Skip to content

Instantly share code, notes, and snippets.

@stas-sl
Last active April 4, 2016 17:21
Show Gist options
  • Save stas-sl/8c4b74ffe22b27a995621f86889bcc1b to your computer and use it in GitHub Desktop.
Save stas-sl/8c4b74ffe22b27a995621f86889bcc1b to your computer and use it in GitHub Desktop.
This file has been truncated, but you can view the full file.
I0404 12:49:59.854396 9252 solver.cpp:280] Solving
I0404 12:49:59.854408 9252 solver.cpp:281] Learning Rate Policy: poly
I0404 12:49:59.914067 9252 solver.cpp:229] Iteration 0, loss = 4.30411
I0404 12:49:59.914113 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0
I0404 12:49:59.914134 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0
I0404 12:49:59.914146 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625
I0404 12:49:59.914160 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0
I0404 12:49:59.914171 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0
I0404 12:49:59.914182 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0
I0404 12:49:59.914193 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0
I0404 12:49:59.914206 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0
I0404 12:49:59.914216 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0
I0404 12:49:59.914228 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0
I0404 12:49:59.914239 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 0
I0404 12:49:59.914252 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 0
I0404 12:49:59.914263 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 0
I0404 12:49:59.914273 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 0
I0404 12:49:59.914284 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 0
I0404 12:49:59.914295 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 0
I0404 12:49:59.914309 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 0
I0404 12:49:59.914319 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 0
I0404 12:49:59.914330 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 0
I0404 12:49:59.914360 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 0
I0404 12:49:59.914372 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 0
I0404 12:49:59.914383 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 0
I0404 12:49:59.914402 9252 solver.cpp:245] Train net output #22: loss/loss01 = 4.30406 (* 0.0454545 = 0.195639 loss)
I0404 12:49:59.914417 9252 solver.cpp:245] Train net output #23: loss/loss02 = 4.30407 (* 0.0454545 = 0.19564 loss)
I0404 12:49:59.914432 9252 solver.cpp:245] Train net output #24: loss/loss03 = 4.30397 (* 0.0454545 = 0.195635 loss)
I0404 12:49:59.914444 9252 solver.cpp:245] Train net output #25: loss/loss04 = 4.30391 (* 0.0454545 = 0.195632 loss)
I0404 12:49:59.914458 9252 solver.cpp:245] Train net output #26: loss/loss05 = 4.3041 (* 0.0454545 = 0.195641 loss)
I0404 12:49:59.914471 9252 solver.cpp:245] Train net output #27: loss/loss06 = 4.30438 (* 0.0454545 = 0.195654 loss)
I0404 12:49:59.914484 9252 solver.cpp:245] Train net output #28: loss/loss07 = 4.30417 (* 0.0454545 = 0.195644 loss)
I0404 12:49:59.914499 9252 solver.cpp:245] Train net output #29: loss/loss08 = 4.3045 (* 0.0454545 = 0.195659 loss)
I0404 12:49:59.914511 9252 solver.cpp:245] Train net output #30: loss/loss09 = 4.30439 (* 0.0454545 = 0.195654 loss)
I0404 12:49:59.914525 9252 solver.cpp:245] Train net output #31: loss/loss10 = 4.3044 (* 0.0454545 = 0.195655 loss)
I0404 12:49:59.914538 9252 solver.cpp:245] Train net output #32: loss/loss11 = 4.30437 (* 0.0454545 = 0.195653 loss)
I0404 12:49:59.914552 9252 solver.cpp:245] Train net output #33: loss/loss12 = 4.30435 (* 0.0454545 = 0.195652 loss)
I0404 12:49:59.914566 9252 solver.cpp:245] Train net output #34: loss/loss13 = 4.30387 (* 0.0454545 = 0.195631 loss)
I0404 12:49:59.914579 9252 solver.cpp:245] Train net output #35: loss/loss14 = 4.30365 (* 0.0454545 = 0.19562 loss)
I0404 12:49:59.914593 9252 solver.cpp:245] Train net output #36: loss/loss15 = 4.30398 (* 0.0454545 = 0.195636 loss)
I0404 12:49:59.914607 9252 solver.cpp:245] Train net output #37: loss/loss16 = 4.30366 (* 0.0454545 = 0.195621 loss)
I0404 12:49:59.914620 9252 solver.cpp:245] Train net output #38: loss/loss17 = 4.30445 (* 0.0454545 = 0.195657 loss)
I0404 12:49:59.914634 9252 solver.cpp:245] Train net output #39: loss/loss18 = 4.30298 (* 0.0454545 = 0.19559 loss)
I0404 12:49:59.914647 9252 solver.cpp:245] Train net output #40: loss/loss19 = 4.30431 (* 0.0454545 = 0.195651 loss)
I0404 12:49:59.914661 9252 solver.cpp:245] Train net output #41: loss/loss20 = 4.30423 (* 0.0454545 = 0.195647 loss)
I0404 12:49:59.914674 9252 solver.cpp:245] Train net output #42: loss/loss21 = 4.30417 (* 0.0454545 = 0.195644 loss)
I0404 12:49:59.914687 9252 solver.cpp:245] Train net output #43: loss/loss22 = 4.30435 (* 0.0454545 = 0.195652 loss)
I0404 12:49:59.914700 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 12:49:59.914710 9252 solver.cpp:245] Train net output #45: total_confidence = 7.80383e-42
I0404 12:49:59.914736 9252 sgd_solver.cpp:106] Iteration 0, lr = 0.01
I0404 12:51:07.375053 9252 solver.cpp:229] Iteration 500, loss = 1.7724
I0404 12:51:07.375259 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0
I0404 12:51:07.375279 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625
I0404 12:51:07.375293 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125
I0404 12:51:07.375305 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0
I0404 12:51:07.375316 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.03125
I0404 12:51:07.375329 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375
I0404 12:51:07.375340 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.78125
I0404 12:51:07.375352 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.96875
I0404 12:51:07.375363 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875
I0404 12:51:07.375375 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 12:51:07.375386 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 12:51:07.375398 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 12:51:07.375409 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 12:51:07.375421 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 12:51:07.375432 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 12:51:07.375443 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 12:51:07.375454 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 12:51:07.375465 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 12:51:07.375476 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 12:51:07.375488 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 12:51:07.375499 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 12:51:07.375511 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 12:51:07.375526 9252 solver.cpp:245] Train net output #22: loss/loss01 = 4.32255 (* 0.0454545 = 0.19648 loss)
I0404 12:51:07.375540 9252 solver.cpp:245] Train net output #23: loss/loss02 = 4.09941 (* 0.0454545 = 0.186337 loss)
I0404 12:51:07.375555 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.91037 (* 0.0454545 = 0.177744 loss)
I0404 12:51:07.375568 9252 solver.cpp:245] Train net output #25: loss/loss04 = 4.20033 (* 0.0454545 = 0.190924 loss)
I0404 12:51:07.375581 9252 solver.cpp:245] Train net output #26: loss/loss05 = 4.20454 (* 0.0454545 = 0.191115 loss)
I0404 12:51:07.375596 9252 solver.cpp:245] Train net output #27: loss/loss06 = 3.02112 (* 0.0454545 = 0.137324 loss)
I0404 12:51:07.375617 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.44311 (* 0.0454545 = 0.065596 loss)
I0404 12:51:07.375634 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.216165 (* 0.0454545 = 0.00982569 loss)
I0404 12:51:07.375651 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.261774 (* 0.0454545 = 0.0118988 loss)
I0404 12:51:07.375665 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.0119418 (* 0.0454545 = 0.000542808 loss)
I0404 12:51:07.375690 9252 solver.cpp:245] Train net output #32: loss/loss11 = 0.000379957 (* 0.0454545 = 1.72708e-05 loss)
I0404 12:51:07.375710 9252 solver.cpp:245] Train net output #33: loss/loss12 = 0.000385531 (* 0.0454545 = 1.75241e-05 loss)
I0404 12:51:07.375725 9252 solver.cpp:245] Train net output #34: loss/loss13 = 0.000401627 (* 0.0454545 = 1.82558e-05 loss)
I0404 12:51:07.375741 9252 solver.cpp:245] Train net output #35: loss/loss14 = 0.000405155 (* 0.0454545 = 1.84162e-05 loss)
I0404 12:51:07.375758 9252 solver.cpp:245] Train net output #36: loss/loss15 = 0.000403312 (* 0.0454545 = 1.83324e-05 loss)
I0404 12:51:07.375772 9252 solver.cpp:245] Train net output #37: loss/loss16 = 0.000385303 (* 0.0454545 = 1.75138e-05 loss)
I0404 12:51:07.375785 9252 solver.cpp:245] Train net output #38: loss/loss17 = 0.000397645 (* 0.0454545 = 1.80748e-05 loss)
I0404 12:51:07.375813 9252 solver.cpp:245] Train net output #39: loss/loss18 = 0.000401097 (* 0.0454545 = 1.82317e-05 loss)
I0404 12:51:07.375828 9252 solver.cpp:245] Train net output #40: loss/loss19 = 0.000392782 (* 0.0454545 = 1.78537e-05 loss)
I0404 12:51:07.375843 9252 solver.cpp:245] Train net output #41: loss/loss20 = 0.000394981 (* 0.0454545 = 1.79537e-05 loss)
I0404 12:51:07.375856 9252 solver.cpp:245] Train net output #42: loss/loss21 = 0.000393002 (* 0.0454545 = 1.78637e-05 loss)
I0404 12:51:07.375869 9252 solver.cpp:245] Train net output #43: loss/loss22 = 0.000391555 (* 0.0454545 = 1.7798e-05 loss)
I0404 12:51:07.375881 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 12:51:07.375892 9252 solver.cpp:245] Train net output #45: total_confidence = 1.78324e-07
I0404 12:51:07.375905 9252 sgd_solver.cpp:106] Iteration 500, lr = 0.009995
I0404 12:52:15.856787 9252 solver.cpp:229] Iteration 1000, loss = 1.22253
I0404 12:52:15.856936 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.03125
I0404 12:52:15.856959 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0
I0404 12:52:15.856972 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625
I0404 12:52:15.856984 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125
I0404 12:52:15.856997 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0
I0404 12:52:15.857008 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.46875
I0404 12:52:15.857020 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.84375
I0404 12:52:15.857033 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.96875
I0404 12:52:15.857043 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 1
I0404 12:52:15.857055 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 12:52:15.857066 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 12:52:15.857079 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 12:52:15.857089 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 12:52:15.857101 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 12:52:15.857112 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 12:52:15.857125 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 12:52:15.857136 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 12:52:15.857147 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 12:52:15.857158 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 12:52:15.857170 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 12:52:15.857182 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 12:52:15.857193 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 12:52:15.857208 9252 solver.cpp:245] Train net output #22: loss/loss01 = 4.23177 (* 0.0454545 = 0.192353 loss)
I0404 12:52:15.857223 9252 solver.cpp:245] Train net output #23: loss/loss02 = 4.23374 (* 0.0454545 = 0.192443 loss)
I0404 12:52:15.857236 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.97236 (* 0.0454545 = 0.180562 loss)
I0404 12:52:15.857250 9252 solver.cpp:245] Train net output #25: loss/loss04 = 4.13554 (* 0.0454545 = 0.187979 loss)
I0404 12:52:15.857264 9252 solver.cpp:245] Train net output #26: loss/loss05 = 4.22303 (* 0.0454545 = 0.191956 loss)
I0404 12:52:15.857277 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.85088 (* 0.0454545 = 0.129585 loss)
I0404 12:52:15.857298 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.20312 (* 0.0454545 = 0.0546873 loss)
I0404 12:52:15.857326 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.334296 (* 0.0454545 = 0.0151953 loss)
I0404 12:52:15.857344 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.0476095 (* 0.0454545 = 0.00216407 loss)
I0404 12:52:15.857359 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.0206874 (* 0.0454545 = 0.000940338 loss)
I0404 12:52:15.857374 9252 solver.cpp:245] Train net output #32: loss/loss11 = 0.00108805 (* 0.0454545 = 4.9457e-05 loss)
I0404 12:52:15.857388 9252 solver.cpp:245] Train net output #33: loss/loss12 = 0.0011119 (* 0.0454545 = 5.05408e-05 loss)
I0404 12:52:15.857403 9252 solver.cpp:245] Train net output #34: loss/loss13 = 0.00111138 (* 0.0454545 = 5.05171e-05 loss)
I0404 12:52:15.857445 9252 solver.cpp:245] Train net output #35: loss/loss14 = 0.0011269 (* 0.0454545 = 5.12227e-05 loss)
I0404 12:52:15.857475 9252 solver.cpp:245] Train net output #36: loss/loss15 = 0.00112522 (* 0.0454545 = 5.11463e-05 loss)
I0404 12:52:15.857492 9252 solver.cpp:245] Train net output #37: loss/loss16 = 0.00109794 (* 0.0454545 = 4.99064e-05 loss)
I0404 12:52:15.857507 9252 solver.cpp:245] Train net output #38: loss/loss17 = 0.00107797 (* 0.0454545 = 4.89988e-05 loss)
I0404 12:52:15.857539 9252 solver.cpp:245] Train net output #39: loss/loss18 = 0.00108679 (* 0.0454545 = 4.93997e-05 loss)
I0404 12:52:15.857555 9252 solver.cpp:245] Train net output #40: loss/loss19 = 0.00108328 (* 0.0454545 = 4.92399e-05 loss)
I0404 12:52:15.857569 9252 solver.cpp:245] Train net output #41: loss/loss20 = 0.00108105 (* 0.0454545 = 4.91385e-05 loss)
I0404 12:52:15.857583 9252 solver.cpp:245] Train net output #42: loss/loss21 = 0.00108393 (* 0.0454545 = 4.92695e-05 loss)
I0404 12:52:15.857597 9252 solver.cpp:245] Train net output #43: loss/loss22 = 0.00107318 (* 0.0454545 = 4.87808e-05 loss)
I0404 12:52:15.857609 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 12:52:15.857620 9252 solver.cpp:245] Train net output #45: total_confidence = 3.10054e-08
I0404 12:52:15.857636 9252 sgd_solver.cpp:106] Iteration 1000, lr = 0.00999
I0404 12:53:24.246728 9252 solver.cpp:229] Iteration 1500, loss = 1.21602
I0404 12:53:24.246860 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.03125
I0404 12:53:24.246881 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125
I0404 12:53:24.246894 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125
I0404 12:53:24.246906 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625
I0404 12:53:24.246918 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0
I0404 12:53:24.246932 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375
I0404 12:53:24.246943 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875
I0404 12:53:24.246956 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625
I0404 12:53:24.246968 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375
I0404 12:53:24.246980 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 12:53:24.246992 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 12:53:24.247004 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 12:53:24.247021 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 12:53:24.247035 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 12:53:24.247046 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 12:53:24.247057 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 12:53:24.247069 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 12:53:24.247081 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 12:53:24.247092 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 12:53:24.247104 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 12:53:24.247115 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 12:53:24.247128 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 12:53:24.247143 9252 solver.cpp:245] Train net output #22: loss/loss01 = 4.24159 (* 0.0454545 = 0.1928 loss)
I0404 12:53:24.247158 9252 solver.cpp:245] Train net output #23: loss/loss02 = 4.09265 (* 0.0454545 = 0.186029 loss)
I0404 12:53:24.247171 9252 solver.cpp:245] Train net output #24: loss/loss03 = 4.14603 (* 0.0454545 = 0.188456 loss)
I0404 12:53:24.247185 9252 solver.cpp:245] Train net output #25: loss/loss04 = 4.12971 (* 0.0454545 = 0.187714 loss)
I0404 12:53:24.247198 9252 solver.cpp:245] Train net output #26: loss/loss05 = 4.14565 (* 0.0454545 = 0.188439 loss)
I0404 12:53:24.247212 9252 solver.cpp:245] Train net output #27: loss/loss06 = 3.26394 (* 0.0454545 = 0.148361 loss)
I0404 12:53:24.247226 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.87157 (* 0.0454545 = 0.0850714 loss)
I0404 12:53:24.247246 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.673823 (* 0.0454545 = 0.0306283 loss)
I0404 12:53:24.247261 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.486313 (* 0.0454545 = 0.0221051 loss)
I0404 12:53:24.247275 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.0185934 (* 0.0454545 = 0.000845155 loss)
I0404 12:53:24.247289 9252 solver.cpp:245] Train net output #32: loss/loss11 = 0.000672782 (* 0.0454545 = 3.0581e-05 loss)
I0404 12:53:24.247303 9252 solver.cpp:245] Train net output #33: loss/loss12 = 0.000680713 (* 0.0454545 = 3.09415e-05 loss)
I0404 12:53:24.247318 9252 solver.cpp:245] Train net output #34: loss/loss13 = 0.00068355 (* 0.0454545 = 3.10704e-05 loss)
I0404 12:53:24.247331 9252 solver.cpp:245] Train net output #35: loss/loss14 = 0.000686861 (* 0.0454545 = 3.12209e-05 loss)
I0404 12:53:24.247345 9252 solver.cpp:245] Train net output #36: loss/loss15 = 0.000685819 (* 0.0454545 = 3.11736e-05 loss)
I0404 12:53:24.247359 9252 solver.cpp:245] Train net output #37: loss/loss16 = 0.000677214 (* 0.0454545 = 3.07825e-05 loss)
I0404 12:53:24.247375 9252 solver.cpp:245] Train net output #38: loss/loss17 = 0.000669081 (* 0.0454545 = 3.04128e-05 loss)
I0404 12:53:24.247401 9252 solver.cpp:245] Train net output #39: loss/loss18 = 0.00066785 (* 0.0454545 = 3.03568e-05 loss)
I0404 12:53:24.247421 9252 solver.cpp:245] Train net output #40: loss/loss19 = 0.000670157 (* 0.0454545 = 3.04617e-05 loss)
I0404 12:53:24.247442 9252 solver.cpp:245] Train net output #41: loss/loss20 = 0.000668844 (* 0.0454545 = 3.0402e-05 loss)
I0404 12:53:24.247473 9252 solver.cpp:245] Train net output #42: loss/loss21 = 0.000674554 (* 0.0454545 = 3.06616e-05 loss)
I0404 12:53:24.247489 9252 solver.cpp:245] Train net output #43: loss/loss22 = 0.000669536 (* 0.0454545 = 3.04335e-05 loss)
I0404 12:53:24.247501 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 12:53:24.247514 9252 solver.cpp:245] Train net output #45: total_confidence = 6.45663e-08
I0404 12:53:24.247527 9252 sgd_solver.cpp:106] Iteration 1500, lr = 0.009985
I0404 12:54:33.607766 9252 solver.cpp:229] Iteration 2000, loss = 1.20272
I0404 12:54:33.607903 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.03125
I0404 12:54:33.607923 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0
I0404 12:54:33.607936 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125
I0404 12:54:33.607949 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125
I0404 12:54:33.607960 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.03125
I0404 12:54:33.607972 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375
I0404 12:54:33.607985 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625
I0404 12:54:33.607996 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 1
I0404 12:54:33.608008 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 1
I0404 12:54:33.608021 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 12:54:33.608031 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 12:54:33.608043 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 12:54:33.608054 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 12:54:33.608067 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 12:54:33.608078 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 12:54:33.608088 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 12:54:33.608100 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 12:54:33.608111 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 12:54:33.608124 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 12:54:33.608134 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 12:54:33.608145 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 12:54:33.608157 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 12:54:33.608172 9252 solver.cpp:245] Train net output #22: loss/loss01 = 4.2188 (* 0.0454545 = 0.191764 loss)
I0404 12:54:33.608187 9252 solver.cpp:245] Train net output #23: loss/loss02 = 4.41661 (* 0.0454545 = 0.200755 loss)
I0404 12:54:33.608201 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.82629 (* 0.0454545 = 0.173922 loss)
I0404 12:54:33.608214 9252 solver.cpp:245] Train net output #25: loss/loss04 = 4.09728 (* 0.0454545 = 0.18624 loss)
I0404 12:54:33.608228 9252 solver.cpp:245] Train net output #26: loss/loss05 = 3.97638 (* 0.0454545 = 0.180744 loss)
I0404 12:54:33.608242 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.71667 (* 0.0454545 = 0.123485 loss)
I0404 12:54:33.608255 9252 solver.cpp:245] Train net output #28: loss/loss07 = 2.23387 (* 0.0454545 = 0.10154 loss)
I0404 12:54:33.608269 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.0508615 (* 0.0454545 = 0.00231189 loss)
I0404 12:54:33.608283 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.0129023 (* 0.0454545 = 0.000586467 loss)
I0404 12:54:33.608297 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.00555801 (* 0.0454545 = 0.000252637 loss)
I0404 12:54:33.608312 9252 solver.cpp:245] Train net output #32: loss/loss11 = 9.61698e-05 (* 0.0454545 = 4.37135e-06 loss)
I0404 12:54:33.608326 9252 solver.cpp:245] Train net output #33: loss/loss12 = 9.74535e-05 (* 0.0454545 = 4.4297e-06 loss)
I0404 12:54:33.608340 9252 solver.cpp:245] Train net output #34: loss/loss13 = 9.65834e-05 (* 0.0454545 = 4.39015e-06 loss)
I0404 12:54:33.608353 9252 solver.cpp:245] Train net output #35: loss/loss14 = 9.81578e-05 (* 0.0454545 = 4.46172e-06 loss)
I0404 12:54:33.608367 9252 solver.cpp:245] Train net output #36: loss/loss15 = 9.78932e-05 (* 0.0454545 = 4.44969e-06 loss)
I0404 12:54:33.608381 9252 solver.cpp:245] Train net output #37: loss/loss16 = 9.73119e-05 (* 0.0454545 = 4.42327e-06 loss)
I0404 12:54:33.608395 9252 solver.cpp:245] Train net output #38: loss/loss17 = 9.61027e-05 (* 0.0454545 = 4.3683e-06 loss)
I0404 12:54:33.608425 9252 solver.cpp:245] Train net output #39: loss/loss18 = 9.59219e-05 (* 0.0454545 = 4.36009e-06 loss)
I0404 12:54:33.608441 9252 solver.cpp:245] Train net output #40: loss/loss19 = 9.62815e-05 (* 0.0454545 = 4.37643e-06 loss)
I0404 12:54:33.608455 9252 solver.cpp:245] Train net output #41: loss/loss20 = 9.63002e-05 (* 0.0454545 = 4.37728e-06 loss)
I0404 12:54:33.608469 9252 solver.cpp:245] Train net output #42: loss/loss21 = 9.58847e-05 (* 0.0454545 = 4.35839e-06 loss)
I0404 12:54:33.608482 9252 solver.cpp:245] Train net output #43: loss/loss22 = 9.61176e-05 (* 0.0454545 = 4.36898e-06 loss)
I0404 12:54:33.608494 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 12:54:33.608505 9252 solver.cpp:245] Train net output #45: total_confidence = 6.39708e-07
I0404 12:54:33.608518 9252 sgd_solver.cpp:106] Iteration 2000, lr = 0.00998
I0404 12:55:42.038975 9252 solver.cpp:229] Iteration 2500, loss = 1.20067
I0404 12:55:42.039109 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.03125
I0404 12:55:42.039129 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0
I0404 12:55:42.039142 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0
I0404 12:55:42.039155 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125
I0404 12:55:42.039166 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.09375
I0404 12:55:42.039178 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.46875
I0404 12:55:42.039191 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875
I0404 12:55:42.039202 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.78125
I0404 12:55:42.039214 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.875
I0404 12:55:42.039227 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.90625
I0404 12:55:42.039237 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 12:55:42.039249 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 12:55:42.039261 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 12:55:42.039273 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 12:55:42.039284 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 12:55:42.039295 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 12:55:42.039307 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 12:55:42.039319 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 12:55:42.039330 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 12:55:42.039341 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 12:55:42.039353 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 12:55:42.039366 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 12:55:42.039388 9252 solver.cpp:245] Train net output #22: loss/loss01 = 4.12703 (* 0.0454545 = 0.187592 loss)
I0404 12:55:42.039404 9252 solver.cpp:245] Train net output #23: loss/loss02 = 4.32417 (* 0.0454545 = 0.196553 loss)
I0404 12:55:42.039418 9252 solver.cpp:245] Train net output #24: loss/loss03 = 4.1215 (* 0.0454545 = 0.187341 loss)
I0404 12:55:42.039432 9252 solver.cpp:245] Train net output #25: loss/loss04 = 4.21418 (* 0.0454545 = 0.191554 loss)
I0404 12:55:42.039445 9252 solver.cpp:245] Train net output #26: loss/loss05 = 4.03017 (* 0.0454545 = 0.183189 loss)
I0404 12:55:42.039459 9252 solver.cpp:245] Train net output #27: loss/loss06 = 3.02613 (* 0.0454545 = 0.137552 loss)
I0404 12:55:42.039474 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.78655 (* 0.0454545 = 0.0812069 loss)
I0404 12:55:42.039486 9252 solver.cpp:245] Train net output #29: loss/loss08 = 1.33705 (* 0.0454545 = 0.0607748 loss)
I0404 12:55:42.039500 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.945743 (* 0.0454545 = 0.0429883 loss)
I0404 12:55:42.039515 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.649315 (* 0.0454545 = 0.0295143 loss)
I0404 12:55:42.039528 9252 solver.cpp:245] Train net output #32: loss/loss11 = 0.0044619 (* 0.0454545 = 0.000202814 loss)
I0404 12:55:42.039542 9252 solver.cpp:245] Train net output #33: loss/loss12 = 0.00450497 (* 0.0454545 = 0.000204771 loss)
I0404 12:55:42.039556 9252 solver.cpp:245] Train net output #34: loss/loss13 = 0.00446261 (* 0.0454545 = 0.000202846 loss)
I0404 12:55:42.039571 9252 solver.cpp:245] Train net output #35: loss/loss14 = 0.00448405 (* 0.0454545 = 0.000203821 loss)
I0404 12:55:42.039584 9252 solver.cpp:245] Train net output #36: loss/loss15 = 0.00447214 (* 0.0454545 = 0.000203279 loss)
I0404 12:55:42.039598 9252 solver.cpp:245] Train net output #37: loss/loss16 = 0.00447301 (* 0.0454545 = 0.000203318 loss)
I0404 12:55:42.039613 9252 solver.cpp:245] Train net output #38: loss/loss17 = 0.00445185 (* 0.0454545 = 0.000202357 loss)
I0404 12:55:42.039644 9252 solver.cpp:245] Train net output #39: loss/loss18 = 0.00444163 (* 0.0454545 = 0.000201892 loss)
I0404 12:55:42.039659 9252 solver.cpp:245] Train net output #40: loss/loss19 = 0.00447151 (* 0.0454545 = 0.00020325 loss)
I0404 12:55:42.039674 9252 solver.cpp:245] Train net output #41: loss/loss20 = 0.00444819 (* 0.0454545 = 0.000202191 loss)
I0404 12:55:42.039687 9252 solver.cpp:245] Train net output #42: loss/loss21 = 0.00445556 (* 0.0454545 = 0.000202526 loss)
I0404 12:55:42.039701 9252 solver.cpp:245] Train net output #43: loss/loss22 = 0.00446083 (* 0.0454545 = 0.000202765 loss)
I0404 12:55:42.039713 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 12:55:42.039724 9252 solver.cpp:245] Train net output #45: total_confidence = 1.27741e-07
I0404 12:55:42.039738 9252 sgd_solver.cpp:106] Iteration 2500, lr = 0.009975
I0404 12:56:50.566354 9252 solver.cpp:229] Iteration 3000, loss = 1.1954
I0404 12:56:50.566473 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375
I0404 12:56:50.566493 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125
I0404 12:56:50.566506 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0
I0404 12:56:50.566519 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125
I0404 12:56:50.566534 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.15625
I0404 12:56:50.566556 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.46875
I0404 12:56:50.566576 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.78125
I0404 12:56:50.566589 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875
I0404 12:56:50.566601 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875
I0404 12:56:50.566613 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 12:56:50.566624 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 12:56:50.566637 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 12:56:50.566648 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 12:56:50.566658 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 12:56:50.566669 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 12:56:50.566681 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 12:56:50.566692 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 12:56:50.566704 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 12:56:50.566715 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 12:56:50.566726 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 12:56:50.566737 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 12:56:50.566750 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 12:56:50.566764 9252 solver.cpp:245] Train net output #22: loss/loss01 = 4.19172 (* 0.0454545 = 0.190533 loss)
I0404 12:56:50.566779 9252 solver.cpp:245] Train net output #23: loss/loss02 = 4.08727 (* 0.0454545 = 0.185785 loss)
I0404 12:56:50.566792 9252 solver.cpp:245] Train net output #24: loss/loss03 = 4.02921 (* 0.0454545 = 0.183146 loss)
I0404 12:56:50.566807 9252 solver.cpp:245] Train net output #25: loss/loss04 = 4.14916 (* 0.0454545 = 0.188598 loss)
I0404 12:56:50.566820 9252 solver.cpp:245] Train net output #26: loss/loss05 = 3.84619 (* 0.0454545 = 0.174827 loss)
I0404 12:56:50.566833 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.62891 (* 0.0454545 = 0.119496 loss)
I0404 12:56:50.566848 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.46014 (* 0.0454545 = 0.06637 loss)
I0404 12:56:50.566860 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.900181 (* 0.0454545 = 0.0409173 loss)
I0404 12:56:50.566874 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.226947 (* 0.0454545 = 0.0103158 loss)
I0404 12:56:50.566889 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.0113587 (* 0.0454545 = 0.000516303 loss)
I0404 12:56:50.566905 9252 solver.cpp:245] Train net output #32: loss/loss11 = 0.000321962 (* 0.0454545 = 1.46346e-05 loss)
I0404 12:56:50.566920 9252 solver.cpp:245] Train net output #33: loss/loss12 = 0.000323182 (* 0.0454545 = 1.46901e-05 loss)
I0404 12:56:50.566934 9252 solver.cpp:245] Train net output #34: loss/loss13 = 0.000323084 (* 0.0454545 = 1.46857e-05 loss)
I0404 12:56:50.566947 9252 solver.cpp:245] Train net output #35: loss/loss14 = 0.000322976 (* 0.0454545 = 1.46807e-05 loss)
I0404 12:56:50.566962 9252 solver.cpp:245] Train net output #36: loss/loss15 = 0.00032298 (* 0.0454545 = 1.46809e-05 loss)
I0404 12:56:50.566975 9252 solver.cpp:245] Train net output #37: loss/loss16 = 0.000324606 (* 0.0454545 = 1.47548e-05 loss)
I0404 12:56:50.566989 9252 solver.cpp:245] Train net output #38: loss/loss17 = 0.000319778 (* 0.0454545 = 1.45354e-05 loss)
I0404 12:56:50.567019 9252 solver.cpp:245] Train net output #39: loss/loss18 = 0.000320537 (* 0.0454545 = 1.45699e-05 loss)
I0404 12:56:50.567035 9252 solver.cpp:245] Train net output #40: loss/loss19 = 0.000321561 (* 0.0454545 = 1.46164e-05 loss)
I0404 12:56:50.567049 9252 solver.cpp:245] Train net output #41: loss/loss20 = 0.00031967 (* 0.0454545 = 1.45305e-05 loss)
I0404 12:56:50.567062 9252 solver.cpp:245] Train net output #42: loss/loss21 = 0.000321846 (* 0.0454545 = 1.46294e-05 loss)
I0404 12:56:50.567075 9252 solver.cpp:245] Train net output #43: loss/loss22 = 0.000319937 (* 0.0454545 = 1.45426e-05 loss)
I0404 12:56:50.567087 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 12:56:50.567100 9252 solver.cpp:245] Train net output #45: total_confidence = 1.43543e-07
I0404 12:56:50.567112 9252 sgd_solver.cpp:106] Iteration 3000, lr = 0.00997
I0404 12:57:59.391693 9252 solver.cpp:229] Iteration 3500, loss = 1.18162
I0404 12:57:59.391849 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.03125
I0404 12:57:59.391870 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625
I0404 12:57:59.391883 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625
I0404 12:57:59.391896 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625
I0404 12:57:59.391907 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125
I0404 12:57:59.391919 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375
I0404 12:57:59.391932 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.65625
I0404 12:57:59.391943 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375
I0404 12:57:59.391955 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375
I0404 12:57:59.391968 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875
I0404 12:57:59.391979 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 12:57:59.391993 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 12:57:59.392004 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 12:57:59.392014 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 12:57:59.392026 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 12:57:59.392037 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 12:57:59.392050 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 12:57:59.392060 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 12:57:59.392071 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 12:57:59.392083 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 12:57:59.392094 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 12:57:59.392107 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 12:57:59.392122 9252 solver.cpp:245] Train net output #22: loss/loss01 = 4.05716 (* 0.0454545 = 0.184416 loss)
I0404 12:57:59.392137 9252 solver.cpp:245] Train net output #23: loss/loss02 = 4.05274 (* 0.0454545 = 0.184215 loss)
I0404 12:57:59.392150 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.81753 (* 0.0454545 = 0.173524 loss)
I0404 12:57:59.392164 9252 solver.cpp:245] Train net output #25: loss/loss04 = 4.06611 (* 0.0454545 = 0.184823 loss)
I0404 12:57:59.392177 9252 solver.cpp:245] Train net output #26: loss/loss05 = 3.81977 (* 0.0454545 = 0.173626 loss)
I0404 12:57:59.392191 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.97013 (* 0.0454545 = 0.135006 loss)
I0404 12:57:59.392204 9252 solver.cpp:245] Train net output #28: loss/loss07 = 2.01672 (* 0.0454545 = 0.091669 loss)
I0404 12:57:59.392218 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.45799 (* 0.0454545 = 0.0208177 loss)
I0404 12:57:59.392232 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.42364 (* 0.0454545 = 0.0192564 loss)
I0404 12:57:59.392246 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.229441 (* 0.0454545 = 0.0104291 loss)
I0404 12:57:59.392261 9252 solver.cpp:245] Train net output #32: loss/loss11 = 0.000752241 (* 0.0454545 = 3.41928e-05 loss)
I0404 12:57:59.392274 9252 solver.cpp:245] Train net output #33: loss/loss12 = 0.000761775 (* 0.0454545 = 3.46261e-05 loss)
I0404 12:57:59.392287 9252 solver.cpp:245] Train net output #34: loss/loss13 = 0.000752756 (* 0.0454545 = 3.42162e-05 loss)
I0404 12:57:59.392302 9252 solver.cpp:245] Train net output #35: loss/loss14 = 0.000754407 (* 0.0454545 = 3.42912e-05 loss)
I0404 12:57:59.392315 9252 solver.cpp:245] Train net output #36: loss/loss15 = 0.000755757 (* 0.0454545 = 3.43526e-05 loss)
I0404 12:57:59.392329 9252 solver.cpp:245] Train net output #37: loss/loss16 = 0.000754994 (* 0.0454545 = 3.43179e-05 loss)
I0404 12:57:59.392343 9252 solver.cpp:245] Train net output #38: loss/loss17 = 0.000751246 (* 0.0454545 = 3.41476e-05 loss)
I0404 12:57:59.392370 9252 solver.cpp:245] Train net output #39: loss/loss18 = 0.000751763 (* 0.0454545 = 3.4171e-05 loss)
I0404 12:57:59.392386 9252 solver.cpp:245] Train net output #40: loss/loss19 = 0.000754765 (* 0.0454545 = 3.43075e-05 loss)
I0404 12:57:59.392413 9252 solver.cpp:245] Train net output #41: loss/loss20 = 0.000749751 (* 0.0454545 = 3.40796e-05 loss)
I0404 12:57:59.392428 9252 solver.cpp:245] Train net output #42: loss/loss21 = 0.000752682 (* 0.0454545 = 3.42128e-05 loss)
I0404 12:57:59.392442 9252 solver.cpp:245] Train net output #43: loss/loss22 = 0.000752349 (* 0.0454545 = 3.41977e-05 loss)
I0404 12:57:59.392454 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 12:57:59.392467 9252 solver.cpp:245] Train net output #45: total_confidence = 2.74334e-07
I0404 12:57:59.392482 9252 sgd_solver.cpp:106] Iteration 3500, lr = 0.009965
I0404 12:59:08.836720 9252 solver.cpp:229] Iteration 4000, loss = 1.18269
I0404 12:59:08.836853 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375
I0404 12:59:08.836874 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0
I0404 12:59:08.836887 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625
I0404 12:59:08.836899 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125
I0404 12:59:08.836911 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25
I0404 12:59:08.836923 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5
I0404 12:59:08.836935 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.84375
I0404 12:59:08.836946 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375
I0404 12:59:08.836959 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375
I0404 12:59:08.836971 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875
I0404 12:59:08.836982 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 12:59:08.836993 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 12:59:08.837005 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 12:59:08.837016 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 12:59:08.837028 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 12:59:08.837039 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 12:59:08.837051 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 12:59:08.837062 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 12:59:08.837074 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 12:59:08.837085 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 12:59:08.837096 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 12:59:08.837107 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 12:59:08.837122 9252 solver.cpp:245] Train net output #22: loss/loss01 = 4.11616 (* 0.0454545 = 0.187098 loss)
I0404 12:59:08.837137 9252 solver.cpp:245] Train net output #23: loss/loss02 = 4.2007 (* 0.0454545 = 0.190941 loss)
I0404 12:59:08.837151 9252 solver.cpp:245] Train net output #24: loss/loss03 = 4.06892 (* 0.0454545 = 0.184951 loss)
I0404 12:59:08.837164 9252 solver.cpp:245] Train net output #25: loss/loss04 = 4.08144 (* 0.0454545 = 0.18552 loss)
I0404 12:59:08.837178 9252 solver.cpp:245] Train net output #26: loss/loss05 = 3.77917 (* 0.0454545 = 0.171781 loss)
I0404 12:59:08.837191 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.51692 (* 0.0454545 = 0.114406 loss)
I0404 12:59:08.837205 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.09516 (* 0.0454545 = 0.0497801 loss)
I0404 12:59:08.837219 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.472731 (* 0.0454545 = 0.0214878 loss)
I0404 12:59:08.837234 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.495045 (* 0.0454545 = 0.0225021 loss)
I0404 12:59:08.837247 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.1985 (* 0.0454545 = 0.00902272 loss)
I0404 12:59:08.837261 9252 solver.cpp:245] Train net output #32: loss/loss11 = 0.000513174 (* 0.0454545 = 2.33261e-05 loss)
I0404 12:59:08.837276 9252 solver.cpp:245] Train net output #33: loss/loss12 = 0.000516585 (* 0.0454545 = 2.34811e-05 loss)
I0404 12:59:08.837290 9252 solver.cpp:245] Train net output #34: loss/loss13 = 0.000512928 (* 0.0454545 = 2.33149e-05 loss)
I0404 12:59:08.837303 9252 solver.cpp:245] Train net output #35: loss/loss14 = 0.000510892 (* 0.0454545 = 2.32224e-05 loss)
I0404 12:59:08.837317 9252 solver.cpp:245] Train net output #36: loss/loss15 = 0.000510448 (* 0.0454545 = 2.32022e-05 loss)
I0404 12:59:08.837332 9252 solver.cpp:245] Train net output #37: loss/loss16 = 0.000512603 (* 0.0454545 = 2.33001e-05 loss)
I0404 12:59:08.837345 9252 solver.cpp:245] Train net output #38: loss/loss17 = 0.00051136 (* 0.0454545 = 2.32436e-05 loss)
I0404 12:59:08.837375 9252 solver.cpp:245] Train net output #39: loss/loss18 = 0.000516205 (* 0.0454545 = 2.34638e-05 loss)
I0404 12:59:08.837390 9252 solver.cpp:245] Train net output #40: loss/loss19 = 0.000512909 (* 0.0454545 = 2.3314e-05 loss)
I0404 12:59:08.837405 9252 solver.cpp:245] Train net output #41: loss/loss20 = 0.000512536 (* 0.0454545 = 2.32971e-05 loss)
I0404 12:59:08.837436 9252 solver.cpp:245] Train net output #42: loss/loss21 = 0.000512079 (* 0.0454545 = 2.32763e-05 loss)
I0404 12:59:08.837455 9252 solver.cpp:245] Train net output #43: loss/loss22 = 0.000514801 (* 0.0454545 = 2.34001e-05 loss)
I0404 12:59:08.837466 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 12:59:08.837478 9252 solver.cpp:245] Train net output #45: total_confidence = 2.75815e-07
I0404 12:59:08.837492 9252 sgd_solver.cpp:106] Iteration 4000, lr = 0.00996
I0404 13:00:17.918923 9252 solver.cpp:229] Iteration 4500, loss = 1.18205
I0404 13:00:17.919051 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.03125
I0404 13:00:17.919072 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125
I0404 13:00:17.919085 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125
I0404 13:00:17.919097 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0
I0404 13:00:17.919109 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875
I0404 13:00:17.919121 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.46875
I0404 13:00:17.919134 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125
I0404 13:00:17.919145 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375
I0404 13:00:17.919157 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875
I0404 13:00:17.919168 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 13:00:17.919180 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 13:00:17.919191 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 13:00:17.919203 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 13:00:17.919214 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 13:00:17.919225 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 13:00:17.919237 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 13:00:17.919248 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 13:00:17.919260 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 13:00:17.919271 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 13:00:17.919283 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 13:00:17.919294 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 13:00:17.919306 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 13:00:17.919322 9252 solver.cpp:245] Train net output #22: loss/loss01 = 4.1285 (* 0.0454545 = 0.187659 loss)
I0404 13:00:17.919335 9252 solver.cpp:245] Train net output #23: loss/loss02 = 4.1998 (* 0.0454545 = 0.1909 loss)
I0404 13:00:17.919349 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.86007 (* 0.0454545 = 0.175458 loss)
I0404 13:00:17.919363 9252 solver.cpp:245] Train net output #25: loss/loss04 = 4.11513 (* 0.0454545 = 0.187052 loss)
I0404 13:00:17.919378 9252 solver.cpp:245] Train net output #26: loss/loss05 = 3.83896 (* 0.0454545 = 0.174498 loss)
I0404 13:00:17.919391 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.65069 (* 0.0454545 = 0.120486 loss)
I0404 13:00:17.919405 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.34558 (* 0.0454545 = 0.0611626 loss)
I0404 13:00:17.919419 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.52358 (* 0.0454545 = 0.0237991 loss)
I0404 13:00:17.919432 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.22212 (* 0.0454545 = 0.0100963 loss)
I0404 13:00:17.919446 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.0290877 (* 0.0454545 = 0.00132217 loss)
I0404 13:00:17.919461 9252 solver.cpp:245] Train net output #32: loss/loss11 = 0.000886207 (* 0.0454545 = 4.02821e-05 loss)
I0404 13:00:17.919476 9252 solver.cpp:245] Train net output #33: loss/loss12 = 0.00088845 (* 0.0454545 = 4.03841e-05 loss)
I0404 13:00:17.919489 9252 solver.cpp:245] Train net output #34: loss/loss13 = 0.000883839 (* 0.0454545 = 4.01745e-05 loss)
I0404 13:00:17.919503 9252 solver.cpp:245] Train net output #35: loss/loss14 = 0.000884753 (* 0.0454545 = 4.0216e-05 loss)
I0404 13:00:17.919517 9252 solver.cpp:245] Train net output #36: loss/loss15 = 0.000884085 (* 0.0454545 = 4.01857e-05 loss)
I0404 13:00:17.919531 9252 solver.cpp:245] Train net output #37: loss/loss16 = 0.000885506 (* 0.0454545 = 4.02503e-05 loss)
I0404 13:00:17.919544 9252 solver.cpp:245] Train net output #38: loss/loss17 = 0.000877949 (* 0.0454545 = 3.99068e-05 loss)
I0404 13:00:17.919576 9252 solver.cpp:245] Train net output #39: loss/loss18 = 0.000886477 (* 0.0454545 = 4.02944e-05 loss)
I0404 13:00:17.919591 9252 solver.cpp:245] Train net output #40: loss/loss19 = 0.000883769 (* 0.0454545 = 4.01713e-05 loss)
I0404 13:00:17.919605 9252 solver.cpp:245] Train net output #41: loss/loss20 = 0.000885265 (* 0.0454545 = 4.02393e-05 loss)
I0404 13:00:17.919620 9252 solver.cpp:245] Train net output #42: loss/loss21 = 0.000884296 (* 0.0454545 = 4.01953e-05 loss)
I0404 13:00:17.919633 9252 solver.cpp:245] Train net output #43: loss/loss22 = 0.000886551 (* 0.0454545 = 4.02978e-05 loss)
I0404 13:00:17.919646 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 13:00:17.919656 9252 solver.cpp:245] Train net output #45: total_confidence = 1.0924e-07
I0404 13:00:17.919669 9252 sgd_solver.cpp:106] Iteration 4500, lr = 0.009955
I0404 13:01:27.153278 9252 solver.cpp:229] Iteration 5000, loss = 1.17493
I0404 13:01:27.153406 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0
I0404 13:01:27.153439 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0
I0404 13:01:27.153452 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0
I0404 13:01:27.153465 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625
I0404 13:01:27.153476 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875
I0404 13:01:27.153488 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375
I0404 13:01:27.153501 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875
I0404 13:01:27.153512 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375
I0404 13:01:27.153523 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 1
I0404 13:01:27.153535 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 13:01:27.153547 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 13:01:27.153558 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 13:01:27.153569 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 13:01:27.153580 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 13:01:27.153591 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 13:01:27.153604 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 13:01:27.153614 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 13:01:27.153625 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 13:01:27.153637 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 13:01:27.153648 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 13:01:27.153661 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 13:01:27.153671 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 13:01:27.153687 9252 solver.cpp:245] Train net output #22: loss/loss01 = 4.05966 (* 0.0454545 = 0.18453 loss)
I0404 13:01:27.153702 9252 solver.cpp:245] Train net output #23: loss/loss02 = 4.13274 (* 0.0454545 = 0.187852 loss)
I0404 13:01:27.153715 9252 solver.cpp:245] Train net output #24: loss/loss03 = 4.05962 (* 0.0454545 = 0.184528 loss)
I0404 13:01:27.153729 9252 solver.cpp:245] Train net output #25: loss/loss04 = 4.13526 (* 0.0454545 = 0.187966 loss)
I0404 13:01:27.153743 9252 solver.cpp:245] Train net output #26: loss/loss05 = 3.92443 (* 0.0454545 = 0.178383 loss)
I0404 13:01:27.153756 9252 solver.cpp:245] Train net output #27: loss/loss06 = 3.12256 (* 0.0454545 = 0.141935 loss)
I0404 13:01:27.153769 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.77526 (* 0.0454545 = 0.0806936 loss)
I0404 13:01:27.153782 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.44313 (* 0.0454545 = 0.0201423 loss)
I0404 13:01:27.153796 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.0777645 (* 0.0454545 = 0.00353475 loss)
I0404 13:01:27.153810 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.0307648 (* 0.0454545 = 0.0013984 loss)
I0404 13:01:27.153825 9252 solver.cpp:245] Train net output #32: loss/loss11 = 0.00121718 (* 0.0454545 = 5.53262e-05 loss)
I0404 13:01:27.153839 9252 solver.cpp:245] Train net output #33: loss/loss12 = 0.00121657 (* 0.0454545 = 5.52987e-05 loss)
I0404 13:01:27.153853 9252 solver.cpp:245] Train net output #34: loss/loss13 = 0.00121172 (* 0.0454545 = 5.50782e-05 loss)
I0404 13:01:27.153867 9252 solver.cpp:245] Train net output #35: loss/loss14 = 0.00121452 (* 0.0454545 = 5.52056e-05 loss)
I0404 13:01:27.153880 9252 solver.cpp:245] Train net output #36: loss/loss15 = 0.00120842 (* 0.0454545 = 5.49283e-05 loss)
I0404 13:01:27.153894 9252 solver.cpp:245] Train net output #37: loss/loss16 = 0.00121334 (* 0.0454545 = 5.51516e-05 loss)
I0404 13:01:27.153911 9252 solver.cpp:245] Train net output #38: loss/loss17 = 0.0012029 (* 0.0454545 = 5.46773e-05 loss)
I0404 13:01:27.153944 9252 solver.cpp:245] Train net output #39: loss/loss18 = 0.00121289 (* 0.0454545 = 5.51312e-05 loss)
I0404 13:01:27.153959 9252 solver.cpp:245] Train net output #40: loss/loss19 = 0.00120928 (* 0.0454545 = 5.49673e-05 loss)
I0404 13:01:27.153972 9252 solver.cpp:245] Train net output #41: loss/loss20 = 0.00121729 (* 0.0454545 = 5.53312e-05 loss)
I0404 13:01:27.153986 9252 solver.cpp:245] Train net output #42: loss/loss21 = 0.00121115 (* 0.0454545 = 5.50524e-05 loss)
I0404 13:01:27.154000 9252 solver.cpp:245] Train net output #43: loss/loss22 = 0.0012157 (* 0.0454545 = 5.52592e-05 loss)
I0404 13:01:27.154012 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 13:01:27.154023 9252 solver.cpp:245] Train net output #45: total_confidence = 1.37481e-07
I0404 13:01:27.154037 9252 sgd_solver.cpp:106] Iteration 5000, lr = 0.00995
I0404 13:02:36.922932 9252 solver.cpp:229] Iteration 5500, loss = 1.17123
I0404 13:02:36.923130 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.03125
I0404 13:02:36.923152 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0
I0404 13:02:36.923166 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125
I0404 13:02:36.923177 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125
I0404 13:02:36.923189 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25
I0404 13:02:36.923202 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.46875
I0404 13:02:36.923213 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.78125
I0404 13:02:36.923224 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375
I0404 13:02:36.923236 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375
I0404 13:02:36.923249 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875
I0404 13:02:36.923259 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 13:02:36.923271 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 13:02:36.923282 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 13:02:36.923295 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 13:02:36.923305 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 13:02:36.923317 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 13:02:36.923329 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 13:02:36.923341 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 13:02:36.923352 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 13:02:36.923362 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 13:02:36.923374 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 13:02:36.923385 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 13:02:36.923400 9252 solver.cpp:245] Train net output #22: loss/loss01 = 4.28086 (* 0.0454545 = 0.194585 loss)
I0404 13:02:36.923415 9252 solver.cpp:245] Train net output #23: loss/loss02 = 4.02756 (* 0.0454545 = 0.183071 loss)
I0404 13:02:36.923429 9252 solver.cpp:245] Train net output #24: loss/loss03 = 4.05606 (* 0.0454545 = 0.184366 loss)
I0404 13:02:36.923442 9252 solver.cpp:245] Train net output #25: loss/loss04 = 4.03525 (* 0.0454545 = 0.18342 loss)
I0404 13:02:36.923455 9252 solver.cpp:245] Train net output #26: loss/loss05 = 3.70728 (* 0.0454545 = 0.168513 loss)
I0404 13:02:36.923470 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.6152 (* 0.0454545 = 0.118873 loss)
I0404 13:02:36.923483 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.30571 (* 0.0454545 = 0.0593504 loss)
I0404 13:02:36.923496 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.385719 (* 0.0454545 = 0.0175327 loss)
I0404 13:02:36.923517 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.426645 (* 0.0454545 = 0.019393 loss)
I0404 13:02:36.923547 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.257499 (* 0.0454545 = 0.0117045 loss)
I0404 13:02:36.923578 9252 solver.cpp:245] Train net output #32: loss/loss11 = 0.000393137 (* 0.0454545 = 1.78699e-05 loss)
I0404 13:02:36.923625 9252 solver.cpp:245] Train net output #33: loss/loss12 = 0.000393381 (* 0.0454545 = 1.7881e-05 loss)
I0404 13:02:36.923648 9252 solver.cpp:245] Train net output #34: loss/loss13 = 0.000391402 (* 0.0454545 = 1.7791e-05 loss)
I0404 13:02:36.923662 9252 solver.cpp:245] Train net output #35: loss/loss14 = 0.000394458 (* 0.0454545 = 1.79299e-05 loss)
I0404 13:02:36.923677 9252 solver.cpp:245] Train net output #36: loss/loss15 = 0.000392483 (* 0.0454545 = 1.78401e-05 loss)
I0404 13:02:36.923691 9252 solver.cpp:245] Train net output #37: loss/loss16 = 0.000391103 (* 0.0454545 = 1.77774e-05 loss)
I0404 13:02:36.923705 9252 solver.cpp:245] Train net output #38: loss/loss17 = 0.000390916 (* 0.0454545 = 1.77689e-05 loss)
I0404 13:02:36.923734 9252 solver.cpp:245] Train net output #39: loss/loss18 = 0.000392852 (* 0.0454545 = 1.78569e-05 loss)
I0404 13:02:36.923753 9252 solver.cpp:245] Train net output #40: loss/loss19 = 0.000391649 (* 0.0454545 = 1.78022e-05 loss)
I0404 13:02:36.923768 9252 solver.cpp:245] Train net output #41: loss/loss20 = 0.000392922 (* 0.0454545 = 1.78601e-05 loss)
I0404 13:02:36.923781 9252 solver.cpp:245] Train net output #42: loss/loss21 = 0.000392244 (* 0.0454545 = 1.78293e-05 loss)
I0404 13:02:36.923794 9252 solver.cpp:245] Train net output #43: loss/loss22 = 0.000393735 (* 0.0454545 = 1.7897e-05 loss)
I0404 13:02:36.923806 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 13:02:36.923817 9252 solver.cpp:245] Train net output #45: total_confidence = 2.83792e-07
I0404 13:02:36.923833 9252 sgd_solver.cpp:106] Iteration 5500, lr = 0.009945
I0404 13:03:46.285241 9252 solver.cpp:229] Iteration 6000, loss = 1.1733
I0404 13:03:46.285365 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.03125
I0404 13:03:46.285387 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625
I0404 13:03:46.285399 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125
I0404 13:03:46.285411 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125
I0404 13:03:46.285423 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25
I0404 13:03:46.285436 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5625
I0404 13:03:46.285449 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875
I0404 13:03:46.285460 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625
I0404 13:03:46.285471 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375
I0404 13:03:46.285500 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875
I0404 13:03:46.285514 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 13:03:46.285526 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 13:03:46.285538 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 13:03:46.285549 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 13:03:46.285562 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 13:03:46.285573 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 13:03:46.285584 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 13:03:46.285596 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 13:03:46.285607 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 13:03:46.285619 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 13:03:46.285630 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 13:03:46.285641 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 13:03:46.285657 9252 solver.cpp:245] Train net output #22: loss/loss01 = 4.02091 (* 0.0454545 = 0.182769 loss)
I0404 13:03:46.285671 9252 solver.cpp:245] Train net output #23: loss/loss02 = 4.0891 (* 0.0454545 = 0.185868 loss)
I0404 13:03:46.285686 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.8803 (* 0.0454545 = 0.176377 loss)
I0404 13:03:46.285699 9252 solver.cpp:245] Train net output #25: loss/loss04 = 4.01181 (* 0.0454545 = 0.182355 loss)
I0404 13:03:46.285712 9252 solver.cpp:245] Train net output #26: loss/loss05 = 3.69245 (* 0.0454545 = 0.167839 loss)
I0404 13:03:46.285727 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.14962 (* 0.0454545 = 0.09771 loss)
I0404 13:03:46.285740 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.57003 (* 0.0454545 = 0.0713652 loss)
I0404 13:03:46.285758 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.584002 (* 0.0454545 = 0.0265455 loss)
I0404 13:03:46.285771 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.361665 (* 0.0454545 = 0.0164393 loss)
I0404 13:03:46.285784 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.22523 (* 0.0454545 = 0.0102377 loss)
I0404 13:03:46.285799 9252 solver.cpp:245] Train net output #32: loss/loss11 = 7.10326e-05 (* 0.0454545 = 3.22875e-06 loss)
I0404 13:03:46.285814 9252 solver.cpp:245] Train net output #33: loss/loss12 = 7.12208e-05 (* 0.0454545 = 3.23731e-06 loss)
I0404 13:03:46.285827 9252 solver.cpp:245] Train net output #34: loss/loss13 = 7.09729e-05 (* 0.0454545 = 3.22604e-06 loss)
I0404 13:03:46.285841 9252 solver.cpp:245] Train net output #35: loss/loss14 = 7.10176e-05 (* 0.0454545 = 3.22807e-06 loss)
I0404 13:03:46.285856 9252 solver.cpp:245] Train net output #36: loss/loss15 = 7.06785e-05 (* 0.0454545 = 3.21266e-06 loss)
I0404 13:03:46.285869 9252 solver.cpp:245] Train net output #37: loss/loss16 = 7.10549e-05 (* 0.0454545 = 3.22977e-06 loss)
I0404 13:03:46.285883 9252 solver.cpp:245] Train net output #38: loss/loss17 = 7.07531e-05 (* 0.0454545 = 3.21605e-06 loss)
I0404 13:03:46.285914 9252 solver.cpp:245] Train net output #39: loss/loss18 = 7.15748e-05 (* 0.0454545 = 3.2534e-06 loss)
I0404 13:03:46.285929 9252 solver.cpp:245] Train net output #40: loss/loss19 = 7.07493e-05 (* 0.0454545 = 3.21588e-06 loss)
I0404 13:03:46.285943 9252 solver.cpp:245] Train net output #41: loss/loss20 = 7.12487e-05 (* 0.0454545 = 3.23858e-06 loss)
I0404 13:03:46.285958 9252 solver.cpp:245] Train net output #42: loss/loss21 = 7.10549e-05 (* 0.0454545 = 3.22977e-06 loss)
I0404 13:03:46.285971 9252 solver.cpp:245] Train net output #43: loss/loss22 = 7.09618e-05 (* 0.0454545 = 3.22553e-06 loss)
I0404 13:03:46.285984 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 13:03:46.285995 9252 solver.cpp:245] Train net output #45: total_confidence = 4.6566e-07
I0404 13:03:46.286007 9252 sgd_solver.cpp:106] Iteration 6000, lr = 0.00994
I0404 13:04:55.502306 9252 solver.cpp:229] Iteration 6500, loss = 1.16481
I0404 13:04:55.502413 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375
I0404 13:04:55.502432 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625
I0404 13:04:55.502445 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0
I0404 13:04:55.502457 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125
I0404 13:04:55.502470 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.15625
I0404 13:04:55.502480 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375
I0404 13:04:55.502492 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875
I0404 13:04:55.502506 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625
I0404 13:04:55.502516 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375
I0404 13:04:55.502528 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875
I0404 13:04:55.502539 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 13:04:55.502552 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 13:04:55.502562 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 13:04:55.502574 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 13:04:55.502585 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 13:04:55.502598 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 13:04:55.502609 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 13:04:55.502620 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 13:04:55.502631 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 13:04:55.502642 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 13:04:55.502655 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 13:04:55.502665 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 13:04:55.502681 9252 solver.cpp:245] Train net output #22: loss/loss01 = 3.95483 (* 0.0454545 = 0.179765 loss)
I0404 13:04:55.502696 9252 solver.cpp:245] Train net output #23: loss/loss02 = 4.05699 (* 0.0454545 = 0.184408 loss)
I0404 13:04:55.502710 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.8838 (* 0.0454545 = 0.176536 loss)
I0404 13:04:55.502723 9252 solver.cpp:245] Train net output #25: loss/loss04 = 4.09547 (* 0.0454545 = 0.186158 loss)
I0404 13:04:55.502737 9252 solver.cpp:245] Train net output #26: loss/loss05 = 3.78214 (* 0.0454545 = 0.171916 loss)
I0404 13:04:55.502754 9252 solver.cpp:245] Train net output #27: loss/loss06 = 3.05817 (* 0.0454545 = 0.139008 loss)
I0404 13:04:55.502768 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.72657 (* 0.0454545 = 0.0784806 loss)
I0404 13:04:55.502781 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.667593 (* 0.0454545 = 0.0303451 loss)
I0404 13:04:55.502795 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.431967 (* 0.0454545 = 0.0196349 loss)
I0404 13:04:55.502810 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.252548 (* 0.0454545 = 0.0114794 loss)
I0404 13:04:55.502823 9252 solver.cpp:245] Train net output #32: loss/loss11 = 0.00186272 (* 0.0454545 = 8.4669e-05 loss)
I0404 13:04:55.502837 9252 solver.cpp:245] Train net output #33: loss/loss12 = 0.00187167 (* 0.0454545 = 8.50758e-05 loss)
I0404 13:04:55.502851 9252 solver.cpp:245] Train net output #34: loss/loss13 = 0.00185161 (* 0.0454545 = 8.41642e-05 loss)
I0404 13:04:55.502866 9252 solver.cpp:245] Train net output #35: loss/loss14 = 0.00185635 (* 0.0454545 = 8.43795e-05 loss)
I0404 13:04:55.502879 9252 solver.cpp:245] Train net output #36: loss/loss15 = 0.00185769 (* 0.0454545 = 8.44405e-05 loss)
I0404 13:04:55.502893 9252 solver.cpp:245] Train net output #37: loss/loss16 = 0.00185773 (* 0.0454545 = 8.44421e-05 loss)
I0404 13:04:55.502907 9252 solver.cpp:245] Train net output #38: loss/loss17 = 0.0018572 (* 0.0454545 = 8.44181e-05 loss)
I0404 13:04:55.502938 9252 solver.cpp:245] Train net output #39: loss/loss18 = 0.00186652 (* 0.0454545 = 8.48416e-05 loss)
I0404 13:04:55.502954 9252 solver.cpp:245] Train net output #40: loss/loss19 = 0.00185567 (* 0.0454545 = 8.43487e-05 loss)
I0404 13:04:55.502969 9252 solver.cpp:245] Train net output #41: loss/loss20 = 0.00186178 (* 0.0454545 = 8.46266e-05 loss)
I0404 13:04:55.502982 9252 solver.cpp:245] Train net output #42: loss/loss21 = 0.00185334 (* 0.0454545 = 8.42427e-05 loss)
I0404 13:04:55.502996 9252 solver.cpp:245] Train net output #43: loss/loss22 = 0.00186202 (* 0.0454545 = 8.46372e-05 loss)
I0404 13:04:55.503008 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 13:04:55.503020 9252 solver.cpp:245] Train net output #45: total_confidence = 1.74413e-07
I0404 13:04:55.503033 9252 sgd_solver.cpp:106] Iteration 6500, lr = 0.009935
I0404 13:06:04.937978 9252 solver.cpp:229] Iteration 7000, loss = 1.16316
I0404 13:06:04.938092 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.03125
I0404 13:06:04.938112 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125
I0404 13:06:04.938124 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125
I0404 13:06:04.938136 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0
I0404 13:06:04.938148 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125
I0404 13:06:04.938160 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.46875
I0404 13:06:04.938172 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.78125
I0404 13:06:04.938184 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.96875
I0404 13:06:04.938195 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 1
I0404 13:06:04.938207 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 13:06:04.938218 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 13:06:04.938230 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 13:06:04.938241 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 13:06:04.938252 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 13:06:04.938264 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 13:06:04.938276 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 13:06:04.938287 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 13:06:04.938298 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 13:06:04.938309 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 13:06:04.938321 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 13:06:04.938333 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 13:06:04.938344 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 13:06:04.938362 9252 solver.cpp:245] Train net output #22: loss/loss01 = 4.0929 (* 0.0454545 = 0.186041 loss)
I0404 13:06:04.938386 9252 solver.cpp:245] Train net output #23: loss/loss02 = 4.09424 (* 0.0454545 = 0.186102 loss)
I0404 13:06:04.938401 9252 solver.cpp:245] Train net output #24: loss/loss03 = 4.08627 (* 0.0454545 = 0.18574 loss)
I0404 13:06:04.938416 9252 solver.cpp:245] Train net output #25: loss/loss04 = 4.10877 (* 0.0454545 = 0.186762 loss)
I0404 13:06:04.938429 9252 solver.cpp:245] Train net output #26: loss/loss05 = 3.60692 (* 0.0454545 = 0.163951 loss)
I0404 13:06:04.938443 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.68769 (* 0.0454545 = 0.122168 loss)
I0404 13:06:04.938457 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.22214 (* 0.0454545 = 0.0555518 loss)
I0404 13:06:04.938470 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.22188 (* 0.0454545 = 0.0100854 loss)
I0404 13:06:04.938484 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.0309609 (* 0.0454545 = 0.00140731 loss)
I0404 13:06:04.938498 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.012179 (* 0.0454545 = 0.000553593 loss)
I0404 13:06:04.938513 9252 solver.cpp:245] Train net output #32: loss/loss11 = 0.000198751 (* 0.0454545 = 9.03414e-06 loss)
I0404 13:06:04.938527 9252 solver.cpp:245] Train net output #33: loss/loss12 = 0.000199573 (* 0.0454545 = 9.07151e-06 loss)
I0404 13:06:04.938541 9252 solver.cpp:245] Train net output #34: loss/loss13 = 0.000198469 (* 0.0454545 = 9.02133e-06 loss)
I0404 13:06:04.938555 9252 solver.cpp:245] Train net output #35: loss/loss14 = 0.00019866 (* 0.0454545 = 9.02998e-06 loss)
I0404 13:06:04.938570 9252 solver.cpp:245] Train net output #36: loss/loss15 = 0.000199126 (* 0.0454545 = 9.05118e-06 loss)
I0404 13:06:04.938583 9252 solver.cpp:245] Train net output #37: loss/loss16 = 0.000198756 (* 0.0454545 = 9.03438e-06 loss)
I0404 13:06:04.938602 9252 solver.cpp:245] Train net output #38: loss/loss17 = 0.00019808 (* 0.0454545 = 9.00362e-06 loss)
I0404 13:06:04.938640 9252 solver.cpp:245] Train net output #39: loss/loss18 = 0.000199072 (* 0.0454545 = 9.04871e-06 loss)
I0404 13:06:04.938657 9252 solver.cpp:245] Train net output #40: loss/loss19 = 0.000198622 (* 0.0454545 = 9.02829e-06 loss)
I0404 13:06:04.938670 9252 solver.cpp:245] Train net output #41: loss/loss20 = 0.000197785 (* 0.0454545 = 8.99023e-06 loss)
I0404 13:06:04.938684 9252 solver.cpp:245] Train net output #42: loss/loss21 = 0.000197565 (* 0.0454545 = 8.98023e-06 loss)
I0404 13:06:04.938699 9252 solver.cpp:245] Train net output #43: loss/loss22 = 0.000198466 (* 0.0454545 = 9.02117e-06 loss)
I0404 13:06:04.938710 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 13:06:04.938721 9252 solver.cpp:245] Train net output #45: total_confidence = 6.32013e-07
I0404 13:06:04.938736 9252 sgd_solver.cpp:106] Iteration 7000, lr = 0.00993
I0404 13:07:13.914739 9252 solver.cpp:229] Iteration 7500, loss = 1.16274
I0404 13:07:13.914877 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625
I0404 13:07:13.914898 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0
I0404 13:07:13.914911 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125
I0404 13:07:13.914922 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125
I0404 13:07:13.914934 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.125
I0404 13:07:13.914947 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125
I0404 13:07:13.914958 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.65625
I0404 13:07:13.914971 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625
I0404 13:07:13.914983 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875
I0404 13:07:13.914994 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 13:07:13.915005 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 13:07:13.915017 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 13:07:13.915029 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 13:07:13.915040 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 13:07:13.915051 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 13:07:13.915062 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 13:07:13.915074 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 13:07:13.915086 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 13:07:13.915097 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 13:07:13.915108 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 13:07:13.915120 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 13:07:13.915132 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 13:07:13.915146 9252 solver.cpp:245] Train net output #22: loss/loss01 = 4.0788 (* 0.0454545 = 0.1854 loss)
I0404 13:07:13.915161 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.941 (* 0.0454545 = 0.179136 loss)
I0404 13:07:13.915175 9252 solver.cpp:245] Train net output #24: loss/loss03 = 4.04383 (* 0.0454545 = 0.18381 loss)
I0404 13:07:13.915189 9252 solver.cpp:245] Train net output #25: loss/loss04 = 4.17271 (* 0.0454545 = 0.189669 loss)
I0404 13:07:13.915205 9252 solver.cpp:245] Train net output #26: loss/loss05 = 4.01761 (* 0.0454545 = 0.182619 loss)
I0404 13:07:13.915218 9252 solver.cpp:245] Train net output #27: loss/loss06 = 3.2584 (* 0.0454545 = 0.148109 loss)
I0404 13:07:13.915231 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.95521 (* 0.0454545 = 0.0888733 loss)
I0404 13:07:13.915246 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.579066 (* 0.0454545 = 0.0263212 loss)
I0404 13:07:13.915258 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.252006 (* 0.0454545 = 0.0114548 loss)
I0404 13:07:13.915272 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.0183595 (* 0.0454545 = 0.000834521 loss)
I0404 13:07:13.915287 9252 solver.cpp:245] Train net output #32: loss/loss11 = 0.0004563 (* 0.0454545 = 2.07409e-05 loss)
I0404 13:07:13.915302 9252 solver.cpp:245] Train net output #33: loss/loss12 = 0.000454425 (* 0.0454545 = 2.06557e-05 loss)
I0404 13:07:13.915316 9252 solver.cpp:245] Train net output #34: loss/loss13 = 0.00045249 (* 0.0454545 = 2.05677e-05 loss)
I0404 13:07:13.915330 9252 solver.cpp:245] Train net output #35: loss/loss14 = 0.0004527 (* 0.0454545 = 2.05773e-05 loss)
I0404 13:07:13.915345 9252 solver.cpp:245] Train net output #36: loss/loss15 = 0.000450381 (* 0.0454545 = 2.04719e-05 loss)
I0404 13:07:13.915359 9252 solver.cpp:245] Train net output #37: loss/loss16 = 0.000453611 (* 0.0454545 = 2.06187e-05 loss)
I0404 13:07:13.915374 9252 solver.cpp:245] Train net output #38: loss/loss17 = 0.000450135 (* 0.0454545 = 2.04607e-05 loss)
I0404 13:07:13.915400 9252 solver.cpp:245] Train net output #39: loss/loss18 = 0.00045479 (* 0.0454545 = 2.06723e-05 loss)
I0404 13:07:13.915416 9252 solver.cpp:245] Train net output #40: loss/loss19 = 0.000451857 (* 0.0454545 = 2.0539e-05 loss)
I0404 13:07:13.915431 9252 solver.cpp:245] Train net output #41: loss/loss20 = 0.000451147 (* 0.0454545 = 2.05067e-05 loss)
I0404 13:07:13.915444 9252 solver.cpp:245] Train net output #42: loss/loss21 = 0.000452314 (* 0.0454545 = 2.05597e-05 loss)
I0404 13:07:13.915458 9252 solver.cpp:245] Train net output #43: loss/loss22 = 0.00045076 (* 0.0454545 = 2.04891e-05 loss)
I0404 13:07:13.915470 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 13:07:13.915482 9252 solver.cpp:245] Train net output #45: total_confidence = 2.6112e-07
I0404 13:07:13.915495 9252 sgd_solver.cpp:106] Iteration 7500, lr = 0.009925
I0404 13:08:22.993594 9252 solver.cpp:229] Iteration 8000, loss = 1.1615
I0404 13:08:22.993724 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.03125
I0404 13:08:22.993747 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625
I0404 13:08:22.993762 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0
I0404 13:08:22.993773 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625
I0404 13:08:22.993785 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125
I0404 13:08:22.993798 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375
I0404 13:08:22.993809 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75
I0404 13:08:22.993821 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375
I0404 13:08:22.993834 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875
I0404 13:08:22.993845 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875
I0404 13:08:22.993856 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 13:08:22.993868 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 13:08:22.993880 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 13:08:22.993891 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 13:08:22.993902 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 13:08:22.993913 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 13:08:22.993926 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 13:08:22.993937 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 13:08:22.993947 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 13:08:22.993959 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 13:08:22.993970 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 13:08:22.993981 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 13:08:22.993998 9252 solver.cpp:245] Train net output #22: loss/loss01 = 4.00242 (* 0.0454545 = 0.181928 loss)
I0404 13:08:22.994011 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.90018 (* 0.0454545 = 0.177281 loss)
I0404 13:08:22.994025 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.99023 (* 0.0454545 = 0.181374 loss)
I0404 13:08:22.994040 9252 solver.cpp:245] Train net output #25: loss/loss04 = 4.02009 (* 0.0454545 = 0.182731 loss)
I0404 13:08:22.994053 9252 solver.cpp:245] Train net output #26: loss/loss05 = 3.51546 (* 0.0454545 = 0.159794 loss)
I0404 13:08:22.994066 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.70371 (* 0.0454545 = 0.122896 loss)
I0404 13:08:22.994081 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.41929 (* 0.0454545 = 0.0645132 loss)
I0404 13:08:22.994093 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.362066 (* 0.0454545 = 0.0164575 loss)
I0404 13:08:22.994107 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.171919 (* 0.0454545 = 0.0078145 loss)
I0404 13:08:22.994122 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.193851 (* 0.0454545 = 0.0088114 loss)
I0404 13:08:22.994135 9252 solver.cpp:245] Train net output #32: loss/loss11 = 0.00106218 (* 0.0454545 = 4.82811e-05 loss)
I0404 13:08:22.994149 9252 solver.cpp:245] Train net output #33: loss/loss12 = 0.00106628 (* 0.0454545 = 4.84673e-05 loss)
I0404 13:08:22.994163 9252 solver.cpp:245] Train net output #34: loss/loss13 = 0.00106173 (* 0.0454545 = 4.82604e-05 loss)
I0404 13:08:22.994177 9252 solver.cpp:245] Train net output #35: loss/loss14 = 0.00106355 (* 0.0454545 = 4.8343e-05 loss)
I0404 13:08:22.994191 9252 solver.cpp:245] Train net output #36: loss/loss15 = 0.00106203 (* 0.0454545 = 4.82739e-05 loss)
I0404 13:08:22.994205 9252 solver.cpp:245] Train net output #37: loss/loss16 = 0.00105883 (* 0.0454545 = 4.81286e-05 loss)
I0404 13:08:22.994220 9252 solver.cpp:245] Train net output #38: loss/loss17 = 0.0010603 (* 0.0454545 = 4.81957e-05 loss)
I0404 13:08:22.994251 9252 solver.cpp:245] Train net output #39: loss/loss18 = 0.0010496 (* 0.0454545 = 4.7709e-05 loss)
I0404 13:08:22.994266 9252 solver.cpp:245] Train net output #40: loss/loss19 = 0.00105017 (* 0.0454545 = 4.77351e-05 loss)
I0404 13:08:22.994282 9252 solver.cpp:245] Train net output #41: loss/loss20 = 0.00104435 (* 0.0454545 = 4.74706e-05 loss)
I0404 13:08:22.994294 9252 solver.cpp:245] Train net output #42: loss/loss21 = 0.00104146 (* 0.0454545 = 4.73391e-05 loss)
I0404 13:08:22.994308 9252 solver.cpp:245] Train net output #43: loss/loss22 = 0.00104541 (* 0.0454545 = 4.75186e-05 loss)
I0404 13:08:22.994320 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 13:08:22.994331 9252 solver.cpp:245] Train net output #45: total_confidence = 6.63622e-07
I0404 13:08:22.994346 9252 sgd_solver.cpp:106] Iteration 8000, lr = 0.00992
I0404 13:09:32.232025 9252 solver.cpp:229] Iteration 8500, loss = 1.15959
I0404 13:09:32.232133 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.15625
I0404 13:09:32.232153 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125
I0404 13:09:32.232167 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125
I0404 13:09:32.232179 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375
I0404 13:09:32.232192 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.21875
I0404 13:09:32.232204 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375
I0404 13:09:32.232216 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75
I0404 13:09:32.232228 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375
I0404 13:09:32.232239 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875
I0404 13:09:32.232251 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 13:09:32.232264 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 13:09:32.232275 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 13:09:32.232287 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 13:09:32.232300 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 13:09:32.232311 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 13:09:32.232323 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 13:09:32.232334 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 13:09:32.232347 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 13:09:32.232358 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 13:09:32.232370 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 13:09:32.232381 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 13:09:32.232393 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 13:09:32.232409 9252 solver.cpp:245] Train net output #22: loss/loss01 = 3.8467 (* 0.0454545 = 0.17485 loss)
I0404 13:09:32.232424 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.99949 (* 0.0454545 = 0.181795 loss)
I0404 13:09:32.232439 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.96301 (* 0.0454545 = 0.180137 loss)
I0404 13:09:32.232451 9252 solver.cpp:245] Train net output #25: loss/loss04 = 4.13149 (* 0.0454545 = 0.187795 loss)
I0404 13:09:32.232465 9252 solver.cpp:245] Train net output #26: loss/loss05 = 3.69131 (* 0.0454545 = 0.167787 loss)
I0404 13:09:32.232480 9252 solver.cpp:245] Train net output #27: loss/loss06 = 3.0548 (* 0.0454545 = 0.138855 loss)
I0404 13:09:32.232492 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.65273 (* 0.0454545 = 0.075124 loss)
I0404 13:09:32.232506 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.435187 (* 0.0454545 = 0.0197812 loss)
I0404 13:09:32.232520 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.235378 (* 0.0454545 = 0.010699 loss)
I0404 13:09:32.232534 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.0293504 (* 0.0454545 = 0.00133411 loss)
I0404 13:09:32.232549 9252 solver.cpp:245] Train net output #32: loss/loss11 = 0.000747639 (* 0.0454545 = 3.39836e-05 loss)
I0404 13:09:32.232563 9252 solver.cpp:245] Train net output #33: loss/loss12 = 0.000749136 (* 0.0454545 = 3.40517e-05 loss)
I0404 13:09:32.232578 9252 solver.cpp:245] Train net output #34: loss/loss13 = 0.000744911 (* 0.0454545 = 3.38596e-05 loss)
I0404 13:09:32.232591 9252 solver.cpp:245] Train net output #35: loss/loss14 = 0.000743493 (* 0.0454545 = 3.37951e-05 loss)
I0404 13:09:32.232605 9252 solver.cpp:245] Train net output #36: loss/loss15 = 0.000744028 (* 0.0454545 = 3.38195e-05 loss)
I0404 13:09:32.232620 9252 solver.cpp:245] Train net output #37: loss/loss16 = 0.000748189 (* 0.0454545 = 3.40086e-05 loss)
I0404 13:09:32.232633 9252 solver.cpp:245] Train net output #38: loss/loss17 = 0.000745481 (* 0.0454545 = 3.38855e-05 loss)
I0404 13:09:32.232664 9252 solver.cpp:245] Train net output #39: loss/loss18 = 0.000737049 (* 0.0454545 = 3.35022e-05 loss)
I0404 13:09:32.232679 9252 solver.cpp:245] Train net output #40: loss/loss19 = 0.000736514 (* 0.0454545 = 3.34779e-05 loss)
I0404 13:09:32.232693 9252 solver.cpp:245] Train net output #41: loss/loss20 = 0.000731632 (* 0.0454545 = 3.3256e-05 loss)
I0404 13:09:32.232707 9252 solver.cpp:245] Train net output #42: loss/loss21 = 0.000730082 (* 0.0454545 = 3.31856e-05 loss)
I0404 13:09:32.232722 9252 solver.cpp:245] Train net output #43: loss/loss22 = 0.000734596 (* 0.0454545 = 3.33907e-05 loss)
I0404 13:09:32.232733 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 13:09:32.232745 9252 solver.cpp:245] Train net output #45: total_confidence = 2.09044e-07
I0404 13:09:32.232759 9252 sgd_solver.cpp:106] Iteration 8500, lr = 0.009915
I0404 13:10:40.966553 9252 solver.cpp:229] Iteration 9000, loss = 1.1628
I0404 13:10:40.966686 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625
I0404 13:10:40.966704 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125
I0404 13:10:40.966717 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625
I0404 13:10:40.966729 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0
I0404 13:10:40.966742 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.09375
I0404 13:10:40.966753 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.25
I0404 13:10:40.966765 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875
I0404 13:10:40.966778 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875
I0404 13:10:40.966789 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375
I0404 13:10:40.966800 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375
I0404 13:10:40.966812 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 13:10:40.966823 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 13:10:40.966841 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 13:10:40.966855 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 13:10:40.966868 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 13:10:40.966891 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 13:10:40.966907 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 13:10:40.966919 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 13:10:40.966931 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 13:10:40.966943 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 13:10:40.966954 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 13:10:40.966965 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 13:10:40.966980 9252 solver.cpp:245] Train net output #22: loss/loss01 = 4.06854 (* 0.0454545 = 0.184934 loss)
I0404 13:10:40.967006 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.98607 (* 0.0454545 = 0.181185 loss)
I0404 13:10:40.967025 9252 solver.cpp:245] Train net output #24: loss/loss03 = 4.04329 (* 0.0454545 = 0.183786 loss)
I0404 13:10:40.967038 9252 solver.cpp:245] Train net output #25: loss/loss04 = 4.16539 (* 0.0454545 = 0.189336 loss)
I0404 13:10:40.967058 9252 solver.cpp:245] Train net output #26: loss/loss05 = 4.01423 (* 0.0454545 = 0.182465 loss)
I0404 13:10:40.967073 9252 solver.cpp:245] Train net output #27: loss/loss06 = 3.53402 (* 0.0454545 = 0.160637 loss)
I0404 13:10:40.967095 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.89142 (* 0.0454545 = 0.0859737 loss)
I0404 13:10:40.967113 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.706136 (* 0.0454545 = 0.0320971 loss)
I0404 13:10:40.967128 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.419656 (* 0.0454545 = 0.0190753 loss)
I0404 13:10:40.967141 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.45263 (* 0.0454545 = 0.0205741 loss)
I0404 13:10:40.967155 9252 solver.cpp:245] Train net output #32: loss/loss11 = 0.000793393 (* 0.0454545 = 3.60633e-05 loss)
I0404 13:10:40.967170 9252 solver.cpp:245] Train net output #33: loss/loss12 = 0.000794267 (* 0.0454545 = 3.6103e-05 loss)
I0404 13:10:40.967185 9252 solver.cpp:245] Train net output #34: loss/loss13 = 0.00078933 (* 0.0454545 = 3.58786e-05 loss)
I0404 13:10:40.967198 9252 solver.cpp:245] Train net output #35: loss/loss14 = 0.000789809 (* 0.0454545 = 3.59004e-05 loss)
I0404 13:10:40.967212 9252 solver.cpp:245] Train net output #36: loss/loss15 = 0.000788265 (* 0.0454545 = 3.58302e-05 loss)
I0404 13:10:40.967226 9252 solver.cpp:245] Train net output #37: loss/loss16 = 0.000791121 (* 0.0454545 = 3.59601e-05 loss)
I0404 13:10:40.967241 9252 solver.cpp:245] Train net output #38: loss/loss17 = 0.00078909 (* 0.0454545 = 3.58677e-05 loss)
I0404 13:10:40.967272 9252 solver.cpp:245] Train net output #39: loss/loss18 = 0.000783775 (* 0.0454545 = 3.56261e-05 loss)
I0404 13:10:40.967288 9252 solver.cpp:245] Train net output #40: loss/loss19 = 0.000782397 (* 0.0454545 = 3.55635e-05 loss)
I0404 13:10:40.967303 9252 solver.cpp:245] Train net output #41: loss/loss20 = 0.00078023 (* 0.0454545 = 3.5465e-05 loss)
I0404 13:10:40.967316 9252 solver.cpp:245] Train net output #42: loss/loss21 = 0.000775314 (* 0.0454545 = 3.52415e-05 loss)
I0404 13:10:40.967330 9252 solver.cpp:245] Train net output #43: loss/loss22 = 0.000780851 (* 0.0454545 = 3.54932e-05 loss)
I0404 13:10:40.967342 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 13:10:40.967353 9252 solver.cpp:245] Train net output #45: total_confidence = 4.00002e-07
I0404 13:10:40.967366 9252 sgd_solver.cpp:106] Iteration 9000, lr = 0.00991
I0404 13:11:50.544184 9252 solver.cpp:229] Iteration 9500, loss = 1.15425
I0404 13:11:50.544386 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625
I0404 13:11:50.544409 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0
I0404 13:11:50.544421 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125
I0404 13:11:50.544435 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0
I0404 13:11:50.544446 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.15625
I0404 13:11:50.544466 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625
I0404 13:11:50.544488 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.875
I0404 13:11:50.544502 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.96875
I0404 13:11:50.544514 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875
I0404 13:11:50.544526 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 13:11:50.544538 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 13:11:50.544550 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 13:11:50.544561 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 13:11:50.544574 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 13:11:50.544585 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 13:11:50.544596 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 13:11:50.544608 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 13:11:50.544620 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 13:11:50.544631 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 13:11:50.544642 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 13:11:50.544654 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 13:11:50.544667 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 13:11:50.544682 9252 solver.cpp:245] Train net output #22: loss/loss01 = 4.11477 (* 0.0454545 = 0.187035 loss)
I0404 13:11:50.544697 9252 solver.cpp:245] Train net output #23: loss/loss02 = 4.33026 (* 0.0454545 = 0.19683 loss)
I0404 13:11:50.544710 9252 solver.cpp:245] Train net output #24: loss/loss03 = 4.06906 (* 0.0454545 = 0.184957 loss)
I0404 13:11:50.544724 9252 solver.cpp:245] Train net output #25: loss/loss04 = 4.23636 (* 0.0454545 = 0.192562 loss)
I0404 13:11:50.544739 9252 solver.cpp:245] Train net output #26: loss/loss05 = 3.59886 (* 0.0454545 = 0.163585 loss)
I0404 13:11:50.544755 9252 solver.cpp:245] Train net output #27: loss/loss06 = 3.07926 (* 0.0454545 = 0.139966 loss)
I0404 13:11:50.544770 9252 solver.cpp:245] Train net output #28: loss/loss07 = 0.836645 (* 0.0454545 = 0.0380293 loss)
I0404 13:11:50.544785 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.213709 (* 0.0454545 = 0.00971406 loss)
I0404 13:11:50.544798 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.217519 (* 0.0454545 = 0.00988724 loss)
I0404 13:11:50.544813 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.0138136 (* 0.0454545 = 0.00062789 loss)
I0404 13:11:50.544831 9252 solver.cpp:245] Train net output #32: loss/loss11 = 0.000309396 (* 0.0454545 = 1.40635e-05 loss)
I0404 13:11:50.544847 9252 solver.cpp:245] Train net output #33: loss/loss12 = 0.000309253 (* 0.0454545 = 1.40569e-05 loss)
I0404 13:11:50.544860 9252 solver.cpp:245] Train net output #34: loss/loss13 = 0.000308416 (* 0.0454545 = 1.40189e-05 loss)
I0404 13:11:50.544874 9252 solver.cpp:245] Train net output #35: loss/loss14 = 0.000306644 (* 0.0454545 = 1.39384e-05 loss)
I0404 13:11:50.544888 9252 solver.cpp:245] Train net output #36: loss/loss15 = 0.000308326 (* 0.0454545 = 1.40148e-05 loss)
I0404 13:11:50.544903 9252 solver.cpp:245] Train net output #37: loss/loss16 = 0.000308027 (* 0.0454545 = 1.40012e-05 loss)
I0404 13:11:50.544916 9252 solver.cpp:245] Train net output #38: loss/loss17 = 0.000308443 (* 0.0454545 = 1.40201e-05 loss)
I0404 13:11:50.544945 9252 solver.cpp:245] Train net output #39: loss/loss18 = 0.000305066 (* 0.0454545 = 1.38667e-05 loss)
I0404 13:11:50.544960 9252 solver.cpp:245] Train net output #40: loss/loss19 = 0.000305832 (* 0.0454545 = 1.39014e-05 loss)
I0404 13:11:50.544975 9252 solver.cpp:245] Train net output #41: loss/loss20 = 0.000303134 (* 0.0454545 = 1.37788e-05 loss)
I0404 13:11:50.544988 9252 solver.cpp:245] Train net output #42: loss/loss21 = 0.000301399 (* 0.0454545 = 1.36999e-05 loss)
I0404 13:11:50.545003 9252 solver.cpp:245] Train net output #43: loss/loss22 = 0.000303928 (* 0.0454545 = 1.38149e-05 loss)
I0404 13:11:50.545016 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 13:11:50.545027 9252 solver.cpp:245] Train net output #45: total_confidence = 3.45639e-07
I0404 13:11:50.545040 9252 sgd_solver.cpp:106] Iteration 9500, lr = 0.009905
I0404 13:12:58.961078 9252 solver.cpp:338] Iteration 10000, Testing net (#0)
I0404 13:13:06.986436 9252 solver.cpp:393] Test loss: 1.04821
I0404 13:13:06.986484 9252 solver.cpp:406] Test net output #0: loss/accuracy01 = 0
I0404 13:13:06.986500 9252 solver.cpp:406] Test net output #1: loss/accuracy02 = 0.117
I0404 13:13:06.986512 9252 solver.cpp:406] Test net output #2: loss/accuracy03 = 0.062
I0404 13:13:06.986524 9252 solver.cpp:406] Test net output #3: loss/accuracy04 = 0.033
I0404 13:13:06.986536 9252 solver.cpp:406] Test net output #4: loss/accuracy05 = 0.212
I0404 13:13:06.986548 9252 solver.cpp:406] Test net output #5: loss/accuracy06 = 0.501
I0404 13:13:06.986559 9252 solver.cpp:406] Test net output #6: loss/accuracy07 = 0.894
I0404 13:13:06.986570 9252 solver.cpp:406] Test net output #7: loss/accuracy08 = 0.97
I0404 13:13:06.986582 9252 solver.cpp:406] Test net output #8: loss/accuracy09 = 0.995
I0404 13:13:06.986593 9252 solver.cpp:406] Test net output #9: loss/accuracy10 = 0.998
I0404 13:13:06.986604 9252 solver.cpp:406] Test net output #10: loss/accuracy11 = 1
I0404 13:13:06.986615 9252 solver.cpp:406] Test net output #11: loss/accuracy12 = 1
I0404 13:13:06.986627 9252 solver.cpp:406] Test net output #12: loss/accuracy13 = 1
I0404 13:13:06.986639 9252 solver.cpp:406] Test net output #13: loss/accuracy14 = 1
I0404 13:13:06.986649 9252 solver.cpp:406] Test net output #14: loss/accuracy15 = 1
I0404 13:13:06.986660 9252 solver.cpp:406] Test net output #15: loss/accuracy16 = 1
I0404 13:13:06.986671 9252 solver.cpp:406] Test net output #16: loss/accuracy17 = 1
I0404 13:13:06.986682 9252 solver.cpp:406] Test net output #17: loss/accuracy18 = 1
I0404 13:13:06.986693 9252 solver.cpp:406] Test net output #18: loss/accuracy19 = 1
I0404 13:13:06.986704 9252 solver.cpp:406] Test net output #19: loss/accuracy20 = 1
I0404 13:13:06.986716 9252 solver.cpp:406] Test net output #20: loss/accuracy21 = 1
I0404 13:13:06.986727 9252 solver.cpp:406] Test net output #21: loss/accuracy22 = 1
I0404 13:13:06.986742 9252 solver.cpp:406] Test net output #22: loss/loss01 = 3.90704 (* 0.0454545 = 0.177593 loss)
I0404 13:13:06.986759 9252 solver.cpp:406] Test net output #23: loss/loss02 = 3.80312 (* 0.0454545 = 0.172869 loss)
I0404 13:13:06.986773 9252 solver.cpp:406] Test net output #24: loss/loss03 = 3.78051 (* 0.0454545 = 0.171841 loss)
I0404 13:13:06.986786 9252 solver.cpp:406] Test net output #25: loss/loss04 = 3.9756 (* 0.0454545 = 0.180709 loss)
I0404 13:13:06.986799 9252 solver.cpp:406] Test net output #26: loss/loss05 = 3.7865 (* 0.0454545 = 0.172113 loss)
I0404 13:13:06.986814 9252 solver.cpp:406] Test net output #27: loss/loss06 = 2.64337 (* 0.0454545 = 0.120153 loss)
I0404 13:13:06.986826 9252 solver.cpp:406] Test net output #28: loss/loss07 = 0.82762 (* 0.0454545 = 0.0376191 loss)
I0404 13:13:06.986840 9252 solver.cpp:406] Test net output #29: loss/loss08 = 0.262404 (* 0.0454545 = 0.0119274 loss)
I0404 13:13:06.986853 9252 solver.cpp:406] Test net output #30: loss/loss09 = 0.0509729 (* 0.0454545 = 0.00231695 loss)
I0404 13:13:06.986867 9252 solver.cpp:406] Test net output #31: loss/loss10 = 0.0224028 (* 0.0454545 = 0.00101831 loss)
I0404 13:13:06.986881 9252 solver.cpp:406] Test net output #32: loss/loss11 = 9.38046e-05 (* 0.0454545 = 4.26384e-06 loss)
I0404 13:13:06.986896 9252 solver.cpp:406] Test net output #33: loss/loss12 = 9.45247e-05 (* 0.0454545 = 4.29658e-06 loss)
I0404 13:13:06.986908 9252 solver.cpp:406] Test net output #34: loss/loss13 = 9.40204e-05 (* 0.0454545 = 4.27366e-06 loss)
I0404 13:13:06.986922 9252 solver.cpp:406] Test net output #35: loss/loss14 = 9.35824e-05 (* 0.0454545 = 4.25375e-06 loss)
I0404 13:13:06.986937 9252 solver.cpp:406] Test net output #36: loss/loss15 = 9.42055e-05 (* 0.0454545 = 4.28207e-06 loss)
I0404 13:13:06.986950 9252 solver.cpp:406] Test net output #37: loss/loss16 = 9.37065e-05 (* 0.0454545 = 4.25939e-06 loss)
I0404 13:13:06.986963 9252 solver.cpp:406] Test net output #38: loss/loss17 = 9.40283e-05 (* 0.0454545 = 4.27401e-06 loss)
I0404 13:13:06.987012 9252 solver.cpp:406] Test net output #39: loss/loss18 = 9.32885e-05 (* 0.0454545 = 4.24039e-06 loss)
I0404 13:13:06.987027 9252 solver.cpp:406] Test net output #40: loss/loss19 = 9.3018e-05 (* 0.0454545 = 4.22809e-06 loss)
I0404 13:13:06.987041 9252 solver.cpp:406] Test net output #41: loss/loss20 = 9.22305e-05 (* 0.0454545 = 4.1923e-06 loss)
I0404 13:13:06.987054 9252 solver.cpp:406] Test net output #42: loss/loss21 = 9.17886e-05 (* 0.0454545 = 4.17221e-06 loss)
I0404 13:13:06.987068 9252 solver.cpp:406] Test net output #43: loss/loss22 = 9.28769e-05 (* 0.0454545 = 4.22168e-06 loss)
I0404 13:13:06.987079 9252 solver.cpp:406] Test net output #44: total_accuracy = 0
I0404 13:13:06.987090 9252 solver.cpp:406] Test net output #45: total_confidence = 9.60902e-07
I0404 13:13:07.022030 9252 solver.cpp:229] Iteration 10000, loss = 1.15161
I0404 13:13:07.022068 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.03125
I0404 13:13:07.022084 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125
I0404 13:13:07.022097 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125
I0404 13:13:07.022109 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125
I0404 13:13:07.022122 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.15625
I0404 13:13:07.022135 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.25
I0404 13:13:07.022146 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.65625
I0404 13:13:07.022158 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.8125
I0404 13:13:07.022171 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375
I0404 13:13:07.022181 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375
I0404 13:13:07.022193 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 0.96875
I0404 13:13:07.022205 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 13:13:07.022222 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 13:13:07.022233 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 13:13:07.022245 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 13:13:07.022256 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 13:13:07.022269 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 13:13:07.022279 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 13:13:07.022291 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 13:13:07.022303 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 13:13:07.022315 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 13:13:07.022326 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 13:13:07.022341 9252 solver.cpp:245] Train net output #22: loss/loss01 = 4.11306 (* 0.0454545 = 0.186957 loss)
I0404 13:13:07.022354 9252 solver.cpp:245] Train net output #23: loss/loss02 = 4.02299 (* 0.0454545 = 0.182863 loss)
I0404 13:13:07.022368 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.77172 (* 0.0454545 = 0.171442 loss)
I0404 13:13:07.022382 9252 solver.cpp:245] Train net output #25: loss/loss04 = 4.12967 (* 0.0454545 = 0.187712 loss)
I0404 13:13:07.022395 9252 solver.cpp:245] Train net output #26: loss/loss05 = 4.05748 (* 0.0454545 = 0.184431 loss)
I0404 13:13:07.022409 9252 solver.cpp:245] Train net output #27: loss/loss06 = 3.58727 (* 0.0454545 = 0.163058 loss)
I0404 13:13:07.022423 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.79393 (* 0.0454545 = 0.0815422 loss)
I0404 13:13:07.022436 9252 solver.cpp:245] Train net output #29: loss/loss08 = 1.05243 (* 0.0454545 = 0.0478378 loss)
I0404 13:13:07.022450 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.419331 (* 0.0454545 = 0.0190605 loss)
I0404 13:13:07.022480 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.468521 (* 0.0454545 = 0.0212964 loss)
I0404 13:13:07.022496 9252 solver.cpp:245] Train net output #32: loss/loss11 = 0.345497 (* 0.0454545 = 0.0157044 loss)
I0404 13:13:07.022511 9252 solver.cpp:245] Train net output #33: loss/loss12 = 0.000369944 (* 0.0454545 = 1.68156e-05 loss)
I0404 13:13:07.022526 9252 solver.cpp:245] Train net output #34: loss/loss13 = 0.000367904 (* 0.0454545 = 1.67229e-05 loss)
I0404 13:13:07.022538 9252 solver.cpp:245] Train net output #35: loss/loss14 = 0.000366626 (* 0.0454545 = 1.66648e-05 loss)
I0404 13:13:07.022552 9252 solver.cpp:245] Train net output #36: loss/loss15 = 0.000370039 (* 0.0454545 = 1.68199e-05 loss)
I0404 13:13:07.022567 9252 solver.cpp:245] Train net output #37: loss/loss16 = 0.00036552 (* 0.0454545 = 1.66145e-05 loss)
I0404 13:13:07.022580 9252 solver.cpp:245] Train net output #38: loss/loss17 = 0.00036809 (* 0.0454545 = 1.67314e-05 loss)
I0404 13:13:07.022594 9252 solver.cpp:245] Train net output #39: loss/loss18 = 0.000366636 (* 0.0454545 = 1.66653e-05 loss)
I0404 13:13:07.022608 9252 solver.cpp:245] Train net output #40: loss/loss19 = 0.000363947 (* 0.0454545 = 1.65431e-05 loss)
I0404 13:13:07.022621 9252 solver.cpp:245] Train net output #41: loss/loss20 = 0.000360058 (* 0.0454545 = 1.63663e-05 loss)
I0404 13:13:07.022635 9252 solver.cpp:245] Train net output #42: loss/loss21 = 0.00035894 (* 0.0454545 = 1.63155e-05 loss)
I0404 13:13:07.022650 9252 solver.cpp:245] Train net output #43: loss/loss22 = 0.000362618 (* 0.0454545 = 1.64826e-05 loss)
I0404 13:13:07.022661 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 13:13:07.022672 9252 solver.cpp:245] Train net output #45: total_confidence = 3.57651e-07
I0404 13:13:07.022687 9252 sgd_solver.cpp:106] Iteration 10000, lr = 0.0099
I0404 13:14:16.375520 9252 solver.cpp:229] Iteration 10500, loss = 1.1474
I0404 13:14:16.375648 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625
I0404 13:14:16.375669 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625
I0404 13:14:16.375682 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125
I0404 13:14:16.375695 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625
I0404 13:14:16.375707 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25
I0404 13:14:16.375720 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375
I0404 13:14:16.375731 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625
I0404 13:14:16.375746 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.78125
I0404 13:14:16.375758 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375
I0404 13:14:16.375771 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875
I0404 13:14:16.375783 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 13:14:16.375795 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 13:14:16.375807 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 13:14:16.375818 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 13:14:16.375829 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 13:14:16.375841 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 13:14:16.375852 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 13:14:16.375864 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 13:14:16.375875 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 13:14:16.375886 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 13:14:16.375898 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 13:14:16.375910 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 13:14:16.375926 9252 solver.cpp:245] Train net output #22: loss/loss01 = 3.85918 (* 0.0454545 = 0.175417 loss)
I0404 13:14:16.375939 9252 solver.cpp:245] Train net output #23: loss/loss02 = 4.03737 (* 0.0454545 = 0.183517 loss)
I0404 13:14:16.375953 9252 solver.cpp:245] Train net output #24: loss/loss03 = 4.03984 (* 0.0454545 = 0.183629 loss)
I0404 13:14:16.375967 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.98036 (* 0.0454545 = 0.180925 loss)
I0404 13:14:16.375982 9252 solver.cpp:245] Train net output #26: loss/loss05 = 3.58552 (* 0.0454545 = 0.162978 loss)
I0404 13:14:16.375994 9252 solver.cpp:245] Train net output #27: loss/loss06 = 3.09797 (* 0.0454545 = 0.140817 loss)
I0404 13:14:16.376008 9252 solver.cpp:245] Train net output #28: loss/loss07 = 2.10943 (* 0.0454545 = 0.0958831 loss)
I0404 13:14:16.376021 9252 solver.cpp:245] Train net output #29: loss/loss08 = 1.30955 (* 0.0454545 = 0.0595251 loss)
I0404 13:14:16.376035 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.392053 (* 0.0454545 = 0.0178206 loss)
I0404 13:14:16.376049 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.238801 (* 0.0454545 = 0.0108546 loss)
I0404 13:14:16.376063 9252 solver.cpp:245] Train net output #32: loss/loss11 = 0.000334309 (* 0.0454545 = 1.51959e-05 loss)
I0404 13:14:16.376078 9252 solver.cpp:245] Train net output #33: loss/loss12 = 0.000333762 (* 0.0454545 = 1.5171e-05 loss)
I0404 13:14:16.376092 9252 solver.cpp:245] Train net output #34: loss/loss13 = 0.000329444 (* 0.0454545 = 1.49747e-05 loss)
I0404 13:14:16.376106 9252 solver.cpp:245] Train net output #35: loss/loss14 = 0.000327865 (* 0.0454545 = 1.49029e-05 loss)
I0404 13:14:16.376121 9252 solver.cpp:245] Train net output #36: loss/loss15 = 0.000330777 (* 0.0454545 = 1.50353e-05 loss)
I0404 13:14:16.376134 9252 solver.cpp:245] Train net output #37: loss/loss16 = 0.000327708 (* 0.0454545 = 1.48958e-05 loss)
I0404 13:14:16.376148 9252 solver.cpp:245] Train net output #38: loss/loss17 = 0.000331224 (* 0.0454545 = 1.50556e-05 loss)
I0404 13:14:16.376179 9252 solver.cpp:245] Train net output #39: loss/loss18 = 0.000331396 (* 0.0454545 = 1.50635e-05 loss)
I0404 13:14:16.376194 9252 solver.cpp:245] Train net output #40: loss/loss19 = 0.000327792 (* 0.0454545 = 1.48996e-05 loss)
I0404 13:14:16.376209 9252 solver.cpp:245] Train net output #41: loss/loss20 = 0.000323351 (* 0.0454545 = 1.46978e-05 loss)
I0404 13:14:16.376221 9252 solver.cpp:245] Train net output #42: loss/loss21 = 0.000320853 (* 0.0454545 = 1.45842e-05 loss)
I0404 13:14:16.376235 9252 solver.cpp:245] Train net output #43: loss/loss22 = 0.000324341 (* 0.0454545 = 1.47428e-05 loss)
I0404 13:14:16.376247 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 13:14:16.376260 9252 solver.cpp:245] Train net output #45: total_confidence = 3.59432e-07
I0404 13:14:16.376273 9252 sgd_solver.cpp:106] Iteration 10500, lr = 0.009895
I0404 13:15:25.642549 9252 solver.cpp:229] Iteration 11000, loss = 1.13871
I0404 13:15:25.642679 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0
I0404 13:15:25.642699 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125
I0404 13:15:25.642719 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625
I0404 13:15:25.642740 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125
I0404 13:15:25.642752 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125
I0404 13:15:25.642765 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375
I0404 13:15:25.642777 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875
I0404 13:15:25.642789 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625
I0404 13:15:25.642802 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375
I0404 13:15:25.642812 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875
I0404 13:15:25.642824 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 13:15:25.642837 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 13:15:25.642848 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 13:15:25.642859 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 13:15:25.642870 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 13:15:25.642882 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 13:15:25.642894 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 13:15:25.642909 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 13:15:25.642920 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 13:15:25.642932 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 13:15:25.642945 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 13:15:25.642956 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 13:15:25.642971 9252 solver.cpp:245] Train net output #22: loss/loss01 = 4.09146 (* 0.0454545 = 0.185975 loss)
I0404 13:15:25.642985 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.84972 (* 0.0454545 = 0.174987 loss)
I0404 13:15:25.642999 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.65608 (* 0.0454545 = 0.166186 loss)
I0404 13:15:25.643013 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.69609 (* 0.0454545 = 0.168004 loss)
I0404 13:15:25.643026 9252 solver.cpp:245] Train net output #26: loss/loss05 = 3.28622 (* 0.0454545 = 0.149374 loss)
I0404 13:15:25.643040 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.49898 (* 0.0454545 = 0.11359 loss)
I0404 13:15:25.643054 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.53784 (* 0.0454545 = 0.0699018 loss)
I0404 13:15:25.643067 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.603318 (* 0.0454545 = 0.0274235 loss)
I0404 13:15:25.643081 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.387639 (* 0.0454545 = 0.01762 loss)
I0404 13:15:25.643096 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.217075 (* 0.0454545 = 0.00986703 loss)
I0404 13:15:25.643110 9252 solver.cpp:245] Train net output #32: loss/loss11 = 7.99725e-05 (* 0.0454545 = 3.63511e-06 loss)
I0404 13:15:25.643124 9252 solver.cpp:245] Train net output #33: loss/loss12 = 8.02258e-05 (* 0.0454545 = 3.64663e-06 loss)
I0404 13:15:25.643138 9252 solver.cpp:245] Train net output #34: loss/loss13 = 7.67825e-05 (* 0.0454545 = 3.49011e-06 loss)
I0404 13:15:25.643152 9252 solver.cpp:245] Train net output #35: loss/loss14 = 7.77551e-05 (* 0.0454545 = 3.53432e-06 loss)
I0404 13:15:25.643167 9252 solver.cpp:245] Train net output #36: loss/loss15 = 7.86811e-05 (* 0.0454545 = 3.57641e-06 loss)
I0404 13:15:25.643180 9252 solver.cpp:245] Train net output #37: loss/loss16 = 7.4271e-05 (* 0.0454545 = 3.37595e-06 loss)
I0404 13:15:25.643194 9252 solver.cpp:245] Train net output #38: loss/loss17 = 7.73155e-05 (* 0.0454545 = 3.51434e-06 loss)
I0404 13:15:25.643234 9252 solver.cpp:245] Train net output #39: loss/loss18 = 8.06077e-05 (* 0.0454545 = 3.66399e-06 loss)
I0404 13:15:25.643267 9252 solver.cpp:245] Train net output #40: loss/loss19 = 7.39466e-05 (* 0.0454545 = 3.36121e-06 loss)
I0404 13:15:25.643298 9252 solver.cpp:245] Train net output #41: loss/loss20 = 7.15393e-05 (* 0.0454545 = 3.25179e-06 loss)
I0404 13:15:25.643322 9252 solver.cpp:245] Train net output #42: loss/loss21 = 7.34174e-05 (* 0.0454545 = 3.33716e-06 loss)
I0404 13:15:25.643347 9252 solver.cpp:245] Train net output #43: loss/loss22 = 7.29144e-05 (* 0.0454545 = 3.31429e-06 loss)
I0404 13:15:25.643362 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 13:15:25.643374 9252 solver.cpp:245] Train net output #45: total_confidence = 3.65341e-06
I0404 13:15:25.643388 9252 sgd_solver.cpp:106] Iteration 11000, lr = 0.00989
I0404 13:16:34.706630 9252 solver.cpp:229] Iteration 11500, loss = 1.12827
I0404 13:16:34.706781 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625
I0404 13:16:34.706802 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625
I0404 13:16:34.706815 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625
I0404 13:16:34.706827 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625
I0404 13:16:34.706840 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875
I0404 13:16:34.706851 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375
I0404 13:16:34.706863 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.84375
I0404 13:16:34.706874 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375
I0404 13:16:34.706887 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875
I0404 13:16:34.706898 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 13:16:34.706909 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 13:16:34.706921 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 13:16:34.706933 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 13:16:34.706943 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 13:16:34.706955 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 13:16:34.706967 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 13:16:34.706979 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 13:16:34.706990 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 13:16:34.707002 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 13:16:34.707013 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 13:16:34.707026 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 13:16:34.707036 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 13:16:34.707052 9252 solver.cpp:245] Train net output #22: loss/loss01 = 3.99769 (* 0.0454545 = 0.181713 loss)
I0404 13:16:34.707067 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.9706 (* 0.0454545 = 0.180482 loss)
I0404 13:16:34.707080 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.77047 (* 0.0454545 = 0.171385 loss)
I0404 13:16:34.707094 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.74601 (* 0.0454545 = 0.170273 loss)
I0404 13:16:34.707108 9252 solver.cpp:245] Train net output #26: loss/loss05 = 3.36795 (* 0.0454545 = 0.153089 loss)
I0404 13:16:34.707121 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.70214 (* 0.0454545 = 0.122825 loss)
I0404 13:16:34.707135 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.05943 (* 0.0454545 = 0.0481559 loss)
I0404 13:16:34.707149 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.402296 (* 0.0454545 = 0.0182862 loss)
I0404 13:16:34.707164 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.19762 (* 0.0454545 = 0.00898271 loss)
I0404 13:16:34.707177 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.0206675 (* 0.0454545 = 0.000939434 loss)
I0404 13:16:34.707191 9252 solver.cpp:245] Train net output #32: loss/loss11 = 0.000229966 (* 0.0454545 = 1.0453e-05 loss)
I0404 13:16:34.707206 9252 solver.cpp:245] Train net output #33: loss/loss12 = 0.000229787 (* 0.0454545 = 1.04449e-05 loss)
I0404 13:16:34.707219 9252 solver.cpp:245] Train net output #34: loss/loss13 = 0.000214832 (* 0.0454545 = 9.76509e-06 loss)
I0404 13:16:34.707233 9252 solver.cpp:245] Train net output #35: loss/loss14 = 0.000216168 (* 0.0454545 = 9.82581e-06 loss)
I0404 13:16:34.707247 9252 solver.cpp:245] Train net output #36: loss/loss15 = 0.00020873 (* 0.0454545 = 9.48772e-06 loss)
I0404 13:16:34.707262 9252 solver.cpp:245] Train net output #37: loss/loss16 = 0.000223521 (* 0.0454545 = 1.016e-05 loss)
I0404 13:16:34.707275 9252 solver.cpp:245] Train net output #38: loss/loss17 = 0.00021709 (* 0.0454545 = 9.86774e-06 loss)
I0404 13:16:34.707307 9252 solver.cpp:245] Train net output #39: loss/loss18 = 0.000206786 (* 0.0454545 = 9.39936e-06 loss)
I0404 13:16:34.707322 9252 solver.cpp:245] Train net output #40: loss/loss19 = 0.000204504 (* 0.0454545 = 9.29565e-06 loss)
I0404 13:16:34.707336 9252 solver.cpp:245] Train net output #41: loss/loss20 = 0.000206727 (* 0.0454545 = 9.39667e-06 loss)
I0404 13:16:34.707350 9252 solver.cpp:245] Train net output #42: loss/loss21 = 0.000203244 (* 0.0454545 = 9.23838e-06 loss)
I0404 13:16:34.707365 9252 solver.cpp:245] Train net output #43: loss/loss22 = 0.000211578 (* 0.0454545 = 9.61718e-06 loss)
I0404 13:16:34.707376 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 13:16:34.707388 9252 solver.cpp:245] Train net output #45: total_confidence = 2.05411e-06
I0404 13:16:34.707402 9252 sgd_solver.cpp:106] Iteration 11500, lr = 0.009885
I0404 13:17:43.138348 9252 solver.cpp:229] Iteration 12000, loss = 1.1232
I0404 13:17:43.138459 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625
I0404 13:17:43.138479 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125
I0404 13:17:43.138492 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625
I0404 13:17:43.138504 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375
I0404 13:17:43.138519 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.21875
I0404 13:17:43.138530 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125
I0404 13:17:43.138542 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875
I0404 13:17:43.138555 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375
I0404 13:17:43.138566 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375
I0404 13:17:43.138577 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 13:17:43.138589 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 13:17:43.138602 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 13:17:43.138619 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 13:17:43.138630 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 13:17:43.138643 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 13:17:43.138653 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 13:17:43.138665 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 13:17:43.138681 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 13:17:43.138692 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 13:17:43.138703 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 13:17:43.138715 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 13:17:43.138726 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 13:17:43.138742 9252 solver.cpp:245] Train net output #22: loss/loss01 = 3.94731 (* 0.0454545 = 0.179423 loss)
I0404 13:17:43.138761 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.74095 (* 0.0454545 = 0.170043 loss)
I0404 13:17:43.138774 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.58563 (* 0.0454545 = 0.162983 loss)
I0404 13:17:43.138788 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.74082 (* 0.0454545 = 0.170037 loss)
I0404 13:17:43.138802 9252 solver.cpp:245] Train net output #26: loss/loss05 = 3.23789 (* 0.0454545 = 0.147177 loss)
I0404 13:17:43.138815 9252 solver.cpp:245] Train net output #27: loss/loss06 = 3.06757 (* 0.0454545 = 0.139435 loss)
I0404 13:17:43.138828 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.84067 (* 0.0454545 = 0.0836666 loss)
I0404 13:17:43.138842 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.465982 (* 0.0454545 = 0.021181 loss)
I0404 13:17:43.138855 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.391401 (* 0.0454545 = 0.017791 loss)
I0404 13:17:43.138870 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.010997 (* 0.0454545 = 0.000499862 loss)
I0404 13:17:43.138893 9252 solver.cpp:245] Train net output #32: loss/loss11 = 6.47288e-05 (* 0.0454545 = 2.94222e-06 loss)
I0404 13:17:43.138907 9252 solver.cpp:245] Train net output #33: loss/loss12 = 6.24744e-05 (* 0.0454545 = 2.83974e-06 loss)
I0404 13:17:43.138921 9252 solver.cpp:245] Train net output #34: loss/loss13 = 5.97447e-05 (* 0.0454545 = 2.71567e-06 loss)
I0404 13:17:43.138936 9252 solver.cpp:245] Train net output #35: loss/loss14 = 6.0732e-05 (* 0.0454545 = 2.76054e-06 loss)
I0404 13:17:43.138950 9252 solver.cpp:245] Train net output #36: loss/loss15 = 5.79386e-05 (* 0.0454545 = 2.63357e-06 loss)
I0404 13:17:43.138963 9252 solver.cpp:245] Train net output #37: loss/loss16 = 6.09696e-05 (* 0.0454545 = 2.77134e-06 loss)
I0404 13:17:43.138978 9252 solver.cpp:245] Train net output #38: loss/loss17 = 5.99162e-05 (* 0.0454545 = 2.72346e-06 loss)
I0404 13:17:43.139008 9252 solver.cpp:245] Train net output #39: loss/loss18 = 6.08167e-05 (* 0.0454545 = 2.7644e-06 loss)
I0404 13:17:43.139029 9252 solver.cpp:245] Train net output #40: loss/loss19 = 5.72049e-05 (* 0.0454545 = 2.60022e-06 loss)
I0404 13:17:43.139042 9252 solver.cpp:245] Train net output #41: loss/loss20 = 5.6799e-05 (* 0.0454545 = 2.58177e-06 loss)
I0404 13:17:43.139056 9252 solver.cpp:245] Train net output #42: loss/loss21 = 5.60273e-05 (* 0.0454545 = 2.5467e-06 loss)
I0404 13:17:43.139070 9252 solver.cpp:245] Train net output #43: loss/loss22 = 5.89625e-05 (* 0.0454545 = 2.68012e-06 loss)
I0404 13:17:43.139088 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 13:17:43.139099 9252 solver.cpp:245] Train net output #45: total_confidence = 2.28848e-06
I0404 13:17:43.139113 9252 sgd_solver.cpp:106] Iteration 12000, lr = 0.00988
I0404 13:18:52.937170 9252 solver.cpp:229] Iteration 12500, loss = 1.12429
I0404 13:18:52.937296 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625
I0404 13:18:52.937315 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375
I0404 13:18:52.937331 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375
I0404 13:18:52.937345 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125
I0404 13:18:52.937356 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.21875
I0404 13:18:52.937368 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.46875
I0404 13:18:52.937381 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.78125
I0404 13:18:52.937392 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375
I0404 13:18:52.937405 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875
I0404 13:18:52.937428 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 13:18:52.937444 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 13:18:52.937456 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 13:18:52.937469 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 13:18:52.937480 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 13:18:52.937491 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 13:18:52.937504 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 13:18:52.937515 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 13:18:52.937526 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 13:18:52.937538 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 13:18:52.937549 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 13:18:52.937561 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 13:18:52.937572 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 13:18:52.937588 9252 solver.cpp:245] Train net output #22: loss/loss01 = 3.93503 (* 0.0454545 = 0.178865 loss)
I0404 13:18:52.937603 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.82563 (* 0.0454545 = 0.173892 loss)
I0404 13:18:52.937618 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.68144 (* 0.0454545 = 0.167338 loss)
I0404 13:18:52.937630 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.84803 (* 0.0454545 = 0.174911 loss)
I0404 13:18:52.937644 9252 solver.cpp:245] Train net output #26: loss/loss05 = 3.5899 (* 0.0454545 = 0.163177 loss)
I0404 13:18:52.937659 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.82444 (* 0.0454545 = 0.128384 loss)
I0404 13:18:52.937671 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.37427 (* 0.0454545 = 0.0624669 loss)
I0404 13:18:52.937685 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.490022 (* 0.0454545 = 0.0222737 loss)
I0404 13:18:52.937698 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.277087 (* 0.0454545 = 0.0125949 loss)
I0404 13:18:52.937713 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.0409232 (* 0.0454545 = 0.00186014 loss)
I0404 13:18:52.937727 9252 solver.cpp:245] Train net output #32: loss/loss11 = 0.000591626 (* 0.0454545 = 2.68921e-05 loss)
I0404 13:18:52.937741 9252 solver.cpp:245] Train net output #33: loss/loss12 = 0.000576264 (* 0.0454545 = 2.61938e-05 loss)
I0404 13:18:52.937755 9252 solver.cpp:245] Train net output #34: loss/loss13 = 0.000546729 (* 0.0454545 = 2.48513e-05 loss)
I0404 13:18:52.937769 9252 solver.cpp:245] Train net output #35: loss/loss14 = 0.000560714 (* 0.0454545 = 2.5487e-05 loss)
I0404 13:18:52.937784 9252 solver.cpp:245] Train net output #36: loss/loss15 = 0.000525979 (* 0.0454545 = 2.39081e-05 loss)
I0404 13:18:52.937798 9252 solver.cpp:245] Train net output #37: loss/loss16 = 0.000564712 (* 0.0454545 = 2.56687e-05 loss)
I0404 13:18:52.937813 9252 solver.cpp:245] Train net output #38: loss/loss17 = 0.000554413 (* 0.0454545 = 2.52006e-05 loss)
I0404 13:18:52.937844 9252 solver.cpp:245] Train net output #39: loss/loss18 = 0.000547902 (* 0.0454545 = 2.49047e-05 loss)
I0404 13:18:52.937860 9252 solver.cpp:245] Train net output #40: loss/loss19 = 0.000533652 (* 0.0454545 = 2.42569e-05 loss)
I0404 13:18:52.937875 9252 solver.cpp:245] Train net output #41: loss/loss20 = 0.000533421 (* 0.0454545 = 2.42464e-05 loss)
I0404 13:18:52.937888 9252 solver.cpp:245] Train net output #42: loss/loss21 = 0.000526325 (* 0.0454545 = 2.39239e-05 loss)
I0404 13:18:52.937902 9252 solver.cpp:245] Train net output #43: loss/loss22 = 0.000553403 (* 0.0454545 = 2.51547e-05 loss)
I0404 13:18:52.937914 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 13:18:52.937927 9252 solver.cpp:245] Train net output #45: total_confidence = 1.08969e-06
I0404 13:18:52.937942 9252 sgd_solver.cpp:106] Iteration 12500, lr = 0.009875
I0404 13:20:01.905992 9252 solver.cpp:229] Iteration 13000, loss = 1.1115
I0404 13:20:01.906157 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375
I0404 13:20:01.906179 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125
I0404 13:20:01.906193 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125
I0404 13:20:01.906204 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625
I0404 13:20:01.906216 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.21875
I0404 13:20:01.906229 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625
I0404 13:20:01.906241 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625
I0404 13:20:01.906252 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375
I0404 13:20:01.906265 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 1
I0404 13:20:01.906277 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 13:20:01.906288 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 13:20:01.906301 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 13:20:01.906311 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 13:20:01.906323 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 13:20:01.906334 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 13:20:01.906347 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 13:20:01.906364 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 13:20:01.906378 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 13:20:01.906389 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 13:20:01.906400 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 13:20:01.906412 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 13:20:01.906424 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 13:20:01.906440 9252 solver.cpp:245] Train net output #22: loss/loss01 = 3.78647 (* 0.0454545 = 0.172112 loss)
I0404 13:20:01.906455 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.96421 (* 0.0454545 = 0.180191 loss)
I0404 13:20:01.906468 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.66072 (* 0.0454545 = 0.166396 loss)
I0404 13:20:01.906481 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.81004 (* 0.0454545 = 0.173183 loss)
I0404 13:20:01.906496 9252 solver.cpp:245] Train net output #26: loss/loss05 = 3.51474 (* 0.0454545 = 0.159761 loss)
I0404 13:20:01.906509 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.77237 (* 0.0454545 = 0.126017 loss)
I0404 13:20:01.906522 9252 solver.cpp:245] Train net output #28: loss/loss07 = 2.07401 (* 0.0454545 = 0.0942731 loss)
I0404 13:20:01.906536 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.515432 (* 0.0454545 = 0.0234287 loss)
I0404 13:20:01.906550 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.103569 (* 0.0454545 = 0.0047077 loss)
I0404 13:20:01.906564 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.0350567 (* 0.0454545 = 0.00159349 loss)
I0404 13:20:01.906579 9252 solver.cpp:245] Train net output #32: loss/loss11 = 0.000344659 (* 0.0454545 = 1.56663e-05 loss)
I0404 13:20:01.906594 9252 solver.cpp:245] Train net output #33: loss/loss12 = 0.000328942 (* 0.0454545 = 1.49519e-05 loss)
I0404 13:20:01.906607 9252 solver.cpp:245] Train net output #34: loss/loss13 = 0.000316555 (* 0.0454545 = 1.43889e-05 loss)
I0404 13:20:01.906620 9252 solver.cpp:245] Train net output #35: loss/loss14 = 0.000327042 (* 0.0454545 = 1.48655e-05 loss)
I0404 13:20:01.906635 9252 solver.cpp:245] Train net output #36: loss/loss15 = 0.000306534 (* 0.0454545 = 1.39334e-05 loss)
I0404 13:20:01.906649 9252 solver.cpp:245] Train net output #37: loss/loss16 = 0.000316207 (* 0.0454545 = 1.4373e-05 loss)
I0404 13:20:01.906664 9252 solver.cpp:245] Train net output #38: loss/loss17 = 0.000314842 (* 0.0454545 = 1.4311e-05 loss)
I0404 13:20:01.906695 9252 solver.cpp:245] Train net output #39: loss/loss18 = 0.000327846 (* 0.0454545 = 1.49021e-05 loss)
I0404 13:20:01.906720 9252 solver.cpp:245] Train net output #40: loss/loss19 = 0.00030785 (* 0.0454545 = 1.39932e-05 loss)
I0404 13:20:01.906735 9252 solver.cpp:245] Train net output #41: loss/loss20 = 0.000304301 (* 0.0454545 = 1.38319e-05 loss)
I0404 13:20:01.906752 9252 solver.cpp:245] Train net output #42: loss/loss21 = 0.000304177 (* 0.0454545 = 1.38262e-05 loss)
I0404 13:20:01.906767 9252 solver.cpp:245] Train net output #43: loss/loss22 = 0.000315185 (* 0.0454545 = 1.43266e-05 loss)
I0404 13:20:01.906780 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 13:20:01.906791 9252 solver.cpp:245] Train net output #45: total_confidence = 2.73727e-06
I0404 13:20:01.906805 9252 sgd_solver.cpp:106] Iteration 13000, lr = 0.00987
I0404 13:21:11.995949 9252 solver.cpp:229] Iteration 13500, loss = 1.10649
I0404 13:21:11.996109 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.03125
I0404 13:21:11.996129 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0
I0404 13:21:11.996141 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375
I0404 13:21:11.996155 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625
I0404 13:21:11.996166 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.15625
I0404 13:21:11.996178 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375
I0404 13:21:11.996191 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875
I0404 13:21:11.996202 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375
I0404 13:21:11.996214 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.875
I0404 13:21:11.996225 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375
I0404 13:21:11.996237 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 13:21:11.996248 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 13:21:11.996260 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 13:21:11.996271 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 13:21:11.996284 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 13:21:11.996294 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 13:21:11.996306 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 13:21:11.996317 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 13:21:11.996328 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 13:21:11.996340 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 13:21:11.996351 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 13:21:11.996363 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 13:21:11.996378 9252 solver.cpp:245] Train net output #22: loss/loss01 = 3.96436 (* 0.0454545 = 0.180198 loss)
I0404 13:21:11.996392 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.62556 (* 0.0454545 = 0.164798 loss)
I0404 13:21:11.996407 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.76237 (* 0.0454545 = 0.171017 loss)
I0404 13:21:11.996420 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.86595 (* 0.0454545 = 0.175725 loss)
I0404 13:21:11.996434 9252 solver.cpp:245] Train net output #26: loss/loss05 = 3.54523 (* 0.0454545 = 0.161147 loss)
I0404 13:21:11.996448 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.93352 (* 0.0454545 = 0.133342 loss)
I0404 13:21:11.996461 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.64461 (* 0.0454545 = 0.0747551 loss)
I0404 13:21:11.996475 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.987047 (* 0.0454545 = 0.0448658 loss)
I0404 13:21:11.996490 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.80871 (* 0.0454545 = 0.0367596 loss)
I0404 13:21:11.996503 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.470666 (* 0.0454545 = 0.0213939 loss)
I0404 13:21:11.996517 9252 solver.cpp:245] Train net output #32: loss/loss11 = 3.73052e-05 (* 0.0454545 = 1.69569e-06 loss)
I0404 13:21:11.996531 9252 solver.cpp:245] Train net output #33: loss/loss12 = 3.43206e-05 (* 0.0454545 = 1.56003e-06 loss)
I0404 13:21:11.996546 9252 solver.cpp:245] Train net output #34: loss/loss13 = 3.34935e-05 (* 0.0454545 = 1.52243e-06 loss)
I0404 13:21:11.996561 9252 solver.cpp:245] Train net output #35: loss/loss14 = 3.48087e-05 (* 0.0454545 = 1.58222e-06 loss)
I0404 13:21:11.996574 9252 solver.cpp:245] Train net output #36: loss/loss15 = 3.3106e-05 (* 0.0454545 = 1.50482e-06 loss)
I0404 13:21:11.996588 9252 solver.cpp:245] Train net output #37: loss/loss16 = 3.26122e-05 (* 0.0454545 = 1.48237e-06 loss)
I0404 13:21:11.996601 9252 solver.cpp:245] Train net output #38: loss/loss17 = 3.26681e-05 (* 0.0454545 = 1.48491e-06 loss)
I0404 13:21:11.996633 9252 solver.cpp:245] Train net output #39: loss/loss18 = 3.80655e-05 (* 0.0454545 = 1.73025e-06 loss)
I0404 13:21:11.996647 9252 solver.cpp:245] Train net output #40: loss/loss19 = 3.31898e-05 (* 0.0454545 = 1.50863e-06 loss)
I0404 13:21:11.996661 9252 solver.cpp:245] Train net output #41: loss/loss20 = 3.14758e-05 (* 0.0454545 = 1.43072e-06 loss)
I0404 13:21:11.996675 9252 solver.cpp:245] Train net output #42: loss/loss21 = 3.28843e-05 (* 0.0454545 = 1.49474e-06 loss)
I0404 13:21:11.996690 9252 solver.cpp:245] Train net output #43: loss/loss22 = 3.25004e-05 (* 0.0454545 = 1.47729e-06 loss)
I0404 13:21:11.996701 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 13:21:11.996713 9252 solver.cpp:245] Train net output #45: total_confidence = 3.36076e-06
I0404 13:21:11.996728 9252 sgd_solver.cpp:106] Iteration 13500, lr = 0.009865
I0404 13:22:21.233260 9252 solver.cpp:229] Iteration 14000, loss = 1.10528
I0404 13:22:21.233400 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625
I0404 13:22:21.233433 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625
I0404 13:22:21.233458 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625
I0404 13:22:21.233481 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375
I0404 13:22:21.233505 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.21875
I0404 13:22:21.233549 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375
I0404 13:22:21.233578 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875
I0404 13:22:21.233600 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375
I0404 13:22:21.233623 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875
I0404 13:22:21.233654 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 13:22:21.233678 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 13:22:21.233700 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 13:22:21.233721 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 13:22:21.233747 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 13:22:21.233770 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 13:22:21.233790 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 13:22:21.233813 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 13:22:21.233834 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 13:22:21.233855 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 13:22:21.233876 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 13:22:21.233898 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 13:22:21.233922 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 13:22:21.233953 9252 solver.cpp:245] Train net output #22: loss/loss01 = 3.69069 (* 0.0454545 = 0.167759 loss)
I0404 13:22:21.233991 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.79573 (* 0.0454545 = 0.172533 loss)
I0404 13:22:21.234019 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.81568 (* 0.0454545 = 0.17344 loss)
I0404 13:22:21.234045 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.76808 (* 0.0454545 = 0.171276 loss)
I0404 13:22:21.234072 9252 solver.cpp:245] Train net output #26: loss/loss05 = 3.64036 (* 0.0454545 = 0.165471 loss)
I0404 13:22:21.234099 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.97326 (* 0.0454545 = 0.135148 loss)
I0404 13:22:21.234125 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.79657 (* 0.0454545 = 0.0816621 loss)
I0404 13:22:21.234151 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.426793 (* 0.0454545 = 0.0193997 loss)
I0404 13:22:21.234177 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.229527 (* 0.0454545 = 0.0104331 loss)
I0404 13:22:21.234205 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.0127983 (* 0.0454545 = 0.000581741 loss)
I0404 13:22:21.234231 9252 solver.cpp:245] Train net output #32: loss/loss11 = 7.28919e-05 (* 0.0454545 = 3.31327e-06 loss)
I0404 13:22:21.234258 9252 solver.cpp:245] Train net output #33: loss/loss12 = 6.91375e-05 (* 0.0454545 = 3.14262e-06 loss)
I0404 13:22:21.234283 9252 solver.cpp:245] Train net output #34: loss/loss13 = 6.75534e-05 (* 0.0454545 = 3.07061e-06 loss)
I0404 13:22:21.234311 9252 solver.cpp:245] Train net output #35: loss/loss14 = 6.90701e-05 (* 0.0454545 = 3.13955e-06 loss)
I0404 13:22:21.234338 9252 solver.cpp:245] Train net output #36: loss/loss15 = 6.32675e-05 (* 0.0454545 = 2.8758e-06 loss)
I0404 13:22:21.234364 9252 solver.cpp:245] Train net output #37: loss/loss16 = 6.82361e-05 (* 0.0454545 = 3.10164e-06 loss)
I0404 13:22:21.234391 9252 solver.cpp:245] Train net output #38: loss/loss17 = 6.6182e-05 (* 0.0454545 = 3.00827e-06 loss)
I0404 13:22:21.234447 9252 solver.cpp:245] Train net output #39: loss/loss18 = 6.74257e-05 (* 0.0454545 = 3.06481e-06 loss)
I0404 13:22:21.234477 9252 solver.cpp:245] Train net output #40: loss/loss19 = 6.63162e-05 (* 0.0454545 = 3.01437e-06 loss)
I0404 13:22:21.234503 9252 solver.cpp:245] Train net output #41: loss/loss20 = 6.49413e-05 (* 0.0454545 = 2.95188e-06 loss)
I0404 13:22:21.234529 9252 solver.cpp:245] Train net output #42: loss/loss21 = 6.39441e-05 (* 0.0454545 = 2.90655e-06 loss)
I0404 13:22:21.234556 9252 solver.cpp:245] Train net output #43: loss/loss22 = 6.88247e-05 (* 0.0454545 = 3.1284e-06 loss)
I0404 13:22:21.234580 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 13:22:21.234601 9252 solver.cpp:245] Train net output #45: total_confidence = 1.03075e-05
I0404 13:22:21.234625 9252 sgd_solver.cpp:106] Iteration 14000, lr = 0.00986
I0404 13:23:30.643450 9252 solver.cpp:229] Iteration 14500, loss = 1.10073
I0404 13:23:30.643568 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.03125
I0404 13:23:30.643599 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0
I0404 13:23:30.643623 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375
I0404 13:23:30.643648 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625
I0404 13:23:30.643671 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.15625
I0404 13:23:30.643695 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.46875
I0404 13:23:30.643721 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.875
I0404 13:23:30.643745 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375
I0404 13:23:30.643769 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875
I0404 13:23:30.643801 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875
I0404 13:23:30.643823 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 13:23:30.643846 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 13:23:30.643867 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 13:23:30.643889 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 13:23:30.643915 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 13:23:30.643937 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 13:23:30.643959 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 13:23:30.643981 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 13:23:30.644002 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 13:23:30.644023 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 13:23:30.644045 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 13:23:30.644068 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 13:23:30.644101 9252 solver.cpp:245] Train net output #22: loss/loss01 = 3.94932 (* 0.0454545 = 0.179515 loss)
I0404 13:23:30.644140 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.85699 (* 0.0454545 = 0.175318 loss)
I0404 13:23:30.644167 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.84809 (* 0.0454545 = 0.174913 loss)
I0404 13:23:30.644193 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.9926 (* 0.0454545 = 0.181482 loss)
I0404 13:23:30.644220 9252 solver.cpp:245] Train net output #26: loss/loss05 = 3.70649 (* 0.0454545 = 0.168477 loss)
I0404 13:23:30.644246 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.60656 (* 0.0454545 = 0.11848 loss)
I0404 13:23:30.644273 9252 solver.cpp:245] Train net output #28: loss/loss07 = 0.878777 (* 0.0454545 = 0.0399444 loss)
I0404 13:23:30.644299 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.422505 (* 0.0454545 = 0.0192048 loss)
I0404 13:23:30.644326 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.154408 (* 0.0454545 = 0.00701852 loss)
I0404 13:23:30.644353 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.185971 (* 0.0454545 = 0.00845322 loss)
I0404 13:23:30.644381 9252 solver.cpp:245] Train net output #32: loss/loss11 = 0.000106894 (* 0.0454545 = 4.85882e-06 loss)
I0404 13:23:30.644409 9252 solver.cpp:245] Train net output #33: loss/loss12 = 9.91565e-05 (* 0.0454545 = 4.50712e-06 loss)
I0404 13:23:30.644434 9252 solver.cpp:245] Train net output #34: loss/loss13 = 9.82944e-05 (* 0.0454545 = 4.46793e-06 loss)
I0404 13:23:30.644461 9252 solver.cpp:245] Train net output #35: loss/loss14 = 9.98585e-05 (* 0.0454545 = 4.53902e-06 loss)
I0404 13:23:30.644489 9252 solver.cpp:245] Train net output #36: loss/loss15 = 9.13147e-05 (* 0.0454545 = 4.15067e-06 loss)
I0404 13:23:30.644515 9252 solver.cpp:245] Train net output #37: loss/loss16 = 0.000102023 (* 0.0454545 = 4.6374e-06 loss)
I0404 13:23:30.644546 9252 solver.cpp:245] Train net output #38: loss/loss17 = 9.67701e-05 (* 0.0454545 = 4.39864e-06 loss)
I0404 13:23:30.644594 9252 solver.cpp:245] Train net output #39: loss/loss18 = 9.53894e-05 (* 0.0454545 = 4.33588e-06 loss)
I0404 13:23:30.644624 9252 solver.cpp:245] Train net output #40: loss/loss19 = 9.68782e-05 (* 0.0454545 = 4.40355e-06 loss)
I0404 13:23:30.644651 9252 solver.cpp:245] Train net output #41: loss/loss20 = 9.54994e-05 (* 0.0454545 = 4.34088e-06 loss)
I0404 13:23:30.644677 9252 solver.cpp:245] Train net output #42: loss/loss21 = 9.29173e-05 (* 0.0454545 = 4.22351e-06 loss)
I0404 13:23:30.644704 9252 solver.cpp:245] Train net output #43: loss/loss22 = 0.000100681 (* 0.0454545 = 4.5764e-06 loss)
I0404 13:23:30.644726 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 13:23:30.644748 9252 solver.cpp:245] Train net output #45: total_confidence = 6.44242e-06
I0404 13:23:30.644772 9252 sgd_solver.cpp:106] Iteration 14500, lr = 0.009855
I0404 13:24:40.195698 9252 solver.cpp:229] Iteration 15000, loss = 1.09614
I0404 13:24:40.195850 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125
I0404 13:24:40.195881 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375
I0404 13:24:40.195906 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125
I0404 13:24:40.195929 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875
I0404 13:24:40.195955 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.15625
I0404 13:24:40.195978 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375
I0404 13:24:40.196004 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.59375
I0404 13:24:40.196027 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.78125
I0404 13:24:40.196048 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 1
I0404 13:24:40.196070 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 13:24:40.196091 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 13:24:40.196113 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 13:24:40.196135 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 13:24:40.196156 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 13:24:40.196177 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 13:24:40.196198 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 13:24:40.196219 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 13:24:40.196240 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 13:24:40.196262 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 13:24:40.196283 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 13:24:40.196305 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 13:24:40.196326 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 13:24:40.196353 9252 solver.cpp:245] Train net output #22: loss/loss01 = 3.77107 (* 0.0454545 = 0.171412 loss)
I0404 13:24:40.196384 9252 solver.cpp:245] Train net output #23: loss/loss02 = 4.00233 (* 0.0454545 = 0.181924 loss)
I0404 13:24:40.196415 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.87574 (* 0.0454545 = 0.17617 loss)
I0404 13:24:40.196442 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.80348 (* 0.0454545 = 0.172886 loss)
I0404 13:24:40.196470 9252 solver.cpp:245] Train net output #26: loss/loss05 = 3.97467 (* 0.0454545 = 0.180667 loss)
I0404 13:24:40.196496 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.95732 (* 0.0454545 = 0.134424 loss)
I0404 13:24:40.196534 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.97666 (* 0.0454545 = 0.089848 loss)
I0404 13:24:40.196562 9252 solver.cpp:245] Train net output #29: loss/loss08 = 1.55165 (* 0.0454545 = 0.0705295 loss)
I0404 13:24:40.196588 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.0456646 (* 0.0454545 = 0.00207566 loss)
I0404 13:24:40.196614 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.0180803 (* 0.0454545 = 0.00082183 loss)
I0404 13:24:40.196641 9252 solver.cpp:245] Train net output #32: loss/loss11 = 9.92597e-05 (* 0.0454545 = 4.5118e-06 loss)
I0404 13:24:40.196668 9252 solver.cpp:245] Train net output #33: loss/loss12 = 9.10176e-05 (* 0.0454545 = 4.13716e-06 loss)
I0404 13:24:40.196694 9252 solver.cpp:245] Train net output #34: loss/loss13 = 9.43176e-05 (* 0.0454545 = 4.28716e-06 loss)
I0404 13:24:40.196720 9252 solver.cpp:245] Train net output #35: loss/loss14 = 9.47759e-05 (* 0.0454545 = 4.308e-06 loss)
I0404 13:24:40.196748 9252 solver.cpp:245] Train net output #36: loss/loss15 = 9.00114e-05 (* 0.0454545 = 4.09143e-06 loss)
I0404 13:24:40.196775 9252 solver.cpp:245] Train net output #37: loss/loss16 = 8.97143e-05 (* 0.0454545 = 4.07792e-06 loss)
I0404 13:24:40.196801 9252 solver.cpp:245] Train net output #38: loss/loss17 = 8.83315e-05 (* 0.0454545 = 4.01507e-06 loss)
I0404 13:24:40.196846 9252 solver.cpp:245] Train net output #39: loss/loss18 = 0.000102463 (* 0.0454545 = 4.65742e-06 loss)
I0404 13:24:40.196878 9252 solver.cpp:245] Train net output #40: loss/loss19 = 9.26795e-05 (* 0.0454545 = 4.2127e-06 loss)
I0404 13:24:40.196908 9252 solver.cpp:245] Train net output #41: loss/loss20 = 8.73775e-05 (* 0.0454545 = 3.97171e-06 loss)
I0404 13:24:40.196935 9252 solver.cpp:245] Train net output #42: loss/loss21 = 9.06409e-05 (* 0.0454545 = 4.12004e-06 loss)
I0404 13:24:40.196962 9252 solver.cpp:245] Train net output #43: loss/loss22 = 9.02209e-05 (* 0.0454545 = 4.10095e-06 loss)
I0404 13:24:40.196985 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 13:24:40.197010 9252 solver.cpp:245] Train net output #45: total_confidence = 1.18823e-05
I0404 13:24:40.197036 9252 sgd_solver.cpp:106] Iteration 15000, lr = 0.00985
I0404 13:25:49.816247 9252 solver.cpp:229] Iteration 15500, loss = 1.09317
I0404 13:25:49.816355 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625
I0404 13:25:49.816386 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375
I0404 13:25:49.816411 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125
I0404 13:25:49.816434 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375
I0404 13:25:49.816457 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25
I0404 13:25:49.816480 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625
I0404 13:25:49.816504 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.78125
I0404 13:25:49.816529 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 1
I0404 13:25:49.816551 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 1
I0404 13:25:49.816573 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 13:25:49.816596 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 13:25:49.816618 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 13:25:49.816639 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 13:25:49.816660 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 13:25:49.816682 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 13:25:49.816704 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 13:25:49.816725 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 13:25:49.816747 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 13:25:49.816769 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 13:25:49.816792 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 13:25:49.816813 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 13:25:49.816834 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 13:25:49.816862 9252 solver.cpp:245] Train net output #22: loss/loss01 = 3.64095 (* 0.0454545 = 0.165498 loss)
I0404 13:25:49.816890 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.85141 (* 0.0454545 = 0.175064 loss)
I0404 13:25:49.816920 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.86111 (* 0.0454545 = 0.175505 loss)
I0404 13:25:49.816949 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.82123 (* 0.0454545 = 0.173692 loss)
I0404 13:25:49.816977 9252 solver.cpp:245] Train net output #26: loss/loss05 = 3.44434 (* 0.0454545 = 0.156561 loss)
I0404 13:25:49.817006 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.68898 (* 0.0454545 = 0.122226 loss)
I0404 13:25:49.817034 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.11653 (* 0.0454545 = 0.0507513 loss)
I0404 13:25:49.817071 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.0457279 (* 0.0454545 = 0.00207854 loss)
I0404 13:25:49.817100 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.0110422 (* 0.0454545 = 0.000501916 loss)
I0404 13:25:49.817126 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.00378135 (* 0.0454545 = 0.000171879 loss)
I0404 13:25:49.817154 9252 solver.cpp:245] Train net output #32: loss/loss11 = 3.71764e-05 (* 0.0454545 = 1.68984e-06 loss)
I0404 13:25:49.817183 9252 solver.cpp:245] Train net output #33: loss/loss12 = 3.53507e-05 (* 0.0454545 = 1.60685e-06 loss)
I0404 13:25:49.817209 9252 solver.cpp:245] Train net output #34: loss/loss13 = 3.52501e-05 (* 0.0454545 = 1.60228e-06 loss)
I0404 13:25:49.817236 9252 solver.cpp:245] Train net output #35: loss/loss14 = 3.66735e-05 (* 0.0454545 = 1.66698e-06 loss)
I0404 13:25:49.817262 9252 solver.cpp:245] Train net output #36: loss/loss15 = 3.25376e-05 (* 0.0454545 = 1.47898e-06 loss)
I0404 13:25:49.817291 9252 solver.cpp:245] Train net output #37: loss/loss16 = 3.42068e-05 (* 0.0454545 = 1.55486e-06 loss)
I0404 13:25:49.817317 9252 solver.cpp:245] Train net output #38: loss/loss17 = 3.45497e-05 (* 0.0454545 = 1.57044e-06 loss)
I0404 13:25:49.817366 9252 solver.cpp:245] Train net output #39: loss/loss18 = 3.44937e-05 (* 0.0454545 = 1.5679e-06 loss)
I0404 13:25:49.817416 9252 solver.cpp:245] Train net output #40: loss/loss19 = 3.45794e-05 (* 0.0454545 = 1.57179e-06 loss)
I0404 13:25:49.817447 9252 solver.cpp:245] Train net output #41: loss/loss20 = 3.40243e-05 (* 0.0454545 = 1.54656e-06 loss)
I0404 13:25:49.817474 9252 solver.cpp:245] Train net output #42: loss/loss21 = 3.27649e-05 (* 0.0454545 = 1.48931e-06 loss)
I0404 13:25:49.817500 9252 solver.cpp:245] Train net output #43: loss/loss22 = 3.46093e-05 (* 0.0454545 = 1.57315e-06 loss)
I0404 13:25:49.817523 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 13:25:49.817544 9252 solver.cpp:245] Train net output #45: total_confidence = 5.6622e-05
I0404 13:25:49.817566 9252 sgd_solver.cpp:106] Iteration 15500, lr = 0.009845
I0404 13:26:58.920061 9252 solver.cpp:229] Iteration 16000, loss = 1.08803
I0404 13:26:58.920171 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125
I0404 13:26:58.920192 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125
I0404 13:26:58.920204 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625
I0404 13:26:58.920217 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625
I0404 13:26:58.920228 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.15625
I0404 13:26:58.920240 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5
I0404 13:26:58.920253 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125
I0404 13:26:58.920265 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625
I0404 13:26:58.920277 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 1
I0404 13:26:58.920289 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 13:26:58.920301 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 13:26:58.920312 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 13:26:58.920325 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 13:26:58.920336 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 13:26:58.920347 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 13:26:58.920359 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 13:26:58.920370 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 13:26:58.920382 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 13:26:58.920393 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 13:26:58.920404 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 13:26:58.920421 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 13:26:58.920447 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 13:26:58.920481 9252 solver.cpp:245] Train net output #22: loss/loss01 = 3.74431 (* 0.0454545 = 0.170196 loss)
I0404 13:26:58.920506 9252 solver.cpp:245] Train net output #23: loss/loss02 = 4.00198 (* 0.0454545 = 0.181908 loss)
I0404 13:26:58.920521 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.94759 (* 0.0454545 = 0.179436 loss)
I0404 13:26:58.920536 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.92889 (* 0.0454545 = 0.178586 loss)
I0404 13:26:58.920549 9252 solver.cpp:245] Train net output #26: loss/loss05 = 4.10236 (* 0.0454545 = 0.186471 loss)
I0404 13:26:58.920563 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.47382 (* 0.0454545 = 0.112446 loss)
I0404 13:26:58.920578 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.02299 (* 0.0454545 = 0.0464997 loss)
I0404 13:26:58.920606 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.529286 (* 0.0454545 = 0.0240584 loss)
I0404 13:26:58.920624 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.0263209 (* 0.0454545 = 0.0011964 loss)
I0404 13:26:58.920639 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.0104502 (* 0.0454545 = 0.00047501 loss)
I0404 13:26:58.920653 9252 solver.cpp:245] Train net output #32: loss/loss11 = 6.63385e-05 (* 0.0454545 = 3.01539e-06 loss)
I0404 13:26:58.920667 9252 solver.cpp:245] Train net output #33: loss/loss12 = 6.27441e-05 (* 0.0454545 = 2.852e-06 loss)
I0404 13:26:58.920681 9252 solver.cpp:245] Train net output #34: loss/loss13 = 6.59865e-05 (* 0.0454545 = 2.99939e-06 loss)
I0404 13:26:58.920696 9252 solver.cpp:245] Train net output #35: loss/loss14 = 6.56604e-05 (* 0.0454545 = 2.98456e-06 loss)
I0404 13:26:58.920711 9252 solver.cpp:245] Train net output #36: loss/loss15 = 6.04318e-05 (* 0.0454545 = 2.7469e-06 loss)
I0404 13:26:58.920724 9252 solver.cpp:245] Train net output #37: loss/loss16 = 6.17996e-05 (* 0.0454545 = 2.80907e-06 loss)
I0404 13:26:58.920738 9252 solver.cpp:245] Train net output #38: loss/loss17 = 6.30332e-05 (* 0.0454545 = 2.86515e-06 loss)
I0404 13:26:58.920773 9252 solver.cpp:245] Train net output #39: loss/loss18 = 6.50938e-05 (* 0.0454545 = 2.95881e-06 loss)
I0404 13:26:58.920789 9252 solver.cpp:245] Train net output #40: loss/loss19 = 6.34169e-05 (* 0.0454545 = 2.88259e-06 loss)
I0404 13:26:58.920804 9252 solver.cpp:245] Train net output #41: loss/loss20 = 6.1032e-05 (* 0.0454545 = 2.77418e-06 loss)
I0404 13:26:58.920817 9252 solver.cpp:245] Train net output #42: loss/loss21 = 6.13823e-05 (* 0.0454545 = 2.7901e-06 loss)
I0404 13:26:58.920831 9252 solver.cpp:245] Train net output #43: loss/loss22 = 6.25301e-05 (* 0.0454545 = 2.84228e-06 loss)
I0404 13:26:58.920845 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 13:26:58.920855 9252 solver.cpp:245] Train net output #45: total_confidence = 3.41628e-06
I0404 13:26:58.920869 9252 sgd_solver.cpp:106] Iteration 16000, lr = 0.00984
I0404 13:28:08.443783 9252 solver.cpp:229] Iteration 16500, loss = 1.08107
I0404 13:28:08.443898 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.15625
I0404 13:28:08.443918 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0
I0404 13:28:08.443931 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125
I0404 13:28:08.443943 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125
I0404 13:28:08.443955 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.0625
I0404 13:28:08.443967 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.28125
I0404 13:28:08.443979 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625
I0404 13:28:08.443990 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.8125
I0404 13:28:08.444002 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625
I0404 13:28:08.444015 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.90625
I0404 13:28:08.444026 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 13:28:08.444038 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 13:28:08.444049 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 13:28:08.444061 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 13:28:08.444072 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 13:28:08.444083 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 13:28:08.444094 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 13:28:08.444106 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 13:28:08.444118 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 13:28:08.444129 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 13:28:08.444140 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 13:28:08.444152 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 13:28:08.444167 9252 solver.cpp:245] Train net output #22: loss/loss01 = 3.40853 (* 0.0454545 = 0.154933 loss)
I0404 13:28:08.444182 9252 solver.cpp:245] Train net output #23: loss/loss02 = 4.23945 (* 0.0454545 = 0.192702 loss)
I0404 13:28:08.444195 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.86415 (* 0.0454545 = 0.175643 loss)
I0404 13:28:08.444210 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.81611 (* 0.0454545 = 0.17346 loss)
I0404 13:28:08.444223 9252 solver.cpp:245] Train net output #26: loss/loss05 = 4.01561 (* 0.0454545 = 0.182528 loss)
I0404 13:28:08.444236 9252 solver.cpp:245] Train net output #27: loss/loss06 = 3.17773 (* 0.0454545 = 0.144442 loss)
I0404 13:28:08.444250 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.98605 (* 0.0454545 = 0.0902749 loss)
I0404 13:28:08.444264 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.900662 (* 0.0454545 = 0.0409392 loss)
I0404 13:28:08.444278 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.492929 (* 0.0454545 = 0.0224059 loss)
I0404 13:28:08.444291 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.674552 (* 0.0454545 = 0.0306614 loss)
I0404 13:28:08.444306 9252 solver.cpp:245] Train net output #32: loss/loss11 = 0.000297544 (* 0.0454545 = 1.35247e-05 loss)
I0404 13:28:08.444320 9252 solver.cpp:245] Train net output #33: loss/loss12 = 0.000289701 (* 0.0454545 = 1.31682e-05 loss)
I0404 13:28:08.444334 9252 solver.cpp:245] Train net output #34: loss/loss13 = 0.000273817 (* 0.0454545 = 1.24462e-05 loss)
I0404 13:28:08.444349 9252 solver.cpp:245] Train net output #35: loss/loss14 = 0.000289065 (* 0.0454545 = 1.31393e-05 loss)
I0404 13:28:08.444362 9252 solver.cpp:245] Train net output #36: loss/loss15 = 0.000252069 (* 0.0454545 = 1.14577e-05 loss)
I0404 13:28:08.444376 9252 solver.cpp:245] Train net output #37: loss/loss16 = 0.000260678 (* 0.0454545 = 1.1849e-05 loss)
I0404 13:28:08.444391 9252 solver.cpp:245] Train net output #38: loss/loss17 = 0.000271936 (* 0.0454545 = 1.23607e-05 loss)
I0404 13:28:08.444422 9252 solver.cpp:245] Train net output #39: loss/loss18 = 0.000267648 (* 0.0454545 = 1.21658e-05 loss)
I0404 13:28:08.444437 9252 solver.cpp:245] Train net output #40: loss/loss19 = 0.00026724 (* 0.0454545 = 1.21473e-05 loss)
I0404 13:28:08.444453 9252 solver.cpp:245] Train net output #41: loss/loss20 = 0.000266819 (* 0.0454545 = 1.21281e-05 loss)
I0404 13:28:08.444465 9252 solver.cpp:245] Train net output #42: loss/loss21 = 0.000250269 (* 0.0454545 = 1.13759e-05 loss)
I0404 13:28:08.444479 9252 solver.cpp:245] Train net output #43: loss/loss22 = 0.000261218 (* 0.0454545 = 1.18736e-05 loss)
I0404 13:28:08.444491 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 13:28:08.444504 9252 solver.cpp:245] Train net output #45: total_confidence = 2.41e-06
I0404 13:28:08.444519 9252 sgd_solver.cpp:106] Iteration 16500, lr = 0.009835
I0404 13:29:17.964442 9252 solver.cpp:229] Iteration 17000, loss = 1.06995
I0404 13:29:17.964576 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.1875
I0404 13:29:17.964596 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625
I0404 13:29:17.964608 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125
I0404 13:29:17.964620 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625
I0404 13:29:17.964632 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.125
I0404 13:29:17.964644 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.1875
I0404 13:29:17.964656 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875
I0404 13:29:17.964668 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625
I0404 13:29:17.964681 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625
I0404 13:29:17.964694 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 13:29:17.964705 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 13:29:17.964717 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 13:29:17.964728 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 13:29:17.964740 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 13:29:17.964754 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 13:29:17.964766 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 13:29:17.964778 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 13:29:17.964790 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 13:29:17.964802 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 13:29:17.964813 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 13:29:17.964824 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 13:29:17.964836 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 13:29:17.964853 9252 solver.cpp:245] Train net output #22: loss/loss01 = 3.33643 (* 0.0454545 = 0.151656 loss)
I0404 13:29:17.964866 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.78273 (* 0.0454545 = 0.171942 loss)
I0404 13:29:17.964880 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.73011 (* 0.0454545 = 0.169551 loss)
I0404 13:29:17.964895 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.70954 (* 0.0454545 = 0.168615 loss)
I0404 13:29:17.964907 9252 solver.cpp:245] Train net output #26: loss/loss05 = 3.6692 (* 0.0454545 = 0.166782 loss)
I0404 13:29:17.964920 9252 solver.cpp:245] Train net output #27: loss/loss06 = 3.34242 (* 0.0454545 = 0.151928 loss)
I0404 13:29:17.964934 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.77922 (* 0.0454545 = 0.0808736 loss)
I0404 13:29:17.964947 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.435982 (* 0.0454545 = 0.0198174 loss)
I0404 13:29:17.964962 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.500351 (* 0.0454545 = 0.0227432 loss)
I0404 13:29:17.964975 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.0143578 (* 0.0454545 = 0.00065263 loss)
I0404 13:29:17.964989 9252 solver.cpp:245] Train net output #32: loss/loss11 = 0.000150053 (* 0.0454545 = 6.8206e-06 loss)
I0404 13:29:17.965003 9252 solver.cpp:245] Train net output #33: loss/loss12 = 0.000143866 (* 0.0454545 = 6.53936e-06 loss)
I0404 13:29:17.965018 9252 solver.cpp:245] Train net output #34: loss/loss13 = 0.000144688 (* 0.0454545 = 6.57673e-06 loss)
I0404 13:29:17.965031 9252 solver.cpp:245] Train net output #35: loss/loss14 = 0.000146563 (* 0.0454545 = 6.66194e-06 loss)
I0404 13:29:17.965044 9252 solver.cpp:245] Train net output #36: loss/loss15 = 0.000134793 (* 0.0454545 = 6.12697e-06 loss)
I0404 13:29:17.965075 9252 solver.cpp:245] Train net output #37: loss/loss16 = 0.000146435 (* 0.0454545 = 6.65615e-06 loss)
I0404 13:29:17.965093 9252 solver.cpp:245] Train net output #38: loss/loss17 = 0.000139206 (* 0.0454545 = 6.32754e-06 loss)
I0404 13:29:17.965121 9252 solver.cpp:245] Train net output #39: loss/loss18 = 0.000142767 (* 0.0454545 = 6.48941e-06 loss)
I0404 13:29:17.965137 9252 solver.cpp:245] Train net output #40: loss/loss19 = 0.000139927 (* 0.0454545 = 6.36033e-06 loss)
I0404 13:29:17.965150 9252 solver.cpp:245] Train net output #41: loss/loss20 = 0.000138008 (* 0.0454545 = 6.27309e-06 loss)
I0404 13:29:17.965164 9252 solver.cpp:245] Train net output #42: loss/loss21 = 0.000136102 (* 0.0454545 = 6.18647e-06 loss)
I0404 13:29:17.965178 9252 solver.cpp:245] Train net output #43: loss/loss22 = 0.000139092 (* 0.0454545 = 6.32237e-06 loss)
I0404 13:29:17.965190 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 13:29:17.965201 9252 solver.cpp:245] Train net output #45: total_confidence = 7.36414e-06
I0404 13:29:17.965216 9252 sgd_solver.cpp:106] Iteration 17000, lr = 0.00983
I0404 13:30:27.395788 9252 solver.cpp:229] Iteration 17500, loss = 1.06461
I0404 13:30:27.395920 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.03125
I0404 13:30:27.395943 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625
I0404 13:30:27.395956 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625
I0404 13:30:27.395968 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375
I0404 13:30:27.395982 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125
I0404 13:30:27.395992 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5
I0404 13:30:27.396004 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.84375
I0404 13:30:27.396016 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.96875
I0404 13:30:27.396028 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 1
I0404 13:30:27.396040 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 13:30:27.396052 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 13:30:27.396064 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 13:30:27.396075 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 13:30:27.396086 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 13:30:27.396098 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 13:30:27.396109 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 13:30:27.396121 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 13:30:27.396132 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 13:30:27.396144 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 13:30:27.396155 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 13:30:27.396167 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 13:30:27.396178 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 13:30:27.396194 9252 solver.cpp:245] Train net output #22: loss/loss01 = 3.38942 (* 0.0454545 = 0.154065 loss)
I0404 13:30:27.396209 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.62052 (* 0.0454545 = 0.164569 loss)
I0404 13:30:27.396222 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.49871 (* 0.0454545 = 0.159032 loss)
I0404 13:30:27.396236 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.83913 (* 0.0454545 = 0.174506 loss)
I0404 13:30:27.396250 9252 solver.cpp:245] Train net output #26: loss/loss05 = 3.25366 (* 0.0454545 = 0.147894 loss)
I0404 13:30:27.396263 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.26678 (* 0.0454545 = 0.103036 loss)
I0404 13:30:27.396276 9252 solver.cpp:245] Train net output #28: loss/loss07 = 0.760197 (* 0.0454545 = 0.0345544 loss)
I0404 13:30:27.396291 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.164748 (* 0.0454545 = 0.00748857 loss)
I0404 13:30:27.396304 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.0110677 (* 0.0454545 = 0.000503077 loss)
I0404 13:30:27.396318 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.00364844 (* 0.0454545 = 0.000165838 loss)
I0404 13:30:27.396332 9252 solver.cpp:245] Train net output #32: loss/loss11 = 9.60034e-06 (* 0.0454545 = 4.36379e-07 loss)
I0404 13:30:27.396347 9252 solver.cpp:245] Train net output #33: loss/loss12 = 8.6876e-06 (* 0.0454545 = 3.94891e-07 loss)
I0404 13:30:27.396360 9252 solver.cpp:245] Train net output #34: loss/loss13 = 8.9968e-06 (* 0.0454545 = 4.08945e-07 loss)
I0404 13:30:27.396374 9252 solver.cpp:245] Train net output #35: loss/loss14 = 8.82916e-06 (* 0.0454545 = 4.01326e-07 loss)
I0404 13:30:27.396389 9252 solver.cpp:245] Train net output #36: loss/loss15 = 8.13994e-06 (* 0.0454545 = 3.69998e-07 loss)
I0404 13:30:27.396402 9252 solver.cpp:245] Train net output #37: loss/loss16 = 9.03033e-06 (* 0.0454545 = 4.1047e-07 loss)
I0404 13:30:27.396416 9252 solver.cpp:245] Train net output #38: loss/loss17 = 8.65034e-06 (* 0.0454545 = 3.93197e-07 loss)
I0404 13:30:27.396447 9252 solver.cpp:245] Train net output #39: loss/loss18 = 8.93718e-06 (* 0.0454545 = 4.06235e-07 loss)
I0404 13:30:27.396462 9252 solver.cpp:245] Train net output #40: loss/loss19 = 8.24798e-06 (* 0.0454545 = 3.74908e-07 loss)
I0404 13:30:27.396476 9252 solver.cpp:245] Train net output #41: loss/loss20 = 8.29642e-06 (* 0.0454545 = 3.7711e-07 loss)
I0404 13:30:27.396491 9252 solver.cpp:245] Train net output #42: loss/loss21 = 8.24053e-06 (* 0.0454545 = 3.74569e-07 loss)
I0404 13:30:27.396504 9252 solver.cpp:245] Train net output #43: loss/loss22 = 8.33367e-06 (* 0.0454545 = 3.78803e-07 loss)
I0404 13:30:27.396517 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 13:30:27.396528 9252 solver.cpp:245] Train net output #45: total_confidence = 1.97708e-05
I0404 13:30:27.396543 9252 sgd_solver.cpp:106] Iteration 17500, lr = 0.009825
I0404 13:31:36.749136 9252 solver.cpp:229] Iteration 18000, loss = 1.05319
I0404 13:31:36.749279 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625
I0404 13:31:36.749299 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125
I0404 13:31:36.749311 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125
I0404 13:31:36.749323 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375
I0404 13:31:36.749336 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125
I0404 13:31:36.749347 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5
I0404 13:31:36.749359 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75
I0404 13:31:36.749372 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875
I0404 13:31:36.749383 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375
I0404 13:31:36.749394 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375
I0404 13:31:36.749407 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 13:31:36.749431 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 13:31:36.749446 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 13:31:36.749457 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 13:31:36.749469 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 13:31:36.749480 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 13:31:36.749492 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 13:31:36.749503 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 13:31:36.749516 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 13:31:36.749526 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 13:31:36.749538 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 13:31:36.749549 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 13:31:36.749564 9252 solver.cpp:245] Train net output #22: loss/loss01 = 3.86709 (* 0.0454545 = 0.175777 loss)
I0404 13:31:36.749579 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.75636 (* 0.0454545 = 0.170744 loss)
I0404 13:31:36.749593 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.97217 (* 0.0454545 = 0.180553 loss)
I0404 13:31:36.749606 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.71811 (* 0.0454545 = 0.169005 loss)
I0404 13:31:36.749620 9252 solver.cpp:245] Train net output #26: loss/loss05 = 3.21973 (* 0.0454545 = 0.146352 loss)
I0404 13:31:36.749634 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.17796 (* 0.0454545 = 0.0989981 loss)
I0404 13:31:36.749646 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.39193 (* 0.0454545 = 0.0632697 loss)
I0404 13:31:36.749660 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.741388 (* 0.0454545 = 0.0336994 loss)
I0404 13:31:36.749673 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.342334 (* 0.0454545 = 0.0155606 loss)
I0404 13:31:36.749687 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.403972 (* 0.0454545 = 0.0183623 loss)
I0404 13:31:36.749701 9252 solver.cpp:245] Train net output #32: loss/loss11 = 0.000265822 (* 0.0454545 = 1.20828e-05 loss)
I0404 13:31:36.749716 9252 solver.cpp:245] Train net output #33: loss/loss12 = 0.000264927 (* 0.0454545 = 1.20421e-05 loss)
I0404 13:31:36.749729 9252 solver.cpp:245] Train net output #34: loss/loss13 = 0.00026355 (* 0.0454545 = 1.19795e-05 loss)
I0404 13:31:36.749743 9252 solver.cpp:245] Train net output #35: loss/loss14 = 0.000265435 (* 0.0454545 = 1.20652e-05 loss)
I0404 13:31:36.749758 9252 solver.cpp:245] Train net output #36: loss/loss15 = 0.000258782 (* 0.0454545 = 1.17628e-05 loss)
I0404 13:31:36.749771 9252 solver.cpp:245] Train net output #37: loss/loss16 = 0.000258346 (* 0.0454545 = 1.1743e-05 loss)
I0404 13:31:36.749785 9252 solver.cpp:245] Train net output #38: loss/loss17 = 0.000259322 (* 0.0454545 = 1.17874e-05 loss)
I0404 13:31:36.749817 9252 solver.cpp:245] Train net output #39: loss/loss18 = 0.000249067 (* 0.0454545 = 1.13212e-05 loss)
I0404 13:31:36.749832 9252 solver.cpp:245] Train net output #40: loss/loss19 = 0.000252562 (* 0.0454545 = 1.14801e-05 loss)
I0404 13:31:36.749846 9252 solver.cpp:245] Train net output #41: loss/loss20 = 0.000261713 (* 0.0454545 = 1.1896e-05 loss)
I0404 13:31:36.749861 9252 solver.cpp:245] Train net output #42: loss/loss21 = 0.000259687 (* 0.0454545 = 1.18039e-05 loss)
I0404 13:31:36.749874 9252 solver.cpp:245] Train net output #43: loss/loss22 = 0.000263512 (* 0.0454545 = 1.19778e-05 loss)
I0404 13:31:36.749886 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 13:31:36.749897 9252 solver.cpp:245] Train net output #45: total_confidence = 1.56876e-05
I0404 13:31:36.749915 9252 sgd_solver.cpp:106] Iteration 18000, lr = 0.00982
I0404 13:32:46.183591 9252 solver.cpp:229] Iteration 18500, loss = 1.05577
I0404 13:32:46.183714 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125
I0404 13:32:46.183734 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125
I0404 13:32:46.183749 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0
I0404 13:32:46.183763 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125
I0404 13:32:46.183774 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.125
I0404 13:32:46.183787 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.28125
I0404 13:32:46.183800 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875
I0404 13:32:46.183811 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875
I0404 13:32:46.183823 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375
I0404 13:32:46.183835 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875
I0404 13:32:46.183847 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 13:32:46.183858 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 13:32:46.183871 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 13:32:46.183881 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 13:32:46.183893 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 13:32:46.183904 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 13:32:46.183917 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 13:32:46.183928 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 13:32:46.183939 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 13:32:46.183950 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 13:32:46.183962 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 13:32:46.183974 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 13:32:46.183990 9252 solver.cpp:245] Train net output #22: loss/loss01 = 3.37339 (* 0.0454545 = 0.153336 loss)
I0404 13:32:46.184005 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.68006 (* 0.0454545 = 0.167276 loss)
I0404 13:32:46.184018 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.58372 (* 0.0454545 = 0.162897 loss)
I0404 13:32:46.184031 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.80673 (* 0.0454545 = 0.173033 loss)
I0404 13:32:46.184046 9252 solver.cpp:245] Train net output #26: loss/loss05 = 3.56261 (* 0.0454545 = 0.161937 loss)
I0404 13:32:46.184059 9252 solver.cpp:245] Train net output #27: loss/loss06 = 3.08199 (* 0.0454545 = 0.14009 loss)
I0404 13:32:46.184072 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.62206 (* 0.0454545 = 0.0737299 loss)
I0404 13:32:46.184087 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.726503 (* 0.0454545 = 0.0330229 loss)
I0404 13:32:46.184099 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.459396 (* 0.0454545 = 0.0208816 loss)
I0404 13:32:46.184113 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.275913 (* 0.0454545 = 0.0125415 loss)
I0404 13:32:46.184128 9252 solver.cpp:245] Train net output #32: loss/loss11 = 0.000200788 (* 0.0454545 = 9.12674e-06 loss)
I0404 13:32:46.184142 9252 solver.cpp:245] Train net output #33: loss/loss12 = 0.000189522 (* 0.0454545 = 8.61462e-06 loss)
I0404 13:32:46.184156 9252 solver.cpp:245] Train net output #34: loss/loss13 = 0.000197275 (* 0.0454545 = 8.96704e-06 loss)
I0404 13:32:46.184170 9252 solver.cpp:245] Train net output #35: loss/loss14 = 0.000193477 (* 0.0454545 = 8.7944e-06 loss)
I0404 13:32:46.184183 9252 solver.cpp:245] Train net output #36: loss/loss15 = 0.000184998 (* 0.0454545 = 8.40899e-06 loss)
I0404 13:32:46.184197 9252 solver.cpp:245] Train net output #37: loss/loss16 = 0.000180213 (* 0.0454545 = 8.19148e-06 loss)
I0404 13:32:46.184211 9252 solver.cpp:245] Train net output #38: loss/loss17 = 0.000179003 (* 0.0454545 = 8.13651e-06 loss)
I0404 13:32:46.184242 9252 solver.cpp:245] Train net output #39: loss/loss18 = 0.00019979 (* 0.0454545 = 9.08135e-06 loss)
I0404 13:32:46.184258 9252 solver.cpp:245] Train net output #40: loss/loss19 = 0.000174118 (* 0.0454545 = 7.91444e-06 loss)
I0404 13:32:46.184273 9252 solver.cpp:245] Train net output #41: loss/loss20 = 0.000173877 (* 0.0454545 = 7.90352e-06 loss)
I0404 13:32:46.184286 9252 solver.cpp:245] Train net output #42: loss/loss21 = 0.000180913 (* 0.0454545 = 8.2233e-06 loss)
I0404 13:32:46.184300 9252 solver.cpp:245] Train net output #43: loss/loss22 = 0.000178456 (* 0.0454545 = 8.11162e-06 loss)
I0404 13:32:46.184311 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 13:32:46.184324 9252 solver.cpp:245] Train net output #45: total_confidence = 5.53919e-07
I0404 13:32:46.184337 9252 sgd_solver.cpp:106] Iteration 18500, lr = 0.009815
I0404 13:33:55.826742 9252 solver.cpp:229] Iteration 19000, loss = 1.03772
I0404 13:33:55.826884 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125
I0404 13:33:55.826905 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0
I0404 13:33:55.826917 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125
I0404 13:33:55.826930 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375
I0404 13:33:55.826942 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.15625
I0404 13:33:55.826954 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.1875
I0404 13:33:55.826967 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.65625
I0404 13:33:55.826978 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.96875
I0404 13:33:55.826990 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 1
I0404 13:33:55.827003 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 13:33:55.827013 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 13:33:55.827025 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 13:33:55.827036 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 13:33:55.827049 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 13:33:55.827059 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 13:33:55.827070 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 13:33:55.827082 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 13:33:55.827093 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 13:33:55.827105 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 13:33:55.827116 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 13:33:55.827127 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 13:33:55.827139 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 13:33:55.827155 9252 solver.cpp:245] Train net output #22: loss/loss01 = 3.47947 (* 0.0454545 = 0.158158 loss)
I0404 13:33:55.827169 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.691 (* 0.0454545 = 0.167773 loss)
I0404 13:33:55.827183 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.51552 (* 0.0454545 = 0.159796 loss)
I0404 13:33:55.827196 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.67807 (* 0.0454545 = 0.167185 loss)
I0404 13:33:55.827210 9252 solver.cpp:245] Train net output #26: loss/loss05 = 3.40461 (* 0.0454545 = 0.154755 loss)
I0404 13:33:55.827224 9252 solver.cpp:245] Train net output #27: loss/loss06 = 3.66742 (* 0.0454545 = 0.166701 loss)
I0404 13:33:55.827239 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.69654 (* 0.0454545 = 0.0771155 loss)
I0404 13:33:55.827251 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.263937 (* 0.0454545 = 0.0119971 loss)
I0404 13:33:55.827266 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.0641288 (* 0.0454545 = 0.00291494 loss)
I0404 13:33:55.827280 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.0271025 (* 0.0454545 = 0.00123193 loss)
I0404 13:33:55.827296 9252 solver.cpp:245] Train net output #32: loss/loss11 = 0.00048628 (* 0.0454545 = 2.21036e-05 loss)
I0404 13:33:55.827309 9252 solver.cpp:245] Train net output #33: loss/loss12 = 0.000531179 (* 0.0454545 = 2.41445e-05 loss)
I0404 13:33:55.827323 9252 solver.cpp:245] Train net output #34: loss/loss13 = 0.000459546 (* 0.0454545 = 2.08885e-05 loss)
I0404 13:33:55.827337 9252 solver.cpp:245] Train net output #35: loss/loss14 = 0.00049505 (* 0.0454545 = 2.25023e-05 loss)
I0404 13:33:55.827352 9252 solver.cpp:245] Train net output #36: loss/loss15 = 0.000436892 (* 0.0454545 = 1.98587e-05 loss)
I0404 13:33:55.827365 9252 solver.cpp:245] Train net output #37: loss/loss16 = 0.000357168 (* 0.0454545 = 1.62349e-05 loss)
I0404 13:33:55.827378 9252 solver.cpp:245] Train net output #38: loss/loss17 = 0.000439465 (* 0.0454545 = 1.99757e-05 loss)
I0404 13:33:55.827405 9252 solver.cpp:245] Train net output #39: loss/loss18 = 0.000430021 (* 0.0454545 = 1.95464e-05 loss)
I0404 13:33:55.827420 9252 solver.cpp:245] Train net output #40: loss/loss19 = 0.000389075 (* 0.0454545 = 1.76852e-05 loss)
I0404 13:33:55.827435 9252 solver.cpp:245] Train net output #41: loss/loss20 = 0.000420739 (* 0.0454545 = 1.91245e-05 loss)
I0404 13:33:55.827448 9252 solver.cpp:245] Train net output #42: loss/loss21 = 0.000411863 (* 0.0454545 = 1.87211e-05 loss)
I0404 13:33:55.827462 9252 solver.cpp:245] Train net output #43: loss/loss22 = 0.000398689 (* 0.0454545 = 1.81222e-05 loss)
I0404 13:33:55.827474 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 13:33:55.827486 9252 solver.cpp:245] Train net output #45: total_confidence = 1.2902e-05
I0404 13:33:55.827498 9252 sgd_solver.cpp:106] Iteration 19000, lr = 0.00981
I0404 13:35:05.454828 9252 solver.cpp:229] Iteration 19500, loss = 1.03065
I0404 13:35:05.454960 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375
I0404 13:35:05.454982 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625
I0404 13:35:05.454994 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375
I0404 13:35:05.455006 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125
I0404 13:35:05.455018 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125
I0404 13:35:05.455031 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125
I0404 13:35:05.455042 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.59375
I0404 13:35:05.455055 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.75
I0404 13:35:05.455068 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625
I0404 13:35:05.455080 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875
I0404 13:35:05.455092 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 13:35:05.455104 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 13:35:05.455116 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 13:35:05.455127 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 13:35:05.455138 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 13:35:05.455150 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 13:35:05.455162 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 13:35:05.455173 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 13:35:05.455184 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 13:35:05.455195 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 13:35:05.455207 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 13:35:05.455219 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 13:35:05.455235 9252 solver.cpp:245] Train net output #22: loss/loss01 = 3.57133 (* 0.0454545 = 0.162333 loss)
I0404 13:35:05.455248 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.83825 (* 0.0454545 = 0.174466 loss)
I0404 13:35:05.455262 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.76557 (* 0.0454545 = 0.171162 loss)
I0404 13:35:05.455276 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.61628 (* 0.0454545 = 0.164376 loss)
I0404 13:35:05.455291 9252 solver.cpp:245] Train net output #26: loss/loss05 = 3.41324 (* 0.0454545 = 0.155147 loss)
I0404 13:35:05.455303 9252 solver.cpp:245] Train net output #27: loss/loss06 = 3.0027 (* 0.0454545 = 0.136486 loss)
I0404 13:35:05.455317 9252 solver.cpp:245] Train net output #28: loss/loss07 = 2.23564 (* 0.0454545 = 0.10162 loss)
I0404 13:35:05.455332 9252 solver.cpp:245] Train net output #29: loss/loss08 = 1.333 (* 0.0454545 = 0.0605909 loss)
I0404 13:35:05.455344 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.669283 (* 0.0454545 = 0.030422 loss)
I0404 13:35:05.455358 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.304677 (* 0.0454545 = 0.0138489 loss)
I0404 13:35:05.455373 9252 solver.cpp:245] Train net output #32: loss/loss11 = 0.000305093 (* 0.0454545 = 1.38679e-05 loss)
I0404 13:35:05.455386 9252 solver.cpp:245] Train net output #33: loss/loss12 = 0.00029926 (* 0.0454545 = 1.36027e-05 loss)
I0404 13:35:05.455401 9252 solver.cpp:245] Train net output #34: loss/loss13 = 0.000300476 (* 0.0454545 = 1.3658e-05 loss)
I0404 13:35:05.455415 9252 solver.cpp:245] Train net output #35: loss/loss14 = 0.000295205 (* 0.0454545 = 1.34184e-05 loss)
I0404 13:35:05.455428 9252 solver.cpp:245] Train net output #36: loss/loss15 = 0.000275384 (* 0.0454545 = 1.25175e-05 loss)
I0404 13:35:05.455442 9252 solver.cpp:245] Train net output #37: loss/loss16 = 0.000277125 (* 0.0454545 = 1.25966e-05 loss)
I0404 13:35:05.455456 9252 solver.cpp:245] Train net output #38: loss/loss17 = 0.00027807 (* 0.0454545 = 1.26395e-05 loss)
I0404 13:35:05.455487 9252 solver.cpp:245] Train net output #39: loss/loss18 = 0.000303361 (* 0.0454545 = 1.37891e-05 loss)
I0404 13:35:05.455503 9252 solver.cpp:245] Train net output #40: loss/loss19 = 0.00026132 (* 0.0454545 = 1.18782e-05 loss)
I0404 13:35:05.455518 9252 solver.cpp:245] Train net output #41: loss/loss20 = 0.000261973 (* 0.0454545 = 1.19078e-05 loss)
I0404 13:35:05.455531 9252 solver.cpp:245] Train net output #42: loss/loss21 = 0.000264734 (* 0.0454545 = 1.20334e-05 loss)
I0404 13:35:05.455544 9252 solver.cpp:245] Train net output #43: loss/loss22 = 0.000267458 (* 0.0454545 = 1.21572e-05 loss)
I0404 13:35:05.455556 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 13:35:05.455569 9252 solver.cpp:245] Train net output #45: total_confidence = 8.09051e-06
I0404 13:35:05.455581 9252 sgd_solver.cpp:106] Iteration 19500, lr = 0.009805
I0404 13:36:15.178531 9252 solver.cpp:338] Iteration 20000, Testing net (#0)
I0404 13:36:23.168191 9252 solver.cpp:393] Test loss: 0.956876
I0404 13:36:23.168238 9252 solver.cpp:406] Test net output #0: loss/accuracy01 = 0.046
I0404 13:36:23.168253 9252 solver.cpp:406] Test net output #1: loss/accuracy02 = 0.083
I0404 13:36:23.168265 9252 solver.cpp:406] Test net output #2: loss/accuracy03 = 0.061
I0404 13:36:23.168277 9252 solver.cpp:406] Test net output #3: loss/accuracy04 = 0.082
I0404 13:36:23.168288 9252 solver.cpp:406] Test net output #4: loss/accuracy05 = 0.207
I0404 13:36:23.168300 9252 solver.cpp:406] Test net output #5: loss/accuracy06 = 0.493
I0404 13:36:23.168311 9252 solver.cpp:406] Test net output #6: loss/accuracy07 = 0.892
I0404 13:36:23.168323 9252 solver.cpp:406] Test net output #7: loss/accuracy08 = 0.97
I0404 13:36:23.168334 9252 solver.cpp:406] Test net output #8: loss/accuracy09 = 0.995
I0404 13:36:23.168345 9252 solver.cpp:406] Test net output #9: loss/accuracy10 = 0.998
I0404 13:36:23.168356 9252 solver.cpp:406] Test net output #10: loss/accuracy11 = 1
I0404 13:36:23.168367 9252 solver.cpp:406] Test net output #11: loss/accuracy12 = 1
I0404 13:36:23.168378 9252 solver.cpp:406] Test net output #12: loss/accuracy13 = 1
I0404 13:36:23.168390 9252 solver.cpp:406] Test net output #13: loss/accuracy14 = 1
I0404 13:36:23.168401 9252 solver.cpp:406] Test net output #14: loss/accuracy15 = 1
I0404 13:36:23.168411 9252 solver.cpp:406] Test net output #15: loss/accuracy16 = 1
I0404 13:36:23.168422 9252 solver.cpp:406] Test net output #16: loss/accuracy17 = 1
I0404 13:36:23.168433 9252 solver.cpp:406] Test net output #17: loss/accuracy18 = 1
I0404 13:36:23.168444 9252 solver.cpp:406] Test net output #18: loss/accuracy19 = 1
I0404 13:36:23.168455 9252 solver.cpp:406] Test net output #19: loss/accuracy20 = 1
I0404 13:36:23.168467 9252 solver.cpp:406] Test net output #20: loss/accuracy21 = 1
I0404 13:36:23.168478 9252 solver.cpp:406] Test net output #21: loss/accuracy22 = 1
I0404 13:36:23.168493 9252 solver.cpp:406] Test net output #22: loss/loss01 = 3.89169 (* 0.0454545 = 0.176895 loss)
I0404 13:36:23.168508 9252 solver.cpp:406] Test net output #23: loss/loss02 = 3.26303 (* 0.0454545 = 0.14832 loss)
I0404 13:36:23.168520 9252 solver.cpp:406] Test net output #24: loss/loss03 = 3.47303 (* 0.0454545 = 0.157865 loss)
I0404 13:36:23.168534 9252 solver.cpp:406] Test net output #25: loss/loss04 = 3.56633 (* 0.0454545 = 0.162106 loss)
I0404 13:36:23.168546 9252 solver.cpp:406] Test net output #26: loss/loss05 = 3.42151 (* 0.0454545 = 0.155523 loss)
I0404 13:36:23.168560 9252 solver.cpp:406] Test net output #27: loss/loss06 = 2.33894 (* 0.0454545 = 0.106315 loss)
I0404 13:36:23.168573 9252 solver.cpp:406] Test net output #28: loss/loss07 = 0.772331 (* 0.0454545 = 0.035106 loss)
I0404 13:36:23.168586 9252 solver.cpp:406] Test net output #29: loss/loss08 = 0.249701 (* 0.0454545 = 0.0113501 loss)
I0404 13:36:23.168601 9252 solver.cpp:406] Test net output #30: loss/loss09 = 0.0483566 (* 0.0454545 = 0.00219803 loss)
I0404 13:36:23.168614 9252 solver.cpp:406] Test net output #31: loss/loss10 = 0.0233842 (* 0.0454545 = 0.00106292 loss)
I0404 13:36:23.168628 9252 solver.cpp:406] Test net output #32: loss/loss11 = 0.000267762 (* 0.0454545 = 1.2171e-05 loss)
I0404 13:36:23.168642 9252 solver.cpp:406] Test net output #33: loss/loss12 = 0.000261662 (* 0.0454545 = 1.18937e-05 loss)
I0404 13:36:23.168655 9252 solver.cpp:406] Test net output #34: loss/loss13 = 0.000262206 (* 0.0454545 = 1.19184e-05 loss)
I0404 13:36:23.168669 9252 solver.cpp:406] Test net output #35: loss/loss14 = 0.000251317 (* 0.0454545 = 1.14235e-05 loss)
I0404 13:36:23.168683 9252 solver.cpp:406] Test net output #36: loss/loss15 = 0.000258543 (* 0.0454545 = 1.17519e-05 loss)
I0404 13:36:23.168696 9252 solver.cpp:406] Test net output #37: loss/loss16 = 0.000226954 (* 0.0454545 = 1.03161e-05 loss)
I0404 13:36:23.168710 9252 solver.cpp:406] Test net output #38: loss/loss17 = 0.000253685 (* 0.0454545 = 1.15311e-05 loss)
I0404 13:36:23.168763 9252 solver.cpp:406] Test net output #39: loss/loss18 = 0.000255587 (* 0.0454545 = 1.16176e-05 loss)
I0404 13:36:23.168778 9252 solver.cpp:406] Test net output #40: loss/loss19 = 0.000228811 (* 0.0454545 = 1.04005e-05 loss)
I0404 13:36:23.168792 9252 solver.cpp:406] Test net output #41: loss/loss20 = 0.000238435 (* 0.0454545 = 1.08379e-05 loss)
I0404 13:36:23.168805 9252 solver.cpp:406] Test net output #42: loss/loss21 = 0.00023415 (* 0.0454545 = 1.06432e-05 loss)
I0404 13:36:23.168818 9252 solver.cpp:406] Test net output #43: loss/loss22 = 0.000242654 (* 0.0454545 = 1.10297e-05 loss)
I0404 13:36:23.168830 9252 solver.cpp:406] Test net output #44: total_accuracy = 0
I0404 13:36:23.168841 9252 solver.cpp:406] Test net output #45: total_confidence = 6.47123e-06
I0404 13:36:23.202713 9252 solver.cpp:229] Iteration 20000, loss = 1.02878
I0404 13:36:23.202742 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.03125
I0404 13:36:23.202756 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0
I0404 13:36:23.202769 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125
I0404 13:36:23.202781 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125
I0404 13:36:23.202793 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875
I0404 13:36:23.202805 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375
I0404 13:36:23.202816 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75
I0404 13:36:23.202827 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625
I0404 13:36:23.202839 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875
I0404 13:36:23.202852 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 13:36:23.202862 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 13:36:23.202873 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 13:36:23.202884 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 13:36:23.202895 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 13:36:23.202910 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 13:36:23.202921 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 13:36:23.202932 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 13:36:23.202944 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 13:36:23.202955 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 13:36:23.202965 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 13:36:23.202976 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 13:36:23.202987 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 13:36:23.203002 9252 solver.cpp:245] Train net output #22: loss/loss01 = 3.54059 (* 0.0454545 = 0.160936 loss)
I0404 13:36:23.203016 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.71274 (* 0.0454545 = 0.168761 loss)
I0404 13:36:23.203029 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.48047 (* 0.0454545 = 0.158203 loss)
I0404 13:36:23.203043 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.6769 (* 0.0454545 = 0.167132 loss)
I0404 13:36:23.203057 9252 solver.cpp:245] Train net output #26: loss/loss05 = 3.58069 (* 0.0454545 = 0.162758 loss)
I0404 13:36:23.203069 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.66793 (* 0.0454545 = 0.12127 loss)
I0404 13:36:23.203083 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.26487 (* 0.0454545 = 0.0574939 loss)
I0404 13:36:23.203096 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.522894 (* 0.0454545 = 0.0237679 loss)
I0404 13:36:23.203109 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.20231 (* 0.0454545 = 0.00919591 loss)
I0404 13:36:23.203124 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.00473654 (* 0.0454545 = 0.000215297 loss)
I0404 13:36:23.203155 9252 solver.cpp:245] Train net output #32: loss/loss11 = 0.000137484 (* 0.0454545 = 6.24928e-06 loss)
I0404 13:36:23.203169 9252 solver.cpp:245] Train net output #33: loss/loss12 = 0.000144687 (* 0.0454545 = 6.57667e-06 loss)
I0404 13:36:23.203183 9252 solver.cpp:245] Train net output #34: loss/loss13 = 0.00013156 (* 0.0454545 = 5.97998e-06 loss)
I0404 13:36:23.203197 9252 solver.cpp:245] Train net output #35: loss/loss14 = 0.000128796 (* 0.0454545 = 5.85437e-06 loss)
I0404 13:36:23.203210 9252 solver.cpp:245] Train net output #36: loss/loss15 = 0.000121901 (* 0.0454545 = 5.54097e-06 loss)
I0404 13:36:23.203224 9252 solver.cpp:245] Train net output #37: loss/loss16 = 9.76667e-05 (* 0.0454545 = 4.4394e-06 loss)
I0404 13:36:23.203238 9252 solver.cpp:245] Train net output #38: loss/loss17 = 0.000121563 (* 0.0454545 = 5.52557e-06 loss)
I0404 13:36:23.203251 9252 solver.cpp:245] Train net output #39: loss/loss18 = 0.000119985 (* 0.0454545 = 5.45388e-06 loss)
I0404 13:36:23.203265 9252 solver.cpp:245] Train net output #40: loss/loss19 = 0.000102736 (* 0.0454545 = 4.66981e-06 loss)
I0404 13:36:23.203279 9252 solver.cpp:245] Train net output #41: loss/loss20 = 0.0001135 (* 0.0454545 = 5.15911e-06 loss)
I0404 13:36:23.203292 9252 solver.cpp:245] Train net output #42: loss/loss21 = 0.000110028 (* 0.0454545 = 5.00127e-06 loss)
I0404 13:36:23.203305 9252 solver.cpp:245] Train net output #43: loss/loss22 = 0.000111114 (* 0.0454545 = 5.05063e-06 loss)
I0404 13:36:23.203317 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 13:36:23.203328 9252 solver.cpp:245] Train net output #45: total_confidence = 6.00675e-06
I0404 13:36:23.203343 9252 sgd_solver.cpp:106] Iteration 20000, lr = 0.0098
I0404 13:37:31.894207 9252 solver.cpp:229] Iteration 20500, loss = 1.01736
I0404 13:37:31.894373 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125
I0404 13:37:31.894393 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125
I0404 13:37:31.894407 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375
I0404 13:37:31.894419 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625
I0404 13:37:31.894431 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25
I0404 13:37:31.894443 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125
I0404 13:37:31.894455 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875
I0404 13:37:31.894467 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.8125
I0404 13:37:31.894479 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875
I0404 13:37:31.894491 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 13:37:31.894502 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 13:37:31.894515 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 13:37:31.894526 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 13:37:31.894536 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 13:37:31.894548 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 13:37:31.894559 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 13:37:31.894570 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 13:37:31.894582 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 13:37:31.894593 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 13:37:31.894604 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 13:37:31.894615 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 13:37:31.894628 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 13:37:31.894642 9252 solver.cpp:245] Train net output #22: loss/loss01 = 3.31729 (* 0.0454545 = 0.150786 loss)
I0404 13:37:31.894657 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.42433 (* 0.0454545 = 0.155651 loss)
I0404 13:37:31.894670 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.42598 (* 0.0454545 = 0.155726 loss)
I0404 13:37:31.894685 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.81041 (* 0.0454545 = 0.173201 loss)
I0404 13:37:31.894698 9252 solver.cpp:245] Train net output #26: loss/loss05 = 3.18402 (* 0.0454545 = 0.144728 loss)
I0404 13:37:31.894711 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.74053 (* 0.0454545 = 0.124569 loss)
I0404 13:37:31.894726 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.49831 (* 0.0454545 = 0.068105 loss)
I0404 13:37:31.894738 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.948654 (* 0.0454545 = 0.0431206 loss)
I0404 13:37:31.894757 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.204639 (* 0.0454545 = 0.00930176 loss)
I0404 13:37:31.894770 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.00999857 (* 0.0454545 = 0.00045448 loss)
I0404 13:37:31.894785 9252 solver.cpp:245] Train net output #32: loss/loss11 = 0.000168211 (* 0.0454545 = 7.64597e-06 loss)
I0404 13:37:31.894799 9252 solver.cpp:245] Train net output #33: loss/loss12 = 0.000179524 (* 0.0454545 = 8.16016e-06 loss)
I0404 13:37:31.894814 9252 solver.cpp:245] Train net output #34: loss/loss13 = 0.000168623 (* 0.0454545 = 7.66466e-06 loss)
I0404 13:37:31.894827 9252 solver.cpp:245] Train net output #35: loss/loss14 = 0.0001497 (* 0.0454545 = 6.80457e-06 loss)
I0404 13:37:31.894841 9252 solver.cpp:245] Train net output #36: loss/loss15 = 0.000155247 (* 0.0454545 = 7.05669e-06 loss)
I0404 13:37:31.894855 9252 solver.cpp:245] Train net output #37: loss/loss16 = 0.000135158 (* 0.0454545 = 6.14356e-06 loss)
I0404 13:37:31.894868 9252 solver.cpp:245] Train net output #38: loss/loss17 = 0.000143634 (* 0.0454545 = 6.5288e-06 loss)
I0404 13:37:31.894896 9252 solver.cpp:245] Train net output #39: loss/loss18 = 0.000160847 (* 0.0454545 = 7.31124e-06 loss)
I0404 13:37:31.894912 9252 solver.cpp:245] Train net output #40: loss/loss19 = 0.000140827 (* 0.0454545 = 6.40124e-06 loss)
I0404 13:37:31.894925 9252 solver.cpp:245] Train net output #41: loss/loss20 = 0.000140181 (* 0.0454545 = 6.37185e-06 loss)
I0404 13:37:31.894939 9252 solver.cpp:245] Train net output #42: loss/loss21 = 0.00013439 (* 0.0454545 = 6.10864e-06 loss)
I0404 13:37:31.894953 9252 solver.cpp:245] Train net output #43: loss/loss22 = 0.000138353 (* 0.0454545 = 6.28879e-06 loss)
I0404 13:37:31.894965 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 13:37:31.894978 9252 solver.cpp:245] Train net output #45: total_confidence = 3.27762e-05
I0404 13:37:31.894991 9252 sgd_solver.cpp:106] Iteration 20500, lr = 0.009795
I0404 13:38:41.881062 9252 solver.cpp:229] Iteration 21000, loss = 1.00233
I0404 13:38:41.881181 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375
I0404 13:38:41.881201 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125
I0404 13:38:41.881214 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125
I0404 13:38:41.881225 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625
I0404 13:38:41.881237 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25
I0404 13:38:41.881249 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375
I0404 13:38:41.881261 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75
I0404 13:38:41.881273 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.96875
I0404 13:38:41.881285 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875
I0404 13:38:41.881297 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 13:38:41.881309 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 13:38:41.881320 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 13:38:41.881332 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 13:38:41.881345 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 13:38:41.881356 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 13:38:41.881367 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 13:38:41.881379 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 13:38:41.881392 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 13:38:41.881402 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 13:38:41.881414 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 13:38:41.881439 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 13:38:41.881453 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 13:38:41.881469 9252 solver.cpp:245] Train net output #22: loss/loss01 = 3.33481 (* 0.0454545 = 0.151582 loss)
I0404 13:38:41.881482 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.3963 (* 0.0454545 = 0.154377 loss)
I0404 13:38:41.881505 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.30166 (* 0.0454545 = 0.150076 loss)
I0404 13:38:41.881520 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.38041 (* 0.0454545 = 0.153655 loss)
I0404 13:38:41.881532 9252 solver.cpp:245] Train net output #26: loss/loss05 = 3.11273 (* 0.0454545 = 0.141488 loss)
I0404 13:38:41.881546 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.51541 (* 0.0454545 = 0.114337 loss)
I0404 13:38:41.881561 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.40871 (* 0.0454545 = 0.0640321 loss)
I0404 13:38:41.881574 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.132423 (* 0.0454545 = 0.00601922 loss)
I0404 13:38:41.881588 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.120278 (* 0.0454545 = 0.00546717 loss)
I0404 13:38:41.881603 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.0109603 (* 0.0454545 = 0.000498193 loss)
I0404 13:38:41.881618 9252 solver.cpp:245] Train net output #32: loss/loss11 = 1.93874e-05 (* 0.0454545 = 8.81248e-07 loss)
I0404 13:38:41.881631 9252 solver.cpp:245] Train net output #33: loss/loss12 = 1.86779e-05 (* 0.0454545 = 8.48994e-07 loss)
I0404 13:38:41.881645 9252 solver.cpp:245] Train net output #34: loss/loss13 = 1.83965e-05 (* 0.0454545 = 8.36203e-07 loss)
I0404 13:38:41.881659 9252 solver.cpp:245] Train net output #35: loss/loss14 = 1.83219e-05 (* 0.0454545 = 8.32815e-07 loss)
I0404 13:38:41.881674 9252 solver.cpp:245] Train net output #36: loss/loss15 = 1.73309e-05 (* 0.0454545 = 7.87767e-07 loss)
I0404 13:38:41.881687 9252 solver.cpp:245] Train net output #37: loss/loss16 = 1.49241e-05 (* 0.0454545 = 6.78367e-07 loss)
I0404 13:38:41.881701 9252 solver.cpp:245] Train net output #38: loss/loss17 = 1.72042e-05 (* 0.0454545 = 7.8201e-07 loss)
I0404 13:38:41.881733 9252 solver.cpp:245] Train net output #39: loss/loss18 = 1.81207e-05 (* 0.0454545 = 8.23667e-07 loss)
I0404 13:38:41.881748 9252 solver.cpp:245] Train net output #40: loss/loss19 = 1.58369e-05 (* 0.0454545 = 7.19858e-07 loss)
I0404 13:38:41.881762 9252 solver.cpp:245] Train net output #41: loss/loss20 = 1.52743e-05 (* 0.0454545 = 6.94288e-07 loss)
I0404 13:38:41.881777 9252 solver.cpp:245] Train net output #42: loss/loss21 = 1.57624e-05 (* 0.0454545 = 7.16472e-07 loss)
I0404 13:38:41.881790 9252 solver.cpp:245] Train net output #43: loss/loss22 = 1.59524e-05 (* 0.0454545 = 7.25108e-07 loss)
I0404 13:38:41.881803 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 13:38:41.881814 9252 solver.cpp:245] Train net output #45: total_confidence = 2.79784e-05
I0404 13:38:41.881829 9252 sgd_solver.cpp:106] Iteration 21000, lr = 0.00979
I0404 13:39:52.326408 9252 solver.cpp:229] Iteration 21500, loss = 0.998318
I0404 13:39:52.326535 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.03125
I0404 13:39:52.326555 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625
I0404 13:39:52.326568 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.15625
I0404 13:39:52.326581 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125
I0404 13:39:52.326592 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25
I0404 13:39:52.326603 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375
I0404 13:39:52.326616 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875
I0404 13:39:52.326627 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625
I0404 13:39:52.326639 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375
I0404 13:39:52.326652 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875
I0404 13:39:52.326663 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 13:39:52.326674 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 13:39:52.326686 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 13:39:52.326699 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 13:39:52.326709 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 13:39:52.326721 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 13:39:52.326733 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 13:39:52.326747 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 13:39:52.326759 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 13:39:52.326771 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 13:39:52.326782 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 13:39:52.326793 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 13:39:52.326809 9252 solver.cpp:245] Train net output #22: loss/loss01 = 3.68444 (* 0.0454545 = 0.167475 loss)
I0404 13:39:52.326823 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.43529 (* 0.0454545 = 0.15615 loss)
I0404 13:39:52.326838 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.36284 (* 0.0454545 = 0.152856 loss)
I0404 13:39:52.326850 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.48069 (* 0.0454545 = 0.158213 loss)
I0404 13:39:52.326864 9252 solver.cpp:245] Train net output #26: loss/loss05 = 3.21935 (* 0.0454545 = 0.146334 loss)
I0404 13:39:52.326877 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.93908 (* 0.0454545 = 0.133595 loss)
I0404 13:39:52.326891 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.47607 (* 0.0454545 = 0.0670943 loss)
I0404 13:39:52.326905 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.494329 (* 0.0454545 = 0.0224695 loss)
I0404 13:39:52.326918 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.293653 (* 0.0454545 = 0.0133479 loss)
I0404 13:39:52.326931 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.210149 (* 0.0454545 = 0.00955224 loss)
I0404 13:39:52.326946 9252 solver.cpp:245] Train net output #32: loss/loss11 = 3.8346e-05 (* 0.0454545 = 1.743e-06 loss)
I0404 13:39:52.326961 9252 solver.cpp:245] Train net output #33: loss/loss12 = 4.06811e-05 (* 0.0454545 = 1.84914e-06 loss)
I0404 13:39:52.326974 9252 solver.cpp:245] Train net output #34: loss/loss13 = 4.18708e-05 (* 0.0454545 = 1.90322e-06 loss)
I0404 13:39:52.326987 9252 solver.cpp:245] Train net output #35: loss/loss14 = 3.88737e-05 (* 0.0454545 = 1.76699e-06 loss)
I0404 13:39:52.327002 9252 solver.cpp:245] Train net output #36: loss/loss15 = 3.93715e-05 (* 0.0454545 = 1.78961e-06 loss)
I0404 13:39:52.327015 9252 solver.cpp:245] Train net output #37: loss/loss16 = 2.78663e-05 (* 0.0454545 = 1.26665e-06 loss)
I0404 13:39:52.327029 9252 solver.cpp:245] Train net output #38: loss/loss17 = 3.69113e-05 (* 0.0454545 = 1.67779e-06 loss)
I0404 13:39:52.327060 9252 solver.cpp:245] Train net output #39: loss/loss18 = 3.90672e-05 (* 0.0454545 = 1.77578e-06 loss)
I0404 13:39:52.327075 9252 solver.cpp:245] Train net output #40: loss/loss19 = 3.21522e-05 (* 0.0454545 = 1.46146e-06 loss)
I0404 13:39:52.327090 9252 solver.cpp:245] Train net output #41: loss/loss20 = 3.45194e-05 (* 0.0454545 = 1.56906e-06 loss)
I0404 13:39:52.327102 9252 solver.cpp:245] Train net output #42: loss/loss21 = 3.64593e-05 (* 0.0454545 = 1.65724e-06 loss)
I0404 13:39:52.327116 9252 solver.cpp:245] Train net output #43: loss/loss22 = 3.46685e-05 (* 0.0454545 = 1.57584e-06 loss)
I0404 13:39:52.327127 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 13:39:52.327138 9252 solver.cpp:245] Train net output #45: total_confidence = 4.17923e-05
I0404 13:39:52.327154 9252 sgd_solver.cpp:106] Iteration 21500, lr = 0.009785
I0404 13:41:01.444106 9252 solver.cpp:229] Iteration 22000, loss = 0.993056
I0404 13:41:01.444248 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625
I0404 13:41:01.444267 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625
I0404 13:41:01.444280 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625
I0404 13:41:01.444293 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375
I0404 13:41:01.444304 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.21875
I0404 13:41:01.444316 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375
I0404 13:41:01.444329 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.84375
I0404 13:41:01.444341 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.96875
I0404 13:41:01.444353 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875
I0404 13:41:01.444365 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 13:41:01.444376 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 13:41:01.444388 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 13:41:01.444401 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 13:41:01.444411 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 13:41:01.444423 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 13:41:01.444435 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 13:41:01.444447 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 13:41:01.444458 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 13:41:01.444470 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 13:41:01.444485 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 13:41:01.444497 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 13:41:01.444509 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 13:41:01.444525 9252 solver.cpp:245] Train net output #22: loss/loss01 = 3.30558 (* 0.0454545 = 0.150254 loss)
I0404 13:41:01.444540 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.20142 (* 0.0454545 = 0.145519 loss)
I0404 13:41:01.444553 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.26899 (* 0.0454545 = 0.14859 loss)
I0404 13:41:01.444566 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.29852 (* 0.0454545 = 0.149933 loss)
I0404 13:41:01.444581 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.9967 (* 0.0454545 = 0.136214 loss)
I0404 13:41:01.444594 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.37543 (* 0.0454545 = 0.107974 loss)
I0404 13:41:01.444608 9252 solver.cpp:245] Train net output #28: loss/loss07 = 0.854756 (* 0.0454545 = 0.0388525 loss)
I0404 13:41:01.444622 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.31561 (* 0.0454545 = 0.0143459 loss)
I0404 13:41:01.444636 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.222345 (* 0.0454545 = 0.0101066 loss)
I0404 13:41:01.444651 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.0500269 (* 0.0454545 = 0.00227395 loss)
I0404 13:41:01.444665 9252 solver.cpp:245] Train net output #32: loss/loss11 = 0.000871894 (* 0.0454545 = 3.96315e-05 loss)
I0404 13:41:01.444680 9252 solver.cpp:245] Train net output #33: loss/loss12 = 0.00085234 (* 0.0454545 = 3.87427e-05 loss)
I0404 13:41:01.444694 9252 solver.cpp:245] Train net output #34: loss/loss13 = 0.000925375 (* 0.0454545 = 4.20625e-05 loss)
I0404 13:41:01.444708 9252 solver.cpp:245] Train net output #35: loss/loss14 = 0.000783699 (* 0.0454545 = 3.56227e-05 loss)
I0404 13:41:01.444722 9252 solver.cpp:245] Train net output #36: loss/loss15 = 0.000957139 (* 0.0454545 = 4.35063e-05 loss)
I0404 13:41:01.444736 9252 solver.cpp:245] Train net output #37: loss/loss16 = 0.000707195 (* 0.0454545 = 3.21452e-05 loss)
I0404 13:41:01.444751 9252 solver.cpp:245] Train net output #38: loss/loss17 = 0.000802656 (* 0.0454545 = 3.64844e-05 loss)
I0404 13:41:01.444780 9252 solver.cpp:245] Train net output #39: loss/loss18 = 0.000928867 (* 0.0454545 = 4.22212e-05 loss)
I0404 13:41:01.444797 9252 solver.cpp:245] Train net output #40: loss/loss19 = 0.000767299 (* 0.0454545 = 3.48772e-05 loss)
I0404 13:41:01.444810 9252 solver.cpp:245] Train net output #41: loss/loss20 = 0.000850336 (* 0.0454545 = 3.86516e-05 loss)
I0404 13:41:01.444824 9252 solver.cpp:245] Train net output #42: loss/loss21 = 0.000835554 (* 0.0454545 = 3.79797e-05 loss)
I0404 13:41:01.444839 9252 solver.cpp:245] Train net output #43: loss/loss22 = 0.0008131 (* 0.0454545 = 3.69591e-05 loss)
I0404 13:41:01.444850 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 13:41:01.444862 9252 solver.cpp:245] Train net output #45: total_confidence = 1.56013e-05
I0404 13:41:01.444875 9252 sgd_solver.cpp:106] Iteration 22000, lr = 0.00978
I0404 13:42:11.385491 9252 solver.cpp:229] Iteration 22500, loss = 0.985664
I0404 13:42:11.385639 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375
I0404 13:42:11.385660 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375
I0404 13:42:11.385673 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625
I0404 13:42:11.385685 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625
I0404 13:42:11.385697 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875
I0404 13:42:11.385710 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.28125
I0404 13:42:11.385722 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.65625
I0404 13:42:11.385735 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875
I0404 13:42:11.385746 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875
I0404 13:42:11.385757 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875
I0404 13:42:11.385769 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 13:42:11.385784 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 13:42:11.385804 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 13:42:11.385818 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 13:42:11.385830 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 13:42:11.385841 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 13:42:11.385854 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 13:42:11.385864 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 13:42:11.385875 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 13:42:11.385887 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 13:42:11.385901 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 13:42:11.385913 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 13:42:11.385929 9252 solver.cpp:245] Train net output #22: loss/loss01 = 3.24572 (* 0.0454545 = 0.147533 loss)
I0404 13:42:11.385943 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.25764 (* 0.0454545 = 0.148075 loss)
I0404 13:42:11.385957 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.4231 (* 0.0454545 = 0.155596 loss)
I0404 13:42:11.385972 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.20309 (* 0.0454545 = 0.145595 loss)
I0404 13:42:11.385985 9252 solver.cpp:245] Train net output #26: loss/loss05 = 3.48258 (* 0.0454545 = 0.158299 loss)
I0404 13:42:11.385998 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.86418 (* 0.0454545 = 0.13019 loss)
I0404 13:42:11.386013 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.59346 (* 0.0454545 = 0.07243 loss)
I0404 13:42:11.386025 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.8726 (* 0.0454545 = 0.0396636 loss)
I0404 13:42:11.386039 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.379897 (* 0.0454545 = 0.017268 loss)
I0404 13:42:11.386052 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.390846 (* 0.0454545 = 0.0177657 loss)
I0404 13:42:11.386066 9252 solver.cpp:245] Train net output #32: loss/loss11 = 0.000101894 (* 0.0454545 = 4.63153e-06 loss)
I0404 13:42:11.386101 9252 solver.cpp:245] Train net output #33: loss/loss12 = 9.75617e-05 (* 0.0454545 = 4.43462e-06 loss)
I0404 13:42:11.386117 9252 solver.cpp:245] Train net output #34: loss/loss13 = 0.000101508 (* 0.0454545 = 4.614e-06 loss)
I0404 13:42:11.386135 9252 solver.cpp:245] Train net output #35: loss/loss14 = 9.57596e-05 (* 0.0454545 = 4.35271e-06 loss)
I0404 13:42:11.386158 9252 solver.cpp:245] Train net output #36: loss/loss15 = 0.000103605 (* 0.0454545 = 4.70931e-06 loss)
I0404 13:42:11.386173 9252 solver.cpp:245] Train net output #37: loss/loss16 = 5.78579e-05 (* 0.0454545 = 2.62991e-06 loss)
I0404 13:42:11.386188 9252 solver.cpp:245] Train net output #38: loss/loss17 = 8.69167e-05 (* 0.0454545 = 3.95076e-06 loss)
I0404 13:42:11.386216 9252 solver.cpp:245] Train net output #39: loss/loss18 = 9.64261e-05 (* 0.0454545 = 4.383e-06 loss)
I0404 13:42:11.386231 9252 solver.cpp:245] Train net output #40: loss/loss19 = 7.80228e-05 (* 0.0454545 = 3.54649e-06 loss)
I0404 13:42:11.386245 9252 solver.cpp:245] Train net output #41: loss/loss20 = 8.26734e-05 (* 0.0454545 = 3.75788e-06 loss)
I0404 13:42:11.386260 9252 solver.cpp:245] Train net output #42: loss/loss21 = 8.31701e-05 (* 0.0454545 = 3.78046e-06 loss)
I0404 13:42:11.386272 9252 solver.cpp:245] Train net output #43: loss/loss22 = 7.21372e-05 (* 0.0454545 = 3.27896e-06 loss)
I0404 13:42:11.386284 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 13:42:11.386296 9252 solver.cpp:245] Train net output #45: total_confidence = 1.09228e-05
I0404 13:42:11.386309 9252 sgd_solver.cpp:106] Iteration 22500, lr = 0.009775
I0404 13:43:21.560844 9252 solver.cpp:229] Iteration 23000, loss = 0.984105
I0404 13:43:21.560959 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375
I0404 13:43:21.560989 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.15625
I0404 13:43:21.561015 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125
I0404 13:43:21.561038 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375
I0404 13:43:21.561063 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875
I0404 13:43:21.561085 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5
I0404 13:43:21.561110 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875
I0404 13:43:21.561134 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375
I0404 13:43:21.561158 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 1
I0404 13:43:21.561180 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 13:43:21.561203 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 13:43:21.561223 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 13:43:21.561265 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 13:43:21.561287 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 13:43:21.561316 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 13:43:21.561337 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 13:43:21.561358 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 13:43:21.561379 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 13:43:21.561401 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 13:43:21.561442 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 13:43:21.561470 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 13:43:21.561491 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 13:43:21.561520 9252 solver.cpp:245] Train net output #22: loss/loss01 = 3.04457 (* 0.0454545 = 0.13839 loss)
I0404 13:43:21.561547 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.2875 (* 0.0454545 = 0.149432 loss)
I0404 13:43:21.561580 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.68485 (* 0.0454545 = 0.167493 loss)
I0404 13:43:21.561611 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.48578 (* 0.0454545 = 0.158445 loss)
I0404 13:43:21.561640 9252 solver.cpp:245] Train net output #26: loss/loss05 = 3.4089 (* 0.0454545 = 0.15495 loss)
I0404 13:43:21.561686 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.54069 (* 0.0454545 = 0.115486 loss)
I0404 13:43:21.561712 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.27351 (* 0.0454545 = 0.0578869 loss)
I0404 13:43:21.561746 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.705652 (* 0.0454545 = 0.0320751 loss)
I0404 13:43:21.561774 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.0604294 (* 0.0454545 = 0.00274679 loss)
I0404 13:43:21.561802 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.029981 (* 0.0454545 = 0.00136277 loss)
I0404 13:43:21.561830 9252 solver.cpp:245] Train net output #32: loss/loss11 = 8.03328e-05 (* 0.0454545 = 3.65149e-06 loss)
I0404 13:43:21.561856 9252 solver.cpp:245] Train net output #33: loss/loss12 = 7.37723e-05 (* 0.0454545 = 3.35329e-06 loss)
I0404 13:43:21.561883 9252 solver.cpp:245] Train net output #34: loss/loss13 = 7.85255e-05 (* 0.0454545 = 3.56934e-06 loss)
I0404 13:43:21.561909 9252 solver.cpp:245] Train net output #35: loss/loss14 = 7.58934e-05 (* 0.0454545 = 3.4497e-06 loss)
I0404 13:43:21.561936 9252 solver.cpp:245] Train net output #36: loss/loss15 = 7.34467e-05 (* 0.0454545 = 3.33849e-06 loss)
I0404 13:43:21.561966 9252 solver.cpp:245] Train net output #37: loss/loss16 = 6.5126e-05 (* 0.0454545 = 2.96027e-06 loss)
I0404 13:43:21.561995 9252 solver.cpp:245] Train net output #38: loss/loss17 = 6.81709e-05 (* 0.0454545 = 3.09868e-06 loss)
I0404 13:43:21.562047 9252 solver.cpp:245] Train net output #39: loss/loss18 = 7.92773e-05 (* 0.0454545 = 3.60351e-06 loss)
I0404 13:43:21.562075 9252 solver.cpp:245] Train net output #40: loss/loss19 = 6.73398e-05 (* 0.0454545 = 3.0609e-06 loss)
I0404 13:43:21.562103 9252 solver.cpp:245] Train net output #41: loss/loss20 = 6.39964e-05 (* 0.0454545 = 2.90893e-06 loss)
I0404 13:43:21.562129 9252 solver.cpp:245] Train net output #42: loss/loss21 = 6.81948e-05 (* 0.0454545 = 3.09977e-06 loss)
I0404 13:43:21.562156 9252 solver.cpp:245] Train net output #43: loss/loss22 = 6.27725e-05 (* 0.0454545 = 2.8533e-06 loss)
I0404 13:43:21.562178 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 13:43:21.562201 9252 solver.cpp:245] Train net output #45: total_confidence = 1.29328e-05
I0404 13:43:21.562224 9252 sgd_solver.cpp:106] Iteration 23000, lr = 0.00977
I0404 13:44:32.819851 9252 solver.cpp:229] Iteration 23500, loss = 0.97814
I0404 13:44:32.819982 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125
I0404 13:44:32.820010 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625
I0404 13:44:32.820035 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375
I0404 13:44:32.820058 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625
I0404 13:44:32.820080 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875
I0404 13:44:32.820099 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375
I0404 13:44:32.820117 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.84375
I0404 13:44:32.820135 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875
I0404 13:44:32.820157 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375
I0404 13:44:32.820178 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375
I0404 13:44:32.820201 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 13:44:32.820226 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 13:44:32.820248 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 13:44:32.820269 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 13:44:32.820291 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 13:44:32.820330 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 13:44:32.820353 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 13:44:32.820374 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 13:44:32.820404 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 13:44:32.820425 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 13:44:32.820444 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 13:44:32.820466 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 13:44:32.820493 9252 solver.cpp:245] Train net output #22: loss/loss01 = 3.23752 (* 0.0454545 = 0.14716 loss)
I0404 13:44:32.820519 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.44055 (* 0.0454545 = 0.156389 loss)
I0404 13:44:32.820545 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.58932 (* 0.0454545 = 0.163151 loss)
I0404 13:44:32.820571 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.52136 (* 0.0454545 = 0.160062 loss)
I0404 13:44:32.820597 9252 solver.cpp:245] Train net output #26: loss/loss05 = 3.69421 (* 0.0454545 = 0.167919 loss)
I0404 13:44:32.820623 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.6077 (* 0.0454545 = 0.118532 loss)
I0404 13:44:32.820648 9252 solver.cpp:245] Train net output #28: loss/loss07 = 0.991365 (* 0.0454545 = 0.0450621 loss)
I0404 13:44:32.820674 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.598521 (* 0.0454545 = 0.0272055 loss)
I0404 13:44:32.820700 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.342959 (* 0.0454545 = 0.0155891 loss)
I0404 13:44:32.820725 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.325659 (* 0.0454545 = 0.0148027 loss)
I0404 13:44:32.820752 9252 solver.cpp:245] Train net output #32: loss/loss11 = 6.18263e-05 (* 0.0454545 = 2.81029e-06 loss)
I0404 13:44:32.820780 9252 solver.cpp:245] Train net output #33: loss/loss12 = 5.53435e-05 (* 0.0454545 = 2.51561e-06 loss)
I0404 13:44:32.820806 9252 solver.cpp:245] Train net output #34: loss/loss13 = 5.91727e-05 (* 0.0454545 = 2.68967e-06 loss)
I0404 13:44:32.820832 9252 solver.cpp:245] Train net output #35: loss/loss14 = 5.59993e-05 (* 0.0454545 = 2.54542e-06 loss)
I0404 13:44:32.820858 9252 solver.cpp:245] Train net output #36: loss/loss15 = 5.61056e-05 (* 0.0454545 = 2.55025e-06 loss)
I0404 13:44:32.820891 9252 solver.cpp:245] Train net output #37: loss/loss16 = 5.52297e-05 (* 0.0454545 = 2.51044e-06 loss)
I0404 13:44:32.820922 9252 solver.cpp:245] Train net output #38: loss/loss17 = 4.97261e-05 (* 0.0454545 = 2.26028e-06 loss)
I0404 13:44:32.820992 9252 solver.cpp:245] Train net output #39: loss/loss18 = 6.43758e-05 (* 0.0454545 = 2.92617e-06 loss)
I0404 13:44:32.821032 9252 solver.cpp:245] Train net output #40: loss/loss19 = 5.53367e-05 (* 0.0454545 = 2.5153e-06 loss)
I0404 13:44:32.821058 9252 solver.cpp:245] Train net output #41: loss/loss20 = 4.81775e-05 (* 0.0454545 = 2.18989e-06 loss)
I0404 13:44:32.821084 9252 solver.cpp:245] Train net output #42: loss/loss21 = 5.28562e-05 (* 0.0454545 = 2.40255e-06 loss)
I0404 13:44:32.821110 9252 solver.cpp:245] Train net output #43: loss/loss22 = 4.69682e-05 (* 0.0454545 = 2.13492e-06 loss)
I0404 13:44:32.821132 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 13:44:32.821153 9252 solver.cpp:245] Train net output #45: total_confidence = 2.82552e-05
I0404 13:44:32.821176 9252 sgd_solver.cpp:106] Iteration 23500, lr = 0.009765
I0404 13:45:43.281571 9252 solver.cpp:229] Iteration 24000, loss = 0.975249
I0404 13:45:43.281688 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625
I0404 13:45:43.281719 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0
I0404 13:45:43.281745 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0
I0404 13:45:43.281769 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375
I0404 13:45:43.281793 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25
I0404 13:45:43.281817 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625
I0404 13:45:43.281843 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75
I0404 13:45:43.281867 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625
I0404 13:45:43.281889 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 1
I0404 13:45:43.281932 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 13:45:43.281957 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 13:45:43.281980 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 13:45:43.282009 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 13:45:43.282032 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 13:45:43.282053 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 13:45:43.282076 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 13:45:43.282102 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 13:45:43.282125 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 13:45:43.282146 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 13:45:43.282167 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 13:45:43.282188 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 13:45:43.282208 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 13:45:43.282235 9252 solver.cpp:245] Train net output #22: loss/loss01 = 3.36712 (* 0.0454545 = 0.153051 loss)
I0404 13:45:43.282261 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.60389 (* 0.0454545 = 0.163813 loss)
I0404 13:45:43.282290 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.45944 (* 0.0454545 = 0.157247 loss)
I0404 13:45:43.282321 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.5602 (* 0.0454545 = 0.161827 loss)
I0404 13:45:43.282349 9252 solver.cpp:245] Train net output #26: loss/loss05 = 3.38223 (* 0.0454545 = 0.153738 loss)
I0404 13:45:43.282387 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.17982 (* 0.0454545 = 0.0990825 loss)
I0404 13:45:43.282415 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.08667 (* 0.0454545 = 0.0493939 loss)
I0404 13:45:43.282444 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.482697 (* 0.0454545 = 0.0219408 loss)
I0404 13:45:43.282469 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.074513 (* 0.0454545 = 0.00338695 loss)
I0404 13:45:43.282495 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.0216833 (* 0.0454545 = 0.000985604 loss)
I0404 13:45:43.282522 9252 solver.cpp:245] Train net output #32: loss/loss11 = 7.30228e-05 (* 0.0454545 = 3.31922e-06 loss)
I0404 13:45:43.282549 9252 solver.cpp:245] Train net output #33: loss/loss12 = 7.03002e-05 (* 0.0454545 = 3.19546e-06 loss)
I0404 13:45:43.282575 9252 solver.cpp:245] Train net output #34: loss/loss13 = 6.59643e-05 (* 0.0454545 = 2.99838e-06 loss)
I0404 13:45:43.282603 9252 solver.cpp:245] Train net output #35: loss/loss14 = 6.53372e-05 (* 0.0454545 = 2.96987e-06 loss)
I0404 13:45:43.282629 9252 solver.cpp:245] Train net output #36: loss/loss15 = 7.42831e-05 (* 0.0454545 = 3.37651e-06 loss)
I0404 13:45:43.282656 9252 solver.cpp:245] Train net output #37: loss/loss16 = 6.77945e-05 (* 0.0454545 = 3.08157e-06 loss)
I0404 13:45:43.282681 9252 solver.cpp:245] Train net output #38: loss/loss17 = 7.33864e-05 (* 0.0454545 = 3.33575e-06 loss)
I0404 13:45:43.282730 9252 solver.cpp:245] Train net output #39: loss/loss18 = 6.94626e-05 (* 0.0454545 = 3.15739e-06 loss)
I0404 13:45:43.282759 9252 solver.cpp:245] Train net output #40: loss/loss19 = 6.91403e-05 (* 0.0454545 = 3.14274e-06 loss)
I0404 13:45:43.282786 9252 solver.cpp:245] Train net output #41: loss/loss20 = 6.49316e-05 (* 0.0454545 = 2.95143e-06 loss)
I0404 13:45:43.282815 9252 solver.cpp:245] Train net output #42: loss/loss21 = 6.20807e-05 (* 0.0454545 = 2.82185e-06 loss)
I0404 13:45:43.282845 9252 solver.cpp:245] Train net output #43: loss/loss22 = 5.97661e-05 (* 0.0454545 = 2.71664e-06 loss)
I0404 13:45:43.282867 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 13:45:43.282891 9252 solver.cpp:245] Train net output #45: total_confidence = 2.50411e-06
I0404 13:45:43.282913 9252 sgd_solver.cpp:106] Iteration 24000, lr = 0.00976
I0404 13:46:53.500927 9252 solver.cpp:229] Iteration 24500, loss = 0.967502
I0404 13:46:53.501144 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125
I0404 13:46:53.501173 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625
I0404 13:46:53.501186 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375
I0404 13:46:53.501199 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625
I0404 13:46:53.501211 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.21875
I0404 13:46:53.501224 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375
I0404 13:46:53.501235 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.84375
I0404 13:46:53.501246 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 1
I0404 13:46:53.501258 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 1
I0404 13:46:53.501271 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 13:46:53.501281 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 13:46:53.501293 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 13:46:53.501304 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 13:46:53.501317 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 13:46:53.501328 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 13:46:53.501340 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 13:46:53.501353 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 13:46:53.501363 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 13:46:53.501375 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 13:46:53.501386 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 13:46:53.501399 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 13:46:53.501410 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 13:46:53.501451 9252 solver.cpp:245] Train net output #22: loss/loss01 = 3.193 (* 0.0454545 = 0.145136 loss)
I0404 13:46:53.501468 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.551 (* 0.0454545 = 0.161409 loss)
I0404 13:46:53.501482 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.64762 (* 0.0454545 = 0.165801 loss)
I0404 13:46:53.501497 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.65641 (* 0.0454545 = 0.166201 loss)
I0404 13:46:53.501516 9252 solver.cpp:245] Train net output #26: loss/loss05 = 3.02264 (* 0.0454545 = 0.137393 loss)
I0404 13:46:53.501530 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.32462 (* 0.0454545 = 0.105664 loss)
I0404 13:46:53.501544 9252 solver.cpp:245] Train net output #28: loss/loss07 = 0.826695 (* 0.0454545 = 0.0375771 loss)
I0404 13:46:53.501559 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.0913363 (* 0.0454545 = 0.00415165 loss)
I0404 13:46:53.501572 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.026524 (* 0.0454545 = 0.00120564 loss)
I0404 13:46:53.501586 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.00965204 (* 0.0454545 = 0.000438729 loss)
I0404 13:46:53.501601 9252 solver.cpp:245] Train net output #32: loss/loss11 = 7.51301e-05 (* 0.0454545 = 3.415e-06 loss)
I0404 13:46:53.501616 9252 solver.cpp:245] Train net output #33: loss/loss12 = 7.48067e-05 (* 0.0454545 = 3.40031e-06 loss)
I0404 13:46:53.501631 9252 solver.cpp:245] Train net output #34: loss/loss13 = 6.77399e-05 (* 0.0454545 = 3.07909e-06 loss)
I0404 13:46:53.501644 9252 solver.cpp:245] Train net output #35: loss/loss14 = 7.37423e-05 (* 0.0454545 = 3.35192e-06 loss)
I0404 13:46:53.501658 9252 solver.cpp:245] Train net output #36: loss/loss15 = 7.42821e-05 (* 0.0454545 = 3.37646e-06 loss)
I0404 13:46:53.501672 9252 solver.cpp:245] Train net output #37: loss/loss16 = 7.48167e-05 (* 0.0454545 = 3.40076e-06 loss)
I0404 13:46:53.501688 9252 solver.cpp:245] Train net output #38: loss/loss17 = 7.44914e-05 (* 0.0454545 = 3.38597e-06 loss)
I0404 13:46:53.501731 9252 solver.cpp:245] Train net output #39: loss/loss18 = 7.42612e-05 (* 0.0454545 = 3.37551e-06 loss)
I0404 13:46:53.501750 9252 solver.cpp:245] Train net output #40: loss/loss19 = 7.1739e-05 (* 0.0454545 = 3.26087e-06 loss)
I0404 13:46:53.501765 9252 solver.cpp:245] Train net output #41: loss/loss20 = 6.51799e-05 (* 0.0454545 = 2.96273e-06 loss)
I0404 13:46:53.501780 9252 solver.cpp:245] Train net output #42: loss/loss21 = 6.28305e-05 (* 0.0454545 = 2.85593e-06 loss)
I0404 13:46:53.501793 9252 solver.cpp:245] Train net output #43: loss/loss22 = 6.20291e-05 (* 0.0454545 = 2.81951e-06 loss)
I0404 13:46:53.501806 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 13:46:53.501817 9252 solver.cpp:245] Train net output #45: total_confidence = 2.14197e-05
I0404 13:46:53.501832 9252 sgd_solver.cpp:106] Iteration 24500, lr = 0.009755
I0404 13:48:04.137544 9252 solver.cpp:229] Iteration 25000, loss = 0.971615
I0404 13:48:04.137677 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125
I0404 13:48:04.137697 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625
I0404 13:48:04.137711 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.15625
I0404 13:48:04.137722 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375
I0404 13:48:04.137734 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125
I0404 13:48:04.137748 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375
I0404 13:48:04.137761 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875
I0404 13:48:04.137773 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375
I0404 13:48:04.137785 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875
I0404 13:48:04.137797 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 13:48:04.137809 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 13:48:04.137820 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 13:48:04.137831 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 13:48:04.137845 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 13:48:04.137856 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 13:48:04.137867 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 13:48:04.137878 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 13:48:04.137890 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 13:48:04.137902 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 13:48:04.137913 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 13:48:04.137924 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 13:48:04.137936 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 13:48:04.137951 9252 solver.cpp:245] Train net output #22: loss/loss01 = 3.19211 (* 0.0454545 = 0.145096 loss)
I0404 13:48:04.137972 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.45896 (* 0.0454545 = 0.157226 loss)
I0404 13:48:04.137985 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.20911 (* 0.0454545 = 0.145869 loss)
I0404 13:48:04.138000 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.58863 (* 0.0454545 = 0.163119 loss)
I0404 13:48:04.138013 9252 solver.cpp:245] Train net output #26: loss/loss05 = 3.12091 (* 0.0454545 = 0.14186 loss)
I0404 13:48:04.138027 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.30352 (* 0.0454545 = 0.104705 loss)
I0404 13:48:04.138041 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.42831 (* 0.0454545 = 0.0649231 loss)
I0404 13:48:04.138054 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.421165 (* 0.0454545 = 0.0191438 loss)
I0404 13:48:04.138067 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.275731 (* 0.0454545 = 0.0125332 loss)
I0404 13:48:04.138082 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.0313853 (* 0.0454545 = 0.0014266 loss)
I0404 13:48:04.138095 9252 solver.cpp:245] Train net output #32: loss/loss11 = 0.0003663 (* 0.0454545 = 1.665e-05 loss)
I0404 13:48:04.138110 9252 solver.cpp:245] Train net output #33: loss/loss12 = 0.000365167 (* 0.0454545 = 1.65985e-05 loss)
I0404 13:48:04.138124 9252 solver.cpp:245] Train net output #34: loss/loss13 = 0.000355624 (* 0.0454545 = 1.61647e-05 loss)
I0404 13:48:04.138139 9252 solver.cpp:245] Train net output #35: loss/loss14 = 0.000347692 (* 0.0454545 = 1.58042e-05 loss)
I0404 13:48:04.138151 9252 solver.cpp:245] Train net output #36: loss/loss15 = 0.000347768 (* 0.0454545 = 1.58077e-05 loss)
I0404 13:48:04.138165 9252 solver.cpp:245] Train net output #37: loss/loss16 = 0.000330834 (* 0.0454545 = 1.50379e-05 loss)
I0404 13:48:04.138180 9252 solver.cpp:245] Train net output #38: loss/loss17 = 0.000331031 (* 0.0454545 = 1.50469e-05 loss)
I0404 13:48:04.138211 9252 solver.cpp:245] Train net output #39: loss/loss18 = 0.000394686 (* 0.0454545 = 1.79403e-05 loss)
I0404 13:48:04.138227 9252 solver.cpp:245] Train net output #40: loss/loss19 = 0.000349093 (* 0.0454545 = 1.58679e-05 loss)
I0404 13:48:04.138242 9252 solver.cpp:245] Train net output #41: loss/loss20 = 0.000311054 (* 0.0454545 = 1.41388e-05 loss)
I0404 13:48:04.138255 9252 solver.cpp:245] Train net output #42: loss/loss21 = 0.000297955 (* 0.0454545 = 1.35434e-05 loss)
I0404 13:48:04.138269 9252 solver.cpp:245] Train net output #43: loss/loss22 = 0.000279759 (* 0.0454545 = 1.27163e-05 loss)
I0404 13:48:04.138281 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 13:48:04.138293 9252 solver.cpp:245] Train net output #45: total_confidence = 3.12004e-05
I0404 13:48:04.138306 9252 sgd_solver.cpp:106] Iteration 25000, lr = 0.00975
I0404 13:49:14.745193 9252 solver.cpp:229] Iteration 25500, loss = 0.959719
I0404 13:49:14.745338 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.25
I0404 13:49:14.745357 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625
I0404 13:49:14.745371 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375
I0404 13:49:14.745383 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625
I0404 13:49:14.745395 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.21875
I0404 13:49:14.745407 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625
I0404 13:49:14.745419 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875
I0404 13:49:14.745431 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375
I0404 13:49:14.745442 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375
I0404 13:49:14.745455 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875
I0404 13:49:14.745481 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 13:49:14.745493 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 13:49:14.745506 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 13:49:14.745517 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 13:49:14.745528 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 13:49:14.745540 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 13:49:14.745551 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 13:49:14.745563 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 13:49:14.745574 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 13:49:14.745585 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 13:49:14.745597 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 13:49:14.745609 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 13:49:14.745623 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.82556 (* 0.0454545 = 0.128435 loss)
I0404 13:49:14.745638 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.16883 (* 0.0454545 = 0.144038 loss)
I0404 13:49:14.745652 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.31833 (* 0.0454545 = 0.150833 loss)
I0404 13:49:14.745666 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.33579 (* 0.0454545 = 0.151627 loss)
I0404 13:49:14.745679 9252 solver.cpp:245] Train net output #26: loss/loss05 = 3.19431 (* 0.0454545 = 0.145196 loss)
I0404 13:49:14.745693 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.30002 (* 0.0454545 = 0.104547 loss)
I0404 13:49:14.745707 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.36 (* 0.0454545 = 0.0618184 loss)
I0404 13:49:14.745720 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.82059 (* 0.0454545 = 0.0372996 loss)
I0404 13:49:14.745735 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.402626 (* 0.0454545 = 0.0183012 loss)
I0404 13:49:14.745751 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.208426 (* 0.0454545 = 0.00947391 loss)
I0404 13:49:14.745766 9252 solver.cpp:245] Train net output #32: loss/loss11 = 0.000136805 (* 0.0454545 = 6.21841e-06 loss)
I0404 13:49:14.745781 9252 solver.cpp:245] Train net output #33: loss/loss12 = 0.000116364 (* 0.0454545 = 5.28929e-06 loss)
I0404 13:49:14.745795 9252 solver.cpp:245] Train net output #34: loss/loss13 = 0.000126527 (* 0.0454545 = 5.75124e-06 loss)
I0404 13:49:14.745808 9252 solver.cpp:245] Train net output #35: loss/loss14 = 0.000128132 (* 0.0454545 = 5.8242e-06 loss)
I0404 13:49:14.745823 9252 solver.cpp:245] Train net output #36: loss/loss15 = 0.000134914 (* 0.0454545 = 6.13247e-06 loss)
I0404 13:49:14.745836 9252 solver.cpp:245] Train net output #37: loss/loss16 = 0.000152582 (* 0.0454545 = 6.93556e-06 loss)
I0404 13:49:14.745851 9252 solver.cpp:245] Train net output #38: loss/loss17 = 0.000132817 (* 0.0454545 = 6.03712e-06 loss)
I0404 13:49:14.745882 9252 solver.cpp:245] Train net output #39: loss/loss18 = 0.000137992 (* 0.0454545 = 6.27235e-06 loss)
I0404 13:49:14.745898 9252 solver.cpp:245] Train net output #40: loss/loss19 = 0.000130626 (* 0.0454545 = 5.93754e-06 loss)
I0404 13:49:14.745911 9252 solver.cpp:245] Train net output #41: loss/loss20 = 0.000116024 (* 0.0454545 = 5.27382e-06 loss)
I0404 13:49:14.745925 9252 solver.cpp:245] Train net output #42: loss/loss21 = 0.00012332 (* 0.0454545 = 5.60547e-06 loss)
I0404 13:49:14.745939 9252 solver.cpp:245] Train net output #43: loss/loss22 = 0.000114051 (* 0.0454545 = 5.18413e-06 loss)
I0404 13:49:14.745950 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 13:49:14.745962 9252 solver.cpp:245] Train net output #45: total_confidence = 2.62668e-05
I0404 13:49:14.745976 9252 sgd_solver.cpp:106] Iteration 25500, lr = 0.009745
I0404 13:50:25.259028 9252 solver.cpp:229] Iteration 26000, loss = 0.960584
I0404 13:50:25.259151 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375
I0404 13:50:25.259172 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125
I0404 13:50:25.259186 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125
I0404 13:50:25.259198 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375
I0404 13:50:25.259212 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.21875
I0404 13:50:25.259227 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625
I0404 13:50:25.259240 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875
I0404 13:50:25.259253 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375
I0404 13:50:25.259268 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375
I0404 13:50:25.259280 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 13:50:25.259294 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 13:50:25.259307 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 13:50:25.259320 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 13:50:25.259331 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 13:50:25.259344 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 13:50:25.259356 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 13:50:25.259369 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 13:50:25.259380 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 13:50:25.259392 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 13:50:25.259405 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 13:50:25.259419 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 13:50:25.259431 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 13:50:25.259449 9252 solver.cpp:245] Train net output #22: loss/loss01 = 3.06789 (* 0.0454545 = 0.13945 loss)
I0404 13:50:25.259464 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.19138 (* 0.0454545 = 0.145063 loss)
I0404 13:50:25.259480 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.26821 (* 0.0454545 = 0.148555 loss)
I0404 13:50:25.259496 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.53588 (* 0.0454545 = 0.160722 loss)
I0404 13:50:25.259510 9252 solver.cpp:245] Train net output #26: loss/loss05 = 3.09095 (* 0.0454545 = 0.140498 loss)
I0404 13:50:25.259526 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.81941 (* 0.0454545 = 0.128155 loss)
I0404 13:50:25.259542 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.43726 (* 0.0454545 = 0.0653299 loss)
I0404 13:50:25.259557 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.318364 (* 0.0454545 = 0.0144711 loss)
I0404 13:50:25.259572 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.444633 (* 0.0454545 = 0.0202106 loss)
I0404 13:50:25.259588 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.00576267 (* 0.0454545 = 0.00026194 loss)
I0404 13:50:25.259601 9252 solver.cpp:245] Train net output #32: loss/loss11 = 4.33726e-05 (* 0.0454545 = 1.97148e-06 loss)
I0404 13:50:25.259620 9252 solver.cpp:245] Train net output #33: loss/loss12 = 4.36132e-05 (* 0.0454545 = 1.98242e-06 loss)
I0404 13:50:25.259636 9252 solver.cpp:245] Train net output #34: loss/loss13 = 4.24172e-05 (* 0.0454545 = 1.92805e-06 loss)
I0404 13:50:25.259652 9252 solver.cpp:245] Train net output #35: loss/loss14 = 4.29348e-05 (* 0.0454545 = 1.95158e-06 loss)
I0404 13:50:25.259667 9252 solver.cpp:245] Train net output #36: loss/loss15 = 4.578e-05 (* 0.0454545 = 2.08091e-06 loss)
I0404 13:50:25.259681 9252 solver.cpp:245] Train net output #37: loss/loss16 = 4.07464e-05 (* 0.0454545 = 1.85211e-06 loss)
I0404 13:50:25.259697 9252 solver.cpp:245] Train net output #38: loss/loss17 = 4.41851e-05 (* 0.0454545 = 2.00841e-06 loss)
I0404 13:50:25.259727 9252 solver.cpp:245] Train net output #39: loss/loss18 = 4.4728e-05 (* 0.0454545 = 2.03309e-06 loss)
I0404 13:50:25.259749 9252 solver.cpp:245] Train net output #40: loss/loss19 = 4.20969e-05 (* 0.0454545 = 1.91349e-06 loss)
I0404 13:50:25.259766 9252 solver.cpp:245] Train net output #41: loss/loss20 = 3.94493e-05 (* 0.0454545 = 1.79315e-06 loss)
I0404 13:50:25.259783 9252 solver.cpp:245] Train net output #42: loss/loss21 = 3.72788e-05 (* 0.0454545 = 1.69449e-06 loss)
I0404 13:50:25.259799 9252 solver.cpp:245] Train net output #43: loss/loss22 = 3.62897e-05 (* 0.0454545 = 1.64953e-06 loss)
I0404 13:50:25.259814 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 13:50:25.259829 9252 solver.cpp:245] Train net output #45: total_confidence = 5.48898e-05
I0404 13:50:25.259843 9252 sgd_solver.cpp:106] Iteration 26000, lr = 0.00974
I0404 13:51:35.566723 9252 solver.cpp:229] Iteration 26500, loss = 0.95366
I0404 13:51:35.566958 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625
I0404 13:51:35.566979 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.15625
I0404 13:51:35.566993 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625
I0404 13:51:35.567005 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625
I0404 13:51:35.567018 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875
I0404 13:51:35.567029 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375
I0404 13:51:35.567041 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875
I0404 13:51:35.567054 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375
I0404 13:51:35.567065 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375
I0404 13:51:35.567076 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375
I0404 13:51:35.567088 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 13:51:35.567101 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 13:51:35.567111 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 13:51:35.567123 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 13:51:35.567136 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 13:51:35.567154 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 13:51:35.567168 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 13:51:35.567190 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 13:51:35.567204 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 13:51:35.567215 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 13:51:35.567227 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 13:51:35.567239 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 13:51:35.567255 9252 solver.cpp:245] Train net output #22: loss/loss01 = 3.29603 (* 0.0454545 = 0.14982 loss)
I0404 13:51:35.567268 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.28075 (* 0.0454545 = 0.149125 loss)
I0404 13:51:35.567282 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.5913 (* 0.0454545 = 0.163241 loss)
I0404 13:51:35.567302 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.29195 (* 0.0454545 = 0.149634 loss)
I0404 13:51:35.567332 9252 solver.cpp:245] Train net output #26: loss/loss05 = 3.25299 (* 0.0454545 = 0.147863 loss)
I0404 13:51:35.567363 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.04235 (* 0.0454545 = 0.092834 loss)
I0404 13:51:35.567400 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.33999 (* 0.0454545 = 0.0609086 loss)
I0404 13:51:35.567430 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.814932 (* 0.0454545 = 0.0370424 loss)
I0404 13:51:35.567450 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.441443 (* 0.0454545 = 0.0200656 loss)
I0404 13:51:35.567463 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.465259 (* 0.0454545 = 0.0211482 loss)
I0404 13:51:35.567478 9252 solver.cpp:245] Train net output #32: loss/loss11 = 3.73017e-05 (* 0.0454545 = 1.69553e-06 loss)
I0404 13:51:35.567492 9252 solver.cpp:245] Train net output #33: loss/loss12 = 3.58599e-05 (* 0.0454545 = 1.62999e-06 loss)
I0404 13:51:35.567507 9252 solver.cpp:245] Train net output #34: loss/loss13 = 3.63462e-05 (* 0.0454545 = 1.6521e-06 loss)
I0404 13:51:35.567520 9252 solver.cpp:245] Train net output #35: loss/loss14 = 3.48166e-05 (* 0.0454545 = 1.58257e-06 loss)
I0404 13:51:35.567534 9252 solver.cpp:245] Train net output #36: loss/loss15 = 3.91032e-05 (* 0.0454545 = 1.77742e-06 loss)
I0404 13:51:35.567548 9252 solver.cpp:245] Train net output #37: loss/loss16 = 4.15065e-05 (* 0.0454545 = 1.88666e-06 loss)
I0404 13:51:35.567562 9252 solver.cpp:245] Train net output #38: loss/loss17 = 3.71359e-05 (* 0.0454545 = 1.688e-06 loss)
I0404 13:51:35.567592 9252 solver.cpp:245] Train net output #39: loss/loss18 = 3.82835e-05 (* 0.0454545 = 1.74016e-06 loss)
I0404 13:51:35.567607 9252 solver.cpp:245] Train net output #40: loss/loss19 = 3.70019e-05 (* 0.0454545 = 1.6819e-06 loss)
I0404 13:51:35.567621 9252 solver.cpp:245] Train net output #41: loss/loss20 = 3.3006e-05 (* 0.0454545 = 1.50027e-06 loss)
I0404 13:51:35.567636 9252 solver.cpp:245] Train net output #42: loss/loss21 = 3.47943e-05 (* 0.0454545 = 1.58156e-06 loss)
I0404 13:51:35.567649 9252 solver.cpp:245] Train net output #43: loss/loss22 = 3.45951e-05 (* 0.0454545 = 1.5725e-06 loss)
I0404 13:51:35.567662 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 13:51:35.567672 9252 solver.cpp:245] Train net output #45: total_confidence = 2.43642e-05
I0404 13:51:35.567687 9252 sgd_solver.cpp:106] Iteration 26500, lr = 0.009735
I0404 13:52:46.152940 9252 solver.cpp:229] Iteration 27000, loss = 0.95207
I0404 13:52:46.153074 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375
I0404 13:52:46.153095 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0
I0404 13:52:46.153108 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375
I0404 13:52:46.153120 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625
I0404 13:52:46.153132 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.375
I0404 13:52:46.153144 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.53125
I0404 13:52:46.153157 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.84375
I0404 13:52:46.153168 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625
I0404 13:52:46.153180 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875
I0404 13:52:46.153192 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875
I0404 13:52:46.153203 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 13:52:46.153215 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 13:52:46.153228 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 13:52:46.153239 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 13:52:46.153250 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 13:52:46.153262 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 13:52:46.153273 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 13:52:46.153285 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 13:52:46.153296 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 13:52:46.153308 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 13:52:46.153321 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 13:52:46.153331 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 13:52:46.153348 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.96839 (* 0.0454545 = 0.134927 loss)
I0404 13:52:46.153362 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.60791 (* 0.0454545 = 0.163996 loss)
I0404 13:52:46.153376 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.35949 (* 0.0454545 = 0.152704 loss)
I0404 13:52:46.153390 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.44417 (* 0.0454545 = 0.156553 loss)
I0404 13:52:46.153404 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.55831 (* 0.0454545 = 0.116287 loss)
I0404 13:52:46.153431 9252 solver.cpp:245] Train net output #27: loss/loss06 = 1.89288 (* 0.0454545 = 0.08604 loss)
I0404 13:52:46.153448 9252 solver.cpp:245] Train net output #28: loss/loss07 = 0.664262 (* 0.0454545 = 0.0301937 loss)
I0404 13:52:46.153462 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.446953 (* 0.0454545 = 0.020316 loss)
I0404 13:52:46.153476 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.272952 (* 0.0454545 = 0.0124069 loss)
I0404 13:52:46.153491 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.244248 (* 0.0454545 = 0.0111022 loss)
I0404 13:52:46.153504 9252 solver.cpp:245] Train net output #32: loss/loss11 = 0.000119298 (* 0.0454545 = 5.42262e-06 loss)
I0404 13:52:46.153519 9252 solver.cpp:245] Train net output #33: loss/loss12 = 0.000113349 (* 0.0454545 = 5.15223e-06 loss)
I0404 13:52:46.153533 9252 solver.cpp:245] Train net output #34: loss/loss13 = 0.000108603 (* 0.0454545 = 4.9365e-06 loss)
I0404 13:52:46.153548 9252 solver.cpp:245] Train net output #35: loss/loss14 = 9.79109e-05 (* 0.0454545 = 4.4505e-06 loss)
I0404 13:52:46.153561 9252 solver.cpp:245] Train net output #36: loss/loss15 = 8.91403e-05 (* 0.0454545 = 4.05183e-06 loss)
I0404 13:52:46.153574 9252 solver.cpp:245] Train net output #37: loss/loss16 = 8.51991e-05 (* 0.0454545 = 3.87269e-06 loss)
I0404 13:52:46.153589 9252 solver.cpp:245] Train net output #38: loss/loss17 = 8.78856e-05 (* 0.0454545 = 3.9948e-06 loss)
I0404 13:52:46.153622 9252 solver.cpp:245] Train net output #39: loss/loss18 = 0.000102463 (* 0.0454545 = 4.65741e-06 loss)
I0404 13:52:46.153637 9252 solver.cpp:245] Train net output #40: loss/loss19 = 9.39548e-05 (* 0.0454545 = 4.27067e-06 loss)
I0404 13:52:46.153651 9252 solver.cpp:245] Train net output #41: loss/loss20 = 8.69895e-05 (* 0.0454545 = 3.95407e-06 loss)
I0404 13:52:46.153666 9252 solver.cpp:245] Train net output #42: loss/loss21 = 8.58984e-05 (* 0.0454545 = 3.90447e-06 loss)
I0404 13:52:46.153679 9252 solver.cpp:245] Train net output #43: loss/loss22 = 8.42832e-05 (* 0.0454545 = 3.83105e-06 loss)
I0404 13:52:46.153695 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 13:52:46.153707 9252 solver.cpp:245] Train net output #45: total_confidence = 5.81788e-05
I0404 13:52:46.153722 9252 sgd_solver.cpp:106] Iteration 27000, lr = 0.00973
I0404 13:53:56.935788 9252 solver.cpp:229] Iteration 27500, loss = 0.949568
I0404 13:53:56.935889 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375
I0404 13:53:56.935910 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625
I0404 13:53:56.935925 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125
I0404 13:53:56.935936 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625
I0404 13:53:56.935948 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25
I0404 13:53:56.935961 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5
I0404 13:53:56.935972 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75
I0404 13:53:56.935986 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625
I0404 13:53:56.935997 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875
I0404 13:53:56.936008 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 13:53:56.936020 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 13:53:56.936031 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 13:53:56.936043 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 13:53:56.936054 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 13:53:56.936066 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 13:53:56.936077 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 13:53:56.936089 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 13:53:56.936100 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 13:53:56.936111 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 13:53:56.936122 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 13:53:56.936134 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 13:53:56.936146 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 13:53:56.936161 9252 solver.cpp:245] Train net output #22: loss/loss01 = 3.36713 (* 0.0454545 = 0.153051 loss)
I0404 13:53:56.936174 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.14371 (* 0.0454545 = 0.142896 loss)
I0404 13:53:56.936188 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.16087 (* 0.0454545 = 0.143676 loss)
I0404 13:53:56.936202 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.15145 (* 0.0454545 = 0.143248 loss)
I0404 13:53:56.936215 9252 solver.cpp:245] Train net output #26: loss/loss05 = 3.14596 (* 0.0454545 = 0.142998 loss)
I0404 13:53:56.936229 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.19021 (* 0.0454545 = 0.099555 loss)
I0404 13:53:56.936242 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.25175 (* 0.0454545 = 0.0568979 loss)
I0404 13:53:56.936256 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.538634 (* 0.0454545 = 0.0244834 loss)
I0404 13:53:56.936270 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.244794 (* 0.0454545 = 0.011127 loss)
I0404 13:53:56.936285 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.0156319 (* 0.0454545 = 0.000710543 loss)
I0404 13:53:56.936298 9252 solver.cpp:245] Train net output #32: loss/loss11 = 0.000452435 (* 0.0454545 = 2.05652e-05 loss)
I0404 13:53:56.936312 9252 solver.cpp:245] Train net output #33: loss/loss12 = 0.000504826 (* 0.0454545 = 2.29466e-05 loss)
I0404 13:53:56.936326 9252 solver.cpp:245] Train net output #34: loss/loss13 = 0.000507103 (* 0.0454545 = 2.30501e-05 loss)
I0404 13:53:56.936341 9252 solver.cpp:245] Train net output #35: loss/loss14 = 0.000447672 (* 0.0454545 = 2.03487e-05 loss)
I0404 13:53:56.936354 9252 solver.cpp:245] Train net output #36: loss/loss15 = 0.000475295 (* 0.0454545 = 2.16043e-05 loss)
I0404 13:53:56.936368 9252 solver.cpp:245] Train net output #37: loss/loss16 = 0.000294177 (* 0.0454545 = 1.33717e-05 loss)
I0404 13:53:56.936381 9252 solver.cpp:245] Train net output #38: loss/loss17 = 0.000382349 (* 0.0454545 = 1.73795e-05 loss)
I0404 13:53:56.936413 9252 solver.cpp:245] Train net output #39: loss/loss18 = 0.000447049 (* 0.0454545 = 2.03204e-05 loss)
I0404 13:53:56.936427 9252 solver.cpp:245] Train net output #40: loss/loss19 = 0.00038492 (* 0.0454545 = 1.74964e-05 loss)
I0404 13:53:56.936441 9252 solver.cpp:245] Train net output #41: loss/loss20 = 0.000407547 (* 0.0454545 = 1.85249e-05 loss)
I0404 13:53:56.936455 9252 solver.cpp:245] Train net output #42: loss/loss21 = 0.00044738 (* 0.0454545 = 2.03355e-05 loss)
I0404 13:53:56.936468 9252 solver.cpp:245] Train net output #43: loss/loss22 = 0.000354452 (* 0.0454545 = 1.61115e-05 loss)
I0404 13:53:56.936480 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 13:53:56.936492 9252 solver.cpp:245] Train net output #45: total_confidence = 4.36455e-05
I0404 13:53:56.936506 9252 sgd_solver.cpp:106] Iteration 27500, lr = 0.009725
I0404 13:55:08.183051 9252 solver.cpp:229] Iteration 28000, loss = 0.946584
I0404 13:55:08.183177 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.1875
I0404 13:55:08.183197 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125
I0404 13:55:08.183209 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625
I0404 13:55:08.183223 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625
I0404 13:55:08.183234 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.15625
I0404 13:55:08.183246 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375
I0404 13:55:08.183260 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875
I0404 13:55:08.183272 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625
I0404 13:55:08.183284 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375
I0404 13:55:08.183295 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875
I0404 13:55:08.183307 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 13:55:08.183320 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 13:55:08.183334 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 13:55:08.183346 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 13:55:08.183357 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 13:55:08.183369 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 13:55:08.183380 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 13:55:08.183393 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 13:55:08.183403 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 13:55:08.183415 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 13:55:08.183428 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 13:55:08.183439 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 13:55:08.183454 9252 solver.cpp:245] Train net output #22: loss/loss01 = 3.22906 (* 0.0454545 = 0.146775 loss)
I0404 13:55:08.183467 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.3675 (* 0.0454545 = 0.153068 loss)
I0404 13:55:08.183482 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.38021 (* 0.0454545 = 0.153646 loss)
I0404 13:55:08.183496 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.64103 (* 0.0454545 = 0.165501 loss)
I0404 13:55:08.183509 9252 solver.cpp:245] Train net output #26: loss/loss05 = 3.23626 (* 0.0454545 = 0.147103 loss)
I0404 13:55:08.183523 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.76876 (* 0.0454545 = 0.125853 loss)
I0404 13:55:08.183537 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.36486 (* 0.0454545 = 0.0620391 loss)
I0404 13:55:08.183550 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.69835 (* 0.0454545 = 0.0317432 loss)
I0404 13:55:08.183564 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.524981 (* 0.0454545 = 0.0238628 loss)
I0404 13:55:08.183578 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.193814 (* 0.0454545 = 0.00880973 loss)
I0404 13:55:08.183593 9252 solver.cpp:245] Train net output #32: loss/loss11 = 0.000253202 (* 0.0454545 = 1.15092e-05 loss)
I0404 13:55:08.183607 9252 solver.cpp:245] Train net output #33: loss/loss12 = 0.000258583 (* 0.0454545 = 1.17538e-05 loss)
I0404 13:55:08.183621 9252 solver.cpp:245] Train net output #34: loss/loss13 = 0.000247678 (* 0.0454545 = 1.12581e-05 loss)
I0404 13:55:08.183635 9252 solver.cpp:245] Train net output #35: loss/loss14 = 0.000256744 (* 0.0454545 = 1.16702e-05 loss)
I0404 13:55:08.183650 9252 solver.cpp:245] Train net output #36: loss/loss15 = 0.000250296 (* 0.0454545 = 1.13771e-05 loss)
I0404 13:55:08.183665 9252 solver.cpp:245] Train net output #37: loss/loss16 = 0.000212463 (* 0.0454545 = 9.6574e-06 loss)
I0404 13:55:08.183678 9252 solver.cpp:245] Train net output #38: loss/loss17 = 0.000242553 (* 0.0454545 = 1.10251e-05 loss)
I0404 13:55:08.183708 9252 solver.cpp:245] Train net output #39: loss/loss18 = 0.000240793 (* 0.0454545 = 1.09451e-05 loss)
I0404 13:55:08.183724 9252 solver.cpp:245] Train net output #40: loss/loss19 = 0.000240119 (* 0.0454545 = 1.09145e-05 loss)
I0404 13:55:08.183738 9252 solver.cpp:245] Train net output #41: loss/loss20 = 0.00024157 (* 0.0454545 = 1.09805e-05 loss)
I0404 13:55:08.183756 9252 solver.cpp:245] Train net output #42: loss/loss21 = 0.000227022 (* 0.0454545 = 1.03192e-05 loss)
I0404 13:55:08.183770 9252 solver.cpp:245] Train net output #43: loss/loss22 = 0.000210853 (* 0.0454545 = 9.58422e-06 loss)
I0404 13:55:08.183782 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 13:55:08.183794 9252 solver.cpp:245] Train net output #45: total_confidence = 9.50214e-06
I0404 13:55:08.183809 9252 sgd_solver.cpp:106] Iteration 28000, lr = 0.00972
I0404 13:56:19.297998 9252 solver.cpp:229] Iteration 28500, loss = 0.947349
I0404 13:56:19.298166 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.15625
I0404 13:56:19.298194 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375
I0404 13:56:19.298208 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0
I0404 13:56:19.298220 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0
I0404 13:56:19.298233 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.09375
I0404 13:56:19.298244 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125
I0404 13:56:19.298261 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.65625
I0404 13:56:19.298274 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875
I0404 13:56:19.298285 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375
I0404 13:56:19.298296 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375
I0404 13:56:19.298308 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 13:56:19.298319 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 13:56:19.298332 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 13:56:19.298344 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 13:56:19.298355 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 13:56:19.298367 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 13:56:19.298378 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 13:56:19.298389 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 13:56:19.298401 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 13:56:19.298413 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 13:56:19.298424 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 13:56:19.298435 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 13:56:19.298451 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.95208 (* 0.0454545 = 0.134185 loss)
I0404 13:56:19.298475 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.25016 (* 0.0454545 = 0.147734 loss)
I0404 13:56:19.298488 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.43281 (* 0.0454545 = 0.156037 loss)
I0404 13:56:19.298501 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.36991 (* 0.0454545 = 0.153178 loss)
I0404 13:56:19.298516 9252 solver.cpp:245] Train net output #26: loss/loss05 = 3.37012 (* 0.0454545 = 0.153187 loss)
I0404 13:56:19.298529 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.87147 (* 0.0454545 = 0.130521 loss)
I0404 13:56:19.298550 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.83471 (* 0.0454545 = 0.0833961 loss)
I0404 13:56:19.298564 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.676122 (* 0.0454545 = 0.0307328 loss)
I0404 13:56:19.298578 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.416573 (* 0.0454545 = 0.0189351 loss)
I0404 13:56:19.298591 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.442655 (* 0.0454545 = 0.0201207 loss)
I0404 13:56:19.298605 9252 solver.cpp:245] Train net output #32: loss/loss11 = 2.85304e-05 (* 0.0454545 = 1.29683e-06 loss)
I0404 13:56:19.298619 9252 solver.cpp:245] Train net output #33: loss/loss12 = 2.78746e-05 (* 0.0454545 = 1.26703e-06 loss)
I0404 13:56:19.298634 9252 solver.cpp:245] Train net output #34: loss/loss13 = 2.87242e-05 (* 0.0454545 = 1.30565e-06 loss)
I0404 13:56:19.298647 9252 solver.cpp:245] Train net output #35: loss/loss14 = 2.61571e-05 (* 0.0454545 = 1.18896e-06 loss)
I0404 13:56:19.298661 9252 solver.cpp:245] Train net output #36: loss/loss15 = 2.95365e-05 (* 0.0454545 = 1.34257e-06 loss)
I0404 13:56:19.298674 9252 solver.cpp:245] Train net output #37: loss/loss16 = 3.01737e-05 (* 0.0454545 = 1.37153e-06 loss)
I0404 13:56:19.298688 9252 solver.cpp:245] Train net output #38: loss/loss17 = 2.77406e-05 (* 0.0454545 = 1.26094e-06 loss)
I0404 13:56:19.298717 9252 solver.cpp:245] Train net output #39: loss/loss18 = 3.01289e-05 (* 0.0454545 = 1.3695e-06 loss)
I0404 13:56:19.298732 9252 solver.cpp:245] Train net output #40: loss/loss19 = 2.96222e-05 (* 0.0454545 = 1.34646e-06 loss)
I0404 13:56:19.298748 9252 solver.cpp:245] Train net output #41: loss/loss20 = 2.52294e-05 (* 0.0454545 = 1.14679e-06 loss)
I0404 13:56:19.298766 9252 solver.cpp:245] Train net output #42: loss/loss21 = 2.55871e-05 (* 0.0454545 = 1.16305e-06 loss)
I0404 13:56:19.298796 9252 solver.cpp:245] Train net output #43: loss/loss22 = 2.60118e-05 (* 0.0454545 = 1.18236e-06 loss)
I0404 13:56:19.298810 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 13:56:19.298821 9252 solver.cpp:245] Train net output #45: total_confidence = 3.70985e-05
I0404 13:56:19.298836 9252 sgd_solver.cpp:106] Iteration 28500, lr = 0.009715
I0404 13:57:30.481798 9252 solver.cpp:229] Iteration 29000, loss = 0.945074
I0404 13:57:30.481940 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.1875
I0404 13:57:30.481959 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375
I0404 13:57:30.481973 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625
I0404 13:57:30.481986 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375
I0404 13:57:30.481998 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25
I0404 13:57:30.482010 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375
I0404 13:57:30.482023 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75
I0404 13:57:30.482033 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.96875
I0404 13:57:30.482045 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875
I0404 13:57:30.482058 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 13:57:30.482069 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 13:57:30.482080 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 13:57:30.482092 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 13:57:30.482103 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 13:57:30.482122 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 13:57:30.482134 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 13:57:30.482146 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 13:57:30.482157 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 13:57:30.482168 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 13:57:30.482180 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 13:57:30.482192 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 13:57:30.482203 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 13:57:30.482228 9252 solver.cpp:245] Train net output #22: loss/loss01 = 3.22017 (* 0.0454545 = 0.146371 loss)
I0404 13:57:30.482241 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.56801 (* 0.0454545 = 0.162182 loss)
I0404 13:57:30.482255 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.50457 (* 0.0454545 = 0.159299 loss)
I0404 13:57:30.482270 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.67049 (* 0.0454545 = 0.166841 loss)
I0404 13:57:30.482283 9252 solver.cpp:245] Train net output #26: loss/loss05 = 3.13531 (* 0.0454545 = 0.142514 loss)
I0404 13:57:30.482297 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.14632 (* 0.0454545 = 0.0975599 loss)
I0404 13:57:30.482311 9252 solver.cpp:245] Train net output #28: loss/loss07 = 0.967904 (* 0.0454545 = 0.0439956 loss)
I0404 13:57:30.482326 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.153097 (* 0.0454545 = 0.00695897 loss)
I0404 13:57:30.482341 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.175029 (* 0.0454545 = 0.00795588 loss)
I0404 13:57:30.482354 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.00558973 (* 0.0454545 = 0.000254079 loss)
I0404 13:57:30.482369 9252 solver.cpp:245] Train net output #32: loss/loss11 = 5.16588e-05 (* 0.0454545 = 2.34813e-06 loss)
I0404 13:57:30.482383 9252 solver.cpp:245] Train net output #33: loss/loss12 = 5.03027e-05 (* 0.0454545 = 2.28649e-06 loss)
I0404 13:57:30.482398 9252 solver.cpp:245] Train net output #34: loss/loss13 = 4.98783e-05 (* 0.0454545 = 2.2672e-06 loss)
I0404 13:57:30.482411 9252 solver.cpp:245] Train net output #35: loss/loss14 = 4.8544e-05 (* 0.0454545 = 2.20655e-06 loss)
I0404 13:57:30.482426 9252 solver.cpp:245] Train net output #36: loss/loss15 = 5.21693e-05 (* 0.0454545 = 2.37133e-06 loss)
I0404 13:57:30.482440 9252 solver.cpp:245] Train net output #37: loss/loss16 = 4.9952e-05 (* 0.0454545 = 2.27054e-06 loss)
I0404 13:57:30.482455 9252 solver.cpp:245] Train net output #38: loss/loss17 = 5.28435e-05 (* 0.0454545 = 2.40198e-06 loss)
I0404 13:57:30.482487 9252 solver.cpp:245] Train net output #39: loss/loss18 = 4.81956e-05 (* 0.0454545 = 2.19071e-06 loss)
I0404 13:57:30.482502 9252 solver.cpp:245] Train net output #40: loss/loss19 = 4.98962e-05 (* 0.0454545 = 2.26801e-06 loss)
I0404 13:57:30.482517 9252 solver.cpp:245] Train net output #41: loss/loss20 = 4.59783e-05 (* 0.0454545 = 2.08992e-06 loss)
I0404 13:57:30.482530 9252 solver.cpp:245] Train net output #42: loss/loss21 = 4.85831e-05 (* 0.0454545 = 2.20832e-06 loss)
I0404 13:57:30.482544 9252 solver.cpp:245] Train net output #43: loss/loss22 = 4.86835e-05 (* 0.0454545 = 2.21288e-06 loss)
I0404 13:57:30.482556 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 13:57:30.482568 9252 solver.cpp:245] Train net output #45: total_confidence = 4.40952e-05
I0404 13:57:30.482583 9252 sgd_solver.cpp:106] Iteration 29000, lr = 0.00971
I0404 13:58:41.218505 9252 solver.cpp:229] Iteration 29500, loss = 0.940375
I0404 13:58:41.218611 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.15625
I0404 13:58:41.218629 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375
I0404 13:58:41.218642 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125
I0404 13:58:41.218654 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125
I0404 13:58:41.218667 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125
I0404 13:58:41.218679 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375
I0404 13:58:41.218694 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125
I0404 13:58:41.218706 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625
I0404 13:58:41.218719 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875
I0404 13:58:41.218730 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875
I0404 13:58:41.218750 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 13:58:41.218761 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 13:58:41.218773 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 13:58:41.218785 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 13:58:41.218796 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 13:58:41.218808 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 13:58:41.218821 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 13:58:41.218832 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 13:58:41.218843 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 13:58:41.218864 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 13:58:41.218875 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 13:58:41.218888 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 13:58:41.218905 9252 solver.cpp:245] Train net output #22: loss/loss01 = 3.06288 (* 0.0454545 = 0.139222 loss)
I0404 13:58:41.218920 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.27225 (* 0.0454545 = 0.148739 loss)
I0404 13:58:41.218935 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.23537 (* 0.0454545 = 0.147062 loss)
I0404 13:58:41.218950 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.38006 (* 0.0454545 = 0.153639 loss)
I0404 13:58:41.218963 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.91483 (* 0.0454545 = 0.132492 loss)
I0404 13:58:41.218976 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.63511 (* 0.0454545 = 0.119778 loss)
I0404 13:58:41.218991 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.07584 (* 0.0454545 = 0.0489018 loss)
I0404 13:58:41.219005 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.571437 (* 0.0454545 = 0.0259744 loss)
I0404 13:58:41.219020 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.325218 (* 0.0454545 = 0.0147826 loss)
I0404 13:58:41.219033 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.328369 (* 0.0454545 = 0.0149259 loss)
I0404 13:58:41.219048 9252 solver.cpp:245] Train net output #32: loss/loss11 = 2.05569e-05 (* 0.0454545 = 9.34406e-07 loss)
I0404 13:58:41.219063 9252 solver.cpp:245] Train net output #33: loss/loss12 = 2.06576e-05 (* 0.0454545 = 9.38981e-07 loss)
I0404 13:58:41.219076 9252 solver.cpp:245] Train net output #34: loss/loss13 = 1.84408e-05 (* 0.0454545 = 8.38219e-07 loss)
I0404 13:58:41.219090 9252 solver.cpp:245] Train net output #35: loss/loss14 = 2.00987e-05 (* 0.0454545 = 9.13579e-07 loss)
I0404 13:58:41.219111 9252 solver.cpp:245] Train net output #36: loss/loss15 = 2.08401e-05 (* 0.0454545 = 9.47278e-07 loss)
I0404 13:58:41.219125 9252 solver.cpp:245] Train net output #37: loss/loss16 = 2.20566e-05 (* 0.0454545 = 1.00257e-06 loss)
I0404 13:58:41.219140 9252 solver.cpp:245] Train net output #38: loss/loss17 = 2.22633e-05 (* 0.0454545 = 1.01197e-06 loss)
I0404 13:58:41.219169 9252 solver.cpp:245] Train net output #39: loss/loss18 = 1.75653e-05 (* 0.0454545 = 7.98423e-07 loss)
I0404 13:58:41.219185 9252 solver.cpp:245] Train net output #40: loss/loss19 = 2.08029e-05 (* 0.0454545 = 9.45585e-07 loss)
I0404 13:58:41.219199 9252 solver.cpp:245] Train net output #41: loss/loss20 = 1.89661e-05 (* 0.0454545 = 8.62096e-07 loss)
I0404 13:58:41.219213 9252 solver.cpp:245] Train net output #42: loss/loss21 = 1.81093e-05 (* 0.0454545 = 8.23149e-07 loss)
I0404 13:58:41.219235 9252 solver.cpp:245] Train net output #43: loss/loss22 = 1.87464e-05 (* 0.0454545 = 8.52107e-07 loss)
I0404 13:58:41.219247 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 13:58:41.219259 9252 solver.cpp:245] Train net output #45: total_confidence = 3.47666e-05
I0404 13:58:41.219272 9252 sgd_solver.cpp:106] Iteration 29500, lr = 0.009705
I0404 13:59:52.146591 9252 solver.cpp:338] Iteration 30000, Testing net (#0)
I0404 14:00:00.308490 9252 solver.cpp:393] Test loss: 0.861114
I0404 14:00:00.308540 9252 solver.cpp:406] Test net output #0: loss/accuracy01 = 0.067
I0404 14:00:00.308557 9252 solver.cpp:406] Test net output #1: loss/accuracy02 = 0.105
I0404 14:00:00.308569 9252 solver.cpp:406] Test net output #2: loss/accuracy03 = 0.093
I0404 14:00:00.308581 9252 solver.cpp:406] Test net output #3: loss/accuracy04 = 0.115
I0404 14:00:00.308593 9252 solver.cpp:406] Test net output #4: loss/accuracy05 = 0.213
I0404 14:00:00.308604 9252 solver.cpp:406] Test net output #5: loss/accuracy06 = 0.5
I0404 14:00:00.308616 9252 solver.cpp:406] Test net output #6: loss/accuracy07 = 0.893
I0404 14:00:00.308627 9252 solver.cpp:406] Test net output #7: loss/accuracy08 = 0.97
I0404 14:00:00.308640 9252 solver.cpp:406] Test net output #8: loss/accuracy09 = 0.995
I0404 14:00:00.308650 9252 solver.cpp:406] Test net output #9: loss/accuracy10 = 0.998
I0404 14:00:00.308661 9252 solver.cpp:406] Test net output #10: loss/accuracy11 = 1
I0404 14:00:00.308673 9252 solver.cpp:406] Test net output #11: loss/accuracy12 = 1
I0404 14:00:00.308684 9252 solver.cpp:406] Test net output #12: loss/accuracy13 = 1
I0404 14:00:00.308696 9252 solver.cpp:406] Test net output #13: loss/accuracy14 = 1
I0404 14:00:00.308706 9252 solver.cpp:406] Test net output #14: loss/accuracy15 = 1
I0404 14:00:00.308717 9252 solver.cpp:406] Test net output #15: loss/accuracy16 = 1
I0404 14:00:00.308728 9252 solver.cpp:406] Test net output #16: loss/accuracy17 = 1
I0404 14:00:00.308740 9252 solver.cpp:406] Test net output #17: loss/accuracy18 = 1
I0404 14:00:00.308754 9252 solver.cpp:406] Test net output #18: loss/accuracy19 = 1
I0404 14:00:00.308765 9252 solver.cpp:406] Test net output #19: loss/accuracy20 = 1
I0404 14:00:00.308776 9252 solver.cpp:406] Test net output #20: loss/accuracy21 = 1
I0404 14:00:00.308787 9252 solver.cpp:406] Test net output #21: loss/accuracy22 = 1
I0404 14:00:00.308802 9252 solver.cpp:406] Test net output #22: loss/loss01 = 3.24853 (* 0.0454545 = 0.147661 loss)
I0404 14:00:00.308817 9252 solver.cpp:406] Test net output #23: loss/loss02 = 3.06678 (* 0.0454545 = 0.139399 loss)
I0404 14:00:00.308830 9252 solver.cpp:406] Test net output #24: loss/loss03 = 3.2398 (* 0.0454545 = 0.147264 loss)
I0404 14:00:00.308845 9252 solver.cpp:406] Test net output #25: loss/loss04 = 3.2237 (* 0.0454545 = 0.146532 loss)
I0404 14:00:00.308857 9252 solver.cpp:406] Test net output #26: loss/loss05 = 3.16447 (* 0.0454545 = 0.14384 loss)
I0404 14:00:00.308871 9252 solver.cpp:406] Test net output #27: loss/loss06 = 2.03204 (* 0.0454545 = 0.0923653 loss)
I0404 14:00:00.308884 9252 solver.cpp:406] Test net output #28: loss/loss07 = 0.645133 (* 0.0454545 = 0.0293242 loss)
I0404 14:00:00.308897 9252 solver.cpp:406] Test net output #29: loss/loss08 = 0.2453 (* 0.0454545 = 0.01115 loss)
I0404 14:00:00.308912 9252 solver.cpp:406] Test net output #30: loss/loss09 = 0.0510983 (* 0.0454545 = 0.00232265 loss)
I0404 14:00:00.308925 9252 solver.cpp:406] Test net output #31: loss/loss10 = 0.0243444 (* 0.0454545 = 0.00110656 loss)
I0404 14:00:00.308939 9252 solver.cpp:406] Test net output #32: loss/loss11 = 0.000269771 (* 0.0454545 = 1.22623e-05 loss)
I0404 14:00:00.308953 9252 solver.cpp:406] Test net output #33: loss/loss12 = 0.00028896 (* 0.0454545 = 1.31345e-05 loss)
I0404 14:00:00.308966 9252 solver.cpp:406] Test net output #34: loss/loss13 = 0.000276089 (* 0.0454545 = 1.25495e-05 loss)
I0404 14:00:00.308980 9252 solver.cpp:406] Test net output #35: loss/loss14 = 0.000267652 (* 0.0454545 = 1.2166e-05 loss)
I0404 14:00:00.308993 9252 solver.cpp:406] Test net output #36: loss/loss15 = 0.000295689 (* 0.0454545 = 1.34404e-05 loss)
I0404 14:00:00.309007 9252 solver.cpp:406] Test net output #37: loss/loss16 = 0.000286034 (* 0.0454545 = 1.30016e-05 loss)
I0404 14:00:00.309020 9252 solver.cpp:406] Test net output #38: loss/loss17 = 0.000280882 (* 0.0454545 = 1.27674e-05 loss)
I0404 14:00:00.309067 9252 solver.cpp:406] Test net output #39: loss/loss18 = 0.000258109 (* 0.0454545 = 1.17322e-05 loss)
I0404 14:00:00.309083 9252 solver.cpp:406] Test net output #40: loss/loss19 = 0.000285402 (* 0.0454545 = 1.29728e-05 loss)
I0404 14:00:00.309097 9252 solver.cpp:406] Test net output #41: loss/loss20 = 0.000267373 (* 0.0454545 = 1.21533e-05 loss)
I0404 14:00:00.309110 9252 solver.cpp:406] Test net output #42: loss/loss21 = 0.000277652 (* 0.0454545 = 1.26205e-05 loss)
I0404 14:00:00.309123 9252 solver.cpp:406] Test net output #43: loss/loss22 = 0.000267483 (* 0.0454545 = 1.21583e-05 loss)
I0404 14:00:00.309135 9252 solver.cpp:406] Test net output #44: total_accuracy = 0
I0404 14:00:00.309146 9252 solver.cpp:406] Test net output #45: total_confidence = 2.86206e-05
I0404 14:00:00.342829 9252 solver.cpp:229] Iteration 30000, loss = 0.936281
I0404 14:00:00.342867 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625
I0404 14:00:00.342883 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375
I0404 14:00:00.342895 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625
I0404 14:00:00.342911 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.21875
I0404 14:00:00.342922 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125
I0404 14:00:00.342934 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625
I0404 14:00:00.342947 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125
I0404 14:00:00.342958 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 1
I0404 14:00:00.342970 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 1
I0404 14:00:00.342981 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 14:00:00.342993 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 14:00:00.343004 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 14:00:00.343016 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 14:00:00.343027 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 14:00:00.343039 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 14:00:00.343050 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 14:00:00.343061 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 14:00:00.343072 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 14:00:00.343085 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 14:00:00.343096 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 14:00:00.343106 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 14:00:00.343118 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 14:00:00.343132 9252 solver.cpp:245] Train net output #22: loss/loss01 = 3.05402 (* 0.0454545 = 0.138819 loss)
I0404 14:00:00.343147 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.13417 (* 0.0454545 = 0.142462 loss)
I0404 14:00:00.343160 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.23265 (* 0.0454545 = 0.146939 loss)
I0404 14:00:00.343174 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.19718 (* 0.0454545 = 0.145326 loss)
I0404 14:00:00.343188 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.99243 (* 0.0454545 = 0.136019 loss)
I0404 14:00:00.343200 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.47976 (* 0.0454545 = 0.112717 loss)
I0404 14:00:00.343214 9252 solver.cpp:245] Train net output #28: loss/loss07 = 0.822114 (* 0.0454545 = 0.0373688 loss)
I0404 14:00:00.343227 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.0700228 (* 0.0454545 = 0.00318285 loss)
I0404 14:00:00.343241 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.00925662 (* 0.0454545 = 0.000420755 loss)
I0404 14:00:00.343255 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.00341973 (* 0.0454545 = 0.000155442 loss)
I0404 14:00:00.343287 9252 solver.cpp:245] Train net output #32: loss/loss11 = 8.36845e-05 (* 0.0454545 = 3.80384e-06 loss)
I0404 14:00:00.343302 9252 solver.cpp:245] Train net output #33: loss/loss12 = 9.53658e-05 (* 0.0454545 = 4.33481e-06 loss)
I0404 14:00:00.343317 9252 solver.cpp:245] Train net output #34: loss/loss13 = 9.51639e-05 (* 0.0454545 = 4.32563e-06 loss)
I0404 14:00:00.343330 9252 solver.cpp:245] Train net output #35: loss/loss14 = 8.39161e-05 (* 0.0454545 = 3.81437e-06 loss)
I0404 14:00:00.343343 9252 solver.cpp:245] Train net output #36: loss/loss15 = 9.73535e-05 (* 0.0454545 = 4.42516e-06 loss)
I0404 14:00:00.343358 9252 solver.cpp:245] Train net output #37: loss/loss16 = 6.76425e-05 (* 0.0454545 = 3.07466e-06 loss)
I0404 14:00:00.343370 9252 solver.cpp:245] Train net output #38: loss/loss17 = 8.23992e-05 (* 0.0454545 = 3.74542e-06 loss)
I0404 14:00:00.343384 9252 solver.cpp:245] Train net output #39: loss/loss18 = 8.29397e-05 (* 0.0454545 = 3.76999e-06 loss)
I0404 14:00:00.343399 9252 solver.cpp:245] Train net output #40: loss/loss19 = 7.53423e-05 (* 0.0454545 = 3.42465e-06 loss)
I0404 14:00:00.343411 9252 solver.cpp:245] Train net output #41: loss/loss20 = 8.51966e-05 (* 0.0454545 = 3.87257e-06 loss)
I0404 14:00:00.343425 9252 solver.cpp:245] Train net output #42: loss/loss21 = 8.68959e-05 (* 0.0454545 = 3.94982e-06 loss)
I0404 14:00:00.343438 9252 solver.cpp:245] Train net output #43: loss/loss22 = 7.92196e-05 (* 0.0454545 = 3.60089e-06 loss)
I0404 14:00:00.343451 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 14:00:00.343466 9252 solver.cpp:245] Train net output #45: total_confidence = 4.99387e-05
I0404 14:00:00.343482 9252 sgd_solver.cpp:106] Iteration 30000, lr = 0.0097
I0404 14:01:11.341557 9252 solver.cpp:229] Iteration 30500, loss = 0.937498
I0404 14:01:11.341774 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.15625
I0404 14:01:11.341794 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125
I0404 14:01:11.341807 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.1875
I0404 14:01:11.341820 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625
I0404 14:01:11.341832 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.21875
I0404 14:01:11.341845 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375
I0404 14:01:11.341856 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.78125
I0404 14:01:11.341867 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875
I0404 14:01:11.341879 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875
I0404 14:01:11.341892 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 14:01:11.341905 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 14:01:11.341917 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 14:01:11.341929 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 14:01:11.341940 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 14:01:11.341953 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 14:01:11.341964 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 14:01:11.341975 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 14:01:11.341987 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 14:01:11.341998 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 14:01:11.342010 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 14:01:11.342021 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 14:01:11.342032 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 14:01:11.342048 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.9398 (* 0.0454545 = 0.133627 loss)
I0404 14:01:11.342062 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.09795 (* 0.0454545 = 0.140816 loss)
I0404 14:01:11.342077 9252 solver.cpp:245] Train net output #24: loss/loss03 = 2.99885 (* 0.0454545 = 0.136312 loss)
I0404 14:01:11.342092 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.23834 (* 0.0454545 = 0.147197 loss)
I0404 14:01:11.342106 9252 solver.cpp:245] Train net output #26: loss/loss05 = 3.24782 (* 0.0454545 = 0.147628 loss)
I0404 14:01:11.342120 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.22384 (* 0.0454545 = 0.101084 loss)
I0404 14:01:11.342133 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.07652 (* 0.0454545 = 0.0489327 loss)
I0404 14:01:11.342147 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.524983 (* 0.0454545 = 0.0238629 loss)
I0404 14:01:11.342161 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.245824 (* 0.0454545 = 0.0111738 loss)
I0404 14:01:11.342175 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.0419386 (* 0.0454545 = 0.0019063 loss)
I0404 14:01:11.342190 9252 solver.cpp:245] Train net output #32: loss/loss11 = 0.000328696 (* 0.0454545 = 1.49407e-05 loss)
I0404 14:01:11.342205 9252 solver.cpp:245] Train net output #33: loss/loss12 = 0.000339163 (* 0.0454545 = 1.54165e-05 loss)
I0404 14:01:11.342218 9252 solver.cpp:245] Train net output #34: loss/loss13 = 0.000329349 (* 0.0454545 = 1.49704e-05 loss)
I0404 14:01:11.342232 9252 solver.cpp:245] Train net output #35: loss/loss14 = 0.000325839 (* 0.0454545 = 1.48109e-05 loss)
I0404 14:01:11.342245 9252 solver.cpp:245] Train net output #36: loss/loss15 = 0.000331606 (* 0.0454545 = 1.5073e-05 loss)
I0404 14:01:11.342259 9252 solver.cpp:245] Train net output #37: loss/loss16 = 0.00030078 (* 0.0454545 = 1.36718e-05 loss)
I0404 14:01:11.342273 9252 solver.cpp:245] Train net output #38: loss/loss17 = 0.000315306 (* 0.0454545 = 1.43321e-05 loss)
I0404 14:01:11.342305 9252 solver.cpp:245] Train net output #39: loss/loss18 = 0.000338982 (* 0.0454545 = 1.54083e-05 loss)
I0404 14:01:11.342320 9252 solver.cpp:245] Train net output #40: loss/loss19 = 0.00030698 (* 0.0454545 = 1.39536e-05 loss)
I0404 14:01:11.342334 9252 solver.cpp:245] Train net output #41: loss/loss20 = 0.000322318 (* 0.0454545 = 1.46508e-05 loss)
I0404 14:01:11.342349 9252 solver.cpp:245] Train net output #42: loss/loss21 = 0.000311272 (* 0.0454545 = 1.41487e-05 loss)
I0404 14:01:11.342361 9252 solver.cpp:245] Train net output #43: loss/loss22 = 0.000300339 (* 0.0454545 = 1.36518e-05 loss)
I0404 14:01:11.342373 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 14:01:11.342386 9252 solver.cpp:245] Train net output #45: total_confidence = 4.15045e-05
I0404 14:01:11.342399 9252 sgd_solver.cpp:106] Iteration 30500, lr = 0.009695
I0404 14:02:22.482519 9252 solver.cpp:229] Iteration 31000, loss = 0.936463
I0404 14:02:22.482681 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.1875
I0404 14:02:22.482702 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.15625
I0404 14:02:22.482715 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.15625
I0404 14:02:22.482728 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875
I0404 14:02:22.482739 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125
I0404 14:02:22.482753 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375
I0404 14:02:22.482766 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75
I0404 14:02:22.482779 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875
I0404 14:02:22.482790 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875
I0404 14:02:22.482803 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875
I0404 14:02:22.482815 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 14:02:22.482826 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 14:02:22.482838 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 14:02:22.482849 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 14:02:22.482861 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 14:02:22.482872 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 14:02:22.482883 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 14:02:22.482895 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 14:02:22.482906 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 14:02:22.482918 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 14:02:22.482929 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 14:02:22.482941 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 14:02:22.482956 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.98089 (* 0.0454545 = 0.135495 loss)
I0404 14:02:22.482971 9252 solver.cpp:245] Train net output #23: loss/loss02 = 2.93642 (* 0.0454545 = 0.133473 loss)
I0404 14:02:22.482985 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.15237 (* 0.0454545 = 0.143289 loss)
I0404 14:02:22.483000 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.21167 (* 0.0454545 = 0.145985 loss)
I0404 14:02:22.483013 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.60301 (* 0.0454545 = 0.118318 loss)
I0404 14:02:22.483027 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.17639 (* 0.0454545 = 0.0989269 loss)
I0404 14:02:22.483042 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.3573 (* 0.0454545 = 0.0616955 loss)
I0404 14:02:22.483055 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.690159 (* 0.0454545 = 0.0313709 loss)
I0404 14:02:22.483069 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.132206 (* 0.0454545 = 0.00600937 loss)
I0404 14:02:22.483083 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.11446 (* 0.0454545 = 0.00520275 loss)
I0404 14:02:22.483098 9252 solver.cpp:245] Train net output #32: loss/loss11 = 0.000135282 (* 0.0454545 = 6.14917e-06 loss)
I0404 14:02:22.483113 9252 solver.cpp:245] Train net output #33: loss/loss12 = 0.000107907 (* 0.0454545 = 4.90488e-06 loss)
I0404 14:02:22.483126 9252 solver.cpp:245] Train net output #34: loss/loss13 = 0.000130905 (* 0.0454545 = 5.95021e-06 loss)
I0404 14:02:22.483140 9252 solver.cpp:245] Train net output #35: loss/loss14 = 0.000134035 (* 0.0454545 = 6.09251e-06 loss)
I0404 14:02:22.483155 9252 solver.cpp:245] Train net output #36: loss/loss15 = 0.000108365 (* 0.0454545 = 4.92567e-06 loss)
I0404 14:02:22.483168 9252 solver.cpp:245] Train net output #37: loss/loss16 = 0.000141278 (* 0.0454545 = 6.42172e-06 loss)
I0404 14:02:22.483182 9252 solver.cpp:245] Train net output #38: loss/loss17 = 0.000110187 (* 0.0454545 = 5.0085e-06 loss)
I0404 14:02:22.483214 9252 solver.cpp:245] Train net output #39: loss/loss18 = 0.000124064 (* 0.0454545 = 5.63926e-06 loss)
I0404 14:02:22.483230 9252 solver.cpp:245] Train net output #40: loss/loss19 = 0.000120714 (* 0.0454545 = 5.48699e-06 loss)
I0404 14:02:22.483244 9252 solver.cpp:245] Train net output #41: loss/loss20 = 9.89084e-05 (* 0.0454545 = 4.49584e-06 loss)
I0404 14:02:22.483258 9252 solver.cpp:245] Train net output #42: loss/loss21 = 0.000126551 (* 0.0454545 = 5.75233e-06 loss)
I0404 14:02:22.483273 9252 solver.cpp:245] Train net output #43: loss/loss22 = 0.000112625 (* 0.0454545 = 5.1193e-06 loss)
I0404 14:02:22.483284 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 14:02:22.483295 9252 solver.cpp:245] Train net output #45: total_confidence = 2.77447e-05
I0404 14:02:22.483310 9252 sgd_solver.cpp:106] Iteration 31000, lr = 0.00969
I0404 14:03:33.116291 9252 solver.cpp:229] Iteration 31500, loss = 0.92887
I0404 14:03:33.116443 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375
I0404 14:03:33.116468 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375
I0404 14:03:33.116488 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125
I0404 14:03:33.116513 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125
I0404 14:03:33.116525 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25
I0404 14:03:33.116538 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.46875
I0404 14:03:33.116549 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.875
I0404 14:03:33.116561 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.96875
I0404 14:03:33.116574 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 1
I0404 14:03:33.116585 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 14:03:33.116596 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 14:03:33.116608 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 14:03:33.116621 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 14:03:33.116631 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 14:03:33.116643 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 14:03:33.116654 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 14:03:33.116667 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 14:03:33.116677 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 14:03:33.116689 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 14:03:33.116701 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 14:03:33.116714 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 14:03:33.116724 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 14:03:33.116739 9252 solver.cpp:245] Train net output #22: loss/loss01 = 3.12677 (* 0.0454545 = 0.142126 loss)
I0404 14:03:33.116755 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.17357 (* 0.0454545 = 0.144253 loss)
I0404 14:03:33.116767 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.23753 (* 0.0454545 = 0.147161 loss)
I0404 14:03:33.116781 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.36072 (* 0.0454545 = 0.15276 loss)
I0404 14:03:33.116796 9252 solver.cpp:245] Train net output #26: loss/loss05 = 3.03301 (* 0.0454545 = 0.137864 loss)
I0404 14:03:33.116809 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.0081 (* 0.0454545 = 0.0912773 loss)
I0404 14:03:33.116823 9252 solver.cpp:245] Train net output #28: loss/loss07 = 0.685438 (* 0.0454545 = 0.0311563 loss)
I0404 14:03:33.116837 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.173597 (* 0.0454545 = 0.00789079 loss)
I0404 14:03:33.116852 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.010956 (* 0.0454545 = 0.000497999 loss)
I0404 14:03:33.116865 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.00447457 (* 0.0454545 = 0.000203389 loss)
I0404 14:03:33.116880 9252 solver.cpp:245] Train net output #32: loss/loss11 = 2.63162e-05 (* 0.0454545 = 1.19619e-06 loss)
I0404 14:03:33.116894 9252 solver.cpp:245] Train net output #33: loss/loss12 = 2.44274e-05 (* 0.0454545 = 1.11034e-06 loss)
I0404 14:03:33.116922 9252 solver.cpp:245] Train net output #34: loss/loss13 = 2.271e-05 (* 0.0454545 = 1.03227e-06 loss)
I0404 14:03:33.116955 9252 solver.cpp:245] Train net output #35: loss/loss14 = 2.45541e-05 (* 0.0454545 = 1.11609e-06 loss)
I0404 14:03:33.116986 9252 solver.cpp:245] Train net output #36: loss/loss15 = 2.64131e-05 (* 0.0454545 = 1.20059e-06 loss)
I0404 14:03:33.117015 9252 solver.cpp:245] Train net output #37: loss/loss16 = 2.55562e-05 (* 0.0454545 = 1.16165e-06 loss)
I0404 14:03:33.117038 9252 solver.cpp:245] Train net output #38: loss/loss17 = 2.56419e-05 (* 0.0454545 = 1.16554e-06 loss)
I0404 14:03:33.117069 9252 solver.cpp:245] Train net output #39: loss/loss18 = 2.29745e-05 (* 0.0454545 = 1.04429e-06 loss)
I0404 14:03:33.117085 9252 solver.cpp:245] Train net output #40: loss/loss19 = 2.53774e-05 (* 0.0454545 = 1.15352e-06 loss)
I0404 14:03:33.117100 9252 solver.cpp:245] Train net output #41: loss/loss20 = 2.28478e-05 (* 0.0454545 = 1.03854e-06 loss)
I0404 14:03:33.117113 9252 solver.cpp:245] Train net output #42: loss/loss21 = 2.32874e-05 (* 0.0454545 = 1.05852e-06 loss)
I0404 14:03:33.117127 9252 solver.cpp:245] Train net output #43: loss/loss22 = 2.33545e-05 (* 0.0454545 = 1.06157e-06 loss)
I0404 14:03:33.117139 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 14:03:33.117151 9252 solver.cpp:245] Train net output #45: total_confidence = 2.92121e-05
I0404 14:03:33.117164 9252 sgd_solver.cpp:106] Iteration 31500, lr = 0.009685
I0404 14:04:44.919107 9252 solver.cpp:229] Iteration 32000, loss = 0.933316
I0404 14:04:44.919221 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.1875
I0404 14:04:44.919240 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125
I0404 14:04:44.919253 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.21875
I0404 14:04:44.919265 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625
I0404 14:04:44.919277 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125
I0404 14:04:44.919289 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375
I0404 14:04:44.919301 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.78125
I0404 14:04:44.919313 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375
I0404 14:04:44.919324 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875
I0404 14:04:44.919337 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 14:04:44.919348 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 14:04:44.919359 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 14:04:44.919370 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 14:04:44.919383 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 14:04:44.919394 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 14:04:44.919404 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 14:04:44.919416 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 14:04:44.919427 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 14:04:44.919438 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 14:04:44.919450 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 14:04:44.919461 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 14:04:44.919472 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 14:04:44.919488 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.79985 (* 0.0454545 = 0.127266 loss)
I0404 14:04:44.919502 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.06166 (* 0.0454545 = 0.139166 loss)
I0404 14:04:44.919517 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.01437 (* 0.0454545 = 0.137017 loss)
I0404 14:04:44.919529 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.15536 (* 0.0454545 = 0.143425 loss)
I0404 14:04:44.919543 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.90941 (* 0.0454545 = 0.132246 loss)
I0404 14:04:44.919556 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.21213 (* 0.0454545 = 0.100551 loss)
I0404 14:04:44.919570 9252 solver.cpp:245] Train net output #28: loss/loss07 = 0.898313 (* 0.0454545 = 0.0408324 loss)
I0404 14:04:44.919584 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.374252 (* 0.0454545 = 0.0170114 loss)
I0404 14:04:44.919598 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.198828 (* 0.0454545 = 0.00903764 loss)
I0404 14:04:44.919612 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.00515792 (* 0.0454545 = 0.000234451 loss)
I0404 14:04:44.919628 9252 solver.cpp:245] Train net output #32: loss/loss11 = 2.62447e-05 (* 0.0454545 = 1.19294e-06 loss)
I0404 14:04:44.919642 9252 solver.cpp:245] Train net output #33: loss/loss12 = 2.63789e-05 (* 0.0454545 = 1.19904e-06 loss)
I0404 14:04:44.919656 9252 solver.cpp:245] Train net output #34: loss/loss13 = 2.62637e-05 (* 0.0454545 = 1.1938e-06 loss)
I0404 14:04:44.919670 9252 solver.cpp:245] Train net output #35: loss/loss14 = 2.5086e-05 (* 0.0454545 = 1.14027e-06 loss)
I0404 14:04:44.919683 9252 solver.cpp:245] Train net output #36: loss/loss15 = 2.81786e-05 (* 0.0454545 = 1.28085e-06 loss)
I0404 14:04:44.919697 9252 solver.cpp:245] Train net output #37: loss/loss16 = 2.4622e-05 (* 0.0454545 = 1.11918e-06 loss)
I0404 14:04:44.919711 9252 solver.cpp:245] Train net output #38: loss/loss17 = 2.53802e-05 (* 0.0454545 = 1.15365e-06 loss)
I0404 14:04:44.919742 9252 solver.cpp:245] Train net output #39: loss/loss18 = 2.61852e-05 (* 0.0454545 = 1.19024e-06 loss)
I0404 14:04:44.919760 9252 solver.cpp:245] Train net output #40: loss/loss19 = 2.53486e-05 (* 0.0454545 = 1.15221e-06 loss)
I0404 14:04:44.919775 9252 solver.cpp:245] Train net output #41: loss/loss20 = 2.63698e-05 (* 0.0454545 = 1.19863e-06 loss)
I0404 14:04:44.919788 9252 solver.cpp:245] Train net output #42: loss/loss21 = 2.62971e-05 (* 0.0454545 = 1.19532e-06 loss)
I0404 14:04:44.919802 9252 solver.cpp:245] Train net output #43: loss/loss22 = 2.54885e-05 (* 0.0454545 = 1.15857e-06 loss)
I0404 14:04:44.919814 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 14:04:44.919826 9252 solver.cpp:245] Train net output #45: total_confidence = 3.29479e-05
I0404 14:04:44.919838 9252 sgd_solver.cpp:106] Iteration 32000, lr = 0.00968
I0404 14:05:55.706950 9252 solver.cpp:229] Iteration 32500, loss = 0.932208
I0404 14:05:55.707159 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.15625
I0404 14:05:55.707177 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375
I0404 14:05:55.707191 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625
I0404 14:05:55.707203 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125
I0404 14:05:55.707216 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.34375
I0404 14:05:55.707227 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375
I0404 14:05:55.707239 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625
I0404 14:05:55.707250 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.75
I0404 14:05:55.707262 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.875
I0404 14:05:55.707273 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.90625
I0404 14:05:55.707285 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 14:05:55.707296 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 14:05:55.707309 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 14:05:55.707319 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 14:05:55.707331 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 14:05:55.707342 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 14:05:55.707355 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 14:05:55.707365 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 14:05:55.707376 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 14:05:55.707388 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 14:05:55.707399 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 14:05:55.707412 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 14:05:55.707427 9252 solver.cpp:245] Train net output #22: loss/loss01 = 3.01952 (* 0.0454545 = 0.137251 loss)
I0404 14:05:55.707440 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.37508 (* 0.0454545 = 0.153413 loss)
I0404 14:05:55.707454 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.14564 (* 0.0454545 = 0.142983 loss)
I0404 14:05:55.707468 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.23795 (* 0.0454545 = 0.14718 loss)
I0404 14:05:55.707485 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.9976 (* 0.0454545 = 0.136255 loss)
I0404 14:05:55.707499 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.19952 (* 0.0454545 = 0.0999782 loss)
I0404 14:05:55.707514 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.51359 (* 0.0454545 = 0.0687996 loss)
I0404 14:05:55.707526 9252 solver.cpp:245] Train net output #29: loss/loss08 = 1.06772 (* 0.0454545 = 0.0485328 loss)
I0404 14:05:55.707540 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.59726 (* 0.0454545 = 0.0271482 loss)
I0404 14:05:55.707553 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.535808 (* 0.0454545 = 0.0243549 loss)
I0404 14:05:55.707568 9252 solver.cpp:245] Train net output #32: loss/loss11 = 0.00154675 (* 0.0454545 = 7.03066e-05 loss)
I0404 14:05:55.707582 9252 solver.cpp:245] Train net output #33: loss/loss12 = 0.00175185 (* 0.0454545 = 7.96294e-05 loss)
I0404 14:05:55.707597 9252 solver.cpp:245] Train net output #34: loss/loss13 = 0.00181554 (* 0.0454545 = 8.25244e-05 loss)
I0404 14:05:55.707612 9252 solver.cpp:245] Train net output #35: loss/loss14 = 0.00157473 (* 0.0454545 = 7.15785e-05 loss)
I0404 14:05:55.707624 9252 solver.cpp:245] Train net output #36: loss/loss15 = 0.00162769 (* 0.0454545 = 7.39857e-05 loss)
I0404 14:05:55.707638 9252 solver.cpp:245] Train net output #37: loss/loss16 = 0.00134524 (* 0.0454545 = 6.11472e-05 loss)
I0404 14:05:55.707653 9252 solver.cpp:245] Train net output #38: loss/loss17 = 0.00143117 (* 0.0454545 = 6.50533e-05 loss)
I0404 14:05:55.707684 9252 solver.cpp:245] Train net output #39: loss/loss18 = 0.00148601 (* 0.0454545 = 6.7546e-05 loss)
I0404 14:05:55.707700 9252 solver.cpp:245] Train net output #40: loss/loss19 = 0.00151822 (* 0.0454545 = 6.90102e-05 loss)
I0404 14:05:55.707713 9252 solver.cpp:245] Train net output #41: loss/loss20 = 0.00155327 (* 0.0454545 = 7.06033e-05 loss)
I0404 14:05:55.707727 9252 solver.cpp:245] Train net output #42: loss/loss21 = 0.00150658 (* 0.0454545 = 6.8481e-05 loss)
I0404 14:05:55.707741 9252 solver.cpp:245] Train net output #43: loss/loss22 = 0.00145754 (* 0.0454545 = 6.62517e-05 loss)
I0404 14:05:55.707752 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 14:05:55.707764 9252 solver.cpp:245] Train net output #45: total_confidence = 5.34663e-05
I0404 14:05:55.707777 9252 sgd_solver.cpp:106] Iteration 32500, lr = 0.009675
I0404 14:07:06.788790 9252 solver.cpp:229] Iteration 33000, loss = 0.931617
I0404 14:07:06.788929 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125
I0404 14:07:06.788949 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.15625
I0404 14:07:06.788961 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125
I0404 14:07:06.788974 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375
I0404 14:07:06.788986 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125
I0404 14:07:06.788998 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5
I0404 14:07:06.789010 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.84375
I0404 14:07:06.789021 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375
I0404 14:07:06.789033 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875
I0404 14:07:06.789046 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 14:07:06.789057 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 14:07:06.789068 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 14:07:06.789079 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 14:07:06.789091 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 14:07:06.789104 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 14:07:06.789116 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 14:07:06.789127 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 14:07:06.789139 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 14:07:06.789150 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 14:07:06.789161 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 14:07:06.789173 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 14:07:06.789185 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 14:07:06.789201 9252 solver.cpp:245] Train net output #22: loss/loss01 = 3.0732 (* 0.0454545 = 0.139691 loss)
I0404 14:07:06.789216 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.30847 (* 0.0454545 = 0.150385 loss)
I0404 14:07:06.789229 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.31443 (* 0.0454545 = 0.150656 loss)
I0404 14:07:06.789243 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.40776 (* 0.0454545 = 0.154898 loss)
I0404 14:07:06.789258 9252 solver.cpp:245] Train net output #26: loss/loss05 = 3.09744 (* 0.0454545 = 0.140793 loss)
I0404 14:07:06.789271 9252 solver.cpp:245] Train net output #27: loss/loss06 = 1.96599 (* 0.0454545 = 0.089363 loss)
I0404 14:07:06.789285 9252 solver.cpp:245] Train net output #28: loss/loss07 = 0.787353 (* 0.0454545 = 0.0357888 loss)
I0404 14:07:06.789299 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.237384 (* 0.0454545 = 0.0107902 loss)
I0404 14:07:06.789314 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.169899 (* 0.0454545 = 0.0077227 loss)
I0404 14:07:06.789327 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.0119675 (* 0.0454545 = 0.000543979 loss)
I0404 14:07:06.789342 9252 solver.cpp:245] Train net output #32: loss/loss11 = 4.70407e-05 (* 0.0454545 = 2.13821e-06 loss)
I0404 14:07:06.789356 9252 solver.cpp:245] Train net output #33: loss/loss12 = 5.21559e-05 (* 0.0454545 = 2.37072e-06 loss)
I0404 14:07:06.789371 9252 solver.cpp:245] Train net output #34: loss/loss13 = 4.5827e-05 (* 0.0454545 = 2.08305e-06 loss)
I0404 14:07:06.789384 9252 solver.cpp:245] Train net output #35: loss/loss14 = 4.37093e-05 (* 0.0454545 = 1.98679e-06 loss)
I0404 14:07:06.789398 9252 solver.cpp:245] Train net output #36: loss/loss15 = 4.87601e-05 (* 0.0454545 = 2.21637e-06 loss)
I0404 14:07:06.789412 9252 solver.cpp:245] Train net output #37: loss/loss16 = 4.0908e-05 (* 0.0454545 = 1.85945e-06 loss)
I0404 14:07:06.789441 9252 solver.cpp:245] Train net output #38: loss/loss17 = 4.59593e-05 (* 0.0454545 = 2.08906e-06 loss)
I0404 14:07:06.789475 9252 solver.cpp:245] Train net output #39: loss/loss18 = 4.7332e-05 (* 0.0454545 = 2.15145e-06 loss)
I0404 14:07:06.789490 9252 solver.cpp:245] Train net output #40: loss/loss19 = 4.25064e-05 (* 0.0454545 = 1.93211e-06 loss)
I0404 14:07:06.789505 9252 solver.cpp:245] Train net output #41: loss/loss20 = 4.47585e-05 (* 0.0454545 = 2.03448e-06 loss)
I0404 14:07:06.789518 9252 solver.cpp:245] Train net output #42: loss/loss21 = 4.49371e-05 (* 0.0454545 = 2.04259e-06 loss)
I0404 14:07:06.789532 9252 solver.cpp:245] Train net output #43: loss/loss22 = 4.41262e-05 (* 0.0454545 = 2.00573e-06 loss)
I0404 14:07:06.789544 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 14:07:06.789556 9252 solver.cpp:245] Train net output #45: total_confidence = 6.55089e-05
I0404 14:07:06.789569 9252 sgd_solver.cpp:106] Iteration 33000, lr = 0.00967
I0404 14:08:17.652562 9252 solver.cpp:229] Iteration 33500, loss = 0.93067
I0404 14:08:17.652772 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.21875
I0404 14:08:17.652793 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375
I0404 14:08:17.652806 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625
I0404 14:08:17.652819 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625
I0404 14:08:17.652832 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.0625
I0404 14:08:17.652843 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625
I0404 14:08:17.652854 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.53125
I0404 14:08:17.652866 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.71875
I0404 14:08:17.652878 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625
I0404 14:08:17.652890 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375
I0404 14:08:17.652902 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 14:08:17.652915 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 14:08:17.652926 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 14:08:17.652937 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 14:08:17.652950 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 14:08:17.652961 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 14:08:17.652972 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 14:08:17.652984 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 14:08:17.652997 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 14:08:17.653007 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 14:08:17.653025 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 14:08:17.653043 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 14:08:17.653060 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.93528 (* 0.0454545 = 0.133422 loss)
I0404 14:08:17.653075 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.0508 (* 0.0454545 = 0.138673 loss)
I0404 14:08:17.653090 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.18069 (* 0.0454545 = 0.144577 loss)
I0404 14:08:17.653106 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.26757 (* 0.0454545 = 0.148526 loss)
I0404 14:08:17.653120 9252 solver.cpp:245] Train net output #26: loss/loss05 = 3.11886 (* 0.0454545 = 0.141767 loss)
I0404 14:08:17.653134 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.85929 (* 0.0454545 = 0.129968 loss)
I0404 14:08:17.653147 9252 solver.cpp:245] Train net output #28: loss/loss07 = 2.09266 (* 0.0454545 = 0.095121 loss)
I0404 14:08:17.653162 9252 solver.cpp:245] Train net output #29: loss/loss08 = 1.21449 (* 0.0454545 = 0.0552041 loss)
I0404 14:08:17.653175 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.440637 (* 0.0454545 = 0.0200289 loss)
I0404 14:08:17.653189 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.275854 (* 0.0454545 = 0.0125388 loss)
I0404 14:08:17.653203 9252 solver.cpp:245] Train net output #32: loss/loss11 = 0.00022146 (* 0.0454545 = 1.00664e-05 loss)
I0404 14:08:17.653218 9252 solver.cpp:245] Train net output #33: loss/loss12 = 0.000216302 (* 0.0454545 = 9.83192e-06 loss)
I0404 14:08:17.653233 9252 solver.cpp:245] Train net output #34: loss/loss13 = 0.000219561 (* 0.0454545 = 9.98005e-06 loss)
I0404 14:08:17.653246 9252 solver.cpp:245] Train net output #35: loss/loss14 = 0.000206621 (* 0.0454545 = 9.39188e-06 loss)
I0404 14:08:17.653260 9252 solver.cpp:245] Train net output #36: loss/loss15 = 0.000203776 (* 0.0454545 = 9.26255e-06 loss)
I0404 14:08:17.653275 9252 solver.cpp:245] Train net output #37: loss/loss16 = 0.00019919 (* 0.0454545 = 9.05409e-06 loss)
I0404 14:08:17.653288 9252 solver.cpp:245] Train net output #38: loss/loss17 = 0.000193412 (* 0.0454545 = 8.79145e-06 loss)
I0404 14:08:17.653317 9252 solver.cpp:245] Train net output #39: loss/loss18 = 0.000197743 (* 0.0454545 = 8.98831e-06 loss)
I0404 14:08:17.653332 9252 solver.cpp:245] Train net output #40: loss/loss19 = 0.000191649 (* 0.0454545 = 8.71132e-06 loss)
I0404 14:08:17.653347 9252 solver.cpp:245] Train net output #41: loss/loss20 = 0.000184116 (* 0.0454545 = 8.36889e-06 loss)
I0404 14:08:17.653360 9252 solver.cpp:245] Train net output #42: loss/loss21 = 0.000197168 (* 0.0454545 = 8.96217e-06 loss)
I0404 14:08:17.653374 9252 solver.cpp:245] Train net output #43: loss/loss22 = 0.000185646 (* 0.0454545 = 8.43847e-06 loss)
I0404 14:08:17.653386 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 14:08:17.653398 9252 solver.cpp:245] Train net output #45: total_confidence = 4.84199e-06
I0404 14:08:17.653412 9252 sgd_solver.cpp:106] Iteration 33500, lr = 0.009665
I0404 14:09:29.037900 9252 solver.cpp:229] Iteration 34000, loss = 0.92165
I0404 14:09:29.038029 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.15625
I0404 14:09:29.038048 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375
I0404 14:09:29.038063 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375
I0404 14:09:29.038074 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375
I0404 14:09:29.038086 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.09375
I0404 14:09:29.038099 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.28125
I0404 14:09:29.038111 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625
I0404 14:09:29.038123 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875
I0404 14:09:29.038136 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875
I0404 14:09:29.038156 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875
I0404 14:09:29.038168 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 14:09:29.038180 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 14:09:29.038192 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 14:09:29.038203 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 14:09:29.038218 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 14:09:29.038229 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 14:09:29.038241 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 14:09:29.038254 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 14:09:29.038264 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 14:09:29.038276 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 14:09:29.038288 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 14:09:29.038300 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 14:09:29.038316 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.66134 (* 0.0454545 = 0.12097 loss)
I0404 14:09:29.038329 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.04893 (* 0.0454545 = 0.138588 loss)
I0404 14:09:29.038344 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.14006 (* 0.0454545 = 0.14273 loss)
I0404 14:09:29.038358 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.0679 (* 0.0454545 = 0.13945 loss)
I0404 14:09:29.038372 9252 solver.cpp:245] Train net output #26: loss/loss05 = 3.21068 (* 0.0454545 = 0.14594 loss)
I0404 14:09:29.038386 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.60329 (* 0.0454545 = 0.118331 loss)
I0404 14:09:29.038400 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.73718 (* 0.0454545 = 0.0789626 loss)
I0404 14:09:29.038414 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.666611 (* 0.0454545 = 0.0303005 loss)
I0404 14:09:29.038427 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.159284 (* 0.0454545 = 0.00724017 loss)
I0404 14:09:29.038441 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.143511 (* 0.0454545 = 0.00652324 loss)
I0404 14:09:29.038456 9252 solver.cpp:245] Train net output #32: loss/loss11 = 6.65761e-05 (* 0.0454545 = 3.02619e-06 loss)
I0404 14:09:29.038470 9252 solver.cpp:245] Train net output #33: loss/loss12 = 6.19374e-05 (* 0.0454545 = 2.81534e-06 loss)
I0404 14:09:29.038501 9252 solver.cpp:245] Train net output #34: loss/loss13 = 6.55133e-05 (* 0.0454545 = 2.97788e-06 loss)
I0404 14:09:29.038516 9252 solver.cpp:245] Train net output #35: loss/loss14 = 6.44749e-05 (* 0.0454545 = 2.93068e-06 loss)
I0404 14:09:29.038537 9252 solver.cpp:245] Train net output #36: loss/loss15 = 5.60848e-05 (* 0.0454545 = 2.54931e-06 loss)
I0404 14:09:29.038558 9252 solver.cpp:245] Train net output #37: loss/loss16 = 6.43205e-05 (* 0.0454545 = 2.92366e-06 loss)
I0404 14:09:29.038573 9252 solver.cpp:245] Train net output #38: loss/loss17 = 5.69988e-05 (* 0.0454545 = 2.59085e-06 loss)
I0404 14:09:29.038606 9252 solver.cpp:245] Train net output #39: loss/loss18 = 5.73717e-05 (* 0.0454545 = 2.60781e-06 loss)
I0404 14:09:29.038621 9252 solver.cpp:245] Train net output #40: loss/loss19 = 5.86196e-05 (* 0.0454545 = 2.66453e-06 loss)
I0404 14:09:29.038636 9252 solver.cpp:245] Train net output #41: loss/loss20 = 5.21803e-05 (* 0.0454545 = 2.37183e-06 loss)
I0404 14:09:29.038650 9252 solver.cpp:245] Train net output #42: loss/loss21 = 5.61836e-05 (* 0.0454545 = 2.5538e-06 loss)
I0404 14:09:29.038663 9252 solver.cpp:245] Train net output #43: loss/loss22 = 5.58737e-05 (* 0.0454545 = 2.53972e-06 loss)
I0404 14:09:29.038676 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 14:09:29.038687 9252 solver.cpp:245] Train net output #45: total_confidence = 2.65879e-05
I0404 14:09:29.038700 9252 sgd_solver.cpp:106] Iteration 34000, lr = 0.00966
I0404 14:10:39.985522 9252 solver.cpp:229] Iteration 34500, loss = 0.924682
I0404 14:10:39.985635 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.25
I0404 14:10:39.985652 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625
I0404 14:10:39.985673 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125
I0404 14:10:39.985685 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.25
I0404 14:10:39.985697 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.34375
I0404 14:10:39.985709 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5625
I0404 14:10:39.985720 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875
I0404 14:10:39.985734 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875
I0404 14:10:39.985746 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625
I0404 14:10:39.985759 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875
I0404 14:10:39.985769 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 14:10:39.985781 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 14:10:39.985793 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 14:10:39.985805 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 14:10:39.985816 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 14:10:39.985827 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 14:10:39.985839 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 14:10:39.985851 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 14:10:39.985862 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 14:10:39.985873 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 14:10:39.985884 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 14:10:39.985895 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 14:10:39.985914 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.86047 (* 0.0454545 = 0.130022 loss)
I0404 14:10:39.985929 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.05769 (* 0.0454545 = 0.138986 loss)
I0404 14:10:39.985942 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.07526 (* 0.0454545 = 0.139784 loss)
I0404 14:10:39.985955 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.17558 (* 0.0454545 = 0.144345 loss)
I0404 14:10:39.985970 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.82158 (* 0.0454545 = 0.128254 loss)
I0404 14:10:39.985983 9252 solver.cpp:245] Train net output #27: loss/loss06 = 1.91652 (* 0.0454545 = 0.0871144 loss)
I0404 14:10:39.985996 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.38512 (* 0.0454545 = 0.0629598 loss)
I0404 14:10:39.986009 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.60342 (* 0.0454545 = 0.0274282 loss)
I0404 14:10:39.986023 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.476163 (* 0.0454545 = 0.0216438 loss)
I0404 14:10:39.986037 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.118011 (* 0.0454545 = 0.00536414 loss)
I0404 14:10:39.986052 9252 solver.cpp:245] Train net output #32: loss/loss11 = 0.000172653 (* 0.0454545 = 7.84785e-06 loss)
I0404 14:10:39.986066 9252 solver.cpp:245] Train net output #33: loss/loss12 = 0.000191274 (* 0.0454545 = 8.69428e-06 loss)
I0404 14:10:39.986080 9252 solver.cpp:245] Train net output #34: loss/loss13 = 0.000176913 (* 0.0454545 = 8.0415e-06 loss)
I0404 14:10:39.986094 9252 solver.cpp:245] Train net output #35: loss/loss14 = 0.00017163 (* 0.0454545 = 7.80137e-06 loss)
I0404 14:10:39.986109 9252 solver.cpp:245] Train net output #36: loss/loss15 = 0.000168109 (* 0.0454545 = 7.64133e-06 loss)
I0404 14:10:39.986122 9252 solver.cpp:245] Train net output #37: loss/loss16 = 0.000171664 (* 0.0454545 = 7.80293e-06 loss)
I0404 14:10:39.986135 9252 solver.cpp:245] Train net output #38: loss/loss17 = 0.000165684 (* 0.0454545 = 7.53111e-06 loss)
I0404 14:10:39.986166 9252 solver.cpp:245] Train net output #39: loss/loss18 = 0.000174789 (* 0.0454545 = 7.94496e-06 loss)
I0404 14:10:39.986181 9252 solver.cpp:245] Train net output #40: loss/loss19 = 0.000165625 (* 0.0454545 = 7.52839e-06 loss)
I0404 14:10:39.986196 9252 solver.cpp:245] Train net output #41: loss/loss20 = 0.000161936 (* 0.0454545 = 7.36073e-06 loss)
I0404 14:10:39.986209 9252 solver.cpp:245] Train net output #42: loss/loss21 = 0.000147794 (* 0.0454545 = 6.71792e-06 loss)
I0404 14:10:39.986223 9252 solver.cpp:245] Train net output #43: loss/loss22 = 0.000167914 (* 0.0454545 = 7.63243e-06 loss)
I0404 14:10:39.986235 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 14:10:39.986246 9252 solver.cpp:245] Train net output #45: total_confidence = 7.76038e-05
I0404 14:10:39.986260 9252 sgd_solver.cpp:106] Iteration 34500, lr = 0.009655
I0404 14:11:50.831578 9252 solver.cpp:229] Iteration 35000, loss = 0.91845
I0404 14:11:50.831696 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625
I0404 14:11:50.831714 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625
I0404 14:11:50.831727 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625
I0404 14:11:50.831743 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125
I0404 14:11:50.831755 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.125
I0404 14:11:50.831768 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125
I0404 14:11:50.831780 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.78125
I0404 14:11:50.831792 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375
I0404 14:11:50.831804 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875
I0404 14:11:50.831815 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875
I0404 14:11:50.831827 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 14:11:50.831840 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 14:11:50.831851 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 14:11:50.831862 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 14:11:50.831873 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 14:11:50.831892 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 14:11:50.831905 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 14:11:50.831918 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 14:11:50.831929 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 14:11:50.831951 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 14:11:50.831969 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 14:11:50.831980 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 14:11:50.831996 9252 solver.cpp:245] Train net output #22: loss/loss01 = 3.43859 (* 0.0454545 = 0.1563 loss)
I0404 14:11:50.832010 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.52372 (* 0.0454545 = 0.160169 loss)
I0404 14:11:50.832026 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.31351 (* 0.0454545 = 0.150614 loss)
I0404 14:11:50.832047 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.53269 (* 0.0454545 = 0.160577 loss)
I0404 14:11:50.832062 9252 solver.cpp:245] Train net output #26: loss/loss05 = 3.29516 (* 0.0454545 = 0.14978 loss)
I0404 14:11:50.832074 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.86188 (* 0.0454545 = 0.130085 loss)
I0404 14:11:50.832088 9252 solver.cpp:245] Train net output #28: loss/loss07 = 0.950274 (* 0.0454545 = 0.0431943 loss)
I0404 14:11:50.832103 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.468775 (* 0.0454545 = 0.021308 loss)
I0404 14:11:50.832116 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.27398 (* 0.0454545 = 0.0124536 loss)
I0404 14:11:50.832130 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.264887 (* 0.0454545 = 0.0120403 loss)
I0404 14:11:50.832144 9252 solver.cpp:245] Train net output #32: loss/loss11 = 4.3964e-05 (* 0.0454545 = 1.99836e-06 loss)
I0404 14:11:50.832159 9252 solver.cpp:245] Train net output #33: loss/loss12 = 4.29231e-05 (* 0.0454545 = 1.95105e-06 loss)
I0404 14:11:50.832173 9252 solver.cpp:245] Train net output #34: loss/loss13 = 4.13641e-05 (* 0.0454545 = 1.88019e-06 loss)
I0404 14:11:50.832187 9252 solver.cpp:245] Train net output #35: loss/loss14 = 4.05531e-05 (* 0.0454545 = 1.84332e-06 loss)
I0404 14:11:50.832201 9252 solver.cpp:245] Train net output #36: loss/loss15 = 4.53439e-05 (* 0.0454545 = 2.06109e-06 loss)
I0404 14:11:50.832216 9252 solver.cpp:245] Train net output #37: loss/loss16 = 4.19942e-05 (* 0.0454545 = 1.90883e-06 loss)
I0404 14:11:50.832228 9252 solver.cpp:245] Train net output #38: loss/loss17 = 4.22262e-05 (* 0.0454545 = 1.91937e-06 loss)
I0404 14:11:50.832260 9252 solver.cpp:245] Train net output #39: loss/loss18 = 4.17642e-05 (* 0.0454545 = 1.89837e-06 loss)
I0404 14:11:50.832276 9252 solver.cpp:245] Train net output #40: loss/loss19 = 4.31005e-05 (* 0.0454545 = 1.95911e-06 loss)
I0404 14:11:50.832290 9252 solver.cpp:245] Train net output #41: loss/loss20 = 3.68436e-05 (* 0.0454545 = 1.67471e-06 loss)
I0404 14:11:50.832304 9252 solver.cpp:245] Train net output #42: loss/loss21 = 3.70969e-05 (* 0.0454545 = 1.68622e-06 loss)
I0404 14:11:50.832317 9252 solver.cpp:245] Train net output #43: loss/loss22 = 4.00506e-05 (* 0.0454545 = 1.82048e-06 loss)
I0404 14:11:50.832329 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 14:11:50.832341 9252 solver.cpp:245] Train net output #45: total_confidence = 3.48146e-05
I0404 14:11:50.832355 9252 sgd_solver.cpp:106] Iteration 35000, lr = 0.00965
I0404 14:13:02.142143 9252 solver.cpp:229] Iteration 35500, loss = 0.921058
I0404 14:13:02.142308 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.21875
I0404 14:13:02.142328 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125
I0404 14:13:02.142343 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0
I0404 14:13:02.142364 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625
I0404 14:13:02.142375 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125
I0404 14:13:02.142387 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375
I0404 14:13:02.142400 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875
I0404 14:13:02.142410 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375
I0404 14:13:02.142422 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875
I0404 14:13:02.142434 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 14:13:02.142446 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 14:13:02.142458 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 14:13:02.142470 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 14:13:02.142482 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 14:13:02.142493 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 14:13:02.142504 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 14:13:02.142516 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 14:13:02.142527 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 14:13:02.142539 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 14:13:02.142550 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 14:13:02.142562 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 14:13:02.142573 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 14:13:02.142598 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.80459 (* 0.0454545 = 0.127481 loss)
I0404 14:13:02.142621 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.15388 (* 0.0454545 = 0.143358 loss)
I0404 14:13:02.142637 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.24167 (* 0.0454545 = 0.147349 loss)
I0404 14:13:02.142650 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.2069 (* 0.0454545 = 0.145768 loss)
I0404 14:13:02.142673 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.71386 (* 0.0454545 = 0.123357 loss)
I0404 14:13:02.142688 9252 solver.cpp:245] Train net output #27: loss/loss06 = 1.90398 (* 0.0454545 = 0.0865448 loss)
I0404 14:13:02.142700 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.2338 (* 0.0454545 = 0.0560818 loss)
I0404 14:13:02.142714 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.77381 (* 0.0454545 = 0.0351732 loss)
I0404 14:13:02.142729 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.19947 (* 0.0454545 = 0.00906684 loss)
I0404 14:13:02.142743 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.0260491 (* 0.0454545 = 0.00118405 loss)
I0404 14:13:02.142760 9252 solver.cpp:245] Train net output #32: loss/loss11 = 4.60338e-05 (* 0.0454545 = 2.09245e-06 loss)
I0404 14:13:02.142776 9252 solver.cpp:245] Train net output #33: loss/loss12 = 5.02501e-05 (* 0.0454545 = 2.2841e-06 loss)
I0404 14:13:02.142789 9252 solver.cpp:245] Train net output #34: loss/loss13 = 4.35244e-05 (* 0.0454545 = 1.97838e-06 loss)
I0404 14:13:02.142803 9252 solver.cpp:245] Train net output #35: loss/loss14 = 4.69878e-05 (* 0.0454545 = 2.13581e-06 loss)
I0404 14:13:02.142822 9252 solver.cpp:245] Train net output #36: loss/loss15 = 4.23951e-05 (* 0.0454545 = 1.92705e-06 loss)
I0404 14:13:02.142838 9252 solver.cpp:245] Train net output #37: loss/loss16 = 5.3704e-05 (* 0.0454545 = 2.44109e-06 loss)
I0404 14:13:02.142853 9252 solver.cpp:245] Train net output #38: loss/loss17 = 4.47892e-05 (* 0.0454545 = 2.03587e-06 loss)
I0404 14:13:02.142881 9252 solver.cpp:245] Train net output #39: loss/loss18 = 3.97219e-05 (* 0.0454545 = 1.80554e-06 loss)
I0404 14:13:02.142896 9252 solver.cpp:245] Train net output #40: loss/loss19 = 4.77572e-05 (* 0.0454545 = 2.17078e-06 loss)
I0404 14:13:02.142910 9252 solver.cpp:245] Train net output #41: loss/loss20 = 3.70225e-05 (* 0.0454545 = 1.68284e-06 loss)
I0404 14:13:02.142925 9252 solver.cpp:245] Train net output #42: loss/loss21 = 3.92692e-05 (* 0.0454545 = 1.78497e-06 loss)
I0404 14:13:02.142938 9252 solver.cpp:245] Train net output #43: loss/loss22 = 4.13725e-05 (* 0.0454545 = 1.88057e-06 loss)
I0404 14:13:02.142951 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 14:13:02.142962 9252 solver.cpp:245] Train net output #45: total_confidence = 5.18166e-05
I0404 14:13:02.142976 9252 sgd_solver.cpp:106] Iteration 35500, lr = 0.009645
I0404 14:14:13.261236 9252 solver.cpp:229] Iteration 36000, loss = 0.914201
I0404 14:14:13.261368 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.21875
I0404 14:14:13.261387 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125
I0404 14:14:13.261402 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375
I0404 14:14:13.261415 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875
I0404 14:14:13.261427 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.375
I0404 14:14:13.261438 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5
I0404 14:14:13.261451 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875
I0404 14:14:13.261462 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375
I0404 14:14:13.261474 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 1
I0404 14:14:13.261500 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 14:14:13.261515 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 14:14:13.261528 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 14:14:13.261539 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 14:14:13.261550 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 14:14:13.261561 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 14:14:13.261574 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 14:14:13.261585 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 14:14:13.261596 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 14:14:13.261608 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 14:14:13.261620 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 14:14:13.261631 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 14:14:13.261642 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 14:14:13.261658 9252 solver.cpp:245] Train net output #22: loss/loss01 = 3.02891 (* 0.0454545 = 0.137678 loss)
I0404 14:14:13.261672 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.09687 (* 0.0454545 = 0.140767 loss)
I0404 14:14:13.261687 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.22481 (* 0.0454545 = 0.146582 loss)
I0404 14:14:13.261700 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.29089 (* 0.0454545 = 0.149586 loss)
I0404 14:14:13.261714 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.55721 (* 0.0454545 = 0.116237 loss)
I0404 14:14:13.261728 9252 solver.cpp:245] Train net output #27: loss/loss06 = 1.8282 (* 0.0454545 = 0.0831 loss)
I0404 14:14:13.261741 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.35538 (* 0.0454545 = 0.0616081 loss)
I0404 14:14:13.261759 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.644967 (* 0.0454545 = 0.0293167 loss)
I0404 14:14:13.261772 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.045923 (* 0.0454545 = 0.00208741 loss)
I0404 14:14:13.261786 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.011006 (* 0.0454545 = 0.000500274 loss)
I0404 14:14:13.261801 9252 solver.cpp:245] Train net output #32: loss/loss11 = 6.00139e-05 (* 0.0454545 = 2.72791e-06 loss)
I0404 14:14:13.261821 9252 solver.cpp:245] Train net output #33: loss/loss12 = 6.27716e-05 (* 0.0454545 = 2.85325e-06 loss)
I0404 14:14:13.261849 9252 solver.cpp:245] Train net output #34: loss/loss13 = 5.77293e-05 (* 0.0454545 = 2.62406e-06 loss)
I0404 14:14:13.261864 9252 solver.cpp:245] Train net output #35: loss/loss14 = 5.99863e-05 (* 0.0454545 = 2.72665e-06 loss)
I0404 14:14:13.261878 9252 solver.cpp:245] Train net output #36: loss/loss15 = 5.66314e-05 (* 0.0454545 = 2.57416e-06 loss)
I0404 14:14:13.261893 9252 solver.cpp:245] Train net output #37: loss/loss16 = 4.82212e-05 (* 0.0454545 = 2.19187e-06 loss)
I0404 14:14:13.261907 9252 solver.cpp:245] Train net output #38: loss/loss17 = 5.08544e-05 (* 0.0454545 = 2.31156e-06 loss)
I0404 14:14:13.261940 9252 solver.cpp:245] Train net output #39: loss/loss18 = 5.41176e-05 (* 0.0454545 = 2.45989e-06 loss)
I0404 14:14:13.261955 9252 solver.cpp:245] Train net output #40: loss/loss19 = 5.1806e-05 (* 0.0454545 = 2.35482e-06 loss)
I0404 14:14:13.261970 9252 solver.cpp:245] Train net output #41: loss/loss20 = 5.08382e-05 (* 0.0454545 = 2.31083e-06 loss)
I0404 14:14:13.261983 9252 solver.cpp:245] Train net output #42: loss/loss21 = 5.47439e-05 (* 0.0454545 = 2.48836e-06 loss)
I0404 14:14:13.261996 9252 solver.cpp:245] Train net output #43: loss/loss22 = 4.92784e-05 (* 0.0454545 = 2.23993e-06 loss)
I0404 14:14:13.262008 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 14:14:13.262020 9252 solver.cpp:245] Train net output #45: total_confidence = 0.000129603
I0404 14:14:13.262033 9252 sgd_solver.cpp:106] Iteration 36000, lr = 0.00964
I0404 14:15:24.494508 9252 solver.cpp:229] Iteration 36500, loss = 0.913107
I0404 14:15:24.494637 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125
I0404 14:15:24.494657 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625
I0404 14:15:24.494669 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625
I0404 14:15:24.494683 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125
I0404 14:15:24.494694 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125
I0404 14:15:24.494706 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625
I0404 14:15:24.494719 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75
I0404 14:15:24.494729 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625
I0404 14:15:24.494741 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375
I0404 14:15:24.494755 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875
I0404 14:15:24.494767 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 14:15:24.494781 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 14:15:24.494791 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 14:15:24.494803 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 14:15:24.494814 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 14:15:24.494827 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 14:15:24.494837 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 14:15:24.494848 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 14:15:24.494860 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 14:15:24.494879 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 14:15:24.494889 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 14:15:24.494901 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 14:15:24.494916 9252 solver.cpp:245] Train net output #22: loss/loss01 = 3.40437 (* 0.0454545 = 0.154744 loss)
I0404 14:15:24.494930 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.15503 (* 0.0454545 = 0.143411 loss)
I0404 14:15:24.494945 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.15382 (* 0.0454545 = 0.143355 loss)
I0404 14:15:24.494961 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.55618 (* 0.0454545 = 0.161644 loss)
I0404 14:15:24.494976 9252 solver.cpp:245] Train net output #26: loss/loss05 = 3.07067 (* 0.0454545 = 0.139576 loss)
I0404 14:15:24.494989 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.60754 (* 0.0454545 = 0.118525 loss)
I0404 14:15:24.495003 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.37301 (* 0.0454545 = 0.0624094 loss)
I0404 14:15:24.495018 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.585972 (* 0.0454545 = 0.0266351 loss)
I0404 14:15:24.495031 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.408281 (* 0.0454545 = 0.0185582 loss)
I0404 14:15:24.495045 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.133216 (* 0.0454545 = 0.00605527 loss)
I0404 14:15:24.495060 9252 solver.cpp:245] Train net output #32: loss/loss11 = 0.000176448 (* 0.0454545 = 8.02038e-06 loss)
I0404 14:15:24.495074 9252 solver.cpp:245] Train net output #33: loss/loss12 = 0.000196536 (* 0.0454545 = 8.93344e-06 loss)
I0404 14:15:24.495088 9252 solver.cpp:245] Train net output #34: loss/loss13 = 0.000163468 (* 0.0454545 = 7.43037e-06 loss)
I0404 14:15:24.495102 9252 solver.cpp:245] Train net output #35: loss/loss14 = 0.000192295 (* 0.0454545 = 8.74067e-06 loss)
I0404 14:15:24.495116 9252 solver.cpp:245] Train net output #36: loss/loss15 = 0.000179877 (* 0.0454545 = 8.17622e-06 loss)
I0404 14:15:24.495131 9252 solver.cpp:245] Train net output #37: loss/loss16 = 0.00017605 (* 0.0454545 = 8.00227e-06 loss)
I0404 14:15:24.495143 9252 solver.cpp:245] Train net output #38: loss/loss17 = 0.000175969 (* 0.0454545 = 7.99858e-06 loss)
I0404 14:15:24.495174 9252 solver.cpp:245] Train net output #39: loss/loss18 = 0.000151658 (* 0.0454545 = 6.89354e-06 loss)
I0404 14:15:24.495198 9252 solver.cpp:245] Train net output #40: loss/loss19 = 0.000177666 (* 0.0454545 = 8.07573e-06 loss)
I0404 14:15:24.495213 9252 solver.cpp:245] Train net output #41: loss/loss20 = 0.00016023 (* 0.0454545 = 7.28318e-06 loss)
I0404 14:15:24.495226 9252 solver.cpp:245] Train net output #42: loss/loss21 = 0.000152889 (* 0.0454545 = 6.94952e-06 loss)
I0404 14:15:24.495240 9252 solver.cpp:245] Train net output #43: loss/loss22 = 0.000168088 (* 0.0454545 = 7.64034e-06 loss)
I0404 14:15:24.495251 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 14:15:24.495263 9252 solver.cpp:245] Train net output #45: total_confidence = 0.000256091
I0404 14:15:24.495276 9252 sgd_solver.cpp:106] Iteration 36500, lr = 0.009635
I0404 14:16:35.366107 9252 solver.cpp:229] Iteration 37000, loss = 0.911055
I0404 14:16:35.366271 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.21875
I0404 14:16:35.366289 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.21875
I0404 14:16:35.366302 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0
I0404 14:16:35.366314 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375
I0404 14:16:35.366328 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875
I0404 14:16:35.366339 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625
I0404 14:16:35.366351 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.78125
I0404 14:16:35.366363 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625
I0404 14:16:35.366374 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375
I0404 14:16:35.366386 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375
I0404 14:16:35.366399 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 14:16:35.366410 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 14:16:35.366421 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 14:16:35.366432 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 14:16:35.366444 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 14:16:35.366456 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 14:16:35.366468 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 14:16:35.366479 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 14:16:35.366490 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 14:16:35.366503 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 14:16:35.366514 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 14:16:35.366525 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 14:16:35.366540 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.91428 (* 0.0454545 = 0.132467 loss)
I0404 14:16:35.366554 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.00775 (* 0.0454545 = 0.136716 loss)
I0404 14:16:35.366571 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.28484 (* 0.0454545 = 0.149311 loss)
I0404 14:16:35.366586 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.18359 (* 0.0454545 = 0.144709 loss)
I0404 14:16:35.366600 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.93416 (* 0.0454545 = 0.133371 loss)
I0404 14:16:35.366613 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.30361 (* 0.0454545 = 0.10471 loss)
I0404 14:16:35.366626 9252 solver.cpp:245] Train net output #28: loss/loss07 = 0.872902 (* 0.0454545 = 0.0396773 loss)
I0404 14:16:35.366641 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.4153 (* 0.0454545 = 0.0188773 loss)
I0404 14:16:35.366653 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.240093 (* 0.0454545 = 0.0109133 loss)
I0404 14:16:35.366667 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.269795 (* 0.0454545 = 0.0122634 loss)
I0404 14:16:35.366682 9252 solver.cpp:245] Train net output #32: loss/loss11 = 4.76387e-05 (* 0.0454545 = 2.1654e-06 loss)
I0404 14:16:35.366696 9252 solver.cpp:245] Train net output #33: loss/loss12 = 3.92907e-05 (* 0.0454545 = 1.78594e-06 loss)
I0404 14:16:35.366710 9252 solver.cpp:245] Train net output #34: loss/loss13 = 4.5288e-05 (* 0.0454545 = 2.05855e-06 loss)
I0404 14:16:35.366724 9252 solver.cpp:245] Train net output #35: loss/loss14 = 4.65008e-05 (* 0.0454545 = 2.11367e-06 loss)
I0404 14:16:35.366739 9252 solver.cpp:245] Train net output #36: loss/loss15 = 4.19024e-05 (* 0.0454545 = 1.90465e-06 loss)
I0404 14:16:35.366752 9252 solver.cpp:245] Train net output #37: loss/loss16 = 5.31293e-05 (* 0.0454545 = 2.41497e-06 loss)
I0404 14:16:35.366766 9252 solver.cpp:245] Train net output #38: loss/loss17 = 4.63846e-05 (* 0.0454545 = 2.10839e-06 loss)
I0404 14:16:35.366796 9252 solver.cpp:245] Train net output #39: loss/loss18 = 4.50454e-05 (* 0.0454545 = 2.04752e-06 loss)
I0404 14:16:35.366811 9252 solver.cpp:245] Train net output #40: loss/loss19 = 4.36313e-05 (* 0.0454545 = 1.98324e-06 loss)
I0404 14:16:35.366824 9252 solver.cpp:245] Train net output #41: loss/loss20 = 4.10641e-05 (* 0.0454545 = 1.86655e-06 loss)
I0404 14:16:35.366838 9252 solver.cpp:245] Train net output #42: loss/loss21 = 4.41068e-05 (* 0.0454545 = 2.00485e-06 loss)
I0404 14:16:35.366852 9252 solver.cpp:245] Train net output #43: loss/loss22 = 4.46113e-05 (* 0.0454545 = 2.02779e-06 loss)
I0404 14:16:35.366863 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 14:16:35.366875 9252 solver.cpp:245] Train net output #45: total_confidence = 5.93796e-05
I0404 14:16:35.366888 9252 sgd_solver.cpp:106] Iteration 37000, lr = 0.00963
I0404 14:17:46.284997 9252 solver.cpp:229] Iteration 37500, loss = 0.907985
I0404 14:17:46.285157 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125
I0404 14:17:46.285177 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625
I0404 14:17:46.285190 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375
I0404 14:17:46.285203 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125
I0404 14:17:46.285223 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125
I0404 14:17:46.285234 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375
I0404 14:17:46.285246 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625
I0404 14:17:46.285259 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375
I0404 14:17:46.285270 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625
I0404 14:17:46.285281 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375
I0404 14:17:46.285293 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 14:17:46.285305 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 14:17:46.285316 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 14:17:46.285328 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 14:17:46.285341 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 14:17:46.285351 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 14:17:46.285363 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 14:17:46.285375 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 14:17:46.285387 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 14:17:46.285419 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 14:17:46.285432 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 14:17:46.285444 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 14:17:46.285467 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.82458 (* 0.0454545 = 0.12839 loss)
I0404 14:17:46.285483 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.14677 (* 0.0454545 = 0.143035 loss)
I0404 14:17:46.285497 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.26901 (* 0.0454545 = 0.148592 loss)
I0404 14:17:46.285511 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.29207 (* 0.0454545 = 0.149639 loss)
I0404 14:17:46.285524 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.5598 (* 0.0454545 = 0.116354 loss)
I0404 14:17:46.285538 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.13259 (* 0.0454545 = 0.096936 loss)
I0404 14:17:46.285552 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.41099 (* 0.0454545 = 0.0641357 loss)
I0404 14:17:46.285567 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.691673 (* 0.0454545 = 0.0314397 loss)
I0404 14:17:46.285580 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.39184 (* 0.0454545 = 0.0178109 loss)
I0404 14:17:46.285593 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.299213 (* 0.0454545 = 0.0136006 loss)
I0404 14:17:46.285612 9252 solver.cpp:245] Train net output #32: loss/loss11 = 9.87203e-05 (* 0.0454545 = 4.48729e-06 loss)
I0404 14:17:46.285627 9252 solver.cpp:245] Train net output #33: loss/loss12 = 9.20422e-05 (* 0.0454545 = 4.18373e-06 loss)
I0404 14:17:46.285641 9252 solver.cpp:245] Train net output #34: loss/loss13 = 0.000102966 (* 0.0454545 = 4.68025e-06 loss)
I0404 14:17:46.285657 9252 solver.cpp:245] Train net output #35: loss/loss14 = 0.000102734 (* 0.0454545 = 4.66972e-06 loss)
I0404 14:17:46.285675 9252 solver.cpp:245] Train net output #36: loss/loss15 = 9.10921e-05 (* 0.0454545 = 4.14055e-06 loss)
I0404 14:17:46.285689 9252 solver.cpp:245] Train net output #37: loss/loss16 = 0.000108118 (* 0.0454545 = 4.91446e-06 loss)
I0404 14:17:46.285702 9252 solver.cpp:245] Train net output #38: loss/loss17 = 9.15609e-05 (* 0.0454545 = 4.16186e-06 loss)
I0404 14:17:46.285733 9252 solver.cpp:245] Train net output #39: loss/loss18 = 9.41764e-05 (* 0.0454545 = 4.28074e-06 loss)
I0404 14:17:46.285748 9252 solver.cpp:245] Train net output #40: loss/loss19 = 9.37727e-05 (* 0.0454545 = 4.2624e-06 loss)
I0404 14:17:46.285763 9252 solver.cpp:245] Train net output #41: loss/loss20 = 8.98563e-05 (* 0.0454545 = 4.08438e-06 loss)
I0404 14:17:46.285776 9252 solver.cpp:245] Train net output #42: loss/loss21 = 9.65915e-05 (* 0.0454545 = 4.39052e-06 loss)
I0404 14:17:46.285790 9252 solver.cpp:245] Train net output #43: loss/loss22 = 9.59123e-05 (* 0.0454545 = 4.35965e-06 loss)
I0404 14:17:46.285804 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 14:17:46.285815 9252 solver.cpp:245] Train net output #45: total_confidence = 7.48365e-05
I0404 14:17:46.285830 9252 sgd_solver.cpp:106] Iteration 37500, lr = 0.009625
I0404 14:18:57.161366 9252 solver.cpp:229] Iteration 38000, loss = 0.904821
I0404 14:18:57.161509 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.1875
I0404 14:18:57.161528 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125
I0404 14:18:57.161541 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625
I0404 14:18:57.161553 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375
I0404 14:18:57.161566 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.21875
I0404 14:18:57.161577 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375
I0404 14:18:57.161589 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875
I0404 14:18:57.161602 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.8125
I0404 14:18:57.161613 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375
I0404 14:18:57.161625 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875
I0404 14:18:57.161636 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 14:18:57.161648 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 14:18:57.161660 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 14:18:57.161671 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 14:18:57.161682 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 14:18:57.161695 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 14:18:57.161705 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 14:18:57.161717 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 14:18:57.161741 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 14:18:57.161756 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 14:18:57.161772 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 14:18:57.161792 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 14:18:57.161810 9252 solver.cpp:245] Train net output #22: loss/loss01 = 3.17614 (* 0.0454545 = 0.14437 loss)
I0404 14:18:57.161825 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.20195 (* 0.0454545 = 0.145543 loss)
I0404 14:18:57.161839 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.36012 (* 0.0454545 = 0.152733 loss)
I0404 14:18:57.161854 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.47671 (* 0.0454545 = 0.158032 loss)
I0404 14:18:57.161867 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.93396 (* 0.0454545 = 0.133362 loss)
I0404 14:18:57.161880 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.49751 (* 0.0454545 = 0.113523 loss)
I0404 14:18:57.161895 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.59313 (* 0.0454545 = 0.0724149 loss)
I0404 14:18:57.161907 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.865737 (* 0.0454545 = 0.0393517 loss)
I0404 14:18:57.161921 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.319595 (* 0.0454545 = 0.014527 loss)
I0404 14:18:57.161936 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.231307 (* 0.0454545 = 0.010514 loss)
I0404 14:18:57.161949 9252 solver.cpp:245] Train net output #32: loss/loss11 = 4.48692e-05 (* 0.0454545 = 2.03951e-06 loss)
I0404 14:18:57.161964 9252 solver.cpp:245] Train net output #33: loss/loss12 = 5.45381e-05 (* 0.0454545 = 2.479e-06 loss)
I0404 14:18:57.161978 9252 solver.cpp:245] Train net output #34: loss/loss13 = 5.16595e-05 (* 0.0454545 = 2.34816e-06 loss)
I0404 14:18:57.161993 9252 solver.cpp:245] Train net output #35: loss/loss14 = 4.38851e-05 (* 0.0454545 = 1.99478e-06 loss)
I0404 14:18:57.162008 9252 solver.cpp:245] Train net output #36: loss/loss15 = 5.09754e-05 (* 0.0454545 = 2.31706e-06 loss)
I0404 14:18:57.162021 9252 solver.cpp:245] Train net output #37: loss/loss16 = 4.24714e-05 (* 0.0454545 = 1.93052e-06 loss)
I0404 14:18:57.162035 9252 solver.cpp:245] Train net output #38: loss/loss17 = 4.28306e-05 (* 0.0454545 = 1.94684e-06 loss)
I0404 14:18:57.162084 9252 solver.cpp:245] Train net output #39: loss/loss18 = 4.93057e-05 (* 0.0454545 = 2.24117e-06 loss)
I0404 14:18:57.162101 9252 solver.cpp:245] Train net output #40: loss/loss19 = 4.12929e-05 (* 0.0454545 = 1.87695e-06 loss)
I0404 14:18:57.162118 9252 solver.cpp:245] Train net output #41: loss/loss20 = 4.57429e-05 (* 0.0454545 = 2.07922e-06 loss)
I0404 14:18:57.162149 9252 solver.cpp:245] Train net output #42: loss/loss21 = 4.61806e-05 (* 0.0454545 = 2.09912e-06 loss)
I0404 14:18:57.162164 9252 solver.cpp:245] Train net output #43: loss/loss22 = 4.46602e-05 (* 0.0454545 = 2.03001e-06 loss)
I0404 14:18:57.162176 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 14:18:57.162189 9252 solver.cpp:245] Train net output #45: total_confidence = 0.000192167
I0404 14:18:57.162202 9252 sgd_solver.cpp:106] Iteration 38000, lr = 0.00962
I0404 14:20:08.073794 9252 solver.cpp:229] Iteration 38500, loss = 0.904736
I0404 14:20:08.073984 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.15625
I0404 14:20:08.074007 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.15625
I0404 14:20:08.074019 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625
I0404 14:20:08.074033 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625
I0404 14:20:08.074044 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.125
I0404 14:20:08.074057 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125
I0404 14:20:08.074069 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875
I0404 14:20:08.074080 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375
I0404 14:20:08.074092 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875
I0404 14:20:08.074105 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875
I0404 14:20:08.074115 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 14:20:08.074127 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 14:20:08.074139 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 14:20:08.074151 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 14:20:08.074162 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 14:20:08.074174 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 14:20:08.074187 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 14:20:08.074198 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 14:20:08.074209 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 14:20:08.074221 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 14:20:08.074232 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 14:20:08.074244 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 14:20:08.074259 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.80698 (* 0.0454545 = 0.12759 loss)
I0404 14:20:08.074275 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.23331 (* 0.0454545 = 0.146969 loss)
I0404 14:20:08.074288 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.2709 (* 0.0454545 = 0.148677 loss)
I0404 14:20:08.074311 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.22476 (* 0.0454545 = 0.14658 loss)
I0404 14:20:08.074332 9252 solver.cpp:245] Train net output #26: loss/loss05 = 3.1217 (* 0.0454545 = 0.141895 loss)
I0404 14:20:08.074347 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.58151 (* 0.0454545 = 0.117341 loss)
I0404 14:20:08.074362 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.12609 (* 0.0454545 = 0.0511857 loss)
I0404 14:20:08.074375 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.308413 (* 0.0454545 = 0.0140188 loss)
I0404 14:20:08.074389 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.214232 (* 0.0454545 = 0.00973783 loss)
I0404 14:20:08.074404 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.218938 (* 0.0454545 = 0.00995173 loss)
I0404 14:20:08.074419 9252 solver.cpp:245] Train net output #32: loss/loss11 = 6.64337e-05 (* 0.0454545 = 3.01971e-06 loss)
I0404 14:20:08.074432 9252 solver.cpp:245] Train net output #33: loss/loss12 = 7.45307e-05 (* 0.0454545 = 3.38776e-06 loss)
I0404 14:20:08.074446 9252 solver.cpp:245] Train net output #34: loss/loss13 = 6.41658e-05 (* 0.0454545 = 2.91663e-06 loss)
I0404 14:20:08.074460 9252 solver.cpp:245] Train net output #35: loss/loss14 = 6.56512e-05 (* 0.0454545 = 2.98415e-06 loss)
I0404 14:20:08.074475 9252 solver.cpp:245] Train net output #36: loss/loss15 = 6.99859e-05 (* 0.0454545 = 3.18118e-06 loss)
I0404 14:20:08.074487 9252 solver.cpp:245] Train net output #37: loss/loss16 = 6.51856e-05 (* 0.0454545 = 2.96298e-06 loss)
I0404 14:20:08.074501 9252 solver.cpp:245] Train net output #38: loss/loss17 = 6.68545e-05 (* 0.0454545 = 3.03884e-06 loss)
I0404 14:20:08.074533 9252 solver.cpp:245] Train net output #39: loss/loss18 = 6.33624e-05 (* 0.0454545 = 2.88011e-06 loss)
I0404 14:20:08.074548 9252 solver.cpp:245] Train net output #40: loss/loss19 = 6.50561e-05 (* 0.0454545 = 2.9571e-06 loss)
I0404 14:20:08.074563 9252 solver.cpp:245] Train net output #41: loss/loss20 = 6.53968e-05 (* 0.0454545 = 2.97258e-06 loss)
I0404 14:20:08.074576 9252 solver.cpp:245] Train net output #42: loss/loss21 = 6.70215e-05 (* 0.0454545 = 3.04643e-06 loss)
I0404 14:20:08.074590 9252 solver.cpp:245] Train net output #43: loss/loss22 = 6.77609e-05 (* 0.0454545 = 3.08004e-06 loss)
I0404 14:20:08.074604 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 14:20:08.074615 9252 solver.cpp:245] Train net output #45: total_confidence = 0.000112151
I0404 14:20:08.074630 9252 sgd_solver.cpp:106] Iteration 38500, lr = 0.009615
I0404 14:21:19.135660 9252 solver.cpp:229] Iteration 39000, loss = 0.902804
I0404 14:21:19.135812 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.15625
I0404 14:21:19.135829 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375
I0404 14:21:19.135843 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125
I0404 14:21:19.135856 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875
I0404 14:21:19.135869 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.34375
I0404 14:21:19.135880 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.46875
I0404 14:21:19.135892 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.78125
I0404 14:21:19.135906 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375
I0404 14:21:19.135918 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875
I0404 14:21:19.135931 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 14:21:19.135942 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 14:21:19.135954 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 14:21:19.135965 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 14:21:19.135977 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 14:21:19.135988 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 14:21:19.136000 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 14:21:19.136011 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 14:21:19.136023 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 14:21:19.136034 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 14:21:19.136046 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 14:21:19.136057 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 14:21:19.136070 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 14:21:19.136085 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.48807 (* 0.0454545 = 0.113094 loss)
I0404 14:21:19.136099 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.26946 (* 0.0454545 = 0.148612 loss)
I0404 14:21:19.136113 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.025 (* 0.0454545 = 0.1375 loss)
I0404 14:21:19.136126 9252 solver.cpp:245] Train net output #25: loss/loss04 = 2.90505 (* 0.0454545 = 0.132048 loss)
I0404 14:21:19.136140 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.70992 (* 0.0454545 = 0.123178 loss)
I0404 14:21:19.136154 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.04461 (* 0.0454545 = 0.092937 loss)
I0404 14:21:19.136168 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.03438 (* 0.0454545 = 0.0470171 loss)
I0404 14:21:19.136181 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.268509 (* 0.0454545 = 0.0122049 loss)
I0404 14:21:19.136194 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.0991103 (* 0.0454545 = 0.00450501 loss)
I0404 14:21:19.136209 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.0144248 (* 0.0454545 = 0.000655674 loss)
I0404 14:21:19.136224 9252 solver.cpp:245] Train net output #32: loss/loss11 = 6.69113e-05 (* 0.0454545 = 3.04142e-06 loss)
I0404 14:21:19.136237 9252 solver.cpp:245] Train net output #33: loss/loss12 = 7.24978e-05 (* 0.0454545 = 3.29536e-06 loss)
I0404 14:21:19.136251 9252 solver.cpp:245] Train net output #34: loss/loss13 = 5.70842e-05 (* 0.0454545 = 2.59473e-06 loss)
I0404 14:21:19.136265 9252 solver.cpp:245] Train net output #35: loss/loss14 = 6.58224e-05 (* 0.0454545 = 2.99193e-06 loss)
I0404 14:21:19.136279 9252 solver.cpp:245] Train net output #36: loss/loss15 = 6.49043e-05 (* 0.0454545 = 2.9502e-06 loss)
I0404 14:21:19.136293 9252 solver.cpp:245] Train net output #37: loss/loss16 = 6.802e-05 (* 0.0454545 = 3.09182e-06 loss)
I0404 14:21:19.136307 9252 solver.cpp:245] Train net output #38: loss/loss17 = 6.23645e-05 (* 0.0454545 = 2.83475e-06 loss)
I0404 14:21:19.136338 9252 solver.cpp:245] Train net output #39: loss/loss18 = 5.51319e-05 (* 0.0454545 = 2.506e-06 loss)
I0404 14:21:19.136354 9252 solver.cpp:245] Train net output #40: loss/loss19 = 6.29348e-05 (* 0.0454545 = 2.86067e-06 loss)
I0404 14:21:19.136368 9252 solver.cpp:245] Train net output #41: loss/loss20 = 5.71801e-05 (* 0.0454545 = 2.5991e-06 loss)
I0404 14:21:19.136382 9252 solver.cpp:245] Train net output #42: loss/loss21 = 5.61144e-05 (* 0.0454545 = 2.55065e-06 loss)
I0404 14:21:19.136395 9252 solver.cpp:245] Train net output #43: loss/loss22 = 6.0697e-05 (* 0.0454545 = 2.75895e-06 loss)
I0404 14:21:19.136407 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 14:21:19.136420 9252 solver.cpp:245] Train net output #45: total_confidence = 0.000155991
I0404 14:21:19.136433 9252 sgd_solver.cpp:106] Iteration 39000, lr = 0.00961
I0404 14:22:30.577646 9252 solver.cpp:229] Iteration 39500, loss = 0.90434
I0404 14:22:30.577813 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.25
I0404 14:22:30.577833 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125
I0404 14:22:30.577847 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375
I0404 14:22:30.577858 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625
I0404 14:22:30.577878 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25
I0404 14:22:30.577890 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625
I0404 14:22:30.577903 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.875
I0404 14:22:30.577914 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.96875
I0404 14:22:30.577926 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 1
I0404 14:22:30.577937 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 14:22:30.577950 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 14:22:30.577960 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 14:22:30.577972 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 14:22:30.577992 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 14:22:30.578004 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 14:22:30.578016 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 14:22:30.578027 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 14:22:30.578037 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 14:22:30.578049 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 14:22:30.578060 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 14:22:30.578073 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 14:22:30.578083 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 14:22:30.578099 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.95367 (* 0.0454545 = 0.134258 loss)
I0404 14:22:30.578120 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.32708 (* 0.0454545 = 0.151231 loss)
I0404 14:22:30.578133 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.26963 (* 0.0454545 = 0.14862 loss)
I0404 14:22:30.578147 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.32875 (* 0.0454545 = 0.151307 loss)
I0404 14:22:30.578161 9252 solver.cpp:245] Train net output #26: loss/loss05 = 3.10908 (* 0.0454545 = 0.141322 loss)
I0404 14:22:30.578176 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.32282 (* 0.0454545 = 0.105583 loss)
I0404 14:22:30.578188 9252 solver.cpp:245] Train net output #28: loss/loss07 = 0.808778 (* 0.0454545 = 0.0367626 loss)
I0404 14:22:30.578202 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.276 (* 0.0454545 = 0.0125455 loss)
I0404 14:22:30.578215 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.0194581 (* 0.0454545 = 0.000884457 loss)
I0404 14:22:30.578230 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.0047066 (* 0.0454545 = 0.000213936 loss)
I0404 14:22:30.578244 9252 solver.cpp:245] Train net output #32: loss/loss11 = 7.73897e-05 (* 0.0454545 = 3.51772e-06 loss)
I0404 14:22:30.578258 9252 solver.cpp:245] Train net output #33: loss/loss12 = 7.80899e-05 (* 0.0454545 = 3.54954e-06 loss)
I0404 14:22:30.578271 9252 solver.cpp:245] Train net output #34: loss/loss13 = 7.34796e-05 (* 0.0454545 = 3.33998e-06 loss)
I0404 14:22:30.578285 9252 solver.cpp:245] Train net output #35: loss/loss14 = 7.31325e-05 (* 0.0454545 = 3.3242e-06 loss)
I0404 14:22:30.578299 9252 solver.cpp:245] Train net output #36: loss/loss15 = 7.83045e-05 (* 0.0454545 = 3.55929e-06 loss)
I0404 14:22:30.578325 9252 solver.cpp:245] Train net output #37: loss/loss16 = 7.43979e-05 (* 0.0454545 = 3.38172e-06 loss)
I0404 14:22:30.578342 9252 solver.cpp:245] Train net output #38: loss/loss17 = 7.1715e-05 (* 0.0454545 = 3.25977e-06 loss)
I0404 14:22:30.578371 9252 solver.cpp:245] Train net output #39: loss/loss18 = 6.82167e-05 (* 0.0454545 = 3.10076e-06 loss)
I0404 14:22:30.578385 9252 solver.cpp:245] Train net output #40: loss/loss19 = 7.31913e-05 (* 0.0454545 = 3.32688e-06 loss)
I0404 14:22:30.578399 9252 solver.cpp:245] Train net output #41: loss/loss20 = 7.34539e-05 (* 0.0454545 = 3.33881e-06 loss)
I0404 14:22:30.578413 9252 solver.cpp:245] Train net output #42: loss/loss21 = 7.43896e-05 (* 0.0454545 = 3.38134e-06 loss)
I0404 14:22:30.578426 9252 solver.cpp:245] Train net output #43: loss/loss22 = 7.49236e-05 (* 0.0454545 = 3.40562e-06 loss)
I0404 14:22:30.578438 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 14:22:30.578449 9252 solver.cpp:245] Train net output #45: total_confidence = 0.000105055
I0404 14:22:30.578464 9252 sgd_solver.cpp:106] Iteration 39500, lr = 0.009605
I0404 14:23:41.364197 9252 solver.cpp:338] Iteration 40000, Testing net (#0)
I0404 14:23:49.366588 9252 solver.cpp:393] Test loss: 0.822353
I0404 14:23:49.366634 9252 solver.cpp:406] Test net output #0: loss/accuracy01 = 0.116
I0404 14:23:49.366650 9252 solver.cpp:406] Test net output #1: loss/accuracy02 = 0.093
I0404 14:23:49.366662 9252 solver.cpp:406] Test net output #2: loss/accuracy03 = 0.1
I0404 14:23:49.366674 9252 solver.cpp:406] Test net output #3: loss/accuracy04 = 0.141
I0404 14:23:49.366685 9252 solver.cpp:406] Test net output #4: loss/accuracy05 = 0.246
I0404 14:23:49.366698 9252 solver.cpp:406] Test net output #5: loss/accuracy06 = 0.524
I0404 14:23:49.366708 9252 solver.cpp:406] Test net output #6: loss/accuracy07 = 0.893
I0404 14:23:49.366719 9252 solver.cpp:406] Test net output #7: loss/accuracy08 = 0.97
I0404 14:23:49.366731 9252 solver.cpp:406] Test net output #8: loss/accuracy09 = 0.995
I0404 14:23:49.366742 9252 solver.cpp:406] Test net output #9: loss/accuracy10 = 0.998
I0404 14:23:49.366756 9252 solver.cpp:406] Test net output #10: loss/accuracy11 = 1
I0404 14:23:49.366768 9252 solver.cpp:406] Test net output #11: loss/accuracy12 = 1
I0404 14:23:49.366780 9252 solver.cpp:406] Test net output #12: loss/accuracy13 = 1
I0404 14:23:49.366791 9252 solver.cpp:406] Test net output #13: loss/accuracy14 = 1
I0404 14:23:49.366801 9252 solver.cpp:406] Test net output #14: loss/accuracy15 = 1
I0404 14:23:49.366812 9252 solver.cpp:406] Test net output #15: loss/accuracy16 = 1
I0404 14:23:49.366823 9252 solver.cpp:406] Test net output #16: loss/accuracy17 = 1
I0404 14:23:49.366834 9252 solver.cpp:406] Test net output #17: loss/accuracy18 = 1
I0404 14:23:49.366845 9252 solver.cpp:406] Test net output #18: loss/accuracy19 = 1
I0404 14:23:49.366857 9252 solver.cpp:406] Test net output #19: loss/accuracy20 = 1
I0404 14:23:49.366868 9252 solver.cpp:406] Test net output #20: loss/accuracy21 = 1
I0404 14:23:49.366878 9252 solver.cpp:406] Test net output #21: loss/accuracy22 = 1
I0404 14:23:49.366894 9252 solver.cpp:406] Test net output #22: loss/loss01 = 3.01237 (* 0.0454545 = 0.136926 loss)
I0404 14:23:49.366907 9252 solver.cpp:406] Test net output #23: loss/loss02 = 3.12292 (* 0.0454545 = 0.141951 loss)
I0404 14:23:49.366920 9252 solver.cpp:406] Test net output #24: loss/loss03 = 3.18633 (* 0.0454545 = 0.144833 loss)
I0404 14:23:49.366933 9252 solver.cpp:406] Test net output #25: loss/loss04 = 3.08773 (* 0.0454545 = 0.140351 loss)
I0404 14:23:49.366946 9252 solver.cpp:406] Test net output #26: loss/loss05 = 2.89707 (* 0.0454545 = 0.131685 loss)
I0404 14:23:49.366960 9252 solver.cpp:406] Test net output #27: loss/loss06 = 1.94957 (* 0.0454545 = 0.088617 loss)
I0404 14:23:49.366973 9252 solver.cpp:406] Test net output #28: loss/loss07 = 0.549658 (* 0.0454545 = 0.0249845 loss)
I0404 14:23:49.366986 9252 solver.cpp:406] Test net output #29: loss/loss08 = 0.20798 (* 0.0454545 = 0.00945364 loss)
I0404 14:23:49.366999 9252 solver.cpp:406] Test net output #30: loss/loss09 = 0.0498528 (* 0.0454545 = 0.00226604 loss)
I0404 14:23:49.367013 9252 solver.cpp:406] Test net output #31: loss/loss10 = 0.0262456 (* 0.0454545 = 0.00119298 loss)
I0404 14:23:49.367027 9252 solver.cpp:406] Test net output #32: loss/loss11 = 0.000167756 (* 0.0454545 = 7.62528e-06 loss)
I0404 14:23:49.367041 9252 solver.cpp:406] Test net output #33: loss/loss12 = 0.000178635 (* 0.0454545 = 8.11978e-06 loss)
I0404 14:23:49.367055 9252 solver.cpp:406] Test net output #34: loss/loss13 = 0.000164635 (* 0.0454545 = 7.48343e-06 loss)
I0404 14:23:49.367069 9252 solver.cpp:406] Test net output #35: loss/loss14 = 0.000173347 (* 0.0454545 = 7.8794e-06 loss)
I0404 14:23:49.367081 9252 solver.cpp:406] Test net output #36: loss/loss15 = 0.000168951 (* 0.0454545 = 7.67957e-06 loss)
I0404 14:23:49.367095 9252 solver.cpp:406] Test net output #37: loss/loss16 = 0.000181074 (* 0.0454545 = 8.23062e-06 loss)
I0404 14:23:49.367108 9252 solver.cpp:406] Test net output #38: loss/loss17 = 0.0001662 (* 0.0454545 = 7.55454e-06 loss)
I0404 14:23:49.367156 9252 solver.cpp:406] Test net output #39: loss/loss18 = 0.000152265 (* 0.0454545 = 6.92115e-06 loss)
I0404 14:23:49.367172 9252 solver.cpp:406] Test net output #40: loss/loss19 = 0.000182612 (* 0.0454545 = 8.30054e-06 loss)
I0404 14:23:49.367184 9252 solver.cpp:406] Test net output #41: loss/loss20 = 0.000172973 (* 0.0454545 = 7.8624e-06 loss)
I0404 14:23:49.367198 9252 solver.cpp:406] Test net output #42: loss/loss21 = 0.000172998 (* 0.0454545 = 7.86353e-06 loss)
I0404 14:23:49.367211 9252 solver.cpp:406] Test net output #43: loss/loss22 = 0.000166995 (* 0.0454545 = 7.59067e-06 loss)
I0404 14:23:49.367223 9252 solver.cpp:406] Test net output #44: total_accuracy = 0
I0404 14:23:49.367234 9252 solver.cpp:406] Test net output #45: total_confidence = 0.000104316
I0404 14:23:49.401162 9252 solver.cpp:229] Iteration 40000, loss = 0.900159
I0404 14:23:49.401202 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.25
I0404 14:23:49.401219 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125
I0404 14:23:49.401232 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0
I0404 14:23:49.401244 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875
I0404 14:23:49.401257 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875
I0404 14:23:49.401268 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375
I0404 14:23:49.401279 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.65625
I0404 14:23:49.401291 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.75
I0404 14:23:49.401303 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.875
I0404 14:23:49.401314 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875
I0404 14:23:49.401326 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 14:23:49.401337 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 14:23:49.401348 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 14:23:49.401360 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 14:23:49.401371 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 14:23:49.401382 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 14:23:49.401393 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 14:23:49.401406 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 14:23:49.401428 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 14:23:49.401445 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 14:23:49.401456 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 14:23:49.401468 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 14:23:49.401482 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.86705 (* 0.0454545 = 0.13032 loss)
I0404 14:23:49.401496 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.3384 (* 0.0454545 = 0.151745 loss)
I0404 14:23:49.401510 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.21012 (* 0.0454545 = 0.145914 loss)
I0404 14:23:49.401525 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.28832 (* 0.0454545 = 0.149469 loss)
I0404 14:23:49.401538 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.92341 (* 0.0454545 = 0.132882 loss)
I0404 14:23:49.401551 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.49649 (* 0.0454545 = 0.113477 loss)
I0404 14:23:49.401566 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.53265 (* 0.0454545 = 0.0696659 loss)
I0404 14:23:49.401578 9252 solver.cpp:245] Train net output #29: loss/loss08 = 1.09698 (* 0.0454545 = 0.0498628 loss)
I0404 14:23:49.401592 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.538732 (* 0.0454545 = 0.0244878 loss)
I0404 14:23:49.401610 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.122241 (* 0.0454545 = 0.00555643 loss)
I0404 14:23:49.401643 9252 solver.cpp:245] Train net output #32: loss/loss11 = 0.000105588 (* 0.0454545 = 4.79944e-06 loss)
I0404 14:23:49.401659 9252 solver.cpp:245] Train net output #33: loss/loss12 = 9.96951e-05 (* 0.0454545 = 4.5316e-06 loss)
I0404 14:23:49.401672 9252 solver.cpp:245] Train net output #34: loss/loss13 = 0.000102353 (* 0.0454545 = 4.65242e-06 loss)
I0404 14:23:49.401686 9252 solver.cpp:245] Train net output #35: loss/loss14 = 0.000104541 (* 0.0454545 = 4.75185e-06 loss)
I0404 14:23:49.401700 9252 solver.cpp:245] Train net output #36: loss/loss15 = 9.2907e-05 (* 0.0454545 = 4.22304e-06 loss)
I0404 14:23:49.401715 9252 solver.cpp:245] Train net output #37: loss/loss16 = 0.000106594 (* 0.0454545 = 4.84518e-06 loss)
I0404 14:23:49.401727 9252 solver.cpp:245] Train net output #38: loss/loss17 = 0.000100213 (* 0.0454545 = 4.55512e-06 loss)
I0404 14:23:49.401741 9252 solver.cpp:245] Train net output #39: loss/loss18 = 9.39866e-05 (* 0.0454545 = 4.27212e-06 loss)
I0404 14:23:49.401756 9252 solver.cpp:245] Train net output #40: loss/loss19 = 9.60735e-05 (* 0.0454545 = 4.36698e-06 loss)
I0404 14:23:49.401769 9252 solver.cpp:245] Train net output #41: loss/loss20 = 9.05371e-05 (* 0.0454545 = 4.11532e-06 loss)
I0404 14:23:49.401783 9252 solver.cpp:245] Train net output #42: loss/loss21 = 9.67404e-05 (* 0.0454545 = 4.39729e-06 loss)
I0404 14:23:49.401796 9252 solver.cpp:245] Train net output #43: loss/loss22 = 9.74647e-05 (* 0.0454545 = 4.43021e-06 loss)
I0404 14:23:49.401808 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 14:23:49.401820 9252 solver.cpp:245] Train net output #45: total_confidence = 0.00031639
I0404 14:23:49.401835 9252 sgd_solver.cpp:106] Iteration 40000, lr = 0.0096
I0404 14:25:00.031783 9252 solver.cpp:229] Iteration 40500, loss = 0.898315
I0404 14:25:00.031905 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.21875
I0404 14:25:00.031924 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125
I0404 14:25:00.031936 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375
I0404 14:25:00.031949 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375
I0404 14:25:00.031961 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.21875
I0404 14:25:00.031973 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.46875
I0404 14:25:00.031985 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.78125
I0404 14:25:00.031996 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875
I0404 14:25:00.032008 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375
I0404 14:25:00.032021 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875
I0404 14:25:00.032032 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 14:25:00.032043 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 14:25:00.032055 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 14:25:00.032066 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 14:25:00.032078 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 14:25:00.032090 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 14:25:00.032101 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 14:25:00.032112 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 14:25:00.032124 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 14:25:00.032135 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 14:25:00.032146 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 14:25:00.032158 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 14:25:00.032173 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.93288 (* 0.0454545 = 0.133313 loss)
I0404 14:25:00.032187 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.34785 (* 0.0454545 = 0.152175 loss)
I0404 14:25:00.032202 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.32643 (* 0.0454545 = 0.151201 loss)
I0404 14:25:00.032215 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.61058 (* 0.0454545 = 0.164117 loss)
I0404 14:25:00.032229 9252 solver.cpp:245] Train net output #26: loss/loss05 = 3.17152 (* 0.0454545 = 0.14416 loss)
I0404 14:25:00.032243 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.18337 (* 0.0454545 = 0.0992441 loss)
I0404 14:25:00.032258 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.07812 (* 0.0454545 = 0.0490057 loss)
I0404 14:25:00.032271 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.560238 (* 0.0454545 = 0.0254654 loss)
I0404 14:25:00.032285 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.368579 (* 0.0454545 = 0.0167536 loss)
I0404 14:25:00.032299 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.113816 (* 0.0454545 = 0.00517343 loss)
I0404 14:25:00.032315 9252 solver.cpp:245] Train net output #32: loss/loss11 = 0.000209059 (* 0.0454545 = 9.50268e-06 loss)
I0404 14:25:00.032327 9252 solver.cpp:245] Train net output #33: loss/loss12 = 0.000195485 (* 0.0454545 = 8.88568e-06 loss)
I0404 14:25:00.032341 9252 solver.cpp:245] Train net output #34: loss/loss13 = 0.000224602 (* 0.0454545 = 1.02092e-05 loss)
I0404 14:25:00.032356 9252 solver.cpp:245] Train net output #35: loss/loss14 = 0.000221335 (* 0.0454545 = 1.00607e-05 loss)
I0404 14:25:00.032369 9252 solver.cpp:245] Train net output #36: loss/loss15 = 0.000192257 (* 0.0454545 = 8.73897e-06 loss)
I0404 14:25:00.032383 9252 solver.cpp:245] Train net output #37: loss/loss16 = 0.000222507 (* 0.0454545 = 1.01139e-05 loss)
I0404 14:25:00.032397 9252 solver.cpp:245] Train net output #38: loss/loss17 = 0.000188776 (* 0.0454545 = 8.58074e-06 loss)
I0404 14:25:00.032428 9252 solver.cpp:245] Train net output #39: loss/loss18 = 0.000197502 (* 0.0454545 = 8.97737e-06 loss)
I0404 14:25:00.032444 9252 solver.cpp:245] Train net output #40: loss/loss19 = 0.0002043 (* 0.0454545 = 9.28634e-06 loss)
I0404 14:25:00.032457 9252 solver.cpp:245] Train net output #41: loss/loss20 = 0.000196507 (* 0.0454545 = 8.93212e-06 loss)
I0404 14:25:00.032471 9252 solver.cpp:245] Train net output #42: loss/loss21 = 0.000202525 (* 0.0454545 = 9.20568e-06 loss)
I0404 14:25:00.032485 9252 solver.cpp:245] Train net output #43: loss/loss22 = 0.000202787 (* 0.0454545 = 9.21759e-06 loss)
I0404 14:25:00.032497 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 14:25:00.032508 9252 solver.cpp:245] Train net output #45: total_confidence = 0.000302297
I0404 14:25:00.032521 9252 sgd_solver.cpp:106] Iteration 40500, lr = 0.009595
I0404 14:26:11.141767 9252 solver.cpp:229] Iteration 41000, loss = 0.893983
I0404 14:26:11.142043 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.28125
I0404 14:26:11.142063 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125
I0404 14:26:11.142076 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.21875
I0404 14:26:11.142089 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625
I0404 14:26:11.142102 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.34375
I0404 14:26:11.142113 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375
I0404 14:26:11.142125 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.5625
I0404 14:26:11.142138 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625
I0404 14:26:11.142150 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375
I0404 14:26:11.142163 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 14:26:11.142174 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 14:26:11.142186 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 14:26:11.142197 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 14:26:11.142210 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 14:26:11.142220 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 14:26:11.142247 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 14:26:11.142261 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 14:26:11.142272 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 14:26:11.142283 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 14:26:11.142295 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 14:26:11.142309 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 14:26:11.142321 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 14:26:11.142336 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.69355 (* 0.0454545 = 0.122434 loss)
I0404 14:26:11.142351 9252 solver.cpp:245] Train net output #23: loss/loss02 = 2.90733 (* 0.0454545 = 0.132151 loss)
I0404 14:26:11.142365 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.07115 (* 0.0454545 = 0.139598 loss)
I0404 14:26:11.142379 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.09093 (* 0.0454545 = 0.140497 loss)
I0404 14:26:11.142392 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.66603 (* 0.0454545 = 0.121183 loss)
I0404 14:26:11.142406 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.40569 (* 0.0454545 = 0.109349 loss)
I0404 14:26:11.142419 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.877 (* 0.0454545 = 0.0853181 loss)
I0404 14:26:11.142433 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.350012 (* 0.0454545 = 0.0159096 loss)
I0404 14:26:11.142447 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.347312 (* 0.0454545 = 0.0157869 loss)
I0404 14:26:11.142462 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.0331523 (* 0.0454545 = 0.00150692 loss)
I0404 14:26:11.142477 9252 solver.cpp:245] Train net output #32: loss/loss11 = 0.000111987 (* 0.0454545 = 5.09032e-06 loss)
I0404 14:26:11.142490 9252 solver.cpp:245] Train net output #33: loss/loss12 = 0.000111805 (* 0.0454545 = 5.08204e-06 loss)
I0404 14:26:11.142505 9252 solver.cpp:245] Train net output #34: loss/loss13 = 0.000109022 (* 0.0454545 = 4.95554e-06 loss)
I0404 14:26:11.142519 9252 solver.cpp:245] Train net output #35: loss/loss14 = 0.000103964 (* 0.0454545 = 4.72565e-06 loss)
I0404 14:26:11.142534 9252 solver.cpp:245] Train net output #36: loss/loss15 = 0.000103087 (* 0.0454545 = 4.68577e-06 loss)
I0404 14:26:11.142547 9252 solver.cpp:245] Train net output #37: loss/loss16 = 0.000100948 (* 0.0454545 = 4.58857e-06 loss)
I0404 14:26:11.142561 9252 solver.cpp:245] Train net output #38: loss/loss17 = 0.00010702 (* 0.0454545 = 4.86454e-06 loss)
I0404 14:26:11.142590 9252 solver.cpp:245] Train net output #39: loss/loss18 = 9.66389e-05 (* 0.0454545 = 4.39268e-06 loss)
I0404 14:26:11.142611 9252 solver.cpp:245] Train net output #40: loss/loss19 = 9.9913e-05 (* 0.0454545 = 4.5415e-06 loss)
I0404 14:26:11.142627 9252 solver.cpp:245] Train net output #41: loss/loss20 = 9.53193e-05 (* 0.0454545 = 4.3327e-06 loss)
I0404 14:26:11.142642 9252 solver.cpp:245] Train net output #42: loss/loss21 = 9.08254e-05 (* 0.0454545 = 4.12843e-06 loss)
I0404 14:26:11.142660 9252 solver.cpp:245] Train net output #43: loss/loss22 = 0.000101941 (* 0.0454545 = 4.63368e-06 loss)
I0404 14:26:11.142673 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 14:26:11.142683 9252 solver.cpp:245] Train net output #45: total_confidence = 0.000232007
I0404 14:26:11.142696 9252 sgd_solver.cpp:106] Iteration 41000, lr = 0.00959
I0404 14:27:21.915628 9252 solver.cpp:229] Iteration 41500, loss = 0.895001
I0404 14:27:21.915766 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.28125
I0404 14:27:21.915786 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.15625
I0404 14:27:21.915798 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125
I0404 14:27:21.915809 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625
I0404 14:27:21.915822 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875
I0404 14:27:21.915833 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.21875
I0404 14:27:21.915845 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.53125
I0404 14:27:21.915856 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625
I0404 14:27:21.915868 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625
I0404 14:27:21.915880 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 14:27:21.915894 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 14:27:21.915904 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 14:27:21.915916 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 14:27:21.915927 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 14:27:21.915938 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 14:27:21.915951 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 14:27:21.915961 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 14:27:21.915972 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 14:27:21.915984 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 14:27:21.915995 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 14:27:21.916007 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 14:27:21.916018 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 14:27:21.916034 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.54438 (* 0.0454545 = 0.115654 loss)
I0404 14:27:21.916049 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.10438 (* 0.0454545 = 0.141108 loss)
I0404 14:27:21.916062 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.02354 (* 0.0454545 = 0.137434 loss)
I0404 14:27:21.916076 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.0678 (* 0.0454545 = 0.139446 loss)
I0404 14:27:21.916090 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.96523 (* 0.0454545 = 0.134783 loss)
I0404 14:27:21.916103 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.99447 (* 0.0454545 = 0.136112 loss)
I0404 14:27:21.916116 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.79293 (* 0.0454545 = 0.0814967 loss)
I0404 14:27:21.916131 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.396385 (* 0.0454545 = 0.0180175 loss)
I0404 14:27:21.916146 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.430348 (* 0.0454545 = 0.0195613 loss)
I0404 14:27:21.916160 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.0157196 (* 0.0454545 = 0.000714528 loss)
I0404 14:27:21.916174 9252 solver.cpp:245] Train net output #32: loss/loss11 = 5.40011e-05 (* 0.0454545 = 2.4546e-06 loss)
I0404 14:27:21.916189 9252 solver.cpp:245] Train net output #33: loss/loss12 = 5.17384e-05 (* 0.0454545 = 2.35175e-06 loss)
I0404 14:27:21.916208 9252 solver.cpp:245] Train net output #34: loss/loss13 = 4.92842e-05 (* 0.0454545 = 2.24019e-06 loss)
I0404 14:27:21.916223 9252 solver.cpp:245] Train net output #35: loss/loss14 = 5.24103e-05 (* 0.0454545 = 2.38229e-06 loss)
I0404 14:27:21.916236 9252 solver.cpp:245] Train net output #36: loss/loss15 = 5.15669e-05 (* 0.0454545 = 2.34395e-06 loss)
I0404 14:27:21.916249 9252 solver.cpp:245] Train net output #37: loss/loss16 = 4.77022e-05 (* 0.0454545 = 2.16828e-06 loss)
I0404 14:27:21.916263 9252 solver.cpp:245] Train net output #38: loss/loss17 = 4.93128e-05 (* 0.0454545 = 2.24149e-06 loss)
I0404 14:27:21.916296 9252 solver.cpp:245] Train net output #39: loss/loss18 = 4.7589e-05 (* 0.0454545 = 2.16314e-06 loss)
I0404 14:27:21.916311 9252 solver.cpp:245] Train net output #40: loss/loss19 = 5.00993e-05 (* 0.0454545 = 2.27724e-06 loss)
I0404 14:27:21.916324 9252 solver.cpp:245] Train net output #41: loss/loss20 = 4.82664e-05 (* 0.0454545 = 2.19393e-06 loss)
I0404 14:27:21.916338 9252 solver.cpp:245] Train net output #42: loss/loss21 = 4.66941e-05 (* 0.0454545 = 2.12246e-06 loss)
I0404 14:27:21.916352 9252 solver.cpp:245] Train net output #43: loss/loss22 = 4.82624e-05 (* 0.0454545 = 2.19375e-06 loss)
I0404 14:27:21.916363 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 14:27:21.916375 9252 solver.cpp:245] Train net output #45: total_confidence = 0.000268182
I0404 14:27:21.916388 9252 sgd_solver.cpp:106] Iteration 41500, lr = 0.009585
I0404 14:28:32.965742 9252 solver.cpp:229] Iteration 42000, loss = 0.895006
I0404 14:28:32.965862 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125
I0404 14:28:32.965881 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625
I0404 14:28:32.965894 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625
I0404 14:28:32.965906 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625
I0404 14:28:32.965919 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125
I0404 14:28:32.965930 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.46875
I0404 14:28:32.965942 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75
I0404 14:28:32.965955 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875
I0404 14:28:32.965966 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875
I0404 14:28:32.965978 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 14:28:32.965991 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 14:28:32.966001 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 14:28:32.966013 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 14:28:32.966024 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 14:28:32.966035 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 14:28:32.966048 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 14:28:32.966058 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 14:28:32.966070 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 14:28:32.966081 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 14:28:32.966092 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 14:28:32.966104 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 14:28:32.966115 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 14:28:32.966131 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.74084 (* 0.0454545 = 0.124584 loss)
I0404 14:28:32.966145 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.01653 (* 0.0454545 = 0.137115 loss)
I0404 14:28:32.966159 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.05982 (* 0.0454545 = 0.139083 loss)
I0404 14:28:32.966173 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.03405 (* 0.0454545 = 0.137911 loss)
I0404 14:28:32.966187 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.39346 (* 0.0454545 = 0.108794 loss)
I0404 14:28:32.966200 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.09962 (* 0.0454545 = 0.0954374 loss)
I0404 14:28:32.966213 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.07641 (* 0.0454545 = 0.0489277 loss)
I0404 14:28:32.966228 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.578565 (* 0.0454545 = 0.0262984 loss)
I0404 14:28:32.966241 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.284962 (* 0.0454545 = 0.0129528 loss)
I0404 14:28:32.966255 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.0105527 (* 0.0454545 = 0.000479666 loss)
I0404 14:28:32.966269 9252 solver.cpp:245] Train net output #32: loss/loss11 = 3.92352e-05 (* 0.0454545 = 1.78342e-06 loss)
I0404 14:28:32.966284 9252 solver.cpp:245] Train net output #33: loss/loss12 = 4.10072e-05 (* 0.0454545 = 1.86396e-06 loss)
I0404 14:28:32.966297 9252 solver.cpp:245] Train net output #34: loss/loss13 = 3.87492e-05 (* 0.0454545 = 1.76133e-06 loss)
I0404 14:28:32.966311 9252 solver.cpp:245] Train net output #35: loss/loss14 = 3.69346e-05 (* 0.0454545 = 1.67885e-06 loss)
I0404 14:28:32.966325 9252 solver.cpp:245] Train net output #36: loss/loss15 = 3.92035e-05 (* 0.0454545 = 1.78198e-06 loss)
I0404 14:28:32.966338 9252 solver.cpp:245] Train net output #37: loss/loss16 = 3.74299e-05 (* 0.0454545 = 1.70136e-06 loss)
I0404 14:28:32.966352 9252 solver.cpp:245] Train net output #38: loss/loss17 = 3.52076e-05 (* 0.0454545 = 1.60035e-06 loss)
I0404 14:28:32.966383 9252 solver.cpp:245] Train net output #39: loss/loss18 = 3.39354e-05 (* 0.0454545 = 1.54252e-06 loss)
I0404 14:28:32.966398 9252 solver.cpp:245] Train net output #40: loss/loss19 = 3.64315e-05 (* 0.0454545 = 1.65598e-06 loss)
I0404 14:28:32.966413 9252 solver.cpp:245] Train net output #41: loss/loss20 = 3.60646e-05 (* 0.0454545 = 1.6393e-06 loss)
I0404 14:28:32.966426 9252 solver.cpp:245] Train net output #42: loss/loss21 = 3.4511e-05 (* 0.0454545 = 1.56868e-06 loss)
I0404 14:28:32.966440 9252 solver.cpp:245] Train net output #43: loss/loss22 = 3.73369e-05 (* 0.0454545 = 1.69713e-06 loss)
I0404 14:28:32.966452 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 14:28:32.966464 9252 solver.cpp:245] Train net output #45: total_confidence = 0.000131817
I0404 14:28:32.966477 9252 sgd_solver.cpp:106] Iteration 42000, lr = 0.00958
I0404 14:29:43.957317 9252 solver.cpp:229] Iteration 42500, loss = 0.891995
I0404 14:29:43.957463 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.28125
I0404 14:29:43.957482 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125
I0404 14:29:43.957495 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125
I0404 14:29:43.957507 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375
I0404 14:29:43.957520 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125
I0404 14:29:43.957531 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5625
I0404 14:29:43.957543 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125
I0404 14:29:43.957556 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.96875
I0404 14:29:43.957567 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 1
I0404 14:29:43.957579 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 14:29:43.957592 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 14:29:43.957602 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 14:29:43.957614 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 14:29:43.957626 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 14:29:43.957638 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 14:29:43.957649 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 14:29:43.957660 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 14:29:43.957672 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 14:29:43.957684 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 14:29:43.957695 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 14:29:43.957707 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 14:29:43.957718 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 14:29:43.957734 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.4931 (* 0.0454545 = 0.113323 loss)
I0404 14:29:43.957751 9252 solver.cpp:245] Train net output #23: loss/loss02 = 2.87215 (* 0.0454545 = 0.130552 loss)
I0404 14:29:43.957765 9252 solver.cpp:245] Train net output #24: loss/loss03 = 2.95597 (* 0.0454545 = 0.134362 loss)
I0404 14:29:43.957779 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.20686 (* 0.0454545 = 0.145766 loss)
I0404 14:29:43.957792 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.65861 (* 0.0454545 = 0.120846 loss)
I0404 14:29:43.957806 9252 solver.cpp:245] Train net output #27: loss/loss06 = 1.83784 (* 0.0454545 = 0.0835383 loss)
I0404 14:29:43.957820 9252 solver.cpp:245] Train net output #28: loss/loss07 = 0.792449 (* 0.0454545 = 0.0360204 loss)
I0404 14:29:43.957834 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.126498 (* 0.0454545 = 0.00574991 loss)
I0404 14:29:43.957849 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.00957432 (* 0.0454545 = 0.000435197 loss)
I0404 14:29:43.957862 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.00279894 (* 0.0454545 = 0.000127224 loss)
I0404 14:29:43.957876 9252 solver.cpp:245] Train net output #32: loss/loss11 = 7.09846e-05 (* 0.0454545 = 3.22657e-06 loss)
I0404 14:29:43.957890 9252 solver.cpp:245] Train net output #33: loss/loss12 = 7.07724e-05 (* 0.0454545 = 3.21693e-06 loss)
I0404 14:29:43.957904 9252 solver.cpp:245] Train net output #34: loss/loss13 = 6.50836e-05 (* 0.0454545 = 2.95835e-06 loss)
I0404 14:29:43.957918 9252 solver.cpp:245] Train net output #35: loss/loss14 = 6.77993e-05 (* 0.0454545 = 3.08179e-06 loss)
I0404 14:29:43.957932 9252 solver.cpp:245] Train net output #36: loss/loss15 = 7.05884e-05 (* 0.0454545 = 3.20856e-06 loss)
I0404 14:29:43.957947 9252 solver.cpp:245] Train net output #37: loss/loss16 = 7.91312e-05 (* 0.0454545 = 3.59687e-06 loss)
I0404 14:29:43.957960 9252 solver.cpp:245] Train net output #38: loss/loss17 = 6.91441e-05 (* 0.0454545 = 3.14291e-06 loss)
I0404 14:29:43.957993 9252 solver.cpp:245] Train net output #39: loss/loss18 = 5.90314e-05 (* 0.0454545 = 2.68325e-06 loss)
I0404 14:29:43.958009 9252 solver.cpp:245] Train net output #40: loss/loss19 = 6.89917e-05 (* 0.0454545 = 3.13599e-06 loss)
I0404 14:29:43.958022 9252 solver.cpp:245] Train net output #41: loss/loss20 = 6.32266e-05 (* 0.0454545 = 2.87393e-06 loss)
I0404 14:29:43.958036 9252 solver.cpp:245] Train net output #42: loss/loss21 = 6.43593e-05 (* 0.0454545 = 2.92542e-06 loss)
I0404 14:29:43.958050 9252 solver.cpp:245] Train net output #43: loss/loss22 = 6.44622e-05 (* 0.0454545 = 2.9301e-06 loss)
I0404 14:29:43.958062 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 14:29:43.958073 9252 solver.cpp:245] Train net output #45: total_confidence = 0.00026189
I0404 14:29:43.958088 9252 sgd_solver.cpp:106] Iteration 42500, lr = 0.009575
I0404 14:30:55.344177 9252 solver.cpp:229] Iteration 43000, loss = 0.888486
I0404 14:30:55.344350 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.1875
I0404 14:30:55.344379 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375
I0404 14:30:55.344406 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625
I0404 14:30:55.344434 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625
I0404 14:30:55.344455 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25
I0404 14:30:55.344467 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375
I0404 14:30:55.344480 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125
I0404 14:30:55.344491 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.96875
I0404 14:30:55.344503 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 1
I0404 14:30:55.344516 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 14:30:55.344527 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 14:30:55.344543 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 14:30:55.344561 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 14:30:55.344574 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 14:30:55.344586 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 14:30:55.344599 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 14:30:55.344610 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 14:30:55.344621 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 14:30:55.344633 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 14:30:55.344646 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 14:30:55.344660 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 14:30:55.344672 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 14:30:55.344688 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.78669 (* 0.0454545 = 0.126668 loss)
I0404 14:30:55.344702 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.38253 (* 0.0454545 = 0.153752 loss)
I0404 14:30:55.344717 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.09866 (* 0.0454545 = 0.140848 loss)
I0404 14:30:55.344730 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.26318 (* 0.0454545 = 0.148326 loss)
I0404 14:30:55.344748 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.91469 (* 0.0454545 = 0.132486 loss)
I0404 14:30:55.344775 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.37141 (* 0.0454545 = 0.107791 loss)
I0404 14:30:55.344807 9252 solver.cpp:245] Train net output #28: loss/loss07 = 0.982485 (* 0.0454545 = 0.0446584 loss)
I0404 14:30:55.344828 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.275917 (* 0.0454545 = 0.0125417 loss)
I0404 14:30:55.344843 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.0451808 (* 0.0454545 = 0.00205367 loss)
I0404 14:30:55.344858 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.00912156 (* 0.0454545 = 0.000414617 loss)
I0404 14:30:55.344877 9252 solver.cpp:245] Train net output #32: loss/loss11 = 0.000281635 (* 0.0454545 = 1.28016e-05 loss)
I0404 14:30:55.344892 9252 solver.cpp:245] Train net output #33: loss/loss12 = 0.000258315 (* 0.0454545 = 1.17416e-05 loss)
I0404 14:30:55.344905 9252 solver.cpp:245] Train net output #34: loss/loss13 = 0.000256014 (* 0.0454545 = 1.1637e-05 loss)
I0404 14:30:55.344930 9252 solver.cpp:245] Train net output #35: loss/loss14 = 0.000276257 (* 0.0454545 = 1.25571e-05 loss)
I0404 14:30:55.344947 9252 solver.cpp:245] Train net output #36: loss/loss15 = 0.000251895 (* 0.0454545 = 1.14498e-05 loss)
I0404 14:30:55.344961 9252 solver.cpp:245] Train net output #37: loss/loss16 = 0.000292109 (* 0.0454545 = 1.32777e-05 loss)
I0404 14:30:55.344975 9252 solver.cpp:245] Train net output #38: loss/loss17 = 0.000251118 (* 0.0454545 = 1.14144e-05 loss)
I0404 14:30:55.345005 9252 solver.cpp:245] Train net output #39: loss/loss18 = 0.000253999 (* 0.0454545 = 1.15454e-05 loss)
I0404 14:30:55.345021 9252 solver.cpp:245] Train net output #40: loss/loss19 = 0.000311948 (* 0.0454545 = 1.41795e-05 loss)
I0404 14:30:55.345034 9252 solver.cpp:245] Train net output #41: loss/loss20 = 0.000297975 (* 0.0454545 = 1.35443e-05 loss)
I0404 14:30:55.345054 9252 solver.cpp:245] Train net output #42: loss/loss21 = 0.000285161 (* 0.0454545 = 1.29619e-05 loss)
I0404 14:30:55.345085 9252 solver.cpp:245] Train net output #43: loss/loss22 = 0.000254863 (* 0.0454545 = 1.15847e-05 loss)
I0404 14:30:55.345113 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 14:30:55.345129 9252 solver.cpp:245] Train net output #45: total_confidence = 0.000110794
I0404 14:30:55.345144 9252 sgd_solver.cpp:106] Iteration 43000, lr = 0.00957
I0404 14:32:07.054617 9252 solver.cpp:229] Iteration 43500, loss = 0.882918
I0404 14:32:07.054767 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.21875
I0404 14:32:07.054795 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125
I0404 14:32:07.054811 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375
I0404 14:32:07.054822 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125
I0404 14:32:07.054834 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125
I0404 14:32:07.054847 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5
I0404 14:32:07.054858 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.84375
I0404 14:32:07.054870 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375
I0404 14:32:07.054883 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875
I0404 14:32:07.054894 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 14:32:07.054906 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 14:32:07.054919 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 14:32:07.054929 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 14:32:07.054941 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 14:32:07.054954 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 14:32:07.054965 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 14:32:07.054977 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 14:32:07.054988 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 14:32:07.055001 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 14:32:07.055012 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 14:32:07.055023 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 14:32:07.055035 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 14:32:07.055059 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.85519 (* 0.0454545 = 0.129781 loss)
I0404 14:32:07.055074 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.14061 (* 0.0454545 = 0.142755 loss)
I0404 14:32:07.055088 9252 solver.cpp:245] Train net output #24: loss/loss03 = 2.99947 (* 0.0454545 = 0.136339 loss)
I0404 14:32:07.055101 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.65602 (* 0.0454545 = 0.166183 loss)
I0404 14:32:07.055115 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.5784 (* 0.0454545 = 0.1172 loss)
I0404 14:32:07.055130 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.01579 (* 0.0454545 = 0.0916268 loss)
I0404 14:32:07.055143 9252 solver.cpp:245] Train net output #28: loss/loss07 = 0.778305 (* 0.0454545 = 0.0353775 loss)
I0404 14:32:07.055156 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.310367 (* 0.0454545 = 0.0141076 loss)
I0404 14:32:07.055177 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.10657 (* 0.0454545 = 0.00484408 loss)
I0404 14:32:07.055192 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.0312713 (* 0.0454545 = 0.00142142 loss)
I0404 14:32:07.055207 9252 solver.cpp:245] Train net output #32: loss/loss11 = 3.96037e-05 (* 0.0454545 = 1.80017e-06 loss)
I0404 14:32:07.055220 9252 solver.cpp:245] Train net output #33: loss/loss12 = 3.76386e-05 (* 0.0454545 = 1.71084e-06 loss)
I0404 14:32:07.055234 9252 solver.cpp:245] Train net output #34: loss/loss13 = 3.50566e-05 (* 0.0454545 = 1.59348e-06 loss)
I0404 14:32:07.055248 9252 solver.cpp:245] Train net output #35: loss/loss14 = 4.05559e-05 (* 0.0454545 = 1.84345e-06 loss)
I0404 14:32:07.055269 9252 solver.cpp:245] Train net output #36: loss/loss15 = 3.72287e-05 (* 0.0454545 = 1.69221e-06 loss)
I0404 14:32:07.055284 9252 solver.cpp:245] Train net output #37: loss/loss16 = 3.93376e-05 (* 0.0454545 = 1.78807e-06 loss)
I0404 14:32:07.055296 9252 solver.cpp:245] Train net output #38: loss/loss17 = 3.54237e-05 (* 0.0454545 = 1.61017e-06 loss)
I0404 14:32:07.055337 9252 solver.cpp:245] Train net output #39: loss/loss18 = 2.9103e-05 (* 0.0454545 = 1.32286e-06 loss)
I0404 14:32:07.055352 9252 solver.cpp:245] Train net output #40: loss/loss19 = 3.54629e-05 (* 0.0454545 = 1.61195e-06 loss)
I0404 14:32:07.055367 9252 solver.cpp:245] Train net output #41: loss/loss20 = 3.47177e-05 (* 0.0454545 = 1.57808e-06 loss)
I0404 14:32:07.055382 9252 solver.cpp:245] Train net output #42: loss/loss21 = 3.28996e-05 (* 0.0454545 = 1.49544e-06 loss)
I0404 14:32:07.055394 9252 solver.cpp:245] Train net output #43: loss/loss22 = 3.39987e-05 (* 0.0454545 = 1.54539e-06 loss)
I0404 14:32:07.055407 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 14:32:07.055418 9252 solver.cpp:245] Train net output #45: total_confidence = 0.000274267
I0404 14:32:07.055433 9252 sgd_solver.cpp:106] Iteration 43500, lr = 0.009565
I0404 14:33:18.915789 9252 solver.cpp:229] Iteration 44000, loss = 0.882595
I0404 14:33:18.915938 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.3125
I0404 14:33:18.915959 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125
I0404 14:33:18.915972 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125
I0404 14:33:18.915984 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125
I0404 14:33:18.915997 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.15625
I0404 14:33:18.916009 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375
I0404 14:33:18.916020 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.53125
I0404 14:33:18.916033 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875
I0404 14:33:18.916044 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375
I0404 14:33:18.916056 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 14:33:18.916067 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 14:33:18.916079 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 14:33:18.916091 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 14:33:18.916102 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 14:33:18.916115 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 14:33:18.916126 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 14:33:18.916137 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 14:33:18.916148 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 14:33:18.916160 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 14:33:18.916172 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 14:33:18.916184 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 14:33:18.916195 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 14:33:18.916211 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.34756 (* 0.0454545 = 0.106707 loss)
I0404 14:33:18.916226 9252 solver.cpp:245] Train net output #23: loss/loss02 = 2.85215 (* 0.0454545 = 0.129643 loss)
I0404 14:33:18.916240 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.0086 (* 0.0454545 = 0.136755 loss)
I0404 14:33:18.916254 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.19026 (* 0.0454545 = 0.145012 loss)
I0404 14:33:18.916268 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.74381 (* 0.0454545 = 0.124719 loss)
I0404 14:33:18.916281 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.41465 (* 0.0454545 = 0.109757 loss)
I0404 14:33:18.916296 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.83723 (* 0.0454545 = 0.0835106 loss)
I0404 14:33:18.916308 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.684337 (* 0.0454545 = 0.0311062 loss)
I0404 14:33:18.916322 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.336323 (* 0.0454545 = 0.0152874 loss)
I0404 14:33:18.916337 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.0496905 (* 0.0454545 = 0.00225866 loss)
I0404 14:33:18.916352 9252 solver.cpp:245] Train net output #32: loss/loss11 = 0.000123602 (* 0.0454545 = 5.61826e-06 loss)
I0404 14:33:18.916365 9252 solver.cpp:245] Train net output #33: loss/loss12 = 0.000139223 (* 0.0454545 = 6.32831e-06 loss)
I0404 14:33:18.916379 9252 solver.cpp:245] Train net output #34: loss/loss13 = 0.000122347 (* 0.0454545 = 5.56124e-06 loss)
I0404 14:33:18.916393 9252 solver.cpp:245] Train net output #35: loss/loss14 = 0.000121025 (* 0.0454545 = 5.50116e-06 loss)
I0404 14:33:18.916406 9252 solver.cpp:245] Train net output #36: loss/loss15 = 0.000118404 (* 0.0454545 = 5.38201e-06 loss)
I0404 14:33:18.916420 9252 solver.cpp:245] Train net output #37: loss/loss16 = 0.000118949 (* 0.0454545 = 5.40678e-06 loss)
I0404 14:33:18.916435 9252 solver.cpp:245] Train net output #38: loss/loss17 = 0.000112136 (* 0.0454545 = 5.09709e-06 loss)
I0404 14:33:18.916465 9252 solver.cpp:245] Train net output #39: loss/loss18 = 0.000107844 (* 0.0454545 = 4.90198e-06 loss)
I0404 14:33:18.916481 9252 solver.cpp:245] Train net output #40: loss/loss19 = 0.000114206 (* 0.0454545 = 5.1912e-06 loss)
I0404 14:33:18.916494 9252 solver.cpp:245] Train net output #41: loss/loss20 = 0.00011176 (* 0.0454545 = 5.08002e-06 loss)
I0404 14:33:18.916508 9252 solver.cpp:245] Train net output #42: loss/loss21 = 0.000100214 (* 0.0454545 = 4.55519e-06 loss)
I0404 14:33:18.916522 9252 solver.cpp:245] Train net output #43: loss/loss22 = 0.000113125 (* 0.0454545 = 5.14204e-06 loss)
I0404 14:33:18.916534 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 14:33:18.916546 9252 solver.cpp:245] Train net output #45: total_confidence = 6.17661e-05
I0404 14:33:18.916560 9252 sgd_solver.cpp:106] Iteration 44000, lr = 0.00956
I0404 14:34:29.969666 9252 solver.cpp:229] Iteration 44500, loss = 0.880826
I0404 14:34:29.969808 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.25
I0404 14:34:29.969827 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125
I0404 14:34:29.969841 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.15625
I0404 14:34:29.969853 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125
I0404 14:34:29.969866 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.21875
I0404 14:34:29.969877 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.28125
I0404 14:34:29.969889 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.65625
I0404 14:34:29.969900 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375
I0404 14:34:29.969913 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625
I0404 14:34:29.969924 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875
I0404 14:34:29.969936 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 14:34:29.969949 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 14:34:29.969960 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 14:34:29.969971 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 14:34:29.969983 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 14:34:29.969995 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 14:34:29.970006 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 14:34:29.970018 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 14:34:29.970029 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 14:34:29.970041 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 14:34:29.970052 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 14:34:29.970064 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 14:34:29.970080 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.60628 (* 0.0454545 = 0.118467 loss)
I0404 14:34:29.970094 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.12165 (* 0.0454545 = 0.141893 loss)
I0404 14:34:29.970109 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.11979 (* 0.0454545 = 0.141809 loss)
I0404 14:34:29.970139 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.13037 (* 0.0454545 = 0.14229 loss)
I0404 14:34:29.970155 9252 solver.cpp:245] Train net output #26: loss/loss05 = 3.0628 (* 0.0454545 = 0.139218 loss)
I0404 14:34:29.970168 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.62389 (* 0.0454545 = 0.119268 loss)
I0404 14:34:29.970182 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.48089 (* 0.0454545 = 0.0673132 loss)
I0404 14:34:29.970196 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.635629 (* 0.0454545 = 0.0288922 loss)
I0404 14:34:29.970211 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.529251 (* 0.0454545 = 0.0240569 loss)
I0404 14:34:29.970224 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.161397 (* 0.0454545 = 0.00733622 loss)
I0404 14:34:29.970238 9252 solver.cpp:245] Train net output #32: loss/loss11 = 2.52397e-05 (* 0.0454545 = 1.14726e-06 loss)
I0404 14:34:29.970252 9252 solver.cpp:245] Train net output #33: loss/loss12 = 2.55117e-05 (* 0.0454545 = 1.15962e-06 loss)
I0404 14:34:29.970268 9252 solver.cpp:245] Train net output #34: loss/loss13 = 2.43754e-05 (* 0.0454545 = 1.10797e-06 loss)
I0404 14:34:29.970281 9252 solver.cpp:245] Train net output #35: loss/loss14 = 2.44611e-05 (* 0.0454545 = 1.11187e-06 loss)
I0404 14:34:29.970295 9252 solver.cpp:245] Train net output #36: loss/loss15 = 2.32279e-05 (* 0.0454545 = 1.05581e-06 loss)
I0404 14:34:29.970309 9252 solver.cpp:245] Train net output #37: loss/loss16 = 2.18233e-05 (* 0.0454545 = 9.9197e-07 loss)
I0404 14:34:29.970324 9252 solver.cpp:245] Train net output #38: loss/loss17 = 2.23412e-05 (* 0.0454545 = 1.01551e-06 loss)
I0404 14:34:29.970355 9252 solver.cpp:245] Train net output #39: loss/loss18 = 2.2304e-05 (* 0.0454545 = 1.01382e-06 loss)
I0404 14:34:29.970369 9252 solver.cpp:245] Train net output #40: loss/loss19 = 2.31236e-05 (* 0.0454545 = 1.05107e-06 loss)
I0404 14:34:29.970392 9252 solver.cpp:245] Train net output #41: loss/loss20 = 2.17749e-05 (* 0.0454545 = 9.8977e-07 loss)
I0404 14:34:29.970407 9252 solver.cpp:245] Train net output #42: loss/loss21 = 2.28181e-05 (* 0.0454545 = 1.03719e-06 loss)
I0404 14:34:29.970420 9252 solver.cpp:245] Train net output #43: loss/loss22 = 2.20394e-05 (* 0.0454545 = 1.00179e-06 loss)
I0404 14:34:29.970432 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 14:34:29.970443 9252 solver.cpp:245] Train net output #45: total_confidence = 0.000101455
I0404 14:34:29.970458 9252 sgd_solver.cpp:106] Iteration 44500, lr = 0.009555
I0404 14:35:41.407841 9252 solver.cpp:229] Iteration 45000, loss = 0.881825
I0404 14:35:41.408097 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.28125
I0404 14:35:41.408118 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125
I0404 14:35:41.408131 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125
I0404 14:35:41.408144 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375
I0404 14:35:41.408156 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875
I0404 14:35:41.408169 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375
I0404 14:35:41.408180 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625
I0404 14:35:41.408192 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625
I0404 14:35:41.408205 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875
I0404 14:35:41.408217 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875
I0404 14:35:41.408229 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 14:35:41.408241 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 14:35:41.408253 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 14:35:41.408264 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 14:35:41.408277 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 14:35:41.408288 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 14:35:41.408300 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 14:35:41.408311 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 14:35:41.408331 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 14:35:41.408344 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 14:35:41.408355 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 14:35:41.408367 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 14:35:41.408385 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.56819 (* 0.0454545 = 0.116736 loss)
I0404 14:35:41.408414 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.1741 (* 0.0454545 = 0.144277 loss)
I0404 14:35:41.408438 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.24782 (* 0.0454545 = 0.147628 loss)
I0404 14:35:41.408454 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.36382 (* 0.0454545 = 0.152901 loss)
I0404 14:35:41.408468 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.7093 (* 0.0454545 = 0.12315 loss)
I0404 14:35:41.408483 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.22581 (* 0.0454545 = 0.101173 loss)
I0404 14:35:41.408495 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.33817 (* 0.0454545 = 0.0608257 loss)
I0404 14:35:41.408509 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.347255 (* 0.0454545 = 0.0157843 loss)
I0404 14:35:41.408524 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.121954 (* 0.0454545 = 0.00554335 loss)
I0404 14:35:41.408537 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.128497 (* 0.0454545 = 0.00584077 loss)
I0404 14:35:41.408555 9252 solver.cpp:245] Train net output #32: loss/loss11 = 8.26545e-05 (* 0.0454545 = 3.75702e-06 loss)
I0404 14:35:41.408571 9252 solver.cpp:245] Train net output #33: loss/loss12 = 9.08421e-05 (* 0.0454545 = 4.12919e-06 loss)
I0404 14:35:41.408584 9252 solver.cpp:245] Train net output #34: loss/loss13 = 8.72765e-05 (* 0.0454545 = 3.96711e-06 loss)
I0404 14:35:41.408598 9252 solver.cpp:245] Train net output #35: loss/loss14 = 7.81413e-05 (* 0.0454545 = 3.55188e-06 loss)
I0404 14:35:41.408612 9252 solver.cpp:245] Train net output #36: loss/loss15 = 8.38291e-05 (* 0.0454545 = 3.81042e-06 loss)
I0404 14:35:41.408627 9252 solver.cpp:245] Train net output #37: loss/loss16 = 7.15972e-05 (* 0.0454545 = 3.25442e-06 loss)
I0404 14:35:41.408648 9252 solver.cpp:245] Train net output #38: loss/loss17 = 7.11835e-05 (* 0.0454545 = 3.23562e-06 loss)
I0404 14:35:41.408677 9252 solver.cpp:245] Train net output #39: loss/loss18 = 8.60404e-05 (* 0.0454545 = 3.91093e-06 loss)
I0404 14:35:41.408692 9252 solver.cpp:245] Train net output #40: loss/loss19 = 7.21477e-05 (* 0.0454545 = 3.27944e-06 loss)
I0404 14:35:41.408706 9252 solver.cpp:245] Train net output #41: loss/loss20 = 7.65956e-05 (* 0.0454545 = 3.48162e-06 loss)
I0404 14:35:41.408720 9252 solver.cpp:245] Train net output #42: loss/loss21 = 8.04684e-05 (* 0.0454545 = 3.65765e-06 loss)
I0404 14:35:41.408735 9252 solver.cpp:245] Train net output #43: loss/loss22 = 7.49242e-05 (* 0.0454545 = 3.40565e-06 loss)
I0404 14:35:41.408749 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 14:35:41.408761 9252 solver.cpp:245] Train net output #45: total_confidence = 0.000285589
I0404 14:35:41.408776 9252 sgd_solver.cpp:106] Iteration 45000, lr = 0.00955
I0404 14:36:52.520340 9252 solver.cpp:229] Iteration 45500, loss = 0.87689
I0404 14:36:52.520480 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.1875
I0404 14:36:52.520519 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375
I0404 14:36:52.520542 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.1875
I0404 14:36:52.520565 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.21875
I0404 14:36:52.520588 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.15625
I0404 14:36:52.520609 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375
I0404 14:36:52.520632 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875
I0404 14:36:52.520653 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375
I0404 14:36:52.520678 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375
I0404 14:36:52.520701 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 14:36:52.520722 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 14:36:52.520747 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 14:36:52.520771 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 14:36:52.520799 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 14:36:52.520823 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 14:36:52.520843 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 14:36:52.520864 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 14:36:52.520884 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 14:36:52.520905 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 14:36:52.520926 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 14:36:52.520947 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 14:36:52.520968 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 14:36:52.520994 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.65098 (* 0.0454545 = 0.120499 loss)
I0404 14:36:52.521020 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.02274 (* 0.0454545 = 0.137397 loss)
I0404 14:36:52.521054 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.1615 (* 0.0454545 = 0.143705 loss)
I0404 14:36:52.521080 9252 solver.cpp:245] Train net output #25: loss/loss04 = 2.99287 (* 0.0454545 = 0.136039 loss)
I0404 14:36:52.521113 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.6586 (* 0.0454545 = 0.120846 loss)
I0404 14:36:52.521138 9252 solver.cpp:245] Train net output #27: loss/loss06 = 1.99495 (* 0.0454545 = 0.0906795 loss)
I0404 14:36:52.521172 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.27414 (* 0.0454545 = 0.0579155 loss)
I0404 14:36:52.521198 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.253435 (* 0.0454545 = 0.0115198 loss)
I0404 14:36:52.521226 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.278649 (* 0.0454545 = 0.0126659 loss)
I0404 14:36:52.521257 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.00618084 (* 0.0454545 = 0.000280947 loss)
I0404 14:36:52.521286 9252 solver.cpp:245] Train net output #32: loss/loss11 = 3.44787e-05 (* 0.0454545 = 1.56721e-06 loss)
I0404 14:36:52.521312 9252 solver.cpp:245] Train net output #33: loss/loss12 = 3.08241e-05 (* 0.0454545 = 1.40109e-06 loss)
I0404 14:36:52.521338 9252 solver.cpp:245] Train net output #34: loss/loss13 = 3.14461e-05 (* 0.0454545 = 1.42937e-06 loss)
I0404 14:36:52.521373 9252 solver.cpp:245] Train net output #35: loss/loss14 = 3.21652e-05 (* 0.0454545 = 1.46205e-06 loss)
I0404 14:36:52.521399 9252 solver.cpp:245] Train net output #36: loss/loss15 = 3.38342e-05 (* 0.0454545 = 1.53792e-06 loss)
I0404 14:36:52.521445 9252 solver.cpp:245] Train net output #37: loss/loss16 = 3.36181e-05 (* 0.0454545 = 1.5281e-06 loss)
I0404 14:36:52.521476 9252 solver.cpp:245] Train net output #38: loss/loss17 = 3.28431e-05 (* 0.0454545 = 1.49287e-06 loss)
I0404 14:36:52.521538 9252 solver.cpp:245] Train net output #39: loss/loss18 = 2.95424e-05 (* 0.0454545 = 1.34284e-06 loss)
I0404 14:36:52.521567 9252 solver.cpp:245] Train net output #40: loss/loss19 = 3.06973e-05 (* 0.0454545 = 1.39533e-06 loss)
I0404 14:36:52.521594 9252 solver.cpp:245] Train net output #41: loss/loss20 = 3.26085e-05 (* 0.0454545 = 1.4822e-06 loss)
I0404 14:36:52.521620 9252 solver.cpp:245] Train net output #42: loss/loss21 = 2.95163e-05 (* 0.0454545 = 1.34165e-06 loss)
I0404 14:36:52.521646 9252 solver.cpp:245] Train net output #43: loss/loss22 = 3.12748e-05 (* 0.0454545 = 1.42158e-06 loss)
I0404 14:36:52.521669 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 14:36:52.521690 9252 solver.cpp:245] Train net output #45: total_confidence = 0.000246901
I0404 14:36:52.521714 9252 sgd_solver.cpp:106] Iteration 45500, lr = 0.009545
I0404 14:38:03.553040 9252 solver.cpp:229] Iteration 46000, loss = 0.87465
I0404 14:38:03.553135 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.28125
I0404 14:38:03.553164 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375
I0404 14:38:03.553192 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.15625
I0404 14:38:03.553215 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625
I0404 14:38:03.553236 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875
I0404 14:38:03.553257 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.28125
I0404 14:38:03.553279 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875
I0404 14:38:03.553302 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875
I0404 14:38:03.553325 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875
I0404 14:38:03.553349 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875
I0404 14:38:03.553370 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 14:38:03.553391 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 14:38:03.553448 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 14:38:03.553484 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 14:38:03.553506 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 14:38:03.553529 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 14:38:03.553550 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 14:38:03.553570 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 14:38:03.553591 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 14:38:03.553613 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 14:38:03.553633 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 14:38:03.553655 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 14:38:03.553683 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.6315 (* 0.0454545 = 0.119614 loss)
I0404 14:38:03.553709 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.11341 (* 0.0454545 = 0.141519 loss)
I0404 14:38:03.553735 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.11689 (* 0.0454545 = 0.141677 loss)
I0404 14:38:03.553761 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.36347 (* 0.0454545 = 0.152885 loss)
I0404 14:38:03.553786 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.83869 (* 0.0454545 = 0.129031 loss)
I0404 14:38:03.553813 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.65447 (* 0.0454545 = 0.120658 loss)
I0404 14:38:03.553838 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.54381 (* 0.0454545 = 0.0701732 loss)
I0404 14:38:03.553864 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.50787 (* 0.0454545 = 0.023085 loss)
I0404 14:38:03.553889 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.131092 (* 0.0454545 = 0.00595874 loss)
I0404 14:38:03.553921 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.156247 (* 0.0454545 = 0.00710212 loss)
I0404 14:38:03.553953 9252 solver.cpp:245] Train net output #32: loss/loss11 = 8.85845e-05 (* 0.0454545 = 4.02657e-06 loss)
I0404 14:38:03.553980 9252 solver.cpp:245] Train net output #33: loss/loss12 = 8.1286e-05 (* 0.0454545 = 3.69482e-06 loss)
I0404 14:38:03.554014 9252 solver.cpp:245] Train net output #34: loss/loss13 = 8.42095e-05 (* 0.0454545 = 3.82771e-06 loss)
I0404 14:38:03.554041 9252 solver.cpp:245] Train net output #35: loss/loss14 = 8.08844e-05 (* 0.0454545 = 3.67657e-06 loss)
I0404 14:38:03.554074 9252 solver.cpp:245] Train net output #36: loss/loss15 = 7.74461e-05 (* 0.0454545 = 3.52028e-06 loss)
I0404 14:38:03.554100 9252 solver.cpp:245] Train net output #37: loss/loss16 = 9.20744e-05 (* 0.0454545 = 4.1852e-06 loss)
I0404 14:38:03.554124 9252 solver.cpp:245] Train net output #38: loss/loss17 = 7.98623e-05 (* 0.0454545 = 3.6301e-06 loss)
I0404 14:38:03.554174 9252 solver.cpp:245] Train net output #39: loss/loss18 = 7.44442e-05 (* 0.0454545 = 3.38383e-06 loss)
I0404 14:38:03.554201 9252 solver.cpp:245] Train net output #40: loss/loss19 = 7.22845e-05 (* 0.0454545 = 3.28566e-06 loss)
I0404 14:38:03.554229 9252 solver.cpp:245] Train net output #41: loss/loss20 = 8.21616e-05 (* 0.0454545 = 3.73462e-06 loss)
I0404 14:38:03.554253 9252 solver.cpp:245] Train net output #42: loss/loss21 = 7.84345e-05 (* 0.0454545 = 3.5652e-06 loss)
I0404 14:38:03.554280 9252 solver.cpp:245] Train net output #43: loss/loss22 = 7.94919e-05 (* 0.0454545 = 3.61327e-06 loss)
I0404 14:38:03.554301 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 14:38:03.554323 9252 solver.cpp:245] Train net output #45: total_confidence = 0.000134733
I0404 14:38:03.554347 9252 sgd_solver.cpp:106] Iteration 46000, lr = 0.00954
I0404 14:39:14.461668 9252 solver.cpp:229] Iteration 46500, loss = 0.875108
I0404 14:39:14.461798 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.1875
I0404 14:39:14.461818 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125
I0404 14:39:14.461832 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625
I0404 14:39:14.461843 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125
I0404 14:39:14.461855 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125
I0404 14:39:14.461869 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5625
I0404 14:39:14.461881 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125
I0404 14:39:14.461894 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.96875
I0404 14:39:14.461905 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875
I0404 14:39:14.461916 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 14:39:14.461928 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 14:39:14.461941 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 14:39:14.461951 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 14:39:14.461963 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 14:39:14.461974 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 14:39:14.461985 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 14:39:14.461997 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 14:39:14.462009 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 14:39:14.462020 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 14:39:14.462033 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 14:39:14.462044 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 14:39:14.462054 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 14:39:14.462070 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.92269 (* 0.0454545 = 0.13285 loss)
I0404 14:39:14.462085 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.27663 (* 0.0454545 = 0.148938 loss)
I0404 14:39:14.462098 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.21398 (* 0.0454545 = 0.14609 loss)
I0404 14:39:14.462112 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.25238 (* 0.0454545 = 0.147836 loss)
I0404 14:39:14.462126 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.67537 (* 0.0454545 = 0.121608 loss)
I0404 14:39:14.462139 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.26181 (* 0.0454545 = 0.10281 loss)
I0404 14:39:14.462152 9252 solver.cpp:245] Train net output #28: loss/loss07 = 0.960737 (* 0.0454545 = 0.0436699 loss)
I0404 14:39:14.462167 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.1945 (* 0.0454545 = 0.00884092 loss)
I0404 14:39:14.462180 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.158181 (* 0.0454545 = 0.00719005 loss)
I0404 14:39:14.462194 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.0065497 (* 0.0454545 = 0.000297714 loss)
I0404 14:39:14.462208 9252 solver.cpp:245] Train net output #32: loss/loss11 = 6.33793e-05 (* 0.0454545 = 2.88088e-06 loss)
I0404 14:39:14.462223 9252 solver.cpp:245] Train net output #33: loss/loss12 = 7.26986e-05 (* 0.0454545 = 3.30448e-06 loss)
I0404 14:39:14.462236 9252 solver.cpp:245] Train net output #34: loss/loss13 = 6.40293e-05 (* 0.0454545 = 2.91042e-06 loss)
I0404 14:39:14.462250 9252 solver.cpp:245] Train net output #35: loss/loss14 = 6.72476e-05 (* 0.0454545 = 3.05671e-06 loss)
I0404 14:39:14.462265 9252 solver.cpp:245] Train net output #36: loss/loss15 = 6.37703e-05 (* 0.0454545 = 2.89865e-06 loss)
I0404 14:39:14.462278 9252 solver.cpp:245] Train net output #37: loss/loss16 = 6.74666e-05 (* 0.0454545 = 3.06666e-06 loss)
I0404 14:39:14.462292 9252 solver.cpp:245] Train net output #38: loss/loss17 = 5.98737e-05 (* 0.0454545 = 2.72153e-06 loss)
I0404 14:39:14.462323 9252 solver.cpp:245] Train net output #39: loss/loss18 = 5.48898e-05 (* 0.0454545 = 2.49499e-06 loss)
I0404 14:39:14.462338 9252 solver.cpp:245] Train net output #40: loss/loss19 = 6.17597e-05 (* 0.0454545 = 2.80726e-06 loss)
I0404 14:39:14.462352 9252 solver.cpp:245] Train net output #41: loss/loss20 = 5.78909e-05 (* 0.0454545 = 2.6314e-06 loss)
I0404 14:39:14.462366 9252 solver.cpp:245] Train net output #42: loss/loss21 = 6.10444e-05 (* 0.0454545 = 2.77474e-06 loss)
I0404 14:39:14.462379 9252 solver.cpp:245] Train net output #43: loss/loss22 = 6.11112e-05 (* 0.0454545 = 2.77778e-06 loss)
I0404 14:39:14.462391 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 14:39:14.462404 9252 solver.cpp:245] Train net output #45: total_confidence = 0.000606647
I0404 14:39:14.462417 9252 sgd_solver.cpp:106] Iteration 46500, lr = 0.009535
I0404 14:40:25.318440 9252 solver.cpp:229] Iteration 47000, loss = 0.874887
I0404 14:40:25.318616 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.15625
I0404 14:40:25.318637 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.15625
I0404 14:40:25.318650 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125
I0404 14:40:25.318663 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625
I0404 14:40:25.318675 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.15625
I0404 14:40:25.318687 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375
I0404 14:40:25.318699 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75
I0404 14:40:25.318711 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625
I0404 14:40:25.318723 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375
I0404 14:40:25.318735 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375
I0404 14:40:25.318749 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 14:40:25.318763 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 14:40:25.318773 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 14:40:25.318785 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 14:40:25.318797 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 14:40:25.318809 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 14:40:25.318820 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 14:40:25.318832 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 14:40:25.318843 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 14:40:25.318856 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 14:40:25.318867 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 14:40:25.318878 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 14:40:25.318894 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.78944 (* 0.0454545 = 0.126793 loss)
I0404 14:40:25.318908 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.29474 (* 0.0454545 = 0.149761 loss)
I0404 14:40:25.318922 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.2549 (* 0.0454545 = 0.14795 loss)
I0404 14:40:25.318936 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.25335 (* 0.0454545 = 0.147879 loss)
I0404 14:40:25.318950 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.95724 (* 0.0454545 = 0.13442 loss)
I0404 14:40:25.318964 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.42056 (* 0.0454545 = 0.110025 loss)
I0404 14:40:25.318977 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.18674 (* 0.0454545 = 0.0539429 loss)
I0404 14:40:25.318991 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.477054 (* 0.0454545 = 0.0216843 loss)
I0404 14:40:25.319005 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.275115 (* 0.0454545 = 0.0125052 loss)
I0404 14:40:25.319018 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.27526 (* 0.0454545 = 0.0125118 loss)
I0404 14:40:25.319032 9252 solver.cpp:245] Train net output #32: loss/loss11 = 5.52418e-05 (* 0.0454545 = 2.51099e-06 loss)
I0404 14:40:25.319046 9252 solver.cpp:245] Train net output #33: loss/loss12 = 4.85006e-05 (* 0.0454545 = 2.20457e-06 loss)
I0404 14:40:25.319061 9252 solver.cpp:245] Train net output #34: loss/loss13 = 4.9469e-05 (* 0.0454545 = 2.24859e-06 loss)
I0404 14:40:25.319075 9252 solver.cpp:245] Train net output #35: loss/loss14 = 5.48743e-05 (* 0.0454545 = 2.49429e-06 loss)
I0404 14:40:25.319089 9252 solver.cpp:245] Train net output #36: loss/loss15 = 4.54029e-05 (* 0.0454545 = 2.06377e-06 loss)
I0404 14:40:25.319103 9252 solver.cpp:245] Train net output #37: loss/loss16 = 5.16791e-05 (* 0.0454545 = 2.34905e-06 loss)
I0404 14:40:25.319118 9252 solver.cpp:245] Train net output #38: loss/loss17 = 4.47638e-05 (* 0.0454545 = 2.03472e-06 loss)
I0404 14:40:25.319144 9252 solver.cpp:245] Train net output #39: loss/loss18 = 5.00273e-05 (* 0.0454545 = 2.27397e-06 loss)
I0404 14:40:25.319159 9252 solver.cpp:245] Train net output #40: loss/loss19 = 4.80334e-05 (* 0.0454545 = 2.18334e-06 loss)
I0404 14:40:25.319174 9252 solver.cpp:245] Train net output #41: loss/loss20 = 4.71393e-05 (* 0.0454545 = 2.1427e-06 loss)
I0404 14:40:25.319187 9252 solver.cpp:245] Train net output #42: loss/loss21 = 4.53165e-05 (* 0.0454545 = 2.05984e-06 loss)
I0404 14:40:25.319201 9252 solver.cpp:245] Train net output #43: loss/loss22 = 4.37942e-05 (* 0.0454545 = 1.99065e-06 loss)
I0404 14:40:25.319213 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 14:40:25.319226 9252 solver.cpp:245] Train net output #45: total_confidence = 0.000144815
I0404 14:40:25.319239 9252 sgd_solver.cpp:106] Iteration 47000, lr = 0.00953
I0404 14:41:36.640952 9252 solver.cpp:229] Iteration 47500, loss = 0.871602
I0404 14:41:36.641062 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.34375
I0404 14:41:36.641080 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625
I0404 14:41:36.641093 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625
I0404 14:41:36.641105 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.21875
I0404 14:41:36.641119 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125
I0404 14:41:36.641130 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.46875
I0404 14:41:36.641142 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.78125
I0404 14:41:36.641155 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375
I0404 14:41:36.641165 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875
I0404 14:41:36.641178 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 14:41:36.641190 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 14:41:36.641201 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 14:41:36.641212 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 14:41:36.641224 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 14:41:36.641235 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 14:41:36.641247 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 14:41:36.641261 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 14:41:36.641273 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 14:41:36.641284 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 14:41:36.641296 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 14:41:36.641316 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 14:41:36.641329 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 14:41:36.641343 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.60972 (* 0.0454545 = 0.118624 loss)
I0404 14:41:36.641357 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.1853 (* 0.0454545 = 0.144786 loss)
I0404 14:41:36.641371 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.39465 (* 0.0454545 = 0.154302 loss)
I0404 14:41:36.641386 9252 solver.cpp:245] Train net output #25: loss/loss04 = 2.82761 (* 0.0454545 = 0.128528 loss)
I0404 14:41:36.641399 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.39648 (* 0.0454545 = 0.108931 loss)
I0404 14:41:36.641413 9252 solver.cpp:245] Train net output #27: loss/loss06 = 1.88806 (* 0.0454545 = 0.0858211 loss)
I0404 14:41:36.641451 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.16534 (* 0.0454545 = 0.0529699 loss)
I0404 14:41:36.641466 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.394399 (* 0.0454545 = 0.0179272 loss)
I0404 14:41:36.641480 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.125138 (* 0.0454545 = 0.00568807 loss)
I0404 14:41:36.641494 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.00454959 (* 0.0454545 = 0.0002068 loss)
I0404 14:41:36.641510 9252 solver.cpp:245] Train net output #32: loss/loss11 = 1.50208e-05 (* 0.0454545 = 6.82765e-07 loss)
I0404 14:41:36.641525 9252 solver.cpp:245] Train net output #33: loss/loss12 = 1.381e-05 (* 0.0454545 = 6.27728e-07 loss)
I0404 14:41:36.641538 9252 solver.cpp:245] Train net output #34: loss/loss13 = 1.19845e-05 (* 0.0454545 = 5.4475e-07 loss)
I0404 14:41:36.641551 9252 solver.cpp:245] Train net output #35: loss/loss14 = 1.43652e-05 (* 0.0454545 = 6.52963e-07 loss)
I0404 14:41:36.641566 9252 solver.cpp:245] Train net output #36: loss/loss15 = 1.31208e-05 (* 0.0454545 = 5.96401e-07 loss)
I0404 14:41:36.641579 9252 solver.cpp:245] Train net output #37: loss/loss16 = 1.50432e-05 (* 0.0454545 = 6.83781e-07 loss)
I0404 14:41:36.641592 9252 solver.cpp:245] Train net output #38: loss/loss17 = 1.27408e-05 (* 0.0454545 = 5.79128e-07 loss)
I0404 14:41:36.641625 9252 solver.cpp:245] Train net output #39: loss/loss18 = 1.096e-05 (* 0.0454545 = 4.98182e-07 loss)
I0404 14:41:36.641640 9252 solver.cpp:245] Train net output #40: loss/loss19 = 1.2942e-05 (* 0.0454545 = 5.88273e-07 loss)
I0404 14:41:36.641654 9252 solver.cpp:245] Train net output #41: loss/loss20 = 1.30687e-05 (* 0.0454545 = 5.9403e-07 loss)
I0404 14:41:36.641669 9252 solver.cpp:245] Train net output #42: loss/loss21 = 1.21112e-05 (* 0.0454545 = 5.50509e-07 loss)
I0404 14:41:36.641682 9252 solver.cpp:245] Train net output #43: loss/loss22 = 1.17386e-05 (* 0.0454545 = 5.33575e-07 loss)
I0404 14:41:36.641695 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 14:41:36.641705 9252 solver.cpp:245] Train net output #45: total_confidence = 0.00047497
I0404 14:41:36.641719 9252 sgd_solver.cpp:106] Iteration 47500, lr = 0.009525
I0404 14:42:47.657389 9252 solver.cpp:229] Iteration 48000, loss = 0.870502
I0404 14:42:47.657531 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.3125
I0404 14:42:47.657551 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625
I0404 14:42:47.657563 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125
I0404 14:42:47.657577 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375
I0404 14:42:47.657588 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125
I0404 14:42:47.657600 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.46875
I0404 14:42:47.657611 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75
I0404 14:42:47.657624 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875
I0404 14:42:47.657635 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625
I0404 14:42:47.657647 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 14:42:47.657660 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 14:42:47.657670 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 14:42:47.657682 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 14:42:47.657696 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 14:42:47.657706 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 14:42:47.657718 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 14:42:47.657729 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 14:42:47.657740 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 14:42:47.657758 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 14:42:47.657770 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 14:42:47.657783 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 14:42:47.657793 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 14:42:47.657809 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.63326 (* 0.0454545 = 0.119694 loss)
I0404 14:42:47.657824 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.1412 (* 0.0454545 = 0.142782 loss)
I0404 14:42:47.657845 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.24709 (* 0.0454545 = 0.147595 loss)
I0404 14:42:47.657858 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.32539 (* 0.0454545 = 0.151154 loss)
I0404 14:42:47.657872 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.64822 (* 0.0454545 = 0.120373 loss)
I0404 14:42:47.657886 9252 solver.cpp:245] Train net output #27: loss/loss06 = 1.96504 (* 0.0454545 = 0.0893199 loss)
I0404 14:42:47.657899 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.09165 (* 0.0454545 = 0.0496205 loss)
I0404 14:42:47.657913 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.685885 (* 0.0454545 = 0.0311766 loss)
I0404 14:42:47.657927 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.442841 (* 0.0454545 = 0.0201291 loss)
I0404 14:42:47.657940 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.0120296 (* 0.0454545 = 0.000546801 loss)
I0404 14:42:47.657955 9252 solver.cpp:245] Train net output #32: loss/loss11 = 8.57489e-05 (* 0.0454545 = 3.89768e-06 loss)
I0404 14:42:47.657969 9252 solver.cpp:245] Train net output #33: loss/loss12 = 7.69526e-05 (* 0.0454545 = 3.49784e-06 loss)
I0404 14:42:47.657984 9252 solver.cpp:245] Train net output #34: loss/loss13 = 7.84612e-05 (* 0.0454545 = 3.56642e-06 loss)
I0404 14:42:47.657997 9252 solver.cpp:245] Train net output #35: loss/loss14 = 8.34264e-05 (* 0.0454545 = 3.79211e-06 loss)
I0404 14:42:47.658011 9252 solver.cpp:245] Train net output #36: loss/loss15 = 8.2842e-05 (* 0.0454545 = 3.76555e-06 loss)
I0404 14:42:47.658025 9252 solver.cpp:245] Train net output #37: loss/loss16 = 8.62815e-05 (* 0.0454545 = 3.92188e-06 loss)
I0404 14:42:47.658040 9252 solver.cpp:245] Train net output #38: loss/loss17 = 8.05583e-05 (* 0.0454545 = 3.66174e-06 loss)
I0404 14:42:47.658071 9252 solver.cpp:245] Train net output #39: loss/loss18 = 7.80823e-05 (* 0.0454545 = 3.5492e-06 loss)
I0404 14:42:47.658092 9252 solver.cpp:245] Train net output #40: loss/loss19 = 8.08729e-05 (* 0.0454545 = 3.67604e-06 loss)
I0404 14:42:47.658105 9252 solver.cpp:245] Train net output #41: loss/loss20 = 7.99378e-05 (* 0.0454545 = 3.63354e-06 loss)
I0404 14:42:47.658119 9252 solver.cpp:245] Train net output #42: loss/loss21 = 8.37496e-05 (* 0.0454545 = 3.8068e-06 loss)
I0404 14:42:47.658133 9252 solver.cpp:245] Train net output #43: loss/loss22 = 7.80348e-05 (* 0.0454545 = 3.54704e-06 loss)
I0404 14:42:47.658150 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 14:42:47.658162 9252 solver.cpp:245] Train net output #45: total_confidence = 0.000132831
I0404 14:42:47.658176 9252 sgd_solver.cpp:106] Iteration 48000, lr = 0.00952
I0404 14:43:58.677539 9252 solver.cpp:229] Iteration 48500, loss = 0.871438
I0404 14:43:58.677667 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.28125
I0404 14:43:58.677686 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375
I0404 14:43:58.677700 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.1875
I0404 14:43:58.677713 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875
I0404 14:43:58.677726 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125
I0404 14:43:58.677737 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375
I0404 14:43:58.677752 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.59375
I0404 14:43:58.677763 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375
I0404 14:43:58.677775 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375
I0404 14:43:58.677788 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375
I0404 14:43:58.677799 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 14:43:58.677811 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 14:43:58.677822 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 14:43:58.677834 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 14:43:58.677845 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 14:43:58.677857 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 14:43:58.677870 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 14:43:58.677881 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 14:43:58.677891 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 14:43:58.677903 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 14:43:58.677923 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 14:43:58.677934 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 14:43:58.677949 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.53376 (* 0.0454545 = 0.115171 loss)
I0404 14:43:58.677964 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.005 (* 0.0454545 = 0.136591 loss)
I0404 14:43:58.677978 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.04007 (* 0.0454545 = 0.138185 loss)
I0404 14:43:58.677999 9252 solver.cpp:245] Train net output #25: loss/loss04 = 2.88366 (* 0.0454545 = 0.131075 loss)
I0404 14:43:58.678012 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.5697 (* 0.0454545 = 0.116804 loss)
I0404 14:43:58.678026 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.31008 (* 0.0454545 = 0.105003 loss)
I0404 14:43:58.678040 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.51197 (* 0.0454545 = 0.0687259 loss)
I0404 14:43:58.678053 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.278279 (* 0.0454545 = 0.012649 loss)
I0404 14:43:58.678067 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.310078 (* 0.0454545 = 0.0140945 loss)
I0404 14:43:58.678081 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.370345 (* 0.0454545 = 0.0168339 loss)
I0404 14:43:58.678095 9252 solver.cpp:245] Train net output #32: loss/loss11 = 9.28396e-05 (* 0.0454545 = 4.21998e-06 loss)
I0404 14:43:58.678109 9252 solver.cpp:245] Train net output #33: loss/loss12 = 8.8484e-05 (* 0.0454545 = 4.022e-06 loss)
I0404 14:43:58.678123 9252 solver.cpp:245] Train net output #34: loss/loss13 = 7.67631e-05 (* 0.0454545 = 3.48923e-06 loss)
I0404 14:43:58.678138 9252 solver.cpp:245] Train net output #35: loss/loss14 = 9.0974e-05 (* 0.0454545 = 4.13518e-06 loss)
I0404 14:43:58.678151 9252 solver.cpp:245] Train net output #36: loss/loss15 = 8.82745e-05 (* 0.0454545 = 4.01248e-06 loss)
I0404 14:43:58.678165 9252 solver.cpp:245] Train net output #37: loss/loss16 = 9.13974e-05 (* 0.0454545 = 4.15443e-06 loss)
I0404 14:43:58.678179 9252 solver.cpp:245] Train net output #38: loss/loss17 = 8.33841e-05 (* 0.0454545 = 3.79019e-06 loss)
I0404 14:43:58.678210 9252 solver.cpp:245] Train net output #39: loss/loss18 = 7.89866e-05 (* 0.0454545 = 3.5903e-06 loss)
I0404 14:43:58.678225 9252 solver.cpp:245] Train net output #40: loss/loss19 = 8.32478e-05 (* 0.0454545 = 3.78399e-06 loss)
I0404 14:43:58.678239 9252 solver.cpp:245] Train net output #41: loss/loss20 = 8.92621e-05 (* 0.0454545 = 4.05737e-06 loss)
I0404 14:43:58.678253 9252 solver.cpp:245] Train net output #42: loss/loss21 = 8.06727e-05 (* 0.0454545 = 3.66694e-06 loss)
I0404 14:43:58.678267 9252 solver.cpp:245] Train net output #43: loss/loss22 = 8.30279e-05 (* 0.0454545 = 3.77399e-06 loss)
I0404 14:43:58.678278 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 14:43:58.678289 9252 solver.cpp:245] Train net output #45: total_confidence = 0.000301717
I0404 14:43:58.678303 9252 sgd_solver.cpp:106] Iteration 48500, lr = 0.009515
I0404 14:45:09.874650 9252 solver.cpp:229] Iteration 49000, loss = 0.866828
I0404 14:45:09.874874 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.1875
I0404 14:45:09.874896 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375
I0404 14:45:09.874909 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125
I0404 14:45:09.874922 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625
I0404 14:45:09.874933 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.21875
I0404 14:45:09.874945 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375
I0404 14:45:09.874958 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75
I0404 14:45:09.874969 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375
I0404 14:45:09.874981 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 1
I0404 14:45:09.874994 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 14:45:09.875005 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 14:45:09.875016 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 14:45:09.875027 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 14:45:09.875039 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 14:45:09.875051 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 14:45:09.875062 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 14:45:09.875074 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 14:45:09.875085 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 14:45:09.875097 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 14:45:09.875109 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 14:45:09.875120 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 14:45:09.875133 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 14:45:09.875149 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.93127 (* 0.0454545 = 0.13324 loss)
I0404 14:45:09.875162 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.06717 (* 0.0454545 = 0.139417 loss)
I0404 14:45:09.875176 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.23679 (* 0.0454545 = 0.147127 loss)
I0404 14:45:09.875190 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.16083 (* 0.0454545 = 0.143674 loss)
I0404 14:45:09.875203 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.89202 (* 0.0454545 = 0.131456 loss)
I0404 14:45:09.875217 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.97476 (* 0.0454545 = 0.135216 loss)
I0404 14:45:09.875231 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.07561 (* 0.0454545 = 0.0488912 loss)
I0404 14:45:09.875244 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.334123 (* 0.0454545 = 0.0151874 loss)
I0404 14:45:09.875258 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.0374249 (* 0.0454545 = 0.00170113 loss)
I0404 14:45:09.875272 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.00960966 (* 0.0454545 = 0.000436803 loss)
I0404 14:45:09.875290 9252 solver.cpp:245] Train net output #32: loss/loss11 = 0.000128528 (* 0.0454545 = 5.84216e-06 loss)
I0404 14:45:09.875304 9252 solver.cpp:245] Train net output #33: loss/loss12 = 0.000108776 (* 0.0454545 = 4.94436e-06 loss)
I0404 14:45:09.875319 9252 solver.cpp:245] Train net output #34: loss/loss13 = 0.000101019 (* 0.0454545 = 4.59175e-06 loss)
I0404 14:45:09.875332 9252 solver.cpp:245] Train net output #35: loss/loss14 = 0.000112651 (* 0.0454545 = 5.12049e-06 loss)
I0404 14:45:09.875352 9252 solver.cpp:245] Train net output #36: loss/loss15 = 0.000106099 (* 0.0454545 = 4.82268e-06 loss)
I0404 14:45:09.875370 9252 solver.cpp:245] Train net output #37: loss/loss16 = 0.000118558 (* 0.0454545 = 5.38901e-06 loss)
I0404 14:45:09.875385 9252 solver.cpp:245] Train net output #38: loss/loss17 = 0.000108465 (* 0.0454545 = 4.93022e-06 loss)
I0404 14:45:09.875412 9252 solver.cpp:245] Train net output #39: loss/loss18 = 0.000113035 (* 0.0454545 = 5.13798e-06 loss)
I0404 14:45:09.875427 9252 solver.cpp:245] Train net output #40: loss/loss19 = 0.000113091 (* 0.0454545 = 5.14048e-06 loss)
I0404 14:45:09.875442 9252 solver.cpp:245] Train net output #41: loss/loss20 = 0.000106853 (* 0.0454545 = 4.85694e-06 loss)
I0404 14:45:09.875455 9252 solver.cpp:245] Train net output #42: loss/loss21 = 0.000107757 (* 0.0454545 = 4.89804e-06 loss)
I0404 14:45:09.875469 9252 solver.cpp:245] Train net output #43: loss/loss22 = 0.000107387 (* 0.0454545 = 4.88123e-06 loss)
I0404 14:45:09.875481 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 14:45:09.875493 9252 solver.cpp:245] Train net output #45: total_confidence = 0.000154032
I0404 14:45:09.875506 9252 sgd_solver.cpp:106] Iteration 49000, lr = 0.00951
I0404 14:46:21.435170 9252 solver.cpp:229] Iteration 49500, loss = 0.862061
I0404 14:46:21.435356 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.25
I0404 14:46:21.435374 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125
I0404 14:46:21.435387 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125
I0404 14:46:21.435400 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875
I0404 14:46:21.435411 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125
I0404 14:46:21.435423 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375
I0404 14:46:21.435434 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.875
I0404 14:46:21.435446 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.96875
I0404 14:46:21.435458 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875
I0404 14:46:21.435470 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875
I0404 14:46:21.435482 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 14:46:21.435494 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 14:46:21.435505 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 14:46:21.435518 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 14:46:21.435528 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 14:46:21.435540 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 14:46:21.435551 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 14:46:21.435562 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 14:46:21.435575 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 14:46:21.435585 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 14:46:21.435597 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 14:46:21.435616 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 14:46:21.435631 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.60703 (* 0.0454545 = 0.118501 loss)
I0404 14:46:21.435645 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.00991 (* 0.0454545 = 0.136814 loss)
I0404 14:46:21.435659 9252 solver.cpp:245] Train net output #24: loss/loss03 = 2.90489 (* 0.0454545 = 0.132041 loss)
I0404 14:46:21.435673 9252 solver.cpp:245] Train net output #25: loss/loss04 = 2.95529 (* 0.0454545 = 0.134331 loss)
I0404 14:46:21.435688 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.46965 (* 0.0454545 = 0.112257 loss)
I0404 14:46:21.435703 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.39203 (* 0.0454545 = 0.108729 loss)
I0404 14:46:21.435715 9252 solver.cpp:245] Train net output #28: loss/loss07 = 0.612338 (* 0.0454545 = 0.0278335 loss)
I0404 14:46:21.435729 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.114317 (* 0.0454545 = 0.00519624 loss)
I0404 14:46:21.435744 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.124568 (* 0.0454545 = 0.00566219 loss)
I0404 14:46:21.435757 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.117222 (* 0.0454545 = 0.00532829 loss)
I0404 14:46:21.435771 9252 solver.cpp:245] Train net output #32: loss/loss11 = 5.76242e-05 (* 0.0454545 = 2.61928e-06 loss)
I0404 14:46:21.435786 9252 solver.cpp:245] Train net output #33: loss/loss12 = 5.73632e-05 (* 0.0454545 = 2.60742e-06 loss)
I0404 14:46:21.435799 9252 solver.cpp:245] Train net output #34: loss/loss13 = 5.28416e-05 (* 0.0454545 = 2.40189e-06 loss)
I0404 14:46:21.435813 9252 solver.cpp:245] Train net output #35: loss/loss14 = 5.78388e-05 (* 0.0454545 = 2.62904e-06 loss)
I0404 14:46:21.435827 9252 solver.cpp:245] Train net output #36: loss/loss15 = 5.45397e-05 (* 0.0454545 = 2.47908e-06 loss)
I0404 14:46:21.435840 9252 solver.cpp:245] Train net output #37: loss/loss16 = 6.68678e-05 (* 0.0454545 = 3.03945e-06 loss)
I0404 14:46:21.435854 9252 solver.cpp:245] Train net output #38: loss/loss17 = 5.30183e-05 (* 0.0454545 = 2.40992e-06 loss)
I0404 14:46:21.435884 9252 solver.cpp:245] Train net output #39: loss/loss18 = 4.98353e-05 (* 0.0454545 = 2.26524e-06 loss)
I0404 14:46:21.435904 9252 solver.cpp:245] Train net output #40: loss/loss19 = 5.8355e-05 (* 0.0454545 = 2.6525e-06 loss)
I0404 14:46:21.435919 9252 solver.cpp:245] Train net output #41: loss/loss20 = 5.69998e-05 (* 0.0454545 = 2.5909e-06 loss)
I0404 14:46:21.435933 9252 solver.cpp:245] Train net output #42: loss/loss21 = 5.29523e-05 (* 0.0454545 = 2.40692e-06 loss)
I0404 14:46:21.435946 9252 solver.cpp:245] Train net output #43: loss/loss22 = 5.29369e-05 (* 0.0454545 = 2.40622e-06 loss)
I0404 14:46:21.435958 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 14:46:21.435971 9252 solver.cpp:245] Train net output #45: total_confidence = 0.00167971
I0404 14:46:21.435987 9252 sgd_solver.cpp:106] Iteration 49500, lr = 0.009505
I0404 14:47:32.431826 9252 solver.cpp:338] Iteration 50000, Testing net (#0)
I0404 14:47:40.460253 9252 solver.cpp:393] Test loss: 0.752377
I0404 14:47:40.460302 9252 solver.cpp:406] Test net output #0: loss/accuracy01 = 0.259
I0404 14:47:40.460319 9252 solver.cpp:406] Test net output #1: loss/accuracy02 = 0.136
I0404 14:47:40.460330 9252 solver.cpp:406] Test net output #2: loss/accuracy03 = 0.116
I0404 14:47:40.460342 9252 solver.cpp:406] Test net output #3: loss/accuracy04 = 0.159
I0404 14:47:40.460355 9252 solver.cpp:406] Test net output #4: loss/accuracy05 = 0.279
I0404 14:47:40.460366 9252 solver.cpp:406] Test net output #5: loss/accuracy06 = 0.508
I0404 14:47:40.460377 9252 solver.cpp:406] Test net output #6: loss/accuracy07 = 0.892
I0404 14:47:40.460388 9252 solver.cpp:406] Test net output #7: loss/accuracy08 = 0.97
I0404 14:47:40.460399 9252 solver.cpp:406] Test net output #8: loss/accuracy09 = 0.995
I0404 14:47:40.460410 9252 solver.cpp:406] Test net output #9: loss/accuracy10 = 0.998
I0404 14:47:40.460422 9252 solver.cpp:406] Test net output #10: loss/accuracy11 = 1
I0404 14:47:40.460433 9252 solver.cpp:406] Test net output #11: loss/accuracy12 = 1
I0404 14:47:40.460444 9252 solver.cpp:406] Test net output #12: loss/accuracy13 = 1
I0404 14:47:40.460455 9252 solver.cpp:406] Test net output #13: loss/accuracy14 = 1
I0404 14:47:40.460466 9252 solver.cpp:406] Test net output #14: loss/accuracy15 = 1
I0404 14:47:40.460477 9252 solver.cpp:406] Test net output #15: loss/accuracy16 = 1
I0404 14:47:40.460489 9252 solver.cpp:406] Test net output #16: loss/accuracy17 = 1
I0404 14:47:40.460500 9252 solver.cpp:406] Test net output #17: loss/accuracy18 = 1
I0404 14:47:40.460511 9252 solver.cpp:406] Test net output #18: loss/accuracy19 = 1
I0404 14:47:40.460521 9252 solver.cpp:406] Test net output #19: loss/accuracy20 = 1
I0404 14:47:40.460532 9252 solver.cpp:406] Test net output #20: loss/accuracy21 = 1
I0404 14:47:40.460543 9252 solver.cpp:406] Test net output #21: loss/accuracy22 = 1
I0404 14:47:40.460558 9252 solver.cpp:406] Test net output #22: loss/loss01 = 2.49573 (* 0.0454545 = 0.113442 loss)
I0404 14:47:40.460572 9252 solver.cpp:406] Test net output #23: loss/loss02 = 2.86604 (* 0.0454545 = 0.130275 loss)
I0404 14:47:40.460587 9252 solver.cpp:406] Test net output #24: loss/loss03 = 2.98331 (* 0.0454545 = 0.135605 loss)
I0404 14:47:40.460600 9252 solver.cpp:406] Test net output #25: loss/loss04 = 2.92324 (* 0.0454545 = 0.132875 loss)
I0404 14:47:40.460613 9252 solver.cpp:406] Test net output #26: loss/loss05 = 2.60669 (* 0.0454545 = 0.118486 loss)
I0404 14:47:40.460628 9252 solver.cpp:406] Test net output #27: loss/loss06 = 1.89308 (* 0.0454545 = 0.0860492 loss)
I0404 14:47:40.460640 9252 solver.cpp:406] Test net output #28: loss/loss07 = 0.52004 (* 0.0454545 = 0.0236382 loss)
I0404 14:47:40.460654 9252 solver.cpp:406] Test net output #29: loss/loss08 = 0.18919 (* 0.0454545 = 0.00859953 loss)
I0404 14:47:40.460667 9252 solver.cpp:406] Test net output #30: loss/loss09 = 0.0484217 (* 0.0454545 = 0.00220098 loss)
I0404 14:47:40.460681 9252 solver.cpp:406] Test net output #31: loss/loss10 = 0.0255867 (* 0.0454545 = 0.00116303 loss)
I0404 14:47:40.460695 9252 solver.cpp:406] Test net output #32: loss/loss11 = 8.33588e-05 (* 0.0454545 = 3.78904e-06 loss)
I0404 14:47:40.460708 9252 solver.cpp:406] Test net output #33: loss/loss12 = 7.79565e-05 (* 0.0454545 = 3.54348e-06 loss)
I0404 14:47:40.460722 9252 solver.cpp:406] Test net output #34: loss/loss13 = 7.21491e-05 (* 0.0454545 = 3.27951e-06 loss)
I0404 14:47:40.460736 9252 solver.cpp:406] Test net output #35: loss/loss14 = 8.07223e-05 (* 0.0454545 = 3.66919e-06 loss)
I0404 14:47:40.460753 9252 solver.cpp:406] Test net output #36: loss/loss15 = 7.53565e-05 (* 0.0454545 = 3.4253e-06 loss)
I0404 14:47:40.460767 9252 solver.cpp:406] Test net output #37: loss/loss16 = 8.64314e-05 (* 0.0454545 = 3.9287e-06 loss)
I0404 14:47:40.460780 9252 solver.cpp:406] Test net output #38: loss/loss17 = 7.53364e-05 (* 0.0454545 = 3.42438e-06 loss)
I0404 14:47:40.460830 9252 solver.cpp:406] Test net output #39: loss/loss18 = 7.21894e-05 (* 0.0454545 = 3.28134e-06 loss)
I0404 14:47:40.460845 9252 solver.cpp:406] Test net output #40: loss/loss19 = 8.11979e-05 (* 0.0454545 = 3.69081e-06 loss)
I0404 14:47:40.460860 9252 solver.cpp:406] Test net output #41: loss/loss20 = 7.90006e-05 (* 0.0454545 = 3.59093e-06 loss)
I0404 14:47:40.460872 9252 solver.cpp:406] Test net output #42: loss/loss21 = 7.5247e-05 (* 0.0454545 = 3.42032e-06 loss)
I0404 14:47:40.460886 9252 solver.cpp:406] Test net output #43: loss/loss22 = 7.94584e-05 (* 0.0454545 = 3.61174e-06 loss)
I0404 14:47:40.460897 9252 solver.cpp:406] Test net output #44: total_accuracy = 0.002
I0404 14:47:40.460908 9252 solver.cpp:406] Test net output #45: total_confidence = 0.000286593
I0404 14:47:40.496191 9252 solver.cpp:229] Iteration 50000, loss = 0.863015
I0404 14:47:40.496229 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.25
I0404 14:47:40.496248 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125
I0404 14:47:40.496261 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.21875
I0404 14:47:40.496273 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125
I0404 14:47:40.496285 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125
I0404 14:47:40.496297 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.46875
I0404 14:47:40.496309 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875
I0404 14:47:40.496320 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875
I0404 14:47:40.496332 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375
I0404 14:47:40.496343 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875
I0404 14:47:40.496356 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 14:47:40.496366 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 14:47:40.496378 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 14:47:40.496389 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 14:47:40.496400 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 14:47:40.496412 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 14:47:40.496423 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 14:47:40.496434 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 14:47:40.496445 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 14:47:40.496457 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 14:47:40.496469 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 14:47:40.496480 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 14:47:40.496495 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.48135 (* 0.0454545 = 0.112788 loss)
I0404 14:47:40.496510 9252 solver.cpp:245] Train net output #23: loss/loss02 = 2.90563 (* 0.0454545 = 0.132074 loss)
I0404 14:47:40.496523 9252 solver.cpp:245] Train net output #24: loss/loss03 = 2.87837 (* 0.0454545 = 0.130835 loss)
I0404 14:47:40.496536 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.20239 (* 0.0454545 = 0.145563 loss)
I0404 14:47:40.496551 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.78568 (* 0.0454545 = 0.126622 loss)
I0404 14:47:40.496563 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.37651 (* 0.0454545 = 0.108023 loss)
I0404 14:47:40.496577 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.23471 (* 0.0454545 = 0.056123 loss)
I0404 14:47:40.496590 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.597234 (* 0.0454545 = 0.027147 loss)
I0404 14:47:40.496604 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.362306 (* 0.0454545 = 0.0164685 loss)
I0404 14:47:40.496635 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.246652 (* 0.0454545 = 0.0112115 loss)
I0404 14:47:40.496650 9252 solver.cpp:245] Train net output #32: loss/loss11 = 6.19769e-05 (* 0.0454545 = 2.81713e-06 loss)
I0404 14:47:40.496665 9252 solver.cpp:245] Train net output #33: loss/loss12 = 5.53603e-05 (* 0.0454545 = 2.51638e-06 loss)
I0404 14:47:40.496678 9252 solver.cpp:245] Train net output #34: loss/loss13 = 5.4087e-05 (* 0.0454545 = 2.4585e-06 loss)
I0404 14:47:40.496692 9252 solver.cpp:245] Train net output #35: loss/loss14 = 5.92671e-05 (* 0.0454545 = 2.69396e-06 loss)
I0404 14:47:40.496706 9252 solver.cpp:245] Train net output #36: loss/loss15 = 5.67745e-05 (* 0.0454545 = 2.58066e-06 loss)
I0404 14:47:40.496721 9252 solver.cpp:245] Train net output #37: loss/loss16 = 5.72243e-05 (* 0.0454545 = 2.60111e-06 loss)
I0404 14:47:40.496734 9252 solver.cpp:245] Train net output #38: loss/loss17 = 6.33217e-05 (* 0.0454545 = 2.87826e-06 loss)
I0404 14:47:40.496748 9252 solver.cpp:245] Train net output #39: loss/loss18 = 5.0445e-05 (* 0.0454545 = 2.29295e-06 loss)
I0404 14:47:40.496762 9252 solver.cpp:245] Train net output #40: loss/loss19 = 5.59607e-05 (* 0.0454545 = 2.54367e-06 loss)
I0404 14:47:40.496775 9252 solver.cpp:245] Train net output #41: loss/loss20 = 5.75982e-05 (* 0.0454545 = 2.6181e-06 loss)
I0404 14:47:40.496789 9252 solver.cpp:245] Train net output #42: loss/loss21 = 5.49716e-05 (* 0.0454545 = 2.49871e-06 loss)
I0404 14:47:40.496803 9252 solver.cpp:245] Train net output #43: loss/loss22 = 5.92373e-05 (* 0.0454545 = 2.6926e-06 loss)
I0404 14:47:40.496814 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 14:47:40.496825 9252 solver.cpp:245] Train net output #45: total_confidence = 0.000627326
I0404 14:47:40.496840 9252 sgd_solver.cpp:106] Iteration 50000, lr = 0.0095
I0404 14:48:51.891000 9252 solver.cpp:229] Iteration 50500, loss = 0.862217
I0404 14:48:51.891181 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.25
I0404 14:48:51.891201 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.15625
I0404 14:48:51.891214 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125
I0404 14:48:51.891227 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375
I0404 14:48:51.891243 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.15625
I0404 14:48:51.891255 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.28125
I0404 14:48:51.891268 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875
I0404 14:48:51.891279 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875
I0404 14:48:51.891290 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625
I0404 14:48:51.891302 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375
I0404 14:48:51.891314 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 14:48:51.891326 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 14:48:51.891337 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 14:48:51.891350 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 14:48:51.891360 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 14:48:51.891372 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 14:48:51.891389 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 14:48:51.891401 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 14:48:51.891412 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 14:48:51.891423 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 14:48:51.891434 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 14:48:51.891451 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 14:48:51.891468 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.58265 (* 0.0454545 = 0.117393 loss)
I0404 14:48:51.891482 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.10461 (* 0.0454545 = 0.141119 loss)
I0404 14:48:51.891496 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.20927 (* 0.0454545 = 0.145876 loss)
I0404 14:48:51.891510 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.4889 (* 0.0454545 = 0.158586 loss)
I0404 14:48:51.891523 9252 solver.cpp:245] Train net output #26: loss/loss05 = 3.00319 (* 0.0454545 = 0.136509 loss)
I0404 14:48:51.891536 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.70166 (* 0.0454545 = 0.122803 loss)
I0404 14:48:51.891549 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.29955 (* 0.0454545 = 0.0590706 loss)
I0404 14:48:51.891563 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.542259 (* 0.0454545 = 0.0246481 loss)
I0404 14:48:51.891577 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.457863 (* 0.0454545 = 0.0208119 loss)
I0404 14:48:51.891590 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.253872 (* 0.0454545 = 0.0115396 loss)
I0404 14:48:51.891604 9252 solver.cpp:245] Train net output #32: loss/loss11 = 6.35378e-05 (* 0.0454545 = 2.88808e-06 loss)
I0404 14:48:51.891618 9252 solver.cpp:245] Train net output #33: loss/loss12 = 6.28716e-05 (* 0.0454545 = 2.8578e-06 loss)
I0404 14:48:51.891633 9252 solver.cpp:245] Train net output #34: loss/loss13 = 6.6682e-05 (* 0.0454545 = 3.031e-06 loss)
I0404 14:48:51.891646 9252 solver.cpp:245] Train net output #35: loss/loss14 = 7.01766e-05 (* 0.0454545 = 3.18985e-06 loss)
I0404 14:48:51.891660 9252 solver.cpp:245] Train net output #36: loss/loss15 = 6.31562e-05 (* 0.0454545 = 2.87074e-06 loss)
I0404 14:48:51.891674 9252 solver.cpp:245] Train net output #37: loss/loss16 = 6.54041e-05 (* 0.0454545 = 2.97291e-06 loss)
I0404 14:48:51.891688 9252 solver.cpp:245] Train net output #38: loss/loss17 = 6.16058e-05 (* 0.0454545 = 2.80026e-06 loss)
I0404 14:48:51.891716 9252 solver.cpp:245] Train net output #39: loss/loss18 = 5.82985e-05 (* 0.0454545 = 2.64993e-06 loss)
I0404 14:48:51.891731 9252 solver.cpp:245] Train net output #40: loss/loss19 = 5.81344e-05 (* 0.0454545 = 2.64247e-06 loss)
I0404 14:48:51.891748 9252 solver.cpp:245] Train net output #41: loss/loss20 = 6.11755e-05 (* 0.0454545 = 2.7807e-06 loss)
I0404 14:48:51.891762 9252 solver.cpp:245] Train net output #42: loss/loss21 = 6.09347e-05 (* 0.0454545 = 2.76976e-06 loss)
I0404 14:48:51.891777 9252 solver.cpp:245] Train net output #43: loss/loss22 = 6.35565e-05 (* 0.0454545 = 2.88893e-06 loss)
I0404 14:48:51.891788 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 14:48:51.891800 9252 solver.cpp:245] Train net output #45: total_confidence = 0.000481547
I0404 14:48:51.891816 9252 sgd_solver.cpp:106] Iteration 50500, lr = 0.009495
I0404 14:50:03.061259 9252 solver.cpp:229] Iteration 51000, loss = 0.860943
I0404 14:50:03.061393 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.3125
I0404 14:50:03.061414 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.15625
I0404 14:50:03.061425 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.15625
I0404 14:50:03.061437 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125
I0404 14:50:03.061450 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875
I0404 14:50:03.061462 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375
I0404 14:50:03.061473 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75
I0404 14:50:03.061486 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375
I0404 14:50:03.061497 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875
I0404 14:50:03.061509 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 14:50:03.061534 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 14:50:03.061547 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 14:50:03.061559 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 14:50:03.061570 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 14:50:03.061583 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 14:50:03.061594 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 14:50:03.061605 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 14:50:03.061617 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 14:50:03.061628 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 14:50:03.061640 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 14:50:03.061651 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 14:50:03.061663 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 14:50:03.061679 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.59596 (* 0.0454545 = 0.117998 loss)
I0404 14:50:03.061693 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.06103 (* 0.0454545 = 0.139138 loss)
I0404 14:50:03.061707 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.17008 (* 0.0454545 = 0.144094 loss)
I0404 14:50:03.061722 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.3543 (* 0.0454545 = 0.152468 loss)
I0404 14:50:03.061734 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.8395 (* 0.0454545 = 0.129068 loss)
I0404 14:50:03.061751 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.5652 (* 0.0454545 = 0.1166 loss)
I0404 14:50:03.061765 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.10876 (* 0.0454545 = 0.0503982 loss)
I0404 14:50:03.061779 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.353751 (* 0.0454545 = 0.0160796 loss)
I0404 14:50:03.061794 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.163193 (* 0.0454545 = 0.00741786 loss)
I0404 14:50:03.061807 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.00711217 (* 0.0454545 = 0.000323281 loss)
I0404 14:50:03.061821 9252 solver.cpp:245] Train net output #32: loss/loss11 = 9.07724e-05 (* 0.0454545 = 4.12602e-06 loss)
I0404 14:50:03.061836 9252 solver.cpp:245] Train net output #33: loss/loss12 = 7.25417e-05 (* 0.0454545 = 3.29735e-06 loss)
I0404 14:50:03.061849 9252 solver.cpp:245] Train net output #34: loss/loss13 = 8.07737e-05 (* 0.0454545 = 3.67153e-06 loss)
I0404 14:50:03.061863 9252 solver.cpp:245] Train net output #35: loss/loss14 = 8.37988e-05 (* 0.0454545 = 3.80903e-06 loss)
I0404 14:50:03.061883 9252 solver.cpp:245] Train net output #36: loss/loss15 = 7.99151e-05 (* 0.0454545 = 3.63251e-06 loss)
I0404 14:50:03.061897 9252 solver.cpp:245] Train net output #37: loss/loss16 = 8.4117e-05 (* 0.0454545 = 3.8235e-06 loss)
I0404 14:50:03.061913 9252 solver.cpp:245] Train net output #38: loss/loss17 = 7.83434e-05 (* 0.0454545 = 3.56106e-06 loss)
I0404 14:50:03.061954 9252 solver.cpp:245] Train net output #39: loss/loss18 = 7.76517e-05 (* 0.0454545 = 3.52962e-06 loss)
I0404 14:50:03.061969 9252 solver.cpp:245] Train net output #40: loss/loss19 = 8.1024e-05 (* 0.0454545 = 3.68291e-06 loss)
I0404 14:50:03.061983 9252 solver.cpp:245] Train net output #41: loss/loss20 = 7.66141e-05 (* 0.0454545 = 3.48246e-06 loss)
I0404 14:50:03.061997 9252 solver.cpp:245] Train net output #42: loss/loss21 = 7.40386e-05 (* 0.0454545 = 3.36539e-06 loss)
I0404 14:50:03.062011 9252 solver.cpp:245] Train net output #43: loss/loss22 = 7.30808e-05 (* 0.0454545 = 3.32186e-06 loss)
I0404 14:50:03.062022 9252 solver.cpp:245] Train net output #44: total_accuracy = 0.03125
I0404 14:50:03.062033 9252 solver.cpp:245] Train net output #45: total_confidence = 0.000189852
I0404 14:50:03.062048 9252 sgd_solver.cpp:106] Iteration 51000, lr = 0.00949
I0404 14:51:13.263602 9252 solver.cpp:229] Iteration 51500, loss = 0.853104
I0404 14:51:13.263741 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.25
I0404 14:51:13.263761 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.15625
I0404 14:51:13.263774 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125
I0404 14:51:13.263787 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625
I0404 14:51:13.263799 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.21875
I0404 14:51:13.263811 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375
I0404 14:51:13.263823 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.59375
I0404 14:51:13.263835 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625
I0404 14:51:13.263847 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875
I0404 14:51:13.263859 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 14:51:13.263870 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 14:51:13.263882 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 14:51:13.263895 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 14:51:13.263906 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 14:51:13.263917 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 14:51:13.263928 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 14:51:13.263941 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 14:51:13.263952 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 14:51:13.263963 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 14:51:13.263974 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 14:51:13.263985 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 14:51:13.263996 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 14:51:13.264013 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.33535 (* 0.0454545 = 0.106152 loss)
I0404 14:51:13.264026 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.07689 (* 0.0454545 = 0.139859 loss)
I0404 14:51:13.264040 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.08509 (* 0.0454545 = 0.140231 loss)
I0404 14:51:13.264055 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.14684 (* 0.0454545 = 0.143038 loss)
I0404 14:51:13.264068 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.80472 (* 0.0454545 = 0.127487 loss)
I0404 14:51:13.264081 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.44849 (* 0.0454545 = 0.111295 loss)
I0404 14:51:13.264096 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.32111 (* 0.0454545 = 0.0600503 loss)
I0404 14:51:13.264109 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.427917 (* 0.0454545 = 0.0194508 loss)
I0404 14:51:13.264123 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.136373 (* 0.0454545 = 0.00619878 loss)
I0404 14:51:13.264137 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.00670748 (* 0.0454545 = 0.000304886 loss)
I0404 14:51:13.264153 9252 solver.cpp:245] Train net output #32: loss/loss11 = 2.90821e-05 (* 0.0454545 = 1.32191e-06 loss)
I0404 14:51:13.264166 9252 solver.cpp:245] Train net output #33: loss/loss12 = 2.86243e-05 (* 0.0454545 = 1.3011e-06 loss)
I0404 14:51:13.264180 9252 solver.cpp:245] Train net output #34: loss/loss13 = 2.45993e-05 (* 0.0454545 = 1.11815e-06 loss)
I0404 14:51:13.264194 9252 solver.cpp:245] Train net output #35: loss/loss14 = 2.44841e-05 (* 0.0454545 = 1.11291e-06 loss)
I0404 14:51:13.264209 9252 solver.cpp:245] Train net output #36: loss/loss15 = 2.7292e-05 (* 0.0454545 = 1.24055e-06 loss)
I0404 14:51:13.264222 9252 solver.cpp:245] Train net output #37: loss/loss16 = 3.10834e-05 (* 0.0454545 = 1.41288e-06 loss)
I0404 14:51:13.264235 9252 solver.cpp:245] Train net output #38: loss/loss17 = 2.74428e-05 (* 0.0454545 = 1.2474e-06 loss)
I0404 14:51:13.264268 9252 solver.cpp:245] Train net output #39: loss/loss18 = 2.38912e-05 (* 0.0454545 = 1.08596e-06 loss)
I0404 14:51:13.264286 9252 solver.cpp:245] Train net output #40: loss/loss19 = 2.87701e-05 (* 0.0454545 = 1.30773e-06 loss)
I0404 14:51:13.264299 9252 solver.cpp:245] Train net output #41: loss/loss20 = 2.68206e-05 (* 0.0454545 = 1.21912e-06 loss)
I0404 14:51:13.264313 9252 solver.cpp:245] Train net output #42: loss/loss21 = 2.63047e-05 (* 0.0454545 = 1.19567e-06 loss)
I0404 14:51:13.264328 9252 solver.cpp:245] Train net output #43: loss/loss22 = 2.90858e-05 (* 0.0454545 = 1.32208e-06 loss)
I0404 14:51:13.264339 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 14:51:13.264350 9252 solver.cpp:245] Train net output #45: total_confidence = 0.000231739
I0404 14:51:13.264374 9252 sgd_solver.cpp:106] Iteration 51500, lr = 0.009485
I0404 14:52:25.145463 9252 solver.cpp:229] Iteration 52000, loss = 0.854467
I0404 14:52:25.145588 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.34375
I0404 14:52:25.145607 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625
I0404 14:52:25.145620 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375
I0404 14:52:25.145632 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875
I0404 14:52:25.145644 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125
I0404 14:52:25.145658 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375
I0404 14:52:25.145669 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875
I0404 14:52:25.145680 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375
I0404 14:52:25.145692 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875
I0404 14:52:25.145704 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875
I0404 14:52:25.145715 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 14:52:25.145727 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 14:52:25.145740 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 14:52:25.145753 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 14:52:25.145766 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 14:52:25.145777 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 14:52:25.145789 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 14:52:25.145800 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 14:52:25.145812 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 14:52:25.145823 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 14:52:25.145834 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 14:52:25.145845 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 14:52:25.145861 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.38404 (* 0.0454545 = 0.108366 loss)
I0404 14:52:25.145875 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.16047 (* 0.0454545 = 0.143658 loss)
I0404 14:52:25.145889 9252 solver.cpp:245] Train net output #24: loss/loss03 = 2.92068 (* 0.0454545 = 0.132758 loss)
I0404 14:52:25.145902 9252 solver.cpp:245] Train net output #25: loss/loss04 = 2.97073 (* 0.0454545 = 0.135033 loss)
I0404 14:52:25.145915 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.64579 (* 0.0454545 = 0.120263 loss)
I0404 14:52:25.145930 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.14017 (* 0.0454545 = 0.0972803 loss)
I0404 14:52:25.145942 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.42803 (* 0.0454545 = 0.0649105 loss)
I0404 14:52:25.145956 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.68858 (* 0.0454545 = 0.0312991 loss)
I0404 14:52:25.145970 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.11219 (* 0.0454545 = 0.00509955 loss)
I0404 14:52:25.145983 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.0959211 (* 0.0454545 = 0.00436005 loss)
I0404 14:52:25.145998 9252 solver.cpp:245] Train net output #32: loss/loss11 = 5.25331e-05 (* 0.0454545 = 2.38787e-06 loss)
I0404 14:52:25.146013 9252 solver.cpp:245] Train net output #33: loss/loss12 = 4.76228e-05 (* 0.0454545 = 2.16467e-06 loss)
I0404 14:52:25.146026 9252 solver.cpp:245] Train net output #34: loss/loss13 = 4.67563e-05 (* 0.0454545 = 2.12529e-06 loss)
I0404 14:52:25.146039 9252 solver.cpp:245] Train net output #35: loss/loss14 = 4.9316e-05 (* 0.0454545 = 2.24164e-06 loss)
I0404 14:52:25.146054 9252 solver.cpp:245] Train net output #36: loss/loss15 = 4.52158e-05 (* 0.0454545 = 2.05526e-06 loss)
I0404 14:52:25.146067 9252 solver.cpp:245] Train net output #37: loss/loss16 = 5.43068e-05 (* 0.0454545 = 2.46849e-06 loss)
I0404 14:52:25.146081 9252 solver.cpp:245] Train net output #38: loss/loss17 = 4.61025e-05 (* 0.0454545 = 2.09557e-06 loss)
I0404 14:52:25.146112 9252 solver.cpp:245] Train net output #39: loss/loss18 = 4.70301e-05 (* 0.0454545 = 2.13773e-06 loss)
I0404 14:52:25.146127 9252 solver.cpp:245] Train net output #40: loss/loss19 = 4.62647e-05 (* 0.0454545 = 2.10294e-06 loss)
I0404 14:52:25.146142 9252 solver.cpp:245] Train net output #41: loss/loss20 = 4.39268e-05 (* 0.0454545 = 1.99667e-06 loss)
I0404 14:52:25.146154 9252 solver.cpp:245] Train net output #42: loss/loss21 = 4.40645e-05 (* 0.0454545 = 2.00293e-06 loss)
I0404 14:52:25.146168 9252 solver.cpp:245] Train net output #43: loss/loss22 = 4.70154e-05 (* 0.0454545 = 2.13707e-06 loss)
I0404 14:52:25.146180 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 14:52:25.146191 9252 solver.cpp:245] Train net output #45: total_confidence = 0.00318399
I0404 14:52:25.146205 9252 sgd_solver.cpp:106] Iteration 52000, lr = 0.00948
I0404 14:53:36.193087 9252 solver.cpp:229] Iteration 52500, loss = 0.852728
I0404 14:53:36.193253 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.25
I0404 14:53:36.193274 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125
I0404 14:53:36.193286 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125
I0404 14:53:36.193306 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625
I0404 14:53:36.193318 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25
I0404 14:53:36.193331 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.46875
I0404 14:53:36.193342 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125
I0404 14:53:36.193354 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.96875
I0404 14:53:36.193367 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 1
I0404 14:53:36.193378 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 14:53:36.193389 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 14:53:36.193402 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 14:53:36.193413 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 14:53:36.193454 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 14:53:36.193477 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 14:53:36.193491 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 14:53:36.193502 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 14:53:36.193514 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 14:53:36.193526 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 14:53:36.193537 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 14:53:36.193548 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 14:53:36.193560 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 14:53:36.193575 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.83369 (* 0.0454545 = 0.128804 loss)
I0404 14:53:36.193590 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.05721 (* 0.0454545 = 0.138964 loss)
I0404 14:53:36.193604 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.33036 (* 0.0454545 = 0.15138 loss)
I0404 14:53:36.193619 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.52619 (* 0.0454545 = 0.160282 loss)
I0404 14:53:36.193632 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.85973 (* 0.0454545 = 0.129988 loss)
I0404 14:53:36.193646 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.04031 (* 0.0454545 = 0.0927412 loss)
I0404 14:53:36.193660 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.09889 (* 0.0454545 = 0.0499495 loss)
I0404 14:53:36.193675 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.185643 (* 0.0454545 = 0.00843832 loss)
I0404 14:53:36.193689 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.0035933 (* 0.0454545 = 0.000163332 loss)
I0404 14:53:36.193703 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.00138296 (* 0.0454545 = 6.28619e-05 loss)
I0404 14:53:36.193718 9252 solver.cpp:245] Train net output #32: loss/loss11 = 7.83438e-06 (* 0.0454545 = 3.56108e-07 loss)
I0404 14:53:36.193732 9252 solver.cpp:245] Train net output #33: loss/loss12 = 7.3501e-06 (* 0.0454545 = 3.34095e-07 loss)
I0404 14:53:36.193748 9252 solver.cpp:245] Train net output #34: loss/loss13 = 7.21227e-06 (* 0.0454545 = 3.27831e-07 loss)
I0404 14:53:36.193763 9252 solver.cpp:245] Train net output #35: loss/loss14 = 6.68697e-06 (* 0.0454545 = 3.03953e-07 loss)
I0404 14:53:36.193778 9252 solver.cpp:245] Train net output #36: loss/loss15 = 7.95365e-06 (* 0.0454545 = 3.61529e-07 loss)
I0404 14:53:36.193791 9252 solver.cpp:245] Train net output #37: loss/loss16 = 8.14734e-06 (* 0.0454545 = 3.70333e-07 loss)
I0404 14:53:36.193805 9252 solver.cpp:245] Train net output #38: loss/loss17 = 8.08028e-06 (* 0.0454545 = 3.67285e-07 loss)
I0404 14:53:36.193835 9252 solver.cpp:245] Train net output #39: loss/loss18 = 8.03188e-06 (* 0.0454545 = 3.65086e-07 loss)
I0404 14:53:36.193850 9252 solver.cpp:245] Train net output #40: loss/loss19 = 8.03186e-06 (* 0.0454545 = 3.65085e-07 loss)
I0404 14:53:36.193863 9252 solver.cpp:245] Train net output #41: loss/loss20 = 7.55874e-06 (* 0.0454545 = 3.43579e-07 loss)
I0404 14:53:36.193877 9252 solver.cpp:245] Train net output #42: loss/loss21 = 7.85304e-06 (* 0.0454545 = 3.56956e-07 loss)
I0404 14:53:36.193891 9252 solver.cpp:245] Train net output #43: loss/loss22 = 7.56991e-06 (* 0.0454545 = 3.44087e-07 loss)
I0404 14:53:36.193902 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 14:53:36.193914 9252 solver.cpp:245] Train net output #45: total_confidence = 0.000120082
I0404 14:53:36.193928 9252 sgd_solver.cpp:106] Iteration 52500, lr = 0.009475
I0404 14:54:47.737259 9252 solver.cpp:229] Iteration 53000, loss = 0.851166
I0404 14:54:47.737378 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.3125
I0404 14:54:47.737399 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.15625
I0404 14:54:47.737411 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125
I0404 14:54:47.737424 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.21875
I0404 14:54:47.737437 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875
I0404 14:54:47.737454 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125
I0404 14:54:47.737467 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.78125
I0404 14:54:47.737478 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875
I0404 14:54:47.737490 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.875
I0404 14:54:47.737514 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875
I0404 14:54:47.737529 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 14:54:47.737547 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 14:54:47.737560 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 14:54:47.737571 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 14:54:47.737582 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 14:54:47.737594 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 14:54:47.737606 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 14:54:47.737617 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 14:54:47.737629 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 14:54:47.737640 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 14:54:47.737653 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 14:54:47.737663 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 14:54:47.737679 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.96242 (* 0.0454545 = 0.134655 loss)
I0404 14:54:47.737694 9252 solver.cpp:245] Train net output #23: loss/loss02 = 2.8705 (* 0.0454545 = 0.130477 loss)
I0404 14:54:47.737707 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.04621 (* 0.0454545 = 0.138464 loss)
I0404 14:54:47.737721 9252 solver.cpp:245] Train net output #25: loss/loss04 = 2.84617 (* 0.0454545 = 0.129372 loss)
I0404 14:54:47.737735 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.64364 (* 0.0454545 = 0.120166 loss)
I0404 14:54:47.737751 9252 solver.cpp:245] Train net output #27: loss/loss06 = 3.06513 (* 0.0454545 = 0.139324 loss)
I0404 14:54:47.737766 9252 solver.cpp:245] Train net output #28: loss/loss07 = 0.976445 (* 0.0454545 = 0.0443839 loss)
I0404 14:54:47.737778 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.466647 (* 0.0454545 = 0.0212112 loss)
I0404 14:54:47.737792 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.436749 (* 0.0454545 = 0.0198522 loss)
I0404 14:54:47.737807 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.240015 (* 0.0454545 = 0.0109098 loss)
I0404 14:54:47.737820 9252 solver.cpp:245] Train net output #32: loss/loss11 = 0.000150124 (* 0.0454545 = 6.82384e-06 loss)
I0404 14:54:47.737834 9252 solver.cpp:245] Train net output #33: loss/loss12 = 0.000128319 (* 0.0454545 = 5.83269e-06 loss)
I0404 14:54:47.737848 9252 solver.cpp:245] Train net output #34: loss/loss13 = 0.000138342 (* 0.0454545 = 6.28825e-06 loss)
I0404 14:54:47.737862 9252 solver.cpp:245] Train net output #35: loss/loss14 = 0.000134982 (* 0.0454545 = 6.13556e-06 loss)
I0404 14:54:47.737876 9252 solver.cpp:245] Train net output #36: loss/loss15 = 0.000107872 (* 0.0454545 = 4.90326e-06 loss)
I0404 14:54:47.737890 9252 solver.cpp:245] Train net output #37: loss/loss16 = 0.000124299 (* 0.0454545 = 5.64994e-06 loss)
I0404 14:54:47.737905 9252 solver.cpp:245] Train net output #38: loss/loss17 = 0.000122286 (* 0.0454545 = 5.55847e-06 loss)
I0404 14:54:47.737936 9252 solver.cpp:245] Train net output #39: loss/loss18 = 0.000138766 (* 0.0454545 = 6.30754e-06 loss)
I0404 14:54:47.737951 9252 solver.cpp:245] Train net output #40: loss/loss19 = 0.000108042 (* 0.0454545 = 4.91099e-06 loss)
I0404 14:54:47.737965 9252 solver.cpp:245] Train net output #41: loss/loss20 = 0.000126679 (* 0.0454545 = 5.75814e-06 loss)
I0404 14:54:47.737979 9252 solver.cpp:245] Train net output #42: loss/loss21 = 0.00011202 (* 0.0454545 = 5.09181e-06 loss)
I0404 14:54:47.737993 9252 solver.cpp:245] Train net output #43: loss/loss22 = 0.000118676 (* 0.0454545 = 5.39436e-06 loss)
I0404 14:54:47.738005 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 14:54:47.738016 9252 solver.cpp:245] Train net output #45: total_confidence = 0.000308495
I0404 14:54:47.738030 9252 sgd_solver.cpp:106] Iteration 53000, lr = 0.00947
I0404 14:55:58.120441 9252 solver.cpp:229] Iteration 53500, loss = 0.84983
I0404 14:55:58.120677 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.3125
I0404 14:55:58.120698 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.15625
I0404 14:55:58.120712 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.1875
I0404 14:55:58.120723 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625
I0404 14:55:58.120736 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.15625
I0404 14:55:58.120748 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625
I0404 14:55:58.120760 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125
I0404 14:55:58.120772 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 1
I0404 14:55:58.120785 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 1
I0404 14:55:58.120797 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 14:55:58.120808 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 14:55:58.120820 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 14:55:58.120831 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 14:55:58.120842 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 14:55:58.120854 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 14:55:58.120865 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 14:55:58.120877 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 14:55:58.120888 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 14:55:58.120903 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 14:55:58.120914 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 14:55:58.120926 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 14:55:58.120939 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 14:55:58.120954 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.45613 (* 0.0454545 = 0.111642 loss)
I0404 14:55:58.120968 9252 solver.cpp:245] Train net output #23: loss/loss02 = 2.845 (* 0.0454545 = 0.129318 loss)
I0404 14:55:58.120982 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.095 (* 0.0454545 = 0.140682 loss)
I0404 14:55:58.120996 9252 solver.cpp:245] Train net output #25: loss/loss04 = 2.94146 (* 0.0454545 = 0.133703 loss)
I0404 14:55:58.121011 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.74849 (* 0.0454545 = 0.124931 loss)
I0404 14:55:58.121024 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.42133 (* 0.0454545 = 0.11006 loss)
I0404 14:55:58.121037 9252 solver.cpp:245] Train net output #28: loss/loss07 = 0.955905 (* 0.0454545 = 0.0434502 loss)
I0404 14:55:58.121052 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.123595 (* 0.0454545 = 0.00561796 loss)
I0404 14:55:58.121067 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.0158087 (* 0.0454545 = 0.000718575 loss)
I0404 14:55:58.121080 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.00526253 (* 0.0454545 = 0.000239206 loss)
I0404 14:55:58.121094 9252 solver.cpp:245] Train net output #32: loss/loss11 = 6.14307e-05 (* 0.0454545 = 2.79231e-06 loss)
I0404 14:55:58.121109 9252 solver.cpp:245] Train net output #33: loss/loss12 = 6.66652e-05 (* 0.0454545 = 3.03024e-06 loss)
I0404 14:55:58.121122 9252 solver.cpp:245] Train net output #34: loss/loss13 = 6.59486e-05 (* 0.0454545 = 2.99766e-06 loss)
I0404 14:55:58.121136 9252 solver.cpp:245] Train net output #35: loss/loss14 = 6.45635e-05 (* 0.0454545 = 2.9347e-06 loss)
I0404 14:55:58.121150 9252 solver.cpp:245] Train net output #36: loss/loss15 = 6.03904e-05 (* 0.0454545 = 2.74502e-06 loss)
I0404 14:55:58.121163 9252 solver.cpp:245] Train net output #37: loss/loss16 = 6.10507e-05 (* 0.0454545 = 2.77503e-06 loss)
I0404 14:55:58.121177 9252 solver.cpp:245] Train net output #38: loss/loss17 = 5.66865e-05 (* 0.0454545 = 2.57666e-06 loss)
I0404 14:55:58.121209 9252 solver.cpp:245] Train net output #39: loss/loss18 = 6.28145e-05 (* 0.0454545 = 2.85521e-06 loss)
I0404 14:55:58.121224 9252 solver.cpp:245] Train net output #40: loss/loss19 = 6.12166e-05 (* 0.0454545 = 2.78257e-06 loss)
I0404 14:55:58.121238 9252 solver.cpp:245] Train net output #41: loss/loss20 = 5.73991e-05 (* 0.0454545 = 2.60905e-06 loss)
I0404 14:55:58.121253 9252 solver.cpp:245] Train net output #42: loss/loss21 = 5.37491e-05 (* 0.0454545 = 2.44314e-06 loss)
I0404 14:55:58.121266 9252 solver.cpp:245] Train net output #43: loss/loss22 = 6.07019e-05 (* 0.0454545 = 2.75918e-06 loss)
I0404 14:55:58.121279 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 14:55:58.121290 9252 solver.cpp:245] Train net output #45: total_confidence = 0.000312977
I0404 14:55:58.121304 9252 sgd_solver.cpp:106] Iteration 53500, lr = 0.009465
I0404 14:57:09.687680 9252 solver.cpp:229] Iteration 54000, loss = 0.847134
I0404 14:57:09.687816 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.25
I0404 14:57:09.687836 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125
I0404 14:57:09.687849 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.15625
I0404 14:57:09.687861 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875
I0404 14:57:09.687873 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.375
I0404 14:57:09.687885 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625
I0404 14:57:09.687897 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625
I0404 14:57:09.687911 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875
I0404 14:57:09.687922 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 1
I0404 14:57:09.687934 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 14:57:09.687947 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 14:57:09.687958 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 14:57:09.687976 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 14:57:09.687988 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 14:57:09.687999 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 14:57:09.688010 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 14:57:09.688022 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 14:57:09.688035 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 14:57:09.688055 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 14:57:09.688066 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 14:57:09.688077 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 14:57:09.688088 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 14:57:09.688104 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.63263 (* 0.0454545 = 0.119665 loss)
I0404 14:57:09.688119 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.06191 (* 0.0454545 = 0.139178 loss)
I0404 14:57:09.688133 9252 solver.cpp:245] Train net output #24: loss/loss03 = 2.95605 (* 0.0454545 = 0.134366 loss)
I0404 14:57:09.688148 9252 solver.cpp:245] Train net output #25: loss/loss04 = 2.99376 (* 0.0454545 = 0.13608 loss)
I0404 14:57:09.688161 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.43351 (* 0.0454545 = 0.110614 loss)
I0404 14:57:09.688174 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.47112 (* 0.0454545 = 0.112324 loss)
I0404 14:57:09.688189 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.6929 (* 0.0454545 = 0.0769498 loss)
I0404 14:57:09.688202 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.755683 (* 0.0454545 = 0.0343492 loss)
I0404 14:57:09.688216 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.0517068 (* 0.0454545 = 0.00235031 loss)
I0404 14:57:09.688230 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.0148996 (* 0.0454545 = 0.000677255 loss)
I0404 14:57:09.688246 9252 solver.cpp:245] Train net output #32: loss/loss11 = 6.34927e-05 (* 0.0454545 = 2.88603e-06 loss)
I0404 14:57:09.688259 9252 solver.cpp:245] Train net output #33: loss/loss12 = 6.31097e-05 (* 0.0454545 = 2.86862e-06 loss)
I0404 14:57:09.688273 9252 solver.cpp:245] Train net output #34: loss/loss13 = 5.30247e-05 (* 0.0454545 = 2.41021e-06 loss)
I0404 14:57:09.688287 9252 solver.cpp:245] Train net output #35: loss/loss14 = 6.45916e-05 (* 0.0454545 = 2.93598e-06 loss)
I0404 14:57:09.688302 9252 solver.cpp:245] Train net output #36: loss/loss15 = 5.07454e-05 (* 0.0454545 = 2.30661e-06 loss)
I0404 14:57:09.688315 9252 solver.cpp:245] Train net output #37: loss/loss16 = 5.33759e-05 (* 0.0454545 = 2.42618e-06 loss)
I0404 14:57:09.688329 9252 solver.cpp:245] Train net output #38: loss/loss17 = 5.17397e-05 (* 0.0454545 = 2.3518e-06 loss)
I0404 14:57:09.688361 9252 solver.cpp:245] Train net output #39: loss/loss18 = 4.94168e-05 (* 0.0454545 = 2.24622e-06 loss)
I0404 14:57:09.688376 9252 solver.cpp:245] Train net output #40: loss/loss19 = 5.32583e-05 (* 0.0454545 = 2.42083e-06 loss)
I0404 14:57:09.688390 9252 solver.cpp:245] Train net output #41: loss/loss20 = 5.1644e-05 (* 0.0454545 = 2.34745e-06 loss)
I0404 14:57:09.688405 9252 solver.cpp:245] Train net output #42: loss/loss21 = 5.2665e-05 (* 0.0454545 = 2.39386e-06 loss)
I0404 14:57:09.688418 9252 solver.cpp:245] Train net output #43: loss/loss22 = 4.41354e-05 (* 0.0454545 = 2.00616e-06 loss)
I0404 14:57:09.688431 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 14:57:09.688441 9252 solver.cpp:245] Train net output #45: total_confidence = 0.00033329
I0404 14:57:09.688454 9252 sgd_solver.cpp:106] Iteration 54000, lr = 0.00946
I0404 14:58:20.873844 9252 solver.cpp:229] Iteration 54500, loss = 0.843077
I0404 14:58:20.873994 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.4375
I0404 14:58:20.874014 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375
I0404 14:58:20.874027 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.25
I0404 14:58:20.874040 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875
I0404 14:58:20.874052 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.5625
I0404 14:58:20.874070 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5
I0404 14:58:20.874081 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75
I0404 14:58:20.874094 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625
I0404 14:58:20.874105 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375
I0404 14:58:20.874117 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 14:58:20.874130 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 14:58:20.874140 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 14:58:20.874152 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 14:58:20.874163 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 14:58:20.874176 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 14:58:20.874186 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 14:58:20.874197 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 14:58:20.874209 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 14:58:20.874220 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 14:58:20.874231 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 14:58:20.874243 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 14:58:20.874254 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 14:58:20.874269 9252 solver.cpp:245] Train net output #22: loss/loss01 = 1.9395 (* 0.0454545 = 0.0881592 loss)
I0404 14:58:20.874284 9252 solver.cpp:245] Train net output #23: loss/loss02 = 2.65188 (* 0.0454545 = 0.12054 loss)
I0404 14:58:20.874299 9252 solver.cpp:245] Train net output #24: loss/loss03 = 2.581 (* 0.0454545 = 0.117318 loss)
I0404 14:58:20.874312 9252 solver.cpp:245] Train net output #25: loss/loss04 = 2.76194 (* 0.0454545 = 0.125543 loss)
I0404 14:58:20.874326 9252 solver.cpp:245] Train net output #26: loss/loss05 = 1.81682 (* 0.0454545 = 0.0825829 loss)
I0404 14:58:20.874339 9252 solver.cpp:245] Train net output #27: loss/loss06 = 1.66661 (* 0.0454545 = 0.0757549 loss)
I0404 14:58:20.874353 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.14931 (* 0.0454545 = 0.0522414 loss)
I0404 14:58:20.874366 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.42436 (* 0.0454545 = 0.0192891 loss)
I0404 14:58:20.874380 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.412434 (* 0.0454545 = 0.018747 loss)
I0404 14:58:20.874394 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.0520824 (* 0.0454545 = 0.00236738 loss)
I0404 14:58:20.874408 9252 solver.cpp:245] Train net output #32: loss/loss11 = 4.434e-05 (* 0.0454545 = 2.01545e-06 loss)
I0404 14:58:20.874423 9252 solver.cpp:245] Train net output #33: loss/loss12 = 3.72386e-05 (* 0.0454545 = 1.69266e-06 loss)
I0404 14:58:20.874436 9252 solver.cpp:245] Train net output #34: loss/loss13 = 4.04856e-05 (* 0.0454545 = 1.84026e-06 loss)
I0404 14:58:20.874450 9252 solver.cpp:245] Train net output #35: loss/loss14 = 3.99287e-05 (* 0.0454545 = 1.81494e-06 loss)
I0404 14:58:20.874464 9252 solver.cpp:245] Train net output #36: loss/loss15 = 3.68642e-05 (* 0.0454545 = 1.67565e-06 loss)
I0404 14:58:20.874477 9252 solver.cpp:245] Train net output #37: loss/loss16 = 4.36489e-05 (* 0.0454545 = 1.98404e-06 loss)
I0404 14:58:20.874491 9252 solver.cpp:245] Train net output #38: loss/loss17 = 3.70354e-05 (* 0.0454545 = 1.68343e-06 loss)
I0404 14:58:20.874519 9252 solver.cpp:245] Train net output #39: loss/loss18 = 3.80209e-05 (* 0.0454545 = 1.72822e-06 loss)
I0404 14:58:20.874534 9252 solver.cpp:245] Train net output #40: loss/loss19 = 3.95206e-05 (* 0.0454545 = 1.79639e-06 loss)
I0404 14:58:20.874548 9252 solver.cpp:245] Train net output #41: loss/loss20 = 3.58954e-05 (* 0.0454545 = 1.63161e-06 loss)
I0404 14:58:20.874562 9252 solver.cpp:245] Train net output #42: loss/loss21 = 3.56029e-05 (* 0.0454545 = 1.61831e-06 loss)
I0404 14:58:20.874577 9252 solver.cpp:245] Train net output #43: loss/loss22 = 3.57482e-05 (* 0.0454545 = 1.62492e-06 loss)
I0404 14:58:20.874588 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 14:58:20.874599 9252 solver.cpp:245] Train net output #45: total_confidence = 0.000556105
I0404 14:58:20.874613 9252 sgd_solver.cpp:106] Iteration 54500, lr = 0.009455
I0404 14:59:32.774508 9252 solver.cpp:229] Iteration 55000, loss = 0.848519
I0404 14:59:32.774631 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.3125
I0404 14:59:32.774651 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.25
I0404 14:59:32.774663 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.15625
I0404 14:59:32.774675 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.21875
I0404 14:59:32.774688 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.21875
I0404 14:59:32.774699 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375
I0404 14:59:32.774711 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875
I0404 14:59:32.774723 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375
I0404 14:59:32.774734 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875
I0404 14:59:32.774746 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875
I0404 14:59:32.774757 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 14:59:32.774770 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 14:59:32.774781 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 14:59:32.774792 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 14:59:32.774804 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 14:59:32.774816 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 14:59:32.774827 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 14:59:32.774839 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 14:59:32.774850 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 14:59:32.774863 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 14:59:32.774873 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 14:59:32.774885 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 14:59:32.774904 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.51084 (* 0.0454545 = 0.114129 loss)
I0404 14:59:32.774919 9252 solver.cpp:245] Train net output #23: loss/loss02 = 2.73646 (* 0.0454545 = 0.124384 loss)
I0404 14:59:32.774932 9252 solver.cpp:245] Train net output #24: loss/loss03 = 2.94627 (* 0.0454545 = 0.133921 loss)
I0404 14:59:32.774946 9252 solver.cpp:245] Train net output #25: loss/loss04 = 2.8845 (* 0.0454545 = 0.131114 loss)
I0404 14:59:32.774960 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.72206 (* 0.0454545 = 0.12373 loss)
I0404 14:59:32.774973 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.37868 (* 0.0454545 = 0.108122 loss)
I0404 14:59:32.774987 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.2195 (* 0.0454545 = 0.055432 loss)
I0404 14:59:32.775001 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.416476 (* 0.0454545 = 0.0189307 loss)
I0404 14:59:32.775015 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.15298 (* 0.0454545 = 0.00695361 loss)
I0404 14:59:32.775032 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.143107 (* 0.0454545 = 0.00650486 loss)
I0404 14:59:32.775046 9252 solver.cpp:245] Train net output #32: loss/loss11 = 7.4198e-05 (* 0.0454545 = 3.37263e-06 loss)
I0404 14:59:32.775061 9252 solver.cpp:245] Train net output #33: loss/loss12 = 6.97379e-05 (* 0.0454545 = 3.16991e-06 loss)
I0404 14:59:32.775075 9252 solver.cpp:245] Train net output #34: loss/loss13 = 7.02483e-05 (* 0.0454545 = 3.1931e-06 loss)
I0404 14:59:32.775089 9252 solver.cpp:245] Train net output #35: loss/loss14 = 7.2302e-05 (* 0.0454545 = 3.28645e-06 loss)
I0404 14:59:32.775104 9252 solver.cpp:245] Train net output #36: loss/loss15 = 6.72975e-05 (* 0.0454545 = 3.05898e-06 loss)
I0404 14:59:32.775117 9252 solver.cpp:245] Train net output #37: loss/loss16 = 7.0645e-05 (* 0.0454545 = 3.21114e-06 loss)
I0404 14:59:32.775131 9252 solver.cpp:245] Train net output #38: loss/loss17 = 6.36349e-05 (* 0.0454545 = 2.89249e-06 loss)
I0404 14:59:32.775162 9252 solver.cpp:245] Train net output #39: loss/loss18 = 6.69079e-05 (* 0.0454545 = 3.04127e-06 loss)
I0404 14:59:32.775178 9252 solver.cpp:245] Train net output #40: loss/loss19 = 6.4745e-05 (* 0.0454545 = 2.94296e-06 loss)
I0404 14:59:32.775192 9252 solver.cpp:245] Train net output #41: loss/loss20 = 6.49126e-05 (* 0.0454545 = 2.95057e-06 loss)
I0404 14:59:32.775207 9252 solver.cpp:245] Train net output #42: loss/loss21 = 6.43615e-05 (* 0.0454545 = 2.92552e-06 loss)
I0404 14:59:32.775219 9252 solver.cpp:245] Train net output #43: loss/loss22 = 6.75858e-05 (* 0.0454545 = 3.07208e-06 loss)
I0404 14:59:32.775233 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 14:59:32.775243 9252 solver.cpp:245] Train net output #45: total_confidence = 0.000419656
I0404 14:59:32.775259 9252 sgd_solver.cpp:106] Iteration 55000, lr = 0.00945
I0404 15:00:43.382709 9252 solver.cpp:229] Iteration 55500, loss = 0.840133
I0404 15:00:43.382853 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.21875
I0404 15:00:43.382874 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.21875
I0404 15:00:43.382887 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125
I0404 15:00:43.382900 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375
I0404 15:00:43.382912 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.09375
I0404 15:00:43.382925 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.21875
I0404 15:00:43.382936 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.65625
I0404 15:00:43.382948 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875
I0404 15:00:43.382961 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875
I0404 15:00:43.382972 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 15:00:43.382984 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 15:00:43.382995 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 15:00:43.383008 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 15:00:43.383018 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 15:00:43.383030 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 15:00:43.383041 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 15:00:43.383054 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 15:00:43.383064 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 15:00:43.383076 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 15:00:43.383088 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 15:00:43.383100 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 15:00:43.383111 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 15:00:43.383126 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.8509 (* 0.0454545 = 0.129587 loss)
I0404 15:00:43.383141 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.14138 (* 0.0454545 = 0.14279 loss)
I0404 15:00:43.383155 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.28068 (* 0.0454545 = 0.149122 loss)
I0404 15:00:43.383168 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.38746 (* 0.0454545 = 0.153975 loss)
I0404 15:00:43.383183 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.93123 (* 0.0454545 = 0.133238 loss)
I0404 15:00:43.383196 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.81643 (* 0.0454545 = 0.12802 loss)
I0404 15:00:43.383210 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.27728 (* 0.0454545 = 0.058058 loss)
I0404 15:00:43.383224 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.620098 (* 0.0454545 = 0.0281863 loss)
I0404 15:00:43.383239 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.176225 (* 0.0454545 = 0.00801023 loss)
I0404 15:00:43.383252 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.0238801 (* 0.0454545 = 0.00108546 loss)
I0404 15:00:43.383267 9252 solver.cpp:245] Train net output #32: loss/loss11 = 5.04252e-05 (* 0.0454545 = 2.29206e-06 loss)
I0404 15:00:43.383281 9252 solver.cpp:245] Train net output #33: loss/loss12 = 4.88147e-05 (* 0.0454545 = 2.21885e-06 loss)
I0404 15:00:43.383296 9252 solver.cpp:245] Train net output #34: loss/loss13 = 4.92888e-05 (* 0.0454545 = 2.2404e-06 loss)
I0404 15:00:43.383309 9252 solver.cpp:245] Train net output #35: loss/loss14 = 5.47686e-05 (* 0.0454545 = 2.48948e-06 loss)
I0404 15:00:43.383323 9252 solver.cpp:245] Train net output #36: loss/loss15 = 4.80678e-05 (* 0.0454545 = 2.1849e-06 loss)
I0404 15:00:43.383337 9252 solver.cpp:245] Train net output #37: loss/loss16 = 5.16964e-05 (* 0.0454545 = 2.34984e-06 loss)
I0404 15:00:43.383352 9252 solver.cpp:245] Train net output #38: loss/loss17 = 4.58176e-05 (* 0.0454545 = 2.08262e-06 loss)
I0404 15:00:43.383383 9252 solver.cpp:245] Train net output #39: loss/loss18 = 5.06135e-05 (* 0.0454545 = 2.30061e-06 loss)
I0404 15:00:43.383397 9252 solver.cpp:245] Train net output #40: loss/loss19 = 4.92106e-05 (* 0.0454545 = 2.23684e-06 loss)
I0404 15:00:43.383411 9252 solver.cpp:245] Train net output #41: loss/loss20 = 4.9014e-05 (* 0.0454545 = 2.22791e-06 loss)
I0404 15:00:43.383425 9252 solver.cpp:245] Train net output #42: loss/loss21 = 5.03319e-05 (* 0.0454545 = 2.28781e-06 loss)
I0404 15:00:43.383440 9252 solver.cpp:245] Train net output #43: loss/loss22 = 4.77585e-05 (* 0.0454545 = 2.17084e-06 loss)
I0404 15:00:43.383451 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 15:00:43.383462 9252 solver.cpp:245] Train net output #45: total_confidence = 2.89059e-05
I0404 15:00:43.383476 9252 sgd_solver.cpp:106] Iteration 55500, lr = 0.009445
I0404 15:01:55.444340 9252 solver.cpp:229] Iteration 56000, loss = 0.8449
I0404 15:01:55.444447 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.3125
I0404 15:01:55.444465 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625
I0404 15:01:55.444478 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.1875
I0404 15:01:55.444491 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375
I0404 15:01:55.444502 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125
I0404 15:01:55.444514 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625
I0404 15:01:55.444526 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.78125
I0404 15:01:55.444538 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875
I0404 15:01:55.444550 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375
I0404 15:01:55.444562 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875
I0404 15:01:55.444574 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 15:01:55.444586 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 15:01:55.444597 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 15:01:55.444609 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 15:01:55.444620 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 15:01:55.444631 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 15:01:55.444643 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 15:01:55.444654 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 15:01:55.444665 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 15:01:55.444684 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 15:01:55.444695 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 15:01:55.444707 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 15:01:55.444722 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.58832 (* 0.0454545 = 0.117651 loss)
I0404 15:01:55.444736 9252 solver.cpp:245] Train net output #23: loss/loss02 = 2.69997 (* 0.0454545 = 0.122726 loss)
I0404 15:01:55.444759 9252 solver.cpp:245] Train net output #24: loss/loss03 = 2.92015 (* 0.0454545 = 0.132734 loss)
I0404 15:01:55.444773 9252 solver.cpp:245] Train net output #25: loss/loss04 = 2.932 (* 0.0454545 = 0.133273 loss)
I0404 15:01:55.444787 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.30519 (* 0.0454545 = 0.104782 loss)
I0404 15:01:55.444802 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.10255 (* 0.0454545 = 0.0955703 loss)
I0404 15:01:55.444815 9252 solver.cpp:245] Train net output #28: loss/loss07 = 0.919075 (* 0.0454545 = 0.0417761 loss)
I0404 15:01:55.444829 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.607411 (* 0.0454545 = 0.0276096 loss)
I0404 15:01:55.444842 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.339584 (* 0.0454545 = 0.0154356 loss)
I0404 15:01:55.444856 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.195459 (* 0.0454545 = 0.0088845 loss)
I0404 15:01:55.444870 9252 solver.cpp:245] Train net output #32: loss/loss11 = 4.09494e-05 (* 0.0454545 = 1.86134e-06 loss)
I0404 15:01:55.444885 9252 solver.cpp:245] Train net output #33: loss/loss12 = 4.06723e-05 (* 0.0454545 = 1.84874e-06 loss)
I0404 15:01:55.444901 9252 solver.cpp:245] Train net output #34: loss/loss13 = 3.74245e-05 (* 0.0454545 = 1.70111e-06 loss)
I0404 15:01:55.444916 9252 solver.cpp:245] Train net output #35: loss/loss14 = 3.90828e-05 (* 0.0454545 = 1.77649e-06 loss)
I0404 15:01:55.444931 9252 solver.cpp:245] Train net output #36: loss/loss15 = 4.19204e-05 (* 0.0454545 = 1.90547e-06 loss)
I0404 15:01:55.444944 9252 solver.cpp:245] Train net output #37: loss/loss16 = 4.44493e-05 (* 0.0454545 = 2.02042e-06 loss)
I0404 15:01:55.444959 9252 solver.cpp:245] Train net output #38: loss/loss17 = 3.82224e-05 (* 0.0454545 = 1.73738e-06 loss)
I0404 15:01:55.444990 9252 solver.cpp:245] Train net output #39: loss/loss18 = 3.79798e-05 (* 0.0454545 = 1.72635e-06 loss)
I0404 15:01:55.445005 9252 solver.cpp:245] Train net output #40: loss/loss19 = 3.86099e-05 (* 0.0454545 = 1.75499e-06 loss)
I0404 15:01:55.445019 9252 solver.cpp:245] Train net output #41: loss/loss20 = 4.01335e-05 (* 0.0454545 = 1.82425e-06 loss)
I0404 15:01:55.445037 9252 solver.cpp:245] Train net output #42: loss/loss21 = 3.48961e-05 (* 0.0454545 = 1.58619e-06 loss)
I0404 15:01:55.445050 9252 solver.cpp:245] Train net output #43: loss/loss22 = 3.71601e-05 (* 0.0454545 = 1.6891e-06 loss)
I0404 15:01:55.445063 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 15:01:55.445075 9252 solver.cpp:245] Train net output #45: total_confidence = 0.000419278
I0404 15:01:55.445091 9252 sgd_solver.cpp:106] Iteration 56000, lr = 0.00944
I0404 15:03:06.692260 9252 solver.cpp:229] Iteration 56500, loss = 0.835175
I0404 15:03:06.692406 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.3125
I0404 15:03:06.692432 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625
I0404 15:03:06.692451 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375
I0404 15:03:06.692464 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.28125
I0404 15:03:06.692476 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.5
I0404 15:03:06.692488 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.625
I0404 15:03:06.692500 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875
I0404 15:03:06.692513 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.78125
I0404 15:03:06.692525 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375
I0404 15:03:06.692536 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875
I0404 15:03:06.692548 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 15:03:06.692559 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 15:03:06.692571 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 15:03:06.692582 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 15:03:06.692594 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 15:03:06.692605 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 15:03:06.692616 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 15:03:06.692627 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 15:03:06.692638 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 15:03:06.692649 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 15:03:06.692662 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 15:03:06.692672 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 15:03:06.692687 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.93431 (* 0.0454545 = 0.133378 loss)
I0404 15:03:06.692701 9252 solver.cpp:245] Train net output #23: loss/loss02 = 2.89527 (* 0.0454545 = 0.131603 loss)
I0404 15:03:06.692715 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.08027 (* 0.0454545 = 0.140012 loss)
I0404 15:03:06.692729 9252 solver.cpp:245] Train net output #25: loss/loss04 = 2.89373 (* 0.0454545 = 0.131533 loss)
I0404 15:03:06.692745 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.21685 (* 0.0454545 = 0.100766 loss)
I0404 15:03:06.692760 9252 solver.cpp:245] Train net output #27: loss/loss06 = 1.64145 (* 0.0454545 = 0.0746111 loss)
I0404 15:03:06.692775 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.20346 (* 0.0454545 = 0.0547026 loss)
I0404 15:03:06.692788 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.845982 (* 0.0454545 = 0.0384537 loss)
I0404 15:03:06.692809 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.236526 (* 0.0454545 = 0.0107512 loss)
I0404 15:03:06.692839 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.19804 (* 0.0454545 = 0.00900183 loss)
I0404 15:03:06.692870 9252 solver.cpp:245] Train net output #32: loss/loss11 = 1.49498e-05 (* 0.0454545 = 6.79538e-07 loss)
I0404 15:03:06.692901 9252 solver.cpp:245] Train net output #33: loss/loss12 = 1.63916e-05 (* 0.0454545 = 7.45072e-07 loss)
I0404 15:03:06.692924 9252 solver.cpp:245] Train net output #34: loss/loss13 = 1.34112e-05 (* 0.0454545 = 6.09602e-07 loss)
I0404 15:03:06.692937 9252 solver.cpp:245] Train net output #35: loss/loss14 = 1.44916e-05 (* 0.0454545 = 6.5871e-07 loss)
I0404 15:03:06.692951 9252 solver.cpp:245] Train net output #36: loss/loss15 = 1.44507e-05 (* 0.0454545 = 6.56848e-07 loss)
I0404 15:03:06.692965 9252 solver.cpp:245] Train net output #37: loss/loss16 = 1.4473e-05 (* 0.0454545 = 6.57865e-07 loss)
I0404 15:03:06.692980 9252 solver.cpp:245] Train net output #38: loss/loss17 = 1.41936e-05 (* 0.0454545 = 6.45164e-07 loss)
I0404 15:03:06.693008 9252 solver.cpp:245] Train net output #39: loss/loss18 = 1.34299e-05 (* 0.0454545 = 6.10449e-07 loss)
I0404 15:03:06.693024 9252 solver.cpp:245] Train net output #40: loss/loss19 = 1.41079e-05 (* 0.0454545 = 6.41269e-07 loss)
I0404 15:03:06.693038 9252 solver.cpp:245] Train net output #41: loss/loss20 = 1.30238e-05 (* 0.0454545 = 5.91992e-07 loss)
I0404 15:03:06.693053 9252 solver.cpp:245] Train net output #42: loss/loss21 = 1.27407e-05 (* 0.0454545 = 5.79122e-07 loss)
I0404 15:03:06.693066 9252 solver.cpp:245] Train net output #43: loss/loss22 = 1.35528e-05 (* 0.0454545 = 6.16038e-07 loss)
I0404 15:03:06.693078 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 15:03:06.693089 9252 solver.cpp:245] Train net output #45: total_confidence = 0.000447123
I0404 15:03:06.693104 9252 sgd_solver.cpp:106] Iteration 56500, lr = 0.009435
I0404 15:04:17.465378 9252 solver.cpp:229] Iteration 57000, loss = 0.839226
I0404 15:04:17.465524 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.25
I0404 15:04:17.465544 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.1875
I0404 15:04:17.465558 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.21875
I0404 15:04:17.465569 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.28125
I0404 15:04:17.465581 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.4375
I0404 15:04:17.465592 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.625
I0404 15:04:17.465605 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125
I0404 15:04:17.465616 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875
I0404 15:04:17.465628 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375
I0404 15:04:17.465641 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 15:04:17.465652 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 15:04:17.465663 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 15:04:17.465675 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 15:04:17.465687 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 15:04:17.465698 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 15:04:17.465710 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 15:04:17.465723 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 15:04:17.465734 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 15:04:17.465747 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 15:04:17.465759 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 15:04:17.465772 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 15:04:17.465785 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 15:04:17.465801 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.59708 (* 0.0454545 = 0.118049 loss)
I0404 15:04:17.465822 9252 solver.cpp:245] Train net output #23: loss/loss02 = 2.97349 (* 0.0454545 = 0.135159 loss)
I0404 15:04:17.465837 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.04657 (* 0.0454545 = 0.13848 loss)
I0404 15:04:17.465850 9252 solver.cpp:245] Train net output #25: loss/loss04 = 2.69955 (* 0.0454545 = 0.122707 loss)
I0404 15:04:17.465863 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.10701 (* 0.0454545 = 0.0957734 loss)
I0404 15:04:17.465878 9252 solver.cpp:245] Train net output #27: loss/loss06 = 1.66098 (* 0.0454545 = 0.075499 loss)
I0404 15:04:17.465896 9252 solver.cpp:245] Train net output #28: loss/loss07 = 0.883897 (* 0.0454545 = 0.0401771 loss)
I0404 15:04:17.465909 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.490571 (* 0.0454545 = 0.0222987 loss)
I0404 15:04:17.465924 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.334139 (* 0.0454545 = 0.0151881 loss)
I0404 15:04:17.465937 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.0402396 (* 0.0454545 = 0.00182907 loss)
I0404 15:04:17.465952 9252 solver.cpp:245] Train net output #32: loss/loss11 = 3.46769e-05 (* 0.0454545 = 1.57622e-06 loss)
I0404 15:04:17.465966 9252 solver.cpp:245] Train net output #33: loss/loss12 = 3.29576e-05 (* 0.0454545 = 1.49807e-06 loss)
I0404 15:04:17.465981 9252 solver.cpp:245] Train net output #34: loss/loss13 = 2.99081e-05 (* 0.0454545 = 1.35946e-06 loss)
I0404 15:04:17.465994 9252 solver.cpp:245] Train net output #35: loss/loss14 = 3.25495e-05 (* 0.0454545 = 1.47952e-06 loss)
I0404 15:04:17.466012 9252 solver.cpp:245] Train net output #36: loss/loss15 = 3.10612e-05 (* 0.0454545 = 1.41187e-06 loss)
I0404 15:04:17.466027 9252 solver.cpp:245] Train net output #37: loss/loss16 = 3.46211e-05 (* 0.0454545 = 1.57369e-06 loss)
I0404 15:04:17.466040 9252 solver.cpp:245] Train net output #38: loss/loss17 = 3.12697e-05 (* 0.0454545 = 1.42135e-06 loss)
I0404 15:04:17.466080 9252 solver.cpp:245] Train net output #39: loss/loss18 = 3.0208e-05 (* 0.0454545 = 1.37309e-06 loss)
I0404 15:04:17.466095 9252 solver.cpp:245] Train net output #40: loss/loss19 = 3.2112e-05 (* 0.0454545 = 1.45964e-06 loss)
I0404 15:04:17.466109 9252 solver.cpp:245] Train net output #41: loss/loss20 = 3.16723e-05 (* 0.0454545 = 1.43965e-06 loss)
I0404 15:04:17.466131 9252 solver.cpp:245] Train net output #42: loss/loss21 = 2.77492e-05 (* 0.0454545 = 1.26133e-06 loss)
I0404 15:04:17.466145 9252 solver.cpp:245] Train net output #43: loss/loss22 = 2.69126e-05 (* 0.0454545 = 1.2233e-06 loss)
I0404 15:04:17.466157 9252 solver.cpp:245] Train net output #44: total_accuracy = 0.03125
I0404 15:04:17.466169 9252 solver.cpp:245] Train net output #45: total_confidence = 0.00348629
I0404 15:04:17.466184 9252 sgd_solver.cpp:106] Iteration 57000, lr = 0.00943
I0404 15:05:28.165192 9252 solver.cpp:229] Iteration 57500, loss = 0.831928
I0404 15:05:28.165334 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.4375
I0404 15:05:28.165354 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375
I0404 15:05:28.165366 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.25
I0404 15:05:28.165379 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875
I0404 15:05:28.165390 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.34375
I0404 15:05:28.165402 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5
I0404 15:05:28.165415 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.84375
I0404 15:05:28.165426 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375
I0404 15:05:28.165437 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875
I0404 15:05:28.165449 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875
I0404 15:05:28.165474 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 15:05:28.165489 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 15:05:28.165510 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 15:05:28.165525 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 15:05:28.165537 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 15:05:28.165565 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 15:05:28.165577 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 15:05:28.165590 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 15:05:28.165601 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 15:05:28.165612 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 15:05:28.165630 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 15:05:28.165642 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 15:05:28.165658 9252 solver.cpp:245] Train net output #22: loss/loss01 = 1.95218 (* 0.0454545 = 0.0887356 loss)
I0404 15:05:28.165673 9252 solver.cpp:245] Train net output #23: loss/loss02 = 2.92385 (* 0.0454545 = 0.132902 loss)
I0404 15:05:28.165686 9252 solver.cpp:245] Train net output #24: loss/loss03 = 2.78438 (* 0.0454545 = 0.126563 loss)
I0404 15:05:28.165700 9252 solver.cpp:245] Train net output #25: loss/loss04 = 2.95459 (* 0.0454545 = 0.1343 loss)
I0404 15:05:28.165714 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.58335 (* 0.0454545 = 0.117425 loss)
I0404 15:05:28.165727 9252 solver.cpp:245] Train net output #27: loss/loss06 = 1.80601 (* 0.0454545 = 0.0820912 loss)
I0404 15:05:28.165741 9252 solver.cpp:245] Train net output #28: loss/loss07 = 0.758131 (* 0.0454545 = 0.0344605 loss)
I0404 15:05:28.165758 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.307435 (* 0.0454545 = 0.0139743 loss)
I0404 15:05:28.165772 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.118097 (* 0.0454545 = 0.00536805 loss)
I0404 15:05:28.165787 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.134458 (* 0.0454545 = 0.00611172 loss)
I0404 15:05:28.165802 9252 solver.cpp:245] Train net output #32: loss/loss11 = 5.67295e-05 (* 0.0454545 = 2.57861e-06 loss)
I0404 15:05:28.165815 9252 solver.cpp:245] Train net output #33: loss/loss12 = 5.03512e-05 (* 0.0454545 = 2.28869e-06 loss)
I0404 15:05:28.165830 9252 solver.cpp:245] Train net output #34: loss/loss13 = 5.40099e-05 (* 0.0454545 = 2.455e-06 loss)
I0404 15:05:28.165844 9252 solver.cpp:245] Train net output #35: loss/loss14 = 5.32853e-05 (* 0.0454545 = 2.42206e-06 loss)
I0404 15:05:28.165858 9252 solver.cpp:245] Train net output #36: loss/loss15 = 5.46859e-05 (* 0.0454545 = 2.48572e-06 loss)
I0404 15:05:28.165873 9252 solver.cpp:245] Train net output #37: loss/loss16 = 5.41662e-05 (* 0.0454545 = 2.4621e-06 loss)
I0404 15:05:28.165886 9252 solver.cpp:245] Train net output #38: loss/loss17 = 5.35161e-05 (* 0.0454545 = 2.43255e-06 loss)
I0404 15:05:28.165920 9252 solver.cpp:245] Train net output #39: loss/loss18 = 5.27652e-05 (* 0.0454545 = 2.39842e-06 loss)
I0404 15:05:28.165935 9252 solver.cpp:245] Train net output #40: loss/loss19 = 4.99375e-05 (* 0.0454545 = 2.26989e-06 loss)
I0404 15:05:28.165949 9252 solver.cpp:245] Train net output #41: loss/loss20 = 5.51928e-05 (* 0.0454545 = 2.50876e-06 loss)
I0404 15:05:28.165962 9252 solver.cpp:245] Train net output #42: loss/loss21 = 5.22289e-05 (* 0.0454545 = 2.37404e-06 loss)
I0404 15:05:28.165977 9252 solver.cpp:245] Train net output #43: loss/loss22 = 5.21506e-05 (* 0.0454545 = 2.37048e-06 loss)
I0404 15:05:28.165988 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 15:05:28.166000 9252 solver.cpp:245] Train net output #45: total_confidence = 0.000728259
I0404 15:05:28.166013 9252 sgd_solver.cpp:106] Iteration 57500, lr = 0.009425
I0404 15:06:39.483847 9252 solver.cpp:229] Iteration 58000, loss = 0.830155
I0404 15:06:39.484094 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.1875
I0404 15:06:39.484115 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.15625
I0404 15:06:39.484128 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375
I0404 15:06:39.484140 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875
I0404 15:06:39.484153 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.375
I0404 15:06:39.484165 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625
I0404 15:06:39.484187 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875
I0404 15:06:39.484210 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875
I0404 15:06:39.484225 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625
I0404 15:06:39.484236 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875
I0404 15:06:39.484254 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 15:06:39.484266 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 15:06:39.484277 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 15:06:39.484288 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 15:06:39.484300 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 15:06:39.484315 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 15:06:39.484328 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 15:06:39.484338 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 15:06:39.484349 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 15:06:39.484361 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 15:06:39.484381 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 15:06:39.484392 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 15:06:39.484408 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.73754 (* 0.0454545 = 0.124434 loss)
I0404 15:06:39.484422 9252 solver.cpp:245] Train net output #23: loss/loss02 = 2.90789 (* 0.0454545 = 0.132177 loss)
I0404 15:06:39.484436 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.04719 (* 0.0454545 = 0.138509 loss)
I0404 15:06:39.484458 9252 solver.cpp:245] Train net output #25: loss/loss04 = 2.88111 (* 0.0454545 = 0.13096 loss)
I0404 15:06:39.484472 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.36588 (* 0.0454545 = 0.10754 loss)
I0404 15:06:39.484485 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.4658 (* 0.0454545 = 0.112082 loss)
I0404 15:06:39.484499 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.36499 (* 0.0454545 = 0.0620451 loss)
I0404 15:06:39.484513 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.530545 (* 0.0454545 = 0.0241157 loss)
I0404 15:06:39.484526 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.40808 (* 0.0454545 = 0.0185491 loss)
I0404 15:06:39.484540 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.242333 (* 0.0454545 = 0.0110152 loss)
I0404 15:06:39.484555 9252 solver.cpp:245] Train net output #32: loss/loss11 = 3.66269e-05 (* 0.0454545 = 1.66486e-06 loss)
I0404 15:06:39.484570 9252 solver.cpp:245] Train net output #33: loss/loss12 = 3.22437e-05 (* 0.0454545 = 1.46562e-06 loss)
I0404 15:06:39.484593 9252 solver.cpp:245] Train net output #34: loss/loss13 = 3.55951e-05 (* 0.0454545 = 1.61796e-06 loss)
I0404 15:06:39.484619 9252 solver.cpp:245] Train net output #35: loss/loss14 = 3.41385e-05 (* 0.0454545 = 1.55175e-06 loss)
I0404 15:06:39.484635 9252 solver.cpp:245] Train net output #36: loss/loss15 = 3.18823e-05 (* 0.0454545 = 1.44919e-06 loss)
I0404 15:06:39.484649 9252 solver.cpp:245] Train net output #37: loss/loss16 = 3.76294e-05 (* 0.0454545 = 1.71043e-06 loss)
I0404 15:06:39.484663 9252 solver.cpp:245] Train net output #38: loss/loss17 = 3.15526e-05 (* 0.0454545 = 1.43421e-06 loss)
I0404 15:06:39.484699 9252 solver.cpp:245] Train net output #39: loss/loss18 = 3.34526e-05 (* 0.0454545 = 1.52057e-06 loss)
I0404 15:06:39.484715 9252 solver.cpp:245] Train net output #40: loss/loss19 = 3.24468e-05 (* 0.0454545 = 1.47485e-06 loss)
I0404 15:06:39.484730 9252 solver.cpp:245] Train net output #41: loss/loss20 = 3.22959e-05 (* 0.0454545 = 1.468e-06 loss)
I0404 15:06:39.484743 9252 solver.cpp:245] Train net output #42: loss/loss21 = 3.25736e-05 (* 0.0454545 = 1.48062e-06 loss)
I0404 15:06:39.484757 9252 solver.cpp:245] Train net output #43: loss/loss22 = 3.37228e-05 (* 0.0454545 = 1.53286e-06 loss)
I0404 15:06:39.484769 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 15:06:39.484781 9252 solver.cpp:245] Train net output #45: total_confidence = 0.000443866
I0404 15:06:39.484797 9252 sgd_solver.cpp:106] Iteration 58000, lr = 0.00942
I0404 15:07:50.460594 9252 solver.cpp:229] Iteration 58500, loss = 0.833686
I0404 15:07:50.460813 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.21875
I0404 15:07:50.460842 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375
I0404 15:07:50.460857 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125
I0404 15:07:50.460877 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.21875
I0404 15:07:50.460888 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.21875
I0404 15:07:50.460901 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375
I0404 15:07:50.460916 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.78125
I0404 15:07:50.460944 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875
I0404 15:07:50.460958 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875
I0404 15:07:50.460969 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875
I0404 15:07:50.460981 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 15:07:50.460994 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 15:07:50.461004 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 15:07:50.461015 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 15:07:50.461027 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 15:07:50.461038 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 15:07:50.461050 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 15:07:50.461061 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 15:07:50.461072 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 15:07:50.461083 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 15:07:50.461094 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 15:07:50.461107 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 15:07:50.461122 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.48683 (* 0.0454545 = 0.113038 loss)
I0404 15:07:50.461136 9252 solver.cpp:245] Train net output #23: loss/loss02 = 2.95377 (* 0.0454545 = 0.134262 loss)
I0404 15:07:50.461150 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.18069 (* 0.0454545 = 0.144577 loss)
I0404 15:07:50.461163 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.11375 (* 0.0454545 = 0.141534 loss)
I0404 15:07:50.461176 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.7614 (* 0.0454545 = 0.125518 loss)
I0404 15:07:50.461190 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.24909 (* 0.0454545 = 0.102232 loss)
I0404 15:07:50.461205 9252 solver.cpp:245] Train net output #28: loss/loss07 = 0.778603 (* 0.0454545 = 0.0353911 loss)
I0404 15:07:50.461217 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.552612 (* 0.0454545 = 0.0251187 loss)
I0404 15:07:50.461231 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.176374 (* 0.0454545 = 0.00801698 loss)
I0404 15:07:50.461246 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.171954 (* 0.0454545 = 0.00781607 loss)
I0404 15:07:50.461261 9252 solver.cpp:245] Train net output #32: loss/loss11 = 2.06073e-05 (* 0.0454545 = 9.36693e-07 loss)
I0404 15:07:50.461273 9252 solver.cpp:245] Train net output #33: loss/loss12 = 1.8387e-05 (* 0.0454545 = 8.35772e-07 loss)
I0404 15:07:50.461287 9252 solver.cpp:245] Train net output #34: loss/loss13 = 1.71667e-05 (* 0.0454545 = 7.80303e-07 loss)
I0404 15:07:50.461302 9252 solver.cpp:245] Train net output #35: loss/loss14 = 1.75466e-05 (* 0.0454545 = 7.97574e-07 loss)
I0404 15:07:50.461315 9252 solver.cpp:245] Train net output #36: loss/loss15 = 1.66041e-05 (* 0.0454545 = 7.54733e-07 loss)
I0404 15:07:50.461329 9252 solver.cpp:245] Train net output #37: loss/loss16 = 1.79042e-05 (* 0.0454545 = 8.13827e-07 loss)
I0404 15:07:50.461343 9252 solver.cpp:245] Train net output #38: loss/loss17 = 1.81465e-05 (* 0.0454545 = 8.24839e-07 loss)
I0404 15:07:50.461391 9252 solver.cpp:245] Train net output #39: loss/loss18 = 1.9115e-05 (* 0.0454545 = 8.68863e-07 loss)
I0404 15:07:50.461467 9252 solver.cpp:245] Train net output #40: loss/loss19 = 1.64215e-05 (* 0.0454545 = 7.46432e-07 loss)
I0404 15:07:50.461499 9252 solver.cpp:245] Train net output #41: loss/loss20 = 1.65817e-05 (* 0.0454545 = 7.53711e-07 loss)
I0404 15:07:50.461518 9252 solver.cpp:245] Train net output #42: loss/loss21 = 1.55832e-05 (* 0.0454545 = 7.08329e-07 loss)
I0404 15:07:50.461531 9252 solver.cpp:245] Train net output #43: loss/loss22 = 1.6116e-05 (* 0.0454545 = 7.32547e-07 loss)
I0404 15:07:50.461544 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 15:07:50.461555 9252 solver.cpp:245] Train net output #45: total_confidence = 0.00114636
I0404 15:07:50.461570 9252 sgd_solver.cpp:106] Iteration 58500, lr = 0.009415
I0404 15:09:02.760632 9252 solver.cpp:229] Iteration 59000, loss = 0.826913
I0404 15:09:02.760759 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.46875
I0404 15:09:02.760778 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125
I0404 15:09:02.760792 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.25
I0404 15:09:02.760804 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.25
I0404 15:09:02.760817 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125
I0404 15:09:02.760828 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.625
I0404 15:09:02.760839 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875
I0404 15:09:02.760851 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875
I0404 15:09:02.760864 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875
I0404 15:09:02.760876 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875
I0404 15:09:02.760888 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 15:09:02.760900 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 15:09:02.760911 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 15:09:02.760923 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 15:09:02.760934 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 15:09:02.760946 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 15:09:02.760957 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 15:09:02.760969 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 15:09:02.760980 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 15:09:02.760993 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 15:09:02.761003 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 15:09:02.761015 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 15:09:02.761039 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.03075 (* 0.0454545 = 0.0923067 loss)
I0404 15:09:02.761052 9252 solver.cpp:245] Train net output #23: loss/loss02 = 2.75039 (* 0.0454545 = 0.125018 loss)
I0404 15:09:02.761066 9252 solver.cpp:245] Train net output #24: loss/loss03 = 2.72426 (* 0.0454545 = 0.12383 loss)
I0404 15:09:02.761080 9252 solver.cpp:245] Train net output #25: loss/loss04 = 2.90886 (* 0.0454545 = 0.132221 loss)
I0404 15:09:02.761098 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.51408 (* 0.0454545 = 0.114277 loss)
I0404 15:09:02.761111 9252 solver.cpp:245] Train net output #27: loss/loss06 = 1.66259 (* 0.0454545 = 0.0755725 loss)
I0404 15:09:02.761126 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.13162 (* 0.0454545 = 0.0514373 loss)
I0404 15:09:02.761139 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.49688 (* 0.0454545 = 0.0225854 loss)
I0404 15:09:02.761153 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.183049 (* 0.0454545 = 0.00832042 loss)
I0404 15:09:02.761168 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.163544 (* 0.0454545 = 0.00743382 loss)
I0404 15:09:02.761183 9252 solver.cpp:245] Train net output #32: loss/loss11 = 5.48831e-05 (* 0.0454545 = 2.49469e-06 loss)
I0404 15:09:02.761196 9252 solver.cpp:245] Train net output #33: loss/loss12 = 5.40564e-05 (* 0.0454545 = 2.45711e-06 loss)
I0404 15:09:02.761210 9252 solver.cpp:245] Train net output #34: loss/loss13 = 5.39198e-05 (* 0.0454545 = 2.4509e-06 loss)
I0404 15:09:02.761224 9252 solver.cpp:245] Train net output #35: loss/loss14 = 5.08744e-05 (* 0.0454545 = 2.31247e-06 loss)
I0404 15:09:02.761239 9252 solver.cpp:245] Train net output #36: loss/loss15 = 5.56061e-05 (* 0.0454545 = 2.52755e-06 loss)
I0404 15:09:02.761253 9252 solver.cpp:245] Train net output #37: loss/loss16 = 5.48562e-05 (* 0.0454545 = 2.49347e-06 loss)
I0404 15:09:02.761266 9252 solver.cpp:245] Train net output #38: loss/loss17 = 4.94715e-05 (* 0.0454545 = 2.24871e-06 loss)
I0404 15:09:02.761299 9252 solver.cpp:245] Train net output #39: loss/loss18 = 5.47826e-05 (* 0.0454545 = 2.49012e-06 loss)
I0404 15:09:02.761314 9252 solver.cpp:245] Train net output #40: loss/loss19 = 4.79272e-05 (* 0.0454545 = 2.17851e-06 loss)
I0404 15:09:02.761328 9252 solver.cpp:245] Train net output #41: loss/loss20 = 4.53173e-05 (* 0.0454545 = 2.05988e-06 loss)
I0404 15:09:02.761343 9252 solver.cpp:245] Train net output #42: loss/loss21 = 5.05502e-05 (* 0.0454545 = 2.29774e-06 loss)
I0404 15:09:02.761356 9252 solver.cpp:245] Train net output #43: loss/loss22 = 4.90244e-05 (* 0.0454545 = 2.22838e-06 loss)
I0404 15:09:02.761368 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 15:09:02.761380 9252 solver.cpp:245] Train net output #45: total_confidence = 0.00133815
I0404 15:09:02.761394 9252 sgd_solver.cpp:106] Iteration 59000, lr = 0.00941
I0404 15:10:14.221436 9252 solver.cpp:229] Iteration 59500, loss = 0.823798
I0404 15:10:14.221561 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.34375
I0404 15:10:14.221590 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625
I0404 15:10:14.221616 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625
I0404 15:10:14.221638 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375
I0404 15:10:14.221659 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25
I0404 15:10:14.221678 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625
I0404 15:10:14.221695 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625
I0404 15:10:14.221717 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625
I0404 15:10:14.221740 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875
I0404 15:10:14.221767 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 15:10:14.221791 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 15:10:14.221812 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 15:10:14.221843 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 15:10:14.221864 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 15:10:14.221885 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 15:10:14.221916 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 15:10:14.221938 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 15:10:14.221958 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 15:10:14.221979 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 15:10:14.222000 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 15:10:14.222023 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 15:10:14.222044 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 15:10:14.222071 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.54578 (* 0.0454545 = 0.115717 loss)
I0404 15:10:14.222105 9252 solver.cpp:245] Train net output #23: loss/loss02 = 2.96846 (* 0.0454545 = 0.13493 loss)
I0404 15:10:14.222131 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.25023 (* 0.0454545 = 0.147738 loss)
I0404 15:10:14.222157 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.2563 (* 0.0454545 = 0.148014 loss)
I0404 15:10:14.222182 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.67237 (* 0.0454545 = 0.121471 loss)
I0404 15:10:14.222208 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.3107 (* 0.0454545 = 0.105032 loss)
I0404 15:10:14.222232 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.22187 (* 0.0454545 = 0.0555396 loss)
I0404 15:10:14.222259 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.451497 (* 0.0454545 = 0.0205226 loss)
I0404 15:10:14.222290 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.12854 (* 0.0454545 = 0.00584271 loss)
I0404 15:10:14.222316 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.0373318 (* 0.0454545 = 0.0016969 loss)
I0404 15:10:14.222342 9252 solver.cpp:245] Train net output #32: loss/loss11 = 2.03444e-05 (* 0.0454545 = 9.24745e-07 loss)
I0404 15:10:14.222371 9252 solver.cpp:245] Train net output #33: loss/loss12 = 1.81017e-05 (* 0.0454545 = 8.22804e-07 loss)
I0404 15:10:14.222403 9252 solver.cpp:245] Train net output #34: loss/loss13 = 1.97186e-05 (* 0.0454545 = 8.96298e-07 loss)
I0404 15:10:14.222430 9252 solver.cpp:245] Train net output #35: loss/loss14 = 1.7934e-05 (* 0.0454545 = 8.15183e-07 loss)
I0404 15:10:14.222458 9252 solver.cpp:245] Train net output #36: loss/loss15 = 1.9074e-05 (* 0.0454545 = 8.67e-07 loss)
I0404 15:10:14.222492 9252 solver.cpp:245] Train net output #37: loss/loss16 = 1.82768e-05 (* 0.0454545 = 8.30762e-07 loss)
I0404 15:10:14.222519 9252 solver.cpp:245] Train net output #38: loss/loss17 = 1.81538e-05 (* 0.0454545 = 8.25173e-07 loss)
I0404 15:10:14.222575 9252 solver.cpp:245] Train net output #39: loss/loss18 = 1.87312e-05 (* 0.0454545 = 8.51419e-07 loss)
I0404 15:10:14.222605 9252 solver.cpp:245] Train net output #40: loss/loss19 = 1.64289e-05 (* 0.0454545 = 7.46769e-07 loss)
I0404 15:10:14.222632 9252 solver.cpp:245] Train net output #41: loss/loss20 = 1.66226e-05 (* 0.0454545 = 7.55574e-07 loss)
I0404 15:10:14.222658 9252 solver.cpp:245] Train net output #42: loss/loss21 = 1.68723e-05 (* 0.0454545 = 7.66921e-07 loss)
I0404 15:10:14.222686 9252 solver.cpp:245] Train net output #43: loss/loss22 = 1.84407e-05 (* 0.0454545 = 8.38213e-07 loss)
I0404 15:10:14.222707 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 15:10:14.222729 9252 solver.cpp:245] Train net output #45: total_confidence = 0.000347022
I0404 15:10:14.222754 9252 sgd_solver.cpp:106] Iteration 59500, lr = 0.009405
I0404 15:11:24.887190 9252 solver.cpp:338] Iteration 60000, Testing net (#0)
I0404 15:11:32.989130 9252 solver.cpp:393] Test loss: 0.728368
I0404 15:11:32.989179 9252 solver.cpp:406] Test net output #0: loss/accuracy01 = 0.38
I0404 15:11:32.989195 9252 solver.cpp:406] Test net output #1: loss/accuracy02 = 0.159
I0404 15:11:32.989207 9252 solver.cpp:406] Test net output #2: loss/accuracy03 = 0.141
I0404 15:11:32.989219 9252 solver.cpp:406] Test net output #3: loss/accuracy04 = 0.176
I0404 15:11:32.989230 9252 solver.cpp:406] Test net output #4: loss/accuracy05 = 0.282
I0404 15:11:32.989241 9252 solver.cpp:406] Test net output #5: loss/accuracy06 = 0.521
I0404 15:11:32.989253 9252 solver.cpp:406] Test net output #6: loss/accuracy07 = 0.892
I0404 15:11:32.989264 9252 solver.cpp:406] Test net output #7: loss/accuracy08 = 0.97
I0404 15:11:32.989275 9252 solver.cpp:406] Test net output #8: loss/accuracy09 = 0.995
I0404 15:11:32.989286 9252 solver.cpp:406] Test net output #9: loss/accuracy10 = 0.998
I0404 15:11:32.989297 9252 solver.cpp:406] Test net output #10: loss/accuracy11 = 1
I0404 15:11:32.989308 9252 solver.cpp:406] Test net output #11: loss/accuracy12 = 1
I0404 15:11:32.989320 9252 solver.cpp:406] Test net output #12: loss/accuracy13 = 1
I0404 15:11:32.989331 9252 solver.cpp:406] Test net output #13: loss/accuracy14 = 1
I0404 15:11:32.989341 9252 solver.cpp:406] Test net output #14: loss/accuracy15 = 1
I0404 15:11:32.989352 9252 solver.cpp:406] Test net output #15: loss/accuracy16 = 1
I0404 15:11:32.989363 9252 solver.cpp:406] Test net output #16: loss/accuracy17 = 1
I0404 15:11:32.989374 9252 solver.cpp:406] Test net output #17: loss/accuracy18 = 1
I0404 15:11:32.989387 9252 solver.cpp:406] Test net output #18: loss/accuracy19 = 1
I0404 15:11:32.989398 9252 solver.cpp:406] Test net output #19: loss/accuracy20 = 1
I0404 15:11:32.989408 9252 solver.cpp:406] Test net output #20: loss/accuracy21 = 1
I0404 15:11:32.989437 9252 solver.cpp:406] Test net output #21: loss/accuracy22 = 1
I0404 15:11:32.989455 9252 solver.cpp:406] Test net output #22: loss/loss01 = 2.24305 (* 0.0454545 = 0.101957 loss)
I0404 15:11:32.989470 9252 solver.cpp:406] Test net output #23: loss/loss02 = 2.78515 (* 0.0454545 = 0.126598 loss)
I0404 15:11:32.989483 9252 solver.cpp:406] Test net output #24: loss/loss03 = 2.90429 (* 0.0454545 = 0.132013 loss)
I0404 15:11:32.989496 9252 solver.cpp:406] Test net output #25: loss/loss04 = 2.84632 (* 0.0454545 = 0.129378 loss)
I0404 15:11:32.989509 9252 solver.cpp:406] Test net output #26: loss/loss05 = 2.55519 (* 0.0454545 = 0.116145 loss)
I0404 15:11:32.989523 9252 solver.cpp:406] Test net output #27: loss/loss06 = 1.88654 (* 0.0454545 = 0.0857517 loss)
I0404 15:11:32.989537 9252 solver.cpp:406] Test net output #28: loss/loss07 = 0.525351 (* 0.0454545 = 0.0238796 loss)
I0404 15:11:32.989550 9252 solver.cpp:406] Test net output #29: loss/loss08 = 0.203578 (* 0.0454545 = 0.00925355 loss)
I0404 15:11:32.989564 9252 solver.cpp:406] Test net output #30: loss/loss09 = 0.0482533 (* 0.0454545 = 0.00219333 loss)
I0404 15:11:32.989578 9252 solver.cpp:406] Test net output #31: loss/loss10 = 0.0254176 (* 0.0454545 = 0.00115534 loss)
I0404 15:11:32.989591 9252 solver.cpp:406] Test net output #32: loss/loss11 = 8.82109e-05 (* 0.0454545 = 4.00958e-06 loss)
I0404 15:11:32.989605 9252 solver.cpp:406] Test net output #33: loss/loss12 = 7.66382e-05 (* 0.0454545 = 3.48356e-06 loss)
I0404 15:11:32.989619 9252 solver.cpp:406] Test net output #34: loss/loss13 = 8.17979e-05 (* 0.0454545 = 3.71809e-06 loss)
I0404 15:11:32.989632 9252 solver.cpp:406] Test net output #35: loss/loss14 = 7.99719e-05 (* 0.0454545 = 3.63509e-06 loss)
I0404 15:11:32.989646 9252 solver.cpp:406] Test net output #36: loss/loss15 = 8.39315e-05 (* 0.0454545 = 3.81507e-06 loss)
I0404 15:11:32.989660 9252 solver.cpp:406] Test net output #37: loss/loss16 = 8.43388e-05 (* 0.0454545 = 3.83358e-06 loss)
I0404 15:11:32.989673 9252 solver.cpp:406] Test net output #38: loss/loss17 = 7.1345e-05 (* 0.0454545 = 3.24296e-06 loss)
I0404 15:11:32.989725 9252 solver.cpp:406] Test net output #39: loss/loss18 = 8.58024e-05 (* 0.0454545 = 3.90011e-06 loss)
I0404 15:11:32.989742 9252 solver.cpp:406] Test net output #40: loss/loss19 = 8.62968e-05 (* 0.0454545 = 3.92258e-06 loss)
I0404 15:11:32.989758 9252 solver.cpp:406] Test net output #41: loss/loss20 = 8.17133e-05 (* 0.0454545 = 3.71424e-06 loss)
I0404 15:11:32.989775 9252 solver.cpp:406] Test net output #42: loss/loss21 = 8.10353e-05 (* 0.0454545 = 3.68342e-06 loss)
I0404 15:11:32.989789 9252 solver.cpp:406] Test net output #43: loss/loss22 = 7.1701e-05 (* 0.0454545 = 3.25914e-06 loss)
I0404 15:11:32.989801 9252 solver.cpp:406] Test net output #44: total_accuracy = 0.001
I0404 15:11:32.989812 9252 solver.cpp:406] Test net output #45: total_confidence = 0.000954465
I0404 15:11:33.025135 9252 solver.cpp:229] Iteration 60000, loss = 0.82471
I0404 15:11:33.025177 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.4375
I0404 15:11:33.025193 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.15625
I0404 15:11:33.025205 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.15625
I0404 15:11:33.025218 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.28125
I0404 15:11:33.025229 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875
I0404 15:11:33.025240 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375
I0404 15:11:33.025252 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75
I0404 15:11:33.025264 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375
I0404 15:11:33.025275 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.875
I0404 15:11:33.025287 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375
I0404 15:11:33.025302 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 15:11:33.025315 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 15:11:33.025326 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 15:11:33.025337 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 15:11:33.025348 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 15:11:33.025359 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 15:11:33.025370 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 15:11:33.025382 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 15:11:33.025393 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 15:11:33.025405 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 15:11:33.025430 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 15:11:33.025446 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 15:11:33.025461 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.26772 (* 0.0454545 = 0.103078 loss)
I0404 15:11:33.025476 9252 solver.cpp:245] Train net output #23: loss/loss02 = 2.75548 (* 0.0454545 = 0.125249 loss)
I0404 15:11:33.025490 9252 solver.cpp:245] Train net output #24: loss/loss03 = 2.88399 (* 0.0454545 = 0.131091 loss)
I0404 15:11:33.025504 9252 solver.cpp:245] Train net output #25: loss/loss04 = 2.98003 (* 0.0454545 = 0.135456 loss)
I0404 15:11:33.025518 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.81476 (* 0.0454545 = 0.127944 loss)
I0404 15:11:33.025532 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.18596 (* 0.0454545 = 0.0993616 loss)
I0404 15:11:33.025545 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.04698 (* 0.0454545 = 0.04759 loss)
I0404 15:11:33.025558 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.485566 (* 0.0454545 = 0.0220712 loss)
I0404 15:11:33.025573 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.451106 (* 0.0454545 = 0.0205048 loss)
I0404 15:11:33.025605 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.310016 (* 0.0454545 = 0.0140916 loss)
I0404 15:11:33.025620 9252 solver.cpp:245] Train net output #32: loss/loss11 = 6.14051e-05 (* 0.0454545 = 2.79114e-06 loss)
I0404 15:11:33.025635 9252 solver.cpp:245] Train net output #33: loss/loss12 = 4.64876e-05 (* 0.0454545 = 2.11307e-06 loss)
I0404 15:11:33.025648 9252 solver.cpp:245] Train net output #34: loss/loss13 = 5.67435e-05 (* 0.0454545 = 2.57925e-06 loss)
I0404 15:11:33.025661 9252 solver.cpp:245] Train net output #35: loss/loss14 = 5.56684e-05 (* 0.0454545 = 2.53038e-06 loss)
I0404 15:11:33.025676 9252 solver.cpp:245] Train net output #36: loss/loss15 = 4.63705e-05 (* 0.0454545 = 2.10775e-06 loss)
I0404 15:11:33.025688 9252 solver.cpp:245] Train net output #37: loss/loss16 = 5.84082e-05 (* 0.0454545 = 2.65492e-06 loss)
I0404 15:11:33.025702 9252 solver.cpp:245] Train net output #38: loss/loss17 = 5.15804e-05 (* 0.0454545 = 2.34456e-06 loss)
I0404 15:11:33.025715 9252 solver.cpp:245] Train net output #39: loss/loss18 = 5.12135e-05 (* 0.0454545 = 2.32789e-06 loss)
I0404 15:11:33.025729 9252 solver.cpp:245] Train net output #40: loss/loss19 = 5.25491e-05 (* 0.0454545 = 2.38859e-06 loss)
I0404 15:11:33.025743 9252 solver.cpp:245] Train net output #41: loss/loss20 = 4.95364e-05 (* 0.0454545 = 2.25166e-06 loss)
I0404 15:11:33.025756 9252 solver.cpp:245] Train net output #42: loss/loss21 = 5.04278e-05 (* 0.0454545 = 2.29217e-06 loss)
I0404 15:11:33.025770 9252 solver.cpp:245] Train net output #43: loss/loss22 = 4.67565e-05 (* 0.0454545 = 2.1253e-06 loss)
I0404 15:11:33.025782 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 15:11:33.025794 9252 solver.cpp:245] Train net output #45: total_confidence = 0.000471519
I0404 15:11:33.025809 9252 sgd_solver.cpp:106] Iteration 60000, lr = 0.0094
I0404 15:12:44.415822 9252 solver.cpp:229] Iteration 60500, loss = 0.818026
I0404 15:12:44.416000 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.375
I0404 15:12:44.416039 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375
I0404 15:12:44.416066 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125
I0404 15:12:44.416090 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125
I0404 15:12:44.416112 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.21875
I0404 15:12:44.416136 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625
I0404 15:12:44.416159 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.59375
I0404 15:12:44.416185 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.8125
I0404 15:12:44.416208 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375
I0404 15:12:44.416230 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875
I0404 15:12:44.416271 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 15:12:44.416293 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 15:12:44.416322 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 15:12:44.416344 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 15:12:44.416365 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 15:12:44.416386 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 15:12:44.416407 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 15:12:44.416429 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 15:12:44.416450 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 15:12:44.416471 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 15:12:44.416492 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 15:12:44.416514 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 15:12:44.416541 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.11224 (* 0.0454545 = 0.096011 loss)
I0404 15:12:44.416568 9252 solver.cpp:245] Train net output #23: loss/loss02 = 2.90972 (* 0.0454545 = 0.13226 loss)
I0404 15:12:44.416596 9252 solver.cpp:245] Train net output #24: loss/loss03 = 2.94412 (* 0.0454545 = 0.133824 loss)
I0404 15:12:44.416643 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.24221 (* 0.0454545 = 0.147373 loss)
I0404 15:12:44.416674 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.48229 (* 0.0454545 = 0.112831 loss)
I0404 15:12:44.416719 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.42921 (* 0.0454545 = 0.110419 loss)
I0404 15:12:44.416749 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.49016 (* 0.0454545 = 0.0677345 loss)
I0404 15:12:44.416785 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.603651 (* 0.0454545 = 0.0274387 loss)
I0404 15:12:44.416811 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.449817 (* 0.0454545 = 0.0204462 loss)
I0404 15:12:44.416837 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.210961 (* 0.0454545 = 0.00958915 loss)
I0404 15:12:44.416864 9252 solver.cpp:245] Train net output #32: loss/loss11 = 8.69932e-05 (* 0.0454545 = 3.95424e-06 loss)
I0404 15:12:44.416890 9252 solver.cpp:245] Train net output #33: loss/loss12 = 8.17242e-05 (* 0.0454545 = 3.71474e-06 loss)
I0404 15:12:44.416916 9252 solver.cpp:245] Train net output #34: loss/loss13 = 7.96633e-05 (* 0.0454545 = 3.62106e-06 loss)
I0404 15:12:44.416942 9252 solver.cpp:245] Train net output #35: loss/loss14 = 7.17113e-05 (* 0.0454545 = 3.2596e-06 loss)
I0404 15:12:44.416970 9252 solver.cpp:245] Train net output #36: loss/loss15 = 7.14502e-05 (* 0.0454545 = 3.24773e-06 loss)
I0404 15:12:44.417002 9252 solver.cpp:245] Train net output #37: loss/loss16 = 7.29714e-05 (* 0.0454545 = 3.31688e-06 loss)
I0404 15:12:44.417028 9252 solver.cpp:245] Train net output #38: loss/loss17 = 7.52083e-05 (* 0.0454545 = 3.41856e-06 loss)
I0404 15:12:44.417083 9252 solver.cpp:245] Train net output #39: loss/loss18 = 7.47257e-05 (* 0.0454545 = 3.39662e-06 loss)
I0404 15:12:44.417111 9252 solver.cpp:245] Train net output #40: loss/loss19 = 6.89156e-05 (* 0.0454545 = 3.13253e-06 loss)
I0404 15:12:44.417138 9252 solver.cpp:245] Train net output #41: loss/loss20 = 6.24512e-05 (* 0.0454545 = 2.83869e-06 loss)
I0404 15:12:44.417165 9252 solver.cpp:245] Train net output #42: loss/loss21 = 6.60896e-05 (* 0.0454545 = 3.00407e-06 loss)
I0404 15:12:44.417191 9252 solver.cpp:245] Train net output #43: loss/loss22 = 6.7184e-05 (* 0.0454545 = 3.05382e-06 loss)
I0404 15:12:44.417214 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 15:12:44.417235 9252 solver.cpp:245] Train net output #45: total_confidence = 0.000453201
I0404 15:12:44.417258 9252 sgd_solver.cpp:106] Iteration 60500, lr = 0.009395
I0404 15:13:55.623414 9252 solver.cpp:229] Iteration 61000, loss = 0.814955
I0404 15:13:55.623515 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.21875
I0404 15:13:55.623533 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375
I0404 15:13:55.623546 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625
I0404 15:13:55.623558 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375
I0404 15:13:55.623570 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.4375
I0404 15:13:55.623582 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375
I0404 15:13:55.623594 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.875
I0404 15:13:55.623605 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.96875
I0404 15:13:55.623618 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 1
I0404 15:13:55.623639 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 15:13:55.623663 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 15:13:55.623678 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 15:13:55.623690 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 15:13:55.623702 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 15:13:55.623713 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 15:13:55.623725 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 15:13:55.623736 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 15:13:55.623747 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 15:13:55.623759 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 15:13:55.623770 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 15:13:55.623782 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 15:13:55.623793 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 15:13:55.623810 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.42415 (* 0.0454545 = 0.110188 loss)
I0404 15:13:55.623823 9252 solver.cpp:245] Train net output #23: loss/loss02 = 2.89196 (* 0.0454545 = 0.131453 loss)
I0404 15:13:55.623837 9252 solver.cpp:245] Train net output #24: loss/loss03 = 2.94177 (* 0.0454545 = 0.133717 loss)
I0404 15:13:55.623850 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.17082 (* 0.0454545 = 0.144128 loss)
I0404 15:13:55.623864 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.35765 (* 0.0454545 = 0.107166 loss)
I0404 15:13:55.623878 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.14482 (* 0.0454545 = 0.097492 loss)
I0404 15:13:55.623893 9252 solver.cpp:245] Train net output #28: loss/loss07 = 0.446864 (* 0.0454545 = 0.020312 loss)
I0404 15:13:55.623910 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.19832 (* 0.0454545 = 0.00901455 loss)
I0404 15:13:55.623924 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.0105511 (* 0.0454545 = 0.000479594 loss)
I0404 15:13:55.623939 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.00184753 (* 0.0454545 = 8.39785e-05 loss)
I0404 15:13:55.623953 9252 solver.cpp:245] Train net output #32: loss/loss11 = 1.02001e-05 (* 0.0454545 = 4.63642e-07 loss)
I0404 15:13:55.623967 9252 solver.cpp:245] Train net output #33: loss/loss12 = 9.43644e-06 (* 0.0454545 = 4.28929e-07 loss)
I0404 15:13:55.623981 9252 solver.cpp:245] Train net output #34: loss/loss13 = 9.59659e-06 (* 0.0454545 = 4.36209e-07 loss)
I0404 15:13:55.623996 9252 solver.cpp:245] Train net output #35: loss/loss14 = 9.54446e-06 (* 0.0454545 = 4.33839e-07 loss)
I0404 15:13:55.624009 9252 solver.cpp:245] Train net output #36: loss/loss15 = 1.04907e-05 (* 0.0454545 = 4.7685e-07 loss)
I0404 15:13:55.624023 9252 solver.cpp:245] Train net output #37: loss/loss16 = 1.08819e-05 (* 0.0454545 = 4.94633e-07 loss)
I0404 15:13:55.624037 9252 solver.cpp:245] Train net output #38: loss/loss17 = 9.38797e-06 (* 0.0454545 = 4.26726e-07 loss)
I0404 15:13:55.624068 9252 solver.cpp:245] Train net output #39: loss/loss18 = 1.03827e-05 (* 0.0454545 = 4.7194e-07 loss)
I0404 15:13:55.624083 9252 solver.cpp:245] Train net output #40: loss/loss19 = 9.32468e-06 (* 0.0454545 = 4.23849e-07 loss)
I0404 15:13:55.624097 9252 solver.cpp:245] Train net output #41: loss/loss20 = 9.35816e-06 (* 0.0454545 = 4.25371e-07 loss)
I0404 15:13:55.624110 9252 solver.cpp:245] Train net output #42: loss/loss21 = 9.17936e-06 (* 0.0454545 = 4.17244e-07 loss)
I0404 15:13:55.624125 9252 solver.cpp:245] Train net output #43: loss/loss22 = 9.19795e-06 (* 0.0454545 = 4.18089e-07 loss)
I0404 15:13:55.624136 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 15:13:55.624147 9252 solver.cpp:245] Train net output #45: total_confidence = 0.000556393
I0404 15:13:55.624161 9252 sgd_solver.cpp:106] Iteration 61000, lr = 0.00939
I0404 15:15:06.930893 9252 solver.cpp:229] Iteration 61500, loss = 0.815831
I0404 15:15:06.931025 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.40625
I0404 15:15:06.931052 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375
I0404 15:15:06.931066 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375
I0404 15:15:06.931078 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625
I0404 15:15:06.931090 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875
I0404 15:15:06.931102 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375
I0404 15:15:06.931114 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875
I0404 15:15:06.931126 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.78125
I0404 15:15:06.931138 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625
I0404 15:15:06.931150 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 15:15:06.931162 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 15:15:06.931174 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 15:15:06.931185 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 15:15:06.931205 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 15:15:06.931216 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 15:15:06.931227 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 15:15:06.931239 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 15:15:06.931252 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 15:15:06.931263 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 15:15:06.931274 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 15:15:06.931285 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 15:15:06.931298 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 15:15:06.931313 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.20148 (* 0.0454545 = 0.100067 loss)
I0404 15:15:06.931327 9252 solver.cpp:245] Train net output #23: loss/loss02 = 2.93229 (* 0.0454545 = 0.133286 loss)
I0404 15:15:06.931341 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.02375 (* 0.0454545 = 0.137443 loss)
I0404 15:15:06.931354 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.02333 (* 0.0454545 = 0.137424 loss)
I0404 15:15:06.931368 9252 solver.cpp:245] Train net output #26: loss/loss05 = 3.09648 (* 0.0454545 = 0.140749 loss)
I0404 15:15:06.931382 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.28698 (* 0.0454545 = 0.103954 loss)
I0404 15:15:06.931396 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.15309 (* 0.0454545 = 0.0524132 loss)
I0404 15:15:06.931409 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.680849 (* 0.0454545 = 0.0309477 loss)
I0404 15:15:06.931430 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.42069 (* 0.0454545 = 0.0191223 loss)
I0404 15:15:06.931444 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.028716 (* 0.0454545 = 0.00130527 loss)
I0404 15:15:06.931458 9252 solver.cpp:245] Train net output #32: loss/loss11 = 9.91868e-05 (* 0.0454545 = 4.50849e-06 loss)
I0404 15:15:06.931473 9252 solver.cpp:245] Train net output #33: loss/loss12 = 8.77305e-05 (* 0.0454545 = 3.98775e-06 loss)
I0404 15:15:06.931488 9252 solver.cpp:245] Train net output #34: loss/loss13 = 9.37148e-05 (* 0.0454545 = 4.25976e-06 loss)
I0404 15:15:06.931500 9252 solver.cpp:245] Train net output #35: loss/loss14 = 9.41184e-05 (* 0.0454545 = 4.27811e-06 loss)
I0404 15:15:06.931514 9252 solver.cpp:245] Train net output #36: loss/loss15 = 8.08212e-05 (* 0.0454545 = 3.67369e-06 loss)
I0404 15:15:06.931529 9252 solver.cpp:245] Train net output #37: loss/loss16 = 8.96515e-05 (* 0.0454545 = 4.07507e-06 loss)
I0404 15:15:06.931542 9252 solver.cpp:245] Train net output #38: loss/loss17 = 7.95707e-05 (* 0.0454545 = 3.61685e-06 loss)
I0404 15:15:06.931956 9252 solver.cpp:245] Train net output #39: loss/loss18 = 8.1777e-05 (* 0.0454545 = 3.71714e-06 loss)
I0404 15:15:06.931973 9252 solver.cpp:245] Train net output #40: loss/loss19 = 8.75375e-05 (* 0.0454545 = 3.97898e-06 loss)
I0404 15:15:06.931988 9252 solver.cpp:245] Train net output #41: loss/loss20 = 8.12322e-05 (* 0.0454545 = 3.69237e-06 loss)
I0404 15:15:06.932003 9252 solver.cpp:245] Train net output #42: loss/loss21 = 7.67668e-05 (* 0.0454545 = 3.4894e-06 loss)
I0404 15:15:06.932016 9252 solver.cpp:245] Train net output #43: loss/loss22 = 6.95532e-05 (* 0.0454545 = 3.16151e-06 loss)
I0404 15:15:06.932029 9252 solver.cpp:245] Train net output #44: total_accuracy = 0.03125
I0404 15:15:06.932044 9252 solver.cpp:245] Train net output #45: total_confidence = 0.00057572
I0404 15:15:06.932059 9252 sgd_solver.cpp:106] Iteration 61500, lr = 0.009385
I0404 15:16:18.505662 9252 solver.cpp:229] Iteration 62000, loss = 0.809086
I0404 15:16:18.505964 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.4375
I0404 15:16:18.505993 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.15625
I0404 15:16:18.506014 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375
I0404 15:16:18.506036 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875
I0404 15:16:18.506057 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125
I0404 15:16:18.506080 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375
I0404 15:16:18.506103 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.78125
I0404 15:16:18.506124 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375
I0404 15:16:18.506146 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 1
I0404 15:16:18.506168 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 15:16:18.506189 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 15:16:18.506211 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 15:16:18.506230 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 15:16:18.506253 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 15:16:18.506275 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 15:16:18.506299 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 15:16:18.506321 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 15:16:18.506343 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 15:16:18.506364 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 15:16:18.506386 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 15:16:18.506417 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 15:16:18.506439 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 15:16:18.506466 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.12191 (* 0.0454545 = 0.0964503 loss)
I0404 15:16:18.506494 9252 solver.cpp:245] Train net output #23: loss/loss02 = 2.9106 (* 0.0454545 = 0.1323 loss)
I0404 15:16:18.506520 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.08373 (* 0.0454545 = 0.140169 loss)
I0404 15:16:18.506546 9252 solver.cpp:245] Train net output #25: loss/loss04 = 2.92285 (* 0.0454545 = 0.132857 loss)
I0404 15:16:18.506572 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.52403 (* 0.0454545 = 0.114729 loss)
I0404 15:16:18.506597 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.02351 (* 0.0454545 = 0.0919777 loss)
I0404 15:16:18.506623 9252 solver.cpp:245] Train net output #28: loss/loss07 = 0.967348 (* 0.0454545 = 0.0439703 loss)
I0404 15:16:18.506649 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.281429 (* 0.0454545 = 0.0127922 loss)
I0404 15:16:18.506675 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.0501319 (* 0.0454545 = 0.00227872 loss)
I0404 15:16:18.506701 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.0137379 (* 0.0454545 = 0.000624449 loss)
I0404 15:16:18.506727 9252 solver.cpp:245] Train net output #32: loss/loss11 = 1.57872e-05 (* 0.0454545 = 7.176e-07 loss)
I0404 15:16:18.506759 9252 solver.cpp:245] Train net output #33: loss/loss12 = 1.39022e-05 (* 0.0454545 = 6.31916e-07 loss)
I0404 15:16:18.506785 9252 solver.cpp:245] Train net output #34: loss/loss13 = 1.50681e-05 (* 0.0454545 = 6.84915e-07 loss)
I0404 15:16:18.506811 9252 solver.cpp:245] Train net output #35: loss/loss14 = 1.37418e-05 (* 0.0454545 = 6.24629e-07 loss)
I0404 15:16:18.506837 9252 solver.cpp:245] Train net output #36: loss/loss15 = 1.31529e-05 (* 0.0454545 = 5.97861e-07 loss)
I0404 15:16:18.506863 9252 solver.cpp:245] Train net output #37: loss/loss16 = 1.91114e-05 (* 0.0454545 = 8.68702e-07 loss)
I0404 15:16:18.506888 9252 solver.cpp:245] Train net output #38: loss/loss17 = 1.265e-05 (* 0.0454545 = 5.74998e-07 loss)
I0404 15:16:18.506934 9252 solver.cpp:245] Train net output #39: loss/loss18 = 1.30076e-05 (* 0.0454545 = 5.91257e-07 loss)
I0404 15:16:18.506963 9252 solver.cpp:245] Train net output #40: loss/loss19 = 1.65533e-05 (* 0.0454545 = 7.52421e-07 loss)
I0404 15:16:18.506994 9252 solver.cpp:245] Train net output #41: loss/loss20 = 1.40175e-05 (* 0.0454545 = 6.37157e-07 loss)
I0404 15:16:18.507020 9252 solver.cpp:245] Train net output #42: loss/loss21 = 1.22662e-05 (* 0.0454545 = 5.57556e-07 loss)
I0404 15:16:18.507047 9252 solver.cpp:245] Train net output #43: loss/loss22 = 1.28922e-05 (* 0.0454545 = 5.86008e-07 loss)
I0404 15:16:18.507069 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 15:16:18.507091 9252 solver.cpp:245] Train net output #45: total_confidence = 0.00136327
I0404 15:16:18.507117 9252 sgd_solver.cpp:106] Iteration 62000, lr = 0.00938
I0404 15:17:29.573237 9252 solver.cpp:229] Iteration 62500, loss = 0.805615
I0404 15:17:29.573354 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.625
I0404 15:17:29.573374 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125
I0404 15:17:29.573387 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375
I0404 15:17:29.573400 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625
I0404 15:17:29.573411 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.21875
I0404 15:17:29.573424 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625
I0404 15:17:29.573436 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875
I0404 15:17:29.573448 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625
I0404 15:17:29.573462 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625
I0404 15:17:29.573483 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 15:17:29.573499 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 15:17:29.573511 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 15:17:29.573524 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 15:17:29.573536 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 15:17:29.573547 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 15:17:29.573559 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 15:17:29.573571 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 15:17:29.573582 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 15:17:29.573595 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 15:17:29.573606 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 15:17:29.573617 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 15:17:29.573637 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 15:17:29.573652 9252 solver.cpp:245] Train net output #22: loss/loss01 = 1.79045 (* 0.0454545 = 0.0813841 loss)
I0404 15:17:29.573668 9252 solver.cpp:245] Train net output #23: loss/loss02 = 2.95047 (* 0.0454545 = 0.134112 loss)
I0404 15:17:29.573681 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.05097 (* 0.0454545 = 0.138681 loss)
I0404 15:17:29.573694 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.21384 (* 0.0454545 = 0.146084 loss)
I0404 15:17:29.573709 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.86175 (* 0.0454545 = 0.130079 loss)
I0404 15:17:29.573722 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.17865 (* 0.0454545 = 0.0990296 loss)
I0404 15:17:29.573736 9252 solver.cpp:245] Train net output #28: loss/loss07 = 0.966348 (* 0.0454545 = 0.0439249 loss)
I0404 15:17:29.573752 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.379595 (* 0.0454545 = 0.0172543 loss)
I0404 15:17:29.573766 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.536231 (* 0.0454545 = 0.0243741 loss)
I0404 15:17:29.573781 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.0111051 (* 0.0454545 = 0.000504779 loss)
I0404 15:17:29.573796 9252 solver.cpp:245] Train net output #32: loss/loss11 = 3.05031e-05 (* 0.0454545 = 1.3865e-06 loss)
I0404 15:17:29.573809 9252 solver.cpp:245] Train net output #33: loss/loss12 = 2.50031e-05 (* 0.0454545 = 1.13651e-06 loss)
I0404 15:17:29.573823 9252 solver.cpp:245] Train net output #34: loss/loss13 = 2.46864e-05 (* 0.0454545 = 1.12211e-06 loss)
I0404 15:17:29.573837 9252 solver.cpp:245] Train net output #35: loss/loss14 = 2.50107e-05 (* 0.0454545 = 1.13685e-06 loss)
I0404 15:17:29.573850 9252 solver.cpp:245] Train net output #36: loss/loss15 = 2.85616e-05 (* 0.0454545 = 1.29826e-06 loss)
I0404 15:17:29.573864 9252 solver.cpp:245] Train net output #37: loss/loss16 = 2.59945e-05 (* 0.0454545 = 1.18157e-06 loss)
I0404 15:17:29.573879 9252 solver.cpp:245] Train net output #38: loss/loss17 = 2.64061e-05 (* 0.0454545 = 1.20028e-06 loss)
I0404 15:17:29.573910 9252 solver.cpp:245] Train net output #39: loss/loss18 = 2.82505e-05 (* 0.0454545 = 1.28411e-06 loss)
I0404 15:17:29.573925 9252 solver.cpp:245] Train net output #40: loss/loss19 = 2.44034e-05 (* 0.0454545 = 1.10925e-06 loss)
I0404 15:17:29.573940 9252 solver.cpp:245] Train net output #41: loss/loss20 = 2.7116e-05 (* 0.0454545 = 1.23255e-06 loss)
I0404 15:17:29.573953 9252 solver.cpp:245] Train net output #42: loss/loss21 = 2.77384e-05 (* 0.0454545 = 1.26084e-06 loss)
I0404 15:17:29.573967 9252 solver.cpp:245] Train net output #43: loss/loss22 = 2.1944e-05 (* 0.0454545 = 9.97456e-07 loss)
I0404 15:17:29.573979 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 15:17:29.573992 9252 solver.cpp:245] Train net output #45: total_confidence = 0.000398671
I0404 15:17:29.574007 9252 sgd_solver.cpp:106] Iteration 62500, lr = 0.009375
I0404 15:18:40.418826 9252 solver.cpp:229] Iteration 63000, loss = 0.803152
I0404 15:18:40.418936 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.34375
I0404 15:18:40.418954 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125
I0404 15:18:40.418967 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375
I0404 15:18:40.418979 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.25
I0404 15:18:40.418992 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875
I0404 15:18:40.419004 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5625
I0404 15:18:40.419015 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875
I0404 15:18:40.419028 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375
I0404 15:18:40.419040 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375
I0404 15:18:40.419052 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875
I0404 15:18:40.419064 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 15:18:40.419076 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 15:18:40.419087 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 15:18:40.419100 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 15:18:40.419111 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 15:18:40.419122 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 15:18:40.419133 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 15:18:40.419145 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 15:18:40.419157 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 15:18:40.419168 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 15:18:40.419180 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 15:18:40.419191 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 15:18:40.419206 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.36695 (* 0.0454545 = 0.107589 loss)
I0404 15:18:40.419221 9252 solver.cpp:245] Train net output #23: loss/loss02 = 2.9197 (* 0.0454545 = 0.132714 loss)
I0404 15:18:40.419235 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.34299 (* 0.0454545 = 0.151954 loss)
I0404 15:18:40.419248 9252 solver.cpp:245] Train net output #25: loss/loss04 = 2.88789 (* 0.0454545 = 0.131268 loss)
I0404 15:18:40.419262 9252 solver.cpp:245] Train net output #26: loss/loss05 = 3.07239 (* 0.0454545 = 0.139654 loss)
I0404 15:18:40.419275 9252 solver.cpp:245] Train net output #27: loss/loss06 = 1.94757 (* 0.0454545 = 0.088526 loss)
I0404 15:18:40.419288 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.13373 (* 0.0454545 = 0.0515331 loss)
I0404 15:18:40.419302 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.669096 (* 0.0454545 = 0.0304135 loss)
I0404 15:18:40.419317 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.372182 (* 0.0454545 = 0.0169174 loss)
I0404 15:18:40.419330 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.214375 (* 0.0454545 = 0.0097443 loss)
I0404 15:18:40.419344 9252 solver.cpp:245] Train net output #32: loss/loss11 = 2.77583e-05 (* 0.0454545 = 1.26174e-06 loss)
I0404 15:18:40.419358 9252 solver.cpp:245] Train net output #33: loss/loss12 = 3.13017e-05 (* 0.0454545 = 1.42281e-06 loss)
I0404 15:18:40.419373 9252 solver.cpp:245] Train net output #34: loss/loss13 = 2.96789e-05 (* 0.0454545 = 1.34904e-06 loss)
I0404 15:18:40.419387 9252 solver.cpp:245] Train net output #35: loss/loss14 = 2.21269e-05 (* 0.0454545 = 1.00577e-06 loss)
I0404 15:18:40.419400 9252 solver.cpp:245] Train net output #36: loss/loss15 = 3.00705e-05 (* 0.0454545 = 1.36684e-06 loss)
I0404 15:18:40.419414 9252 solver.cpp:245] Train net output #37: loss/loss16 = 2.34474e-05 (* 0.0454545 = 1.06579e-06 loss)
I0404 15:18:40.419428 9252 solver.cpp:245] Train net output #38: loss/loss17 = 2.25439e-05 (* 0.0454545 = 1.02472e-06 loss)
I0404 15:18:40.419459 9252 solver.cpp:245] Train net output #39: loss/loss18 = 2.73601e-05 (* 0.0454545 = 1.24364e-06 loss)
I0404 15:18:40.419478 9252 solver.cpp:245] Train net output #40: loss/loss19 = 2.57429e-05 (* 0.0454545 = 1.17013e-06 loss)
I0404 15:18:40.419493 9252 solver.cpp:245] Train net output #41: loss/loss20 = 2.25031e-05 (* 0.0454545 = 1.02287e-06 loss)
I0404 15:18:40.419507 9252 solver.cpp:245] Train net output #42: loss/loss21 = 2.12739e-05 (* 0.0454545 = 9.66994e-07 loss)
I0404 15:18:40.419522 9252 solver.cpp:245] Train net output #43: loss/loss22 = 2.24475e-05 (* 0.0454545 = 1.02034e-06 loss)
I0404 15:18:40.419533 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 15:18:40.419544 9252 solver.cpp:245] Train net output #45: total_confidence = 0.0012117
I0404 15:18:40.419558 9252 sgd_solver.cpp:106] Iteration 63000, lr = 0.00937
I0404 15:19:51.277770 9252 solver.cpp:229] Iteration 63500, loss = 0.802404
I0404 15:19:51.277875 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.4375
I0404 15:19:51.277895 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.21875
I0404 15:19:51.277907 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.15625
I0404 15:19:51.277920 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.21875
I0404 15:19:51.277931 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.21875
I0404 15:19:51.277943 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5625
I0404 15:19:51.277956 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.59375
I0404 15:19:51.277967 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875
I0404 15:19:51.277979 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375
I0404 15:19:51.277990 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875
I0404 15:19:51.278002 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 15:19:51.278014 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 15:19:51.278025 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 15:19:51.278038 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 15:19:51.278049 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 15:19:51.278060 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 15:19:51.278072 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 15:19:51.278084 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 15:19:51.278095 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 15:19:51.278106 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 15:19:51.278118 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 15:19:51.278129 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 15:19:51.278144 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.10835 (* 0.0454545 = 0.0958343 loss)
I0404 15:19:51.278159 9252 solver.cpp:245] Train net output #23: loss/loss02 = 2.61062 (* 0.0454545 = 0.118665 loss)
I0404 15:19:51.278172 9252 solver.cpp:245] Train net output #24: loss/loss03 = 2.93111 (* 0.0454545 = 0.133232 loss)
I0404 15:19:51.278187 9252 solver.cpp:245] Train net output #25: loss/loss04 = 2.86831 (* 0.0454545 = 0.130378 loss)
I0404 15:19:51.278200 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.5389 (* 0.0454545 = 0.115405 loss)
I0404 15:19:51.278214 9252 solver.cpp:245] Train net output #27: loss/loss06 = 1.61938 (* 0.0454545 = 0.0736081 loss)
I0404 15:19:51.278228 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.28461 (* 0.0454545 = 0.0583913 loss)
I0404 15:19:51.278241 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.470054 (* 0.0454545 = 0.0213661 loss)
I0404 15:19:51.278255 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.232545 (* 0.0454545 = 0.0105702 loss)
I0404 15:19:51.278270 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.140355 (* 0.0454545 = 0.00637979 loss)
I0404 15:19:51.278283 9252 solver.cpp:245] Train net output #32: loss/loss11 = 1.9833e-05 (* 0.0454545 = 9.015e-07 loss)
I0404 15:19:51.278298 9252 solver.cpp:245] Train net output #33: loss/loss12 = 1.63885e-05 (* 0.0454545 = 7.44931e-07 loss)
I0404 15:19:51.278312 9252 solver.cpp:245] Train net output #34: loss/loss13 = 2.16607e-05 (* 0.0454545 = 9.84576e-07 loss)
I0404 15:19:51.278326 9252 solver.cpp:245] Train net output #35: loss/loss14 = 1.95631e-05 (* 0.0454545 = 8.89232e-07 loss)
I0404 15:19:51.278339 9252 solver.cpp:245] Train net output #36: loss/loss15 = 1.61686e-05 (* 0.0454545 = 7.34938e-07 loss)
I0404 15:19:51.278353 9252 solver.cpp:245] Train net output #37: loss/loss16 = 1.84341e-05 (* 0.0454545 = 8.37911e-07 loss)
I0404 15:19:51.278367 9252 solver.cpp:245] Train net output #38: loss/loss17 = 1.68823e-05 (* 0.0454545 = 7.67377e-07 loss)
I0404 15:19:51.278396 9252 solver.cpp:245] Train net output #39: loss/loss18 = 2.01794e-05 (* 0.0454545 = 9.17243e-07 loss)
I0404 15:19:51.278412 9252 solver.cpp:245] Train net output #40: loss/loss19 = 1.59918e-05 (* 0.0454545 = 7.26899e-07 loss)
I0404 15:19:51.278425 9252 solver.cpp:245] Train net output #41: loss/loss20 = 1.73517e-05 (* 0.0454545 = 7.88712e-07 loss)
I0404 15:19:51.278439 9252 solver.cpp:245] Train net output #42: loss/loss21 = 1.8775e-05 (* 0.0454545 = 8.53411e-07 loss)
I0404 15:19:51.278456 9252 solver.cpp:245] Train net output #43: loss/loss22 = 1.68599e-05 (* 0.0454545 = 7.66359e-07 loss)
I0404 15:19:51.278478 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 15:19:51.278491 9252 solver.cpp:245] Train net output #45: total_confidence = 0.000508113
I0404 15:19:51.278506 9252 sgd_solver.cpp:106] Iteration 63500, lr = 0.009365
I0404 15:21:02.493968 9252 solver.cpp:229] Iteration 64000, loss = 0.799735
I0404 15:21:02.494169 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.375
I0404 15:21:02.494197 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.21875
I0404 15:21:02.494210 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.21875
I0404 15:21:02.494222 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.3125
I0404 15:21:02.494235 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125
I0404 15:21:02.494246 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375
I0404 15:21:02.494258 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625
I0404 15:21:02.494271 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375
I0404 15:21:02.494282 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375
I0404 15:21:02.494294 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875
I0404 15:21:02.494307 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 15:21:02.494318 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 15:21:02.494329 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 15:21:02.494341 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 15:21:02.494354 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 15:21:02.494364 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 15:21:02.494376 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 15:21:02.494387 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 15:21:02.494400 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 15:21:02.494410 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 15:21:02.494424 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 15:21:02.494436 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 15:21:02.494451 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.19433 (* 0.0454545 = 0.0997423 loss)
I0404 15:21:02.494467 9252 solver.cpp:245] Train net output #23: loss/loss02 = 2.45606 (* 0.0454545 = 0.111639 loss)
I0404 15:21:02.494489 9252 solver.cpp:245] Train net output #24: loss/loss03 = 2.74533 (* 0.0454545 = 0.124788 loss)
I0404 15:21:02.494503 9252 solver.cpp:245] Train net output #25: loss/loss04 = 2.3836 (* 0.0454545 = 0.108345 loss)
I0404 15:21:02.494516 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.61944 (* 0.0454545 = 0.119065 loss)
I0404 15:21:02.494530 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.5501 (* 0.0454545 = 0.115914 loss)
I0404 15:21:02.494544 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.28025 (* 0.0454545 = 0.0581932 loss)
I0404 15:21:02.494557 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.54752 (* 0.0454545 = 0.0248873 loss)
I0404 15:21:02.494571 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.232319 (* 0.0454545 = 0.01056 loss)
I0404 15:21:02.494585 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.0856975 (* 0.0454545 = 0.00389534 loss)
I0404 15:21:02.494601 9252 solver.cpp:245] Train net output #32: loss/loss11 = 3.42303e-05 (* 0.0454545 = 1.55592e-06 loss)
I0404 15:21:02.494614 9252 solver.cpp:245] Train net output #33: loss/loss12 = 3.19204e-05 (* 0.0454545 = 1.45093e-06 loss)
I0404 15:21:02.494642 9252 solver.cpp:245] Train net output #34: loss/loss13 = 3.44618e-05 (* 0.0454545 = 1.56645e-06 loss)
I0404 15:21:02.494657 9252 solver.cpp:245] Train net output #35: loss/loss14 = 3.36271e-05 (* 0.0454545 = 1.5285e-06 loss)
I0404 15:21:02.494670 9252 solver.cpp:245] Train net output #36: loss/loss15 = 3.09666e-05 (* 0.0454545 = 1.40757e-06 loss)
I0404 15:21:02.494684 9252 solver.cpp:245] Train net output #37: loss/loss16 = 3.55719e-05 (* 0.0454545 = 1.6169e-06 loss)
I0404 15:21:02.494699 9252 solver.cpp:245] Train net output #38: loss/loss17 = 3.17565e-05 (* 0.0454545 = 1.44348e-06 loss)
I0404 15:21:02.494726 9252 solver.cpp:245] Train net output #39: loss/loss18 = 3.14194e-05 (* 0.0454545 = 1.42815e-06 loss)
I0404 15:21:02.494741 9252 solver.cpp:245] Train net output #40: loss/loss19 = 3.0188e-05 (* 0.0454545 = 1.37218e-06 loss)
I0404 15:21:02.494758 9252 solver.cpp:245] Train net output #41: loss/loss20 = 2.99477e-05 (* 0.0454545 = 1.36126e-06 loss)
I0404 15:21:02.494772 9252 solver.cpp:245] Train net output #42: loss/loss21 = 2.97353e-05 (* 0.0454545 = 1.35161e-06 loss)
I0404 15:21:02.494786 9252 solver.cpp:245] Train net output #43: loss/loss22 = 3.05237e-05 (* 0.0454545 = 1.38744e-06 loss)
I0404 15:21:02.494798 9252 solver.cpp:245] Train net output #44: total_accuracy = 0.03125
I0404 15:21:02.494810 9252 solver.cpp:245] Train net output #45: total_confidence = 0.00156889
I0404 15:21:02.494823 9252 sgd_solver.cpp:106] Iteration 64000, lr = 0.00936
I0404 15:22:14.333143 9252 solver.cpp:229] Iteration 64500, loss = 0.796128
I0404 15:22:14.333259 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.3125
I0404 15:22:14.333289 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125
I0404 15:22:14.333314 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.15625
I0404 15:22:14.333338 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125
I0404 15:22:14.333359 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25
I0404 15:22:14.333382 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5
I0404 15:22:14.333405 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.78125
I0404 15:22:14.333444 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375
I0404 15:22:14.333478 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875
I0404 15:22:14.333500 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875
I0404 15:22:14.333533 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 15:22:14.333556 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 15:22:14.333586 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 15:22:14.333607 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 15:22:14.333628 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 15:22:14.333650 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 15:22:14.333672 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 15:22:14.333693 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 15:22:14.333714 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 15:22:14.333734 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 15:22:14.333756 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 15:22:14.333781 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 15:22:14.333808 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.49675 (* 0.0454545 = 0.113489 loss)
I0404 15:22:14.333835 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.24955 (* 0.0454545 = 0.147707 loss)
I0404 15:22:14.333861 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.09588 (* 0.0454545 = 0.140722 loss)
I0404 15:22:14.333886 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.0821 (* 0.0454545 = 0.140095 loss)
I0404 15:22:14.333914 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.7921 (* 0.0454545 = 0.126913 loss)
I0404 15:22:14.333945 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.2206 (* 0.0454545 = 0.100936 loss)
I0404 15:22:14.333976 9252 solver.cpp:245] Train net output #28: loss/loss07 = 0.99365 (* 0.0454545 = 0.0451659 loss)
I0404 15:22:14.334018 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.259945 (* 0.0454545 = 0.0118157 loss)
I0404 15:22:14.334045 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.146469 (* 0.0454545 = 0.00665766 loss)
I0404 15:22:14.334080 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.169051 (* 0.0454545 = 0.00768414 loss)
I0404 15:22:14.334106 9252 solver.cpp:245] Train net output #32: loss/loss11 = 6.25855e-06 (* 0.0454545 = 2.84479e-07 loss)
I0404 15:22:14.334132 9252 solver.cpp:245] Train net output #33: loss/loss12 = 5.32349e-06 (* 0.0454545 = 2.41977e-07 loss)
I0404 15:22:14.334158 9252 solver.cpp:245] Train net output #34: loss/loss13 = 5.7519e-06 (* 0.0454545 = 2.6145e-07 loss)
I0404 15:22:14.334185 9252 solver.cpp:245] Train net output #35: loss/loss14 = 5.5023e-06 (* 0.0454545 = 2.50105e-07 loss)
I0404 15:22:14.334211 9252 solver.cpp:245] Train net output #36: loss/loss15 = 5.14094e-06 (* 0.0454545 = 2.33679e-07 loss)
I0404 15:22:14.334238 9252 solver.cpp:245] Train net output #37: loss/loss16 = 6.43364e-06 (* 0.0454545 = 2.92438e-07 loss)
I0404 15:22:14.334264 9252 solver.cpp:245] Train net output #38: loss/loss17 = 4.9435e-06 (* 0.0454545 = 2.24705e-07 loss)
I0404 15:22:14.334314 9252 solver.cpp:245] Train net output #39: loss/loss18 = 5.16701e-06 (* 0.0454545 = 2.34864e-07 loss)
I0404 15:22:14.334352 9252 solver.cpp:245] Train net output #40: loss/loss19 = 5.49858e-06 (* 0.0454545 = 2.49935e-07 loss)
I0404 15:22:14.334379 9252 solver.cpp:245] Train net output #41: loss/loss20 = 5.53583e-06 (* 0.0454545 = 2.51629e-07 loss)
I0404 15:22:14.334413 9252 solver.cpp:245] Train net output #42: loss/loss21 = 4.39587e-06 (* 0.0454545 = 1.99812e-07 loss)
I0404 15:22:14.334439 9252 solver.cpp:245] Train net output #43: loss/loss22 = 4.73115e-06 (* 0.0454545 = 2.15052e-07 loss)
I0404 15:22:14.334461 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 15:22:14.334483 9252 solver.cpp:245] Train net output #45: total_confidence = 0.00174092
I0404 15:22:14.334506 9252 sgd_solver.cpp:106] Iteration 64500, lr = 0.009355
I0404 15:23:26.137974 9252 solver.cpp:229] Iteration 65000, loss = 0.795294
I0404 15:23:26.138101 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.46875
I0404 15:23:26.138121 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.21875
I0404 15:23:26.138134 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.28125
I0404 15:23:26.138146 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125
I0404 15:23:26.138159 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.375
I0404 15:23:26.138170 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5625
I0404 15:23:26.138182 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.78125
I0404 15:23:26.138195 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875
I0404 15:23:26.138206 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375
I0404 15:23:26.138218 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375
I0404 15:23:26.138229 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 15:23:26.138242 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 15:23:26.138253 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 15:23:26.138264 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 15:23:26.138276 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 15:23:26.138288 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 15:23:26.138299 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 15:23:26.138310 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 15:23:26.138322 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 15:23:26.138334 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 15:23:26.138345 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 15:23:26.138356 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 15:23:26.138372 9252 solver.cpp:245] Train net output #22: loss/loss01 = 1.93035 (* 0.0454545 = 0.0877432 loss)
I0404 15:23:26.138386 9252 solver.cpp:245] Train net output #23: loss/loss02 = 2.73065 (* 0.0454545 = 0.124121 loss)
I0404 15:23:26.138401 9252 solver.cpp:245] Train net output #24: loss/loss03 = 2.562 (* 0.0454545 = 0.116455 loss)
I0404 15:23:26.138414 9252 solver.cpp:245] Train net output #25: loss/loss04 = 2.84941 (* 0.0454545 = 0.129519 loss)
I0404 15:23:26.138428 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.23498 (* 0.0454545 = 0.10159 loss)
I0404 15:23:26.138442 9252 solver.cpp:245] Train net output #27: loss/loss06 = 1.60916 (* 0.0454545 = 0.0731436 loss)
I0404 15:23:26.138455 9252 solver.cpp:245] Train net output #28: loss/loss07 = 0.924704 (* 0.0454545 = 0.042032 loss)
I0404 15:23:26.138469 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.506442 (* 0.0454545 = 0.0230201 loss)
I0404 15:23:26.138484 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.195364 (* 0.0454545 = 0.0088802 loss)
I0404 15:23:26.138496 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.235976 (* 0.0454545 = 0.0107262 loss)
I0404 15:23:26.138511 9252 solver.cpp:245] Train net output #32: loss/loss11 = 4.86348e-05 (* 0.0454545 = 2.21067e-06 loss)
I0404 15:23:26.138526 9252 solver.cpp:245] Train net output #33: loss/loss12 = 4.24547e-05 (* 0.0454545 = 1.92976e-06 loss)
I0404 15:23:26.138540 9252 solver.cpp:245] Train net output #34: loss/loss13 = 5.33772e-05 (* 0.0454545 = 2.42624e-06 loss)
I0404 15:23:26.138553 9252 solver.cpp:245] Train net output #35: loss/loss14 = 4.42362e-05 (* 0.0454545 = 2.01074e-06 loss)
I0404 15:23:26.138567 9252 solver.cpp:245] Train net output #36: loss/loss15 = 4.33175e-05 (* 0.0454545 = 1.96898e-06 loss)
I0404 15:23:26.138581 9252 solver.cpp:245] Train net output #37: loss/loss16 = 4.7429e-05 (* 0.0454545 = 2.15586e-06 loss)
I0404 15:23:26.138595 9252 solver.cpp:245] Train net output #38: loss/loss17 = 4.44095e-05 (* 0.0454545 = 2.01861e-06 loss)
I0404 15:23:26.138627 9252 solver.cpp:245] Train net output #39: loss/loss18 = 4.77923e-05 (* 0.0454545 = 2.17238e-06 loss)
I0404 15:23:26.138641 9252 solver.cpp:245] Train net output #40: loss/loss19 = 3.94188e-05 (* 0.0454545 = 1.79177e-06 loss)
I0404 15:23:26.138655 9252 solver.cpp:245] Train net output #41: loss/loss20 = 4.88062e-05 (* 0.0454545 = 2.21846e-06 loss)
I0404 15:23:26.138669 9252 solver.cpp:245] Train net output #42: loss/loss21 = 4.38331e-05 (* 0.0454545 = 1.99241e-06 loss)
I0404 15:23:26.138684 9252 solver.cpp:245] Train net output #43: loss/loss22 = 4.69414e-05 (* 0.0454545 = 2.1337e-06 loss)
I0404 15:23:26.138695 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 15:23:26.138707 9252 solver.cpp:245] Train net output #45: total_confidence = 0.0025781
I0404 15:23:26.138721 9252 sgd_solver.cpp:106] Iteration 65000, lr = 0.00935
I0404 15:24:36.976475 9252 solver.cpp:229] Iteration 65500, loss = 0.789756
I0404 15:24:36.976625 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.46875
I0404 15:24:36.976646 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.1875
I0404 15:24:36.976660 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.21875
I0404 15:24:36.976671 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375
I0404 15:24:36.976683 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.375
I0404 15:24:36.976696 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.46875
I0404 15:24:36.976707 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875
I0404 15:24:36.976725 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375
I0404 15:24:36.976737 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375
I0404 15:24:36.976752 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375
I0404 15:24:36.976763 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 15:24:36.976775 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 15:24:36.976788 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 15:24:36.976799 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 15:24:36.976810 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 15:24:36.976830 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 15:24:36.976840 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 15:24:36.976852 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 15:24:36.976864 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 15:24:36.976876 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 15:24:36.976887 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 15:24:36.976907 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 15:24:36.976923 9252 solver.cpp:245] Train net output #22: loss/loss01 = 1.90614 (* 0.0454545 = 0.0866428 loss)
I0404 15:24:36.976938 9252 solver.cpp:245] Train net output #23: loss/loss02 = 2.77746 (* 0.0454545 = 0.126248 loss)
I0404 15:24:36.976951 9252 solver.cpp:245] Train net output #24: loss/loss03 = 2.86382 (* 0.0454545 = 0.130174 loss)
I0404 15:24:36.976964 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.13133 (* 0.0454545 = 0.142333 loss)
I0404 15:24:36.976979 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.34981 (* 0.0454545 = 0.10681 loss)
I0404 15:24:36.976992 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.01182 (* 0.0454545 = 0.0914466 loss)
I0404 15:24:36.977005 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.40728 (* 0.0454545 = 0.0639671 loss)
I0404 15:24:36.977020 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.713331 (* 0.0454545 = 0.0324241 loss)
I0404 15:24:36.977032 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.310898 (* 0.0454545 = 0.0141317 loss)
I0404 15:24:36.977046 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.368411 (* 0.0454545 = 0.016746 loss)
I0404 15:24:36.977069 9252 solver.cpp:245] Train net output #32: loss/loss11 = 2.00778e-05 (* 0.0454545 = 9.12626e-07 loss)
I0404 15:24:36.977083 9252 solver.cpp:245] Train net output #33: loss/loss12 = 1.64056e-05 (* 0.0454545 = 7.4571e-07 loss)
I0404 15:24:36.977097 9252 solver.cpp:245] Train net output #34: loss/loss13 = 2.11308e-05 (* 0.0454545 = 9.60493e-07 loss)
I0404 15:24:36.977110 9252 solver.cpp:245] Train net output #35: loss/loss14 = 1.88781e-05 (* 0.0454545 = 8.58094e-07 loss)
I0404 15:24:36.977131 9252 solver.cpp:245] Train net output #36: loss/loss15 = 1.79315e-05 (* 0.0454545 = 8.15069e-07 loss)
I0404 15:24:36.977145 9252 solver.cpp:245] Train net output #37: loss/loss16 = 1.93661e-05 (* 0.0454545 = 8.80278e-07 loss)
I0404 15:24:36.977159 9252 solver.cpp:245] Train net output #38: loss/loss17 = 1.90979e-05 (* 0.0454545 = 8.68086e-07 loss)
I0404 15:24:36.977186 9252 solver.cpp:245] Train net output #39: loss/loss18 = 1.87288e-05 (* 0.0454545 = 8.51308e-07 loss)
I0404 15:24:36.977201 9252 solver.cpp:245] Train net output #40: loss/loss19 = 1.90643e-05 (* 0.0454545 = 8.6656e-07 loss)
I0404 15:24:36.977218 9252 solver.cpp:245] Train net output #41: loss/loss20 = 1.84197e-05 (* 0.0454545 = 8.3726e-07 loss)
I0404 15:24:36.977249 9252 solver.cpp:245] Train net output #42: loss/loss21 = 1.89862e-05 (* 0.0454545 = 8.63009e-07 loss)
I0404 15:24:36.977264 9252 solver.cpp:245] Train net output #43: loss/loss22 = 1.84683e-05 (* 0.0454545 = 8.39468e-07 loss)
I0404 15:24:36.977277 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 15:24:36.977288 9252 solver.cpp:245] Train net output #45: total_confidence = 0.0017042
I0404 15:24:36.977301 9252 sgd_solver.cpp:106] Iteration 65500, lr = 0.009345
I0404 15:25:48.205828 9252 solver.cpp:229] Iteration 66000, loss = 0.785441
I0404 15:25:48.206065 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.34375
I0404 15:25:48.206087 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625
I0404 15:25:48.206100 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.15625
I0404 15:25:48.206112 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875
I0404 15:25:48.206125 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875
I0404 15:25:48.206136 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.46875
I0404 15:25:48.206148 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875
I0404 15:25:48.206161 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875
I0404 15:25:48.206172 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.875
I0404 15:25:48.206184 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375
I0404 15:25:48.206195 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 15:25:48.206207 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 15:25:48.206219 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 15:25:48.206230 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 15:25:48.206243 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 15:25:48.206254 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 15:25:48.206265 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 15:25:48.206277 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 15:25:48.206289 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 15:25:48.206300 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 15:25:48.206311 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 15:25:48.206322 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 15:25:48.206338 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.22234 (* 0.0454545 = 0.101015 loss)
I0404 15:25:48.206352 9252 solver.cpp:245] Train net output #23: loss/loss02 = 2.69318 (* 0.0454545 = 0.122417 loss)
I0404 15:25:48.206367 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.23899 (* 0.0454545 = 0.147227 loss)
I0404 15:25:48.206379 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.02787 (* 0.0454545 = 0.13763 loss)
I0404 15:25:48.206393 9252 solver.cpp:245] Train net output #26: loss/loss05 = 3.10018 (* 0.0454545 = 0.140917 loss)
I0404 15:25:48.206408 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.26733 (* 0.0454545 = 0.103061 loss)
I0404 15:25:48.206420 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.35812 (* 0.0454545 = 0.0617327 loss)
I0404 15:25:48.206434 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.649996 (* 0.0454545 = 0.0295453 loss)
I0404 15:25:48.206447 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.603444 (* 0.0454545 = 0.0274293 loss)
I0404 15:25:48.206461 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.441534 (* 0.0454545 = 0.0200697 loss)
I0404 15:25:48.206475 9252 solver.cpp:245] Train net output #32: loss/loss11 = 2.71596e-05 (* 0.0454545 = 1.23453e-06 loss)
I0404 15:25:48.206490 9252 solver.cpp:245] Train net output #33: loss/loss12 = 2.24817e-05 (* 0.0454545 = 1.0219e-06 loss)
I0404 15:25:48.206503 9252 solver.cpp:245] Train net output #34: loss/loss13 = 3.07684e-05 (* 0.0454545 = 1.39856e-06 loss)
I0404 15:25:48.206517 9252 solver.cpp:245] Train net output #35: loss/loss14 = 2.59695e-05 (* 0.0454545 = 1.18043e-06 loss)
I0404 15:25:48.206532 9252 solver.cpp:245] Train net output #36: loss/loss15 = 2.41283e-05 (* 0.0454545 = 1.09674e-06 loss)
I0404 15:25:48.206545 9252 solver.cpp:245] Train net output #37: loss/loss16 = 2.34133e-05 (* 0.0454545 = 1.06424e-06 loss)
I0404 15:25:48.206558 9252 solver.cpp:245] Train net output #38: loss/loss17 = 2.35436e-05 (* 0.0454545 = 1.07016e-06 loss)
I0404 15:25:48.206590 9252 solver.cpp:245] Train net output #39: loss/loss18 = 2.48737e-05 (* 0.0454545 = 1.13062e-06 loss)
I0404 15:25:48.206606 9252 solver.cpp:245] Train net output #40: loss/loss19 = 2.15505e-05 (* 0.0454545 = 9.79567e-07 loss)
I0404 15:25:48.206619 9252 solver.cpp:245] Train net output #41: loss/loss20 = 2.32529e-05 (* 0.0454545 = 1.05695e-06 loss)
I0404 15:25:48.206634 9252 solver.cpp:245] Train net output #42: loss/loss21 = 2.3078e-05 (* 0.0454545 = 1.049e-06 loss)
I0404 15:25:48.206647 9252 solver.cpp:245] Train net output #43: loss/loss22 = 2.31189e-05 (* 0.0454545 = 1.05086e-06 loss)
I0404 15:25:48.206660 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 15:25:48.206671 9252 solver.cpp:245] Train net output #45: total_confidence = 0.00187737
I0404 15:25:48.206686 9252 sgd_solver.cpp:106] Iteration 66000, lr = 0.00934
I0404 15:26:59.584898 9252 solver.cpp:229] Iteration 66500, loss = 0.784113
I0404 15:26:59.585047 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.375
I0404 15:26:59.585068 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.3125
I0404 15:26:59.585080 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.25
I0404 15:26:59.585093 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625
I0404 15:26:59.585104 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.34375
I0404 15:26:59.585116 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625
I0404 15:26:59.585129 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625
I0404 15:26:59.585140 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625
I0404 15:26:59.585152 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875
I0404 15:26:59.585165 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875
I0404 15:26:59.585175 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 15:26:59.585187 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 15:26:59.585199 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 15:26:59.585211 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 15:26:59.585222 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 15:26:59.585233 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 15:26:59.585244 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 15:26:59.585256 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 15:26:59.585268 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 15:26:59.585279 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 15:26:59.585290 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 15:26:59.585301 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 15:26:59.585317 9252 solver.cpp:245] Train net output #22: loss/loss01 = 1.96978 (* 0.0454545 = 0.0895356 loss)
I0404 15:26:59.585332 9252 solver.cpp:245] Train net output #23: loss/loss02 = 2.50389 (* 0.0454545 = 0.113813 loss)
I0404 15:26:59.585346 9252 solver.cpp:245] Train net output #24: loss/loss03 = 2.64874 (* 0.0454545 = 0.120397 loss)
I0404 15:26:59.585360 9252 solver.cpp:245] Train net output #25: loss/loss04 = 2.95055 (* 0.0454545 = 0.134116 loss)
I0404 15:26:59.585373 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.19077 (* 0.0454545 = 0.0995804 loss)
I0404 15:26:59.585387 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.01651 (* 0.0454545 = 0.0916597 loss)
I0404 15:26:59.585400 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.56548 (* 0.0454545 = 0.071158 loss)
I0404 15:26:59.585414 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.252893 (* 0.0454545 = 0.0114951 loss)
I0404 15:26:59.585445 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.122131 (* 0.0454545 = 0.00555139 loss)
I0404 15:26:59.585460 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.137232 (* 0.0454545 = 0.00623782 loss)
I0404 15:26:59.585474 9252 solver.cpp:245] Train net output #32: loss/loss11 = 1.44141e-05 (* 0.0454545 = 6.55186e-07 loss)
I0404 15:26:59.585489 9252 solver.cpp:245] Train net output #33: loss/loss12 = 1.12547e-05 (* 0.0454545 = 5.11577e-07 loss)
I0404 15:26:59.585502 9252 solver.cpp:245] Train net output #34: loss/loss13 = 1.64372e-05 (* 0.0454545 = 7.47146e-07 loss)
I0404 15:26:59.585517 9252 solver.cpp:245] Train net output #35: loss/loss14 = 1.49581e-05 (* 0.0454545 = 6.79914e-07 loss)
I0404 15:26:59.585531 9252 solver.cpp:245] Train net output #36: loss/loss15 = 1.13068e-05 (* 0.0454545 = 5.13944e-07 loss)
I0404 15:26:59.585544 9252 solver.cpp:245] Train net output #37: loss/loss16 = 1.46562e-05 (* 0.0454545 = 6.6619e-07 loss)
I0404 15:26:59.585559 9252 solver.cpp:245] Train net output #38: loss/loss17 = 1.34416e-05 (* 0.0454545 = 6.10982e-07 loss)
I0404 15:26:59.585592 9252 solver.cpp:245] Train net output #39: loss/loss18 = 1.36205e-05 (* 0.0454545 = 6.19112e-07 loss)
I0404 15:26:59.585608 9252 solver.cpp:245] Train net output #40: loss/loss19 = 1.3002e-05 (* 0.0454545 = 5.91002e-07 loss)
I0404 15:26:59.585621 9252 solver.cpp:245] Train net output #41: loss/loss20 = 1.36354e-05 (* 0.0454545 = 6.1979e-07 loss)
I0404 15:26:59.585635 9252 solver.cpp:245] Train net output #42: loss/loss21 = 1.30691e-05 (* 0.0454545 = 5.9405e-07 loss)
I0404 15:26:59.585649 9252 solver.cpp:245] Train net output #43: loss/loss22 = 1.32628e-05 (* 0.0454545 = 6.02856e-07 loss)
I0404 15:26:59.585661 9252 solver.cpp:245] Train net output #44: total_accuracy = 0.03125
I0404 15:26:59.585674 9252 solver.cpp:245] Train net output #45: total_confidence = 0.0024326
I0404 15:26:59.585687 9252 sgd_solver.cpp:106] Iteration 66500, lr = 0.009335
I0404 15:28:10.633896 9252 solver.cpp:229] Iteration 67000, loss = 0.782037
I0404 15:28:10.633998 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.4375
I0404 15:28:10.634017 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.15625
I0404 15:28:10.634029 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375
I0404 15:28:10.634042 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.21875
I0404 15:28:10.634057 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125
I0404 15:28:10.634070 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375
I0404 15:28:10.634083 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.59375
I0404 15:28:10.634094 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375
I0404 15:28:10.634106 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 1
I0404 15:28:10.634119 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 15:28:10.634130 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 15:28:10.634141 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 15:28:10.634153 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 15:28:10.634165 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 15:28:10.634176 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 15:28:10.634187 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 15:28:10.634199 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 15:28:10.634210 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 15:28:10.634222 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 15:28:10.634233 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 15:28:10.634244 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 15:28:10.634255 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 15:28:10.634270 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.07343 (* 0.0454545 = 0.0942466 loss)
I0404 15:28:10.634285 9252 solver.cpp:245] Train net output #23: loss/loss02 = 2.97313 (* 0.0454545 = 0.135142 loss)
I0404 15:28:10.634299 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.12314 (* 0.0454545 = 0.141961 loss)
I0404 15:28:10.634312 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.00822 (* 0.0454545 = 0.136737 loss)
I0404 15:28:10.634326 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.65212 (* 0.0454545 = 0.120551 loss)
I0404 15:28:10.634340 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.34716 (* 0.0454545 = 0.106689 loss)
I0404 15:28:10.634353 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.67666 (* 0.0454545 = 0.0762116 loss)
I0404 15:28:10.634366 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.83047 (* 0.0454545 = 0.0377486 loss)
I0404 15:28:10.634382 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.0762055 (* 0.0454545 = 0.00346389 loss)
I0404 15:28:10.634395 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.027178 (* 0.0454545 = 0.00123536 loss)
I0404 15:28:10.634409 9252 solver.cpp:245] Train net output #32: loss/loss11 = 3.87866e-05 (* 0.0454545 = 1.76303e-06 loss)
I0404 15:28:10.634423 9252 solver.cpp:245] Train net output #33: loss/loss12 = 2.98413e-05 (* 0.0454545 = 1.35642e-06 loss)
I0404 15:28:10.634438 9252 solver.cpp:245] Train net output #34: loss/loss13 = 3.33667e-05 (* 0.0454545 = 1.51667e-06 loss)
I0404 15:28:10.634452 9252 solver.cpp:245] Train net output #35: loss/loss14 = 3.21187e-05 (* 0.0454545 = 1.45994e-06 loss)
I0404 15:28:10.634466 9252 solver.cpp:245] Train net output #36: loss/loss15 = 3.21943e-05 (* 0.0454545 = 1.46338e-06 loss)
I0404 15:28:10.634480 9252 solver.cpp:245] Train net output #37: loss/loss16 = 3.54334e-05 (* 0.0454545 = 1.61061e-06 loss)
I0404 15:28:10.634495 9252 solver.cpp:245] Train net output #38: loss/loss17 = 3.1873e-05 (* 0.0454545 = 1.44877e-06 loss)
I0404 15:28:10.634524 9252 solver.cpp:245] Train net output #39: loss/loss18 = 2.92684e-05 (* 0.0454545 = 1.33038e-06 loss)
I0404 15:28:10.634539 9252 solver.cpp:245] Train net output #40: loss/loss19 = 3.05002e-05 (* 0.0454545 = 1.38637e-06 loss)
I0404 15:28:10.634553 9252 solver.cpp:245] Train net output #41: loss/loss20 = 3.225e-05 (* 0.0454545 = 1.46591e-06 loss)
I0404 15:28:10.634567 9252 solver.cpp:245] Train net output #42: loss/loss21 = 3.09849e-05 (* 0.0454545 = 1.4084e-06 loss)
I0404 15:28:10.634582 9252 solver.cpp:245] Train net output #43: loss/loss22 = 3.01166e-05 (* 0.0454545 = 1.36894e-06 loss)
I0404 15:28:10.634593 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 15:28:10.634605 9252 solver.cpp:245] Train net output #45: total_confidence = 0.00236827
I0404 15:28:10.634618 9252 sgd_solver.cpp:106] Iteration 67000, lr = 0.00933
I0404 15:29:21.514879 9252 solver.cpp:229] Iteration 67500, loss = 0.782111
I0404 15:29:21.515027 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.5
I0404 15:29:21.515048 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.25
I0404 15:29:21.515060 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.1875
I0404 15:29:21.515072 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.21875
I0404 15:29:21.515085 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25
I0404 15:29:21.515096 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625
I0404 15:29:21.515108 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875
I0404 15:29:21.515120 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.96875
I0404 15:29:21.515133 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 1
I0404 15:29:21.515146 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 15:29:21.515156 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 15:29:21.515168 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 15:29:21.515179 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 15:29:21.515192 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 15:29:21.515202 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 15:29:21.515214 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 15:29:21.515225 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 15:29:21.515236 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 15:29:21.515249 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 15:29:21.515259 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 15:29:21.515271 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 15:29:21.515282 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 15:29:21.515298 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.19563 (* 0.0454545 = 0.0998015 loss)
I0404 15:29:21.515312 9252 solver.cpp:245] Train net output #23: loss/loss02 = 2.7171 (* 0.0454545 = 0.123504 loss)
I0404 15:29:21.515326 9252 solver.cpp:245] Train net output #24: loss/loss03 = 2.94328 (* 0.0454545 = 0.133785 loss)
I0404 15:29:21.515339 9252 solver.cpp:245] Train net output #25: loss/loss04 = 2.91564 (* 0.0454545 = 0.132529 loss)
I0404 15:29:21.515353 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.49742 (* 0.0454545 = 0.113519 loss)
I0404 15:29:21.515367 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.73423 (* 0.0454545 = 0.124283 loss)
I0404 15:29:21.515380 9252 solver.cpp:245] Train net output #28: loss/loss07 = 0.96466 (* 0.0454545 = 0.0438482 loss)
I0404 15:29:21.515394 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.145761 (* 0.0454545 = 0.00662548 loss)
I0404 15:29:21.515408 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.0199018 (* 0.0454545 = 0.000904627 loss)
I0404 15:29:21.515422 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.00705722 (* 0.0454545 = 0.000320783 loss)
I0404 15:29:21.515437 9252 solver.cpp:245] Train net output #32: loss/loss11 = 1.48757e-05 (* 0.0454545 = 6.76169e-07 loss)
I0404 15:29:21.515450 9252 solver.cpp:245] Train net output #33: loss/loss12 = 1.59135e-05 (* 0.0454545 = 7.23341e-07 loss)
I0404 15:29:21.515465 9252 solver.cpp:245] Train net output #34: loss/loss13 = 1.68391e-05 (* 0.0454545 = 7.65412e-07 loss)
I0404 15:29:21.515478 9252 solver.cpp:245] Train net output #35: loss/loss14 = 1.38922e-05 (* 0.0454545 = 6.31464e-07 loss)
I0404 15:29:21.515492 9252 solver.cpp:245] Train net output #36: loss/loss15 = 1.9721e-05 (* 0.0454545 = 8.96411e-07 loss)
I0404 15:29:21.515506 9252 solver.cpp:245] Train net output #37: loss/loss16 = 1.48682e-05 (* 0.0454545 = 6.75825e-07 loss)
I0404 15:29:21.515521 9252 solver.cpp:245] Train net output #38: loss/loss17 = 1.34413e-05 (* 0.0454545 = 6.10969e-07 loss)
I0404 15:29:21.515547 9252 solver.cpp:245] Train net output #39: loss/loss18 = 1.65522e-05 (* 0.0454545 = 7.52373e-07 loss)
I0404 15:29:21.515566 9252 solver.cpp:245] Train net output #40: loss/loss19 = 1.51124e-05 (* 0.0454545 = 6.86926e-07 loss)
I0404 15:29:21.515581 9252 solver.cpp:245] Train net output #41: loss/loss20 = 1.64814e-05 (* 0.0454545 = 7.49154e-07 loss)
I0404 15:29:21.515595 9252 solver.cpp:245] Train net output #42: loss/loss21 = 1.48607e-05 (* 0.0454545 = 6.75488e-07 loss)
I0404 15:29:21.515609 9252 solver.cpp:245] Train net output #43: loss/loss22 = 1.64479e-05 (* 0.0454545 = 7.47632e-07 loss)
I0404 15:29:21.515620 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 15:29:21.515631 9252 solver.cpp:245] Train net output #45: total_confidence = 0.00709756
I0404 15:29:21.515645 9252 sgd_solver.cpp:106] Iteration 67500, lr = 0.009325
I0404 15:30:32.393697 9252 solver.cpp:229] Iteration 68000, loss = 0.775137
I0404 15:30:32.393815 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.40625
I0404 15:30:32.393833 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125
I0404 15:30:32.393846 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375
I0404 15:30:32.393859 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625
I0404 15:30:32.393872 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.15625
I0404 15:30:32.393882 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.28125
I0404 15:30:32.393894 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875
I0404 15:30:32.393909 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875
I0404 15:30:32.393921 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375
I0404 15:30:32.393934 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 15:30:32.393945 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 15:30:32.393957 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 15:30:32.393968 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 15:30:32.393980 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 15:30:32.393991 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 15:30:32.394003 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 15:30:32.394016 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 15:30:32.394026 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 15:30:32.394038 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 15:30:32.394049 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 15:30:32.394062 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 15:30:32.394073 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 15:30:32.394088 9252 solver.cpp:245] Train net output #22: loss/loss01 = 1.92618 (* 0.0454545 = 0.0875538 loss)
I0404 15:30:32.394103 9252 solver.cpp:245] Train net output #23: loss/loss02 = 3.21383 (* 0.0454545 = 0.146083 loss)
I0404 15:30:32.394116 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.24764 (* 0.0454545 = 0.14762 loss)
I0404 15:30:32.394129 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.07713 (* 0.0454545 = 0.13987 loss)
I0404 15:30:32.394143 9252 solver.cpp:245] Train net output #26: loss/loss05 = 3.02391 (* 0.0454545 = 0.13745 loss)
I0404 15:30:32.394157 9252 solver.cpp:245] Train net output #27: loss/loss06 = 3.01906 (* 0.0454545 = 0.13723 loss)
I0404 15:30:32.394170 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.04562 (* 0.0454545 = 0.0475281 loss)
I0404 15:30:32.394183 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.700436 (* 0.0454545 = 0.031838 loss)
I0404 15:30:32.394201 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.311298 (* 0.0454545 = 0.0141499 loss)
I0404 15:30:32.394217 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.0217926 (* 0.0454545 = 0.000990573 loss)
I0404 15:30:32.394230 9252 solver.cpp:245] Train net output #32: loss/loss11 = 1.40955e-05 (* 0.0454545 = 6.40705e-07 loss)
I0404 15:30:32.394244 9252 solver.cpp:245] Train net output #33: loss/loss12 = 1.46531e-05 (* 0.0454545 = 6.66048e-07 loss)
I0404 15:30:32.394258 9252 solver.cpp:245] Train net output #34: loss/loss13 = 1.23072e-05 (* 0.0454545 = 5.59419e-07 loss)
I0404 15:30:32.394273 9252 solver.cpp:245] Train net output #35: loss/loss14 = 1.46324e-05 (* 0.0454545 = 6.65108e-07 loss)
I0404 15:30:32.394286 9252 solver.cpp:245] Train net output #36: loss/loss15 = 1.28029e-05 (* 0.0454545 = 5.8195e-07 loss)
I0404 15:30:32.394300 9252 solver.cpp:245] Train net output #37: loss/loss16 = 1.56532e-05 (* 0.0454545 = 7.1151e-07 loss)
I0404 15:30:32.394315 9252 solver.cpp:245] Train net output #38: loss/loss17 = 1.22067e-05 (* 0.0454545 = 5.54852e-07 loss)
I0404 15:30:32.394345 9252 solver.cpp:245] Train net output #39: loss/loss18 = 1.38049e-05 (* 0.0454545 = 6.27497e-07 loss)
I0404 15:30:32.394359 9252 solver.cpp:245] Train net output #40: loss/loss19 = 1.14913e-05 (* 0.0454545 = 5.22332e-07 loss)
I0404 15:30:32.394373 9252 solver.cpp:245] Train net output #41: loss/loss20 = 1.27619e-05 (* 0.0454545 = 5.80085e-07 loss)
I0404 15:30:32.394387 9252 solver.cpp:245] Train net output #42: loss/loss21 = 1.40511e-05 (* 0.0454545 = 6.38685e-07 loss)
I0404 15:30:32.394402 9252 solver.cpp:245] Train net output #43: loss/loss22 = 1.29035e-05 (* 0.0454545 = 5.86524e-07 loss)
I0404 15:30:32.394413 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 15:30:32.394424 9252 solver.cpp:245] Train net output #45: total_confidence = 0.0007861
I0404 15:30:32.394438 9252 sgd_solver.cpp:106] Iteration 68000, lr = 0.00932
I0404 15:31:43.198230 9252 solver.cpp:229] Iteration 68500, loss = 0.772723
I0404 15:31:43.198339 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.375
I0404 15:31:43.198359 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.28125
I0404 15:31:43.198372 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.15625
I0404 15:31:43.198385 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.25
I0404 15:31:43.198396 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25
I0404 15:31:43.198407 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375
I0404 15:31:43.198420 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75
I0404 15:31:43.198432 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875
I0404 15:31:43.198443 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375
I0404 15:31:43.198456 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 15:31:43.198467 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 15:31:43.198478 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 15:31:43.198489 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 15:31:43.198501 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 15:31:43.198513 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 15:31:43.198524 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 15:31:43.198535 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 15:31:43.198546 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 15:31:43.198559 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 15:31:43.198570 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 15:31:43.198580 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 15:31:43.198592 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 15:31:43.198607 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.02493 (* 0.0454545 = 0.0920421 loss)
I0404 15:31:43.198621 9252 solver.cpp:245] Train net output #23: loss/loss02 = 2.23268 (* 0.0454545 = 0.101486 loss)
I0404 15:31:43.198635 9252 solver.cpp:245] Train net output #24: loss/loss03 = 2.59889 (* 0.0454545 = 0.118131 loss)
I0404 15:31:43.198649 9252 solver.cpp:245] Train net output #25: loss/loss04 = 2.78162 (* 0.0454545 = 0.126437 loss)
I0404 15:31:43.198662 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.55807 (* 0.0454545 = 0.116276 loss)
I0404 15:31:43.198676 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.14202 (* 0.0454545 = 0.0973647 loss)
I0404 15:31:43.198689 9252 solver.cpp:245] Train net output #28: loss/loss07 = 0.879898 (* 0.0454545 = 0.0399954 loss)
I0404 15:31:43.198704 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.512954 (* 0.0454545 = 0.0233161 loss)
I0404 15:31:43.198716 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.312594 (* 0.0454545 = 0.0142088 loss)
I0404 15:31:43.198730 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.0118163 (* 0.0454545 = 0.000537105 loss)
I0404 15:31:43.198748 9252 solver.cpp:245] Train net output #32: loss/loss11 = 4.54331e-05 (* 0.0454545 = 2.06514e-06 loss)
I0404 15:31:43.198762 9252 solver.cpp:245] Train net output #33: loss/loss12 = 4.35335e-05 (* 0.0454545 = 1.9788e-06 loss)
I0404 15:31:43.198776 9252 solver.cpp:245] Train net output #34: loss/loss13 = 5.08555e-05 (* 0.0454545 = 2.31161e-06 loss)
I0404 15:31:43.198791 9252 solver.cpp:245] Train net output #35: loss/loss14 = 3.59451e-05 (* 0.0454545 = 1.63387e-06 loss)
I0404 15:31:43.198804 9252 solver.cpp:245] Train net output #36: loss/loss15 = 3.73486e-05 (* 0.0454545 = 1.69766e-06 loss)
I0404 15:31:43.198818 9252 solver.cpp:245] Train net output #37: loss/loss16 = 3.16434e-05 (* 0.0454545 = 1.43834e-06 loss)
I0404 15:31:43.198832 9252 solver.cpp:245] Train net output #38: loss/loss17 = 3.18365e-05 (* 0.0454545 = 1.44711e-06 loss)
I0404 15:31:43.198863 9252 solver.cpp:245] Train net output #39: loss/loss18 = 3.31614e-05 (* 0.0454545 = 1.50734e-06 loss)
I0404 15:31:43.198879 9252 solver.cpp:245] Train net output #40: loss/loss19 = 3.09508e-05 (* 0.0454545 = 1.40685e-06 loss)
I0404 15:31:43.198892 9252 solver.cpp:245] Train net output #41: loss/loss20 = 3.33032e-05 (* 0.0454545 = 1.51378e-06 loss)
I0404 15:31:43.198906 9252 solver.cpp:245] Train net output #42: loss/loss21 = 2.91947e-05 (* 0.0454545 = 1.32703e-06 loss)
I0404 15:31:43.198920 9252 solver.cpp:245] Train net output #43: loss/loss22 = 3.07719e-05 (* 0.0454545 = 1.39872e-06 loss)
I0404 15:31:43.198931 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 15:31:43.198943 9252 solver.cpp:245] Train net output #45: total_confidence = 0.00133227
I0404 15:31:43.198956 9252 sgd_solver.cpp:106] Iteration 68500, lr = 0.009315
I0404 15:32:54.699092 9252 solver.cpp:229] Iteration 69000, loss = 0.773808
I0404 15:32:54.699239 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.4375
I0404 15:32:54.699262 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.25
I0404 15:32:54.699276 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.1875
I0404 15:32:54.699288 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.34375
I0404 15:32:54.699301 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125
I0404 15:32:54.699313 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375
I0404 15:32:54.699326 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75
I0404 15:32:54.699337 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375
I0404 15:32:54.699349 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375
I0404 15:32:54.699362 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875
I0404 15:32:54.699373 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 15:32:54.699384 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 15:32:54.699396 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 15:32:54.699409 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 15:32:54.699419 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 15:32:54.699431 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 15:32:54.699442 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 15:32:54.699455 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 15:32:54.699466 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 15:32:54.699478 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 15:32:54.699491 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 15:32:54.699501 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 15:32:54.699517 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.317 (* 0.0454545 = 0.105318 loss)
I0404 15:32:54.699540 9252 solver.cpp:245] Train net output #23: loss/loss02 = 2.44591 (* 0.0454545 = 0.111178 loss)
I0404 15:32:54.699555 9252 solver.cpp:245] Train net output #24: loss/loss03 = 2.92565 (* 0.0454545 = 0.132984 loss)
I0404 15:32:54.699570 9252 solver.cpp:245] Train net output #25: loss/loss04 = 2.34907 (* 0.0454545 = 0.106776 loss)
I0404 15:32:54.699594 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.53781 (* 0.0454545 = 0.115355 loss)
I0404 15:32:54.699610 9252 solver.cpp:245] Train net output #27: loss/loss06 = 1.82912 (* 0.0454545 = 0.0831418 loss)
I0404 15:32:54.699625 9252 solver.cpp:245] Train net output #28: loss/loss07 = 0.784908 (* 0.0454545 = 0.0356777 loss)
I0404 15:32:54.699638 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.606932 (* 0.0454545 = 0.0275878 loss)
I0404 15:32:54.699652 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.314491 (* 0.0454545 = 0.0142951 loss)
I0404 15:32:54.699666 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.178167 (* 0.0454545 = 0.0080985 loss)
I0404 15:32:54.699681 9252 solver.cpp:245] Train net output #32: loss/loss11 = 3.25758e-05 (* 0.0454545 = 1.48072e-06 loss)
I0404 15:32:54.699695 9252 solver.cpp:245] Train net output #33: loss/loss12 = 2.68877e-05 (* 0.0454545 = 1.22217e-06 loss)
I0404 15:32:54.699709 9252 solver.cpp:245] Train net output #34: loss/loss13 = 2.85369e-05 (* 0.0454545 = 1.29713e-06 loss)
I0404 15:32:54.699723 9252 solver.cpp:245] Train net output #35: loss/loss14 = 3.33995e-05 (* 0.0454545 = 1.51816e-06 loss)
I0404 15:32:54.699738 9252 solver.cpp:245] Train net output #36: loss/loss15 = 3.03381e-05 (* 0.0454545 = 1.379e-06 loss)
I0404 15:32:54.699754 9252 solver.cpp:245] Train net output #37: loss/loss16 = 3.84109e-05 (* 0.0454545 = 1.74595e-06 loss)
I0404 15:32:54.699769 9252 solver.cpp:245] Train net output #38: loss/loss17 = 2.83056e-05 (* 0.0454545 = 1.28662e-06 loss)
I0404 15:32:54.699805 9252 solver.cpp:245] Train net output #39: loss/loss18 = 2.86598e-05 (* 0.0454545 = 1.30272e-06 loss)
I0404 15:32:54.699820 9252 solver.cpp:245] Train net output #40: loss/loss19 = 3.19349e-05 (* 0.0454545 = 1.45159e-06 loss)
I0404 15:32:54.699834 9252 solver.cpp:245] Train net output #41: loss/loss20 = 3.15773e-05 (* 0.0454545 = 1.43533e-06 loss)
I0404 15:32:54.699848 9252 solver.cpp:245] Train net output #42: loss/loss21 = 3.02119e-05 (* 0.0454545 = 1.37327e-06 loss)
I0404 15:32:54.699862 9252 solver.cpp:245] Train net output #43: loss/loss22 = 2.70034e-05 (* 0.0454545 = 1.22743e-06 loss)
I0404 15:32:54.699880 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 15:32:54.699893 9252 solver.cpp:245] Train net output #45: total_confidence = 0.00354865
I0404 15:32:54.699914 9252 sgd_solver.cpp:106] Iteration 69000, lr = 0.00931
I0404 15:34:05.863241 9252 solver.cpp:229] Iteration 69500, loss = 0.770727
I0404 15:34:05.863402 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.5625
I0404 15:34:05.863427 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.28125
I0404 15:34:05.863440 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375
I0404 15:34:05.863452 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.21875
I0404 15:34:05.863464 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.21875
I0404 15:34:05.863482 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5
I0404 15:34:05.863494 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875
I0404 15:34:05.863507 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375
I0404 15:34:05.863518 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875
I0404 15:34:05.863530 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 15:34:05.863541 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 15:34:05.863553 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 15:34:05.863564 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 15:34:05.863575 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 15:34:05.863586 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 15:34:05.863598 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 15:34:05.863610 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 15:34:05.863621 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 15:34:05.863633 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 15:34:05.863647 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 15:34:05.863659 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 15:34:05.863670 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 15:34:05.863692 9252 solver.cpp:245] Train net output #22: loss/loss01 = 1.9156 (* 0.0454545 = 0.0870729 loss)
I0404 15:34:05.863720 9252 solver.cpp:245] Train net output #23: loss/loss02 = 2.79423 (* 0.0454545 = 0.12701 loss)
I0404 15:34:05.863734 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.12678 (* 0.0454545 = 0.142126 loss)
I0404 15:34:05.863750 9252 solver.cpp:245] Train net output #25: loss/loss04 = 2.79705 (* 0.0454545 = 0.127139 loss)
I0404 15:34:05.863765 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.59182 (* 0.0454545 = 0.11781 loss)
I0404 15:34:05.863778 9252 solver.cpp:245] Train net output #27: loss/loss06 = 1.8619 (* 0.0454545 = 0.0846316 loss)
I0404 15:34:05.863792 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.36504 (* 0.0454545 = 0.0620474 loss)
I0404 15:34:05.863806 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.209799 (* 0.0454545 = 0.00953633 loss)
I0404 15:34:05.863821 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.101164 (* 0.0454545 = 0.00459839 loss)
I0404 15:34:05.863838 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.0365075 (* 0.0454545 = 0.00165943 loss)
I0404 15:34:05.863862 9252 solver.cpp:245] Train net output #32: loss/loss11 = 1.49038e-05 (* 0.0454545 = 6.77446e-07 loss)
I0404 15:34:05.863878 9252 solver.cpp:245] Train net output #33: loss/loss12 = 1.20258e-05 (* 0.0454545 = 5.46626e-07 loss)
I0404 15:34:05.863893 9252 solver.cpp:245] Train net output #34: loss/loss13 = 1.62379e-05 (* 0.0454545 = 7.38086e-07 loss)
I0404 15:34:05.863914 9252 solver.cpp:245] Train net output #35: loss/loss14 = 1.36055e-05 (* 0.0454545 = 6.1843e-07 loss)
I0404 15:34:05.863955 9252 solver.cpp:245] Train net output #36: loss/loss15 = 1.36948e-05 (* 0.0454545 = 6.22491e-07 loss)
I0404 15:34:05.863970 9252 solver.cpp:245] Train net output #37: loss/loss16 = 1.50007e-05 (* 0.0454545 = 6.81851e-07 loss)
I0404 15:34:05.863982 9252 solver.cpp:245] Train net output #38: loss/loss17 = 1.19774e-05 (* 0.0454545 = 5.44425e-07 loss)
I0404 15:34:05.864018 9252 solver.cpp:245] Train net output #39: loss/loss18 = 1.20891e-05 (* 0.0454545 = 5.49502e-07 loss)
I0404 15:34:05.864033 9252 solver.cpp:245] Train net output #40: loss/loss19 = 1.2484e-05 (* 0.0454545 = 5.67457e-07 loss)
I0404 15:34:05.864048 9252 solver.cpp:245] Train net output #41: loss/loss20 = 1.17799e-05 (* 0.0454545 = 5.3545e-07 loss)
I0404 15:34:05.864061 9252 solver.cpp:245] Train net output #42: loss/loss21 = 1.25623e-05 (* 0.0454545 = 5.71014e-07 loss)
I0404 15:34:05.864076 9252 solver.cpp:245] Train net output #43: loss/loss22 = 1.14931e-05 (* 0.0454545 = 5.22412e-07 loss)
I0404 15:34:05.864089 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 15:34:05.864099 9252 solver.cpp:245] Train net output #45: total_confidence = 0.000808003
I0404 15:34:05.864114 9252 sgd_solver.cpp:106] Iteration 69500, lr = 0.009305
I0404 15:35:16.371008 9252 solver.cpp:338] Iteration 70000, Testing net (#0)
I0404 15:35:24.356556 9252 solver.cpp:393] Test loss: 0.639516
I0404 15:35:24.356606 9252 solver.cpp:406] Test net output #0: loss/accuracy01 = 0.453
I0404 15:35:24.356621 9252 solver.cpp:406] Test net output #1: loss/accuracy02 = 0.242
I0404 15:35:24.356633 9252 solver.cpp:406] Test net output #2: loss/accuracy03 = 0.194
I0404 15:35:24.356645 9252 solver.cpp:406] Test net output #3: loss/accuracy04 = 0.218
I0404 15:35:24.356657 9252 solver.cpp:406] Test net output #4: loss/accuracy05 = 0.316
I0404 15:35:24.356668 9252 solver.cpp:406] Test net output #5: loss/accuracy06 = 0.57
I0404 15:35:24.356680 9252 solver.cpp:406] Test net output #6: loss/accuracy07 = 0.901
I0404 15:35:24.356691 9252 solver.cpp:406] Test net output #7: loss/accuracy08 = 0.971
I0404 15:35:24.356703 9252 solver.cpp:406] Test net output #8: loss/accuracy09 = 0.995
I0404 15:35:24.356714 9252 solver.cpp:406] Test net output #9: loss/accuracy10 = 0.998
I0404 15:35:24.356725 9252 solver.cpp:406] Test net output #10: loss/accuracy11 = 1
I0404 15:35:24.356736 9252 solver.cpp:406] Test net output #11: loss/accuracy12 = 1
I0404 15:35:24.356750 9252 solver.cpp:406] Test net output #12: loss/accuracy13 = 1
I0404 15:35:24.356761 9252 solver.cpp:406] Test net output #13: loss/accuracy14 = 1
I0404 15:35:24.356772 9252 solver.cpp:406] Test net output #14: loss/accuracy15 = 1
I0404 15:35:24.356783 9252 solver.cpp:406] Test net output #15: loss/accuracy16 = 1
I0404 15:35:24.356794 9252 solver.cpp:406] Test net output #16: loss/accuracy17 = 1
I0404 15:35:24.356806 9252 solver.cpp:406] Test net output #17: loss/accuracy18 = 1
I0404 15:35:24.356817 9252 solver.cpp:406] Test net output #18: loss/accuracy19 = 1
I0404 15:35:24.356827 9252 solver.cpp:406] Test net output #19: loss/accuracy20 = 1
I0404 15:35:24.356838 9252 solver.cpp:406] Test net output #20: loss/accuracy21 = 1
I0404 15:35:24.356849 9252 solver.cpp:406] Test net output #21: loss/accuracy22 = 1
I0404 15:35:24.356864 9252 solver.cpp:406] Test net output #22: loss/loss01 = 1.84413 (* 0.0454545 = 0.0838241 loss)
I0404 15:35:24.356879 9252 solver.cpp:406] Test net output #23: loss/loss02 = 2.39827 (* 0.0454545 = 0.109012 loss)
I0404 15:35:24.356892 9252 solver.cpp:406] Test net output #24: loss/loss03 = 2.5922 (* 0.0454545 = 0.117827 loss)
I0404 15:35:24.356906 9252 solver.cpp:406] Test net output #25: loss/loss04 = 2.59523 (* 0.0454545 = 0.117965 loss)
I0404 15:35:24.356920 9252 solver.cpp:406] Test net output #26: loss/loss05 = 2.32849 (* 0.0454545 = 0.105841 loss)
I0404 15:35:24.356932 9252 solver.cpp:406] Test net output #27: loss/loss06 = 1.63742 (* 0.0454545 = 0.074428 loss)
I0404 15:35:24.356945 9252 solver.cpp:406] Test net output #28: loss/loss07 = 0.421418 (* 0.0454545 = 0.0191554 loss)
I0404 15:35:24.356958 9252 solver.cpp:406] Test net output #29: loss/loss08 = 0.185187 (* 0.0454545 = 0.00841757 loss)
I0404 15:35:24.356972 9252 solver.cpp:406] Test net output #30: loss/loss09 = 0.0461865 (* 0.0454545 = 0.00209938 loss)
I0404 15:35:24.356986 9252 solver.cpp:406] Test net output #31: loss/loss10 = 0.0206727 (* 0.0454545 = 0.000939666 loss)
I0404 15:35:24.356999 9252 solver.cpp:406] Test net output #32: loss/loss11 = 1.21783e-05 (* 0.0454545 = 5.53561e-07 loss)
I0404 15:35:24.357012 9252 solver.cpp:406] Test net output #33: loss/loss12 = 1.15271e-05 (* 0.0454545 = 5.23961e-07 loss)
I0404 15:35:24.357026 9252 solver.cpp:406] Test net output #34: loss/loss13 = 1.04916e-05 (* 0.0454545 = 4.76892e-07 loss)
I0404 15:35:24.357040 9252 solver.cpp:406] Test net output #35: loss/loss14 = 1.10241e-05 (* 0.0454545 = 5.01097e-07 loss)
I0404 15:35:24.357054 9252 solver.cpp:406] Test net output #36: loss/loss15 = 1.19856e-05 (* 0.0454545 = 5.44798e-07 loss)
I0404 15:35:24.357067 9252 solver.cpp:406] Test net output #37: loss/loss16 = 1.28341e-05 (* 0.0454545 = 5.8337e-07 loss)
I0404 15:35:24.357081 9252 solver.cpp:406] Test net output #38: loss/loss17 = 9.3343e-06 (* 0.0454545 = 4.24286e-07 loss)
I0404 15:35:24.357127 9252 solver.cpp:406] Test net output #39: loss/loss18 = 1.06035e-05 (* 0.0454545 = 4.81975e-07 loss)
I0404 15:35:24.357142 9252 solver.cpp:406] Test net output #40: loss/loss19 = 1.05998e-05 (* 0.0454545 = 4.81807e-07 loss)
I0404 15:35:24.357156 9252 solver.cpp:406] Test net output #41: loss/loss20 = 1.16291e-05 (* 0.0454545 = 5.28597e-07 loss)
I0404 15:35:24.357170 9252 solver.cpp:406] Test net output #42: loss/loss21 = 1.11074e-05 (* 0.0454545 = 5.0488e-07 loss)
I0404 15:35:24.357183 9252 solver.cpp:406] Test net output #43: loss/loss22 = 1.11227e-05 (* 0.0454545 = 5.05577e-07 loss)
I0404 15:35:24.357195 9252 solver.cpp:406] Test net output #44: total_accuracy = 0.002
I0404 15:35:24.357206 9252 solver.cpp:406] Test net output #45: total_confidence = 0.00381643
I0404 15:35:24.391037 9252 solver.cpp:229] Iteration 70000, loss = 0.771609
I0404 15:35:24.391077 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.5625
I0404 15:35:24.391093 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.25
I0404 15:35:24.391105 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.15625
I0404 15:35:24.391118 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125
I0404 15:35:24.391129 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.40625
I0404 15:35:24.391140 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.59375
I0404 15:35:24.391152 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.875
I0404 15:35:24.391163 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.96875
I0404 15:35:24.391175 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875
I0404 15:35:24.391187 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 15:35:24.391198 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 15:35:24.391209 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 15:35:24.391222 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 15:35:24.391232 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 15:35:24.391243 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 15:35:24.391258 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 15:35:24.391270 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 15:35:24.391281 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 15:35:24.391293 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 15:35:24.391304 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 15:35:24.391315 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 15:35:24.391326 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 15:35:24.391340 9252 solver.cpp:245] Train net output #22: loss/loss01 = 1.50607 (* 0.0454545 = 0.0684579 loss)
I0404 15:35:24.391355 9252 solver.cpp:245] Train net output #23: loss/loss02 = 2.59612 (* 0.0454545 = 0.118005 loss)
I0404 15:35:24.391368 9252 solver.cpp:245] Train net output #24: loss/loss03 = 2.75548 (* 0.0454545 = 0.125249 loss)
I0404 15:35:24.391381 9252 solver.cpp:245] Train net output #25: loss/loss04 = 2.85036 (* 0.0454545 = 0.129562 loss)
I0404 15:35:24.391394 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.24903 (* 0.0454545 = 0.102228 loss)
I0404 15:35:24.391407 9252 solver.cpp:245] Train net output #27: loss/loss06 = 1.49873 (* 0.0454545 = 0.0681242 loss)
I0404 15:35:24.391420 9252 solver.cpp:245] Train net output #28: loss/loss07 = 0.544206 (* 0.0454545 = 0.0247367 loss)
I0404 15:35:24.391434 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.229936 (* 0.0454545 = 0.0104517 loss)
I0404 15:35:24.391448 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.107486 (* 0.0454545 = 0.00488574 loss)
I0404 15:35:24.391480 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.00173255 (* 0.0454545 = 7.87524e-05 loss)
I0404 15:35:24.391496 9252 solver.cpp:245] Train net output #32: loss/loss11 = 9.40676e-06 (* 0.0454545 = 4.2758e-07 loss)
I0404 15:35:24.391510 9252 solver.cpp:245] Train net output #33: loss/loss12 = 9.20017e-06 (* 0.0454545 = 4.1819e-07 loss)
I0404 15:35:24.391525 9252 solver.cpp:245] Train net output #34: loss/loss13 = 7.8532e-06 (* 0.0454545 = 3.56964e-07 loss)
I0404 15:35:24.391537 9252 solver.cpp:245] Train net output #35: loss/loss14 = 1.15772e-05 (* 0.0454545 = 5.26236e-07 loss)
I0404 15:35:24.391551 9252 solver.cpp:245] Train net output #36: loss/loss15 = 1.11598e-05 (* 0.0454545 = 5.07264e-07 loss)
I0404 15:35:24.391566 9252 solver.cpp:245] Train net output #37: loss/loss16 = 1.18714e-05 (* 0.0454545 = 5.39609e-07 loss)
I0404 15:35:24.391578 9252 solver.cpp:245] Train net output #38: loss/loss17 = 8.30771e-06 (* 0.0454545 = 3.77623e-07 loss)
I0404 15:35:24.391592 9252 solver.cpp:245] Train net output #39: loss/loss18 = 9.79056e-06 (* 0.0454545 = 4.45025e-07 loss)
I0404 15:35:24.391607 9252 solver.cpp:245] Train net output #40: loss/loss19 = 8.17364e-06 (* 0.0454545 = 3.71529e-07 loss)
I0404 15:35:24.391619 9252 solver.cpp:245] Train net output #41: loss/loss20 = 9.34722e-06 (* 0.0454545 = 4.24874e-07 loss)
I0404 15:35:24.391633 9252 solver.cpp:245] Train net output #42: loss/loss21 = 8.99702e-06 (* 0.0454545 = 4.08955e-07 loss)
I0404 15:35:24.391646 9252 solver.cpp:245] Train net output #43: loss/loss22 = 8.76229e-06 (* 0.0454545 = 3.98286e-07 loss)
I0404 15:35:24.391659 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 15:35:24.391669 9252 solver.cpp:245] Train net output #45: total_confidence = 0.00673391
I0404 15:35:24.391685 9252 sgd_solver.cpp:106] Iteration 70000, lr = 0.0093
I0404 15:36:35.263206 9252 solver.cpp:229] Iteration 70500, loss = 0.768389
I0404 15:36:35.263447 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.40625
I0404 15:36:35.263465 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.1875
I0404 15:36:35.263478 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.25
I0404 15:36:35.263490 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.21875
I0404 15:36:35.263502 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.46875
I0404 15:36:35.263514 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.53125
I0404 15:36:35.263525 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875
I0404 15:36:35.263537 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.96875
I0404 15:36:35.263550 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 1
I0404 15:36:35.263561 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875
I0404 15:36:35.263572 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 15:36:35.263584 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 15:36:35.263595 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 15:36:35.263607 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 15:36:35.263618 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 15:36:35.263630 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 15:36:35.263641 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 15:36:35.263653 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 15:36:35.263664 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 15:36:35.263676 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 15:36:35.263687 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 15:36:35.263700 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 15:36:35.263715 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.16312 (* 0.0454545 = 0.0983234 loss)
I0404 15:36:35.263728 9252 solver.cpp:245] Train net output #23: loss/loss02 = 2.7487 (* 0.0454545 = 0.124941 loss)
I0404 15:36:35.263742 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.07254 (* 0.0454545 = 0.139661 loss)
I0404 15:36:35.263756 9252 solver.cpp:245] Train net output #25: loss/loss04 = 2.76622 (* 0.0454545 = 0.125737 loss)
I0404 15:36:35.263770 9252 solver.cpp:245] Train net output #26: loss/loss05 = 1.98235 (* 0.0454545 = 0.0901067 loss)
I0404 15:36:35.263783 9252 solver.cpp:245] Train net output #27: loss/loss06 = 1.71095 (* 0.0454545 = 0.0777704 loss)
I0404 15:36:35.263802 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.02328 (* 0.0454545 = 0.0465128 loss)
I0404 15:36:35.263815 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.122751 (* 0.0454545 = 0.0055796 loss)
I0404 15:36:35.263829 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.0783661 (* 0.0454545 = 0.0035621 loss)
I0404 15:36:35.263844 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.114046 (* 0.0454545 = 0.00518391 loss)
I0404 15:36:35.263857 9252 solver.cpp:245] Train net output #32: loss/loss11 = 2.07416e-05 (* 0.0454545 = 9.42799e-07 loss)
I0404 15:36:35.263871 9252 solver.cpp:245] Train net output #33: loss/loss12 = 2.04363e-05 (* 0.0454545 = 9.28924e-07 loss)
I0404 15:36:35.263885 9252 solver.cpp:245] Train net output #34: loss/loss13 = 2.16246e-05 (* 0.0454545 = 9.82937e-07 loss)
I0404 15:36:35.263900 9252 solver.cpp:245] Train net output #35: loss/loss14 = 2.42032e-05 (* 0.0454545 = 1.10014e-06 loss)
I0404 15:36:35.263913 9252 solver.cpp:245] Train net output #36: loss/loss15 = 2.33985e-05 (* 0.0454545 = 1.06357e-06 loss)
I0404 15:36:35.263926 9252 solver.cpp:245] Train net output #37: loss/loss16 = 2.35957e-05 (* 0.0454545 = 1.07253e-06 loss)
I0404 15:36:35.263941 9252 solver.cpp:245] Train net output #38: loss/loss17 = 1.87746e-05 (* 0.0454545 = 8.53389e-07 loss)
I0404 15:36:35.263973 9252 solver.cpp:245] Train net output #39: loss/loss18 = 2.06524e-05 (* 0.0454545 = 9.38744e-07 loss)
I0404 15:36:35.263989 9252 solver.cpp:245] Train net output #40: loss/loss19 = 1.9177e-05 (* 0.0454545 = 8.71684e-07 loss)
I0404 15:36:35.264003 9252 solver.cpp:245] Train net output #41: loss/loss20 = 2.01866e-05 (* 0.0454545 = 9.17571e-07 loss)
I0404 15:36:35.264016 9252 solver.cpp:245] Train net output #42: loss/loss21 = 1.97358e-05 (* 0.0454545 = 8.9708e-07 loss)
I0404 15:36:35.264030 9252 solver.cpp:245] Train net output #43: loss/loss22 = 1.98513e-05 (* 0.0454545 = 9.02333e-07 loss)
I0404 15:36:35.264042 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 15:36:35.264053 9252 solver.cpp:245] Train net output #45: total_confidence = 0.00354426
I0404 15:36:35.264067 9252 sgd_solver.cpp:106] Iteration 70500, lr = 0.009295
I0404 15:37:46.287650 9252 solver.cpp:229] Iteration 71000, loss = 0.75769
I0404 15:37:46.287811 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.40625
I0404 15:37:46.287832 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.28125
I0404 15:37:46.287844 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125
I0404 15:37:46.287856 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125
I0404 15:37:46.287868 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.34375
I0404 15:37:46.287880 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625
I0404 15:37:46.287891 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875
I0404 15:37:46.287907 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875
I0404 15:37:46.287928 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375
I0404 15:37:46.287942 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 15:37:46.287955 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 15:37:46.287966 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 15:37:46.287977 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 15:37:46.287989 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 15:37:46.288000 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 15:37:46.288012 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 15:37:46.288023 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 15:37:46.288034 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 15:37:46.288046 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 15:37:46.288058 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 15:37:46.288069 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 15:37:46.288080 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 15:37:46.288095 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.48392 (* 0.0454545 = 0.112905 loss)
I0404 15:37:46.288110 9252 solver.cpp:245] Train net output #23: loss/loss02 = 2.46823 (* 0.0454545 = 0.112192 loss)
I0404 15:37:46.288125 9252 solver.cpp:245] Train net output #24: loss/loss03 = 2.88867 (* 0.0454545 = 0.131303 loss)
I0404 15:37:46.288137 9252 solver.cpp:245] Train net output #25: loss/loss04 = 3.03325 (* 0.0454545 = 0.137875 loss)
I0404 15:37:46.288151 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.46362 (* 0.0454545 = 0.111983 loss)
I0404 15:37:46.288164 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.44254 (* 0.0454545 = 0.111024 loss)
I0404 15:37:46.288178 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.16937 (* 0.0454545 = 0.0531534 loss)
I0404 15:37:46.288192 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.686241 (* 0.0454545 = 0.0311928 loss)
I0404 15:37:46.288205 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.381637 (* 0.0454545 = 0.0173472 loss)
I0404 15:37:46.288219 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.0428511 (* 0.0454545 = 0.00194778 loss)
I0404 15:37:46.288233 9252 solver.cpp:245] Train net output #32: loss/loss11 = 4.1906e-05 (* 0.0454545 = 1.90482e-06 loss)
I0404 15:37:46.288249 9252 solver.cpp:245] Train net output #33: loss/loss12 = 4.06528e-05 (* 0.0454545 = 1.84786e-06 loss)
I0404 15:37:46.288262 9252 solver.cpp:245] Train net output #34: loss/loss13 = 4.30045e-05 (* 0.0454545 = 1.95475e-06 loss)
I0404 15:37:46.288275 9252 solver.cpp:245] Train net output #35: loss/loss14 = 4.32626e-05 (* 0.0454545 = 1.96648e-06 loss)
I0404 15:37:46.288290 9252 solver.cpp:245] Train net output #36: loss/loss15 = 4.56397e-05 (* 0.0454545 = 2.07453e-06 loss)
I0404 15:37:46.288303 9252 solver.cpp:245] Train net output #37: loss/loss16 = 4.93461e-05 (* 0.0454545 = 2.24301e-06 loss)
I0404 15:37:46.288317 9252 solver.cpp:245] Train net output #38: loss/loss17 = 3.82756e-05 (* 0.0454545 = 1.7398e-06 loss)
I0404 15:37:46.288346 9252 solver.cpp:245] Train net output #39: loss/loss18 = 4.81341e-05 (* 0.0454545 = 2.18792e-06 loss)
I0404 15:37:46.288360 9252 solver.cpp:245] Train net output #40: loss/loss19 = 4.36955e-05 (* 0.0454545 = 1.98616e-06 loss)
I0404 15:37:46.288374 9252 solver.cpp:245] Train net output #41: loss/loss20 = 4.445e-05 (* 0.0454545 = 2.02046e-06 loss)
I0404 15:37:46.288391 9252 solver.cpp:245] Train net output #42: loss/loss21 = 4.34574e-05 (* 0.0454545 = 1.97534e-06 loss)
I0404 15:37:46.288406 9252 solver.cpp:245] Train net output #43: loss/loss22 = 3.87749e-05 (* 0.0454545 = 1.7625e-06 loss)
I0404 15:37:46.288419 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 15:37:46.288429 9252 solver.cpp:245] Train net output #45: total_confidence = 0.000557782
I0404 15:37:46.288444 9252 sgd_solver.cpp:106] Iteration 71000, lr = 0.00929
I0404 15:38:57.154203 9252 solver.cpp:229] Iteration 71500, loss = 0.758209
I0404 15:38:57.154335 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.53125
I0404 15:38:57.154355 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.375
I0404 15:38:57.154367 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.28125
I0404 15:38:57.154379 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.21875
I0404 15:38:57.154392 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.375
I0404 15:38:57.154403 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5
I0404 15:38:57.154415 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875
I0404 15:38:57.154428 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.8125
I0404 15:38:57.154439 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375
I0404 15:38:57.154450 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875
I0404 15:38:57.154463 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 15:38:57.154474 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 15:38:57.154486 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 15:38:57.154497 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 15:38:57.154510 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 15:38:57.154521 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 15:38:57.154532 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 15:38:57.154543 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 15:38:57.154556 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 15:38:57.154567 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 15:38:57.154578 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 15:38:57.154590 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 15:38:57.154605 9252 solver.cpp:245] Train net output #22: loss/loss01 = 1.769 (* 0.0454545 = 0.0804093 loss)
I0404 15:38:57.154620 9252 solver.cpp:245] Train net output #23: loss/loss02 = 2.26673 (* 0.0454545 = 0.103033 loss)
I0404 15:38:57.154634 9252 solver.cpp:245] Train net output #24: loss/loss03 = 2.58753 (* 0.0454545 = 0.117615 loss)
I0404 15:38:57.154647 9252 solver.cpp:245] Train net output #25: loss/loss04 = 2.86152 (* 0.0454545 = 0.130069 loss)
I0404 15:38:57.154661 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.16259 (* 0.0454545 = 0.0982996 loss)
I0404 15:38:57.154675 9252 solver.cpp:245] Train net output #27: loss/loss06 = 1.94763 (* 0.0454545 = 0.0885285 loss)
I0404 15:38:57.154690 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.03137 (* 0.0454545 = 0.0468805 loss)
I0404 15:38:57.154702 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.786834 (* 0.0454545 = 0.0357652 loss)
I0404 15:38:57.154716 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.287582 (* 0.0454545 = 0.0130719 loss)
I0404 15:38:57.154731 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.134053 (* 0.0454545 = 0.00609331 loss)
I0404 15:38:57.154747 9252 solver.cpp:245] Train net output #32: loss/loss11 = 3.55748e-05 (* 0.0454545 = 1.61704e-06 loss)
I0404 15:38:57.154762 9252 solver.cpp:245] Train net output #33: loss/loss12 = 3.39606e-05 (* 0.0454545 = 1.54366e-06 loss)
I0404 15:38:57.154778 9252 solver.cpp:245] Train net output #34: loss/loss13 = 3.28164e-05 (* 0.0454545 = 1.49165e-06 loss)
I0404 15:38:57.154791 9252 solver.cpp:245] Train net output #35: loss/loss14 = 2.70644e-05 (* 0.0454545 = 1.2302e-06 loss)
I0404 15:38:57.154805 9252 solver.cpp:245] Train net output #36: loss/loss15 = 2.87027e-05 (* 0.0454545 = 1.30467e-06 loss)
I0404 15:38:57.154819 9252 solver.cpp:245] Train net output #37: loss/loss16 = 2.03338e-05 (* 0.0454545 = 9.24262e-07 loss)
I0404 15:38:57.154832 9252 solver.cpp:245] Train net output #38: loss/loss17 = 2.24452e-05 (* 0.0454545 = 1.02024e-06 loss)
I0404 15:38:57.154865 9252 solver.cpp:245] Train net output #39: loss/loss18 = 2.43883e-05 (* 0.0454545 = 1.10856e-06 loss)
I0404 15:38:57.154881 9252 solver.cpp:245] Train net output #40: loss/loss19 = 2.14498e-05 (* 0.0454545 = 9.74989e-07 loss)
I0404 15:38:57.154894 9252 solver.cpp:245] Train net output #41: loss/loss20 = 1.83195e-05 (* 0.0454545 = 8.32705e-07 loss)
I0404 15:38:57.154908 9252 solver.cpp:245] Train net output #42: loss/loss21 = 1.96573e-05 (* 0.0454545 = 8.93516e-07 loss)
I0404 15:38:57.154922 9252 solver.cpp:245] Train net output #43: loss/loss22 = 2.5702e-05 (* 0.0454545 = 1.16827e-06 loss)
I0404 15:38:57.154934 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 15:38:57.154945 9252 solver.cpp:245] Train net output #45: total_confidence = 0.00869889
I0404 15:38:57.154959 9252 sgd_solver.cpp:106] Iteration 71500, lr = 0.009285
I0404 15:40:08.080710 9252 solver.cpp:229] Iteration 72000, loss = 0.748265
I0404 15:40:08.080864 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.40625
I0404 15:40:08.080885 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.28125
I0404 15:40:08.080899 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.25
I0404 15:40:08.080910 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625
I0404 15:40:08.080922 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.40625
I0404 15:40:08.080935 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5
I0404 15:40:08.080946 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.875
I0404 15:40:08.080958 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625
I0404 15:40:08.080971 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875
I0404 15:40:08.080981 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 15:40:08.080994 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 15:40:08.081006 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 15:40:08.081017 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 15:40:08.081028 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 15:40:08.081040 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 15:40:08.081051 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 15:40:08.081063 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 15:40:08.081074 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 15:40:08.081086 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 15:40:08.081106 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 15:40:08.081120 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 15:40:08.081130 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 15:40:08.081146 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.14311 (* 0.0454545 = 0.0974143 loss)
I0404 15:40:08.081161 9252 solver.cpp:245] Train net output #23: loss/loss02 = 2.43195 (* 0.0454545 = 0.110543 loss)
I0404 15:40:08.081174 9252 solver.cpp:245] Train net output #24: loss/loss03 = 2.67724 (* 0.0454545 = 0.121693 loss)
I0404 15:40:08.081188 9252 solver.cpp:245] Train net output #25: loss/loss04 = 2.98703 (* 0.0454545 = 0.135774 loss)
I0404 15:40:08.081202 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.11861 (* 0.0454545 = 0.0963002 loss)
I0404 15:40:08.081215 9252 solver.cpp:245] Train net output #27: loss/loss06 = 1.7156 (* 0.0454545 = 0.0779816 loss)
I0404 15:40:08.081229 9252 solver.cpp:245] Train net output #28: loss/loss07 = 0.598742 (* 0.0454545 = 0.0272155 loss)
I0404 15:40:08.081243 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.352638 (* 0.0454545 = 0.016029 loss)
I0404 15:40:08.081257 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.168999 (* 0.0454545 = 0.00768175 loss)
I0404 15:40:08.081271 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.0112914 (* 0.0454545 = 0.000513244 loss)
I0404 15:40:08.081285 9252 solver.cpp:245] Train net output #32: loss/loss11 = 1.2583e-05 (* 0.0454545 = 5.71955e-07 loss)
I0404 15:40:08.081300 9252 solver.cpp:245] Train net output #33: loss/loss12 = 1.22888e-05 (* 0.0454545 = 5.58583e-07 loss)
I0404 15:40:08.081315 9252 solver.cpp:245] Train net output #34: loss/loss13 = 1.0016e-05 (* 0.0454545 = 4.55275e-07 loss)
I0404 15:40:08.081328 9252 solver.cpp:245] Train net output #35: loss/loss14 = 1.29596e-05 (* 0.0454545 = 5.89072e-07 loss)
I0404 15:40:08.081342 9252 solver.cpp:245] Train net output #36: loss/loss15 = 1.36526e-05 (* 0.0454545 = 6.20574e-07 loss)
I0404 15:40:08.081357 9252 solver.cpp:245] Train net output #37: loss/loss16 = 1.47052e-05 (* 0.0454545 = 6.6842e-07 loss)
I0404 15:40:08.081370 9252 solver.cpp:245] Train net output #38: loss/loss17 = 1.07649e-05 (* 0.0454545 = 4.89313e-07 loss)
I0404 15:40:08.081401 9252 solver.cpp:245] Train net output #39: loss/loss18 = 1.10257e-05 (* 0.0454545 = 5.01167e-07 loss)
I0404 15:40:08.081430 9252 solver.cpp:245] Train net output #40: loss/loss19 = 1.2233e-05 (* 0.0454545 = 5.56045e-07 loss)
I0404 15:40:08.081449 9252 solver.cpp:245] Train net output #41: loss/loss20 = 1.20504e-05 (* 0.0454545 = 5.47744e-07 loss)
I0404 15:40:08.081464 9252 solver.cpp:245] Train net output #42: loss/loss21 = 1.11226e-05 (* 0.0454545 = 5.05573e-07 loss)
I0404 15:40:08.081478 9252 solver.cpp:245] Train net output #43: loss/loss22 = 1.09475e-05 (* 0.0454545 = 4.97612e-07 loss)
I0404 15:40:08.081490 9252 solver.cpp:245] Train net output #44: total_accuracy = 0.0625
I0404 15:40:08.081502 9252 solver.cpp:245] Train net output #45: total_confidence = 0.0078492
I0404 15:40:08.081522 9252 sgd_solver.cpp:106] Iteration 72000, lr = 0.00928
I0404 15:41:19.365587 9252 solver.cpp:229] Iteration 72500, loss = 0.751353
I0404 15:41:19.365689 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.46875
I0404 15:41:19.365720 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.21875
I0404 15:41:19.365746 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.21875
I0404 15:41:19.365769 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125
I0404 15:41:19.365792 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125
I0404 15:41:19.365815 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375
I0404 15:41:19.365838 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875
I0404 15:41:19.365862 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.96875
I0404 15:41:19.365885 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875
I0404 15:41:19.365912 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 15:41:19.365936 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 15:41:19.365957 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 15:41:19.365978 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 15:41:19.365998 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 15:41:19.366019 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 15:41:19.366040 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 15:41:19.366062 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 15:41:19.366083 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 15:41:19.366106 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 15:41:19.366127 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 15:41:19.366147 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 15:41:19.366168 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 15:41:19.366195 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.0611 (* 0.0454545 = 0.0936864 loss)
I0404 15:41:19.366224 9252 solver.cpp:245] Train net output #23: loss/loss02 = 2.76198 (* 0.0454545 = 0.125545 loss)
I0404 15:41:19.366250 9252 solver.cpp:245] Train net output #24: loss/loss03 = 2.64451 (* 0.0454545 = 0.120205 loss)
I0404 15:41:19.366277 9252 solver.cpp:245] Train net output #25: loss/loss04 = 2.84619 (* 0.0454545 = 0.129372 loss)
I0404 15:41:19.366307 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.43101 (* 0.0454545 = 0.1105 loss)
I0404 15:41:19.366335 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.31869 (* 0.0454545 = 0.105395 loss)
I0404 15:41:19.366363 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.04911 (* 0.0454545 = 0.0476866 loss)
I0404 15:41:19.366389 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.210872 (* 0.0454545 = 0.0095851 loss)
I0404 15:41:19.366413 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.162677 (* 0.0454545 = 0.00739442 loss)
I0404 15:41:19.366441 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.00286192 (* 0.0454545 = 0.000130087 loss)
I0404 15:41:19.366466 9252 solver.cpp:245] Train net output #32: loss/loss11 = 3.79611e-06 (* 0.0454545 = 1.72551e-07 loss)
I0404 15:41:19.366493 9252 solver.cpp:245] Train net output #33: loss/loss12 = 2.98398e-06 (* 0.0454545 = 1.35636e-07 loss)
I0404 15:41:19.366520 9252 solver.cpp:245] Train net output #34: loss/loss13 = 3.05476e-06 (* 0.0454545 = 1.38853e-07 loss)
I0404 15:41:19.366546 9252 solver.cpp:245] Train net output #35: loss/loss14 = 2.82379e-06 (* 0.0454545 = 1.28354e-07 loss)
I0404 15:41:19.366574 9252 solver.cpp:245] Train net output #36: loss/loss15 = 3.47945e-06 (* 0.0454545 = 1.58157e-07 loss)
I0404 15:41:19.366600 9252 solver.cpp:245] Train net output #37: loss/loss16 = 2.90202e-06 (* 0.0454545 = 1.3191e-07 loss)
I0404 15:41:19.366626 9252 solver.cpp:245] Train net output #38: loss/loss17 = 3.24104e-06 (* 0.0454545 = 1.4732e-07 loss)
I0404 15:41:19.366677 9252 solver.cpp:245] Train net output #39: loss/loss18 = 2.9579e-06 (* 0.0454545 = 1.3445e-07 loss)
I0404 15:41:19.366704 9252 solver.cpp:245] Train net output #40: loss/loss19 = 2.71948e-06 (* 0.0454545 = 1.23613e-07 loss)
I0404 15:41:19.366731 9252 solver.cpp:245] Train net output #41: loss/loss20 = 2.98026e-06 (* 0.0454545 = 1.35466e-07 loss)
I0404 15:41:19.366765 9252 solver.cpp:245] Train net output #42: loss/loss21 = 2.83497e-06 (* 0.0454545 = 1.28862e-07 loss)
I0404 15:41:19.366793 9252 solver.cpp:245] Train net output #43: loss/loss22 = 2.84987e-06 (* 0.0454545 = 1.29539e-07 loss)
I0404 15:41:19.366817 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 15:41:19.366838 9252 solver.cpp:245] Train net output #45: total_confidence = 0.00161058
I0404 15:41:19.366861 9252 sgd_solver.cpp:106] Iteration 72500, lr = 0.009275
I0404 15:42:30.357094 9252 solver.cpp:229] Iteration 73000, loss = 0.747079
I0404 15:42:30.357235 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.34375
I0404 15:42:30.357264 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.1875
I0404 15:42:30.357285 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.21875
I0404 15:42:30.357306 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625
I0404 15:42:30.357328 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25
I0404 15:42:30.357350 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375
I0404 15:42:30.357372 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.78125
I0404 15:42:30.357396 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375
I0404 15:42:30.357434 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 1
I0404 15:42:30.357463 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 15:42:30.357486 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 15:42:30.357506 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 15:42:30.357529 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 15:42:30.357553 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 15:42:30.357573 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 15:42:30.357594 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 15:42:30.357615 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 15:42:30.357636 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 15:42:30.357657 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 15:42:30.357679 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 15:42:30.357699 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 15:42:30.357722 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 15:42:30.357753 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.12319 (* 0.0454545 = 0.0965087 loss)
I0404 15:42:30.357780 9252 solver.cpp:245] Train net output #23: loss/loss02 = 2.67599 (* 0.0454545 = 0.121636 loss)
I0404 15:42:30.357807 9252 solver.cpp:245] Train net output #24: loss/loss03 = 2.92818 (* 0.0454545 = 0.133099 loss)
I0404 15:42:30.357833 9252 solver.cpp:245] Train net output #25: loss/loss04 = 2.98803 (* 0.0454545 = 0.13582 loss)
I0404 15:42:30.357858 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.6266 (* 0.0454545 = 0.119391 loss)
I0404 15:42:30.357883 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.2316 (* 0.0454545 = 0.101436 loss)
I0404 15:42:30.357909 9252 solver.cpp:245] Train net output #28: loss/loss07 = 0.767534 (* 0.0454545 = 0.0348879 loss)
I0404 15:42:30.357934 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.267262 (* 0.0454545 = 0.0121483 loss)
I0404 15:42:30.357960 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.0243208 (* 0.0454545 = 0.00110549 loss)
I0404 15:42:30.357985 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.00552251 (* 0.0454545 = 0.000251023 loss)
I0404 15:42:30.358011 9252 solver.cpp:245] Train net output #32: loss/loss11 = 1.11617e-05 (* 0.0454545 = 5.07349e-07 loss)
I0404 15:42:30.358034 9252 solver.cpp:245] Train net output #33: loss/loss12 = 1.04595e-05 (* 0.0454545 = 4.7543e-07 loss)
I0404 15:42:30.358057 9252 solver.cpp:245] Train net output #34: loss/loss13 = 1.02023e-05 (* 0.0454545 = 4.63742e-07 loss)
I0404 15:42:30.358083 9252 solver.cpp:245] Train net output #35: loss/loss14 = 1.00981e-05 (* 0.0454545 = 4.59002e-07 loss)
I0404 15:42:30.358109 9252 solver.cpp:245] Train net output #36: loss/loss15 = 9.29516e-06 (* 0.0454545 = 4.22507e-07 loss)
I0404 15:42:30.358135 9252 solver.cpp:245] Train net output #37: loss/loss16 = 6.68711e-06 (* 0.0454545 = 3.03959e-07 loss)
I0404 15:42:30.358161 9252 solver.cpp:245] Train net output #38: loss/loss17 = 6.07612e-06 (* 0.0454545 = 2.76187e-07 loss)
I0404 15:42:30.358207 9252 solver.cpp:245] Train net output #39: loss/loss18 = 8.73254e-06 (* 0.0454545 = 3.96934e-07 loss)
I0404 15:42:30.358234 9252 solver.cpp:245] Train net output #40: loss/loss19 = 6.37789e-06 (* 0.0454545 = 2.89904e-07 loss)
I0404 15:42:30.358265 9252 solver.cpp:245] Train net output #41: loss/loss20 = 7.84581e-06 (* 0.0454545 = 3.56628e-07 loss)
I0404 15:42:30.358292 9252 solver.cpp:245] Train net output #42: loss/loss21 = 7.53661e-06 (* 0.0454545 = 3.42573e-07 loss)
I0404 15:42:30.358320 9252 solver.cpp:245] Train net output #43: loss/loss22 = 7.24602e-06 (* 0.0454545 = 3.29364e-07 loss)
I0404 15:42:30.358345 9252 solver.cpp:245] Train net output #44: total_accuracy = 0.03125
I0404 15:42:30.358371 9252 solver.cpp:245] Train net output #45: total_confidence = 0.00522662
I0404 15:42:30.358394 9252 sgd_solver.cpp:106] Iteration 73000, lr = 0.00927
I0404 15:43:41.031035 9252 solver.cpp:229] Iteration 73500, loss = 0.744239
I0404 15:43:41.031162 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.34375
I0404 15:43:41.031191 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.3125
I0404 15:43:41.031214 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.1875
I0404 15:43:41.031239 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.21875
I0404 15:43:41.031260 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.34375
I0404 15:43:41.031281 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375
I0404 15:43:41.031303 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625
I0404 15:43:41.031324 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.8125
I0404 15:43:41.031345 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625
I0404 15:43:41.031365 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.90625
I0404 15:43:41.031388 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 15:43:41.031409 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 15:43:41.031433 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 15:43:41.031456 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 15:43:41.031478 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 15:43:41.031499 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 15:43:41.031520 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 15:43:41.031541 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 15:43:41.031563 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 15:43:41.031584 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 15:43:41.031604 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 15:43:41.031625 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 15:43:41.031652 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.29818 (* 0.0454545 = 0.104463 loss)
I0404 15:43:41.031679 9252 solver.cpp:245] Train net output #23: loss/loss02 = 2.63404 (* 0.0454545 = 0.119729 loss)
I0404 15:43:41.031705 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.25439 (* 0.0454545 = 0.147927 loss)
I0404 15:43:41.031730 9252 solver.cpp:245] Train net output #25: loss/loss04 = 2.80265 (* 0.0454545 = 0.127393 loss)
I0404 15:43:41.031760 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.61482 (* 0.0454545 = 0.118856 loss)
I0404 15:43:41.031786 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.57445 (* 0.0454545 = 0.11702 loss)
I0404 15:43:41.031812 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.7973 (* 0.0454545 = 0.0816955 loss)
I0404 15:43:41.031837 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.913218 (* 0.0454545 = 0.0415099 loss)
I0404 15:43:41.031862 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.644776 (* 0.0454545 = 0.029308 loss)
I0404 15:43:41.031888 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.730851 (* 0.0454545 = 0.0332205 loss)
I0404 15:43:41.031915 9252 solver.cpp:245] Train net output #32: loss/loss11 = 1.88395e-05 (* 0.0454545 = 8.56343e-07 loss)
I0404 15:43:41.031941 9252 solver.cpp:245] Train net output #33: loss/loss12 = 1.6362e-05 (* 0.0454545 = 7.43728e-07 loss)
I0404 15:43:41.031967 9252 solver.cpp:245] Train net output #34: loss/loss13 = 1.91153e-05 (* 0.0454545 = 8.68879e-07 loss)
I0404 15:43:41.031994 9252 solver.cpp:245] Train net output #35: loss/loss14 = 1.86162e-05 (* 0.0454545 = 8.46189e-07 loss)
I0404 15:43:41.032021 9252 solver.cpp:245] Train net output #36: loss/loss15 = 1.66787e-05 (* 0.0454545 = 7.58122e-07 loss)
I0404 15:43:41.032047 9252 solver.cpp:245] Train net output #37: loss/loss16 = 1.98605e-05 (* 0.0454545 = 9.02749e-07 loss)
I0404 15:43:41.032073 9252 solver.cpp:245] Train net output #38: loss/loss17 = 1.69694e-05 (* 0.0454545 = 7.71336e-07 loss)
I0404 15:43:41.032121 9252 solver.cpp:245] Train net output #39: loss/loss18 = 1.65446e-05 (* 0.0454545 = 7.52026e-07 loss)
I0404 15:43:41.032151 9252 solver.cpp:245] Train net output #40: loss/loss19 = 1.71966e-05 (* 0.0454545 = 7.81664e-07 loss)
I0404 15:43:41.032183 9252 solver.cpp:245] Train net output #41: loss/loss20 = 1.63471e-05 (* 0.0454545 = 7.43052e-07 loss)
I0404 15:43:41.032213 9252 solver.cpp:245] Train net output #42: loss/loss21 = 1.9637e-05 (* 0.0454545 = 8.9259e-07 loss)
I0404 15:43:41.032241 9252 solver.cpp:245] Train net output #43: loss/loss22 = 1.78933e-05 (* 0.0454545 = 8.13331e-07 loss)
I0404 15:43:41.032264 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 15:43:41.032285 9252 solver.cpp:245] Train net output #45: total_confidence = 0.0133566
I0404 15:43:41.032310 9252 sgd_solver.cpp:106] Iteration 73500, lr = 0.009265
I0404 15:44:51.793669 9252 solver.cpp:229] Iteration 74000, loss = 0.744752
I0404 15:44:51.793794 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.53125
I0404 15:44:51.793819 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125
I0404 15:44:51.793833 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.375
I0404 15:44:51.793853 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875
I0404 15:44:51.793869 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.40625
I0404 15:44:51.793880 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5
I0404 15:44:51.793895 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75
I0404 15:44:51.793915 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875
I0404 15:44:51.793928 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375
I0404 15:44:51.793941 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875
I0404 15:44:51.793956 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 15:44:51.793975 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 15:44:51.793988 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 15:44:51.794000 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 15:44:51.794013 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 15:44:51.794033 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 15:44:51.794046 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 15:44:51.794057 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 15:44:51.794070 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 15:44:51.794083 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 15:44:51.794101 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 15:44:51.794114 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 15:44:51.794131 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.01065 (* 0.0454545 = 0.0913931 loss)
I0404 15:44:51.794144 9252 solver.cpp:245] Train net output #23: loss/loss02 = 2.86 (* 0.0454545 = 0.13 loss)
I0404 15:44:51.794159 9252 solver.cpp:245] Train net output #24: loss/loss03 = 2.5363 (* 0.0454545 = 0.115287 loss)
I0404 15:44:51.794173 9252 solver.cpp:245] Train net output #25: loss/loss04 = 2.78733 (* 0.0454545 = 0.126697 loss)
I0404 15:44:51.794186 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.14344 (* 0.0454545 = 0.0974293 loss)
I0404 15:44:51.794200 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.01553 (* 0.0454545 = 0.0916151 loss)
I0404 15:44:51.794214 9252 solver.cpp:245] Train net output #28: loss/loss07 = 0.855404 (* 0.0454545 = 0.038882 loss)
I0404 15:44:51.794229 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.490002 (* 0.0454545 = 0.0222728 loss)
I0404 15:44:51.794242 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.294045 (* 0.0454545 = 0.0133657 loss)
I0404 15:44:51.794256 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.207746 (* 0.0454545 = 0.00944299 loss)
I0404 15:44:51.794271 9252 solver.cpp:245] Train net output #32: loss/loss11 = 7.17503e-06 (* 0.0454545 = 3.26138e-07 loss)
I0404 15:44:51.794286 9252 solver.cpp:245] Train net output #33: loss/loss12 = 6.87698e-06 (* 0.0454545 = 3.1259e-07 loss)
I0404 15:44:51.794299 9252 solver.cpp:245] Train net output #34: loss/loss13 = 7.1564e-06 (* 0.0454545 = 3.25291e-07 loss)
I0404 15:44:51.794313 9252 solver.cpp:245] Train net output #35: loss/loss14 = 7.41345e-06 (* 0.0454545 = 3.36975e-07 loss)
I0404 15:44:51.794327 9252 solver.cpp:245] Train net output #36: loss/loss15 = 7.26444e-06 (* 0.0454545 = 3.30202e-07 loss)
I0404 15:44:51.794342 9252 solver.cpp:245] Train net output #37: loss/loss16 = 7.93129e-06 (* 0.0454545 = 3.60513e-07 loss)
I0404 15:44:51.794355 9252 solver.cpp:245] Train net output #38: loss/loss17 = 6.49701e-06 (* 0.0454545 = 2.95318e-07 loss)
I0404 15:44:51.794385 9252 solver.cpp:245] Train net output #39: loss/loss18 = 7.41717e-06 (* 0.0454545 = 3.37144e-07 loss)
I0404 15:44:51.794401 9252 solver.cpp:245] Train net output #40: loss/loss19 = 6.63484e-06 (* 0.0454545 = 3.01584e-07 loss)
I0404 15:44:51.794414 9252 solver.cpp:245] Train net output #41: loss/loss20 = 7.1266e-06 (* 0.0454545 = 3.23936e-07 loss)
I0404 15:44:51.794428 9252 solver.cpp:245] Train net output #42: loss/loss21 = 6.80622e-06 (* 0.0454545 = 3.09374e-07 loss)
I0404 15:44:51.794442 9252 solver.cpp:245] Train net output #43: loss/loss22 = 7.54757e-06 (* 0.0454545 = 3.43072e-07 loss)
I0404 15:44:51.794455 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 15:44:51.794466 9252 solver.cpp:245] Train net output #45: total_confidence = 0.00684212
I0404 15:44:51.794479 9252 sgd_solver.cpp:106] Iteration 74000, lr = 0.00926
I0404 15:46:02.898759 9252 solver.cpp:229] Iteration 74500, loss = 0.735589
I0404 15:46:02.898999 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.375
I0404 15:46:02.899020 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.28125
I0404 15:46:02.899034 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.1875
I0404 15:46:02.899045 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875
I0404 15:46:02.899057 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125
I0404 15:46:02.899070 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375
I0404 15:46:02.899081 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.65625
I0404 15:46:02.899092 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375
I0404 15:46:02.899104 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625
I0404 15:46:02.899116 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.90625
I0404 15:46:02.899127 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 15:46:02.899139 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 15:46:02.899150 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 15:46:02.899163 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 15:46:02.899173 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 15:46:02.899185 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 15:46:02.899196 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 15:46:02.899209 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 15:46:02.899219 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 15:46:02.899230 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 15:46:02.899241 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 15:46:02.899253 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 15:46:02.899268 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.24556 (* 0.0454545 = 0.102071 loss)
I0404 15:46:02.899283 9252 solver.cpp:245] Train net output #23: loss/loss02 = 2.36286 (* 0.0454545 = 0.107403 loss)
I0404 15:46:02.899296 9252 solver.cpp:245] Train net output #24: loss/loss03 = 2.6973 (* 0.0454545 = 0.122605 loss)
I0404 15:46:02.899310 9252 solver.cpp:245] Train net output #25: loss/loss04 = 2.92439 (* 0.0454545 = 0.132927 loss)
I0404 15:46:02.899324 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.42874 (* 0.0454545 = 0.110397 loss)
I0404 15:46:02.899338 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.20629 (* 0.0454545 = 0.100286 loss)
I0404 15:46:02.899351 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.37159 (* 0.0454545 = 0.0623451 loss)
I0404 15:46:02.899364 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.840503 (* 0.0454545 = 0.0382047 loss)
I0404 15:46:02.899379 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.578202 (* 0.0454545 = 0.0262819 loss)
I0404 15:46:02.899391 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.654075 (* 0.0454545 = 0.0297307 loss)
I0404 15:46:02.899405 9252 solver.cpp:245] Train net output #32: loss/loss11 = 2.59967e-05 (* 0.0454545 = 1.18167e-06 loss)
I0404 15:46:02.899420 9252 solver.cpp:245] Train net output #33: loss/loss12 = 2.20679e-05 (* 0.0454545 = 1.00309e-06 loss)
I0404 15:46:02.899433 9252 solver.cpp:245] Train net output #34: loss/loss13 = 2.03208e-05 (* 0.0454545 = 9.23672e-07 loss)
I0404 15:46:02.899447 9252 solver.cpp:245] Train net output #35: loss/loss14 = 2.41302e-05 (* 0.0454545 = 1.09683e-06 loss)
I0404 15:46:02.899461 9252 solver.cpp:245] Train net output #36: loss/loss15 = 2.15928e-05 (* 0.0454545 = 9.8149e-07 loss)
I0404 15:46:02.899476 9252 solver.cpp:245] Train net output #37: loss/loss16 = 2.41564e-05 (* 0.0454545 = 1.09802e-06 loss)
I0404 15:46:02.899489 9252 solver.cpp:245] Train net output #38: loss/loss17 = 2.01456e-05 (* 0.0454545 = 9.15709e-07 loss)
I0404 15:46:02.899520 9252 solver.cpp:245] Train net output #39: loss/loss18 = 2.19058e-05 (* 0.0454545 = 9.95719e-07 loss)
I0404 15:46:02.899536 9252 solver.cpp:245] Train net output #40: loss/loss19 = 1.85119e-05 (* 0.0454545 = 8.41449e-07 loss)
I0404 15:46:02.899549 9252 solver.cpp:245] Train net output #41: loss/loss20 = 2.24927e-05 (* 0.0454545 = 1.0224e-06 loss)
I0404 15:46:02.899564 9252 solver.cpp:245] Train net output #42: loss/loss21 = 1.99557e-05 (* 0.0454545 = 9.07076e-07 loss)
I0404 15:46:02.899577 9252 solver.cpp:245] Train net output #43: loss/loss22 = 2.16172e-05 (* 0.0454545 = 9.82598e-07 loss)
I0404 15:46:02.899588 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 15:46:02.899600 9252 solver.cpp:245] Train net output #45: total_confidence = 0.00141448
I0404 15:46:02.899613 9252 sgd_solver.cpp:106] Iteration 74500, lr = 0.009255
I0404 15:47:13.940065 9252 solver.cpp:229] Iteration 75000, loss = 0.739173
I0404 15:47:13.940242 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.5
I0404 15:47:13.940263 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.3125
I0404 15:47:13.940275 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.21875
I0404 15:47:13.940287 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875
I0404 15:47:13.940299 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25
I0404 15:47:13.940310 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375
I0404 15:47:13.940322 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875
I0404 15:47:13.940335 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375
I0404 15:47:13.940346 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875
I0404 15:47:13.940357 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875
I0404 15:47:13.940369 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 15:47:13.940382 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 15:47:13.940393 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 15:47:13.940404 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 15:47:13.940415 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 15:47:13.940428 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 15:47:13.940439 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 15:47:13.940450 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 15:47:13.940462 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 15:47:13.940474 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 15:47:13.940485 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 15:47:13.940496 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 15:47:13.940511 9252 solver.cpp:245] Train net output #22: loss/loss01 = 1.84121 (* 0.0454545 = 0.0836915 loss)
I0404 15:47:13.940526 9252 solver.cpp:245] Train net output #23: loss/loss02 = 2.30078 (* 0.0454545 = 0.104581 loss)
I0404 15:47:13.940541 9252 solver.cpp:245] Train net output #24: loss/loss03 = 2.74257 (* 0.0454545 = 0.124662 loss)
I0404 15:47:13.940554 9252 solver.cpp:245] Train net output #25: loss/loss04 = 2.80131 (* 0.0454545 = 0.127332 loss)
I0404 15:47:13.940567 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.68069 (* 0.0454545 = 0.121849 loss)
I0404 15:47:13.940582 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.12938 (* 0.0454545 = 0.0967899 loss)
I0404 15:47:13.940595 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.22975 (* 0.0454545 = 0.0558977 loss)
I0404 15:47:13.940608 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.345634 (* 0.0454545 = 0.0157106 loss)
I0404 15:47:13.940623 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.121066 (* 0.0454545 = 0.005503 loss)
I0404 15:47:13.940636 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.134131 (* 0.0454545 = 0.00609686 loss)
I0404 15:47:13.940651 9252 solver.cpp:245] Train net output #32: loss/loss11 = 1.5591e-05 (* 0.0454545 = 7.08683e-07 loss)
I0404 15:47:13.940665 9252 solver.cpp:245] Train net output #33: loss/loss12 = 1.28751e-05 (* 0.0454545 = 5.85232e-07 loss)
I0404 15:47:13.940678 9252 solver.cpp:245] Train net output #34: loss/loss13 = 1.20107e-05 (* 0.0454545 = 5.4594e-07 loss)
I0404 15:47:13.940692 9252 solver.cpp:245] Train net output #35: loss/loss14 = 1.2972e-05 (* 0.0454545 = 5.89635e-07 loss)
I0404 15:47:13.940706 9252 solver.cpp:245] Train net output #36: loss/loss15 = 1.1925e-05 (* 0.0454545 = 5.42046e-07 loss)
I0404 15:47:13.940719 9252 solver.cpp:245] Train net output #37: loss/loss16 = 1.33221e-05 (* 0.0454545 = 6.05549e-07 loss)
I0404 15:47:13.940733 9252 solver.cpp:245] Train net output #38: loss/loss17 = 1.09452e-05 (* 0.0454545 = 4.9751e-07 loss)
I0404 15:47:13.940764 9252 solver.cpp:245] Train net output #39: loss/loss18 = 1.24987e-05 (* 0.0454545 = 5.68123e-07 loss)
I0404 15:47:13.940780 9252 solver.cpp:245] Train net output #40: loss/loss19 = 1.08968e-05 (* 0.0454545 = 4.95308e-07 loss)
I0404 15:47:13.940794 9252 solver.cpp:245] Train net output #41: loss/loss20 = 1.06658e-05 (* 0.0454545 = 4.84808e-07 loss)
I0404 15:47:13.940807 9252 solver.cpp:245] Train net output #42: loss/loss21 = 1.09378e-05 (* 0.0454545 = 4.97171e-07 loss)
I0404 15:47:13.940821 9252 solver.cpp:245] Train net output #43: loss/loss22 = 1.11203e-05 (* 0.0454545 = 5.05469e-07 loss)
I0404 15:47:13.940834 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 15:47:13.940845 9252 solver.cpp:245] Train net output #45: total_confidence = 0.00440852
I0404 15:47:13.940857 9252 sgd_solver.cpp:106] Iteration 75000, lr = 0.00925
I0404 15:48:25.054268 9252 solver.cpp:229] Iteration 75500, loss = 0.732183
I0404 15:48:25.054386 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.46875
I0404 15:48:25.054405 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.3125
I0404 15:48:25.054425 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.375
I0404 15:48:25.054437 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.3125
I0404 15:48:25.054450 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125
I0404 15:48:25.054461 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5625
I0404 15:48:25.054481 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625
I0404 15:48:25.054493 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375
I0404 15:48:25.054504 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 1
I0404 15:48:25.054517 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 15:48:25.054527 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 15:48:25.054539 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 15:48:25.054550 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 15:48:25.054561 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 15:48:25.054574 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 15:48:25.054584 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 15:48:25.054595 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 15:48:25.054607 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 15:48:25.054618 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 15:48:25.054630 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 15:48:25.054641 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 15:48:25.054652 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 15:48:25.054668 9252 solver.cpp:245] Train net output #22: loss/loss01 = 1.82985 (* 0.0454545 = 0.0831749 loss)
I0404 15:48:25.054682 9252 solver.cpp:245] Train net output #23: loss/loss02 = 2.8256 (* 0.0454545 = 0.128436 loss)
I0404 15:48:25.054697 9252 solver.cpp:245] Train net output #24: loss/loss03 = 2.65618 (* 0.0454545 = 0.120735 loss)
I0404 15:48:25.054710 9252 solver.cpp:245] Train net output #25: loss/loss04 = 2.64803 (* 0.0454545 = 0.120365 loss)
I0404 15:48:25.054723 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.30783 (* 0.0454545 = 0.104901 loss)
I0404 15:48:25.054738 9252 solver.cpp:245] Train net output #27: loss/loss06 = 1.76365 (* 0.0454545 = 0.0801661 loss)
I0404 15:48:25.054754 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.46804 (* 0.0454545 = 0.0667292 loss)
I0404 15:48:25.054769 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.182724 (* 0.0454545 = 0.00830565 loss)
I0404 15:48:25.054782 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.0341097 (* 0.0454545 = 0.00155044 loss)
I0404 15:48:25.054801 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.00981973 (* 0.0454545 = 0.000446352 loss)
I0404 15:48:25.054816 9252 solver.cpp:245] Train net output #32: loss/loss11 = 5.93818e-06 (* 0.0454545 = 2.69917e-07 loss)
I0404 15:48:25.054829 9252 solver.cpp:245] Train net output #33: loss/loss12 = 5.77426e-06 (* 0.0454545 = 2.62466e-07 loss)
I0404 15:48:25.054843 9252 solver.cpp:245] Train net output #34: loss/loss13 = 6.27719e-06 (* 0.0454545 = 2.85327e-07 loss)
I0404 15:48:25.054857 9252 solver.cpp:245] Train net output #35: loss/loss14 = 6.32562e-06 (* 0.0454545 = 2.87528e-07 loss)
I0404 15:48:25.054870 9252 solver.cpp:245] Train net output #36: loss/loss15 = 5.85994e-06 (* 0.0454545 = 2.66361e-07 loss)
I0404 15:48:25.054884 9252 solver.cpp:245] Train net output #37: loss/loss16 = 6.98874e-06 (* 0.0454545 = 3.1767e-07 loss)
I0404 15:48:25.054898 9252 solver.cpp:245] Train net output #38: loss/loss17 = 5.05526e-06 (* 0.0454545 = 2.29785e-07 loss)
I0404 15:48:25.054937 9252 solver.cpp:245] Train net output #39: loss/loss18 = 5.49113e-06 (* 0.0454545 = 2.49597e-07 loss)
I0404 15:48:25.054955 9252 solver.cpp:245] Train net output #40: loss/loss19 = 5.24898e-06 (* 0.0454545 = 2.3859e-07 loss)
I0404 15:48:25.054970 9252 solver.cpp:245] Train net output #41: loss/loss20 = 5.60662e-06 (* 0.0454545 = 2.54846e-07 loss)
I0404 15:48:25.054983 9252 solver.cpp:245] Train net output #42: loss/loss21 = 6.12817e-06 (* 0.0454545 = 2.78553e-07 loss)
I0404 15:48:25.054997 9252 solver.cpp:245] Train net output #43: loss/loss22 = 5.31231e-06 (* 0.0454545 = 2.41469e-07 loss)
I0404 15:48:25.055008 9252 solver.cpp:245] Train net output #44: total_accuracy = 0.03125
I0404 15:48:25.055021 9252 solver.cpp:245] Train net output #45: total_confidence = 0.00331744
I0404 15:48:25.055033 9252 sgd_solver.cpp:106] Iteration 75500, lr = 0.009245
I0404 15:49:35.955621 9252 solver.cpp:229] Iteration 76000, loss = 0.731698
I0404 15:49:35.955729 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.34375
I0404 15:49:35.955747 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.21875
I0404 15:49:35.955760 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.21875
I0404 15:49:35.955771 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.28125
I0404 15:49:35.955783 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.40625
I0404 15:49:35.955796 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5625
I0404 15:49:35.955807 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125
I0404 15:49:35.955818 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625
I0404 15:49:35.955831 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375
I0404 15:49:35.955842 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 15:49:35.955854 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 15:49:35.955867 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 15:49:35.955878 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 15:49:35.955889 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 15:49:35.955904 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 15:49:35.955915 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 15:49:35.955927 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 15:49:35.955938 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 15:49:35.955950 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 15:49:35.955961 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 15:49:35.955973 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 15:49:35.955986 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 15:49:35.956001 9252 solver.cpp:245] Train net output #22: loss/loss01 = 1.94666 (* 0.0454545 = 0.0884846 loss)
I0404 15:49:35.956014 9252 solver.cpp:245] Train net output #23: loss/loss02 = 2.69389 (* 0.0454545 = 0.122449 loss)
I0404 15:49:35.956028 9252 solver.cpp:245] Train net output #24: loss/loss03 = 2.71921 (* 0.0454545 = 0.1236 loss)
I0404 15:49:35.956043 9252 solver.cpp:245] Train net output #25: loss/loss04 = 2.5485 (* 0.0454545 = 0.115841 loss)
I0404 15:49:35.956056 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.23773 (* 0.0454545 = 0.101715 loss)
I0404 15:49:35.956069 9252 solver.cpp:245] Train net output #27: loss/loss06 = 1.64016 (* 0.0454545 = 0.0745526 loss)
I0404 15:49:35.956084 9252 solver.cpp:245] Train net output #28: loss/loss07 = 0.849168 (* 0.0454545 = 0.0385986 loss)
I0404 15:49:35.956097 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.370615 (* 0.0454545 = 0.0168461 loss)
I0404 15:49:35.956111 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.262926 (* 0.0454545 = 0.0119512 loss)
I0404 15:49:35.956125 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.0125578 (* 0.0454545 = 0.000570808 loss)
I0404 15:49:35.956140 9252 solver.cpp:245] Train net output #32: loss/loss11 = 8.63535e-06 (* 0.0454545 = 3.92516e-07 loss)
I0404 15:49:35.956156 9252 solver.cpp:245] Train net output #33: loss/loss12 = 7.74871e-06 (* 0.0454545 = 3.52214e-07 loss)
I0404 15:49:35.956171 9252 solver.cpp:245] Train net output #34: loss/loss13 = 8.46771e-06 (* 0.0454545 = 3.84896e-07 loss)
I0404 15:49:35.956185 9252 solver.cpp:245] Train net output #35: loss/loss14 = 8.24046e-06 (* 0.0454545 = 3.74566e-07 loss)
I0404 15:49:35.956199 9252 solver.cpp:245] Train net output #36: loss/loss15 = 9.17552e-06 (* 0.0454545 = 4.17069e-07 loss)
I0404 15:49:35.956213 9252 solver.cpp:245] Train net output #37: loss/loss16 = 8.02811e-06 (* 0.0454545 = 3.64914e-07 loss)
I0404 15:49:35.956226 9252 solver.cpp:245] Train net output #38: loss/loss17 = 8.27027e-06 (* 0.0454545 = 3.75921e-07 loss)
I0404 15:49:35.956257 9252 solver.cpp:245] Train net output #39: loss/loss18 = 8.01693e-06 (* 0.0454545 = 3.64406e-07 loss)
I0404 15:49:35.956274 9252 solver.cpp:245] Train net output #40: loss/loss19 = 7.65185e-06 (* 0.0454545 = 3.47811e-07 loss)
I0404 15:49:35.956286 9252 solver.cpp:245] Train net output #41: loss/loss20 = 8.35968e-06 (* 0.0454545 = 3.79986e-07 loss)
I0404 15:49:35.956301 9252 solver.cpp:245] Train net output #42: loss/loss21 = 7.27187e-06 (* 0.0454545 = 3.30539e-07 loss)
I0404 15:49:35.956315 9252 solver.cpp:245] Train net output #43: loss/loss22 = 8.27771e-06 (* 0.0454545 = 3.7626e-07 loss)
I0404 15:49:35.956326 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 15:49:35.956338 9252 solver.cpp:245] Train net output #45: total_confidence = 0.00472267
I0404 15:49:35.956352 9252 sgd_solver.cpp:106] Iteration 76000, lr = 0.00924
I0404 15:50:47.155887 9252 solver.cpp:229] Iteration 76500, loss = 0.723767
I0404 15:50:47.156028 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.40625
I0404 15:50:47.156047 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.5
I0404 15:50:47.156059 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.15625
I0404 15:50:47.156072 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125
I0404 15:50:47.156083 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.0625
I0404 15:50:47.156095 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375
I0404 15:50:47.156107 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875
I0404 15:50:47.156119 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625
I0404 15:50:47.156131 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875
I0404 15:50:47.156142 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 15:50:47.156154 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 15:50:47.156167 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 15:50:47.156177 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 15:50:47.156188 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 15:50:47.156200 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 15:50:47.156211 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 15:50:47.156224 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 15:50:47.156234 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 15:50:47.156246 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 15:50:47.156257 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 15:50:47.156270 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 15:50:47.156280 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 15:50:47.156296 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.328 (* 0.0454545 = 0.105818 loss)
I0404 15:50:47.156311 9252 solver.cpp:245] Train net output #23: loss/loss02 = 2.09872 (* 0.0454545 = 0.0953965 loss)
I0404 15:50:47.156324 9252 solver.cpp:245] Train net output #24: loss/loss03 = 3.05253 (* 0.0454545 = 0.138751 loss)
I0404 15:50:47.156337 9252 solver.cpp:245] Train net output #25: loss/loss04 = 2.96241 (* 0.0454545 = 0.134655 loss)
I0404 15:50:47.156352 9252 solver.cpp:245] Train net output #26: loss/loss05 = 3.0786 (* 0.0454545 = 0.139937 loss)
I0404 15:50:47.156364 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.79138 (* 0.0454545 = 0.126881 loss)
I0404 15:50:47.156378 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.26053 (* 0.0454545 = 0.0572968 loss)
I0404 15:50:47.156393 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.39885 (* 0.0454545 = 0.0181295 loss)
I0404 15:50:47.156407 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.162596 (* 0.0454545 = 0.00739072 loss)
I0404 15:50:47.156421 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.0185252 (* 0.0454545 = 0.000842055 loss)
I0404 15:50:47.156435 9252 solver.cpp:245] Train net output #32: loss/loss11 = 8.77699e-06 (* 0.0454545 = 3.98954e-07 loss)
I0404 15:50:47.156450 9252 solver.cpp:245] Train net output #33: loss/loss12 = 7.71896e-06 (* 0.0454545 = 3.50862e-07 loss)
I0404 15:50:47.156462 9252 solver.cpp:245] Train net output #34: loss/loss13 = 8.88131e-06 (* 0.0454545 = 4.03696e-07 loss)
I0404 15:50:47.156476 9252 solver.cpp:245] Train net output #35: loss/loss14 = 7.4768e-06 (* 0.0454545 = 3.39855e-07 loss)
I0404 15:50:47.156491 9252 solver.cpp:245] Train net output #36: loss/loss15 = 9.12351e-06 (* 0.0454545 = 4.14705e-07 loss)
I0404 15:50:47.156504 9252 solver.cpp:245] Train net output #37: loss/loss16 = 6.88074e-06 (* 0.0454545 = 3.12761e-07 loss)
I0404 15:50:47.156517 9252 solver.cpp:245] Train net output #38: loss/loss17 = 6.96642e-06 (* 0.0454545 = 3.16655e-07 loss)
I0404 15:50:47.156548 9252 solver.cpp:245] Train net output #39: loss/loss18 = 7.68172e-06 (* 0.0454545 = 3.49169e-07 loss)
I0404 15:50:47.156563 9252 solver.cpp:245] Train net output #40: loss/loss19 = 5.90095e-06 (* 0.0454545 = 2.68225e-07 loss)
I0404 15:50:47.156577 9252 solver.cpp:245] Train net output #41: loss/loss20 = 7.07075e-06 (* 0.0454545 = 3.21398e-07 loss)
I0404 15:50:47.156591 9252 solver.cpp:245] Train net output #42: loss/loss21 = 6.48957e-06 (* 0.0454545 = 2.94981e-07 loss)
I0404 15:50:47.156605 9252 solver.cpp:245] Train net output #43: loss/loss22 = 6.41133e-06 (* 0.0454545 = 2.91424e-07 loss)
I0404 15:50:47.156617 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 15:50:47.156628 9252 solver.cpp:245] Train net output #45: total_confidence = 0.00183599
I0404 15:50:47.156642 9252 sgd_solver.cpp:106] Iteration 76500, lr = 0.009235
I0404 15:51:58.604284 9252 solver.cpp:229] Iteration 77000, loss = 0.725442
I0404 15:51:58.604461 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.625
I0404 15:51:58.604482 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.3125
I0404 15:51:58.604496 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125
I0404 15:51:58.604508 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875
I0404 15:51:58.604521 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.34375
I0404 15:51:58.604532 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375
I0404 15:51:58.604543 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.90625
I0404 15:51:58.604557 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.96875
I0404 15:51:58.604568 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875
I0404 15:51:58.604579 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 15:51:58.604591 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 15:51:58.604603 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 15:51:58.604614 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 15:51:58.604625 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 15:51:58.604636 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 15:51:58.604648 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 15:51:58.604660 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 15:51:58.604671 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 15:51:58.604682 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 15:51:58.604693 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 15:51:58.604706 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 15:51:58.604717 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 15:51:58.604732 9252 solver.cpp:245] Train net output #22: loss/loss01 = 1.62439 (* 0.0454545 = 0.0738358 loss)
I0404 15:51:58.604748 9252 solver.cpp:245] Train net output #23: loss/loss02 = 2.34193 (* 0.0454545 = 0.106451 loss)
I0404 15:51:58.604763 9252 solver.cpp:245] Train net output #24: loss/loss03 = 2.90231 (* 0.0454545 = 0.131923 loss)
I0404 15:51:58.604778 9252 solver.cpp:245] Train net output #25: loss/loss04 = 2.7131 (* 0.0454545 = 0.123323 loss)
I0404 15:51:58.604791 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.50137 (* 0.0454545 = 0.113699 loss)
I0404 15:51:58.604804 9252 solver.cpp:245] Train net output #27: loss/loss06 = 1.9106 (* 0.0454545 = 0.0868455 loss)
I0404 15:51:58.604818 9252 solver.cpp:245] Train net output #28: loss/loss07 = 0.4582 (* 0.0454545 = 0.0208273 loss)
I0404 15:51:58.604832 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.124123 (* 0.0454545 = 0.00564196 loss)
I0404 15:51:58.604846 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.0759448 (* 0.0454545 = 0.00345204 loss)
I0404 15:51:58.604861 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.00886082 (* 0.0454545 = 0.000402765 loss)
I0404 15:51:58.604874 9252 solver.cpp:245] Train net output #32: loss/loss11 = 2.40223e-05 (* 0.0454545 = 1.09192e-06 loss)
I0404 15:51:58.604888 9252 solver.cpp:245] Train net output #33: loss/loss12 = 3.18677e-05 (* 0.0454545 = 1.44853e-06 loss)
I0404 15:51:58.604902 9252 solver.cpp:245] Train net output #34: loss/loss13 = 2.89816e-05 (* 0.0454545 = 1.31735e-06 loss)
I0404 15:51:58.604915 9252 solver.cpp:245] Train net output #35: loss/loss14 = 2.72573e-05 (* 0.0454545 = 1.23897e-06 loss)
I0404 15:51:58.604929 9252 solver.cpp:245] Train net output #36: loss/loss15 = 2.42407e-05 (* 0.0454545 = 1.10185e-06 loss)
I0404 15:51:58.604943 9252 solver.cpp:245] Train net output #37: loss/loss16 = 2.30981e-05 (* 0.0454545 = 1.04991e-06 loss)
I0404 15:51:58.604956 9252 solver.cpp:245] Train net output #38: loss/loss17 = 2.47106e-05 (* 0.0454545 = 1.12321e-06 loss)
I0404 15:51:58.604984 9252 solver.cpp:245] Train net output #39: loss/loss18 = 2.37453e-05 (* 0.0454545 = 1.07933e-06 loss)
I0404 15:51:58.605000 9252 solver.cpp:245] Train net output #40: loss/loss19 = 1.97726e-05 (* 0.0454545 = 8.98756e-07 loss)
I0404 15:51:58.605015 9252 solver.cpp:245] Train net output #41: loss/loss20 = 2.68439e-05 (* 0.0454545 = 1.22018e-06 loss)
I0404 15:51:58.605027 9252 solver.cpp:245] Train net output #42: loss/loss21 = 1.98619e-05 (* 0.0454545 = 9.02812e-07 loss)
I0404 15:51:58.605041 9252 solver.cpp:245] Train net output #43: loss/loss22 = 2.69878e-05 (* 0.0454545 = 1.22672e-06 loss)
I0404 15:51:58.605053 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 15:51:58.605064 9252 solver.cpp:245] Train net output #45: total_confidence = 0.00246807
I0404 15:51:58.605078 9252 sgd_solver.cpp:106] Iteration 77000, lr = 0.00923
I0404 15:53:09.993226 9252 solver.cpp:229] Iteration 77500, loss = 0.717383
I0404 15:53:09.993381 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.65625
I0404 15:53:09.993403 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.25
I0404 15:53:09.993415 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.15625
I0404 15:53:09.993427 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.28125
I0404 15:53:09.993439 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.34375
I0404 15:53:09.993451 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.59375
I0404 15:53:09.993463 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.84375
I0404 15:53:09.993475 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.96875
I0404 15:53:09.993486 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875
I0404 15:53:09.993499 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 15:53:09.993525 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 15:53:09.993536 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 15:53:09.993548 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 15:53:09.993561 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 15:53:09.993571 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 15:53:09.993582 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 15:53:09.993594 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 15:53:09.993605 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 15:53:09.993616 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 15:53:09.993628 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 15:53:09.993639 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 15:53:09.993651 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 15:53:09.993675 9252 solver.cpp:245] Train net output #22: loss/loss01 = 1.44488 (* 0.0454545 = 0.0656762 loss)
I0404 15:53:09.993690 9252 solver.cpp:245] Train net output #23: loss/loss02 = 2.35093 (* 0.0454545 = 0.10686 loss)
I0404 15:53:09.993705 9252 solver.cpp:245] Train net output #24: loss/loss03 = 2.83046 (* 0.0454545 = 0.128657 loss)
I0404 15:53:09.993729 9252 solver.cpp:245] Train net output #25: loss/loss04 = 2.55173 (* 0.0454545 = 0.115988 loss)
I0404 15:53:09.993748 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.24105 (* 0.0454545 = 0.101866 loss)
I0404 15:53:09.993763 9252 solver.cpp:245] Train net output #27: loss/loss06 = 1.56946 (* 0.0454545 = 0.0713393 loss)
I0404 15:53:09.993777 9252 solver.cpp:245] Train net output #28: loss/loss07 = 0.698066 (* 0.0454545 = 0.0317303 loss)
I0404 15:53:09.993791 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.167628 (* 0.0454545 = 0.00761946 loss)
I0404 15:53:09.993805 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.166084 (* 0.0454545 = 0.00754928 loss)
I0404 15:53:09.993820 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.000507881 (* 0.0454545 = 2.30855e-05 loss)
I0404 15:53:09.993834 9252 solver.cpp:245] Train net output #32: loss/loss11 = 4.22829e-06 (* 0.0454545 = 1.92195e-07 loss)
I0404 15:53:09.993849 9252 solver.cpp:245] Train net output #33: loss/loss12 = 3.88927e-06 (* 0.0454545 = 1.76785e-07 loss)
I0404 15:53:09.993861 9252 solver.cpp:245] Train net output #34: loss/loss13 = 3.61731e-06 (* 0.0454545 = 1.64423e-07 loss)
I0404 15:53:09.993875 9252 solver.cpp:245] Train net output #35: loss/loss14 = 3.79614e-06 (* 0.0454545 = 1.72552e-07 loss)
I0404 15:53:09.993890 9252 solver.cpp:245] Train net output #36: loss/loss15 = 4.07183e-06 (* 0.0454545 = 1.85083e-07 loss)
I0404 15:53:09.993903 9252 solver.cpp:245] Train net output #37: loss/loss16 = 3.94143e-06 (* 0.0454545 = 1.79156e-07 loss)
I0404 15:53:09.993916 9252 solver.cpp:245] Train net output #38: loss/loss17 = 2.88714e-06 (* 0.0454545 = 1.31234e-07 loss)
I0404 15:53:09.993949 9252 solver.cpp:245] Train net output #39: loss/loss18 = 3.69183e-06 (* 0.0454545 = 1.6781e-07 loss)
I0404 15:53:09.993964 9252 solver.cpp:245] Train net output #40: loss/loss19 = 3.66947e-06 (* 0.0454545 = 1.66794e-07 loss)
I0404 15:53:09.993978 9252 solver.cpp:245] Train net output #41: loss/loss20 = 4.60458e-06 (* 0.0454545 = 2.09299e-07 loss)
I0404 15:53:09.993991 9252 solver.cpp:245] Train net output #42: loss/loss21 = 3.85203e-06 (* 0.0454545 = 1.75092e-07 loss)
I0404 15:53:09.994005 9252 solver.cpp:245] Train net output #43: loss/loss22 = 3.73281e-06 (* 0.0454545 = 1.69673e-07 loss)
I0404 15:53:09.994017 9252 solver.cpp:245] Train net output #44: total_accuracy = 0.03125
I0404 15:53:09.994030 9252 solver.cpp:245] Train net output #45: total_confidence = 0.00380333
I0404 15:53:09.994043 9252 sgd_solver.cpp:106] Iteration 77500, lr = 0.009225
I0404 15:54:21.686728 9252 solver.cpp:229] Iteration 78000, loss = 0.711473
I0404 15:54:21.686857 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.5625
I0404 15:54:21.686887 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.25
I0404 15:54:21.686913 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.28125
I0404 15:54:21.686934 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875
I0404 15:54:21.686955 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.46875
I0404 15:54:21.686977 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5625
I0404 15:54:21.687000 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.90625
I0404 15:54:21.687023 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.96875
I0404 15:54:21.687048 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 1
I0404 15:54:21.687072 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 15:54:21.687093 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 15:54:21.687115 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 15:54:21.687136 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 15:54:21.687157 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 15:54:21.687180 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 15:54:21.687199 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 15:54:21.687221 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 15:54:21.687242 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 15:54:21.687263 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 15:54:21.687283 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 15:54:21.687304 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 15:54:21.687326 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 15:54:21.687352 9252 solver.cpp:245] Train net output #22: loss/loss01 = 1.48179 (* 0.0454545 = 0.0673539 loss)
I0404 15:54:21.687379 9252 solver.cpp:245] Train net output #23: loss/loss02 = 2.53774 (* 0.0454545 = 0.115352 loss)
I0404 15:54:21.687405 9252 solver.cpp:245] Train net output #24: loss/loss03 = 2.86927 (* 0.0454545 = 0.130422 loss)
I0404 15:54:21.687430 9252 solver.cpp:245] Train net output #25: loss/loss04 = 2.62466 (* 0.0454545 = 0.119303 loss)
I0404 15:54:21.687456 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.13849 (* 0.0454545 = 0.097204 loss)
I0404 15:54:21.687484 9252 solver.cpp:245] Train net output #27: loss/loss06 = 1.84249 (* 0.0454545 = 0.0837495 loss)
I0404 15:54:21.687513 9252 solver.cpp:245] Train net output #28: loss/loss07 = 0.477367 (* 0.0454545 = 0.0216985 loss)
I0404 15:54:21.687539 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.255138 (* 0.0454545 = 0.0115972 loss)
I0404 15:54:21.687566 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.0271553 (* 0.0454545 = 0.00123433 loss)
I0404 15:54:21.687592 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.00980053 (* 0.0454545 = 0.000445479 loss)
I0404 15:54:21.687618 9252 solver.cpp:245] Train net output #32: loss/loss11 = 4.66413e-06 (* 0.0454545 = 2.12006e-07 loss)
I0404 15:54:21.687645 9252 solver.cpp:245] Train net output #33: loss/loss12 = 3.80357e-06 (* 0.0454545 = 1.72889e-07 loss)
I0404 15:54:21.687671 9252 solver.cpp:245] Train net output #34: loss/loss13 = 4.35867e-06 (* 0.0454545 = 1.98121e-07 loss)
I0404 15:54:21.687698 9252 solver.cpp:245] Train net output #35: loss/loss14 = 4.52629e-06 (* 0.0454545 = 2.0574e-07 loss)
I0404 15:54:21.687724 9252 solver.cpp:245] Train net output #36: loss/loss15 = 3.6322e-06 (* 0.0454545 = 1.651e-07 loss)
I0404 15:54:21.687757 9252 solver.cpp:245] Train net output #37: loss/loss16 = 3.79239e-06 (* 0.0454545 = 1.72381e-07 loss)
I0404 15:54:21.687783 9252 solver.cpp:245] Train net output #38: loss/loss17 = 4.1426e-06 (* 0.0454545 = 1.883e-07 loss)
I0404 15:54:21.687834 9252 solver.cpp:245] Train net output #39: loss/loss18 = 4.17983e-06 (* 0.0454545 = 1.89992e-07 loss)
I0404 15:54:21.687861 9252 solver.cpp:245] Train net output #40: loss/loss19 = 3.75886e-06 (* 0.0454545 = 1.70857e-07 loss)
I0404 15:54:21.687893 9252 solver.cpp:245] Train net output #41: loss/loss20 = 4.06808e-06 (* 0.0454545 = 1.84913e-07 loss)
I0404 15:54:21.687922 9252 solver.cpp:245] Train net output #42: loss/loss21 = 4.16494e-06 (* 0.0454545 = 1.89316e-07 loss)
I0404 15:54:21.687947 9252 solver.cpp:245] Train net output #43: loss/loss22 = 3.89298e-06 (* 0.0454545 = 1.76954e-07 loss)
I0404 15:54:21.687969 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 15:54:21.687990 9252 solver.cpp:245] Train net output #45: total_confidence = 0.00403256
I0404 15:54:21.688014 9252 sgd_solver.cpp:106] Iteration 78000, lr = 0.00922
I0404 15:55:32.321259 9252 solver.cpp:229] Iteration 78500, loss = 0.711916
I0404 15:55:32.321375 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.4375
I0404 15:55:32.321408 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.3125
I0404 15:55:32.321456 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.21875
I0404 15:55:32.321481 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125
I0404 15:55:32.321506 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.34375
I0404 15:55:32.321532 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.53125
I0404 15:55:32.321554 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875
I0404 15:55:32.321578 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625
I0404 15:55:32.321599 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875
I0404 15:55:32.321621 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 15:55:32.321643 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 15:55:32.321665 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 15:55:32.321686 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 15:55:32.321708 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 15:55:32.321729 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 15:55:32.321755 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 15:55:32.321777 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 15:55:32.321800 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 15:55:32.321825 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 15:55:32.321847 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 15:55:32.321869 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 15:55:32.321892 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 15:55:32.321918 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.0263 (* 0.0454545 = 0.0921044 loss)
I0404 15:55:32.321945 9252 solver.cpp:245] Train net output #23: loss/loss02 = 2.36287 (* 0.0454545 = 0.107403 loss)
I0404 15:55:32.321971 9252 solver.cpp:245] Train net output #24: loss/loss03 = 2.92176 (* 0.0454545 = 0.132807 loss)
I0404 15:55:32.321997 9252 solver.cpp:245] Train net output #25: loss/loss04 = 2.92627 (* 0.0454545 = 0.133012 loss)
I0404 15:55:32.322024 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.43881 (* 0.0454545 = 0.110855 loss)
I0404 15:55:32.322049 9252 solver.cpp:245] Train net output #27: loss/loss06 = 1.95135 (* 0.0454545 = 0.0886977 loss)
I0404 15:55:32.322077 9252 solver.cpp:245] Train net output #28: loss/loss07 = 0.983446 (* 0.0454545 = 0.0447021 loss)
I0404 15:55:32.322103 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.319936 (* 0.0454545 = 0.0145425 loss)
I0404 15:55:32.322129 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.123417 (* 0.0454545 = 0.00560984 loss)
I0404 15:55:32.322156 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.00309437 (* 0.0454545 = 0.000140653 loss)
I0404 15:55:32.322182 9252 solver.cpp:245] Train net output #32: loss/loss11 = 1.36911e-05 (* 0.0454545 = 6.22322e-07 loss)
I0404 15:55:32.322209 9252 solver.cpp:245] Train net output #33: loss/loss12 = 1.32739e-05 (* 0.0454545 = 6.0336e-07 loss)
I0404 15:55:32.322235 9252 solver.cpp:245] Train net output #34: loss/loss13 = 1.07217e-05 (* 0.0454545 = 4.87352e-07 loss)
I0404 15:55:32.322263 9252 solver.cpp:245] Train net output #35: loss/loss14 = 1.13141e-05 (* 0.0454545 = 5.14279e-07 loss)
I0404 15:55:32.322288 9252 solver.cpp:245] Train net output #36: loss/loss15 = 1.18953e-05 (* 0.0454545 = 5.40697e-07 loss)
I0404 15:55:32.322314 9252 solver.cpp:245] Train net output #37: loss/loss16 = 1.05728e-05 (* 0.0454545 = 4.80581e-07 loss)
I0404 15:55:32.322341 9252 solver.cpp:245] Train net output #38: loss/loss17 = 1.13031e-05 (* 0.0454545 = 5.13776e-07 loss)
I0404 15:55:32.322394 9252 solver.cpp:245] Train net output #39: loss/loss18 = 1.20742e-05 (* 0.0454545 = 5.48827e-07 loss)
I0404 15:55:32.322424 9252 solver.cpp:245] Train net output #40: loss/loss19 = 1.1806e-05 (* 0.0454545 = 5.36635e-07 loss)
I0404 15:55:32.322453 9252 solver.cpp:245] Train net output #41: loss/loss20 = 1.16644e-05 (* 0.0454545 = 5.302e-07 loss)
I0404 15:55:32.322479 9252 solver.cpp:245] Train net output #42: loss/loss21 = 1.12472e-05 (* 0.0454545 = 5.11236e-07 loss)
I0404 15:55:32.322505 9252 solver.cpp:245] Train net output #43: loss/loss22 = 1.26164e-05 (* 0.0454545 = 5.73475e-07 loss)
I0404 15:55:32.322528 9252 solver.cpp:245] Train net output #44: total_accuracy = 0.03125
I0404 15:55:32.322551 9252 solver.cpp:245] Train net output #45: total_confidence = 0.00659282
I0404 15:55:32.322574 9252 sgd_solver.cpp:106] Iteration 78500, lr = 0.009215
I0404 15:56:43.103029 9252 solver.cpp:229] Iteration 79000, loss = 0.709802
I0404 15:56:43.103345 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.71875
I0404 15:56:43.103366 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.46875
I0404 15:56:43.103379 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.15625
I0404 15:56:43.103392 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.28125
I0404 15:56:43.103404 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.375
I0404 15:56:43.103415 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.53125
I0404 15:56:43.103427 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75
I0404 15:56:43.103440 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 1
I0404 15:56:43.103451 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875
I0404 15:56:43.103463 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 15:56:43.103474 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 15:56:43.103487 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 15:56:43.103497 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 15:56:43.103508 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 15:56:43.103519 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 15:56:43.103530 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 15:56:43.103543 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 15:56:43.103554 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 15:56:43.103564 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 15:56:43.103575 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 15:56:43.103587 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 15:56:43.103598 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 15:56:43.103615 9252 solver.cpp:245] Train net output #22: loss/loss01 = 0.88756 (* 0.0454545 = 0.0403436 loss)
I0404 15:56:43.103628 9252 solver.cpp:245] Train net output #23: loss/loss02 = 1.91715 (* 0.0454545 = 0.0871431 loss)
I0404 15:56:43.103642 9252 solver.cpp:245] Train net output #24: loss/loss03 = 2.64989 (* 0.0454545 = 0.12045 loss)
I0404 15:56:43.103657 9252 solver.cpp:245] Train net output #25: loss/loss04 = 2.31172 (* 0.0454545 = 0.105078 loss)
I0404 15:56:43.103669 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.15232 (* 0.0454545 = 0.097833 loss)
I0404 15:56:43.103683 9252 solver.cpp:245] Train net output #27: loss/loss06 = 1.76366 (* 0.0454545 = 0.0801665 loss)
I0404 15:56:43.103696 9252 solver.cpp:245] Train net output #28: loss/loss07 = 0.843371 (* 0.0454545 = 0.0383351 loss)
I0404 15:56:43.103714 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.123824 (* 0.0454545 = 0.00562838 loss)
I0404 15:56:43.103729 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.126149 (* 0.0454545 = 0.00573407 loss)
I0404 15:56:43.103742 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.0193393 (* 0.0454545 = 0.00087906 loss)
I0404 15:56:43.103756 9252 solver.cpp:245] Train net output #32: loss/loss11 = 5.21924e-06 (* 0.0454545 = 2.37238e-07 loss)
I0404 15:56:43.103770 9252 solver.cpp:245] Train net output #33: loss/loss12 = 5.79298e-06 (* 0.0454545 = 2.63317e-07 loss)
I0404 15:56:43.103785 9252 solver.cpp:245] Train net output #34: loss/loss13 = 4.34376e-06 (* 0.0454545 = 1.97444e-07 loss)
I0404 15:56:43.103804 9252 solver.cpp:245] Train net output #35: loss/loss14 = 4.77592e-06 (* 0.0454545 = 2.17087e-07 loss)
I0404 15:56:43.103818 9252 solver.cpp:245] Train net output #36: loss/loss15 = 4.76847e-06 (* 0.0454545 = 2.16749e-07 loss)
I0404 15:56:43.103832 9252 solver.cpp:245] Train net output #37: loss/loss16 = 5.53593e-06 (* 0.0454545 = 2.51633e-07 loss)
I0404 15:56:43.103845 9252 solver.cpp:245] Train net output #38: loss/loss17 = 4.47415e-06 (* 0.0454545 = 2.0337e-07 loss)
I0404 15:56:43.103880 9252 solver.cpp:245] Train net output #39: loss/loss18 = 4.69395e-06 (* 0.0454545 = 2.13361e-07 loss)
I0404 15:56:43.103895 9252 solver.cpp:245] Train net output #40: loss/loss19 = 4.42945e-06 (* 0.0454545 = 2.01339e-07 loss)
I0404 15:56:43.103909 9252 solver.cpp:245] Train net output #41: loss/loss20 = 4.25436e-06 (* 0.0454545 = 1.9338e-07 loss)
I0404 15:56:43.103924 9252 solver.cpp:245] Train net output #42: loss/loss21 = 3.77005e-06 (* 0.0454545 = 1.71366e-07 loss)
I0404 15:56:43.103937 9252 solver.cpp:245] Train net output #43: loss/loss22 = 4.34004e-06 (* 0.0454545 = 1.97275e-07 loss)
I0404 15:56:43.103950 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 15:56:43.103963 9252 solver.cpp:245] Train net output #45: total_confidence = 0.009644
I0404 15:56:43.103977 9252 sgd_solver.cpp:106] Iteration 79000, lr = 0.00921
I0404 15:57:54.436477 9252 solver.cpp:229] Iteration 79500, loss = 0.706611
I0404 15:57:54.436583 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.53125
I0404 15:57:54.436601 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.3125
I0404 15:57:54.436614 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125
I0404 15:57:54.436626 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.34375
I0404 15:57:54.436637 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.21875
I0404 15:57:54.436650 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.53125
I0404 15:57:54.436661 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.78125
I0404 15:57:54.436672 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375
I0404 15:57:54.436684 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875
I0404 15:57:54.436697 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 15:57:54.436707 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 15:57:54.436719 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 15:57:54.436730 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 15:57:54.436741 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 15:57:54.436753 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 15:57:54.436764 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 15:57:54.436775 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 15:57:54.436787 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 15:57:54.436799 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 15:57:54.436810 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 15:57:54.436821 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 15:57:54.436832 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 15:57:54.436848 9252 solver.cpp:245] Train net output #22: loss/loss01 = 1.97354 (* 0.0454545 = 0.0897062 loss)
I0404 15:57:54.436862 9252 solver.cpp:245] Train net output #23: loss/loss02 = 2.56046 (* 0.0454545 = 0.116384 loss)
I0404 15:57:54.436877 9252 solver.cpp:245] Train net output #24: loss/loss03 = 2.92521 (* 0.0454545 = 0.132964 loss)
I0404 15:57:54.436890 9252 solver.cpp:245] Train net output #25: loss/loss04 = 2.50437 (* 0.0454545 = 0.113835 loss)
I0404 15:57:54.436907 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.90472 (* 0.0454545 = 0.132033 loss)
I0404 15:57:54.436921 9252 solver.cpp:245] Train net output #27: loss/loss06 = 1.7432 (* 0.0454545 = 0.0792365 loss)
I0404 15:57:54.436934 9252 solver.cpp:245] Train net output #28: loss/loss07 = 0.885317 (* 0.0454545 = 0.0402417 loss)
I0404 15:57:54.436949 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.217094 (* 0.0454545 = 0.00986793 loss)
I0404 15:57:54.436964 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.0791516 (* 0.0454545 = 0.0035978 loss)
I0404 15:57:54.436977 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.00558733 (* 0.0454545 = 0.00025397 loss)
I0404 15:57:54.436992 9252 solver.cpp:245] Train net output #32: loss/loss11 = 3.2932e-06 (* 0.0454545 = 1.49691e-07 loss)
I0404 15:57:54.437006 9252 solver.cpp:245] Train net output #33: loss/loss12 = 2.91695e-06 (* 0.0454545 = 1.32589e-07 loss)
I0404 15:57:54.437021 9252 solver.cpp:245] Train net output #34: loss/loss13 = 2.77165e-06 (* 0.0454545 = 1.25984e-07 loss)
I0404 15:57:54.437034 9252 solver.cpp:245] Train net output #35: loss/loss14 = 3.24479e-06 (* 0.0454545 = 1.4749e-07 loss)
I0404 15:57:54.437048 9252 solver.cpp:245] Train net output #36: loss/loss15 = 2.68225e-06 (* 0.0454545 = 1.2192e-07 loss)
I0404 15:57:54.437062 9252 solver.cpp:245] Train net output #37: loss/loss16 = 2.96911e-06 (* 0.0454545 = 1.3496e-07 loss)
I0404 15:57:54.437077 9252 solver.cpp:245] Train net output #38: loss/loss17 = 2.27618e-06 (* 0.0454545 = 1.03463e-07 loss)
I0404 15:57:54.437108 9252 solver.cpp:245] Train net output #39: loss/loss18 = 2.56676e-06 (* 0.0454545 = 1.16671e-07 loss)
I0404 15:57:54.437122 9252 solver.cpp:245] Train net output #40: loss/loss19 = 2.80519e-06 (* 0.0454545 = 1.27509e-07 loss)
I0404 15:57:54.437136 9252 solver.cpp:245] Train net output #41: loss/loss20 = 2.57421e-06 (* 0.0454545 = 1.1701e-07 loss)
I0404 15:57:54.437150 9252 solver.cpp:245] Train net output #42: loss/loss21 = 2.50715e-06 (* 0.0454545 = 1.13962e-07 loss)
I0404 15:57:54.437165 9252 solver.cpp:245] Train net output #43: loss/loss22 = 2.55931e-06 (* 0.0454545 = 1.16332e-07 loss)
I0404 15:57:54.437176 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 15:57:54.437187 9252 solver.cpp:245] Train net output #45: total_confidence = 0.00534914
I0404 15:57:54.437201 9252 sgd_solver.cpp:106] Iteration 79500, lr = 0.009205
I0404 15:59:05.247905 9252 solver.cpp:338] Iteration 80000, Testing net (#0)
I0404 15:59:13.356449 9252 solver.cpp:393] Test loss: 0.656696
I0404 15:59:13.356494 9252 solver.cpp:406] Test net output #0: loss/accuracy01 = 0.513
I0404 15:59:13.356510 9252 solver.cpp:406] Test net output #1: loss/accuracy02 = 0.318
I0404 15:59:13.356523 9252 solver.cpp:406] Test net output #2: loss/accuracy03 = 0.283
I0404 15:59:13.356534 9252 solver.cpp:406] Test net output #3: loss/accuracy04 = 0.252
I0404 15:59:13.356546 9252 solver.cpp:406] Test net output #4: loss/accuracy05 = 0.326
I0404 15:59:13.356557 9252 solver.cpp:406] Test net output #5: loss/accuracy06 = 0.587
I0404 15:59:13.356569 9252 solver.cpp:406] Test net output #6: loss/accuracy07 = 0.894
I0404 15:59:13.356580 9252 solver.cpp:406] Test net output #7: loss/accuracy08 = 0.97
I0404 15:59:13.356591 9252 solver.cpp:406] Test net output #8: loss/accuracy09 = 0.995
I0404 15:59:13.356602 9252 solver.cpp:406] Test net output #9: loss/accuracy10 = 0.998
I0404 15:59:13.356613 9252 solver.cpp:406] Test net output #10: loss/accuracy11 = 1
I0404 15:59:13.356626 9252 solver.cpp:406] Test net output #11: loss/accuracy12 = 1
I0404 15:59:13.356637 9252 solver.cpp:406] Test net output #12: loss/accuracy13 = 1
I0404 15:59:13.356647 9252 solver.cpp:406] Test net output #13: loss/accuracy14 = 1
I0404 15:59:13.356658 9252 solver.cpp:406] Test net output #14: loss/accuracy15 = 1
I0404 15:59:13.356669 9252 solver.cpp:406] Test net output #15: loss/accuracy16 = 1
I0404 15:59:13.356680 9252 solver.cpp:406] Test net output #16: loss/accuracy17 = 1
I0404 15:59:13.356691 9252 solver.cpp:406] Test net output #17: loss/accuracy18 = 1
I0404 15:59:13.356703 9252 solver.cpp:406] Test net output #18: loss/accuracy19 = 1
I0404 15:59:13.356714 9252 solver.cpp:406] Test net output #19: loss/accuracy20 = 1
I0404 15:59:13.356724 9252 solver.cpp:406] Test net output #20: loss/accuracy21 = 1
I0404 15:59:13.356735 9252 solver.cpp:406] Test net output #21: loss/accuracy22 = 1
I0404 15:59:13.356753 9252 solver.cpp:406] Test net output #22: loss/loss01 = 1.8765 (* 0.0454545 = 0.0852957 loss)
I0404 15:59:13.356768 9252 solver.cpp:406] Test net output #23: loss/loss02 = 2.44066 (* 0.0454545 = 0.110939 loss)
I0404 15:59:13.356782 9252 solver.cpp:406] Test net output #24: loss/loss03 = 2.52585 (* 0.0454545 = 0.114812 loss)
I0404 15:59:13.356796 9252 solver.cpp:406] Test net output #25: loss/loss04 = 2.65453 (* 0.0454545 = 0.120661 loss)
I0404 15:59:13.356809 9252 solver.cpp:406] Test net output #26: loss/loss05 = 2.50783 (* 0.0454545 = 0.113992 loss)
I0404 15:59:13.356822 9252 solver.cpp:406] Test net output #27: loss/loss06 = 1.6662 (* 0.0454545 = 0.0757364 loss)
I0404 15:59:13.356835 9252 solver.cpp:406] Test net output #28: loss/loss07 = 0.500017 (* 0.0454545 = 0.022728 loss)
I0404 15:59:13.356848 9252 solver.cpp:406] Test net output #29: loss/loss08 = 0.200395 (* 0.0454545 = 0.00910887 loss)
I0404 15:59:13.356863 9252 solver.cpp:406] Test net output #30: loss/loss09 = 0.0527665 (* 0.0454545 = 0.00239848 loss)
I0404 15:59:13.356875 9252 solver.cpp:406] Test net output #31: loss/loss10 = 0.0223847 (* 0.0454545 = 0.00101748 loss)
I0404 15:59:13.356889 9252 solver.cpp:406] Test net output #32: loss/loss11 = 1.7538e-05 (* 0.0454545 = 7.97184e-07 loss)
I0404 15:59:13.356902 9252 solver.cpp:406] Test net output #33: loss/loss12 = 1.49656e-05 (* 0.0454545 = 6.80253e-07 loss)
I0404 15:59:13.356916 9252 solver.cpp:406] Test net output #34: loss/loss13 = 1.34282e-05 (* 0.0454545 = 6.10372e-07 loss)
I0404 15:59:13.356930 9252 solver.cpp:406] Test net output #35: loss/loss14 = 1.46176e-05 (* 0.0454545 = 6.64436e-07 loss)
I0404 15:59:13.356943 9252 solver.cpp:406] Test net output #36: loss/loss15 = 1.48311e-05 (* 0.0454545 = 6.7414e-07 loss)
I0404 15:59:13.356957 9252 solver.cpp:406] Test net output #37: loss/loss16 = 1.53137e-05 (* 0.0454545 = 6.96077e-07 loss)
I0404 15:59:13.356971 9252 solver.cpp:406] Test net output #38: loss/loss17 = 1.31764e-05 (* 0.0454545 = 5.98929e-07 loss)
I0404 15:59:13.357017 9252 solver.cpp:406] Test net output #39: loss/loss18 = 1.49742e-05 (* 0.0454545 = 6.80644e-07 loss)
I0404 15:59:13.357031 9252 solver.cpp:406] Test net output #40: loss/loss19 = 1.6242e-05 (* 0.0454545 = 7.38273e-07 loss)
I0404 15:59:13.357045 9252 solver.cpp:406] Test net output #41: loss/loss20 = 1.58674e-05 (* 0.0454545 = 7.21247e-07 loss)
I0404 15:59:13.357059 9252 solver.cpp:406] Test net output #42: loss/loss21 = 1.45515e-05 (* 0.0454545 = 6.61431e-07 loss)
I0404 15:59:13.357072 9252 solver.cpp:406] Test net output #43: loss/loss22 = 1.31076e-05 (* 0.0454545 = 5.95801e-07 loss)
I0404 15:59:13.357084 9252 solver.cpp:406] Test net output #44: total_accuracy = 0.006
I0404 15:59:13.357095 9252 solver.cpp:406] Test net output #45: total_confidence = 0.0105298
I0404 15:59:13.391345 9252 solver.cpp:229] Iteration 80000, loss = 0.707026
I0404 15:59:13.391381 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.40625
I0404 15:59:13.391398 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.3125
I0404 15:59:13.391410 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125
I0404 15:59:13.391422 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.3125
I0404 15:59:13.391434 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.375
I0404 15:59:13.391446 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5625
I0404 15:59:13.391458 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875
I0404 15:59:13.391470 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875
I0404 15:59:13.391482 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375
I0404 15:59:13.391494 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875
I0404 15:59:13.391506 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 15:59:13.391517 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 15:59:13.391532 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 15:59:13.391544 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 15:59:13.391556 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 15:59:13.391568 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 15:59:13.391579 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 15:59:13.391590 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 15:59:13.391602 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 15:59:13.391613 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 15:59:13.391624 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 15:59:13.391636 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 15:59:13.391650 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.12403 (* 0.0454545 = 0.0965467 loss)
I0404 15:59:13.391664 9252 solver.cpp:245] Train net output #23: loss/loss02 = 2.09674 (* 0.0454545 = 0.0953064 loss)
I0404 15:59:13.391679 9252 solver.cpp:245] Train net output #24: loss/loss03 = 2.88268 (* 0.0454545 = 0.131031 loss)
I0404 15:59:13.391692 9252 solver.cpp:245] Train net output #25: loss/loss04 = 2.47025 (* 0.0454545 = 0.112284 loss)
I0404 15:59:13.391705 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.42134 (* 0.0454545 = 0.110061 loss)
I0404 15:59:13.391718 9252 solver.cpp:245] Train net output #27: loss/loss06 = 1.75323 (* 0.0454545 = 0.0796923 loss)
I0404 15:59:13.391732 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.40424 (* 0.0454545 = 0.0638293 loss)
I0404 15:59:13.391746 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.404233 (* 0.0454545 = 0.0183742 loss)
I0404 15:59:13.391759 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.261289 (* 0.0454545 = 0.0118768 loss)
I0404 15:59:13.391790 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.175902 (* 0.0454545 = 0.00799556 loss)
I0404 15:59:13.391806 9252 solver.cpp:245] Train net output #32: loss/loss11 = 1.78725e-05 (* 0.0454545 = 8.12386e-07 loss)
I0404 15:59:13.391820 9252 solver.cpp:245] Train net output #33: loss/loss12 = 1.49976e-05 (* 0.0454545 = 6.81709e-07 loss)
I0404 15:59:13.391834 9252 solver.cpp:245] Train net output #34: loss/loss13 = 1.16143e-05 (* 0.0454545 = 5.27924e-07 loss)
I0404 15:59:13.391849 9252 solver.cpp:245] Train net output #35: loss/loss14 = 1.61806e-05 (* 0.0454545 = 7.35482e-07 loss)
I0404 15:59:13.391861 9252 solver.cpp:245] Train net output #36: loss/loss15 = 1.2844e-05 (* 0.0454545 = 5.8382e-07 loss)
I0404 15:59:13.391875 9252 solver.cpp:245] Train net output #37: loss/loss16 = 1.55564e-05 (* 0.0454545 = 7.07108e-07 loss)
I0404 15:59:13.391890 9252 solver.cpp:245] Train net output #38: loss/loss17 = 1.39134e-05 (* 0.0454545 = 6.32426e-07 loss)
I0404 15:59:13.391906 9252 solver.cpp:245] Train net output #39: loss/loss18 = 1.43084e-05 (* 0.0454545 = 6.50381e-07 loss)
I0404 15:59:13.391919 9252 solver.cpp:245] Train net output #40: loss/loss19 = 1.50983e-05 (* 0.0454545 = 6.86285e-07 loss)
I0404 15:59:13.391933 9252 solver.cpp:245] Train net output #41: loss/loss20 = 1.46884e-05 (* 0.0454545 = 6.67655e-07 loss)
I0404 15:59:13.391947 9252 solver.cpp:245] Train net output #42: loss/loss21 = 1.3332e-05 (* 0.0454545 = 6.06001e-07 loss)
I0404 15:59:13.391962 9252 solver.cpp:245] Train net output #43: loss/loss22 = 1.13647e-05 (* 0.0454545 = 5.16578e-07 loss)
I0404 15:59:13.391973 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 15:59:13.391984 9252 solver.cpp:245] Train net output #45: total_confidence = 0.0148923
I0404 15:59:13.391999 9252 sgd_solver.cpp:106] Iteration 80000, lr = 0.0092
I0404 16:00:23.037235 9252 solver.cpp:229] Iteration 80500, loss = 0.698509
I0404 16:00:23.037400 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.40625
I0404 16:00:23.037422 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.375
I0404 16:00:23.037436 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.3125
I0404 16:00:23.037447 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.375
I0404 16:00:23.037459 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.40625
I0404 16:00:23.037472 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625
I0404 16:00:23.037483 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.78125
I0404 16:00:23.037495 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375
I0404 16:00:23.037508 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 1
I0404 16:00:23.037519 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 16:00:23.037531 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 16:00:23.037542 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 16:00:23.037554 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 16:00:23.037565 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 16:00:23.037577 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 16:00:23.037588 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 16:00:23.037600 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 16:00:23.037611 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 16:00:23.037623 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 16:00:23.037634 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 16:00:23.037645 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 16:00:23.037657 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 16:00:23.037672 9252 solver.cpp:245] Train net output #22: loss/loss01 = 2.00733 (* 0.0454545 = 0.0912421 loss)
I0404 16:00:23.037686 9252 solver.cpp:245] Train net output #23: loss/loss02 = 2.33779 (* 0.0454545 = 0.106263 loss)
I0404 16:00:23.037700 9252 solver.cpp:245] Train net output #24: loss/loss03 = 2.43276 (* 0.0454545 = 0.11058 loss)
I0404 16:00:23.037714 9252 solver.cpp:245] Train net output #25: loss/loss04 = 2.33499 (* 0.0454545 = 0.106136 loss)
I0404 16:00:23.037727 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.13121 (* 0.0454545 = 0.0968731 loss)
I0404 16:00:23.037741 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.09274 (* 0.0454545 = 0.0951244 loss)
I0404 16:00:23.037758 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.03788 (* 0.0454545 = 0.0471764 loss)
I0404 16:00:23.037771 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.405575 (* 0.0454545 = 0.0184352 loss)
I0404 16:00:23.037786 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.039235 (* 0.0454545 = 0.00178341 loss)
I0404 16:00:23.037799 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.0109014 (* 0.0454545 = 0.000495517 loss)
I0404 16:00:23.037814 9252 solver.cpp:245] Train net output #32: loss/loss11 = 1.43152e-05 (* 0.0454545 = 6.50691e-07 loss)
I0404 16:00:23.037828 9252 solver.cpp:245] Train net output #33: loss/loss12 = 1.40805e-05 (* 0.0454545 = 6.40025e-07 loss)
I0404 16:00:23.037842 9252 solver.cpp:245] Train net output #34: loss/loss13 = 1.05169e-05 (* 0.0454545 = 4.78039e-07 loss)
I0404 16:00:23.037855 9252 solver.cpp:245] Train net output #35: loss/loss14 = 1.37602e-05 (* 0.0454545 = 6.25464e-07 loss)
I0404 16:00:23.037869 9252 solver.cpp:245] Train net output #36: loss/loss15 = 1.25084e-05 (* 0.0454545 = 5.68566e-07 loss)
I0404 16:00:23.037883 9252 solver.cpp:245] Train net output #37: loss/loss16 = 1.03567e-05 (* 0.0454545 = 4.70761e-07 loss)
I0404 16:00:23.037896 9252 solver.cpp:245] Train net output #38: loss/loss17 = 1.09678e-05 (* 0.0454545 = 4.98536e-07 loss)
I0404 16:00:23.037925 9252 solver.cpp:245] Train net output #39: loss/loss18 = 1.21097e-05 (* 0.0454545 = 5.5044e-07 loss)
I0404 16:00:23.037940 9252 solver.cpp:245] Train net output #40: loss/loss19 = 1.21582e-05 (* 0.0454545 = 5.52645e-07 loss)
I0404 16:00:23.037955 9252 solver.cpp:245] Train net output #41: loss/loss20 = 1.10554e-05 (* 0.0454545 = 5.02517e-07 loss)
I0404 16:00:23.037968 9252 solver.cpp:245] Train net output #42: loss/loss21 = 9.86496e-06 (* 0.0454545 = 4.48407e-07 loss)
I0404 16:00:23.037982 9252 solver.cpp:245] Train net output #43: loss/loss22 = 1.02859e-05 (* 0.0454545 = 4.67542e-07 loss)
I0404 16:00:23.037993 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 16:00:23.038005 9252 solver.cpp:245] Train net output #45: total_confidence = 0.00389005
I0404 16:00:23.038018 9252 sgd_solver.cpp:106] Iteration 80500, lr = 0.009195
I0404 16:01:33.905815 9252 solver.cpp:229] Iteration 81000, loss = 0.693488
I0404 16:01:33.905918 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.46875
I0404 16:01:33.905937 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.46875
I0404 16:01:33.905949 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.25
I0404 16:01:33.905962 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.375
I0404 16:01:33.905973 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125
I0404 16:01:33.905985 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.46875
I0404 16:01:33.905997 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625
I0404 16:01:33.906009 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875
I0404 16:01:33.906020 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375
I0404 16:01:33.906033 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 16:01:33.906044 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 16:01:33.906056 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 16:01:33.906067 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 16:01:33.906078 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 16:01:33.906090 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 16:01:33.906101 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 16:01:33.906113 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 16:01:33.906124 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 16:01:33.906136 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 16:01:33.906147 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 16:01:33.906158 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 16:01:33.906169 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 16:01:33.906184 9252 solver.cpp:245] Train net output #22: loss/loss01 = 1.97449 (* 0.0454545 = 0.0897495 loss)
I0404 16:01:33.906198 9252 solver.cpp:245] Train net output #23: loss/loss02 = 2.05676 (* 0.0454545 = 0.093489 loss)
I0404 16:01:33.906213 9252 solver.cpp:245] Train net output #24: loss/loss03 = 2.69528 (* 0.0454545 = 0.122513 loss)
I0404 16:01:33.906226 9252 solver.cpp:245] Train net output #25: loss/loss04 = 2.4819 (* 0.0454545 = 0.112814 loss)
I0404 16:01:33.906239 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.51299 (* 0.0454545 = 0.114227 loss)
I0404 16:01:33.906252 9252 solver.cpp:245] Train net output #27: loss/loss06 = 1.69654 (* 0.0454545 = 0.0771157 loss)
I0404 16:01:33.906266 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.70671 (* 0.0454545 = 0.0775776 loss)
I0404 16:01:33.906280 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.573349 (* 0.0454545 = 0.0260613 loss)
I0404 16:01:33.906293 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.225262 (* 0.0454545 = 0.0102392 loss)
I0404 16:01:33.906308 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.0235437 (* 0.0454545 = 0.00107017 loss)
I0404 16:01:33.906322 9252 solver.cpp:245] Train net output #32: loss/loss11 = 1.33768e-05 (* 0.0454545 = 6.08038e-07 loss)
I0404 16:01:33.906337 9252 solver.cpp:245] Train net output #33: loss/loss12 = 1.07518e-05 (* 0.0454545 = 4.88719e-07 loss)
I0404 16:01:33.906350 9252 solver.cpp:245] Train net output #34: loss/loss13 = 1.02322e-05 (* 0.0454545 = 4.651e-07 loss)
I0404 16:01:33.906364 9252 solver.cpp:245] Train net output #35: loss/loss14 = 1.56572e-05 (* 0.0454545 = 7.11691e-07 loss)
I0404 16:01:33.906378 9252 solver.cpp:245] Train net output #36: loss/loss15 = 1.05879e-05 (* 0.0454545 = 4.81268e-07 loss)
I0404 16:01:33.906391 9252 solver.cpp:245] Train net output #37: loss/loss16 = 1.18976e-05 (* 0.0454545 = 5.40802e-07 loss)
I0404 16:01:33.906405 9252 solver.cpp:245] Train net output #38: loss/loss17 = 1.0411e-05 (* 0.0454545 = 4.73229e-07 loss)
I0404 16:01:33.906436 9252 solver.cpp:245] Train net output #39: loss/loss18 = 1.17262e-05 (* 0.0454545 = 5.33009e-07 loss)
I0404 16:01:33.906451 9252 solver.cpp:245] Train net output #40: loss/loss19 = 1.07874e-05 (* 0.0454545 = 4.90337e-07 loss)
I0404 16:01:33.906466 9252 solver.cpp:245] Train net output #41: loss/loss20 = 1.2382e-05 (* 0.0454545 = 5.62816e-07 loss)
I0404 16:01:33.906482 9252 solver.cpp:245] Train net output #42: loss/loss21 = 1.18605e-05 (* 0.0454545 = 5.39113e-07 loss)
I0404 16:01:33.906497 9252 solver.cpp:245] Train net output #43: loss/loss22 = 1.13462e-05 (* 0.0454545 = 5.15736e-07 loss)
I0404 16:01:33.906509 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 16:01:33.906520 9252 solver.cpp:245] Train net output #45: total_confidence = 0.0152995
I0404 16:01:33.906533 9252 sgd_solver.cpp:106] Iteration 81000, lr = 0.00919
I0404 16:02:46.041812 9252 solver.cpp:229] Iteration 81500, loss = 0.691573
I0404 16:02:46.042059 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.65625
I0404 16:02:46.042078 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.3125
I0404 16:02:46.042090 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.34375
I0404 16:02:46.042103 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.25
I0404 16:02:46.042114 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125
I0404 16:02:46.042126 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5625
I0404 16:02:46.042137 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.90625
I0404 16:02:46.042150 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625
I0404 16:02:46.042161 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875
I0404 16:02:46.042173 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875
I0404 16:02:46.042184 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 16:02:46.042196 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 16:02:46.042207 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 16:02:46.042218 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 16:02:46.042230 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 16:02:46.042242 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 16:02:46.042253 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 16:02:46.042264 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 16:02:46.042275 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 16:02:46.042286 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 16:02:46.042297 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 16:02:46.042309 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 16:02:46.042325 9252 solver.cpp:245] Train net output #22: loss/loss01 = 1.29568 (* 0.0454545 = 0.0588946 loss)
I0404 16:02:46.042340 9252 solver.cpp:245] Train net output #23: loss/loss02 = 2.26837 (* 0.0454545 = 0.103108 loss)
I0404 16:02:46.042354 9252 solver.cpp:245] Train net output #24: loss/loss03 = 2.28445 (* 0.0454545 = 0.103839 loss)
I0404 16:02:46.042368 9252 solver.cpp:245] Train net output #25: loss/loss04 = 2.42106 (* 0.0454545 = 0.110048 loss)
I0404 16:02:46.042382 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.42733 (* 0.0454545 = 0.110333 loss)
I0404 16:02:46.042395 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.14525 (* 0.0454545 = 0.0975112 loss)
I0404 16:02:46.042409 9252 solver.cpp:245] Train net output #28: loss/loss07 = 0.643101 (* 0.0454545 = 0.0292319 loss)
I0404 16:02:46.042431 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.46215 (* 0.0454545 = 0.0210068 loss)
I0404 16:02:46.042445 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.120168 (* 0.0454545 = 0.00546217 loss)
I0404 16:02:46.042459 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.136831 (* 0.0454545 = 0.00621961 loss)
I0404 16:02:46.042474 9252 solver.cpp:245] Train net output #32: loss/loss11 = 1.21054e-05 (* 0.0454545 = 5.50245e-07 loss)
I0404 16:02:46.042489 9252 solver.cpp:245] Train net output #33: loss/loss12 = 1.67715e-05 (* 0.0454545 = 7.62341e-07 loss)
I0404 16:02:46.042502 9252 solver.cpp:245] Train net output #34: loss/loss13 = 1.80442e-05 (* 0.0454545 = 8.20193e-07 loss)
I0404 16:02:46.042515 9252 solver.cpp:245] Train net output #35: loss/loss14 = 1.68721e-05 (* 0.0454545 = 7.66912e-07 loss)
I0404 16:02:46.042529 9252 solver.cpp:245] Train net output #36: loss/loss15 = 1.76678e-05 (* 0.0454545 = 8.0308e-07 loss)
I0404 16:02:46.042543 9252 solver.cpp:245] Train net output #37: loss/loss16 = 1.5167e-05 (* 0.0454545 = 6.89408e-07 loss)
I0404 16:02:46.042557 9252 solver.cpp:245] Train net output #38: loss/loss17 = 1.22209e-05 (* 0.0454545 = 5.55498e-07 loss)
I0404 16:02:46.042587 9252 solver.cpp:245] Train net output #39: loss/loss18 = 1.35719e-05 (* 0.0454545 = 6.16903e-07 loss)
I0404 16:02:46.042603 9252 solver.cpp:245] Train net output #40: loss/loss19 = 1.17738e-05 (* 0.0454545 = 5.35172e-07 loss)
I0404 16:02:46.042618 9252 solver.cpp:245] Train net output #41: loss/loss20 = 1.31955e-05 (* 0.0454545 = 5.99794e-07 loss)
I0404 16:02:46.042630 9252 solver.cpp:245] Train net output #42: loss/loss21 = 1.28825e-05 (* 0.0454545 = 5.8557e-07 loss)
I0404 16:02:46.042644 9252 solver.cpp:245] Train net output #43: loss/loss22 = 1.62497e-05 (* 0.0454545 = 7.38622e-07 loss)
I0404 16:02:46.042656 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 16:02:46.042667 9252 solver.cpp:245] Train net output #45: total_confidence = 0.0101543
I0404 16:02:46.042680 9252 sgd_solver.cpp:106] Iteration 81500, lr = 0.009185
I0404 16:03:56.966033 9252 solver.cpp:229] Iteration 82000, loss = 0.690179
I0404 16:03:56.966311 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.5
I0404 16:03:56.966333 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.28125
I0404 16:03:56.966346 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.21875
I0404 16:03:56.966358 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.25
I0404 16:03:56.966378 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.34375
I0404 16:03:56.966390 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.53125
I0404 16:03:56.966418 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125
I0404 16:03:56.966452 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375
I0404 16:03:56.966477 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375
I0404 16:03:56.966495 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875
I0404 16:03:56.966516 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 16:03:56.966528 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 16:03:56.966539 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 16:03:56.966555 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 16:03:56.966581 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 16:03:56.966593 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 16:03:56.966605 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 16:03:56.966616 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 16:03:56.966627 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 16:03:56.966639 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 16:03:56.966650 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 16:03:56.966665 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 16:03:56.966681 9252 solver.cpp:245] Train net output #22: loss/loss01 = 1.75419 (* 0.0454545 = 0.079736 loss)
I0404 16:03:56.966696 9252 solver.cpp:245] Train net output #23: loss/loss02 = 2.31862 (* 0.0454545 = 0.105392 loss)
I0404 16:03:56.966711 9252 solver.cpp:245] Train net output #24: loss/loss03 = 2.55595 (* 0.0454545 = 0.116179 loss)
I0404 16:03:56.966732 9252 solver.cpp:245] Train net output #25: loss/loss04 = 2.39479 (* 0.0454545 = 0.108854 loss)
I0404 16:03:56.966747 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.31656 (* 0.0454545 = 0.105298 loss)
I0404 16:03:56.966759 9252 solver.cpp:245] Train net output #27: loss/loss06 = 1.80275 (* 0.0454545 = 0.081943 loss)
I0404 16:03:56.966774 9252 solver.cpp:245] Train net output #28: loss/loss07 = 0.814896 (* 0.0454545 = 0.0370407 loss)
I0404 16:03:56.966795 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.234584 (* 0.0454545 = 0.0106629 loss)
I0404 16:03:56.966809 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.2484 (* 0.0454545 = 0.0112909 loss)
I0404 16:03:56.966823 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.137102 (* 0.0454545 = 0.00623192 loss)
I0404 16:03:56.966837 9252 solver.cpp:245] Train net output #32: loss/loss11 = 9.63784e-06 (* 0.0454545 = 4.38084e-07 loss)
I0404 16:03:56.966852 9252 solver.cpp:245] Train net output #33: loss/loss12 = 1.14804e-05 (* 0.0454545 = 5.21834e-07 loss)
I0404 16:03:56.966866 9252 solver.cpp:245] Train net output #34: loss/loss13 = 9.62296e-06 (* 0.0454545 = 4.37407e-07 loss)
I0404 16:03:56.966881 9252 solver.cpp:245] Train net output #35: loss/loss14 = 8.84436e-06 (* 0.0454545 = 4.02016e-07 loss)
I0404 16:03:56.966894 9252 solver.cpp:245] Train net output #36: loss/loss15 = 1.00179e-05 (* 0.0454545 = 4.55359e-07 loss)
I0404 16:03:56.966908 9252 solver.cpp:245] Train net output #37: loss/loss16 = 9.71437e-06 (* 0.0454545 = 4.41562e-07 loss)
I0404 16:03:56.966922 9252 solver.cpp:245] Train net output #38: loss/loss17 = 7.8272e-06 (* 0.0454545 = 3.55782e-07 loss)
I0404 16:03:56.966954 9252 solver.cpp:245] Train net output #39: loss/loss18 = 7.66699e-06 (* 0.0454545 = 3.485e-07 loss)
I0404 16:03:56.966970 9252 solver.cpp:245] Train net output #40: loss/loss19 = 7.69683e-06 (* 0.0454545 = 3.49856e-07 loss)
I0404 16:03:56.966989 9252 solver.cpp:245] Train net output #41: loss/loss20 = 7.94646e-06 (* 0.0454545 = 3.61203e-07 loss)
I0404 16:03:56.967003 9252 solver.cpp:245] Train net output #42: loss/loss21 = 7.88313e-06 (* 0.0454545 = 3.58324e-07 loss)
I0404 16:03:56.967017 9252 solver.cpp:245] Train net output #43: loss/loss22 = 9.3287e-06 (* 0.0454545 = 4.24032e-07 loss)
I0404 16:03:56.967030 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 16:03:56.967042 9252 solver.cpp:245] Train net output #45: total_confidence = 0.00341853
I0404 16:03:56.967058 9252 sgd_solver.cpp:106] Iteration 82000, lr = 0.00918
I0404 16:05:08.190829 9252 solver.cpp:229] Iteration 82500, loss = 0.687545
I0404 16:05:08.190975 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.625
I0404 16:05:08.190997 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.28125
I0404 16:05:08.191009 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.28125
I0404 16:05:08.191021 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.375
I0404 16:05:08.191033 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.40625
I0404 16:05:08.191046 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5
I0404 16:05:08.191058 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875
I0404 16:05:08.191071 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.8125
I0404 16:05:08.191082 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625
I0404 16:05:08.191093 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375
I0404 16:05:08.191105 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 16:05:08.191118 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 16:05:08.191128 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 16:05:08.191140 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 16:05:08.191153 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 16:05:08.191169 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 16:05:08.191193 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 16:05:08.191216 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 16:05:08.191231 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 16:05:08.191242 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 16:05:08.191254 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 16:05:08.191267 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 16:05:08.191282 9252 solver.cpp:245] Train net output #22: loss/loss01 = 1.39683 (* 0.0454545 = 0.0634921 loss)
I0404 16:05:08.191298 9252 solver.cpp:245] Train net output #23: loss/loss02 = 2.43534 (* 0.0454545 = 0.110697 loss)
I0404 16:05:08.191311 9252 solver.cpp:245] Train net output #24: loss/loss03 = 2.22946 (* 0.0454545 = 0.101339 loss)
I0404 16:05:08.191325 9252 solver.cpp:245] Train net output #25: loss/loss04 = 2.29561 (* 0.0454545 = 0.104346 loss)
I0404 16:05:08.191339 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.25728 (* 0.0454545 = 0.102604 loss)
I0404 16:05:08.191352 9252 solver.cpp:245] Train net output #27: loss/loss06 = 1.9378 (* 0.0454545 = 0.0880816 loss)
I0404 16:05:08.191366 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.27531 (* 0.0454545 = 0.0579689 loss)
I0404 16:05:08.191380 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.758353 (* 0.0454545 = 0.0344706 loss)
I0404 16:05:08.191393 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.365166 (* 0.0454545 = 0.0165985 loss)
I0404 16:05:08.191407 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.193861 (* 0.0454545 = 0.00881186 loss)
I0404 16:05:08.191422 9252 solver.cpp:245] Train net output #32: loss/loss11 = 2.72256e-05 (* 0.0454545 = 1.23753e-06 loss)
I0404 16:05:08.191437 9252 solver.cpp:245] Train net output #33: loss/loss12 = 2.09137e-05 (* 0.0454545 = 9.50621e-07 loss)
I0404 16:05:08.191455 9252 solver.cpp:245] Train net output #34: loss/loss13 = 2.70242e-05 (* 0.0454545 = 1.22837e-06 loss)
I0404 16:05:08.191486 9252 solver.cpp:245] Train net output #35: loss/loss14 = 2.7649e-05 (* 0.0454545 = 1.25677e-06 loss)
I0404 16:05:08.191511 9252 solver.cpp:245] Train net output #36: loss/loss15 = 2.09098e-05 (* 0.0454545 = 9.50444e-07 loss)
I0404 16:05:08.191526 9252 solver.cpp:245] Train net output #37: loss/loss16 = 2.58785e-05 (* 0.0454545 = 1.1763e-06 loss)
I0404 16:05:08.191541 9252 solver.cpp:245] Train net output #38: loss/loss17 = 2.58954e-05 (* 0.0454545 = 1.17707e-06 loss)
I0404 16:05:08.191570 9252 solver.cpp:245] Train net output #39: loss/loss18 = 2.17071e-05 (* 0.0454545 = 9.86686e-07 loss)
I0404 16:05:08.191586 9252 solver.cpp:245] Train net output #40: loss/loss19 = 2.41699e-05 (* 0.0454545 = 1.09863e-06 loss)
I0404 16:05:08.191599 9252 solver.cpp:245] Train net output #41: loss/loss20 = 2.37697e-05 (* 0.0454545 = 1.08044e-06 loss)
I0404 16:05:08.191612 9252 solver.cpp:245] Train net output #42: loss/loss21 = 2.23817e-05 (* 0.0454545 = 1.01735e-06 loss)
I0404 16:05:08.191630 9252 solver.cpp:245] Train net output #43: loss/loss22 = 2.30951e-05 (* 0.0454545 = 1.04978e-06 loss)
I0404 16:05:08.191642 9252 solver.cpp:245] Train net output #44: total_accuracy = 0.03125
I0404 16:05:08.191654 9252 solver.cpp:245] Train net output #45: total_confidence = 0.0121343
I0404 16:05:08.191669 9252 sgd_solver.cpp:106] Iteration 82500, lr = 0.009175
I0404 16:06:19.174793 9252 solver.cpp:229] Iteration 83000, loss = 0.684454
I0404 16:06:19.174942 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.59375
I0404 16:06:19.174962 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.375
I0404 16:06:19.174974 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.15625
I0404 16:06:19.174986 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.28125
I0404 16:06:19.174998 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.40625
I0404 16:06:19.175010 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5
I0404 16:06:19.175021 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.84375
I0404 16:06:19.175034 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375
I0404 16:06:19.175045 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375
I0404 16:06:19.175057 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875
I0404 16:06:19.175068 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 16:06:19.175081 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 16:06:19.175092 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 16:06:19.175103 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 16:06:19.175115 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 16:06:19.175127 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 16:06:19.175137 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 16:06:19.175148 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 16:06:19.175159 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 16:06:19.175171 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 16:06:19.175182 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 16:06:19.175194 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 16:06:19.175209 9252 solver.cpp:245] Train net output #22: loss/loss01 = 1.6548 (* 0.0454545 = 0.0752183 loss)
I0404 16:06:19.175225 9252 solver.cpp:245] Train net output #23: loss/loss02 = 2.40046 (* 0.0454545 = 0.109112 loss)
I0404 16:06:19.175238 9252 solver.cpp:245] Train net output #24: loss/loss03 = 2.60376 (* 0.0454545 = 0.118353 loss)
I0404 16:06:19.175251 9252 solver.cpp:245] Train net output #25: loss/loss04 = 2.50523 (* 0.0454545 = 0.113874 loss)
I0404 16:06:19.175266 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.19162 (* 0.0454545 = 0.099619 loss)
I0404 16:06:19.175278 9252 solver.cpp:245] Train net output #27: loss/loss06 = 1.81274 (* 0.0454545 = 0.0823974 loss)
I0404 16:06:19.175300 9252 solver.cpp:245] Train net output #28: loss/loss07 = 0.72795 (* 0.0454545 = 0.0330887 loss)
I0404 16:06:19.175314 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.260282 (* 0.0454545 = 0.011831 loss)
I0404 16:06:19.175328 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.361783 (* 0.0454545 = 0.0164447 loss)
I0404 16:06:19.175341 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.133137 (* 0.0454545 = 0.00605169 loss)
I0404 16:06:19.175362 9252 solver.cpp:245] Train net output #32: loss/loss11 = 3.03372e-05 (* 0.0454545 = 1.37896e-06 loss)
I0404 16:06:19.175376 9252 solver.cpp:245] Train net output #33: loss/loss12 = 2.45802e-05 (* 0.0454545 = 1.11728e-06 loss)
I0404 16:06:19.175390 9252 solver.cpp:245] Train net output #34: loss/loss13 = 1.99638e-05 (* 0.0454545 = 9.07447e-07 loss)
I0404 16:06:19.175405 9252 solver.cpp:245] Train net output #35: loss/loss14 = 2.32215e-05 (* 0.0454545 = 1.05552e-06 loss)
I0404 16:06:19.175418 9252 solver.cpp:245] Train net output #36: loss/loss15 = 2.43807e-05 (* 0.0454545 = 1.10821e-06 loss)
I0404 16:06:19.175432 9252 solver.cpp:245] Train net output #37: loss/loss16 = 2.67961e-05 (* 0.0454545 = 1.21801e-06 loss)
I0404 16:06:19.175446 9252 solver.cpp:245] Train net output #38: loss/loss17 = 2.15178e-05 (* 0.0454545 = 9.78082e-07 loss)
I0404 16:06:19.175477 9252 solver.cpp:245] Train net output #39: loss/loss18 = 2.27611e-05 (* 0.0454545 = 1.03459e-06 loss)
I0404 16:06:19.175493 9252 solver.cpp:245] Train net output #40: loss/loss19 = 2.461e-05 (* 0.0454545 = 1.11864e-06 loss)
I0404 16:06:19.175506 9252 solver.cpp:245] Train net output #41: loss/loss20 = 2.56112e-05 (* 0.0454545 = 1.16415e-06 loss)
I0404 16:06:19.175520 9252 solver.cpp:245] Train net output #42: loss/loss21 = 2.16878e-05 (* 0.0454545 = 9.85811e-07 loss)
I0404 16:06:19.175534 9252 solver.cpp:245] Train net output #43: loss/loss22 = 2.29906e-05 (* 0.0454545 = 1.04503e-06 loss)
I0404 16:06:19.175545 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 16:06:19.175557 9252 solver.cpp:245] Train net output #45: total_confidence = 0.00637018
I0404 16:06:19.175571 9252 sgd_solver.cpp:106] Iteration 83000, lr = 0.00917
I0404 16:07:30.606639 9252 solver.cpp:229] Iteration 83500, loss = 0.68729
I0404 16:07:30.606768 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.71875
I0404 16:07:30.606788 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.3125
I0404 16:07:30.606801 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.40625
I0404 16:07:30.606813 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.21875
I0404 16:07:30.606825 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.5
I0404 16:07:30.606837 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375
I0404 16:07:30.606848 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625
I0404 16:07:30.606860 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625
I0404 16:07:30.606871 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375
I0404 16:07:30.606884 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875
I0404 16:07:30.606894 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 16:07:30.606906 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 16:07:30.606917 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 16:07:30.606928 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 16:07:30.606940 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 16:07:30.606950 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 16:07:30.606962 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 16:07:30.606973 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 16:07:30.606986 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 16:07:30.606997 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 16:07:30.607008 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 16:07:30.607019 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 16:07:30.607035 9252 solver.cpp:245] Train net output #22: loss/loss01 = 1.15319 (* 0.0454545 = 0.0524179 loss)
I0404 16:07:30.607049 9252 solver.cpp:245] Train net output #23: loss/loss02 = 1.99735 (* 0.0454545 = 0.0907888 loss)
I0404 16:07:30.607064 9252 solver.cpp:245] Train net output #24: loss/loss03 = 2.14989 (* 0.0454545 = 0.0977222 loss)
I0404 16:07:30.607077 9252 solver.cpp:245] Train net output #25: loss/loss04 = 2.70075 (* 0.0454545 = 0.122761 loss)
I0404 16:07:30.607090 9252 solver.cpp:245] Train net output #26: loss/loss05 = 1.97597 (* 0.0454545 = 0.0898168 loss)
I0404 16:07:30.607105 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.01968 (* 0.0454545 = 0.0918039 loss)
I0404 16:07:30.607117 9252 solver.cpp:245] Train net output #28: loss/loss07 = 1.1437 (* 0.0454545 = 0.0519865 loss)
I0404 16:07:30.607131 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.451574 (* 0.0454545 = 0.0205261 loss)
I0404 16:07:30.607144 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.318654 (* 0.0454545 = 0.0144843 loss)
I0404 16:07:30.607158 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.163731 (* 0.0454545 = 0.00744232 loss)
I0404 16:07:30.607172 9252 solver.cpp:245] Train net output #32: loss/loss11 = 8.04315e-06 (* 0.0454545 = 3.65598e-07 loss)
I0404 16:07:30.607187 9252 solver.cpp:245] Train net output #33: loss/loss12 = 7.693e-06 (* 0.0454545 = 3.49682e-07 loss)
I0404 16:07:30.607200 9252 solver.cpp:245] Train net output #34: loss/loss13 = 5.40178e-06 (* 0.0454545 = 2.45535e-07 loss)
I0404 16:07:30.607213 9252 solver.cpp:245] Train net output #35: loss/loss14 = 6.892e-06 (* 0.0454545 = 3.13273e-07 loss)
I0404 16:07:30.607228 9252 solver.cpp:245] Train net output #36: loss/loss15 = 6.97765e-06 (* 0.0454545 = 3.17166e-07 loss)
I0404 16:07:30.607241 9252 solver.cpp:245] Train net output #37: loss/loss16 = 6.75418e-06 (* 0.0454545 = 3.07008e-07 loss)
I0404 16:07:30.607255 9252 solver.cpp:245] Train net output #38: loss/loss17 = 5.40551e-06 (* 0.0454545 = 2.45705e-07 loss)
I0404 16:07:30.607286 9252 solver.cpp:245] Train net output #39: loss/loss18 = 7.43591e-06 (* 0.0454545 = 3.37996e-07 loss)
I0404 16:07:30.607301 9252 solver.cpp:245] Train net output #40: loss/loss19 = 5.67377e-06 (* 0.0454545 = 2.57899e-07 loss)
I0404 16:07:30.607316 9252 solver.cpp:245] Train net output #41: loss/loss20 = 6.19906e-06 (* 0.0454545 = 2.81775e-07 loss)
I0404 16:07:30.607329 9252 solver.cpp:245] Train net output #42: loss/loss21 = 6.4077e-06 (* 0.0454545 = 2.91259e-07 loss)
I0404 16:07:30.607342 9252 solver.cpp:245] Train net output #43: loss/loss22 = 5.64395e-06 (* 0.0454545 = 2.56543e-07 loss)
I0404 16:07:30.607354 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 16:07:30.607365 9252 solver.cpp:245] Train net output #45: total_confidence = 0.00870726
I0404 16:07:30.607379 9252 sgd_solver.cpp:106] Iteration 83500, lr = 0.009165
I0404 16:08:41.702541 9252 solver.cpp:229] Iteration 84000, loss = 0.678083
I0404 16:08:41.702657 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.59375
I0404 16:08:41.702677 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.4375
I0404 16:08:41.702689 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.4375
I0404 16:08:41.702702 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875
I0404 16:08:41.702713 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.53125
I0404 16:08:41.702725 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.46875
I0404 16:08:41.702738 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.78125
I0404 16:08:41.702751 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 1
I0404 16:08:41.702764 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 1
I0404 16:08:41.702775 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 16:08:41.702787 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 16:08:41.702798 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 16:08:41.702811 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 16:08:41.702821 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 16:08:41.702833 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 16:08:41.702844 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 16:08:41.702857 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 16:08:41.702867 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 16:08:41.702879 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 16:08:41.702890 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 16:08:41.702903 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 16:08:41.702913 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 16:08:41.702929 9252 solver.cpp:245] Train net output #22: loss/loss01 = 1.30998 (* 0.0454545 = 0.0595444 loss)
I0404 16:08:41.702944 9252 solver.cpp:245] Train net output #23: loss/loss02 = 1.84673 (* 0.0454545 = 0.0839422 loss)
I0404 16:08:41.702960 9252 solver.cpp:245] Train net output #24: loss/loss03 = 2.11129 (* 0.0454545 = 0.0959677 loss)
I0404 16:08:41.702972 9252 solver.cpp:245] Train net output #25: loss/loss04 = 2.79961 (* 0.0454545 = 0.127255 loss)
I0404 16:08:41.702986 9252 solver.cpp:245] Train net output #26: loss/loss05 = 1.85139 (* 0.0454545 = 0.0841541 loss)
I0404 16:08:41.702999 9252 solver.cpp:245] Train net output #27: loss/loss06 = 1.85572 (* 0.0454545 = 0.0843508 loss)
I0404 16:08:41.703012 9252 solver.cpp:245] Train net output #28: loss/loss07 = 0.847518 (* 0.0454545 = 0.0385235 loss)
I0404 16:08:41.703027 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.0951699 (* 0.0454545 = 0.0043259 loss)
I0404 16:08:41.703040 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.028569 (* 0.0454545 = 0.00129859 loss)
I0404 16:08:41.703054 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.00931358 (* 0.0454545 = 0.000423344 loss)
I0404 16:08:41.703068 9252 solver.cpp:245] Train net output #32: loss/loss11 = 1.3552e-05 (* 0.0454545 = 6.15999e-07 loss)
I0404 16:08:41.703083 9252 solver.cpp:245] Train net output #33: loss/loss12 = 1.19871e-05 (* 0.0454545 = 5.44868e-07 loss)
I0404 16:08:41.703096 9252 solver.cpp:245] Train net output #34: loss/loss13 = 1.35373e-05 (* 0.0454545 = 6.1533e-07 loss)
I0404 16:08:41.703110 9252 solver.cpp:245] Train net output #35: loss/loss14 = 1.28369e-05 (* 0.0454545 = 5.83494e-07 loss)
I0404 16:08:41.703124 9252 solver.cpp:245] Train net output #36: loss/loss15 = 1.14954e-05 (* 0.0454545 = 5.22518e-07 loss)
I0404 16:08:41.703137 9252 solver.cpp:245] Train net output #37: loss/loss16 = 6.85113e-06 (* 0.0454545 = 3.11415e-07 loss)
I0404 16:08:41.703151 9252 solver.cpp:245] Train net output #38: loss/loss17 = 9.4424e-06 (* 0.0454545 = 4.292e-07 loss)
I0404 16:08:41.703182 9252 solver.cpp:245] Train net output #39: loss/loss18 = 1.05155e-05 (* 0.0454545 = 4.77978e-07 loss)
I0404 16:08:41.703198 9252 solver.cpp:245] Train net output #40: loss/loss19 = 6.94799e-06 (* 0.0454545 = 3.15818e-07 loss)
I0404 16:08:41.703212 9252 solver.cpp:245] Train net output #41: loss/loss20 = 1.11193e-05 (* 0.0454545 = 5.05423e-07 loss)
I0404 16:08:41.703225 9252 solver.cpp:245] Train net output #42: loss/loss21 = 7.57394e-06 (* 0.0454545 = 3.4427e-07 loss)
I0404 16:08:41.703239 9252 solver.cpp:245] Train net output #43: loss/loss22 = 7.36528e-06 (* 0.0454545 = 3.34786e-07 loss)
I0404 16:08:41.703251 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 16:08:41.703263 9252 solver.cpp:245] Train net output #45: total_confidence = 0.0240105
I0404 16:08:41.703275 9252 sgd_solver.cpp:106] Iteration 84000, lr = 0.00916
I0404 16:09:53.247364 9252 solver.cpp:229] Iteration 84500, loss = 0.682726
I0404 16:09:53.247527 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.5
I0404 16:09:53.247547 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.28125
I0404 16:09:53.247560 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.46875
I0404 16:09:53.247572 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.3125
I0404 16:09:53.247584 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125
I0404 16:09:53.247596 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.53125
I0404 16:09:53.247608 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.875
I0404 16:09:53.247620 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.96875
I0404 16:09:53.247632 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875
I0404 16:09:53.247644 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 1
I0404 16:09:53.247656 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 16:09:53.247668 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 16:09:53.247679 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 16:09:53.247690 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 16:09:53.247702 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 16:09:53.247714 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 16:09:53.247725 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 16:09:53.247736 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 16:09:53.247750 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 16:09:53.247762 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 16:09:53.247773 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 16:09:53.247786 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 16:09:53.247800 9252 solver.cpp:245] Train net output #22: loss/loss01 = 1.66958 (* 0.0454545 = 0.0758902 loss)
I0404 16:09:53.247815 9252 solver.cpp:245] Train net output #23: loss/loss02 = 1.98509 (* 0.0454545 = 0.0902315 loss)
I0404 16:09:53.247829 9252 solver.cpp:245] Train net output #24: loss/loss03 = 1.98886 (* 0.0454545 = 0.0904029 loss)
I0404 16:09:53.247843 9252 solver.cpp:245] Train net output #25: loss/loss04 = 2.70554 (* 0.0454545 = 0.122979 loss)
I0404 16:09:53.247858 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.36568 (* 0.0454545 = 0.107531 loss)
I0404 16:09:53.247871 9252 solver.cpp:245] Train net output #27: loss/loss06 = 1.86302 (* 0.0454545 = 0.0846827 loss)
I0404 16:09:53.247884 9252 solver.cpp:245] Train net output #28: loss/loss07 = 0.667395 (* 0.0454545 = 0.0303361 loss)
I0404 16:09:53.247898 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.16812 (* 0.0454545 = 0.0076418 loss)
I0404 16:09:53.247912 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.163225 (* 0.0454545 = 0.00741932 loss)
I0404 16:09:53.247926 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.00339581 (* 0.0454545 = 0.000154355 loss)
I0404 16:09:53.247941 9252 solver.cpp:245] Train net output #32: loss/loss11 = 1.46405e-06 (* 0.0454545 = 6.65479e-08 loss)
I0404 16:09:53.247954 9252 solver.cpp:245] Train net output #33: loss/loss12 = 1.02446e-06 (* 0.0454545 = 4.65664e-08 loss)
I0404 16:09:53.247968 9252 solver.cpp:245] Train net output #34: loss/loss13 = 1.24426e-06 (* 0.0454545 = 5.65571e-08 loss)
I0404 16:09:53.247982 9252 solver.cpp:245] Train net output #35: loss/loss14 = 1.14367e-06 (* 0.0454545 = 5.1985e-08 loss)
I0404 16:09:53.247997 9252 solver.cpp:245] Train net output #36: loss/loss15 = 9.76031e-07 (* 0.0454545 = 4.43651e-08 loss)
I0404 16:09:53.248009 9252 solver.cpp:245] Train net output #37: loss/loss16 = 1.22936e-06 (* 0.0454545 = 5.58798e-08 loss)
I0404 16:09:53.248023 9252 solver.cpp:245] Train net output #38: loss/loss17 = 9.23876e-07 (* 0.0454545 = 4.19944e-08 loss)
I0404 16:09:53.248051 9252 solver.cpp:245] Train net output #39: loss/loss18 = 8.12116e-07 (* 0.0454545 = 3.69144e-08 loss)
I0404 16:09:53.248066 9252 solver.cpp:245] Train net output #40: loss/loss19 = 8.86623e-07 (* 0.0454545 = 4.0301e-08 loss)
I0404 16:09:53.248080 9252 solver.cpp:245] Train net output #41: loss/loss20 = 9.35052e-07 (* 0.0454545 = 4.25024e-08 loss)
I0404 16:09:53.248093 9252 solver.cpp:245] Train net output #42: loss/loss21 = 7.63687e-07 (* 0.0454545 = 3.47131e-08 loss)
I0404 16:09:53.248107 9252 solver.cpp:245] Train net output #43: loss/loss22 = 9.87208e-07 (* 0.0454545 = 4.48731e-08 loss)
I0404 16:09:53.248119 9252 solver.cpp:245] Train net output #44: total_accuracy = 0.03125
I0404 16:09:53.248131 9252 solver.cpp:245] Train net output #45: total_confidence = 0.0115359
I0404 16:09:53.248144 9252 sgd_solver.cpp:106] Iteration 84500, lr = 0.009155
I0404 16:11:04.140226 9252 solver.cpp:229] Iteration 85000, loss = 0.671853
I0404 16:11:04.140362 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.59375
I0404 16:11:04.140380 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.40625
I0404 16:11:04.140393 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.25
I0404 16:11:04.140405 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.28125
I0404 16:11:04.140418 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.375
I0404 16:11:04.140429 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.46875
I0404 16:11:04.140440 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75
I0404 16:11:04.140452 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625
I0404 16:11:04.140465 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375
I0404 16:11:04.140475 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875
I0404 16:11:04.140487 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 16:11:04.140499 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 16:11:04.140511 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 16:11:04.140522 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 16:11:04.140534 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 16:11:04.140545 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 16:11:04.140557 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 16:11:04.140568 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 16:11:04.140579 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 16:11:04.140590 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 16:11:04.140601 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 16:11:04.140612 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 16:11:04.140629 9252 solver.cpp:245] Train net output #22: loss/loss01 = 1.12883 (* 0.0454545 = 0.0513106 loss)
I0404 16:11:04.140642 9252 solver.cpp:245] Train net output #23: loss/loss02 = 2.17018 (* 0.0454545 = 0.0986447 loss)
I0404 16:11:04.140656 9252 solver.cpp:245] Train net output #24: loss/loss03 = 2.57401 (* 0.0454545 = 0.117 loss)
I0404 16:11:04.140671 9252 solver.cpp:245] Train net output #25: loss/loss04 = 2.37569 (* 0.0454545 = 0.107986 loss)
I0404 16:11:04.140684 9252 solver.cpp:245] Train net output #26: loss/loss05 = 2.56213 (* 0.0454545 = 0.116461 loss)
I0404 16:11:04.140698 9252 solver.cpp:245] Train net output #27: loss/loss06 = 2.02572 (* 0.0454545 = 0.0920781 loss)
I0404 16:11:04.140712 9252 solver.cpp:245] Train net output #28: loss/loss07 = 0.922863 (* 0.0454545 = 0.0419483 loss)
I0404 16:11:04.140725 9252 solver.cpp:245] Train net output #29: loss/loss08 = 0.401604 (* 0.0454545 = 0.0182547 loss)
I0404 16:11:04.140738 9252 solver.cpp:245] Train net output #30: loss/loss09 = 0.283068 (* 0.0454545 = 0.0128667 loss)
I0404 16:11:04.140755 9252 solver.cpp:245] Train net output #31: loss/loss10 = 0.220708 (* 0.0454545 = 0.0100322 loss)
I0404 16:11:04.140770 9252 solver.cpp:245] Train net output #32: loss/loss11 = 6.75045e-06 (* 0.0454545 = 3.06838e-07 loss)
I0404 16:11:04.140784 9252 solver.cpp:245] Train net output #33: loss/loss12 = 5.81532e-06 (* 0.0454545 = 2.64333e-07 loss)
I0404 16:11:04.140799 9252 solver.cpp:245] Train net output #34: loss/loss13 = 5.69987e-06 (* 0.0454545 = 2.59085e-07 loss)
I0404 16:11:04.140811 9252 solver.cpp:245] Train net output #35: loss/loss14 = 5.90849e-06 (* 0.0454545 = 2.68568e-07 loss)
I0404 16:11:04.140825 9252 solver.cpp:245] Train net output #36: loss/loss15 = 4.74985e-06 (* 0.0454545 = 2.15902e-07 loss)
I0404 16:11:04.140839 9252 solver.cpp:245] Train net output #37: loss/loss16 = 5.38691e-06 (* 0.0454545 = 2.44859e-07 loss)
I0404 16:11:04.140852 9252 solver.cpp:245] Train net output #38: loss/loss17 = 4.99203e-06 (* 0.0454545 = 2.26911e-07 loss)
I0404 16:11:04.140884 9252 solver.cpp:245] Train net output #39: loss/loss18 = 5.11122e-06 (* 0.0454545 = 2.32328e-07 loss)
I0404 16:11:04.140899 9252 solver.cpp:245] Train net output #40: loss/loss19 = 4.57476e-06 (* 0.0454545 = 2.07944e-07 loss)
I0404 16:11:04.140914 9252 solver.cpp:245] Train net output #41: loss/loss20 = 5.3236e-06 (* 0.0454545 = 2.41982e-07 loss)
I0404 16:11:04.140928 9252 solver.cpp:245] Train net output #42: loss/loss21 = 4.42574e-06 (* 0.0454545 = 2.0117e-07 loss)
I0404 16:11:04.140943 9252 solver.cpp:245] Train net output #43: loss/loss22 = 4.82438e-06 (* 0.0454545 = 2.1929e-07 loss)
I0404 16:11:04.140954 9252 solver.cpp:245] Train net output #44: total_accuracy = 0
I0404 16:11:04.140965 9252 solver.cpp:245] Train net output #45: total_confidence = 0.0098299
I0404 16:11:04.140981 9252 sgd_solver.cpp:106] Iteration 85000, lr = 0.00915
I0404 16:12:15.295441 9252 solver.cpp:229] Iteration 85500, loss = 0.672208
I0404 16:12:15.295584 9252 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.59375
I0404 16:12:15.295604 9252 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.5
I0404 16:12:15.295616 9252 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.25
I0404 16:12:15.295629 9252 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.375
I0404 16:12:15.295640 9252 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.59375
I0404 16:12:15.295652 9252 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.6875
I0404 16:12:15.295663 9252 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.84375
I0404 16:12:15.295675 9252 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875
I0404 16:12:15.295687 9252 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875
I0404 16:12:15.295698 9252 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875
I0404 16:12:15.295711 9252 solver.cpp:245] Train net output #10: loss/accuracy11 = 1
I0404 16:12:15.295722 9252 solver.cpp:245] Train net output #11: loss/accuracy12 = 1
I0404 16:12:15.295733 9252 solver.cpp:245] Train net output #12: loss/accuracy13 = 1
I0404 16:12:15.295747 9252 solver.cpp:245] Train net output #13: loss/accuracy14 = 1
I0404 16:12:15.295759 9252 solver.cpp:245] Train net output #14: loss/accuracy15 = 1
I0404 16:12:15.295770 9252 solver.cpp:245] Train net output #15: loss/accuracy16 = 1
I0404 16:12:15.295783 9252 solver.cpp:245] Train net output #16: loss/accuracy17 = 1
I0404 16:12:15.295794 9252 solver.cpp:245] Train net output #17: loss/accuracy18 = 1
I0404 16:12:15.295805 9252 solver.cpp:245] Train net output #18: loss/accuracy19 = 1
I0404 16:12:15.295816 9252 solver.cpp:245] Train net output #19: loss/accuracy20 = 1
I0404 16:12:15.295828 9252 solver.cpp:245] Train net output #20: loss/accuracy21 = 1
I0404 16:12:15.295840 9252 solver.cpp:245] Train net output #21: loss/accuracy22 = 1
I0404 16:12:15.295855 9252 solver.cpp:245] Train net output #22: loss/loss01 = 1.33762 (* 0.0454545 = 0.060801 loss)
I0404 16:12:15.295871 9252 solver.cpp:245] Train net output #23: loss/loss02 = 1.74009 (* 0.0454545 = 0.0790949 loss)
I0404 16:12:15.295883 9252 solver.cpp:245] Train net output #24: loss/loss03 = 2.28857 (* 0.0454545 = 0.104026 loss)
I0404 16:12:15.295897 9252 solver.cpp:245] Train net output #25: loss/loss04 = 2.16269 (* 0.0454545 = 0.0983043 loss)
I0404 16:12:15.295910 9252 solver.cpp:245] Train net output #26: loss/loss05 = 1.67149 (* 0.0454545 = 0.0759768 loss)
I0404 16:12:15.295924 9252 solver.cpp:245] Train net output #27: loss/loss06 = 1.46345 (* 0.0454545 = 0.0665206 loss)
I0404 16:12:15.29593
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment