91146 (* 1 = 2.91146 loss)
I0401 14:01:16.261768 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.880542 (* 1 = 0.880542 loss)
I0401 14:01:16.261780 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 14:01:16.261790 6134 solver.cpp:245] Train net output #16: total_confidence = 0.000202682
I0401 14:01:16.261802 6134 sgd_solver.cpp:106] Iteration 17500, lr = 0.01
I0401 14:03:24.519723 6134 solver.cpp:229] Iteration 18000, loss = 6.40169
I0401 14:03:24.519819 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0454545
I0401 14:03:24.519837 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.727273
I0401 14:03:24.519850 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.181818
I0401 14:03:24.519865 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.09581 (* 0.3 = 0.928743 loss)
I0401 14:03:24.519879 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.02641 (* 0.3 = 0.307922 loss)
I0401 14:03:24.519891 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0454545
I0401 14:03:24.519903 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.721591
I0401 14:03:24.519915 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.295455
I0401 14:03:24.519928 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.03341 (* 0.3 = 0.910022 loss)
I0401 14:03:24.519945 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.944012 (* 0.3 = 0.283204 loss)
I0401 14:03:24.519958 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0909091
I0401 14:03:24.519970 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.75
I0401 14:03:24.519982 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.318182
I0401 14:03:24.519996 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.06774 (* 1 = 3.06774 loss)
I0401 14:03:24.520010 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.924301 (* 1 = 0.924301 loss)
I0401 14:03:24.520022 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 14:03:24.520035 6134 solver.cpp:245] Train net output #16: total_confidence = 1.76834e-05
I0401 14:03:24.520048 6134 sgd_solver.cpp:106] Iteration 18000, lr = 0.01
I0401 14:05:32.841389 6134 solver.cpp:229] Iteration 18500, loss = 6.32362
I0401 14:05:32.841513 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0217391
I0401 14:05:32.841533 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.738636
I0401 14:05:32.841545 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.130435
I0401 14:05:32.841562 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.66005 (* 0.3 = 1.09801 loss)
I0401 14:05:32.841575 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.02577 (* 0.3 = 0.307731 loss)
I0401 14:05:32.841588 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0652174
I0401 14:05:32.841599 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.738636
I0401 14:05:32.841611 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.195652
I0401 14:05:32.841624 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.53725 (* 0.3 = 1.06117 loss)
I0401 14:05:32.841639 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.01876 (* 0.3 = 0.305628 loss)
I0401 14:05:32.841650 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0869565
I0401 14:05:32.841661 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.75
I0401 14:05:32.841675 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.217391
I0401 14:05:32.841687 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.4097 (* 1 = 3.4097 loss)
I0401 14:05:32.841701 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.968536 (* 1 = 0.968536 loss)
I0401 14:05:32.841712 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 14:05:32.841724 6134 solver.cpp:245] Train net output #16: total_confidence = 0.000249993
I0401 14:05:32.841735 6134 sgd_solver.cpp:106] Iteration 18500, lr = 0.01
I0401 14:07:41.178032 6134 solver.cpp:229] Iteration 19000, loss = 6.28594
I0401 14:07:41.178264 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0681818
I0401 14:07:41.178284 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.761364
I0401 14:07:41.178297 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.227273
I0401 14:07:41.178313 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.14856 (* 0.3 = 0.944568 loss)
I0401 14:07:41.178328 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.889782 (* 0.3 = 0.266934 loss)
I0401 14:07:41.178339 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0909091
I0401 14:07:41.178351 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.75
I0401 14:07:41.178364 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.136364
I0401 14:07:41.178377 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.14876 (* 0.3 = 0.944627 loss)
I0401 14:07:41.178391 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.911489 (* 0.3 = 0.273447 loss)
I0401 14:07:41.178403 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.159091
I0401 14:07:41.178414 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.784091
I0401 14:07:41.178426 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.272727
I0401 14:07:41.178439 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.92702 (* 1 = 2.92702 loss)
I0401 14:07:41.178453 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.824432 (* 1 = 0.824432 loss)
I0401 14:07:41.178465 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 14:07:41.178477 6134 solver.cpp:245] Train net output #16: total_confidence = 0.000255109
I0401 14:07:41.178490 6134 sgd_solver.cpp:106] Iteration 19000, lr = 0.01
I0401 14:09:49.365310 6134 solver.cpp:229] Iteration 19500, loss = 6.30001
I0401 14:09:49.365448 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0512821
I0401 14:09:49.365470 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.755682
I0401 14:09:49.365483 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.179487
I0401 14:09:49.365499 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.02695 (* 0.3 = 0.908085 loss)
I0401 14:09:49.365514 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.957549 (* 0.3 = 0.287265 loss)
I0401 14:09:49.365530 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0769231
I0401 14:09:49.365542 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.755682
I0401 14:09:49.365555 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.25641
I0401 14:09:49.365574 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.98019 (* 0.3 = 0.894057 loss)
I0401 14:09:49.365592 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.97887 (* 0.3 = 0.293661 loss)
I0401 14:09:49.365604 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.128205
I0401 14:09:49.365617 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.767045
I0401 14:09:49.365628 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.307692
I0401 14:09:49.365641 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.03064 (* 1 = 3.03064 loss)
I0401 14:09:49.365655 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.95672 (* 1 = 0.95672 loss)
I0401 14:09:49.365667 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 14:09:49.365679 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0004928
I0401 14:09:49.365690 6134 sgd_solver.cpp:106] Iteration 19500, lr = 0.01
I0401 14:11:57.720243 6134 solver.cpp:338] Iteration 20000, Testing net (#0)
I0401 14:12:27.450562 6134 solver.cpp:393] Test loss: 5.67653
I0401 14:12:27.450604 6134 solver.cpp:406] Test net output #0: loss1/accuracy = 0.0984261
I0401 14:12:27.450621 6134 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.778317
I0401 14:12:27.450634 6134 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.316652
I0401 14:12:27.450649 6134 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 2.89744 (* 0.3 = 0.869232 loss)
I0401 14:12:27.450664 6134 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.736694 (* 0.3 = 0.221008 loss)
I0401 14:12:27.450675 6134 solver.cpp:406] Test net output #5: loss2/accuracy = 0.101628
I0401 14:12:27.450687 6134 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.780136
I0401 14:12:27.450698 6134 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.330421
I0401 14:12:27.450712 6134 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 3.02979 (* 0.3 = 0.908937 loss)
I0401 14:12:27.450726 6134 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.761713 (* 0.3 = 0.228514 loss)
I0401 14:12:27.450737 6134 solver.cpp:406] Test net output #10: loss3/accuracy = 0.14364
I0401 14:12:27.450749 6134 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.788409
I0401 14:12:27.450760 6134 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.400337
I0401 14:12:27.450773 6134 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 2.73885 (* 1 = 2.73885 loss)
I0401 14:12:27.450786 6134 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.709991 (* 1 = 0.709991 loss)
I0401 14:12:27.450798 6134 solver.cpp:406] Test net output #15: total_accuracy = 0
I0401 14:12:27.450809 6134 solver.cpp:406] Test net output #16: total_confidence = 0.00033956
I0401 14:12:27.601985 6134 solver.cpp:229] Iteration 20000, loss = 6.24553
I0401 14:12:27.602025 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.230769
I0401 14:12:27.602043 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.789773
I0401 14:12:27.602056 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.410256
I0401 14:12:27.602071 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.83642 (* 0.3 = 0.850927 loss)
I0401 14:12:27.602084 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.866708 (* 0.3 = 0.260013 loss)
I0401 14:12:27.602097 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.128205
I0401 14:12:27.602108 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.767045
I0401 14:12:27.602120 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.461538
I0401 14:12:27.602133 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.66897 (* 0.3 = 0.80069 loss)
I0401 14:12:27.602147 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.788197 (* 0.3 = 0.236459 loss)
I0401 14:12:27.602159 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.282051
I0401 14:12:27.602171 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.8125
I0401 14:12:27.602182 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.487179
I0401 14:12:27.602196 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.51113 (* 1 = 2.51113 loss)
I0401 14:12:27.602210 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.688626 (* 1 = 0.688626 loss)
I0401 14:12:27.602221 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 14:12:27.602232 6134 solver.cpp:245] Train net output #16: total_confidence = 0.000148568
I0401 14:12:27.602246 6134 sgd_solver.cpp:106] Iteration 20000, lr = 0.01
I0401 14:14:35.983271 6134 solver.cpp:229] Iteration 20500, loss = 6.25179
I0401 14:14:35.983397 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.139535
I0401 14:14:35.983417 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.778409
I0401 14:14:35.983429 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.255814
I0401 14:14:35.983444 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.09803 (* 0.3 = 0.929408 loss)
I0401 14:14:35.983459 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.896102 (* 0.3 = 0.268831 loss)
I0401 14:14:35.983471 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.139535
I0401 14:14:35.983484 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.767045
I0401 14:14:35.983495 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.232558
I0401 14:14:35.983510 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.01971 (* 0.3 = 0.905913 loss)
I0401 14:14:35.983530 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.848249 (* 0.3 = 0.254475 loss)
I0401 14:14:35.983551 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.116279
I0401 14:14:35.983575 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.772727
I0401 14:14:35.983599 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.395349
I0401 14:14:35.983623 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.84029 (* 1 = 2.84029 loss)
I0401 14:14:35.983639 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.800029 (* 1 = 0.800029 loss)
I0401 14:14:35.983650 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 14:14:35.983661 6134 solver.cpp:245] Train net output #16: total_confidence = 0.000774003
I0401 14:14:35.983675 6134 sgd_solver.cpp:106] Iteration 20500, lr = 0.01
I0401 14:16:44.109031 6134 solver.cpp:229] Iteration 21000, loss = 6.20462
I0401 14:16:44.109333 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.097561
I0401 14:16:44.109354 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.784091
I0401 14:16:44.109367 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.243902
I0401 14:16:44.109383 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.95243 (* 0.3 = 0.885729 loss)
I0401 14:16:44.109397 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.805067 (* 0.3 = 0.24152 loss)
I0401 14:16:44.109410 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.121951
I0401 14:16:44.109423 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.795455
I0401 14:16:44.109434 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.243902
I0401 14:16:44.109448 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.95422 (* 0.3 = 0.886265 loss)
I0401 14:16:44.109470 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.754996 (* 0.3 = 0.226499 loss)
I0401 14:16:44.109488 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.195122
I0401 14:16:44.109500 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.801136
I0401 14:16:44.109511 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.341463
I0401 14:16:44.109527 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.78921 (* 1 = 2.78921 loss)
I0401 14:16:44.109541 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.746161 (* 1 = 0.746161 loss)
I0401 14:16:44.109554 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 14:16:44.109565 6134 solver.cpp:245] Train net output #16: total_confidence = 0.000348426
I0401 14:16:44.109577 6134 sgd_solver.cpp:106] Iteration 21000, lr = 0.01
I0401 14:18:52.370321 6134 solver.cpp:229] Iteration 21500, loss = 6.19981
I0401 14:18:52.370440 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.08
I0401 14:18:52.370460 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.732955
I0401 14:18:52.370473 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.32
I0401 14:18:52.370489 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.16668 (* 0.3 = 0.950004 loss)
I0401 14:18:52.370503 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.942075 (* 0.3 = 0.282622 loss)
I0401 14:18:52.370515 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.06
I0401 14:18:52.370528 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.732955
I0401 14:18:52.370540 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.24
I0401 14:18:52.370553 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.09341 (* 0.3 = 0.928023 loss)
I0401 14:18:52.370568 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.901903 (* 0.3 = 0.270571 loss)
I0401 14:18:52.370579 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.06
I0401 14:18:52.370591 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.727273
I0401 14:18:52.370602 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.38
I0401 14:18:52.370615 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.9485 (* 1 = 2.9485 loss)
I0401 14:18:52.370630 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.888137 (* 1 = 0.888137 loss)
I0401 14:18:52.370641 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 14:18:52.370652 6134 solver.cpp:245] Train net output #16: total_confidence = 0.000840563
I0401 14:18:52.370663 6134 sgd_solver.cpp:106] Iteration 21500, lr = 0.01
I0401 14:21:00.918875 6134 solver.cpp:229] Iteration 22000, loss = 6.19478
I0401 14:21:00.919011 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0851064
I0401 14:21:00.919033 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.755682
I0401 14:21:00.919044 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.234043
I0401 14:21:00.919060 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.16361 (* 0.3 = 0.949083 loss)
I0401 14:21:00.919075 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.87757 (* 0.3 = 0.263271 loss)
I0401 14:21:00.919087 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0851064
I0401 14:21:00.919100 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.755682
I0401 14:21:00.919111 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.212766
I0401 14:21:00.919124 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.23011 (* 0.3 = 0.969033 loss)
I0401 14:21:00.919138 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.892032 (* 0.3 = 0.26761 loss)
I0401 14:21:00.919150 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.148936
I0401 14:21:00.919162 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.772727
I0401 14:21:00.919173 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.276596
I0401 14:21:00.919186 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.08438 (* 1 = 3.08438 loss)
I0401 14:21:00.919200 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.840522 (* 1 = 0.840522 loss)
I0401 14:21:00.919211 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 14:21:00.919222 6134 solver.cpp:245] Train net output #16: total_confidence = 2.36222e-05
I0401 14:21:00.919234 6134 sgd_solver.cpp:106] Iteration 22000, lr = 0.01
I0401 14:23:09.300401 6134 solver.cpp:229] Iteration 22500, loss = 6.09174
I0401 14:23:09.300518 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0833333
I0401 14:23:09.300537 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.738636
I0401 14:23:09.300549 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.354167
I0401 14:23:09.300565 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.19377 (* 0.3 = 0.95813 loss)
I0401 14:23:09.300580 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.941009 (* 0.3 = 0.282303 loss)
I0401 14:23:09.300592 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.145833
I0401 14:23:09.300604 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.755682
I0401 14:23:09.300616 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.270833
I0401 14:23:09.300628 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.17031 (* 0.3 = 0.951094 loss)
I0401 14:23:09.300642 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.936717 (* 0.3 = 0.281015 loss)
I0401 14:23:09.300654 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.104167
I0401 14:23:09.300667 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.744318
I0401 14:23:09.300678 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.375
I0401 14:23:09.300691 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.91858 (* 1 = 2.91858 loss)
I0401 14:23:09.300705 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.866064 (* 1 = 0.866064 loss)
I0401 14:23:09.300717 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 14:23:09.300729 6134 solver.cpp:245] Train net output #16: total_confidence = 0.00235747
I0401 14:23:09.300740 6134 sgd_solver.cpp:106] Iteration 22500, lr = 0.01
I0401 14:25:17.690780 6134 solver.cpp:229] Iteration 23000, loss = 6.07299
I0401 14:25:17.690929 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.173077
I0401 14:25:17.690950 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.744318
I0401 14:25:17.690963 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.288462
I0401 14:25:17.690979 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.1844 (* 0.3 = 0.95532 loss)
I0401 14:25:17.690994 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.03574 (* 0.3 = 0.310723 loss)
I0401 14:25:17.691006 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0769231
I0401 14:25:17.691020 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.727273
I0401 14:25:17.691031 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.346154
I0401 14:25:17.691045 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.02355 (* 0.3 = 0.907065 loss)
I0401 14:25:17.691059 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.939014 (* 0.3 = 0.281704 loss)
I0401 14:25:17.691071 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.153846
I0401 14:25:17.691082 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.75
I0401 14:25:17.691094 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.288462
I0401 14:25:17.691108 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.01952 (* 1 = 3.01952 loss)
I0401 14:25:17.691123 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.940993 (* 1 = 0.940993 loss)
I0401 14:25:17.691133 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 14:25:17.691145 6134 solver.cpp:245] Train net output #16: total_confidence = 0.000598684
I0401 14:25:17.691157 6134 sgd_solver.cpp:106] Iteration 23000, lr = 0.01
I0401 14:27:25.961655 6134 solver.cpp:229] Iteration 23500, loss = 6.12305
I0401 14:27:25.961863 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0666667
I0401 14:27:25.961880 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.738636
I0401 14:27:25.961894 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.244444
I0401 14:27:25.961908 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.20304 (* 0.3 = 0.960912 loss)
I0401 14:27:25.961922 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.945829 (* 0.3 = 0.283749 loss)
I0401 14:27:25.961935 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.133333
I0401 14:27:25.961947 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.767045
I0401 14:27:25.961958 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.355556
I0401 14:27:25.961972 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.18468 (* 0.3 = 0.955406 loss)
I0401 14:27:25.961985 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.903248 (* 0.3 = 0.270975 loss)
I0401 14:27:25.962000 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.155556
I0401 14:27:25.962013 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.772727
I0401 14:27:25.962024 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.244444
I0401 14:27:25.962038 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.02773 (* 1 = 3.02773 loss)
I0401 14:27:25.962051 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.859375 (* 1 = 0.859375 loss)
I0401 14:27:25.962062 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 14:27:25.962074 6134 solver.cpp:245] Train net output #16: total_confidence = 0.000242582
I0401 14:27:25.962086 6134 sgd_solver.cpp:106] Iteration 23500, lr = 0.01
I0401 14:29:34.544431 6134 solver.cpp:229] Iteration 24000, loss = 6.06155
I0401 14:29:34.544560 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.115385
I0401 14:29:34.544580 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.732955
I0401 14:29:34.544592 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.384615
I0401 14:29:34.544607 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.06231 (* 0.3 = 0.918694 loss)
I0401 14:29:34.544622 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.966566 (* 0.3 = 0.28997 loss)
I0401 14:29:34.544634 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.153846
I0401 14:29:34.544646 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.738636
I0401 14:29:34.544658 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.423077
I0401 14:29:34.544672 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.83202 (* 0.3 = 0.849606 loss)
I0401 14:29:34.544687 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.897475 (* 0.3 = 0.269243 loss)
I0401 14:29:34.544698 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.25
I0401 14:29:34.544710 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.755682
I0401 14:29:34.544721 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.423077
I0401 14:29:34.544735 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.55844 (* 1 = 2.55844 loss)
I0401 14:29:34.544749 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.847198 (* 1 = 0.847198 loss)
I0401 14:29:34.544760 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 14:29:34.544772 6134 solver.cpp:245] Train net output #16: total_confidence = 8.74741e-05
I0401 14:29:34.544785 6134 sgd_solver.cpp:106] Iteration 24000, lr = 0.01
I0401 14:31:43.142940 6134 solver.cpp:229] Iteration 24500, loss = 6.01358
I0401 14:31:43.143038 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.145833
I0401 14:31:43.143057 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.761364
I0401 14:31:43.143070 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.354167
I0401 14:31:43.143085 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.88606 (* 0.3 = 0.865819 loss)
I0401 14:31:43.143102 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.874057 (* 0.3 = 0.262217 loss)
I0401 14:31:43.143115 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.125
I0401 14:31:43.143127 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.755682
I0401 14:31:43.143139 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.395833
I0401 14:31:43.143153 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.87254 (* 0.3 = 0.861763 loss)
I0401 14:31:43.143167 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.86401 (* 0.3 = 0.259203 loss)
I0401 14:31:43.143179 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.145833
I0401 14:31:43.143190 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.767045
I0401 14:31:43.143203 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.395833
I0401 14:31:43.143216 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.70178 (* 1 = 2.70178 loss)
I0401 14:31:43.143229 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.765352 (* 1 = 0.765352 loss)
I0401 14:31:43.143241 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 14:31:43.143252 6134 solver.cpp:245] Train net output #16: total_confidence = 0.00135932
I0401 14:31:43.143265 6134 sgd_solver.cpp:106] Iteration 24500, lr = 0.01
I0401 14:33:51.404153 6134 solver.cpp:338] Iteration 25000, Testing net (#0)
I0401 14:34:20.895989 6134 solver.cpp:393] Test loss: 5.27374
I0401 14:34:20.896034 6134 solver.cpp:406] Test net output #0: loss1/accuracy = 0.145434
I0401 14:34:20.896049 6134 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.789273
I0401 14:34:20.896061 6134 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.380587
I0401 14:34:20.896076 6134 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 2.8704 (* 0.3 = 0.861121 loss)
I0401 14:34:20.896091 6134 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.721657 (* 0.3 = 0.216497 loss)
I0401 14:34:20.896103 6134 solver.cpp:406] Test net output #5: loss2/accuracy = 0.15224
I0401 14:34:20.896116 6134 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.790545
I0401 14:34:20.896126 6134 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.402902
I0401 14:34:20.896139 6134 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 2.79291 (* 0.3 = 0.837874 loss)
I0401 14:34:20.896152 6134 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.709173 (* 0.3 = 0.212752 loss)
I0401 14:34:20.896164 6134 solver.cpp:406] Test net output #10: loss3/accuracy = 0.246248
I0401 14:34:20.896176 6134 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.808045
I0401 14:34:20.896188 6134 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.502916
I0401 14:34:20.896200 6134 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 2.48413 (* 1 = 2.48413 loss)
I0401 14:34:20.896214 6134 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.661377 (* 1 = 0.661377 loss)
I0401 14:34:20.896225 6134 solver.cpp:406] Test net output #15: total_accuracy = 0.001
I0401 14:34:20.896236 6134 solver.cpp:406] Test net output #16: total_confidence = 0.00168814
I0401 14:34:21.046411 6134 solver.cpp:229] Iteration 25000, loss = 6.04105
I0401 14:34:21.046453 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.190476
I0401 14:34:21.046470 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.789773
I0401 14:34:21.046483 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.261905
I0401 14:34:21.046497 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.94503 (* 0.3 = 0.883511 loss)
I0401 14:34:21.046512 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.824608 (* 0.3 = 0.247382 loss)
I0401 14:34:21.046525 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.166667
I0401 14:34:21.046536 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.778409
I0401 14:34:21.046548 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.285714
I0401 14:34:21.046561 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.94304 (* 0.3 = 0.882913 loss)
I0401 14:34:21.046576 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.844135 (* 0.3 = 0.25324 loss)
I0401 14:34:21.046587 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.166667
I0401 14:34:21.046599 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.761364
I0401 14:34:21.046614 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.404762
I0401 14:34:21.046628 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.71409 (* 1 = 2.71409 loss)
I0401 14:34:21.046643 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.838025 (* 1 = 0.838025 loss)
I0401 14:34:21.046654 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 14:34:21.046665 6134 solver.cpp:245] Train net output #16: total_confidence = 0.000377854
I0401 14:34:21.046677 6134 sgd_solver.cpp:106] Iteration 25000, lr = 0.01
I0401 14:36:29.520390 6134 solver.cpp:229] Iteration 25500, loss = 5.95791
I0401 14:36:29.520671 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.155556
I0401 14:36:29.520691 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.772727
I0401 14:36:29.520704 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.422222
I0401 14:36:29.520720 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.82395 (* 0.3 = 0.847185 loss)
I0401 14:36:29.520735 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.826006 (* 0.3 = 0.247802 loss)
I0401 14:36:29.520746 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.222222
I0401 14:36:29.520758 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.795455
I0401 14:36:29.520771 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.4
I0401 14:36:29.520783 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.74795 (* 0.3 = 0.824386 loss)
I0401 14:36:29.520797 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.809584 (* 0.3 = 0.242875 loss)
I0401 14:36:29.520809 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.288889
I0401 14:36:29.520822 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.806818
I0401 14:36:29.520833 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.577778
I0401 14:36:29.520846 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.45834 (* 1 = 2.45834 loss)
I0401 14:36:29.520859 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.724035 (* 1 = 0.724035 loss)
I0401 14:36:29.520871 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 14:36:29.520882 6134 solver.cpp:245] Train net output #16: total_confidence = 0.000420386
I0401 14:36:29.520895 6134 sgd_solver.cpp:106] Iteration 25500, lr = 0.01
I0401 14:38:37.940440 6134 solver.cpp:229] Iteration 26000, loss = 5.91521
I0401 14:38:37.940551 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.16
I0401 14:38:37.940572 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.761364
I0401 14:38:37.940584 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.38
I0401 14:38:37.940599 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.86079 (* 0.3 = 0.858236 loss)
I0401 14:38:37.940614 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.860673 (* 0.3 = 0.258202 loss)
I0401 14:38:37.940626 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.18
I0401 14:38:37.940639 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.755682
I0401 14:38:37.940649 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.42
I0401 14:38:37.940664 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.83694 (* 0.3 = 0.851081 loss)
I0401 14:38:37.940676 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.881951 (* 0.3 = 0.264585 loss)
I0401 14:38:37.940688 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.16
I0401 14:38:37.940701 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.761364
I0401 14:38:37.940711 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.42
I0401 14:38:37.940724 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.64177 (* 1 = 2.64177 loss)
I0401 14:38:37.940738 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.78255 (* 1 = 0.78255 loss)
I0401 14:38:37.940749 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 14:38:37.940760 6134 solver.cpp:245] Train net output #16: total_confidence = 0.000234915
I0401 14:38:37.940773 6134 sgd_solver.cpp:106] Iteration 26000, lr = 0.01
I0401 14:40:46.329681 6134 solver.cpp:229] Iteration 26500, loss = 5.91922
I0401 14:40:46.329821 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.142857
I0401 14:40:46.329849 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.772727
I0401 14:40:46.329862 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.357143
I0401 14:40:46.329879 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.06536 (* 0.3 = 0.919609 loss)
I0401 14:40:46.329892 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.92049 (* 0.3 = 0.276147 loss)
I0401 14:40:46.329907 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.190476
I0401 14:40:46.329931 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.784091
I0401 14:40:46.329951 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.285714
I0401 14:40:46.329964 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.98299 (* 0.3 = 0.894898 loss)
I0401 14:40:46.329979 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.877862 (* 0.3 = 0.263358 loss)
I0401 14:40:46.329991 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.190476
I0401 14:40:46.330003 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.767045
I0401 14:40:46.330014 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.452381
I0401 14:40:46.330029 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.67546 (* 1 = 2.67546 loss)
I0401 14:40:46.330042 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.849048 (* 1 = 0.849048 loss)
I0401 14:40:46.330054 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 14:40:46.330065 6134 solver.cpp:245] Train net output #16: total_confidence = 0.000160137
I0401 14:40:46.330080 6134 sgd_solver.cpp:106] Iteration 26500, lr = 0.01
I0401 14:42:54.801506 6134 solver.cpp:229] Iteration 27000, loss = 5.86701
I0401 14:42:54.801605 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.163265
I0401 14:42:54.801625 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.761364
I0401 14:42:54.801636 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.265306
I0401 14:42:54.801652 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.30597 (* 0.3 = 0.99179 loss)
I0401 14:42:54.801667 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.976866 (* 0.3 = 0.29306 loss)
I0401 14:42:54.801679 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.142857
I0401 14:42:54.801692 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.755682
I0401 14:42:54.801703 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.326531
I0401 14:42:54.801720 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.0116 (* 0.3 = 0.903481 loss)
I0401 14:42:54.801743 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.912434 (* 0.3 = 0.27373 loss)
I0401 14:42:54.801756 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.122449
I0401 14:42:54.801769 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.744318
I0401 14:42:54.801779 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.326531
I0401 14:42:54.801794 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.78729 (* 1 = 2.78729 loss)
I0401 14:42:54.801807 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.85407 (* 1 = 0.85407 loss)
I0401 14:42:54.801820 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 14:42:54.801831 6134 solver.cpp:245] Train net output #16: total_confidence = 4.12092e-05
I0401 14:42:54.801842 6134 sgd_solver.cpp:106] Iteration 27000, lr = 0.01
I0401 14:45:03.017666 6134 solver.cpp:229] Iteration 27500, loss = 5.82302
I0401 14:45:03.017801 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.133333
I0401 14:45:03.017822 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.761364
I0401 14:45:03.017833 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.266667
I0401 14:45:03.017849 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.9734 (* 0.3 = 0.892021 loss)
I0401 14:45:03.017863 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.898534 (* 0.3 = 0.26956 loss)
I0401 14:45:03.017875 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.133333
I0401 14:45:03.017889 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.755682
I0401 14:45:03.017900 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.288889
I0401 14:45:03.017913 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.98951 (* 0.3 = 0.896852 loss)
I0401 14:45:03.017927 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.892923 (* 0.3 = 0.267877 loss)
I0401 14:45:03.017942 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.133333
I0401 14:45:03.017966 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.755682
I0401 14:45:03.017987 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.444444
I0401 14:45:03.018013 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.61492 (* 1 = 2.61492 loss)
I0401 14:45:03.018041 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.77947 (* 1 = 0.77947 loss)
I0401 14:45:03.018057 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 14:45:03.018069 6134 solver.cpp:245] Train net output #16: total_confidence = 0.000228397
I0401 14:45:03.018081 6134 sgd_solver.cpp:106] Iteration 27500, lr = 0.01
I0401 14:47:11.444795 6134 solver.cpp:229] Iteration 28000, loss = 5.78782
I0401 14:47:11.445057 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.219512
I0401 14:47:11.445082 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.806818
I0401 14:47:11.445096 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.390244
I0401 14:47:11.445111 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.62532 (* 0.3 = 0.787596 loss)
I0401 14:47:11.445125 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.711521 (* 0.3 = 0.213456 loss)
I0401 14:47:11.445137 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.170732
I0401 14:47:11.445153 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.778409
I0401 14:47:11.445165 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.365854
I0401 14:47:11.445179 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.63961 (* 0.3 = 0.791882 loss)
I0401 14:47:11.445194 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.741352 (* 0.3 = 0.222406 loss)
I0401 14:47:11.445205 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.317073
I0401 14:47:11.445219 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.835227
I0401 14:47:11.445240 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.609756
I0401 14:47:11.445256 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.45643 (* 1 = 2.45643 loss)
I0401 14:47:11.445271 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.670944 (* 1 = 0.670944 loss)
I0401 14:47:11.445282 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 14:47:11.445294 6134 solver.cpp:245] Train net output #16: total_confidence = 0.00229379
I0401 14:47:11.445307 6134 sgd_solver.cpp:106] Iteration 28000, lr = 0.01
I0401 14:49:19.765692 6134 solver.cpp:229] Iteration 28500, loss = 5.77501
I0401 14:49:19.765820 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.222222
I0401 14:49:19.765839 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.789773
I0401 14:49:19.765851 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.333333
I0401 14:49:19.765867 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.98837 (* 0.3 = 0.89651 loss)
I0401 14:49:19.765882 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.88875 (* 0.3 = 0.266625 loss)
I0401 14:49:19.765895 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.222222
I0401 14:49:19.765907 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.778409
I0401 14:49:19.765918 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.444444
I0401 14:49:19.765931 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.65748 (* 0.3 = 0.797245 loss)
I0401 14:49:19.765945 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.809635 (* 0.3 = 0.24289 loss)
I0401 14:49:19.765957 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.311111
I0401 14:49:19.765969 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.806818
I0401 14:49:19.765980 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.511111
I0401 14:49:19.765995 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.50959 (* 1 = 2.50959 loss)
I0401 14:49:19.766007 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.741936 (* 1 = 0.741936 loss)
I0401 14:49:19.766019 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 14:49:19.766031 6134 solver.cpp:245] Train net output #16: total_confidence = 0.000215916
I0401 14:49:19.766043 6134 sgd_solver.cpp:106] Iteration 28500, lr = 0.01
I0401 14:51:28.217803 6134 solver.cpp:229] Iteration 29000, loss = 5.77616
I0401 14:51:28.217921 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0909091
I0401 14:51:28.217943 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.715909
I0401 14:51:28.217957 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.363636
I0401 14:51:28.217972 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.98137 (* 0.3 = 0.894411 loss)
I0401 14:51:28.217986 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.966119 (* 0.3 = 0.289836 loss)
I0401 14:51:28.217998 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.127273
I0401 14:51:28.218010 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.727273
I0401 14:51:28.218022 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.327273
I0401 14:51:28.218035 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.95539 (* 0.3 = 0.886617 loss)
I0401 14:51:28.218050 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.947604 (* 0.3 = 0.284281 loss)
I0401 14:51:28.218061 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.181818
I0401 14:51:28.218075 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.738636
I0401 14:51:28.218087 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.509091
I0401 14:51:28.218101 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.63932 (* 1 = 2.63932 loss)
I0401 14:51:28.218114 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.858855 (* 1 = 0.858855 loss)
I0401 14:51:28.218127 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 14:51:28.218137 6134 solver.cpp:245] Train net output #16: total_confidence = 5.6095e-05
I0401 14:51:28.218149 6134 sgd_solver.cpp:106] Iteration 29000, lr = 0.01
I0401 14:53:36.570986 6134 solver.cpp:229] Iteration 29500, loss = 5.68008
I0401 14:53:36.571118 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.153846
I0401 14:53:36.571140 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.784091
I0401 14:53:36.571151 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.410256
I0401 14:53:36.571167 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.82276 (* 0.3 = 0.846828 loss)
I0401 14:53:36.571182 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.825591 (* 0.3 = 0.247677 loss)
I0401 14:53:36.571193 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.179487
I0401 14:53:36.571207 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.784091
I0401 14:53:36.571218 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.487179
I0401 14:53:36.571231 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.93953 (* 0.3 = 0.881858 loss)
I0401 14:53:36.571244 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.849905 (* 0.3 = 0.254972 loss)
I0401 14:53:36.571257 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.282051
I0401 14:53:36.571269 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.801136
I0401 14:53:36.571280 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.512821
I0401 14:53:36.571293 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.35164 (* 1 = 2.35164 loss)
I0401 14:53:36.571306 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.727965 (* 1 = 0.727965 loss)
I0401 14:53:36.571318 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 14:53:36.571331 6134 solver.cpp:245] Train net output #16: total_confidence = 0.00139026
I0401 14:53:36.571342 6134 sgd_solver.cpp:106] Iteration 29500, lr = 0.01
I0401 14:55:44.894884 6134 solver.cpp:338] Iteration 30000, Testing net (#0)
I0401 14:56:14.640405 6134 solver.cpp:393] Test loss: 5.12796
I0401 14:56:14.640450 6134 solver.cpp:406] Test net output #0: loss1/accuracy = 0.164273
I0401 14:56:14.640465 6134 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.790363
I0401 14:56:14.640477 6134 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.398009
I0401 14:56:14.640492 6134 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 2.77347 (* 0.3 = 0.832041 loss)
I0401 14:56:14.640507 6134 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.739214 (* 0.3 = 0.221764 loss)
I0401 14:56:14.640522 6134 solver.cpp:406] Test net output #5: loss2/accuracy = 0.201178
I0401 14:56:14.640535 6134 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.80091
I0401 14:56:14.640547 6134 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.488425
I0401 14:56:14.640560 6134 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 2.62329 (* 0.3 = 0.786988 loss)
I0401 14:56:14.640574 6134 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.687587 (* 0.3 = 0.206276 loss)
I0401 14:56:14.640585 6134 solver.cpp:406] Test net output #10: loss3/accuracy = 0.276553
I0401 14:56:14.640597 6134 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.811319
I0401 14:56:14.640609 6134 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.576795
I0401 14:56:14.640621 6134 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 2.4214 (* 1 = 2.4214 loss)
I0401 14:56:14.640635 6134 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.659487 (* 1 = 0.659487 loss)
I0401 14:56:14.640646 6134 solver.cpp:406] Test net output #15: total_accuracy = 0.002
I0401 14:56:14.640657 6134 solver.cpp:406] Test net output #16: total_confidence = 0.00351599
I0401 14:56:14.791204 6134 solver.cpp:229] Iteration 30000, loss = 5.64372
I0401 14:56:14.791244 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0697674
I0401 14:56:14.791260 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.761364
I0401 14:56:14.791272 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.232558
I0401 14:56:14.791287 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.93291 (* 0.3 = 0.879872 loss)
I0401 14:56:14.791301 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.803378 (* 0.3 = 0.241014 loss)
I0401 14:56:14.791314 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.139535
I0401 14:56:14.791327 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.767045
I0401 14:56:14.791339 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.372093
I0401 14:56:14.791352 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.73877 (* 0.3 = 0.821631 loss)
I0401 14:56:14.791366 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.80316 (* 0.3 = 0.240948 loss)
I0401 14:56:14.791378 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.186047
I0401 14:56:14.791390 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.789773
I0401 14:56:14.791401 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.44186
I0401 14:56:14.791415 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.52431 (* 1 = 2.52431 loss)
I0401 14:56:14.791429 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.688534 (* 1 = 0.688534 loss)
I0401 14:56:14.791440 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 14:56:14.791451 6134 solver.cpp:245] Train net output #16: total_confidence = 0.00207242
I0401 14:56:14.791465 6134 sgd_solver.cpp:106] Iteration 30000, lr = 0.01
I0401 14:58:23.067124 6134 solver.cpp:229] Iteration 30500, loss = 5.61595
I0401 14:58:23.067430 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.142857
I0401 14:58:23.067451 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.778409
I0401 14:58:23.067463 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.404762
I0401 14:58:23.067478 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.89773 (* 0.3 = 0.869321 loss)
I0401 14:58:23.067492 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.775126 (* 0.3 = 0.232538 loss)
I0401 14:58:23.067505 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.166667
I0401 14:58:23.067520 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.795455
I0401 14:58:23.067533 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.428571
I0401 14:58:23.067546 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.93739 (* 0.3 = 0.881217 loss)
I0401 14:58:23.067561 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.769859 (* 0.3 = 0.230958 loss)
I0401 14:58:23.067574 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.214286
I0401 14:58:23.067584 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.795455
I0401 14:58:23.067595 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.428571
I0401 14:58:23.067610 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.65376 (* 1 = 2.65376 loss)
I0401 14:58:23.067622 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.71221 (* 1 = 0.71221 loss)
I0401 14:58:23.067634 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 14:58:23.067646 6134 solver.cpp:245] Train net output #16: total_confidence = 0.00202828
I0401 14:58:23.067657 6134 sgd_solver.cpp:106] Iteration 30500, lr = 0.01
I0401 15:00:31.577500 6134 solver.cpp:229] Iteration 31000, loss = 5.63256
I0401 15:00:31.577646 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0740741
I0401 15:00:31.577666 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.715909
I0401 15:00:31.577679 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.277778
I0401 15:00:31.577695 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.0718 (* 0.3 = 0.92154 loss)
I0401 15:00:31.577710 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.976732 (* 0.3 = 0.29302 loss)
I0401 15:00:31.577723 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.12963
I0401 15:00:31.577735 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.732955
I0401 15:00:31.577746 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.240741
I0401 15:00:31.577761 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.16537 (* 0.3 = 0.949611 loss)
I0401 15:00:31.577775 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.995386 (* 0.3 = 0.298616 loss)
I0401 15:00:31.577786 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.12963
I0401 15:00:31.577798 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.727273
I0401 15:00:31.577811 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.296296
I0401 15:00:31.577823 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.03443 (* 1 = 3.03443 loss)
I0401 15:00:31.577837 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.966408 (* 1 = 0.966408 loss)
I0401 15:00:31.577849 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 15:00:31.577860 6134 solver.cpp:245] Train net output #16: total_confidence = 0.000221629
I0401 15:00:31.577872 6134 sgd_solver.cpp:106] Iteration 31000, lr = 0.01
I0401 15:02:40.168670 6134 solver.cpp:229] Iteration 31500, loss = 5.60251
I0401 15:02:40.168787 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.116279
I0401 15:02:40.168805 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.778409
I0401 15:02:40.168817 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.232558
I0401 15:02:40.168833 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.08718 (* 0.3 = 0.926154 loss)
I0401 15:02:40.168848 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.836157 (* 0.3 = 0.250847 loss)
I0401 15:02:40.168860 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.116279
I0401 15:02:40.168872 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.767045
I0401 15:02:40.168884 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.348837
I0401 15:02:40.168897 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.90159 (* 0.3 = 0.870477 loss)
I0401 15:02:40.168911 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.832883 (* 0.3 = 0.249865 loss)
I0401 15:02:40.168925 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.186047
I0401 15:02:40.168936 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.784091
I0401 15:02:40.168947 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.465116
I0401 15:02:40.168962 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.615 (* 1 = 2.615 loss)
I0401 15:02:40.168974 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.729809 (* 1 = 0.729809 loss)
I0401 15:02:40.168987 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 15:02:40.168998 6134 solver.cpp:245] Train net output #16: total_confidence = 0.000354832
I0401 15:02:40.169009 6134 sgd_solver.cpp:106] Iteration 31500, lr = 0.01
I0401 15:04:48.541823 6134 solver.cpp:229] Iteration 32000, loss = 5.61025
I0401 15:04:48.541962 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.170213
I0401 15:04:48.541982 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.755682
I0401 15:04:48.541995 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.446809
I0401 15:04:48.542009 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.70011 (* 0.3 = 0.810033 loss)
I0401 15:04:48.542024 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.868042 (* 0.3 = 0.260413 loss)
I0401 15:04:48.542037 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.170213
I0401 15:04:48.542048 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.761364
I0401 15:04:48.542060 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.446809
I0401 15:04:48.542073 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.64557 (* 0.3 = 0.793671 loss)
I0401 15:04:48.542088 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.838326 (* 0.3 = 0.251498 loss)
I0401 15:04:48.542099 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.255319
I0401 15:04:48.542111 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.767045
I0401 15:04:48.542122 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.553191
I0401 15:04:48.542136 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.31058 (* 1 = 2.31058 loss)
I0401 15:04:48.542150 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.722816 (* 1 = 0.722816 loss)
I0401 15:04:48.542162 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 15:04:48.542173 6134 solver.cpp:245] Train net output #16: total_confidence = 0.000453888
I0401 15:04:48.542186 6134 sgd_solver.cpp:106] Iteration 32000, lr = 0.01
I0401 15:06:56.997766 6134 solver.cpp:229] Iteration 32500, loss = 5.52099
I0401 15:06:56.998049 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.037037
I0401 15:06:56.998072 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.704545
I0401 15:06:56.998086 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.240741
I0401 15:06:56.998103 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.24351 (* 0.3 = 0.973052 loss)
I0401 15:06:56.998118 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.02368 (* 0.3 = 0.307105 loss)
I0401 15:06:56.998131 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.12963
I0401 15:06:56.998143 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.732955
I0401 15:06:56.998155 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.240741
I0401 15:06:56.998168 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.16876 (* 0.3 = 0.950628 loss)
I0401 15:06:56.998183 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.999521 (* 0.3 = 0.299856 loss)
I0401 15:06:56.998195 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.148148
I0401 15:06:56.998208 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.738636
I0401 15:06:56.998219 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.407407
I0401 15:06:56.998232 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.08366 (* 1 = 3.08366 loss)
I0401 15:06:56.998246 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.967447 (* 1 = 0.967447 loss)
I0401 15:06:56.998258 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 15:06:56.998270 6134 solver.cpp:245] Train net output #16: total_confidence = 0.000333085
I0401 15:06:56.998282 6134 sgd_solver.cpp:106] Iteration 32500, lr = 0.01
I0401 15:09:05.352882 6134 solver.cpp:229] Iteration 33000, loss = 5.48267
I0401 15:09:05.353021 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.133333
I0401 15:09:05.353042 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.778409
I0401 15:09:05.353055 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.355556
I0401 15:09:05.353071 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.0237 (* 0.3 = 0.90711 loss)
I0401 15:09:05.353088 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.811496 (* 0.3 = 0.243449 loss)
I0401 15:09:05.353101 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.133333
I0401 15:09:05.353113 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.778409
I0401 15:09:05.353126 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.333333
I0401 15:09:05.353150 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.84536 (* 0.3 = 0.853608 loss)
I0401 15:09:05.353168 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.766473 (* 0.3 = 0.229942 loss)
I0401 15:09:05.353188 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.311111
I0401 15:09:05.353211 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.818182
I0401 15:09:05.353231 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.444444
I0401 15:09:05.353257 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.62487 (* 1 = 2.62487 loss)
I0401 15:09:05.353283 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.702 (* 1 = 0.702 loss)
I0401 15:09:05.353303 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 15:09:05.353317 6134 solver.cpp:245] Train net output #16: total_confidence = 0.00352263
I0401 15:09:05.353328 6134 sgd_solver.cpp:106] Iteration 33000, lr = 0.01
I0401 15:11:13.795368 6134 solver.cpp:229] Iteration 33500, loss = 5.45655
I0401 15:11:13.795480 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.195652
I0401 15:11:13.795500 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.767045
I0401 15:11:13.795513 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.369565
I0401 15:11:13.795531 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.67764 (* 0.3 = 0.803291 loss)
I0401 15:11:13.795547 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.808648 (* 0.3 = 0.242594 loss)
I0401 15:11:13.795560 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.173913
I0401 15:11:13.795572 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.755682
I0401 15:11:13.795584 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.478261
I0401 15:11:13.795598 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.47011 (* 0.3 = 0.741033 loss)
I0401 15:11:13.795611 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.738019 (* 0.3 = 0.221406 loss)
I0401 15:11:13.795624 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.369565
I0401 15:11:13.795634 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.818182
I0401 15:11:13.795646 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.543478
I0401 15:11:13.795660 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.15767 (* 1 = 2.15767 loss)
I0401 15:11:13.795672 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.632344 (* 1 = 0.632344 loss)
I0401 15:11:13.795685 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 15:11:13.795696 6134 solver.cpp:245] Train net output #16: total_confidence = 0.00165655
I0401 15:11:13.795708 6134 sgd_solver.cpp:106] Iteration 33500, lr = 0.01
I0401 15:13:22.152452 6134 solver.cpp:229] Iteration 34000, loss = 5.43822
I0401 15:13:22.152590 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.12766
I0401 15:13:22.152611 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.75
I0401 15:13:22.152623 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.276596
I0401 15:13:22.152639 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.56039 (* 0.3 = 1.06812 loss)
I0401 15:13:22.152654 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.07914 (* 0.3 = 0.323743 loss)
I0401 15:13:22.152667 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.106383
I0401 15:13:22.152679 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.738636
I0401 15:13:22.152691 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.255319
I0401 15:13:22.152704 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.45259 (* 0.3 = 1.03578 loss)
I0401 15:13:22.152719 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.0574 (* 0.3 = 0.317221 loss)
I0401 15:13:22.152730 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.234043
I0401 15:13:22.152742 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.761364
I0401 15:13:22.152753 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.340426
I0401 15:13:22.152767 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.0247 (* 1 = 3.0247 loss)
I0401 15:13:22.152781 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.932011 (* 1 = 0.932011 loss)
I0401 15:13:22.152792 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 15:13:22.152803 6134 solver.cpp:245] Train net output #16: total_confidence = 0.000740599
I0401 15:13:22.152815 6134 sgd_solver.cpp:106] Iteration 34000, lr = 0.01
I0401 15:15:30.702716 6134 solver.cpp:229] Iteration 34500, loss = 5.40896
I0401 15:15:30.702824 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.232558
I0401 15:15:30.702843 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.806818
I0401 15:15:30.702855 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.418605
I0401 15:15:30.702872 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.62253 (* 0.3 = 0.78676 loss)
I0401 15:15:30.702886 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.704151 (* 0.3 = 0.211245 loss)
I0401 15:15:30.702898 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.186047
I0401 15:15:30.702911 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.789773
I0401 15:15:30.702924 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.465116
I0401 15:15:30.702936 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.58708 (* 0.3 = 0.776124 loss)
I0401 15:15:30.702950 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.699844 (* 0.3 = 0.209953 loss)
I0401 15:15:30.702970 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.465116
I0401 15:15:30.702993 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.857955
I0401 15:15:30.703017 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.674419
I0401 15:15:30.703047 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.83125 (* 1 = 1.83125 loss)
I0401 15:15:30.703063 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.512182 (* 1 = 0.512182 loss)
I0401 15:15:30.703074 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0401 15:15:30.703086 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0120649
I0401 15:15:30.703099 6134 sgd_solver.cpp:106] Iteration 34500, lr = 0.01
I0401 15:17:38.755453 6134 solver.cpp:338] Iteration 35000, Testing net (#0)
I0401 15:18:08.495537 6134 solver.cpp:393] Test loss: 4.61024
I0401 15:18:08.495594 6134 solver.cpp:406] Test net output #0: loss1/accuracy = 0.214214
I0401 15:18:08.495609 6134 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.802909
I0401 15:18:08.495622 6134 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.480776
I0401 15:18:08.495640 6134 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 2.56555 (* 0.3 = 0.769665 loss)
I0401 15:18:08.495654 6134 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.676454 (* 0.3 = 0.202936 loss)
I0401 15:18:08.495666 6134 solver.cpp:406] Test net output #5: loss2/accuracy = 0.239841
I0401 15:18:08.495677 6134 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.810637
I0401 15:18:08.495689 6134 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.529415
I0401 15:18:08.495702 6134 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 2.50448 (* 0.3 = 0.751343 loss)
I0401 15:18:08.495717 6134 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.642538 (* 0.3 = 0.192762 loss)
I0401 15:18:08.495728 6134 solver.cpp:406] Test net output #10: loss3/accuracy = 0.384719
I0401 15:18:08.495739 6134 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.840047
I0401 15:18:08.495750 6134 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.635139
I0401 15:18:08.495764 6134 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 2.12172 (* 1 = 2.12172 loss)
I0401 15:18:08.495776 6134 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.571811 (* 1 = 0.571811 loss)
I0401 15:18:08.495789 6134 solver.cpp:406] Test net output #15: total_accuracy = 0.002
I0401 15:18:08.495800 6134 solver.cpp:406] Test net output #16: total_confidence = 0.00690701
I0401 15:18:08.646796 6134 solver.cpp:229] Iteration 35000, loss = 5.34427
I0401 15:18:08.646841 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.186047
I0401 15:18:08.646857 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.789773
I0401 15:18:08.646869 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.395349
I0401 15:18:08.646884 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.82389 (* 0.3 = 0.847168 loss)
I0401 15:18:08.646898 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.75579 (* 0.3 = 0.226737 loss)
I0401 15:18:08.646910 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.116279
I0401 15:18:08.646922 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.767045
I0401 15:18:08.646934 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.372093
I0401 15:18:08.646947 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.73159 (* 0.3 = 0.819476 loss)
I0401 15:18:08.646961 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.764398 (* 0.3 = 0.229319 loss)
I0401 15:18:08.646973 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.348837
I0401 15:18:08.646986 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.829545
I0401 15:18:08.646997 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.604651
I0401 15:18:08.647011 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.26298 (* 1 = 2.26298 loss)
I0401 15:18:08.647024 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.622973 (* 1 = 0.622973 loss)
I0401 15:18:08.647037 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 15:18:08.647050 6134 solver.cpp:245] Train net output #16: total_confidence = 0.00236579
I0401 15:18:08.647063 6134 sgd_solver.cpp:106] Iteration 35000, lr = 0.01
I0401 15:20:17.113476 6134 solver.cpp:229] Iteration 35500, loss = 5.34331
I0401 15:20:17.113610 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.285714
I0401 15:20:17.113631 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.823864
I0401 15:20:17.113643 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.452381
I0401 15:20:17.113659 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.65528 (* 0.3 = 0.796584 loss)
I0401 15:20:17.113673 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.722775 (* 0.3 = 0.216833 loss)
I0401 15:20:17.113685 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.357143
I0401 15:20:17.113698 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.829545
I0401 15:20:17.113709 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.52381
I0401 15:20:17.113723 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.38596 (* 0.3 = 0.715787 loss)
I0401 15:20:17.113737 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.668123 (* 0.3 = 0.200437 loss)
I0401 15:20:17.113749 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.380952
I0401 15:20:17.113761 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.829545
I0401 15:20:17.113772 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.619048
I0401 15:20:17.113786 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.02598 (* 1 = 2.02598 loss)
I0401 15:20:17.113801 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.550661 (* 1 = 0.550661 loss)
I0401 15:20:17.113812 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 15:20:17.113823 6134 solver.cpp:245] Train net output #16: total_confidence = 0.00913007
I0401 15:20:17.113837 6134 sgd_solver.cpp:106] Iteration 35500, lr = 0.01
I0401 15:22:25.735653 6134 solver.cpp:229] Iteration 36000, loss = 5.33662
I0401 15:22:25.735754 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.181818
I0401 15:22:25.735772 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.761364
I0401 15:22:25.735785 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.363636
I0401 15:22:25.735800 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.75668 (* 0.3 = 0.827003 loss)
I0401 15:22:25.735816 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.878282 (* 0.3 = 0.263484 loss)
I0401 15:22:25.735828 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.25
I0401 15:22:25.735841 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.767045
I0401 15:22:25.735852 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.477273
I0401 15:22:25.735865 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.68576 (* 0.3 = 0.805729 loss)
I0401 15:22:25.735879 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.899154 (* 0.3 = 0.269746 loss)
I0401 15:22:25.735895 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.295455
I0401 15:22:25.735908 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.801136
I0401 15:22:25.735918 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.431818
I0401 15:22:25.735932 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.53234 (* 1 = 2.53234 loss)
I0401 15:22:25.735946 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.774421 (* 1 = 0.774421 loss)
I0401 15:22:25.735959 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 15:22:25.735970 6134 solver.cpp:245] Train net output #16: total_confidence = 0.000978123
I0401 15:22:25.735981 6134 sgd_solver.cpp:106] Iteration 36000, lr = 0.01
I0401 15:24:33.980589 6134 solver.cpp:229] Iteration 36500, loss = 5.24859
I0401 15:24:33.980729 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.229167
I0401 15:24:33.980751 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.789773
I0401 15:24:33.980764 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.520833
I0401 15:24:33.980779 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.73328 (* 0.3 = 0.819985 loss)
I0401 15:24:33.980794 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.810041 (* 0.3 = 0.243012 loss)
I0401 15:24:33.980806 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.208333
I0401 15:24:33.980818 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.778409
I0401 15:24:33.980830 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.520833
I0401 15:24:33.980844 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.64413 (* 0.3 = 0.793238 loss)
I0401 15:24:33.980857 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.776303 (* 0.3 = 0.232891 loss)
I0401 15:24:33.980870 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.375
I0401 15:24:33.980881 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.823864
I0401 15:24:33.980893 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.604167
I0401 15:24:33.980906 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.10785 (* 1 = 2.10785 loss)
I0401 15:24:33.980921 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.63085 (* 1 = 0.63085 loss)
I0401 15:24:33.980932 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 15:24:33.980943 6134 solver.cpp:245] Train net output #16: total_confidence = 0.00441509
I0401 15:24:33.980955 6134 sgd_solver.cpp:106] Iteration 36500, lr = 0.01
I0401 15:26:42.378340 6134 solver.cpp:229] Iteration 37000, loss = 5.24584
I0401 15:26:42.378602 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0731707
I0401 15:26:42.378623 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.732955
I0401 15:26:42.378635 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.292683
I0401 15:26:42.378651 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.93944 (* 0.3 = 0.881832 loss)
I0401 15:26:42.378665 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.92282 (* 0.3 = 0.276846 loss)
I0401 15:26:42.378677 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.219512
I0401 15:26:42.378690 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.761364
I0401 15:26:42.378701 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.390244
I0401 15:26:42.378715 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.7267 (* 0.3 = 0.81801 loss)
I0401 15:26:42.378729 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.933107 (* 0.3 = 0.279932 loss)
I0401 15:26:42.378741 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.292683
I0401 15:26:42.378753 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.772727
I0401 15:26:42.378764 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.512195
I0401 15:26:42.378777 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.29913 (* 1 = 2.29913 loss)
I0401 15:26:42.378792 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.753465 (* 1 = 0.753465 loss)
I0401 15:26:42.378803 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 15:26:42.378814 6134 solver.cpp:245] Train net output #16: total_confidence = 0.00611665
I0401 15:26:42.378826 6134 sgd_solver.cpp:106] Iteration 37000, lr = 0.01
I0401 15:28:50.807435 6134 solver.cpp:229] Iteration 37500, loss = 5.26914
I0401 15:28:50.807585 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.204082
I0401 15:28:50.807605 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.778409
I0401 15:28:50.807617 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.408163
I0401 15:28:50.807633 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.73905 (* 0.3 = 0.821714 loss)
I0401 15:28:50.807648 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.788707 (* 0.3 = 0.236612 loss)
I0401 15:28:50.807660 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.183673
I0401 15:28:50.807672 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.772727
I0401 15:28:50.807684 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.367347
I0401 15:28:50.807698 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.67966 (* 0.3 = 0.803897 loss)
I0401 15:28:50.807711 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.768196 (* 0.3 = 0.230459 loss)
I0401 15:28:50.807723 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.285714
I0401 15:28:50.807735 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.795455
I0401 15:28:50.807746 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.469388
I0401 15:28:50.807760 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.32343 (* 1 = 2.32343 loss)
I0401 15:28:50.807773 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.66458 (* 1 = 0.66458 loss)
I0401 15:28:50.807785 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 15:28:50.807797 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0207813
I0401 15:28:50.807808 6134 sgd_solver.cpp:106] Iteration 37500, lr = 0.01
I0401 15:30:59.318486 6134 solver.cpp:229] Iteration 38000, loss = 5.17791
I0401 15:30:59.318586 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.125
I0401 15:30:59.318604 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.715909
I0401 15:30:59.318617 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.214286
I0401 15:30:59.318634 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.05678 (* 0.3 = 0.917034 loss)
I0401 15:30:59.318647 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.02917 (* 0.3 = 0.308751 loss)
I0401 15:30:59.318660 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.160714
I0401 15:30:59.318672 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.732955
I0401 15:30:59.318684 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.303571
I0401 15:30:59.318698 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.05211 (* 0.3 = 0.915632 loss)
I0401 15:30:59.318711 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.997909 (* 0.3 = 0.299373 loss)
I0401 15:30:59.318723 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.196429
I0401 15:30:59.318735 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.744318
I0401 15:30:59.318747 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.410714
I0401 15:30:59.318760 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.70404 (* 1 = 2.70404 loss)
I0401 15:30:59.318773 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.899963 (* 1 = 0.899963 loss)
I0401 15:30:59.318785 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 15:30:59.318797 6134 solver.cpp:245] Train net output #16: total_confidence = 0.00771179
I0401 15:30:59.318809 6134 sgd_solver.cpp:106] Iteration 38000, lr = 0.01
I0401 15:33:07.742674 6134 solver.cpp:229] Iteration 38500, loss = 5.18309
I0401 15:33:07.742846 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.348837
I0401 15:33:07.742867 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.823864
I0401 15:33:07.742880 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.581395
I0401 15:33:07.742897 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.26158 (* 0.3 = 0.678473 loss)
I0401 15:33:07.742911 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.616077 (* 0.3 = 0.184823 loss)
I0401 15:33:07.742924 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.302326
I0401 15:33:07.742936 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.806818
I0401 15:33:07.742947 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.581395
I0401 15:33:07.742961 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.29252 (* 0.3 = 0.687756 loss)
I0401 15:33:07.742974 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.652144 (* 0.3 = 0.195643 loss)
I0401 15:33:07.742986 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.395349
I0401 15:33:07.742998 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.8125
I0401 15:33:07.743010 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.651163
I0401 15:33:07.743026 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.70267 (* 1 = 1.70267 loss)
I0401 15:33:07.743039 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.534672 (* 1 = 0.534672 loss)
I0401 15:33:07.743052 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 15:33:07.743062 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0199046
I0401 15:33:07.743074 6134 sgd_solver.cpp:106] Iteration 38500, lr = 0.01
I0401 15:35:16.297148 6134 solver.cpp:229] Iteration 39000, loss = 5.10351
I0401 15:35:16.297265 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.159091
I0401 15:35:16.297283 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.778409
I0401 15:35:16.297297 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.477273
I0401 15:35:16.297312 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.58408 (* 0.3 = 0.775225 loss)
I0401 15:35:16.297327 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.727002 (* 0.3 = 0.218101 loss)
I0401 15:35:16.297338 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.25
I0401 15:35:16.297350 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.795455
I0401 15:35:16.297363 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.545455
I0401 15:35:16.297376 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.31459 (* 0.3 = 0.694377 loss)
I0401 15:35:16.297390 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.67903 (* 0.3 = 0.203709 loss)
I0401 15:35:16.297410 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.5
I0401 15:35:16.297427 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.840909
I0401 15:35:16.297440 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.727273
I0401 15:35:16.297454 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.87596 (* 1 = 1.87596 loss)
I0401 15:35:16.297467 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.562416 (* 1 = 0.562416 loss)
I0401 15:35:16.297479 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 15:35:16.297492 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0144186
I0401 15:35:16.297503 6134 sgd_solver.cpp:106] Iteration 39000, lr = 0.01
I0401 15:37:24.773236 6134 solver.cpp:229] Iteration 39500, loss = 5.1535
I0401 15:37:24.773521 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.272727
I0401 15:37:24.773541 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.8125
I0401 15:37:24.773555 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.431818
I0401 15:37:24.773571 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.50711 (* 0.3 = 0.752133 loss)
I0401 15:37:24.773584 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.681222 (* 0.3 = 0.204367 loss)
I0401 15:37:24.773597 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.318182
I0401 15:37:24.773610 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.806818
I0401 15:37:24.773622 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.522727
I0401 15:37:24.773635 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.2415 (* 0.3 = 0.672449 loss)
I0401 15:37:24.773649 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.640859 (* 0.3 = 0.192258 loss)
I0401 15:37:24.773661 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.431818
I0401 15:37:24.773674 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.846591
I0401 15:37:24.773684 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.636364
I0401 15:37:24.773699 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.83194 (* 1 = 1.83194 loss)
I0401 15:37:24.773712 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.499599 (* 1 = 0.499599 loss)
I0401 15:37:24.773725 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 15:37:24.773736 6134 solver.cpp:245] Train net output #16: total_confidence = 0.00350031
I0401 15:37:24.773746 6134 sgd_solver.cpp:106] Iteration 39500, lr = 0.01
I0401 15:39:33.031548 6134 solver.cpp:338] Iteration 40000, Testing net (#0)
I0401 15:40:02.492645 6134 solver.cpp:393] Test loss: 4.46918
I0401 15:40:02.492694 6134 solver.cpp:406] Test net output #0: loss1/accuracy = 0.19482
I0401 15:40:02.492710 6134 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.796
I0401 15:40:02.492722 6134 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.468429
I0401 15:40:02.492738 6134 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 2.63986 (* 0.3 = 0.791959 loss)
I0401 15:40:02.492753 6134 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.71024 (* 0.3 = 0.213072 loss)
I0401 15:40:02.492763 6134 solver.cpp:406] Test net output #5: loss2/accuracy = 0.278834
I0401 15:40:02.492775 6134 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.816637
I0401 15:40:02.492787 6134 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.593573
I0401 15:40:02.492800 6134 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 2.35326 (* 0.3 = 0.705978 loss)
I0401 15:40:02.492815 6134 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.624441 (* 0.3 = 0.187332 loss)
I0401 15:40:02.492825 6134 solver.cpp:406] Test net output #10: loss3/accuracy = 0.416387
I0401 15:40:02.492838 6134 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.837956
I0401 15:40:02.492849 6134 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.693108
I0401 15:40:02.492863 6134 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 2.0022 (* 1 = 2.0022 loss)
I0401 15:40:02.492877 6134 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.56864 (* 1 = 0.56864 loss)
I0401 15:40:02.492888 6134 solver.cpp:406] Test net output #15: total_accuracy = 0.007
I0401 15:40:02.492907 6134 solver.cpp:406] Test net output #16: total_confidence = 0.014633
I0401 15:40:02.647099 6134 solver.cpp:229] Iteration 40000, loss = 5.04233
I0401 15:40:02.647184 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.145833
I0401 15:40:02.647217 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.761364
I0401 15:40:02.647239 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.3125
I0401 15:40:02.647267 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.02751 (* 0.3 = 0.908252 loss)
I0401 15:40:02.647300 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.889922 (* 0.3 = 0.266977 loss)
I0401 15:40:02.647322 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.229167
I0401 15:40:02.647346 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.772727
I0401 15:40:02.647366 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.4375
I0401 15:40:02.647392 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.89548 (* 0.3 = 0.868643 loss)
I0401 15:40:02.647416 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.884563 (* 0.3 = 0.265369 loss)
I0401 15:40:02.647438 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.354167
I0401 15:40:02.647459 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.8125
I0401 15:40:02.647478 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.541667
I0401 15:40:02.647503 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.37596 (* 1 = 2.37596 loss)
I0401 15:40:02.647527 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.741458 (* 1 = 0.741458 loss)
I0401 15:40:02.647548 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0401 15:40:02.647578 6134 solver.cpp:245] Train net output #16: total_confidence = 0.00797599
I0401 15:40:02.647600 6134 sgd_solver.cpp:106] Iteration 40000, lr = 0.01
I0401 15:42:10.793766 6134 solver.cpp:229] Iteration 40500, loss = 5.06271
I0401 15:42:10.793892 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.275
I0401 15:42:10.793913 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.8125
I0401 15:42:10.793926 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.55
I0401 15:42:10.793941 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.5271 (* 0.3 = 0.758131 loss)
I0401 15:42:10.793956 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.692224 (* 0.3 = 0.207667 loss)
I0401 15:42:10.793968 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.275
I0401 15:42:10.793979 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.795455
I0401 15:42:10.793992 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.4
I0401 15:42:10.794005 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.43301 (* 0.3 = 0.729902 loss)
I0401 15:42:10.794018 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.719813 (* 0.3 = 0.215944 loss)
I0401 15:42:10.794030 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.4
I0401 15:42:10.794042 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.846591
I0401 15:42:10.794054 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.575
I0401 15:42:10.794070 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.13082 (* 1 = 2.13082 loss)
I0401 15:42:10.794085 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.591507 (* 1 = 0.591507 loss)
I0401 15:42:10.794096 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0401 15:42:10.794107 6134 solver.cpp:245] Train net output #16: total_confidence = 0.00773209
I0401 15:42:10.794119 6134 sgd_solver.cpp:106] Iteration 40500, lr = 0.01
I0401 15:44:19.348440 6134 solver.cpp:229] Iteration 41000, loss = 4.98494
I0401 15:44:19.348590 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.172414
I0401 15:44:19.348611 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.727273
I0401 15:44:19.348623 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.344828
I0401 15:44:19.348639 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.80358 (* 0.3 = 0.841074 loss)
I0401 15:44:19.348654 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.946067 (* 0.3 = 0.28382 loss)
I0401 15:44:19.348666 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.189655
I0401 15:44:19.348678 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.727273
I0401 15:44:19.348690 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.396552
I0401 15:44:19.348703 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.7367 (* 0.3 = 0.821009 loss)
I0401 15:44:19.348717 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.932362 (* 0.3 = 0.279709 loss)
I0401 15:44:19.348729 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.241379
I0401 15:44:19.348742 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.744318
I0401 15:44:19.348752 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.517241
I0401 15:44:19.348765 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.35806 (* 1 = 2.35806 loss)
I0401 15:44:19.348779 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.80588 (* 1 = 0.80588 loss)
I0401 15:44:19.348791 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 15:44:19.348803 6134 solver.cpp:245] Train net output #16: total_confidence = 0.00203591
I0401 15:44:19.348815 6134 sgd_solver.cpp:106] Iteration 41000, lr = 0.01
I0401 15:46:27.807608 6134 solver.cpp:229] Iteration 41500, loss = 4.96139
I0401 15:46:27.807837 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.24
I0401 15:46:27.807854 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.778409
I0401 15:46:27.807868 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.48
I0401 15:46:27.807883 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.53109 (* 0.3 = 0.759326 loss)
I0401 15:46:27.807896 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.764471 (* 0.3 = 0.229341 loss)
I0401 15:46:27.807909 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.36
I0401 15:46:27.807921 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.8125
I0401 15:46:27.807932 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.6
I0401 15:46:27.807946 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.34846 (* 0.3 = 0.704539 loss)
I0401 15:46:27.807968 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.700915 (* 0.3 = 0.210275 loss)
I0401 15:46:27.807993 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.42
I0401 15:46:27.808018 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.823864
I0401 15:46:27.808039 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.72
I0401 15:46:27.808055 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.84665 (* 1 = 1.84665 loss)
I0401 15:46:27.808069 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.553904 (* 1 = 0.553904 loss)
I0401 15:46:27.808084 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 15:46:27.808095 6134 solver.cpp:245] Train net output #16: total_confidence = 0.00925162
I0401 15:46:27.808107 6134 sgd_solver.cpp:106] Iteration 41500, lr = 0.01
I0401 15:48:36.375327 6134 solver.cpp:229] Iteration 42000, loss = 4.97625
I0401 15:48:36.375473 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.125
I0401 15:48:36.375494 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.767045
I0401 15:48:36.375505 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.3
I0401 15:48:36.375524 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.09904 (* 0.3 = 0.929713 loss)
I0401 15:48:36.375538 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.857041 (* 0.3 = 0.257112 loss)
I0401 15:48:36.375551 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.2
I0401 15:48:36.375563 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.761364
I0401 15:48:36.375574 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.425
I0401 15:48:36.375588 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.97335 (* 0.3 = 0.892006 loss)
I0401 15:48:36.375602 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.887957 (* 0.3 = 0.266387 loss)
I0401 15:48:36.375614 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.25
I0401 15:48:36.375633 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.778409
I0401 15:48:36.375644 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.6
I0401 15:48:36.375658 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.42271 (* 1 = 2.42271 loss)
I0401 15:48:36.375671 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.745218 (* 1 = 0.745218 loss)
I0401 15:48:36.375684 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 15:48:36.375694 6134 solver.cpp:245] Train net output #16: total_confidence = 0.00355502
I0401 15:48:36.375706 6134 sgd_solver.cpp:106] Iteration 42000, lr = 0.01
I0401 15:50:44.551810 6134 solver.cpp:229] Iteration 42500, loss = 4.95348
I0401 15:50:44.551941 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.229167
I0401 15:50:44.551960 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.767045
I0401 15:50:44.551973 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.416667
I0401 15:50:44.551988 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.01484 (* 0.3 = 0.904451 loss)
I0401 15:50:44.552002 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.936293 (* 0.3 = 0.280888 loss)
I0401 15:50:44.552016 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.229167
I0401 15:50:44.552027 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.772727
I0401 15:50:44.552038 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.416667
I0401 15:50:44.552052 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.70974 (* 0.3 = 0.812923 loss)
I0401 15:50:44.552065 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.829557 (* 0.3 = 0.248867 loss)
I0401 15:50:44.552078 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.458333
I0401 15:50:44.552088 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.823864
I0401 15:50:44.552100 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.604167
I0401 15:50:44.552114 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.32564 (* 1 = 2.32564 loss)
I0401 15:50:44.552127 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.727543 (* 1 = 0.727543 loss)
I0401 15:50:44.552139 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 15:50:44.552150 6134 solver.cpp:245] Train net output #16: total_confidence = 0.00220908
I0401 15:50:44.552162 6134 sgd_solver.cpp:106] Iteration 42500, lr = 0.01
I0401 15:52:53.023571 6134 solver.cpp:229] Iteration 43000, loss = 4.91357
I0401 15:52:53.023792 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.173913
I0401 15:52:53.023813 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.778409
I0401 15:52:53.023826 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.413043
I0401 15:52:53.023843 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.46927 (* 0.3 = 1.04078 loss)
I0401 15:52:53.023857 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.0098 (* 0.3 = 0.30294 loss)
I0401 15:52:53.023869 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.173913
I0401 15:52:53.023881 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.767045
I0401 15:52:53.023893 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.456522
I0401 15:52:53.023907 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.51392 (* 0.3 = 1.05418 loss)
I0401 15:52:53.023921 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.991949 (* 0.3 = 0.297585 loss)
I0401 15:52:53.023933 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.23913
I0401 15:52:53.023946 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.789773
I0401 15:52:53.023957 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.478261
I0401 15:52:53.023972 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.9518 (* 1 = 2.9518 loss)
I0401 15:52:53.023985 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.840349 (* 1 = 0.840349 loss)
I0401 15:52:53.023998 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 15:52:53.024009 6134 solver.cpp:245] Train net output #16: total_confidence = 0.00199914
I0401 15:52:53.024022 6134 sgd_solver.cpp:106] Iteration 43000, lr = 0.01
I0401 15:55:01.492164 6134 solver.cpp:229] Iteration 43500, loss = 4.92539
I0401 15:55:01.492283 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0784314
I0401 15:55:01.492303 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.715909
I0401 15:55:01.492316 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.254902
I0401 15:55:01.492331 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.23261 (* 0.3 = 0.969782 loss)
I0401 15:55:01.492346 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.02998 (* 0.3 = 0.308995 loss)
I0401 15:55:01.492357 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0784314
I0401 15:55:01.492370 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.715909
I0401 15:55:01.492382 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.352941
I0401 15:55:01.492395 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.06792 (* 0.3 = 0.920377 loss)
I0401 15:55:01.492409 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.968393 (* 0.3 = 0.290518 loss)
I0401 15:55:01.492421 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.137255
I0401 15:55:01.492432 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.738636
I0401 15:55:01.492450 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.45098
I0401 15:55:01.492477 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.53561 (* 1 = 2.53561 loss)
I0401 15:55:01.492502 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.816407 (* 1 = 0.816407 loss)
I0401 15:55:01.492529 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 15:55:01.492550 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0105986
I0401 15:55:01.492564 6134 sgd_solver.cpp:106] Iteration 43500, lr = 0.01
I0401 15:57:09.668195 6134 solver.cpp:229] Iteration 44000, loss = 4.86729
I0401 15:57:09.668462 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.25
I0401 15:57:09.668481 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.789773
I0401 15:57:09.668494 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.522727
I0401 15:57:09.668509 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.63116 (* 0.3 = 0.789347 loss)
I0401 15:57:09.668526 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.781721 (* 0.3 = 0.234516 loss)
I0401 15:57:09.668540 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.318182
I0401 15:57:09.668551 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.801136
I0401 15:57:09.668563 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.522727
I0401 15:57:09.668576 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.34666 (* 0.3 = 0.703998 loss)
I0401 15:57:09.668591 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.726103 (* 0.3 = 0.217831 loss)
I0401 15:57:09.668602 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.295455
I0401 15:57:09.668613 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.801136
I0401 15:57:09.668625 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.704545
I0401 15:57:09.668638 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.92371 (* 1 = 1.92371 loss)
I0401 15:57:09.668653 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.592157 (* 1 = 0.592157 loss)
I0401 15:57:09.668664 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 15:57:09.668675 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0185316
I0401 15:57:09.668687 6134 sgd_solver.cpp:106] Iteration 44000, lr = 0.01
I0401 15:59:17.910464 6134 solver.cpp:229] Iteration 44500, loss = 4.79339
I0401 15:59:17.910581 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.282609
I0401 15:59:17.910610 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.778409
I0401 15:59:17.910631 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.543478
I0401 15:59:17.910647 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.42638 (* 0.3 = 0.727915 loss)
I0401 15:59:17.910662 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.802901 (* 0.3 = 0.24087 loss)
I0401 15:59:17.910675 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.304348
I0401 15:59:17.910686 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.784091
I0401 15:59:17.910698 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.543478
I0401 15:59:17.910712 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.2567 (* 0.3 = 0.67701 loss)
I0401 15:59:17.910725 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.715648 (* 0.3 = 0.214694 loss)
I0401 15:59:17.910737 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.521739
I0401 15:59:17.910749 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.840909
I0401 15:59:17.910760 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.76087
I0401 15:59:17.910774 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.59357 (* 1 = 1.59357 loss)
I0401 15:59:17.910789 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.501617 (* 1 = 0.501617 loss)
I0401 15:59:17.910800 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 15:59:17.910811 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0562163
I0401 15:59:17.910823 6134 sgd_solver.cpp:106] Iteration 44500, lr = 0.01
I0401 16:01:26.292325 6134 solver.cpp:338] Iteration 45000, Testing net (#0)
I0401 16:01:56.068552 6134 solver.cpp:393] Test loss: 4.59382
I0401 16:01:56.068599 6134 solver.cpp:406] Test net output #0: loss1/accuracy = 0.216705
I0401 16:01:56.068616 6134 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.804772
I0401 16:01:56.068629 6134 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.50792
I0401 16:01:56.068645 6134 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 2.59144 (* 0.3 = 0.777431 loss)
I0401 16:01:56.068658 6134 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.664045 (* 0.3 = 0.199214 loss)
I0401 16:01:56.068671 6134 solver.cpp:406] Test net output #5: loss2/accuracy = 0.262835
I0401 16:01:56.068682 6134 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.816636
I0401 16:01:56.068694 6134 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.596615
I0401 16:01:56.068707 6134 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 2.42824 (* 0.3 = 0.728472 loss)
I0401 16:01:56.068720 6134 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.616192 (* 0.3 = 0.184858 loss)
I0401 16:01:56.068732 6134 solver.cpp:406] Test net output #10: loss3/accuracy = 0.403984
I0401 16:01:56.068743 6134 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.851365
I0401 16:01:56.068754 6134 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.693662
I0401 16:01:56.068768 6134 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 2.15867 (* 1 = 2.15867 loss)
I0401 16:01:56.068780 6134 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.545178 (* 1 = 0.545178 loss)
I0401 16:01:56.068792 6134 solver.cpp:406] Test net output #15: total_accuracy = 0.022
I0401 16:01:56.068804 6134 solver.cpp:406] Test net output #16: total_confidence = 0.0515882
I0401 16:01:56.220038 6134 solver.cpp:229] Iteration 45000, loss = 4.79855
I0401 16:01:56.220088 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.228571
I0401 16:01:56.220105 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.806818
I0401 16:01:56.220118 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.457143
I0401 16:01:56.220132 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.72478 (* 0.3 = 0.817435 loss)
I0401 16:01:56.220151 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.730862 (* 0.3 = 0.219259 loss)
I0401 16:01:56.220165 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.314286
I0401 16:01:56.220176 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.829545
I0401 16:01:56.220187 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.6
I0401 16:01:56.220201 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.30472 (* 0.3 = 0.691417 loss)
I0401 16:01:56.220216 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.610633 (* 0.3 = 0.18319 loss)
I0401 16:01:56.220228 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.542857
I0401 16:01:56.220240 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.863636
I0401 16:01:56.220252 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.742857
I0401 16:01:56.220265 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.60836 (* 1 = 1.60836 loss)
I0401 16:01:56.220279 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.454924 (* 1 = 0.454924 loss)
I0401 16:01:56.220291 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 16:01:56.220304 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0109512
I0401 16:01:56.220315 6134 sgd_solver.cpp:106] Iteration 45000, lr = 0.01
I0401 16:04:04.515130 6134 solver.cpp:229] Iteration 45500, loss = 4.77291
I0401 16:04:04.515256 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.219512
I0401 16:04:04.515276 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.795455
I0401 16:04:04.515288 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.414634
I0401 16:04:04.515303 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.9329 (* 0.3 = 0.879871 loss)
I0401 16:04:04.515318 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.793017 (* 0.3 = 0.237905 loss)
I0401 16:04:04.515331 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.243902
I0401 16:04:04.515342 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.801136
I0401 16:04:04.515354 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.365854
I0401 16:04:04.515368 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.88022 (* 0.3 = 0.864066 loss)
I0401 16:04:04.515382 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.791643 (* 0.3 = 0.237493 loss)
I0401 16:04:04.515393 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.243902
I0401 16:04:04.515405 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.801136
I0401 16:04:04.515418 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.536585
I0401 16:04:04.515430 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.48113 (* 1 = 2.48113 loss)
I0401 16:04:04.515444 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.665521 (* 1 = 0.665521 loss)
I0401 16:04:04.515455 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 16:04:04.515467 6134 solver.cpp:245] Train net output #16: total_confidence = 0.00580688
I0401 16:04:04.515480 6134 sgd_solver.cpp:106] Iteration 45500, lr = 0.01
I0401 16:06:12.864107 6134 solver.cpp:229] Iteration 46000, loss = 4.71955
I0401 16:06:12.864351 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.217391
I0401 16:06:12.864382 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.784091
I0401 16:06:12.864397 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.347826
I0401 16:06:12.864413 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.79121 (* 0.3 = 0.837362 loss)
I0401 16:06:12.864426 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.824111 (* 0.3 = 0.247233 loss)
I0401 16:06:12.864439 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.152174
I0401 16:06:12.864451 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.761364
I0401 16:06:12.864462 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.478261
I0401 16:06:12.864476 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.57867 (* 0.3 = 0.773601 loss)
I0401 16:06:12.864490 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.759582 (* 0.3 = 0.227875 loss)
I0401 16:06:12.864501 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.478261
I0401 16:06:12.864513 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.835227
I0401 16:06:12.864526 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.630435
I0401 16:06:12.864549 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.72135 (* 1 = 1.72135 loss)
I0401 16:06:12.864575 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.539923 (* 1 = 0.539923 loss)
I0401 16:06:12.864598 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0401 16:06:12.864622 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0284555
I0401 16:06:12.864646 6134 sgd_solver.cpp:106] Iteration 46000, lr = 0.01
I0401 16:08:21.296548 6134 solver.cpp:229] Iteration 46500, loss = 4.70397
I0401 16:08:21.296720 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.23913
I0401 16:08:21.296741 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.789773
I0401 16:08:21.296752 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.478261
I0401 16:08:21.296768 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.64089 (* 0.3 = 0.792267 loss)
I0401 16:08:21.296782 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.780271 (* 0.3 = 0.234081 loss)
I0401 16:08:21.296794 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.26087
I0401 16:08:21.296807 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.801136
I0401 16:08:21.296818 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.608696
I0401 16:08:21.296831 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.36738 (* 0.3 = 0.710213 loss)
I0401 16:08:21.296845 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.692546 (* 0.3 = 0.207764 loss)
I0401 16:08:21.296857 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.434783
I0401 16:08:21.296869 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.840909
I0401 16:08:21.296880 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.673913
I0401 16:08:21.296895 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.77823 (* 1 = 1.77823 loss)
I0401 16:08:21.296907 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.530523 (* 1 = 0.530523 loss)
I0401 16:08:21.296919 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 16:08:21.296931 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0176603
I0401 16:08:21.296943 6134 sgd_solver.cpp:106] Iteration 46500, lr = 0.01
I0401 16:10:29.719319 6134 solver.cpp:229] Iteration 47000, loss = 4.73169
I0401 16:10:29.719446 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.215686
I0401 16:10:29.719467 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.772727
I0401 16:10:29.719480 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.392157
I0401 16:10:29.719494 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.86857 (* 0.3 = 0.860572 loss)
I0401 16:10:29.719509 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.85453 (* 0.3 = 0.256359 loss)
I0401 16:10:29.719524 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.235294
I0401 16:10:29.719537 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.778409
I0401 16:10:29.719549 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.529412
I0401 16:10:29.719563 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.70036 (* 0.3 = 0.810107 loss)
I0401 16:10:29.719578 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.811096 (* 0.3 = 0.243329 loss)
I0401 16:10:29.719589 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.431373
I0401 16:10:29.719601 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.835227
I0401 16:10:29.719614 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.72549
I0401 16:10:29.719627 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.9902 (* 1 = 1.9902 loss)
I0401 16:10:29.719640 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.595502 (* 1 = 0.595502 loss)
I0401 16:10:29.719652 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 16:10:29.719663 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0140925
I0401 16:10:29.719676 6134 sgd_solver.cpp:106] Iteration 47000, lr = 0.01
I0401 16:12:38.122110 6134 solver.cpp:229] Iteration 47500, loss = 4.66086
I0401 16:12:38.122277 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.136364
I0401 16:12:38.122298 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.761364
I0401 16:12:38.122310 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.477273
I0401 16:12:38.122328 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.66197 (* 0.3 = 0.798593 loss)
I0401 16:12:38.122342 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.764738 (* 0.3 = 0.229421 loss)
I0401 16:12:38.122354 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.318182
I0401 16:12:38.122366 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.818182
I0401 16:12:38.122378 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.431818
I0401 16:12:38.122392 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.53969 (* 0.3 = 0.761907 loss)
I0401 16:12:38.122406 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.715424 (* 0.3 = 0.214627 loss)
I0401 16:12:38.122417 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.5
I0401 16:12:38.122429 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.857955
I0401 16:12:38.122442 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.75
I0401 16:12:38.122454 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.71302 (* 1 = 1.71302 loss)
I0401 16:12:38.122468 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.493616 (* 1 = 0.493616 loss)
I0401 16:12:38.122480 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 16:12:38.122493 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0199906
I0401 16:12:38.122504 6134 sgd_solver.cpp:106] Iteration 47500, lr = 0.01
I0401 16:14:46.673321 6134 solver.cpp:229] Iteration 48000, loss = 4.6379
I0401 16:14:46.673424 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0833333
I0401 16:14:46.673444 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.75
I0401 16:14:46.673455 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.291667
I0401 16:14:46.673471 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.99153 (* 0.3 = 0.89746 loss)
I0401 16:14:46.673485 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.856671 (* 0.3 = 0.257001 loss)
I0401 16:14:46.673497 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.1875
I0401 16:14:46.673509 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.778409
I0401 16:14:46.673521 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.354167
I0401 16:14:46.673535 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.90828 (* 0.3 = 0.872485 loss)
I0401 16:14:46.673549 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.843683 (* 0.3 = 0.253105 loss)
I0401 16:14:46.673562 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.416667
I0401 16:14:46.673573 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.829545
I0401 16:14:46.673584 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.708333
I0401 16:14:46.673600 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.05135 (* 1 = 2.05135 loss)
I0401 16:14:46.673626 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.589644 (* 1 = 0.589644 loss)
I0401 16:14:46.673647 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 16:14:46.673667 6134 solver.cpp:245] Train net output #16: total_confidence = 0.00581666
I0401 16:14:46.673687 6134 sgd_solver.cpp:106] Iteration 48000, lr = 0.01
I0401 16:16:55.041704 6134 solver.cpp:229] Iteration 48500, loss = 4.65587
I0401 16:16:55.042021 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.191489
I0401 16:16:55.042042 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.772727
I0401 16:16:55.042054 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.361702
I0401 16:16:55.042070 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.69053 (* 0.3 = 0.807159 loss)
I0401 16:16:55.042084 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.780274 (* 0.3 = 0.234082 loss)
I0401 16:16:55.042098 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.255319
I0401 16:16:55.042109 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.772727
I0401 16:16:55.042121 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.531915
I0401 16:16:55.042135 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.37794 (* 0.3 = 0.713382 loss)
I0401 16:16:55.042148 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.704275 (* 0.3 = 0.211282 loss)
I0401 16:16:55.042160 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.446809
I0401 16:16:55.042172 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.835227
I0401 16:16:55.042183 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.702128
I0401 16:16:55.042197 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.80822 (* 1 = 1.80822 loss)
I0401 16:16:55.042210 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.534649 (* 1 = 0.534649 loss)
I0401 16:16:55.042222 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 16:16:55.042233 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0086921
I0401 16:16:55.042246 6134 sgd_solver.cpp:106] Iteration 48500, lr = 0.01
I0401 16:19:03.709995 6134 solver.cpp:229] Iteration 49000, loss = 4.5895
I0401 16:19:03.710124 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.192308
I0401 16:19:03.710145 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.755682
I0401 16:19:03.710158 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.288462
I0401 16:19:03.710175 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.90711 (* 0.3 = 0.872134 loss)
I0401 16:19:03.710188 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.902999 (* 0.3 = 0.2709 loss)
I0401 16:19:03.710201 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.192308
I0401 16:19:03.710213 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.755682
I0401 16:19:03.710224 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.423077
I0401 16:19:03.710237 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.91047 (* 0.3 = 0.87314 loss)
I0401 16:19:03.710252 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.900256 (* 0.3 = 0.270077 loss)
I0401 16:19:03.710263 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.346154
I0401 16:19:03.710275 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.795455
I0401 16:19:03.710286 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.480769
I0401 16:19:03.710300 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.21203 (* 1 = 2.21203 loss)
I0401 16:19:03.710314 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.700363 (* 1 = 0.700363 loss)
I0401 16:19:03.710326 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 16:19:03.710337 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0189673
I0401 16:19:03.710350 6134 sgd_solver.cpp:106] Iteration 49000, lr = 0.01
I0401 16:21:12.245713 6134 solver.cpp:229] Iteration 49500, loss = 4.55382
I0401 16:21:12.245863 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.170213
I0401 16:21:12.245890 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.767045
I0401 16:21:12.245903 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.425532
I0401 16:21:12.245919 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.64517 (* 0.3 = 0.793552 loss)
I0401 16:21:12.245934 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.757379 (* 0.3 = 0.227214 loss)
I0401 16:21:12.245946 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.234043
I0401 16:21:12.245959 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.784091
I0401 16:21:12.245970 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.489362
I0401 16:21:12.245992 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.45101 (* 0.3 = 0.735302 loss)
I0401 16:21:12.246009 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.717443 (* 0.3 = 0.215233 loss)
I0401 16:21:12.246021 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.425532
I0401 16:21:12.246033 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.829545
I0401 16:21:12.246045 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.765957
I0401 16:21:12.246058 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.809 (* 1 = 1.809 loss)
I0401 16:21:12.246075 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.569607 (* 1 = 0.569607 loss)
I0401 16:21:12.246088 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 16:21:12.246098 6134 solver.cpp:245] Train net output #16: total_confidence = 0.00414086
I0401 16:21:12.246111 6134 sgd_solver.cpp:106] Iteration 49500, lr = 0.01
I0401 16:23:20.560545 6134 solver.cpp:456] Snapshotting to binary proto file /mnt/snapshots/mixed_lstm9_bn_iter_50000.caffemodel
I0401 16:23:20.912770 6134 sgd_solver.cpp:273] Snapshotting solver state to binary proto file /mnt/snapshots/mixed_lstm9_bn_iter_50000.solverstate
I0401 16:23:21.073299 6134 solver.cpp:338] Iteration 50000, Testing net (#0)
I0401 16:23:50.878435 6134 solver.cpp:393] Test loss: 3.82045
I0401 16:23:50.878528 6134 solver.cpp:406] Test net output #0: loss1/accuracy = 0.264661
I0401 16:23:50.878546 6134 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.815727
I0401 16:23:50.878559 6134 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.57935
I0401 16:23:50.878576 6134 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 2.37403 (* 0.3 = 0.71221 loss)
I0401 16:23:50.878590 6134 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.60565 (* 0.3 = 0.181695 loss)
I0401 16:23:50.878603 6134 solver.cpp:406] Test net output #5: loss2/accuracy = 0.359141
I0401 16:23:50.878617 6134 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.839365
I0401 16:23:50.878628 6134 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.658634
I0401 16:23:50.878648 6134 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 2.14045 (* 0.3 = 0.642136 loss)
I0401 16:23:50.878676 6134 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.548039 (* 0.3 = 0.164412 loss)
I0401 16:23:50.878702 6134 solver.cpp:406] Test net output #10: loss3/accuracy = 0.518421
I0401 16:23:50.878726 6134 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.87523
I0401 16:23:50.878739 6134 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.778481
I0401 16:23:50.878753 6134 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 1.68104 (* 1 = 1.68104 loss)
I0401 16:23:50.878767 6134 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.438956 (* 1 = 0.438956 loss)
I0401 16:23:50.878779 6134 solver.cpp:406] Test net output #15: total_accuracy = 0.047
I0401 16:23:50.878793 6134 solver.cpp:406] Test net output #16: total_confidence = 0.0641473
I0401 16:23:51.029693 6134 solver.cpp:229] Iteration 50000, loss = 4.5686
I0401 16:23:51.029731 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.234043
I0401 16:23:51.029749 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.795455
I0401 16:23:51.029762 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.425532
I0401 16:23:51.029778 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.04709 (* 0.3 = 0.914127 loss)
I0401 16:23:51.029791 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.840032 (* 0.3 = 0.25201 loss)
I0401 16:23:51.029803 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.234043
I0401 16:23:51.029815 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.789773
I0401 16:23:51.029827 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.404255
I0401 16:23:51.029840 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.8862 (* 0.3 = 0.865859 loss)
I0401 16:23:51.029862 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.7928 (* 0.3 = 0.23784 loss)
I0401 16:23:51.029875 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.404255
I0401 16:23:51.029887 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.840909
I0401 16:23:51.029898 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.595745
I0401 16:23:51.029913 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.5705 (* 1 = 2.5705 loss)
I0401 16:23:51.029927 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.698751 (* 1 = 0.698751 loss)
I0401 16:23:51.029940 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 16:23:51.029952 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0295253
I0401 16:23:51.029964 6134 sgd_solver.cpp:106] Iteration 50000, lr = 0.01
I0401 16:25:59.447907 6134 solver.cpp:229] Iteration 50500, loss = 4.57295
I0401 16:25:59.448036 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.225
I0401 16:25:59.448057 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.806818
I0401 16:25:59.448071 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.575
I0401 16:25:59.448086 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.4798 (* 0.3 = 0.743941 loss)
I0401 16:25:59.448101 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.658687 (* 0.3 = 0.197606 loss)
I0401 16:25:59.448113 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.275
I0401 16:25:59.448125 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.806818
I0401 16:25:59.448137 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.575
I0401 16:25:59.448151 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.28023 (* 0.3 = 0.684069 loss)
I0401 16:25:59.448165 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.60541 (* 0.3 = 0.181623 loss)
I0401 16:25:59.448178 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.5
I0401 16:25:59.448189 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.863636
I0401 16:25:59.448201 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.725
I0401 16:25:59.448215 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.7394 (* 1 = 1.7394 loss)
I0401 16:25:59.448230 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.484624 (* 1 = 0.484624 loss)
I0401 16:25:59.448241 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 16:25:59.448252 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0254133
I0401 16:25:59.448264 6134 sgd_solver.cpp:106] Iteration 50500, lr = 0.01
I0401 16:28:07.706301 6134 solver.cpp:229] Iteration 51000, loss = 4.49551
I0401 16:28:07.706666 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.222222
I0401 16:28:07.706689 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.795455
I0401 16:28:07.706702 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.377778
I0401 16:28:07.706719 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.68479 (* 0.3 = 0.805439 loss)
I0401 16:28:07.706734 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.755654 (* 0.3 = 0.226696 loss)
I0401 16:28:07.706748 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.333333
I0401 16:28:07.706760 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.801136
I0401 16:28:07.706773 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.6
I0401 16:28:07.706787 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.40422 (* 0.3 = 0.721266 loss)
I0401 16:28:07.706801 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.695421 (* 0.3 = 0.208626 loss)
I0401 16:28:07.706815 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.4
I0401 16:28:07.706826 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.835227
I0401 16:28:07.706838 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.6
I0401 16:28:07.706852 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.06257 (* 1 = 2.06257 loss)
I0401 16:28:07.706866 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.56783 (* 1 = 0.56783 loss)
I0401 16:28:07.706879 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 16:28:07.706892 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0397731
I0401 16:28:07.706905 6134 sgd_solver.cpp:106] Iteration 51000, lr = 0.01
I0401 16:30:16.125602 6134 solver.cpp:229] Iteration 51500, loss = 4.5073
I0401 16:30:16.125699 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.211538
I0401 16:30:16.125730 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.767045
I0401 16:30:16.125756 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.384615
I0401 16:30:16.125782 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.68613 (* 0.3 = 0.80584 loss)
I0401 16:30:16.125811 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.851546 (* 0.3 = 0.255464 loss)
I0401 16:30:16.125839 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.211538
I0401 16:30:16.125864 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.761364
I0401 16:30:16.125887 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.519231
I0401 16:30:16.125913 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.48493 (* 0.3 = 0.745479 loss)
I0401 16:30:16.125941 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.794302 (* 0.3 = 0.238291 loss)
I0401 16:30:16.125963 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.384615
I0401 16:30:16.125985 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.806818
I0401 16:30:16.126008 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.615385
I0401 16:30:16.126034 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.87839 (* 1 = 1.87839 loss)
I0401 16:30:16.126060 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.595138 (* 1 = 0.595138 loss)
I0401 16:30:16.126087 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 16:30:16.126109 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0240039
I0401 16:30:16.126132 6134 sgd_solver.cpp:106] Iteration 51500, lr = 0.01
I0401 16:32:24.702296 6134 solver.cpp:229] Iteration 52000, loss = 4.43542
I0401 16:32:24.702404 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.18
I0401 16:32:24.702425 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.75
I0401 16:32:24.702437 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.4
I0401 16:32:24.702453 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.54994 (* 0.3 = 0.764983 loss)
I0401 16:32:24.702468 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.794915 (* 0.3 = 0.238475 loss)
I0401 16:32:24.702481 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.34
I0401 16:32:24.702494 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.801136
I0401 16:32:24.702507 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.64
I0401 16:32:24.702520 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.27849 (* 0.3 = 0.683548 loss)
I0401 16:32:24.702535 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.71489 (* 0.3 = 0.214467 loss)
I0401 16:32:24.702548 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.38
I0401 16:32:24.702559 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.801136
I0401 16:32:24.702571 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.68
I0401 16:32:24.702585 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.919 (* 1 = 1.919 loss)
I0401 16:32:24.702600 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.6138 (* 1 = 0.6138 loss)
I0401 16:32:24.702611 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0401 16:32:24.702623 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0229252
I0401 16:32:24.702636 6134 sgd_solver.cpp:106] Iteration 52000, lr = 0.01
I0401 16:34:32.925926 6134 solver.cpp:229] Iteration 52500, loss = 4.45091
I0401 16:34:32.926025 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.26087
I0401 16:34:32.926044 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.795455
I0401 16:34:32.926057 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.521739
I0401 16:34:32.926074 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.51585 (* 0.3 = 0.754755 loss)
I0401 16:34:32.926089 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.712858 (* 0.3 = 0.213858 loss)
I0401 16:34:32.926101 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.26087
I0401 16:34:32.926113 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.795455
I0401 16:34:32.926126 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.434783
I0401 16:34:32.926139 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.62332 (* 0.3 = 0.786995 loss)
I0401 16:34:32.926153 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.752708 (* 0.3 = 0.225812 loss)
I0401 16:34:32.926165 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.391304
I0401 16:34:32.926177 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.823864
I0401 16:34:32.926189 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.782609
I0401 16:34:32.926203 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.96735 (* 1 = 1.96735 loss)
I0401 16:34:32.926218 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.57561 (* 1 = 0.57561 loss)
I0401 16:34:32.926229 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 16:34:32.926241 6134 solver.cpp:245] Train net output #16: total_confidence = 0.00602476
I0401 16:34:32.926254 6134 sgd_solver.cpp:106] Iteration 52500, lr = 0.01
I0401 16:36:41.349750 6134 solver.cpp:229] Iteration 53000, loss = 4.34456
I0401 16:36:41.350090 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.36
I0401 16:36:41.350111 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.818182
I0401 16:36:41.350124 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.58
I0401 16:36:41.350142 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.2931 (* 0.3 = 0.687931 loss)
I0401 16:36:41.350157 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.69894 (* 0.3 = 0.209682 loss)
I0401 16:36:41.350169 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.38
I0401 16:36:41.350181 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.818182
I0401 16:36:41.350193 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.62
I0401 16:36:41.350208 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.09828 (* 0.3 = 0.629484 loss)
I0401 16:36:41.350221 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.644801 (* 0.3 = 0.19344 loss)
I0401 16:36:41.350234 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.58
I0401 16:36:41.350245 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.875
I0401 16:36:41.350258 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.84
I0401 16:36:41.350272 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.27721 (* 1 = 1.27721 loss)
I0401 16:36:41.350286 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.389369 (* 1 = 0.389369 loss)
I0401 16:36:41.350298 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 16:36:41.350311 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0415145
I0401 16:36:41.350323 6134 sgd_solver.cpp:106] Iteration 53000, lr = 0.01
I0401 16:38:49.682837 6134 solver.cpp:229] Iteration 53500, loss = 4.41207
I0401 16:38:49.682953 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.184211
I0401 16:38:49.682974 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.784091
I0401 16:38:49.682987 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.552632
I0401 16:38:49.683003 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.50395 (* 0.3 = 0.751186 loss)
I0401 16:38:49.683018 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.704339 (* 0.3 = 0.211302 loss)
I0401 16:38:49.683032 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.5
I0401 16:38:49.683043 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.863636
I0401 16:38:49.683055 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.605263
I0401 16:38:49.683069 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.21249 (* 0.3 = 0.663748 loss)
I0401 16:38:49.683084 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.612038 (* 0.3 = 0.183612 loss)
I0401 16:38:49.683096 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.473684
I0401 16:38:49.683109 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.863636
I0401 16:38:49.683120 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.657895
I0401 16:38:49.683135 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.70285 (* 1 = 1.70285 loss)
I0401 16:38:49.683148 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.472532 (* 1 = 0.472532 loss)
I0401 16:38:49.683161 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0401 16:38:49.683172 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0851777
I0401 16:38:49.683185 6134 sgd_solver.cpp:106] Iteration 53500, lr = 0.01
I0401 16:40:58.169673 6134 solver.cpp:229] Iteration 54000, loss = 4.34797
I0401 16:40:58.169796 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.22449
I0401 16:40:58.169816 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.784091
I0401 16:40:58.169829 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.387755
I0401 16:40:58.169844 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.85763 (* 0.3 = 0.857289 loss)
I0401 16:40:58.169859 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.833104 (* 0.3 = 0.249931 loss)
I0401 16:40:58.169872 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.22449
I0401 16:40:58.169884 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.778409
I0401 16:40:58.169896 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.428571
I0401 16:40:58.169911 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.70563 (* 0.3 = 0.81169 loss)
I0401 16:40:58.169925 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.794022 (* 0.3 = 0.238207 loss)
I0401 16:40:58.169939 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.469388
I0401 16:40:58.169950 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.840909
I0401 16:40:58.169962 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.591837
I0401 16:40:58.169976 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.95701 (* 1 = 1.95701 loss)
I0401 16:40:58.169991 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.592322 (* 1 = 0.592322 loss)
I0401 16:40:58.170002 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 16:40:58.170014 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0491011
I0401 16:40:58.170027 6134 sgd_solver.cpp:106] Iteration 54000, lr = 0.01
I0401 16:43:06.618003 6134 solver.cpp:229] Iteration 54500, loss = 4.37137
I0401 16:43:06.618115 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.175
I0401 16:43:06.618136 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.767045
I0401 16:43:06.618149 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.35
I0401 16:43:06.618165 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.71262 (* 0.3 = 0.813786 loss)
I0401 16:43:06.618180 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.833035 (* 0.3 = 0.249911 loss)
I0401 16:43:06.618192 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.275
I0401 16:43:06.618206 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.795455
I0401 16:43:06.618217 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.45
I0401 16:43:06.618232 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.59971 (* 0.3 = 0.779912 loss)
I0401 16:43:06.618247 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.787684 (* 0.3 = 0.236305 loss)
I0401 16:43:06.618258 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.4
I0401 16:43:06.618271 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.818182
I0401 16:43:06.618283 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.625
I0401 16:43:06.618297 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.22757 (* 1 = 2.22757 loss)
I0401 16:43:06.618310 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.705487 (* 1 = 0.705487 loss)
I0401 16:43:06.618324 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 16:43:06.618335 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0287242
I0401 16:43:06.618347 6134 sgd_solver.cpp:106] Iteration 54500, lr = 0.01
I0401 16:45:14.969254 6134 solver.cpp:338] Iteration 55000, Testing net (#0)
I0401 16:45:44.751217 6134 solver.cpp:393] Test loss: 3.91808
I0401 16:45:44.751274 6134 solver.cpp:406] Test net output #0: loss1/accuracy = 0.215138
I0401 16:45:44.751291 6134 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.806682
I0401 16:45:44.751304 6134 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.529206
I0401 16:45:44.751322 6134 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 2.6196 (* 0.3 = 0.78588 loss)
I0401 16:45:44.751337 6134 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.657737 (* 0.3 = 0.197321 loss)
I0401 16:45:44.751349 6134 solver.cpp:406] Test net output #5: loss2/accuracy = 0.339031
I0401 16:45:44.751361 6134 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.833683
I0401 16:45:44.751374 6134 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.665517
I0401 16:45:44.751386 6134 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 2.17212 (* 0.3 = 0.651636 loss)
I0401 16:45:44.751400 6134 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.559888 (* 0.3 = 0.167966 loss)
I0401 16:45:44.751412 6134 solver.cpp:406] Test net output #10: loss3/accuracy = 0.526206
I0401 16:45:44.751425 6134 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.876639
I0401 16:45:44.751435 6134 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.771034
I0401 16:45:44.751449 6134 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 1.67162 (* 1 = 1.67162 loss)
I0401 16:45:44.751463 6134 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.443653 (* 1 = 0.443653 loss)
I0401 16:45:44.751476 6134 solver.cpp:406] Test net output #15: total_accuracy = 0.067
I0401 16:45:44.751487 6134 solver.cpp:406] Test net output #16: total_confidence = 0.0602164
I0401 16:45:44.902441 6134 solver.cpp:229] Iteration 55000, loss = 4.36464
I0401 16:45:44.902495 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.156863
I0401 16:45:44.902513 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.75
I0401 16:45:44.902526 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.313726
I0401 16:45:44.902542 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.885 (* 0.3 = 0.8655 loss)
I0401 16:45:44.902557 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.875208 (* 0.3 = 0.262562 loss)
I0401 16:45:44.902570 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.27451
I0401 16:45:44.902582 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.784091
I0401 16:45:44.902595 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.372549
I0401 16:45:44.902608 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.52831 (* 0.3 = 0.758493 loss)
I0401 16:45:44.902622 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.77721 (* 0.3 = 0.233163 loss)
I0401 16:45:44.902634 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.294118
I0401 16:45:44.902647 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.784091
I0401 16:45:44.902658 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.568627
I0401 16:45:44.902673 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.27669 (* 1 = 2.27669 loss)
I0401 16:45:44.902686 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.693314 (* 1 = 0.693314 loss)
I0401 16:45:44.902698 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 16:45:44.902710 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0137687
I0401 16:45:44.902724 6134 sgd_solver.cpp:106] Iteration 55000, lr = 0.01
I0401 16:47:53.618798 6134 solver.cpp:229] Iteration 55500, loss = 4.32605
I0401 16:47:53.619098 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.2
I0401 16:47:53.619118 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.772727
I0401 16:47:53.619132 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.488889
I0401 16:47:53.619148 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.50041 (* 0.3 = 0.750122 loss)
I0401 16:47:53.619163 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.762967 (* 0.3 = 0.22889 loss)
I0401 16:47:53.619175 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.266667
I0401 16:47:53.619189 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.801136
I0401 16:47:53.619199 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.555556
I0401 16:47:53.619213 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.37501 (* 0.3 = 0.712504 loss)
I0401 16:47:53.619227 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.685706 (* 0.3 = 0.205712 loss)
I0401 16:47:53.619240 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.488889
I0401 16:47:53.619251 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.852273
I0401 16:47:53.619263 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.755556
I0401 16:47:53.619277 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.72326 (* 1 = 1.72326 loss)
I0401 16:47:53.619290 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.494902 (* 1 = 0.494902 loss)
I0401 16:47:53.619302 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0401 16:47:53.619314 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0539322
I0401 16:47:53.619328 6134 sgd_solver.cpp:106] Iteration 55500, lr = 0.01
I0401 16:50:02.152067 6134 solver.cpp:229] Iteration 56000, loss = 4.30134
I0401 16:50:02.152204 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.309524
I0401 16:50:02.152225 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.8125
I0401 16:50:02.152237 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.619048
I0401 16:50:02.152254 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.32915 (* 0.3 = 0.698746 loss)
I0401 16:50:02.152268 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.65617 (* 0.3 = 0.196851 loss)
I0401 16:50:02.152281 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.357143
I0401 16:50:02.152294 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.806818
I0401 16:50:02.152307 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.666667
I0401 16:50:02.152320 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.0951 (* 0.3 = 0.628531 loss)
I0401 16:50:02.152334 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.625023 (* 0.3 = 0.187507 loss)
I0401 16:50:02.152348 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.619048
I0401 16:50:02.152359 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.886364
I0401 16:50:02.152370 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.880952
I0401 16:50:02.152384 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.09931 (* 1 = 1.09931 loss)
I0401 16:50:02.152400 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.331912 (* 1 = 0.331912 loss)
I0401 16:50:02.152411 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 16:50:02.152423 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0484895
I0401 16:50:02.152436 6134 sgd_solver.cpp:106] Iteration 56000, lr = 0.01
I0401 16:52:10.333323 6134 solver.cpp:229] Iteration 56500, loss = 4.26406
I0401 16:52:10.333453 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.195652
I0401 16:52:10.333473 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.772727
I0401 16:52:10.333487 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.5
I0401 16:52:10.333503 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.46087 (* 0.3 = 0.738262 loss)
I0401 16:52:10.333519 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.719671 (* 0.3 = 0.215901 loss)
I0401 16:52:10.333534 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.347826
I0401 16:52:10.333545 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.829545
I0401 16:52:10.333557 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.630435
I0401 16:52:10.333571 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.21972 (* 0.3 = 0.665917 loss)
I0401 16:52:10.333585 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.613126 (* 0.3 = 0.183938 loss)
I0401 16:52:10.333598 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.434783
I0401 16:52:10.333609 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.840909
I0401 16:52:10.333622 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.673913
I0401 16:52:10.333636 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.56724 (* 1 = 1.56724 loss)
I0401 16:52:10.333649 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.446201 (* 1 = 0.446201 loss)
I0401 16:52:10.333662 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0401 16:52:10.333673 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0205402
I0401 16:52:10.333685 6134 sgd_solver.cpp:106] Iteration 56500, lr = 0.01
I0401 16:54:19.323324 6134 solver.cpp:229] Iteration 57000, loss = 4.20321
I0401 16:54:19.323434 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.309524
I0401 16:54:19.323456 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.801136
I0401 16:54:19.323468 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.547619
I0401 16:54:19.323483 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.2966 (* 0.3 = 0.688979 loss)
I0401 16:54:19.323498 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.733264 (* 0.3 = 0.219979 loss)
I0401 16:54:19.323511 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.309524
I0401 16:54:19.323528 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.795455
I0401 16:54:19.323539 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.547619
I0401 16:54:19.323554 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.55352 (* 0.3 = 0.766055 loss)
I0401 16:54:19.323568 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.816663 (* 0.3 = 0.244999 loss)
I0401 16:54:19.323580 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.571429
I0401 16:54:19.323592 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.818182
I0401 16:54:19.323604 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.738095
I0401 16:54:19.323618 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.87746 (* 1 = 1.87746 loss)
I0401 16:54:19.323632 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.761483 (* 1 = 0.761483 loss)
I0401 16:54:19.323644 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 16:54:19.323657 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0912121
I0401 16:54:19.323668 6134 sgd_solver.cpp:106] Iteration 57000, lr = 0.01
I0401 16:56:27.846416 6134 solver.cpp:229] Iteration 57500, loss = 4.24011
I0401 16:56:27.846686 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.339623
I0401 16:56:27.846707 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.795455
I0401 16:56:27.846720 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.603774
I0401 16:56:27.846735 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.15414 (* 0.3 = 0.646243 loss)
I0401 16:56:27.846750 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.69076 (* 0.3 = 0.207228 loss)
I0401 16:56:27.846763 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.339623
I0401 16:56:27.846776 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.801136
I0401 16:56:27.846788 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.698113
I0401 16:56:27.846802 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.07317 (* 0.3 = 0.621952 loss)
I0401 16:56:27.846817 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.648807 (* 0.3 = 0.194642 loss)
I0401 16:56:27.846828 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.54717
I0401 16:56:27.846842 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.863636
I0401 16:56:27.846853 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.811321
I0401 16:56:27.846866 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.42307 (* 1 = 1.42307 loss)
I0401 16:56:27.846880 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.441425 (* 1 = 0.441425 loss)
I0401 16:56:27.846894 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 16:56:27.846904 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0121024
I0401 16:56:27.846916 6134 sgd_solver.cpp:106] Iteration 57500, lr = 0.01
I0401 16:58:36.323050 6134 solver.cpp:229] Iteration 58000, loss = 4.18723
I0401 16:58:36.323153 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.133333
I0401 16:58:36.323173 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.767045
I0401 16:58:36.323185 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.266667
I0401 16:58:36.323201 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.20292 (* 0.3 = 0.960876 loss)
I0401 16:58:36.323216 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.873513 (* 0.3 = 0.262054 loss)
I0401 16:58:36.323230 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.177778
I0401 16:58:36.323242 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.784091
I0401 16:58:36.323254 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.4
I0401 16:58:36.323268 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.9468 (* 0.3 = 0.88404 loss)
I0401 16:58:36.323282 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.822487 (* 0.3 = 0.246746 loss)
I0401 16:58:36.323295 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.288889
I0401 16:58:36.323307 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.806818
I0401 16:58:36.323319 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.488889
I0401 16:58:36.323333 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.3939 (* 1 = 2.3939 loss)
I0401 16:58:36.323348 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.668756 (* 1 = 0.668756 loss)
I0401 16:58:36.323359 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 16:58:36.323371 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0112969
I0401 16:58:36.323384 6134 sgd_solver.cpp:106] Iteration 58000, lr = 0.01
I0401 17:00:44.732712 6134 solver.cpp:229] Iteration 58500, loss = 4.1727
I0401 17:00:44.732842 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.289474
I0401 17:00:44.732862 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.806818
I0401 17:00:44.732875 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.605263
I0401 17:00:44.732892 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.32132 (* 0.3 = 0.696395 loss)
I0401 17:00:44.732908 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.668407 (* 0.3 = 0.200522 loss)
I0401 17:00:44.732920 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.315789
I0401 17:00:44.732933 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.801136
I0401 17:00:44.732945 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.631579
I0401 17:00:44.732959 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.12901 (* 0.3 = 0.638704 loss)
I0401 17:00:44.732974 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.662232 (* 0.3 = 0.19867 loss)
I0401 17:00:44.732985 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.552632
I0401 17:00:44.732998 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.863636
I0401 17:00:44.733009 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.789474
I0401 17:00:44.733023 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.3822 (* 1 = 1.3822 loss)
I0401 17:00:44.733037 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.466671 (* 1 = 0.466671 loss)
I0401 17:00:44.733062 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0401 17:00:44.733078 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0950895
I0401 17:00:44.733089 6134 sgd_solver.cpp:106] Iteration 58500, lr = 0.01
I0401 17:02:53.124496 6134 solver.cpp:229] Iteration 59000, loss = 4.20952
I0401 17:02:53.124603 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.214286
I0401 17:02:53.124624 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.778409
I0401 17:02:53.124635 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.380952
I0401 17:02:53.124651 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.61615 (* 0.3 = 0.784845 loss)
I0401 17:02:53.124666 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.760364 (* 0.3 = 0.228109 loss)
I0401 17:02:53.124680 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.380952
I0401 17:02:53.124693 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.835227
I0401 17:02:53.124706 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.47619
I0401 17:02:53.124719 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.4222 (* 0.3 = 0.726661 loss)
I0401 17:02:53.124733 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.686662 (* 0.3 = 0.205998 loss)
I0401 17:02:53.124747 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.452381
I0401 17:02:53.124758 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.846591
I0401 17:02:53.124769 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.785714
I0401 17:02:53.124784 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.60866 (* 1 = 1.60866 loss)
I0401 17:02:53.124799 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.475694 (* 1 = 0.475694 loss)
I0401 17:02:53.124810 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 17:02:53.124822 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0790929
I0401 17:02:53.124835 6134 sgd_solver.cpp:106] Iteration 59000, lr = 0.01
I0401 17:05:01.393643 6134 solver.cpp:229] Iteration 59500, loss = 4.1575
I0401 17:05:01.393805 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.215686
I0401 17:05:01.393826 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.75
I0401 17:05:01.393838 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.470588
I0401 17:05:01.393854 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.77614 (* 0.3 = 0.832843 loss)
I0401 17:05:01.393869 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.89338 (* 0.3 = 0.268014 loss)
I0401 17:05:01.393882 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.294118
I0401 17:05:01.393896 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.772727
I0401 17:05:01.393908 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.54902
I0401 17:05:01.393923 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.60781 (* 0.3 = 0.782344 loss)
I0401 17:05:01.393936 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.867039 (* 0.3 = 0.260112 loss)
I0401 17:05:01.393949 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.470588
I0401 17:05:01.393960 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.8125
I0401 17:05:01.393972 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.627451
I0401 17:05:01.393986 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.02737 (* 1 = 2.02737 loss)
I0401 17:05:01.394001 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.699985 (* 1 = 0.699985 loss)
I0401 17:05:01.394012 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 17:05:01.394024 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0253565
I0401 17:05:01.394037 6134 sgd_solver.cpp:106] Iteration 59500, lr = 0.01
I0401 17:07:09.801879 6134 solver.cpp:338] Iteration 60000, Testing net (#0)
I0401 17:07:39.379954 6134 solver.cpp:393] Test loss: 3.61448
I0401 17:07:39.379998 6134 solver.cpp:406] Test net output #0: loss1/accuracy = 0.288406
I0401 17:07:39.380015 6134 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.816364
I0401 17:07:39.380028 6134 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.603254
I0401 17:07:39.380043 6134 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 2.27332 (* 0.3 = 0.681995 loss)
I0401 17:07:39.380058 6134 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.612319 (* 0.3 = 0.183696 loss)
I0401 17:07:39.380070 6134 solver.cpp:406] Test net output #5: loss2/accuracy = 0.402706
I0401 17:07:39.380082 6134 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.84091
I0401 17:07:39.380095 6134 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.708801
I0401 17:07:39.380107 6134 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.95105 (* 0.3 = 0.585316 loss)
I0401 17:07:39.380121 6134 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.533538 (* 0.3 = 0.160061 loss)
I0401 17:07:39.380133 6134 solver.cpp:406] Test net output #10: loss3/accuracy = 0.557871
I0401 17:07:39.380146 6134 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.881139
I0401 17:07:39.380156 6134 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.798977
I0401 17:07:39.380170 6134 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 1.57314 (* 1 = 1.57314 loss)
I0401 17:07:39.380183 6134 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.430265 (* 1 = 0.430265 loss)
I0401 17:07:39.380195 6134 solver.cpp:406] Test net output #15: total_accuracy = 0.074
I0401 17:07:39.380206 6134 solver.cpp:406] Test net output #16: total_confidence = 0.0991732
I0401 17:07:39.531630 6134 solver.cpp:229] Iteration 60000, loss = 4.18178
I0401 17:07:39.531669 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0465116
I0401 17:07:39.531687 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.744318
I0401 17:07:39.531698 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.348837
I0401 17:07:39.531713 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.14844 (* 0.3 = 0.944533 loss)
I0401 17:07:39.531728 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.869117 (* 0.3 = 0.260735 loss)
I0401 17:07:39.531740 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0697674
I0401 17:07:39.531752 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.738636
I0401 17:07:39.531764 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.232558
I0401 17:07:39.531779 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.496 (* 0.3 = 1.0488 loss)
I0401 17:07:39.531792 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.990287 (* 0.3 = 0.297086 loss)
I0401 17:07:39.531807 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.209302
I0401 17:07:39.531821 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.795455
I0401 17:07:39.531832 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.44186
I0401 17:07:39.531847 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.74698 (* 1 = 2.74698 loss)
I0401 17:07:39.531860 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.712457 (* 1 = 0.712457 loss)
I0401 17:07:39.531872 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 17:07:39.531884 6134 solver.cpp:245] Train net output #16: total_confidence = 0.00846092
I0401 17:07:39.531896 6134 sgd_solver.cpp:106] Iteration 60000, lr = 0.01
I0401 17:09:47.780514 6134 solver.cpp:229] Iteration 60500, loss = 4.20862
I0401 17:09:47.780704 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.234043
I0401 17:09:47.780725 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.789773
I0401 17:09:47.780738 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.595745
I0401 17:09:47.780755 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.40981 (* 0.3 = 0.722942 loss)
I0401 17:09:47.780769 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.694382 (* 0.3 = 0.208315 loss)
I0401 17:09:47.780782 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.319149
I0401 17:09:47.780796 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.818182
I0401 17:09:47.780807 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.617021
I0401 17:09:47.780822 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.18545 (* 0.3 = 0.655634 loss)
I0401 17:09:47.780835 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.621871 (* 0.3 = 0.186561 loss)
I0401 17:09:47.780848 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.617021
I0401 17:09:47.780859 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.892045
I0401 17:09:47.780871 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.744681
I0401 17:09:47.780885 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.36393 (* 1 = 1.36393 loss)
I0401 17:09:47.780900 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.396573 (* 1 = 0.396573 loss)
I0401 17:09:47.780911 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0401 17:09:47.780925 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0421525
I0401 17:09:47.780936 6134 sgd_solver.cpp:106] Iteration 60500, lr = 0.01
I0401 17:11:56.402694 6134 solver.cpp:229] Iteration 61000, loss = 4.04744
I0401 17:11:56.402799 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.22
I0401 17:11:56.402820 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.778409
I0401 17:11:56.402833 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.44
I0401 17:11:56.402848 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.53101 (* 0.3 = 0.759302 loss)
I0401 17:11:56.402863 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.747477 (* 0.3 = 0.224243 loss)
I0401 17:11:56.402876 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.32
I0401 17:11:56.402889 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.801136
I0401 17:11:56.402901 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.68
I0401 17:11:56.402915 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.22921 (* 0.3 = 0.668763 loss)
I0401 17:11:56.402930 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.68374 (* 0.3 = 0.205122 loss)
I0401 17:11:56.402941 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.58
I0401 17:11:56.402953 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.869318
I0401 17:11:56.402966 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.68
I0401 17:11:56.402979 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.63217 (* 1 = 1.63217 loss)
I0401 17:11:56.402993 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.506888 (* 1 = 0.506888 loss)
I0401 17:11:56.403005 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0401 17:11:56.403017 6134 solver.cpp:245] Train net output #16: total_confidence = 0.136028
I0401 17:11:56.403029 6134 sgd_solver.cpp:106] Iteration 61000, lr = 0.01
I0401 17:14:04.776231 6134 solver.cpp:229] Iteration 61500, loss = 4.08256
I0401 17:14:04.776365 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.285714
I0401 17:14:04.776386 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.8125
I0401 17:14:04.776398 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.595238
I0401 17:14:04.776415 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.3161 (* 0.3 = 0.694831 loss)
I0401 17:14:04.776429 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.665416 (* 0.3 = 0.199625 loss)
I0401 17:14:04.776443 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.404762
I0401 17:14:04.776455 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.829545
I0401 17:14:04.776468 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.714286
I0401 17:14:04.776481 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.02993 (* 0.3 = 0.60898 loss)
I0401 17:14:04.776495 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.611924 (* 0.3 = 0.183577 loss)
I0401 17:14:04.776507 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.738095
I0401 17:14:04.776522 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.920455
I0401 17:14:04.776535 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.857143
I0401 17:14:04.776549 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.14992 (* 1 = 1.14992 loss)
I0401 17:14:04.776563 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.350391 (* 1 = 0.350391 loss)
I0401 17:14:04.776576 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0401 17:14:04.776587 6134 solver.cpp:245] Train net output #16: total_confidence = 0.147976
I0401 17:14:04.776599 6134 sgd_solver.cpp:106] Iteration 61500, lr = 0.01
I0401 17:16:13.252694 6134 solver.cpp:229] Iteration 62000, loss = 4.08776
I0401 17:16:13.252964 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.276596
I0401 17:16:13.252985 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.795455
I0401 17:16:13.252997 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.531915
I0401 17:16:13.253013 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.53043 (* 0.3 = 0.759129 loss)
I0401 17:16:13.253028 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.742455 (* 0.3 = 0.222737 loss)
I0401 17:16:13.253041 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.255319
I0401 17:16:13.253072 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.795455
I0401 17:16:13.253084 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.595745
I0401 17:16:13.253098 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.35816 (* 0.3 = 0.707449 loss)
I0401 17:16:13.253113 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.679641 (* 0.3 = 0.203892 loss)
I0401 17:16:13.253129 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.531915
I0401 17:16:13.253141 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.869318
I0401 17:16:13.253154 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.765957
I0401 17:16:13.253167 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.60305 (* 1 = 1.60305 loss)
I0401 17:16:13.253181 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.450345 (* 1 = 0.450345 loss)
I0401 17:16:13.253193 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 17:16:13.253206 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0546284
I0401 17:16:13.253218 6134 sgd_solver.cpp:106] Iteration 62000, lr = 0.01
I0401 17:18:21.609097 6134 solver.cpp:229] Iteration 62500, loss = 4.03367
I0401 17:18:21.609254 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.238095
I0401 17:18:21.609287 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.772727
I0401 17:18:21.609309 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.595238
I0401 17:18:21.609338 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.28999 (* 0.3 = 0.686997 loss)
I0401 17:18:21.609367 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.745375 (* 0.3 = 0.223612 loss)
I0401 17:18:21.609390 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.5
I0401 17:18:21.609411 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.875
I0401 17:18:21.609432 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.738095
I0401 17:18:21.609459 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.65312 (* 0.3 = 0.495936 loss)
I0401 17:18:21.609486 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.491943 (* 0.3 = 0.147583 loss)
I0401 17:18:21.609508 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.595238
I0401 17:18:21.609532 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.886364
I0401 17:18:21.609555 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.785714
I0401 17:18:21.609580 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.17949 (* 1 = 1.17949 loss)
I0401 17:18:21.609604 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.346597 (* 1 = 0.346597 loss)
I0401 17:18:21.609625 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0401 17:18:21.609649 6134 solver.cpp:245] Train net output #16: total_confidence = 0.12039
I0401 17:18:21.609670 6134 sgd_solver.cpp:106] Iteration 62500, lr = 0.01
I0401 17:20:30.122526 6134 solver.cpp:229] Iteration 63000, loss = 4.09879
I0401 17:20:30.122658 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.238095
I0401 17:20:30.122678 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.795455
I0401 17:20:30.122691 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.47619
I0401 17:20:30.122709 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.70128 (* 0.3 = 0.810383 loss)
I0401 17:20:30.122723 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.744399 (* 0.3 = 0.22332 loss)
I0401 17:20:30.122735 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.261905
I0401 17:20:30.122748 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.801136
I0401 17:20:30.122761 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.452381
I0401 17:20:30.122774 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.80185 (* 0.3 = 0.840555 loss)
I0401 17:20:30.122788 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.774722 (* 0.3 = 0.232417 loss)
I0401 17:20:30.122800 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.404762
I0401 17:20:30.122812 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.852273
I0401 17:20:30.122824 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.666667
I0401 17:20:30.122838 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.03589 (* 1 = 2.03589 loss)
I0401 17:20:30.122853 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.51274 (* 1 = 0.51274 loss)
I0401 17:20:30.122864 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 17:20:30.122876 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0243124
I0401 17:20:30.122889 6134 sgd_solver.cpp:106] Iteration 63000, lr = 0.01
I0401 17:22:38.729537 6134 solver.cpp:229] Iteration 63500, loss = 4.00095
I0401 17:22:38.729651 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.317073
I0401 17:22:38.729671 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.8125
I0401 17:22:38.729683 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.512195
I0401 17:22:38.729699 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.64808 (* 0.3 = 0.794424 loss)
I0401 17:22:38.729715 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.750546 (* 0.3 = 0.225164 loss)
I0401 17:22:38.729730 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.243902
I0401 17:22:38.729743 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.789773
I0401 17:22:38.729755 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.487805
I0401 17:22:38.729769 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.43638 (* 0.3 = 0.730914 loss)
I0401 17:22:38.729784 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.687589 (* 0.3 = 0.206277 loss)
I0401 17:22:38.729795 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.536585
I0401 17:22:38.729809 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.875
I0401 17:22:38.729821 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.780488
I0401 17:22:38.729835 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.70698 (* 1 = 1.70698 loss)
I0401 17:22:38.729849 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.45668 (* 1 = 0.45668 loss)
I0401 17:22:38.729861 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 17:22:38.729873 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0248108
I0401 17:22:38.729885 6134 sgd_solver.cpp:106] Iteration 63500, lr = 0.01
I0401 17:24:47.200341 6134 solver.cpp:229] Iteration 64000, loss = 4.05785
I0401 17:24:47.200456 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.236364
I0401 17:24:47.200477 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.755682
I0401 17:24:47.200490 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.363636
I0401 17:24:47.200507 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.26893 (* 0.3 = 0.980678 loss)
I0401 17:24:47.200525 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.05363 (* 0.3 = 0.31609 loss)
I0401 17:24:47.200538 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.254545
I0401 17:24:47.200551 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.761364
I0401 17:24:47.200562 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.4
I0401 17:24:47.200577 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.21192 (* 0.3 = 0.963575 loss)
I0401 17:24:47.200590 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.02529 (* 0.3 = 0.307587 loss)
I0401 17:24:47.200603 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.381818
I0401 17:24:47.200615 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.801136
I0401 17:24:47.200628 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.490909
I0401 17:24:47.200641 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.80135 (* 1 = 2.80135 loss)
I0401 17:24:47.200655 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.909448 (* 1 = 0.909448 loss)
I0401 17:24:47.200667 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 17:24:47.200680 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0529742
I0401 17:24:47.200692 6134 sgd_solver.cpp:106] Iteration 64000, lr = 0.01
I0401 17:26:55.690649 6134 solver.cpp:229] Iteration 64500, loss = 3.97861
I0401 17:26:55.690960 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.2
I0401 17:26:55.690980 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.789773
I0401 17:26:55.690994 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.555556
I0401 17:26:55.691009 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.59943 (* 0.3 = 0.779828 loss)
I0401 17:26:55.691027 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.714718 (* 0.3 = 0.214416 loss)
I0401 17:26:55.691051 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.266667
I0401 17:26:55.691071 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.801136
I0401 17:26:55.691083 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.644444
I0401 17:26:55.691097 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.23082 (* 0.3 = 0.669245 loss)
I0401 17:26:55.691112 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.620719 (* 0.3 = 0.186216 loss)
I0401 17:26:55.691124 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.533333
I0401 17:26:55.691136 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.863636
I0401 17:26:55.691148 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.8
I0401 17:26:55.691161 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.53231 (* 1 = 1.53231 loss)
I0401 17:26:55.691175 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.440889 (* 1 = 0.440889 loss)
I0401 17:26:55.691187 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 17:26:55.691200 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0974831
I0401 17:26:55.691211 6134 sgd_solver.cpp:106] Iteration 64500, lr = 0.01
I0401 17:29:03.952927 6134 solver.cpp:338] Iteration 65000, Testing net (#0)
I0401 17:29:33.548275 6134 solver.cpp:393] Test loss: 3.28882
I0401 17:29:33.548327 6134 solver.cpp:406] Test net output #0: loss1/accuracy = 0.34678
I0401 17:29:33.548344 6134 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.814
I0401 17:29:33.548357 6134 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.634625
I0401 17:29:33.548372 6134 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 2.16158 (* 0.3 = 0.648474 loss)
I0401 17:29:33.548388 6134 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.643679 (* 0.3 = 0.193104 loss)
I0401 17:29:33.548400 6134 solver.cpp:406] Test net output #5: loss2/accuracy = 0.46816
I0401 17:29:33.548413 6134 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.851048
I0401 17:29:33.548424 6134 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.75709
I0401 17:29:33.548437 6134 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.77256 (* 0.3 = 0.531767 loss)
I0401 17:29:33.548452 6134 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.508139 (* 0.3 = 0.152442 loss)
I0401 17:29:33.548465 6134 solver.cpp:406] Test net output #10: loss3/accuracy = 0.609433
I0401 17:29:33.548475 6134 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.893821
I0401 17:29:33.548487 6134 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.825553
I0401 17:29:33.548501 6134 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 1.37826 (* 1 = 1.37826 loss)
I0401 17:29:33.548514 6134 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.38477 (* 1 = 0.38477 loss)
I0401 17:29:33.548530 6134 solver.cpp:406] Test net output #15: total_accuracy = 0.119
I0401 17:29:33.548542 6134 solver.cpp:406] Test net output #16: total_confidence = 0.0936669
I0401 17:29:33.700016 6134 solver.cpp:229] Iteration 65000, loss = 3.96614
I0401 17:29:33.700058 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.254902
I0401 17:29:33.700075 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.761364
I0401 17:29:33.700091 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.490196
I0401 17:29:33.700106 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.24574 (* 0.3 = 0.673721 loss)
I0401 17:29:33.700121 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.745885 (* 0.3 = 0.223765 loss)
I0401 17:29:33.700134 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.372549
I0401 17:29:33.700146 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.801136
I0401 17:29:33.700158 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.686275
I0401 17:29:33.700172 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.98942 (* 0.3 = 0.596827 loss)
I0401 17:29:33.700186 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.650467 (* 0.3 = 0.19514 loss)
I0401 17:29:33.700198 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.607843
I0401 17:29:33.700211 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.886364
I0401 17:29:33.700222 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.862745
I0401 17:29:33.700237 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.06405 (* 1 = 1.06405 loss)
I0401 17:29:33.700250 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.318267 (* 1 = 0.318267 loss)
I0401 17:29:33.700263 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0401 17:29:33.700274 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0813158
I0401 17:29:33.700287 6134 sgd_solver.cpp:106] Iteration 65000, lr = 0.01
I0401 17:31:41.990008 6134 solver.cpp:229] Iteration 65500, loss = 4.0379
I0401 17:31:41.990145 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.341463
I0401 17:31:41.990166 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.818182
I0401 17:31:41.990180 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.512195
I0401 17:31:41.990195 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.88506 (* 0.3 = 0.865518 loss)
I0401 17:31:41.990211 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.766231 (* 0.3 = 0.229869 loss)
I0401 17:31:41.990223 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.414634
I0401 17:31:41.990236 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.840909
I0401 17:31:41.990247 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.585366
I0401 17:31:41.990262 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.26447 (* 0.3 = 0.679341 loss)
I0401 17:31:41.990277 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.61447 (* 0.3 = 0.184341 loss)
I0401 17:31:41.990288 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.634146
I0401 17:31:41.990300 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.903409
I0401 17:31:41.990313 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.780488
I0401 17:31:41.990326 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.06672 (* 1 = 2.06672 loss)
I0401 17:31:41.990340 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.550776 (* 1 = 0.550776 loss)
I0401 17:31:41.990352 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0401 17:31:41.990365 6134 solver.cpp:245] Train net output #16: total_confidence = 0.108971
I0401 17:31:41.990376 6134 sgd_solver.cpp:106] Iteration 65500, lr = 0.01
I0401 17:33:50.185969 6134 solver.cpp:229] Iteration 66000, loss = 3.93847
I0401 17:33:50.186103 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.285714
I0401 17:33:50.186122 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.789773
I0401 17:33:50.186136 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.571429
I0401 17:33:50.186151 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.34294 (* 0.3 = 0.702882 loss)
I0401 17:33:50.186167 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.704074 (* 0.3 = 0.211222 loss)
I0401 17:33:50.186178 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.306122
I0401 17:33:50.186192 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.784091
I0401 17:33:50.186203 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.77551
I0401 17:33:50.186218 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.92261 (* 0.3 = 0.576784 loss)
I0401 17:33:50.186231 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.608189 (* 0.3 = 0.182457 loss)
I0401 17:33:50.186244 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.591837
I0401 17:33:50.186256 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.880682
I0401 17:33:50.186269 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.816327
I0401 17:33:50.186282 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.2872 (* 1 = 1.2872 loss)
I0401 17:33:50.186296 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.386263 (* 1 = 0.386263 loss)
I0401 17:33:50.186310 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 17:33:50.186321 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0770456
I0401 17:33:50.186332 6134 sgd_solver.cpp:106] Iteration 66000, lr = 0.01
I0401 17:35:58.407938 6134 solver.cpp:229] Iteration 66500, loss = 3.90261
I0401 17:35:58.408046 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.26087
I0401 17:35:58.408067 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.801136
I0401 17:35:58.408080 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.456522
I0401 17:35:58.408097 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.54622 (* 0.3 = 0.763867 loss)
I0401 17:35:58.408112 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.7207 (* 0.3 = 0.21621 loss)
I0401 17:35:58.408124 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.282609
I0401 17:35:58.408138 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.8125
I0401 17:35:58.408149 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.521739
I0401 17:35:58.408164 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.22801 (* 0.3 = 0.668404 loss)
I0401 17:35:58.408177 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.614371 (* 0.3 = 0.184311 loss)
I0401 17:35:58.408190 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.5
I0401 17:35:58.408202 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.863636
I0401 17:35:58.408213 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.804348
I0401 17:35:58.408227 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.49572 (* 1 = 1.49572 loss)
I0401 17:35:58.408241 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.424602 (* 1 = 0.424602 loss)
I0401 17:35:58.408253 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0401 17:35:58.408265 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0762414
I0401 17:35:58.408277 6134 sgd_solver.cpp:106] Iteration 66500, lr = 0.01
I0401 17:38:06.808480 6134 solver.cpp:229] Iteration 67000, loss = 3.88239
I0401 17:38:06.808804 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.375
I0401 17:38:06.808825 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.857955
I0401 17:38:06.808838 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.53125
I0401 17:38:06.808854 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.10152 (* 0.3 = 0.630456 loss)
I0401 17:38:06.808869 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.567548 (* 0.3 = 0.170264 loss)
I0401 17:38:06.808882 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.5
I0401 17:38:06.808894 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.863636
I0401 17:38:06.808907 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.71875
I0401 17:38:06.808919 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.80599 (* 0.3 = 0.541796 loss)
I0401 17:38:06.808933 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.532591 (* 0.3 = 0.159777 loss)
I0401 17:38:06.808946 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.65625
I0401 17:38:06.808959 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.926136
I0401 17:38:06.808970 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.90625
I0401 17:38:06.808984 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.892781 (* 1 = 0.892781 loss)
I0401 17:38:06.808998 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.25169 (* 1 = 0.25169 loss)
I0401 17:38:06.809010 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0401 17:38:06.809022 6134 solver.cpp:245] Train net output #16: total_confidence = 0.205258
I0401 17:38:06.809034 6134 sgd_solver.cpp:106] Iteration 67000, lr = 0.01
I0401 17:40:15.463862 6134 solver.cpp:229] Iteration 67500, loss = 3.94169
I0401 17:40:15.463968 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.452381
I0401 17:40:15.463986 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.823864
I0401 17:40:15.463999 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.571429
I0401 17:40:15.464015 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.2634 (* 0.3 = 0.679019 loss)
I0401 17:40:15.464030 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.719392 (* 0.3 = 0.215818 loss)
I0401 17:40:15.464042 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.333333
I0401 17:40:15.464056 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.795455
I0401 17:40:15.464071 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.690476
I0401 17:40:15.464098 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.95889 (* 0.3 = 0.587667 loss)
I0401 17:40:15.464119 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.621226 (* 0.3 = 0.186368 loss)
I0401 17:40:15.464131 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.595238
I0401 17:40:15.464144 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.869318
I0401 17:40:15.464156 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.690476
I0401 17:40:15.464170 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.49385 (* 1 = 1.49385 loss)
I0401 17:40:15.464184 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.465433 (* 1 = 0.465433 loss)
I0401 17:40:15.464197 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0401 17:40:15.464210 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0699506
I0401 17:40:15.464221 6134 sgd_solver.cpp:106] Iteration 67500, lr = 0.01
I0401 17:42:23.990182 6134 solver.cpp:229] Iteration 68000, loss = 3.90662
I0401 17:42:23.990309 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.276596
I0401 17:42:23.990329 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.801136
I0401 17:42:23.990341 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.510638
I0401 17:42:23.990356 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.52124 (* 0.3 = 0.756373 loss)
I0401 17:42:23.990371 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.72541 (* 0.3 = 0.217623 loss)
I0401 17:42:23.990384 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.382979
I0401 17:42:23.990397 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.835227
I0401 17:42:23.990408 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.489362
I0401 17:42:23.990422 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.20122 (* 0.3 = 0.660366 loss)
I0401 17:42:23.990437 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.619357 (* 0.3 = 0.185807 loss)
I0401 17:42:23.990449 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.595745
I0401 17:42:23.990461 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.886364
I0401 17:42:23.990473 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.787234
I0401 17:42:23.990488 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.36657 (* 1 = 1.36657 loss)
I0401 17:42:23.990501 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.39679 (* 1 = 0.39679 loss)
I0401 17:42:23.990514 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 17:42:23.990528 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0332478
I0401 17:42:23.990541 6134 sgd_solver.cpp:106] Iteration 68000, lr = 0.01
I0401 17:44:32.273198 6134 solver.cpp:229] Iteration 68500, loss = 3.84175
I0401 17:44:32.273357 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.285714
I0401 17:44:32.273378 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.784091
I0401 17:44:32.273392 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.489796
I0401 17:44:32.273408 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.45252 (* 0.3 = 0.735757 loss)
I0401 17:44:32.273423 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.729678 (* 0.3 = 0.218903 loss)
I0401 17:44:32.273435 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.408163
I0401 17:44:32.273448 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.818182
I0401 17:44:32.273461 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.714286
I0401 17:44:32.273475 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.04819 (* 0.3 = 0.614457 loss)
I0401 17:44:32.273489 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.624055 (* 0.3 = 0.187217 loss)
I0401 17:44:32.273502 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.489796
I0401 17:44:32.273514 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.857955
I0401 17:44:32.273530 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.816327
I0401 17:44:32.273543 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.52999 (* 1 = 1.52999 loss)
I0401 17:44:32.273557 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.441626 (* 1 = 0.441626 loss)
I0401 17:44:32.273571 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0401 17:44:32.273582 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0919086
I0401 17:44:32.273596 6134 sgd_solver.cpp:106] Iteration 68500, lr = 0.01
I0401 17:46:40.903487 6134 solver.cpp:229] Iteration 69000, loss = 3.8406
I0401 17:46:40.903774 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.226415
I0401 17:46:40.903795 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.761364
I0401 17:46:40.903807 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.415094
I0401 17:46:40.903823 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.77535 (* 0.3 = 0.832604 loss)
I0401 17:46:40.903838 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.893631 (* 0.3 = 0.268089 loss)
I0401 17:46:40.903851 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.377358
I0401 17:46:40.903863 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.795455
I0401 17:46:40.903875 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.584906
I0401 17:46:40.903888 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.22162 (* 0.3 = 0.666486 loss)
I0401 17:46:40.903903 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.748036 (* 0.3 = 0.224411 loss)
I0401 17:46:40.903914 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.396226
I0401 17:46:40.903928 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.795455
I0401 17:46:40.903939 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.698113
I0401 17:46:40.903952 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.82232 (* 1 = 1.82232 loss)
I0401 17:46:40.903966 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.63058 (* 1 = 0.63058 loss)
I0401 17:46:40.903978 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 17:46:40.903990 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0795323
I0401 17:46:40.904003 6134 sgd_solver.cpp:106] Iteration 69000, lr = 0.01
I0401 17:48:49.080871 6134 solver.cpp:229] Iteration 69500, loss = 3.82833
I0401 17:48:49.080971 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.282609
I0401 17:48:49.080989 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.801136
I0401 17:48:49.081002 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.5
I0401 17:48:49.081022 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.33711 (* 0.3 = 0.701132 loss)
I0401 17:48:49.081037 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.677185 (* 0.3 = 0.203155 loss)
I0401 17:48:49.081049 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.347826
I0401 17:48:49.081063 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.829545
I0401 17:48:49.081074 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.630435
I0401 17:48:49.081089 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.0729 (* 0.3 = 0.62187 loss)
I0401 17:48:49.081115 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.578448 (* 0.3 = 0.173534 loss)
I0401 17:48:49.081130 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.565217
I0401 17:48:49.081142 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.875
I0401 17:48:49.081154 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.847826
I0401 17:48:49.081168 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.32064 (* 1 = 1.32064 loss)
I0401 17:48:49.081182 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.417528 (* 1 = 0.417528 loss)
I0401 17:48:49.081194 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0401 17:48:49.081207 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0512663
I0401 17:48:49.081219 6134 sgd_solver.cpp:106] Iteration 69500, lr = 0.01
I0401 17:50:57.428182 6134 solver.cpp:338] Iteration 70000, Testing net (#0)
I0401 17:51:27.176236 6134 solver.cpp:393] Test loss: 3.1736
I0401 17:51:27.176282 6134 solver.cpp:406] Test net output #0: loss1/accuracy = 0.328981
I0401 17:51:27.176301 6134 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.827637
I0401 17:51:27.176312 6134 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.63043
I0401 17:51:27.176328 6134 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 2.21178 (* 0.3 = 0.663533 loss)
I0401 17:51:27.176342 6134 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.579677 (* 0.3 = 0.173903 loss)
I0401 17:51:27.176354 6134 solver.cpp:406] Test net output #5: loss2/accuracy = 0.473664
I0401 17:51:27.176367 6134 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.861503
I0401 17:51:27.176378 6134 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.74374
I0401 17:51:27.176391 6134 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.80672 (* 0.3 = 0.542016 loss)
I0401 17:51:27.176405 6134 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.479979 (* 0.3 = 0.143994 loss)
I0401 17:51:27.176417 6134 solver.cpp:406] Test net output #10: loss3/accuracy = 0.653201
I0401 17:51:27.176429 6134 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.902275
I0401 17:51:27.176440 6134 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.836883
I0401 17:51:27.176453 6134 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 1.28923 (* 1 = 1.28923 loss)
I0401 17:51:27.176467 6134 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.360926 (* 1 = 0.360926 loss)
I0401 17:51:27.176478 6134 solver.cpp:406] Test net output #15: total_accuracy = 0.15
I0401 17:51:27.176491 6134 solver.cpp:406] Test net output #16: total_confidence = 0.13014
I0401 17:51:27.327000 6134 solver.cpp:229] Iteration 70000, loss = 3.8372
I0401 17:51:27.327040 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.210526
I0401 17:51:27.327059 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.8125
I0401 17:51:27.327072 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.368421
I0401 17:51:27.327087 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.04736 (* 0.3 = 0.914209 loss)
I0401 17:51:27.327102 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.744872 (* 0.3 = 0.223462 loss)
I0401 17:51:27.327114 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.289474
I0401 17:51:27.327126 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.829545
I0401 17:51:27.327137 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.605263
I0401 17:51:27.327152 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.37881 (* 0.3 = 0.713643 loss)
I0401 17:51:27.327165 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.575177 (* 0.3 = 0.172553 loss)
I0401 17:51:27.327178 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.421053
I0401 17:51:27.327189 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.857955
I0401 17:51:27.327200 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.684211
I0401 17:51:27.327214 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.78649 (* 1 = 1.78649 loss)
I0401 17:51:27.327227 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.447483 (* 1 = 0.447483 loss)
I0401 17:51:27.327239 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 17:51:27.327251 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0254203
I0401 17:51:27.327263 6134 sgd_solver.cpp:106] Iteration 70000, lr = 0.01
I0401 17:53:35.587855 6134 solver.cpp:229] Iteration 70500, loss = 3.77914
I0401 17:53:35.587985 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.211538
I0401 17:53:35.588006 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.761364
I0401 17:53:35.588018 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.365385
I0401 17:53:35.588034 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.88647 (* 0.3 = 0.86594 loss)
I0401 17:53:35.588049 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.890258 (* 0.3 = 0.267077 loss)
I0401 17:53:35.588062 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.230769
I0401 17:53:35.588074 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.767045
I0401 17:53:35.588086 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.5
I0401 17:53:35.588100 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.41529 (* 0.3 = 0.724588 loss)
I0401 17:53:35.588114 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.745194 (* 0.3 = 0.223558 loss)
I0401 17:53:35.588126 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.576923
I0401 17:53:35.588138 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.875
I0401 17:53:35.588150 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.807692
I0401 17:53:35.588165 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.41175 (* 1 = 1.41175 loss)
I0401 17:53:35.588178 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.422466 (* 1 = 0.422466 loss)
I0401 17:53:35.588191 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0401 17:53:35.588203 6134 solver.cpp:245] Train net output #16: total_confidence = 0.175238
I0401 17:53:35.588215 6134 sgd_solver.cpp:106] Iteration 70500, lr = 0.01
I0401 17:55:43.908488 6134 solver.cpp:229] Iteration 71000, loss = 3.75153
I0401 17:55:43.908596 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.166667
I0401 17:55:43.908617 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.738636
I0401 17:55:43.908628 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.296296
I0401 17:55:43.908645 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.44922 (* 0.3 = 1.03477 loss)
I0401 17:55:43.908660 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.08867 (* 0.3 = 0.326601 loss)
I0401 17:55:43.908673 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.203704
I0401 17:55:43.908685 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.755682
I0401 17:55:43.908697 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.444444
I0401 17:55:43.908711 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.29326 (* 0.3 = 0.987979 loss)
I0401 17:55:43.908725 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.03915 (* 0.3 = 0.311744 loss)
I0401 17:55:43.908737 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.388889
I0401 17:55:43.908751 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.806818
I0401 17:55:43.908762 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.574074
I0401 17:55:43.908776 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.33628 (* 1 = 3.33628 loss)
I0401 17:55:43.908789 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 1.03202 (* 1 = 1.03202 loss)
I0401 17:55:43.908802 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 17:55:43.908814 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0631788
I0401 17:55:43.908826 6134 sgd_solver.cpp:106] Iteration 71000, lr = 0.01
I0401 17:57:52.105262 6134 solver.cpp:229] Iteration 71500, loss = 3.74939
I0401 17:57:52.105579 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.25
I0401 17:57:52.105600 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.801136
I0401 17:57:52.105613 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.55
I0401 17:57:52.105630 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.29688 (* 0.3 = 0.689065 loss)
I0401 17:57:52.105645 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.669629 (* 0.3 = 0.200889 loss)
I0401 17:57:52.105657 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.375
I0401 17:57:52.105670 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.835227
I0401 17:57:52.105682 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.575
I0401 17:57:52.105696 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.23297 (* 0.3 = 0.66989 loss)
I0401 17:57:52.105711 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.599549 (* 0.3 = 0.179865 loss)
I0401 17:57:52.105723 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.425
I0401 17:57:52.105736 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.857955
I0401 17:57:52.105747 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.65
I0401 17:57:52.105762 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.82398 (* 1 = 1.82398 loss)
I0401 17:57:52.105775 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.465368 (* 1 = 0.465368 loss)
I0401 17:57:52.105787 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0401 17:57:52.105799 6134 solver.cpp:245] Train net output #16: total_confidence = 0.130631
I0401 17:57:52.105811 6134 sgd_solver.cpp:106] Iteration 71500, lr = 0.01
I0401 18:00:00.514313 6134 solver.cpp:229] Iteration 72000, loss = 3.74243
I0401 18:00:00.514421 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.342105
I0401 18:00:00.514441 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.8125
I0401 18:00:00.514453 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.5
I0401 18:00:00.514470 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.48317 (* 0.3 = 0.744951 loss)
I0401 18:00:00.514484 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.750185 (* 0.3 = 0.225056 loss)
I0401 18:00:00.514497 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.394737
I0401 18:00:00.514510 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.818182
I0401 18:00:00.514524 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.710526
I0401 18:00:00.514539 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.98971 (* 0.3 = 0.596914 loss)
I0401 18:00:00.514554 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.666043 (* 0.3 = 0.199813 loss)
I0401 18:00:00.514566 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.552632
I0401 18:00:00.514578 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.863636
I0401 18:00:00.514590 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.763158
I0401 18:00:00.514605 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.46106 (* 1 = 1.46106 loss)
I0401 18:00:00.514618 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.50215 (* 1 = 0.50215 loss)
I0401 18:00:00.514631 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0401 18:00:00.514642 6134 solver.cpp:245] Train net output #16: total_confidence = 0.175871
I0401 18:00:00.514654 6134 sgd_solver.cpp:106] Iteration 72000, lr = 0.01
I0401 18:02:08.934254 6134 solver.cpp:229] Iteration 72500, loss = 3.79193
I0401 18:02:08.934386 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.153846
I0401 18:02:08.934406 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.732955
I0401 18:02:08.934418 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.384615
I0401 18:02:08.934434 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.67971 (* 0.3 = 0.803913 loss)
I0401 18:02:08.934449 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.86045 (* 0.3 = 0.258135 loss)
I0401 18:02:08.934463 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.192308
I0401 18:02:08.934474 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.727273
I0401 18:02:08.934486 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.461538
I0401 18:02:08.934500 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.54134 (* 0.3 = 0.762402 loss)
I0401 18:02:08.934514 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.856744 (* 0.3 = 0.257023 loss)
I0401 18:02:08.934530 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.442308
I0401 18:02:08.934541 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.8125
I0401 18:02:08.934554 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.653846
I0401 18:02:08.934568 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.88182 (* 1 = 1.88182 loss)
I0401 18:02:08.934582 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.628757 (* 1 = 0.628757 loss)
I0401 18:02:08.934594 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0401 18:02:08.934607 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0114213
I0401 18:02:08.934619 6134 sgd_solver.cpp:106] Iteration 72500, lr = 0.01
I0401 18:04:17.212348 6134 solver.cpp:229] Iteration 73000, loss = 3.73631
I0401 18:04:17.212460 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.326087
I0401 18:04:17.212481 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.818182
I0401 18:04:17.212492 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.630435
I0401 18:04:17.212508 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.15291 (* 0.3 = 0.645872 loss)
I0401 18:04:17.212527 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.630798 (* 0.3 = 0.189239 loss)
I0401 18:04:17.212539 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.478261
I0401 18:04:17.212551 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.846591
I0401 18:04:17.212563 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.652174
I0401 18:04:17.212577 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.82347 (* 0.3 = 0.547041 loss)
I0401 18:04:17.212591 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.532243 (* 0.3 = 0.159673 loss)
I0401 18:04:17.212604 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.73913
I0401 18:04:17.212616 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.926136
I0401 18:04:17.212628 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.891304
I0401 18:04:17.212642 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.966641 (* 1 = 0.966641 loss)
I0401 18:04:17.212656 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.27974 (* 1 = 0.27974 loss)
I0401 18:04:17.212669 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0401 18:04:17.212682 6134 solver.cpp:245] Train net output #16: total_confidence = 0.131373
I0401 18:04:17.212693 6134 sgd_solver.cpp:106] Iteration 73000, lr = 0.01
I0401 18:06:25.800891 6134 solver.cpp:229] Iteration 73500, loss = 3.6838
I0401 18:06:25.801257 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.145455
I0401 18:06:25.801280 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.727273
I0401 18:06:25.801293 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.509091
I0401 18:06:25.801311 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.67939 (* 0.3 = 0.803816 loss)
I0401 18:06:25.801326 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.853752 (* 0.3 = 0.256126 loss)
I0401 18:06:25.801337 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.163636
I0401 18:06:25.801349 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.738636
I0401 18:06:25.801362 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.4
I0401 18:06:25.801375 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.82543 (* 0.3 = 0.847631 loss)
I0401 18:06:25.801389 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.897462 (* 0.3 = 0.269239 loss)
I0401 18:06:25.801403 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.381818
I0401 18:06:25.801414 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.795455
I0401 18:06:25.801426 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.581818
I0401 18:06:25.801440 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.32059 (* 1 = 2.32059 loss)
I0401 18:06:25.801455 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.753907 (* 1 = 0.753907 loss)
I0401 18:06:25.801466 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 18:06:25.801478 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0355633
I0401 18:06:25.801491 6134 sgd_solver.cpp:106] Iteration 73500, lr = 0.01
I0401 18:08:34.352701 6134 solver.cpp:229] Iteration 74000, loss = 3.67055
I0401 18:08:34.352814 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.395349
I0401 18:08:34.352835 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.818182
I0401 18:08:34.352849 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.744186
I0401 18:08:34.352864 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.79029 (* 0.3 = 0.537088 loss)
I0401 18:08:34.352880 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.546258 (* 0.3 = 0.163877 loss)
I0401 18:08:34.352892 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.534884
I0401 18:08:34.352905 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.869318
I0401 18:08:34.352916 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.744186
I0401 18:08:34.352931 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.61499 (* 0.3 = 0.484496 loss)
I0401 18:08:34.352946 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.466189 (* 0.3 = 0.139857 loss)
I0401 18:08:34.352957 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.72093
I0401 18:08:34.352970 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.909091
I0401 18:08:34.352982 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.906977
I0401 18:08:34.352996 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.740577 (* 1 = 0.740577 loss)
I0401 18:08:34.353010 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.259306 (* 1 = 0.259306 loss)
I0401 18:08:34.353023 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0401 18:08:34.353034 6134 solver.cpp:245] Train net output #16: total_confidence = 0.131714
I0401 18:08:34.353062 6134 sgd_solver.cpp:106] Iteration 74000, lr = 0.01
I0401 18:10:42.635143 6134 solver.cpp:229] Iteration 74500, loss = 3.64782
I0401 18:10:42.635311 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.365385
I0401 18:10:42.635334 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.806818
I0401 18:10:42.635347 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.557692
I0401 18:10:42.635363 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.36393 (* 0.3 = 0.709178 loss)
I0401 18:10:42.635378 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.731393 (* 0.3 = 0.219418 loss)
I0401 18:10:42.635390 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.384615
I0401 18:10:42.635403 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.818182
I0401 18:10:42.635416 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.692308
I0401 18:10:42.635428 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.97748 (* 0.3 = 0.593243 loss)
I0401 18:10:42.635443 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.599985 (* 0.3 = 0.179995 loss)
I0401 18:10:42.635455 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.576923
I0401 18:10:42.635468 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.869318
I0401 18:10:42.635479 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.769231
I0401 18:10:42.635493 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.44214 (* 1 = 1.44214 loss)
I0401 18:10:42.635507 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.4516 (* 1 = 0.4516 loss)
I0401 18:10:42.635522 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0401 18:10:42.635535 6134 solver.cpp:245] Train net output #16: total_confidence = 0.100938
I0401 18:10:42.635548 6134 sgd_solver.cpp:106] Iteration 74500, lr = 0.01
I0401 18:12:50.868577 6134 solver.cpp:338] Iteration 75000, Testing net (#0)
I0401 18:13:20.626327 6134 solver.cpp:393] Test loss: 3.30018
I0401 18:13:20.626386 6134 solver.cpp:406] Test net output #0: loss1/accuracy = 0.330592
I0401 18:13:20.626405 6134 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.828728
I0401 18:13:20.626417 6134 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.643262
I0401 18:13:20.626433 6134 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 2.18397 (* 0.3 = 0.65519 loss)
I0401 18:13:20.626449 6134 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.571765 (* 0.3 = 0.171529 loss)
I0401 18:13:20.626461 6134 solver.cpp:406] Test net output #5: loss2/accuracy = 0.477485
I0401 18:13:20.626473 6134 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.866821
I0401 18:13:20.626485 6134 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.780307
I0401 18:13:20.626499 6134 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.75956 (* 0.3 = 0.527869 loss)
I0401 18:13:20.626513 6134 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.456135 (* 0.3 = 0.136841 loss)
I0401 18:13:20.626528 6134 solver.cpp:406] Test net output #10: loss3/accuracy = 0.639665
I0401 18:13:20.626540 6134 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.908502
I0401 18:13:20.626552 6134 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.836854
I0401 18:13:20.626566 6134 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 1.43436 (* 1 = 1.43436 loss)
I0401 18:13:20.626579 6134 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.374386 (* 1 = 0.374386 loss)
I0401 18:13:20.626591 6134 solver.cpp:406] Test net output #15: total_accuracy = 0.207
I0401 18:13:20.626603 6134 solver.cpp:406] Test net output #16: total_confidence = 0.248664
I0401 18:13:20.777840 6134 solver.cpp:229] Iteration 75000, loss = 3.70051
I0401 18:13:20.777889 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.372093
I0401 18:13:20.777906 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.829545
I0401 18:13:20.777920 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.55814
I0401 18:13:20.777935 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.57136 (* 0.3 = 0.771407 loss)
I0401 18:13:20.777951 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.730975 (* 0.3 = 0.219293 loss)
I0401 18:13:20.777963 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.511628
I0401 18:13:20.777976 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.863636
I0401 18:13:20.777988 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.767442
I0401 18:13:20.778002 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.8358 (* 0.3 = 0.55074 loss)
I0401 18:13:20.778019 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.521182 (* 0.3 = 0.156355 loss)
I0401 18:13:20.778033 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.674419
I0401 18:13:20.778045 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.914773
I0401 18:13:20.778056 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.883721
I0401 18:13:20.778072 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.14841 (* 1 = 1.14841 loss)
I0401 18:13:20.778086 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.302187 (* 1 = 0.302187 loss)
I0401 18:13:20.778098 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0401 18:13:20.778110 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0954722
I0401 18:13:20.778123 6134 sgd_solver.cpp:106] Iteration 75000, lr = 0.01
I0401 18:15:29.253588 6134 solver.cpp:229] Iteration 75500, loss = 3.73708
I0401 18:15:29.253716 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.333333
I0401 18:15:29.253737 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.818182
I0401 18:15:29.253751 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.595238
I0401 18:15:29.253767 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.21328 (* 0.3 = 0.663985 loss)
I0401 18:15:29.253782 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.655727 (* 0.3 = 0.196718 loss)
I0401 18:15:29.253794 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.333333
I0401 18:15:29.253806 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.789773
I0401 18:15:29.253818 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.666667
I0401 18:15:29.253832 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.07178 (* 0.3 = 0.621533 loss)
I0401 18:15:29.253847 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.676919 (* 0.3 = 0.203076 loss)
I0401 18:15:29.253859 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.619048
I0401 18:15:29.253871 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.880682
I0401 18:15:29.253883 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.857143
I0401 18:15:29.253896 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.24579 (* 1 = 1.24579 loss)
I0401 18:15:29.253911 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.406359 (* 1 = 0.406359 loss)
I0401 18:15:29.253922 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0401 18:15:29.253934 6134 solver.cpp:245] Train net output #16: total_confidence = 0.125765
I0401 18:15:29.253947 6134 sgd_solver.cpp:106] Iteration 75500, lr = 0.01
I0401 18:17:37.760825 6134 solver.cpp:229] Iteration 76000, loss = 3.73529
I0401 18:17:37.761139 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.297872
I0401 18:17:37.761159 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.806818
I0401 18:17:37.761173 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.510638
I0401 18:17:37.761189 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.36241 (* 0.3 = 0.708723 loss)
I0401 18:17:37.761204 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.671083 (* 0.3 = 0.201325 loss)
I0401 18:17:37.761216 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.425532
I0401 18:17:37.761229 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.846591
I0401 18:17:37.761241 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.617021
I0401 18:17:37.761255 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.30858 (* 0.3 = 0.692574 loss)
I0401 18:17:37.761270 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.647261 (* 0.3 = 0.194178 loss)
I0401 18:17:37.761281 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.595745
I0401 18:17:37.761293 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.892045
I0401 18:17:37.761306 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.829787
I0401 18:17:37.761319 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.34348 (* 1 = 1.34348 loss)
I0401 18:17:37.761333 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.375593 (* 1 = 0.375593 loss)
I0401 18:17:37.761345 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 18:17:37.761358 6134 solver.cpp:245] Train net output #16: total_confidence = 0.110559
I0401 18:17:37.761370 6134 sgd_solver.cpp:106] Iteration 76000, lr = 0.01
I0401 18:19:46.244030 6134 solver.cpp:229] Iteration 76500, loss = 3.62966
I0401 18:19:46.244135 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.282609
I0401 18:19:46.244155 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.795455
I0401 18:19:46.244168 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.543478
I0401 18:19:46.244185 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.55073 (* 0.3 = 0.765218 loss)
I0401 18:19:46.244200 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.736422 (* 0.3 = 0.220927 loss)
I0401 18:19:46.244212 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.478261
I0401 18:19:46.244225 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.840909
I0401 18:19:46.244237 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.630435
I0401 18:19:46.244251 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.09183 (* 0.3 = 0.627548 loss)
I0401 18:19:46.244266 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.646853 (* 0.3 = 0.194056 loss)
I0401 18:19:46.244278 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.586957
I0401 18:19:46.244290 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.892045
I0401 18:19:46.244302 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.826087
I0401 18:19:46.244316 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.66813 (* 1 = 1.66813 loss)
I0401 18:19:46.244330 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.450424 (* 1 = 0.450424 loss)
I0401 18:19:46.244343 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0401 18:19:46.244355 6134 solver.cpp:245] Train net output #16: total_confidence = 0.188193
I0401 18:19:46.244367 6134 sgd_solver.cpp:106] Iteration 76500, lr = 0.01
I0401 18:21:55.018409 6134 solver.cpp:229] Iteration 77000, loss = 3.72351
I0401 18:21:55.018537 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.12963
I0401 18:21:55.018556 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.732955
I0401 18:21:55.018570 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.37037
I0401 18:21:55.018586 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.88418 (* 0.3 = 0.865253 loss)
I0401 18:21:55.018601 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.921656 (* 0.3 = 0.276497 loss)
I0401 18:21:55.018613 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.222222
I0401 18:21:55.018626 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.761364
I0401 18:21:55.018638 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.462963
I0401 18:21:55.018651 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.60298 (* 0.3 = 0.780895 loss)
I0401 18:21:55.018666 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.827465 (* 0.3 = 0.248239 loss)
I0401 18:21:55.018678 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.425926
I0401 18:21:55.018690 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.818182
I0401 18:21:55.018702 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.611111
I0401 18:21:55.018717 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.12539 (* 1 = 2.12539 loss)
I0401 18:21:55.018730 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.677844 (* 1 = 0.677844 loss)
I0401 18:21:55.018743 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 18:21:55.018754 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0360006
I0401 18:21:55.018766 6134 sgd_solver.cpp:106] Iteration 77000, lr = 0.01
I0401 18:24:03.829697 6134 solver.cpp:229] Iteration 77500, loss = 3.66458
I0401 18:24:03.829824 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.22
I0401 18:24:03.829845 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.761364
I0401 18:24:03.829859 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.42
I0401 18:24:03.829875 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.803 (* 0.3 = 0.840901 loss)
I0401 18:24:03.829890 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.885845 (* 0.3 = 0.265754 loss)
I0401 18:24:03.829903 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.28
I0401 18:24:03.829916 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.767045
I0401 18:24:03.829928 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.52
I0401 18:24:03.829942 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.60076 (* 0.3 = 0.780228 loss)
I0401 18:24:03.829957 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.819843 (* 0.3 = 0.245953 loss)
I0401 18:24:03.829969 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.54
I0401 18:24:03.829982 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.857955
I0401 18:24:03.829993 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.78
I0401 18:24:03.830008 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.70471 (* 1 = 1.70471 loss)
I0401 18:24:03.830023 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.529584 (* 1 = 0.529584 loss)
I0401 18:24:03.830034 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0401 18:24:03.830046 6134 solver.cpp:245] Train net output #16: total_confidence = 0.171903
I0401 18:24:03.830059 6134 sgd_solver.cpp:106] Iteration 77500, lr = 0.01
I0401 18:26:12.902709 6134 solver.cpp:229] Iteration 78000, loss = 3.71421
I0401 18:26:12.903139 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.195652
I0401 18:26:12.903161 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.761364
I0401 18:26:12.903174 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.543478
I0401 18:26:12.903192 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.58681 (* 0.3 = 0.776044 loss)
I0401 18:26:12.903206 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.774121 (* 0.3 = 0.232236 loss)
I0401 18:26:12.903220 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.5
I0401 18:26:12.903234 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.840909
I0401 18:26:12.903245 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.586957
I0401 18:26:12.903259 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.08786 (* 0.3 = 0.626357 loss)
I0401 18:26:12.903275 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.650636 (* 0.3 = 0.195191 loss)
I0401 18:26:12.903286 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.717391
I0401 18:26:12.903300 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.909091
I0401 18:26:12.903311 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.847826
I0401 18:26:12.903326 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.14852 (* 1 = 1.14852 loss)
I0401 18:26:12.903340 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.361035 (* 1 = 0.361035 loss)
I0401 18:26:12.903352 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0401 18:26:12.903364 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0785482
I0401 18:26:12.903378 6134 sgd_solver.cpp:106] Iteration 78000, lr = 0.01
I0401 18:28:21.532691 6134 solver.cpp:229] Iteration 78500, loss = 3.65651
I0401 18:28:21.532809 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.18
I0401 18:28:21.532830 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.761364
I0401 18:28:21.532843 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.48
I0401 18:28:21.532860 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.76868 (* 0.3 = 0.830604 loss)
I0401 18:28:21.532874 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.806897 (* 0.3 = 0.242069 loss)
I0401 18:28:21.532887 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.42
I0401 18:28:21.532899 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.835227
I0401 18:28:21.532912 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.58
I0401 18:28:21.532925 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.43004 (* 0.3 = 0.729012 loss)
I0401 18:28:21.532939 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.696357 (* 0.3 = 0.208907 loss)
I0401 18:28:21.532953 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.7
I0401 18:28:21.532963 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.909091
I0401 18:28:21.532975 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.78
I0401 18:28:21.532989 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.36938 (* 1 = 1.36938 loss)
I0401 18:28:21.533004 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.40521 (* 1 = 0.40521 loss)
I0401 18:28:21.533016 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0401 18:28:21.533028 6134 solver.cpp:245] Train net output #16: total_confidence = 0.149489
I0401 18:28:21.533041 6134 sgd_solver.cpp:106] Iteration 78500, lr = 0.01
I0401 18:30:30.260901 6134 solver.cpp:229] Iteration 79000, loss = 3.59306
I0401 18:30:30.261044 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.181818
I0401 18:30:30.261065 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.778409
I0401 18:30:30.261077 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.340909
I0401 18:30:30.261102 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.1264 (* 0.3 = 0.937921 loss)
I0401 18:30:30.261117 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.850531 (* 0.3 = 0.255159 loss)
I0401 18:30:30.261129 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.181818
I0401 18:30:30.261142 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.778409
I0401 18:30:30.261154 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.386364
I0401 18:30:30.261168 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.84522 (* 0.3 = 0.853567 loss)
I0401 18:30:30.261183 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.78377 (* 0.3 = 0.235131 loss)
I0401 18:30:30.261194 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.295455
I0401 18:30:30.261207 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.823864
I0401 18:30:30.261219 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.522727
I0401 18:30:30.261234 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.23049 (* 1 = 2.23049 loss)
I0401 18:30:30.261247 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.590498 (* 1 = 0.590498 loss)
I0401 18:30:30.261260 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0401 18:30:30.261271 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0241516
I0401 18:30:30.261284 6134 sgd_solver.cpp:106] Iteration 79000, lr = 0.01
I0401 18:32:39.091327 6134 solver.cpp:229] Iteration 79500, loss = 3.63374
I0401 18:32:39.091442 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.183673
I0401 18:32:39.091462 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.761364
I0401 18:32:39.091475 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.469388
I0401 18:32:39.091491 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.03702 (* 0.3 = 0.911107 loss)
I0401 18:32:39.091506 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.901503 (* 0.3 = 0.270451 loss)
I0401 18:32:39.091521 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.326531
I0401 18:32:39.091536 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.806818
I0401 18:32:39.091547 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.591837
I0401 18:32:39.091562 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.55482 (* 0.3 = 0.766447 loss)
I0401 18:32:39.091577 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.75138 (* 0.3 = 0.225414 loss)
I0401 18:32:39.091588 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.44898
I0401 18:32:39.091600 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.840909
I0401 18:32:39.091612 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.714286
I0401 18:32:39.091626 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.06939 (* 1 = 2.06939 loss)
I0401 18:32:39.091640 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.612282 (* 1 = 0.612282 loss)
I0401 18:32:39.091653 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 18:32:39.091665 6134 solver.cpp:245] Train net output #16: total_confidence = 0.153413
I0401 18:32:39.091677 6134 sgd_solver.cpp:106] Iteration 79500, lr = 0.01
I0401 18:34:47.871453 6134 solver.cpp:338] Iteration 80000, Testing net (#0)
I0401 18:35:17.778465 6134 solver.cpp:393] Test loss: 2.9809
I0401 18:35:17.778513 6134 solver.cpp:406] Test net output #0: loss1/accuracy = 0.365732
I0401 18:35:17.778532 6134 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.83582
I0401 18:35:17.778545 6134 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.653551
I0401 18:35:17.778561 6134 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 2.07837 (* 0.3 = 0.623512 loss)
I0401 18:35:17.778575 6134 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.556518 (* 0.3 = 0.166956 loss)
I0401 18:35:17.778589 6134 solver.cpp:406] Test net output #5: loss2/accuracy = 0.516335
I0401 18:35:17.778600 6134 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.870775
I0401 18:35:17.778612 6134 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.78435
I0401 18:35:17.778625 6134 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.6623 (* 0.3 = 0.498691 loss)
I0401 18:35:17.778640 6134 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.453169 (* 0.3 = 0.135951 loss)
I0401 18:35:17.778651 6134 solver.cpp:406] Test net output #10: loss3/accuracy = 0.675791
I0401 18:35:17.778663 6134 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.913456
I0401 18:35:17.778674 6134 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.845124
I0401 18:35:17.778688 6134 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 1.22299 (* 1 = 1.22299 loss)
I0401 18:35:17.778702 6134 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.332808 (* 1 = 0.332808 loss)
I0401 18:35:17.778713 6134 solver.cpp:406] Test net output #15: total_accuracy = 0.222
I0401 18:35:17.778725 6134 solver.cpp:406] Test net output #16: total_confidence = 0.206636
I0401 18:35:17.930132 6134 solver.cpp:229] Iteration 80000, loss = 3.53752
I0401 18:35:17.930229 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.270833
I0401 18:35:17.930248 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.778409
I0401 18:35:17.930261 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.5
I0401 18:35:17.930277 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.53855 (* 0.3 = 0.761564 loss)
I0401 18:35:17.930292 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.794218 (* 0.3 = 0.238265 loss)
I0401 18:35:17.930305 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.333333
I0401 18:35:17.930316 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.795455
I0401 18:35:17.930327 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.541667
I0401 18:35:17.930341 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.45116 (* 0.3 = 0.735348 loss)
I0401 18:35:17.930356 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.781652 (* 0.3 = 0.234496 loss)
I0401 18:35:17.930367 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.458333
I0401 18:35:17.930378 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.835227
I0401 18:35:17.930390 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.625
I0401 18:35:17.930403 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.01601 (* 1 = 2.01601 loss)
I0401 18:35:17.930418 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.656107 (* 1 = 0.656107 loss)
I0401 18:35:17.930430 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0401 18:35:17.930443 6134 solver.cpp:245] Train net output #16: total_confidence = 0.115224
I0401 18:35:17.930455 6134 sgd_solver.cpp:106] Iteration 80000, lr = 0.01
I0401 18:37:26.797549 6134 solver.cpp:229] Iteration 80500, loss = 3.53801
I0401 18:37:26.797909 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.254902
I0401 18:37:26.797930 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.767045
I0401 18:37:26.797943 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.54902
I0401 18:37:26.797960 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.39837 (* 0.3 = 0.719511 loss)
I0401 18:37:26.797983 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.756839 (* 0.3 = 0.227052 loss)
I0401 18:37:26.797996 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.333333
I0401 18:37:26.798008 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.795455
I0401 18:37:26.798020 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.529412
I0401 18:37:26.798039 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.39304 (* 0.3 = 0.717911 loss)
I0401 18:37:26.798053 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.73354 (* 0.3 = 0.220062 loss)
I0401 18:37:26.798066 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.588235
I0401 18:37:26.798079 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.857955
I0401 18:37:26.798090 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.843137
I0401 18:37:26.798105 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.23427 (* 1 = 1.23427 loss)
I0401 18:37:26.798118 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.422827 (* 1 = 0.422827 loss)
I0401 18:37:26.798130 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 18:37:26.798142 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0818318
I0401 18:37:26.798154 6134 sgd_solver.cpp:106] Iteration 80500, lr = 0.01
I0401 18:39:35.673382 6134 solver.cpp:229] Iteration 81000, loss = 3.55559
I0401 18:39:35.673480 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.4
I0401 18:39:35.673499 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.8125
I0401 18:39:35.673513 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.666667
I0401 18:39:35.673529 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.99775 (* 0.3 = 0.599325 loss)
I0401 18:39:35.673544 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.654974 (* 0.3 = 0.196492 loss)
I0401 18:39:35.673557 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.488889
I0401 18:39:35.673570 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.823864
I0401 18:39:35.673583 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.755556
I0401 18:39:35.673596 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.76535 (* 0.3 = 0.529604 loss)
I0401 18:39:35.673610 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.584736 (* 0.3 = 0.175421 loss)
I0401 18:39:35.673624 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.777778
I0401 18:39:35.673635 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.920455
I0401 18:39:35.673647 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.911111
I0401 18:39:35.673661 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.781245 (* 1 = 0.781245 loss)
I0401 18:39:35.673676 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.27184 (* 1 = 0.27184 loss)
I0401 18:39:35.673688 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0401 18:39:35.673701 6134 solver.cpp:245] Train net output #16: total_confidence = 0.237028
I0401 18:39:35.673712 6134 sgd_solver.cpp:106] Iteration 81000, lr = 0.01
I0401 18:41:44.611836 6134 solver.cpp:229] Iteration 81500, loss = 3.57285
I0401 18:41:44.611976 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.22449
I0401 18:41:44.612005 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.772727
I0401 18:41:44.612018 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.469388
I0401 18:41:44.612035 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.80364 (* 0.3 = 0.841093 loss)
I0401 18:41:44.612049 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.849722 (* 0.3 = 0.254917 loss)
I0401 18:41:44.612061 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.306122
I0401 18:41:44.612079 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.795455
I0401 18:41:44.612092 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.469388
I0401 18:41:44.612104 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.68281 (* 0.3 = 0.804843 loss)
I0401 18:41:44.612119 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.804082 (* 0.3 = 0.241225 loss)
I0401 18:41:44.612131 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.489796
I0401 18:41:44.612143 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.852273
I0401 18:41:44.612155 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.653061
I0401 18:41:44.612175 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.92368 (* 1 = 1.92368 loss)
I0401 18:41:44.612190 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.563289 (* 1 = 0.563289 loss)
I0401 18:41:44.612201 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0401 18:41:44.612212 6134 solver.cpp:245] Train net output #16: total_confidence = 0.122421
I0401 18:41:44.612233 6134 sgd_solver.cpp:106] Iteration 81500, lr = 0.01
I0401 18:43:53.438127 6134 solver.cpp:229] Iteration 82000, loss = 3.60812
I0401 18:43:53.438256 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.255814
I0401 18:43:53.438290 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.801136
I0401 18:43:53.438311 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.488372
I0401 18:43:53.438338 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.44057 (* 0.3 = 0.732172 loss)
I0401 18:43:53.438352 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.652981 (* 0.3 = 0.195894 loss)
I0401 18:43:53.438365 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.372093
I0401 18:43:53.438379 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.823864
I0401 18:43:53.438397 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.55814
I0401 18:43:53.438411 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.2212 (* 0.3 = 0.666359 loss)
I0401 18:43:53.438426 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.607782 (* 0.3 = 0.182335 loss)
I0401 18:43:53.438439 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.44186
I0401 18:43:53.438452 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.852273
I0401 18:43:53.438464 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.674419
I0401 18:43:53.438478 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.91378 (* 1 = 1.91378 loss)
I0401 18:43:53.438493 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.506762 (* 1 = 0.506762 loss)
I0401 18:43:53.438504 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0401 18:43:53.438519 6134 solver.cpp:245] Train net output #16: total_confidence = 0.085381
I0401 18:43:53.438532 6134 sgd_solver.cpp:106] Iteration 82000, lr = 0.01
I0401 18:46:02.602617 6134 solver.cpp:229] Iteration 82500, loss = 3.50874
I0401 18:46:02.602818 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.3
I0401 18:46:02.602838 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.8125
I0401 18:46:02.602852 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.45
I0401 18:46:02.602869 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.30401 (* 0.3 = 0.691203 loss)
I0401 18:46:02.602885 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.636129 (* 0.3 = 0.190839 loss)
I0401 18:46:02.602897 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.4
I0401 18:46:02.602910 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.846591
I0401 18:46:02.602922 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.6
I0401 18:46:02.602936 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.12135 (* 0.3 = 0.636404 loss)
I0401 18:46:02.602952 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.562041 (* 0.3 = 0.168612 loss)
I0401 18:46:02.602963 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.575
I0401 18:46:02.602977 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.892045
I0401 18:46:02.602988 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.675
I0401 18:46:02.603003 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.51261 (* 1 = 1.51261 loss)
I0401 18:46:02.603016 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.414931 (* 1 = 0.414931 loss)
I0401 18:46:02.603029 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0401 18:46:02.603040 6134 solver.cpp:245] Train net output #16: total_confidence = 0.222587
I0401 18:46:02.603054 6134 sgd_solver.cpp:106] Iteration 82500, lr = 0.01
I0401 18:48:11.268380 6134 solver.cpp:229] Iteration 83000, loss = 3.47609
I0401 18:48:11.268672 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.265306
I0401 18:48:11.268692 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.778409
I0401 18:48:11.268704 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.55102
I0401 18:48:11.268720 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.51786 (* 0.3 = 0.755357 loss)
I0401 18:48:11.268735 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.760446 (* 0.3 = 0.228134 loss)
I0401 18:48:11.268748 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.408163
I0401 18:48:11.268761 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.818182
I0401 18:48:11.268772 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.693878
I0401 18:48:11.268787 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.88789 (* 0.3 = 0.566366 loss)
I0401 18:48:11.268802 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.600731 (* 0.3 = 0.180219 loss)
I0401 18:48:11.268815 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.693878
I0401 18:48:11.268826 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.903409
I0401 18:48:11.268838 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.816327
I0401 18:48:11.268853 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.21274 (* 1 = 1.21274 loss)
I0401 18:48:11.268867 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.373533 (* 1 = 0.373533 loss)
I0401 18:48:11.268879 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0401 18:48:11.268892 6134 solver.cpp:245] Train net output #16: total_confidence = 0.203744
I0401 18:48:11.268904 6134 sgd_solver.cpp:106] Iteration 83000, lr = 0.01
I0401 18:50:20.171488 6134 solver.cpp:229] Iteration 83500, loss = 3.55813
I0401 18:50:20.171703 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.340426
I0401 18:50:20.171725 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.806818
I0401 18:50:20.171739 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.702128
I0401 18:50:20.171756 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.97 (* 0.3 = 0.590999 loss)
I0401 18:50:20.171771 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.581874 (* 0.3 = 0.174562 loss)
I0401 18:50:20.171783 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.404255
I0401 18:50:20.171797 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.835227
I0401 18:50:20.171809 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.744681
I0401 18:50:20.171823 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.79114 (* 0.3 = 0.537341 loss)
I0401 18:50:20.171838 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.527763 (* 0.3 = 0.158329 loss)
I0401 18:50:20.171849 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.531915
I0401 18:50:20.171862 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.863636
I0401 18:50:20.171874 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.851064
I0401 18:50:20.171887 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.34425 (* 1 = 1.34425 loss)
I0401 18:50:20.171910 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.398512 (* 1 = 0.398512 loss)
I0401 18:50:20.171922 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0401 18:50:20.171934 6134 solver.cpp:245] Train net output #16: total_confidence = 0.144705
I0401 18:50:20.171947 6134 sgd_solver.cpp:106] Iteration 83500, lr = 0.01
I0401 18:52:29.128466 6134 solver.cpp:229] Iteration 84000, loss = 3.52494
I0401 18:52:29.128585 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.288889
I0401 18:52:29.128607 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.801136
I0401 18:52:29.128628 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.6
I0401 18:52:29.128643 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.42899 (* 0.3 = 0.728697 loss)
I0401 18:52:29.128659 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.713524 (* 0.3 = 0.214057 loss)
I0401 18:52:29.128671 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.444444
I0401 18:52:29.128684 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.818182
I0401 18:52:29.128696 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.711111
I0401 18:52:29.128718 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.06323 (* 0.3 = 0.618968 loss)
I0401 18:52:29.128732 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.66904 (* 0.3 = 0.200712 loss)
I0401 18:52:29.128744 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.533333
I0401 18:52:29.128758 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.857955
I0401 18:52:29.128779 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.755556
I0401 18:52:29.128793 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.48619 (* 1 = 1.48619 loss)
I0401 18:52:29.128808 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.439656 (* 1 = 0.439656 loss)
I0401 18:52:29.128819 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0401 18:52:29.128832 6134 solver.cpp:245] Train net output #16: total_confidence = 0.262026
I0401 18:52:29.128844 6134 sgd_solver.cpp:106] Iteration 84000, lr = 0.01
I0401 18:54:38.077003 6134 solver.cpp:229] Iteration 84500, loss = 3.5228
I0401 18:54:38.077158 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.372093
I0401 18:54:38.077178 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.835227
I0401 18:54:38.077193 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.651163
I0401 18:54:38.077208 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.00964 (* 0.3 = 0.602892 loss)
I0401 18:54:38.077224 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.559048 (* 0.3 = 0.167714 loss)
I0401 18:54:38.077241 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.511628
I0401 18:54:38.077255 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.863636
I0401 18:54:38.077266 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.627907
I0401 18:54:38.077280 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.61604 (* 0.3 = 0.484811 loss)
I0401 18:54:38.077294 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.461145 (* 0.3 = 0.138344 loss)
I0401 18:54:38.077306 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.651163
I0401 18:54:38.077319 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.897727
I0401 18:54:38.077330 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.813953
I0401 18:54:38.077344 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.13288 (* 1 = 1.13288 loss)
I0401 18:54:38.077358 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.317953 (* 1 = 0.317953 loss)
I0401 18:54:38.077370 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0401 18:54:38.077383 6134 solver.cpp:245] Train net output #16: total_confidence = 0.342421
I0401 18:54:38.077395 6134 sgd_solver.cpp:106] Iteration 84500, lr = 0.01
I0401 18:56:46.875203 6134 solver.cpp:338] Iteration 85000, Testing net (#0)
I0401 18:57:16.777572 6134 solver.cpp:393] Test loss: 2.9218
I0401 18:57:16.777627 6134 solver.cpp:406] Test net output #0: loss1/accuracy = 0.380547
I0401 18:57:16.777644 6134 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.832592
I0401 18:57:16.777657 6134 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.694125
I0401 18:57:16.777673 6134 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 2.02448 (* 0.3 = 0.607345 loss)
I0401 18:57:16.777688 6134 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.562597 (* 0.3 = 0.168779 loss)
I0401 18:57:16.777700 6134 solver.cpp:406] Test net output #5: loss2/accuracy = 0.542106
I0401 18:57:16.777714 6134 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.873322
I0401 18:57:16.777725 6134 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.807774
I0401 18:57:16.777740 6134 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.54615 (* 0.3 = 0.463844 loss)
I0401 18:57:16.777753 6134 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.431394 (* 0.3 = 0.129418 loss)
I0401 18:57:16.777765 6134 solver.cpp:406] Test net output #10: loss3/accuracy = 0.673585
I0401 18:57:16.777777 6134 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.914138
I0401 18:57:16.777789 6134 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.854004
I0401 18:57:16.777803 6134 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 1.22133 (* 1 = 1.22133 loss)
I0401 18:57:16.777817 6134 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.331086 (* 1 = 0.331086 loss)
I0401 18:57:16.777829 6134 solver.cpp:406] Test net output #15: total_accuracy = 0.253
I0401 18:57:16.777842 6134 solver.cpp:406] Test net output #16: total_confidence = 0.216195
I0401 18:57:16.929653 6134 solver.cpp:229] Iteration 85000, loss = 3.47953
I0401 18:57:16.929806 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.195122
I0401 18:57:16.929838 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.767045
I0401 18:57:16.929852 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.585366
I0401 18:57:16.929867 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.323 (* 0.3 = 0.6969 loss)
I0401 18:57:16.929890 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.756631 (* 0.3 = 0.226989 loss)
I0401 18:57:16.929903 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.390244
I0401 18:57:16.929914 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.829545
I0401 18:57:16.929927 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.682927
I0401 18:57:16.929940 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.96952 (* 0.3 = 0.590855 loss)
I0401 18:57:16.929961 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.621203 (* 0.3 = 0.186361 loss)
I0401 18:57:16.929973 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.682927
I0401 18:57:16.929986 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.903409
I0401 18:57:16.929997 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.829268
I0401 18:57:16.930011 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.224 (* 1 = 1.224 loss)
I0401 18:57:16.930025 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.419483 (* 1 = 0.419483 loss)
I0401 18:57:16.930037 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0401 18:57:16.930049 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0771766
I0401 18:57:16.930063 6134 sgd_solver.cpp:106] Iteration 85000, lr = 0.01
I0401 18:59:25.535673 6134 solver.cpp:229] Iteration 85500, loss = 3.47317
I0401 18:59:25.535785 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.27451
I0401 18:59:25.535805 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.789773
I0401 18:59:25.535818 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.54902
I0401 18:59:25.535835 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.52221 (* 0.3 = 0.756664 loss)
I0401 18:59:25.535850 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.752122 (* 0.3 = 0.225636 loss)
I0401 18:59:25.535862 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.333333
I0401 18:59:25.535876 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.789773
I0401 18:59:25.535888 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.647059
I0401 18:59:25.535902 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.37195 (* 0.3 = 0.711586 loss)
I0401 18:59:25.535917 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.751409 (* 0.3 = 0.225423 loss)
I0401 18:59:25.535929 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.627451
I0401 18:59:25.535941 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.886364
I0401 18:59:25.535954 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.862745
I0401 18:59:25.535969 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.45077 (* 1 = 1.45077 loss)
I0401 18:59:25.535990 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.451532 (* 1 = 0.451532 loss)
I0401 18:59:25.536002 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0401 18:59:25.536015 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0688208
I0401 18:59:25.536027 6134 sgd_solver.cpp:106] Iteration 85500, lr = 0.01
I0401 19:01:34.676713 6134 solver.cpp:229] Iteration 86000, loss = 3.51608
I0401 19:01:34.676862 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.255319
I0401 19:01:34.676882 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.789773
I0401 19:01:34.676895 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.489362
I0401 19:01:34.676913 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.37145 (* 0.3 = 0.711435 loss)
I0401 19:01:34.676935 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.683147 (* 0.3 = 0.204944 loss)
I0401 19:01:34.676947 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.425532
I0401 19:01:34.676960 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.835227
I0401 19:01:34.676972 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.659574
I0401 19:01:34.676986 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.96256 (* 0.3 = 0.588769 loss)
I0401 19:01:34.677000 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.576866 (* 0.3 = 0.17306 loss)
I0401 19:01:34.677013 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.617021
I0401 19:01:34.677037 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.875
I0401 19:01:34.677053 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.851064
I0401 19:01:34.677067 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.22737 (* 1 = 1.22737 loss)
I0401 19:01:34.677083 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.384739 (* 1 = 0.384739 loss)
I0401 19:01:34.677094 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0401 19:01:34.677106 6134 solver.cpp:245] Train net output #16: total_confidence = 0.14583
I0401 19:01:34.677119 6134 sgd_solver.cpp:106] Iteration 86000, lr = 0.01
I0401 19:03:43.668409 6134 solver.cpp:229] Iteration 86500, loss = 3.45769
I0401 19:03:43.668535 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.244898
I0401 19:03:43.668555 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.784091
I0401 19:03:43.668568 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.367347
I0401 19:03:43.668584 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.75806 (* 0.3 = 0.827417 loss)
I0401 19:03:43.668599 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.802324 (* 0.3 = 0.240697 loss)
I0401 19:03:43.668612 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.306122
I0401 19:03:43.668625 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.801136
I0401 19:03:43.668637 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.530612
I0401 19:03:43.668651 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.51634 (* 0.3 = 0.754903 loss)
I0401 19:03:43.668665 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.731936 (* 0.3 = 0.219581 loss)
I0401 19:03:43.668678 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.55102
I0401 19:03:43.668690 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.869318
I0401 19:03:43.668702 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.734694
I0401 19:03:43.668716 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.77308 (* 1 = 1.77308 loss)
I0401 19:03:43.668730 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.548514 (* 1 = 0.548514 loss)
I0401 19:03:43.668742 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0401 19:03:43.668754 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0533114
I0401 19:03:43.668766 6134 sgd_solver.cpp:106] Iteration 86500, lr = 0.01
I0401 19:05:52.494949 6134 solver.cpp:229] Iteration 87000, loss = 3.39918
I0401 19:05:52.495100 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.4
I0401 19:05:52.495121 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.846591
I0401 19:05:52.495134 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.7
I0401 19:05:52.495151 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.99168 (* 0.3 = 0.597505 loss)
I0401 19:05:52.495167 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.53251 (* 0.3 = 0.159753 loss)
I0401 19:05:52.495188 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.4
I0401 19:05:52.495200 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.840909
I0401 19:05:52.495213 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.75
I0401 19:05:52.495228 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.77321 (* 0.3 = 0.531962 loss)
I0401 19:05:52.495241 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.49162 (* 0.3 = 0.147486 loss)
I0401 19:05:52.495254 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.725
I0401 19:05:52.495266 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.926136
I0401 19:05:52.495278 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.875
I0401 19:05:52.495292 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.845572 (* 1 = 0.845572 loss)
I0401 19:05:52.495306 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.249115 (* 1 = 0.249115 loss)
I0401 19:05:52.495327 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 19:05:52.495339 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0642938
I0401 19:05:52.495352 6134 sgd_solver.cpp:106] Iteration 87000, lr = 0.01
I0401 19:08:01.372947 6134 solver.cpp:229] Iteration 87500, loss = 3.39869
I0401 19:08:01.373314 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.243902
I0401 19:08:01.373345 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.801136
I0401 19:08:01.373369 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.439024
I0401 19:08:01.373399 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.75741 (* 0.3 = 0.827224 loss)
I0401 19:08:01.373427 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.762107 (* 0.3 = 0.228632 loss)
I0401 19:08:01.373450 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.390244
I0401 19:08:01.373471 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.8125
I0401 19:08:01.373492 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.634146
I0401 19:08:01.373522 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.43802 (* 0.3 = 0.731406 loss)
I0401 19:08:01.373551 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.747906 (* 0.3 = 0.224372 loss)
I0401 19:08:01.373572 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.536585
I0401 19:08:01.373594 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.857955
I0401 19:08:01.373613 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.707317
I0401 19:08:01.373639 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.86326 (* 1 = 1.86326 loss)
I0401 19:08:01.373666 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.566846 (* 1 = 0.566846 loss)
I0401 19:08:01.373687 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 19:08:01.373709 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0619094
I0401 19:08:01.373733 6134 sgd_solver.cpp:106] Iteration 87500, lr = 0.01
I0401 19:10:10.248014 6134 solver.cpp:229] Iteration 88000, loss = 3.41325
I0401 19:10:10.248154 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.404762
I0401 19:10:10.248174 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.823864
I0401 19:10:10.248188 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.738095
I0401 19:10:10.248203 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.9042 (* 0.3 = 0.571259 loss)
I0401 19:10:10.248219 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.548035 (* 0.3 = 0.164411 loss)
I0401 19:10:10.248231 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.380952
I0401 19:10:10.248253 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.835227
I0401 19:10:10.248265 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.738095
I0401 19:10:10.248280 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.64865 (* 0.3 = 0.494594 loss)
I0401 19:10:10.248293 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.476903 (* 0.3 = 0.143071 loss)
I0401 19:10:10.248306 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.761905
I0401 19:10:10.248318 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.926136
I0401 19:10:10.248330 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.880952
I0401 19:10:10.248344 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.672744 (* 1 = 0.672744 loss)
I0401 19:10:10.248359 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.199674 (* 1 = 0.199674 loss)
I0401 19:10:10.248371 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0401 19:10:10.248383 6134 solver.cpp:245] Train net output #16: total_confidence = 0.177925
I0401 19:10:10.248396 6134 sgd_solver.cpp:106] Iteration 88000, lr = 0.01
I0401 19:12:19.335609 6134 solver.cpp:229] Iteration 88500, loss = 3.5066
I0401 19:12:19.335736 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.255319
I0401 19:12:19.335757 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.795455
I0401 19:12:19.335770 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.531915
I0401 19:12:19.335788 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.48742 (* 0.3 = 0.746226 loss)
I0401 19:12:19.335803 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.713992 (* 0.3 = 0.214198 loss)
I0401 19:12:19.335815 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.361702
I0401 19:12:19.335827 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.823864
I0401 19:12:19.335839 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.659574
I0401 19:12:19.335853 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.34272 (* 0.3 = 0.702816 loss)
I0401 19:12:19.335867 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.66639 (* 0.3 = 0.199917 loss)
I0401 19:12:19.335880 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.489362
I0401 19:12:19.335892 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.852273
I0401 19:12:19.335904 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.787234
I0401 19:12:19.335918 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.9673 (* 1 = 1.9673 loss)
I0401 19:12:19.335932 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.564786 (* 1 = 0.564786 loss)
I0401 19:12:19.335944 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0401 19:12:19.335957 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0808652
I0401 19:12:19.335968 6134 sgd_solver.cpp:106] Iteration 88500, lr = 0.01
I0401 19:14:28.315026 6134 solver.cpp:229] Iteration 89000, loss = 3.38718
I0401 19:14:28.315158 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.173077
I0401 19:14:28.315179 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.75
I0401 19:14:28.315192 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.423077
I0401 19:14:28.315209 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.85266 (* 0.3 = 0.855797 loss)
I0401 19:14:28.315224 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.862972 (* 0.3 = 0.258892 loss)
I0401 19:14:28.315237 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.192308
I0401 19:14:28.315250 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.75
I0401 19:14:28.315263 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.442308
I0401 19:14:28.315275 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.80422 (* 0.3 = 0.841268 loss)
I0401 19:14:28.315290 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.876174 (* 0.3 = 0.262852 loss)
I0401 19:14:28.315302 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.5
I0401 19:14:28.315315 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.846591
I0401 19:14:28.315327 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.673077
I0401 19:14:28.315341 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.93334 (* 1 = 1.93334 loss)
I0401 19:14:28.315356 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.629895 (* 1 = 0.629895 loss)
I0401 19:14:28.315367 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0401 19:14:28.315379 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0787688
I0401 19:14:28.315392 6134 sgd_solver.cpp:106] Iteration 89000, lr = 0.01
I0401 19:16:36.926424 6134 solver.cpp:229] Iteration 89500, loss = 3.41752
I0401 19:16:36.926695 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.166667
I0401 19:16:36.926714 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.744318
I0401 19:16:36.926728 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.37037
I0401 19:16:36.926744 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.92177 (* 0.3 = 0.876532 loss)
I0401 19:16:36.926759 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.916945 (* 0.3 = 0.275084 loss)
I0401 19:16:36.926772 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.259259
I0401 19:16:36.926784 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.772727
I0401 19:16:36.926797 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.5
I0401 19:16:36.926811 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.61181 (* 0.3 = 0.783542 loss)
I0401 19:16:36.926826 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.815099 (* 0.3 = 0.24453 loss)
I0401 19:16:36.926837 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.555556
I0401 19:16:36.926849 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.863636
I0401 19:16:36.926862 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.685185
I0401 19:16:36.926875 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.61962 (* 1 = 1.61962 loss)
I0401 19:16:36.926890 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.509453 (* 1 = 0.509453 loss)
I0401 19:16:36.926903 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0401 19:16:36.926915 6134 solver.cpp:245] Train net output #16: total_confidence = 0.207926
I0401 19:16:36.926926 6134 sgd_solver.cpp:106] Iteration 89500, lr = 0.01
I0401 19:18:45.828851 6134 solver.cpp:338] Iteration 90000, Testing net (#0)
I0401 19:19:15.643659 6134 solver.cpp:393] Test loss: 2.95026
I0401 19:19:15.643710 6134 solver.cpp:406] Test net output #0: loss1/accuracy = 0.356947
I0401 19:19:15.643728 6134 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.831137
I0401 19:19:15.643740 6134 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.656821
I0401 19:19:15.643756 6134 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 2.08718 (* 0.3 = 0.626155 loss)
I0401 19:19:15.643771 6134 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.559833 (* 0.3 = 0.16795 loss)
I0401 19:19:15.643784 6134 solver.cpp:406] Test net output #5: loss2/accuracy = 0.528757
I0401 19:19:15.643795 6134 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.87423
I0401 19:19:15.643807 6134 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.796985
I0401 19:19:15.643821 6134 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.61335 (* 0.3 = 0.484005 loss)
I0401 19:19:15.643836 6134 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.439288 (* 0.3 = 0.131786 loss)
I0401 19:19:15.643848 6134 solver.cpp:406] Test net output #10: loss3/accuracy = 0.67437
I0401 19:19:15.643860 6134 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.916502
I0401 19:19:15.643872 6134 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.854996
I0401 19:19:15.643885 6134 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 1.21449 (* 1 = 1.21449 loss)
I0401 19:19:15.643899 6134 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.325868 (* 1 = 0.325868 loss)
I0401 19:19:15.643911 6134 solver.cpp:406] Test net output #15: total_accuracy = 0.231
I0401 19:19:15.643923 6134 solver.cpp:406] Test net output #16: total_confidence = 0.192292
I0401 19:19:15.794682 6134 solver.cpp:229] Iteration 90000, loss = 3.44104
I0401 19:19:15.794723 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.288889
I0401 19:19:15.794739 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.801136
I0401 19:19:15.794752 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.533333
I0401 19:19:15.794769 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.4848 (* 0.3 = 0.74544 loss)
I0401 19:19:15.794783 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.715942 (* 0.3 = 0.214783 loss)
I0401 19:19:15.794795 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.4
I0401 19:19:15.794808 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.840909
I0401 19:19:15.794821 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.666667
I0401 19:19:15.794833 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.03878 (* 0.3 = 0.611635 loss)
I0401 19:19:15.794847 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.572865 (* 0.3 = 0.171859 loss)
I0401 19:19:15.794859 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.688889
I0401 19:19:15.794872 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.914773
I0401 19:19:15.794884 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.733333
I0401 19:19:15.794898 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.29847 (* 1 = 1.29847 loss)
I0401 19:19:15.794911 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.367888 (* 1 = 0.367888 loss)
I0401 19:19:15.794924 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0401 19:19:15.794935 6134 solver.cpp:245] Train net output #16: total_confidence = 0.200964
I0401 19:19:15.794947 6134 sgd_solver.cpp:106] Iteration 90000, lr = 0.01
I0401 19:21:25.277760 6134 solver.cpp:229] Iteration 90500, loss = 3.45246
I0401 19:21:25.277891 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.488889
I0401 19:21:25.277921 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.846591
I0401 19:21:25.277945 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.8
I0401 19:21:25.277974 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.93793 (* 0.3 = 0.581378 loss)
I0401 19:21:25.278002 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.578375 (* 0.3 = 0.173512 loss)
I0401 19:21:25.278024 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.555556
I0401 19:21:25.278048 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.869318
I0401 19:21:25.278070 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.866667
I0401 19:21:25.278096 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.40093 (* 0.3 = 0.420279 loss)
I0401 19:21:25.278121 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.415374 (* 0.3 = 0.124612 loss)
I0401 19:21:25.278142 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.866667
I0401 19:21:25.278175 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.943182
I0401 19:21:25.278210 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.955556
I0401 19:21:25.278237 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.54379 (* 1 = 0.54379 loss)
I0401 19:21:25.278262 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.185083 (* 1 = 0.185083 loss)
I0401 19:21:25.278283 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0401 19:21:25.278304 6134 solver.cpp:245] Train net output #16: total_confidence = 0.170176
I0401 19:21:25.278326 6134 sgd_solver.cpp:106] Iteration 90500, lr = 0.01
I0401 19:23:33.962676 6134 solver.cpp:229] Iteration 91000, loss = 3.39351
I0401 19:23:33.962788 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.269231
I0401 19:23:33.962807 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.778409
I0401 19:23:33.962821 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.384615
I0401 19:23:33.962837 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.57195 (* 0.3 = 0.771585 loss)
I0401 19:23:33.962852 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.789182 (* 0.3 = 0.236755 loss)
I0401 19:23:33.962865 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.230769
I0401 19:23:33.962877 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.772727
I0401 19:23:33.962889 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.538462
I0401 19:23:33.962903 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.49992 (* 0.3 = 0.749976 loss)
I0401 19:23:33.962918 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.750393 (* 0.3 = 0.225118 loss)
I0401 19:23:33.962929 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.480769
I0401 19:23:33.962942 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.846591
I0401 19:23:33.962954 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.769231
I0401 19:23:33.962968 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.47489 (* 1 = 1.47489 loss)
I0401 19:23:33.962982 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.452223 (* 1 = 0.452223 loss)
I0401 19:23:33.962995 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0401 19:23:33.963006 6134 solver.cpp:245] Train net output #16: total_confidence = 0.166366
I0401 19:23:33.963019 6134 sgd_solver.cpp:106] Iteration 91000, lr = 0.01
I0401 19:25:43.331502 6134 solver.cpp:229] Iteration 91500, loss = 3.32188
I0401 19:25:43.331645 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.255319
I0401 19:25:43.331665 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.784091
I0401 19:25:43.331678 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.404255
I0401 19:25:43.331694 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.5418 (* 0.3 = 0.762539 loss)
I0401 19:25:43.331709 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.76531 (* 0.3 = 0.229593 loss)
I0401 19:25:43.331722 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.297872
I0401 19:25:43.331734 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.801136
I0401 19:25:43.331746 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.489362
I0401 19:25:43.331760 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.37549 (* 0.3 = 0.712648 loss)
I0401 19:25:43.331774 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.698922 (* 0.3 = 0.209677 loss)
I0401 19:25:43.331786 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.468085
I0401 19:25:43.331799 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.852273
I0401 19:25:43.331810 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.638298
I0401 19:25:43.331825 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.95186 (* 1 = 1.95186 loss)
I0401 19:25:43.331838 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.556776 (* 1 = 0.556776 loss)
I0401 19:25:43.331851 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0401 19:25:43.331862 6134 solver.cpp:245] Train net output #16: total_confidence = 0.251275
I0401 19:25:43.331876 6134 sgd_solver.cpp:106] Iteration 91500, lr = 0.01
I0401 19:27:52.555338 6134 solver.cpp:229] Iteration 92000, loss = 3.40879
I0401 19:27:52.555609 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.404762
I0401 19:27:52.555629 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.829545
I0401 19:27:52.555642 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.619048
I0401 19:27:52.555658 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.04694 (* 0.3 = 0.614083 loss)
I0401 19:27:52.555673 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.588766 (* 0.3 = 0.17663 loss)
I0401 19:27:52.555686 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.380952
I0401 19:27:52.555698 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.835227
I0401 19:27:52.555711 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.642857
I0401 19:27:52.555724 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.76593 (* 0.3 = 0.529779 loss)
I0401 19:27:52.555739 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.515849 (* 0.3 = 0.154755 loss)
I0401 19:27:52.555752 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.666667
I0401 19:27:52.555763 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.897727
I0401 19:27:52.555775 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.857143
I0401 19:27:52.555789 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.989929 (* 1 = 0.989929 loss)
I0401 19:27:52.555804 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.288039 (* 1 = 0.288039 loss)
I0401 19:27:52.555815 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0401 19:27:52.555827 6134 solver.cpp:245] Train net output #16: total_confidence = 0.248512
I0401 19:27:52.555840 6134 sgd_solver.cpp:106] Iteration 92000, lr = 0.01
I0401 19:30:01.440426 6134 solver.cpp:229] Iteration 92500, loss = 3.39395
I0401 19:30:01.440588 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.326531
I0401 19:30:01.440608 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.8125
I0401 19:30:01.440623 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.591837
I0401 19:30:01.440639 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.19735 (* 0.3 = 0.659206 loss)
I0401 19:30:01.440654 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.635497 (* 0.3 = 0.190649 loss)
I0401 19:30:01.440666 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.44898
I0401 19:30:01.440680 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.840909
I0401 19:30:01.440690 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.714286
I0401 19:30:01.440704 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.85977 (* 0.3 = 0.557931 loss)
I0401 19:30:01.440718 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.547706 (* 0.3 = 0.164312 loss)
I0401 19:30:01.440732 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.612245
I0401 19:30:01.440743 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.875
I0401 19:30:01.440757 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.795918
I0401 19:30:01.440770 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.26756 (* 1 = 1.26756 loss)
I0401 19:30:01.440784 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.400658 (* 1 = 0.400658 loss)
I0401 19:30:01.440796 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0401 19:30:01.440809 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0917591
I0401 19:30:01.440820 6134 sgd_solver.cpp:106] Iteration 92500, lr = 0.01
I0401 19:32:10.633386 6134 solver.cpp:229] Iteration 93000, loss = 3.32726
I0401 19:32:10.633496 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.296296
I0401 19:32:10.633518 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.784091
I0401 19:32:10.633532 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.481481
I0401 19:32:10.633548 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.61596 (* 0.3 = 0.784787 loss)
I0401 19:32:10.633563 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.810064 (* 0.3 = 0.243019 loss)
I0401 19:32:10.633576 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.277778
I0401 19:32:10.633589 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.772727
I0401 19:32:10.633601 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.611111
I0401 19:32:10.633615 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.25078 (* 0.3 = 0.675234 loss)
I0401 19:32:10.633630 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.711713 (* 0.3 = 0.213514 loss)
I0401 19:32:10.633641 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.574074
I0401 19:32:10.633654 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.869318
I0401 19:32:10.633666 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.703704
I0401 19:32:10.633679 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.64922 (* 1 = 1.64922 loss)
I0401 19:32:10.633693 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.528839 (* 1 = 0.528839 loss)
I0401 19:32:10.633705 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0401 19:32:10.633718 6134 solver.cpp:245] Train net output #16: total_confidence = 0.160231
I0401 19:32:10.633729 6134 sgd_solver.cpp:106] Iteration 93000, lr = 0.01
I0401 19:34:19.353746 6134 solver.cpp:229] Iteration 93500, loss = 3.30063
I0401 19:34:19.353880 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.264706
I0401 19:34:19.353900 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.818182
I0401 19:34:19.353914 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.558824
I0401 19:34:19.353929 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.30305 (* 0.3 = 0.690914 loss)
I0401 19:34:19.353945 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.623035 (* 0.3 = 0.186911 loss)
I0401 19:34:19.353957 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.352941
I0401 19:34:19.353970 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.806818
I0401 19:34:19.353981 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.588235
I0401 19:34:19.353996 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.15483 (* 0.3 = 0.646449 loss)
I0401 19:34:19.354009 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.690331 (* 0.3 = 0.207099 loss)
I0401 19:34:19.354022 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.647059
I0401 19:34:19.354033 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.914773
I0401 19:34:19.354045 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.882353
I0401 19:34:19.354059 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.31861 (* 1 = 1.31861 loss)
I0401 19:34:19.354074 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.316877 (* 1 = 0.316877 loss)
I0401 19:34:19.354085 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0401 19:34:19.354097 6134 solver.cpp:245] Train net output #16: total_confidence = 0.235227
I0401 19:34:19.354110 6134 sgd_solver.cpp:106] Iteration 93500, lr = 0.01
I0401 19:36:28.144903 6134 solver.cpp:229] Iteration 94000, loss = 3.38031
I0401 19:36:28.145191 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.32
I0401 19:36:28.145211 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.801136
I0401 19:36:28.145225 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.5
I0401 19:36:28.145241 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.68394 (* 0.3 = 0.805182 loss)
I0401 19:36:28.145256 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.819753 (* 0.3 = 0.245926 loss)
I0401 19:36:28.145267 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.44
I0401 19:36:28.145280 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.829545
I0401 19:36:28.145292 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.62
I0401 19:36:28.145306 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.06796 (* 0.3 = 0.620387 loss)
I0401 19:36:28.145320 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.651333 (* 0.3 = 0.1954 loss)
I0401 19:36:28.145333 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.58
I0401 19:36:28.145346 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.869318
I0401 19:36:28.145369 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.74
I0401 19:36:28.145395 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.61652 (* 1 = 1.61652 loss)
I0401 19:36:28.145411 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.530533 (* 1 = 0.530533 loss)
I0401 19:36:28.145424 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0401 19:36:28.145437 6134 solver.cpp:245] Train net output #16: total_confidence = 0.209337
I0401 19:36:28.145449 6134 sgd_solver.cpp:106] Iteration 94000, lr = 0.01
I0401 19:38:37.091224 6134 solver.cpp:229] Iteration 94500, loss = 3.32765
I0401 19:38:37.091387 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.27907
I0401 19:38:37.091408 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.801136
I0401 19:38:37.091423 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.465116
I0401 19:38:37.091439 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.4608 (* 0.3 = 0.73824 loss)
I0401 19:38:37.091454 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.713075 (* 0.3 = 0.213922 loss)
I0401 19:38:37.091466 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.488372
I0401 19:38:37.091478 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.846591
I0401 19:38:37.091490 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.744186
I0401 19:38:37.091505 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.64249 (* 0.3 = 0.492746 loss)
I0401 19:38:37.091521 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.485628 (* 0.3 = 0.145689 loss)
I0401 19:38:37.091534 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.860465
I0401 19:38:37.091547 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.948864
I0401 19:38:37.091558 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.953488
I0401 19:38:37.091573 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.663428 (* 1 = 0.663428 loss)
I0401 19:38:37.091588 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.214376 (* 1 = 0.214376 loss)
I0401 19:38:37.091599 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0401 19:38:37.091611 6134 solver.cpp:245] Train net output #16: total_confidence = 0.187172
I0401 19:38:37.091624 6134 sgd_solver.cpp:106] Iteration 94500, lr = 0.01
I0401 19:40:45.465842 6134 solver.cpp:338] Iteration 95000, Testing net (#0)
I0401 19:41:15.223929 6134 solver.cpp:393] Test loss: 2.99736
I0401 19:41:15.223980 6134 solver.cpp:406] Test net output #0: loss1/accuracy = 0.405579
I0401 19:41:15.224009 6134 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.847048
I0401 19:41:15.224031 6134 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.693052
I0401 19:41:15.224061 6134 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 2.00675 (* 0.3 = 0.602024 loss)
I0401 19:41:15.224087 6134 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.531383 (* 0.3 = 0.159415 loss)
I0401 19:41:15.224108 6134 solver.cpp:406] Test net output #5: loss2/accuracy = 0.53103
I0401 19:41:15.224131 6134 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.872594
I0401 19:41:15.224153 6134 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.797492
I0401 19:41:15.224179 6134 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.63168 (* 0.3 = 0.489505 loss)
I0401 19:41:15.224202 6134 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.446671 (* 0.3 = 0.134001 loss)
I0401 19:41:15.224223 6134 solver.cpp:406] Test net output #10: loss3/accuracy = 0.681689
I0401 19:41:15.224246 6134 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.908501
I0401 19:41:15.224267 6134 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.845496
I0401 19:41:15.224292 6134 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 1.25069 (* 1 = 1.25069 loss)
I0401 19:41:15.224316 6134 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.361723 (* 1 = 0.361723 loss)
I0401 19:41:15.224336 6134 solver.cpp:406] Test net output #15: total_accuracy = 0.225
I0401 19:41:15.224357 6134 solver.cpp:406] Test net output #16: total_confidence = 0.1857
I0401 19:41:15.376260 6134 solver.cpp:229] Iteration 95000, loss = 3.31022
I0401 19:41:15.376307 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.434783
I0401 19:41:15.376335 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.840909
I0401 19:41:15.376359 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.73913
I0401 19:41:15.376389 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.92293 (* 0.3 = 0.57688 loss)
I0401 19:41:15.376420 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.542532 (* 0.3 = 0.16276 loss)
I0401 19:41:15.376443 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.521739
I0401 19:41:15.376466 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.869318
I0401 19:41:15.376489 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.717391
I0401 19:41:15.376515 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.76838 (* 0.3 = 0.530513 loss)
I0401 19:41:15.376540 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.479416 (* 0.3 = 0.143825 loss)
I0401 19:41:15.376562 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.717391
I0401 19:41:15.376585 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.926136
I0401 19:41:15.376607 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.891304
I0401 19:41:15.376633 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.28681 (* 1 = 1.28681 loss)
I0401 19:41:15.376659 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.35494 (* 1 = 0.35494 loss)
I0401 19:41:15.376682 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0401 19:41:15.376703 6134 solver.cpp:245] Train net output #16: total_confidence = 0.260555
I0401 19:41:15.376723 6134 sgd_solver.cpp:106] Iteration 95000, lr = 0.01
I0401 19:43:24.191296 6134 solver.cpp:229] Iteration 95500, loss = 3.34948
I0401 19:43:24.191436 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.22
I0401 19:43:24.191455 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.767045
I0401 19:43:24.191468 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.52
I0401 19:43:24.191485 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.62029 (* 0.3 = 0.786087 loss)
I0401 19:43:24.191500 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.818887 (* 0.3 = 0.245666 loss)
I0401 19:43:24.191514 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.24
I0401 19:43:24.191529 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.767045
I0401 19:43:24.191541 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.54
I0401 19:43:24.191555 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.54026 (* 0.3 = 0.762079 loss)
I0401 19:43:24.191570 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.79881 (* 0.3 = 0.239643 loss)
I0401 19:43:24.191582 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.52
I0401 19:43:24.191594 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.863636
I0401 19:43:24.191606 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.76
I0401 19:43:24.191620 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.68723 (* 1 = 1.68723 loss)
I0401 19:43:24.191634 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.503743 (* 1 = 0.503743 loss)
I0401 19:43:24.191648 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0401 19:43:24.191659 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0899354
I0401 19:43:24.191671 6134 sgd_solver.cpp:106] Iteration 95500, lr = 0.01
I0401 19:45:32.816009 6134 solver.cpp:229] Iteration 96000, loss = 3.30869
I0401 19:45:32.816153 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.369565
I0401 19:45:32.816171 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.823864
I0401 19:45:32.816184 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.652174
I0401 19:45:32.816200 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.13395 (* 0.3 = 0.640186 loss)
I0401 19:45:32.816216 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.6269 (* 0.3 = 0.18807 loss)
I0401 19:45:32.816229 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.565217
I0401 19:45:32.816241 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.880682
I0401 19:45:32.816253 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.826087
I0401 19:45:32.816267 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.61264 (* 0.3 = 0.483792 loss)
I0401 19:45:32.816282 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.459855 (* 0.3 = 0.137956 loss)
I0401 19:45:32.816294 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.869565
I0401 19:45:32.816308 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.965909
I0401 19:45:32.816318 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.934783
I0401 19:45:32.816334 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.584369 (* 1 = 0.584369 loss)
I0401 19:45:32.816347 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.16049 (* 1 = 0.16049 loss)
I0401 19:45:32.816359 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0401 19:45:32.816371 6134 solver.cpp:245] Train net output #16: total_confidence = 0.269621
I0401 19:45:32.816383 6134 sgd_solver.cpp:106] Iteration 96000, lr = 0.01
I0401 19:47:41.421155 6134 solver.cpp:229] Iteration 96500, loss = 3.29373
I0401 19:47:41.421411 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.487805
I0401 19:47:41.421435 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.852273
I0401 19:47:41.421449 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.634146
I0401 19:47:41.421465 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.98688 (* 0.3 = 0.596065 loss)
I0401 19:47:41.421480 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.567554 (* 0.3 = 0.170266 loss)
I0401 19:47:41.421492 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.487805
I0401 19:47:41.421505 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.857955
I0401 19:47:41.421519 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.731707
I0401 19:47:41.421532 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.84783 (* 0.3 = 0.554348 loss)
I0401 19:47:41.421545 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.512161 (* 0.3 = 0.153648 loss)
I0401 19:47:41.421558 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.756098
I0401 19:47:41.421571 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.943182
I0401 19:47:41.421582 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.878049
I0401 19:47:41.421597 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.887716 (* 1 = 0.887716 loss)
I0401 19:47:41.421610 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.21652 (* 1 = 0.21652 loss)
I0401 19:47:41.421623 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0401 19:47:41.421635 6134 solver.cpp:245] Train net output #16: total_confidence = 0.276346
I0401 19:47:41.421648 6134 sgd_solver.cpp:106] Iteration 96500, lr = 0.01
I0401 19:49:50.188525 6134 solver.cpp:229] Iteration 97000, loss = 3.29655
I0401 19:49:50.188647 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.367347
I0401 19:49:50.188668 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.818182
I0401 19:49:50.188680 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.632653
I0401 19:49:50.188696 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.94394 (* 0.3 = 0.583181 loss)
I0401 19:49:50.188711 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.568922 (* 0.3 = 0.170677 loss)
I0401 19:49:50.188729 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.591837
I0401 19:49:50.188741 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.880682
I0401 19:49:50.188753 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.897959
I0401 19:49:50.188767 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.48106 (* 0.3 = 0.444318 loss)
I0401 19:49:50.188781 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.431203 (* 0.3 = 0.129361 loss)
I0401 19:49:50.188793 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.77551
I0401 19:49:50.188805 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.931818
I0401 19:49:50.188817 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.959184
I0401 19:49:50.188832 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.693493 (* 1 = 0.693493 loss)
I0401 19:49:50.188845 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.216479 (* 1 = 0.216479 loss)
I0401 19:49:50.188858 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0401 19:49:50.188869 6134 solver.cpp:245] Train net output #16: total_confidence = 0.174353
I0401 19:49:50.188881 6134 sgd_solver.cpp:106] Iteration 97000, lr = 0.01
I0401 19:51:58.981158 6134 solver.cpp:229] Iteration 97500, loss = 3.23455
I0401 19:51:58.981274 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.285714
I0401 19:51:58.981294 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.789773
I0401 19:51:58.981307 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.714286
I0401 19:51:58.981323 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.11897 (* 0.3 = 0.635691 loss)
I0401 19:51:58.981338 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.652007 (* 0.3 = 0.195602 loss)
I0401 19:51:58.981351 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.547619
I0401 19:51:58.981364 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.857955
I0401 19:51:58.981375 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.714286
I0401 19:51:58.981389 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.67856 (* 0.3 = 0.503569 loss)
I0401 19:51:58.981403 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.499254 (* 0.3 = 0.149776 loss)
I0401 19:51:58.981416 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.738095
I0401 19:51:58.981428 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.920455
I0401 19:51:58.981439 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.857143
I0401 19:51:58.981453 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.897481 (* 1 = 0.897481 loss)
I0401 19:51:58.981467 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.258078 (* 1 = 0.258078 loss)
I0401 19:51:58.981479 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0401 19:51:58.981492 6134 solver.cpp:245] Train net output #16: total_confidence = 0.213662
I0401 19:51:58.981503 6134 sgd_solver.cpp:106] Iteration 97500, lr = 0.01
I0401 19:54:07.649899 6134 solver.cpp:229] Iteration 98000, loss = 3.29608
I0401 19:54:07.650076 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.26087
I0401 19:54:07.650097 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.806818
I0401 19:54:07.650110 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.543478
I0401 19:54:07.650127 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.34317 (* 0.3 = 0.70295 loss)
I0401 19:54:07.650142 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.650607 (* 0.3 = 0.195182 loss)
I0401 19:54:07.650156 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.434783
I0401 19:54:07.650168 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.846591
I0401 19:54:07.650180 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.673913
I0401 19:54:07.650194 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.09448 (* 0.3 = 0.628345 loss)
I0401 19:54:07.650208 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.585245 (* 0.3 = 0.175573 loss)
I0401 19:54:07.650221 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.73913
I0401 19:54:07.650233 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.926136
I0401 19:54:07.650245 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.804348
I0401 19:54:07.650259 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.973422 (* 1 = 0.973422 loss)
I0401 19:54:07.650274 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.288827 (* 1 = 0.288827 loss)
I0401 19:54:07.650286 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0401 19:54:07.650298 6134 solver.cpp:245] Train net output #16: total_confidence = 0.169364
I0401 19:54:07.650310 6134 sgd_solver.cpp:106] Iteration 98000, lr = 0.01
I0401 19:56:16.544996 6134 solver.cpp:229] Iteration 98500, loss = 3.24721
I0401 19:56:16.545269 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.416667
I0401 19:56:16.545289 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.840909
I0401 19:56:16.545301 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.6875
I0401 19:56:16.545316 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.04615 (* 0.3 = 0.613844 loss)
I0401 19:56:16.545332 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.586076 (* 0.3 = 0.175823 loss)
I0401 19:56:16.545344 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.520833
I0401 19:56:16.545357 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.857955
I0401 19:56:16.545369 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.729167
I0401 19:56:16.545382 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.96732 (* 0.3 = 0.590196 loss)
I0401 19:56:16.545397 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.57782 (* 0.3 = 0.173346 loss)
I0401 19:56:16.545409 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.6875
I0401 19:56:16.545421 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.903409
I0401 19:56:16.545433 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.8125
I0401 19:56:16.545447 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.22342 (* 1 = 1.22342 loss)
I0401 19:56:16.545461 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.366115 (* 1 = 0.366115 loss)
I0401 19:56:16.545474 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0401 19:56:16.545485 6134 solver.cpp:245] Train net output #16: total_confidence = 0.130445
I0401 19:56:16.545498 6134 sgd_solver.cpp:106] Iteration 98500, lr = 0.01
I0401 19:58:25.126678 6134 solver.cpp:229] Iteration 99000, loss = 3.23117
I0401 19:58:25.126816 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.418605
I0401 19:58:25.126842 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.823864
I0401 19:58:25.126857 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.744186
I0401 19:58:25.126873 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.78278 (* 0.3 = 0.534835 loss)
I0401 19:58:25.126888 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.522065 (* 0.3 = 0.156619 loss)
I0401 19:58:25.126901 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.488372
I0401 19:58:25.126914 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.852273
I0401 19:58:25.126925 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.837209
I0401 19:58:25.126940 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.37965 (* 0.3 = 0.413895 loss)
I0401 19:58:25.126953 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.419511 (* 0.3 = 0.125853 loss)
I0401 19:58:25.126965 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.790698
I0401 19:58:25.126977 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.943182
I0401 19:58:25.126989 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.953488
I0401 19:58:25.127003 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.680987 (* 1 = 0.680987 loss)
I0401 19:58:25.127017 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.180235 (* 1 = 0.180235 loss)
I0401 19:58:25.127029 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0401 19:58:25.127041 6134 solver.cpp:245] Train net output #16: total_confidence = 0.318496
I0401 19:58:25.127055 6134 sgd_solver.cpp:106] Iteration 99000, lr = 0.01
I0401 20:00:33.890247 6134 solver.cpp:229] Iteration 99500, loss = 3.20241
I0401 20:00:33.890357 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.306122
I0401 20:00:33.890377 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.778409
I0401 20:00:33.890389 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.55102
I0401 20:00:33.890405 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.30074 (* 0.3 = 0.690223 loss)
I0401 20:00:33.890419 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.728714 (* 0.3 = 0.218614 loss)
I0401 20:00:33.890432 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.387755
I0401 20:00:33.890444 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.8125
I0401 20:00:33.890457 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.755102
I0401 20:00:33.890473 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.94499 (* 0.3 = 0.583498 loss)
I0401 20:00:33.890487 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.623766 (* 0.3 = 0.18713 loss)
I0401 20:00:33.890499 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.571429
I0401 20:00:33.890512 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.880682
I0401 20:00:33.890527 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.734694
I0401 20:00:33.890542 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.82813 (* 1 = 1.82813 loss)
I0401 20:00:33.890555 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.529022 (* 1 = 0.529022 loss)
I0401 20:00:33.890568 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0401 20:00:33.890579 6134 solver.cpp:245] Train net output #16: total_confidence = 0.323279
I0401 20:00:33.890591 6134 sgd_solver.cpp:106] Iteration 99500, lr = 0.01
I0401 20:02:42.481189 6134 solver.cpp:456] Snapshotting to binary proto file /mnt/snapshots/mixed_lstm9_bn_iter_100000.caffemodel
I0401 20:02:42.800722 6134 sgd_solver.cpp:273] Snapshotting solver state to binary proto file /mnt/snapshots/mixed_lstm9_bn_iter_100000.solverstate
I0401 20:02:42.962452 6134 solver.cpp:338] Iteration 100000, Testing net (#0)
I0401 20:03:12.799787 6134 solver.cpp:393] Test loss: 2.76884
I0401 20:03:12.799892 6134 solver.cpp:406] Test net output #0: loss1/accuracy = 0.413312
I0401 20:03:12.799912 6134 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.841093
I0401 20:03:12.799926 6134 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.69398
I0401 20:03:12.799940 6134 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 1.97237 (* 0.3 = 0.591711 loss)
I0401 20:03:12.799955 6134 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.548115 (* 0.3 = 0.164435 loss)
I0401 20:03:12.799968 6134 solver.cpp:406] Test net output #5: loss2/accuracy = 0.570581
I0401 20:03:12.799979 6134 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.880412
I0401 20:03:12.799993 6134 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.822585
I0401 20:03:12.800005 6134 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.50075 (* 0.3 = 0.450226 loss)
I0401 20:03:12.800019 6134 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.417193 (* 0.3 = 0.125158 loss)
I0401 20:03:12.800030 6134 solver.cpp:406] Test net output #10: loss3/accuracy = 0.706627
I0401 20:03:12.800042 6134 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.91791
I0401 20:03:12.800053 6134 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.85918
I0401 20:03:12.800067 6134 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 1.12313 (* 1 = 1.12313 loss)
I0401 20:03:12.800081 6134 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.314179 (* 1 = 0.314179 loss)
I0401 20:03:12.800093 6134 solver.cpp:406] Test net output #15: total_accuracy = 0.275
I0401 20:03:12.800104 6134 solver.cpp:406] Test net output #16: total_confidence = 0.228995
I0401 20:03:12.950626 6134 solver.cpp:229] Iteration 100000, loss = 3.18428
I0401 20:03:12.950670 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.23913
I0401 20:03:12.950686 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.784091
I0401 20:03:12.950700 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.456522
I0401 20:03:12.950714 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.58922 (* 0.3 = 0.776765 loss)
I0401 20:03:12.950728 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.732481 (* 0.3 = 0.219744 loss)
I0401 20:03:12.950742 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.26087
I0401 20:03:12.950753 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.784091
I0401 20:03:12.950764 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.5
I0401 20:03:12.950778 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.3851 (* 0.3 = 0.71553 loss)
I0401 20:03:12.950793 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.70836 (* 0.3 = 0.212508 loss)
I0401 20:03:12.950805 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.608696
I0401 20:03:12.950817 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.880682
I0401 20:03:12.950829 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.782609
I0401 20:03:12.950842 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.56916 (* 1 = 1.56916 loss)
I0401 20:03:12.950861 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.452885 (* 1 = 0.452885 loss)
I0401 20:03:12.950873 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 20:03:12.950886 6134 solver.cpp:245] Train net output #16: total_confidence = 0.113242
I0401 20:03:12.950897 6134 sgd_solver.cpp:106] Iteration 100000, lr = 0.01
I0401 20:05:21.755398 6134 solver.cpp:229] Iteration 100500, loss = 3.20342
I0401 20:05:21.755547 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.306122
I0401 20:05:21.755568 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.795455
I0401 20:05:21.755589 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.612245
I0401 20:05:21.755619 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.16509 (* 0.3 = 0.649528 loss)
I0401 20:05:21.755650 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.66196 (* 0.3 = 0.198588 loss)
I0401 20:05:21.755669 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.326531
I0401 20:05:21.755681 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.806818
I0401 20:05:21.755694 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.673469
I0401 20:05:21.755708 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.03873 (* 0.3 = 0.61162 loss)
I0401 20:05:21.755722 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.610981 (* 0.3 = 0.183294 loss)
I0401 20:05:21.755735 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.836735
I0401 20:05:21.755748 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.954545
I0401 20:05:21.755759 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.959184
I0401 20:05:21.755774 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.587665 (* 1 = 0.587665 loss)
I0401 20:05:21.755789 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.175055 (* 1 = 0.175055 loss)
I0401 20:05:21.755800 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0401 20:05:21.755813 6134 solver.cpp:245] Train net output #16: total_confidence = 0.241051
I0401 20:05:21.755825 6134 sgd_solver.cpp:106] Iteration 100500, lr = 0.01
I0401 20:07:30.516391 6134 solver.cpp:229] Iteration 101000, loss = 3.15056
I0401 20:07:30.516639 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.313726
I0401 20:07:30.516659 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.795455
I0401 20:07:30.516671 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.54902
I0401 20:07:30.516687 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.60599 (* 0.3 = 0.781796 loss)
I0401 20:07:30.516702 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.785102 (* 0.3 = 0.235531 loss)
I0401 20:07:30.516716 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.352941
I0401 20:07:30.516728 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.8125
I0401 20:07:30.516741 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.686275
I0401 20:07:30.516754 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.04339 (* 0.3 = 0.613017 loss)
I0401 20:07:30.516769 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.60341 (* 0.3 = 0.181023 loss)
I0401 20:07:30.516782 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.705882
I0401 20:07:30.516793 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.914773
I0401 20:07:30.516805 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.901961
I0401 20:07:30.516819 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.03586 (* 1 = 1.03586 loss)
I0401 20:07:30.516834 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.304452 (* 1 = 0.304452 loss)
I0401 20:07:30.516845 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0401 20:07:30.516858 6134 solver.cpp:245] Train net output #16: total_confidence = 0.155616
I0401 20:07:30.516870 6134 sgd_solver.cpp:106] Iteration 101000, lr = 0.01
I0401 20:09:39.458657 6134 solver.cpp:229] Iteration 101500, loss = 3.23611
I0401 20:09:39.458796 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.26087
I0401 20:09:39.458820 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.784091
I0401 20:09:39.458833 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.543478
I0401 20:09:39.458850 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.40327 (* 0.3 = 0.720981 loss)
I0401 20:09:39.458865 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.705157 (* 0.3 = 0.211547 loss)
I0401 20:09:39.458878 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.521739
I0401 20:09:39.458890 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.857955
I0401 20:09:39.458901 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.76087
I0401 20:09:39.458915 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.69295 (* 0.3 = 0.507885 loss)
I0401 20:09:39.458930 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.482607 (* 0.3 = 0.144782 loss)
I0401 20:09:39.458943 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.673913
I0401 20:09:39.458956 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.903409
I0401 20:09:39.458967 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.934783
I0401 20:09:39.458981 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.948112 (* 1 = 0.948112 loss)
I0401 20:09:39.458995 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.288369 (* 1 = 0.288369 loss)
I0401 20:09:39.459007 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0401 20:09:39.459019 6134 solver.cpp:245] Train net output #16: total_confidence = 0.317184
I0401 20:09:39.459030 6134 sgd_solver.cpp:106] Iteration 101500, lr = 0.01
I0401 20:11:48.302608 6134 solver.cpp:229] Iteration 102000, loss = 3.21942
I0401 20:11:48.302713 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.422222
I0401 20:11:48.302742 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.829545
I0401 20:11:48.302765 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.666667
I0401 20:11:48.302795 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.03806 (* 0.3 = 0.611418 loss)
I0401 20:11:48.302822 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.642956 (* 0.3 = 0.192887 loss)
I0401 20:11:48.302845 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.333333
I0401 20:11:48.302867 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.8125
I0401 20:11:48.302891 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.666667
I0401 20:11:48.302916 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.88271 (* 0.3 = 0.564814 loss)
I0401 20:11:48.302940 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.587018 (* 0.3 = 0.176105 loss)
I0401 20:11:48.302961 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.555556
I0401 20:11:48.302983 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.869318
I0401 20:11:48.303002 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.755556
I0401 20:11:48.303028 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.39764 (* 1 = 1.39764 loss)
I0401 20:11:48.303061 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.443299 (* 1 = 0.443299 loss)
I0401 20:11:48.303083 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0401 20:11:48.303104 6134 solver.cpp:245] Train net output #16: total_confidence = 0.231594
I0401 20:11:48.303125 6134 sgd_solver.cpp:106] Iteration 102000, lr = 0.01
I0401 20:13:57.050154 6134 solver.cpp:229] Iteration 102500, loss = 3.17863
I0401 20:13:57.050289 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.282609
I0401 20:13:57.050309 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.801136
I0401 20:13:57.050323 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.5
I0401 20:13:57.050338 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.42524 (* 0.3 = 0.727572 loss)
I0401 20:13:57.050354 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.700396 (* 0.3 = 0.210119 loss)
I0401 20:13:57.050366 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.391304
I0401 20:13:57.050379 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.829545
I0401 20:13:57.050390 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.673913
I0401 20:13:57.050405 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.95 (* 0.3 = 0.584999 loss)
I0401 20:13:57.050418 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.563587 (* 0.3 = 0.169076 loss)
I0401 20:13:57.050431 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.565217
I0401 20:13:57.050443 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.886364
I0401 20:13:57.050456 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.73913
I0401 20:13:57.050469 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.49425 (* 1 = 1.49425 loss)
I0401 20:13:57.050483 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.411637 (* 1 = 0.411637 loss)
I0401 20:13:57.050496 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0401 20:13:57.050508 6134 solver.cpp:245] Train net output #16: total_confidence = 0.227529
I0401 20:13:57.050523 6134 sgd_solver.cpp:106] Iteration 102500, lr = 0.01
I0401 20:16:05.641904 6134 solver.cpp:229] Iteration 103000, loss = 3.20546
I0401 20:16:05.642001 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.333333
I0401 20:16:05.642020 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.801136
I0401 20:16:05.642036 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.533333
I0401 20:16:05.642052 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.39746 (* 0.3 = 0.71924 loss)
I0401 20:16:05.642067 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.785214 (* 0.3 = 0.235564 loss)
I0401 20:16:05.642081 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.311111
I0401 20:16:05.642092 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.801136
I0401 20:16:05.642104 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.666667
I0401 20:16:05.642118 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.12274 (* 0.3 = 0.636823 loss)
I0401 20:16:05.642132 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.660691 (* 0.3 = 0.198207 loss)
I0401 20:16:05.642145 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.666667
I0401 20:16:05.642158 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.875
I0401 20:16:05.642169 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.888889
I0401 20:16:05.642184 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.13371 (* 1 = 1.13371 loss)
I0401 20:16:05.642197 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.51384 (* 1 = 0.51384 loss)
I0401 20:16:05.642210 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0401 20:16:05.642221 6134 solver.cpp:245] Train net output #16: total_confidence = 0.151087
I0401 20:16:05.642233 6134 sgd_solver.cpp:106] Iteration 103000, lr = 0.01
I0401 20:18:14.235375 6134 solver.cpp:229] Iteration 103500, loss = 3.18303
I0401 20:18:14.235697 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.333333
I0401 20:18:14.235716 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.795455
I0401 20:18:14.235729 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.541667
I0401 20:18:14.235745 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.36049 (* 0.3 = 0.708148 loss)
I0401 20:18:14.235760 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.743305 (* 0.3 = 0.222991 loss)
I0401 20:18:14.235772 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.416667
I0401 20:18:14.235785 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.818182
I0401 20:18:14.235796 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.645833
I0401 20:18:14.235810 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.88649 (* 0.3 = 0.565947 loss)
I0401 20:18:14.235824 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.611478 (* 0.3 = 0.183443 loss)
I0401 20:18:14.235836 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.645833
I0401 20:18:14.235848 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.875
I0401 20:18:14.235860 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.791667
I0401 20:18:14.235874 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.35029 (* 1 = 1.35029 loss)
I0401 20:18:14.235888 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.455845 (* 1 = 0.455845 loss)
I0401 20:18:14.235900 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0401 20:18:14.235913 6134 solver.cpp:245] Train net output #16: total_confidence = 0.161204
I0401 20:18:14.235924 6134 sgd_solver.cpp:106] Iteration 103500, lr = 0.01
I0401 20:20:22.947991 6134 solver.cpp:229] Iteration 104000, loss = 3.16425
I0401 20:20:22.948129 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.244444
I0401 20:20:22.948150 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.795455
I0401 20:20:22.948165 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.488889
I0401 20:20:22.948181 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.70294 (* 0.3 = 0.810882 loss)
I0401 20:20:22.948195 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.754738 (* 0.3 = 0.226422 loss)
I0401 20:20:22.948209 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.311111
I0401 20:20:22.948220 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.8125
I0401 20:20:22.948233 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.511111
I0401 20:20:22.948247 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.41045 (* 0.3 = 0.723136 loss)
I0401 20:20:22.948261 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.666784 (* 0.3 = 0.200035 loss)
I0401 20:20:22.948274 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.488889
I0401 20:20:22.948287 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.863636
I0401 20:20:22.948298 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.644444
I0401 20:20:22.948312 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.88195 (* 1 = 1.88195 loss)
I0401 20:20:22.948326 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.517241 (* 1 = 0.517241 loss)
I0401 20:20:22.948338 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0401 20:20:22.948350 6134 solver.cpp:245] Train net output #16: total_confidence = 0.172693
I0401 20:20:22.948362 6134 sgd_solver.cpp:106] Iteration 104000, lr = 0.01
I0401 20:22:31.697028 6134 solver.cpp:229] Iteration 104500, loss = 3.18663
I0401 20:22:31.697154 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.285714
I0401 20:22:31.697175 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.778409
I0401 20:22:31.697188 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.530612
I0401 20:22:31.697206 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.38002 (* 0.3 = 0.714005 loss)
I0401 20:22:31.697221 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.737326 (* 0.3 = 0.221198 loss)
I0401 20:22:31.697232 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.387755
I0401 20:22:31.697245 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.818182
I0401 20:22:31.697258 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.795918
I0401 20:22:31.697271 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.89749 (* 0.3 = 0.569246 loss)
I0401 20:22:31.697285 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.576328 (* 0.3 = 0.172898 loss)
I0401 20:22:31.697298 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.714286
I0401 20:22:31.697309 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.909091
I0401 20:22:31.697321 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.897959
I0401 20:22:31.697335 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.976941 (* 1 = 0.976941 loss)
I0401 20:22:31.697350 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.306022 (* 1 = 0.306022 loss)
I0401 20:22:31.697361 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0401 20:22:31.697373 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0990097
I0401 20:22:31.697386 6134 sgd_solver.cpp:106] Iteration 104500, lr = 0.01
I0401 20:24:40.310627 6134 solver.cpp:338] Iteration 105000, Testing net (#0)
I0401 20:25:10.067342 6134 solver.cpp:393] Test loss: 2.58692
I0401 20:25:10.067397 6134 solver.cpp:406] Test net output #0: loss1/accuracy = 0.445964
I0401 20:25:10.067414 6134 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.851229
I0401 20:25:10.067427 6134 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.735027
I0401 20:25:10.067445 6134 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 1.88079 (* 0.3 = 0.564236 loss)
I0401 20:25:10.067459 6134 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.515861 (* 0.3 = 0.154758 loss)
I0401 20:25:10.067472 6134 solver.cpp:406] Test net output #5: loss2/accuracy = 0.572153
I0401 20:25:10.067484 6134 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.882684
I0401 20:25:10.067497 6134 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.835552
I0401 20:25:10.067509 6134 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.42718 (* 0.3 = 0.428153 loss)
I0401 20:25:10.067528 6134 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.395267 (* 0.3 = 0.11858 loss)
I0401 20:25:10.067539 6134 solver.cpp:406] Test net output #10: loss3/accuracy = 0.73292
I0401 20:25:10.067553 6134 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.926137
I0401 20:25:10.067564 6134 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.875628
I0401 20:25:10.067577 6134 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 1.03324 (* 1 = 1.03324 loss)
I0401 20:25:10.067590 6134 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.287956 (* 1 = 0.287956 loss)
I0401 20:25:10.067602 6134 solver.cpp:406] Test net output #15: total_accuracy = 0.321
I0401 20:25:10.067615 6134 solver.cpp:406] Test net output #16: total_confidence = 0.290055
I0401 20:25:10.217891 6134 solver.cpp:229] Iteration 105000, loss = 3.18891
I0401 20:25:10.217933 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.3125
I0401 20:25:10.217950 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.806818
I0401 20:25:10.217963 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.520833
I0401 20:25:10.217978 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.37364 (* 0.3 = 0.712093 loss)
I0401 20:25:10.217993 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.682644 (* 0.3 = 0.204793 loss)
I0401 20:25:10.218005 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.4375
I0401 20:25:10.218017 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.846591
I0401 20:25:10.218029 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.770833
I0401 20:25:10.218045 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.85401 (* 0.3 = 0.556202 loss)
I0401 20:25:10.218060 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.521482 (* 0.3 = 0.156445 loss)
I0401 20:25:10.218072 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.708333
I0401 20:25:10.218085 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.920455
I0401 20:25:10.218096 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.854167
I0401 20:25:10.218109 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.02862 (* 1 = 1.02862 loss)
I0401 20:25:10.218123 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.292467 (* 1 = 0.292467 loss)
I0401 20:25:10.218135 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0401 20:25:10.218147 6134 solver.cpp:245] Train net output #16: total_confidence = 0.286714
I0401 20:25:10.218159 6134 sgd_solver.cpp:106] Iteration 105000, lr = 0.01
I0401 20:27:18.889847 6134 solver.cpp:229] Iteration 105500, loss = 3.11883
I0401 20:27:18.890231 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.333333
I0401 20:27:18.890254 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.795455
I0401 20:27:18.890266 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.5625
I0401 20:27:18.890282 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.25172 (* 0.3 = 0.675515 loss)
I0401 20:27:18.890297 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.723 (* 0.3 = 0.2169 loss)
I0401 20:27:18.890311 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.395833
I0401 20:27:18.890322 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.806818
I0401 20:27:18.890334 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.666667
I0401 20:27:18.890348 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.05724 (* 0.3 = 0.617173 loss)
I0401 20:27:18.890363 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.677055 (* 0.3 = 0.203116 loss)
I0401 20:27:18.890375 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.5
I0401 20:27:18.890388 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.835227
I0401 20:27:18.890400 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.791667
I0401 20:27:18.890414 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.43742 (* 1 = 1.43742 loss)
I0401 20:27:18.890429 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.51086 (* 1 = 0.51086 loss)
I0401 20:27:18.890441 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0401 20:27:18.890453 6134 solver.cpp:245] Train net output #16: total_confidence = 0.282611
I0401 20:27:18.890465 6134 sgd_solver.cpp:106] Iteration 105500, lr = 0.01
I0401 20:29:27.715417 6134 solver.cpp:229] Iteration 106000, loss = 3.13167
I0401 20:29:27.715541 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.333333
I0401 20:29:27.715562 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.818182
I0401 20:29:27.715575 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.619048
I0401 20:29:27.715591 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.18864 (* 0.3 = 0.656591 loss)
I0401 20:29:27.715606 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.615251 (* 0.3 = 0.184575 loss)
I0401 20:29:27.715620 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.428571
I0401 20:29:27.715631 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.852273
I0401 20:29:27.715643 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.761905
I0401 20:29:27.715657 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.82594 (* 0.3 = 0.547781 loss)
I0401 20:29:27.715672 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.510774 (* 0.3 = 0.153232 loss)
I0401 20:29:27.715684 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.690476
I0401 20:29:27.715697 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.909091
I0401 20:29:27.715708 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.880952
I0401 20:29:27.715723 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.884677 (* 1 = 0.884677 loss)
I0401 20:29:27.715736 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.278475 (* 1 = 0.278475 loss)
I0401 20:29:27.715749 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0401 20:29:27.715761 6134 solver.cpp:245] Train net output #16: total_confidence = 0.186882
I0401 20:29:27.715773 6134 sgd_solver.cpp:106] Iteration 106000, lr = 0.01
I0401 20:31:36.490885 6134 solver.cpp:229] Iteration 106500, loss = 3.25486
I0401 20:31:36.490993 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.4
I0401 20:31:36.491014 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.818182
I0401 20:31:36.491026 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.68
I0401 20:31:36.491042 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.00207 (* 0.3 = 0.60062 loss)
I0401 20:31:36.491058 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.609399 (* 0.3 = 0.18282 loss)
I0401 20:31:36.491070 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.5
I0401 20:31:36.491082 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.840909
I0401 20:31:36.491094 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.72
I0401 20:31:36.491109 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.68745 (* 0.3 = 0.506235 loss)
I0401 20:31:36.491123 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.530981 (* 0.3 = 0.159294 loss)
I0401 20:31:36.491137 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.64
I0401 20:31:36.491148 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.892045
I0401 20:31:36.491160 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.86
I0401 20:31:36.491174 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.13941 (* 1 = 1.13941 loss)
I0401 20:31:36.491189 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.337012 (* 1 = 0.337012 loss)
I0401 20:31:36.491201 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0401 20:31:36.491214 6134 solver.cpp:245] Train net output #16: total_confidence = 0.21237
I0401 20:31:36.491225 6134 sgd_solver.cpp:106] Iteration 106500, lr = 0.01
I0401 20:33:45.152426 6134 solver.cpp:229] Iteration 107000, loss = 3.20772
I0401 20:33:45.152587 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.26
I0401 20:33:45.152608 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.784091
I0401 20:33:45.152621 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.54
I0401 20:33:45.152638 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.56301 (* 0.3 = 0.768903 loss)
I0401 20:33:45.152653 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.784105 (* 0.3 = 0.235232 loss)
I0401 20:33:45.152667 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.34
I0401 20:33:45.152678 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.806818
I0401 20:33:45.152690 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.64
I0401 20:33:45.152705 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.12404 (* 0.3 = 0.637211 loss)
I0401 20:33:45.152719 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.638616 (* 0.3 = 0.191585 loss)
I0401 20:33:45.152732 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.7
I0401 20:33:45.152745 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.914773
I0401 20:33:45.152755 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.82
I0401 20:33:45.152770 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.15874 (* 1 = 1.15874 loss)
I0401 20:33:45.152783 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.34001 (* 1 = 0.34001 loss)
I0401 20:33:45.152796 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0401 20:33:45.152808 6134 solver.cpp:245] Train net output #16: total_confidence = 0.25782
I0401 20:33:45.152820 6134 sgd_solver.cpp:106] Iteration 107000, lr = 0.01
I0401 20:35:53.846971 6134 solver.cpp:229] Iteration 107500, loss = 3.12294
I0401 20:35:53.847076 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.117647
I0401 20:35:53.847095 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.738636
I0401 20:35:53.847107 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.431373
I0401 20:35:53.847124 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.06462 (* 0.3 = 0.919387 loss)
I0401 20:35:53.847139 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.943071 (* 0.3 = 0.282921 loss)
I0401 20:35:53.847152 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.27451
I0401 20:35:53.847164 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.789773
I0401 20:35:53.847177 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.529412
I0401 20:35:53.847190 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.59189 (* 0.3 = 0.777568 loss)
I0401 20:35:53.847204 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.798741 (* 0.3 = 0.239622 loss)
I0401 20:35:53.847218 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.490196
I0401 20:35:53.847229 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.835227
I0401 20:35:53.847241 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.627451
I0401 20:35:53.847255 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.01828 (* 1 = 2.01828 loss)
I0401 20:35:53.847268 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.679109 (* 1 = 0.679109 loss)
I0401 20:35:53.847281 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 20:35:53.847292 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0823212
I0401 20:35:53.847306 6134 sgd_solver.cpp:106] Iteration 107500, lr = 0.01
I0401 20:38:02.607471 6134 solver.cpp:229] Iteration 108000, loss = 3.14168
I0401 20:38:02.607777 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.156863
I0401 20:38:02.607798 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.75
I0401 20:38:02.607811 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.411765
I0401 20:38:02.607827 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.91557 (* 0.3 = 0.87467 loss)
I0401 20:38:02.607842 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.889946 (* 0.3 = 0.266984 loss)
I0401 20:38:02.607856 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.235294
I0401 20:38:02.607867 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.772727
I0401 20:38:02.607879 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.568627
I0401 20:38:02.607892 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.62287 (* 0.3 = 0.786861 loss)
I0401 20:38:02.607908 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.780722 (* 0.3 = 0.234217 loss)
I0401 20:38:02.607920 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.392157
I0401 20:38:02.607933 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.818182
I0401 20:38:02.607944 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.666667
I0401 20:38:02.607959 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.05918 (* 1 = 2.05918 loss)
I0401 20:38:02.607972 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.624329 (* 1 = 0.624329 loss)
I0401 20:38:02.607985 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 20:38:02.607996 6134 solver.cpp:245] Train net output #16: total_confidence = 0.147684
I0401 20:38:02.608008 6134 sgd_solver.cpp:106] Iteration 108000, lr = 0.01
I0401 20:40:11.514422 6134 solver.cpp:229] Iteration 108500, loss = 3.15093
I0401 20:40:11.514534 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.304348
I0401 20:40:11.514554 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.801136
I0401 20:40:11.514567 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.608696
I0401 20:40:11.514585 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.4011 (* 0.3 = 0.720329 loss)
I0401 20:40:11.514600 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.702504 (* 0.3 = 0.210751 loss)
I0401 20:40:11.514612 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.5
I0401 20:40:11.514624 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.835227
I0401 20:40:11.514636 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.717391
I0401 20:40:11.514649 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.06731 (* 0.3 = 0.620193 loss)
I0401 20:40:11.514664 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.674229 (* 0.3 = 0.202269 loss)
I0401 20:40:11.514677 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.521739
I0401 20:40:11.514688 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.852273
I0401 20:40:11.514700 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.804348
I0401 20:40:11.514714 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.46116 (* 1 = 1.46116 loss)
I0401 20:40:11.514727 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.481607 (* 1 = 0.481607 loss)
I0401 20:40:11.514739 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0401 20:40:11.514751 6134 solver.cpp:245] Train net output #16: total_confidence = 0.150348
I0401 20:40:11.514763 6134 sgd_solver.cpp:106] Iteration 108500, lr = 0.01
I0401 20:42:20.158370 6134 solver.cpp:229] Iteration 109000, loss = 3.10781
I0401 20:42:20.158505 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.24
I0401 20:42:20.158529 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.778409
I0401 20:42:20.158542 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.52
I0401 20:42:20.158560 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.65843 (* 0.3 = 0.79753 loss)
I0401 20:42:20.158574 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.801586 (* 0.3 = 0.240476 loss)
I0401 20:42:20.158586 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.38
I0401 20:42:20.158599 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.801136
I0401 20:42:20.158612 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.7
I0401 20:42:20.158625 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.16385 (* 0.3 = 0.649154 loss)
I0401 20:42:20.158639 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.694219 (* 0.3 = 0.208266 loss)
I0401 20:42:20.158651 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.76
I0401 20:42:20.158663 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.926136
I0401 20:42:20.158674 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.88
I0401 20:42:20.158689 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.08531 (* 1 = 1.08531 loss)
I0401 20:42:20.158704 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.333656 (* 1 = 0.333656 loss)
I0401 20:42:20.158715 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0401 20:42:20.158726 6134 solver.cpp:245] Train net output #16: total_confidence = 0.195671
I0401 20:42:20.158738 6134 sgd_solver.cpp:106] Iteration 109000, lr = 0.01
I0401 20:44:28.886112 6134 solver.cpp:229] Iteration 109500, loss = 3.08329
I0401 20:44:28.886229 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.327273
I0401 20:44:28.886258 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.778409
I0401 20:44:28.886282 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.563636
I0401 20:44:28.886312 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.33893 (* 0.3 = 0.701678 loss)
I0401 20:44:28.886338 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.758737 (* 0.3 = 0.227621 loss)
I0401 20:44:28.886360 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.418182
I0401 20:44:28.886384 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.818182
I0401 20:44:28.886406 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.763636
I0401 20:44:28.886431 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.88043 (* 0.3 = 0.564128 loss)
I0401 20:44:28.886456 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.60427 (* 0.3 = 0.181281 loss)
I0401 20:44:28.886477 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.654545
I0401 20:44:28.886502 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.886364
I0401 20:44:28.886528 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.818182
I0401 20:44:28.886554 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.26468 (* 1 = 1.26468 loss)
I0401 20:44:28.886579 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.410661 (* 1 = 0.410661 loss)
I0401 20:44:28.886600 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0401 20:44:28.886620 6134 solver.cpp:245] Train net output #16: total_confidence = 0.196794
I0401 20:44:28.886641 6134 sgd_solver.cpp:106] Iteration 109500, lr = 0.01
I0401 20:46:37.804672 6134 solver.cpp:338] Iteration 110000, Testing net (#0)
I0401 20:47:07.620965 6134 solver.cpp:393] Test loss: 2.74833
I0401 20:47:07.621009 6134 solver.cpp:406] Test net output #0: loss1/accuracy = 0.403395
I0401 20:47:07.621026 6134 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.831775
I0401 20:47:07.621038 6134 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.68389
I0401 20:47:07.621068 6134 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 2.02018 (* 0.3 = 0.606055 loss)
I0401 20:47:07.621083 6134 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.580927 (* 0.3 = 0.174278 loss)
I0401 20:47:07.621095 6134 solver.cpp:406] Test net output #5: loss2/accuracy = 0.585988
I0401 20:47:07.621107 6134 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.879367
I0401 20:47:07.621119 6134 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.821281
I0401 20:47:07.621134 6134 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.44967 (* 0.3 = 0.4349 loss)
I0401 20:47:07.621147 6134 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.422477 (* 0.3 = 0.126743 loss)
I0401 20:47:07.621160 6134 solver.cpp:406] Test net output #10: loss3/accuracy = 0.713275
I0401 20:47:07.621171 6134 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.926092
I0401 20:47:07.621183 6134 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.869046
I0401 20:47:07.621196 6134 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 1.11319 (* 1 = 1.11319 loss)
I0401 20:47:07.621211 6134 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.293159 (* 1 = 0.293159 loss)
I0401 20:47:07.621222 6134 solver.cpp:406] Test net output #15: total_accuracy = 0.309
I0401 20:47:07.621234 6134 solver.cpp:406] Test net output #16: total_confidence = 0.276958
I0401 20:47:07.772079 6134 solver.cpp:229] Iteration 110000, loss = 3.16454
I0401 20:47:07.772119 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.545455
I0401 20:47:07.772136 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.852273
I0401 20:47:07.772150 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.75
I0401 20:47:07.772169 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.65756 (* 0.3 = 0.497268 loss)
I0401 20:47:07.772186 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.534087 (* 0.3 = 0.160226 loss)
I0401 20:47:07.772198 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.613636
I0401 20:47:07.772210 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.875
I0401 20:47:07.772222 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.772727
I0401 20:47:07.772236 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.4688 (* 0.3 = 0.440639 loss)
I0401 20:47:07.772251 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.477818 (* 0.3 = 0.143345 loss)
I0401 20:47:07.772264 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.818182
I0401 20:47:07.772275 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.931818
I0401 20:47:07.772287 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.909091
I0401 20:47:07.772301 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.683135 (* 1 = 0.683135 loss)
I0401 20:47:07.772315 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.25268 (* 1 = 0.25268 loss)
I0401 20:47:07.772327 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0401 20:47:07.772338 6134 solver.cpp:245] Train net output #16: total_confidence = 0.286492
I0401 20:47:07.772351 6134 sgd_solver.cpp:106] Iteration 110000, lr = 0.01
I0401 20:49:16.602751 6134 solver.cpp:229] Iteration 110500, loss = 3.17201
I0401 20:49:16.602903 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.333333
I0401 20:49:16.602934 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.818182
I0401 20:49:16.602962 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.777778
I0401 20:49:16.602984 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.87451 (* 0.3 = 0.562353 loss)
I0401 20:49:16.602999 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.541921 (* 0.3 = 0.162576 loss)
I0401 20:49:16.603013 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.377778
I0401 20:49:16.603024 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.823864
I0401 20:49:16.603036 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.755556
I0401 20:49:16.603050 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.76402 (* 0.3 = 0.529206 loss)
I0401 20:49:16.603065 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.506193 (* 0.3 = 0.151858 loss)
I0401 20:49:16.603076 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.733333
I0401 20:49:16.603088 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.903409
I0401 20:49:16.603101 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.888889
I0401 20:49:16.603114 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.33698 (* 1 = 1.33698 loss)
I0401 20:49:16.603128 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.437425 (* 1 = 0.437425 loss)
I0401 20:49:16.603143 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0401 20:49:16.603163 6134 solver.cpp:245] Train net output #16: total_confidence = 0.278058
I0401 20:49:16.603176 6134 sgd_solver.cpp:106] Iteration 110500, lr = 0.01
I0401 20:51:25.384232 6134 solver.cpp:229] Iteration 111000, loss = 3.15266
I0401 20:51:25.384331 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.295455
I0401 20:51:25.384351 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.778409
I0401 20:51:25.384363 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.522727
I0401 20:51:25.384379 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.59964 (* 0.3 = 0.779893 loss)
I0401 20:51:25.384394 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.805549 (* 0.3 = 0.241665 loss)
I0401 20:51:25.384407 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.454545
I0401 20:51:25.384419 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.818182
I0401 20:51:25.384431 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.704545
I0401 20:51:25.384445 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.9665 (* 0.3 = 0.58995 loss)
I0401 20:51:25.384459 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.642247 (* 0.3 = 0.192674 loss)
I0401 20:51:25.384472 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.636364
I0401 20:51:25.384485 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.892045
I0401 20:51:25.384495 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.840909
I0401 20:51:25.384510 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.12227 (* 1 = 1.12227 loss)
I0401 20:51:25.384523 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.331644 (* 1 = 0.331644 loss)
I0401 20:51:25.384536 6134 solver.cpp:245] Train net output #15: total_accuracy = 0
I0401 20:51:25.384547 6134 solver.cpp:245] Train net output #16: total_confidence = 0.156779
I0401 20:51:25.384559 6134 sgd_solver.cpp:106] Iteration 111000, lr = 0.01
I0401 20:53:34.049607 6134 solver.cpp:229] Iteration 111500, loss = 3.05809
I0401 20:53:34.049787 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.333333
I0401 20:53:34.049809 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.806818
I0401 20:53:34.049823 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.595238
I0401 20:53:34.049839 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.163 (* 0.3 = 0.648899 loss)
I0401 20:53:34.049855 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.61917 (* 0.3 = 0.185751 loss)
I0401 20:53:34.049868 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.404762
I0401 20:53:34.049881 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.840909
I0401 20:53:34.049893 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.785714
I0401 20:53:34.049907 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.53042 (* 0.3 = 0.459125 loss)
I0401 20:53:34.049922 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.424004 (* 0.3 = 0.127201 loss)
I0401 20:53:34.049934 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.904762
I0401 20:53:34.049947 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.971591
I0401 20:53:34.049959 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.97619
I0401 20:53:34.049973 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.520416 (* 1 = 0.520416 loss)
I0401 20:53:34.049988 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.139595 (* 1 = 0.139595 loss)
I0401 20:53:34.050000 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0401 20:53:34.050014 6134 solver.cpp:245] Train net output #16: total_confidence = 0.271506
I0401 20:53:34.050025 6134 sgd_solver.cpp:106] Iteration 111500, lr = 0.01
I0401 20:55:42.800943 6134 solver.cpp:229] Iteration 112000, loss = 3.10554
I0401 20:55:42.801085 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.409091
I0401 20:55:42.801110 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.840909
I0401 20:55:42.801122 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.659091
I0401 20:55:42.801139 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.11318 (* 0.3 = 0.633955 loss)
I0401 20:55:42.801154 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.598827 (* 0.3 = 0.179648 loss)
I0401 20:55:42.801167 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.590909
I0401 20:55:42.801179 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.886364
I0401 20:55:42.801190 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.772727
I0401 20:55:42.801204 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.66819 (* 0.3 = 0.500458 loss)
I0401 20:55:42.801218 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.476944 (* 0.3 = 0.143083 loss)
I0401 20:55:42.801230 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.75
I0401 20:55:42.801242 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.931818
I0401 20:55:42.801254 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.863636
I0401 20:55:42.801268 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.856965 (* 1 = 0.856965 loss)
I0401 20:55:42.801282 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.238319 (* 1 = 0.238319 loss)
I0401 20:55:42.801295 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0401 20:55:42.801306 6134 solver.cpp:245] Train net output #16: total_confidence = 0.314475
I0401 20:55:42.801319 6134 sgd_solver.cpp:106] Iteration 112000, lr = 0.01
I0401 20:57:51.608515 6134 solver.cpp:229] Iteration 112500, loss = 3.09701
I0401 20:57:51.608865 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.3
I0401 20:57:51.608885 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.795455
I0401 20:57:51.608897 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.5
I0401 20:57:51.608914 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.39785 (* 0.3 = 0.719355 loss)
I0401 20:57:51.608929 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.726942 (* 0.3 = 0.218083 loss)
I0401 20:57:51.608942 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.34
I0401 20:57:51.608954 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.801136
I0401 20:57:51.608966 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.7
I0401 20:57:51.608980 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.00956 (* 0.3 = 0.602867 loss)
I0401 20:57:51.608995 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.601414 (* 0.3 = 0.180424 loss)
I0401 20:57:51.609007 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.66
I0401 20:57:51.609019 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.892045
I0401 20:57:51.609031 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.86
I0401 20:57:51.609062 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.28992 (* 1 = 1.28992 loss)
I0401 20:57:51.609079 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.393715 (* 1 = 0.393715 loss)
I0401 20:57:51.609091 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0401 20:57:51.609103 6134 solver.cpp:245] Train net output #16: total_confidence = 0.196358
I0401 20:57:51.609115 6134 sgd_solver.cpp:106] Iteration 112500, lr = 0.01
I0401 21:00:00.570731 6134 solver.cpp:229] Iteration 113000, loss = 3.07903
I0401 21:00:00.570842 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.319149
I0401 21:00:00.570859 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.818182
I0401 21:00:00.570873 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.680851
I0401 21:00:00.570889 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.09445 (* 0.3 = 0.628334 loss)
I0401 21:00:00.570904 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.584774 (* 0.3 = 0.175432 loss)
I0401 21:00:00.570917 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.446809
I0401 21:00:00.570930 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.852273
I0401 21:00:00.570941 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.765957
I0401 21:00:00.570955 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.72616 (* 0.3 = 0.517849 loss)
I0401 21:00:00.570971 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.476698 (* 0.3 = 0.143009 loss)
I0401 21:00:00.570982 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.765957
I0401 21:00:00.570994 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.931818
I0401 21:00:00.571007 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.851064
I0401 21:00:00.571020 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.911548 (* 1 = 0.911548 loss)
I0401 21:00:00.571033 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.266542 (* 1 = 0.266542 loss)
I0401 21:00:00.571045 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0401 21:00:00.571058 6134 solver.cpp:245] Train net output #16: total_confidence = 0.305107
I0401 21:00:00.571069 6134 sgd_solver.cpp:106] Iteration 113000, lr = 0.01
I0401 21:02:09.611042 6134 solver.cpp:229] Iteration 113500, loss = 3.05009
I0401 21:02:09.611183 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.390244
I0401 21:02:09.611204 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.846591
I0401 21:02:09.611225 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.609756
I0401 21:02:09.611243 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.27393 (* 0.3 = 0.682178 loss)
I0401 21:02:09.611258 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.587908 (* 0.3 = 0.176373 loss)
I0401 21:02:09.611269 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.512195
I0401 21:02:09.611290 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.863636
I0401 21:02:09.611302 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.682927
I0401 21:02:09.611316 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.7364 (* 0.3 = 0.520921 loss)
I0401 21:02:09.611330 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.502656 (* 0.3 = 0.150797 loss)
I0401 21:02:09.611349 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.682927
I0401 21:02:09.611361 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.920455
I0401 21:02:09.611373 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.804878
I0401 21:02:09.611387 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.04839 (* 1 = 1.04839 loss)
I0401 21:02:09.611402 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.279643 (* 1 = 0.279643 loss)
I0401 21:02:09.611414 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0401 21:02:09.611426 6134 solver.cpp:245] Train net output #16: total_confidence = 0.150653
I0401 21:02:09.611438 6134 sgd_solver.cpp:106] Iteration 113500, lr = 0.01
I0401 21:04:18.750056 6134 solver.cpp:229] Iteration 114000, loss = 3.11182
I0401 21:04:18.750179 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.326531
I0401 21:04:18.750207 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.806818
I0401 21:04:18.750221 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.632653
I0401 21:04:18.750238 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.23263 (* 0.3 = 0.669788 loss)
I0401 21:04:18.750253 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.650211 (* 0.3 = 0.195063 loss)
I0401 21:04:18.750267 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.346939
I0401 21:04:18.750278 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.8125
I0401 21:04:18.750291 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.755102
I0401 21:04:18.750305 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.93391 (* 0.3 = 0.580172 loss)
I0401 21:04:18.750319 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.567262 (* 0.3 = 0.170179 loss)
I0401 21:04:18.750331 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.755102
I0401 21:04:18.750344 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.931818
I0401 21:04:18.750356 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.918367
I0401 21:04:18.750370 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.858558 (* 1 = 0.858558 loss)
I0401 21:04:18.750385 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.254861 (* 1 = 0.254861 loss)
I0401 21:04:18.750397 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0401 21:04:18.750409 6134 solver.cpp:245] Train net output #16: total_confidence = 0.251196
I0401 21:04:18.750422 6134 sgd_solver.cpp:106] Iteration 114000, lr = 0.01
I0401 21:06:27.730038 6134 solver.cpp:229] Iteration 114500, loss = 3.10463
I0401 21:06:27.730423 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.44186
I0401 21:06:27.730444 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.829545
I0401 21:06:27.730458 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.627907
I0401 21:06:27.730473 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.37716 (* 0.3 = 0.713149 loss)
I0401 21:06:27.730489 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.707148 (* 0.3 = 0.212144 loss)
I0401 21:06:27.730501 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.511628
I0401 21:06:27.730514 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.852273
I0401 21:06:27.730528 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.767442
I0401 21:06:27.730543 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.95458 (* 0.3 = 0.586375 loss)
I0401 21:06:27.730557 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.574038 (* 0.3 = 0.172211 loss)
I0401 21:06:27.730571 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.837209
I0401 21:06:27.730592 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.948864
I0401 21:06:27.730603 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.930233
I0401 21:06:27.730618 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.618443 (* 1 = 0.618443 loss)
I0401 21:06:27.730631 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.202066 (* 1 = 0.202066 loss)
I0401 21:06:27.730650 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0401 21:06:27.730664 6134 solver.cpp:245] Train net output #16: total_confidence = 0.299399
I0401 21:06:27.730675 6134 sgd_solver.cpp:106] Iteration 114500, lr = 0.01
I0401 21:08:37.433696 6134 solver.cpp:338] Iteration 115000, Testing net (#0)
I0401 21:09:07.348337 6134 solver.cpp:393] Test loss: 2.81477
I0401 21:09:07.348410 6134 solver.cpp:406] Test net output #0: loss1/accuracy = 0.394146
I0401 21:09:07.348440 6134 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.829592
I0401 21:09:07.348475 6134 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.638331
I0401 21:09:07.348508 6134 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 2.19721 (* 0.3 = 0.659163 loss)
I0401 21:09:07.348556 6134 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.621907 (* 0.3 = 0.186572 loss)
I0401 21:09:07.348582 6134 solver.cpp:406] Test net output #5: loss2/accuracy = 0.611769
I0401 21:09:07.348608 6134 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.884048
I0401 21:09:07.348634 6134 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.836601
I0401 21:09:07.348664 6134 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.39204 (* 0.3 = 0.417612 loss)
I0401 21:09:07.348698 6134 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.409443 (* 0.3 = 0.122833 loss)
I0401 21:09:07.348723 6134 solver.cpp:406] Test net output #10: loss3/accuracy = 0.714787
I0401 21:09:07.348748 6134 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.914865
I0401 21:09:07.348773 6134 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.860527
I0401 21:09:07.348803 6134 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 1.10204 (* 1 = 1.10204 loss)
I0401 21:09:07.348831 6134 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.326545 (* 1 = 0.326545 loss)
I0401 21:09:07.348857 6134 solver.cpp:406] Test net output #15: total_accuracy = 0.281
I0401 21:09:07.348882 6134 solver.cpp:406] Test net output #16: total_confidence = 0.218882
I0401 21:09:07.500085 6134 solver.cpp:229] Iteration 115000, loss = 3.07551
I0401 21:09:07.500205 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.372093
I0401 21:09:07.500226 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.823864
I0401 21:09:07.500237 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.627907
I0401 21:09:07.500253 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.04294 (* 0.3 = 0.612883 loss)
I0401 21:09:07.500268 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.606401 (* 0.3 = 0.18192 loss)
I0401 21:09:07.500282 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.511628
I0401 21:09:07.500293 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.852273
I0401 21:09:07.500305 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.860465
I0401 21:09:07.500319 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.56615 (* 0.3 = 0.469846 loss)
I0401 21:09:07.500332 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.456576 (* 0.3 = 0.136973 loss)
I0401 21:09:07.500344 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.813953
I0401 21:09:07.500356 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.943182
I0401 21:09:07.500367 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.883721
I0401 21:09:07.500381 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.689037 (* 1 = 0.689037 loss)
I0401 21:09:07.500396 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.195716 (* 1 = 0.195716 loss)
I0401 21:09:07.500408 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0401 21:09:07.500421 6134 solver.cpp:245] Train net output #16: total_confidence = 0.386977
I0401 21:09:07.500432 6134 sgd_solver.cpp:106] Iteration 115000, lr = 0.01
I0401 21:11:16.642848 6134 solver.cpp:229] Iteration 115500, loss = 3.09862
I0401 21:11:16.642982 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.55
I0401 21:11:16.643002 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.869318
I0401 21:11:16.643016 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.75
I0401 21:11:16.643033 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.69997 (* 0.3 = 0.509992 loss)
I0401 21:11:16.643048 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.511828 (* 0.3 = 0.153549 loss)
I0401 21:11:16.643059 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.675
I0401 21:11:16.643072 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.909091
I0401 21:11:16.643085 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.825
I0401 21:11:16.643100 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.22351 (* 0.3 = 0.367053 loss)
I0401 21:11:16.643113 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.37539 (* 0.3 = 0.112617 loss)
I0401 21:11:16.643126 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.9
I0401 21:11:16.643137 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.965909
I0401 21:11:16.643151 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.975
I0401 21:11:16.643164 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.330447 (* 1 = 0.330447 loss)
I0401 21:11:16.643178 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.138885 (* 1 = 0.138885 loss)
I0401 21:11:16.643190 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0401 21:11:16.643203 6134 solver.cpp:245] Train net output #16: total_confidence = 0.405467
I0401 21:11:16.643214 6134 sgd_solver.cpp:106] Iteration 115500, lr = 0.01
I0401 21:13:25.674757 6134 solver.cpp:229] Iteration 116000, loss = 3.06802
I0401 21:13:25.674906 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.416667
I0401 21:13:25.674926 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.840909
I0401 21:13:25.674947 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.722222
I0401 21:13:25.674963 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.91941 (* 0.3 = 0.575822 loss)
I0401 21:13:25.674978 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.590345 (* 0.3 = 0.177104 loss)
I0401 21:13:25.674991 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.5
I0401 21:13:25.675004 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.852273
I0401 21:13:25.675015 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.777778
I0401 21:13:25.675029 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.65033 (* 0.3 = 0.495099 loss)
I0401 21:13:25.675050 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.566718 (* 0.3 = 0.170015 loss)
I0401 21:13:25.675061 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.666667
I0401 21:13:25.675076 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.897727
I0401 21:13:25.675088 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.888889
I0401 21:13:25.675110 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.07086 (* 1 = 1.07086 loss)
I0401 21:13:25.675124 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.396916 (* 1 = 0.396916 loss)
I0401 21:13:25.675137 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0401 21:13:25.675149 6134 solver.cpp:245] Train net output #16: total_confidence = 0.263439
I0401 21:13:25.675161 6134 sgd_solver.cpp:106] Iteration 116000, lr = 0.01
I0401 21:15:35.049955 6134 solver.cpp:229] Iteration 116500, loss = 3.04055
I0401 21:15:35.050079 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.512821
I0401 21:15:35.050102 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.875
I0401 21:15:35.050117 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.769231
I0401 21:15:35.050133 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.53854 (* 0.3 = 0.461563 loss)
I0401 21:15:35.050148 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.413181 (* 0.3 = 0.123954 loss)
I0401 21:15:35.050161 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.538462
I0401 21:15:35.050173 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.875
I0401 21:15:35.050186 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.897436
I0401 21:15:35.050199 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.30515 (* 0.3 = 0.391545 loss)
I0401 21:15:35.050215 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.384231 (* 0.3 = 0.115269 loss)
I0401 21:15:35.050226 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.923077
I0401 21:15:35.050238 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.971591
I0401 21:15:35.050251 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 1
I0401 21:15:35.050264 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.295763 (* 1 = 0.295763 loss)
I0401 21:15:35.050278 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.117372 (* 1 = 0.117372 loss)
I0401 21:15:35.050290 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0401 21:15:35.050302 6134 solver.cpp:245] Train net output #16: total_confidence = 0.337304
I0401 21:15:35.050314 6134 sgd_solver.cpp:106] Iteration 116500, lr = 0.01
I0401 21:17:44.339299 6134 solver.cpp:229] Iteration 117000, loss = 2.99817
I0401 21:17:44.339704 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.32
I0401 21:17:44.339725 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.778409
I0401 21:17:44.339740 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.54
I0401 21:17:44.339756 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.57695 (* 0.3 = 0.773085 loss)
I0401 21:17:44.339771 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.820458 (* 0.3 = 0.246137 loss)
I0401 21:17:44.339783 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.4
I0401 21:17:44.339797 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.8125
I0401 21:17:44.339808 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.64
I0401 21:17:44.339823 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.22796 (* 0.3 = 0.668389 loss)
I0401 21:17:44.339838 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.69269 (* 0.3 = 0.207807 loss)
I0401 21:17:44.339849 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.74
I0401 21:17:44.339861 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.914773
I0401 21:17:44.339874 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.78
I0401 21:17:44.339889 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.82612 (* 1 = 1.82612 loss)
I0401 21:17:44.339902 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.538617 (* 1 = 0.538617 loss)
I0401 21:17:44.339915 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0401 21:17:44.339927 6134 solver.cpp:245] Train net output #16: total_confidence = 0.358872
I0401 21:17:44.339939 6134 sgd_solver.cpp:106] Iteration 117000, lr = 0.01
I0401 21:19:53.742383 6134 solver.cpp:229] Iteration 117500, loss = 3.00549
I0401 21:19:53.742493 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.382979
I0401 21:19:53.742514 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.8125
I0401 21:19:53.742530 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.617021
I0401 21:19:53.742547 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.13448 (* 0.3 = 0.640344 loss)
I0401 21:19:53.742561 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.653879 (* 0.3 = 0.196164 loss)
I0401 21:19:53.742573 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.425532
I0401 21:19:53.742586 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.835227
I0401 21:19:53.742597 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.723404
I0401 21:19:53.742611 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.74353 (* 0.3 = 0.52306 loss)
I0401 21:19:53.742625 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.524017 (* 0.3 = 0.157205 loss)
I0401 21:19:53.742638 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.808511
I0401 21:19:53.742650 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.948864
I0401 21:19:53.742662 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.87234
I0401 21:19:53.742676 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.717668 (* 1 = 0.717668 loss)
I0401 21:19:53.742691 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.197834 (* 1 = 0.197834 loss)
I0401 21:19:53.742702 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.75
I0401 21:19:53.742714 6134 solver.cpp:245] Train net output #16: total_confidence = 0.337985
I0401 21:19:53.742727 6134 sgd_solver.cpp:106] Iteration 117500, lr = 0.01
I0401 21:22:03.066050 6134 solver.cpp:229] Iteration 118000, loss = 3.0734
I0401 21:22:03.066169 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.302326
I0401 21:22:03.066190 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.818182
I0401 21:22:03.066202 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.651163
I0401 21:22:03.066218 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.21521 (* 0.3 = 0.664563 loss)
I0401 21:22:03.066233 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.603712 (* 0.3 = 0.181114 loss)
I0401 21:22:03.066246 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.511628
I0401 21:22:03.066257 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.852273
I0401 21:22:03.066269 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.767442
I0401 21:22:03.066283 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.63865 (* 0.3 = 0.491594 loss)
I0401 21:22:03.066298 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.466374 (* 0.3 = 0.139912 loss)
I0401 21:22:03.066310 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.813953
I0401 21:22:03.066323 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.9375
I0401 21:22:03.066334 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.883721
I0401 21:22:03.066349 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.799151 (* 1 = 0.799151 loss)
I0401 21:22:03.066362 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.237368 (* 1 = 0.237368 loss)
I0401 21:22:03.066375 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0401 21:22:03.066387 6134 solver.cpp:245] Train net output #16: total_confidence = 0.227966
I0401 21:22:03.066400 6134 sgd_solver.cpp:106] Iteration 118000, lr = 0.01
I0401 21:24:12.180469 6134 solver.cpp:229] Iteration 118500, loss = 3.08438
I0401 21:24:12.180603 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.206897
I0401 21:24:12.180625 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.727273
I0401 21:24:12.180639 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.362069
I0401 21:24:12.180655 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.96626 (* 0.3 = 0.889879 loss)
I0401 21:24:12.180670 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.00356 (* 0.3 = 0.301067 loss)
I0401 21:24:12.180683 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.275862
I0401 21:24:12.180696 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.761364
I0401 21:24:12.180708 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.517241
I0401 21:24:12.180721 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.92721 (* 0.3 = 0.878162 loss)
I0401 21:24:12.180737 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.978717 (* 0.3 = 0.293615 loss)
I0401 21:24:12.180748 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.482759
I0401 21:24:12.180762 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.829545
I0401 21:24:12.180773 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.62069
I0401 21:24:12.180788 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.39682 (* 1 = 2.39682 loss)
I0401 21:24:12.180802 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.794365 (* 1 = 0.794365 loss)
I0401 21:24:12.180814 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0401 21:24:12.180827 6134 solver.cpp:245] Train net output #16: total_confidence = 0.158034
I0401 21:24:12.180840 6134 sgd_solver.cpp:106] Iteration 118500, lr = 0.01
I0401 21:26:21.260782 6134 solver.cpp:229] Iteration 119000, loss = 3.02618
I0401 21:26:21.260920 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.487179
I0401 21:26:21.260941 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.829545
I0401 21:26:21.260953 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.666667
I0401 21:26:21.260969 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.15062 (* 0.3 = 0.645186 loss)
I0401 21:26:21.260984 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.673331 (* 0.3 = 0.201999 loss)
I0401 21:26:21.260998 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.512821
I0401 21:26:21.261009 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.857955
I0401 21:26:21.261023 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.769231
I0401 21:26:21.261036 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.78918 (* 0.3 = 0.536753 loss)
I0401 21:26:21.261067 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.533039 (* 0.3 = 0.159912 loss)
I0401 21:26:21.261081 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.717949
I0401 21:26:21.261093 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.903409
I0401 21:26:21.261106 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.897436
I0401 21:26:21.261119 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.00439 (* 1 = 1.00439 loss)
I0401 21:26:21.261133 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.308866 (* 1 = 0.308866 loss)
I0401 21:26:21.261147 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0401 21:26:21.261158 6134 solver.cpp:245] Train net output #16: total_confidence = 0.231927
I0401 21:26:21.261171 6134 sgd_solver.cpp:106] Iteration 119000, lr = 0.01
I0401 21:28:29.982239 6134 solver.cpp:229] Iteration 119500, loss = 2.96259
I0401 21:28:29.982497 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.375
I0401 21:28:29.982517 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.8125
I0401 21:28:29.982529 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.520833
I0401 21:28:29.982545 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.49155 (* 0.3 = 0.747466 loss)
I0401 21:28:29.982560 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.745781 (* 0.3 = 0.223734 loss)
I0401 21:28:29.982574 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.5
I0401 21:28:29.982586 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.846591
I0401 21:28:29.982599 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.708333
I0401 21:28:29.982612 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.9561 (* 0.3 = 0.586829 loss)
I0401 21:28:29.982626 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.582508 (* 0.3 = 0.174753 loss)
I0401 21:28:29.982638 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.625
I0401 21:28:29.982650 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.892045
I0401 21:28:29.982662 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.833333
I0401 21:28:29.982676 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.47331 (* 1 = 1.47331 loss)
I0401 21:28:29.982689 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.420362 (* 1 = 0.420362 loss)
I0401 21:28:29.982702 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0401 21:28:29.982714 6134 solver.cpp:245] Train net output #16: total_confidence = 0.203283
I0401 21:28:29.982727 6134 sgd_solver.cpp:106] Iteration 119500, lr = 0.01
I0401 21:30:38.721177 6134 solver.cpp:338] Iteration 120000, Testing net (#0)
I0401 21:31:08.614490 6134 solver.cpp:393] Test loss: 2.46792
I0401 21:31:08.614539 6134 solver.cpp:406] Test net output #0: loss1/accuracy = 0.467879
I0401 21:31:08.614557 6134 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.861276
I0401 21:31:08.614569 6134 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.747206
I0401 21:31:08.614585 6134 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 1.8082 (* 0.3 = 0.542461 loss)
I0401 21:31:08.614600 6134 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.478965 (* 0.3 = 0.14369 loss)
I0401 21:31:08.614612 6134 solver.cpp:406] Test net output #5: loss2/accuracy = 0.610903
I0401 21:31:08.614625 6134 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.897367
I0401 21:31:08.614637 6134 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.844399
I0401 21:31:08.614650 6134 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.36246 (* 0.3 = 0.408739 loss)
I0401 21:31:08.614665 6134 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.362173 (* 0.3 = 0.108652 loss)
I0401 21:31:08.614677 6134 solver.cpp:406] Test net output #10: loss3/accuracy = 0.747257
I0401 21:31:08.614689 6134 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.935774
I0401 21:31:08.614701 6134 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.881838
I0401 21:31:08.614714 6134 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 1.00661 (* 1 = 1.00661 loss)
I0401 21:31:08.614728 6134 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.257767 (* 1 = 0.257767 loss)
I0401 21:31:08.614740 6134 solver.cpp:406] Test net output #15: total_accuracy = 0.41
I0401 21:31:08.614751 6134 solver.cpp:406] Test net output #16: total_confidence = 0.360301
I0401 21:31:08.766552 6134 solver.cpp:229] Iteration 120000, loss = 3.06511
I0401 21:31:08.766652 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.340426
I0401 21:31:08.766672 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.818182
I0401 21:31:08.766685 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.680851
I0401 21:31:08.766700 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.13186 (* 0.3 = 0.639559 loss)
I0401 21:31:08.766716 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.60825 (* 0.3 = 0.182475 loss)
I0401 21:31:08.766727 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.510638
I0401 21:31:08.766741 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.863636
I0401 21:31:08.766752 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.744681
I0401 21:31:08.766767 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.63049 (* 0.3 = 0.489147 loss)
I0401 21:31:08.766780 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.480539 (* 0.3 = 0.144162 loss)
I0401 21:31:08.766791 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.829787
I0401 21:31:08.766803 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.954545
I0401 21:31:08.766815 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.957447
I0401 21:31:08.766829 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.752787 (* 1 = 0.752787 loss)
I0401 21:31:08.766844 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.211452 (* 1 = 0.211452 loss)
I0401 21:31:08.766856 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0401 21:31:08.766868 6134 solver.cpp:245] Train net output #16: total_confidence = 0.384081
I0401 21:31:08.766880 6134 sgd_solver.cpp:106] Iteration 120000, lr = 0.01
I0401 21:33:17.790287 6134 solver.cpp:229] Iteration 120500, loss = 3.04799
I0401 21:33:17.790418 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.270833
I0401 21:33:17.790438 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.784091
I0401 21:33:17.790452 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.458333
I0401 21:33:17.790467 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.68738 (* 0.3 = 0.806213 loss)
I0401 21:33:17.790482 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.777644 (* 0.3 = 0.233293 loss)
I0401 21:33:17.790494 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.375
I0401 21:33:17.790508 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.823864
I0401 21:33:17.790521 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.645833
I0401 21:33:17.790536 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.35438 (* 0.3 = 0.706314 loss)
I0401 21:33:17.790550 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.67296 (* 0.3 = 0.201888 loss)
I0401 21:33:17.790563 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.708333
I0401 21:33:17.790575 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.903409
I0401 21:33:17.790587 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.791667
I0401 21:33:17.790601 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.67818 (* 1 = 1.67818 loss)
I0401 21:33:17.790616 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.492554 (* 1 = 0.492554 loss)
I0401 21:33:17.790627 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0401 21:33:17.790639 6134 solver.cpp:245] Train net output #16: total_confidence = 0.210683
I0401 21:33:17.790652 6134 sgd_solver.cpp:106] Iteration 120500, lr = 0.01
I0401 21:35:26.687125 6134 solver.cpp:229] Iteration 121000, loss = 3.00929
I0401 21:35:26.687222 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.404762
I0401 21:35:26.687240 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.829545
I0401 21:35:26.687253 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.547619
I0401 21:35:26.687270 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.41594 (* 0.3 = 0.724782 loss)
I0401 21:35:26.687284 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.722074 (* 0.3 = 0.216622 loss)
I0401 21:35:26.687297 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.452381
I0401 21:35:26.687312 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.835227
I0401 21:35:26.687325 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.690476
I0401 21:35:26.687340 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.04233 (* 0.3 = 0.6127 loss)
I0401 21:35:26.687355 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.58377 (* 0.3 = 0.175131 loss)
I0401 21:35:26.687366 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.571429
I0401 21:35:26.687378 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.875
I0401 21:35:26.687391 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.690476
I0401 21:35:26.687404 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.56763 (* 1 = 1.56763 loss)
I0401 21:35:26.687418 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.441366 (* 1 = 0.441366 loss)
I0401 21:35:26.687430 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0401 21:35:26.687443 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0759415
I0401 21:35:26.687455 6134 sgd_solver.cpp:106] Iteration 121000, lr = 0.01
I0401 21:37:35.394323 6134 solver.cpp:229] Iteration 121500, loss = 3.02634
I0401 21:37:35.394645 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.292683
I0401 21:37:35.394666 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.789773
I0401 21:37:35.394680 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.463415
I0401 21:37:35.394696 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.2495 (* 0.3 = 0.67485 loss)
I0401 21:37:35.394711 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.673329 (* 0.3 = 0.201999 loss)
I0401 21:37:35.394724 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.439024
I0401 21:37:35.394737 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.835227
I0401 21:37:35.394749 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.682927
I0401 21:37:35.394763 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.99105 (* 0.3 = 0.597315 loss)
I0401 21:37:35.394778 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.604402 (* 0.3 = 0.181321 loss)
I0401 21:37:35.394789 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.536585
I0401 21:37:35.394801 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.869318
I0401 21:37:35.394814 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.682927
I0401 21:37:35.394827 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.58517 (* 1 = 1.58517 loss)
I0401 21:37:35.394841 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.474835 (* 1 = 0.474835 loss)
I0401 21:37:35.394853 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0401 21:37:35.394865 6134 solver.cpp:245] Train net output #16: total_confidence = 0.255485
I0401 21:37:35.394876 6134 sgd_solver.cpp:106] Iteration 121500, lr = 0.01
I0401 21:39:44.038480 6134 solver.cpp:229] Iteration 122000, loss = 3.01625
I0401 21:39:44.038600 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.3125
I0401 21:39:44.038621 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.778409
I0401 21:39:44.038635 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.583333
I0401 21:39:44.038650 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.2486 (* 0.3 = 0.674581 loss)
I0401 21:39:44.038664 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.729504 (* 0.3 = 0.218851 loss)
I0401 21:39:44.038677 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.458333
I0401 21:39:44.038691 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.835227
I0401 21:39:44.038702 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.625
I0401 21:39:44.038717 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.88599 (* 0.3 = 0.565798 loss)
I0401 21:39:44.038730 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.587426 (* 0.3 = 0.176228 loss)
I0401 21:39:44.038743 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.75
I0401 21:39:44.038755 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.914773
I0401 21:39:44.038768 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.875
I0401 21:39:44.038781 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.029 (* 1 = 1.029 loss)
I0401 21:39:44.038795 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.317776 (* 1 = 0.317776 loss)
I0401 21:39:44.038807 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0401 21:39:44.038818 6134 solver.cpp:245] Train net output #16: total_confidence = 0.148153
I0401 21:39:44.038830 6134 sgd_solver.cpp:106] Iteration 122000, lr = 0.01
I0401 21:41:52.766170 6134 solver.cpp:229] Iteration 122500, loss = 3.07265
I0401 21:41:52.766324 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.3125
I0401 21:41:52.766345 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.789773
I0401 21:41:52.766358 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.583333
I0401 21:41:52.766376 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.27269 (* 0.3 = 0.681808 loss)
I0401 21:41:52.766389 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.722471 (* 0.3 = 0.216741 loss)
I0401 21:41:52.766403 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.416667
I0401 21:41:52.766415 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.818182
I0401 21:41:52.766427 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.729167
I0401 21:41:52.766441 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.76157 (* 0.3 = 0.528471 loss)
I0401 21:41:52.766455 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.577845 (* 0.3 = 0.173354 loss)
I0401 21:41:52.766468 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.666667
I0401 21:41:52.766480 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.886364
I0401 21:41:52.766491 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.8125
I0401 21:41:52.766505 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.33243 (* 1 = 1.33243 loss)
I0401 21:41:52.766523 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.475626 (* 1 = 0.475626 loss)
I0401 21:41:52.766535 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0401 21:41:52.766547 6134 solver.cpp:245] Train net output #16: total_confidence = 0.265638
I0401 21:41:52.766561 6134 sgd_solver.cpp:106] Iteration 122500, lr = 0.01
I0401 21:44:01.424077 6134 solver.cpp:229] Iteration 123000, loss = 3.03214
I0401 21:44:01.424186 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.347826
I0401 21:44:01.424206 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.806818
I0401 21:44:01.424219 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.543478
I0401 21:44:01.424237 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.29497 (* 0.3 = 0.688492 loss)
I0401 21:44:01.424252 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.69531 (* 0.3 = 0.208593 loss)
I0401 21:44:01.424264 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.5
I0401 21:44:01.424276 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.852273
I0401 21:44:01.424288 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.695652
I0401 21:44:01.424304 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.77653 (* 0.3 = 0.53296 loss)
I0401 21:44:01.424319 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.532323 (* 0.3 = 0.159697 loss)
I0401 21:44:01.424330 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.673913
I0401 21:44:01.424342 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.892045
I0401 21:44:01.424355 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.76087
I0401 21:44:01.424368 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.17737 (* 1 = 1.17737 loss)
I0401 21:44:01.424382 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.3504 (* 1 = 0.3504 loss)
I0401 21:44:01.424396 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0401 21:44:01.424407 6134 solver.cpp:245] Train net output #16: total_confidence = 0.299731
I0401 21:44:01.424419 6134 sgd_solver.cpp:106] Iteration 123000, lr = 0.01
I0401 21:46:10.072324 6134 solver.cpp:229] Iteration 123500, loss = 2.99169
I0401 21:46:10.072460 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.416667
I0401 21:46:10.072481 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.829545
I0401 21:46:10.072494 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.583333
I0401 21:46:10.072510 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.06729 (* 0.3 = 0.620187 loss)
I0401 21:46:10.072526 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.613022 (* 0.3 = 0.183907 loss)
I0401 21:46:10.072540 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.5
I0401 21:46:10.072552 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.852273
I0401 21:46:10.072563 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.75
I0401 21:46:10.072577 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.65079 (* 0.3 = 0.495237 loss)
I0401 21:46:10.072592 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.497878 (* 0.3 = 0.149363 loss)
I0401 21:46:10.072603 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.791667
I0401 21:46:10.072616 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.943182
I0401 21:46:10.072628 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.854167
I0401 21:46:10.072643 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.755394 (* 1 = 0.755394 loss)
I0401 21:46:10.072655 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.214354 (* 1 = 0.214354 loss)
I0401 21:46:10.072669 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0401 21:46:10.072679 6134 solver.cpp:245] Train net output #16: total_confidence = 0.395969
I0401 21:46:10.072691 6134 sgd_solver.cpp:106] Iteration 123500, lr = 0.01
I0401 21:48:18.757720 6134 solver.cpp:229] Iteration 124000, loss = 3.07176
I0401 21:48:18.758051 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.340426
I0401 21:48:18.758072 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.806818
I0401 21:48:18.758085 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.744681
I0401 21:48:18.758101 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.9709 (* 0.3 = 0.591269 loss)
I0401 21:48:18.758116 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.588817 (* 0.3 = 0.176645 loss)
I0401 21:48:18.758128 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.489362
I0401 21:48:18.758141 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.852273
I0401 21:48:18.758153 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.87234
I0401 21:48:18.758167 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.39174 (* 0.3 = 0.417521 loss)
I0401 21:48:18.758182 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.404885 (* 0.3 = 0.121466 loss)
I0401 21:48:18.758193 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.93617
I0401 21:48:18.758205 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.982955
I0401 21:48:18.758218 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.957447
I0401 21:48:18.758232 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.543056 (* 1 = 0.543056 loss)
I0401 21:48:18.758246 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.15979 (* 1 = 0.15979 loss)
I0401 21:48:18.758258 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0401 21:48:18.758270 6134 solver.cpp:245] Train net output #16: total_confidence = 0.236918
I0401 21:48:18.758282 6134 sgd_solver.cpp:106] Iteration 124000, lr = 0.01
I0401 21:50:27.483078 6134 solver.cpp:229] Iteration 124500, loss = 2.88758
I0401 21:50:27.483240 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.265306
I0401 21:50:27.483270 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.789773
I0401 21:50:27.483294 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.591837
I0401 21:50:27.483319 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.43453 (* 0.3 = 0.730359 loss)
I0401 21:50:27.483335 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.720591 (* 0.3 = 0.216177 loss)
I0401 21:50:27.483351 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.44898
I0401 21:50:27.483364 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.840909
I0401 21:50:27.483376 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.693878
I0401 21:50:27.483391 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.90128 (* 0.3 = 0.570385 loss)
I0401 21:50:27.483404 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.562827 (* 0.3 = 0.168848 loss)
I0401 21:50:27.483417 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.653061
I0401 21:50:27.483428 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.903409
I0401 21:50:27.483440 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.795918
I0401 21:50:27.483455 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.17577 (* 1 = 1.17577 loss)
I0401 21:50:27.483469 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.343231 (* 1 = 0.343231 loss)
I0401 21:50:27.483481 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0401 21:50:27.483494 6134 solver.cpp:245] Train net output #16: total_confidence = 0.205269
I0401 21:50:27.483505 6134 sgd_solver.cpp:106] Iteration 124500, lr = 0.01
I0401 21:52:36.435792 6134 solver.cpp:338] Iteration 125000, Testing net (#0)
I0401 21:53:06.286003 6134 solver.cpp:393] Test loss: 2.87532
I0401 21:53:06.286064 6134 solver.cpp:406] Test net output #0: loss1/accuracy = 0.427454
I0401 21:53:06.286082 6134 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.848911
I0401 21:53:06.286094 6134 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.712302
I0401 21:53:06.286110 6134 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 1.99076 (* 0.3 = 0.597229 loss)
I0401 21:53:06.286125 6134 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.539994 (* 0.3 = 0.161998 loss)
I0401 21:53:06.286139 6134 solver.cpp:406] Test net output #5: loss2/accuracy = 0.605635
I0401 21:53:06.286150 6134 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.887776
I0401 21:53:06.286162 6134 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.827654
I0401 21:53:06.286176 6134 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.4482 (* 0.3 = 0.434459 loss)
I0401 21:53:06.286190 6134 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.415422 (* 0.3 = 0.124627 loss)
I0401 21:53:06.286202 6134 solver.cpp:406] Test net output #10: loss3/accuracy = 0.71342
I0401 21:53:06.286216 6134 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.927047
I0401 21:53:06.286227 6134 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.845268
I0401 21:53:06.286240 6134 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 1.23418 (* 1 = 1.23418 loss)
I0401 21:53:06.286254 6134 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.32283 (* 1 = 0.32283 loss)
I0401 21:53:06.286267 6134 solver.cpp:406] Test net output #15: total_accuracy = 0.365
I0401 21:53:06.286278 6134 solver.cpp:406] Test net output #16: total_confidence = 0.329559
I0401 21:53:06.438040 6134 solver.cpp:229] Iteration 125000, loss = 3.01147
I0401 21:53:06.438189 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.422222
I0401 21:53:06.438228 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.818182
I0401 21:53:06.438257 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.577778
I0401 21:53:06.438278 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.22906 (* 0.3 = 0.668719 loss)
I0401 21:53:06.438302 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.697996 (* 0.3 = 0.209399 loss)
I0401 21:53:06.438313 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.511111
I0401 21:53:06.438326 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.846591
I0401 21:53:06.438338 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.777778
I0401 21:53:06.438359 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.82202 (* 0.3 = 0.546606 loss)
I0401 21:53:06.438374 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.557892 (* 0.3 = 0.167368 loss)
I0401 21:53:06.438386 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.755556
I0401 21:53:06.438398 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.926136
I0401 21:53:06.438410 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.933333
I0401 21:53:06.438424 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.16355 (* 1 = 1.16355 loss)
I0401 21:53:06.438438 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.33006 (* 1 = 0.33006 loss)
I0401 21:53:06.438451 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0401 21:53:06.438462 6134 solver.cpp:245] Train net output #16: total_confidence = 0.29961
I0401 21:53:06.438474 6134 sgd_solver.cpp:106] Iteration 125000, lr = 0.01
I0401 21:55:15.379734 6134 solver.cpp:229] Iteration 125500, loss = 2.92376
I0401 21:55:15.379847 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.333333
I0401 21:55:15.379868 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.823864
I0401 21:55:15.379880 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.577778
I0401 21:55:15.379896 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.49343 (* 0.3 = 0.748029 loss)
I0401 21:55:15.379911 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.689151 (* 0.3 = 0.206745 loss)
I0401 21:55:15.379925 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.311111
I0401 21:55:15.379936 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.8125
I0401 21:55:15.379948 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.577778
I0401 21:55:15.379962 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.49286 (* 0.3 = 0.747857 loss)
I0401 21:55:15.379976 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.684915 (* 0.3 = 0.205475 loss)
I0401 21:55:15.379989 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.533333
I0401 21:55:15.380002 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.875
I0401 21:55:15.380013 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.688889
I0401 21:55:15.380028 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.77827 (* 1 = 1.77827 loss)
I0401 21:55:15.380040 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.493407 (* 1 = 0.493407 loss)
I0401 21:55:15.380053 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0401 21:55:15.380065 6134 solver.cpp:245] Train net output #16: total_confidence = 0.316205
I0401 21:55:15.380077 6134 sgd_solver.cpp:106] Iteration 125500, lr = 0.01
I0401 21:57:24.380252 6134 solver.cpp:229] Iteration 126000, loss = 2.98182
I0401 21:57:24.380614 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.309524
I0401 21:57:24.380637 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.829545
I0401 21:57:24.380650 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.714286
I0401 21:57:24.380666 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.79878 (* 0.3 = 0.539633 loss)
I0401 21:57:24.380681 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.474093 (* 0.3 = 0.142228 loss)
I0401 21:57:24.380694 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.5
I0401 21:57:24.380707 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.869318
I0401 21:57:24.380723 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.833333
I0401 21:57:24.380753 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.41944 (* 0.3 = 0.425833 loss)
I0401 21:57:24.380772 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.389385 (* 0.3 = 0.116815 loss)
I0401 21:57:24.380785 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.642857
I0401 21:57:24.380806 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.909091
I0401 21:57:24.380818 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.904762
I0401 21:57:24.380832 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.02744 (* 1 = 1.02744 loss)
I0401 21:57:24.380847 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.291565 (* 1 = 0.291565 loss)
I0401 21:57:24.380859 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0401 21:57:24.380879 6134 solver.cpp:245] Train net output #16: total_confidence = 0.216189
I0401 21:57:24.380892 6134 sgd_solver.cpp:106] Iteration 126000, lr = 0.01
I0401 21:59:33.295614 6134 solver.cpp:229] Iteration 126500, loss = 2.9302
I0401 21:59:33.295717 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.4
I0401 21:59:33.295737 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.818182
I0401 21:59:33.295749 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.6
I0401 21:59:33.295766 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.15714 (* 0.3 = 0.647142 loss)
I0401 21:59:33.295780 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.646055 (* 0.3 = 0.193816 loss)
I0401 21:59:33.295794 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.44
I0401 21:59:33.295805 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.835227
I0401 21:59:33.295817 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.74
I0401 21:59:33.295831 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.7318 (* 0.3 = 0.519539 loss)
I0401 21:59:33.295846 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.519978 (* 0.3 = 0.155993 loss)
I0401 21:59:33.295858 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.7
I0401 21:59:33.295871 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.914773
I0401 21:59:33.295882 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.92
I0401 21:59:33.295897 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.90286 (* 1 = 0.90286 loss)
I0401 21:59:33.295910 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.263895 (* 1 = 0.263895 loss)
I0401 21:59:33.295922 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0401 21:59:33.295934 6134 solver.cpp:245] Train net output #16: total_confidence = 0.326621
I0401 21:59:33.295946 6134 sgd_solver.cpp:106] Iteration 126500, lr = 0.01
I0401 22:01:42.270443 6134 solver.cpp:229] Iteration 127000, loss = 3.041
I0401 22:01:42.270577 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.5
I0401 22:01:42.270597 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.857955
I0401 22:01:42.270611 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.666667
I0401 22:01:42.270627 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.92485 (* 0.3 = 0.577454 loss)
I0401 22:01:42.270642 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.568849 (* 0.3 = 0.170655 loss)
I0401 22:01:42.270654 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.645833
I0401 22:01:42.270666 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.880682
I0401 22:01:42.270678 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.8125
I0401 22:01:42.270692 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.4123 (* 0.3 = 0.423689 loss)
I0401 22:01:42.270706 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.453808 (* 0.3 = 0.136142 loss)
I0401 22:01:42.270720 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.8125
I0401 22:01:42.270731 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.948864
I0401 22:01:42.270743 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.9375
I0401 22:01:42.270756 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.701566 (* 1 = 0.701566 loss)
I0401 22:01:42.270771 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.209528 (* 1 = 0.209528 loss)
I0401 22:01:42.270782 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0401 22:01:42.270794 6134 solver.cpp:245] Train net output #16: total_confidence = 0.353933
I0401 22:01:42.270807 6134 sgd_solver.cpp:106] Iteration 127000, lr = 0.01
I0401 22:03:50.969490 6134 solver.cpp:229] Iteration 127500, loss = 2.96203
I0401 22:03:50.969629 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.222222
I0401 22:03:50.969648 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.755682
I0401 22:03:50.969661 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.5
I0401 22:03:50.969678 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.71318 (* 0.3 = 0.813955 loss)
I0401 22:03:50.969693 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.853313 (* 0.3 = 0.255994 loss)
I0401 22:03:50.969707 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.481481
I0401 22:03:50.969718 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.835227
I0401 22:03:50.969730 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.722222
I0401 22:03:50.969744 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.24372 (* 0.3 = 0.673116 loss)
I0401 22:03:50.969758 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.712573 (* 0.3 = 0.213772 loss)
I0401 22:03:50.969771 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.62963
I0401 22:03:50.969784 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.869318
I0401 22:03:50.969795 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.796296
I0401 22:03:50.969810 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.44815 (* 1 = 1.44815 loss)
I0401 22:03:50.969825 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.494227 (* 1 = 0.494227 loss)
I0401 22:03:50.969836 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0401 22:03:50.969848 6134 solver.cpp:245] Train net output #16: total_confidence = 0.335803
I0401 22:03:50.969861 6134 sgd_solver.cpp:106] Iteration 127500, lr = 0.01
I0401 22:05:59.843924 6134 solver.cpp:229] Iteration 128000, loss = 2.93912
I0401 22:05:59.844084 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.469388
I0401 22:05:59.844125 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.846591
I0401 22:05:59.844148 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.795918
I0401 22:05:59.844177 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.77903 (* 0.3 = 0.533708 loss)
I0401 22:05:59.844193 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.529492 (* 0.3 = 0.158848 loss)
I0401 22:05:59.844215 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.44898
I0401 22:05:59.844228 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.846591
I0401 22:05:59.844240 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.857143
I0401 22:05:59.844254 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.54712 (* 0.3 = 0.464136 loss)
I0401 22:05:59.844274 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.441303 (* 0.3 = 0.132391 loss)
I0401 22:05:59.844287 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.816327
I0401 22:05:59.844300 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.943182
I0401 22:05:59.844311 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.938776
I0401 22:05:59.844326 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.483446 (* 1 = 0.483446 loss)
I0401 22:05:59.844339 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.159461 (* 1 = 0.159461 loss)
I0401 22:05:59.844352 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0401 22:05:59.844363 6134 solver.cpp:245] Train net output #16: total_confidence = 0.388001
I0401 22:05:59.844377 6134 sgd_solver.cpp:106] Iteration 128000, lr = 0.01
I0401 22:08:08.742363 6134 solver.cpp:229] Iteration 128500, loss = 2.91383
I0401 22:08:08.742667 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.574468
I0401 22:08:08.742688 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.869318
I0401 22:08:08.742702 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.851064
I0401 22:08:08.742718 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.36761 (* 0.3 = 0.410282 loss)
I0401 22:08:08.742733 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.40311 (* 0.3 = 0.120933 loss)
I0401 22:08:08.742746 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.659574
I0401 22:08:08.742758 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.903409
I0401 22:08:08.742771 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.893617
I0401 22:08:08.742785 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.20715 (* 0.3 = 0.362146 loss)
I0401 22:08:08.742799 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.353282 (* 0.3 = 0.105985 loss)
I0401 22:08:08.742811 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.851064
I0401 22:08:08.742823 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.948864
I0401 22:08:08.742835 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.978723
I0401 22:08:08.742849 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.433975 (* 1 = 0.433975 loss)
I0401 22:08:08.742863 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.157422 (* 1 = 0.157422 loss)
I0401 22:08:08.742876 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0401 22:08:08.742887 6134 solver.cpp:245] Train net output #16: total_confidence = 0.364401
I0401 22:08:08.742899 6134 sgd_solver.cpp:106] Iteration 128500, lr = 0.01
I0401 22:10:17.633812 6134 solver.cpp:229] Iteration 129000, loss = 2.92474
I0401 22:10:17.633956 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.418605
I0401 22:10:17.633976 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.823864
I0401 22:10:17.633996 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.627907
I0401 22:10:17.634012 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.98648 (* 0.3 = 0.595944 loss)
I0401 22:10:17.634028 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.599941 (* 0.3 = 0.179982 loss)
I0401 22:10:17.634042 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.44186
I0401 22:10:17.634053 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.840909
I0401 22:10:17.634065 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.72093
I0401 22:10:17.634088 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.68642 (* 0.3 = 0.505926 loss)
I0401 22:10:17.634101 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.51331 (* 0.3 = 0.153993 loss)
I0401 22:10:17.634114 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.674419
I0401 22:10:17.634125 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.892045
I0401 22:10:17.634137 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.883721
I0401 22:10:17.634158 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.03135 (* 1 = 1.03135 loss)
I0401 22:10:17.634172 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.328161 (* 1 = 0.328161 loss)
I0401 22:10:17.634184 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0401 22:10:17.634196 6134 solver.cpp:245] Train net output #16: total_confidence = 0.271084
I0401 22:10:17.634208 6134 sgd_solver.cpp:106] Iteration 129000, lr = 0.01
I0401 22:12:26.721822 6134 solver.cpp:229] Iteration 129500, loss = 2.97487
I0401 22:12:26.721920 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.25
I0401 22:12:26.721947 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.8125
I0401 22:12:26.721961 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.625
I0401 22:12:26.721976 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.44684 (* 0.3 = 0.734051 loss)
I0401 22:12:26.721992 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.656174 (* 0.3 = 0.196852 loss)
I0401 22:12:26.722012 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.45
I0401 22:12:26.722024 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.863636
I0401 22:12:26.722036 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.8
I0401 22:12:26.722051 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.6101 (* 0.3 = 0.48303 loss)
I0401 22:12:26.722065 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.44425 (* 0.3 = 0.133275 loss)
I0401 22:12:26.722077 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.675
I0401 22:12:26.722090 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.914773
I0401 22:12:26.722105 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.825
I0401 22:12:26.722120 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.22261 (* 1 = 1.22261 loss)
I0401 22:12:26.722134 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.327257 (* 1 = 0.327257 loss)
I0401 22:12:26.722146 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0401 22:12:26.722159 6134 solver.cpp:245] Train net output #16: total_confidence = 0.071549
I0401 22:12:26.722172 6134 sgd_solver.cpp:106] Iteration 129500, lr = 0.01
I0401 22:14:35.718173 6134 solver.cpp:338] Iteration 130000, Testing net (#0)
I0401 22:15:05.463304 6134 solver.cpp:393] Test loss: 2.46971
I0401 22:15:05.463353 6134 solver.cpp:406] Test net output #0: loss1/accuracy = 0.467163
I0401 22:15:05.463371 6134 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.857412
I0401 22:15:05.463382 6134 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.749701
I0401 22:15:05.463398 6134 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 1.80158 (* 0.3 = 0.540474 loss)
I0401 22:15:05.463413 6134 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.48685 (* 0.3 = 0.146055 loss)
I0401 22:15:05.463425 6134 solver.cpp:406] Test net output #5: loss2/accuracy = 0.611016
I0401 22:15:05.463438 6134 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.897184
I0401 22:15:05.463449 6134 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.844666
I0401 22:15:05.463464 6134 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.35707 (* 0.3 = 0.40712 loss)
I0401 22:15:05.463477 6134 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.360636 (* 0.3 = 0.108191 loss)
I0401 22:15:05.463490 6134 solver.cpp:406] Test net output #10: loss3/accuracy = 0.752538
I0401 22:15:05.463501 6134 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.934319
I0401 22:15:05.463512 6134 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.882423
I0401 22:15:05.463531 6134 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 0.99856 (* 1 = 0.99856 loss)
I0401 22:15:05.463544 6134 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.269315 (* 1 = 0.269315 loss)
I0401 22:15:05.463557 6134 solver.cpp:406] Test net output #15: total_accuracy = 0.372
I0401 22:15:05.463568 6134 solver.cpp:406] Test net output #16: total_confidence = 0.321816
I0401 22:15:05.615486 6134 solver.cpp:229] Iteration 130000, loss = 2.94054
I0401 22:15:05.615528 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.238095
I0401 22:15:05.615546 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.789773
I0401 22:15:05.615558 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.642857
I0401 22:15:05.615574 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.07449 (* 0.3 = 0.622347 loss)
I0401 22:15:05.615589 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.601412 (* 0.3 = 0.180423 loss)
I0401 22:15:05.615602 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.404762
I0401 22:15:05.615614 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.823864
I0401 22:15:05.615627 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.690476
I0401 22:15:05.615640 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.81395 (* 0.3 = 0.544185 loss)
I0401 22:15:05.615654 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.539172 (* 0.3 = 0.161751 loss)
I0401 22:15:05.615666 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.619048
I0401 22:15:05.615679 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.897727
I0401 22:15:05.615690 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.880952
I0401 22:15:05.615705 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.07549 (* 1 = 1.07549 loss)
I0401 22:15:05.615718 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.297945 (* 1 = 0.297945 loss)
I0401 22:15:05.615736 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0401 22:15:05.615747 6134 solver.cpp:245] Train net output #16: total_confidence = 0.179404
I0401 22:15:05.615761 6134 sgd_solver.cpp:106] Iteration 130000, lr = 0.01
I0401 22:17:14.634042 6134 solver.cpp:229] Iteration 130500, loss = 2.90193
I0401 22:17:14.634490 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.282609
I0401 22:17:14.634511 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.806818
I0401 22:17:14.634527 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.456522
I0401 22:17:14.634546 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.58042 (* 0.3 = 0.774127 loss)
I0401 22:17:14.634559 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.736022 (* 0.3 = 0.220806 loss)
I0401 22:17:14.634572 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.456522
I0401 22:17:14.634585 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.852273
I0401 22:17:14.634598 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.586957
I0401 22:17:14.634613 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.05143 (* 0.3 = 0.615428 loss)
I0401 22:17:14.634626 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.588315 (* 0.3 = 0.176495 loss)
I0401 22:17:14.634639 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.608696
I0401 22:17:14.634651 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.892045
I0401 22:17:14.634663 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.76087
I0401 22:17:14.634677 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.49257 (* 1 = 1.49257 loss)
I0401 22:17:14.634692 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.422018 (* 1 = 0.422018 loss)
I0401 22:17:14.634704 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0401 22:17:14.634716 6134 solver.cpp:245] Train net output #16: total_confidence = 0.196065
I0401 22:17:14.634728 6134 sgd_solver.cpp:106] Iteration 130500, lr = 0.01
I0401 22:19:23.616466 6134 solver.cpp:229] Iteration 131000, loss = 2.87173
I0401 22:19:23.616581 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.466667
I0401 22:19:23.616601 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.846591
I0401 22:19:23.616614 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.644444
I0401 22:19:23.616638 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.17605 (* 0.3 = 0.652817 loss)
I0401 22:19:23.616653 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.626032 (* 0.3 = 0.187809 loss)
I0401 22:19:23.616667 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.488889
I0401 22:19:23.616678 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.863636
I0401 22:19:23.616699 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.8
I0401 22:19:23.616714 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.47588 (* 0.3 = 0.442764 loss)
I0401 22:19:23.616729 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.417709 (* 0.3 = 0.125313 loss)
I0401 22:19:23.616740 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.733333
I0401 22:19:23.616752 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.931818
I0401 22:19:23.616765 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.866667
I0401 22:19:23.616778 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.04792 (* 1 = 1.04792 loss)
I0401 22:19:23.616792 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.286518 (* 1 = 0.286518 loss)
I0401 22:19:23.616806 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0401 22:19:23.616817 6134 solver.cpp:245] Train net output #16: total_confidence = 0.350021
I0401 22:19:23.616829 6134 sgd_solver.cpp:106] Iteration 131000, lr = 0.01
I0401 22:21:32.737262 6134 solver.cpp:229] Iteration 131500, loss = 2.90371
I0401 22:21:32.737387 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.209302
I0401 22:21:32.737406 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.795455
I0401 22:21:32.737421 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.465116
I0401 22:21:32.737445 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.68061 (* 0.3 = 0.804184 loss)
I0401 22:21:32.737462 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.739145 (* 0.3 = 0.221744 loss)
I0401 22:21:32.737474 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.348837
I0401 22:21:32.737486 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.823864
I0401 22:21:32.737498 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.674419
I0401 22:21:32.737516 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.01556 (* 0.3 = 0.604669 loss)
I0401 22:21:32.737530 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.56865 (* 0.3 = 0.170595 loss)
I0401 22:21:32.737542 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.581395
I0401 22:21:32.737555 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.892045
I0401 22:21:32.737576 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.790698
I0401 22:21:32.737589 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.39499 (* 1 = 1.39499 loss)
I0401 22:21:32.737604 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.390546 (* 1 = 0.390546 loss)
I0401 22:21:32.737617 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0401 22:21:32.737628 6134 solver.cpp:245] Train net output #16: total_confidence = 0.276227
I0401 22:21:32.737640 6134 sgd_solver.cpp:106] Iteration 131500, lr = 0.01
I0401 22:23:41.965656 6134 solver.cpp:229] Iteration 132000, loss = 2.87519
I0401 22:23:41.965760 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.291667
I0401 22:23:41.965780 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.784091
I0401 22:23:41.965791 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.645833
I0401 22:23:41.965807 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.18576 (* 0.3 = 0.655727 loss)
I0401 22:23:41.965823 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.65905 (* 0.3 = 0.197715 loss)
I0401 22:23:41.965836 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.291667
I0401 22:23:41.965848 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.784091
I0401 22:23:41.965860 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.583333
I0401 22:23:41.965874 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.24383 (* 0.3 = 0.673149 loss)
I0401 22:23:41.965888 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.710943 (* 0.3 = 0.213283 loss)
I0401 22:23:41.965900 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.625
I0401 22:23:41.965914 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.897727
I0401 22:23:41.965924 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.75
I0401 22:23:41.965939 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.29871 (* 1 = 1.29871 loss)
I0401 22:23:41.965953 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.365336 (* 1 = 0.365336 loss)
I0401 22:23:41.965965 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0401 22:23:41.965977 6134 solver.cpp:245] Train net output #16: total_confidence = 0.240226
I0401 22:23:41.965989 6134 sgd_solver.cpp:106] Iteration 132000, lr = 0.01
I0401 22:25:51.152062 6134 solver.cpp:229] Iteration 132500, loss = 2.86724
I0401 22:25:51.152211 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.466667
I0401 22:25:51.152231 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.852273
I0401 22:25:51.152252 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.8
I0401 22:25:51.152268 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.77735 (* 0.3 = 0.533206 loss)
I0401 22:25:51.152283 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.514314 (* 0.3 = 0.154294 loss)
I0401 22:25:51.152297 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.622222
I0401 22:25:51.152308 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.892045
I0401 22:25:51.152328 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.933333
I0401 22:25:51.152343 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.15035 (* 0.3 = 0.345105 loss)
I0401 22:25:51.152357 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.349946 (* 0.3 = 0.104984 loss)
I0401 22:25:51.152369 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.844444
I0401 22:25:51.152390 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.948864
I0401 22:25:51.152401 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.977778
I0401 22:25:51.152415 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.455901 (* 1 = 0.455901 loss)
I0401 22:25:51.152429 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.136885 (* 1 = 0.136885 loss)
I0401 22:25:51.152441 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0401 22:25:51.152453 6134 solver.cpp:245] Train net output #16: total_confidence = 0.201208
I0401 22:25:51.152465 6134 sgd_solver.cpp:106] Iteration 132500, lr = 0.01
I0401 22:28:00.395478 6134 solver.cpp:229] Iteration 133000, loss = 2.94169
I0401 22:28:00.395778 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.291667
I0401 22:28:00.395798 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.806818
I0401 22:28:00.395812 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.541667
I0401 22:28:00.395828 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.92246 (* 0.3 = 0.876737 loss)
I0401 22:28:00.395843 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.821809 (* 0.3 = 0.246543 loss)
I0401 22:28:00.395856 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.416667
I0401 22:28:00.395869 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.840909
I0401 22:28:00.395880 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.583333
I0401 22:28:00.395895 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.59991 (* 0.3 = 0.779974 loss)
I0401 22:28:00.395910 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.730231 (* 0.3 = 0.219069 loss)
I0401 22:28:00.395922 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.6875
I0401 22:28:00.395934 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.909091
I0401 22:28:00.395946 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.791667
I0401 22:28:00.395961 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.00298 (* 1 = 2.00298 loss)
I0401 22:28:00.395974 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.568301 (* 1 = 0.568301 loss)
I0401 22:28:00.395987 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0401 22:28:00.395999 6134 solver.cpp:245] Train net output #16: total_confidence = 0.359794
I0401 22:28:00.396011 6134 sgd_solver.cpp:106] Iteration 133000, lr = 0.01
I0401 22:30:09.525424 6134 solver.cpp:229] Iteration 133500, loss = 2.92398
I0401 22:30:09.525574 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.266667
I0401 22:30:09.525604 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.789773
I0401 22:30:09.525616 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.666667
I0401 22:30:09.525631 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.01809 (* 0.3 = 0.605426 loss)
I0401 22:30:09.525647 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.613436 (* 0.3 = 0.184031 loss)
I0401 22:30:09.525660 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.577778
I0401 22:30:09.525681 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.863636
I0401 22:30:09.525692 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.777778
I0401 22:30:09.525707 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.48218 (* 0.3 = 0.444653 loss)
I0401 22:30:09.525720 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.458624 (* 0.3 = 0.137587 loss)
I0401 22:30:09.525741 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.755556
I0401 22:30:09.525753 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.931818
I0401 22:30:09.525765 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.866667
I0401 22:30:09.525779 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.889386 (* 1 = 0.889386 loss)
I0401 22:30:09.525794 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.27019 (* 1 = 0.27019 loss)
I0401 22:30:09.525806 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0401 22:30:09.525818 6134 solver.cpp:245] Train net output #16: total_confidence = 0.231932
I0401 22:30:09.525830 6134 sgd_solver.cpp:106] Iteration 133500, lr = 0.01
I0401 22:32:18.585121 6134 solver.cpp:229] Iteration 134000, loss = 2.87388
I0401 22:32:18.585233 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.227273
I0401 22:32:18.585253 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.784091
I0401 22:32:18.585265 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.659091
I0401 22:32:18.585283 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.20166 (* 0.3 = 0.660499 loss)
I0401 22:32:18.585296 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.634832 (* 0.3 = 0.19045 loss)
I0401 22:32:18.585309 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.363636
I0401 22:32:18.585322 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.8125
I0401 22:32:18.585335 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.772727
I0401 22:32:18.585348 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.67539 (* 0.3 = 0.502618 loss)
I0401 22:32:18.585363 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.527066 (* 0.3 = 0.15812 loss)
I0401 22:32:18.585376 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.659091
I0401 22:32:18.585388 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.880682
I0401 22:32:18.585400 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.909091
I0401 22:32:18.585422 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.00757 (* 1 = 1.00757 loss)
I0401 22:32:18.585435 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.375373 (* 1 = 0.375373 loss)
I0401 22:32:18.585448 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0401 22:32:18.585460 6134 solver.cpp:245] Train net output #16: total_confidence = 0.22199
I0401 22:32:18.585480 6134 sgd_solver.cpp:106] Iteration 134000, lr = 0.01
I0401 22:34:27.687016 6134 solver.cpp:229] Iteration 134500, loss = 2.84337
I0401 22:34:27.687139 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.326531
I0401 22:34:27.687168 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.806818
I0401 22:34:27.687192 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.612245
I0401 22:34:27.687209 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.20849 (* 0.3 = 0.662546 loss)
I0401 22:34:27.687224 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.655565 (* 0.3 = 0.19667 loss)
I0401 22:34:27.687237 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.469388
I0401 22:34:27.687250 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.840909
I0401 22:34:27.687263 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.673469
I0401 22:34:27.687276 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.86069 (* 0.3 = 0.558207 loss)
I0401 22:34:27.687291 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.557464 (* 0.3 = 0.167239 loss)
I0401 22:34:27.687304 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.714286
I0401 22:34:27.687315 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.909091
I0401 22:34:27.687327 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.857143
I0401 22:34:27.687342 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.03522 (* 1 = 1.03522 loss)
I0401 22:34:27.687356 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.304922 (* 1 = 0.304922 loss)
I0401 22:34:27.687369 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0401 22:34:27.687381 6134 solver.cpp:245] Train net output #16: total_confidence = 0.221719
I0401 22:34:27.687393 6134 sgd_solver.cpp:106] Iteration 134500, lr = 0.01
I0401 22:36:36.643805 6134 solver.cpp:338] Iteration 135000, Testing net (#0)
I0401 22:37:06.470626 6134 solver.cpp:393] Test loss: 2.38915
I0401 22:37:06.470672 6134 solver.cpp:406] Test net output #0: loss1/accuracy = 0.450222
I0401 22:37:06.470690 6134 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.860003
I0401 22:37:06.470701 6134 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.751273
I0401 22:37:06.470717 6134 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 1.80765 (* 0.3 = 0.542295 loss)
I0401 22:37:06.470731 6134 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.47066 (* 0.3 = 0.141198 loss)
I0401 22:37:06.470743 6134 solver.cpp:406] Test net output #5: loss2/accuracy = 0.640893
I0401 22:37:06.470757 6134 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.901639
I0401 22:37:06.470768 6134 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.86025
I0401 22:37:06.470782 6134 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.29257 (* 0.3 = 0.387771 loss)
I0401 22:37:06.470795 6134 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.357236 (* 0.3 = 0.107171 loss)
I0401 22:37:06.470808 6134 solver.cpp:406] Test net output #10: loss3/accuracy = 0.7605
I0401 22:37:06.470818 6134 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.939137
I0401 22:37:06.470830 6134 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.88615
I0401 22:37:06.470844 6134 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 0.958686 (* 1 = 0.958686 loss)
I0401 22:37:06.470857 6134 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.252026 (* 1 = 0.252026 loss)
I0401 22:37:06.470868 6134 solver.cpp:406] Test net output #15: total_accuracy = 0.424
I0401 22:37:06.470880 6134 solver.cpp:406] Test net output #16: total_confidence = 0.408773
I0401 22:37:06.622740 6134 solver.cpp:229] Iteration 135000, loss = 2.82365
I0401 22:37:06.622788 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.44186
I0401 22:37:06.622805 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.835227
I0401 22:37:06.622819 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.511628
I0401 22:37:06.622835 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.21766 (* 0.3 = 0.665297 loss)
I0401 22:37:06.622850 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.623903 (* 0.3 = 0.187171 loss)
I0401 22:37:06.622862 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.511628
I0401 22:37:06.622875 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.857955
I0401 22:37:06.622886 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.744186
I0401 22:37:06.622900 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.73372 (* 0.3 = 0.520115 loss)
I0401 22:37:06.622915 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.510135 (* 0.3 = 0.15304 loss)
I0401 22:37:06.622927 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.697674
I0401 22:37:06.622939 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.920455
I0401 22:37:06.622951 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.790698
I0401 22:37:06.622964 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.37813 (* 1 = 1.37813 loss)
I0401 22:37:06.622978 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.357917 (* 1 = 0.357917 loss)
I0401 22:37:06.622990 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0401 22:37:06.623003 6134 solver.cpp:245] Train net output #16: total_confidence = 0.32322
I0401 22:37:06.623014 6134 sgd_solver.cpp:106] Iteration 135000, lr = 0.01
I0401 22:39:15.658776 6134 solver.cpp:229] Iteration 135500, loss = 2.83606
I0401 22:39:15.658912 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.452381
I0401 22:39:15.658932 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.846591
I0401 22:39:15.658946 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.619048
I0401 22:39:15.658969 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.04119 (* 0.3 = 0.612358 loss)
I0401 22:39:15.658984 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.572231 (* 0.3 = 0.171669 loss)
I0401 22:39:15.658998 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.5
I0401 22:39:15.659010 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.857955
I0401 22:39:15.659023 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.833333
I0401 22:39:15.659036 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.4548 (* 0.3 = 0.436439 loss)
I0401 22:39:15.659057 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.422773 (* 0.3 = 0.126832 loss)
I0401 22:39:15.659070 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.880952
I0401 22:39:15.659081 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.960227
I0401 22:39:15.659093 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.952381
I0401 22:39:15.659116 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.441938 (* 1 = 0.441938 loss)
I0401 22:39:15.659129 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.146318 (* 1 = 0.146318 loss)
I0401 22:39:15.659142 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0401 22:39:15.659154 6134 solver.cpp:245] Train net output #16: total_confidence = 0.304105
I0401 22:39:15.659167 6134 sgd_solver.cpp:106] Iteration 135500, lr = 0.01
I0401 22:41:24.846462 6134 solver.cpp:229] Iteration 136000, loss = 2.84893
I0401 22:41:24.846628 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.473684
I0401 22:41:24.846668 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.863636
I0401 22:41:24.846695 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.631579
I0401 22:41:24.846719 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.17303 (* 0.3 = 0.651908 loss)
I0401 22:41:24.846745 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.550999 (* 0.3 = 0.1653 loss)
I0401 22:41:24.846757 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.552632
I0401 22:41:24.846771 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.880682
I0401 22:41:24.846782 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.789474
I0401 22:41:24.846804 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.73075 (* 0.3 = 0.519226 loss)
I0401 22:41:24.846818 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.430891 (* 0.3 = 0.129267 loss)
I0401 22:41:24.846832 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.605263
I0401 22:41:24.846843 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.903409
I0401 22:41:24.846856 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.894737
I0401 22:41:24.846870 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.20571 (* 1 = 1.20571 loss)
I0401 22:41:24.846884 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.302141 (* 1 = 0.302141 loss)
I0401 22:41:24.846896 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0401 22:41:24.846909 6134 solver.cpp:245] Train net output #16: total_confidence = 0.188635
I0401 22:41:24.846921 6134 sgd_solver.cpp:106] Iteration 136000, lr = 0.01
I0401 22:43:34.329324 6134 solver.cpp:229] Iteration 136500, loss = 2.92602
I0401 22:43:34.329457 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.390244
I0401 22:43:34.329478 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.840909
I0401 22:43:34.329493 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.829268
I0401 22:43:34.329509 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.56058 (* 0.3 = 0.468174 loss)
I0401 22:43:34.329526 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.445221 (* 0.3 = 0.133566 loss)
I0401 22:43:34.329540 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.707317
I0401 22:43:34.329552 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.903409
I0401 22:43:34.329565 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.878049
I0401 22:43:34.329578 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 0.906265 (* 0.3 = 0.271879 loss)
I0401 22:43:34.329593 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.285285 (* 0.3 = 0.0855855 loss)
I0401 22:43:34.329607 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.878049
I0401 22:43:34.329619 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.965909
I0401 22:43:34.329632 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.951219
I0401 22:43:34.329645 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.348445 (* 1 = 0.348445 loss)
I0401 22:43:34.329660 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.115312 (* 1 = 0.115312 loss)
I0401 22:43:34.329674 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0401 22:43:34.329685 6134 solver.cpp:245] Train net output #16: total_confidence = 0.442387
I0401 22:43:34.329699 6134 sgd_solver.cpp:106] Iteration 136500, lr = 0.01
I0401 22:45:43.442328 6134 solver.cpp:229] Iteration 137000, loss = 2.88441
I0401 22:45:43.442456 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.488372
I0401 22:45:43.442476 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.852273
I0401 22:45:43.442489 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.72093
I0401 22:45:43.442513 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.7862 (* 0.3 = 0.535861 loss)
I0401 22:45:43.442528 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.506368 (* 0.3 = 0.15191 loss)
I0401 22:45:43.442540 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.55814
I0401 22:45:43.442553 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.869318
I0401 22:45:43.442566 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.906977
I0401 22:45:43.442580 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.37141 (* 0.3 = 0.411422 loss)
I0401 22:45:43.442595 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.399851 (* 0.3 = 0.119955 loss)
I0401 22:45:43.442607 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.906977
I0401 22:45:43.442627 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.971591
I0401 22:45:43.442639 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 1
I0401 22:45:43.442653 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.248194 (* 1 = 0.248194 loss)
I0401 22:45:43.442668 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.0745973 (* 1 = 0.0745973 loss)
I0401 22:45:43.442689 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0401 22:45:43.442701 6134 solver.cpp:245] Train net output #16: total_confidence = 0.373763
I0401 22:45:43.442713 6134 sgd_solver.cpp:106] Iteration 137000, lr = 0.01
I0401 22:47:53.423318 6134 solver.cpp:229] Iteration 137500, loss = 2.8324
I0401 22:47:53.423575 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.4
I0401 22:47:53.423595 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.818182
I0401 22:47:53.423609 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.56
I0401 22:47:53.423624 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.12947 (* 0.3 = 0.63884 loss)
I0401 22:47:53.423640 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.63775 (* 0.3 = 0.191325 loss)
I0401 22:47:53.423652 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.52
I0401 22:47:53.423666 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.852273
I0401 22:47:53.423678 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.7
I0401 22:47:53.423692 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.69303 (* 0.3 = 0.50791 loss)
I0401 22:47:53.423707 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.518181 (* 0.3 = 0.155454 loss)
I0401 22:47:53.423718 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.78
I0401 22:47:53.423730 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.914773
I0401 22:47:53.423743 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.92
I0401 22:47:53.423758 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.859546 (* 1 = 0.859546 loss)
I0401 22:47:53.423771 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.290759 (* 1 = 0.290759 loss)
I0401 22:47:53.423784 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0401 22:47:53.423796 6134 solver.cpp:245] Train net output #16: total_confidence = 0.219871
I0401 22:47:53.423809 6134 sgd_solver.cpp:106] Iteration 137500, lr = 0.01
I0401 22:50:02.621531 6134 solver.cpp:229] Iteration 138000, loss = 2.89598
I0401 22:50:02.621692 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.5
I0401 22:50:02.621722 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.840909
I0401 22:50:02.621757 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.681818
I0401 22:50:02.621783 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.96605 (* 0.3 = 0.589816 loss)
I0401 22:50:02.621800 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.612812 (* 0.3 = 0.183844 loss)
I0401 22:50:02.621819 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.545455
I0401 22:50:02.621834 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.863636
I0401 22:50:02.621845 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.75
I0401 22:50:02.621860 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.6399 (* 0.3 = 0.49197 loss)
I0401 22:50:02.621883 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.499884 (* 0.3 = 0.149965 loss)
I0401 22:50:02.621896 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.704545
I0401 22:50:02.621908 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.903409
I0401 22:50:02.621920 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.863636
I0401 22:50:02.621934 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.93831 (* 1 = 0.93831 loss)
I0401 22:50:02.621948 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.316685 (* 1 = 0.316685 loss)
I0401 22:50:02.621960 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0401 22:50:02.621973 6134 solver.cpp:245] Train net output #16: total_confidence = 0.319394
I0401 22:50:02.621985 6134 sgd_solver.cpp:106] Iteration 138000, lr = 0.01
I0401 22:52:11.876436 6134 solver.cpp:229] Iteration 138500, loss = 2.87677
I0401 22:52:11.876556 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.414634
I0401 22:52:11.876577 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.846591
I0401 22:52:11.876590 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.634146
I0401 22:52:11.876606 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.3023 (* 0.3 = 0.690689 loss)
I0401 22:52:11.876622 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.61938 (* 0.3 = 0.185814 loss)
I0401 22:52:11.876636 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.585366
I0401 22:52:11.876647 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.875
I0401 22:52:11.876659 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.780488
I0401 22:52:11.876673 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.7443 (* 0.3 = 0.52329 loss)
I0401 22:52:11.876688 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.507001 (* 0.3 = 0.1521 loss)
I0401 22:52:11.876700 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.804878
I0401 22:52:11.876713 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.943182
I0401 22:52:11.876724 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.878049
I0401 22:52:11.876739 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.926091 (* 1 = 0.926091 loss)
I0401 22:52:11.876754 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.236218 (* 1 = 0.236218 loss)
I0401 22:52:11.876766 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0401 22:52:11.876778 6134 solver.cpp:245] Train net output #16: total_confidence = 0.306052
I0401 22:52:11.876791 6134 sgd_solver.cpp:106] Iteration 138500, lr = 0.01
I0401 22:54:21.075995 6134 solver.cpp:229] Iteration 139000, loss = 2.92673
I0401 22:54:21.076149 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.447368
I0401 22:54:21.076170 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.863636
I0401 22:54:21.076190 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.684211
I0401 22:54:21.076207 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.84192 (* 0.3 = 0.552577 loss)
I0401 22:54:21.076222 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.507005 (* 0.3 = 0.152101 loss)
I0401 22:54:21.076236 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.578947
I0401 22:54:21.076256 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.869318
I0401 22:54:21.076267 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.815789
I0401 22:54:21.076280 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.34027 (* 0.3 = 0.40208 loss)
I0401 22:54:21.076295 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.437226 (* 0.3 = 0.131168 loss)
I0401 22:54:21.076314 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.868421
I0401 22:54:21.076326 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.965909
I0401 22:54:21.076339 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.973684
I0401 22:54:21.076352 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.409513 (* 1 = 0.409513 loss)
I0401 22:54:21.076366 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.121597 (* 1 = 0.121597 loss)
I0401 22:54:21.076378 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0401 22:54:21.076390 6134 solver.cpp:245] Train net output #16: total_confidence = 0.289752
I0401 22:54:21.076402 6134 sgd_solver.cpp:106] Iteration 139000, lr = 0.01
I0401 22:56:30.044622 6134 solver.cpp:229] Iteration 139500, loss = 2.87404
I0401 22:56:30.044886 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.444444
I0401 22:56:30.044908 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.846591
I0401 22:56:30.044920 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.666667
I0401 22:56:30.044939 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.96516 (* 0.3 = 0.589548 loss)
I0401 22:56:30.044975 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.559665 (* 0.3 = 0.167899 loss)
I0401 22:56:30.044993 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.644444
I0401 22:56:30.045016 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.897727
I0401 22:56:30.045027 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.822222
I0401 22:56:30.045055 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.2354 (* 0.3 = 0.370621 loss)
I0401 22:56:30.045078 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.365959 (* 0.3 = 0.109788 loss)
I0401 22:56:30.045090 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.822222
I0401 22:56:30.045102 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.948864
I0401 22:56:30.045115 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 1
I0401 22:56:30.045130 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.432717 (* 1 = 0.432717 loss)
I0401 22:56:30.045143 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.130789 (* 1 = 0.130789 loss)
I0401 22:56:30.045156 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0401 22:56:30.045171 6134 solver.cpp:245] Train net output #16: total_confidence = 0.235513
I0401 22:56:30.045183 6134 sgd_solver.cpp:106] Iteration 139500, lr = 0.01
I0401 22:58:39.177711 6134 solver.cpp:338] Iteration 140000, Testing net (#0)
I0401 22:59:09.082482 6134 solver.cpp:393] Test loss: 2.50581
I0401 22:59:09.082530 6134 solver.cpp:406] Test net output #0: loss1/accuracy = 0.451338
I0401 22:59:09.082548 6134 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.842093
I0401 22:59:09.082561 6134 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.735262
I0401 22:59:09.082578 6134 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 1.82402 (* 0.3 = 0.547207 loss)
I0401 22:59:09.082593 6134 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.533338 (* 0.3 = 0.160001 loss)
I0401 22:59:09.082605 6134 solver.cpp:406] Test net output #5: loss2/accuracy = 0.641451
I0401 22:59:09.082618 6134 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.898229
I0401 22:59:09.082629 6134 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.843793
I0401 22:59:09.082643 6134 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.32488 (* 0.3 = 0.397464 loss)
I0401 22:59:09.082658 6134 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.378104 (* 0.3 = 0.113431 loss)
I0401 22:59:09.082669 6134 solver.cpp:406] Test net output #10: loss3/accuracy = 0.749237
I0401 22:59:09.082681 6134 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.929091
I0401 22:59:09.082693 6134 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.874111
I0401 22:59:09.082707 6134 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 1.00193 (* 1 = 1.00193 loss)
I0401 22:59:09.082721 6134 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.285772 (* 1 = 0.285772 loss)
I0401 22:59:09.082733 6134 solver.cpp:406] Test net output #15: total_accuracy = 0.333
I0401 22:59:09.082746 6134 solver.cpp:406] Test net output #16: total_confidence = 0.313801
I0401 22:59:09.234396 6134 solver.cpp:229] Iteration 140000, loss = 2.87741
I0401 22:59:09.234488 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.327273
I0401 22:59:09.234513 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.784091
I0401 22:59:09.234526 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.654545
I0401 22:59:09.234541 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.04697 (* 0.3 = 0.614091 loss)
I0401 22:59:09.234556 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.695616 (* 0.3 = 0.208685 loss)
I0401 22:59:09.234568 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.418182
I0401 22:59:09.234580 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.8125
I0401 22:59:09.234592 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.690909
I0401 22:59:09.234606 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.77131 (* 0.3 = 0.531393 loss)
I0401 22:59:09.234619 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.590841 (* 0.3 = 0.177252 loss)
I0401 22:59:09.234635 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.672727
I0401 22:59:09.234647 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.886364
I0401 22:59:09.234659 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.818182
I0401 22:59:09.234673 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.04543 (* 1 = 1.04543 loss)
I0401 22:59:09.234688 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.365933 (* 1 = 0.365933 loss)
I0401 22:59:09.234699 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0401 22:59:09.234711 6134 solver.cpp:245] Train net output #16: total_confidence = 0.217653
I0401 22:59:09.234724 6134 sgd_solver.cpp:106] Iteration 140000, lr = 0.01
I0401 23:01:18.345346 6134 solver.cpp:229] Iteration 140500, loss = 2.89481
I0401 23:01:18.345489 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.395349
I0401 23:01:18.345510 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.829545
I0401 23:01:18.345527 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.674419
I0401 23:01:18.345544 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.10554 (* 0.3 = 0.631663 loss)
I0401 23:01:18.345559 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.6298 (* 0.3 = 0.18894 loss)
I0401 23:01:18.345572 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.534884
I0401 23:01:18.345585 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.846591
I0401 23:01:18.345597 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.790698
I0401 23:01:18.345612 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.77278 (* 0.3 = 0.531834 loss)
I0401 23:01:18.345625 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.551246 (* 0.3 = 0.165374 loss)
I0401 23:01:18.345638 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.72093
I0401 23:01:18.345650 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.926136
I0401 23:01:18.345661 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.883721
I0401 23:01:18.345676 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.03216 (* 1 = 1.03216 loss)
I0401 23:01:18.345690 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.263117 (* 1 = 0.263117 loss)
I0401 23:01:18.345703 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0401 23:01:18.345715 6134 solver.cpp:245] Train net output #16: total_confidence = 0.339467
I0401 23:01:18.345727 6134 sgd_solver.cpp:106] Iteration 140500, lr = 0.01
I0401 23:03:27.306005 6134 solver.cpp:229] Iteration 141000, loss = 2.84174
I0401 23:03:27.306110 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.361111
I0401 23:03:27.306129 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.801136
I0401 23:03:27.306143 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.611111
I0401 23:03:27.306159 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.05446 (* 0.3 = 0.616338 loss)
I0401 23:03:27.306174 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.690136 (* 0.3 = 0.207041 loss)
I0401 23:03:27.306186 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.527778
I0401 23:03:27.306198 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.857955
I0401 23:03:27.306210 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.75
I0401 23:03:27.306226 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.55242 (* 0.3 = 0.465727 loss)
I0401 23:03:27.306241 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.489686 (* 0.3 = 0.146906 loss)
I0401 23:03:27.306252 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.694444
I0401 23:03:27.306264 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.931818
I0401 23:03:27.306277 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.777778
I0401 23:03:27.306290 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.08374 (* 1 = 1.08374 loss)
I0401 23:03:27.306304 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.258721 (* 1 = 0.258721 loss)
I0401 23:03:27.306316 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0401 23:03:27.306329 6134 solver.cpp:245] Train net output #16: total_confidence = 0.303887
I0401 23:03:27.306340 6134 sgd_solver.cpp:106] Iteration 141000, lr = 0.01
I0401 23:05:36.417520 6134 solver.cpp:229] Iteration 141500, loss = 2.83691
I0401 23:05:36.417665 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.392157
I0401 23:05:36.417697 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.8125
I0401 23:05:36.417711 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.54902
I0401 23:05:36.417727 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.25528 (* 0.3 = 0.676584 loss)
I0401 23:05:36.417742 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.700296 (* 0.3 = 0.210089 loss)
I0401 23:05:36.417754 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.470588
I0401 23:05:36.417768 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.835227
I0401 23:05:36.417788 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.745098
I0401 23:05:36.417800 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.88755 (* 0.3 = 0.566264 loss)
I0401 23:05:36.417815 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.603512 (* 0.3 = 0.181054 loss)
I0401 23:05:36.417827 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.666667
I0401 23:05:36.417847 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.886364
I0401 23:05:36.417858 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.882353
I0401 23:05:36.417873 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.13192 (* 1 = 1.13192 loss)
I0401 23:05:36.417887 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.3668 (* 1 = 0.3668 loss)
I0401 23:05:36.417899 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0401 23:05:36.417912 6134 solver.cpp:245] Train net output #16: total_confidence = 0.155313
I0401 23:05:36.417923 6134 sgd_solver.cpp:106] Iteration 141500, lr = 0.01
I0401 23:07:45.431453 6134 solver.cpp:229] Iteration 142000, loss = 2.73288
I0401 23:07:45.431754 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.340426
I0401 23:07:45.431773 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.801136
I0401 23:07:45.431787 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.510638
I0401 23:07:45.431803 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.33376 (* 0.3 = 0.700128 loss)
I0401 23:07:45.431818 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.702919 (* 0.3 = 0.210876 loss)
I0401 23:07:45.431831 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.489362
I0401 23:07:45.431843 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.835227
I0401 23:07:45.431855 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.723404
I0401 23:07:45.431869 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.79781 (* 0.3 = 0.539343 loss)
I0401 23:07:45.431885 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.557073 (* 0.3 = 0.167122 loss)
I0401 23:07:45.431896 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.680851
I0401 23:07:45.431908 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.909091
I0401 23:07:45.431921 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.787234
I0401 23:07:45.431934 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.23065 (* 1 = 1.23065 loss)
I0401 23:07:45.431949 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.357192 (* 1 = 0.357192 loss)
I0401 23:07:45.431962 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0401 23:07:45.431973 6134 solver.cpp:245] Train net output #16: total_confidence = 0.253087
I0401 23:07:45.431987 6134 sgd_solver.cpp:106] Iteration 142000, lr = 0.01
I0401 23:09:54.411468 6134 solver.cpp:229] Iteration 142500, loss = 2.80046
I0401 23:09:54.411623 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.365385
I0401 23:09:54.411650 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.8125
I0401 23:09:54.411664 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.596154
I0401 23:09:54.411680 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.13391 (* 0.3 = 0.640172 loss)
I0401 23:09:54.411695 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.645705 (* 0.3 = 0.193711 loss)
I0401 23:09:54.411707 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.480769
I0401 23:09:54.411720 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.846591
I0401 23:09:54.411732 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.75
I0401 23:09:54.411749 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.76004 (* 0.3 = 0.528011 loss)
I0401 23:09:54.411763 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.541301 (* 0.3 = 0.16239 loss)
I0401 23:09:54.411775 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.673077
I0401 23:09:54.411787 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.897727
I0401 23:09:54.411808 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.826923
I0401 23:09:54.411823 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.10442 (* 1 = 1.10442 loss)
I0401 23:09:54.411837 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.35224 (* 1 = 0.35224 loss)
I0401 23:09:54.411849 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0401 23:09:54.411861 6134 solver.cpp:245] Train net output #16: total_confidence = 0.267956
I0401 23:09:54.411873 6134 sgd_solver.cpp:106] Iteration 142500, lr = 0.01
I0401 23:12:03.336230 6134 solver.cpp:229] Iteration 143000, loss = 2.85736
I0401 23:12:03.336386 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.348837
I0401 23:12:03.336408 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.8125
I0401 23:12:03.336421 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.55814
I0401 23:12:03.336438 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.25544 (* 0.3 = 0.676632 loss)
I0401 23:12:03.336453 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.651362 (* 0.3 = 0.195408 loss)
I0401 23:12:03.336467 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.488372
I0401 23:12:03.336479 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.835227
I0401 23:12:03.336491 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.813953
I0401 23:12:03.336506 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.59884 (* 0.3 = 0.479653 loss)
I0401 23:12:03.336524 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.525687 (* 0.3 = 0.157706 loss)
I0401 23:12:03.336536 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.697674
I0401 23:12:03.336549 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.914773
I0401 23:12:03.336561 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.860465
I0401 23:12:03.336575 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.947207 (* 1 = 0.947207 loss)
I0401 23:12:03.336590 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.262341 (* 1 = 0.262341 loss)
I0401 23:12:03.336602 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0401 23:12:03.336614 6134 solver.cpp:245] Train net output #16: total_confidence = 0.424609
I0401 23:12:03.336627 6134 sgd_solver.cpp:106] Iteration 143000, lr = 0.01
I0401 23:14:12.106567 6134 solver.cpp:229] Iteration 143500, loss = 2.7921
I0401 23:14:12.106703 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.479167
I0401 23:14:12.106722 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.835227
I0401 23:14:12.106735 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.666667
I0401 23:14:12.106751 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.12242 (* 0.3 = 0.636727 loss)
I0401 23:14:12.106766 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.669855 (* 0.3 = 0.200956 loss)
I0401 23:14:12.106778 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.541667
I0401 23:14:12.106791 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.852273
I0401 23:14:12.106803 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.791667
I0401 23:14:12.106817 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.65537 (* 0.3 = 0.496611 loss)
I0401 23:14:12.106832 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.526266 (* 0.3 = 0.15788 loss)
I0401 23:14:12.106844 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.729167
I0401 23:14:12.106856 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.914773
I0401 23:14:12.106868 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.895833
I0401 23:14:12.106883 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.842935 (* 1 = 0.842935 loss)
I0401 23:14:12.106896 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.256486 (* 1 = 0.256486 loss)
I0401 23:14:12.106909 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0401 23:14:12.106920 6134 solver.cpp:245] Train net output #16: total_confidence = 0.255138
I0401 23:14:12.106932 6134 sgd_solver.cpp:106] Iteration 143500, lr = 0.01
I0401 23:16:20.773715 6134 solver.cpp:229] Iteration 144000, loss = 2.82095
I0401 23:16:20.773844 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.395833
I0401 23:16:20.773864 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.835227
I0401 23:16:20.773877 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.666667
I0401 23:16:20.773895 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.07584 (* 0.3 = 0.622753 loss)
I0401 23:16:20.773910 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.579638 (* 0.3 = 0.173891 loss)
I0401 23:16:20.773921 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.645833
I0401 23:16:20.773934 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.903409
I0401 23:16:20.773947 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.8125
I0401 23:16:20.773960 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.31893 (* 0.3 = 0.39568 loss)
I0401 23:16:20.773975 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.373008 (* 0.3 = 0.111902 loss)
I0401 23:16:20.773988 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.833333
I0401 23:16:20.773999 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.954545
I0401 23:16:20.774011 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.9375
I0401 23:16:20.774025 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.552025 (* 1 = 0.552025 loss)
I0401 23:16:20.774039 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.155365 (* 1 = 0.155365 loss)
I0401 23:16:20.774051 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0401 23:16:20.774065 6134 solver.cpp:245] Train net output #16: total_confidence = 0.326973
I0401 23:16:20.774077 6134 sgd_solver.cpp:106] Iteration 144000, lr = 0.01
I0401 23:18:29.466743 6134 solver.cpp:229] Iteration 144500, loss = 2.82515
I0401 23:18:29.467070 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.5
I0401 23:18:29.467092 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.863636
I0401 23:18:29.467105 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.659091
I0401 23:18:29.467123 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.72865 (* 0.3 = 0.518595 loss)
I0401 23:18:29.467138 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.513828 (* 0.3 = 0.154149 loss)
I0401 23:18:29.467150 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.545455
I0401 23:18:29.467164 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.863636
I0401 23:18:29.467176 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.840909
I0401 23:18:29.467190 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.32778 (* 0.3 = 0.398335 loss)
I0401 23:18:29.467205 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.39602 (* 0.3 = 0.118806 loss)
I0401 23:18:29.467217 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.772727
I0401 23:18:29.467229 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.9375
I0401 23:18:29.467242 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.909091
I0401 23:18:29.467255 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.01896 (* 1 = 1.01896 loss)
I0401 23:18:29.467269 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.280863 (* 1 = 0.280863 loss)
I0401 23:18:29.467283 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0401 23:18:29.467294 6134 solver.cpp:245] Train net output #16: total_confidence = 0.378135
I0401 23:18:29.467306 6134 sgd_solver.cpp:106] Iteration 144500, lr = 0.01
I0401 23:20:37.987339 6134 solver.cpp:338] Iteration 145000, Testing net (#0)
I0401 23:21:07.728816 6134 solver.cpp:393] Test loss: 2.40444
I0401 23:21:07.728863 6134 solver.cpp:406] Test net output #0: loss1/accuracy = 0.488808
I0401 23:21:07.728880 6134 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.862094
I0401 23:21:07.728893 6134 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.767153
I0401 23:21:07.728909 6134 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 1.7142 (* 0.3 = 0.514259 loss)
I0401 23:21:07.728924 6134 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.468268 (* 0.3 = 0.14048 loss)
I0401 23:21:07.728935 6134 solver.cpp:406] Test net output #5: loss2/accuracy = 0.615201
I0401 23:21:07.728947 6134 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.898594
I0401 23:21:07.728960 6134 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.855929
I0401 23:21:07.728973 6134 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.32451 (* 0.3 = 0.397353 loss)
I0401 23:21:07.728988 6134 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.35365 (* 0.3 = 0.106095 loss)
I0401 23:21:07.729001 6134 solver.cpp:406] Test net output #10: loss3/accuracy = 0.747602
I0401 23:21:07.729012 6134 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.934137
I0401 23:21:07.729024 6134 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.880776
I0401 23:21:07.729038 6134 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 0.983366 (* 1 = 0.983366 loss)
I0401 23:21:07.729066 6134 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.262883 (* 1 = 0.262883 loss)
I0401 23:21:07.729079 6134 solver.cpp:406] Test net output #15: total_accuracy = 0.367
I0401 23:21:07.729091 6134 solver.cpp:406] Test net output #16: total_confidence = 0.318207
I0401 23:21:07.879640 6134 solver.cpp:229] Iteration 145000, loss = 2.84218
I0401 23:21:07.879679 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.608696
I0401 23:21:07.879696 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.892045
I0401 23:21:07.879709 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.717391
I0401 23:21:07.879724 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.66583 (* 0.3 = 0.499748 loss)
I0401 23:21:07.879739 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.465786 (* 0.3 = 0.139736 loss)
I0401 23:21:07.879750 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.717391
I0401 23:21:07.879762 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.920455
I0401 23:21:07.879775 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.978261
I0401 23:21:07.879788 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 0.982039 (* 0.3 = 0.294612 loss)
I0401 23:21:07.879802 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.277326 (* 0.3 = 0.0831978 loss)
I0401 23:21:07.879814 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.978261
I0401 23:21:07.879827 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.988636
I0401 23:21:07.879838 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 1
I0401 23:21:07.879851 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.175716 (* 1 = 0.175716 loss)
I0401 23:21:07.879865 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.0702877 (* 1 = 0.0702877 loss)
I0401 23:21:07.879878 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.875
I0401 23:21:07.879889 6134 solver.cpp:245] Train net output #16: total_confidence = 0.539958
I0401 23:21:07.879901 6134 sgd_solver.cpp:106] Iteration 145000, lr = 0.01
I0401 23:23:16.490078 6134 solver.cpp:229] Iteration 145500, loss = 2.82648
I0401 23:23:16.490228 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.428571
I0401 23:23:16.490248 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.823864
I0401 23:23:16.490262 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.714286
I0401 23:23:16.490278 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.78183 (* 0.3 = 0.534548 loss)
I0401 23:23:16.490293 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.551941 (* 0.3 = 0.165582 loss)
I0401 23:23:16.490305 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.469388
I0401 23:23:16.490317 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.846591
I0401 23:23:16.490329 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.77551
I0401 23:23:16.490342 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.55057 (* 0.3 = 0.46517 loss)
I0401 23:23:16.490356 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.46275 (* 0.3 = 0.138825 loss)
I0401 23:23:16.490370 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.734694
I0401 23:23:16.490381 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.920455
I0401 23:23:16.490392 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.836735
I0401 23:23:16.490406 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.936346 (* 1 = 0.936346 loss)
I0401 23:23:16.490422 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.289769 (* 1 = 0.289769 loss)
I0401 23:23:16.490433 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0401 23:23:16.490445 6134 solver.cpp:245] Train net output #16: total_confidence = 0.303071
I0401 23:23:16.490458 6134 sgd_solver.cpp:106] Iteration 145500, lr = 0.01
I0401 23:25:25.218041 6134 solver.cpp:229] Iteration 146000, loss = 2.76748
I0401 23:25:25.218204 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.431373
I0401 23:25:25.218225 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.829545
I0401 23:25:25.218238 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.745098
I0401 23:25:25.218255 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.80209 (* 0.3 = 0.540627 loss)
I0401 23:25:25.218269 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.558115 (* 0.3 = 0.167434 loss)
I0401 23:25:25.218282 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.607843
I0401 23:25:25.218294 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.886364
I0401 23:25:25.218307 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.843137
I0401 23:25:25.218320 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.27051 (* 0.3 = 0.381153 loss)
I0401 23:25:25.218334 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.375284 (* 0.3 = 0.112585 loss)
I0401 23:25:25.218348 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.921569
I0401 23:25:25.218359 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.971591
I0401 23:25:25.218371 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.980392
I0401 23:25:25.218385 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.399456 (* 1 = 0.399456 loss)
I0401 23:25:25.218400 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.126378 (* 1 = 0.126378 loss)
I0401 23:25:25.218412 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.75
I0401 23:25:25.218425 6134 solver.cpp:245] Train net output #16: total_confidence = 0.31367
I0401 23:25:25.218436 6134 sgd_solver.cpp:106] Iteration 146000, lr = 0.01
I0401 23:27:33.874668 6134 solver.cpp:229] Iteration 146500, loss = 2.82705
I0401 23:27:33.874907 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.348837
I0401 23:27:33.874927 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.8125
I0401 23:27:33.874940 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.627907
I0401 23:27:33.874956 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.24418 (* 0.3 = 0.673255 loss)
I0401 23:27:33.874971 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.629645 (* 0.3 = 0.188893 loss)
I0401 23:27:33.874984 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.488372
I0401 23:27:33.874996 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.852273
I0401 23:27:33.875008 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.837209
I0401 23:27:33.875022 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.53762 (* 0.3 = 0.461286 loss)
I0401 23:27:33.875036 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.43596 (* 0.3 = 0.130788 loss)
I0401 23:27:33.875048 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.744186
I0401 23:27:33.875063 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.926136
I0401 23:27:33.875075 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.860465
I0401 23:27:33.875090 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.971167 (* 1 = 0.971167 loss)
I0401 23:27:33.875104 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.265258 (* 1 = 0.265258 loss)
I0401 23:27:33.875116 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0401 23:27:33.875128 6134 solver.cpp:245] Train net output #16: total_confidence = 0.150196
I0401 23:27:33.875140 6134 sgd_solver.cpp:106] Iteration 146500, lr = 0.01
I0401 23:29:42.525481 6134 solver.cpp:229] Iteration 147000, loss = 2.83904
I0401 23:29:42.525647 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.283019
I0401 23:29:42.525670 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.767045
I0401 23:29:42.525682 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.396226
I0401 23:29:42.525698 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.78791 (* 0.3 = 0.836374 loss)
I0401 23:29:42.525714 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.906203 (* 0.3 = 0.271861 loss)
I0401 23:29:42.525727 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.358491
I0401 23:29:42.525739 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.795455
I0401 23:29:42.525751 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.528302
I0401 23:29:42.525765 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.46108 (* 0.3 = 0.738325 loss)
I0401 23:29:42.525779 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.767455 (* 0.3 = 0.230237 loss)
I0401 23:29:42.525792 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.490566
I0401 23:29:42.525804 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.835227
I0401 23:29:42.525816 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.622642
I0401 23:29:42.525830 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.13676 (* 1 = 2.13676 loss)
I0401 23:29:42.525845 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.671843 (* 1 = 0.671843 loss)
I0401 23:29:42.525856 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0401 23:29:42.525869 6134 solver.cpp:245] Train net output #16: total_confidence = 0.0984711
I0401 23:29:42.525882 6134 sgd_solver.cpp:106] Iteration 147000, lr = 0.01
I0401 23:31:51.271040 6134 solver.cpp:229] Iteration 147500, loss = 2.81142
I0401 23:31:51.271149 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.354167
I0401 23:31:51.271170 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.818182
I0401 23:31:51.271183 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.708333
I0401 23:31:51.271198 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.78569 (* 0.3 = 0.535706 loss)
I0401 23:31:51.271214 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.520621 (* 0.3 = 0.156186 loss)
I0401 23:31:51.271226 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.583333
I0401 23:31:51.271239 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.886364
I0401 23:31:51.271250 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.875
I0401 23:31:51.271265 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.28278 (* 0.3 = 0.384835 loss)
I0401 23:31:51.271280 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.366015 (* 0.3 = 0.109804 loss)
I0401 23:31:51.271292 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.875
I0401 23:31:51.271304 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.965909
I0401 23:31:51.271317 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.9375
I0401 23:31:51.271329 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.504067 (* 1 = 0.504067 loss)
I0401 23:31:51.271344 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.143748 (* 1 = 0.143748 loss)
I0401 23:31:51.271356 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0401 23:31:51.271368 6134 solver.cpp:245] Train net output #16: total_confidence = 0.341807
I0401 23:31:51.271381 6134 sgd_solver.cpp:106] Iteration 147500, lr = 0.01
I0401 23:33:59.850605 6134 solver.cpp:229] Iteration 148000, loss = 2.77565
I0401 23:33:59.850745 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.254545
I0401 23:33:59.850777 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.755682
I0401 23:33:59.850800 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.490909
I0401 23:33:59.850818 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.34429 (* 0.3 = 1.00329 loss)
I0401 23:33:59.850833 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.10437 (* 0.3 = 0.331312 loss)
I0401 23:33:59.850847 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.309091
I0401 23:33:59.850858 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.772727
I0401 23:33:59.850870 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.545455
I0401 23:33:59.850884 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.96383 (* 0.3 = 0.889149 loss)
I0401 23:33:59.850898 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.968295 (* 0.3 = 0.290488 loss)
I0401 23:33:59.850910 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.6
I0401 23:33:59.850922 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.875
I0401 23:33:59.850934 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.690909
I0401 23:33:59.850949 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.12284 (* 1 = 2.12284 loss)
I0401 23:33:59.850962 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.677121 (* 1 = 0.677121 loss)
I0401 23:33:59.850975 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0401 23:33:59.850986 6134 solver.cpp:245] Train net output #16: total_confidence = 0.187856
I0401 23:33:59.850998 6134 sgd_solver.cpp:106] Iteration 148000, lr = 0.01
I0401 23:36:08.606850 6134 solver.cpp:229] Iteration 148500, loss = 2.83109
I0401 23:36:08.606963 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.391304
I0401 23:36:08.606984 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.829545
I0401 23:36:08.606997 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.673913
I0401 23:36:08.607013 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.79617 (* 0.3 = 0.538851 loss)
I0401 23:36:08.607028 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.5089 (* 0.3 = 0.15267 loss)
I0401 23:36:08.607040 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.543478
I0401 23:36:08.607053 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.875
I0401 23:36:08.607065 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.782609
I0401 23:36:08.607079 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.29862 (* 0.3 = 0.389585 loss)
I0401 23:36:08.607094 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.379075 (* 0.3 = 0.113722 loss)
I0401 23:36:08.607105 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.73913
I0401 23:36:08.607117 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.920455
I0401 23:36:08.607131 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.956522
I0401 23:36:08.607143 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.747645 (* 1 = 0.747645 loss)
I0401 23:36:08.607157 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.223841 (* 1 = 0.223841 loss)
I0401 23:36:08.607169 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0401 23:36:08.607182 6134 solver.cpp:245] Train net output #16: total_confidence = 0.283068
I0401 23:36:08.607193 6134 sgd_solver.cpp:106] Iteration 148500, lr = 0.01
I0401 23:38:17.278573 6134 solver.cpp:229] Iteration 149000, loss = 2.75564
I0401 23:38:17.278887 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.382979
I0401 23:38:17.278908 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.829545
I0401 23:38:17.278921 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.617021
I0401 23:38:17.278937 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.0687 (* 0.3 = 0.62061 loss)
I0401 23:38:17.278951 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.60989 (* 0.3 = 0.182967 loss)
I0401 23:38:17.278964 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.489362
I0401 23:38:17.278977 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.840909
I0401 23:38:17.278990 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.702128
I0401 23:38:17.279002 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.77928 (* 0.3 = 0.533783 loss)
I0401 23:38:17.279016 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.542357 (* 0.3 = 0.162707 loss)
I0401 23:38:17.279028 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.680851
I0401 23:38:17.279042 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.897727
I0401 23:38:17.279054 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.851064
I0401 23:38:17.279068 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.1221 (* 1 = 1.1221 loss)
I0401 23:38:17.279083 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.346508 (* 1 = 0.346508 loss)
I0401 23:38:17.279094 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0401 23:38:17.279106 6134 solver.cpp:245] Train net output #16: total_confidence = 0.148648
I0401 23:38:17.279119 6134 sgd_solver.cpp:106] Iteration 149000, lr = 0.01
I0401 23:40:25.931428 6134 solver.cpp:229] Iteration 149500, loss = 2.79422
I0401 23:40:25.931557 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.244444
I0401 23:40:25.931578 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.795455
I0401 23:40:25.931591 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.422222
I0401 23:40:25.931607 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.73261 (* 0.3 = 0.819784 loss)
I0401 23:40:25.931622 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.748035 (* 0.3 = 0.22441 loss)
I0401 23:40:25.931634 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.533333
I0401 23:40:25.931648 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.875
I0401 23:40:25.931659 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.733333
I0401 23:40:25.931673 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.8296 (* 0.3 = 0.548879 loss)
I0401 23:40:25.931687 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.487726 (* 0.3 = 0.146318 loss)
I0401 23:40:25.931699 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.733333
I0401 23:40:25.931711 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.926136
I0401 23:40:25.931722 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.911111
I0401 23:40:25.931737 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.872758 (* 1 = 0.872758 loss)
I0401 23:40:25.931751 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.259262 (* 1 = 0.259262 loss)
I0401 23:40:25.931762 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0401 23:40:25.931776 6134 solver.cpp:245] Train net output #16: total_confidence = 0.195861
I0401 23:40:25.931787 6134 sgd_solver.cpp:106] Iteration 149500, lr = 0.01
I0401 23:42:34.461205 6134 solver.cpp:456] Snapshotting to binary proto file /mnt/snapshots/mixed_lstm9_bn_iter_150000.caffemodel
I0401 23:42:34.935806 6134 sgd_solver.cpp:273] Snapshotting solver state to binary proto file /mnt/snapshots/mixed_lstm9_bn_iter_150000.solverstate
I0401 23:42:35.100368 6134 solver.cpp:338] Iteration 150000, Testing net (#0)
I0401 23:43:04.853565 6134 solver.cpp:393] Test loss: 2.39619
I0401 23:43:04.853688 6134 solver.cpp:406] Test net output #0: loss1/accuracy = 0.479191
I0401 23:43:04.853706 6134 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.858002
I0401 23:43:04.853719 6134 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.759394
I0401 23:43:04.853736 6134 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 1.73463 (* 0.3 = 0.520389 loss)
I0401 23:43:04.853751 6134 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.481018 (* 0.3 = 0.144305 loss)
I0401 23:43:04.853763 6134 solver.cpp:406] Test net output #5: loss2/accuracy = 0.665072
I0401 23:43:04.853776 6134 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.893275
I0401 23:43:04.853788 6134 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.864958
I0401 23:43:04.853801 6134 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.20784 (* 0.3 = 0.362353 loss)
I0401 23:43:04.853817 6134 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.376466 (* 0.3 = 0.11294 loss)
I0401 23:43:04.853829 6134 solver.cpp:406] Test net output #10: loss3/accuracy = 0.749671
I0401 23:43:04.853842 6134 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.932864
I0401 23:43:04.853853 6134 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.885665
I0401 23:43:04.853868 6134 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 0.987377 (* 1 = 0.987377 loss)
I0401 23:43:04.853880 6134 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.268828 (* 1 = 0.268828 loss)
I0401 23:43:04.853893 6134 solver.cpp:406] Test net output #15: total_accuracy = 0.388
I0401 23:43:04.853904 6134 solver.cpp:406] Test net output #16: total_confidence = 0.373392
I0401 23:43:05.004815 6134 solver.cpp:229] Iteration 150000, loss = 2.75586
I0401 23:43:05.004856 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.44186
I0401 23:43:05.004874 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.852273
I0401 23:43:05.004887 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.651163
I0401 23:43:05.004906 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.98139 (* 0.3 = 0.594418 loss)
I0401 23:43:05.004920 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.547771 (* 0.3 = 0.164331 loss)
I0401 23:43:05.004933 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.55814
I0401 23:43:05.004946 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.869318
I0401 23:43:05.004957 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.767442
I0401 23:43:05.004971 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.48745 (* 0.3 = 0.446236 loss)
I0401 23:43:05.004986 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.448884 (* 0.3 = 0.134665 loss)
I0401 23:43:05.004997 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.790698
I0401 23:43:05.005009 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.948864
I0401 23:43:05.005022 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.906977
I0401 23:43:05.005035 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.780462 (* 1 = 0.780462 loss)
I0401 23:43:05.005074 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.222747 (* 1 = 0.222747 loss)
I0401 23:43:05.005087 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0401 23:43:05.005107 6134 solver.cpp:245] Train net output #16: total_confidence = 0.335473
I0401 23:43:05.005120 6134 sgd_solver.cpp:106] Iteration 150000, lr = 0.01
I0401 23:45:14.031409 6134 solver.cpp:229] Iteration 150500, loss = 2.78698
I0401 23:45:14.031536 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.384615
I0401 23:45:14.031556 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.823864
I0401 23:45:14.031569 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.564103
I0401 23:45:14.031585 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.51211 (* 0.3 = 0.753634 loss)
I0401 23:45:14.031600 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.729157 (* 0.3 = 0.218747 loss)
I0401 23:45:14.031613 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.461538
I0401 23:45:14.031625 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.863636
I0401 23:45:14.031637 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.641026
I0401 23:45:14.031651 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.32058 (* 0.3 = 0.696175 loss)
I0401 23:45:14.031666 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.602945 (* 0.3 = 0.180884 loss)
I0401 23:45:14.031677 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.641026
I0401 23:45:14.031690 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.909091
I0401 23:45:14.031702 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.794872
I0401 23:45:14.031716 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.23255 (* 1 = 2.23255 loss)
I0401 23:45:14.031730 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.547196 (* 1 = 0.547196 loss)
I0401 23:45:14.031743 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0401 23:45:14.031754 6134 solver.cpp:245] Train net output #16: total_confidence = 0.330419
I0401 23:45:14.031766 6134 sgd_solver.cpp:106] Iteration 150500, lr = 0.01
I0401 23:47:22.927872 6134 solver.cpp:229] Iteration 151000, loss = 2.78594
I0401 23:47:22.928154 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.386364
I0401 23:47:22.928174 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.823864
I0401 23:47:22.928187 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.659091
I0401 23:47:22.928205 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.03704 (* 0.3 = 0.611113 loss)
I0401 23:47:22.928220 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.581592 (* 0.3 = 0.174478 loss)
I0401 23:47:22.928232 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.522727
I0401 23:47:22.928244 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.863636
I0401 23:47:22.928256 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.909091
I0401 23:47:22.928270 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.44009 (* 0.3 = 0.432028 loss)
I0401 23:47:22.928285 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.4246 (* 0.3 = 0.12738 loss)
I0401 23:47:22.928306 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.886364
I0401 23:47:22.928325 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.971591
I0401 23:47:22.928339 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.977273
I0401 23:47:22.928354 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.434807 (* 1 = 0.434807 loss)
I0401 23:47:22.928367 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.11643 (* 1 = 0.11643 loss)
I0401 23:47:22.928380 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0401 23:47:22.928401 6134 solver.cpp:245] Train net output #16: total_confidence = 0.340153
I0401 23:47:22.928423 6134 sgd_solver.cpp:106] Iteration 151000, lr = 0.01
I0401 23:49:32.013300 6134 solver.cpp:229] Iteration 151500, loss = 2.76927
I0401 23:49:32.013509 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.352941
I0401 23:49:32.013540 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.8125
I0401 23:49:32.013555 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.529412
I0401 23:49:32.013572 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.22883 (* 0.3 = 0.668648 loss)
I0401 23:49:32.013587 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.663045 (* 0.3 = 0.198913 loss)
I0401 23:49:32.013600 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.45098
I0401 23:49:32.013613 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.835227
I0401 23:49:32.013627 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.705882
I0401 23:49:32.013640 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.83122 (* 0.3 = 0.549367 loss)
I0401 23:49:32.013664 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.555914 (* 0.3 = 0.166774 loss)
I0401 23:49:32.013676 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.666667
I0401 23:49:32.013689 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.903409
I0401 23:49:32.013701 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.901961
I0401 23:49:32.013715 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.97007 (* 1 = 0.97007 loss)
I0401 23:49:32.013738 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.295167 (* 1 = 0.295167 loss)
I0401 23:49:32.013751 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0401 23:49:32.013763 6134 solver.cpp:245] Train net output #16: total_confidence = 0.231387
I0401 23:49:32.013777 6134 sgd_solver.cpp:106] Iteration 151500, lr = 0.01
I0401 23:51:41.074734 6134 solver.cpp:229] Iteration 152000, loss = 2.77101
I0401 23:51:41.074851 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.363636
I0401 23:51:41.074872 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.818182
I0401 23:51:41.074885 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.636364
I0401 23:51:41.074900 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.09602 (* 0.3 = 0.628805 loss)
I0401 23:51:41.074916 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.621232 (* 0.3 = 0.18637 loss)
I0401 23:51:41.074929 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.5
I0401 23:51:41.074941 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.846591
I0401 23:51:41.074954 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.840909
I0401 23:51:41.074967 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.68626 (* 0.3 = 0.505879 loss)
I0401 23:51:41.074981 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.497148 (* 0.3 = 0.149144 loss)
I0401 23:51:41.074993 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.75
I0401 23:51:41.075006 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.926136
I0401 23:51:41.075017 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.886364
I0401 23:51:41.075031 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.936185 (* 1 = 0.936185 loss)
I0401 23:51:41.075045 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.267438 (* 1 = 0.267438 loss)
I0401 23:51:41.075057 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0401 23:51:41.075069 6134 solver.cpp:245] Train net output #16: total_confidence = 0.306197
I0401 23:51:41.075081 6134 sgd_solver.cpp:106] Iteration 152000, lr = 0.01
I0401 23:53:50.121984 6134 solver.cpp:229] Iteration 152500, loss = 2.77517
I0401 23:53:50.122119 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.4
I0401 23:53:50.122140 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.8125
I0401 23:53:50.122160 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.636364
I0401 23:53:50.122176 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.10448 (* 0.3 = 0.631344 loss)
I0401 23:53:50.122190 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.686609 (* 0.3 = 0.205983 loss)
I0401 23:53:50.122203 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.490909
I0401 23:53:50.122222 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.840909
I0401 23:53:50.122234 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.745455
I0401 23:53:50.122248 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.89672 (* 0.3 = 0.569017 loss)
I0401 23:53:50.122262 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.617694 (* 0.3 = 0.185308 loss)
I0401 23:53:50.122275 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.727273
I0401 23:53:50.122297 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.903409
I0401 23:53:50.122308 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.836364
I0401 23:53:50.122323 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.05115 (* 1 = 1.05115 loss)
I0401 23:53:50.122336 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.364064 (* 1 = 0.364064 loss)
I0401 23:53:50.122349 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0401 23:53:50.122360 6134 solver.cpp:245] Train net output #16: total_confidence = 0.148337
I0401 23:53:50.122372 6134 sgd_solver.cpp:106] Iteration 152500, lr = 0.01
I0401 23:55:59.283843 6134 solver.cpp:229] Iteration 153000, loss = 2.745
I0401 23:55:59.283967 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.414634
I0401 23:55:59.283987 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.840909
I0401 23:55:59.283999 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.731707
I0401 23:55:59.284015 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.83757 (* 0.3 = 0.55127 loss)
I0401 23:55:59.284030 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.522915 (* 0.3 = 0.156875 loss)
I0401 23:55:59.284044 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.512195
I0401 23:55:59.284055 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.846591
I0401 23:55:59.284067 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.804878
I0401 23:55:59.284081 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.48716 (* 0.3 = 0.446147 loss)
I0401 23:55:59.284096 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.450138 (* 0.3 = 0.135041 loss)
I0401 23:55:59.284107 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.707317
I0401 23:55:59.284124 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.920455
I0401 23:55:59.284137 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.853659
I0401 23:55:59.284150 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.906008 (* 1 = 0.906008 loss)
I0401 23:55:59.284164 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.244095 (* 1 = 0.244095 loss)
I0401 23:55:59.284184 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0401 23:55:59.284196 6134 solver.cpp:245] Train net output #16: total_confidence = 0.336511
I0401 23:55:59.284209 6134 sgd_solver.cpp:106] Iteration 153000, lr = 0.01
I0401 23:58:08.460147 6134 solver.cpp:229] Iteration 153500, loss = 2.77097
I0401 23:58:08.460539 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.552632
I0401 23:58:08.460559 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.857955
I0401 23:58:08.460572 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.736842
I0401 23:58:08.460597 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.56747 (* 0.3 = 0.470242 loss)
I0401 23:58:08.460613 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.489539 (* 0.3 = 0.146862 loss)
I0401 23:58:08.460625 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.736842
I0401 23:58:08.460638 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.897727
I0401 23:58:08.460650 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.894737
I0401 23:58:08.460664 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 0.982054 (* 0.3 = 0.294616 loss)
I0401 23:58:08.460680 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.360584 (* 0.3 = 0.108175 loss)
I0401 23:58:08.460691 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.868421
I0401 23:58:08.460703 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.965909
I0401 23:58:08.460716 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.973684
I0401 23:58:08.460731 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.311908 (* 1 = 0.311908 loss)
I0401 23:58:08.460744 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.0894257 (* 1 = 0.0894257 loss)
I0401 23:58:08.460757 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0401 23:58:08.460769 6134 solver.cpp:245] Train net output #16: total_confidence = 0.420631
I0401 23:58:08.460782 6134 sgd_solver.cpp:106] Iteration 153500, lr = 0.01
I0402 00:00:17.645659 6134 solver.cpp:229] Iteration 154000, loss = 2.77823
I0402 00:00:17.645774 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.458333
I0402 00:00:17.645794 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.829545
I0402 00:00:17.645807 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.6875
I0402 00:00:17.645823 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.91001 (* 0.3 = 0.573002 loss)
I0402 00:00:17.645845 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.598358 (* 0.3 = 0.179507 loss)
I0402 00:00:17.645859 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.604167
I0402 00:00:17.645870 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.880682
I0402 00:00:17.645882 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.8125
I0402 00:00:17.645896 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.67889 (* 0.3 = 0.503667 loss)
I0402 00:00:17.645920 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.501856 (* 0.3 = 0.150557 loss)
I0402 00:00:17.645931 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.729167
I0402 00:00:17.645944 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.920455
I0402 00:00:17.645956 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.895833
I0402 00:00:17.645970 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.814565 (* 1 = 0.814565 loss)
I0402 00:00:17.645984 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.240524 (* 1 = 0.240524 loss)
I0402 00:00:17.645997 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0402 00:00:17.646008 6134 solver.cpp:245] Train net output #16: total_confidence = 0.349816
I0402 00:00:17.646020 6134 sgd_solver.cpp:106] Iteration 154000, lr = 0.01
I0402 00:02:26.804237 6134 solver.cpp:229] Iteration 154500, loss = 2.76312
I0402 00:02:26.804388 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.270833
I0402 00:02:26.804409 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.789773
I0402 00:02:26.804430 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.479167
I0402 00:02:26.804447 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.54877 (* 0.3 = 0.76463 loss)
I0402 00:02:26.804462 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.753418 (* 0.3 = 0.226025 loss)
I0402 00:02:26.804474 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.354167
I0402 00:02:26.804496 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.806818
I0402 00:02:26.804507 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.6875
I0402 00:02:26.804523 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.15345 (* 0.3 = 0.646036 loss)
I0402 00:02:26.804538 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.671646 (* 0.3 = 0.201494 loss)
I0402 00:02:26.804559 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.625
I0402 00:02:26.804571 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.892045
I0402 00:02:26.804584 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.770833
I0402 00:02:26.804597 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.34074 (* 1 = 1.34074 loss)
I0402 00:02:26.804611 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.408859 (* 1 = 0.408859 loss)
I0402 00:02:26.804625 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0402 00:02:26.804643 6134 solver.cpp:245] Train net output #16: total_confidence = 0.140748
I0402 00:02:26.804656 6134 sgd_solver.cpp:106] Iteration 154500, lr = 0.01
I0402 00:04:35.857313 6134 solver.cpp:338] Iteration 155000, Testing net (#0)
I0402 00:05:05.701642 6134 solver.cpp:393] Test loss: 2.32398
I0402 00:05:05.701699 6134 solver.cpp:406] Test net output #0: loss1/accuracy = 0.510318
I0402 00:05:05.701716 6134 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.869367
I0402 00:05:05.701730 6134 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.772614
I0402 00:05:05.701746 6134 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 1.67624 (* 0.3 = 0.502873 loss)
I0402 00:05:05.701761 6134 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.455017 (* 0.3 = 0.136505 loss)
I0402 00:05:05.701773 6134 solver.cpp:406] Test net output #5: loss2/accuracy = 0.645632
I0402 00:05:05.701786 6134 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.907776
I0402 00:05:05.701798 6134 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.861672
I0402 00:05:05.701812 6134 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.25445 (* 0.3 = 0.376334 loss)
I0402 00:05:05.701827 6134 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.333876 (* 0.3 = 0.100163 loss)
I0402 00:05:05.701838 6134 solver.cpp:406] Test net output #10: loss3/accuracy = 0.771499
I0402 00:05:05.701849 6134 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.938273
I0402 00:05:05.701861 6134 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.884596
I0402 00:05:05.701874 6134 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 0.948064 (* 1 = 0.948064 loss)
I0402 00:05:05.701889 6134 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.260042 (* 1 = 0.260042 loss)
I0402 00:05:05.701900 6134 solver.cpp:406] Test net output #15: total_accuracy = 0.411
I0402 00:05:05.701912 6134 solver.cpp:406] Test net output #16: total_confidence = 0.359422
I0402 00:05:05.853673 6134 solver.cpp:229] Iteration 155000, loss = 2.73481
I0402 00:05:05.853732 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.369565
I0402 00:05:05.853750 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.818182
I0402 00:05:05.853763 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.673913
I0402 00:05:05.853780 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.9332 (* 0.3 = 0.57996 loss)
I0402 00:05:05.853797 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.605147 (* 0.3 = 0.181544 loss)
I0402 00:05:05.853811 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.521739
I0402 00:05:05.853823 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.869318
I0402 00:05:05.853835 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.76087
I0402 00:05:05.853849 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.56761 (* 0.3 = 0.470283 loss)
I0402 00:05:05.853864 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.467943 (* 0.3 = 0.140383 loss)
I0402 00:05:05.853876 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.782609
I0402 00:05:05.853889 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.9375
I0402 00:05:05.853901 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.913043
I0402 00:05:05.853916 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.729948 (* 1 = 0.729948 loss)
I0402 00:05:05.853930 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.225597 (* 1 = 0.225597 loss)
I0402 00:05:05.853943 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0402 00:05:05.853955 6134 solver.cpp:245] Train net output #16: total_confidence = 0.339266
I0402 00:05:05.853967 6134 sgd_solver.cpp:106] Iteration 155000, lr = 0.01
I0402 00:07:14.725356 6134 solver.cpp:229] Iteration 155500, loss = 2.74292
I0402 00:07:14.725706 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.384615
I0402 00:07:14.725728 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.8125
I0402 00:07:14.725742 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.615385
I0402 00:07:14.725759 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.06832 (* 0.3 = 0.620497 loss)
I0402 00:07:14.725774 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.633492 (* 0.3 = 0.190048 loss)
I0402 00:07:14.725785 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.442308
I0402 00:07:14.725798 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.835227
I0402 00:07:14.725811 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.75
I0402 00:07:14.725826 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.7557 (* 0.3 = 0.526711 loss)
I0402 00:07:14.725839 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.532358 (* 0.3 = 0.159707 loss)
I0402 00:07:14.725852 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.903846
I0402 00:07:14.725864 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.971591
I0402 00:07:14.725877 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.980769
I0402 00:07:14.725891 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.336591 (* 1 = 0.336591 loss)
I0402 00:07:14.725905 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.103802 (* 1 = 0.103802 loss)
I0402 00:07:14.725917 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.75
I0402 00:07:14.725930 6134 solver.cpp:245] Train net output #16: total_confidence = 0.387976
I0402 00:07:14.725942 6134 sgd_solver.cpp:106] Iteration 155500, lr = 0.01
I0402 00:09:23.745364 6134 solver.cpp:229] Iteration 156000, loss = 2.73921
I0402 00:09:23.745522 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.380952
I0402 00:09:23.745553 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.823864
I0402 00:09:23.745565 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.738095
I0402 00:09:23.745581 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.01489 (* 0.3 = 0.604468 loss)
I0402 00:09:23.745597 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.599943 (* 0.3 = 0.179983 loss)
I0402 00:09:23.745618 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.5
I0402 00:09:23.745631 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.857955
I0402 00:09:23.745643 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.833333
I0402 00:09:23.745657 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.53334 (* 0.3 = 0.460001 loss)
I0402 00:09:23.745678 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.43454 (* 0.3 = 0.130362 loss)
I0402 00:09:23.745692 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.738095
I0402 00:09:23.745703 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.9375
I0402 00:09:23.745715 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.904762
I0402 00:09:23.745730 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.0454 (* 1 = 1.0454 loss)
I0402 00:09:23.745753 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.269795 (* 1 = 0.269795 loss)
I0402 00:09:23.745764 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0402 00:09:23.745777 6134 solver.cpp:245] Train net output #16: total_confidence = 0.331052
I0402 00:09:23.745790 6134 sgd_solver.cpp:106] Iteration 156000, lr = 0.01
I0402 00:11:32.626065 6134 solver.cpp:229] Iteration 156500, loss = 2.73836
I0402 00:11:32.626189 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.390244
I0402 00:11:32.626209 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.835227
I0402 00:11:32.626222 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.634146
I0402 00:11:32.626237 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.01779 (* 0.3 = 0.605336 loss)
I0402 00:11:32.626261 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.58198 (* 0.3 = 0.174594 loss)
I0402 00:11:32.626276 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.536585
I0402 00:11:32.626287 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.863636
I0402 00:11:32.626299 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.731707
I0402 00:11:32.626313 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.49826 (* 0.3 = 0.449478 loss)
I0402 00:11:32.626327 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.464068 (* 0.3 = 0.13922 loss)
I0402 00:11:32.626340 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.780488
I0402 00:11:32.626353 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.931818
I0402 00:11:32.626363 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.829268
I0402 00:11:32.626377 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.00415 (* 1 = 1.00415 loss)
I0402 00:11:32.626391 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.298754 (* 1 = 0.298754 loss)
I0402 00:11:32.626405 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0402 00:11:32.626416 6134 solver.cpp:245] Train net output #16: total_confidence = 0.256071
I0402 00:11:32.626428 6134 sgd_solver.cpp:106] Iteration 156500, lr = 0.01
I0402 00:13:41.596166 6134 solver.cpp:229] Iteration 157000, loss = 2.79315
I0402 00:13:41.596303 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.404255
I0402 00:13:41.596343 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.840909
I0402 00:13:41.596370 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.680851
I0402 00:13:41.596395 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.09645 (* 0.3 = 0.628935 loss)
I0402 00:13:41.596418 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.58342 (* 0.3 = 0.175026 loss)
I0402 00:13:41.596431 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.489362
I0402 00:13:41.596443 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.863636
I0402 00:13:41.596456 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.680851
I0402 00:13:41.596477 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.03459 (* 0.3 = 0.610377 loss)
I0402 00:13:41.596492 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.555328 (* 0.3 = 0.166598 loss)
I0402 00:13:41.596504 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.787234
I0402 00:13:41.596518 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.943182
I0402 00:13:41.596531 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.851064
I0402 00:13:41.596562 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.6698 (* 1 = 1.6698 loss)
I0402 00:13:41.596585 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.456847 (* 1 = 0.456847 loss)
I0402 00:13:41.596596 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0402 00:13:41.596613 6134 solver.cpp:245] Train net output #16: total_confidence = 0.441317
I0402 00:13:41.596626 6134 sgd_solver.cpp:106] Iteration 157000, lr = 0.01
I0402 00:15:50.676112 6134 solver.cpp:229] Iteration 157500, loss = 2.65067
I0402 00:15:50.676228 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.333333
I0402 00:15:50.676246 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.818182
I0402 00:15:50.676259 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.5
I0402 00:15:50.676276 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.56799 (* 0.3 = 0.770398 loss)
I0402 00:15:50.676291 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.720467 (* 0.3 = 0.21614 loss)
I0402 00:15:50.676304 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.375
I0402 00:15:50.676316 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.823864
I0402 00:15:50.676332 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.645833
I0402 00:15:50.676347 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.17371 (* 0.3 = 0.652113 loss)
I0402 00:15:50.676362 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.618872 (* 0.3 = 0.185662 loss)
I0402 00:15:50.676374 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.625
I0402 00:15:50.676386 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.897727
I0402 00:15:50.676398 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.729167
I0402 00:15:50.676414 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.46403 (* 1 = 1.46403 loss)
I0402 00:15:50.676427 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.408433 (* 1 = 0.408433 loss)
I0402 00:15:50.676440 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0402 00:15:50.676452 6134 solver.cpp:245] Train net output #16: total_confidence = 0.218195
I0402 00:15:50.676470 6134 sgd_solver.cpp:106] Iteration 157500, lr = 0.01
I0402 00:17:59.723016 6134 solver.cpp:229] Iteration 158000, loss = 2.75658
I0402 00:17:59.723361 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.4
I0402 00:17:59.723383 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.835227
I0402 00:17:59.723397 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.644444
I0402 00:17:59.723412 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.93929 (* 0.3 = 0.581787 loss)
I0402 00:17:59.723428 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.564881 (* 0.3 = 0.169464 loss)
I0402 00:17:59.723440 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.533333
I0402 00:17:59.723453 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.863636
I0402 00:17:59.723464 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.822222
I0402 00:17:59.723479 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.42667 (* 0.3 = 0.428 loss)
I0402 00:17:59.723494 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.448254 (* 0.3 = 0.134476 loss)
I0402 00:17:59.723505 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.822222
I0402 00:17:59.723520 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.954545
I0402 00:17:59.723533 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.933333
I0402 00:17:59.723547 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.730618 (* 1 = 0.730618 loss)
I0402 00:17:59.723562 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.236218 (* 1 = 0.236218 loss)
I0402 00:17:59.723573 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0402 00:17:59.723585 6134 solver.cpp:245] Train net output #16: total_confidence = 0.347608
I0402 00:17:59.723598 6134 sgd_solver.cpp:106] Iteration 158000, lr = 0.01
I0402 00:20:08.439046 6134 solver.cpp:229] Iteration 158500, loss = 2.69821
I0402 00:20:08.439146 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.395833
I0402 00:20:08.439165 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.818182
I0402 00:20:08.439178 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.645833
I0402 00:20:08.439194 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.99444 (* 0.3 = 0.598333 loss)
I0402 00:20:08.439209 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.603773 (* 0.3 = 0.181132 loss)
I0402 00:20:08.439223 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.520833
I0402 00:20:08.439235 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.846591
I0402 00:20:08.439247 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.791667
I0402 00:20:08.439261 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.63723 (* 0.3 = 0.49117 loss)
I0402 00:20:08.439275 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.536154 (* 0.3 = 0.160846 loss)
I0402 00:20:08.439288 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.770833
I0402 00:20:08.439301 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.920455
I0402 00:20:08.439312 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.958333
I0402 00:20:08.439327 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.789183 (* 1 = 0.789183 loss)
I0402 00:20:08.439340 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.280683 (* 1 = 0.280683 loss)
I0402 00:20:08.439353 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0402 00:20:08.439365 6134 solver.cpp:245] Train net output #16: total_confidence = 0.344616
I0402 00:20:08.439378 6134 sgd_solver.cpp:106] Iteration 158500, lr = 0.01
I0402 00:22:17.146591 6134 solver.cpp:229] Iteration 159000, loss = 2.69187
I0402 00:22:17.146742 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.380952
I0402 00:22:17.146772 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.835227
I0402 00:22:17.146793 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.619048
I0402 00:22:17.146821 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.08936 (* 0.3 = 0.626808 loss)
I0402 00:22:17.146848 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.584524 (* 0.3 = 0.175357 loss)
I0402 00:22:17.146872 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.571429
I0402 00:22:17.146896 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.875
I0402 00:22:17.146919 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.785714
I0402 00:22:17.146945 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.54683 (* 0.3 = 0.464049 loss)
I0402 00:22:17.146970 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.447493 (* 0.3 = 0.134248 loss)
I0402 00:22:17.146994 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.785714
I0402 00:22:17.147017 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.943182
I0402 00:22:17.147043 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.928571
I0402 00:22:17.147070 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.730097 (* 1 = 0.730097 loss)
I0402 00:22:17.147097 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.194703 (* 1 = 0.194703 loss)
I0402 00:22:17.147120 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0402 00:22:17.147142 6134 solver.cpp:245] Train net output #16: total_confidence = 0.182505
I0402 00:22:17.147164 6134 sgd_solver.cpp:106] Iteration 159000, lr = 0.01
I0402 00:24:25.802490 6134 solver.cpp:229] Iteration 159500, loss = 2.69779
I0402 00:24:25.802603 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.414634
I0402 00:24:25.802635 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.835227
I0402 00:24:25.802660 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.609756
I0402 00:24:25.802690 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.06962 (* 0.3 = 0.620886 loss)
I0402 00:24:25.802721 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.58755 (* 0.3 = 0.176265 loss)
I0402 00:24:25.802747 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.512195
I0402 00:24:25.802772 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.875
I0402 00:24:25.802794 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.829268
I0402 00:24:25.802821 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.4902 (* 0.3 = 0.447061 loss)
I0402 00:24:25.802848 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.393208 (* 0.3 = 0.117962 loss)
I0402 00:24:25.802872 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.829268
I0402 00:24:25.802894 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.960227
I0402 00:24:25.802917 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.926829
I0402 00:24:25.802944 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.608442 (* 1 = 0.608442 loss)
I0402 00:24:25.802970 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.16313 (* 1 = 0.16313 loss)
I0402 00:24:25.802994 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0402 00:24:25.803015 6134 solver.cpp:245] Train net output #16: total_confidence = 0.349599
I0402 00:24:25.803037 6134 sgd_solver.cpp:106] Iteration 159500, lr = 0.01
I0402 00:26:34.597472 6134 solver.cpp:338] Iteration 160000, Testing net (#0)
I0402 00:27:04.392379 6134 solver.cpp:393] Test loss: 2.3532
I0402 00:27:04.392431 6134 solver.cpp:406] Test net output #0: loss1/accuracy = 0.500362
I0402 00:27:04.392448 6134 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.86882
I0402 00:27:04.392462 6134 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.768038
I0402 00:27:04.392477 6134 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 1.71629 (* 0.3 = 0.514886 loss)
I0402 00:27:04.392493 6134 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.45672 (* 0.3 = 0.137016 loss)
I0402 00:27:04.392505 6134 solver.cpp:406] Test net output #5: loss2/accuracy = 0.648438
I0402 00:27:04.392519 6134 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.906411
I0402 00:27:04.392532 6134 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.855749
I0402 00:27:04.392546 6134 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.27808 (* 0.3 = 0.383425 loss)
I0402 00:27:04.392561 6134 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.344675 (* 0.3 = 0.103403 loss)
I0402 00:27:04.392573 6134 solver.cpp:406] Test net output #10: loss3/accuracy = 0.758616
I0402 00:27:04.392586 6134 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.936319
I0402 00:27:04.392598 6134 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.885792
I0402 00:27:04.392612 6134 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 0.957267 (* 1 = 0.957267 loss)
I0402 00:27:04.392627 6134 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.2572 (* 1 = 0.2572 loss)
I0402 00:27:04.392638 6134 solver.cpp:406] Test net output #15: total_accuracy = 0.409
I0402 00:27:04.392649 6134 solver.cpp:406] Test net output #16: total_confidence = 0.327894
I0402 00:27:04.543519 6134 solver.cpp:229] Iteration 160000, loss = 2.72644
I0402 00:27:04.543557 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.339623
I0402 00:27:04.543575 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.801136
I0402 00:27:04.543587 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.641509
I0402 00:27:04.543603 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.15681 (* 0.3 = 0.647044 loss)
I0402 00:27:04.543617 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.659387 (* 0.3 = 0.197816 loss)
I0402 00:27:04.543630 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.433962
I0402 00:27:04.543642 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.829545
I0402 00:27:04.543654 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.735849
I0402 00:27:04.543668 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.93481 (* 0.3 = 0.580442 loss)
I0402 00:27:04.543681 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.598594 (* 0.3 = 0.179578 loss)
I0402 00:27:04.543694 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.716981
I0402 00:27:04.543706 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.914773
I0402 00:27:04.543717 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.867925
I0402 00:27:04.543731 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.1664 (* 1 = 1.1664 loss)
I0402 00:27:04.543745 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.370269 (* 1 = 0.370269 loss)
I0402 00:27:04.543758 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0402 00:27:04.543771 6134 solver.cpp:245] Train net output #16: total_confidence = 0.142962
I0402 00:27:04.543782 6134 sgd_solver.cpp:106] Iteration 160000, lr = 0.01
I0402 00:29:13.483693 6134 solver.cpp:229] Iteration 160500, loss = 2.71124
I0402 00:29:13.484030 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.473684
I0402 00:29:13.484052 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.857955
I0402 00:29:13.484066 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.815789
I0402 00:29:13.484081 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.73958 (* 0.3 = 0.521874 loss)
I0402 00:29:13.484097 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.495733 (* 0.3 = 0.14872 loss)
I0402 00:29:13.484110 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.5
I0402 00:29:13.484122 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.863636
I0402 00:29:13.484134 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.868421
I0402 00:29:13.484148 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.35409 (* 0.3 = 0.406226 loss)
I0402 00:29:13.484163 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.406208 (* 0.3 = 0.121862 loss)
I0402 00:29:13.484182 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.763158
I0402 00:29:13.484206 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.931818
I0402 00:29:13.484231 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.921053
I0402 00:29:13.484257 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.917228 (* 1 = 0.917228 loss)
I0402 00:29:13.484272 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.254106 (* 1 = 0.254106 loss)
I0402 00:29:13.484285 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0402 00:29:13.484297 6134 solver.cpp:245] Train net output #16: total_confidence = 0.169519
I0402 00:29:13.484309 6134 sgd_solver.cpp:106] Iteration 160500, lr = 0.01
I0402 00:31:22.253234 6134 solver.cpp:229] Iteration 161000, loss = 2.74253
I0402 00:31:22.253348 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.357143
I0402 00:31:22.253379 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.806818
I0402 00:31:22.253406 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.738095
I0402 00:31:22.253434 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.96162 (* 0.3 = 0.588485 loss)
I0402 00:31:22.253464 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.608065 (* 0.3 = 0.182419 loss)
I0402 00:31:22.253491 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.595238
I0402 00:31:22.253515 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.852273
I0402 00:31:22.253542 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.880952
I0402 00:31:22.253568 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.39921 (* 0.3 = 0.419763 loss)
I0402 00:31:22.253597 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.477203 (* 0.3 = 0.143161 loss)
I0402 00:31:22.253619 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.833333
I0402 00:31:22.253640 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.943182
I0402 00:31:22.253662 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.97619
I0402 00:31:22.253690 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.613882 (* 1 = 0.613882 loss)
I0402 00:31:22.253715 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.19148 (* 1 = 0.19148 loss)
I0402 00:31:22.253739 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0402 00:31:22.253759 6134 solver.cpp:245] Train net output #16: total_confidence = 0.26895
I0402 00:31:22.253782 6134 sgd_solver.cpp:106] Iteration 161000, lr = 0.01
I0402 00:33:31.123132 6134 solver.cpp:229] Iteration 161500, loss = 2.70165
I0402 00:33:31.123255 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.270833
I0402 00:33:31.123276 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.784091
I0402 00:33:31.123289 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.666667
I0402 00:33:31.123306 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.03668 (* 0.3 = 0.611005 loss)
I0402 00:33:31.123322 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.610148 (* 0.3 = 0.183045 loss)
I0402 00:33:31.123334 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.5625
I0402 00:33:31.123347 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.875
I0402 00:33:31.123359 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.791667
I0402 00:33:31.123374 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.36009 (* 0.3 = 0.408026 loss)
I0402 00:33:31.123389 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.396233 (* 0.3 = 0.11887 loss)
I0402 00:33:31.123401 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.895833
I0402 00:33:31.123414 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.971591
I0402 00:33:31.123426 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.979167
I0402 00:33:31.123440 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.402912 (* 1 = 0.402912 loss)
I0402 00:33:31.123455 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.114451 (* 1 = 0.114451 loss)
I0402 00:33:31.123466 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0402 00:33:31.123478 6134 solver.cpp:245] Train net output #16: total_confidence = 0.332945
I0402 00:33:31.123491 6134 sgd_solver.cpp:106] Iteration 161500, lr = 0.01
I0402 00:35:40.253204 6134 solver.cpp:229] Iteration 162000, loss = 2.73316
I0402 00:35:40.253331 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.404255
I0402 00:35:40.253352 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.823864
I0402 00:35:40.253365 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.723404
I0402 00:35:40.253381 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.96075 (* 0.3 = 0.588226 loss)
I0402 00:35:40.253396 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.608462 (* 0.3 = 0.182539 loss)
I0402 00:35:40.253409 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.553191
I0402 00:35:40.253422 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.869318
I0402 00:35:40.253434 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.787234
I0402 00:35:40.253448 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.53658 (* 0.3 = 0.460975 loss)
I0402 00:35:40.253463 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.465646 (* 0.3 = 0.139694 loss)
I0402 00:35:40.253475 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.787234
I0402 00:35:40.253489 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.931818
I0402 00:35:40.253499 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.893617
I0402 00:35:40.253515 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.783798 (* 1 = 0.783798 loss)
I0402 00:35:40.253532 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.244069 (* 1 = 0.244069 loss)
I0402 00:35:40.253545 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0402 00:35:40.253557 6134 solver.cpp:245] Train net output #16: total_confidence = 0.449321
I0402 00:35:40.253569 6134 sgd_solver.cpp:106] Iteration 162000, lr = 0.01
I0402 00:37:49.283774 6134 solver.cpp:229] Iteration 162500, loss = 2.72992
I0402 00:37:49.284157 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.439024
I0402 00:37:49.284188 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.840909
I0402 00:37:49.284212 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.682927
I0402 00:37:49.284240 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.90449 (* 0.3 = 0.571346 loss)
I0402 00:37:49.284267 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.557181 (* 0.3 = 0.167154 loss)
I0402 00:37:49.284291 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.560976
I0402 00:37:49.284315 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.869318
I0402 00:37:49.284342 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.829268
I0402 00:37:49.284368 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.43619 (* 0.3 = 0.430858 loss)
I0402 00:37:49.284395 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.441513 (* 0.3 = 0.132454 loss)
I0402 00:37:49.284417 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.780488
I0402 00:37:49.284440 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.9375
I0402 00:37:49.284477 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.951219
I0402 00:37:49.284507 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.659978 (* 1 = 0.659978 loss)
I0402 00:37:49.284538 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.198329 (* 1 = 0.198329 loss)
I0402 00:37:49.284560 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0402 00:37:49.284582 6134 solver.cpp:245] Train net output #16: total_confidence = 0.24824
I0402 00:37:49.284605 6134 sgd_solver.cpp:106] Iteration 162500, lr = 0.01
I0402 00:39:58.299093 6134 solver.cpp:229] Iteration 163000, loss = 2.78234
I0402 00:39:58.299213 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.326923
I0402 00:39:58.299239 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.789773
I0402 00:39:58.299252 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.538462
I0402 00:39:58.299276 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.29931 (* 0.3 = 0.989794 loss)
I0402 00:39:58.299291 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.0046 (* 0.3 = 0.301379 loss)
I0402 00:39:58.299304 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.442308
I0402 00:39:58.299316 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.823864
I0402 00:39:58.299330 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.557692
I0402 00:39:58.299355 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.98301 (* 0.3 = 0.894903 loss)
I0402 00:39:58.299371 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.911629 (* 0.3 = 0.273489 loss)
I0402 00:39:58.299383 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.596154
I0402 00:39:58.299396 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.880682
I0402 00:39:58.299407 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.730769
I0402 00:39:58.299432 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.39998 (* 1 = 2.39998 loss)
I0402 00:39:58.299463 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.721565 (* 1 = 0.721565 loss)
I0402 00:39:58.299477 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0402 00:39:58.299490 6134 solver.cpp:245] Train net output #16: total_confidence = 0.348948
I0402 00:39:58.299502 6134 sgd_solver.cpp:106] Iteration 163000, lr = 0.01
I0402 00:42:07.330874 6134 solver.cpp:229] Iteration 163500, loss = 2.75242
I0402 00:42:07.331069 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.386364
I0402 00:42:07.331090 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.829545
I0402 00:42:07.331104 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.590909
I0402 00:42:07.331122 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.04289 (* 0.3 = 0.612867 loss)
I0402 00:42:07.331138 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.57878 (* 0.3 = 0.173634 loss)
I0402 00:42:07.331151 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.522727
I0402 00:42:07.331163 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.863636
I0402 00:42:07.331176 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.75
I0402 00:42:07.331190 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.62389 (* 0.3 = 0.487167 loss)
I0402 00:42:07.331204 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.467522 (* 0.3 = 0.140257 loss)
I0402 00:42:07.331218 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.681818
I0402 00:42:07.331229 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.914773
I0402 00:42:07.331241 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.795455
I0402 00:42:07.331256 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.34738 (* 1 = 1.34738 loss)
I0402 00:42:07.331270 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.361529 (* 1 = 0.361529 loss)
I0402 00:42:07.331284 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0402 00:42:07.331295 6134 solver.cpp:245] Train net output #16: total_confidence = 0.211874
I0402 00:42:07.331308 6134 sgd_solver.cpp:106] Iteration 163500, lr = 0.01
I0402 00:44:16.407882 6134 solver.cpp:229] Iteration 164000, loss = 2.71823
I0402 00:44:16.407994 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.512821
I0402 00:44:16.408025 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.880682
I0402 00:44:16.408051 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.692308
I0402 00:44:16.408079 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.58876 (* 0.3 = 0.476627 loss)
I0402 00:44:16.408113 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.422772 (* 0.3 = 0.126832 loss)
I0402 00:44:16.408139 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.564103
I0402 00:44:16.408164 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.880682
I0402 00:44:16.408187 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.74359
I0402 00:44:16.408213 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.41001 (* 0.3 = 0.423003 loss)
I0402 00:44:16.408241 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.383359 (* 0.3 = 0.115008 loss)
I0402 00:44:16.408263 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.769231
I0402 00:44:16.408287 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.9375
I0402 00:44:16.408308 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.871795
I0402 00:44:16.408334 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.656193 (* 1 = 0.656193 loss)
I0402 00:44:16.408360 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.187656 (* 1 = 0.187656 loss)
I0402 00:44:16.408382 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0402 00:44:16.408404 6134 solver.cpp:245] Train net output #16: total_confidence = 0.406609
I0402 00:44:16.408427 6134 sgd_solver.cpp:106] Iteration 164000, lr = 0.01
I0402 00:46:25.277341 6134 solver.cpp:229] Iteration 164500, loss = 2.71883
I0402 00:46:25.277470 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.285714
I0402 00:46:25.277490 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.795455
I0402 00:46:25.277504 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.591837
I0402 00:46:25.277523 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.19844 (* 0.3 = 0.659531 loss)
I0402 00:46:25.277539 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.660812 (* 0.3 = 0.198244 loss)
I0402 00:46:25.277551 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.530612
I0402 00:46:25.277565 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.846591
I0402 00:46:25.277576 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.795918
I0402 00:46:25.277590 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.48466 (* 0.3 = 0.445397 loss)
I0402 00:46:25.277604 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.504047 (* 0.3 = 0.151214 loss)
I0402 00:46:25.277616 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.755102
I0402 00:46:25.277628 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.909091
I0402 00:46:25.277640 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.877551
I0402 00:46:25.277654 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.01002 (* 1 = 1.01002 loss)
I0402 00:46:25.277669 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.361679 (* 1 = 0.361679 loss)
I0402 00:46:25.277681 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0402 00:46:25.277693 6134 solver.cpp:245] Train net output #16: total_confidence = 0.207051
I0402 00:46:25.277705 6134 sgd_solver.cpp:106] Iteration 164500, lr = 0.01
I0402 00:48:33.813465 6134 solver.cpp:338] Iteration 165000, Testing net (#0)
I0402 00:49:03.615823 6134 solver.cpp:393] Test loss: 2.14033
I0402 00:49:03.615885 6134 solver.cpp:406] Test net output #0: loss1/accuracy = 0.517247
I0402 00:49:03.615902 6134 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.868367
I0402 00:49:03.615916 6134 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.790535
I0402 00:49:03.615932 6134 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 1.59634 (* 0.3 = 0.478902 loss)
I0402 00:49:03.615947 6134 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.4488 (* 0.3 = 0.13464 loss)
I0402 00:49:03.615960 6134 solver.cpp:406] Test net output #5: loss2/accuracy = 0.683265
I0402 00:49:03.615972 6134 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.907275
I0402 00:49:03.615984 6134 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.879017
I0402 00:49:03.615998 6134 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.11841 (* 0.3 = 0.335522 loss)
I0402 00:49:03.616013 6134 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.326522 (* 0.3 = 0.0979567 loss)
I0402 00:49:03.616024 6134 solver.cpp:406] Test net output #10: loss3/accuracy = 0.777614
I0402 00:49:03.616037 6134 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.943546
I0402 00:49:03.616049 6134 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.896927
I0402 00:49:03.616062 6134 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 0.864108 (* 1 = 0.864108 loss)
I0402 00:49:03.616076 6134 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.229198 (* 1 = 0.229198 loss)
I0402 00:49:03.616088 6134 solver.cpp:406] Test net output #15: total_accuracy = 0.45
I0402 00:49:03.616101 6134 solver.cpp:406] Test net output #16: total_confidence = 0.393103
I0402 00:49:03.767796 6134 solver.cpp:229] Iteration 165000, loss = 2.69447
I0402 00:49:03.767866 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.479167
I0402 00:49:03.767885 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.852273
I0402 00:49:03.767899 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.854167
I0402 00:49:03.767916 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.67002 (* 0.3 = 0.501005 loss)
I0402 00:49:03.767931 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.491785 (* 0.3 = 0.147535 loss)
I0402 00:49:03.767945 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.666667
I0402 00:49:03.767957 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.892045
I0402 00:49:03.767969 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.895833
I0402 00:49:03.767984 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.14679 (* 0.3 = 0.344038 loss)
I0402 00:49:03.767998 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.35397 (* 0.3 = 0.106191 loss)
I0402 00:49:03.768012 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.770833
I0402 00:49:03.768024 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.9375
I0402 00:49:03.768036 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.979167
I0402 00:49:03.768050 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.729422 (* 1 = 0.729422 loss)
I0402 00:49:03.768069 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.206234 (* 1 = 0.206234 loss)
I0402 00:49:03.768081 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0402 00:49:03.768095 6134 solver.cpp:245] Train net output #16: total_confidence = 0.38681
I0402 00:49:03.768107 6134 sgd_solver.cpp:106] Iteration 165000, lr = 0.01
I0402 00:51:12.507491 6134 solver.cpp:229] Iteration 165500, loss = 2.7357
I0402 00:51:12.507654 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.240741
I0402 00:51:12.507678 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.755682
I0402 00:51:12.507690 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.592593
I0402 00:51:12.507706 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.19659 (* 0.3 = 0.658978 loss)
I0402 00:51:12.507721 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.720428 (* 0.3 = 0.216129 loss)
I0402 00:51:12.507735 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.407407
I0402 00:51:12.507746 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.8125
I0402 00:51:12.507760 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.740741
I0402 00:51:12.507773 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.70566 (* 0.3 = 0.511699 loss)
I0402 00:51:12.507787 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.553573 (* 0.3 = 0.166072 loss)
I0402 00:51:12.507800 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.555556
I0402 00:51:12.507812 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.863636
I0402 00:51:12.507824 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.833333
I0402 00:51:12.507838 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.19723 (* 1 = 1.19723 loss)
I0402 00:51:12.507851 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.384597 (* 1 = 0.384597 loss)
I0402 00:51:12.507864 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0402 00:51:12.507876 6134 solver.cpp:245] Train net output #16: total_confidence = 0.1991
I0402 00:51:12.507889 6134 sgd_solver.cpp:106] Iteration 165500, lr = 0.01
I0402 00:53:21.235625 6134 solver.cpp:229] Iteration 166000, loss = 2.65113
I0402 00:53:21.235755 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.295455
I0402 00:53:21.235775 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.818182
I0402 00:53:21.235788 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.590909
I0402 00:53:21.235805 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.23346 (* 0.3 = 0.670037 loss)
I0402 00:53:21.235818 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.604542 (* 0.3 = 0.181363 loss)
I0402 00:53:21.235831 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.431818
I0402 00:53:21.235846 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.846591
I0402 00:53:21.235857 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.659091
I0402 00:53:21.235872 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.09657 (* 0.3 = 0.62897 loss)
I0402 00:53:21.235898 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.576207 (* 0.3 = 0.172862 loss)
I0402 00:53:21.235924 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.613636
I0402 00:53:21.235950 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.897727
I0402 00:53:21.235965 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.840909
I0402 00:53:21.235980 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.29697 (* 1 = 1.29697 loss)
I0402 00:53:21.235996 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.35108 (* 1 = 0.35108 loss)
I0402 00:53:21.236007 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0402 00:53:21.236019 6134 solver.cpp:245] Train net output #16: total_confidence = 0.109811
I0402 00:53:21.236032 6134 sgd_solver.cpp:106] Iteration 166000, lr = 0.01
I0402 00:55:29.891840 6134 solver.cpp:229] Iteration 166500, loss = 2.6918
I0402 00:55:29.891995 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.44186
I0402 00:55:29.892015 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.823864
I0402 00:55:29.892030 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.790698
I0402 00:55:29.892046 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.71067 (* 0.3 = 0.513201 loss)
I0402 00:55:29.892060 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.557459 (* 0.3 = 0.167238 loss)
I0402 00:55:29.892073 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.581395
I0402 00:55:29.892086 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.852273
I0402 00:55:29.892097 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.883721
I0402 00:55:29.892112 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.23412 (* 0.3 = 0.370235 loss)
I0402 00:55:29.892125 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.439038 (* 0.3 = 0.131712 loss)
I0402 00:55:29.892138 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.813953
I0402 00:55:29.892150 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.943182
I0402 00:55:29.892163 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.976744
I0402 00:55:29.892176 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.805024 (* 1 = 0.805024 loss)
I0402 00:55:29.892190 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.226461 (* 1 = 0.226461 loss)
I0402 00:55:29.892204 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0402 00:55:29.892216 6134 solver.cpp:245] Train net output #16: total_confidence = 0.445229
I0402 00:55:29.892240 6134 sgd_solver.cpp:106] Iteration 166500, lr = 0.01
I0402 00:57:38.587137 6134 solver.cpp:229] Iteration 167000, loss = 2.652
I0402 00:57:38.587517 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.477273
I0402 00:57:38.587538 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.852273
I0402 00:57:38.587551 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.704545
I0402 00:57:38.587568 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.77078 (* 0.3 = 0.531235 loss)
I0402 00:57:38.587584 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.492426 (* 0.3 = 0.147728 loss)
I0402 00:57:38.587597 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.659091
I0402 00:57:38.587610 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.886364
I0402 00:57:38.587622 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.840909
I0402 00:57:38.587635 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.20106 (* 0.3 = 0.360317 loss)
I0402 00:57:38.587651 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.372101 (* 0.3 = 0.11163 loss)
I0402 00:57:38.587663 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.886364
I0402 00:57:38.587676 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.971591
I0402 00:57:38.587687 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.909091
I0402 00:57:38.587702 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.65163 (* 1 = 0.65163 loss)
I0402 00:57:38.587715 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.186806 (* 1 = 0.186806 loss)
I0402 00:57:38.587728 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0402 00:57:38.587739 6134 solver.cpp:245] Train net output #16: total_confidence = 0.377882
I0402 00:57:38.587750 6134 sgd_solver.cpp:106] Iteration 167000, lr = 0.01
I0402 00:59:47.314788 6134 solver.cpp:229] Iteration 167500, loss = 2.67652
I0402 00:59:47.314893 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.42
I0402 00:59:47.314913 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.823864
I0402 00:59:47.314925 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.7
I0402 00:59:47.314941 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.91971 (* 0.3 = 0.575912 loss)
I0402 00:59:47.314957 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.584016 (* 0.3 = 0.175205 loss)
I0402 00:59:47.314970 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.54
I0402 00:59:47.314983 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.869318
I0402 00:59:47.314996 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.72
I0402 00:59:47.315008 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.95415 (* 0.3 = 0.586245 loss)
I0402 00:59:47.315022 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.569254 (* 0.3 = 0.170776 loss)
I0402 00:59:47.315035 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.66
I0402 00:59:47.315047 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.903409
I0402 00:59:47.315058 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.86
I0402 00:59:47.315073 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.39208 (* 1 = 1.39208 loss)
I0402 00:59:47.315086 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.399634 (* 1 = 0.399634 loss)
I0402 00:59:47.315099 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0402 00:59:47.315110 6134 solver.cpp:245] Train net output #16: total_confidence = 0.431425
I0402 00:59:47.315122 6134 sgd_solver.cpp:106] Iteration 167500, lr = 0.01
I0402 01:01:56.435559 6134 solver.cpp:229] Iteration 168000, loss = 2.67403
I0402 01:01:56.435698 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.357143
I0402 01:01:56.435734 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.818182
I0402 01:01:56.435751 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.666667
I0402 01:01:56.435767 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.89965 (* 0.3 = 0.569895 loss)
I0402 01:01:56.435782 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.569979 (* 0.3 = 0.170994 loss)
I0402 01:01:56.435796 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.619048
I0402 01:01:56.435808 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.869318
I0402 01:01:56.435820 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.785714
I0402 01:01:56.435834 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.27127 (* 0.3 = 0.38138 loss)
I0402 01:01:56.435848 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.408255 (* 0.3 = 0.122477 loss)
I0402 01:01:56.435861 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.785714
I0402 01:01:56.435873 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.943182
I0402 01:01:56.435885 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.928571
I0402 01:01:56.435899 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.694919 (* 1 = 0.694919 loss)
I0402 01:01:56.435914 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.182857 (* 1 = 0.182857 loss)
I0402 01:01:56.435925 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0402 01:01:56.435937 6134 solver.cpp:245] Train net output #16: total_confidence = 0.354334
I0402 01:01:56.435950 6134 sgd_solver.cpp:106] Iteration 168000, lr = 0.01
I0402 01:04:05.185392 6134 solver.cpp:229] Iteration 168500, loss = 2.73343
I0402 01:04:05.185503 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.609756
I0402 01:04:05.185523 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.880682
I0402 01:04:05.185535 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.804878
I0402 01:04:05.185551 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.25059 (* 0.3 = 0.375178 loss)
I0402 01:04:05.185566 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.392778 (* 0.3 = 0.117833 loss)
I0402 01:04:05.185580 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.731707
I0402 01:04:05.185592 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.920455
I0402 01:04:05.185605 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 1
I0402 01:04:05.185619 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 0.758736 (* 0.3 = 0.227621 loss)
I0402 01:04:05.185633 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.242259 (* 0.3 = 0.0726776 loss)
I0402 01:04:05.185645 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.926829
I0402 01:04:05.185658 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.982955
I0402 01:04:05.185670 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 1
I0402 01:04:05.185684 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.203627 (* 1 = 0.203627 loss)
I0402 01:04:05.185698 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.0570466 (* 1 = 0.0570466 loss)
I0402 01:04:05.185711 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0402 01:04:05.185724 6134 solver.cpp:245] Train net output #16: total_confidence = 0.522122
I0402 01:04:05.185735 6134 sgd_solver.cpp:106] Iteration 168500, lr = 0.01
I0402 01:06:13.947065 6134 solver.cpp:229] Iteration 169000, loss = 2.6912
I0402 01:06:13.947196 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.5
I0402 01:06:13.947214 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.852273
I0402 01:06:13.947228 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.8
I0402 01:06:13.947244 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.72477 (* 0.3 = 0.51743 loss)
I0402 01:06:13.947259 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.512311 (* 0.3 = 0.153693 loss)
I0402 01:06:13.947273 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.46
I0402 01:06:13.947285 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.840909
I0402 01:06:13.947298 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.86
I0402 01:06:13.947311 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.37633 (* 0.3 = 0.4129 loss)
I0402 01:06:13.947335 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.407174 (* 0.3 = 0.122152 loss)
I0402 01:06:13.947361 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.78
I0402 01:06:13.947388 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.9375
I0402 01:06:13.947408 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.94
I0402 01:06:13.947423 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.603055 (* 1 = 0.603055 loss)
I0402 01:06:13.947438 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.179088 (* 1 = 0.179088 loss)
I0402 01:06:13.947450 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0402 01:06:13.947463 6134 solver.cpp:245] Train net output #16: total_confidence = 0.256889
I0402 01:06:13.947474 6134 sgd_solver.cpp:106] Iteration 169000, lr = 0.01
I0402 01:08:22.864560 6134 solver.cpp:229] Iteration 169500, loss = 2.67771
I0402 01:08:22.864903 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.511111
I0402 01:08:22.864924 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.852273
I0402 01:08:22.864938 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.733333
I0402 01:08:22.864954 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.6849 (* 0.3 = 0.505469 loss)
I0402 01:08:22.864969 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.487633 (* 0.3 = 0.14629 loss)
I0402 01:08:22.864984 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.577778
I0402 01:08:22.864996 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.869318
I0402 01:08:22.865008 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.777778
I0402 01:08:22.865022 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.38093 (* 0.3 = 0.414278 loss)
I0402 01:08:22.865036 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.446387 (* 0.3 = 0.133916 loss)
I0402 01:08:22.865068 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.777778
I0402 01:08:22.865083 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.943182
I0402 01:08:22.865095 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.933333
I0402 01:08:22.865118 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.751128 (* 1 = 0.751128 loss)
I0402 01:08:22.865133 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.210804 (* 1 = 0.210804 loss)
I0402 01:08:22.865144 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0402 01:08:22.865157 6134 solver.cpp:245] Train net output #16: total_confidence = 0.459429
I0402 01:08:22.865177 6134 sgd_solver.cpp:106] Iteration 169500, lr = 0.01
I0402 01:10:31.297937 6134 solver.cpp:338] Iteration 170000, Testing net (#0)
I0402 01:11:01.050061 6134 solver.cpp:393] Test loss: 2.33927
I0402 01:11:01.050106 6134 solver.cpp:406] Test net output #0: loss1/accuracy = 0.495465
I0402 01:11:01.050122 6134 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.863548
I0402 01:11:01.050134 6134 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.765233
I0402 01:11:01.050150 6134 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 1.70155 (* 0.3 = 0.510466 loss)
I0402 01:11:01.050165 6134 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.465642 (* 0.3 = 0.139693 loss)
I0402 01:11:01.050178 6134 solver.cpp:406] Test net output #5: loss2/accuracy = 0.671708
I0402 01:11:01.050189 6134 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.911547
I0402 01:11:01.050201 6134 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.861488
I0402 01:11:01.050215 6134 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.19372 (* 0.3 = 0.358115 loss)
I0402 01:11:01.050228 6134 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.323611 (* 0.3 = 0.0970834 loss)
I0402 01:11:01.050241 6134 solver.cpp:406] Test net output #10: loss3/accuracy = 0.756258
I0402 01:11:01.050253 6134 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.935682
I0402 01:11:01.050264 6134 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.876468
I0402 01:11:01.050277 6134 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 0.972676 (* 1 = 0.972676 loss)
I0402 01:11:01.050292 6134 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.261235 (* 1 = 0.261235 loss)
I0402 01:11:01.050303 6134 solver.cpp:406] Test net output #15: total_accuracy = 0.408
I0402 01:11:01.050315 6134 solver.cpp:406] Test net output #16: total_confidence = 0.387686
I0402 01:11:01.201478 6134 solver.cpp:229] Iteration 170000, loss = 2.63396
I0402 01:11:01.201517 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.408163
I0402 01:11:01.201535 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.829545
I0402 01:11:01.201548 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.693878
I0402 01:11:01.201563 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.90846 (* 0.3 = 0.572537 loss)
I0402 01:11:01.201578 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.577989 (* 0.3 = 0.173397 loss)
I0402 01:11:01.201591 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.591837
I0402 01:11:01.201604 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.886364
I0402 01:11:01.201617 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.816327
I0402 01:11:01.201629 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.32515 (* 0.3 = 0.397546 loss)
I0402 01:11:01.201643 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.382276 (* 0.3 = 0.114683 loss)
I0402 01:11:01.201655 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.795918
I0402 01:11:01.201668 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.9375
I0402 01:11:01.201679 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.938776
I0402 01:11:01.201694 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.574034 (* 1 = 0.574034 loss)
I0402 01:11:01.201707 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.184977 (* 1 = 0.184977 loss)
I0402 01:11:01.201719 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0402 01:11:01.201731 6134 solver.cpp:245] Train net output #16: total_confidence = 0.245015
I0402 01:11:01.201743 6134 sgd_solver.cpp:106] Iteration 170000, lr = 0.01
I0402 01:13:09.774139 6134 solver.cpp:229] Iteration 170500, loss = 2.66633
I0402 01:13:09.774281 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.410256
I0402 01:13:09.774302 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.846591
I0402 01:13:09.774314 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.846154
I0402 01:13:09.774330 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.73075 (* 0.3 = 0.519225 loss)
I0402 01:13:09.774345 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.481398 (* 0.3 = 0.144419 loss)
I0402 01:13:09.774358 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.538462
I0402 01:13:09.774370 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.880682
I0402 01:13:09.774384 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.794872
I0402 01:13:09.774397 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.31322 (* 0.3 = 0.393967 loss)
I0402 01:13:09.774412 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.35273 (* 0.3 = 0.105819 loss)
I0402 01:13:09.774425 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.820513
I0402 01:13:09.774438 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.954545
I0402 01:13:09.774461 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.923077
I0402 01:13:09.774489 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.510509 (* 1 = 0.510509 loss)
I0402 01:13:09.774521 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.153084 (* 1 = 0.153084 loss)
I0402 01:13:09.774544 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0402 01:13:09.774559 6134 solver.cpp:245] Train net output #16: total_confidence = 0.353086
I0402 01:13:09.774570 6134 sgd_solver.cpp:106] Iteration 170500, lr = 0.01
I0402 01:15:18.487587 6134 solver.cpp:229] Iteration 171000, loss = 2.68242
I0402 01:15:18.487710 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.44186
I0402 01:15:18.487730 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.846591
I0402 01:15:18.487743 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.72093
I0402 01:15:18.487759 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.59987 (* 0.3 = 0.479961 loss)
I0402 01:15:18.487776 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.454242 (* 0.3 = 0.136273 loss)
I0402 01:15:18.487788 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.581395
I0402 01:15:18.487800 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.880682
I0402 01:15:18.487812 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.813953
I0402 01:15:18.487828 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.28674 (* 0.3 = 0.386023 loss)
I0402 01:15:18.487843 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.382352 (* 0.3 = 0.114705 loss)
I0402 01:15:18.487855 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.906977
I0402 01:15:18.487867 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.977273
I0402 01:15:18.487879 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.930233
I0402 01:15:18.487895 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.466982 (* 1 = 0.466982 loss)
I0402 01:15:18.487918 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.126044 (* 1 = 0.126044 loss)
I0402 01:15:18.487942 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0402 01:15:18.487958 6134 solver.cpp:245] Train net output #16: total_confidence = 0.355569
I0402 01:15:18.487970 6134 sgd_solver.cpp:106] Iteration 171000, lr = 0.01
I0402 01:17:27.137944 6134 solver.cpp:229] Iteration 171500, loss = 2.64813
I0402 01:17:27.138284 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.391304
I0402 01:17:27.138305 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.835227
I0402 01:17:27.138319 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.76087
I0402 01:17:27.138335 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.93424 (* 0.3 = 0.580273 loss)
I0402 01:17:27.138350 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.541187 (* 0.3 = 0.162356 loss)
I0402 01:17:27.138362 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.565217
I0402 01:17:27.138375 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.869318
I0402 01:17:27.138387 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.76087
I0402 01:17:27.138401 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.5211 (* 0.3 = 0.45633 loss)
I0402 01:17:27.138416 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.450932 (* 0.3 = 0.13528 loss)
I0402 01:17:27.138427 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.630435
I0402 01:17:27.138439 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.886364
I0402 01:17:27.138452 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.76087
I0402 01:17:27.138464 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.31045 (* 1 = 1.31045 loss)
I0402 01:17:27.138478 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.390524 (* 1 = 0.390524 loss)
I0402 01:17:27.138491 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0402 01:17:27.138504 6134 solver.cpp:245] Train net output #16: total_confidence = 0.363538
I0402 01:17:27.138515 6134 sgd_solver.cpp:106] Iteration 171500, lr = 0.01
I0402 01:19:35.834512 6134 solver.cpp:229] Iteration 172000, loss = 2.66084
I0402 01:19:35.834627 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.386364
I0402 01:19:35.834647 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.846591
I0402 01:19:35.834661 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.681818
I0402 01:19:35.834677 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.17288 (* 0.3 = 0.651863 loss)
I0402 01:19:35.834692 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.573352 (* 0.3 = 0.172006 loss)
I0402 01:19:35.834705 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.545455
I0402 01:19:35.834718 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.880682
I0402 01:19:35.834730 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.75
I0402 01:19:35.834744 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.8838 (* 0.3 = 0.565141 loss)
I0402 01:19:35.834758 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.498962 (* 0.3 = 0.149689 loss)
I0402 01:19:35.834771 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.840909
I0402 01:19:35.834784 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.960227
I0402 01:19:35.834795 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.909091
I0402 01:19:35.834808 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.996922 (* 1 = 0.996922 loss)
I0402 01:19:35.834822 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.266197 (* 1 = 0.266197 loss)
I0402 01:19:35.834835 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0402 01:19:35.834846 6134 solver.cpp:245] Train net output #16: total_confidence = 0.23151
I0402 01:19:35.834858 6134 sgd_solver.cpp:106] Iteration 172000, lr = 0.01
I0402 01:21:44.557588 6134 solver.cpp:229] Iteration 172500, loss = 2.61568
I0402 01:21:44.557715 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.489796
I0402 01:21:44.557736 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.840909
I0402 01:21:44.557749 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.714286
I0402 01:21:44.557765 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.80808 (* 0.3 = 0.542423 loss)
I0402 01:21:44.557780 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.562917 (* 0.3 = 0.168875 loss)
I0402 01:21:44.557792 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.673469
I0402 01:21:44.557806 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.897727
I0402 01:21:44.557817 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.877551
I0402 01:21:44.557832 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.10216 (* 0.3 = 0.330648 loss)
I0402 01:21:44.557845 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.342872 (* 0.3 = 0.102862 loss)
I0402 01:21:44.557858 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.938776
I0402 01:21:44.557870 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.977273
I0402 01:21:44.557881 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 1
I0402 01:21:44.557896 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.19174 (* 1 = 0.19174 loss)
I0402 01:21:44.557910 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.0734843 (* 1 = 0.0734843 loss)
I0402 01:21:44.557922 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.75
I0402 01:21:44.557934 6134 solver.cpp:245] Train net output #16: total_confidence = 0.508812
I0402 01:21:44.557946 6134 sgd_solver.cpp:106] Iteration 172500, lr = 0.01
I0402 01:23:53.248498 6134 solver.cpp:229] Iteration 173000, loss = 2.65029
I0402 01:23:53.248606 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.458333
I0402 01:23:53.248626 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.835227
I0402 01:23:53.248639 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.583333
I0402 01:23:53.248656 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.04503 (* 0.3 = 0.613508 loss)
I0402 01:23:53.248670 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.622748 (* 0.3 = 0.186825 loss)
I0402 01:23:53.248683 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.458333
I0402 01:23:53.248697 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.840909
I0402 01:23:53.248708 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.770833
I0402 01:23:53.248723 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.70118 (* 0.3 = 0.510355 loss)
I0402 01:23:53.248736 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.488249 (* 0.3 = 0.146475 loss)
I0402 01:23:53.248749 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.770833
I0402 01:23:53.248760 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.920455
I0402 01:23:53.248772 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.9375
I0402 01:23:53.248787 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.901333 (* 1 = 0.901333 loss)
I0402 01:23:53.248801 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.28303 (* 1 = 0.28303 loss)
I0402 01:23:53.248813 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0402 01:23:53.248826 6134 solver.cpp:245] Train net output #16: total_confidence = 0.24481
I0402 01:23:53.248838 6134 sgd_solver.cpp:106] Iteration 173000, lr = 0.01
I0402 01:26:01.941668 6134 solver.cpp:229] Iteration 173500, loss = 2.63202
I0402 01:26:01.941807 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.439024
I0402 01:26:01.941826 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.852273
I0402 01:26:01.941839 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.658537
I0402 01:26:01.941855 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.07344 (* 0.3 = 0.622032 loss)
I0402 01:26:01.941870 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.554584 (* 0.3 = 0.166375 loss)
I0402 01:26:01.941884 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.536585
I0402 01:26:01.941895 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.875
I0402 01:26:01.941908 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.756098
I0402 01:26:01.941922 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.63381 (* 0.3 = 0.490144 loss)
I0402 01:26:01.941936 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.474302 (* 0.3 = 0.142291 loss)
I0402 01:26:01.941948 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.634146
I0402 01:26:01.941961 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.914773
I0402 01:26:01.941972 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.829268
I0402 01:26:01.941987 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.06787 (* 1 = 1.06787 loss)
I0402 01:26:01.942000 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.278262 (* 1 = 0.278262 loss)
I0402 01:26:01.942013 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0402 01:26:01.942025 6134 solver.cpp:245] Train net output #16: total_confidence = 0.214706
I0402 01:26:01.942037 6134 sgd_solver.cpp:106] Iteration 173500, lr = 0.01
I0402 01:28:10.723630 6134 solver.cpp:229] Iteration 174000, loss = 2.6685
I0402 01:28:10.723997 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.4
I0402 01:28:10.724019 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.8125
I0402 01:28:10.724031 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.64
I0402 01:28:10.724047 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.00592 (* 0.3 = 0.601775 loss)
I0402 01:28:10.724062 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.627005 (* 0.3 = 0.188101 loss)
I0402 01:28:10.724076 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.54
I0402 01:28:10.724087 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.846591
I0402 01:28:10.724099 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.9
I0402 01:28:10.724114 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.3027 (* 0.3 = 0.390811 loss)
I0402 01:28:10.724128 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.409884 (* 0.3 = 0.122965 loss)
I0402 01:28:10.724141 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.76
I0402 01:28:10.724153 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.926136
I0402 01:28:10.724165 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.92
I0402 01:28:10.724179 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.792803 (* 1 = 0.792803 loss)
I0402 01:28:10.724192 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.248389 (* 1 = 0.248389 loss)
I0402 01:28:10.724205 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0402 01:28:10.724216 6134 solver.cpp:245] Train net output #16: total_confidence = 0.367279
I0402 01:28:10.724228 6134 sgd_solver.cpp:106] Iteration 174000, lr = 0.01
I0402 01:30:19.327945 6134 solver.cpp:229] Iteration 174500, loss = 2.69312
I0402 01:30:19.328066 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.55102
I0402 01:30:19.328085 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.869318
I0402 01:30:19.328099 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.734694
I0402 01:30:19.328114 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.57184 (* 0.3 = 0.471553 loss)
I0402 01:30:19.328130 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.483671 (* 0.3 = 0.145101 loss)
I0402 01:30:19.328142 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.612245
I0402 01:30:19.328155 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.880682
I0402 01:30:19.328166 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.918367
I0402 01:30:19.328181 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.19949 (* 0.3 = 0.359846 loss)
I0402 01:30:19.328194 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.367443 (* 0.3 = 0.110233 loss)
I0402 01:30:19.328207 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.836735
I0402 01:30:19.328218 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.954545
I0402 01:30:19.328230 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.959184
I0402 01:30:19.328244 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.587251 (* 1 = 0.587251 loss)
I0402 01:30:19.328258 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.170106 (* 1 = 0.170106 loss)
I0402 01:30:19.328270 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0402 01:30:19.328282 6134 solver.cpp:245] Train net output #16: total_confidence = 0.456811
I0402 01:30:19.328294 6134 sgd_solver.cpp:106] Iteration 174500, lr = 0.01
I0402 01:32:27.870632 6134 solver.cpp:338] Iteration 175000, Testing net (#0)
I0402 01:32:57.627775 6134 solver.cpp:393] Test loss: 2.23417
I0402 01:32:57.627821 6134 solver.cpp:406] Test net output #0: loss1/accuracy = 0.500389
I0402 01:32:57.627838 6134 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.864503
I0402 01:32:57.627851 6134 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.778926
I0402 01:32:57.627868 6134 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 1.68566 (* 0.3 = 0.505699 loss)
I0402 01:32:57.627882 6134 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.463202 (* 0.3 = 0.138961 loss)
I0402 01:32:57.627895 6134 solver.cpp:406] Test net output #5: loss2/accuracy = 0.695283
I0402 01:32:57.627907 6134 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.911957
I0402 01:32:57.627919 6134 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.874038
I0402 01:32:57.627933 6134 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.10492 (* 0.3 = 0.331476 loss)
I0402 01:32:57.627948 6134 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.316394 (* 0.3 = 0.0949183 loss)
I0402 01:32:57.627960 6134 solver.cpp:406] Test net output #10: loss3/accuracy = 0.775739
I0402 01:32:57.627972 6134 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.940091
I0402 01:32:57.627985 6134 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.886399
I0402 01:32:57.627997 6134 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 0.916199 (* 1 = 0.916199 loss)
I0402 01:32:57.628012 6134 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.246915 (* 1 = 0.246915 loss)
I0402 01:32:57.628024 6134 solver.cpp:406] Test net output #15: total_accuracy = 0.429
I0402 01:32:57.628036 6134 solver.cpp:406] Test net output #16: total_confidence = 0.406118
I0402 01:32:57.779409 6134 solver.cpp:229] Iteration 175000, loss = 2.63505
I0402 01:32:57.779453 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.435897
I0402 01:32:57.779471 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.840909
I0402 01:32:57.779484 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.692308
I0402 01:32:57.779500 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.90701 (* 0.3 = 0.572102 loss)
I0402 01:32:57.779520 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.59884 (* 0.3 = 0.179652 loss)
I0402 01:32:57.779532 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.641026
I0402 01:32:57.779544 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.880682
I0402 01:32:57.779556 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.794872
I0402 01:32:57.779570 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.40231 (* 0.3 = 0.420693 loss)
I0402 01:32:57.779585 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.428874 (* 0.3 = 0.128662 loss)
I0402 01:32:57.779597 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.897436
I0402 01:32:57.779609 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.960227
I0402 01:32:57.779621 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.923077
I0402 01:32:57.779635 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.635092 (* 1 = 0.635092 loss)
I0402 01:32:57.779649 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.177076 (* 1 = 0.177076 loss)
I0402 01:32:57.779661 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0402 01:32:57.779675 6134 solver.cpp:245] Train net output #16: total_confidence = 0.356422
I0402 01:32:57.779686 6134 sgd_solver.cpp:106] Iteration 175000, lr = 0.01
I0402 01:35:06.563580 6134 solver.cpp:229] Iteration 175500, loss = 2.5722
I0402 01:35:06.563787 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.44186
I0402 01:35:06.563809 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.852273
I0402 01:35:06.563822 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.627907
I0402 01:35:06.563840 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.06084 (* 0.3 = 0.618251 loss)
I0402 01:35:06.563856 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.544697 (* 0.3 = 0.163409 loss)
I0402 01:35:06.563869 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.534884
I0402 01:35:06.563881 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.880682
I0402 01:35:06.563894 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.697674
I0402 01:35:06.563907 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.75201 (* 0.3 = 0.525603 loss)
I0402 01:35:06.563922 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.457938 (* 0.3 = 0.137381 loss)
I0402 01:35:06.563935 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.72093
I0402 01:35:06.563957 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.931818
I0402 01:35:06.563982 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.837209
I0402 01:35:06.563999 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.15855 (* 1 = 1.15855 loss)
I0402 01:35:06.564014 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.290421 (* 1 = 0.290421 loss)
I0402 01:35:06.564026 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0402 01:35:06.564038 6134 solver.cpp:245] Train net output #16: total_confidence = 0.395635
I0402 01:35:06.564051 6134 sgd_solver.cpp:106] Iteration 175500, lr = 0.01
I0402 01:37:15.404570 6134 solver.cpp:229] Iteration 176000, loss = 2.67871
I0402 01:37:15.404901 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.477273
I0402 01:37:15.404922 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.852273
I0402 01:37:15.404934 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.636364
I0402 01:37:15.404952 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.75647 (* 0.3 = 0.52694 loss)
I0402 01:37:15.404966 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.503518 (* 0.3 = 0.151056 loss)
I0402 01:37:15.404979 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.636364
I0402 01:37:15.404991 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.892045
I0402 01:37:15.405004 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.840909
I0402 01:37:15.405017 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.20387 (* 0.3 = 0.361161 loss)
I0402 01:37:15.405031 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.35857 (* 0.3 = 0.107571 loss)
I0402 01:37:15.405058 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.818182
I0402 01:37:15.405074 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.943182
I0402 01:37:15.405086 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.909091
I0402 01:37:15.405100 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.524005 (* 1 = 0.524005 loss)
I0402 01:37:15.405115 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.157898 (* 1 = 0.157898 loss)
I0402 01:37:15.405128 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0402 01:37:15.405139 6134 solver.cpp:245] Train net output #16: total_confidence = 0.318845
I0402 01:37:15.405151 6134 sgd_solver.cpp:106] Iteration 176000, lr = 0.01
I0402 01:39:23.989951 6134 solver.cpp:229] Iteration 176500, loss = 2.60251
I0402 01:39:23.990061 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.431818
I0402 01:39:23.990080 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.818182
I0402 01:39:23.990093 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.636364
I0402 01:39:23.990110 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.96974 (* 0.3 = 0.590922 loss)
I0402 01:39:23.990125 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.636917 (* 0.3 = 0.191075 loss)
I0402 01:39:23.990139 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.5
I0402 01:39:23.990150 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.840909
I0402 01:39:23.990162 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.727273
I0402 01:39:23.990176 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.5999 (* 0.3 = 0.479969 loss)
I0402 01:39:23.990191 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.540641 (* 0.3 = 0.162192 loss)
I0402 01:39:23.990203 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.681818
I0402 01:39:23.990216 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.909091
I0402 01:39:23.990228 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.75
I0402 01:39:23.990242 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.15296 (* 1 = 1.15296 loss)
I0402 01:39:23.990255 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.331926 (* 1 = 0.331926 loss)
I0402 01:39:23.990267 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0402 01:39:23.990279 6134 solver.cpp:245] Train net output #16: total_confidence = 0.375515
I0402 01:39:23.990291 6134 sgd_solver.cpp:106] Iteration 176500, lr = 0.01
I0402 01:41:32.713969 6134 solver.cpp:229] Iteration 177000, loss = 2.64763
I0402 01:41:32.714102 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.298246
I0402 01:41:32.714123 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.772727
I0402 01:41:32.714136 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.54386
I0402 01:41:32.714153 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.40601 (* 0.3 = 0.721804 loss)
I0402 01:41:32.714167 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.793753 (* 0.3 = 0.238126 loss)
I0402 01:41:32.714180 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.315789
I0402 01:41:32.714192 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.778409
I0402 01:41:32.714205 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.561404
I0402 01:41:32.714218 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.70011 (* 0.3 = 0.810033 loss)
I0402 01:41:32.714233 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.877082 (* 0.3 = 0.263125 loss)
I0402 01:41:32.714246 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.578947
I0402 01:41:32.714258 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.863636
I0402 01:41:32.714270 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.736842
I0402 01:41:32.714284 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.5262 (* 1 = 1.5262 loss)
I0402 01:41:32.714298 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.506094 (* 1 = 0.506094 loss)
I0402 01:41:32.714310 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0402 01:41:32.714323 6134 solver.cpp:245] Train net output #16: total_confidence = 0.194682
I0402 01:41:32.714334 6134 sgd_solver.cpp:106] Iteration 177000, lr = 0.01
I0402 01:43:41.294534 6134 solver.cpp:229] Iteration 177500, loss = 2.53935
I0402 01:43:41.294656 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.45098
I0402 01:43:41.294685 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.818182
I0402 01:43:41.294709 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.666667
I0402 01:43:41.294740 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.01959 (* 0.3 = 0.605878 loss)
I0402 01:43:41.294766 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.658582 (* 0.3 = 0.197575 loss)
I0402 01:43:41.294788 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.431373
I0402 01:43:41.294813 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.801136
I0402 01:43:41.294836 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.686275
I0402 01:43:41.294862 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.90285 (* 0.3 = 0.570854 loss)
I0402 01:43:41.294888 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.629397 (* 0.3 = 0.188819 loss)
I0402 01:43:41.294909 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.588235
I0402 01:43:41.294932 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.875
I0402 01:43:41.294955 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.745098
I0402 01:43:41.294981 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.26468 (* 1 = 1.26468 loss)
I0402 01:43:41.295006 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.392614 (* 1 = 0.392614 loss)
I0402 01:43:41.295027 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0402 01:43:41.295048 6134 solver.cpp:245] Train net output #16: total_confidence = 0.356158
I0402 01:43:41.295069 6134 sgd_solver.cpp:106] Iteration 177500, lr = 0.01
I0402 01:45:50.085403 6134 solver.cpp:229] Iteration 178000, loss = 2.59907
I0402 01:45:50.085553 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.333333
I0402 01:45:50.085578 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.8125
I0402 01:45:50.085593 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.644444
I0402 01:45:50.085609 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.06404 (* 0.3 = 0.619212 loss)
I0402 01:45:50.085625 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.597329 (* 0.3 = 0.179199 loss)
I0402 01:45:50.085638 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.4
I0402 01:45:50.085650 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.818182
I0402 01:45:50.085662 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.777778
I0402 01:45:50.085676 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.54163 (* 0.3 = 0.46249 loss)
I0402 01:45:50.085690 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.468385 (* 0.3 = 0.140515 loss)
I0402 01:45:50.085702 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.844444
I0402 01:45:50.085714 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.9375
I0402 01:45:50.085726 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.955556
I0402 01:45:50.085741 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.594494 (* 1 = 0.594494 loss)
I0402 01:45:50.085754 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.199818 (* 1 = 0.199818 loss)
I0402 01:45:50.085767 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0402 01:45:50.085778 6134 solver.cpp:245] Train net output #16: total_confidence = 0.159295
I0402 01:45:50.085791 6134 sgd_solver.cpp:106] Iteration 178000, lr = 0.01
I0402 01:47:58.812901 6134 solver.cpp:229] Iteration 178500, loss = 2.58668
I0402 01:47:58.813230 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.386364
I0402 01:47:58.813249 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.835227
I0402 01:47:58.813261 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.659091
I0402 01:47:58.813277 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.10511 (* 0.3 = 0.631533 loss)
I0402 01:47:58.813293 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.571875 (* 0.3 = 0.171563 loss)
I0402 01:47:58.813307 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.545455
I0402 01:47:58.813318 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.869318
I0402 01:47:58.813330 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.727273
I0402 01:47:58.813344 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.65638 (* 0.3 = 0.496913 loss)
I0402 01:47:58.813359 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.479764 (* 0.3 = 0.143929 loss)
I0402 01:47:58.813370 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.659091
I0402 01:47:58.813382 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.914773
I0402 01:47:58.813395 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.795455
I0402 01:47:58.813408 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.19346 (* 1 = 1.19346 loss)
I0402 01:47:58.813422 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.311541 (* 1 = 0.311541 loss)
I0402 01:47:58.813434 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0402 01:47:58.813447 6134 solver.cpp:245] Train net output #16: total_confidence = 0.27072
I0402 01:47:58.813459 6134 sgd_solver.cpp:106] Iteration 178500, lr = 0.01
I0402 01:50:07.642112 6134 solver.cpp:229] Iteration 179000, loss = 2.55088
I0402 01:50:07.642271 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.404255
I0402 01:50:07.642302 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.835227
I0402 01:50:07.642314 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.617021
I0402 01:50:07.642330 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.3504 (* 0.3 = 0.705119 loss)
I0402 01:50:07.642354 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.660249 (* 0.3 = 0.198075 loss)
I0402 01:50:07.642367 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.468085
I0402 01:50:07.642379 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.840909
I0402 01:50:07.642391 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.680851
I0402 01:50:07.642405 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.84605 (* 0.3 = 0.553815 loss)
I0402 01:50:07.642426 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.559483 (* 0.3 = 0.167845 loss)
I0402 01:50:07.642439 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.531915
I0402 01:50:07.642452 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.869318
I0402 01:50:07.642463 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.787234
I0402 01:50:07.642477 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.42939 (* 1 = 1.42939 loss)
I0402 01:50:07.642490 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.412995 (* 1 = 0.412995 loss)
I0402 01:50:07.642503 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0402 01:50:07.642518 6134 solver.cpp:245] Train net output #16: total_confidence = 0.306105
I0402 01:50:07.642531 6134 sgd_solver.cpp:106] Iteration 179000, lr = 0.01
I0402 01:52:16.588376 6134 solver.cpp:229] Iteration 179500, loss = 2.63031
I0402 01:52:16.588479 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.416667
I0402 01:52:16.588497 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.840909
I0402 01:52:16.588510 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.770833
I0402 01:52:16.588527 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.54177 (* 0.3 = 0.462532 loss)
I0402 01:52:16.588542 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.441461 (* 0.3 = 0.132438 loss)
I0402 01:52:16.588554 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.604167
I0402 01:52:16.588567 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.880682
I0402 01:52:16.588579 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.958333
I0402 01:52:16.588593 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.02056 (* 0.3 = 0.306167 loss)
I0402 01:52:16.588608 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.318633 (* 0.3 = 0.0955899 loss)
I0402 01:52:16.588620 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.854167
I0402 01:52:16.588632 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.948864
I0402 01:52:16.588645 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.979167
I0402 01:52:16.588660 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.404942 (* 1 = 0.404942 loss)
I0402 01:52:16.588673 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.14464 (* 1 = 0.14464 loss)
I0402 01:52:16.588685 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0402 01:52:16.588697 6134 solver.cpp:245] Train net output #16: total_confidence = 0.352587
I0402 01:52:16.588709 6134 sgd_solver.cpp:106] Iteration 179500, lr = 0.01
I0402 01:54:25.125720 6134 solver.cpp:338] Iteration 180000, Testing net (#0)
I0402 01:54:54.896297 6134 solver.cpp:393] Test loss: 2.23829
I0402 01:54:54.896347 6134 solver.cpp:406] Test net output #0: loss1/accuracy = 0.523174
I0402 01:54:54.896363 6134 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.874413
I0402 01:54:54.896375 6134 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.796818
I0402 01:54:54.896391 6134 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 1.61872 (* 0.3 = 0.485616 loss)
I0402 01:54:54.896406 6134 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.433549 (* 0.3 = 0.130065 loss)
I0402 01:54:54.896420 6134 solver.cpp:406] Test net output #5: loss2/accuracy = 0.697814
I0402 01:54:54.896431 6134 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.920183
I0402 01:54:54.896443 6134 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.879918
I0402 01:54:54.896457 6134 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.1293 (* 0.3 = 0.33879 loss)
I0402 01:54:54.896471 6134 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.306052 (* 0.3 = 0.0918155 loss)
I0402 01:54:54.896483 6134 solver.cpp:406] Test net output #10: loss3/accuracy = 0.77584
I0402 01:54:54.896497 6134 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.940818
I0402 01:54:54.896507 6134 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.892329
I0402 01:54:54.896524 6134 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 0.93923 (* 1 = 0.93923 loss)
I0402 01:54:54.896538 6134 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.252776 (* 1 = 0.252776 loss)
I0402 01:54:54.896550 6134 solver.cpp:406] Test net output #15: total_accuracy = 0.442
I0402 01:54:54.896563 6134 solver.cpp:406] Test net output #16: total_confidence = 0.393443
I0402 01:54:55.047623 6134 solver.cpp:229] Iteration 180000, loss = 2.61947
I0402 01:54:55.047665 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.533333
I0402 01:54:55.047683 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.875
I0402 01:54:55.047696 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.8
I0402 01:54:55.047713 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.54213 (* 0.3 = 0.46264 loss)
I0402 01:54:55.047726 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.419607 (* 0.3 = 0.125882 loss)
I0402 01:54:55.047739 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.622222
I0402 01:54:55.047751 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.903409
I0402 01:54:55.047763 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.866667
I0402 01:54:55.047777 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.40304 (* 0.3 = 0.420913 loss)
I0402 01:54:55.047792 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.377345 (* 0.3 = 0.113204 loss)
I0402 01:54:55.047804 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.844444
I0402 01:54:55.047816 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.954545
I0402 01:54:55.047828 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.933333
I0402 01:54:55.047842 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.653125 (* 1 = 0.653125 loss)
I0402 01:54:55.047857 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.181416 (* 1 = 0.181416 loss)
I0402 01:54:55.047868 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0402 01:54:55.047880 6134 solver.cpp:245] Train net output #16: total_confidence = 0.517053
I0402 01:54:55.047893 6134 sgd_solver.cpp:106] Iteration 180000, lr = 0.01
I0402 01:57:03.741307 6134 solver.cpp:229] Iteration 180500, loss = 2.60978
I0402 01:57:03.741750 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.478261
I0402 01:57:03.741771 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.823864
I0402 01:57:03.741786 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.804348
I0402 01:57:03.741802 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.57353 (* 0.3 = 0.472059 loss)
I0402 01:57:03.741818 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.506671 (* 0.3 = 0.152001 loss)
I0402 01:57:03.741832 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.673913
I0402 01:57:03.741843 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.897727
I0402 01:57:03.741857 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.847826
I0402 01:57:03.741870 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.14392 (* 0.3 = 0.343177 loss)
I0402 01:57:03.741884 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.353633 (* 0.3 = 0.10609 loss)
I0402 01:57:03.741897 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.73913
I0402 01:57:03.741910 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.931818
I0402 01:57:03.741922 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.891304
I0402 01:57:03.741936 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.78782 (* 1 = 0.78782 loss)
I0402 01:57:03.741950 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.213183 (* 1 = 0.213183 loss)
I0402 01:57:03.741963 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0402 01:57:03.741976 6134 solver.cpp:245] Train net output #16: total_confidence = 0.351851
I0402 01:57:03.741988 6134 sgd_solver.cpp:106] Iteration 180500, lr = 0.01
I0402 01:59:12.529578 6134 solver.cpp:229] Iteration 181000, loss = 2.60925
I0402 01:59:12.529690 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.431818
I0402 01:59:12.529711 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.852273
I0402 01:59:12.529723 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.681818
I0402 01:59:12.529739 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.74141 (* 0.3 = 0.522423 loss)
I0402 01:59:12.529754 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.468585 (* 0.3 = 0.140576 loss)
I0402 01:59:12.529767 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.454545
I0402 01:59:12.529778 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.852273
I0402 01:59:12.529791 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.75
I0402 01:59:12.529805 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.4618 (* 0.3 = 0.438541 loss)
I0402 01:59:12.529819 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.413547 (* 0.3 = 0.124064 loss)
I0402 01:59:12.529832 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.75
I0402 01:59:12.529844 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.9375
I0402 01:59:12.529855 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.840909
I0402 01:59:12.529870 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.814359 (* 1 = 0.814359 loss)
I0402 01:59:12.529883 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.209962 (* 1 = 0.209962 loss)
I0402 01:59:12.529896 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0402 01:59:12.529908 6134 solver.cpp:245] Train net output #16: total_confidence = 0.343017
I0402 01:59:12.529919 6134 sgd_solver.cpp:106] Iteration 181000, lr = 0.01
I0402 02:01:21.397717 6134 solver.cpp:229] Iteration 181500, loss = 2.6238
I0402 02:01:21.397858 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.461538
I0402 02:01:21.397881 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.846591
I0402 02:01:21.397893 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.794872
I0402 02:01:21.397909 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.63988 (* 0.3 = 0.491965 loss)
I0402 02:01:21.397924 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.464716 (* 0.3 = 0.139415 loss)
I0402 02:01:21.397936 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.74359
I0402 02:01:21.397949 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.909091
I0402 02:01:21.397961 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.897436
I0402 02:01:21.397974 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.06046 (* 0.3 = 0.318139 loss)
I0402 02:01:21.397989 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.352677 (* 0.3 = 0.105803 loss)
I0402 02:01:21.398002 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.923077
I0402 02:01:21.398015 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.977273
I0402 02:01:21.398026 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 1
I0402 02:01:21.398041 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.297505 (* 1 = 0.297505 loss)
I0402 02:01:21.398054 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.0842105 (* 1 = 0.0842105 loss)
I0402 02:01:21.398066 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0402 02:01:21.398078 6134 solver.cpp:245] Train net output #16: total_confidence = 0.507073
I0402 02:01:21.398090 6134 sgd_solver.cpp:106] Iteration 181500, lr = 0.01
I0402 02:03:30.313899 6134 solver.cpp:229] Iteration 182000, loss = 2.59862
I0402 02:03:30.313994 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.413043
I0402 02:03:30.314014 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.835227
I0402 02:03:30.314028 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.630435
I0402 02:03:30.314044 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.06334 (* 0.3 = 0.619001 loss)
I0402 02:03:30.314059 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.601879 (* 0.3 = 0.180564 loss)
I0402 02:03:30.314074 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.586957
I0402 02:03:30.314087 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.880682
I0402 02:03:30.314100 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.826087
I0402 02:03:30.314113 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.46803 (* 0.3 = 0.440409 loss)
I0402 02:03:30.314128 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.426515 (* 0.3 = 0.127954 loss)
I0402 02:03:30.314141 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.869565
I0402 02:03:30.314152 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.965909
I0402 02:03:30.314164 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.891304
I0402 02:03:30.314178 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.849067 (* 1 = 0.849067 loss)
I0402 02:03:30.314193 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.23175 (* 1 = 0.23175 loss)
I0402 02:03:30.314204 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0402 02:03:30.314216 6134 solver.cpp:245] Train net output #16: total_confidence = 0.358069
I0402 02:03:30.314229 6134 sgd_solver.cpp:106] Iteration 182000, lr = 0.01
I0402 02:05:39.308456 6134 solver.cpp:229] Iteration 182500, loss = 2.63084
I0402 02:05:39.308650 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.431818
I0402 02:05:39.308672 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.829545
I0402 02:05:39.308686 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.659091
I0402 02:05:39.308702 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.89027 (* 0.3 = 0.56708 loss)
I0402 02:05:39.308717 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.562816 (* 0.3 = 0.168845 loss)
I0402 02:05:39.308730 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.613636
I0402 02:05:39.308743 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.886364
I0402 02:05:39.308755 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.795455
I0402 02:05:39.308769 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.32192 (* 0.3 = 0.396575 loss)
I0402 02:05:39.308784 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.368307 (* 0.3 = 0.110492 loss)
I0402 02:05:39.308797 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.772727
I0402 02:05:39.308809 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.931818
I0402 02:05:39.308821 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.977273
I0402 02:05:39.308835 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.636027 (* 1 = 0.636027 loss)
I0402 02:05:39.308850 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.202725 (* 1 = 0.202725 loss)
I0402 02:05:39.308861 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0402 02:05:39.308874 6134 solver.cpp:245] Train net output #16: total_confidence = 0.347608
I0402 02:05:39.308887 6134 sgd_solver.cpp:106] Iteration 182500, lr = 0.01
I0402 02:07:48.189590 6134 solver.cpp:229] Iteration 183000, loss = 2.66984
I0402 02:07:48.189923 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.488372
I0402 02:07:48.189941 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.857955
I0402 02:07:48.189954 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.767442
I0402 02:07:48.189971 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.65479 (* 0.3 = 0.496437 loss)
I0402 02:07:48.189985 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.481842 (* 0.3 = 0.144553 loss)
I0402 02:07:48.189998 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.813953
I0402 02:07:48.190011 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.926136
I0402 02:07:48.190023 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.953488
I0402 02:07:48.190037 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 0.749616 (* 0.3 = 0.224885 loss)
I0402 02:07:48.190052 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.258203 (* 0.3 = 0.0774608 loss)
I0402 02:07:48.190067 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.976744
I0402 02:07:48.190079 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.994318
I0402 02:07:48.190091 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 1
I0402 02:07:48.190105 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.15831 (* 1 = 0.15831 loss)
I0402 02:07:48.190119 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.0420598 (* 1 = 0.0420598 loss)
I0402 02:07:48.190132 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.875
I0402 02:07:48.190145 6134 solver.cpp:245] Train net output #16: total_confidence = 0.544107
I0402 02:07:48.190156 6134 sgd_solver.cpp:106] Iteration 183000, lr = 0.01
I0402 02:09:57.062791 6134 solver.cpp:229] Iteration 183500, loss = 2.60526
I0402 02:09:57.062933 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.42
I0402 02:09:57.062953 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.823864
I0402 02:09:57.062966 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.62
I0402 02:09:57.062983 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.87425 (* 0.3 = 0.562276 loss)
I0402 02:09:57.062999 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.566225 (* 0.3 = 0.169867 loss)
I0402 02:09:57.063010 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.52
I0402 02:09:57.063024 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.863636
I0402 02:09:57.063035 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.82
I0402 02:09:57.063048 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.64248 (* 0.3 = 0.492743 loss)
I0402 02:09:57.063063 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.490811 (* 0.3 = 0.147243 loss)
I0402 02:09:57.063076 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.74
I0402 02:09:57.063088 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.926136
I0402 02:09:57.063100 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.88
I0402 02:09:57.063114 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.916602 (* 1 = 0.916602 loss)
I0402 02:09:57.063128 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.26959 (* 1 = 0.26959 loss)
I0402 02:09:57.063140 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0402 02:09:57.063153 6134 solver.cpp:245] Train net output #16: total_confidence = 0.29982
I0402 02:09:57.063164 6134 sgd_solver.cpp:106] Iteration 183500, lr = 0.01
I0402 02:12:05.964361 6134 solver.cpp:229] Iteration 184000, loss = 2.61697
I0402 02:12:05.964475 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.387755
I0402 02:12:05.964495 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.818182
I0402 02:12:05.964509 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.755102
I0402 02:12:05.964526 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.80176 (* 0.3 = 0.540528 loss)
I0402 02:12:05.964541 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.550611 (* 0.3 = 0.165183 loss)
I0402 02:12:05.964555 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.55102
I0402 02:12:05.964567 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.852273
I0402 02:12:05.964579 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.755102
I0402 02:12:05.964592 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.47839 (* 0.3 = 0.443517 loss)
I0402 02:12:05.964607 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.47083 (* 0.3 = 0.141249 loss)
I0402 02:12:05.964619 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.734694
I0402 02:12:05.964632 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.914773
I0402 02:12:05.964643 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.877551
I0402 02:12:05.964658 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.3406 (* 1 = 1.3406 loss)
I0402 02:12:05.964671 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.410167 (* 1 = 0.410167 loss)
I0402 02:12:05.964684 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0402 02:12:05.964695 6134 solver.cpp:245] Train net output #16: total_confidence = 0.22648
I0402 02:12:05.964707 6134 sgd_solver.cpp:106] Iteration 184000, lr = 0.01
I0402 02:14:14.932867 6134 solver.cpp:229] Iteration 184500, loss = 2.56436
I0402 02:14:14.932996 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.489796
I0402 02:14:14.933017 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.852273
I0402 02:14:14.933030 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.816327
I0402 02:14:14.933045 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.39784 (* 0.3 = 0.419352 loss)
I0402 02:14:14.933060 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.41354 (* 0.3 = 0.124062 loss)
I0402 02:14:14.933073 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.755102
I0402 02:14:14.933087 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.931818
I0402 02:14:14.933099 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.959184
I0402 02:14:14.933114 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 0.938615 (* 0.3 = 0.281585 loss)
I0402 02:14:14.933142 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.274458 (* 0.3 = 0.0823373 loss)
I0402 02:14:14.933156 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.938776
I0402 02:14:14.933168 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.977273
I0402 02:14:14.933181 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.979592
I0402 02:14:14.933194 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.201359 (* 1 = 0.201359 loss)
I0402 02:14:14.933209 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.0694399 (* 1 = 0.0694399 loss)
I0402 02:14:14.933221 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0402 02:14:14.933233 6134 solver.cpp:245] Train net output #16: total_confidence = 0.509486
I0402 02:14:14.933245 6134 sgd_solver.cpp:106] Iteration 184500, lr = 0.01
I0402 02:16:23.454079 6134 solver.cpp:338] Iteration 185000, Testing net (#0)
I0402 02:16:53.321988 6134 solver.cpp:393] Test loss: 2.25526
I0402 02:16:53.322032 6134 solver.cpp:406] Test net output #0: loss1/accuracy = 0.52536
I0402 02:16:53.322048 6134 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.874275
I0402 02:16:53.322062 6134 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.788177
I0402 02:16:53.322077 6134 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 1.65927 (* 0.3 = 0.497781 loss)
I0402 02:16:53.322093 6134 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.441612 (* 0.3 = 0.132484 loss)
I0402 02:16:53.322104 6134 solver.cpp:406] Test net output #5: loss2/accuracy = 0.658484
I0402 02:16:53.322118 6134 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.914183
I0402 02:16:53.322129 6134 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.86378
I0402 02:16:53.322144 6134 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.23793 (* 0.3 = 0.371379 loss)
I0402 02:16:53.322157 6134 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.314326 (* 0.3 = 0.0942978 loss)
I0402 02:16:53.322170 6134 solver.cpp:406] Test net output #10: loss3/accuracy = 0.783371
I0402 02:16:53.322181 6134 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.942682
I0402 02:16:53.322193 6134 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.888609
I0402 02:16:53.322206 6134 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 0.919635 (* 1 = 0.919635 loss)
I0402 02:16:53.322221 6134 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.239684 (* 1 = 0.239684 loss)
I0402 02:16:53.322232 6134 solver.cpp:406] Test net output #15: total_accuracy = 0.431
I0402 02:16:53.322244 6134 solver.cpp:406] Test net output #16: total_confidence = 0.408926
I0402 02:16:53.472124 6134 solver.cpp:229] Iteration 185000, loss = 2.64308
I0402 02:16:53.472496 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.595745
I0402 02:16:53.472519 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.852273
I0402 02:16:53.472533 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.87234
I0402 02:16:53.472548 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.33846 (* 0.3 = 0.401539 loss)
I0402 02:16:53.472563 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.461656 (* 0.3 = 0.138497 loss)
I0402 02:16:53.472575 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.765957
I0402 02:16:53.472589 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.903409
I0402 02:16:53.472599 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.957447
I0402 02:16:53.472614 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 0.78138 (* 0.3 = 0.234414 loss)
I0402 02:16:53.472627 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.27812 (* 0.3 = 0.083436 loss)
I0402 02:16:53.472640 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.957447
I0402 02:16:53.472652 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.977273
I0402 02:16:53.472663 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 1
I0402 02:16:53.472676 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.244932 (* 1 = 0.244932 loss)
I0402 02:16:53.472690 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.0946138 (* 1 = 0.0946138 loss)
I0402 02:16:53.472702 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0402 02:16:53.472713 6134 solver.cpp:245] Train net output #16: total_confidence = 0.434287
I0402 02:16:53.472725 6134 sgd_solver.cpp:106] Iteration 185000, lr = 0.01
I0402 02:19:02.156186 6134 solver.cpp:229] Iteration 185500, loss = 2.59329
I0402 02:19:02.156322 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.372549
I0402 02:19:02.156342 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.806818
I0402 02:19:02.156355 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.588235
I0402 02:19:02.156371 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.26422 (* 0.3 = 0.679266 loss)
I0402 02:19:02.156388 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.7163 (* 0.3 = 0.21489 loss)
I0402 02:19:02.156400 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.45098
I0402 02:19:02.156414 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.835227
I0402 02:19:02.156425 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.72549
I0402 02:19:02.156440 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.7135 (* 0.3 = 0.514049 loss)
I0402 02:19:02.156455 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.517793 (* 0.3 = 0.155338 loss)
I0402 02:19:02.156467 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.647059
I0402 02:19:02.156479 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.892045
I0402 02:19:02.156491 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.784314
I0402 02:19:02.156505 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.05788 (* 1 = 1.05788 loss)
I0402 02:19:02.156522 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.332993 (* 1 = 0.332993 loss)
I0402 02:19:02.156535 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0402 02:19:02.156548 6134 solver.cpp:245] Train net output #16: total_confidence = 0.370239
I0402 02:19:02.156560 6134 sgd_solver.cpp:106] Iteration 185500, lr = 0.01
I0402 02:21:10.661631 6134 solver.cpp:229] Iteration 186000, loss = 2.58071
I0402 02:21:10.661788 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.431818
I0402 02:21:10.661809 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.823864
I0402 02:21:10.661823 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.659091
I0402 02:21:10.661839 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.83737 (* 0.3 = 0.551212 loss)
I0402 02:21:10.661854 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.559457 (* 0.3 = 0.167837 loss)
I0402 02:21:10.661867 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.522727
I0402 02:21:10.661880 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.846591
I0402 02:21:10.661891 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.772727
I0402 02:21:10.661906 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.58713 (* 0.3 = 0.476138 loss)
I0402 02:21:10.661919 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.515448 (* 0.3 = 0.154634 loss)
I0402 02:21:10.661932 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.681818
I0402 02:21:10.661944 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.914773
I0402 02:21:10.661957 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.75
I0402 02:21:10.661972 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.5948 (* 1 = 1.5948 loss)
I0402 02:21:10.661985 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.436508 (* 1 = 0.436508 loss)
I0402 02:21:10.661998 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0402 02:21:10.662010 6134 solver.cpp:245] Train net output #16: total_confidence = 0.413604
I0402 02:21:10.662022 6134 sgd_solver.cpp:106] Iteration 186000, lr = 0.01
I0402 02:23:19.244269 6134 solver.cpp:229] Iteration 186500, loss = 2.55349
I0402 02:23:19.244387 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.380952
I0402 02:23:19.244407 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.818182
I0402 02:23:19.244421 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.761905
I0402 02:23:19.244437 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.66588 (* 0.3 = 0.499763 loss)
I0402 02:23:19.244452 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.526542 (* 0.3 = 0.157962 loss)
I0402 02:23:19.244465 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.642857
I0402 02:23:19.244477 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.875
I0402 02:23:19.244490 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.857143
I0402 02:23:19.244504 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.23403 (* 0.3 = 0.370209 loss)
I0402 02:23:19.244521 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.430102 (* 0.3 = 0.129031 loss)
I0402 02:23:19.244534 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.809524
I0402 02:23:19.244545 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.931818
I0402 02:23:19.244557 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.952381
I0402 02:23:19.244571 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.575805 (* 1 = 0.575805 loss)
I0402 02:23:19.244585 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.186599 (* 1 = 0.186599 loss)
I0402 02:23:19.244598 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0402 02:23:19.244611 6134 solver.cpp:245] Train net output #16: total_confidence = 0.275197
I0402 02:23:19.244623 6134 sgd_solver.cpp:106] Iteration 186500, lr = 0.01
I0402 02:25:28.022889 6134 solver.cpp:229] Iteration 187000, loss = 2.60199
I0402 02:25:28.023017 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.454545
I0402 02:25:28.023048 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.846591
I0402 02:25:28.023072 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.840909
I0402 02:25:28.023090 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.46989 (* 0.3 = 0.440966 loss)
I0402 02:25:28.023105 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.448743 (* 0.3 = 0.134623 loss)
I0402 02:25:28.023118 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.545455
I0402 02:25:28.023131 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.857955
I0402 02:25:28.023144 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.931818
I0402 02:25:28.023157 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.15583 (* 0.3 = 0.346749 loss)
I0402 02:25:28.023172 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.369188 (* 0.3 = 0.110756 loss)
I0402 02:25:28.023185 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.886364
I0402 02:25:28.023196 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.965909
I0402 02:25:28.023208 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.977273
I0402 02:25:28.023222 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.428467 (* 1 = 0.428467 loss)
I0402 02:25:28.023236 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.123117 (* 1 = 0.123117 loss)
I0402 02:25:28.023248 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0402 02:25:28.023262 6134 solver.cpp:245] Train net output #16: total_confidence = 0.366129
I0402 02:25:28.023273 6134 sgd_solver.cpp:106] Iteration 187000, lr = 0.01
I0402 02:27:36.627903 6134 solver.cpp:229] Iteration 187500, loss = 2.50041
I0402 02:27:36.628231 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.466667
I0402 02:27:36.628249 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.840909
I0402 02:27:36.628262 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.8
I0402 02:27:36.628278 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.7356 (* 0.3 = 0.52068 loss)
I0402 02:27:36.628293 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.504511 (* 0.3 = 0.151353 loss)
I0402 02:27:36.628306 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.6
I0402 02:27:36.628319 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.886364
I0402 02:27:36.628330 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.866667
I0402 02:27:36.628345 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.3669 (* 0.3 = 0.410071 loss)
I0402 02:27:36.628360 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.396422 (* 0.3 = 0.118927 loss)
I0402 02:27:36.628371 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.844444
I0402 02:27:36.628383 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.960227
I0402 02:27:36.628396 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.888889
I0402 02:27:36.628409 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.691505 (* 1 = 0.691505 loss)
I0402 02:27:36.628423 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.185228 (* 1 = 0.185228 loss)
I0402 02:27:36.628435 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0402 02:27:36.628448 6134 solver.cpp:245] Train net output #16: total_confidence = 0.482235
I0402 02:27:36.628459 6134 sgd_solver.cpp:106] Iteration 187500, lr = 0.01
I0402 02:29:45.251060 6134 solver.cpp:229] Iteration 188000, loss = 2.54921
I0402 02:29:45.251222 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.425532
I0402 02:29:45.251243 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.823864
I0402 02:29:45.251256 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.638298
I0402 02:29:45.251273 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.5669 (* 0.3 = 0.770071 loss)
I0402 02:29:45.251288 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.803239 (* 0.3 = 0.240972 loss)
I0402 02:29:45.251301 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.510638
I0402 02:29:45.251313 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.846591
I0402 02:29:45.251325 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.680851
I0402 02:29:45.251339 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.00756 (* 0.3 = 0.602269 loss)
I0402 02:29:45.251353 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.667793 (* 0.3 = 0.200338 loss)
I0402 02:29:45.251365 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.723404
I0402 02:29:45.251379 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.897727
I0402 02:29:45.251389 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.765957
I0402 02:29:45.251405 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.57008 (* 1 = 1.57008 loss)
I0402 02:29:45.251418 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.554635 (* 1 = 0.554635 loss)
I0402 02:29:45.251431 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0402 02:29:45.251443 6134 solver.cpp:245] Train net output #16: total_confidence = 0.363831
I0402 02:29:45.251454 6134 sgd_solver.cpp:106] Iteration 188000, lr = 0.01
I0402 02:31:54.012687 6134 solver.cpp:229] Iteration 188500, loss = 2.52728
I0402 02:31:54.012805 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.355556
I0402 02:31:54.012830 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.8125
I0402 02:31:54.012842 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.666667
I0402 02:31:54.012859 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.11389 (* 0.3 = 0.634167 loss)
I0402 02:31:54.012874 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.653943 (* 0.3 = 0.196183 loss)
I0402 02:31:54.012887 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.622222
I0402 02:31:54.012898 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.892045
I0402 02:31:54.012910 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.755556
I0402 02:31:54.012924 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.42391 (* 0.3 = 0.427173 loss)
I0402 02:31:54.012939 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.421048 (* 0.3 = 0.126315 loss)
I0402 02:31:54.012951 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.777778
I0402 02:31:54.012964 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.9375
I0402 02:31:54.012975 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.888889
I0402 02:31:54.012989 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.853155 (* 1 = 0.853155 loss)
I0402 02:31:54.013003 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.249357 (* 1 = 0.249357 loss)
I0402 02:31:54.013015 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0402 02:31:54.013027 6134 solver.cpp:245] Train net output #16: total_confidence = 0.442347
I0402 02:31:54.013039 6134 sgd_solver.cpp:106] Iteration 188500, lr = 0.01
I0402 02:34:02.739753 6134 solver.cpp:229] Iteration 189000, loss = 2.61694
I0402 02:34:02.739881 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.38
I0402 02:34:02.739902 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.818182
I0402 02:34:02.739915 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.72
I0402 02:34:02.739931 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.92821 (* 0.3 = 0.578463 loss)
I0402 02:34:02.739946 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.583344 (* 0.3 = 0.175003 loss)
I0402 02:34:02.739959 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.5
I0402 02:34:02.739971 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.840909
I0402 02:34:02.739984 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.76
I0402 02:34:02.739997 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.55156 (* 0.3 = 0.465469 loss)
I0402 02:34:02.740013 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.496165 (* 0.3 = 0.148849 loss)
I0402 02:34:02.740025 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.72
I0402 02:34:02.740038 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.897727
I0402 02:34:02.740049 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.88
I0402 02:34:02.740063 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.887985 (* 1 = 0.887985 loss)
I0402 02:34:02.740077 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.306735 (* 1 = 0.306735 loss)
I0402 02:34:02.740090 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0402 02:34:02.740103 6134 solver.cpp:245] Train net output #16: total_confidence = 0.226298
I0402 02:34:02.740114 6134 sgd_solver.cpp:106] Iteration 189000, lr = 0.01
I0402 02:36:11.404500 6134 solver.cpp:229] Iteration 189500, loss = 2.54933
I0402 02:36:11.404618 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.377778
I0402 02:36:11.404639 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.823864
I0402 02:36:11.404651 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.622222
I0402 02:36:11.404666 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.90802 (* 0.3 = 0.572407 loss)
I0402 02:36:11.404681 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.557916 (* 0.3 = 0.167375 loss)
I0402 02:36:11.404695 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.577778
I0402 02:36:11.404706 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.880682
I0402 02:36:11.404719 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.866667
I0402 02:36:11.404732 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.26519 (* 0.3 = 0.379556 loss)
I0402 02:36:11.404747 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.352762 (* 0.3 = 0.105829 loss)
I0402 02:36:11.404760 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.822222
I0402 02:36:11.404772 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.954545
I0402 02:36:11.404784 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.955556
I0402 02:36:11.404798 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.504882 (* 1 = 0.504882 loss)
I0402 02:36:11.404811 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.143264 (* 1 = 0.143264 loss)
I0402 02:36:11.404824 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0402 02:36:11.404836 6134 solver.cpp:245] Train net output #16: total_confidence = 0.367848
I0402 02:36:11.404849 6134 sgd_solver.cpp:106] Iteration 189500, lr = 0.01
I0402 02:38:20.125980 6134 solver.cpp:338] Iteration 190000, Testing net (#0)
I0402 02:38:49.869405 6134 solver.cpp:393] Test loss: 2.26244
I0402 02:38:49.869449 6134 solver.cpp:406] Test net output #0: loss1/accuracy = 0.513228
I0402 02:38:49.869467 6134 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.870957
I0402 02:38:49.869479 6134 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.784534
I0402 02:38:49.869495 6134 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 1.6877 (* 0.3 = 0.506311 loss)
I0402 02:38:49.869510 6134 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.456084 (* 0.3 = 0.136825 loss)
I0402 02:38:49.869526 6134 solver.cpp:406] Test net output #5: loss2/accuracy = 0.679799
I0402 02:38:49.869539 6134 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.917229
I0402 02:38:49.869550 6134 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.865481
I0402 02:38:49.869563 6134 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.19656 (* 0.3 = 0.358968 loss)
I0402 02:38:49.869578 6134 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.314087 (* 0.3 = 0.0942262 loss)
I0402 02:38:49.869590 6134 solver.cpp:406] Test net output #10: loss3/accuracy = 0.770363
I0402 02:38:49.869602 6134 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.940455
I0402 02:38:49.869613 6134 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.88923
I0402 02:38:49.869627 6134 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 0.923241 (* 1 = 0.923241 loss)
I0402 02:38:49.869642 6134 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.242866 (* 1 = 0.242866 loss)
I0402 02:38:49.869652 6134 solver.cpp:406] Test net output #15: total_accuracy = 0.444
I0402 02:38:49.869664 6134 solver.cpp:406] Test net output #16: total_confidence = 0.412445
I0402 02:38:50.020536 6134 solver.cpp:229] Iteration 190000, loss = 2.60416
I0402 02:38:50.020586 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.454545
I0402 02:38:50.020602 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.852273
I0402 02:38:50.020615 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.590909
I0402 02:38:50.020632 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.08606 (* 0.3 = 0.625817 loss)
I0402 02:38:50.020647 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.581542 (* 0.3 = 0.174463 loss)
I0402 02:38:50.020659 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.613636
I0402 02:38:50.020671 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.897727
I0402 02:38:50.020684 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.772727
I0402 02:38:50.020697 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.58663 (* 0.3 = 0.47599 loss)
I0402 02:38:50.020711 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.430009 (* 0.3 = 0.129003 loss)
I0402 02:38:50.020723 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.772727
I0402 02:38:50.020735 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.943182
I0402 02:38:50.020747 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.818182
I0402 02:38:50.020761 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.87964 (* 1 = 0.87964 loss)
I0402 02:38:50.020776 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.236985 (* 1 = 0.236985 loss)
I0402 02:38:50.020787 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0402 02:38:50.020799 6134 solver.cpp:245] Train net output #16: total_confidence = 0.486673
I0402 02:38:50.020812 6134 sgd_solver.cpp:106] Iteration 190000, lr = 0.01
I0402 02:40:58.680814 6134 solver.cpp:229] Iteration 190500, loss = 2.54403
I0402 02:40:58.680943 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.405405
I0402 02:40:58.680963 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.840909
I0402 02:40:58.680975 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.621622
I0402 02:40:58.680992 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.28437 (* 0.3 = 0.685311 loss)
I0402 02:40:58.681007 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.603057 (* 0.3 = 0.180917 loss)
I0402 02:40:58.681020 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.378378
I0402 02:40:58.681032 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.852273
I0402 02:40:58.681044 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.648649
I0402 02:40:58.681058 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.93007 (* 0.3 = 0.579022 loss)
I0402 02:40:58.681090 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.513597 (* 0.3 = 0.154079 loss)
I0402 02:40:58.681104 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.567568
I0402 02:40:58.681116 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.897727
I0402 02:40:58.681128 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.72973
I0402 02:40:58.681143 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.4602 (* 1 = 1.4602 loss)
I0402 02:40:58.681157 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.370564 (* 1 = 0.370564 loss)
I0402 02:40:58.681169 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0402 02:40:58.681181 6134 solver.cpp:245] Train net output #16: total_confidence = 0.277891
I0402 02:40:58.681193 6134 sgd_solver.cpp:106] Iteration 190500, lr = 0.01
I0402 02:43:07.294528 6134 solver.cpp:229] Iteration 191000, loss = 2.63624
I0402 02:43:07.294636 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.425532
I0402 02:43:07.294656 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.829545
I0402 02:43:07.294669 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.617021
I0402 02:43:07.294687 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.92177 (* 0.3 = 0.576531 loss)
I0402 02:43:07.294702 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.569456 (* 0.3 = 0.170837 loss)
I0402 02:43:07.294714 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.510638
I0402 02:43:07.294726 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.857955
I0402 02:43:07.294739 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.829787
I0402 02:43:07.294754 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.54427 (* 0.3 = 0.463281 loss)
I0402 02:43:07.294767 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.454247 (* 0.3 = 0.136274 loss)
I0402 02:43:07.294780 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.723404
I0402 02:43:07.294791 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.926136
I0402 02:43:07.294802 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.808511
I0402 02:43:07.294817 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.0222 (* 1 = 1.0222 loss)
I0402 02:43:07.294831 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.288435 (* 1 = 0.288435 loss)
I0402 02:43:07.294843 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0402 02:43:07.294855 6134 solver.cpp:245] Train net output #16: total_confidence = 0.27923
I0402 02:43:07.294867 6134 sgd_solver.cpp:106] Iteration 191000, lr = 0.01
I0402 02:45:16.254225 6134 solver.cpp:229] Iteration 191500, loss = 2.53745
I0402 02:45:16.254348 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.478261
I0402 02:45:16.254367 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.857955
I0402 02:45:16.254380 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.847826
I0402 02:45:16.254396 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.57466 (* 0.3 = 0.472397 loss)
I0402 02:45:16.254411 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.434561 (* 0.3 = 0.130368 loss)
I0402 02:45:16.254425 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.717391
I0402 02:45:16.254437 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.920455
I0402 02:45:16.254448 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.913043
I0402 02:45:16.254462 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.03473 (* 0.3 = 0.31042 loss)
I0402 02:45:16.254477 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.301724 (* 0.3 = 0.0905172 loss)
I0402 02:45:16.254490 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.913043
I0402 02:45:16.254503 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.977273
I0402 02:45:16.254514 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.956522
I0402 02:45:16.254528 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.427243 (* 1 = 0.427243 loss)
I0402 02:45:16.254542 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.117487 (* 1 = 0.117487 loss)
I0402 02:45:16.254554 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0402 02:45:16.254566 6134 solver.cpp:245] Train net output #16: total_confidence = 0.414072
I0402 02:45:16.254577 6134 sgd_solver.cpp:106] Iteration 191500, lr = 0.01
I0402 02:47:24.933358 6134 solver.cpp:229] Iteration 192000, loss = 2.5141
I0402 02:47:24.933714 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.439024
I0402 02:47:24.933744 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.835227
I0402 02:47:24.933768 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.658537
I0402 02:47:24.933799 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.09013 (* 0.3 = 0.627039 loss)
I0402 02:47:24.933825 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.588139 (* 0.3 = 0.176442 loss)
I0402 02:47:24.933847 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.560976
I0402 02:47:24.933871 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.880682
I0402 02:47:24.933892 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.804878
I0402 02:47:24.933917 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.42827 (* 0.3 = 0.42848 loss)
I0402 02:47:24.933943 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.404409 (* 0.3 = 0.121323 loss)
I0402 02:47:24.933964 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.731707
I0402 02:47:24.933997 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.920455
I0402 02:47:24.934031 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.853659
I0402 02:47:24.934058 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.940584 (* 1 = 0.940584 loss)
I0402 02:47:24.934087 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.268154 (* 1 = 0.268154 loss)
I0402 02:47:24.934109 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0402 02:47:24.934130 6134 solver.cpp:245] Train net output #16: total_confidence = 0.265713
I0402 02:47:24.934151 6134 sgd_solver.cpp:106] Iteration 192000, lr = 0.01
I0402 02:49:33.614536 6134 solver.cpp:229] Iteration 192500, loss = 2.50409
I0402 02:49:33.614717 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.510204
I0402 02:49:33.614738 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.857955
I0402 02:49:33.614751 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.632653
I0402 02:49:33.614768 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.04432 (* 0.3 = 0.613295 loss)
I0402 02:49:33.614784 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.600523 (* 0.3 = 0.180157 loss)
I0402 02:49:33.614795 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.571429
I0402 02:49:33.614809 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.880682
I0402 02:49:33.614820 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.836735
I0402 02:49:33.614833 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.43378 (* 0.3 = 0.430134 loss)
I0402 02:49:33.614848 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.427602 (* 0.3 = 0.128281 loss)
I0402 02:49:33.614861 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.836735
I0402 02:49:33.614872 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.954545
I0402 02:49:33.614884 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.897959
I0402 02:49:33.614898 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.62765 (* 1 = 0.62765 loss)
I0402 02:49:33.614912 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.182117 (* 1 = 0.182117 loss)
I0402 02:49:33.614924 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0402 02:49:33.614936 6134 solver.cpp:245] Train net output #16: total_confidence = 0.359157
I0402 02:49:33.614948 6134 sgd_solver.cpp:106] Iteration 192500, lr = 0.01
I0402 02:51:42.066972 6134 solver.cpp:229] Iteration 193000, loss = 2.49777
I0402 02:51:42.067087 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.425532
I0402 02:51:42.067117 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.829545
I0402 02:51:42.067140 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.744681
I0402 02:51:42.067170 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.77516 (* 0.3 = 0.532549 loss)
I0402 02:51:42.067198 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.511704 (* 0.3 = 0.153511 loss)
I0402 02:51:42.067220 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.680851
I0402 02:51:42.067244 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.903409
I0402 02:51:42.067266 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.914894
I0402 02:51:42.067291 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.08664 (* 0.3 = 0.325991 loss)
I0402 02:51:42.067318 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.319452 (* 0.3 = 0.0958355 loss)
I0402 02:51:42.067339 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.93617
I0402 02:51:42.067361 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.982955
I0402 02:51:42.067381 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 1
I0402 02:51:42.067409 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.261076 (* 1 = 0.261076 loss)
I0402 02:51:42.067436 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.0742366 (* 1 = 0.0742366 loss)
I0402 02:51:42.067458 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.75
I0402 02:51:42.067481 6134 solver.cpp:245] Train net output #16: total_confidence = 0.38126
I0402 02:51:42.067502 6134 sgd_solver.cpp:106] Iteration 193000, lr = 0.01
I0402 02:53:50.758524 6134 solver.cpp:229] Iteration 193500, loss = 2.52772
I0402 02:53:50.758652 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.340426
I0402 02:53:50.758682 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.795455
I0402 02:53:50.758705 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.680851
I0402 02:53:50.758736 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.20515 (* 0.3 = 0.661545 loss)
I0402 02:53:50.758764 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.670271 (* 0.3 = 0.201081 loss)
I0402 02:53:50.758786 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.489362
I0402 02:53:50.758810 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.852273
I0402 02:53:50.758832 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.787234
I0402 02:53:50.758857 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.68216 (* 0.3 = 0.504648 loss)
I0402 02:53:50.758882 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.503708 (* 0.3 = 0.151113 loss)
I0402 02:53:50.758904 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.765957
I0402 02:53:50.758924 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.926136
I0402 02:53:50.758945 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.893617
I0402 02:53:50.758972 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.980722 (* 1 = 0.980722 loss)
I0402 02:53:50.759001 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.288701 (* 1 = 0.288701 loss)
I0402 02:53:50.759021 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0402 02:53:50.759043 6134 solver.cpp:245] Train net output #16: total_confidence = 0.363504
I0402 02:53:50.759063 6134 sgd_solver.cpp:106] Iteration 193500, lr = 0.01
I0402 02:55:59.379551 6134 solver.cpp:229] Iteration 194000, loss = 2.49342
I0402 02:55:59.379683 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.525
I0402 02:55:59.379703 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.869318
I0402 02:55:59.379716 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.775
I0402 02:55:59.379731 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.45659 (* 0.3 = 0.436976 loss)
I0402 02:55:59.379747 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.425143 (* 0.3 = 0.127543 loss)
I0402 02:55:59.379760 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.6
I0402 02:55:59.379772 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.892045
I0402 02:55:59.379784 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.9
I0402 02:55:59.379798 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.10399 (* 0.3 = 0.331198 loss)
I0402 02:55:59.379813 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.306423 (* 0.3 = 0.0919268 loss)
I0402 02:55:59.379827 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.95
I0402 02:55:59.379838 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.988636
I0402 02:55:59.379849 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.95
I0402 02:55:59.379863 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.262864 (* 1 = 0.262864 loss)
I0402 02:55:59.379878 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.0752398 (* 1 = 0.0752398 loss)
I0402 02:55:59.379890 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.875
I0402 02:55:59.379901 6134 solver.cpp:245] Train net output #16: total_confidence = 0.531969
I0402 02:55:59.379914 6134 sgd_solver.cpp:106] Iteration 194000, lr = 0.01
I0402 02:58:08.004564 6134 solver.cpp:229] Iteration 194500, loss = 2.50357
I0402 02:58:08.004935 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.5
I0402 02:58:08.004964 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.835227
I0402 02:58:08.004988 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.694444
I0402 02:58:08.005018 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.89805 (* 0.3 = 0.569415 loss)
I0402 02:58:08.005065 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.614486 (* 0.3 = 0.184346 loss)
I0402 02:58:08.005094 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.472222
I0402 02:58:08.005118 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.840909
I0402 02:58:08.005141 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.777778
I0402 02:58:08.005167 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.6776 (* 0.3 = 0.503281 loss)
I0402 02:58:08.005193 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.532132 (* 0.3 = 0.15964 loss)
I0402 02:58:08.005218 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.861111
I0402 02:58:08.005239 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.965909
I0402 02:58:08.005259 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.972222
I0402 02:58:08.005285 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.644364 (* 1 = 0.644364 loss)
I0402 02:58:08.005309 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.157445 (* 1 = 0.157445 loss)
I0402 02:58:08.005331 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0402 02:58:08.005352 6134 solver.cpp:245] Train net output #16: total_confidence = 0.435561
I0402 02:58:08.005373 6134 sgd_solver.cpp:106] Iteration 194500, lr = 0.01
I0402 03:00:16.600250 6134 solver.cpp:338] Iteration 195000, Testing net (#0)
I0402 03:00:46.364195 6134 solver.cpp:393] Test loss: 2.21434
I0402 03:00:46.364240 6134 solver.cpp:406] Test net output #0: loss1/accuracy = 0.547498
I0402 03:00:46.364258 6134 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.874048
I0402 03:00:46.364270 6134 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.795258
I0402 03:00:46.364285 6134 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 1.59432 (* 0.3 = 0.478295 loss)
I0402 03:00:46.364300 6134 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.444611 (* 0.3 = 0.133383 loss)
I0402 03:00:46.364312 6134 solver.cpp:406] Test net output #5: loss2/accuracy = 0.695619
I0402 03:00:46.364325 6134 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.91432
I0402 03:00:46.364336 6134 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.870314
I0402 03:00:46.364349 6134 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.13668 (* 0.3 = 0.341004 loss)
I0402 03:00:46.364363 6134 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.320404 (* 0.3 = 0.0961213 loss)
I0402 03:00:46.364375 6134 solver.cpp:406] Test net output #10: loss3/accuracy = 0.777778
I0402 03:00:46.364387 6134 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.938137
I0402 03:00:46.364399 6134 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.88199
I0402 03:00:46.364413 6134 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 0.908771 (* 1 = 0.908771 loss)
I0402 03:00:46.364426 6134 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.256766 (* 1 = 0.256766 loss)
I0402 03:00:46.364439 6134 solver.cpp:406] Test net output #15: total_accuracy = 0.427
I0402 03:00:46.364449 6134 solver.cpp:406] Test net output #16: total_confidence = 0.372638
I0402 03:00:46.515811 6134 solver.cpp:229] Iteration 195000, loss = 2.61633
I0402 03:00:46.515851 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.42
I0402 03:00:46.515868 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.801136
I0402 03:00:46.515880 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.54
I0402 03:00:46.515895 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.07939 (* 0.3 = 0.623818 loss)
I0402 03:00:46.515909 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.698789 (* 0.3 = 0.209637 loss)
I0402 03:00:46.515929 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.48
I0402 03:00:46.515954 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.818182
I0402 03:00:46.515969 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.68
I0402 03:00:46.515983 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.88376 (* 0.3 = 0.565128 loss)
I0402 03:00:46.515997 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.654275 (* 0.3 = 0.196283 loss)
I0402 03:00:46.516010 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.64
I0402 03:00:46.516021 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.880682
I0402 03:00:46.516032 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.84
I0402 03:00:46.516049 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.10041 (* 1 = 1.10041 loss)
I0402 03:00:46.516063 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.359171 (* 1 = 0.359171 loss)
I0402 03:00:46.516077 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0402 03:00:46.516088 6134 solver.cpp:245] Train net output #16: total_confidence = 0.202482
I0402 03:00:46.516100 6134 sgd_solver.cpp:106] Iteration 195000, lr = 0.01
I0402 03:02:55.098968 6134 solver.cpp:229] Iteration 195500, loss = 2.536
I0402 03:02:55.099125 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.486486
I0402 03:02:55.099146 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.852273
I0402 03:02:55.099159 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.675676
I0402 03:02:55.099175 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.87027 (* 0.3 = 0.561081 loss)
I0402 03:02:55.099190 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.556108 (* 0.3 = 0.166832 loss)
I0402 03:02:55.099202 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.621622
I0402 03:02:55.099215 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.886364
I0402 03:02:55.099227 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.837838
I0402 03:02:55.099241 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.24419 (* 0.3 = 0.373257 loss)
I0402 03:02:55.099256 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.359819 (* 0.3 = 0.107946 loss)
I0402 03:02:55.099268 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.810811
I0402 03:02:55.099280 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.943182
I0402 03:02:55.099292 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.945946
I0402 03:02:55.099305 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.522753 (* 1 = 0.522753 loss)
I0402 03:02:55.099319 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.174824 (* 1 = 0.174824 loss)
I0402 03:02:55.099333 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0402 03:02:55.099344 6134 solver.cpp:245] Train net output #16: total_confidence = 0.400479
I0402 03:02:55.099356 6134 sgd_solver.cpp:106] Iteration 195500, lr = 0.01
I0402 03:05:03.879400 6134 solver.cpp:229] Iteration 196000, loss = 2.54486
I0402 03:05:03.879549 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.613636
I0402 03:05:03.879570 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.869318
I0402 03:05:03.879583 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.727273
I0402 03:05:03.879598 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.6647 (* 0.3 = 0.49941 loss)
I0402 03:05:03.879613 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.514321 (* 0.3 = 0.154296 loss)
I0402 03:05:03.879626 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.613636
I0402 03:05:03.879638 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.892045
I0402 03:05:03.879650 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.863636
I0402 03:05:03.879664 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.26587 (* 0.3 = 0.379762 loss)
I0402 03:05:03.879679 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.364552 (* 0.3 = 0.109366 loss)
I0402 03:05:03.879691 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.818182
I0402 03:05:03.879703 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.954545
I0402 03:05:03.879715 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.863636
I0402 03:05:03.879729 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.02997 (* 1 = 1.02997 loss)
I0402 03:05:03.879744 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.265341 (* 1 = 0.265341 loss)
I0402 03:05:03.879755 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0402 03:05:03.879767 6134 solver.cpp:245] Train net output #16: total_confidence = 0.521304
I0402 03:05:03.879779 6134 sgd_solver.cpp:106] Iteration 196000, lr = 0.01
I0402 03:07:12.477133 6134 solver.cpp:229] Iteration 196500, loss = 2.58673
I0402 03:07:12.477461 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.520833
I0402 03:07:12.477480 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.840909
I0402 03:07:12.477494 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.770833
I0402 03:07:12.477510 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.74339 (* 0.3 = 0.523016 loss)
I0402 03:07:12.477525 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.567596 (* 0.3 = 0.170279 loss)
I0402 03:07:12.477538 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.604167
I0402 03:07:12.477550 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.880682
I0402 03:07:12.477563 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.875
I0402 03:07:12.477578 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.13198 (* 0.3 = 0.339595 loss)
I0402 03:07:12.477592 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.340537 (* 0.3 = 0.102161 loss)
I0402 03:07:12.477605 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.895833
I0402 03:07:12.477617 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.965909
I0402 03:07:12.477629 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.979167
I0402 03:07:12.477643 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.461942 (* 1 = 0.461942 loss)
I0402 03:07:12.477658 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.152893 (* 1 = 0.152893 loss)
I0402 03:07:12.477674 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0402 03:07:12.477697 6134 solver.cpp:245] Train net output #16: total_confidence = 0.468722
I0402 03:07:12.477725 6134 sgd_solver.cpp:106] Iteration 196500, lr = 0.01
I0402 03:09:21.426103 6134 solver.cpp:229] Iteration 197000, loss = 2.58499
I0402 03:09:21.426232 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.479167
I0402 03:09:21.426251 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.846591
I0402 03:09:21.426265 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.729167
I0402 03:09:21.426280 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.79966 (* 0.3 = 0.539897 loss)
I0402 03:09:21.426295 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.552162 (* 0.3 = 0.165648 loss)
I0402 03:09:21.426307 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.5625
I0402 03:09:21.426321 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.869318
I0402 03:09:21.426331 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.791667
I0402 03:09:21.426347 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.3849 (* 0.3 = 0.415469 loss)
I0402 03:09:21.426360 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.430488 (* 0.3 = 0.129147 loss)
I0402 03:09:21.426373 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.791667
I0402 03:09:21.426385 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.931818
I0402 03:09:21.426396 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.958333
I0402 03:09:21.426410 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.733774 (* 1 = 0.733774 loss)
I0402 03:09:21.426424 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.239431 (* 1 = 0.239431 loss)
I0402 03:09:21.426436 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0402 03:09:21.426450 6134 solver.cpp:245] Train net output #16: total_confidence = 0.354256
I0402 03:09:21.426461 6134 sgd_solver.cpp:106] Iteration 197000, lr = 0.01
I0402 03:11:30.228564 6134 solver.cpp:229] Iteration 197500, loss = 2.5767
I0402 03:11:30.228694 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.264151
I0402 03:11:30.228715 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.767045
I0402 03:11:30.228729 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.660377
I0402 03:11:30.228744 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.08257 (* 0.3 = 0.62477 loss)
I0402 03:11:30.228760 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.660695 (* 0.3 = 0.198208 loss)
I0402 03:11:30.228775 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.471698
I0402 03:11:30.228787 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.840909
I0402 03:11:30.228799 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.811321
I0402 03:11:30.228813 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.82381 (* 0.3 = 0.547143 loss)
I0402 03:11:30.228827 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.557035 (* 0.3 = 0.167111 loss)
I0402 03:11:30.228840 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.716981
I0402 03:11:30.228852 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.914773
I0402 03:11:30.228864 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.981132
I0402 03:11:30.228878 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.828247 (* 1 = 0.828247 loss)
I0402 03:11:30.228893 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.252868 (* 1 = 0.252868 loss)
I0402 03:11:30.228905 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0402 03:11:30.228917 6134 solver.cpp:245] Train net output #16: total_confidence = 0.318088
I0402 03:11:30.228930 6134 sgd_solver.cpp:106] Iteration 197500, lr = 0.01
I0402 03:13:38.857164 6134 solver.cpp:229] Iteration 198000, loss = 2.5127
I0402 03:13:38.857297 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.571429
I0402 03:13:38.857328 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.875
I0402 03:13:38.857352 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.755102
I0402 03:13:38.857383 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.71974 (* 0.3 = 0.515923 loss)
I0402 03:13:38.857410 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.499995 (* 0.3 = 0.149999 loss)
I0402 03:13:38.857432 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.591837
I0402 03:13:38.857456 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.875
I0402 03:13:38.857480 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.857143
I0402 03:13:38.857506 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.27939 (* 0.3 = 0.383817 loss)
I0402 03:13:38.857535 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.377871 (* 0.3 = 0.113361 loss)
I0402 03:13:38.857558 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.857143
I0402 03:13:38.857579 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.954545
I0402 03:13:38.857602 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.979592
I0402 03:13:38.857630 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.42635 (* 1 = 0.42635 loss)
I0402 03:13:38.857656 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.127894 (* 1 = 0.127894 loss)
I0402 03:13:38.857677 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0402 03:13:38.857698 6134 solver.cpp:245] Train net output #16: total_confidence = 0.436467
I0402 03:13:38.857719 6134 sgd_solver.cpp:106] Iteration 198000, lr = 0.01
I0402 03:15:47.514930 6134 solver.cpp:229] Iteration 198500, loss = 2.51121
I0402 03:15:47.515043 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.42
I0402 03:15:47.515072 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.823864
I0402 03:15:47.515097 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.68
I0402 03:15:47.515127 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.79699 (* 0.3 = 0.539096 loss)
I0402 03:15:47.515154 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.560798 (* 0.3 = 0.16824 loss)
I0402 03:15:47.515177 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.66
I0402 03:15:47.515200 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.897727
I0402 03:15:47.515223 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.82
I0402 03:15:47.515249 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.20534 (* 0.3 = 0.361601 loss)
I0402 03:15:47.515275 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.360897 (* 0.3 = 0.108269 loss)
I0402 03:15:47.515295 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.88
I0402 03:15:47.515317 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.948864
I0402 03:15:47.515341 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.98
I0402 03:15:47.515365 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.413055 (* 1 = 0.413055 loss)
I0402 03:15:47.515391 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.166285 (* 1 = 0.166285 loss)
I0402 03:15:47.515413 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0402 03:15:47.515434 6134 solver.cpp:245] Train net output #16: total_confidence = 0.297636
I0402 03:15:47.515455 6134 sgd_solver.cpp:106] Iteration 198500, lr = 0.01
I0402 03:17:56.275885 6134 solver.cpp:229] Iteration 199000, loss = 2.49523
I0402 03:17:56.276258 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.527778
I0402 03:17:56.276278 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.869318
I0402 03:17:56.276291 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.722222
I0402 03:17:56.276307 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.52195 (* 0.3 = 0.456584 loss)
I0402 03:17:56.276322 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.463241 (* 0.3 = 0.138972 loss)
I0402 03:17:56.276335 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.583333
I0402 03:17:56.276348 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.869318
I0402 03:17:56.276360 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.833333
I0402 03:17:56.276373 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.16978 (* 0.3 = 0.350935 loss)
I0402 03:17:56.276388 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.421333 (* 0.3 = 0.1264 loss)
I0402 03:17:56.276401 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.833333
I0402 03:17:56.276412 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.948864
I0402 03:17:56.276424 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.888889
I0402 03:17:56.276437 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.574556 (* 1 = 0.574556 loss)
I0402 03:17:56.276451 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.187843 (* 1 = 0.187843 loss)
I0402 03:17:56.276463 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0402 03:17:56.276475 6134 solver.cpp:245] Train net output #16: total_confidence = 0.38023
I0402 03:17:56.276487 6134 sgd_solver.cpp:106] Iteration 199000, lr = 0.01
I0402 03:20:04.967550 6134 solver.cpp:229] Iteration 199500, loss = 2.55946
I0402 03:20:04.967667 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.409091
I0402 03:20:04.967689 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.829545
I0402 03:20:04.967701 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.704545
I0402 03:20:04.967717 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.07558 (* 0.3 = 0.622673 loss)
I0402 03:20:04.967732 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.582607 (* 0.3 = 0.174782 loss)
I0402 03:20:04.967746 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.545455
I0402 03:20:04.967757 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.863636
I0402 03:20:04.967769 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.772727
I0402 03:20:04.967783 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.53426 (* 0.3 = 0.460277 loss)
I0402 03:20:04.967797 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.461792 (* 0.3 = 0.138538 loss)
I0402 03:20:04.967810 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.75
I0402 03:20:04.967823 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.931818
I0402 03:20:04.967834 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.954545
I0402 03:20:04.967849 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.837031 (* 1 = 0.837031 loss)
I0402 03:20:04.967864 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.234632 (* 1 = 0.234632 loss)
I0402 03:20:04.967875 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0402 03:20:04.967887 6134 solver.cpp:245] Train net output #16: total_confidence = 0.213076
I0402 03:20:04.967900 6134 sgd_solver.cpp:106] Iteration 199500, lr = 0.01
I0402 03:22:13.488392 6134 solver.cpp:456] Snapshotting to binary proto file /mnt/snapshots/mixed_lstm9_bn_iter_200000.caffemodel
I0402 03:22:13.996386 6134 sgd_solver.cpp:273] Snapshotting solver state to binary proto file /mnt/snapshots/mixed_lstm9_bn_iter_200000.solverstate
I0402 03:22:14.161216 6134 solver.cpp:338] Iteration 200000, Testing net (#0)
I0402 03:22:43.942984 6134 solver.cpp:393] Test loss: 2.16217
I0402 03:22:43.943099 6134 solver.cpp:406] Test net output #0: loss1/accuracy = 0.517091
I0402 03:22:43.943119 6134 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.873412
I0402 03:22:43.943132 6134 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.798996
I0402 03:22:43.943148 6134 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 1.67018 (* 0.3 = 0.501054 loss)
I0402 03:22:43.943163 6134 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.439184 (* 0.3 = 0.131755 loss)
I0402 03:22:43.943176 6134 solver.cpp:406] Test net output #5: loss2/accuracy = 0.71731
I0402 03:22:43.943188 6134 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.91841
I0402 03:22:43.943200 6134 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.884759
I0402 03:22:43.943213 6134 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.09016 (* 0.3 = 0.327049 loss)
I0402 03:22:43.943228 6134 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.305799 (* 0.3 = 0.0917397 loss)
I0402 03:22:43.943239 6134 solver.cpp:406] Test net output #10: loss3/accuracy = 0.789189
I0402 03:22:43.943253 6134 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.947092
I0402 03:22:43.943264 6134 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.89831
I0402 03:22:43.943277 6134 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 0.884634 (* 1 = 0.884634 loss)
I0402 03:22:43.943291 6134 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.22594 (* 1 = 0.22594 loss)
I0402 03:22:43.943303 6134 solver.cpp:406] Test net output #15: total_accuracy = 0.48
I0402 03:22:43.943315 6134 solver.cpp:406] Test net output #16: total_confidence = 0.462319
I0402 03:22:44.093876 6134 solver.cpp:229] Iteration 200000, loss = 2.47136
I0402 03:22:44.093919 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.4
I0402 03:22:44.093936 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.823864
I0402 03:22:44.093950 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.72
I0402 03:22:44.093966 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.02691 (* 0.3 = 0.608072 loss)
I0402 03:22:44.093981 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.604296 (* 0.3 = 0.181289 loss)
I0402 03:22:44.093993 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.52
I0402 03:22:44.094008 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.863636
I0402 03:22:44.094022 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.8
I0402 03:22:44.094035 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.75081 (* 0.3 = 0.525242 loss)
I0402 03:22:44.094049 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.507632 (* 0.3 = 0.15229 loss)
I0402 03:22:44.094061 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.78
I0402 03:22:44.094074 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.9375
I0402 03:22:44.094085 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.9
I0402 03:22:44.094099 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.947642 (* 1 = 0.947642 loss)
I0402 03:22:44.094113 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.274615 (* 1 = 0.274615 loss)
I0402 03:22:44.094125 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0402 03:22:44.094137 6134 solver.cpp:245] Train net output #16: total_confidence = 0.290559
I0402 03:22:44.094149 6134 sgd_solver.cpp:106] Iteration 200000, lr = 0.01
I0402 03:24:53.116948 6134 solver.cpp:229] Iteration 200500, loss = 2.55607
I0402 03:24:53.117094 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.346939
I0402 03:24:53.117115 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.8125
I0402 03:24:53.117127 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.571429
I0402 03:24:53.117144 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.14299 (* 0.3 = 0.642897 loss)
I0402 03:24:53.117159 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.629219 (* 0.3 = 0.188766 loss)
I0402 03:24:53.117172 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.510204
I0402 03:24:53.117184 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.852273
I0402 03:24:53.117197 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.77551
I0402 03:24:53.117210 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.48743 (* 0.3 = 0.44623 loss)
I0402 03:24:53.117224 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.477481 (* 0.3 = 0.143244 loss)
I0402 03:24:53.117236 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.714286
I0402 03:24:53.117249 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.903409
I0402 03:24:53.117260 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.816327
I0402 03:24:53.117274 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.18177 (* 1 = 1.18177 loss)
I0402 03:24:53.117288 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.410686 (* 1 = 0.410686 loss)
I0402 03:24:53.117300 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0402 03:24:53.117312 6134 solver.cpp:245] Train net output #16: total_confidence = 0.387233
I0402 03:24:53.117324 6134 sgd_solver.cpp:106] Iteration 200500, lr = 0.01
I0402 03:27:01.896141 6134 solver.cpp:229] Iteration 201000, loss = 2.55826
I0402 03:27:01.896494 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.431818
I0402 03:27:01.896515 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.835227
I0402 03:27:01.896528 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.704545
I0402 03:27:01.896544 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.92826 (* 0.3 = 0.578478 loss)
I0402 03:27:01.896560 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.5632 (* 0.3 = 0.16896 loss)
I0402 03:27:01.896574 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.5
I0402 03:27:01.896585 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.857955
I0402 03:27:01.896597 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.818182
I0402 03:27:01.896611 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.64273 (* 0.3 = 0.492819 loss)
I0402 03:27:01.896625 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.483973 (* 0.3 = 0.145192 loss)
I0402 03:27:01.896638 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.590909
I0402 03:27:01.896651 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.886364
I0402 03:27:01.896662 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.863636
I0402 03:27:01.896677 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.30246 (* 1 = 1.30246 loss)
I0402 03:27:01.896692 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.348827 (* 1 = 0.348827 loss)
I0402 03:27:01.896703 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0402 03:27:01.896715 6134 solver.cpp:245] Train net output #16: total_confidence = 0.178756
I0402 03:27:01.896728 6134 sgd_solver.cpp:106] Iteration 201000, lr = 0.01
I0402 03:29:10.523797 6134 solver.cpp:229] Iteration 201500, loss = 2.50932
I0402 03:29:10.523936 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.411765
I0402 03:29:10.523955 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.823864
I0402 03:29:10.523968 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.588235
I0402 03:29:10.523985 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.01919 (* 0.3 = 0.605758 loss)
I0402 03:29:10.524000 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.636453 (* 0.3 = 0.190936 loss)
I0402 03:29:10.524013 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.509804
I0402 03:29:10.524025 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.835227
I0402 03:29:10.524037 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.745098
I0402 03:29:10.524051 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.71504 (* 0.3 = 0.514511 loss)
I0402 03:29:10.524065 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.554398 (* 0.3 = 0.166319 loss)
I0402 03:29:10.524077 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.843137
I0402 03:29:10.524090 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.948864
I0402 03:29:10.524101 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.921569
I0402 03:29:10.524116 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.649084 (* 1 = 0.649084 loss)
I0402 03:29:10.524130 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.214108 (* 1 = 0.214108 loss)
I0402 03:29:10.524142 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0402 03:29:10.524154 6134 solver.cpp:245] Train net output #16: total_confidence = 0.234556
I0402 03:29:10.524168 6134 sgd_solver.cpp:106] Iteration 201500, lr = 0.01
I0402 03:31:19.161463 6134 solver.cpp:229] Iteration 202000, loss = 2.56188
I0402 03:31:19.161573 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.34
I0402 03:31:19.161592 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.801136
I0402 03:31:19.161605 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.64
I0402 03:31:19.161623 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.12496 (* 0.3 = 0.637489 loss)
I0402 03:31:19.161638 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.652134 (* 0.3 = 0.19564 loss)
I0402 03:31:19.161650 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.56
I0402 03:31:19.161664 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.863636
I0402 03:31:19.161675 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.78
I0402 03:31:19.161689 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.51941 (* 0.3 = 0.455822 loss)
I0402 03:31:19.161705 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.47001 (* 0.3 = 0.141003 loss)
I0402 03:31:19.161716 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.86
I0402 03:31:19.161730 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.954545
I0402 03:31:19.161741 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.92
I0402 03:31:19.161756 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.663185 (* 1 = 0.663185 loss)
I0402 03:31:19.161769 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.200125 (* 1 = 0.200125 loss)
I0402 03:31:19.161782 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0402 03:31:19.161793 6134 solver.cpp:245] Train net output #16: total_confidence = 0.254977
I0402 03:31:19.161805 6134 sgd_solver.cpp:106] Iteration 202000, lr = 0.01
I0402 03:33:27.959579 6134 solver.cpp:229] Iteration 202500, loss = 2.51791
I0402 03:33:27.959703 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.395349
I0402 03:33:27.959723 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.835227
I0402 03:33:27.959738 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.744186
I0402 03:33:27.959753 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.01303 (* 0.3 = 0.603908 loss)
I0402 03:33:27.959769 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.559704 (* 0.3 = 0.167911 loss)
I0402 03:33:27.959781 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.534884
I0402 03:33:27.959794 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.880682
I0402 03:33:27.959805 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.744186
I0402 03:33:27.959820 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.47678 (* 0.3 = 0.443035 loss)
I0402 03:33:27.959835 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.417148 (* 0.3 = 0.125144 loss)
I0402 03:33:27.959846 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.837209
I0402 03:33:27.959858 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.954545
I0402 03:33:27.959870 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.953488
I0402 03:33:27.959884 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.550316 (* 1 = 0.550316 loss)
I0402 03:33:27.959898 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.181522 (* 1 = 0.181522 loss)
I0402 03:33:27.959910 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0402 03:33:27.959923 6134 solver.cpp:245] Train net output #16: total_confidence = 0.237636
I0402 03:33:27.959934 6134 sgd_solver.cpp:106] Iteration 202500, lr = 0.01
I0402 03:35:36.583065 6134 solver.cpp:229] Iteration 203000, loss = 2.56245
I0402 03:35:36.583205 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.488889
I0402 03:35:36.583236 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.835227
I0402 03:35:36.583258 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.688889
I0402 03:35:36.583287 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.13503 (* 0.3 = 0.640508 loss)
I0402 03:35:36.583317 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.7526 (* 0.3 = 0.22578 loss)
I0402 03:35:36.583338 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.577778
I0402 03:35:36.583359 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.857955
I0402 03:35:36.583380 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.866667
I0402 03:35:36.583405 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.60854 (* 0.3 = 0.482563 loss)
I0402 03:35:36.583432 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.607431 (* 0.3 = 0.182229 loss)
I0402 03:35:36.583456 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.822222
I0402 03:35:36.583477 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.926136
I0402 03:35:36.583498 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.933333
I0402 03:35:36.583526 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.901389 (* 1 = 0.901389 loss)
I0402 03:35:36.583554 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.396582 (* 1 = 0.396582 loss)
I0402 03:35:36.583575 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0402 03:35:36.583595 6134 solver.cpp:245] Train net output #16: total_confidence = 0.250669
I0402 03:35:36.583617 6134 sgd_solver.cpp:106] Iteration 203000, lr = 0.01
I0402 03:37:45.342015 6134 solver.cpp:229] Iteration 203500, loss = 2.48302
I0402 03:37:45.342363 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.454545
I0402 03:37:45.342384 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.840909
I0402 03:37:45.342397 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.704545
I0402 03:37:45.342413 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.92115 (* 0.3 = 0.576345 loss)
I0402 03:37:45.342428 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.576635 (* 0.3 = 0.172991 loss)
I0402 03:37:45.342440 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.590909
I0402 03:37:45.342453 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.880682
I0402 03:37:45.342465 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.840909
I0402 03:37:45.342478 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.4259 (* 0.3 = 0.42777 loss)
I0402 03:37:45.342494 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.432336 (* 0.3 = 0.129701 loss)
I0402 03:37:45.342505 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.909091
I0402 03:37:45.342520 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.977273
I0402 03:37:45.342533 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.977273
I0402 03:37:45.342547 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.400654 (* 1 = 0.400654 loss)
I0402 03:37:45.342561 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.106647 (* 1 = 0.106647 loss)
I0402 03:37:45.342573 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.75
I0402 03:37:45.342586 6134 solver.cpp:245] Train net output #16: total_confidence = 0.403202
I0402 03:37:45.342597 6134 sgd_solver.cpp:106] Iteration 203500, lr = 0.01
I0402 03:39:54.126682 6134 solver.cpp:229] Iteration 204000, loss = 2.49187
I0402 03:39:54.126793 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.409091
I0402 03:39:54.126813 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.823864
I0402 03:39:54.126826 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.75
I0402 03:39:54.126842 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.6022 (* 0.3 = 0.480661 loss)
I0402 03:39:54.126857 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.488088 (* 0.3 = 0.146426 loss)
I0402 03:39:54.126869 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.522727
I0402 03:39:54.126881 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.869318
I0402 03:39:54.126893 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.795455
I0402 03:39:54.126907 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.34766 (* 0.3 = 0.404298 loss)
I0402 03:39:54.126921 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.392043 (* 0.3 = 0.117613 loss)
I0402 03:39:54.126934 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.795455
I0402 03:39:54.126945 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.9375
I0402 03:39:54.126957 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.863636
I0402 03:39:54.126971 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.787345 (* 1 = 0.787345 loss)
I0402 03:39:54.126984 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.219588 (* 1 = 0.219588 loss)
I0402 03:39:54.126996 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0402 03:39:54.127008 6134 solver.cpp:245] Train net output #16: total_confidence = 0.476849
I0402 03:39:54.127020 6134 sgd_solver.cpp:106] Iteration 204000, lr = 0.01
I0402 03:42:02.704972 6134 solver.cpp:229] Iteration 204500, loss = 2.51691
I0402 03:42:02.705121 6134 solver.cpp:245] Train net output #0: loss1/accuracy = 0.456522
I0402 03:42:02.705142 6134 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.840909
I0402 03:42:02.705154 6134 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.73913
I0402 03:42:02.705171 6134 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.02285 (* 0.3 = 0.606856 loss)
I0402 03:42:02.705186 6134 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.601571 (* 0.3 = 0.180471 loss)
I0402 03:42:02.705199 6134 solver.cpp:245] Train net output #5: loss2/accuracy = 0.543478
I0402 03:42:02.705211 6134 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.863636
I0402 03:42:02.705224 6134 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.826087
I0402 03:42:02.705238 6134 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.58409 (* 0.3 = 0.475228 loss)
I0402 03:42:02.705252 6134 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.488011 (* 0.3 = 0.146403 loss)
I0402 03:42:02.705265 6134 solver.cpp:245] Train net output #10: loss3/accuracy = 0.782609
I0402 03:42:02.705277 6134 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.931818
I0402 03:42:02.705289 6134 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.934783
I0402 03:42:02.705303 6134 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.83162 (* 1 = 0.83162 loss)
I0402 03:42:02.705318 6134 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.242162 (* 1 = 0.242162 loss)
I0402 03:42:02.705330 6134 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0402 03:42:02.705343 6134 solver.cpp:245] Train net output #16: total_confidence = 0.48424
I0402 03:42:02.705354 6134 sgd_solver.cpp:106] Iteration 204500, lr = 0.01
I0402 03:44:11.268452 6134 solver.cpp:338] Iteration 205000, Testing net (#0)
I0402 03:44:41.022145 6134 solver.cpp:393] Test loss: 2.33548
I0402 03:44:41.022191 6134 solver.cpp:406] Test net output #0: loss1/accuracy = 0.528769
I0402 03:44:41.022207 6134 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.871958
I0402 03:44:41.022220 6134 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.782335
I0402 03:44:41.022235 6134 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 1.66212 (* 0.3 = 0.498636 loss)
I0402 03:44:41.022250 6134 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.459256 (* 0.3 = 0.137777 loss)
I0402 03:44:41.022263 6134 solver.cpp:406] Test net output #5: loss2/accuracy = 0.679723
I0402 03:44:41.022275 6134 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.917728
I0402 03:44:41.022287 6134 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.857787
I0402 03:44:41.022300 6134 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.2162 (* 0.3 = 0.364859 loss)
I0402 03:44:41.022315 6134 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.322315 (* 0.3 = 0.0966946 loss)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment