Last active
April 27, 2016 06:45
-
-
Save stas-sl/9c42f899d38f28fe9b2d9a07819e6965 to your computer and use it in GitHub Desktop.
This file has been truncated, but you can view the full file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
I0425 10:06:42.668747 22523 solver.cpp:280] Solving mixed_lstm | |
I0425 10:06:42.668761 22523 solver.cpp:281] Learning Rate Policy: step | |
I0425 10:06:42.687485 22523 solver.cpp:338] Iteration 0, Testing net (#0) | |
I0425 10:07:34.893544 22523 solver.cpp:393] Test loss: 1.17466 | |
I0425 10:07:34.894027 22523 solver.cpp:406] Test net output #0: loss1/accuracy = 0.822526 | |
I0425 10:07:34.894048 22523 solver.cpp:406] Test net output #1: loss1/accuracy01 = 0.92 | |
I0425 10:07:34.894062 22523 solver.cpp:406] Test net output #2: loss1/accuracy02 = 0.723 | |
I0425 10:07:34.894073 22523 solver.cpp:406] Test net output #3: loss1/accuracy03 = 0.567 | |
I0425 10:07:34.894085 22523 solver.cpp:406] Test net output #4: loss1/accuracy04 = 0.553 | |
I0425 10:07:34.894098 22523 solver.cpp:406] Test net output #5: loss1/accuracy05 = 0.616 | |
I0425 10:07:34.894109 22523 solver.cpp:406] Test net output #6: loss1/accuracy06 = 0.702 | |
I0425 10:07:34.894120 22523 solver.cpp:406] Test net output #7: loss1/accuracy07 = 0.857 | |
I0425 10:07:34.894132 22523 solver.cpp:406] Test net output #8: loss1/accuracy08 = 0.92 | |
I0425 10:07:34.894145 22523 solver.cpp:406] Test net output #9: loss1/accuracy09 = 0.983 | |
I0425 10:07:34.894155 22523 solver.cpp:406] Test net output #10: loss1/accuracy10 = 0.995 | |
I0425 10:07:34.894167 22523 solver.cpp:406] Test net output #11: loss1/accuracy11 = 1 | |
I0425 10:07:34.894179 22523 solver.cpp:406] Test net output #12: loss1/accuracy12 = 1 | |
I0425 10:07:34.894191 22523 solver.cpp:406] Test net output #13: loss1/accuracy13 = 1 | |
I0425 10:07:34.894204 22523 solver.cpp:406] Test net output #14: loss1/accuracy14 = 1 | |
I0425 10:07:34.894215 22523 solver.cpp:406] Test net output #15: loss1/accuracy15 = 1 | |
I0425 10:07:34.894227 22523 solver.cpp:406] Test net output #16: loss1/accuracy16 = 1 | |
I0425 10:07:34.894238 22523 solver.cpp:406] Test net output #17: loss1/accuracy17 = 1 | |
I0425 10:07:34.894249 22523 solver.cpp:406] Test net output #18: loss1/accuracy18 = 1 | |
I0425 10:07:34.894260 22523 solver.cpp:406] Test net output #19: loss1/accuracy19 = 1 | |
I0425 10:07:34.894273 22523 solver.cpp:406] Test net output #20: loss1/accuracy20 = 1 | |
I0425 10:07:34.894284 22523 solver.cpp:406] Test net output #21: loss1/accuracy21 = 1 | |
I0425 10:07:34.894294 22523 solver.cpp:406] Test net output #22: loss1/accuracy22 = 1 | |
I0425 10:07:34.894306 22523 solver.cpp:406] Test net output #23: loss1/accuracy_incl_empty = 0.941001 | |
I0425 10:07:34.894318 22523 solver.cpp:406] Test net output #24: loss1/accuracy_top3 = 0.951151 | |
I0425 10:07:34.894335 22523 solver.cpp:406] Test net output #25: loss1/cross_entropy_loss = 0.61019 (* 0.3 = 0.183057 loss) | |
I0425 10:07:34.894351 22523 solver.cpp:406] Test net output #26: loss1/cross_entropy_loss_incl_empty = 0.200518 (* 0.3 = 0.0601554 loss) | |
I0425 10:07:34.894366 22523 solver.cpp:406] Test net output #27: loss1/loss01 = 0.377248 (* 0.0272727 = 0.0102886 loss) | |
I0425 10:07:34.894379 22523 solver.cpp:406] Test net output #28: loss1/loss02 = 0.9168 (* 0.0272727 = 0.0250036 loss) | |
I0425 10:07:34.894393 22523 solver.cpp:406] Test net output #29: loss1/loss03 = 1.28908 (* 0.0272727 = 0.0351567 loss) | |
I0425 10:07:34.894407 22523 solver.cpp:406] Test net output #30: loss1/loss04 = 1.32121 (* 0.0272727 = 0.036033 loss) | |
I0425 10:07:34.894420 22523 solver.cpp:406] Test net output #31: loss1/loss05 = 1.13554 (* 0.0272727 = 0.0309692 loss) | |
I0425 10:07:34.894434 22523 solver.cpp:406] Test net output #32: loss1/loss06 = 0.874274 (* 0.0272727 = 0.0238438 loss) | |
I0425 10:07:34.894448 22523 solver.cpp:406] Test net output #33: loss1/loss07 = 0.510629 (* 0.0272727 = 0.0139262 loss) | |
I0425 10:07:34.894462 22523 solver.cpp:406] Test net output #34: loss1/loss08 = 0.264151 (* 0.0272727 = 0.00720411 loss) | |
I0425 10:07:34.894475 22523 solver.cpp:406] Test net output #35: loss1/loss09 = 0.0765238 (* 0.0272727 = 0.00208701 loss) | |
I0425 10:07:34.894490 22523 solver.cpp:406] Test net output #36: loss1/loss10 = 0.0356554 (* 0.0272727 = 0.000972419 loss) | |
I0425 10:07:34.894505 22523 solver.cpp:406] Test net output #37: loss1/loss11 = 0.0239264 (* 0.0272727 = 0.000652538 loss) | |
I0425 10:07:34.894517 22523 solver.cpp:406] Test net output #38: loss1/loss12 = 0.0162795 (* 0.0272727 = 0.000443986 loss) | |
I0425 10:07:34.894531 22523 solver.cpp:406] Test net output #39: loss1/loss13 = 0.011529 (* 0.0272727 = 0.000314428 loss) | |
I0425 10:07:34.894564 22523 solver.cpp:406] Test net output #40: loss1/loss14 = 0.0073462 (* 0.0272727 = 0.000200351 loss) | |
I0425 10:07:34.894579 22523 solver.cpp:406] Test net output #41: loss1/loss15 = 0.0047215 (* 0.0272727 = 0.000128768 loss) | |
I0425 10:07:34.894593 22523 solver.cpp:406] Test net output #42: loss1/loss16 = 0.00209254 (* 0.0272727 = 5.70692e-05 loss) | |
I0425 10:07:34.894608 22523 solver.cpp:406] Test net output #43: loss1/loss17 = 0.000443415 (* 0.0272727 = 1.20931e-05 loss) | |
I0425 10:07:34.894621 22523 solver.cpp:406] Test net output #44: loss1/loss18 = 0.000239388 (* 0.0272727 = 6.52877e-06 loss) | |
I0425 10:07:34.894635 22523 solver.cpp:406] Test net output #45: loss1/loss19 = 0.000157837 (* 0.0272727 = 4.30464e-06 loss) | |
I0425 10:07:34.894649 22523 solver.cpp:406] Test net output #46: loss1/loss20 = 0.000128905 (* 0.0272727 = 3.5156e-06 loss) | |
I0425 10:07:34.894664 22523 solver.cpp:406] Test net output #47: loss1/loss21 = 0.000113549 (* 0.0272727 = 3.0968e-06 loss) | |
I0425 10:07:34.894676 22523 solver.cpp:406] Test net output #48: loss1/loss22 = 9.77709e-05 (* 0.0272727 = 2.66648e-06 loss) | |
I0425 10:07:34.894688 22523 solver.cpp:406] Test net output #49: loss2/accuracy = 0.915257 | |
I0425 10:07:34.894701 22523 solver.cpp:406] Test net output #50: loss2/accuracy01 = 0.964 | |
I0425 10:07:34.894712 22523 solver.cpp:406] Test net output #51: loss2/accuracy02 = 0.918 | |
I0425 10:07:34.894723 22523 solver.cpp:406] Test net output #52: loss2/accuracy03 = 0.799 | |
I0425 10:07:34.894734 22523 solver.cpp:406] Test net output #53: loss2/accuracy04 = 0.679 | |
I0425 10:07:34.894745 22523 solver.cpp:406] Test net output #54: loss2/accuracy05 = 0.703 | |
I0425 10:07:34.894757 22523 solver.cpp:406] Test net output #55: loss2/accuracy06 = 0.763 | |
I0425 10:07:34.894768 22523 solver.cpp:406] Test net output #56: loss2/accuracy07 = 0.896 | |
I0425 10:07:34.894779 22523 solver.cpp:406] Test net output #57: loss2/accuracy08 = 0.936 | |
I0425 10:07:34.894791 22523 solver.cpp:406] Test net output #58: loss2/accuracy09 = 0.984 | |
I0425 10:07:34.894803 22523 solver.cpp:406] Test net output #59: loss2/accuracy10 = 0.994 | |
I0425 10:07:34.894814 22523 solver.cpp:406] Test net output #60: loss2/accuracy11 = 0.999 | |
I0425 10:07:34.894824 22523 solver.cpp:406] Test net output #61: loss2/accuracy12 = 1 | |
I0425 10:07:34.894835 22523 solver.cpp:406] Test net output #62: loss2/accuracy13 = 1 | |
I0425 10:07:34.894847 22523 solver.cpp:406] Test net output #63: loss2/accuracy14 = 1 | |
I0425 10:07:34.894857 22523 solver.cpp:406] Test net output #64: loss2/accuracy15 = 1 | |
I0425 10:07:34.894868 22523 solver.cpp:406] Test net output #65: loss2/accuracy16 = 1 | |
I0425 10:07:34.894879 22523 solver.cpp:406] Test net output #66: loss2/accuracy17 = 1 | |
I0425 10:07:34.894891 22523 solver.cpp:406] Test net output #67: loss2/accuracy18 = 1 | |
I0425 10:07:34.894901 22523 solver.cpp:406] Test net output #68: loss2/accuracy19 = 1 | |
I0425 10:07:34.894912 22523 solver.cpp:406] Test net output #69: loss2/accuracy20 = 1 | |
I0425 10:07:34.894923 22523 solver.cpp:406] Test net output #70: loss2/accuracy21 = 1 | |
I0425 10:07:34.894934 22523 solver.cpp:406] Test net output #71: loss2/accuracy22 = 1 | |
I0425 10:07:34.894945 22523 solver.cpp:406] Test net output #72: loss2/accuracy_incl_empty = 0.972046 | |
I0425 10:07:34.894956 22523 solver.cpp:406] Test net output #73: loss2/accuracy_top3 = 0.974253 | |
I0425 10:07:34.894970 22523 solver.cpp:406] Test net output #74: loss2/cross_entropy_loss = 0.330422 (* 0.3 = 0.0991267 loss) | |
I0425 10:07:34.894984 22523 solver.cpp:406] Test net output #75: loss2/cross_entropy_loss_incl_empty = 0.107651 (* 0.3 = 0.0322954 loss) | |
I0425 10:07:34.894999 22523 solver.cpp:406] Test net output #76: loss2/loss01 = 0.193632 (* 0.0272727 = 0.00528088 loss) | |
I0425 10:07:34.895012 22523 solver.cpp:406] Test net output #77: loss2/loss02 = 0.37607 (* 0.0272727 = 0.0102564 loss) | |
I0425 10:07:34.895040 22523 solver.cpp:406] Test net output #78: loss2/loss03 = 0.669993 (* 0.0272727 = 0.0182725 loss) | |
I0425 10:07:34.895056 22523 solver.cpp:406] Test net output #79: loss2/loss04 = 0.907505 (* 0.0272727 = 0.0247501 loss) | |
I0425 10:07:34.895069 22523 solver.cpp:406] Test net output #80: loss2/loss05 = 0.840621 (* 0.0272727 = 0.022926 loss) | |
I0425 10:07:34.895083 22523 solver.cpp:406] Test net output #81: loss2/loss06 = 0.666739 (* 0.0272727 = 0.0181838 loss) | |
I0425 10:07:34.895097 22523 solver.cpp:406] Test net output #82: loss2/loss07 = 0.361085 (* 0.0272727 = 0.00984777 loss) | |
I0425 10:07:34.895112 22523 solver.cpp:406] Test net output #83: loss2/loss08 = 0.193397 (* 0.0272727 = 0.00527445 loss) | |
I0425 10:07:34.895125 22523 solver.cpp:406] Test net output #84: loss2/loss09 = 0.0655005 (* 0.0272727 = 0.00178638 loss) | |
I0425 10:07:34.895139 22523 solver.cpp:406] Test net output #85: loss2/loss10 = 0.0268282 (* 0.0272727 = 0.000731679 loss) | |
I0425 10:07:34.895153 22523 solver.cpp:406] Test net output #86: loss2/loss11 = 0.0144892 (* 0.0272727 = 0.000395161 loss) | |
I0425 10:07:34.895166 22523 solver.cpp:406] Test net output #87: loss2/loss12 = 0.00944492 (* 0.0272727 = 0.000257589 loss) | |
I0425 10:07:34.895180 22523 solver.cpp:406] Test net output #88: loss2/loss13 = 0.00581651 (* 0.0272727 = 0.000158632 loss) | |
I0425 10:07:34.895195 22523 solver.cpp:406] Test net output #89: loss2/loss14 = 0.00368908 (* 0.0272727 = 0.000100611 loss) | |
I0425 10:07:34.895205 22523 solver.cpp:406] Test net output #90: loss2/loss15 = 0.00227243 (* 0.0272727 = 6.19754e-05 loss) | |
I0425 10:07:34.895215 22523 solver.cpp:406] Test net output #91: loss2/loss16 = 0.000740336 (* 0.0272727 = 2.0191e-05 loss) | |
I0425 10:07:34.895231 22523 solver.cpp:406] Test net output #92: loss2/loss17 = 0.000100104 (* 0.0272727 = 2.7301e-06 loss) | |
I0425 10:07:34.895246 22523 solver.cpp:406] Test net output #93: loss2/loss18 = 5.50236e-05 (* 0.0272727 = 1.50064e-06 loss) | |
I0425 10:07:34.895262 22523 solver.cpp:406] Test net output #94: loss2/loss19 = 3.4113e-05 (* 0.0272727 = 9.30355e-07 loss) | |
I0425 10:07:34.895275 22523 solver.cpp:406] Test net output #95: loss2/loss20 = 2.50519e-05 (* 0.0272727 = 6.83233e-07 loss) | |
I0425 10:07:34.895289 22523 solver.cpp:406] Test net output #96: loss2/loss21 = 2.2039e-05 (* 0.0272727 = 6.01064e-07 loss) | |
I0425 10:07:34.895303 22523 solver.cpp:406] Test net output #97: loss2/loss22 = 2.09788e-05 (* 0.0272727 = 5.7215e-07 loss) | |
I0425 10:07:34.895315 22523 solver.cpp:406] Test net output #98: loss3/accuracy = 0.944211 | |
I0425 10:07:34.895326 22523 solver.cpp:406] Test net output #99: loss3/accuracy01 = 0.967 | |
I0425 10:07:34.895337 22523 solver.cpp:406] Test net output #100: loss3/accuracy02 = 0.952 | |
I0425 10:07:34.895364 22523 solver.cpp:406] Test net output #101: loss3/accuracy03 = 0.954 | |
I0425 10:07:34.895380 22523 solver.cpp:406] Test net output #102: loss3/accuracy04 = 0.946 | |
I0425 10:07:34.895391 22523 solver.cpp:406] Test net output #103: loss3/accuracy05 = 0.941 | |
I0425 10:07:34.895402 22523 solver.cpp:406] Test net output #104: loss3/accuracy06 = 0.914 | |
I0425 10:07:34.895413 22523 solver.cpp:406] Test net output #105: loss3/accuracy07 = 0.942 | |
I0425 10:07:34.895424 22523 solver.cpp:406] Test net output #106: loss3/accuracy08 = 0.975 | |
I0425 10:07:34.895436 22523 solver.cpp:406] Test net output #107: loss3/accuracy09 = 0.985 | |
I0425 10:07:34.895447 22523 solver.cpp:406] Test net output #108: loss3/accuracy10 = 0.995 | |
I0425 10:07:34.895458 22523 solver.cpp:406] Test net output #109: loss3/accuracy11 = 0.999 | |
I0425 10:07:34.895469 22523 solver.cpp:406] Test net output #110: loss3/accuracy12 = 0.999 | |
I0425 10:07:34.895480 22523 solver.cpp:406] Test net output #111: loss3/accuracy13 = 0.999 | |
I0425 10:07:34.895500 22523 solver.cpp:406] Test net output #112: loss3/accuracy14 = 0.999 | |
I0425 10:07:34.895522 22523 solver.cpp:406] Test net output #113: loss3/accuracy15 = 1 | |
I0425 10:07:34.895544 22523 solver.cpp:406] Test net output #114: loss3/accuracy16 = 1 | |
I0425 10:07:34.895571 22523 solver.cpp:406] Test net output #115: loss3/accuracy17 = 1 | |
I0425 10:07:34.895584 22523 solver.cpp:406] Test net output #116: loss3/accuracy18 = 1 | |
I0425 10:07:34.895596 22523 solver.cpp:406] Test net output #117: loss3/accuracy19 = 1 | |
I0425 10:07:34.895606 22523 solver.cpp:406] Test net output #118: loss3/accuracy20 = 1 | |
I0425 10:07:34.895617 22523 solver.cpp:406] Test net output #119: loss3/accuracy21 = 1 | |
I0425 10:07:34.895628 22523 solver.cpp:406] Test net output #120: loss3/accuracy22 = 1 | |
I0425 10:07:34.895639 22523 solver.cpp:406] Test net output #121: loss3/accuracy_incl_empty = 0.980864 | |
I0425 10:07:34.895654 22523 solver.cpp:406] Test net output #122: loss3/accuracy_top3 = 0.978543 | |
I0425 10:07:34.895680 22523 solver.cpp:406] Test net output #123: loss3/cross_entropy_loss = 0.239992 (* 1 = 0.239992 loss) | |
I0425 10:07:34.895702 22523 solver.cpp:406] Test net output #124: loss3/cross_entropy_loss_incl_empty = 0.0812259 (* 1 = 0.0812259 loss) | |
I0425 10:07:34.895717 22523 solver.cpp:406] Test net output #125: loss3/loss01 = 0.164585 (* 0.0909091 = 0.0149623 loss) | |
I0425 10:07:34.895731 22523 solver.cpp:406] Test net output #126: loss3/loss02 = 0.23969 (* 0.0909091 = 0.02179 loss) | |
I0425 10:07:34.895745 22523 solver.cpp:406] Test net output #127: loss3/loss03 = 0.212758 (* 0.0909091 = 0.0193417 loss) | |
I0425 10:07:34.895759 22523 solver.cpp:406] Test net output #128: loss3/loss04 = 0.255293 (* 0.0909091 = 0.0232084 loss) | |
I0425 10:07:34.895772 22523 solver.cpp:406] Test net output #129: loss3/loss05 = 0.274379 (* 0.0909091 = 0.0249436 loss) | |
I0425 10:07:34.895787 22523 solver.cpp:406] Test net output #130: loss3/loss06 = 0.299142 (* 0.0909091 = 0.0271947 loss) | |
I0425 10:07:34.895802 22523 solver.cpp:406] Test net output #131: loss3/loss07 = 0.22632 (* 0.0909091 = 0.0205745 loss) | |
I0425 10:07:34.895817 22523 solver.cpp:406] Test net output #132: loss3/loss08 = 0.111592 (* 0.0909091 = 0.0101447 loss) | |
I0425 10:07:34.895833 22523 solver.cpp:406] Test net output #133: loss3/loss09 = 0.0531159 (* 0.0909091 = 0.00482872 loss) | |
I0425 10:07:34.895845 22523 solver.cpp:406] Test net output #134: loss3/loss10 = 0.0247186 (* 0.0909091 = 0.00224715 loss) | |
I0425 10:07:34.895859 22523 solver.cpp:406] Test net output #135: loss3/loss11 = 0.0161298 (* 0.0909091 = 0.00146634 loss) | |
I0425 10:07:34.895874 22523 solver.cpp:406] Test net output #136: loss3/loss12 = 0.00943379 (* 0.0909091 = 0.000857618 loss) | |
I0425 10:07:34.895887 22523 solver.cpp:406] Test net output #137: loss3/loss13 = 0.00646112 (* 0.0909091 = 0.000587375 loss) | |
I0425 10:07:34.895900 22523 solver.cpp:406] Test net output #138: loss3/loss14 = 0.0048245 (* 0.0909091 = 0.000438591 loss) | |
I0425 10:07:34.895915 22523 solver.cpp:406] Test net output #139: loss3/loss15 = 0.00359742 (* 0.0909091 = 0.000327038 loss) | |
I0425 10:07:34.895928 22523 solver.cpp:406] Test net output #140: loss3/loss16 = 0.00188496 (* 0.0909091 = 0.00017136 loss) | |
I0425 10:07:34.895942 22523 solver.cpp:406] Test net output #141: loss3/loss17 = 0.000649557 (* 0.0909091 = 5.90506e-05 loss) | |
I0425 10:07:34.895956 22523 solver.cpp:406] Test net output #142: loss3/loss18 = 0.0002564 (* 0.0909091 = 2.33091e-05 loss) | |
I0425 10:07:34.895972 22523 solver.cpp:406] Test net output #143: loss3/loss19 = 7.79816e-05 (* 0.0909091 = 7.08923e-06 loss) | |
I0425 10:07:34.895985 22523 solver.cpp:406] Test net output #144: loss3/loss20 = 4.36389e-05 (* 0.0909091 = 3.96717e-06 loss) | |
I0425 10:07:34.895999 22523 solver.cpp:406] Test net output #145: loss3/loss21 = 2.14958e-05 (* 0.0909091 = 1.95417e-06 loss) | |
I0425 10:07:34.896013 22523 solver.cpp:406] Test net output #146: loss3/loss22 = 1.49871e-05 (* 0.0909091 = 1.36246e-06 loss) | |
I0425 10:07:34.896025 22523 solver.cpp:406] Test net output #147: total_accuracy = 0.859 | |
I0425 10:07:34.896037 22523 solver.cpp:406] Test net output #148: total_accuracy_not_rec = 0.807 | |
I0425 10:07:34.896049 22523 solver.cpp:406] Test net output #149: total_confidence = 0.818409 | |
I0425 10:07:34.896070 22523 solver.cpp:406] Test net output #150: total_confidence_nor_rec = 0.692034 | |
I0425 10:07:34.896085 22523 solver.cpp:338] Iteration 0, Testing net (#1) | |
I0425 10:08:27.183346 22523 solver.cpp:393] Test loss: 2.39797 | |
I0425 10:08:27.183483 22523 solver.cpp:406] Test net output #0: loss1/accuracy = 0.746234 | |
I0425 10:08:27.183503 22523 solver.cpp:406] Test net output #1: loss1/accuracy01 = 0.854 | |
I0425 10:08:27.183516 22523 solver.cpp:406] Test net output #2: loss1/accuracy02 = 0.688 | |
I0425 10:08:27.183528 22523 solver.cpp:406] Test net output #3: loss1/accuracy03 = 0.504 | |
I0425 10:08:27.183540 22523 solver.cpp:406] Test net output #4: loss1/accuracy04 = 0.505 | |
I0425 10:08:27.183552 22523 solver.cpp:406] Test net output #5: loss1/accuracy05 = 0.546 | |
I0425 10:08:27.183564 22523 solver.cpp:406] Test net output #6: loss1/accuracy06 = 0.632 | |
I0425 10:08:27.183576 22523 solver.cpp:406] Test net output #7: loss1/accuracy07 = 0.744 | |
I0425 10:08:27.183588 22523 solver.cpp:406] Test net output #8: loss1/accuracy08 = 0.828 | |
I0425 10:08:27.183599 22523 solver.cpp:406] Test net output #9: loss1/accuracy09 = 0.893 | |
I0425 10:08:27.183610 22523 solver.cpp:406] Test net output #10: loss1/accuracy10 = 0.905 | |
I0425 10:08:27.183622 22523 solver.cpp:406] Test net output #11: loss1/accuracy11 = 0.909 | |
I0425 10:08:27.183634 22523 solver.cpp:406] Test net output #12: loss1/accuracy12 = 0.924 | |
I0425 10:08:27.183645 22523 solver.cpp:406] Test net output #13: loss1/accuracy13 = 0.941 | |
I0425 10:08:27.183656 22523 solver.cpp:406] Test net output #14: loss1/accuracy14 = 0.95 | |
I0425 10:08:27.183668 22523 solver.cpp:406] Test net output #15: loss1/accuracy15 = 0.965 | |
I0425 10:08:27.183679 22523 solver.cpp:406] Test net output #16: loss1/accuracy16 = 0.971 | |
I0425 10:08:27.183691 22523 solver.cpp:406] Test net output #17: loss1/accuracy17 = 0.991 | |
I0425 10:08:27.183702 22523 solver.cpp:406] Test net output #18: loss1/accuracy18 = 0.993 | |
I0425 10:08:27.183714 22523 solver.cpp:406] Test net output #19: loss1/accuracy19 = 0.995 | |
I0425 10:08:27.183727 22523 solver.cpp:406] Test net output #20: loss1/accuracy20 = 0.998 | |
I0425 10:08:27.183737 22523 solver.cpp:406] Test net output #21: loss1/accuracy21 = 1 | |
I0425 10:08:27.183748 22523 solver.cpp:406] Test net output #22: loss1/accuracy22 = 1 | |
I0425 10:08:27.183760 22523 solver.cpp:406] Test net output #23: loss1/accuracy_incl_empty = 0.888864 | |
I0425 10:08:27.183771 22523 solver.cpp:406] Test net output #24: loss1/accuracy_top3 = 0.889193 | |
I0425 10:08:27.183789 22523 solver.cpp:406] Test net output #25: loss1/cross_entropy_loss = 0.876657 (* 0.3 = 0.262997 loss) | |
I0425 10:08:27.183804 22523 solver.cpp:406] Test net output #26: loss1/cross_entropy_loss_incl_empty = 0.388629 (* 0.3 = 0.116589 loss) | |
I0425 10:08:27.183817 22523 solver.cpp:406] Test net output #27: loss1/loss01 = 0.613018 (* 0.0272727 = 0.0167187 loss) | |
I0425 10:08:27.183831 22523 solver.cpp:406] Test net output #28: loss1/loss02 = 1.04516 (* 0.0272727 = 0.0285043 loss) | |
I0425 10:08:27.183845 22523 solver.cpp:406] Test net output #29: loss1/loss03 = 1.4868 (* 0.0272727 = 0.0405491 loss) | |
I0425 10:08:27.183858 22523 solver.cpp:406] Test net output #30: loss1/loss04 = 1.49407 (* 0.0272727 = 0.0407474 loss) | |
I0425 10:08:27.183872 22523 solver.cpp:406] Test net output #31: loss1/loss05 = 1.39119 (* 0.0272727 = 0.0379416 loss) | |
I0425 10:08:27.183886 22523 solver.cpp:406] Test net output #32: loss1/loss06 = 1.17627 (* 0.0272727 = 0.0320802 loss) | |
I0425 10:08:27.183899 22523 solver.cpp:406] Test net output #33: loss1/loss07 = 0.867874 (* 0.0272727 = 0.0236693 loss) | |
I0425 10:08:27.183913 22523 solver.cpp:406] Test net output #34: loss1/loss08 = 0.593474 (* 0.0272727 = 0.0161857 loss) | |
I0425 10:08:27.183928 22523 solver.cpp:406] Test net output #35: loss1/loss09 = 0.391683 (* 0.0272727 = 0.0106823 loss) | |
I0425 10:08:27.183941 22523 solver.cpp:406] Test net output #36: loss1/loss10 = 0.371884 (* 0.0272727 = 0.0101423 loss) | |
I0425 10:08:27.183955 22523 solver.cpp:406] Test net output #37: loss1/loss11 = 0.377967 (* 0.0272727 = 0.0103082 loss) | |
I0425 10:08:27.183969 22523 solver.cpp:406] Test net output #38: loss1/loss12 = 0.347726 (* 0.0272727 = 0.00948343 loss) | |
I0425 10:08:27.184000 22523 solver.cpp:406] Test net output #39: loss1/loss13 = 0.284706 (* 0.0272727 = 0.00776472 loss) | |
I0425 10:08:27.184015 22523 solver.cpp:406] Test net output #40: loss1/loss14 = 0.253096 (* 0.0272727 = 0.00690263 loss) | |
I0425 10:08:27.184029 22523 solver.cpp:406] Test net output #41: loss1/loss15 = 0.192985 (* 0.0272727 = 0.00526323 loss) | |
I0425 10:08:27.184043 22523 solver.cpp:406] Test net output #42: loss1/loss16 = 0.170524 (* 0.0272727 = 0.00465065 loss) | |
I0425 10:08:27.184057 22523 solver.cpp:406] Test net output #43: loss1/loss17 = 0.0639627 (* 0.0272727 = 0.00174444 loss) | |
I0425 10:08:27.184072 22523 solver.cpp:406] Test net output #44: loss1/loss18 = 0.0512757 (* 0.0272727 = 0.00139843 loss) | |
I0425 10:08:27.184085 22523 solver.cpp:406] Test net output #45: loss1/loss19 = 0.04031 (* 0.0272727 = 0.00109936 loss) | |
I0425 10:08:27.184100 22523 solver.cpp:406] Test net output #46: loss1/loss20 = 0.0183857 (* 0.0272727 = 0.000501429 loss) | |
I0425 10:08:27.184114 22523 solver.cpp:406] Test net output #47: loss1/loss21 = 0.00237974 (* 0.0272727 = 6.49021e-05 loss) | |
I0425 10:08:27.184128 22523 solver.cpp:406] Test net output #48: loss1/loss22 = 0.00202593 (* 0.0272727 = 5.52526e-05 loss) | |
I0425 10:08:27.184140 22523 solver.cpp:406] Test net output #49: loss2/accuracy = 0.843323 | |
I0425 10:08:27.184152 22523 solver.cpp:406] Test net output #50: loss2/accuracy01 = 0.934 | |
I0425 10:08:27.184164 22523 solver.cpp:406] Test net output #51: loss2/accuracy02 = 0.862 | |
I0425 10:08:27.184175 22523 solver.cpp:406] Test net output #52: loss2/accuracy03 = 0.707 | |
I0425 10:08:27.184185 22523 solver.cpp:406] Test net output #53: loss2/accuracy04 = 0.609 | |
I0425 10:08:27.184196 22523 solver.cpp:406] Test net output #54: loss2/accuracy05 = 0.632 | |
I0425 10:08:27.184213 22523 solver.cpp:406] Test net output #55: loss2/accuracy06 = 0.691 | |
I0425 10:08:27.184224 22523 solver.cpp:406] Test net output #56: loss2/accuracy07 = 0.772 | |
I0425 10:08:27.184236 22523 solver.cpp:406] Test net output #57: loss2/accuracy08 = 0.837 | |
I0425 10:08:27.184247 22523 solver.cpp:406] Test net output #58: loss2/accuracy09 = 0.892 | |
I0425 10:08:27.184258 22523 solver.cpp:406] Test net output #59: loss2/accuracy10 = 0.906 | |
I0425 10:08:27.184269 22523 solver.cpp:406] Test net output #60: loss2/accuracy11 = 0.914 | |
I0425 10:08:27.184280 22523 solver.cpp:406] Test net output #61: loss2/accuracy12 = 0.924 | |
I0425 10:08:27.184291 22523 solver.cpp:406] Test net output #62: loss2/accuracy13 = 0.941 | |
I0425 10:08:27.184303 22523 solver.cpp:406] Test net output #63: loss2/accuracy14 = 0.95 | |
I0425 10:08:27.184314 22523 solver.cpp:406] Test net output #64: loss2/accuracy15 = 0.965 | |
I0425 10:08:27.184325 22523 solver.cpp:406] Test net output #65: loss2/accuracy16 = 0.971 | |
I0425 10:08:27.184336 22523 solver.cpp:406] Test net output #66: loss2/accuracy17 = 0.991 | |
I0425 10:08:27.184347 22523 solver.cpp:406] Test net output #67: loss2/accuracy18 = 0.993 | |
I0425 10:08:27.184358 22523 solver.cpp:406] Test net output #68: loss2/accuracy19 = 0.995 | |
I0425 10:08:27.184370 22523 solver.cpp:406] Test net output #69: loss2/accuracy20 = 0.998 | |
I0425 10:08:27.184381 22523 solver.cpp:406] Test net output #70: loss2/accuracy21 = 1 | |
I0425 10:08:27.184391 22523 solver.cpp:406] Test net output #71: loss2/accuracy22 = 1 | |
I0425 10:08:27.184402 22523 solver.cpp:406] Test net output #72: loss2/accuracy_incl_empty = 0.925455 | |
I0425 10:08:27.184413 22523 solver.cpp:406] Test net output #73: loss2/accuracy_top3 = 0.92915 | |
I0425 10:08:27.184427 22523 solver.cpp:406] Test net output #74: loss2/cross_entropy_loss = 0.605154 (* 0.3 = 0.181546 loss) | |
I0425 10:08:27.184440 22523 solver.cpp:406] Test net output #75: loss2/cross_entropy_loss_incl_empty = 0.276254 (* 0.3 = 0.0828763 loss) | |
I0425 10:08:27.184455 22523 solver.cpp:406] Test net output #76: loss2/loss01 = 0.342769 (* 0.0272727 = 0.00934824 loss) | |
I0425 10:08:27.184468 22523 solver.cpp:406] Test net output #77: loss2/loss02 = 0.531655 (* 0.0272727 = 0.0144997 loss) | |
I0425 10:08:27.184494 22523 solver.cpp:406] Test net output #78: loss2/loss03 = 0.946422 (* 0.0272727 = 0.0258115 loss) | |
I0425 10:08:27.184509 22523 solver.cpp:406] Test net output #79: loss2/loss04 = 1.13822 (* 0.0272727 = 0.0310423 loss) | |
I0425 10:08:27.184522 22523 solver.cpp:406] Test net output #80: loss2/loss05 = 1.10903 (* 0.0272727 = 0.0302464 loss) | |
I0425 10:08:27.184536 22523 solver.cpp:406] Test net output #81: loss2/loss06 = 0.962378 (* 0.0272727 = 0.0262467 loss) | |
I0425 10:08:27.184550 22523 solver.cpp:406] Test net output #82: loss2/loss07 = 0.752566 (* 0.0272727 = 0.0205245 loss) | |
I0425 10:08:27.184563 22523 solver.cpp:406] Test net output #83: loss2/loss08 = 0.533582 (* 0.0272727 = 0.0145522 loss) | |
I0425 10:08:27.184577 22523 solver.cpp:406] Test net output #84: loss2/loss09 = 0.370309 (* 0.0272727 = 0.0100993 loss) | |
I0425 10:08:27.184592 22523 solver.cpp:406] Test net output #85: loss2/loss10 = 0.355532 (* 0.0272727 = 0.00969633 loss) | |
I0425 10:08:27.184604 22523 solver.cpp:406] Test net output #86: loss2/loss11 = 0.372072 (* 0.0272727 = 0.0101474 loss) | |
I0425 10:08:27.184618 22523 solver.cpp:406] Test net output #87: loss2/loss12 = 0.337484 (* 0.0272727 = 0.00920412 loss) | |
I0425 10:08:27.184633 22523 solver.cpp:406] Test net output #88: loss2/loss13 = 0.270242 (* 0.0272727 = 0.00737024 loss) | |
I0425 10:08:27.184645 22523 solver.cpp:406] Test net output #89: loss2/loss14 = 0.241962 (* 0.0272727 = 0.00659897 loss) | |
I0425 10:08:27.184659 22523 solver.cpp:406] Test net output #90: loss2/loss15 = 0.180052 (* 0.0272727 = 0.00491052 loss) | |
I0425 10:08:27.184674 22523 solver.cpp:406] Test net output #91: loss2/loss16 = 0.167668 (* 0.0272727 = 0.00457276 loss) | |
I0425 10:08:27.184686 22523 solver.cpp:406] Test net output #92: loss2/loss17 = 0.0588128 (* 0.0272727 = 0.00160399 loss) | |
I0425 10:08:27.184701 22523 solver.cpp:406] Test net output #93: loss2/loss18 = 0.0462162 (* 0.0272727 = 0.00126044 loss) | |
I0425 10:08:27.184715 22523 solver.cpp:406] Test net output #94: loss2/loss19 = 0.0364376 (* 0.0272727 = 0.000993752 loss) | |
I0425 10:08:27.184728 22523 solver.cpp:406] Test net output #95: loss2/loss20 = 0.0145262 (* 0.0272727 = 0.000396169 loss) | |
I0425 10:08:27.184742 22523 solver.cpp:406] Test net output #96: loss2/loss21 = 0.0016134 (* 0.0272727 = 4.40018e-05 loss) | |
I0425 10:08:27.184756 22523 solver.cpp:406] Test net output #97: loss2/loss22 = 0.00143096 (* 0.0272727 = 3.90261e-05 loss) | |
I0425 10:08:27.184768 22523 solver.cpp:406] Test net output #98: loss3/accuracy = 0.882331 | |
I0425 10:08:27.184779 22523 solver.cpp:406] Test net output #99: loss3/accuracy01 = 0.941 | |
I0425 10:08:27.184790 22523 solver.cpp:406] Test net output #100: loss3/accuracy02 = 0.927 | |
I0425 10:08:27.184801 22523 solver.cpp:406] Test net output #101: loss3/accuracy03 = 0.912 | |
I0425 10:08:27.184813 22523 solver.cpp:406] Test net output #102: loss3/accuracy04 = 0.891 | |
I0425 10:08:27.184824 22523 solver.cpp:406] Test net output #103: loss3/accuracy05 = 0.87 | |
I0425 10:08:27.184835 22523 solver.cpp:406] Test net output #104: loss3/accuracy06 = 0.838 | |
I0425 10:08:27.184847 22523 solver.cpp:406] Test net output #105: loss3/accuracy07 = 0.837 | |
I0425 10:08:27.184859 22523 solver.cpp:406] Test net output #106: loss3/accuracy08 = 0.866 | |
I0425 10:08:27.184870 22523 solver.cpp:406] Test net output #107: loss3/accuracy09 = 0.907 | |
I0425 10:08:27.184880 22523 solver.cpp:406] Test net output #108: loss3/accuracy10 = 0.914 | |
I0425 10:08:27.184891 22523 solver.cpp:406] Test net output #109: loss3/accuracy11 = 0.918 | |
I0425 10:08:27.184902 22523 solver.cpp:406] Test net output #110: loss3/accuracy12 = 0.925 | |
I0425 10:08:27.184913 22523 solver.cpp:406] Test net output #111: loss3/accuracy13 = 0.944 | |
I0425 10:08:27.184924 22523 solver.cpp:406] Test net output #112: loss3/accuracy14 = 0.95 | |
I0425 10:08:27.184936 22523 solver.cpp:406] Test net output #113: loss3/accuracy15 = 0.963 | |
I0425 10:08:27.184947 22523 solver.cpp:406] Test net output #114: loss3/accuracy16 = 0.971 | |
I0425 10:08:27.184967 22523 solver.cpp:406] Test net output #115: loss3/accuracy17 = 0.991 | |
I0425 10:08:27.184980 22523 solver.cpp:406] Test net output #116: loss3/accuracy18 = 0.993 | |
I0425 10:08:27.184991 22523 solver.cpp:406] Test net output #117: loss3/accuracy19 = 0.995 | |
I0425 10:08:27.185000 22523 solver.cpp:406] Test net output #118: loss3/accuracy20 = 0.998 | |
I0425 10:08:27.185008 22523 solver.cpp:406] Test net output #119: loss3/accuracy21 = 1 | |
I0425 10:08:27.185019 22523 solver.cpp:406] Test net output #120: loss3/accuracy22 = 1 | |
I0425 10:08:27.185030 22523 solver.cpp:406] Test net output #121: loss3/accuracy_incl_empty = 0.939364 | |
I0425 10:08:27.185041 22523 solver.cpp:406] Test net output #122: loss3/accuracy_top3 = 0.945869 | |
I0425 10:08:27.185055 22523 solver.cpp:406] Test net output #123: loss3/cross_entropy_loss = 0.463197 (* 1 = 0.463197 loss) | |
I0425 10:08:27.185068 22523 solver.cpp:406] Test net output #124: loss3/cross_entropy_loss_incl_empty = 0.222134 (* 1 = 0.222134 loss) | |
I0425 10:08:27.185082 22523 solver.cpp:406] Test net output #125: loss3/loss01 = 0.280876 (* 0.0909091 = 0.0255342 loss) | |
I0425 10:08:27.185096 22523 solver.cpp:406] Test net output #126: loss3/loss02 = 0.318469 (* 0.0909091 = 0.0289517 loss) | |
I0425 10:08:27.185109 22523 solver.cpp:406] Test net output #127: loss3/loss03 = 0.38046 (* 0.0909091 = 0.0345873 loss) | |
I0425 10:08:27.185122 22523 solver.cpp:406] Test net output #128: loss3/loss04 = 0.459046 (* 0.0909091 = 0.0417315 loss) | |
I0425 10:08:27.185137 22523 solver.cpp:406] Test net output #129: loss3/loss05 = 0.529175 (* 0.0909091 = 0.0481069 loss) | |
I0425 10:08:27.185149 22523 solver.cpp:406] Test net output #130: loss3/loss06 = 0.609533 (* 0.0909091 = 0.0554121 loss) | |
I0425 10:08:27.185163 22523 solver.cpp:406] Test net output #131: loss3/loss07 = 0.593512 (* 0.0909091 = 0.0539556 loss) | |
I0425 10:08:27.185176 22523 solver.cpp:406] Test net output #132: loss3/loss08 = 0.439948 (* 0.0909091 = 0.0399953 loss) | |
I0425 10:08:27.185189 22523 solver.cpp:406] Test net output #133: loss3/loss09 = 0.329349 (* 0.0909091 = 0.0299408 loss) | |
I0425 10:08:27.185204 22523 solver.cpp:406] Test net output #134: loss3/loss10 = 0.309108 (* 0.0909091 = 0.0281007 loss) | |
I0425 10:08:27.185216 22523 solver.cpp:406] Test net output #135: loss3/loss11 = 0.320984 (* 0.0909091 = 0.0291803 loss) | |
I0425 10:08:27.185230 22523 solver.cpp:406] Test net output #136: loss3/loss12 = 0.292492 (* 0.0909091 = 0.0265902 loss) | |
I0425 10:08:27.185243 22523 solver.cpp:406] Test net output #137: loss3/loss13 = 0.227713 (* 0.0909091 = 0.0207012 loss) | |
I0425 10:08:27.185261 22523 solver.cpp:406] Test net output #138: loss3/loss14 = 0.217242 (* 0.0909091 = 0.0197493 loss) | |
I0425 10:08:27.185274 22523 solver.cpp:406] Test net output #139: loss3/loss15 = 0.151064 (* 0.0909091 = 0.0137331 loss) | |
I0425 10:08:27.185288 22523 solver.cpp:406] Test net output #140: loss3/loss16 = 0.133447 (* 0.0909091 = 0.0121316 loss) | |
I0425 10:08:27.185302 22523 solver.cpp:406] Test net output #141: loss3/loss17 = 0.0551888 (* 0.0909091 = 0.00501717 loss) | |
I0425 10:08:27.185315 22523 solver.cpp:406] Test net output #142: loss3/loss18 = 0.0421647 (* 0.0909091 = 0.00383315 loss) | |
I0425 10:08:27.185328 22523 solver.cpp:406] Test net output #143: loss3/loss19 = 0.0433082 (* 0.0909091 = 0.00393711 loss) | |
I0425 10:08:27.185343 22523 solver.cpp:406] Test net output #144: loss3/loss20 = 0.019265 (* 0.0909091 = 0.00175136 loss) | |
I0425 10:08:27.185356 22523 solver.cpp:406] Test net output #145: loss3/loss21 = 0.000167117 (* 0.0909091 = 1.51925e-05 loss) | |
I0425 10:08:27.185370 22523 solver.cpp:406] Test net output #146: loss3/loss22 = 9.56673e-05 (* 0.0909091 = 8.69702e-06 loss) | |
I0425 10:08:27.185382 22523 solver.cpp:406] Test net output #147: total_accuracy = 0.727 | |
I0425 10:08:27.185394 22523 solver.cpp:406] Test net output #148: total_accuracy_not_rec = 0.676 | |
I0425 10:08:27.185405 22523 solver.cpp:406] Test net output #149: total_confidence = 0.704211 | |
I0425 10:08:27.185425 22523 solver.cpp:406] Test net output #150: total_confidence_nor_rec = 0.603197 | |
I0425 10:08:27.957003 22523 solver.cpp:229] Iteration 0, loss = 2.10843 | |
I0425 10:08:27.957063 22523 solver.cpp:245] Train net output #0: loss1/accuracy = 0.64 | |
I0425 10:08:27.957082 22523 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.625 | |
I0425 10:08:27.957094 22523 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.75 | |
I0425 10:08:27.957108 22523 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375 | |
I0425 10:08:27.957119 22523 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.625 | |
I0425 10:08:27.957131 22523 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.375 | |
I0425 10:08:27.957144 22523 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.75 | |
I0425 10:08:27.957155 22523 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.75 | |
I0425 10:08:27.957167 22523 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875 | |
I0425 10:08:27.957178 22523 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875 | |
I0425 10:08:27.957190 22523 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875 | |
I0425 10:08:27.957202 22523 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.875 | |
I0425 10:08:27.957214 22523 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.875 | |
I0425 10:08:27.957226 22523 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1 | |
I0425 10:08:27.957238 22523 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1 | |
I0425 10:08:27.957249 22523 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0425 10:08:27.957262 22523 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0425 10:08:27.957273 22523 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0425 10:08:27.957284 22523 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0425 10:08:27.957295 22523 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0425 10:08:27.957314 22523 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0425 10:08:27.957324 22523 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0425 10:08:27.957336 22523 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0425 10:08:27.957347 22523 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.897727 | |
I0425 10:08:27.957358 22523 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.76 | |
I0425 10:08:27.957384 22523 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.28746 (* 0.3 = 0.386238 loss) | |
I0425 10:08:27.957399 22523 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.397692 (* 0.3 = 0.119308 loss) | |
I0425 10:08:27.957413 22523 solver.cpp:245] Train net output #27: loss1/loss01 = 1.05492 (* 0.0272727 = 0.0287707 loss) | |
I0425 10:08:27.957427 22523 solver.cpp:245] Train net output #28: loss1/loss02 = 1.14317 (* 0.0272727 = 0.0311773 loss) | |
I0425 10:08:27.957442 22523 solver.cpp:245] Train net output #29: loss1/loss03 = 1.92378 (* 0.0272727 = 0.0524668 loss) | |
I0425 10:08:27.957455 22523 solver.cpp:245] Train net output #30: loss1/loss04 = 1.38261 (* 0.0272727 = 0.0377076 loss) | |
I0425 10:08:27.957468 22523 solver.cpp:245] Train net output #31: loss1/loss05 = 1.9945 (* 0.0272727 = 0.0543953 loss) | |
I0425 10:08:27.957482 22523 solver.cpp:245] Train net output #32: loss1/loss06 = 1.27491 (* 0.0272727 = 0.0347704 loss) | |
I0425 10:08:27.957496 22523 solver.cpp:245] Train net output #33: loss1/loss07 = 0.839306 (* 0.0272727 = 0.0228902 loss) | |
I0425 10:08:27.957510 22523 solver.cpp:245] Train net output #34: loss1/loss08 = 0.414382 (* 0.0272727 = 0.0113013 loss) | |
I0425 10:08:27.957525 22523 solver.cpp:245] Train net output #35: loss1/loss09 = 0.379938 (* 0.0272727 = 0.010362 loss) | |
I0425 10:08:27.957540 22523 solver.cpp:245] Train net output #36: loss1/loss10 = 0.45707 (* 0.0272727 = 0.0124655 loss) | |
I0425 10:08:27.957553 22523 solver.cpp:245] Train net output #37: loss1/loss11 = 0.60101 (* 0.0272727 = 0.0163912 loss) | |
I0425 10:08:27.957595 22523 solver.cpp:245] Train net output #38: loss1/loss12 = 0.500027 (* 0.0272727 = 0.0136371 loss) | |
I0425 10:08:27.957612 22523 solver.cpp:245] Train net output #39: loss1/loss13 = 0.134707 (* 0.0272727 = 0.00367383 loss) | |
I0425 10:08:27.957625 22523 solver.cpp:245] Train net output #40: loss1/loss14 = 0.0563791 (* 0.0272727 = 0.00153761 loss) | |
I0425 10:08:27.957640 22523 solver.cpp:245] Train net output #41: loss1/loss15 = 0.0678173 (* 0.0272727 = 0.00184956 loss) | |
I0425 10:08:27.957655 22523 solver.cpp:245] Train net output #42: loss1/loss16 = 0.014346 (* 0.0272727 = 0.000391253 loss) | |
I0425 10:08:27.957669 22523 solver.cpp:245] Train net output #43: loss1/loss17 = 0.00450749 (* 0.0272727 = 0.000122932 loss) | |
I0425 10:08:27.957690 22523 solver.cpp:245] Train net output #44: loss1/loss18 = 0.00246896 (* 0.0272727 = 6.73353e-05 loss) | |
I0425 10:08:27.957705 22523 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00296268 (* 0.0272727 = 8.08003e-05 loss) | |
I0425 10:08:27.957718 22523 solver.cpp:245] Train net output #46: loss1/loss20 = 0.00122359 (* 0.0272727 = 3.33705e-05 loss) | |
I0425 10:08:27.957741 22523 solver.cpp:245] Train net output #47: loss1/loss21 = 0.00179281 (* 0.0272727 = 4.88949e-05 loss) | |
I0425 10:08:27.957756 22523 solver.cpp:245] Train net output #48: loss1/loss22 = 0.00156822 (* 0.0272727 = 4.27696e-05 loss) | |
I0425 10:08:27.957767 22523 solver.cpp:245] Train net output #49: loss2/accuracy = 0.72 | |
I0425 10:08:27.957778 22523 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.75 | |
I0425 10:08:27.957790 22523 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75 | |
I0425 10:08:27.957801 22523 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.625 | |
I0425 10:08:27.957818 22523 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.375 | |
I0425 10:08:27.957830 22523 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.125 | |
I0425 10:08:27.957842 22523 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.75 | |
I0425 10:08:27.957854 22523 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.75 | |
I0425 10:08:27.957864 22523 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875 | |
I0425 10:08:27.957876 22523 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1 | |
I0425 10:08:27.957887 22523 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875 | |
I0425 10:08:27.957900 22523 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.875 | |
I0425 10:08:27.957911 22523 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.875 | |
I0425 10:08:27.957921 22523 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1 | |
I0425 10:08:27.957933 22523 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1 | |
I0425 10:08:27.957944 22523 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0425 10:08:27.957962 22523 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0425 10:08:27.957973 22523 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0425 10:08:27.957985 22523 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0425 10:08:27.957996 22523 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0425 10:08:27.958008 22523 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0425 10:08:27.958025 22523 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0425 10:08:27.958037 22523 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0425 10:08:27.958048 22523 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.914773 | |
I0425 10:08:27.958060 22523 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.92 | |
I0425 10:08:27.958075 22523 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.824297 (* 0.3 = 0.247289 loss) | |
I0425 10:08:27.958088 22523 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.261894 (* 0.3 = 0.0785682 loss) | |
I0425 10:08:27.958113 22523 solver.cpp:245] Train net output #76: loss2/loss01 = 0.739855 (* 0.0272727 = 0.0201779 loss) | |
I0425 10:08:27.958128 22523 solver.cpp:245] Train net output #77: loss2/loss02 = 0.698599 (* 0.0272727 = 0.0190527 loss) | |
I0425 10:08:27.958142 22523 solver.cpp:245] Train net output #78: loss2/loss03 = 1.26624 (* 0.0272727 = 0.0345338 loss) | |
I0425 10:08:27.958156 22523 solver.cpp:245] Train net output #79: loss2/loss04 = 1.71784 (* 0.0272727 = 0.0468503 loss) | |
I0425 10:08:27.958169 22523 solver.cpp:245] Train net output #80: loss2/loss05 = 1.85043 (* 0.0272727 = 0.0504664 loss) | |
I0425 10:08:27.958184 22523 solver.cpp:245] Train net output #81: loss2/loss06 = 1.06245 (* 0.0272727 = 0.0289759 loss) | |
I0425 10:08:27.958197 22523 solver.cpp:245] Train net output #82: loss2/loss07 = 0.548956 (* 0.0272727 = 0.0149715 loss) | |
I0425 10:08:27.958211 22523 solver.cpp:245] Train net output #83: loss2/loss08 = 0.40352 (* 0.0272727 = 0.0110051 loss) | |
I0425 10:08:27.958225 22523 solver.cpp:245] Train net output #84: loss2/loss09 = 0.321373 (* 0.0272727 = 0.00876471 loss) | |
I0425 10:08:27.958238 22523 solver.cpp:245] Train net output #85: loss2/loss10 = 0.402757 (* 0.0272727 = 0.0109843 loss) | |
I0425 10:08:27.958252 22523 solver.cpp:245] Train net output #86: loss2/loss11 = 0.669407 (* 0.0272727 = 0.0182565 loss) | |
I0425 10:08:27.958266 22523 solver.cpp:245] Train net output #87: loss2/loss12 = 0.480673 (* 0.0272727 = 0.0131093 loss) | |
I0425 10:08:27.958281 22523 solver.cpp:245] Train net output #88: loss2/loss13 = 0.0438267 (* 0.0272727 = 0.00119527 loss) | |
I0425 10:08:27.958294 22523 solver.cpp:245] Train net output #89: loss2/loss14 = 0.0665154 (* 0.0272727 = 0.00181406 loss) | |
I0425 10:08:27.958308 22523 solver.cpp:245] Train net output #90: loss2/loss15 = 0.0274431 (* 0.0272727 = 0.000748448 loss) | |
I0425 10:08:27.958323 22523 solver.cpp:245] Train net output #91: loss2/loss16 = 0.0128665 (* 0.0272727 = 0.000350905 loss) | |
I0425 10:08:27.958336 22523 solver.cpp:245] Train net output #92: loss2/loss17 = 0.00227719 (* 0.0272727 = 6.2105e-05 loss) | |
I0425 10:08:27.958350 22523 solver.cpp:245] Train net output #93: loss2/loss18 = 0.0016201 (* 0.0272727 = 4.41845e-05 loss) | |
I0425 10:08:27.958365 22523 solver.cpp:245] Train net output #94: loss2/loss19 = 0.000624436 (* 0.0272727 = 1.70301e-05 loss) | |
I0425 10:08:27.958379 22523 solver.cpp:245] Train net output #95: loss2/loss20 = 0.0008539 (* 0.0272727 = 2.32882e-05 loss) | |
I0425 10:08:27.958394 22523 solver.cpp:245] Train net output #96: loss2/loss21 = 0.00109231 (* 0.0272727 = 2.97902e-05 loss) | |
I0425 10:08:27.958408 22523 solver.cpp:245] Train net output #97: loss2/loss22 = 0.000928352 (* 0.0272727 = 2.53187e-05 loss) | |
I0425 10:08:27.958420 22523 solver.cpp:245] Train net output #98: loss3/accuracy = 0.92 | |
I0425 10:08:27.958432 22523 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1 | |
I0425 10:08:27.958443 22523 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1 | |
I0425 10:08:27.958454 22523 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1 | |
I0425 10:08:27.958466 22523 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1 | |
I0425 10:08:27.958477 22523 solver.cpp:245] Train net output #103: loss3/accuracy05 = 1 | |
I0425 10:08:27.958488 22523 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.875 | |
I0425 10:08:27.958500 22523 solver.cpp:245] Train net output #105: loss3/accuracy07 = 1 | |
I0425 10:08:27.958511 22523 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875 | |
I0425 10:08:27.958523 22523 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875 | |
I0425 10:08:27.958534 22523 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875 | |
I0425 10:08:27.958544 22523 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.875 | |
I0425 10:08:27.958555 22523 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.875 | |
I0425 10:08:27.958567 22523 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1 | |
I0425 10:08:27.958587 22523 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1 | |
I0425 10:08:27.958600 22523 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0425 10:08:27.958611 22523 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0425 10:08:27.958623 22523 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0425 10:08:27.958634 22523 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0425 10:08:27.958644 22523 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0425 10:08:27.958657 22523 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0425 10:08:27.958667 22523 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0425 10:08:27.958678 22523 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0425 10:08:27.958689 22523 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.977273 | |
I0425 10:08:27.958701 22523 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.96 | |
I0425 10:08:27.958714 22523 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.274882 (* 1 = 0.274882 loss) | |
I0425 10:08:27.958729 22523 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.0846797 (* 1 = 0.0846797 loss) | |
I0425 10:08:27.958742 22523 solver.cpp:245] Train net output #125: loss3/loss01 = 0.075529 (* 0.0909091 = 0.00686628 loss) | |
I0425 10:08:27.958757 22523 solver.cpp:245] Train net output #126: loss3/loss02 = 0.116551 (* 0.0909091 = 0.0105955 loss) | |
I0425 10:08:27.958770 22523 solver.cpp:245] Train net output #127: loss3/loss03 = 0.142877 (* 0.0909091 = 0.0129888 loss) | |
I0425 10:08:27.958784 22523 solver.cpp:245] Train net output #128: loss3/loss04 = 0.0348416 (* 0.0909091 = 0.00316742 loss) | |
I0425 10:08:27.958798 22523 solver.cpp:245] Train net output #129: loss3/loss05 = 0.160187 (* 0.0909091 = 0.0145625 loss) | |
I0425 10:08:27.958812 22523 solver.cpp:245] Train net output #130: loss3/loss06 = 0.385504 (* 0.0909091 = 0.0350459 loss) | |
I0425 10:08:27.958827 22523 solver.cpp:245] Train net output #131: loss3/loss07 = 0.270293 (* 0.0909091 = 0.0245721 loss) | |
I0425 10:08:27.958840 22523 solver.cpp:245] Train net output #132: loss3/loss08 = 0.265021 (* 0.0909091 = 0.0240928 loss) | |
I0425 10:08:27.958853 22523 solver.cpp:245] Train net output #133: loss3/loss09 = 0.323459 (* 0.0909091 = 0.0294054 loss) | |
I0425 10:08:27.958873 22523 solver.cpp:245] Train net output #134: loss3/loss10 = 0.39173 (* 0.0909091 = 0.0356118 loss) | |
I0425 10:08:27.958887 22523 solver.cpp:245] Train net output #135: loss3/loss11 = 0.679812 (* 0.0909091 = 0.0618011 loss) | |
I0425 10:08:27.958897 22523 solver.cpp:245] Train net output #136: loss3/loss12 = 0.429379 (* 0.0909091 = 0.0390344 loss) | |
I0425 10:08:27.958911 22523 solver.cpp:245] Train net output #137: loss3/loss13 = 0.0269379 (* 0.0909091 = 0.0024489 loss) | |
I0425 10:08:27.958925 22523 solver.cpp:245] Train net output #138: loss3/loss14 = 0.00846041 (* 0.0909091 = 0.000769128 loss) | |
I0425 10:08:27.958940 22523 solver.cpp:245] Train net output #139: loss3/loss15 = 0.00561148 (* 0.0909091 = 0.000510135 loss) | |
I0425 10:08:27.958955 22523 solver.cpp:245] Train net output #140: loss3/loss16 = 0.00245594 (* 0.0909091 = 0.000223267 loss) | |
I0425 10:08:27.958972 22523 solver.cpp:245] Train net output #141: loss3/loss17 = 0.00110154 (* 0.0909091 = 0.00010014 loss) | |
I0425 10:08:27.958986 22523 solver.cpp:245] Train net output #142: loss3/loss18 = 0.000249801 (* 0.0909091 = 2.27092e-05 loss) | |
I0425 10:08:27.959000 22523 solver.cpp:245] Train net output #143: loss3/loss19 = 5.13585e-05 (* 0.0909091 = 4.66896e-06 loss) | |
I0425 10:08:27.959014 22523 solver.cpp:245] Train net output #144: loss3/loss20 = 1.83743e-05 (* 0.0909091 = 1.67039e-06 loss) | |
I0425 10:08:27.959035 22523 solver.cpp:245] Train net output #145: loss3/loss21 = 6.959e-06 (* 0.0909091 = 6.32636e-07 loss) | |
I0425 10:08:27.959049 22523 solver.cpp:245] Train net output #146: loss3/loss22 = 2.66733e-06 (* 0.0909091 = 2.42484e-07 loss) | |
I0425 10:08:27.959071 22523 solver.cpp:245] Train net output #147: total_accuracy = 0.875 | |
I0425 10:08:27.959084 22523 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.875 | |
I0425 10:08:27.959095 22523 solver.cpp:245] Train net output #149: total_confidence = 0.747572 | |
I0425 10:08:27.959107 22523 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.548365 | |
I0425 10:08:27.959133 22523 sgd_solver.cpp:106] Iteration 0, lr = 0.01 | |
I0425 10:14:09.177728 22523 solver.cpp:229] Iteration 500, loss = 3.24199 | |
I0425 10:14:09.177865 22523 solver.cpp:245] Train net output #0: loss1/accuracy = 0.64 | |
I0425 10:14:09.177886 22523 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.5 | |
I0425 10:14:09.177898 22523 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.625 | |
I0425 10:14:09.177911 22523 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.5 | |
I0425 10:14:09.177922 22523 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375 | |
I0425 10:14:09.177934 22523 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.25 | |
I0425 10:14:09.177947 22523 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.5 | |
I0425 10:14:09.177958 22523 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.75 | |
I0425 10:14:09.177970 22523 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875 | |
I0425 10:14:09.177983 22523 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875 | |
I0425 10:14:09.177994 22523 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875 | |
I0425 10:14:09.178009 22523 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.875 | |
I0425 10:14:09.178032 22523 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.875 | |
I0425 10:14:09.178052 22523 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1 | |
I0425 10:14:09.178066 22523 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1 | |
I0425 10:14:09.178077 22523 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0425 10:14:09.178089 22523 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0425 10:14:09.178102 22523 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0425 10:14:09.178112 22523 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0425 10:14:09.178124 22523 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0425 10:14:09.178135 22523 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0425 10:14:09.178146 22523 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0425 10:14:09.178158 22523 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0425 10:14:09.178170 22523 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.863636 | |
I0425 10:14:09.178182 22523 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.78 | |
I0425 10:14:09.178202 22523 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.45279 (* 0.3 = 0.435837 loss) | |
I0425 10:14:09.178218 22523 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.550346 (* 0.3 = 0.165104 loss) | |
I0425 10:14:09.178233 22523 solver.cpp:245] Train net output #27: loss1/loss01 = 1.39403 (* 0.0272727 = 0.038019 loss) | |
I0425 10:14:09.178248 22523 solver.cpp:245] Train net output #28: loss1/loss02 = 1.15176 (* 0.0272727 = 0.0314116 loss) | |
I0425 10:14:09.178262 22523 solver.cpp:245] Train net output #29: loss1/loss03 = 1.95109 (* 0.0272727 = 0.0532116 loss) | |
I0425 10:14:09.178277 22523 solver.cpp:245] Train net output #30: loss1/loss04 = 1.92726 (* 0.0272727 = 0.0525616 loss) | |
I0425 10:14:09.178292 22523 solver.cpp:245] Train net output #31: loss1/loss05 = 1.89464 (* 0.0272727 = 0.0516721 loss) | |
I0425 10:14:09.178305 22523 solver.cpp:245] Train net output #32: loss1/loss06 = 1.61585 (* 0.0272727 = 0.0440686 loss) | |
I0425 10:14:09.178319 22523 solver.cpp:245] Train net output #33: loss1/loss07 = 0.69475 (* 0.0272727 = 0.0189477 loss) | |
I0425 10:14:09.178333 22523 solver.cpp:245] Train net output #34: loss1/loss08 = 0.449452 (* 0.0272727 = 0.0122578 loss) | |
I0425 10:14:09.178347 22523 solver.cpp:245] Train net output #35: loss1/loss09 = 0.382251 (* 0.0272727 = 0.010425 loss) | |
I0425 10:14:09.178362 22523 solver.cpp:245] Train net output #36: loss1/loss10 = 0.377811 (* 0.0272727 = 0.0103039 loss) | |
I0425 10:14:09.178376 22523 solver.cpp:245] Train net output #37: loss1/loss11 = 0.383646 (* 0.0272727 = 0.0104631 loss) | |
I0425 10:14:09.178391 22523 solver.cpp:245] Train net output #38: loss1/loss12 = 0.512933 (* 0.0272727 = 0.0139891 loss) | |
I0425 10:14:09.178406 22523 solver.cpp:245] Train net output #39: loss1/loss13 = 0.1728 (* 0.0272727 = 0.00471273 loss) | |
I0425 10:14:09.178438 22523 solver.cpp:245] Train net output #40: loss1/loss14 = 0.0970667 (* 0.0272727 = 0.00264727 loss) | |
I0425 10:14:09.178454 22523 solver.cpp:245] Train net output #41: loss1/loss15 = 0.0493169 (* 0.0272727 = 0.00134501 loss) | |
I0425 10:14:09.178468 22523 solver.cpp:245] Train net output #42: loss1/loss16 = 0.0273057 (* 0.0272727 = 0.000744701 loss) | |
I0425 10:14:09.178483 22523 solver.cpp:245] Train net output #43: loss1/loss17 = 0.00473895 (* 0.0272727 = 0.000129244 loss) | |
I0425 10:14:09.178498 22523 solver.cpp:245] Train net output #44: loss1/loss18 = 0.00307206 (* 0.0272727 = 8.37834e-05 loss) | |
I0425 10:14:09.178513 22523 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00119676 (* 0.0272727 = 3.26388e-05 loss) | |
I0425 10:14:09.178526 22523 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000889795 (* 0.0272727 = 2.42671e-05 loss) | |
I0425 10:14:09.178541 22523 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000535581 (* 0.0272727 = 1.46068e-05 loss) | |
I0425 10:14:09.178555 22523 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000932329 (* 0.0272727 = 2.54271e-05 loss) | |
I0425 10:14:09.178567 22523 solver.cpp:245] Train net output #49: loss2/accuracy = 0.7 | |
I0425 10:14:09.178580 22523 solver.cpp:245] Train net output #50: loss2/accuracy01 = 1 | |
I0425 10:14:09.178591 22523 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.875 | |
I0425 10:14:09.178602 22523 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.625 | |
I0425 10:14:09.178614 22523 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.25 | |
I0425 10:14:09.178625 22523 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.375 | |
I0425 10:14:09.178637 22523 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.5 | |
I0425 10:14:09.178654 22523 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.875 | |
I0425 10:14:09.178666 22523 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875 | |
I0425 10:14:09.178678 22523 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875 | |
I0425 10:14:09.178689 22523 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875 | |
I0425 10:14:09.178700 22523 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.875 | |
I0425 10:14:09.178717 22523 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.875 | |
I0425 10:14:09.178728 22523 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1 | |
I0425 10:14:09.178740 22523 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1 | |
I0425 10:14:09.178750 22523 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0425 10:14:09.178761 22523 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0425 10:14:09.178772 22523 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0425 10:14:09.178783 22523 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0425 10:14:09.178794 22523 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0425 10:14:09.178810 22523 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0425 10:14:09.178822 22523 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0425 10:14:09.178833 22523 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0425 10:14:09.178843 22523 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.903409 | |
I0425 10:14:09.178855 22523 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.84 | |
I0425 10:14:09.178871 22523 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.990631 (* 0.3 = 0.297189 loss) | |
I0425 10:14:09.178890 22523 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.34106 (* 0.3 = 0.102318 loss) | |
I0425 10:14:09.178905 22523 solver.cpp:245] Train net output #76: loss2/loss01 = 0.434251 (* 0.0272727 = 0.0118432 loss) | |
I0425 10:14:09.178920 22523 solver.cpp:245] Train net output #77: loss2/loss02 = 0.604758 (* 0.0272727 = 0.0164934 loss) | |
I0425 10:14:09.178946 22523 solver.cpp:245] Train net output #78: loss2/loss03 = 1.26115 (* 0.0272727 = 0.0343949 loss) | |
I0425 10:14:09.178961 22523 solver.cpp:245] Train net output #79: loss2/loss04 = 1.84738 (* 0.0272727 = 0.050383 loss) | |
I0425 10:14:09.178974 22523 solver.cpp:245] Train net output #80: loss2/loss05 = 1.45858 (* 0.0272727 = 0.0397793 loss) | |
I0425 10:14:09.178988 22523 solver.cpp:245] Train net output #81: loss2/loss06 = 1.21676 (* 0.0272727 = 0.0331843 loss) | |
I0425 10:14:09.179003 22523 solver.cpp:245] Train net output #82: loss2/loss07 = 0.501079 (* 0.0272727 = 0.0136658 loss) | |
I0425 10:14:09.179016 22523 solver.cpp:245] Train net output #83: loss2/loss08 = 0.408043 (* 0.0272727 = 0.0111284 loss) | |
I0425 10:14:09.179030 22523 solver.cpp:245] Train net output #84: loss2/loss09 = 0.5388 (* 0.0272727 = 0.0146946 loss) | |
I0425 10:14:09.179044 22523 solver.cpp:245] Train net output #85: loss2/loss10 = 0.572802 (* 0.0272727 = 0.0156219 loss) | |
I0425 10:14:09.179059 22523 solver.cpp:245] Train net output #86: loss2/loss11 = 0.573051 (* 0.0272727 = 0.0156287 loss) | |
I0425 10:14:09.179072 22523 solver.cpp:245] Train net output #87: loss2/loss12 = 0.658427 (* 0.0272727 = 0.0179571 loss) | |
I0425 10:14:09.179087 22523 solver.cpp:245] Train net output #88: loss2/loss13 = 0.0281815 (* 0.0272727 = 0.000768587 loss) | |
I0425 10:14:09.179101 22523 solver.cpp:245] Train net output #89: loss2/loss14 = 0.014665 (* 0.0272727 = 0.000399954 loss) | |
I0425 10:14:09.179116 22523 solver.cpp:245] Train net output #90: loss2/loss15 = 0.00996967 (* 0.0272727 = 0.0002719 loss) | |
I0425 10:14:09.179131 22523 solver.cpp:245] Train net output #91: loss2/loss16 = 0.00360698 (* 0.0272727 = 9.83722e-05 loss) | |
I0425 10:14:09.179144 22523 solver.cpp:245] Train net output #92: loss2/loss17 = 0.000769615 (* 0.0272727 = 2.09895e-05 loss) | |
I0425 10:14:09.179158 22523 solver.cpp:245] Train net output #93: loss2/loss18 = 0.000633502 (* 0.0272727 = 1.72773e-05 loss) | |
I0425 10:14:09.179172 22523 solver.cpp:245] Train net output #94: loss2/loss19 = 0.000660519 (* 0.0272727 = 1.80141e-05 loss) | |
I0425 10:14:09.179186 22523 solver.cpp:245] Train net output #95: loss2/loss20 = 0.000210428 (* 0.0272727 = 5.73894e-06 loss) | |
I0425 10:14:09.179201 22523 solver.cpp:245] Train net output #96: loss2/loss21 = 0.000591114 (* 0.0272727 = 1.61213e-05 loss) | |
I0425 10:14:09.179215 22523 solver.cpp:245] Train net output #97: loss2/loss22 = 0.000326732 (* 0.0272727 = 8.91087e-06 loss) | |
I0425 10:14:09.179227 22523 solver.cpp:245] Train net output #98: loss3/accuracy = 0.88 | |
I0425 10:14:09.179239 22523 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1 | |
I0425 10:14:09.179253 22523 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1 | |
I0425 10:14:09.179266 22523 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.75 | |
I0425 10:14:09.179278 22523 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1 | |
I0425 10:14:09.179289 22523 solver.cpp:245] Train net output #103: loss3/accuracy05 = 1 | |
I0425 10:14:09.179301 22523 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.875 | |
I0425 10:14:09.179312 22523 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875 | |
I0425 10:14:09.179324 22523 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875 | |
I0425 10:14:09.179337 22523 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.75 | |
I0425 10:14:09.179347 22523 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875 | |
I0425 10:14:09.179374 22523 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.875 | |
I0425 10:14:09.179386 22523 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.875 | |
I0425 10:14:09.179399 22523 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1 | |
I0425 10:14:09.179409 22523 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1 | |
I0425 10:14:09.179420 22523 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0425 10:14:09.179431 22523 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0425 10:14:09.179455 22523 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0425 10:14:09.179468 22523 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0425 10:14:09.179479 22523 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0425 10:14:09.179491 22523 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0425 10:14:09.179502 22523 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0425 10:14:09.179519 22523 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0425 10:14:09.179527 22523 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.960227 | |
I0425 10:14:09.179539 22523 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.92 | |
I0425 10:14:09.179553 22523 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.503567 (* 1 = 0.503567 loss) | |
I0425 10:14:09.179566 22523 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.174887 (* 1 = 0.174887 loss) | |
I0425 10:14:09.179581 22523 solver.cpp:245] Train net output #125: loss3/loss01 = 0.085374 (* 0.0909091 = 0.00776127 loss) | |
I0425 10:14:09.179595 22523 solver.cpp:245] Train net output #126: loss3/loss02 = 0.110104 (* 0.0909091 = 0.0100095 loss) | |
I0425 10:14:09.179610 22523 solver.cpp:245] Train net output #127: loss3/loss03 = 0.328201 (* 0.0909091 = 0.0298364 loss) | |
I0425 10:14:09.179623 22523 solver.cpp:245] Train net output #128: loss3/loss04 = 0.235767 (* 0.0909091 = 0.0214333 loss) | |
I0425 10:14:09.179636 22523 solver.cpp:245] Train net output #129: loss3/loss05 = 0.275356 (* 0.0909091 = 0.0250323 loss) | |
I0425 10:14:09.179651 22523 solver.cpp:245] Train net output #130: loss3/loss06 = 0.303215 (* 0.0909091 = 0.027565 loss) | |
I0425 10:14:09.179664 22523 solver.cpp:245] Train net output #131: loss3/loss07 = 0.472122 (* 0.0909091 = 0.0429202 loss) | |
I0425 10:14:09.179677 22523 solver.cpp:245] Train net output #132: loss3/loss08 = 0.254741 (* 0.0909091 = 0.0231583 loss) | |
I0425 10:14:09.179692 22523 solver.cpp:245] Train net output #133: loss3/loss09 = 0.509596 (* 0.0909091 = 0.046327 loss) | |
I0425 10:14:09.179705 22523 solver.cpp:245] Train net output #134: loss3/loss10 = 0.376955 (* 0.0909091 = 0.0342686 loss) | |
I0425 10:14:09.179718 22523 solver.cpp:245] Train net output #135: loss3/loss11 = 0.408593 (* 0.0909091 = 0.0371448 loss) | |
I0425 10:14:09.179733 22523 solver.cpp:245] Train net output #136: loss3/loss12 = 0.585239 (* 0.0909091 = 0.0532036 loss) | |
I0425 10:14:09.179746 22523 solver.cpp:245] Train net output #137: loss3/loss13 = 0.0894262 (* 0.0909091 = 0.00812965 loss) | |
I0425 10:14:09.179760 22523 solver.cpp:245] Train net output #138: loss3/loss14 = 0.0406443 (* 0.0909091 = 0.00369494 loss) | |
I0425 10:14:09.179774 22523 solver.cpp:245] Train net output #139: loss3/loss15 = 0.033415 (* 0.0909091 = 0.00303772 loss) | |
I0425 10:14:09.179788 22523 solver.cpp:245] Train net output #140: loss3/loss16 = 0.0226734 (* 0.0909091 = 0.00206122 loss) | |
I0425 10:14:09.179802 22523 solver.cpp:245] Train net output #141: loss3/loss17 = 0.00969453 (* 0.0909091 = 0.000881321 loss) | |
I0425 10:14:09.179816 22523 solver.cpp:245] Train net output #142: loss3/loss18 = 0.00503945 (* 0.0909091 = 0.000458132 loss) | |
I0425 10:14:09.179829 22523 solver.cpp:245] Train net output #143: loss3/loss19 = 0.00110786 (* 0.0909091 = 0.000100715 loss) | |
I0425 10:14:09.179843 22523 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000300201 (* 0.0909091 = 2.7291e-05 loss) | |
I0425 10:14:09.179857 22523 solver.cpp:245] Train net output #145: loss3/loss21 = 6.0429e-05 (* 0.0909091 = 5.49354e-06 loss) | |
I0425 10:14:09.179872 22523 solver.cpp:245] Train net output #146: loss3/loss22 = 4.9673e-05 (* 0.0909091 = 4.51573e-06 loss) | |
I0425 10:14:09.179883 22523 solver.cpp:245] Train net output #147: total_accuracy = 0.875 | |
I0425 10:14:09.179894 22523 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.625 | |
I0425 10:14:09.179906 22523 solver.cpp:245] Train net output #149: total_confidence = 0.560144 | |
I0425 10:14:09.179927 22523 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.456436 | |
I0425 10:14:09.179946 22523 sgd_solver.cpp:106] Iteration 500, lr = 0.01 | |
I0425 10:19:50.566380 22523 solver.cpp:229] Iteration 1000, loss = 3.24969 | |
I0425 10:19:50.566507 22523 solver.cpp:245] Train net output #0: loss1/accuracy = 0.489362 | |
I0425 10:19:50.566527 22523 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.5 | |
I0425 10:19:50.566540 22523 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5 | |
I0425 10:19:50.566552 22523 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.25 | |
I0425 10:19:50.566565 22523 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.125 | |
I0425 10:19:50.566576 22523 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.5 | |
I0425 10:19:50.566589 22523 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.5 | |
I0425 10:19:50.566601 22523 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.75 | |
I0425 10:19:50.566613 22523 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875 | |
I0425 10:19:50.566625 22523 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875 | |
I0425 10:19:50.566637 22523 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875 | |
I0425 10:19:50.566649 22523 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.875 | |
I0425 10:19:50.566660 22523 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.875 | |
I0425 10:19:50.566673 22523 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.875 | |
I0425 10:19:50.566684 22523 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1 | |
I0425 10:19:50.566696 22523 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0425 10:19:50.566709 22523 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0425 10:19:50.566720 22523 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0425 10:19:50.566732 22523 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0425 10:19:50.566743 22523 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0425 10:19:50.566756 22523 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0425 10:19:50.566766 22523 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0425 10:19:50.566778 22523 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0425 10:19:50.566790 22523 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.818182 | |
I0425 10:19:50.566802 22523 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.744681 | |
I0425 10:19:50.566819 22523 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.63358 (* 0.3 = 0.490073 loss) | |
I0425 10:19:50.566834 22523 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.648418 (* 0.3 = 0.194525 loss) | |
I0425 10:19:50.566849 22523 solver.cpp:245] Train net output #27: loss1/loss01 = 1.41798 (* 0.0272727 = 0.0386722 loss) | |
I0425 10:19:50.566864 22523 solver.cpp:245] Train net output #28: loss1/loss02 = 1.84796 (* 0.0272727 = 0.0503989 loss) | |
I0425 10:19:50.566877 22523 solver.cpp:245] Train net output #29: loss1/loss03 = 2.36917 (* 0.0272727 = 0.0646136 loss) | |
I0425 10:19:50.566892 22523 solver.cpp:245] Train net output #30: loss1/loss04 = 2.4494 (* 0.0272727 = 0.0668018 loss) | |
I0425 10:19:50.566906 22523 solver.cpp:245] Train net output #31: loss1/loss05 = 2.17139 (* 0.0272727 = 0.0592196 loss) | |
I0425 10:19:50.566920 22523 solver.cpp:245] Train net output #32: loss1/loss06 = 1.73088 (* 0.0272727 = 0.0472058 loss) | |
I0425 10:19:50.566936 22523 solver.cpp:245] Train net output #33: loss1/loss07 = 0.726696 (* 0.0272727 = 0.019819 loss) | |
I0425 10:19:50.566949 22523 solver.cpp:245] Train net output #34: loss1/loss08 = 0.554796 (* 0.0272727 = 0.0151308 loss) | |
I0425 10:19:50.566963 22523 solver.cpp:245] Train net output #35: loss1/loss09 = 0.496301 (* 0.0272727 = 0.0135355 loss) | |
I0425 10:19:50.566978 22523 solver.cpp:245] Train net output #36: loss1/loss10 = 0.384195 (* 0.0272727 = 0.010478 loss) | |
I0425 10:19:50.566992 22523 solver.cpp:245] Train net output #37: loss1/loss11 = 0.47998 (* 0.0272727 = 0.0130904 loss) | |
I0425 10:19:50.567014 22523 solver.cpp:245] Train net output #38: loss1/loss12 = 0.475406 (* 0.0272727 = 0.0129656 loss) | |
I0425 10:19:50.567045 22523 solver.cpp:245] Train net output #39: loss1/loss13 = 0.466902 (* 0.0272727 = 0.0127337 loss) | |
I0425 10:19:50.567061 22523 solver.cpp:245] Train net output #40: loss1/loss14 = 0.245999 (* 0.0272727 = 0.00670907 loss) | |
I0425 10:19:50.567080 22523 solver.cpp:245] Train net output #41: loss1/loss15 = 0.180602 (* 0.0272727 = 0.0049255 loss) | |
I0425 10:19:50.567093 22523 solver.cpp:245] Train net output #42: loss1/loss16 = 0.0510163 (* 0.0272727 = 0.00139135 loss) | |
I0425 10:19:50.567108 22523 solver.cpp:245] Train net output #43: loss1/loss17 = 0.0151559 (* 0.0272727 = 0.000413343 loss) | |
I0425 10:19:50.567122 22523 solver.cpp:245] Train net output #44: loss1/loss18 = 0.0134094 (* 0.0272727 = 0.00036571 loss) | |
I0425 10:19:50.567137 22523 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00732898 (* 0.0272727 = 0.000199881 loss) | |
I0425 10:19:50.567152 22523 solver.cpp:245] Train net output #46: loss1/loss20 = 0.00434373 (* 0.0272727 = 0.000118465 loss) | |
I0425 10:19:50.567165 22523 solver.cpp:245] Train net output #47: loss1/loss21 = 0.00511182 (* 0.0272727 = 0.000139413 loss) | |
I0425 10:19:50.567180 22523 solver.cpp:245] Train net output #48: loss1/loss22 = 0.00433449 (* 0.0272727 = 0.000118213 loss) | |
I0425 10:19:50.567193 22523 solver.cpp:245] Train net output #49: loss2/accuracy = 0.723404 | |
I0425 10:19:50.567208 22523 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875 | |
I0425 10:19:50.567220 22523 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75 | |
I0425 10:19:50.567232 22523 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.625 | |
I0425 10:19:50.567244 22523 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.5 | |
I0425 10:19:50.567255 22523 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.375 | |
I0425 10:19:50.567266 22523 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.625 | |
I0425 10:19:50.567278 22523 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.75 | |
I0425 10:19:50.567291 22523 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.75 | |
I0425 10:19:50.567301 22523 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875 | |
I0425 10:19:50.567313 22523 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1 | |
I0425 10:19:50.567325 22523 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.875 | |
I0425 10:19:50.567337 22523 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.875 | |
I0425 10:19:50.567359 22523 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.875 | |
I0425 10:19:50.567375 22523 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1 | |
I0425 10:19:50.567387 22523 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0425 10:19:50.567399 22523 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0425 10:19:50.567409 22523 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0425 10:19:50.567421 22523 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0425 10:19:50.567432 22523 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0425 10:19:50.567445 22523 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0425 10:19:50.567456 22523 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0425 10:19:50.567466 22523 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0425 10:19:50.567478 22523 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.852273 | |
I0425 10:19:50.567489 22523 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.787234 | |
I0425 10:19:50.567503 22523 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.15335 (* 0.3 = 0.346004 loss) | |
I0425 10:19:50.567520 22523 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.576135 (* 0.3 = 0.172841 loss) | |
I0425 10:19:50.567536 22523 solver.cpp:245] Train net output #76: loss2/loss01 = 1.04406 (* 0.0272727 = 0.0284743 loss) | |
I0425 10:19:50.567550 22523 solver.cpp:245] Train net output #77: loss2/loss02 = 0.844987 (* 0.0272727 = 0.0230451 loss) | |
I0425 10:19:50.567577 22523 solver.cpp:245] Train net output #78: loss2/loss03 = 1.67696 (* 0.0272727 = 0.0457353 loss) | |
I0425 10:19:50.567594 22523 solver.cpp:245] Train net output #79: loss2/loss04 = 1.49693 (* 0.0272727 = 0.0408254 loss) | |
I0425 10:19:50.567607 22523 solver.cpp:245] Train net output #80: loss2/loss05 = 2.26416 (* 0.0272727 = 0.0617497 loss) | |
I0425 10:19:50.567621 22523 solver.cpp:245] Train net output #81: loss2/loss06 = 1.52726 (* 0.0272727 = 0.0416526 loss) | |
I0425 10:19:50.567636 22523 solver.cpp:245] Train net output #82: loss2/loss07 = 1.05068 (* 0.0272727 = 0.0286548 loss) | |
I0425 10:19:50.567649 22523 solver.cpp:245] Train net output #83: loss2/loss08 = 0.7825 (* 0.0272727 = 0.0213409 loss) | |
I0425 10:19:50.567663 22523 solver.cpp:245] Train net output #84: loss2/loss09 = 0.793966 (* 0.0272727 = 0.0216536 loss) | |
I0425 10:19:50.567677 22523 solver.cpp:245] Train net output #85: loss2/loss10 = 0.485818 (* 0.0272727 = 0.0132496 loss) | |
I0425 10:19:50.567692 22523 solver.cpp:245] Train net output #86: loss2/loss11 = 0.533254 (* 0.0272727 = 0.0145433 loss) | |
I0425 10:19:50.567705 22523 solver.cpp:245] Train net output #87: loss2/loss12 = 0.624828 (* 0.0272727 = 0.0170408 loss) | |
I0425 10:19:50.567719 22523 solver.cpp:245] Train net output #88: loss2/loss13 = 0.513778 (* 0.0272727 = 0.0140121 loss) | |
I0425 10:19:50.567734 22523 solver.cpp:245] Train net output #89: loss2/loss14 = 0.12558 (* 0.0272727 = 0.00342491 loss) | |
I0425 10:19:50.567747 22523 solver.cpp:245] Train net output #90: loss2/loss15 = 0.0985047 (* 0.0272727 = 0.00268649 loss) | |
I0425 10:19:50.567762 22523 solver.cpp:245] Train net output #91: loss2/loss16 = 0.0310753 (* 0.0272727 = 0.000847507 loss) | |
I0425 10:19:50.567776 22523 solver.cpp:245] Train net output #92: loss2/loss17 = 0.00543729 (* 0.0272727 = 0.00014829 loss) | |
I0425 10:19:50.567790 22523 solver.cpp:245] Train net output #93: loss2/loss18 = 0.00613205 (* 0.0272727 = 0.000167238 loss) | |
I0425 10:19:50.567805 22523 solver.cpp:245] Train net output #94: loss2/loss19 = 0.00423219 (* 0.0272727 = 0.000115423 loss) | |
I0425 10:19:50.567819 22523 solver.cpp:245] Train net output #95: loss2/loss20 = 0.00308128 (* 0.0272727 = 8.4035e-05 loss) | |
I0425 10:19:50.567833 22523 solver.cpp:245] Train net output #96: loss2/loss21 = 0.00276013 (* 0.0272727 = 7.52762e-05 loss) | |
I0425 10:19:50.567848 22523 solver.cpp:245] Train net output #97: loss2/loss22 = 0.00123546 (* 0.0272727 = 3.36943e-05 loss) | |
I0425 10:19:50.567860 22523 solver.cpp:245] Train net output #98: loss3/accuracy = 0.744681 | |
I0425 10:19:50.567873 22523 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875 | |
I0425 10:19:50.567884 22523 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875 | |
I0425 10:19:50.567895 22523 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.75 | |
I0425 10:19:50.567908 22523 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875 | |
I0425 10:19:50.567919 22523 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.625 | |
I0425 10:19:50.567934 22523 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.875 | |
I0425 10:19:50.567945 22523 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75 | |
I0425 10:19:50.567957 22523 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.75 | |
I0425 10:19:50.567970 22523 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.75 | |
I0425 10:19:50.567992 22523 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1 | |
I0425 10:19:50.568004 22523 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.875 | |
I0425 10:19:50.568017 22523 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.875 | |
I0425 10:19:50.568027 22523 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.875 | |
I0425 10:19:50.568039 22523 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1 | |
I0425 10:19:50.568050 22523 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0425 10:19:50.568069 22523 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0425 10:19:50.568090 22523 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0425 10:19:50.568104 22523 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0425 10:19:50.568115 22523 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0425 10:19:50.568126 22523 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0425 10:19:50.568147 22523 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0425 10:19:50.568158 22523 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0425 10:19:50.568171 22523 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.880682 | |
I0425 10:19:50.568181 22523 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.87234 | |
I0425 10:19:50.568195 22523 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.776332 (* 1 = 0.776332 loss) | |
I0425 10:19:50.568209 22523 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.460418 (* 1 = 0.460418 loss) | |
I0425 10:19:50.568223 22523 solver.cpp:245] Train net output #125: loss3/loss01 = 0.366067 (* 0.0909091 = 0.0332788 loss) | |
I0425 10:19:50.568238 22523 solver.cpp:245] Train net output #126: loss3/loss02 = 0.369337 (* 0.0909091 = 0.0335761 loss) | |
I0425 10:19:50.568254 22523 solver.cpp:245] Train net output #127: loss3/loss03 = 0.947142 (* 0.0909091 = 0.0861038 loss) | |
I0425 10:19:50.568269 22523 solver.cpp:245] Train net output #128: loss3/loss04 = 0.545367 (* 0.0909091 = 0.0495788 loss) | |
I0425 10:19:50.568284 22523 solver.cpp:245] Train net output #129: loss3/loss05 = 1.38482 (* 0.0909091 = 0.125893 loss) | |
I0425 10:19:50.568297 22523 solver.cpp:245] Train net output #130: loss3/loss06 = 1.30964 (* 0.0909091 = 0.119058 loss) | |
I0425 10:19:50.568311 22523 solver.cpp:245] Train net output #131: loss3/loss07 = 1.28335 (* 0.0909091 = 0.116669 loss) | |
I0425 10:19:50.568325 22523 solver.cpp:245] Train net output #132: loss3/loss08 = 1.10256 (* 0.0909091 = 0.100233 loss) | |
I0425 10:19:50.568338 22523 solver.cpp:245] Train net output #133: loss3/loss09 = 0.557513 (* 0.0909091 = 0.050683 loss) | |
I0425 10:19:50.568352 22523 solver.cpp:245] Train net output #134: loss3/loss10 = 0.370586 (* 0.0909091 = 0.0336897 loss) | |
I0425 10:19:50.568367 22523 solver.cpp:245] Train net output #135: loss3/loss11 = 0.411373 (* 0.0909091 = 0.0373976 loss) | |
I0425 10:19:50.568380 22523 solver.cpp:245] Train net output #136: loss3/loss12 = 0.491852 (* 0.0909091 = 0.0447138 loss) | |
I0425 10:19:50.568394 22523 solver.cpp:245] Train net output #137: loss3/loss13 = 0.394812 (* 0.0909091 = 0.035892 loss) | |
I0425 10:19:50.568408 22523 solver.cpp:245] Train net output #138: loss3/loss14 = 0.149559 (* 0.0909091 = 0.0135963 loss) | |
I0425 10:19:50.568423 22523 solver.cpp:245] Train net output #139: loss3/loss15 = 0.084995 (* 0.0909091 = 0.00772682 loss) | |
I0425 10:19:50.568436 22523 solver.cpp:245] Train net output #140: loss3/loss16 = 0.0375995 (* 0.0909091 = 0.00341813 loss) | |
I0425 10:19:50.568450 22523 solver.cpp:245] Train net output #141: loss3/loss17 = 0.0118182 (* 0.0909091 = 0.00107438 loss) | |
I0425 10:19:50.568464 22523 solver.cpp:245] Train net output #142: loss3/loss18 = 0.00380242 (* 0.0909091 = 0.000345674 loss) | |
I0425 10:19:50.568480 22523 solver.cpp:245] Train net output #143: loss3/loss19 = 0.00110348 (* 0.0909091 = 0.000100316 loss) | |
I0425 10:19:50.568493 22523 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000271398 (* 0.0909091 = 2.46725e-05 loss) | |
I0425 10:19:50.568508 22523 solver.cpp:245] Train net output #145: loss3/loss21 = 9.74732e-05 (* 0.0909091 = 8.8612e-06 loss) | |
I0425 10:19:50.568522 22523 solver.cpp:245] Train net output #146: loss3/loss22 = 4.56849e-05 (* 0.0909091 = 4.15317e-06 loss) | |
I0425 10:19:50.568534 22523 solver.cpp:245] Train net output #147: total_accuracy = 0.625 | |
I0425 10:19:50.568547 22523 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.5 | |
I0425 10:19:50.568558 22523 solver.cpp:245] Train net output #149: total_confidence = 0.56383 | |
I0425 10:19:50.568583 22523 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.392776 | |
I0425 10:19:50.568600 22523 sgd_solver.cpp:106] Iteration 1000, lr = 0.01 | |
I0425 10:25:31.975706 22523 solver.cpp:229] Iteration 1500, loss = 3.18386 | |
I0425 10:25:31.975836 22523 solver.cpp:245] Train net output #0: loss1/accuracy = 0.568627 | |
I0425 10:25:31.975857 22523 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.5 | |
I0425 10:25:31.975869 22523 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.375 | |
I0425 10:25:31.975881 22523 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.25 | |
I0425 10:25:31.975894 22523 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375 | |
I0425 10:25:31.975905 22523 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.25 | |
I0425 10:25:31.975917 22523 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.5 | |
I0425 10:25:31.975929 22523 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.625 | |
I0425 10:25:31.975941 22523 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.625 | |
I0425 10:25:31.975953 22523 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.75 | |
I0425 10:25:31.975965 22523 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875 | |
I0425 10:25:31.975976 22523 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1 | |
I0425 10:25:31.975989 22523 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1 | |
I0425 10:25:31.976001 22523 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1 | |
I0425 10:25:31.976012 22523 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1 | |
I0425 10:25:31.976024 22523 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0425 10:25:31.976035 22523 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0425 10:25:31.976047 22523 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0425 10:25:31.976059 22523 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0425 10:25:31.976070 22523 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0425 10:25:31.976083 22523 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0425 10:25:31.976094 22523 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0425 10:25:31.976105 22523 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0425 10:25:31.976117 22523 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.857955 | |
I0425 10:25:31.976130 22523 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.72549 | |
I0425 10:25:31.976146 22523 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.66571 (* 0.3 = 0.499713 loss) | |
I0425 10:25:31.976161 22523 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.548662 (* 0.3 = 0.164599 loss) | |
I0425 10:25:31.976176 22523 solver.cpp:245] Train net output #27: loss1/loss01 = 1.59453 (* 0.0272727 = 0.0434873 loss) | |
I0425 10:25:31.976191 22523 solver.cpp:245] Train net output #28: loss1/loss02 = 2.1933 (* 0.0272727 = 0.0598172 loss) | |
I0425 10:25:31.976207 22523 solver.cpp:245] Train net output #29: loss1/loss03 = 2.59954 (* 0.0272727 = 0.0708966 loss) | |
I0425 10:25:31.976222 22523 solver.cpp:245] Train net output #30: loss1/loss04 = 2.06073 (* 0.0272727 = 0.0562016 loss) | |
I0425 10:25:31.976243 22523 solver.cpp:245] Train net output #31: loss1/loss05 = 1.65119 (* 0.0272727 = 0.0450325 loss) | |
I0425 10:25:31.976256 22523 solver.cpp:245] Train net output #32: loss1/loss06 = 1.51585 (* 0.0272727 = 0.0413414 loss) | |
I0425 10:25:31.976270 22523 solver.cpp:245] Train net output #33: loss1/loss07 = 1.28264 (* 0.0272727 = 0.0349811 loss) | |
I0425 10:25:31.976284 22523 solver.cpp:245] Train net output #34: loss1/loss08 = 1.26522 (* 0.0272727 = 0.0345059 loss) | |
I0425 10:25:31.976305 22523 solver.cpp:245] Train net output #35: loss1/loss09 = 0.848942 (* 0.0272727 = 0.023153 loss) | |
I0425 10:25:31.976320 22523 solver.cpp:245] Train net output #36: loss1/loss10 = 0.748832 (* 0.0272727 = 0.0204227 loss) | |
I0425 10:25:31.976335 22523 solver.cpp:245] Train net output #37: loss1/loss11 = 0.0744501 (* 0.0272727 = 0.00203046 loss) | |
I0425 10:25:31.976348 22523 solver.cpp:245] Train net output #38: loss1/loss12 = 0.049996 (* 0.0272727 = 0.00136353 loss) | |
I0425 10:25:31.976363 22523 solver.cpp:245] Train net output #39: loss1/loss13 = 0.0242967 (* 0.0272727 = 0.000662637 loss) | |
I0425 10:25:31.976395 22523 solver.cpp:245] Train net output #40: loss1/loss14 = 0.00907335 (* 0.0272727 = 0.000247455 loss) | |
I0425 10:25:31.976411 22523 solver.cpp:245] Train net output #41: loss1/loss15 = 0.00460398 (* 0.0272727 = 0.000125563 loss) | |
I0425 10:25:31.976425 22523 solver.cpp:245] Train net output #42: loss1/loss16 = 0.00341489 (* 0.0272727 = 9.31334e-05 loss) | |
I0425 10:25:31.976440 22523 solver.cpp:245] Train net output #43: loss1/loss17 = 0.000343886 (* 0.0272727 = 9.37871e-06 loss) | |
I0425 10:25:31.976454 22523 solver.cpp:245] Train net output #44: loss1/loss18 = 0.000213204 (* 0.0272727 = 5.81466e-06 loss) | |
I0425 10:25:31.976469 22523 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00011849 (* 0.0272727 = 3.23154e-06 loss) | |
I0425 10:25:31.976482 22523 solver.cpp:245] Train net output #46: loss1/loss20 = 6.73304e-05 (* 0.0272727 = 1.83628e-06 loss) | |
I0425 10:25:31.976497 22523 solver.cpp:245] Train net output #47: loss1/loss21 = 4.47739e-05 (* 0.0272727 = 1.22111e-06 loss) | |
I0425 10:25:31.976511 22523 solver.cpp:245] Train net output #48: loss1/loss22 = 4.83898e-05 (* 0.0272727 = 1.31972e-06 loss) | |
I0425 10:25:31.976523 22523 solver.cpp:245] Train net output #49: loss2/accuracy = 0.607843 | |
I0425 10:25:31.976536 22523 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875 | |
I0425 10:25:31.976548 22523 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.5 | |
I0425 10:25:31.976560 22523 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.625 | |
I0425 10:25:31.976572 22523 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.125 | |
I0425 10:25:31.976583 22523 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5 | |
I0425 10:25:31.976594 22523 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.5 | |
I0425 10:25:31.976606 22523 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.625 | |
I0425 10:25:31.976619 22523 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.75 | |
I0425 10:25:31.976629 22523 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.75 | |
I0425 10:25:31.976640 22523 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875 | |
I0425 10:25:31.976652 22523 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1 | |
I0425 10:25:31.976671 22523 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1 | |
I0425 10:25:31.976683 22523 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1 | |
I0425 10:25:31.976694 22523 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1 | |
I0425 10:25:31.976706 22523 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0425 10:25:31.976717 22523 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0425 10:25:31.976733 22523 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0425 10:25:31.976745 22523 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0425 10:25:31.976757 22523 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0425 10:25:31.976768 22523 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0425 10:25:31.976779 22523 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0425 10:25:31.976790 22523 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0425 10:25:31.976801 22523 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.869318 | |
I0425 10:25:31.976814 22523 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.843137 | |
I0425 10:25:31.976827 22523 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.35703 (* 0.3 = 0.407108 loss) | |
I0425 10:25:31.976842 22523 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.475326 (* 0.3 = 0.142598 loss) | |
I0425 10:25:31.976861 22523 solver.cpp:245] Train net output #76: loss2/loss01 = 0.66472 (* 0.0272727 = 0.0181287 loss) | |
I0425 10:25:31.976876 22523 solver.cpp:245] Train net output #77: loss2/loss02 = 1.6131 (* 0.0272727 = 0.0439937 loss) | |
I0425 10:25:31.976902 22523 solver.cpp:245] Train net output #78: loss2/loss03 = 1.29048 (* 0.0272727 = 0.0351949 loss) | |
I0425 10:25:31.976917 22523 solver.cpp:245] Train net output #79: loss2/loss04 = 2.30024 (* 0.0272727 = 0.0627338 loss) | |
I0425 10:25:31.976932 22523 solver.cpp:245] Train net output #80: loss2/loss05 = 1.63116 (* 0.0272727 = 0.0444862 loss) | |
I0425 10:25:31.976945 22523 solver.cpp:245] Train net output #81: loss2/loss06 = 1.33427 (* 0.0272727 = 0.0363892 loss) | |
I0425 10:25:31.976959 22523 solver.cpp:245] Train net output #82: loss2/loss07 = 1.41771 (* 0.0272727 = 0.0386649 loss) | |
I0425 10:25:31.976974 22523 solver.cpp:245] Train net output #83: loss2/loss08 = 1.05782 (* 0.0272727 = 0.0288497 loss) | |
I0425 10:25:31.976986 22523 solver.cpp:245] Train net output #84: loss2/loss09 = 0.750501 (* 0.0272727 = 0.0204682 loss) | |
I0425 10:25:31.977000 22523 solver.cpp:245] Train net output #85: loss2/loss10 = 0.625429 (* 0.0272727 = 0.0170572 loss) | |
I0425 10:25:31.977015 22523 solver.cpp:245] Train net output #86: loss2/loss11 = 0.195086 (* 0.0272727 = 0.00532053 loss) | |
I0425 10:25:31.977030 22523 solver.cpp:245] Train net output #87: loss2/loss12 = 0.0565987 (* 0.0272727 = 0.0015436 loss) | |
I0425 10:25:31.977044 22523 solver.cpp:245] Train net output #88: loss2/loss13 = 0.0355998 (* 0.0272727 = 0.000970903 loss) | |
I0425 10:25:31.977058 22523 solver.cpp:245] Train net output #89: loss2/loss14 = 0.0104125 (* 0.0272727 = 0.000283979 loss) | |
I0425 10:25:31.977072 22523 solver.cpp:245] Train net output #90: loss2/loss15 = 0.00230727 (* 0.0272727 = 6.29256e-05 loss) | |
I0425 10:25:31.977087 22523 solver.cpp:245] Train net output #91: loss2/loss16 = 0.00183605 (* 0.0272727 = 5.0074e-05 loss) | |
I0425 10:25:31.977105 22523 solver.cpp:245] Train net output #92: loss2/loss17 = 0.000296589 (* 0.0272727 = 8.08879e-06 loss) | |
I0425 10:25:31.977119 22523 solver.cpp:245] Train net output #93: loss2/loss18 = 6.78798e-05 (* 0.0272727 = 1.85127e-06 loss) | |
I0425 10:25:31.977133 22523 solver.cpp:245] Train net output #94: loss2/loss19 = 2.89775e-05 (* 0.0272727 = 7.90295e-07 loss) | |
I0425 10:25:31.977147 22523 solver.cpp:245] Train net output #95: loss2/loss20 = 3.16519e-05 (* 0.0272727 = 8.63232e-07 loss) | |
I0425 10:25:31.977161 22523 solver.cpp:245] Train net output #96: loss2/loss21 = 2.06392e-05 (* 0.0272727 = 5.62886e-07 loss) | |
I0425 10:25:31.977175 22523 solver.cpp:245] Train net output #97: loss2/loss22 = 3.50734e-05 (* 0.0272727 = 9.56548e-07 loss) | |
I0425 10:25:31.977187 22523 solver.cpp:245] Train net output #98: loss3/accuracy = 0.843137 | |
I0425 10:25:31.977200 22523 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1 | |
I0425 10:25:31.977210 22523 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1 | |
I0425 10:25:31.977222 22523 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.875 | |
I0425 10:25:31.977233 22523 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.625 | |
I0425 10:25:31.977246 22523 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875 | |
I0425 10:25:31.977259 22523 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.75 | |
I0425 10:25:31.977270 22523 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75 | |
I0425 10:25:31.977283 22523 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.625 | |
I0425 10:25:31.977293 22523 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875 | |
I0425 10:25:31.977305 22523 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875 | |
I0425 10:25:31.977316 22523 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1 | |
I0425 10:25:31.977327 22523 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1 | |
I0425 10:25:31.977339 22523 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1 | |
I0425 10:25:31.977350 22523 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1 | |
I0425 10:25:31.977361 22523 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0425 10:25:31.977372 22523 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0425 10:25:31.977393 22523 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0425 10:25:31.977406 22523 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0425 10:25:31.977417 22523 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0425 10:25:31.977428 22523 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0425 10:25:31.977440 22523 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0425 10:25:31.977452 22523 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0425 10:25:31.977463 22523 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.943182 | |
I0425 10:25:31.977473 22523 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.941176 | |
I0425 10:25:31.977488 22523 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.649474 (* 1 = 0.649474 loss) | |
I0425 10:25:31.977501 22523 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.222311 (* 1 = 0.222311 loss) | |
I0425 10:25:31.977515 22523 solver.cpp:245] Train net output #125: loss3/loss01 = 0.187321 (* 0.0909091 = 0.0170291 loss) | |
I0425 10:25:31.977530 22523 solver.cpp:245] Train net output #126: loss3/loss02 = 0.180198 (* 0.0909091 = 0.0163816 loss) | |
I0425 10:25:31.977543 22523 solver.cpp:245] Train net output #127: loss3/loss03 = 0.530571 (* 0.0909091 = 0.0482337 loss) | |
I0425 10:25:31.977557 22523 solver.cpp:245] Train net output #128: loss3/loss04 = 1.06954 (* 0.0909091 = 0.0972309 loss) | |
I0425 10:25:31.977571 22523 solver.cpp:245] Train net output #129: loss3/loss05 = 0.377518 (* 0.0909091 = 0.0343198 loss) | |
I0425 10:25:31.977586 22523 solver.cpp:245] Train net output #130: loss3/loss06 = 0.619491 (* 0.0909091 = 0.0563174 loss) | |
I0425 10:25:31.977601 22523 solver.cpp:245] Train net output #131: loss3/loss07 = 0.87824 (* 0.0909091 = 0.07984 loss) | |
I0425 10:25:31.977614 22523 solver.cpp:245] Train net output #132: loss3/loss08 = 1.1023 (* 0.0909091 = 0.100209 loss) | |
I0425 10:25:31.977627 22523 solver.cpp:245] Train net output #133: loss3/loss09 = 0.52686 (* 0.0909091 = 0.0478963 loss) | |
I0425 10:25:31.977643 22523 solver.cpp:245] Train net output #134: loss3/loss10 = 0.445076 (* 0.0909091 = 0.0404614 loss) | |
I0425 10:25:31.977656 22523 solver.cpp:245] Train net output #135: loss3/loss11 = 0.298969 (* 0.0909091 = 0.027179 loss) | |
I0425 10:25:31.977671 22523 solver.cpp:245] Train net output #136: loss3/loss12 = 0.172512 (* 0.0909091 = 0.0156829 loss) | |
I0425 10:25:31.977689 22523 solver.cpp:245] Train net output #137: loss3/loss13 = 0.0852429 (* 0.0909091 = 0.00774936 loss) | |
I0425 10:25:31.977704 22523 solver.cpp:245] Train net output #138: loss3/loss14 = 0.0503754 (* 0.0909091 = 0.00457958 loss) | |
I0425 10:25:31.977717 22523 solver.cpp:245] Train net output #139: loss3/loss15 = 0.0346721 (* 0.0909091 = 0.00315201 loss) | |
I0425 10:25:31.977731 22523 solver.cpp:245] Train net output #140: loss3/loss16 = 0.0174408 (* 0.0909091 = 0.00158552 loss) | |
I0425 10:25:31.977746 22523 solver.cpp:245] Train net output #141: loss3/loss17 = 0.00924937 (* 0.0909091 = 0.000840851 loss) | |
I0425 10:25:31.977762 22523 solver.cpp:245] Train net output #142: loss3/loss18 = 0.00278436 (* 0.0909091 = 0.000253123 loss) | |
I0425 10:25:31.977777 22523 solver.cpp:245] Train net output #143: loss3/loss19 = 0.000793495 (* 0.0909091 = 7.21359e-05 loss) | |
I0425 10:25:31.977790 22523 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000192504 (* 0.0909091 = 1.75003e-05 loss) | |
I0425 10:25:31.977804 22523 solver.cpp:245] Train net output #145: loss3/loss21 = 5.30462e-05 (* 0.0909091 = 4.82238e-06 loss) | |
I0425 10:25:31.977818 22523 solver.cpp:245] Train net output #146: loss3/loss22 = 1.94318e-05 (* 0.0909091 = 1.76653e-06 loss) | |
I0425 10:25:31.977830 22523 solver.cpp:245] Train net output #147: total_accuracy = 0.625 | |
I0425 10:25:31.977843 22523 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.625 | |
I0425 10:25:31.977864 22523 solver.cpp:245] Train net output #149: total_confidence = 0.494776 | |
I0425 10:25:31.977877 22523 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.377477 | |
I0425 10:25:31.977892 22523 sgd_solver.cpp:106] Iteration 1500, lr = 0.01 | |
I0425 10:31:13.393270 22523 solver.cpp:229] Iteration 2000, loss = 3.34898 | |
I0425 10:31:13.393395 22523 solver.cpp:245] Train net output #0: loss1/accuracy = 0.625 | |
I0425 10:31:13.393421 22523 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.875 | |
I0425 10:31:13.393435 22523 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5 | |
I0425 10:31:13.393446 22523 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.25 | |
I0425 10:31:13.393458 22523 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.25 | |
I0425 10:31:13.393471 22523 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.5 | |
I0425 10:31:13.393482 22523 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.625 | |
I0425 10:31:13.393499 22523 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.875 | |
I0425 10:31:13.393512 22523 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.75 | |
I0425 10:31:13.393523 22523 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875 | |
I0425 10:31:13.393535 22523 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875 | |
I0425 10:31:13.393548 22523 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.875 | |
I0425 10:31:13.393559 22523 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1 | |
I0425 10:31:13.393579 22523 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1 | |
I0425 10:31:13.393594 22523 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1 | |
I0425 10:31:13.393605 22523 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0425 10:31:13.393617 22523 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0425 10:31:13.393637 22523 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0425 10:31:13.393649 22523 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0425 10:31:13.393661 22523 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0425 10:31:13.393672 22523 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0425 10:31:13.393683 22523 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0425 10:31:13.393694 22523 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0425 10:31:13.393707 22523 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.857955 | |
I0425 10:31:13.393718 22523 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.791667 | |
I0425 10:31:13.393735 22523 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.56926 (* 0.3 = 0.470778 loss) | |
I0425 10:31:13.393750 22523 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.574655 (* 0.3 = 0.172396 loss) | |
I0425 10:31:13.393765 22523 solver.cpp:245] Train net output #27: loss1/loss01 = 0.961188 (* 0.0272727 = 0.0262142 loss) | |
I0425 10:31:13.393780 22523 solver.cpp:245] Train net output #28: loss1/loss02 = 1.779 (* 0.0272727 = 0.0485183 loss) | |
I0425 10:31:13.393795 22523 solver.cpp:245] Train net output #29: loss1/loss03 = 2.55472 (* 0.0272727 = 0.0696742 loss) | |
I0425 10:31:13.393810 22523 solver.cpp:245] Train net output #30: loss1/loss04 = 2.23492 (* 0.0272727 = 0.0609525 loss) | |
I0425 10:31:13.393823 22523 solver.cpp:245] Train net output #31: loss1/loss05 = 1.91925 (* 0.0272727 = 0.0523433 loss) | |
I0425 10:31:13.393837 22523 solver.cpp:245] Train net output #32: loss1/loss06 = 1.98414 (* 0.0272727 = 0.054113 loss) | |
I0425 10:31:13.393851 22523 solver.cpp:245] Train net output #33: loss1/loss07 = 0.613551 (* 0.0272727 = 0.0167332 loss) | |
I0425 10:31:13.393867 22523 solver.cpp:245] Train net output #34: loss1/loss08 = 0.91245 (* 0.0272727 = 0.024885 loss) | |
I0425 10:31:13.393880 22523 solver.cpp:245] Train net output #35: loss1/loss09 = 0.584628 (* 0.0272727 = 0.0159444 loss) | |
I0425 10:31:13.393894 22523 solver.cpp:245] Train net output #36: loss1/loss10 = 0.496486 (* 0.0272727 = 0.0135405 loss) | |
I0425 10:31:13.393908 22523 solver.cpp:245] Train net output #37: loss1/loss11 = 0.489319 (* 0.0272727 = 0.0133451 loss) | |
I0425 10:31:13.393925 22523 solver.cpp:245] Train net output #38: loss1/loss12 = 0.0950069 (* 0.0272727 = 0.0025911 loss) | |
I0425 10:31:13.393941 22523 solver.cpp:245] Train net output #39: loss1/loss13 = 0.0732353 (* 0.0272727 = 0.00199733 loss) | |
I0425 10:31:13.393970 22523 solver.cpp:245] Train net output #40: loss1/loss14 = 0.0367488 (* 0.0272727 = 0.00100224 loss) | |
I0425 10:31:13.393985 22523 solver.cpp:245] Train net output #41: loss1/loss15 = 0.0346779 (* 0.0272727 = 0.000945761 loss) | |
I0425 10:31:13.394006 22523 solver.cpp:245] Train net output #42: loss1/loss16 = 0.0123926 (* 0.0272727 = 0.000337979 loss) | |
I0425 10:31:13.394021 22523 solver.cpp:245] Train net output #43: loss1/loss17 = 0.00196728 (* 0.0272727 = 5.3653e-05 loss) | |
I0425 10:31:13.394052 22523 solver.cpp:245] Train net output #44: loss1/loss18 = 0.000840357 (* 0.0272727 = 2.29188e-05 loss) | |
I0425 10:31:13.394071 22523 solver.cpp:245] Train net output #45: loss1/loss19 = 0.000379649 (* 0.0272727 = 1.03541e-05 loss) | |
I0425 10:31:13.394088 22523 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000203319 (* 0.0272727 = 5.54506e-06 loss) | |
I0425 10:31:13.394104 22523 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000314548 (* 0.0272727 = 8.57858e-06 loss) | |
I0425 10:31:13.394117 22523 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000191522 (* 0.0272727 = 5.22334e-06 loss) | |
I0425 10:31:13.394130 22523 solver.cpp:245] Train net output #49: loss2/accuracy = 0.770833 | |
I0425 10:31:13.394142 22523 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.75 | |
I0425 10:31:13.394155 22523 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.625 | |
I0425 10:31:13.394166 22523 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.5 | |
I0425 10:31:13.394177 22523 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.625 | |
I0425 10:31:13.394189 22523 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5 | |
I0425 10:31:13.394201 22523 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.625 | |
I0425 10:31:13.394212 22523 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.875 | |
I0425 10:31:13.394223 22523 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875 | |
I0425 10:31:13.394235 22523 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875 | |
I0425 10:31:13.394246 22523 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875 | |
I0425 10:31:13.394258 22523 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.875 | |
I0425 10:31:13.394269 22523 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1 | |
I0425 10:31:13.394281 22523 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1 | |
I0425 10:31:13.394292 22523 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1 | |
I0425 10:31:13.394304 22523 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0425 10:31:13.394315 22523 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0425 10:31:13.394325 22523 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0425 10:31:13.394336 22523 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0425 10:31:13.394347 22523 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0425 10:31:13.394359 22523 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0425 10:31:13.394371 22523 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0425 10:31:13.394381 22523 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0425 10:31:13.394393 22523 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.909091 | |
I0425 10:31:13.394404 22523 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.916667 | |
I0425 10:31:13.394418 22523 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.789632 (* 0.3 = 0.236889 loss) | |
I0425 10:31:13.394433 22523 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.333172 (* 0.3 = 0.0999515 loss) | |
I0425 10:31:13.394448 22523 solver.cpp:245] Train net output #76: loss2/loss01 = 0.72568 (* 0.0272727 = 0.0197913 loss) | |
I0425 10:31:13.394461 22523 solver.cpp:245] Train net output #77: loss2/loss02 = 0.893029 (* 0.0272727 = 0.0243553 loss) | |
I0425 10:31:13.394487 22523 solver.cpp:245] Train net output #78: loss2/loss03 = 2.14737 (* 0.0272727 = 0.0585645 loss) | |
I0425 10:31:13.394502 22523 solver.cpp:245] Train net output #79: loss2/loss04 = 2.04746 (* 0.0272727 = 0.0558398 loss) | |
I0425 10:31:13.394516 22523 solver.cpp:245] Train net output #80: loss2/loss05 = 1.77737 (* 0.0272727 = 0.0484739 loss) | |
I0425 10:31:13.394531 22523 solver.cpp:245] Train net output #81: loss2/loss06 = 1.77391 (* 0.0272727 = 0.0483793 loss) | |
I0425 10:31:13.394544 22523 solver.cpp:245] Train net output #82: loss2/loss07 = 0.515144 (* 0.0272727 = 0.0140494 loss) | |
I0425 10:31:13.394558 22523 solver.cpp:245] Train net output #83: loss2/loss08 = 0.51015 (* 0.0272727 = 0.0139132 loss) | |
I0425 10:31:13.394572 22523 solver.cpp:245] Train net output #84: loss2/loss09 = 0.424707 (* 0.0272727 = 0.0115829 loss) | |
I0425 10:31:13.394587 22523 solver.cpp:245] Train net output #85: loss2/loss10 = 0.537101 (* 0.0272727 = 0.0146482 loss) | |
I0425 10:31:13.394600 22523 solver.cpp:245] Train net output #86: loss2/loss11 = 0.451927 (* 0.0272727 = 0.0123253 loss) | |
I0425 10:31:13.394615 22523 solver.cpp:245] Train net output #87: loss2/loss12 = 0.0750616 (* 0.0272727 = 0.00204713 loss) | |
I0425 10:31:13.394629 22523 solver.cpp:245] Train net output #88: loss2/loss13 = 0.0961084 (* 0.0272727 = 0.00262114 loss) | |
I0425 10:31:13.394647 22523 solver.cpp:245] Train net output #89: loss2/loss14 = 0.0164377 (* 0.0272727 = 0.000448301 loss) | |
I0425 10:31:13.394662 22523 solver.cpp:245] Train net output #90: loss2/loss15 = 0.0129968 (* 0.0272727 = 0.000354459 loss) | |
I0425 10:31:13.394677 22523 solver.cpp:245] Train net output #91: loss2/loss16 = 0.00398543 (* 0.0272727 = 0.000108694 loss) | |
I0425 10:31:13.394691 22523 solver.cpp:245] Train net output #92: loss2/loss17 = 0.00273704 (* 0.0272727 = 7.46466e-05 loss) | |
I0425 10:31:13.394702 22523 solver.cpp:245] Train net output #93: loss2/loss18 = 0.000723992 (* 0.0272727 = 1.97452e-05 loss) | |
I0425 10:31:13.394711 22523 solver.cpp:245] Train net output #94: loss2/loss19 = 0.000546718 (* 0.0272727 = 1.49105e-05 loss) | |
I0425 10:31:13.394726 22523 solver.cpp:245] Train net output #95: loss2/loss20 = 0.000166797 (* 0.0272727 = 4.549e-06 loss) | |
I0425 10:31:13.394742 22523 solver.cpp:245] Train net output #96: loss2/loss21 = 0.000200435 (* 0.0272727 = 5.4664e-06 loss) | |
I0425 10:31:13.394755 22523 solver.cpp:245] Train net output #97: loss2/loss22 = 0.000239843 (* 0.0272727 = 6.54118e-06 loss) | |
I0425 10:31:13.394769 22523 solver.cpp:245] Train net output #98: loss3/accuracy = 0.895833 | |
I0425 10:31:13.394781 22523 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875 | |
I0425 10:31:13.394793 22523 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875 | |
I0425 10:31:13.394804 22523 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.875 | |
I0425 10:31:13.394816 22523 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1 | |
I0425 10:31:13.394827 22523 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875 | |
I0425 10:31:13.394839 22523 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.625 | |
I0425 10:31:13.394860 22523 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875 | |
I0425 10:31:13.394870 22523 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875 | |
I0425 10:31:13.394882 22523 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875 | |
I0425 10:31:13.394893 22523 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875 | |
I0425 10:31:13.394904 22523 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.875 | |
I0425 10:31:13.394915 22523 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1 | |
I0425 10:31:13.394927 22523 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1 | |
I0425 10:31:13.394938 22523 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1 | |
I0425 10:31:13.394948 22523 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0425 10:31:13.394970 22523 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0425 10:31:13.394986 22523 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0425 10:31:13.394997 22523 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0425 10:31:13.395009 22523 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0425 10:31:13.395020 22523 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0425 10:31:13.395030 22523 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0425 10:31:13.395042 22523 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0425 10:31:13.395053 22523 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.943182 | |
I0425 10:31:13.395064 22523 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.958333 | |
I0425 10:31:13.395078 22523 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.362544 (* 1 = 0.362544 loss) | |
I0425 10:31:13.395092 22523 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.187327 (* 1 = 0.187327 loss) | |
I0425 10:31:13.395107 22523 solver.cpp:245] Train net output #125: loss3/loss01 = 0.559248 (* 0.0909091 = 0.0508408 loss) | |
I0425 10:31:13.395120 22523 solver.cpp:245] Train net output #126: loss3/loss02 = 0.584847 (* 0.0909091 = 0.0531679 loss) | |
I0425 10:31:13.395134 22523 solver.cpp:245] Train net output #127: loss3/loss03 = 0.554686 (* 0.0909091 = 0.050426 loss) | |
I0425 10:31:13.395148 22523 solver.cpp:245] Train net output #128: loss3/loss04 = 0.400487 (* 0.0909091 = 0.0364079 loss) | |
I0425 10:31:13.395162 22523 solver.cpp:245] Train net output #129: loss3/loss05 = 0.681371 (* 0.0909091 = 0.0619428 loss) | |
I0425 10:31:13.395176 22523 solver.cpp:245] Train net output #130: loss3/loss06 = 1.03254 (* 0.0909091 = 0.0938673 loss) | |
I0425 10:31:13.395190 22523 solver.cpp:245] Train net output #131: loss3/loss07 = 0.345385 (* 0.0909091 = 0.0313986 loss) | |
I0425 10:31:13.395203 22523 solver.cpp:245] Train net output #132: loss3/loss08 = 0.513575 (* 0.0909091 = 0.0466887 loss) | |
I0425 10:31:13.395217 22523 solver.cpp:245] Train net output #133: loss3/loss09 = 0.355934 (* 0.0909091 = 0.0323576 loss) | |
I0425 10:31:13.395231 22523 solver.cpp:245] Train net output #134: loss3/loss10 = 0.293943 (* 0.0909091 = 0.0267221 loss) | |
I0425 10:31:13.395246 22523 solver.cpp:245] Train net output #135: loss3/loss11 = 0.432639 (* 0.0909091 = 0.0393308 loss) | |
I0425 10:31:13.395261 22523 solver.cpp:245] Train net output #136: loss3/loss12 = 0.0223981 (* 0.0909091 = 0.0020362 loss) | |
I0425 10:31:13.395274 22523 solver.cpp:245] Train net output #137: loss3/loss13 = 0.00852191 (* 0.0909091 = 0.00077472 loss) | |
I0425 10:31:13.395288 22523 solver.cpp:245] Train net output #138: loss3/loss14 = 0.003644 (* 0.0909091 = 0.000331273 loss) | |
I0425 10:31:13.395303 22523 solver.cpp:245] Train net output #139: loss3/loss15 = 0.00168184 (* 0.0909091 = 0.000152894 loss) | |
I0425 10:31:13.395316 22523 solver.cpp:245] Train net output #140: loss3/loss16 = 0.00078903 (* 0.0909091 = 7.173e-05 loss) | |
I0425 10:31:13.395331 22523 solver.cpp:245] Train net output #141: loss3/loss17 = 0.000635505 (* 0.0909091 = 5.77732e-05 loss) | |
I0425 10:31:13.395345 22523 solver.cpp:245] Train net output #142: loss3/loss18 = 0.000213343 (* 0.0909091 = 1.93948e-05 loss) | |
I0425 10:31:13.395380 22523 solver.cpp:245] Train net output #143: loss3/loss19 = 0.000157994 (* 0.0909091 = 1.43631e-05 loss) | |
I0425 10:31:13.395395 22523 solver.cpp:245] Train net output #144: loss3/loss20 = 3.32166e-05 (* 0.0909091 = 3.01969e-06 loss) | |
I0425 10:31:13.395411 22523 solver.cpp:245] Train net output #145: loss3/loss21 = 2.09224e-05 (* 0.0909091 = 1.90204e-06 loss) | |
I0425 10:31:13.395424 22523 solver.cpp:245] Train net output #146: loss3/loss22 = 7.58481e-06 (* 0.0909091 = 6.89528e-07 loss) | |
I0425 10:31:13.395437 22523 solver.cpp:245] Train net output #147: total_accuracy = 0.625 | |
I0425 10:31:13.395448 22523 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.5 | |
I0425 10:31:13.395472 22523 solver.cpp:245] Train net output #149: total_confidence = 0.436546 | |
I0425 10:31:13.395485 22523 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.355099 | |
I0425 10:31:13.395499 22523 sgd_solver.cpp:106] Iteration 2000, lr = 0.01 | |
I0425 10:36:54.845994 22523 solver.cpp:229] Iteration 2500, loss = 3.33967 | |
I0425 10:36:54.846149 22523 solver.cpp:245] Train net output #0: loss1/accuracy = 0.55102 | |
I0425 10:36:54.846169 22523 solver.cpp:245] Train net output #1: loss1/accuracy01 = 1 | |
I0425 10:36:54.846184 22523 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5 | |
I0425 10:36:54.846196 22523 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.5 | |
I0425 10:36:54.846211 22523 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375 | |
I0425 10:36:54.846223 22523 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.375 | |
I0425 10:36:54.846236 22523 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.5 | |
I0425 10:36:54.846247 22523 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.75 | |
I0425 10:36:54.846261 22523 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875 | |
I0425 10:36:54.846271 22523 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.75 | |
I0425 10:36:54.846283 22523 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875 | |
I0425 10:36:54.846295 22523 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.875 | |
I0425 10:36:54.846307 22523 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1 | |
I0425 10:36:54.846319 22523 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1 | |
I0425 10:36:54.846331 22523 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1 | |
I0425 10:36:54.846343 22523 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0425 10:36:54.846354 22523 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0425 10:36:54.846367 22523 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0425 10:36:54.846379 22523 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0425 10:36:54.846391 22523 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0425 10:36:54.846402 22523 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0425 10:36:54.846415 22523 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0425 10:36:54.846426 22523 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0425 10:36:54.846437 22523 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.852273 | |
I0425 10:36:54.846449 22523 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.795918 | |
I0425 10:36:54.846467 22523 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.51264 (* 0.3 = 0.453791 loss) | |
I0425 10:36:54.846482 22523 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.512736 (* 0.3 = 0.153821 loss) | |
I0425 10:36:54.846496 22523 solver.cpp:245] Train net output #27: loss1/loss01 = 0.453406 (* 0.0272727 = 0.0123656 loss) | |
I0425 10:36:54.846511 22523 solver.cpp:245] Train net output #28: loss1/loss02 = 1.70769 (* 0.0272727 = 0.0465733 loss) | |
I0425 10:36:54.846525 22523 solver.cpp:245] Train net output #29: loss1/loss03 = 1.71622 (* 0.0272727 = 0.046806 loss) | |
I0425 10:36:54.846539 22523 solver.cpp:245] Train net output #30: loss1/loss04 = 1.97249 (* 0.0272727 = 0.0537951 loss) | |
I0425 10:36:54.846554 22523 solver.cpp:245] Train net output #31: loss1/loss05 = 1.80822 (* 0.0272727 = 0.049315 loss) | |
I0425 10:36:54.846567 22523 solver.cpp:245] Train net output #32: loss1/loss06 = 1.43699 (* 0.0272727 = 0.0391907 loss) | |
I0425 10:36:54.846581 22523 solver.cpp:245] Train net output #33: loss1/loss07 = 1.06594 (* 0.0272727 = 0.029071 loss) | |
I0425 10:36:54.846595 22523 solver.cpp:245] Train net output #34: loss1/loss08 = 0.744767 (* 0.0272727 = 0.0203118 loss) | |
I0425 10:36:54.846609 22523 solver.cpp:245] Train net output #35: loss1/loss09 = 0.565247 (* 0.0272727 = 0.0154158 loss) | |
I0425 10:36:54.846622 22523 solver.cpp:245] Train net output #36: loss1/loss10 = 0.455885 (* 0.0272727 = 0.0124332 loss) | |
I0425 10:36:54.846637 22523 solver.cpp:245] Train net output #37: loss1/loss11 = 0.698641 (* 0.0272727 = 0.0190538 loss) | |
I0425 10:36:54.846659 22523 solver.cpp:245] Train net output #38: loss1/loss12 = 0.0350206 (* 0.0272727 = 0.000955108 loss) | |
I0425 10:36:54.846674 22523 solver.cpp:245] Train net output #39: loss1/loss13 = 0.0651148 (* 0.0272727 = 0.00177586 loss) | |
I0425 10:36:54.846707 22523 solver.cpp:245] Train net output #40: loss1/loss14 = 0.0271516 (* 0.0272727 = 0.000740499 loss) | |
I0425 10:36:54.846731 22523 solver.cpp:245] Train net output #41: loss1/loss15 = 0.0207141 (* 0.0272727 = 0.00056493 loss) | |
I0425 10:36:54.846746 22523 solver.cpp:245] Train net output #42: loss1/loss16 = 0.00601888 (* 0.0272727 = 0.000164151 loss) | |
I0425 10:36:54.846760 22523 solver.cpp:245] Train net output #43: loss1/loss17 = 0.00192875 (* 0.0272727 = 5.26024e-05 loss) | |
I0425 10:36:54.846774 22523 solver.cpp:245] Train net output #44: loss1/loss18 = 0.0012175 (* 0.0272727 = 3.32044e-05 loss) | |
I0425 10:36:54.846789 22523 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00109434 (* 0.0272727 = 2.98457e-05 loss) | |
I0425 10:36:54.846804 22523 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000318078 (* 0.0272727 = 8.67485e-06 loss) | |
I0425 10:36:54.846818 22523 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000288951 (* 0.0272727 = 7.8805e-06 loss) | |
I0425 10:36:54.846832 22523 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000261155 (* 0.0272727 = 7.12241e-06 loss) | |
I0425 10:36:54.846845 22523 solver.cpp:245] Train net output #49: loss2/accuracy = 0.714286 | |
I0425 10:36:54.846858 22523 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875 | |
I0425 10:36:54.846870 22523 solver.cpp:245] Train net output #51: loss2/accuracy02 = 1 | |
I0425 10:36:54.846881 22523 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.375 | |
I0425 10:36:54.846894 22523 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.625 | |
I0425 10:36:54.846904 22523 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5 | |
I0425 10:36:54.846916 22523 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.75 | |
I0425 10:36:54.846927 22523 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.75 | |
I0425 10:36:54.846940 22523 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.75 | |
I0425 10:36:54.846951 22523 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.75 | |
I0425 10:36:54.846963 22523 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875 | |
I0425 10:36:54.846976 22523 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.875 | |
I0425 10:36:54.846987 22523 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1 | |
I0425 10:36:54.846998 22523 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1 | |
I0425 10:36:54.847010 22523 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1 | |
I0425 10:36:54.847021 22523 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0425 10:36:54.847033 22523 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0425 10:36:54.847044 22523 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0425 10:36:54.847053 22523 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0425 10:36:54.847060 22523 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0425 10:36:54.847071 22523 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0425 10:36:54.847082 22523 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0425 10:36:54.847095 22523 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0425 10:36:54.847105 22523 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.903409 | |
I0425 10:36:54.847117 22523 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.938776 | |
I0425 10:36:54.847131 22523 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.02811 (* 0.3 = 0.308434 loss) | |
I0425 10:36:54.847146 22523 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.357537 (* 0.3 = 0.107261 loss) | |
I0425 10:36:54.847172 22523 solver.cpp:245] Train net output #76: loss2/loss01 = 0.230149 (* 0.0272727 = 0.00627679 loss) | |
I0425 10:36:54.847188 22523 solver.cpp:245] Train net output #77: loss2/loss02 = 0.234821 (* 0.0272727 = 0.0064042 loss) | |
I0425 10:36:54.847214 22523 solver.cpp:245] Train net output #78: loss2/loss03 = 1.52276 (* 0.0272727 = 0.0415297 loss) | |
I0425 10:36:54.847234 22523 solver.cpp:245] Train net output #79: loss2/loss04 = 0.929783 (* 0.0272727 = 0.0253577 loss) | |
I0425 10:36:54.847250 22523 solver.cpp:245] Train net output #80: loss2/loss05 = 1.69739 (* 0.0272727 = 0.0462925 loss) | |
I0425 10:36:54.847266 22523 solver.cpp:245] Train net output #81: loss2/loss06 = 0.746564 (* 0.0272727 = 0.0203608 loss) | |
I0425 10:36:54.847280 22523 solver.cpp:245] Train net output #82: loss2/loss07 = 0.912734 (* 0.0272727 = 0.0248927 loss) | |
I0425 10:36:54.847295 22523 solver.cpp:245] Train net output #83: loss2/loss08 = 1.03751 (* 0.0272727 = 0.0282958 loss) | |
I0425 10:36:54.847308 22523 solver.cpp:245] Train net output #84: loss2/loss09 = 0.482756 (* 0.0272727 = 0.0131661 loss) | |
I0425 10:36:54.847323 22523 solver.cpp:245] Train net output #85: loss2/loss10 = 0.523905 (* 0.0272727 = 0.0142883 loss) | |
I0425 10:36:54.847337 22523 solver.cpp:245] Train net output #86: loss2/loss11 = 0.5579 (* 0.0272727 = 0.0152155 loss) | |
I0425 10:36:54.847364 22523 solver.cpp:245] Train net output #87: loss2/loss12 = 0.0487558 (* 0.0272727 = 0.0013297 loss) | |
I0425 10:36:54.847383 22523 solver.cpp:245] Train net output #88: loss2/loss13 = 0.0260219 (* 0.0272727 = 0.000709688 loss) | |
I0425 10:36:54.847398 22523 solver.cpp:245] Train net output #89: loss2/loss14 = 0.0138858 (* 0.0272727 = 0.000378704 loss) | |
I0425 10:36:54.847411 22523 solver.cpp:245] Train net output #90: loss2/loss15 = 0.0138948 (* 0.0272727 = 0.00037895 loss) | |
I0425 10:36:54.847426 22523 solver.cpp:245] Train net output #91: loss2/loss16 = 0.00254754 (* 0.0272727 = 6.94783e-05 loss) | |
I0425 10:36:54.847440 22523 solver.cpp:245] Train net output #92: loss2/loss17 = 0.000174081 (* 0.0272727 = 4.74767e-06 loss) | |
I0425 10:36:54.847455 22523 solver.cpp:245] Train net output #93: loss2/loss18 = 6.18231e-05 (* 0.0272727 = 1.68609e-06 loss) | |
I0425 10:36:54.847468 22523 solver.cpp:245] Train net output #94: loss2/loss19 = 1.6705e-05 (* 0.0272727 = 4.55592e-07 loss) | |
I0425 10:36:54.847483 22523 solver.cpp:245] Train net output #95: loss2/loss20 = 9.65617e-06 (* 0.0272727 = 2.6335e-07 loss) | |
I0425 10:36:54.847496 22523 solver.cpp:245] Train net output #96: loss2/loss21 = 3.15907e-06 (* 0.0272727 = 8.61564e-08 loss) | |
I0425 10:36:54.847512 22523 solver.cpp:245] Train net output #97: loss2/loss22 = 8.82176e-06 (* 0.0272727 = 2.40593e-07 loss) | |
I0425 10:36:54.847523 22523 solver.cpp:245] Train net output #98: loss3/accuracy = 0.755102 | |
I0425 10:36:54.847535 22523 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1 | |
I0425 10:36:54.847548 22523 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1 | |
I0425 10:36:54.847558 22523 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1 | |
I0425 10:36:54.847569 22523 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1 | |
I0425 10:36:54.847580 22523 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875 | |
I0425 10:36:54.847592 22523 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.875 | |
I0425 10:36:54.847604 22523 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.625 | |
I0425 10:36:54.847615 22523 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.75 | |
I0425 10:36:54.847627 22523 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875 | |
I0425 10:36:54.847638 22523 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875 | |
I0425 10:36:54.847651 22523 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.875 | |
I0425 10:36:54.847662 22523 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1 | |
I0425 10:36:54.847673 22523 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1 | |
I0425 10:36:54.847686 22523 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1 | |
I0425 10:36:54.847697 22523 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0425 10:36:54.847707 22523 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0425 10:36:54.847730 22523 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0425 10:36:54.847743 22523 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0425 10:36:54.847755 22523 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0425 10:36:54.847767 22523 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0425 10:36:54.847779 22523 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0425 10:36:54.847790 22523 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0425 10:36:54.847801 22523 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.914773 | |
I0425 10:36:54.847813 22523 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.918367 | |
I0425 10:36:54.847827 22523 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.618957 (* 1 = 0.618957 loss) | |
I0425 10:36:54.847841 22523 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.225191 (* 1 = 0.225191 loss) | |
I0425 10:36:54.847856 22523 solver.cpp:245] Train net output #125: loss3/loss01 = 0.116694 (* 0.0909091 = 0.0106085 loss) | |
I0425 10:36:54.847870 22523 solver.cpp:245] Train net output #126: loss3/loss02 = 0.0866959 (* 0.0909091 = 0.00788145 loss) | |
I0425 10:36:54.847885 22523 solver.cpp:245] Train net output #127: loss3/loss03 = 0.344021 (* 0.0909091 = 0.0312747 loss) | |
I0425 10:36:54.847899 22523 solver.cpp:245] Train net output #128: loss3/loss04 = 0.286129 (* 0.0909091 = 0.0260118 loss) | |
I0425 10:36:54.847913 22523 solver.cpp:245] Train net output #129: loss3/loss05 = 0.514344 (* 0.0909091 = 0.0467586 loss) | |
I0425 10:36:54.847928 22523 solver.cpp:245] Train net output #130: loss3/loss06 = 0.47751 (* 0.0909091 = 0.04341 loss) | |
I0425 10:36:54.847941 22523 solver.cpp:245] Train net output #131: loss3/loss07 = 0.954015 (* 0.0909091 = 0.0867286 loss) | |
I0425 10:36:54.847955 22523 solver.cpp:245] Train net output #132: loss3/loss08 = 0.900825 (* 0.0909091 = 0.0818932 loss) | |
I0425 10:36:54.847970 22523 solver.cpp:245] Train net output #133: loss3/loss09 = 0.365608 (* 0.0909091 = 0.0332371 loss) | |
I0425 10:36:54.847983 22523 solver.cpp:245] Train net output #134: loss3/loss10 = 0.383764 (* 0.0909091 = 0.0348877 loss) | |
I0425 10:36:54.847997 22523 solver.cpp:245] Train net output #135: loss3/loss11 = 0.730337 (* 0.0909091 = 0.0663942 loss) | |
I0425 10:36:54.848012 22523 solver.cpp:245] Train net output #136: loss3/loss12 = 0.0136229 (* 0.0909091 = 0.00123845 loss) | |
I0425 10:36:54.848026 22523 solver.cpp:245] Train net output #137: loss3/loss13 = 0.00739347 (* 0.0909091 = 0.000672133 loss) | |
I0425 10:36:54.848040 22523 solver.cpp:245] Train net output #138: loss3/loss14 = 0.00376968 (* 0.0909091 = 0.000342698 loss) | |
I0425 10:36:54.848055 22523 solver.cpp:245] Train net output #139: loss3/loss15 = 0.00232863 (* 0.0909091 = 0.000211694 loss) | |
I0425 10:36:54.848069 22523 solver.cpp:245] Train net output #140: loss3/loss16 = 0.00144377 (* 0.0909091 = 0.000131252 loss) | |
I0425 10:36:54.848083 22523 solver.cpp:245] Train net output #141: loss3/loss17 = 0.000850432 (* 0.0909091 = 7.7312e-05 loss) | |
I0425 10:36:54.848098 22523 solver.cpp:245] Train net output #142: loss3/loss18 = 0.000512472 (* 0.0909091 = 4.65883e-05 loss) | |
I0425 10:36:54.848112 22523 solver.cpp:245] Train net output #143: loss3/loss19 = 0.000308806 (* 0.0909091 = 2.80733e-05 loss) | |
I0425 10:36:54.848126 22523 solver.cpp:245] Train net output #144: loss3/loss20 = 0.00015039 (* 0.0909091 = 1.36719e-05 loss) | |
I0425 10:36:54.848140 22523 solver.cpp:245] Train net output #145: loss3/loss21 = 4.11991e-05 (* 0.0909091 = 3.74538e-06 loss) | |
I0425 10:36:54.848155 22523 solver.cpp:245] Train net output #146: loss3/loss22 = 3.30471e-05 (* 0.0909091 = 3.00428e-06 loss) | |
I0425 10:36:54.848168 22523 solver.cpp:245] Train net output #147: total_accuracy = 0.625 | |
I0425 10:36:54.848181 22523 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.625 | |
I0425 10:36:54.848201 22523 solver.cpp:245] Train net output #149: total_confidence = 0.514854 | |
I0425 10:36:54.848218 22523 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.440403 | |
I0425 10:36:54.848234 22523 sgd_solver.cpp:106] Iteration 2500, lr = 0.01 | |
I0425 10:42:36.246461 22523 solver.cpp:229] Iteration 3000, loss = 3.19838 | |
I0425 10:42:36.246589 22523 solver.cpp:245] Train net output #0: loss1/accuracy = 0.604651 | |
I0425 10:42:36.246610 22523 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.875 | |
I0425 10:42:36.246623 22523 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.625 | |
I0425 10:42:36.246636 22523 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375 | |
I0425 10:42:36.246649 22523 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.5 | |
I0425 10:42:36.246660 22523 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.625 | |
I0425 10:42:36.246672 22523 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.375 | |
I0425 10:42:36.246685 22523 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.875 | |
I0425 10:42:36.246696 22523 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875 | |
I0425 10:42:36.246708 22523 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1 | |
I0425 10:42:36.246721 22523 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1 | |
I0425 10:42:36.246732 22523 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1 | |
I0425 10:42:36.246752 22523 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1 | |
I0425 10:42:36.246769 22523 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1 | |
I0425 10:42:36.246781 22523 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1 | |
I0425 10:42:36.246793 22523 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0425 10:42:36.246809 22523 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0425 10:42:36.246820 22523 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0425 10:42:36.246831 22523 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0425 10:42:36.246842 22523 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0425 10:42:36.246853 22523 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0425 10:42:36.246870 22523 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0425 10:42:36.246882 22523 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0425 10:42:36.246893 22523 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.897727 | |
I0425 10:42:36.246906 22523 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.813953 | |
I0425 10:42:36.246922 22523 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.3526 (* 0.3 = 0.405779 loss) | |
I0425 10:42:36.246938 22523 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.347478 (* 0.3 = 0.104243 loss) | |
I0425 10:42:36.246953 22523 solver.cpp:245] Train net output #27: loss1/loss01 = 0.512981 (* 0.0272727 = 0.0139904 loss) | |
I0425 10:42:36.246968 22523 solver.cpp:245] Train net output #28: loss1/loss02 = 1.35834 (* 0.0272727 = 0.0370456 loss) | |
I0425 10:42:36.246981 22523 solver.cpp:245] Train net output #29: loss1/loss03 = 2.10321 (* 0.0272727 = 0.0573604 loss) | |
I0425 10:42:36.246995 22523 solver.cpp:245] Train net output #30: loss1/loss04 = 1.58516 (* 0.0272727 = 0.0432317 loss) | |
I0425 10:42:36.247009 22523 solver.cpp:245] Train net output #31: loss1/loss05 = 1.29898 (* 0.0272727 = 0.0354267 loss) | |
I0425 10:42:36.247023 22523 solver.cpp:245] Train net output #32: loss1/loss06 = 2.33494 (* 0.0272727 = 0.0636803 loss) | |
I0425 10:42:36.247038 22523 solver.cpp:245] Train net output #33: loss1/loss07 = 0.294699 (* 0.0272727 = 0.00803725 loss) | |
I0425 10:42:36.247053 22523 solver.cpp:245] Train net output #34: loss1/loss08 = 0.384449 (* 0.0272727 = 0.010485 loss) | |
I0425 10:42:36.247068 22523 solver.cpp:245] Train net output #35: loss1/loss09 = 0.00766299 (* 0.0272727 = 0.000208991 loss) | |
I0425 10:42:36.247082 22523 solver.cpp:245] Train net output #36: loss1/loss10 = 0.00338765 (* 0.0272727 = 9.23905e-05 loss) | |
I0425 10:42:36.247104 22523 solver.cpp:245] Train net output #37: loss1/loss11 = 0.00405266 (* 0.0272727 = 0.000110527 loss) | |
I0425 10:42:36.247123 22523 solver.cpp:245] Train net output #38: loss1/loss12 = 0.00230626 (* 0.0272727 = 6.28979e-05 loss) | |
I0425 10:42:36.247165 22523 solver.cpp:245] Train net output #39: loss1/loss13 = 0.00110664 (* 0.0272727 = 3.01811e-05 loss) | |
I0425 10:42:36.247181 22523 solver.cpp:245] Train net output #40: loss1/loss14 = 0.000376599 (* 0.0272727 = 1.02709e-05 loss) | |
I0425 10:42:36.247195 22523 solver.cpp:245] Train net output #41: loss1/loss15 = 0.000538408 (* 0.0272727 = 1.46839e-05 loss) | |
I0425 10:42:36.247215 22523 solver.cpp:245] Train net output #42: loss1/loss16 = 0.000220569 (* 0.0272727 = 6.01552e-06 loss) | |
I0425 10:42:36.247228 22523 solver.cpp:245] Train net output #43: loss1/loss17 = 4.53398e-05 (* 0.0272727 = 1.23654e-06 loss) | |
I0425 10:42:36.247242 22523 solver.cpp:245] Train net output #44: loss1/loss18 = 2.00128e-05 (* 0.0272727 = 5.45803e-07 loss) | |
I0425 10:42:36.247256 22523 solver.cpp:245] Train net output #45: loss1/loss19 = 1.46036e-05 (* 0.0272727 = 3.98281e-07 loss) | |
I0425 10:42:36.247270 22523 solver.cpp:245] Train net output #46: loss1/loss20 = 6.86954e-06 (* 0.0272727 = 1.87351e-07 loss) | |
I0425 10:42:36.247285 22523 solver.cpp:245] Train net output #47: loss1/loss21 = 9.06011e-06 (* 0.0272727 = 2.47094e-07 loss) | |
I0425 10:42:36.247299 22523 solver.cpp:245] Train net output #48: loss1/loss22 = 1.19213e-05 (* 0.0272727 = 3.25126e-07 loss) | |
I0425 10:42:36.247311 22523 solver.cpp:245] Train net output #49: loss2/accuracy = 0.72093 | |
I0425 10:42:36.247324 22523 solver.cpp:245] Train net output #50: loss2/accuracy01 = 1 | |
I0425 10:42:36.247335 22523 solver.cpp:245] Train net output #51: loss2/accuracy02 = 1 | |
I0425 10:42:36.247346 22523 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.375 | |
I0425 10:42:36.247375 22523 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.5 | |
I0425 10:42:36.247386 22523 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.625 | |
I0425 10:42:36.247398 22523 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.625 | |
I0425 10:42:36.247411 22523 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.875 | |
I0425 10:42:36.247421 22523 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875 | |
I0425 10:42:36.247433 22523 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1 | |
I0425 10:42:36.247445 22523 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1 | |
I0425 10:42:36.247457 22523 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1 | |
I0425 10:42:36.247467 22523 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1 | |
I0425 10:42:36.247478 22523 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1 | |
I0425 10:42:36.247490 22523 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1 | |
I0425 10:42:36.247501 22523 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0425 10:42:36.247512 22523 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0425 10:42:36.247524 22523 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0425 10:42:36.247534 22523 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0425 10:42:36.247546 22523 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0425 10:42:36.247557 22523 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0425 10:42:36.247568 22523 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0425 10:42:36.247580 22523 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0425 10:42:36.247591 22523 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.920455 | |
I0425 10:42:36.247606 22523 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.930233 | |
I0425 10:42:36.247619 22523 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.997215 (* 0.3 = 0.299165 loss) | |
I0425 10:42:36.247634 22523 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.266314 (* 0.3 = 0.0798941 loss) | |
I0425 10:42:36.247649 22523 solver.cpp:245] Train net output #76: loss2/loss01 = 0.325015 (* 0.0272727 = 0.00886404 loss) | |
I0425 10:42:36.247664 22523 solver.cpp:245] Train net output #77: loss2/loss02 = 0.544371 (* 0.0272727 = 0.0148465 loss) | |
I0425 10:42:36.247691 22523 solver.cpp:245] Train net output #78: loss2/loss03 = 1.68591 (* 0.0272727 = 0.0459795 loss) | |
I0425 10:42:36.247706 22523 solver.cpp:245] Train net output #79: loss2/loss04 = 1.35881 (* 0.0272727 = 0.0370584 loss) | |
I0425 10:42:36.247720 22523 solver.cpp:245] Train net output #80: loss2/loss05 = 1.0364 (* 0.0272727 = 0.0282654 loss) | |
I0425 10:42:36.247735 22523 solver.cpp:245] Train net output #81: loss2/loss06 = 1.71353 (* 0.0272727 = 0.0467325 loss) | |
I0425 10:42:36.247748 22523 solver.cpp:245] Train net output #82: loss2/loss07 = 0.551704 (* 0.0272727 = 0.0150465 loss) | |
I0425 10:42:36.247763 22523 solver.cpp:245] Train net output #83: loss2/loss08 = 0.810683 (* 0.0272727 = 0.0221095 loss) | |
I0425 10:42:36.247777 22523 solver.cpp:245] Train net output #84: loss2/loss09 = 0.011967 (* 0.0272727 = 0.000326372 loss) | |
I0425 10:42:36.247792 22523 solver.cpp:245] Train net output #85: loss2/loss10 = 0.00590376 (* 0.0272727 = 0.000161012 loss) | |
I0425 10:42:36.247807 22523 solver.cpp:245] Train net output #86: loss2/loss11 = 0.00235448 (* 0.0272727 = 6.42132e-05 loss) | |
I0425 10:42:36.247820 22523 solver.cpp:245] Train net output #87: loss2/loss12 = 0.00104952 (* 0.0272727 = 2.86232e-05 loss) | |
I0425 10:42:36.247834 22523 solver.cpp:245] Train net output #88: loss2/loss13 = 0.00079242 (* 0.0272727 = 2.16114e-05 loss) | |
I0425 10:42:36.247849 22523 solver.cpp:245] Train net output #89: loss2/loss14 = 0.000220525 (* 0.0272727 = 6.01431e-06 loss) | |
I0425 10:42:36.247864 22523 solver.cpp:245] Train net output #90: loss2/loss15 = 7.97763e-05 (* 0.0272727 = 2.17572e-06 loss) | |
I0425 10:42:36.247877 22523 solver.cpp:245] Train net output #91: loss2/loss16 = 3.71902e-05 (* 0.0272727 = 1.01428e-06 loss) | |
I0425 10:42:36.247891 22523 solver.cpp:245] Train net output #92: loss2/loss17 = 6.55662e-06 (* 0.0272727 = 1.78817e-07 loss) | |
I0425 10:42:36.247906 22523 solver.cpp:245] Train net output #93: loss2/loss18 = 5.57314e-06 (* 0.0272727 = 1.51995e-07 loss) | |
I0425 10:42:36.247920 22523 solver.cpp:245] Train net output #94: loss2/loss19 = 8.04664e-07 (* 0.0272727 = 2.19454e-08 loss) | |
I0425 10:42:36.247934 22523 solver.cpp:245] Train net output #95: loss2/loss20 = 8.49367e-07 (* 0.0272727 = 2.31646e-08 loss) | |
I0425 10:42:36.247949 22523 solver.cpp:245] Train net output #96: loss2/loss21 = 9.8348e-07 (* 0.0272727 = 2.68222e-08 loss) | |
I0425 10:42:36.247963 22523 solver.cpp:245] Train net output #97: loss2/loss22 = 1.59443e-06 (* 0.0272727 = 4.34846e-08 loss) | |
I0425 10:42:36.247975 22523 solver.cpp:245] Train net output #98: loss3/accuracy = 0.883721 | |
I0425 10:42:36.247987 22523 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1 | |
I0425 10:42:36.247999 22523 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875 | |
I0425 10:42:36.248011 22523 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.75 | |
I0425 10:42:36.248023 22523 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.75 | |
I0425 10:42:36.248034 22523 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.75 | |
I0425 10:42:36.248045 22523 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.75 | |
I0425 10:42:36.248057 22523 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875 | |
I0425 10:42:36.248069 22523 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875 | |
I0425 10:42:36.248080 22523 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1 | |
I0425 10:42:36.248091 22523 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1 | |
I0425 10:42:36.248103 22523 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1 | |
I0425 10:42:36.248114 22523 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1 | |
I0425 10:42:36.248126 22523 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1 | |
I0425 10:42:36.248136 22523 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1 | |
I0425 10:42:36.248148 22523 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0425 10:42:36.248169 22523 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0425 10:42:36.248183 22523 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0425 10:42:36.248194 22523 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0425 10:42:36.248206 22523 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0425 10:42:36.248214 22523 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0425 10:42:36.248221 22523 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0425 10:42:36.248234 22523 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0425 10:42:36.248248 22523 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.971591 | |
I0425 10:42:36.248271 22523 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.953488 | |
I0425 10:42:36.248286 22523 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.464765 (* 1 = 0.464765 loss) | |
I0425 10:42:36.248301 22523 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.119192 (* 1 = 0.119192 loss) | |
I0425 10:42:36.248316 22523 solver.cpp:245] Train net output #125: loss3/loss01 = 0.0826032 (* 0.0909091 = 0.00750938 loss) | |
I0425 10:42:36.248329 22523 solver.cpp:245] Train net output #126: loss3/loss02 = 0.271317 (* 0.0909091 = 0.0246652 loss) | |
I0425 10:42:36.248343 22523 solver.cpp:245] Train net output #127: loss3/loss03 = 0.628675 (* 0.0909091 = 0.0571523 loss) | |
I0425 10:42:36.248358 22523 solver.cpp:245] Train net output #128: loss3/loss04 = 0.619992 (* 0.0909091 = 0.056363 loss) | |
I0425 10:42:36.248371 22523 solver.cpp:245] Train net output #129: loss3/loss05 = 0.874941 (* 0.0909091 = 0.0795401 loss) | |
I0425 10:42:36.248385 22523 solver.cpp:245] Train net output #130: loss3/loss06 = 0.983894 (* 0.0909091 = 0.0894449 loss) | |
I0425 10:42:36.248399 22523 solver.cpp:245] Train net output #131: loss3/loss07 = 0.224471 (* 0.0909091 = 0.0204065 loss) | |
I0425 10:42:36.248414 22523 solver.cpp:245] Train net output #132: loss3/loss08 = 0.54473 (* 0.0909091 = 0.0495209 loss) | |
I0425 10:42:36.248427 22523 solver.cpp:245] Train net output #133: loss3/loss09 = 0.00820126 (* 0.0909091 = 0.000745569 loss) | |
I0425 10:42:36.248441 22523 solver.cpp:245] Train net output #134: loss3/loss10 = 0.00177456 (* 0.0909091 = 0.000161323 loss) | |
I0425 10:42:36.248456 22523 solver.cpp:245] Train net output #135: loss3/loss11 = 0.00521019 (* 0.0909091 = 0.000473654 loss) | |
I0425 10:42:36.248471 22523 solver.cpp:245] Train net output #136: loss3/loss12 = 0.00415648 (* 0.0909091 = 0.000377862 loss) | |
I0425 10:42:36.248484 22523 solver.cpp:245] Train net output #137: loss3/loss13 = 0.00449752 (* 0.0909091 = 0.000408866 loss) | |
I0425 10:42:36.248498 22523 solver.cpp:245] Train net output #138: loss3/loss14 = 0.00191858 (* 0.0909091 = 0.000174416 loss) | |
I0425 10:42:36.248512 22523 solver.cpp:245] Train net output #139: loss3/loss15 = 0.00196776 (* 0.0909091 = 0.000178888 loss) | |
I0425 10:42:36.248527 22523 solver.cpp:245] Train net output #140: loss3/loss16 = 0.00146938 (* 0.0909091 = 0.00013358 loss) | |
I0425 10:42:36.248540 22523 solver.cpp:245] Train net output #141: loss3/loss17 = 0.00152325 (* 0.0909091 = 0.000138477 loss) | |
I0425 10:42:36.248554 22523 solver.cpp:245] Train net output #142: loss3/loss18 = 0.00102624 (* 0.0909091 = 9.32944e-05 loss) | |
I0425 10:42:36.248569 22523 solver.cpp:245] Train net output #143: loss3/loss19 = 0.000409775 (* 0.0909091 = 3.72522e-05 loss) | |
I0425 10:42:36.248584 22523 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000431096 (* 0.0909091 = 3.91906e-05 loss) | |
I0425 10:42:36.248597 22523 solver.cpp:245] Train net output #145: loss3/loss21 = 0.000107968 (* 0.0909091 = 9.81523e-06 loss) | |
I0425 10:42:36.248611 22523 solver.cpp:245] Train net output #146: loss3/loss22 = 8.62822e-05 (* 0.0909091 = 7.84383e-06 loss) | |
I0425 10:42:36.248623 22523 solver.cpp:245] Train net output #147: total_accuracy = 0.875 | |
I0425 10:42:36.248636 22523 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.5 | |
I0425 10:42:36.248661 22523 solver.cpp:245] Train net output #149: total_confidence = 0.69962 | |
I0425 10:42:36.248674 22523 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.371191 | |
I0425 10:42:36.248688 22523 sgd_solver.cpp:106] Iteration 3000, lr = 0.01 | |
I0425 10:48:17.541756 22523 solver.cpp:229] Iteration 3500, loss = 3.29102 | |
I0425 10:48:17.541893 22523 solver.cpp:245] Train net output #0: loss1/accuracy = 0.630435 | |
I0425 10:48:17.541913 22523 solver.cpp:245] Train net output #1: loss1/accuracy01 = 1 | |
I0425 10:48:17.541926 22523 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.75 | |
I0425 10:48:17.541939 22523 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375 | |
I0425 10:48:17.541951 22523 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.75 | |
I0425 10:48:17.541962 22523 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.5 | |
I0425 10:48:17.541975 22523 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.625 | |
I0425 10:48:17.541987 22523 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.875 | |
I0425 10:48:17.541999 22523 solver.cpp:245] Train net output #8: loss1/accuracy08 = 1 | |
I0425 10:48:17.542011 22523 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1 | |
I0425 10:48:17.542022 22523 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1 | |
I0425 10:48:17.542034 22523 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1 | |
I0425 10:48:17.542047 22523 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1 | |
I0425 10:48:17.542058 22523 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1 | |
I0425 10:48:17.542070 22523 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1 | |
I0425 10:48:17.542088 22523 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0425 10:48:17.542099 22523 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0425 10:48:17.542111 22523 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0425 10:48:17.542124 22523 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0425 10:48:17.542135 22523 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0425 10:48:17.542155 22523 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0425 10:48:17.542166 22523 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0425 10:48:17.542177 22523 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0425 10:48:17.542189 22523 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.886364 | |
I0425 10:48:17.542203 22523 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.891304 | |
I0425 10:48:17.542222 22523 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.13728 (* 0.3 = 0.341186 loss) | |
I0425 10:48:17.542237 22523 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.347003 (* 0.3 = 0.104101 loss) | |
I0425 10:48:17.542253 22523 solver.cpp:245] Train net output #27: loss1/loss01 = 0.347988 (* 0.0272727 = 0.00949058 loss) | |
I0425 10:48:17.542268 22523 solver.cpp:245] Train net output #28: loss1/loss02 = 0.9285 (* 0.0272727 = 0.0253227 loss) | |
I0425 10:48:17.542281 22523 solver.cpp:245] Train net output #29: loss1/loss03 = 1.95487 (* 0.0272727 = 0.0533147 loss) | |
I0425 10:48:17.542295 22523 solver.cpp:245] Train net output #30: loss1/loss04 = 1.36832 (* 0.0272727 = 0.0373179 loss) | |
I0425 10:48:17.542309 22523 solver.cpp:245] Train net output #31: loss1/loss05 = 1.32108 (* 0.0272727 = 0.0360294 loss) | |
I0425 10:48:17.542323 22523 solver.cpp:245] Train net output #32: loss1/loss06 = 1.36638 (* 0.0272727 = 0.0372649 loss) | |
I0425 10:48:17.542338 22523 solver.cpp:245] Train net output #33: loss1/loss07 = 0.689507 (* 0.0272727 = 0.0188047 loss) | |
I0425 10:48:17.542353 22523 solver.cpp:245] Train net output #34: loss1/loss08 = 0.236235 (* 0.0272727 = 0.00644278 loss) | |
I0425 10:48:17.542367 22523 solver.cpp:245] Train net output #35: loss1/loss09 = 0.0478274 (* 0.0272727 = 0.00130438 loss) | |
I0425 10:48:17.542382 22523 solver.cpp:245] Train net output #36: loss1/loss10 = 0.00830191 (* 0.0272727 = 0.000226416 loss) | |
I0425 10:48:17.542397 22523 solver.cpp:245] Train net output #37: loss1/loss11 = 0.00597267 (* 0.0272727 = 0.000162891 loss) | |
I0425 10:48:17.542410 22523 solver.cpp:245] Train net output #38: loss1/loss12 = 0.00405092 (* 0.0272727 = 0.00011048 loss) | |
I0425 10:48:17.542425 22523 solver.cpp:245] Train net output #39: loss1/loss13 = 0.00296887 (* 0.0272727 = 8.09691e-05 loss) | |
I0425 10:48:17.542465 22523 solver.cpp:245] Train net output #40: loss1/loss14 = 0.00243811 (* 0.0272727 = 6.64938e-05 loss) | |
I0425 10:48:17.542481 22523 solver.cpp:245] Train net output #41: loss1/loss15 = 0.000813899 (* 0.0272727 = 2.21973e-05 loss) | |
I0425 10:48:17.542503 22523 solver.cpp:245] Train net output #42: loss1/loss16 = 0.00042759 (* 0.0272727 = 1.16615e-05 loss) | |
I0425 10:48:17.542517 22523 solver.cpp:245] Train net output #43: loss1/loss17 = 0.000194224 (* 0.0272727 = 5.29701e-06 loss) | |
I0425 10:48:17.542532 22523 solver.cpp:245] Train net output #44: loss1/loss18 = 0.000170005 (* 0.0272727 = 4.63649e-06 loss) | |
I0425 10:48:17.542546 22523 solver.cpp:245] Train net output #45: loss1/loss19 = 4.27092e-05 (* 0.0272727 = 1.16479e-06 loss) | |
I0425 10:48:17.542560 22523 solver.cpp:245] Train net output #46: loss1/loss20 = 3.53264e-05 (* 0.0272727 = 9.63447e-07 loss) | |
I0425 10:48:17.542574 22523 solver.cpp:245] Train net output #47: loss1/loss21 = 5.51708e-05 (* 0.0272727 = 1.50466e-06 loss) | |
I0425 10:48:17.542588 22523 solver.cpp:245] Train net output #48: loss1/loss22 = 2.2293e-05 (* 0.0272727 = 6.07992e-07 loss) | |
I0425 10:48:17.542601 22523 solver.cpp:245] Train net output #49: loss2/accuracy = 0.804348 | |
I0425 10:48:17.542613 22523 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875 | |
I0425 10:48:17.542625 22523 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.625 | |
I0425 10:48:17.542637 22523 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.625 | |
I0425 10:48:17.542649 22523 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.75 | |
I0425 10:48:17.542660 22523 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.625 | |
I0425 10:48:17.542671 22523 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.5 | |
I0425 10:48:17.542683 22523 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.875 | |
I0425 10:48:17.542695 22523 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875 | |
I0425 10:48:17.542706 22523 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1 | |
I0425 10:48:17.542717 22523 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1 | |
I0425 10:48:17.542728 22523 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1 | |
I0425 10:48:17.542739 22523 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1 | |
I0425 10:48:17.542750 22523 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1 | |
I0425 10:48:17.542762 22523 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1 | |
I0425 10:48:17.542773 22523 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0425 10:48:17.542783 22523 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0425 10:48:17.542795 22523 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0425 10:48:17.542806 22523 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0425 10:48:17.542817 22523 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0425 10:48:17.542829 22523 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0425 10:48:17.542840 22523 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0425 10:48:17.542850 22523 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0425 10:48:17.542862 22523 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.9375 | |
I0425 10:48:17.542873 22523 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.934783 | |
I0425 10:48:17.542887 22523 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.76549 (* 0.3 = 0.229647 loss) | |
I0425 10:48:17.542906 22523 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.240297 (* 0.3 = 0.072089 loss) | |
I0425 10:48:17.542922 22523 solver.cpp:245] Train net output #76: loss2/loss01 = 0.318065 (* 0.0272727 = 0.00867451 loss) | |
I0425 10:48:17.542937 22523 solver.cpp:245] Train net output #77: loss2/loss02 = 0.935774 (* 0.0272727 = 0.0255211 loss) | |
I0425 10:48:17.542961 22523 solver.cpp:245] Train net output #78: loss2/loss03 = 1.60285 (* 0.0272727 = 0.0437141 loss) | |
I0425 10:48:17.542976 22523 solver.cpp:245] Train net output #79: loss2/loss04 = 1.14065 (* 0.0272727 = 0.0311085 loss) | |
I0425 10:48:17.542990 22523 solver.cpp:245] Train net output #80: loss2/loss05 = 0.916154 (* 0.0272727 = 0.024986 loss) | |
I0425 10:48:17.543005 22523 solver.cpp:245] Train net output #81: loss2/loss06 = 1.00614 (* 0.0272727 = 0.0274401 loss) | |
I0425 10:48:17.543020 22523 solver.cpp:245] Train net output #82: loss2/loss07 = 0.98999 (* 0.0272727 = 0.0269997 loss) | |
I0425 10:48:17.543033 22523 solver.cpp:245] Train net output #83: loss2/loss08 = 0.366031 (* 0.0272727 = 0.00998267 loss) | |
I0425 10:48:17.543047 22523 solver.cpp:245] Train net output #84: loss2/loss09 = 0.00980704 (* 0.0272727 = 0.000267465 loss) | |
I0425 10:48:17.543061 22523 solver.cpp:245] Train net output #85: loss2/loss10 = 0.00287767 (* 0.0272727 = 7.8482e-05 loss) | |
I0425 10:48:17.543076 22523 solver.cpp:245] Train net output #86: loss2/loss11 = 0.00264921 (* 0.0272727 = 7.22512e-05 loss) | |
I0425 10:48:17.543089 22523 solver.cpp:245] Train net output #87: loss2/loss12 = 0.00138403 (* 0.0272727 = 3.77462e-05 loss) | |
I0425 10:48:17.543103 22523 solver.cpp:245] Train net output #88: loss2/loss13 = 0.000492374 (* 0.0272727 = 1.34284e-05 loss) | |
I0425 10:48:17.543118 22523 solver.cpp:245] Train net output #89: loss2/loss14 = 0.000271293 (* 0.0272727 = 7.39889e-06 loss) | |
I0425 10:48:17.543131 22523 solver.cpp:245] Train net output #90: loss2/loss15 = 9.72602e-05 (* 0.0272727 = 2.65255e-06 loss) | |
I0425 10:48:17.543145 22523 solver.cpp:245] Train net output #91: loss2/loss16 = 5.10934e-05 (* 0.0272727 = 1.39346e-06 loss) | |
I0425 10:48:17.543159 22523 solver.cpp:245] Train net output #92: loss2/loss17 = 1.78073e-05 (* 0.0272727 = 4.85653e-07 loss) | |
I0425 10:48:17.543174 22523 solver.cpp:245] Train net output #93: loss2/loss18 = 5.55823e-06 (* 0.0272727 = 1.51588e-07 loss) | |
I0425 10:48:17.543189 22523 solver.cpp:245] Train net output #94: loss2/loss19 = 1.1921e-06 (* 0.0272727 = 3.25117e-08 loss) | |
I0425 10:48:17.543202 22523 solver.cpp:245] Train net output #95: loss2/loss20 = 1.34111e-06 (* 0.0272727 = 3.65757e-08 loss) | |
I0425 10:48:17.543216 22523 solver.cpp:245] Train net output #96: loss2/loss21 = 1.1921e-06 (* 0.0272727 = 3.25117e-08 loss) | |
I0425 10:48:17.543231 22523 solver.cpp:245] Train net output #97: loss2/loss22 = 6.85455e-07 (* 0.0272727 = 1.86942e-08 loss) | |
I0425 10:48:17.543243 22523 solver.cpp:245] Train net output #98: loss3/accuracy = 0.847826 | |
I0425 10:48:17.543258 22523 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1 | |
I0425 10:48:17.543270 22523 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1 | |
I0425 10:48:17.543282 22523 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.75 | |
I0425 10:48:17.543293 22523 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875 | |
I0425 10:48:17.543305 22523 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875 | |
I0425 10:48:17.543316 22523 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.75 | |
I0425 10:48:17.543329 22523 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875 | |
I0425 10:48:17.543340 22523 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875 | |
I0425 10:48:17.543365 22523 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1 | |
I0425 10:48:17.543380 22523 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1 | |
I0425 10:48:17.543390 22523 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1 | |
I0425 10:48:17.543402 22523 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1 | |
I0425 10:48:17.543413 22523 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1 | |
I0425 10:48:17.543426 22523 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1 | |
I0425 10:48:17.543437 22523 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0425 10:48:17.543459 22523 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0425 10:48:17.543473 22523 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0425 10:48:17.543484 22523 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0425 10:48:17.543496 22523 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0425 10:48:17.543503 22523 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0425 10:48:17.543511 22523 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0425 10:48:17.543519 22523 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0425 10:48:17.543530 22523 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.960227 | |
I0425 10:48:17.543542 22523 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.956522 | |
I0425 10:48:17.543556 22523 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.622215 (* 1 = 0.622215 loss) | |
I0425 10:48:17.543570 22523 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.170852 (* 1 = 0.170852 loss) | |
I0425 10:48:17.543584 22523 solver.cpp:245] Train net output #125: loss3/loss01 = 0.0485551 (* 0.0909091 = 0.0044141 loss) | |
I0425 10:48:17.543598 22523 solver.cpp:245] Train net output #126: loss3/loss02 = 0.160579 (* 0.0909091 = 0.0145981 loss) | |
I0425 10:48:17.543612 22523 solver.cpp:245] Train net output #127: loss3/loss03 = 0.814322 (* 0.0909091 = 0.0740293 loss) | |
I0425 10:48:17.543627 22523 solver.cpp:245] Train net output #128: loss3/loss04 = 0.541351 (* 0.0909091 = 0.0492137 loss) | |
I0425 10:48:17.543640 22523 solver.cpp:245] Train net output #129: loss3/loss05 = 0.507696 (* 0.0909091 = 0.0461541 loss) | |
I0425 10:48:17.543654 22523 solver.cpp:245] Train net output #130: loss3/loss06 = 0.622297 (* 0.0909091 = 0.0565724 loss) | |
I0425 10:48:17.543668 22523 solver.cpp:245] Train net output #131: loss3/loss07 = 1.06682 (* 0.0909091 = 0.096984 loss) | |
I0425 10:48:17.543681 22523 solver.cpp:245] Train net output #132: loss3/loss08 = 0.244203 (* 0.0909091 = 0.0222003 loss) | |
I0425 10:48:17.543695 22523 solver.cpp:245] Train net output #133: loss3/loss09 = 0.00591238 (* 0.0909091 = 0.000537489 loss) | |
I0425 10:48:17.543709 22523 solver.cpp:245] Train net output #134: loss3/loss10 = 0.00161842 (* 0.0909091 = 0.000147129 loss) | |
I0425 10:48:17.543723 22523 solver.cpp:245] Train net output #135: loss3/loss11 = 0.00463488 (* 0.0909091 = 0.000421352 loss) | |
I0425 10:48:17.543737 22523 solver.cpp:245] Train net output #136: loss3/loss12 = 0.00245896 (* 0.0909091 = 0.000223542 loss) | |
I0425 10:48:17.543751 22523 solver.cpp:245] Train net output #137: loss3/loss13 = 0.00171662 (* 0.0909091 = 0.000156056 loss) | |
I0425 10:48:17.543764 22523 solver.cpp:245] Train net output #138: loss3/loss14 = 0.00100368 (* 0.0909091 = 9.12439e-05 loss) | |
I0425 10:48:17.543778 22523 solver.cpp:245] Train net output #139: loss3/loss15 = 0.000714945 (* 0.0909091 = 6.4995e-05 loss) | |
I0425 10:48:17.543793 22523 solver.cpp:245] Train net output #140: loss3/loss16 = 0.000667059 (* 0.0909091 = 6.06417e-05 loss) | |
I0425 10:48:17.543807 22523 solver.cpp:245] Train net output #141: loss3/loss17 = 0.000463671 (* 0.0909091 = 4.21519e-05 loss) | |
I0425 10:48:17.543820 22523 solver.cpp:245] Train net output #142: loss3/loss18 = 0.000419312 (* 0.0909091 = 3.81193e-05 loss) | |
I0425 10:48:17.543834 22523 solver.cpp:245] Train net output #143: loss3/loss19 = 0.000192367 (* 0.0909091 = 1.74879e-05 loss) | |
I0425 10:48:17.543848 22523 solver.cpp:245] Train net output #144: loss3/loss20 = 8.32856e-05 (* 0.0909091 = 7.57141e-06 loss) | |
I0425 10:48:17.543862 22523 solver.cpp:245] Train net output #145: loss3/loss21 = 3.68677e-05 (* 0.0909091 = 3.35161e-06 loss) | |
I0425 10:48:17.543876 22523 solver.cpp:245] Train net output #146: loss3/loss22 = 1.73156e-05 (* 0.0909091 = 1.57415e-06 loss) | |
I0425 10:48:17.543895 22523 solver.cpp:245] Train net output #147: total_accuracy = 0.625 | |
I0425 10:48:17.543907 22523 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.625 | |
I0425 10:48:17.543928 22523 solver.cpp:245] Train net output #149: total_confidence = 0.55697 | |
I0425 10:48:17.543951 22523 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.410428 | |
I0425 10:48:17.543967 22523 sgd_solver.cpp:106] Iteration 3500, lr = 0.01 | |
I0425 10:53:58.851306 22523 solver.cpp:229] Iteration 4000, loss = 3.2544 | |
I0425 10:53:58.851459 22523 solver.cpp:245] Train net output #0: loss1/accuracy = 0.681818 | |
I0425 10:53:58.851481 22523 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75 | |
I0425 10:53:58.851495 22523 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.625 | |
I0425 10:53:58.851506 22523 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.5 | |
I0425 10:53:58.851518 22523 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375 | |
I0425 10:53:58.851531 22523 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.5 | |
I0425 10:53:58.851542 22523 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.875 | |
I0425 10:53:58.851554 22523 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.75 | |
I0425 10:53:58.851567 22523 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875 | |
I0425 10:53:58.851578 22523 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875 | |
I0425 10:53:58.851589 22523 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1 | |
I0425 10:53:58.851603 22523 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1 | |
I0425 10:53:58.851613 22523 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1 | |
I0425 10:53:58.851625 22523 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1 | |
I0425 10:53:58.851636 22523 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1 | |
I0425 10:53:58.851649 22523 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0425 10:53:58.851660 22523 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0425 10:53:58.851671 22523 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0425 10:53:58.851683 22523 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0425 10:53:58.851694 22523 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0425 10:53:58.851706 22523 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0425 10:53:58.851717 22523 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0425 10:53:58.851735 22523 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0425 10:53:58.851747 22523 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.903409 | |
I0425 10:53:58.851758 22523 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.886364 | |
I0425 10:53:58.851775 22523 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.16311 (* 0.3 = 0.348932 loss) | |
I0425 10:53:58.851797 22523 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.363819 (* 0.3 = 0.109146 loss) | |
I0425 10:53:58.851812 22523 solver.cpp:245] Train net output #27: loss1/loss01 = 0.627964 (* 0.0272727 = 0.0171263 loss) | |
I0425 10:53:58.851826 22523 solver.cpp:245] Train net output #28: loss1/loss02 = 1.14484 (* 0.0272727 = 0.0312228 loss) | |
I0425 10:53:58.851840 22523 solver.cpp:245] Train net output #29: loss1/loss03 = 1.76248 (* 0.0272727 = 0.0480675 loss) | |
I0425 10:53:58.851855 22523 solver.cpp:245] Train net output #30: loss1/loss04 = 1.87002 (* 0.0272727 = 0.0510006 loss) | |
I0425 10:53:58.851869 22523 solver.cpp:245] Train net output #31: loss1/loss05 = 1.37484 (* 0.0272727 = 0.0374956 loss) | |
I0425 10:53:58.851883 22523 solver.cpp:245] Train net output #32: loss1/loss06 = 0.975337 (* 0.0272727 = 0.0266001 loss) | |
I0425 10:53:58.851897 22523 solver.cpp:245] Train net output #33: loss1/loss07 = 1.18284 (* 0.0272727 = 0.0322592 loss) | |
I0425 10:53:58.851917 22523 solver.cpp:245] Train net output #34: loss1/loss08 = 0.349181 (* 0.0272727 = 0.00952313 loss) | |
I0425 10:53:58.851932 22523 solver.cpp:245] Train net output #35: loss1/loss09 = 0.325801 (* 0.0272727 = 0.00888548 loss) | |
I0425 10:53:58.851945 22523 solver.cpp:245] Train net output #36: loss1/loss10 = 0.132579 (* 0.0272727 = 0.00361579 loss) | |
I0425 10:53:58.851959 22523 solver.cpp:245] Train net output #37: loss1/loss11 = 0.0223231 (* 0.0272727 = 0.000608812 loss) | |
I0425 10:53:58.851979 22523 solver.cpp:245] Train net output #38: loss1/loss12 = 0.00584604 (* 0.0272727 = 0.000159438 loss) | |
I0425 10:53:58.852012 22523 solver.cpp:245] Train net output #39: loss1/loss13 = 0.00342874 (* 0.0272727 = 9.35111e-05 loss) | |
I0425 10:53:58.852028 22523 solver.cpp:245] Train net output #40: loss1/loss14 = 0.00285075 (* 0.0272727 = 7.77478e-05 loss) | |
I0425 10:53:58.852042 22523 solver.cpp:245] Train net output #41: loss1/loss15 = 0.00103569 (* 0.0272727 = 2.8246e-05 loss) | |
I0425 10:53:58.852056 22523 solver.cpp:245] Train net output #42: loss1/loss16 = 0.00100959 (* 0.0272727 = 2.75344e-05 loss) | |
I0425 10:53:58.852072 22523 solver.cpp:245] Train net output #43: loss1/loss17 = 0.000253588 (* 0.0272727 = 6.91603e-06 loss) | |
I0425 10:53:58.852085 22523 solver.cpp:245] Train net output #44: loss1/loss18 = 0.000110525 (* 0.0272727 = 3.01432e-06 loss) | |
I0425 10:53:58.852099 22523 solver.cpp:245] Train net output #45: loss1/loss19 = 5.45105e-05 (* 0.0272727 = 1.48665e-06 loss) | |
I0425 10:53:58.852113 22523 solver.cpp:245] Train net output #46: loss1/loss20 = 2.15037e-05 (* 0.0272727 = 5.86465e-07 loss) | |
I0425 10:53:58.852128 22523 solver.cpp:245] Train net output #47: loss1/loss21 = 3.64296e-05 (* 0.0272727 = 9.93535e-07 loss) | |
I0425 10:53:58.852143 22523 solver.cpp:245] Train net output #48: loss1/loss22 = 1.94172e-05 (* 0.0272727 = 5.2956e-07 loss) | |
I0425 10:53:58.852154 22523 solver.cpp:245] Train net output #49: loss2/accuracy = 0.636364 | |
I0425 10:53:58.852166 22523 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.75 | |
I0425 10:53:58.852179 22523 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.625 | |
I0425 10:53:58.852190 22523 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.625 | |
I0425 10:53:58.852201 22523 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.75 | |
I0425 10:53:58.852210 22523 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5 | |
I0425 10:53:58.852222 22523 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.625 | |
I0425 10:53:58.852234 22523 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.625 | |
I0425 10:53:58.852246 22523 solver.cpp:245] Train net output #57: loss2/accuracy08 = 1 | |
I0425 10:53:58.852257 22523 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1 | |
I0425 10:53:58.852268 22523 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1 | |
I0425 10:53:58.852286 22523 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1 | |
I0425 10:53:58.852298 22523 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1 | |
I0425 10:53:58.852309 22523 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1 | |
I0425 10:53:58.852320 22523 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1 | |
I0425 10:53:58.852331 22523 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0425 10:53:58.852349 22523 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0425 10:53:58.852360 22523 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0425 10:53:58.852371 22523 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0425 10:53:58.852382 22523 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0425 10:53:58.852393 22523 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0425 10:53:58.852404 22523 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0425 10:53:58.852416 22523 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0425 10:53:58.852427 22523 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.897727 | |
I0425 10:53:58.852438 22523 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.954545 | |
I0425 10:53:58.852452 22523 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.802334 (* 0.3 = 0.2407 loss) | |
I0425 10:53:58.852466 22523 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.237313 (* 0.3 = 0.0711938 loss) | |
I0425 10:53:58.852484 22523 solver.cpp:245] Train net output #76: loss2/loss01 = 0.70282 (* 0.0272727 = 0.0191678 loss) | |
I0425 10:53:58.852499 22523 solver.cpp:245] Train net output #77: loss2/loss02 = 0.957576 (* 0.0272727 = 0.0261157 loss) | |
I0425 10:53:58.852524 22523 solver.cpp:245] Train net output #78: loss2/loss03 = 1.05981 (* 0.0272727 = 0.028904 loss) | |
I0425 10:53:58.852540 22523 solver.cpp:245] Train net output #79: loss2/loss04 = 1.36324 (* 0.0272727 = 0.0371794 loss) | |
I0425 10:53:58.852553 22523 solver.cpp:245] Train net output #80: loss2/loss05 = 1.14042 (* 0.0272727 = 0.0311023 loss) | |
I0425 10:53:58.852567 22523 solver.cpp:245] Train net output #81: loss2/loss06 = 0.848799 (* 0.0272727 = 0.0231491 loss) | |
I0425 10:53:58.852581 22523 solver.cpp:245] Train net output #82: loss2/loss07 = 0.868008 (* 0.0272727 = 0.023673 loss) | |
I0425 10:53:58.852596 22523 solver.cpp:245] Train net output #83: loss2/loss08 = 0.0473525 (* 0.0272727 = 0.00129143 loss) | |
I0425 10:53:58.852610 22523 solver.cpp:245] Train net output #84: loss2/loss09 = 0.0109726 (* 0.0272727 = 0.000299253 loss) | |
I0425 10:53:58.852624 22523 solver.cpp:245] Train net output #85: loss2/loss10 = 0.00189563 (* 0.0272727 = 5.16989e-05 loss) | |
I0425 10:53:58.852638 22523 solver.cpp:245] Train net output #86: loss2/loss11 = 0.00217479 (* 0.0272727 = 5.93125e-05 loss) | |
I0425 10:53:58.852651 22523 solver.cpp:245] Train net output #87: loss2/loss12 = 0.00160183 (* 0.0272727 = 4.36862e-05 loss) | |
I0425 10:53:58.852665 22523 solver.cpp:245] Train net output #88: loss2/loss13 = 0.000852295 (* 0.0272727 = 2.32444e-05 loss) | |
I0425 10:53:58.852679 22523 solver.cpp:245] Train net output #89: loss2/loss14 = 0.000355868 (* 0.0272727 = 9.7055e-06 loss) | |
I0425 10:53:58.852694 22523 solver.cpp:245] Train net output #90: loss2/loss15 = 0.000128874 (* 0.0272727 = 3.51476e-06 loss) | |
I0425 10:53:58.852707 22523 solver.cpp:245] Train net output #91: loss2/loss16 = 0.000115406 (* 0.0272727 = 3.14743e-06 loss) | |
I0425 10:53:58.852721 22523 solver.cpp:245] Train net output #92: loss2/loss17 = 2.23679e-05 (* 0.0272727 = 6.10034e-07 loss) | |
I0425 10:53:58.852736 22523 solver.cpp:245] Train net output #93: loss2/loss18 = 8.15107e-06 (* 0.0272727 = 2.22302e-07 loss) | |
I0425 10:53:58.852751 22523 solver.cpp:245] Train net output #94: loss2/loss19 = 8.09153e-06 (* 0.0272727 = 2.20678e-07 loss) | |
I0425 10:53:58.852764 22523 solver.cpp:245] Train net output #95: loss2/loss20 = 4.06806e-06 (* 0.0272727 = 1.10947e-07 loss) | |
I0425 10:53:58.852779 22523 solver.cpp:245] Train net output #96: loss2/loss21 = 1.11614e-05 (* 0.0272727 = 3.04403e-07 loss) | |
I0425 10:53:58.852793 22523 solver.cpp:245] Train net output #97: loss2/loss22 = 4.03827e-06 (* 0.0272727 = 1.10135e-07 loss) | |
I0425 10:53:58.852805 22523 solver.cpp:245] Train net output #98: loss3/accuracy = 0.954545 | |
I0425 10:53:58.852818 22523 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1 | |
I0425 10:53:58.852829 22523 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1 | |
I0425 10:53:58.852840 22523 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1 | |
I0425 10:53:58.852851 22523 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1 | |
I0425 10:53:58.852864 22523 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875 | |
I0425 10:53:58.852874 22523 solver.cpp:245] Train net output #104: loss3/accuracy06 = 1 | |
I0425 10:53:58.852885 22523 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875 | |
I0425 10:53:58.852897 22523 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1 | |
I0425 10:53:58.852910 22523 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1 | |
I0425 10:53:58.852921 22523 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1 | |
I0425 10:53:58.852932 22523 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1 | |
I0425 10:53:58.852943 22523 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1 | |
I0425 10:53:58.852955 22523 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1 | |
I0425 10:53:58.852967 22523 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1 | |
I0425 10:53:58.852977 22523 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0425 10:53:58.852988 22523 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0425 10:53:58.853009 22523 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0425 10:53:58.853021 22523 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0425 10:53:58.853034 22523 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0425 10:53:58.853044 22523 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0425 10:53:58.853055 22523 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0425 10:53:58.853067 22523 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0425 10:53:58.853078 22523 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.982955 | |
I0425 10:53:58.853091 22523 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 1 | |
I0425 10:53:58.853104 22523 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.123239 (* 1 = 0.123239 loss) | |
I0425 10:53:58.853118 22523 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.0399505 (* 1 = 0.0399505 loss) | |
I0425 10:53:58.853133 22523 solver.cpp:245] Train net output #125: loss3/loss01 = 0.0479126 (* 0.0909091 = 0.00435569 loss) | |
I0425 10:53:58.853147 22523 solver.cpp:245] Train net output #126: loss3/loss02 = 0.0336837 (* 0.0909091 = 0.00306216 loss) | |
I0425 10:53:58.853162 22523 solver.cpp:245] Train net output #127: loss3/loss03 = 0.0964089 (* 0.0909091 = 0.00876444 loss) | |
I0425 10:53:58.853175 22523 solver.cpp:245] Train net output #128: loss3/loss04 = 0.0985014 (* 0.0909091 = 0.00895467 loss) | |
I0425 10:53:58.853189 22523 solver.cpp:245] Train net output #129: loss3/loss05 = 0.263811 (* 0.0909091 = 0.0239828 loss) | |
I0425 10:53:58.853204 22523 solver.cpp:245] Train net output #130: loss3/loss06 = 0.235189 (* 0.0909091 = 0.0213808 loss) | |
I0425 10:53:58.853217 22523 solver.cpp:245] Train net output #131: loss3/loss07 = 0.300021 (* 0.0909091 = 0.0272746 loss) | |
I0425 10:53:58.853231 22523 solver.cpp:245] Train net output #132: loss3/loss08 = 0.0324919 (* 0.0909091 = 0.00295381 loss) | |
I0425 10:53:58.853245 22523 solver.cpp:245] Train net output #133: loss3/loss09 = 0.00865022 (* 0.0909091 = 0.000786383 loss) | |
I0425 10:53:58.853271 22523 solver.cpp:245] Train net output #134: loss3/loss10 = 0.00111419 (* 0.0909091 = 0.00010129 loss) | |
I0425 10:53:58.853286 22523 solver.cpp:245] Train net output #135: loss3/loss11 = 0.00705135 (* 0.0909091 = 0.000641032 loss) | |
I0425 10:53:58.853299 22523 solver.cpp:245] Train net output #136: loss3/loss12 = 0.00228967 (* 0.0909091 = 0.000208152 loss) | |
I0425 10:53:58.853313 22523 solver.cpp:245] Train net output #137: loss3/loss13 = 0.000698585 (* 0.0909091 = 6.35077e-05 loss) | |
I0425 10:53:58.853335 22523 solver.cpp:245] Train net output #138: loss3/loss14 = 0.000389324 (* 0.0909091 = 3.53931e-05 loss) | |
I0425 10:53:58.853349 22523 solver.cpp:245] Train net output #139: loss3/loss15 = 0.000228287 (* 0.0909091 = 2.07534e-05 loss) | |
I0425 10:53:58.853363 22523 solver.cpp:245] Train net output #140: loss3/loss16 = 0.000145877 (* 0.0909091 = 1.32616e-05 loss) | |
I0425 10:53:58.853379 22523 solver.cpp:245] Train net output #141: loss3/loss17 = 0.000128509 (* 0.0909091 = 1.16826e-05 loss) | |
I0425 10:53:58.853392 22523 solver.cpp:245] Train net output #142: loss3/loss18 = 8.95119e-05 (* 0.0909091 = 8.13745e-06 loss) | |
I0425 10:53:58.853406 22523 solver.cpp:245] Train net output #143: loss3/loss19 = 3.34199e-05 (* 0.0909091 = 3.03817e-06 loss) | |
I0425 10:53:58.853420 22523 solver.cpp:245] Train net output #144: loss3/loss20 = 1.51851e-05 (* 0.0909091 = 1.38046e-06 loss) | |
I0425 10:53:58.853435 22523 solver.cpp:245] Train net output #145: loss3/loss21 = 7.91275e-06 (* 0.0909091 = 7.19341e-07 loss) | |
I0425 10:53:58.853449 22523 solver.cpp:245] Train net output #146: loss3/loss22 = 1.71364e-06 (* 0.0909091 = 1.55786e-07 loss) | |
I0425 10:53:58.853461 22523 solver.cpp:245] Train net output #147: total_accuracy = 0.75 | |
I0425 10:53:58.853473 22523 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.875 | |
I0425 10:53:58.853494 22523 solver.cpp:245] Train net output #149: total_confidence = 0.734003 | |
I0425 10:53:58.853507 22523 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.559204 | |
I0425 10:53:58.853526 22523 sgd_solver.cpp:106] Iteration 4000, lr = 0.01 | |
I0425 10:59:40.206821 22523 solver.cpp:229] Iteration 4500, loss = 3.29755 | |
I0425 10:59:40.206972 22523 solver.cpp:245] Train net output #0: loss1/accuracy = 0.58 | |
I0425 10:59:40.206995 22523 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.5 | |
I0425 10:59:40.207007 22523 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.625 | |
I0425 10:59:40.207020 22523 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375 | |
I0425 10:59:40.207031 22523 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375 | |
I0425 10:59:40.207043 22523 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.25 | |
I0425 10:59:40.207056 22523 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.625 | |
I0425 10:59:40.207067 22523 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.875 | |
I0425 10:59:40.207079 22523 solver.cpp:245] Train net output #8: loss1/accuracy08 = 1 | |
I0425 10:59:40.207092 22523 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875 | |
I0425 10:59:40.207111 22523 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875 | |
I0425 10:59:40.207123 22523 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.875 | |
I0425 10:59:40.207135 22523 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1 | |
I0425 10:59:40.207147 22523 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1 | |
I0425 10:59:40.207165 22523 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1 | |
I0425 10:59:40.207176 22523 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0425 10:59:40.207188 22523 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0425 10:59:40.207201 22523 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0425 10:59:40.207214 22523 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0425 10:59:40.207234 22523 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0425 10:59:40.207245 22523 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0425 10:59:40.207257 22523 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0425 10:59:40.207268 22523 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0425 10:59:40.207279 22523 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.875 | |
I0425 10:59:40.207298 22523 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.76 | |
I0425 10:59:40.207315 22523 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.58538 (* 0.3 = 0.475614 loss) | |
I0425 10:59:40.207329 22523 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.492187 (* 0.3 = 0.147656 loss) | |
I0425 10:59:40.207345 22523 solver.cpp:245] Train net output #27: loss1/loss01 = 1.09326 (* 0.0272727 = 0.0298162 loss) | |
I0425 10:59:40.207372 22523 solver.cpp:245] Train net output #28: loss1/loss02 = 1.56197 (* 0.0272727 = 0.042599 loss) | |
I0425 10:59:40.207388 22523 solver.cpp:245] Train net output #29: loss1/loss03 = 1.74493 (* 0.0272727 = 0.047589 loss) | |
I0425 10:59:40.207402 22523 solver.cpp:245] Train net output #30: loss1/loss04 = 1.86692 (* 0.0272727 = 0.050916 loss) | |
I0425 10:59:40.207417 22523 solver.cpp:245] Train net output #31: loss1/loss05 = 1.86472 (* 0.0272727 = 0.050856 loss) | |
I0425 10:59:40.207430 22523 solver.cpp:245] Train net output #32: loss1/loss06 = 1.4492 (* 0.0272727 = 0.0395237 loss) | |
I0425 10:59:40.207444 22523 solver.cpp:245] Train net output #33: loss1/loss07 = 0.833557 (* 0.0272727 = 0.0227334 loss) | |
I0425 10:59:40.207459 22523 solver.cpp:245] Train net output #34: loss1/loss08 = 0.288118 (* 0.0272727 = 0.00785776 loss) | |
I0425 10:59:40.207474 22523 solver.cpp:245] Train net output #35: loss1/loss09 = 0.45659 (* 0.0272727 = 0.0124525 loss) | |
I0425 10:59:40.207487 22523 solver.cpp:245] Train net output #36: loss1/loss10 = 0.53229 (* 0.0272727 = 0.014517 loss) | |
I0425 10:59:40.207501 22523 solver.cpp:245] Train net output #37: loss1/loss11 = 0.515121 (* 0.0272727 = 0.0140488 loss) | |
I0425 10:59:40.207516 22523 solver.cpp:245] Train net output #38: loss1/loss12 = 0.055517 (* 0.0272727 = 0.0015141 loss) | |
I0425 10:59:40.207530 22523 solver.cpp:245] Train net output #39: loss1/loss13 = 0.0178742 (* 0.0272727 = 0.000487479 loss) | |
I0425 10:59:40.207563 22523 solver.cpp:245] Train net output #40: loss1/loss14 = 0.0105912 (* 0.0272727 = 0.000288851 loss) | |
I0425 10:59:40.207579 22523 solver.cpp:245] Train net output #41: loss1/loss15 = 0.00758777 (* 0.0272727 = 0.000206939 loss) | |
I0425 10:59:40.207593 22523 solver.cpp:245] Train net output #42: loss1/loss16 = 0.00320136 (* 0.0272727 = 8.73097e-05 loss) | |
I0425 10:59:40.207607 22523 solver.cpp:245] Train net output #43: loss1/loss17 = 0.000749069 (* 0.0272727 = 2.04291e-05 loss) | |
I0425 10:59:40.207623 22523 solver.cpp:245] Train net output #44: loss1/loss18 = 0.000223317 (* 0.0272727 = 6.09046e-06 loss) | |
I0425 10:59:40.207636 22523 solver.cpp:245] Train net output #45: loss1/loss19 = 0.000182837 (* 0.0272727 = 4.98647e-06 loss) | |
I0425 10:59:40.207650 22523 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000107844 (* 0.0272727 = 2.94121e-06 loss) | |
I0425 10:59:40.207664 22523 solver.cpp:245] Train net output #47: loss1/loss21 = 7.14422e-05 (* 0.0272727 = 1.94842e-06 loss) | |
I0425 10:59:40.207684 22523 solver.cpp:245] Train net output #48: loss1/loss22 = 4.64092e-05 (* 0.0272727 = 1.26571e-06 loss) | |
I0425 10:59:40.207696 22523 solver.cpp:245] Train net output #49: loss2/accuracy = 0.68 | |
I0425 10:59:40.207708 22523 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.75 | |
I0425 10:59:40.207720 22523 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.625 | |
I0425 10:59:40.207741 22523 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.625 | |
I0425 10:59:40.207752 22523 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.625 | |
I0425 10:59:40.207763 22523 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5 | |
I0425 10:59:40.207775 22523 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.625 | |
I0425 10:59:40.207787 22523 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.625 | |
I0425 10:59:40.207798 22523 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875 | |
I0425 10:59:40.207809 22523 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875 | |
I0425 10:59:40.207820 22523 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875 | |
I0425 10:59:40.207833 22523 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.875 | |
I0425 10:59:40.207844 22523 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1 | |
I0425 10:59:40.207855 22523 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1 | |
I0425 10:59:40.207866 22523 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1 | |
I0425 10:59:40.207877 22523 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0425 10:59:40.207888 22523 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0425 10:59:40.207900 22523 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0425 10:59:40.207911 22523 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0425 10:59:40.207921 22523 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0425 10:59:40.207932 22523 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0425 10:59:40.207943 22523 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0425 10:59:40.207954 22523 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0425 10:59:40.207965 22523 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.903409 | |
I0425 10:59:40.207978 22523 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.86 | |
I0425 10:59:40.207994 22523 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.04574 (* 0.3 = 0.313722 loss) | |
I0425 10:59:40.208009 22523 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.326561 (* 0.3 = 0.0979684 loss) | |
I0425 10:59:40.208024 22523 solver.cpp:245] Train net output #76: loss2/loss01 = 0.582099 (* 0.0272727 = 0.0158754 loss) | |
I0425 10:59:40.208037 22523 solver.cpp:245] Train net output #77: loss2/loss02 = 1.01817 (* 0.0272727 = 0.0277682 loss) | |
I0425 10:59:40.208071 22523 solver.cpp:245] Train net output #78: loss2/loss03 = 1.81055 (* 0.0272727 = 0.0493786 loss) | |
I0425 10:59:40.208086 22523 solver.cpp:245] Train net output #79: loss2/loss04 = 1.2865 (* 0.0272727 = 0.0350862 loss) | |
I0425 10:59:40.208101 22523 solver.cpp:245] Train net output #80: loss2/loss05 = 1.2995 (* 0.0272727 = 0.035441 loss) | |
I0425 10:59:40.208114 22523 solver.cpp:245] Train net output #81: loss2/loss06 = 1.6216 (* 0.0272727 = 0.0442255 loss) | |
I0425 10:59:40.208130 22523 solver.cpp:245] Train net output #82: loss2/loss07 = 0.965003 (* 0.0272727 = 0.0263183 loss) | |
I0425 10:59:40.208143 22523 solver.cpp:245] Train net output #83: loss2/loss08 = 0.410595 (* 0.0272727 = 0.0111981 loss) | |
I0425 10:59:40.208158 22523 solver.cpp:245] Train net output #84: loss2/loss09 = 0.491048 (* 0.0272727 = 0.0133922 loss) | |
I0425 10:59:40.208171 22523 solver.cpp:245] Train net output #85: loss2/loss10 = 0.516889 (* 0.0272727 = 0.014097 loss) | |
I0425 10:59:40.208185 22523 solver.cpp:245] Train net output #86: loss2/loss11 = 0.544975 (* 0.0272727 = 0.0148629 loss) | |
I0425 10:59:40.208199 22523 solver.cpp:245] Train net output #87: loss2/loss12 = 0.047783 (* 0.0272727 = 0.00130317 loss) | |
I0425 10:59:40.208214 22523 solver.cpp:245] Train net output #88: loss2/loss13 = 0.0276498 (* 0.0272727 = 0.000754087 loss) | |
I0425 10:59:40.208227 22523 solver.cpp:245] Train net output #89: loss2/loss14 = 0.00944703 (* 0.0272727 = 0.000257646 loss) | |
I0425 10:59:40.208241 22523 solver.cpp:245] Train net output #90: loss2/loss15 = 0.00995714 (* 0.0272727 = 0.000271558 loss) | |
I0425 10:59:40.208258 22523 solver.cpp:245] Train net output #91: loss2/loss16 = 0.00529426 (* 0.0272727 = 0.000144389 loss) | |
I0425 10:59:40.208273 22523 solver.cpp:245] Train net output #92: loss2/loss17 = 0.000977537 (* 0.0272727 = 2.66601e-05 loss) | |
I0425 10:59:40.208287 22523 solver.cpp:245] Train net output #93: loss2/loss18 = 0.000530073 (* 0.0272727 = 1.44565e-05 loss) | |
I0425 10:59:40.208302 22523 solver.cpp:245] Train net output #94: loss2/loss19 = 0.000102254 (* 0.0272727 = 2.78876e-06 loss) | |
I0425 10:59:40.208315 22523 solver.cpp:245] Train net output #95: loss2/loss20 = 7.81804e-05 (* 0.0272727 = 2.13219e-06 loss) | |
I0425 10:59:40.208329 22523 solver.cpp:245] Train net output #96: loss2/loss21 = 5.32903e-05 (* 0.0272727 = 1.45337e-06 loss) | |
I0425 10:59:40.208343 22523 solver.cpp:245] Train net output #97: loss2/loss22 = 4.79461e-05 (* 0.0272727 = 1.30762e-06 loss) | |
I0425 10:59:40.208355 22523 solver.cpp:245] Train net output #98: loss3/accuracy = 0.84 | |
I0425 10:59:40.208369 22523 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1 | |
I0425 10:59:40.208379 22523 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875 | |
I0425 10:59:40.208391 22523 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1 | |
I0425 10:59:40.208402 22523 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875 | |
I0425 10:59:40.208415 22523 solver.cpp:245] Train net output #103: loss3/accuracy05 = 1 | |
I0425 10:59:40.208425 22523 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.75 | |
I0425 10:59:40.208437 22523 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.625 | |
I0425 10:59:40.208448 22523 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875 | |
I0425 10:59:40.208461 22523 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875 | |
I0425 10:59:40.208472 22523 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875 | |
I0425 10:59:40.208482 22523 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.875 | |
I0425 10:59:40.208494 22523 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1 | |
I0425 10:59:40.208505 22523 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1 | |
I0425 10:59:40.208516 22523 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1 | |
I0425 10:59:40.208528 22523 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0425 10:59:40.208539 22523 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0425 10:59:40.208560 22523 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0425 10:59:40.208573 22523 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0425 10:59:40.208585 22523 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0425 10:59:40.208595 22523 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0425 10:59:40.208606 22523 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0425 10:59:40.208618 22523 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0425 10:59:40.208629 22523 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.9375 | |
I0425 10:59:40.208642 22523 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.92 | |
I0425 10:59:40.208654 22523 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.570659 (* 1 = 0.570659 loss) | |
I0425 10:59:40.208668 22523 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.225143 (* 1 = 0.225143 loss) | |
I0425 10:59:40.208683 22523 solver.cpp:245] Train net output #125: loss3/loss01 = 0.168508 (* 0.0909091 = 0.0153189 loss) | |
I0425 10:59:40.208698 22523 solver.cpp:245] Train net output #126: loss3/loss02 = 0.477686 (* 0.0909091 = 0.043426 loss) | |
I0425 10:59:40.208710 22523 solver.cpp:245] Train net output #127: loss3/loss03 = 0.138574 (* 0.0909091 = 0.0125976 loss) | |
I0425 10:59:40.208724 22523 solver.cpp:245] Train net output #128: loss3/loss04 = 0.317937 (* 0.0909091 = 0.0289034 loss) | |
I0425 10:59:40.208739 22523 solver.cpp:245] Train net output #129: loss3/loss05 = 0.219874 (* 0.0909091 = 0.0199886 loss) | |
I0425 10:59:40.208752 22523 solver.cpp:245] Train net output #130: loss3/loss06 = 0.708536 (* 0.0909091 = 0.0644123 loss) | |
I0425 10:59:40.208766 22523 solver.cpp:245] Train net output #131: loss3/loss07 = 0.735193 (* 0.0909091 = 0.0668358 loss) | |
I0425 10:59:40.208781 22523 solver.cpp:245] Train net output #132: loss3/loss08 = 0.449817 (* 0.0909091 = 0.0408925 loss) | |
I0425 10:59:40.208794 22523 solver.cpp:245] Train net output #133: loss3/loss09 = 0.365894 (* 0.0909091 = 0.0332631 loss) | |
I0425 10:59:40.208808 22523 solver.cpp:245] Train net output #134: loss3/loss10 = 0.458169 (* 0.0909091 = 0.0416518 loss) | |
I0425 10:59:40.208822 22523 solver.cpp:245] Train net output #135: loss3/loss11 = 0.436931 (* 0.0909091 = 0.039721 loss) | |
I0425 10:59:40.208835 22523 solver.cpp:245] Train net output #136: loss3/loss12 = 0.209845 (* 0.0909091 = 0.0190768 loss) | |
I0425 10:59:40.208849 22523 solver.cpp:245] Train net output #137: loss3/loss13 = 0.163584 (* 0.0909091 = 0.0148713 loss) | |
I0425 10:59:40.208863 22523 solver.cpp:245] Train net output #138: loss3/loss14 = 0.0920798 (* 0.0909091 = 0.00837089 loss) | |
I0425 10:59:40.208878 22523 solver.cpp:245] Train net output #139: loss3/loss15 = 0.0593934 (* 0.0909091 = 0.0053994 loss) | |
I0425 10:59:40.208891 22523 solver.cpp:245] Train net output #140: loss3/loss16 = 0.0301431 (* 0.0909091 = 0.00274029 loss) | |
I0425 10:59:40.208905 22523 solver.cpp:245] Train net output #141: loss3/loss17 = 0.0303745 (* 0.0909091 = 0.00276132 loss) | |
I0425 10:59:40.208920 22523 solver.cpp:245] Train net output #142: loss3/loss18 = 0.0132337 (* 0.0909091 = 0.00120306 loss) | |
I0425 10:59:40.208933 22523 solver.cpp:245] Train net output #143: loss3/loss19 = 0.0112746 (* 0.0909091 = 0.00102496 loss) | |
I0425 10:59:40.208947 22523 solver.cpp:245] Train net output #144: loss3/loss20 = 0.00353068 (* 0.0909091 = 0.000320971 loss) | |
I0425 10:59:40.208961 22523 solver.cpp:245] Train net output #145: loss3/loss21 = 0.00122014 (* 0.0909091 = 0.000110922 loss) | |
I0425 10:59:40.208976 22523 solver.cpp:245] Train net output #146: loss3/loss22 = 0.000358769 (* 0.0909091 = 3.26154e-05 loss) | |
I0425 10:59:40.208987 22523 solver.cpp:245] Train net output #147: total_accuracy = 0.625 | |
I0425 10:59:40.208999 22523 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.625 | |
I0425 10:59:40.209012 22523 solver.cpp:245] Train net output #149: total_confidence = 0.522281 | |
I0425 10:59:40.209028 22523 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.467971 | |
I0425 10:59:40.209048 22523 sgd_solver.cpp:106] Iteration 4500, lr = 0.01 | |
I0425 11:05:21.031108 22523 solver.cpp:338] Iteration 5000, Testing net (#0) | |
I0425 11:06:12.577870 22523 solver.cpp:393] Test loss: 1.6066 | |
I0425 11:06:12.577989 22523 solver.cpp:406] Test net output #0: loss1/accuracy = 0.756205 | |
I0425 11:06:12.578009 22523 solver.cpp:406] Test net output #1: loss1/accuracy01 = 0.867 | |
I0425 11:06:12.578022 22523 solver.cpp:406] Test net output #2: loss1/accuracy02 = 0.664 | |
I0425 11:06:12.578035 22523 solver.cpp:406] Test net output #3: loss1/accuracy03 = 0.517 | |
I0425 11:06:12.578047 22523 solver.cpp:406] Test net output #4: loss1/accuracy04 = 0.523 | |
I0425 11:06:12.578059 22523 solver.cpp:406] Test net output #5: loss1/accuracy05 = 0.576 | |
I0425 11:06:12.578071 22523 solver.cpp:406] Test net output #6: loss1/accuracy06 = 0.679 | |
I0425 11:06:12.578083 22523 solver.cpp:406] Test net output #7: loss1/accuracy07 = 0.812 | |
I0425 11:06:12.578094 22523 solver.cpp:406] Test net output #8: loss1/accuracy08 = 0.92 | |
I0425 11:06:12.578106 22523 solver.cpp:406] Test net output #9: loss1/accuracy09 = 0.982 | |
I0425 11:06:12.578119 22523 solver.cpp:406] Test net output #10: loss1/accuracy10 = 0.994 | |
I0425 11:06:12.578130 22523 solver.cpp:406] Test net output #11: loss1/accuracy11 = 0.996 | |
I0425 11:06:12.578142 22523 solver.cpp:406] Test net output #12: loss1/accuracy12 = 1 | |
I0425 11:06:12.578153 22523 solver.cpp:406] Test net output #13: loss1/accuracy13 = 1 | |
I0425 11:06:12.578166 22523 solver.cpp:406] Test net output #14: loss1/accuracy14 = 1 | |
I0425 11:06:12.578177 22523 solver.cpp:406] Test net output #15: loss1/accuracy15 = 1 | |
I0425 11:06:12.578188 22523 solver.cpp:406] Test net output #16: loss1/accuracy16 = 1 | |
I0425 11:06:12.578202 22523 solver.cpp:406] Test net output #17: loss1/accuracy17 = 1 | |
I0425 11:06:12.578214 22523 solver.cpp:406] Test net output #18: loss1/accuracy18 = 1 | |
I0425 11:06:12.578227 22523 solver.cpp:406] Test net output #19: loss1/accuracy19 = 1 | |
I0425 11:06:12.578238 22523 solver.cpp:406] Test net output #20: loss1/accuracy20 = 1 | |
I0425 11:06:12.578248 22523 solver.cpp:406] Test net output #21: loss1/accuracy21 = 1 | |
I0425 11:06:12.578259 22523 solver.cpp:406] Test net output #22: loss1/accuracy22 = 1 | |
I0425 11:06:12.578271 22523 solver.cpp:406] Test net output #23: loss1/accuracy_incl_empty = 0.919502 | |
I0425 11:06:12.578284 22523 solver.cpp:406] Test net output #24: loss1/accuracy_top3 = 0.915909 | |
I0425 11:06:12.578300 22523 solver.cpp:406] Test net output #25: loss1/cross_entropy_loss = 0.827009 (* 0.3 = 0.248103 loss) | |
I0425 11:06:12.578315 22523 solver.cpp:406] Test net output #26: loss1/cross_entropy_loss_incl_empty = 0.271184 (* 0.3 = 0.0813552 loss) | |
I0425 11:06:12.578330 22523 solver.cpp:406] Test net output #27: loss1/loss01 = 0.555891 (* 0.0272727 = 0.0151607 loss) | |
I0425 11:06:12.578343 22523 solver.cpp:406] Test net output #28: loss1/loss02 = 1.14845 (* 0.0272727 = 0.0313213 loss) | |
I0425 11:06:12.578357 22523 solver.cpp:406] Test net output #29: loss1/loss03 = 1.47164 (* 0.0272727 = 0.0401356 loss) | |
I0425 11:06:12.578371 22523 solver.cpp:406] Test net output #30: loss1/loss04 = 1.51674 (* 0.0272727 = 0.0413657 loss) | |
I0425 11:06:12.578384 22523 solver.cpp:406] Test net output #31: loss1/loss05 = 1.33112 (* 0.0272727 = 0.0363033 loss) | |
I0425 11:06:12.578399 22523 solver.cpp:406] Test net output #32: loss1/loss06 = 1.02042 (* 0.0272727 = 0.0278296 loss) | |
I0425 11:06:12.578413 22523 solver.cpp:406] Test net output #33: loss1/loss07 = 0.639568 (* 0.0272727 = 0.0174428 loss) | |
I0425 11:06:12.578428 22523 solver.cpp:406] Test net output #34: loss1/loss08 = 0.32658 (* 0.0272727 = 0.00890672 loss) | |
I0425 11:06:12.578441 22523 solver.cpp:406] Test net output #35: loss1/loss09 = 0.0912499 (* 0.0272727 = 0.00248863 loss) | |
I0425 11:06:12.578456 22523 solver.cpp:406] Test net output #36: loss1/loss10 = 0.0513619 (* 0.0272727 = 0.00140078 loss) | |
I0425 11:06:12.578470 22523 solver.cpp:406] Test net output #37: loss1/loss11 = 0.0329375 (* 0.0272727 = 0.000898295 loss) | |
I0425 11:06:12.578485 22523 solver.cpp:406] Test net output #38: loss1/loss12 = 0.0209564 (* 0.0272727 = 0.000571538 loss) | |
I0425 11:06:12.578498 22523 solver.cpp:406] Test net output #39: loss1/loss13 = 0.0152207 (* 0.0272727 = 0.00041511 loss) | |
I0425 11:06:12.578531 22523 solver.cpp:406] Test net output #40: loss1/loss14 = 0.0106767 (* 0.0272727 = 0.000291183 loss) | |
I0425 11:06:12.578552 22523 solver.cpp:406] Test net output #41: loss1/loss15 = 0.00664598 (* 0.0272727 = 0.000181254 loss) | |
I0425 11:06:12.578567 22523 solver.cpp:406] Test net output #42: loss1/loss16 = 0.00356115 (* 0.0272727 = 9.71223e-05 loss) | |
I0425 11:06:12.578580 22523 solver.cpp:406] Test net output #43: loss1/loss17 = 0.000797318 (* 0.0272727 = 2.1745e-05 loss) | |
I0425 11:06:12.578594 22523 solver.cpp:406] Test net output #44: loss1/loss18 = 0.00027758 (* 0.0272727 = 7.57036e-06 loss) | |
I0425 11:06:12.578608 22523 solver.cpp:406] Test net output #45: loss1/loss19 = 0.000128796 (* 0.0272727 = 3.51262e-06 loss) | |
I0425 11:06:12.578621 22523 solver.cpp:406] Test net output #46: loss1/loss20 = 8.63586e-05 (* 0.0272727 = 2.35524e-06 loss) | |
I0425 11:06:12.578635 22523 solver.cpp:406] Test net output #47: loss1/loss21 = 5.68045e-05 (* 0.0272727 = 1.54921e-06 loss) | |
I0425 11:06:12.578649 22523 solver.cpp:406] Test net output #48: loss1/loss22 = 4.87635e-05 (* 0.0272727 = 1.32991e-06 loss) | |
I0425 11:06:12.578661 22523 solver.cpp:406] Test net output #49: loss2/accuracy = 0.884495 | |
I0425 11:06:12.578673 22523 solver.cpp:406] Test net output #50: loss2/accuracy01 = 0.939 | |
I0425 11:06:12.578685 22523 solver.cpp:406] Test net output #51: loss2/accuracy02 = 0.875 | |
I0425 11:06:12.578696 22523 solver.cpp:406] Test net output #52: loss2/accuracy03 = 0.727 | |
I0425 11:06:12.578707 22523 solver.cpp:406] Test net output #53: loss2/accuracy04 = 0.617 | |
I0425 11:06:12.578719 22523 solver.cpp:406] Test net output #54: loss2/accuracy05 = 0.672 | |
I0425 11:06:12.578730 22523 solver.cpp:406] Test net output #55: loss2/accuracy06 = 0.748 | |
I0425 11:06:12.578742 22523 solver.cpp:406] Test net output #56: loss2/accuracy07 = 0.869 | |
I0425 11:06:12.578753 22523 solver.cpp:406] Test net output #57: loss2/accuracy08 = 0.938 | |
I0425 11:06:12.578764 22523 solver.cpp:406] Test net output #58: loss2/accuracy09 = 0.984 | |
I0425 11:06:12.578775 22523 solver.cpp:406] Test net output #59: loss2/accuracy10 = 0.994 | |
I0425 11:06:12.578788 22523 solver.cpp:406] Test net output #60: loss2/accuracy11 = 0.998 | |
I0425 11:06:12.578799 22523 solver.cpp:406] Test net output #61: loss2/accuracy12 = 0.999 | |
I0425 11:06:12.578809 22523 solver.cpp:406] Test net output #62: loss2/accuracy13 = 1 | |
I0425 11:06:12.578821 22523 solver.cpp:406] Test net output #63: loss2/accuracy14 = 1 | |
I0425 11:06:12.578832 22523 solver.cpp:406] Test net output #64: loss2/accuracy15 = 1 | |
I0425 11:06:12.578843 22523 solver.cpp:406] Test net output #65: loss2/accuracy16 = 1 | |
I0425 11:06:12.578855 22523 solver.cpp:406] Test net output #66: loss2/accuracy17 = 1 | |
I0425 11:06:12.578866 22523 solver.cpp:406] Test net output #67: loss2/accuracy18 = 1 | |
I0425 11:06:12.578876 22523 solver.cpp:406] Test net output #68: loss2/accuracy19 = 1 | |
I0425 11:06:12.578886 22523 solver.cpp:406] Test net output #69: loss2/accuracy20 = 1 | |
I0425 11:06:12.578898 22523 solver.cpp:406] Test net output #70: loss2/accuracy21 = 1 | |
I0425 11:06:12.578909 22523 solver.cpp:406] Test net output #71: loss2/accuracy22 = 1 | |
I0425 11:06:12.578920 22523 solver.cpp:406] Test net output #72: loss2/accuracy_incl_empty = 0.962819 | |
I0425 11:06:12.578932 22523 solver.cpp:406] Test net output #73: loss2/accuracy_top3 = 0.959806 | |
I0425 11:06:12.578944 22523 solver.cpp:406] Test net output #74: loss2/cross_entropy_loss = 0.436629 (* 0.3 = 0.130989 loss) | |
I0425 11:06:12.578958 22523 solver.cpp:406] Test net output #75: loss2/cross_entropy_loss_incl_empty = 0.14076 (* 0.3 = 0.0422279 loss) | |
I0425 11:06:12.578972 22523 solver.cpp:406] Test net output #76: loss2/loss01 = 0.299772 (* 0.0272727 = 0.00817559 loss) | |
I0425 11:06:12.578987 22523 solver.cpp:406] Test net output #77: loss2/loss02 = 0.528695 (* 0.0272727 = 0.014419 loss) | |
I0425 11:06:12.579015 22523 solver.cpp:406] Test net output #78: loss2/loss03 = 0.884992 (* 0.0272727 = 0.0241361 loss) | |
I0425 11:06:12.579030 22523 solver.cpp:406] Test net output #79: loss2/loss04 = 1.06422 (* 0.0272727 = 0.0290242 loss) | |
I0425 11:06:12.579043 22523 solver.cpp:406] Test net output #80: loss2/loss05 = 0.941313 (* 0.0272727 = 0.0256722 loss) | |
I0425 11:06:12.579057 22523 solver.cpp:406] Test net output #81: loss2/loss06 = 0.761388 (* 0.0272727 = 0.0207651 loss) | |
I0425 11:06:12.579071 22523 solver.cpp:406] Test net output #82: loss2/loss07 = 0.435875 (* 0.0272727 = 0.0118875 loss) | |
I0425 11:06:12.579085 22523 solver.cpp:406] Test net output #83: loss2/loss08 = 0.227935 (* 0.0272727 = 0.0062164 loss) | |
I0425 11:06:12.579099 22523 solver.cpp:406] Test net output #84: loss2/loss09 = 0.0778306 (* 0.0272727 = 0.00212265 loss) | |
I0425 11:06:12.579113 22523 solver.cpp:406] Test net output #85: loss2/loss10 = 0.0402589 (* 0.0272727 = 0.00109797 loss) | |
I0425 11:06:12.579128 22523 solver.cpp:406] Test net output #86: loss2/loss11 = 0.0275668 (* 0.0272727 = 0.000751821 loss) | |
I0425 11:06:12.579141 22523 solver.cpp:406] Test net output #87: loss2/loss12 = 0.0180454 (* 0.0272727 = 0.000492147 loss) | |
I0425 11:06:12.579155 22523 solver.cpp:406] Test net output #88: loss2/loss13 = 0.0128572 (* 0.0272727 = 0.000350652 loss) | |
I0425 11:06:12.579169 22523 solver.cpp:406] Test net output #89: loss2/loss14 = 0.0090979 (* 0.0272727 = 0.000248125 loss) | |
I0425 11:06:12.579183 22523 solver.cpp:406] Test net output #90: loss2/loss15 = 0.00585958 (* 0.0272727 = 0.000159807 loss) | |
I0425 11:06:12.579197 22523 solver.cpp:406] Test net output #91: loss2/loss16 = 0.00312403 (* 0.0272727 = 8.52007e-05 loss) | |
I0425 11:06:12.579212 22523 solver.cpp:406] Test net output #92: loss2/loss17 = 0.000815673 (* 0.0272727 = 2.22456e-05 loss) | |
I0425 11:06:12.579226 22523 solver.cpp:406] Test net output #93: loss2/loss18 = 0.000290952 (* 0.0272727 = 7.93506e-06 loss) | |
I0425 11:06:12.579239 22523 solver.cpp:406] Test net output #94: loss2/loss19 = 0.00013834 (* 0.0272727 = 3.77291e-06 loss) | |
I0425 11:06:12.579255 22523 solver.cpp:406] Test net output #95: loss2/loss20 = 7.83019e-05 (* 0.0272727 = 2.13551e-06 loss) | |
I0425 11:06:12.579270 22523 solver.cpp:406] Test net output #96: loss2/loss21 = 5.33788e-05 (* 0.0272727 = 1.45578e-06 loss) | |
I0425 11:06:12.579284 22523 solver.cpp:406] Test net output #97: loss2/loss22 = 3.93826e-05 (* 0.0272727 = 1.07407e-06 loss) | |
I0425 11:06:12.579296 22523 solver.cpp:406] Test net output #98: loss3/accuracy = 0.918367 | |
I0425 11:06:12.579308 22523 solver.cpp:406] Test net output #99: loss3/accuracy01 = 0.957 | |
I0425 11:06:12.579320 22523 solver.cpp:406] Test net output #100: loss3/accuracy02 = 0.932 | |
I0425 11:06:12.579331 22523 solver.cpp:406] Test net output #101: loss3/accuracy03 = 0.928 | |
I0425 11:06:12.579342 22523 solver.cpp:406] Test net output #102: loss3/accuracy04 = 0.9 | |
I0425 11:06:12.579370 22523 solver.cpp:406] Test net output #103: loss3/accuracy05 = 0.882 | |
I0425 11:06:12.579385 22523 solver.cpp:406] Test net output #104: loss3/accuracy06 = 0.843 | |
I0425 11:06:12.579396 22523 solver.cpp:406] Test net output #105: loss3/accuracy07 = 0.876 | |
I0425 11:06:12.579407 22523 solver.cpp:406] Test net output #106: loss3/accuracy08 = 0.954 | |
I0425 11:06:12.579418 22523 solver.cpp:406] Test net output #107: loss3/accuracy09 = 0.981 | |
I0425 11:06:12.579430 22523 solver.cpp:406] Test net output #108: loss3/accuracy10 = 0.994 | |
I0425 11:06:12.579442 22523 solver.cpp:406] Test net output #109: loss3/accuracy11 = 0.998 | |
I0425 11:06:12.579453 22523 solver.cpp:406] Test net output #110: loss3/accuracy12 = 0.998 | |
I0425 11:06:12.579460 22523 solver.cpp:406] Test net output #111: loss3/accuracy13 = 0.999 | |
I0425 11:06:12.579468 22523 solver.cpp:406] Test net output #112: loss3/accuracy14 = 0.999 | |
I0425 11:06:12.579483 22523 solver.cpp:406] Test net output #113: loss3/accuracy15 = 0.999 | |
I0425 11:06:12.579494 22523 solver.cpp:406] Test net output #114: loss3/accuracy16 = 1 | |
I0425 11:06:12.579517 22523 solver.cpp:406] Test net output #115: loss3/accuracy17 = 1 | |
I0425 11:06:12.579530 22523 solver.cpp:406] Test net output #116: loss3/accuracy18 = 1 | |
I0425 11:06:12.579546 22523 solver.cpp:406] Test net output #117: loss3/accuracy19 = 1 | |
I0425 11:06:12.579557 22523 solver.cpp:406] Test net output #118: loss3/accuracy20 = 1 | |
I0425 11:06:12.579568 22523 solver.cpp:406] Test net output #119: loss3/accuracy21 = 1 | |
I0425 11:06:12.579579 22523 solver.cpp:406] Test net output #120: loss3/accuracy22 = 1 | |
I0425 11:06:12.579591 22523 solver.cpp:406] Test net output #121: loss3/accuracy_incl_empty = 0.968682 | |
I0425 11:06:12.579602 22523 solver.cpp:406] Test net output #122: loss3/accuracy_top3 = 0.965495 | |
I0425 11:06:12.579617 22523 solver.cpp:406] Test net output #123: loss3/cross_entropy_loss = 0.342194 (* 1 = 0.342194 loss) | |
I0425 11:06:12.579630 22523 solver.cpp:406] Test net output #124: loss3/cross_entropy_loss_incl_empty = 0.125515 (* 1 = 0.125515 loss) | |
I0425 11:06:12.579644 22523 solver.cpp:406] Test net output #125: loss3/loss01 = 0.219236 (* 0.0909091 = 0.0199306 loss) | |
I0425 11:06:12.579658 22523 solver.cpp:406] Test net output #126: loss3/loss02 = 0.323514 (* 0.0909091 = 0.0294104 loss) | |
I0425 11:06:12.579671 22523 solver.cpp:406] Test net output #127: loss3/loss03 = 0.311928 (* 0.0909091 = 0.0283571 loss) | |
I0425 11:06:12.579685 22523 solver.cpp:406] Test net output #128: loss3/loss04 = 0.439514 (* 0.0909091 = 0.0399558 loss) | |
I0425 11:06:12.579699 22523 solver.cpp:406] Test net output #129: loss3/loss05 = 0.427638 (* 0.0909091 = 0.0388762 loss) | |
I0425 11:06:12.579717 22523 solver.cpp:406] Test net output #130: loss3/loss06 = 0.502571 (* 0.0909091 = 0.0456883 loss) | |
I0425 11:06:12.579730 22523 solver.cpp:406] Test net output #131: loss3/loss07 = 0.370479 (* 0.0909091 = 0.03368 loss) | |
I0425 11:06:12.579744 22523 solver.cpp:406] Test net output #132: loss3/loss08 = 0.155331 (* 0.0909091 = 0.014121 loss) | |
I0425 11:06:12.579758 22523 solver.cpp:406] Test net output #133: loss3/loss09 = 0.0657419 (* 0.0909091 = 0.00597654 loss) | |
I0425 11:06:12.579779 22523 solver.cpp:406] Test net output #134: loss3/loss10 = 0.0331221 (* 0.0909091 = 0.0030111 loss) | |
I0425 11:06:12.579793 22523 solver.cpp:406] Test net output #135: loss3/loss11 = 0.0235604 (* 0.0909091 = 0.00214185 loss) | |
I0425 11:06:12.579807 22523 solver.cpp:406] Test net output #136: loss3/loss12 = 0.015984 (* 0.0909091 = 0.00145309 loss) | |
I0425 11:06:12.579821 22523 solver.cpp:406] Test net output #137: loss3/loss13 = 0.0122692 (* 0.0909091 = 0.00111538 loss) | |
I0425 11:06:12.579835 22523 solver.cpp:406] Test net output #138: loss3/loss14 = 0.00867148 (* 0.0909091 = 0.000788316 loss) | |
I0425 11:06:12.579849 22523 solver.cpp:406] Test net output #139: loss3/loss15 = 0.00644092 (* 0.0909091 = 0.000585538 loss) | |
I0425 11:06:12.579862 22523 solver.cpp:406] Test net output #140: loss3/loss16 = 0.00386884 (* 0.0909091 = 0.000351713 loss) | |
I0425 11:06:12.579876 22523 solver.cpp:406] Test net output #141: loss3/loss17 = 0.0013461 (* 0.0909091 = 0.000122373 loss) | |
I0425 11:06:12.579890 22523 solver.cpp:406] Test net output #142: loss3/loss18 = 0.000838369 (* 0.0909091 = 7.62153e-05 loss) | |
I0425 11:06:12.579903 22523 solver.cpp:406] Test net output #143: loss3/loss19 = 0.000521028 (* 0.0909091 = 4.73662e-05 loss) | |
I0425 11:06:12.579917 22523 solver.cpp:406] Test net output #144: loss3/loss20 = 0.00024814 (* 0.0909091 = 2.25582e-05 loss) | |
I0425 11:06:12.579931 22523 solver.cpp:406] Test net output #145: loss3/loss21 = 9.02011e-05 (* 0.0909091 = 8.2001e-06 loss) | |
I0425 11:06:12.579946 22523 solver.cpp:406] Test net output #146: loss3/loss22 = 3.78246e-05 (* 0.0909091 = 3.4386e-06 loss) | |
I0425 11:06:12.579957 22523 solver.cpp:406] Test net output #147: total_accuracy = 0.727 | |
I0425 11:06:12.579968 22523 solver.cpp:406] Test net output #148: total_accuracy_not_rec = 0.629 | |
I0425 11:06:12.579979 22523 solver.cpp:406] Test net output #149: total_confidence = 0.644202 | |
I0425 11:06:12.579999 22523 solver.cpp:406] Test net output #150: total_confidence_nor_rec = 0.508873 | |
I0425 11:06:12.580013 22523 solver.cpp:338] Iteration 5000, Testing net (#1) | |
I0425 11:07:04.173466 22523 solver.cpp:393] Test loss: 2.86632 | |
I0425 11:07:04.173619 22523 solver.cpp:406] Test net output #0: loss1/accuracy = 0.67259 | |
I0425 11:07:04.173640 22523 solver.cpp:406] Test net output #1: loss1/accuracy01 = 0.802 | |
I0425 11:07:04.173653 22523 solver.cpp:406] Test net output #2: loss1/accuracy02 = 0.627 | |
I0425 11:07:04.173666 22523 solver.cpp:406] Test net output #3: loss1/accuracy03 = 0.455 | |
I0425 11:07:04.173679 22523 solver.cpp:406] Test net output #4: loss1/accuracy04 = 0.468 | |
I0425 11:07:04.173691 22523 solver.cpp:406] Test net output #5: loss1/accuracy05 = 0.511 | |
I0425 11:07:04.173703 22523 solver.cpp:406] Test net output #6: loss1/accuracy06 = 0.569 | |
I0425 11:07:04.173715 22523 solver.cpp:406] Test net output #7: loss1/accuracy07 = 0.719 | |
I0425 11:07:04.173727 22523 solver.cpp:406] Test net output #8: loss1/accuracy08 = 0.821 | |
I0425 11:07:04.173738 22523 solver.cpp:406] Test net output #9: loss1/accuracy09 = 0.9 | |
I0425 11:07:04.173750 22523 solver.cpp:406] Test net output #10: loss1/accuracy10 = 0.901 | |
I0425 11:07:04.173763 22523 solver.cpp:406] Test net output #11: loss1/accuracy11 = 0.91 | |
I0425 11:07:04.173774 22523 solver.cpp:406] Test net output #12: loss1/accuracy12 = 0.925 | |
I0425 11:07:04.173785 22523 solver.cpp:406] Test net output #13: loss1/accuracy13 = 0.943 | |
I0425 11:07:04.173797 22523 solver.cpp:406] Test net output #14: loss1/accuracy14 = 0.952 | |
I0425 11:07:04.173810 22523 solver.cpp:406] Test net output #15: loss1/accuracy15 = 0.965 | |
I0425 11:07:04.173820 22523 solver.cpp:406] Test net output #16: loss1/accuracy16 = 0.97 | |
I0425 11:07:04.173832 22523 solver.cpp:406] Test net output #17: loss1/accuracy17 = 0.99 | |
I0425 11:07:04.173845 22523 solver.cpp:406] Test net output #18: loss1/accuracy18 = 0.992 | |
I0425 11:07:04.173856 22523 solver.cpp:406] Test net output #19: loss1/accuracy19 = 0.994 | |
I0425 11:07:04.173867 22523 solver.cpp:406] Test net output #20: loss1/accuracy20 = 0.998 | |
I0425 11:07:04.173879 22523 solver.cpp:406] Test net output #21: loss1/accuracy21 = 1 | |
I0425 11:07:04.173892 22523 solver.cpp:406] Test net output #22: loss1/accuracy22 = 1 | |
I0425 11:07:04.173902 22523 solver.cpp:406] Test net output #23: loss1/accuracy_incl_empty = 0.866729 | |
I0425 11:07:04.173914 22523 solver.cpp:406] Test net output #24: loss1/accuracy_top3 = 0.848128 | |
I0425 11:07:04.173931 22523 solver.cpp:406] Test net output #25: loss1/cross_entropy_loss = 1.10272 (* 0.3 = 0.330816 loss) | |
I0425 11:07:04.173946 22523 solver.cpp:406] Test net output #26: loss1/cross_entropy_loss_incl_empty = 0.463167 (* 0.3 = 0.13895 loss) | |
I0425 11:07:04.173961 22523 solver.cpp:406] Test net output #27: loss1/loss01 = 0.78575 (* 0.0272727 = 0.0214296 loss) | |
I0425 11:07:04.173975 22523 solver.cpp:406] Test net output #28: loss1/loss02 = 1.23608 (* 0.0272727 = 0.0337112 loss) | |
I0425 11:07:04.173990 22523 solver.cpp:406] Test net output #29: loss1/loss03 = 1.63684 (* 0.0272727 = 0.044641 loss) | |
I0425 11:07:04.174003 22523 solver.cpp:406] Test net output #30: loss1/loss04 = 1.6936 (* 0.0272727 = 0.046189 loss) | |
I0425 11:07:04.174017 22523 solver.cpp:406] Test net output #31: loss1/loss05 = 1.54786 (* 0.0272727 = 0.0422143 loss) | |
I0425 11:07:04.174031 22523 solver.cpp:406] Test net output #32: loss1/loss06 = 1.3247 (* 0.0272727 = 0.0361282 loss) | |
I0425 11:07:04.174046 22523 solver.cpp:406] Test net output #33: loss1/loss07 = 0.984166 (* 0.0272727 = 0.0268409 loss) | |
I0425 11:07:04.174060 22523 solver.cpp:406] Test net output #34: loss1/loss08 = 0.667761 (* 0.0272727 = 0.0182117 loss) | |
I0425 11:07:04.174073 22523 solver.cpp:406] Test net output #35: loss1/loss09 = 0.411783 (* 0.0272727 = 0.0112304 loss) | |
I0425 11:07:04.174088 22523 solver.cpp:406] Test net output #36: loss1/loss10 = 0.380096 (* 0.0272727 = 0.0103662 loss) | |
I0425 11:07:04.174103 22523 solver.cpp:406] Test net output #37: loss1/loss11 = 0.363603 (* 0.0272727 = 0.00991644 loss) | |
I0425 11:07:04.174116 22523 solver.cpp:406] Test net output #38: loss1/loss12 = 0.331379 (* 0.0272727 = 0.0090376 loss) | |
I0425 11:07:04.174131 22523 solver.cpp:406] Test net output #39: loss1/loss13 = 0.267493 (* 0.0272727 = 0.00729525 loss) | |
I0425 11:07:04.174166 22523 solver.cpp:406] Test net output #40: loss1/loss14 = 0.24238 (* 0.0272727 = 0.00661035 loss) | |
I0425 11:07:04.174181 22523 solver.cpp:406] Test net output #41: loss1/loss15 = 0.185142 (* 0.0272727 = 0.00504932 loss) | |
I0425 11:07:04.174196 22523 solver.cpp:406] Test net output #42: loss1/loss16 = 0.162658 (* 0.0272727 = 0.00443613 loss) | |
I0425 11:07:04.174213 22523 solver.cpp:406] Test net output #43: loss1/loss17 = 0.0672186 (* 0.0272727 = 0.00183324 loss) | |
I0425 11:07:04.174227 22523 solver.cpp:406] Test net output #44: loss1/loss18 = 0.0574714 (* 0.0272727 = 0.0015674 loss) | |
I0425 11:07:04.174242 22523 solver.cpp:406] Test net output #45: loss1/loss19 = 0.0487262 (* 0.0272727 = 0.0013289 loss) | |
I0425 11:07:04.174257 22523 solver.cpp:406] Test net output #46: loss1/loss20 = 0.0188691 (* 0.0272727 = 0.000514611 loss) | |
I0425 11:07:04.174270 22523 solver.cpp:406] Test net output #47: loss1/loss21 = 0.000730347 (* 0.0272727 = 1.99185e-05 loss) | |
I0425 11:07:04.174285 22523 solver.cpp:406] Test net output #48: loss1/loss22 = 0.000529622 (* 0.0272727 = 1.44442e-05 loss) | |
I0425 11:07:04.174298 22523 solver.cpp:406] Test net output #49: loss2/accuracy = 0.801994 | |
I0425 11:07:04.174309 22523 solver.cpp:406] Test net output #50: loss2/accuracy01 = 0.9 | |
I0425 11:07:04.174321 22523 solver.cpp:406] Test net output #51: loss2/accuracy02 = 0.833 | |
I0425 11:07:04.174332 22523 solver.cpp:406] Test net output #52: loss2/accuracy03 = 0.647 | |
I0425 11:07:04.174345 22523 solver.cpp:406] Test net output #53: loss2/accuracy04 = 0.595 | |
I0425 11:07:04.174355 22523 solver.cpp:406] Test net output #54: loss2/accuracy05 = 0.587 | |
I0425 11:07:04.174367 22523 solver.cpp:406] Test net output #55: loss2/accuracy06 = 0.648 | |
I0425 11:07:04.174378 22523 solver.cpp:406] Test net output #56: loss2/accuracy07 = 0.768 | |
I0425 11:07:04.174391 22523 solver.cpp:406] Test net output #57: loss2/accuracy08 = 0.833 | |
I0425 11:07:04.174401 22523 solver.cpp:406] Test net output #58: loss2/accuracy09 = 0.902 | |
I0425 11:07:04.174413 22523 solver.cpp:406] Test net output #59: loss2/accuracy10 = 0.904 | |
I0425 11:07:04.174424 22523 solver.cpp:406] Test net output #60: loss2/accuracy11 = 0.916 | |
I0425 11:07:04.174435 22523 solver.cpp:406] Test net output #61: loss2/accuracy12 = 0.924 | |
I0425 11:07:04.174448 22523 solver.cpp:406] Test net output #62: loss2/accuracy13 = 0.938 | |
I0425 11:07:04.174458 22523 solver.cpp:406] Test net output #63: loss2/accuracy14 = 0.95 | |
I0425 11:07:04.174469 22523 solver.cpp:406] Test net output #64: loss2/accuracy15 = 0.964 | |
I0425 11:07:04.174481 22523 solver.cpp:406] Test net output #65: loss2/accuracy16 = 0.97 | |
I0425 11:07:04.174492 22523 solver.cpp:406] Test net output #66: loss2/accuracy17 = 0.99 | |
I0425 11:07:04.174504 22523 solver.cpp:406] Test net output #67: loss2/accuracy18 = 0.992 | |
I0425 11:07:04.174515 22523 solver.cpp:406] Test net output #68: loss2/accuracy19 = 0.994 | |
I0425 11:07:04.174527 22523 solver.cpp:406] Test net output #69: loss2/accuracy20 = 0.998 | |
I0425 11:07:04.174538 22523 solver.cpp:406] Test net output #70: loss2/accuracy21 = 1 | |
I0425 11:07:04.174551 22523 solver.cpp:406] Test net output #71: loss2/accuracy22 = 1 | |
I0425 11:07:04.174561 22523 solver.cpp:406] Test net output #72: loss2/accuracy_incl_empty = 0.910364 | |
I0425 11:07:04.174573 22523 solver.cpp:406] Test net output #73: loss2/accuracy_top3 = 0.907319 | |
I0425 11:07:04.174587 22523 solver.cpp:406] Test net output #74: loss2/cross_entropy_loss = 0.729578 (* 0.3 = 0.218873 loss) | |
I0425 11:07:04.174602 22523 solver.cpp:406] Test net output #75: loss2/cross_entropy_loss_incl_empty = 0.334099 (* 0.3 = 0.10023 loss) | |
I0425 11:07:04.174615 22523 solver.cpp:406] Test net output #76: loss2/loss01 = 0.476954 (* 0.0272727 = 0.0130078 loss) | |
I0425 11:07:04.174633 22523 solver.cpp:406] Test net output #77: loss2/loss02 = 0.659705 (* 0.0272727 = 0.017992 loss) | |
I0425 11:07:04.174659 22523 solver.cpp:406] Test net output #78: loss2/loss03 = 1.11929 (* 0.0272727 = 0.030526 loss) | |
I0425 11:07:04.174674 22523 solver.cpp:406] Test net output #79: loss2/loss04 = 1.29889 (* 0.0272727 = 0.0354243 loss) | |
I0425 11:07:04.174687 22523 solver.cpp:406] Test net output #80: loss2/loss05 = 1.21477 (* 0.0272727 = 0.0331301 loss) | |
I0425 11:07:04.174700 22523 solver.cpp:406] Test net output #81: loss2/loss06 = 1.05729 (* 0.0272727 = 0.0288352 loss) | |
I0425 11:07:04.174715 22523 solver.cpp:406] Test net output #82: loss2/loss07 = 0.804304 (* 0.0272727 = 0.0219356 loss) | |
I0425 11:07:04.174728 22523 solver.cpp:406] Test net output #83: loss2/loss08 = 0.578096 (* 0.0272727 = 0.0157662 loss) | |
I0425 11:07:04.174742 22523 solver.cpp:406] Test net output #84: loss2/loss09 = 0.381558 (* 0.0272727 = 0.0104061 loss) | |
I0425 11:07:04.174757 22523 solver.cpp:406] Test net output #85: loss2/loss10 = 0.372365 (* 0.0272727 = 0.0101554 loss) | |
I0425 11:07:04.174770 22523 solver.cpp:406] Test net output #86: loss2/loss11 = 0.360829 (* 0.0272727 = 0.00984079 loss) | |
I0425 11:07:04.174785 22523 solver.cpp:406] Test net output #87: loss2/loss12 = 0.322081 (* 0.0272727 = 0.00878404 loss) | |
I0425 11:07:04.174799 22523 solver.cpp:406] Test net output #88: loss2/loss13 = 0.268616 (* 0.0272727 = 0.0073259 loss) | |
I0425 11:07:04.174813 22523 solver.cpp:406] Test net output #89: loss2/loss14 = 0.240083 (* 0.0272727 = 0.00654771 loss) | |
I0425 11:07:04.174828 22523 solver.cpp:406] Test net output #90: loss2/loss15 = 0.179187 (* 0.0272727 = 0.00488693 loss) | |
I0425 11:07:04.174840 22523 solver.cpp:406] Test net output #91: loss2/loss16 = 0.16029 (* 0.0272727 = 0.00437156 loss) | |
I0425 11:07:04.174854 22523 solver.cpp:406] Test net output #92: loss2/loss17 = 0.0658702 (* 0.0272727 = 0.00179646 loss) | |
I0425 11:07:04.174868 22523 solver.cpp:406] Test net output #93: loss2/loss18 = 0.0533785 (* 0.0272727 = 0.00145578 loss) | |
I0425 11:07:04.174882 22523 solver.cpp:406] Test net output #94: loss2/loss19 = 0.0476926 (* 0.0272727 = 0.00130071 loss) | |
I0425 11:07:04.174896 22523 solver.cpp:406] Test net output #95: loss2/loss20 = 0.016022 (* 0.0272727 = 0.000436963 loss) | |
I0425 11:07:04.174911 22523 solver.cpp:406] Test net output #96: loss2/loss21 = 0.00126512 (* 0.0272727 = 3.45034e-05 loss) | |
I0425 11:07:04.174924 22523 solver.cpp:406] Test net output #97: loss2/loss22 = 0.000902174 (* 0.0272727 = 2.46047e-05 loss) | |
I0425 11:07:04.174937 22523 solver.cpp:406] Test net output #98: loss3/accuracy = 0.847947 | |
I0425 11:07:04.174949 22523 solver.cpp:406] Test net output #99: loss3/accuracy01 = 0.92 | |
I0425 11:07:04.174962 22523 solver.cpp:406] Test net output #100: loss3/accuracy02 = 0.899 | |
I0425 11:07:04.174973 22523 solver.cpp:406] Test net output #101: loss3/accuracy03 = 0.874 | |
I0425 11:07:04.174984 22523 solver.cpp:406] Test net output #102: loss3/accuracy04 = 0.855 | |
I0425 11:07:04.174995 22523 solver.cpp:406] Test net output #103: loss3/accuracy05 = 0.831 | |
I0425 11:07:04.175011 22523 solver.cpp:406] Test net output #104: loss3/accuracy06 = 0.779 | |
I0425 11:07:04.175019 22523 solver.cpp:406] Test net output #105: loss3/accuracy07 = 0.805 | |
I0425 11:07:04.175030 22523 solver.cpp:406] Test net output #106: loss3/accuracy08 = 0.857 | |
I0425 11:07:04.175042 22523 solver.cpp:406] Test net output #107: loss3/accuracy09 = 0.91 | |
I0425 11:07:04.175053 22523 solver.cpp:406] Test net output #108: loss3/accuracy10 = 0.907 | |
I0425 11:07:04.175065 22523 solver.cpp:406] Test net output #109: loss3/accuracy11 = 0.916 | |
I0425 11:07:04.175076 22523 solver.cpp:406] Test net output #110: loss3/accuracy12 = 0.925 | |
I0425 11:07:04.175087 22523 solver.cpp:406] Test net output #111: loss3/accuracy13 = 0.943 | |
I0425 11:07:04.175098 22523 solver.cpp:406] Test net output #112: loss3/accuracy14 = 0.947 | |
I0425 11:07:04.175109 22523 solver.cpp:406] Test net output #113: loss3/accuracy15 = 0.962 | |
I0425 11:07:04.175120 22523 solver.cpp:406] Test net output #114: loss3/accuracy16 = 0.971 | |
I0425 11:07:04.175148 22523 solver.cpp:406] Test net output #115: loss3/accuracy17 = 0.989 | |
I0425 11:07:04.175160 22523 solver.cpp:406] Test net output #116: loss3/accuracy18 = 0.992 | |
I0425 11:07:04.175171 22523 solver.cpp:406] Test net output #117: loss3/accuracy19 = 0.994 | |
I0425 11:07:04.175182 22523 solver.cpp:406] Test net output #118: loss3/accuracy20 = 0.998 | |
I0425 11:07:04.175194 22523 solver.cpp:406] Test net output #119: loss3/accuracy21 = 1 | |
I0425 11:07:04.175205 22523 solver.cpp:406] Test net output #120: loss3/accuracy22 = 1 | |
I0425 11:07:04.175216 22523 solver.cpp:406] Test net output #121: loss3/accuracy_incl_empty = 0.920591 | |
I0425 11:07:04.175227 22523 solver.cpp:406] Test net output #122: loss3/accuracy_top3 = 0.927846 | |
I0425 11:07:04.175245 22523 solver.cpp:406] Test net output #123: loss3/cross_entropy_loss = 0.575282 (* 1 = 0.575282 loss) | |
I0425 11:07:04.175261 22523 solver.cpp:406] Test net output #124: loss3/cross_entropy_loss_incl_empty = 0.285767 (* 1 = 0.285767 loss) | |
I0425 11:07:04.175276 22523 solver.cpp:406] Test net output #125: loss3/loss01 = 0.373816 (* 0.0909091 = 0.0339833 loss) | |
I0425 11:07:04.175288 22523 solver.cpp:406] Test net output #126: loss3/loss02 = 0.44429 (* 0.0909091 = 0.04039 loss) | |
I0425 11:07:04.175302 22523 solver.cpp:406] Test net output #127: loss3/loss03 = 0.509976 (* 0.0909091 = 0.0463614 loss) | |
I0425 11:07:04.175317 22523 solver.cpp:406] Test net output #128: loss3/loss04 = 0.592726 (* 0.0909091 = 0.0538842 loss) | |
I0425 11:07:04.175330 22523 solver.cpp:406] Test net output #129: loss3/loss05 = 0.651603 (* 0.0909091 = 0.0592366 loss) | |
I0425 11:07:04.175343 22523 solver.cpp:406] Test net output #130: loss3/loss06 = 0.761598 (* 0.0909091 = 0.0692362 loss) | |
I0425 11:07:04.175372 22523 solver.cpp:406] Test net output #131: loss3/loss07 = 0.688231 (* 0.0909091 = 0.0625664 loss) | |
I0425 11:07:04.175387 22523 solver.cpp:406] Test net output #132: loss3/loss08 = 0.491827 (* 0.0909091 = 0.0447115 loss) | |
I0425 11:07:04.175401 22523 solver.cpp:406] Test net output #133: loss3/loss09 = 0.353589 (* 0.0909091 = 0.0321445 loss) | |
I0425 11:07:04.175415 22523 solver.cpp:406] Test net output #134: loss3/loss10 = 0.334898 (* 0.0909091 = 0.0304453 loss) | |
I0425 11:07:04.175429 22523 solver.cpp:406] Test net output #135: loss3/loss11 = 0.327391 (* 0.0909091 = 0.0297628 loss) | |
I0425 11:07:04.175443 22523 solver.cpp:406] Test net output #136: loss3/loss12 = 0.293012 (* 0.0909091 = 0.0266375 loss) | |
I0425 11:07:04.175457 22523 solver.cpp:406] Test net output #137: loss3/loss13 = 0.239076 (* 0.0909091 = 0.0217342 loss) | |
I0425 11:07:04.175470 22523 solver.cpp:406] Test net output #138: loss3/loss14 = 0.220442 (* 0.0909091 = 0.0200402 loss) | |
I0425 11:07:04.175484 22523 solver.cpp:406] Test net output #139: loss3/loss15 = 0.163802 (* 0.0909091 = 0.0148911 loss) | |
I0425 11:07:04.175498 22523 solver.cpp:406] Test net output #140: loss3/loss16 = 0.136409 (* 0.0909091 = 0.0124008 loss) | |
I0425 11:07:04.175513 22523 solver.cpp:406] Test net output #141: loss3/loss17 = 0.0627063 (* 0.0909091 = 0.00570057 loss) | |
I0425 11:07:04.175526 22523 solver.cpp:406] Test net output #142: loss3/loss18 = 0.0458492 (* 0.0909091 = 0.00416811 loss) | |
I0425 11:07:04.175540 22523 solver.cpp:406] Test net output #143: loss3/loss19 = 0.0433182 (* 0.0909091 = 0.00393802 loss) | |
I0425 11:07:04.175554 22523 solver.cpp:406] Test net output #144: loss3/loss20 = 0.0171505 (* 0.0909091 = 0.00155913 loss) | |
I0425 11:07:04.175568 22523 solver.cpp:406] Test net output #145: loss3/loss21 = 0.000347604 (* 0.0909091 = 3.16003e-05 loss) | |
I0425 11:07:04.175583 22523 solver.cpp:406] Test net output #146: loss3/loss22 = 0.000109713 (* 0.0909091 = 9.97395e-06 loss) | |
I0425 11:07:04.175595 22523 solver.cpp:406] Test net output #147: total_accuracy = 0.605 | |
I0425 11:07:04.175607 22523 solver.cpp:406] Test net output #148: total_accuracy_not_rec = 0.552 | |
I0425 11:07:04.175618 22523 solver.cpp:406] Test net output #149: total_confidence = 0.558094 | |
I0425 11:07:04.175642 22523 solver.cpp:406] Test net output #150: total_confidence_nor_rec = 0.442943 | |
I0425 11:07:04.567821 22523 solver.cpp:229] Iteration 5000, loss = 3.2559 | |
I0425 11:07:04.567914 22523 solver.cpp:245] Train net output #0: loss1/accuracy = 0.416667 | |
I0425 11:07:04.567934 22523 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.875 | |
I0425 11:07:04.567947 22523 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.625 | |
I0425 11:07:04.567960 22523 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375 | |
I0425 11:07:04.567972 22523 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375 | |
I0425 11:07:04.567984 22523 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.375 | |
I0425 11:07:04.567996 22523 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.375 | |
I0425 11:07:04.568008 22523 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.5 | |
I0425 11:07:04.568020 22523 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875 | |
I0425 11:07:04.568032 22523 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.75 | |
I0425 11:07:04.568044 22523 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.75 | |
I0425 11:07:04.568056 22523 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.75 | |
I0425 11:07:04.568068 22523 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.875 | |
I0425 11:07:04.568080 22523 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.875 | |
I0425 11:07:04.568092 22523 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.875 | |
I0425 11:07:04.568104 22523 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.875 | |
I0425 11:07:04.568116 22523 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0425 11:07:04.568128 22523 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0425 11:07:04.568140 22523 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0425 11:07:04.568150 22523 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0425 11:07:04.568162 22523 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0425 11:07:04.568173 22523 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0425 11:07:04.568186 22523 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0425 11:07:04.568197 22523 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.795455 | |
I0425 11:07:04.568208 22523 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.65 | |
I0425 11:07:04.568225 22523 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.74669 (* 0.3 = 0.524007 loss) | |
I0425 11:07:04.568240 22523 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.624618 (* 0.3 = 0.187385 loss) | |
I0425 11:07:04.568255 22523 solver.cpp:245] Train net output #27: loss1/loss01 = 0.640023 (* 0.0272727 = 0.0174552 loss) | |
I0425 11:07:04.568270 22523 solver.cpp:245] Train net output #28: loss1/loss02 = 1.28705 (* 0.0272727 = 0.0351014 loss) | |
I0425 11:07:04.568284 22523 solver.cpp:245] Train net output #29: loss1/loss03 = 1.89581 (* 0.0272727 = 0.051704 loss) | |
I0425 11:07:04.568298 22523 solver.cpp:245] Train net output #30: loss1/loss04 = 2.6817 (* 0.0272727 = 0.0731373 loss) | |
I0425 11:07:04.568315 22523 solver.cpp:245] Train net output #31: loss1/loss05 = 2.18517 (* 0.0272727 = 0.0595956 loss) | |
I0425 11:07:04.568328 22523 solver.cpp:245] Train net output #32: loss1/loss06 = 1.83966 (* 0.0272727 = 0.0501725 loss) | |
I0425 11:07:04.568342 22523 solver.cpp:245] Train net output #33: loss1/loss07 = 1.50342 (* 0.0272727 = 0.0410022 loss) | |
I0425 11:07:04.568356 22523 solver.cpp:245] Train net output #34: loss1/loss08 = 0.807965 (* 0.0272727 = 0.0220354 loss) | |
I0425 11:07:04.568370 22523 solver.cpp:245] Train net output #35: loss1/loss09 = 0.846377 (* 0.0272727 = 0.023083 loss) | |
I0425 11:07:04.568384 22523 solver.cpp:245] Train net output #36: loss1/loss10 = 0.754138 (* 0.0272727 = 0.0205674 loss) | |
I0425 11:07:04.568399 22523 solver.cpp:245] Train net output #37: loss1/loss11 = 1.36468 (* 0.0272727 = 0.0372185 loss) | |
I0425 11:07:04.568452 22523 solver.cpp:245] Train net output #38: loss1/loss12 = 0.564094 (* 0.0272727 = 0.0153844 loss) | |
I0425 11:07:04.568469 22523 solver.cpp:245] Train net output #39: loss1/loss13 = 0.404419 (* 0.0272727 = 0.0110296 loss) | |
I0425 11:07:04.568483 22523 solver.cpp:245] Train net output #40: loss1/loss14 = 0.367773 (* 0.0272727 = 0.0100302 loss) | |
I0425 11:07:04.568497 22523 solver.cpp:245] Train net output #41: loss1/loss15 = 0.415955 (* 0.0272727 = 0.0113442 loss) | |
I0425 11:07:04.568513 22523 solver.cpp:245] Train net output #42: loss1/loss16 = 0.124178 (* 0.0272727 = 0.00338667 loss) | |
I0425 11:07:04.568527 22523 solver.cpp:245] Train net output #43: loss1/loss17 = 0.0133196 (* 0.0272727 = 0.000363261 loss) | |
I0425 11:07:04.568542 22523 solver.cpp:245] Train net output #44: loss1/loss18 = 0.00361628 (* 0.0272727 = 9.86258e-05 loss) | |
I0425 11:07:04.568557 22523 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00336 (* 0.0272727 = 9.16363e-05 loss) | |
I0425 11:07:04.568572 22523 solver.cpp:245] Train net output #46: loss1/loss20 = 0.00157644 (* 0.0272727 = 4.29939e-05 loss) | |
I0425 11:07:04.568586 22523 solver.cpp:245] Train net output #47: loss1/loss21 = 0.00187735 (* 0.0272727 = 5.12005e-05 loss) | |
I0425 11:07:04.568600 22523 solver.cpp:245] Train net output #48: loss1/loss22 = 0.00127776 (* 0.0272727 = 3.48479e-05 loss) | |
I0425 11:07:04.568614 22523 solver.cpp:245] Train net output #49: loss2/accuracy = 0.516667 | |
I0425 11:07:04.568626 22523 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.625 | |
I0425 11:07:04.568639 22523 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.5 | |
I0425 11:07:04.568650 22523 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.5 | |
I0425 11:07:04.568661 22523 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.375 | |
I0425 11:07:04.568673 22523 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5 | |
I0425 11:07:04.568686 22523 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.375 | |
I0425 11:07:04.568697 22523 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.375 | |
I0425 11:07:04.568708 22523 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875 | |
I0425 11:07:04.568720 22523 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.75 | |
I0425 11:07:04.568732 22523 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875 | |
I0425 11:07:04.568743 22523 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.75 | |
I0425 11:07:04.568755 22523 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.875 | |
I0425 11:07:04.568768 22523 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.875 | |
I0425 11:07:04.568778 22523 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.875 | |
I0425 11:07:04.568790 22523 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.875 | |
I0425 11:07:04.568802 22523 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0425 11:07:04.568814 22523 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0425 11:07:04.568825 22523 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0425 11:07:04.568836 22523 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0425 11:07:04.568848 22523 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0425 11:07:04.568859 22523 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0425 11:07:04.568871 22523 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0425 11:07:04.568882 22523 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.823864 | |
I0425 11:07:04.568895 22523 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.816667 | |
I0425 11:07:04.568908 22523 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.53304 (* 0.3 = 0.459913 loss) | |
I0425 11:07:04.568923 22523 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.568637 (* 0.3 = 0.170591 loss) | |
I0425 11:07:04.568948 22523 solver.cpp:245] Train net output #76: loss2/loss01 = 1.14151 (* 0.0272727 = 0.031132 loss) | |
I0425 11:07:04.568969 22523 solver.cpp:245] Train net output #77: loss2/loss02 = 1.36236 (* 0.0272727 = 0.0371552 loss) | |
I0425 11:07:04.568984 22523 solver.cpp:245] Train net output #78: loss2/loss03 = 1.66875 (* 0.0272727 = 0.0455113 loss) | |
I0425 11:07:04.568997 22523 solver.cpp:245] Train net output #79: loss2/loss04 = 2.14879 (* 0.0272727 = 0.0586034 loss) | |
I0425 11:07:04.569011 22523 solver.cpp:245] Train net output #80: loss2/loss05 = 2.47619 (* 0.0272727 = 0.0675325 loss) | |
I0425 11:07:04.569025 22523 solver.cpp:245] Train net output #81: loss2/loss06 = 1.81904 (* 0.0272727 = 0.0496101 loss) | |
I0425 11:07:04.569039 22523 solver.cpp:245] Train net output #82: loss2/loss07 = 1.41262 (* 0.0272727 = 0.0385261 loss) | |
I0425 11:07:04.569054 22523 solver.cpp:245] Train net output #83: loss2/loss08 = 0.895401 (* 0.0272727 = 0.02442 loss) | |
I0425 11:07:04.569067 22523 solver.cpp:245] Train net output #84: loss2/loss09 = 0.745114 (* 0.0272727 = 0.0203213 loss) | |
I0425 11:07:04.569082 22523 solver.cpp:245] Train net output #85: loss2/loss10 = 0.513932 (* 0.0272727 = 0.0140163 loss) | |
I0425 11:07:04.569095 22523 solver.cpp:245] Train net output #86: loss2/loss11 = 1.06448 (* 0.0272727 = 0.0290313 loss) | |
I0425 11:07:04.569110 22523 solver.cpp:245] Train net output #87: loss2/loss12 = 0.390664 (* 0.0272727 = 0.0106545 loss) | |
I0425 11:07:04.569124 22523 solver.cpp:245] Train net output #88: loss2/loss13 = 0.395534 (* 0.0272727 = 0.0107873 loss) | |
I0425 11:07:04.569139 22523 solver.cpp:245] Train net output #89: loss2/loss14 = 0.388896 (* 0.0272727 = 0.0106063 loss) | |
I0425 11:07:04.569152 22523 solver.cpp:245] Train net output #90: loss2/loss15 = 0.484828 (* 0.0272727 = 0.0132226 loss) | |
I0425 11:07:04.569167 22523 solver.cpp:245] Train net output #91: loss2/loss16 = 0.20172 (* 0.0272727 = 0.00550146 loss) | |
I0425 11:07:04.569181 22523 solver.cpp:245] Train net output #92: loss2/loss17 = 0.0303964 (* 0.0272727 = 0.000828991 loss) | |
I0425 11:07:04.569195 22523 solver.cpp:245] Train net output #93: loss2/loss18 = 0.0107332 (* 0.0272727 = 0.000292723 loss) | |
I0425 11:07:04.569211 22523 solver.cpp:245] Train net output #94: loss2/loss19 = 0.00546869 (* 0.0272727 = 0.000149146 loss) | |
I0425 11:07:04.569224 22523 solver.cpp:245] Train net output #95: loss2/loss20 = 0.00256543 (* 0.0272727 = 6.99662e-05 loss) | |
I0425 11:07:04.569238 22523 solver.cpp:245] Train net output #96: loss2/loss21 = 0.00232314 (* 0.0272727 = 6.33582e-05 loss) | |
I0425 11:07:04.569253 22523 solver.cpp:245] Train net output #97: loss2/loss22 = 0.00127725 (* 0.0272727 = 3.48341e-05 loss) | |
I0425 11:07:04.569267 22523 solver.cpp:245] Train net output #98: loss3/accuracy = 0.716667 | |
I0425 11:07:04.569278 22523 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875 | |
I0425 11:07:04.569289 22523 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1 | |
I0425 11:07:04.569301 22523 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.875 | |
I0425 11:07:04.569314 22523 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1 | |
I0425 11:07:04.569324 22523 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.625 | |
I0425 11:07:04.569336 22523 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.75 | |
I0425 11:07:04.569347 22523 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75 | |
I0425 11:07:04.569360 22523 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875 | |
I0425 11:07:04.569371 22523 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.75 | |
I0425 11:07:04.569383 22523 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.75 | |
I0425 11:07:04.569394 22523 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.75 | |
I0425 11:07:04.569406 22523 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.875 | |
I0425 11:07:04.569418 22523 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1 | |
I0425 11:07:04.569437 22523 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.875 | |
I0425 11:07:04.569444 22523 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.875 | |
I0425 11:07:04.569453 22523 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0425 11:07:04.569460 22523 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0425 11:07:04.569473 22523 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0425 11:07:04.569485 22523 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0425 11:07:04.569497 22523 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0425 11:07:04.569509 22523 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0425 11:07:04.569520 22523 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0425 11:07:04.569531 22523 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.897727 | |
I0425 11:07:04.569543 22523 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.866667 | |
I0425 11:07:04.569556 22523 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.893486 (* 1 = 0.893486 loss) | |
I0425 11:07:04.569571 22523 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.343015 (* 1 = 0.343015 loss) | |
I0425 11:07:04.569584 22523 solver.cpp:245] Train net output #125: loss3/loss01 = 0.417232 (* 0.0909091 = 0.0379302 loss) | |
I0425 11:07:04.569598 22523 solver.cpp:245] Train net output #126: loss3/loss02 = 0.156342 (* 0.0909091 = 0.0142129 loss) | |
I0425 11:07:04.569612 22523 solver.cpp:245] Train net output #127: loss3/loss03 = 0.264193 (* 0.0909091 = 0.0240176 loss) | |
I0425 11:07:04.569627 22523 solver.cpp:245] Train net output #128: loss3/loss04 = 0.281998 (* 0.0909091 = 0.0256361 loss) | |
I0425 11:07:04.569639 22523 solver.cpp:245] Train net output #129: loss3/loss05 = 0.986211 (* 0.0909091 = 0.0896556 loss) | |
I0425 11:07:04.569653 22523 solver.cpp:245] Train net output #130: loss3/loss06 = 0.693064 (* 0.0909091 = 0.0630058 loss) | |
I0425 11:07:04.569667 22523 solver.cpp:245] Train net output #131: loss3/loss07 = 1.03546 (* 0.0909091 = 0.0941324 loss) | |
I0425 11:07:04.569680 22523 solver.cpp:245] Train net output #132: loss3/loss08 = 0.932053 (* 0.0909091 = 0.0847321 loss) | |
I0425 11:07:04.569694 22523 solver.cpp:245] Train net output #133: loss3/loss09 = 0.709561 (* 0.0909091 = 0.0645055 loss) | |
I0425 11:07:04.569708 22523 solver.cpp:245] Train net output #134: loss3/loss10 = 0.468823 (* 0.0909091 = 0.0426203 loss) | |
I0425 11:07:04.569722 22523 solver.cpp:245] Train net output #135: loss3/loss11 = 0.894352 (* 0.0909091 = 0.0813048 loss) | |
I0425 11:07:04.569736 22523 solver.cpp:245] Train net output #136: loss3/loss12 = 0.425589 (* 0.0909091 = 0.0386899 loss) | |
I0425 11:07:04.569751 22523 solver.cpp:245] Train net output #137: loss3/loss13 = 0.30049 (* 0.0909091 = 0.0273173 loss) | |
I0425 11:07:04.569763 22523 solver.cpp:245] Train net output #138: loss3/loss14 = 0.357437 (* 0.0909091 = 0.0324943 loss) | |
I0425 11:07:04.569777 22523 solver.cpp:245] Train net output #139: loss3/loss15 = 0.365624 (* 0.0909091 = 0.0332386 loss) | |
I0425 11:07:04.569792 22523 solver.cpp:245] Train net output #140: loss3/loss16 = 0.175311 (* 0.0909091 = 0.0159374 loss) | |
I0425 11:07:04.569805 22523 solver.cpp:245] Train net output #141: loss3/loss17 = 0.0281496 (* 0.0909091 = 0.00255905 loss) | |
I0425 11:07:04.569819 22523 solver.cpp:245] Train net output #142: loss3/loss18 = 0.0113198 (* 0.0909091 = 0.00102907 loss) | |
I0425 11:07:04.569833 22523 solver.cpp:245] Train net output #143: loss3/loss19 = 0.00630927 (* 0.0909091 = 0.00057357 loss) | |
I0425 11:07:04.569847 22523 solver.cpp:245] Train net output #144: loss3/loss20 = 0.0018009 (* 0.0909091 = 0.000163718 loss) | |
I0425 11:07:04.569861 22523 solver.cpp:245] Train net output #145: loss3/loss21 = 0.000213558 (* 0.0909091 = 1.94143e-05 loss) | |
I0425 11:07:04.569875 22523 solver.cpp:245] Train net output #146: loss3/loss22 = 0.000100477 (* 0.0909091 = 9.13432e-06 loss) | |
I0425 11:07:04.569897 22523 solver.cpp:245] Train net output #147: total_accuracy = 0.5 | |
I0425 11:07:04.569911 22523 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.375 | |
I0425 11:07:04.569922 22523 solver.cpp:245] Train net output #149: total_confidence = 0.309703 | |
I0425 11:07:04.569933 22523 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.235522 | |
I0425 11:07:04.569948 22523 sgd_solver.cpp:106] Iteration 5000, lr = 0.01 | |
I0425 11:12:45.823182 22523 solver.cpp:229] Iteration 5500, loss = 3.27387 | |
I0425 11:12:45.823345 22523 solver.cpp:245] Train net output #0: loss1/accuracy = 0.574468 | |
I0425 11:12:45.823375 22523 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.875 | |
I0425 11:12:45.823397 22523 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5 | |
I0425 11:12:45.823420 22523 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375 | |
I0425 11:12:45.823441 22523 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375 | |
I0425 11:12:45.823463 22523 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.625 | |
I0425 11:12:45.823485 22523 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.5 | |
I0425 11:12:45.823508 22523 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.625 | |
I0425 11:12:45.823529 22523 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.625 | |
I0425 11:12:45.823551 22523 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1 | |
I0425 11:12:45.823573 22523 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1 | |
I0425 11:12:45.823596 22523 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1 | |
I0425 11:12:45.823617 22523 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1 | |
I0425 11:12:45.823639 22523 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1 | |
I0425 11:12:45.823665 22523 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1 | |
I0425 11:12:45.823688 22523 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0425 11:12:45.823710 22523 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0425 11:12:45.823734 22523 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0425 11:12:45.823755 22523 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0425 11:12:45.823776 22523 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0425 11:12:45.823799 22523 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0425 11:12:45.823822 22523 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0425 11:12:45.823843 22523 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0425 11:12:45.823863 22523 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.875 | |
I0425 11:12:45.823886 22523 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.808511 | |
I0425 11:12:45.823917 22523 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.37113 (* 0.3 = 0.41134 loss) | |
I0425 11:12:45.823945 22523 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.420724 (* 0.3 = 0.126217 loss) | |
I0425 11:12:45.823973 22523 solver.cpp:245] Train net output #27: loss1/loss01 = 0.994731 (* 0.0272727 = 0.027129 loss) | |
I0425 11:12:45.823999 22523 solver.cpp:245] Train net output #28: loss1/loss02 = 1.54551 (* 0.0272727 = 0.0421504 loss) | |
I0425 11:12:45.824025 22523 solver.cpp:245] Train net output #29: loss1/loss03 = 1.76519 (* 0.0272727 = 0.0481415 loss) | |
I0425 11:12:45.824054 22523 solver.cpp:245] Train net output #30: loss1/loss04 = 2.1206 (* 0.0272727 = 0.0578346 loss) | |
I0425 11:12:45.824079 22523 solver.cpp:245] Train net output #31: loss1/loss05 = 1.35036 (* 0.0272727 = 0.0368279 loss) | |
I0425 11:12:45.824108 22523 solver.cpp:245] Train net output #32: loss1/loss06 = 1.53748 (* 0.0272727 = 0.0419313 loss) | |
I0425 11:12:45.824136 22523 solver.cpp:245] Train net output #33: loss1/loss07 = 0.78458 (* 0.0272727 = 0.0213976 loss) | |
I0425 11:12:45.824162 22523 solver.cpp:245] Train net output #34: loss1/loss08 = 1.01279 (* 0.0272727 = 0.0276215 loss) | |
I0425 11:12:45.824190 22523 solver.cpp:245] Train net output #35: loss1/loss09 = 0.0473248 (* 0.0272727 = 0.00129068 loss) | |
I0425 11:12:45.824223 22523 solver.cpp:245] Train net output #36: loss1/loss10 = 0.0283373 (* 0.0272727 = 0.000772836 loss) | |
I0425 11:12:45.824251 22523 solver.cpp:245] Train net output #37: loss1/loss11 = 0.0229462 (* 0.0272727 = 0.000625806 loss) | |
I0425 11:12:45.824280 22523 solver.cpp:245] Train net output #38: loss1/loss12 = 0.0326982 (* 0.0272727 = 0.00089177 loss) | |
I0425 11:12:45.824306 22523 solver.cpp:245] Train net output #39: loss1/loss13 = 0.0199847 (* 0.0272727 = 0.000545036 loss) | |
I0425 11:12:45.824364 22523 solver.cpp:245] Train net output #40: loss1/loss14 = 0.014792 (* 0.0272727 = 0.000403419 loss) | |
I0425 11:12:45.824393 22523 solver.cpp:245] Train net output #41: loss1/loss15 = 0.0114978 (* 0.0272727 = 0.000313576 loss) | |
I0425 11:12:45.824422 22523 solver.cpp:245] Train net output #42: loss1/loss16 = 0.00605498 (* 0.0272727 = 0.000165136 loss) | |
I0425 11:12:45.824450 22523 solver.cpp:245] Train net output #43: loss1/loss17 = 0.0019315 (* 0.0272727 = 5.26773e-05 loss) | |
I0425 11:12:45.824476 22523 solver.cpp:245] Train net output #44: loss1/loss18 = 0.000545579 (* 0.0272727 = 1.48794e-05 loss) | |
I0425 11:12:45.824503 22523 solver.cpp:245] Train net output #45: loss1/loss19 = 0.000438627 (* 0.0272727 = 1.19626e-05 loss) | |
I0425 11:12:45.824530 22523 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000251269 (* 0.0272727 = 6.8528e-06 loss) | |
I0425 11:12:45.824556 22523 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000195501 (* 0.0272727 = 5.33186e-06 loss) | |
I0425 11:12:45.824585 22523 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000258351 (* 0.0272727 = 7.04594e-06 loss) | |
I0425 11:12:45.824611 22523 solver.cpp:245] Train net output #49: loss2/accuracy = 0.744681 | |
I0425 11:12:45.824635 22523 solver.cpp:245] Train net output #50: loss2/accuracy01 = 1 | |
I0425 11:12:45.824657 22523 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75 | |
I0425 11:12:45.824681 22523 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.5 | |
I0425 11:12:45.824702 22523 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.5 | |
I0425 11:12:45.824725 22523 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.625 | |
I0425 11:12:45.824748 22523 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.625 | |
I0425 11:12:45.824769 22523 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.625 | |
I0425 11:12:45.824792 22523 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.75 | |
I0425 11:12:45.824815 22523 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1 | |
I0425 11:12:45.824836 22523 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1 | |
I0425 11:12:45.824858 22523 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1 | |
I0425 11:12:45.824880 22523 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1 | |
I0425 11:12:45.824901 22523 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1 | |
I0425 11:12:45.824923 22523 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1 | |
I0425 11:12:45.824945 22523 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0425 11:12:45.824966 22523 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0425 11:12:45.824988 22523 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0425 11:12:45.825011 22523 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0425 11:12:45.825032 22523 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0425 11:12:45.825054 22523 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0425 11:12:45.825076 22523 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0425 11:12:45.825098 22523 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0425 11:12:45.825119 22523 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.931818 | |
I0425 11:12:45.825141 22523 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.957447 | |
I0425 11:12:45.825167 22523 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.703566 (* 0.3 = 0.21107 loss) | |
I0425 11:12:45.825196 22523 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.207111 (* 0.3 = 0.0621333 loss) | |
I0425 11:12:45.825222 22523 solver.cpp:245] Train net output #76: loss2/loss01 = 0.355089 (* 0.0272727 = 0.00968424 loss) | |
I0425 11:12:45.825254 22523 solver.cpp:245] Train net output #77: loss2/loss02 = 0.696441 (* 0.0272727 = 0.0189938 loss) | |
I0425 11:12:45.825300 22523 solver.cpp:245] Train net output #78: loss2/loss03 = 1.33975 (* 0.0272727 = 0.0365385 loss) | |
I0425 11:12:45.825330 22523 solver.cpp:245] Train net output #79: loss2/loss04 = 1.62688 (* 0.0272727 = 0.0443695 loss) | |
I0425 11:12:45.825356 22523 solver.cpp:245] Train net output #80: loss2/loss05 = 1.0096 (* 0.0272727 = 0.0275347 loss) | |
I0425 11:12:45.825384 22523 solver.cpp:245] Train net output #81: loss2/loss06 = 1.06278 (* 0.0272727 = 0.0289849 loss) | |
I0425 11:12:45.825417 22523 solver.cpp:245] Train net output #82: loss2/loss07 = 0.799689 (* 0.0272727 = 0.0218097 loss) | |
I0425 11:12:45.825446 22523 solver.cpp:245] Train net output #83: loss2/loss08 = 0.612446 (* 0.0272727 = 0.0167031 loss) | |
I0425 11:12:45.825474 22523 solver.cpp:245] Train net output #84: loss2/loss09 = 0.0513296 (* 0.0272727 = 0.0013999 loss) | |
I0425 11:12:45.825501 22523 solver.cpp:245] Train net output #85: loss2/loss10 = 0.0441048 (* 0.0272727 = 0.00120286 loss) | |
I0425 11:12:45.825527 22523 solver.cpp:245] Train net output #86: loss2/loss11 = 0.0569078 (* 0.0272727 = 0.00155203 loss) | |
I0425 11:12:45.825556 22523 solver.cpp:245] Train net output #87: loss2/loss12 = 0.0482096 (* 0.0272727 = 0.00131481 loss) | |
I0425 11:12:45.825582 22523 solver.cpp:245] Train net output #88: loss2/loss13 = 0.0143685 (* 0.0272727 = 0.000391868 loss) | |
I0425 11:12:45.825606 22523 solver.cpp:245] Train net output #89: loss2/loss14 = 0.0222969 (* 0.0272727 = 0.000608098 loss) | |
I0425 11:12:45.825634 22523 solver.cpp:245] Train net output #90: loss2/loss15 = 0.0076779 (* 0.0272727 = 0.000209397 loss) | |
I0425 11:12:45.825661 22523 solver.cpp:245] Train net output #91: loss2/loss16 = 0.00334798 (* 0.0272727 = 9.13086e-05 loss) | |
I0425 11:12:45.825688 22523 solver.cpp:245] Train net output #92: loss2/loss17 = 0.000154424 (* 0.0272727 = 4.21156e-06 loss) | |
I0425 11:12:45.825716 22523 solver.cpp:245] Train net output #93: loss2/loss18 = 6.43442e-05 (* 0.0272727 = 1.75484e-06 loss) | |
I0425 11:12:45.825742 22523 solver.cpp:245] Train net output #94: loss2/loss19 = 8.16176e-05 (* 0.0272727 = 2.22593e-06 loss) | |
I0425 11:12:45.825768 22523 solver.cpp:245] Train net output #95: loss2/loss20 = 4.84377e-05 (* 0.0272727 = 1.32103e-06 loss) | |
I0425 11:12:45.825794 22523 solver.cpp:245] Train net output #96: loss2/loss21 = 4.33631e-06 (* 0.0272727 = 1.18263e-07 loss) | |
I0425 11:12:45.825824 22523 solver.cpp:245] Train net output #97: loss2/loss22 = 2.50886e-05 (* 0.0272727 = 6.84234e-07 loss) | |
I0425 11:12:45.825845 22523 solver.cpp:245] Train net output #98: loss3/accuracy = 1 | |
I0425 11:12:45.825867 22523 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1 | |
I0425 11:12:45.825891 22523 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1 | |
I0425 11:12:45.825911 22523 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1 | |
I0425 11:12:45.825932 22523 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1 | |
I0425 11:12:45.825953 22523 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875 | |
I0425 11:12:45.825976 22523 solver.cpp:245] Train net output #104: loss3/accuracy06 = 1 | |
I0425 11:12:45.825997 22523 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75 | |
I0425 11:12:45.826020 22523 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875 | |
I0425 11:12:45.826041 22523 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1 | |
I0425 11:12:45.826063 22523 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1 | |
I0425 11:12:45.826084 22523 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1 | |
I0425 11:12:45.826107 22523 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1 | |
I0425 11:12:45.826128 22523 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1 | |
I0425 11:12:45.826150 22523 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1 | |
I0425 11:12:45.826170 22523 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0425 11:12:45.826195 22523 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0425 11:12:45.826232 22523 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0425 11:12:45.826256 22523 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0425 11:12:45.826278 22523 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0425 11:12:45.826302 22523 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0425 11:12:45.826328 22523 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0425 11:12:45.826349 22523 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0425 11:12:45.826370 22523 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.994318 | |
I0425 11:12:45.826395 22523 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 1 | |
I0425 11:12:45.826421 22523 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.0833271 (* 1 = 0.0833271 loss) | |
I0425 11:12:45.826447 22523 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.032584 (* 1 = 0.032584 loss) | |
I0425 11:12:45.826480 22523 solver.cpp:245] Train net output #125: loss3/loss01 = 0.0282377 (* 0.0909091 = 0.00256707 loss) | |
I0425 11:12:45.826508 22523 solver.cpp:245] Train net output #126: loss3/loss02 = 0.0794623 (* 0.0909091 = 0.00722384 loss) | |
I0425 11:12:45.826536 22523 solver.cpp:245] Train net output #127: loss3/loss03 = 0.16738 (* 0.0909091 = 0.0152164 loss) | |
I0425 11:12:45.826587 22523 solver.cpp:245] Train net output #128: loss3/loss04 = 0.121536 (* 0.0909091 = 0.0110487 loss) | |
I0425 11:12:45.826614 22523 solver.cpp:245] Train net output #129: loss3/loss05 = 0.458673 (* 0.0909091 = 0.0416975 loss) | |
I0425 11:12:45.826640 22523 solver.cpp:245] Train net output #130: loss3/loss06 = 0.161791 (* 0.0909091 = 0.0147083 loss) | |
I0425 11:12:45.826668 22523 solver.cpp:245] Train net output #131: loss3/loss07 = 0.47816 (* 0.0909091 = 0.0434691 loss) | |
I0425 11:12:45.826695 22523 solver.cpp:245] Train net output #132: loss3/loss08 = 0.453424 (* 0.0909091 = 0.0412204 loss) | |
I0425 11:12:45.826721 22523 solver.cpp:245] Train net output #133: loss3/loss09 = 0.01904 (* 0.0909091 = 0.0017309 loss) | |
I0425 11:12:45.826750 22523 solver.cpp:245] Train net output #134: loss3/loss10 = 0.0143378 (* 0.0909091 = 0.00130343 loss) | |
I0425 11:12:45.826776 22523 solver.cpp:245] Train net output #135: loss3/loss11 = 0.0144108 (* 0.0909091 = 0.00131007 loss) | |
I0425 11:12:45.826802 22523 solver.cpp:245] Train net output #136: loss3/loss12 = 0.00599338 (* 0.0909091 = 0.000544853 loss) | |
I0425 11:12:45.826830 22523 solver.cpp:245] Train net output #137: loss3/loss13 = 0.00374186 (* 0.0909091 = 0.000340169 loss) | |
I0425 11:12:45.826856 22523 solver.cpp:245] Train net output #138: loss3/loss14 = 0.0016116 (* 0.0909091 = 0.000146509 loss) | |
I0425 11:12:45.826884 22523 solver.cpp:245] Train net output #139: loss3/loss15 = 0.000906466 (* 0.0909091 = 8.2406e-05 loss) | |
I0425 11:12:45.826911 22523 solver.cpp:245] Train net output #140: loss3/loss16 = 0.000579718 (* 0.0909091 = 5.27016e-05 loss) | |
I0425 11:12:45.826938 22523 solver.cpp:245] Train net output #141: loss3/loss17 = 0.000274558 (* 0.0909091 = 2.49598e-05 loss) | |
I0425 11:12:45.826967 22523 solver.cpp:245] Train net output #142: loss3/loss18 = 0.000198935 (* 0.0909091 = 1.8085e-05 loss) | |
I0425 11:12:45.826993 22523 solver.cpp:245] Train net output #143: loss3/loss19 = 0.000123863 (* 0.0909091 = 1.12602e-05 loss) | |
I0425 11:12:45.827020 22523 solver.cpp:245] Train net output #144: loss3/loss20 = 7.20886e-05 (* 0.0909091 = 6.55351e-06 loss) | |
I0425 11:12:45.827046 22523 solver.cpp:245] Train net output #145: loss3/loss21 = 2.71357e-05 (* 0.0909091 = 2.46688e-06 loss) | |
I0425 11:12:45.827074 22523 solver.cpp:245] Train net output #146: loss3/loss22 = 1.76582e-05 (* 0.0909091 = 1.60529e-06 loss) | |
I0425 11:12:45.827097 22523 solver.cpp:245] Train net output #147: total_accuracy = 0.875 | |
I0425 11:12:45.827118 22523 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.5 | |
I0425 11:12:45.827155 22523 solver.cpp:245] Train net output #149: total_confidence = 0.669331 | |
I0425 11:12:45.827179 22523 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.359731 | |
I0425 11:12:45.827204 22523 sgd_solver.cpp:106] Iteration 5500, lr = 0.01 | |
I0425 11:18:27.151898 22523 solver.cpp:229] Iteration 6000, loss = 3.31348 | |
I0425 11:18:27.152036 22523 solver.cpp:245] Train net output #0: loss1/accuracy = 0.738095 | |
I0425 11:18:27.152056 22523 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.875 | |
I0425 11:18:27.152070 22523 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.625 | |
I0425 11:18:27.152081 22523 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.75 | |
I0425 11:18:27.152093 22523 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.5 | |
I0425 11:18:27.152106 22523 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.75 | |
I0425 11:18:27.152117 22523 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.75 | |
I0425 11:18:27.152128 22523 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.75 | |
I0425 11:18:27.152140 22523 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875 | |
I0425 11:18:27.152151 22523 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1 | |
I0425 11:18:27.152163 22523 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1 | |
I0425 11:18:27.152174 22523 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1 | |
I0425 11:18:27.152186 22523 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1 | |
I0425 11:18:27.152199 22523 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1 | |
I0425 11:18:27.152212 22523 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1 | |
I0425 11:18:27.152223 22523 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0425 11:18:27.152236 22523 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0425 11:18:27.152247 22523 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0425 11:18:27.152259 22523 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0425 11:18:27.152271 22523 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0425 11:18:27.152281 22523 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0425 11:18:27.152293 22523 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0425 11:18:27.152308 22523 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0425 11:18:27.152319 22523 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.920455 | |
I0425 11:18:27.152331 22523 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.880952 | |
I0425 11:18:27.152348 22523 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 0.858301 (* 0.3 = 0.25749 loss) | |
I0425 11:18:27.152364 22523 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.279336 (* 0.3 = 0.0838009 loss) | |
I0425 11:18:27.152377 22523 solver.cpp:245] Train net output #27: loss1/loss01 = 0.631137 (* 0.0272727 = 0.0172128 loss) | |
I0425 11:18:27.152391 22523 solver.cpp:245] Train net output #28: loss1/loss02 = 0.833839 (* 0.0272727 = 0.0227411 loss) | |
I0425 11:18:27.152406 22523 solver.cpp:245] Train net output #29: loss1/loss03 = 1.23735 (* 0.0272727 = 0.0337458 loss) | |
I0425 11:18:27.152420 22523 solver.cpp:245] Train net output #30: loss1/loss04 = 1.62697 (* 0.0272727 = 0.0443719 loss) | |
I0425 11:18:27.152434 22523 solver.cpp:245] Train net output #31: loss1/loss05 = 1.27935 (* 0.0272727 = 0.0348912 loss) | |
I0425 11:18:27.152448 22523 solver.cpp:245] Train net output #32: loss1/loss06 = 0.902203 (* 0.0272727 = 0.0246055 loss) | |
I0425 11:18:27.152462 22523 solver.cpp:245] Train net output #33: loss1/loss07 = 0.575124 (* 0.0272727 = 0.0156852 loss) | |
I0425 11:18:27.152477 22523 solver.cpp:245] Train net output #34: loss1/loss08 = 0.310012 (* 0.0272727 = 0.00845487 loss) | |
I0425 11:18:27.152492 22523 solver.cpp:245] Train net output #35: loss1/loss09 = 0.0708205 (* 0.0272727 = 0.00193147 loss) | |
I0425 11:18:27.152505 22523 solver.cpp:245] Train net output #36: loss1/loss10 = 0.018635 (* 0.0272727 = 0.000508226 loss) | |
I0425 11:18:27.152525 22523 solver.cpp:245] Train net output #37: loss1/loss11 = 0.0141891 (* 0.0272727 = 0.000386974 loss) | |
I0425 11:18:27.152565 22523 solver.cpp:245] Train net output #38: loss1/loss12 = 0.0045907 (* 0.0272727 = 0.000125201 loss) | |
I0425 11:18:27.152600 22523 solver.cpp:245] Train net output #39: loss1/loss13 = 0.00700492 (* 0.0272727 = 0.000191043 loss) | |
I0425 11:18:27.152616 22523 solver.cpp:245] Train net output #40: loss1/loss14 = 0.00203357 (* 0.0272727 = 5.54611e-05 loss) | |
I0425 11:18:27.152631 22523 solver.cpp:245] Train net output #41: loss1/loss15 = 0.00135723 (* 0.0272727 = 3.70153e-05 loss) | |
I0425 11:18:27.152644 22523 solver.cpp:245] Train net output #42: loss1/loss16 = 0.000422698 (* 0.0272727 = 1.15281e-05 loss) | |
I0425 11:18:27.152658 22523 solver.cpp:245] Train net output #43: loss1/loss17 = 0.000220521 (* 0.0272727 = 6.0142e-06 loss) | |
I0425 11:18:27.152673 22523 solver.cpp:245] Train net output #44: loss1/loss18 = 0.000107746 (* 0.0272727 = 2.93852e-06 loss) | |
I0425 11:18:27.152688 22523 solver.cpp:245] Train net output #45: loss1/loss19 = 2.64505e-05 (* 0.0272727 = 7.21378e-07 loss) | |
I0425 11:18:27.152701 22523 solver.cpp:245] Train net output #46: loss1/loss20 = 2.28598e-05 (* 0.0272727 = 6.23449e-07 loss) | |
I0425 11:18:27.152714 22523 solver.cpp:245] Train net output #47: loss1/loss21 = 1.79568e-05 (* 0.0272727 = 4.89731e-07 loss) | |
I0425 11:18:27.152729 22523 solver.cpp:245] Train net output #48: loss1/loss22 = 6.30324e-06 (* 0.0272727 = 1.71907e-07 loss) | |
I0425 11:18:27.152740 22523 solver.cpp:245] Train net output #49: loss2/accuracy = 0.833333 | |
I0425 11:18:27.152753 22523 solver.cpp:245] Train net output #50: loss2/accuracy01 = 1 | |
I0425 11:18:27.152765 22523 solver.cpp:245] Train net output #51: loss2/accuracy02 = 1 | |
I0425 11:18:27.152776 22523 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.625 | |
I0425 11:18:27.152787 22523 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.625 | |
I0425 11:18:27.152801 22523 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.625 | |
I0425 11:18:27.152813 22523 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.875 | |
I0425 11:18:27.152824 22523 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.875 | |
I0425 11:18:27.152837 22523 solver.cpp:245] Train net output #57: loss2/accuracy08 = 1 | |
I0425 11:18:27.152856 22523 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1 | |
I0425 11:18:27.152868 22523 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1 | |
I0425 11:18:27.152879 22523 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1 | |
I0425 11:18:27.152890 22523 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1 | |
I0425 11:18:27.152902 22523 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1 | |
I0425 11:18:27.152914 22523 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1 | |
I0425 11:18:27.152921 22523 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0425 11:18:27.152928 22523 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0425 11:18:27.152941 22523 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0425 11:18:27.152953 22523 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0425 11:18:27.152964 22523 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0425 11:18:27.152976 22523 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0425 11:18:27.152987 22523 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0425 11:18:27.153002 22523 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0425 11:18:27.153013 22523 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.931818 | |
I0425 11:18:27.153024 22523 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 1 | |
I0425 11:18:27.153038 22523 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.425893 (* 0.3 = 0.127768 loss) | |
I0425 11:18:27.153056 22523 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.16963 (* 0.3 = 0.050889 loss) | |
I0425 11:18:27.153071 22523 solver.cpp:245] Train net output #76: loss2/loss01 = 0.0862075 (* 0.0272727 = 0.00235111 loss) | |
I0425 11:18:27.153086 22523 solver.cpp:245] Train net output #77: loss2/loss02 = 0.223942 (* 0.0272727 = 0.0061075 loss) | |
I0425 11:18:27.153112 22523 solver.cpp:245] Train net output #78: loss2/loss03 = 0.784668 (* 0.0272727 = 0.0214 loss) | |
I0425 11:18:27.153127 22523 solver.cpp:245] Train net output #79: loss2/loss04 = 1.28625 (* 0.0272727 = 0.0350795 loss) | |
I0425 11:18:27.153141 22523 solver.cpp:245] Train net output #80: loss2/loss05 = 1.0956 (* 0.0272727 = 0.0298799 loss) | |
I0425 11:18:27.153154 22523 solver.cpp:245] Train net output #81: loss2/loss06 = 0.859837 (* 0.0272727 = 0.0234501 loss) | |
I0425 11:18:27.153168 22523 solver.cpp:245] Train net output #82: loss2/loss07 = 0.426617 (* 0.0272727 = 0.011635 loss) | |
I0425 11:18:27.153183 22523 solver.cpp:245] Train net output #83: loss2/loss08 = 0.208407 (* 0.0272727 = 0.00568382 loss) | |
I0425 11:18:27.153198 22523 solver.cpp:245] Train net output #84: loss2/loss09 = 0.11514 (* 0.0272727 = 0.00314017 loss) | |
I0425 11:18:27.153211 22523 solver.cpp:245] Train net output #85: loss2/loss10 = 0.0761958 (* 0.0272727 = 0.00207807 loss) | |
I0425 11:18:27.153225 22523 solver.cpp:245] Train net output #86: loss2/loss11 = 0.033245 (* 0.0272727 = 0.000906682 loss) | |
I0425 11:18:27.153239 22523 solver.cpp:245] Train net output #87: loss2/loss12 = 0.0223739 (* 0.0272727 = 0.000610197 loss) | |
I0425 11:18:27.153256 22523 solver.cpp:245] Train net output #88: loss2/loss13 = 0.00937263 (* 0.0272727 = 0.000255617 loss) | |
I0425 11:18:27.153271 22523 solver.cpp:245] Train net output #89: loss2/loss14 = 0.00778843 (* 0.0272727 = 0.000212412 loss) | |
I0425 11:18:27.153285 22523 solver.cpp:245] Train net output #90: loss2/loss15 = 0.00131675 (* 0.0272727 = 3.59113e-05 loss) | |
I0425 11:18:27.153298 22523 solver.cpp:245] Train net output #91: loss2/loss16 = 0.000518728 (* 0.0272727 = 1.41471e-05 loss) | |
I0425 11:18:27.153312 22523 solver.cpp:245] Train net output #92: loss2/loss17 = 0.00015371 (* 0.0272727 = 4.1921e-06 loss) | |
I0425 11:18:27.153326 22523 solver.cpp:245] Train net output #93: loss2/loss18 = 4.1566e-05 (* 0.0272727 = 1.13362e-06 loss) | |
I0425 11:18:27.153340 22523 solver.cpp:245] Train net output #94: loss2/loss19 = 1.44251e-05 (* 0.0272727 = 3.93411e-07 loss) | |
I0425 11:18:27.153354 22523 solver.cpp:245] Train net output #95: loss2/loss20 = 6.07981e-06 (* 0.0272727 = 1.65813e-07 loss) | |
I0425 11:18:27.153368 22523 solver.cpp:245] Train net output #96: loss2/loss21 = 3.3975e-06 (* 0.0272727 = 9.26592e-08 loss) | |
I0425 11:18:27.153383 22523 solver.cpp:245] Train net output #97: loss2/loss22 = 3.74024e-06 (* 0.0272727 = 1.02007e-07 loss) | |
I0425 11:18:27.153394 22523 solver.cpp:245] Train net output #98: loss3/accuracy = 0.857143 | |
I0425 11:18:27.153406 22523 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1 | |
I0425 11:18:27.153417 22523 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1 | |
I0425 11:18:27.153429 22523 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1 | |
I0425 11:18:27.153440 22523 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875 | |
I0425 11:18:27.153452 22523 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.75 | |
I0425 11:18:27.153465 22523 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.75 | |
I0425 11:18:27.153475 22523 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75 | |
I0425 11:18:27.153486 22523 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1 | |
I0425 11:18:27.153498 22523 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875 | |
I0425 11:18:27.153511 22523 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1 | |
I0425 11:18:27.153522 22523 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1 | |
I0425 11:18:27.153532 22523 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1 | |
I0425 11:18:27.153543 22523 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1 | |
I0425 11:18:27.153555 22523 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1 | |
I0425 11:18:27.153566 22523 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0425 11:18:27.153578 22523 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0425 11:18:27.153599 22523 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0425 11:18:27.153611 22523 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0425 11:18:27.153623 22523 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0425 11:18:27.153635 22523 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0425 11:18:27.153645 22523 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0425 11:18:27.153656 22523 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0425 11:18:27.153667 22523 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.948864 | |
I0425 11:18:27.153679 22523 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.97619 | |
I0425 11:18:27.153693 22523 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.322451 (* 1 = 0.322451 loss) | |
I0425 11:18:27.153707 22523 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.121548 (* 1 = 0.121548 loss) | |
I0425 11:18:27.153722 22523 solver.cpp:245] Train net output #125: loss3/loss01 = 0.00837296 (* 0.0909091 = 0.000761178 loss) | |
I0425 11:18:27.153735 22523 solver.cpp:245] Train net output #126: loss3/loss02 = 0.025513 (* 0.0909091 = 0.00231936 loss) | |
I0425 11:18:27.153750 22523 solver.cpp:245] Train net output #127: loss3/loss03 = 0.0432872 (* 0.0909091 = 0.0039352 loss) | |
I0425 11:18:27.153764 22523 solver.cpp:245] Train net output #128: loss3/loss04 = 0.413132 (* 0.0909091 = 0.0375574 loss) | |
I0425 11:18:27.153779 22523 solver.cpp:245] Train net output #129: loss3/loss05 = 0.462095 (* 0.0909091 = 0.0420086 loss) | |
I0425 11:18:27.153792 22523 solver.cpp:245] Train net output #130: loss3/loss06 = 0.367296 (* 0.0909091 = 0.0333905 loss) | |
I0425 11:18:27.153806 22523 solver.cpp:245] Train net output #131: loss3/loss07 = 0.427266 (* 0.0909091 = 0.0388424 loss) | |
I0425 11:18:27.153820 22523 solver.cpp:245] Train net output #132: loss3/loss08 = 0.0661511 (* 0.0909091 = 0.00601374 loss) | |
I0425 11:18:27.153836 22523 solver.cpp:245] Train net output #133: loss3/loss09 = 0.143174 (* 0.0909091 = 0.0130158 loss) | |
I0425 11:18:27.153849 22523 solver.cpp:245] Train net output #134: loss3/loss10 = 0.0297849 (* 0.0909091 = 0.00270772 loss) | |
I0425 11:18:27.153862 22523 solver.cpp:245] Train net output #135: loss3/loss11 = 0.00426516 (* 0.0909091 = 0.000387742 loss) | |
I0425 11:18:27.153877 22523 solver.cpp:245] Train net output #136: loss3/loss12 = 0.00332451 (* 0.0909091 = 0.000302228 loss) | |
I0425 11:18:27.153892 22523 solver.cpp:245] Train net output #137: loss3/loss13 = 0.00133814 (* 0.0909091 = 0.000121649 loss) | |
I0425 11:18:27.153905 22523 solver.cpp:245] Train net output #138: loss3/loss14 = 0.00073714 (* 0.0909091 = 6.70127e-05 loss) | |
I0425 11:18:27.153919 22523 solver.cpp:245] Train net output #139: loss3/loss15 = 0.000373733 (* 0.0909091 = 3.39758e-05 loss) | |
I0425 11:18:27.153934 22523 solver.cpp:245] Train net output #140: loss3/loss16 = 0.000204843 (* 0.0909091 = 1.86221e-05 loss) | |
I0425 11:18:27.153949 22523 solver.cpp:245] Train net output #141: loss3/loss17 = 0.000134243 (* 0.0909091 = 1.22039e-05 loss) | |
I0425 11:18:27.153962 22523 solver.cpp:245] Train net output #142: loss3/loss18 = 0.00010415 (* 0.0909091 = 9.46819e-06 loss) | |
I0425 11:18:27.153976 22523 solver.cpp:245] Train net output #143: loss3/loss19 = 4.81374e-05 (* 0.0909091 = 4.37613e-06 loss) | |
I0425 11:18:27.153990 22523 solver.cpp:245] Train net output #144: loss3/loss20 = 1.35903e-05 (* 0.0909091 = 1.23548e-06 loss) | |
I0425 11:18:27.154006 22523 solver.cpp:245] Train net output #145: loss3/loss21 = 5.42408e-06 (* 0.0909091 = 4.93098e-07 loss) | |
I0425 11:18:27.154019 22523 solver.cpp:245] Train net output #146: loss3/loss22 = 1.89245e-06 (* 0.0909091 = 1.72041e-07 loss) | |
I0425 11:18:27.154031 22523 solver.cpp:245] Train net output #147: total_accuracy = 0.75 | |
I0425 11:18:27.154043 22523 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.625 | |
I0425 11:18:27.154064 22523 solver.cpp:245] Train net output #149: total_confidence = 0.686103 | |
I0425 11:18:27.154078 22523 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.54058 | |
I0425 11:18:27.154093 22523 sgd_solver.cpp:106] Iteration 6000, lr = 0.01 | |
I0425 11:24:08.549916 22523 solver.cpp:229] Iteration 6500, loss = 3.16151 | |
I0425 11:24:08.550092 22523 solver.cpp:245] Train net output #0: loss1/accuracy = 0.695652 | |
I0425 11:24:08.550123 22523 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75 | |
I0425 11:24:08.550158 22523 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.625 | |
I0425 11:24:08.550180 22523 solver.cpp:245] Train net output #3: loss1/accuracy03 = 1 | |
I0425 11:24:08.550206 22523 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.5 | |
I0425 11:24:08.550230 22523 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.5 | |
I0425 11:24:08.550253 22523 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.5 | |
I0425 11:24:08.550278 22523 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.875 | |
I0425 11:24:08.550304 22523 solver.cpp:245] Train net output #8: loss1/accuracy08 = 1 | |
I0425 11:24:08.550326 22523 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1 | |
I0425 11:24:08.550348 22523 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1 | |
I0425 11:24:08.550370 22523 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1 | |
I0425 11:24:08.550401 22523 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1 | |
I0425 11:24:08.550421 22523 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1 | |
I0425 11:24:08.550443 22523 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1 | |
I0425 11:24:08.550472 22523 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0425 11:24:08.550494 22523 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0425 11:24:08.550515 22523 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0425 11:24:08.550537 22523 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0425 11:24:08.550560 22523 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0425 11:24:08.550597 22523 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0425 11:24:08.550624 22523 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0425 11:24:08.550647 22523 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0425 11:24:08.550669 22523 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.909091 | |
I0425 11:24:08.550699 22523 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.869565 | |
I0425 11:24:08.550729 22523 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.12666 (* 0.3 = 0.337999 loss) | |
I0425 11:24:08.550756 22523 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.344653 (* 0.3 = 0.103396 loss) | |
I0425 11:24:08.550784 22523 solver.cpp:245] Train net output #27: loss1/loss01 = 1.47912 (* 0.0272727 = 0.0403397 loss) | |
I0425 11:24:08.550811 22523 solver.cpp:245] Train net output #28: loss1/loss02 = 0.979261 (* 0.0272727 = 0.0267071 loss) | |
I0425 11:24:08.550837 22523 solver.cpp:245] Train net output #29: loss1/loss03 = 0.860461 (* 0.0272727 = 0.0234671 loss) | |
I0425 11:24:08.550864 22523 solver.cpp:245] Train net output #30: loss1/loss04 = 1.98776 (* 0.0272727 = 0.0542116 loss) | |
I0425 11:24:08.550894 22523 solver.cpp:245] Train net output #31: loss1/loss05 = 1.33935 (* 0.0272727 = 0.0365277 loss) | |
I0425 11:24:08.550923 22523 solver.cpp:245] Train net output #32: loss1/loss06 = 1.2882 (* 0.0272727 = 0.0351327 loss) | |
I0425 11:24:08.550950 22523 solver.cpp:245] Train net output #33: loss1/loss07 = 0.395475 (* 0.0272727 = 0.0107857 loss) | |
I0425 11:24:08.550978 22523 solver.cpp:245] Train net output #34: loss1/loss08 = 0.157453 (* 0.0272727 = 0.00429416 loss) | |
I0425 11:24:08.551005 22523 solver.cpp:245] Train net output #35: loss1/loss09 = 0.0810756 (* 0.0272727 = 0.00221115 loss) | |
I0425 11:24:08.551033 22523 solver.cpp:245] Train net output #36: loss1/loss10 = 0.026668 (* 0.0272727 = 0.00072731 loss) | |
I0425 11:24:08.551060 22523 solver.cpp:245] Train net output #37: loss1/loss11 = 0.00360587 (* 0.0272727 = 9.8342e-05 loss) | |
I0425 11:24:08.551087 22523 solver.cpp:245] Train net output #38: loss1/loss12 = 0.00164714 (* 0.0272727 = 4.49219e-05 loss) | |
I0425 11:24:08.551123 22523 solver.cpp:245] Train net output #39: loss1/loss13 = 0.000781268 (* 0.0272727 = 2.13073e-05 loss) | |
I0425 11:24:08.551170 22523 solver.cpp:245] Train net output #40: loss1/loss14 = 0.000422624 (* 0.0272727 = 1.15261e-05 loss) | |
I0425 11:24:08.551200 22523 solver.cpp:245] Train net output #41: loss1/loss15 = 0.000135059 (* 0.0272727 = 3.68344e-06 loss) | |
I0425 11:24:08.551228 22523 solver.cpp:245] Train net output #42: loss1/loss16 = 8.21647e-05 (* 0.0272727 = 2.24086e-06 loss) | |
I0425 11:24:08.551259 22523 solver.cpp:245] Train net output #43: loss1/loss17 = 3.66134e-05 (* 0.0272727 = 9.98548e-07 loss) | |
I0425 11:24:08.551287 22523 solver.cpp:245] Train net output #44: loss1/loss18 = 2.08025e-05 (* 0.0272727 = 5.67341e-07 loss) | |
I0425 11:24:08.551314 22523 solver.cpp:245] Train net output #45: loss1/loss19 = 5.40915e-06 (* 0.0272727 = 1.47522e-07 loss) | |
I0425 11:24:08.551343 22523 solver.cpp:245] Train net output #46: loss1/loss20 = 2.36929e-06 (* 0.0272727 = 6.4617e-08 loss) | |
I0425 11:24:08.551391 22523 solver.cpp:245] Train net output #47: loss1/loss21 = 1.35601e-06 (* 0.0272727 = 3.6982e-08 loss) | |
I0425 11:24:08.551420 22523 solver.cpp:245] Train net output #48: loss1/loss22 = 1.07288e-06 (* 0.0272727 = 2.92605e-08 loss) | |
I0425 11:24:08.551445 22523 solver.cpp:245] Train net output #49: loss2/accuracy = 0.76087 | |
I0425 11:24:08.551467 22523 solver.cpp:245] Train net output #50: loss2/accuracy01 = 1 | |
I0425 11:24:08.551489 22523 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75 | |
I0425 11:24:08.551512 22523 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.75 | |
I0425 11:24:08.551534 22523 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.25 | |
I0425 11:24:08.551556 22523 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.625 | |
I0425 11:24:08.551579 22523 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.5 | |
I0425 11:24:08.551601 22523 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.875 | |
I0425 11:24:08.551623 22523 solver.cpp:245] Train net output #57: loss2/accuracy08 = 1 | |
I0425 11:24:08.551645 22523 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1 | |
I0425 11:24:08.551667 22523 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1 | |
I0425 11:24:08.551688 22523 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1 | |
I0425 11:24:08.551712 22523 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1 | |
I0425 11:24:08.551733 22523 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1 | |
I0425 11:24:08.551754 22523 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1 | |
I0425 11:24:08.551775 22523 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0425 11:24:08.551797 22523 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0425 11:24:08.551820 22523 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0425 11:24:08.551842 22523 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0425 11:24:08.551864 22523 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0425 11:24:08.551887 22523 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0425 11:24:08.551909 22523 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0425 11:24:08.551931 22523 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0425 11:24:08.551952 22523 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.914773 | |
I0425 11:24:08.551975 22523 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.913043 | |
I0425 11:24:08.552001 22523 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.12038 (* 0.3 = 0.336115 loss) | |
I0425 11:24:08.552029 22523 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.353628 (* 0.3 = 0.106088 loss) | |
I0425 11:24:08.552057 22523 solver.cpp:245] Train net output #76: loss2/loss01 = 0.211473 (* 0.0272727 = 0.00576745 loss) | |
I0425 11:24:08.552083 22523 solver.cpp:245] Train net output #77: loss2/loss02 = 0.704012 (* 0.0272727 = 0.0192003 loss) | |
I0425 11:24:08.552129 22523 solver.cpp:245] Train net output #78: loss2/loss03 = 0.941728 (* 0.0272727 = 0.0256835 loss) | |
I0425 11:24:08.552163 22523 solver.cpp:245] Train net output #79: loss2/loss04 = 1.76122 (* 0.0272727 = 0.0480333 loss) | |
I0425 11:24:08.552191 22523 solver.cpp:245] Train net output #80: loss2/loss05 = 0.883625 (* 0.0272727 = 0.0240989 loss) | |
I0425 11:24:08.552219 22523 solver.cpp:245] Train net output #81: loss2/loss06 = 1.2108 (* 0.0272727 = 0.0330217 loss) | |
I0425 11:24:08.552248 22523 solver.cpp:245] Train net output #82: loss2/loss07 = 0.695661 (* 0.0272727 = 0.0189726 loss) | |
I0425 11:24:08.552274 22523 solver.cpp:245] Train net output #83: loss2/loss08 = 0.107494 (* 0.0272727 = 0.00293164 loss) | |
I0425 11:24:08.552300 22523 solver.cpp:245] Train net output #84: loss2/loss09 = 0.0819668 (* 0.0272727 = 0.00223546 loss) | |
I0425 11:24:08.552332 22523 solver.cpp:245] Train net output #85: loss2/loss10 = 0.0411956 (* 0.0272727 = 0.00112352 loss) | |
I0425 11:24:08.552358 22523 solver.cpp:245] Train net output #86: loss2/loss11 = 0.0339476 (* 0.0272727 = 0.000925844 loss) | |
I0425 11:24:08.552384 22523 solver.cpp:245] Train net output #87: loss2/loss12 = 0.0129606 (* 0.0272727 = 0.000353472 loss) | |
I0425 11:24:08.552412 22523 solver.cpp:245] Train net output #88: loss2/loss13 = 0.013286 (* 0.0272727 = 0.000362347 loss) | |
I0425 11:24:08.552438 22523 solver.cpp:245] Train net output #89: loss2/loss14 = 0.00394226 (* 0.0272727 = 0.000107516 loss) | |
I0425 11:24:08.552464 22523 solver.cpp:245] Train net output #90: loss2/loss15 = 0.0020834 (* 0.0272727 = 5.68201e-05 loss) | |
I0425 11:24:08.552491 22523 solver.cpp:245] Train net output #91: loss2/loss16 = 0.00132358 (* 0.0272727 = 3.60977e-05 loss) | |
I0425 11:24:08.552518 22523 solver.cpp:245] Train net output #92: loss2/loss17 = 0.000379095 (* 0.0272727 = 1.0339e-05 loss) | |
I0425 11:24:08.552544 22523 solver.cpp:245] Train net output #93: loss2/loss18 = 0.000214409 (* 0.0272727 = 5.84753e-06 loss) | |
I0425 11:24:08.552577 22523 solver.cpp:245] Train net output #94: loss2/loss19 = 0.000276842 (* 0.0272727 = 7.55023e-06 loss) | |
I0425 11:24:08.552603 22523 solver.cpp:245] Train net output #95: loss2/loss20 = 0.000162901 (* 0.0272727 = 4.44276e-06 loss) | |
I0425 11:24:08.552639 22523 solver.cpp:245] Train net output #96: loss2/loss21 = 5.10842e-05 (* 0.0272727 = 1.3932e-06 loss) | |
I0425 11:24:08.552665 22523 solver.cpp:245] Train net output #97: loss2/loss22 = 5.15015e-05 (* 0.0272727 = 1.40459e-06 loss) | |
I0425 11:24:08.552687 22523 solver.cpp:245] Train net output #98: loss3/accuracy = 0.913043 | |
I0425 11:24:08.552711 22523 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1 | |
I0425 11:24:08.552736 22523 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875 | |
I0425 11:24:08.552754 22523 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1 | |
I0425 11:24:08.552770 22523 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.75 | |
I0425 11:24:08.552794 22523 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.625 | |
I0425 11:24:08.552817 22523 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.75 | |
I0425 11:24:08.552839 22523 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875 | |
I0425 11:24:08.552861 22523 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1 | |
I0425 11:24:08.552882 22523 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1 | |
I0425 11:24:08.552904 22523 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1 | |
I0425 11:24:08.552925 22523 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1 | |
I0425 11:24:08.552947 22523 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1 | |
I0425 11:24:08.552968 22523 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1 | |
I0425 11:24:08.552989 22523 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1 | |
I0425 11:24:08.553011 22523 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0425 11:24:08.553031 22523 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0425 11:24:08.553069 22523 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0425 11:24:08.553102 22523 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0425 11:24:08.553122 22523 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0425 11:24:08.553149 22523 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0425 11:24:08.553174 22523 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0425 11:24:08.553199 22523 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0425 11:24:08.553220 22523 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.971591 | |
I0425 11:24:08.553242 22523 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 1 | |
I0425 11:24:08.553270 22523 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.268345 (* 1 = 0.268345 loss) | |
I0425 11:24:08.553302 22523 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.0834292 (* 1 = 0.0834292 loss) | |
I0425 11:24:08.553329 22523 solver.cpp:245] Train net output #125: loss3/loss01 = 0.088984 (* 0.0909091 = 0.00808946 loss) | |
I0425 11:24:08.553360 22523 solver.cpp:245] Train net output #126: loss3/loss02 = 0.440792 (* 0.0909091 = 0.040072 loss) | |
I0425 11:24:08.553390 22523 solver.cpp:245] Train net output #127: loss3/loss03 = 0.103385 (* 0.0909091 = 0.00939867 loss) | |
I0425 11:24:08.553416 22523 solver.cpp:245] Train net output #128: loss3/loss04 = 0.61419 (* 0.0909091 = 0.0558355 loss) | |
I0425 11:24:08.553442 22523 solver.cpp:245] Train net output #129: loss3/loss05 = 0.635028 (* 0.0909091 = 0.0577299 loss) | |
I0425 11:24:08.553469 22523 solver.cpp:245] Train net output #130: loss3/loss06 = 0.526162 (* 0.0909091 = 0.0478329 loss) | |
I0425 11:24:08.553496 22523 solver.cpp:245] Train net output #131: loss3/loss07 = 0.420918 (* 0.0909091 = 0.0382652 loss) | |
I0425 11:24:08.553521 22523 solver.cpp:245] Train net output #132: loss3/loss08 = 0.122543 (* 0.0909091 = 0.0111402 loss) | |
I0425 11:24:08.553549 22523 solver.cpp:245] Train net output #133: loss3/loss09 = 0.0882194 (* 0.0909091 = 0.00801994 loss) | |
I0425 11:24:08.553575 22523 solver.cpp:245] Train net output #134: loss3/loss10 = 0.0313794 (* 0.0909091 = 0.00285267 loss) | |
I0425 11:24:08.553601 22523 solver.cpp:245] Train net output #135: loss3/loss11 = 0.0240294 (* 0.0909091 = 0.00218449 loss) | |
I0425 11:24:08.553627 22523 solver.cpp:245] Train net output #136: loss3/loss12 = 0.00837075 (* 0.0909091 = 0.000760977 loss) | |
I0425 11:24:08.553654 22523 solver.cpp:245] Train net output #137: loss3/loss13 = 0.00578126 (* 0.0909091 = 0.00052557 loss) | |
I0425 11:24:08.553680 22523 solver.cpp:245] Train net output #138: loss3/loss14 = 0.00358421 (* 0.0909091 = 0.000325837 loss) | |
I0425 11:24:08.553706 22523 solver.cpp:245] Train net output #139: loss3/loss15 = 0.0013751 (* 0.0909091 = 0.000125009 loss) | |
I0425 11:24:08.553735 22523 solver.cpp:245] Train net output #140: loss3/loss16 = 0.00124315 (* 0.0909091 = 0.000113014 loss) | |
I0425 11:24:08.553761 22523 solver.cpp:245] Train net output #141: loss3/loss17 = 0.00156527 (* 0.0909091 = 0.000142298 loss) | |
I0425 11:24:08.553786 22523 solver.cpp:245] Train net output #142: loss3/loss18 = 0.000653137 (* 0.0909091 = 5.93761e-05 loss) | |
I0425 11:24:08.553813 22523 solver.cpp:245] Train net output #143: loss3/loss19 = 0.000643802 (* 0.0909091 = 5.85274e-05 loss) | |
I0425 11:24:08.553840 22523 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000247461 (* 0.0909091 = 2.24964e-05 loss) | |
I0425 11:24:08.553866 22523 solver.cpp:245] Train net output #145: loss3/loss21 = 5.72536e-05 (* 0.0909091 = 5.20487e-06 loss) | |
I0425 11:24:08.553891 22523 solver.cpp:245] Train net output #146: loss3/loss22 = 1.72862e-05 (* 0.0909091 = 1.57147e-06 loss) | |
I0425 11:24:08.553915 22523 solver.cpp:245] Train net output #147: total_accuracy = 0.75 | |
I0425 11:24:08.553937 22523 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.5 | |
I0425 11:24:08.553975 22523 solver.cpp:245] Train net output #149: total_confidence = 0.57895 | |
I0425 11:24:08.553999 22523 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.472558 | |
I0425 11:24:08.554023 22523 sgd_solver.cpp:106] Iteration 6500, lr = 0.01 | |
I0425 11:29:49.798714 22523 solver.cpp:229] Iteration 7000, loss = 3.17744 | |
I0425 11:29:49.798840 22523 solver.cpp:245] Train net output #0: loss1/accuracy = 0.482759 | |
I0425 11:29:49.798861 22523 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.625 | |
I0425 11:29:49.798874 22523 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5 | |
I0425 11:29:49.798887 22523 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.5 | |
I0425 11:29:49.798898 22523 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.25 | |
I0425 11:29:49.798910 22523 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.625 | |
I0425 11:29:49.798923 22523 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.5 | |
I0425 11:29:49.798934 22523 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.75 | |
I0425 11:29:49.798946 22523 solver.cpp:245] Train net output #8: loss1/accuracy08 = 1 | |
I0425 11:29:49.798957 22523 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.75 | |
I0425 11:29:49.798969 22523 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.75 | |
I0425 11:29:49.798981 22523 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.75 | |
I0425 11:29:49.798993 22523 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.75 | |
I0425 11:29:49.799005 22523 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.75 | |
I0425 11:29:49.799016 22523 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.875 | |
I0425 11:29:49.799028 22523 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0425 11:29:49.799041 22523 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0425 11:29:49.799052 22523 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0425 11:29:49.799064 22523 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0425 11:29:49.799075 22523 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0425 11:29:49.799088 22523 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0425 11:29:49.799098 22523 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0425 11:29:49.799118 22523 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0425 11:29:49.799136 22523 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.818182 | |
I0425 11:29:49.799149 22523 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.706897 | |
I0425 11:29:49.799175 22523 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.66406 (* 0.3 = 0.499218 loss) | |
I0425 11:29:49.799190 22523 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.602046 (* 0.3 = 0.180614 loss) | |
I0425 11:29:49.799203 22523 solver.cpp:245] Train net output #27: loss1/loss01 = 1.67774 (* 0.0272727 = 0.0457564 loss) | |
I0425 11:29:49.799217 22523 solver.cpp:245] Train net output #28: loss1/loss02 = 1.15077 (* 0.0272727 = 0.0313847 loss) | |
I0425 11:29:49.799232 22523 solver.cpp:245] Train net output #29: loss1/loss03 = 1.92242 (* 0.0272727 = 0.0524295 loss) | |
I0425 11:29:49.799245 22523 solver.cpp:245] Train net output #30: loss1/loss04 = 1.65175 (* 0.0272727 = 0.0450478 loss) | |
I0425 11:29:49.799259 22523 solver.cpp:245] Train net output #31: loss1/loss05 = 1.38479 (* 0.0272727 = 0.037767 loss) | |
I0425 11:29:49.799273 22523 solver.cpp:245] Train net output #32: loss1/loss06 = 1.4944 (* 0.0272727 = 0.0407565 loss) | |
I0425 11:29:49.799288 22523 solver.cpp:245] Train net output #33: loss1/loss07 = 0.741274 (* 0.0272727 = 0.0202166 loss) | |
I0425 11:29:49.799301 22523 solver.cpp:245] Train net output #34: loss1/loss08 = 0.398686 (* 0.0272727 = 0.0108733 loss) | |
I0425 11:29:49.799315 22523 solver.cpp:245] Train net output #35: loss1/loss09 = 1.0366 (* 0.0272727 = 0.028271 loss) | |
I0425 11:29:49.799329 22523 solver.cpp:245] Train net output #36: loss1/loss10 = 0.907558 (* 0.0272727 = 0.0247516 loss) | |
I0425 11:29:49.799343 22523 solver.cpp:245] Train net output #37: loss1/loss11 = 0.822991 (* 0.0272727 = 0.0224452 loss) | |
I0425 11:29:49.799373 22523 solver.cpp:245] Train net output #38: loss1/loss12 = 0.988689 (* 0.0272727 = 0.0269642 loss) | |
I0425 11:29:49.799388 22523 solver.cpp:245] Train net output #39: loss1/loss13 = 0.967544 (* 0.0272727 = 0.0263876 loss) | |
I0425 11:29:49.799422 22523 solver.cpp:245] Train net output #40: loss1/loss14 = 0.741854 (* 0.0272727 = 0.0202324 loss) | |
I0425 11:29:49.799437 22523 solver.cpp:245] Train net output #41: loss1/loss15 = 0.0479092 (* 0.0272727 = 0.00130662 loss) | |
I0425 11:29:49.799451 22523 solver.cpp:245] Train net output #42: loss1/loss16 = 0.0391719 (* 0.0272727 = 0.00106833 loss) | |
I0425 11:29:49.799466 22523 solver.cpp:245] Train net output #43: loss1/loss17 = 0.0172852 (* 0.0272727 = 0.000471414 loss) | |
I0425 11:29:49.799480 22523 solver.cpp:245] Train net output #44: loss1/loss18 = 0.00167025 (* 0.0272727 = 4.55521e-05 loss) | |
I0425 11:29:49.799494 22523 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00152031 (* 0.0272727 = 4.14631e-05 loss) | |
I0425 11:29:49.799509 22523 solver.cpp:245] Train net output #46: loss1/loss20 = 0.00090036 (* 0.0272727 = 2.45553e-05 loss) | |
I0425 11:29:49.799523 22523 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000419491 (* 0.0272727 = 1.14407e-05 loss) | |
I0425 11:29:49.799537 22523 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000287892 (* 0.0272727 = 7.85161e-06 loss) | |
I0425 11:29:49.799549 22523 solver.cpp:245] Train net output #49: loss2/accuracy = 0.62069 | |
I0425 11:29:49.799561 22523 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.75 | |
I0425 11:29:49.799573 22523 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.875 | |
I0425 11:29:49.799584 22523 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.5 | |
I0425 11:29:49.799597 22523 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.625 | |
I0425 11:29:49.799607 22523 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.75 | |
I0425 11:29:49.799619 22523 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.625 | |
I0425 11:29:49.799630 22523 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.75 | |
I0425 11:29:49.799643 22523 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.75 | |
I0425 11:29:49.799654 22523 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.75 | |
I0425 11:29:49.799665 22523 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.75 | |
I0425 11:29:49.799677 22523 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.875 | |
I0425 11:29:49.799688 22523 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.75 | |
I0425 11:29:49.799700 22523 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.75 | |
I0425 11:29:49.799711 22523 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.875 | |
I0425 11:29:49.799723 22523 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0425 11:29:49.799734 22523 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0425 11:29:49.799746 22523 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0425 11:29:49.799760 22523 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0425 11:29:49.799772 22523 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0425 11:29:49.799787 22523 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0425 11:29:49.799806 22523 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0425 11:29:49.799819 22523 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0425 11:29:49.799831 22523 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.869318 | |
I0425 11:29:49.799844 22523 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.758621 | |
I0425 11:29:49.799860 22523 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.3369 (* 0.3 = 0.40107 loss) | |
I0425 11:29:49.799877 22523 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.499371 (* 0.3 = 0.149811 loss) | |
I0425 11:29:49.799892 22523 solver.cpp:245] Train net output #76: loss2/loss01 = 0.851263 (* 0.0272727 = 0.0232163 loss) | |
I0425 11:29:49.799906 22523 solver.cpp:245] Train net output #77: loss2/loss02 = 0.826862 (* 0.0272727 = 0.0225508 loss) | |
I0425 11:29:49.799932 22523 solver.cpp:245] Train net output #78: loss2/loss03 = 1.46824 (* 0.0272727 = 0.0400428 loss) | |
I0425 11:29:49.799947 22523 solver.cpp:245] Train net output #79: loss2/loss04 = 1.627 (* 0.0272727 = 0.0443727 loss) | |
I0425 11:29:49.799962 22523 solver.cpp:245] Train net output #80: loss2/loss05 = 1.06182 (* 0.0272727 = 0.0289588 loss) | |
I0425 11:29:49.799976 22523 solver.cpp:245] Train net output #81: loss2/loss06 = 0.977916 (* 0.0272727 = 0.0266704 loss) | |
I0425 11:29:49.799990 22523 solver.cpp:245] Train net output #82: loss2/loss07 = 0.593715 (* 0.0272727 = 0.0161922 loss) | |
I0425 11:29:49.800004 22523 solver.cpp:245] Train net output #83: loss2/loss08 = 0.851148 (* 0.0272727 = 0.0232131 loss) | |
I0425 11:29:49.800019 22523 solver.cpp:245] Train net output #84: loss2/loss09 = 0.815337 (* 0.0272727 = 0.0222365 loss) | |
I0425 11:29:49.800032 22523 solver.cpp:245] Train net output #85: loss2/loss10 = 0.979786 (* 0.0272727 = 0.0267214 loss) | |
I0425 11:29:49.800046 22523 solver.cpp:245] Train net output #86: loss2/loss11 = 0.777041 (* 0.0272727 = 0.021192 loss) | |
I0425 11:29:49.800060 22523 solver.cpp:245] Train net output #87: loss2/loss12 = 1.06607 (* 0.0272727 = 0.0290746 loss) | |
I0425 11:29:49.800073 22523 solver.cpp:245] Train net output #88: loss2/loss13 = 0.856487 (* 0.0272727 = 0.0233587 loss) | |
I0425 11:29:49.800088 22523 solver.cpp:245] Train net output #89: loss2/loss14 = 0.833381 (* 0.0272727 = 0.0227286 loss) | |
I0425 11:29:49.800101 22523 solver.cpp:245] Train net output #90: loss2/loss15 = 0.203016 (* 0.0272727 = 0.0055368 loss) | |
I0425 11:29:49.800115 22523 solver.cpp:245] Train net output #91: loss2/loss16 = 0.0823081 (* 0.0272727 = 0.00224477 loss) | |
I0425 11:29:49.800130 22523 solver.cpp:245] Train net output #92: loss2/loss17 = 0.0562264 (* 0.0272727 = 0.00153345 loss) | |
I0425 11:29:49.800144 22523 solver.cpp:245] Train net output #93: loss2/loss18 = 0.0130833 (* 0.0272727 = 0.000356818 loss) | |
I0425 11:29:49.800158 22523 solver.cpp:245] Train net output #94: loss2/loss19 = 0.00870657 (* 0.0272727 = 0.000237452 loss) | |
I0425 11:29:49.800173 22523 solver.cpp:245] Train net output #95: loss2/loss20 = 0.00534333 (* 0.0272727 = 0.000145727 loss) | |
I0425 11:29:49.800186 22523 solver.cpp:245] Train net output #96: loss2/loss21 = 0.00307628 (* 0.0272727 = 8.38986e-05 loss) | |
I0425 11:29:49.800200 22523 solver.cpp:245] Train net output #97: loss2/loss22 = 0.0015914 (* 0.0272727 = 4.34018e-05 loss) | |
I0425 11:29:49.800212 22523 solver.cpp:245] Train net output #98: loss3/accuracy = 0.655172 | |
I0425 11:29:49.800225 22523 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875 | |
I0425 11:29:49.800235 22523 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875 | |
I0425 11:29:49.800247 22523 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.875 | |
I0425 11:29:49.800258 22523 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875 | |
I0425 11:29:49.800271 22523 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.75 | |
I0425 11:29:49.800282 22523 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.75 | |
I0425 11:29:49.800293 22523 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875 | |
I0425 11:29:49.800305 22523 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875 | |
I0425 11:29:49.800318 22523 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.75 | |
I0425 11:29:49.800328 22523 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875 | |
I0425 11:29:49.800340 22523 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.875 | |
I0425 11:29:49.800351 22523 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.75 | |
I0425 11:29:49.800364 22523 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.75 | |
I0425 11:29:49.800374 22523 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.875 | |
I0425 11:29:49.800386 22523 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0425 11:29:49.800397 22523 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0425 11:29:49.800418 22523 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0425 11:29:49.800431 22523 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0425 11:29:49.800442 22523 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0425 11:29:49.800454 22523 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0425 11:29:49.800465 22523 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0425 11:29:49.800477 22523 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0425 11:29:49.800488 22523 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.857955 | |
I0425 11:29:49.800500 22523 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.758621 | |
I0425 11:29:49.800514 22523 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.13777 (* 1 = 1.13777 loss) | |
I0425 11:29:49.800529 22523 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.503164 (* 1 = 0.503164 loss) | |
I0425 11:29:49.800542 22523 solver.cpp:245] Train net output #125: loss3/loss01 = 0.485438 (* 0.0909091 = 0.0441307 loss) | |
I0425 11:29:49.800556 22523 solver.cpp:245] Train net output #126: loss3/loss02 = 0.404436 (* 0.0909091 = 0.0367669 loss) | |
I0425 11:29:49.800570 22523 solver.cpp:245] Train net output #127: loss3/loss03 = 0.641337 (* 0.0909091 = 0.0583034 loss) | |
I0425 11:29:49.800585 22523 solver.cpp:245] Train net output #128: loss3/loss04 = 0.639078 (* 0.0909091 = 0.058098 loss) | |
I0425 11:29:49.800600 22523 solver.cpp:245] Train net output #129: loss3/loss05 = 1.07286 (* 0.0909091 = 0.097533 loss) | |
I0425 11:29:49.800613 22523 solver.cpp:245] Train net output #130: loss3/loss06 = 0.86488 (* 0.0909091 = 0.0786254 loss) | |
I0425 11:29:49.800627 22523 solver.cpp:245] Train net output #131: loss3/loss07 = 0.394715 (* 0.0909091 = 0.0358832 loss) | |
I0425 11:29:49.800642 22523 solver.cpp:245] Train net output #132: loss3/loss08 = 0.604641 (* 0.0909091 = 0.0549673 loss) | |
I0425 11:29:49.800655 22523 solver.cpp:245] Train net output #133: loss3/loss09 = 0.767615 (* 0.0909091 = 0.0697832 loss) | |
I0425 11:29:49.800669 22523 solver.cpp:245] Train net output #134: loss3/loss10 = 0.709554 (* 0.0909091 = 0.0645049 loss) | |
I0425 11:29:49.800683 22523 solver.cpp:245] Train net output #135: loss3/loss11 = 0.698336 (* 0.0909091 = 0.0634851 loss) | |
I0425 11:29:49.800698 22523 solver.cpp:245] Train net output #136: loss3/loss12 = 0.938152 (* 0.0909091 = 0.0852865 loss) | |
I0425 11:29:49.800712 22523 solver.cpp:245] Train net output #137: loss3/loss13 = 0.723522 (* 0.0909091 = 0.0657748 loss) | |
I0425 11:29:49.800726 22523 solver.cpp:245] Train net output #138: loss3/loss14 = 0.610118 (* 0.0909091 = 0.0554653 loss) | |
I0425 11:29:49.800740 22523 solver.cpp:245] Train net output #139: loss3/loss15 = 0.24797 (* 0.0909091 = 0.0225428 loss) | |
I0425 11:29:49.800755 22523 solver.cpp:245] Train net output #140: loss3/loss16 = 0.115688 (* 0.0909091 = 0.0105171 loss) | |
I0425 11:29:49.800768 22523 solver.cpp:245] Train net output #141: loss3/loss17 = 0.0674891 (* 0.0909091 = 0.00613537 loss) | |
I0425 11:29:49.800782 22523 solver.cpp:245] Train net output #142: loss3/loss18 = 0.0292354 (* 0.0909091 = 0.00265776 loss) | |
I0425 11:29:49.800796 22523 solver.cpp:245] Train net output #143: loss3/loss19 = 0.0142058 (* 0.0909091 = 0.00129144 loss) | |
I0425 11:29:49.800811 22523 solver.cpp:245] Train net output #144: loss3/loss20 = 0.00257837 (* 0.0909091 = 0.000234397 loss) | |
I0425 11:29:49.800824 22523 solver.cpp:245] Train net output #145: loss3/loss21 = 0.00064243 (* 0.0909091 = 5.84028e-05 loss) | |
I0425 11:29:49.800839 22523 solver.cpp:245] Train net output #146: loss3/loss22 = 0.000142238 (* 0.0909091 = 1.29307e-05 loss) | |
I0425 11:29:49.800851 22523 solver.cpp:245] Train net output #147: total_accuracy = 0.75 | |
I0425 11:29:49.800863 22523 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.75 | |
I0425 11:29:49.800875 22523 solver.cpp:245] Train net output #149: total_confidence = 0.52278 | |
I0425 11:29:49.800895 22523 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.385598 | |
I0425 11:29:49.800911 22523 sgd_solver.cpp:106] Iteration 7000, lr = 0.01 | |
I0425 11:35:31.111706 22523 solver.cpp:229] Iteration 7500, loss = 3.14486 | |
I0425 11:35:31.111800 22523 solver.cpp:245] Train net output #0: loss1/accuracy = 0.681818 | |
I0425 11:35:31.111820 22523 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.875 | |
I0425 11:35:31.111834 22523 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.625 | |
I0425 11:35:31.111845 22523 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375 | |
I0425 11:35:31.111857 22523 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.625 | |
I0425 11:35:31.111868 22523 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.375 | |
I0425 11:35:31.111881 22523 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.625 | |
I0425 11:35:31.111896 22523 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.75 | |
I0425 11:35:31.111907 22523 solver.cpp:245] Train net output #8: loss1/accuracy08 = 1 | |
I0425 11:35:31.111919 22523 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875 | |
I0425 11:35:31.111932 22523 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1 | |
I0425 11:35:31.111943 22523 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1 | |
I0425 11:35:31.111954 22523 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1 | |
I0425 11:35:31.111966 22523 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1 | |
I0425 11:35:31.111977 22523 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1 | |
I0425 11:35:31.111989 22523 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0425 11:35:31.112000 22523 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0425 11:35:31.112012 22523 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0425 11:35:31.112030 22523 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0425 11:35:31.112041 22523 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0425 11:35:31.112053 22523 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0425 11:35:31.112064 22523 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0425 11:35:31.112076 22523 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0425 11:35:31.112093 22523 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.892045 | |
I0425 11:35:31.112105 22523 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.931818 | |
I0425 11:35:31.112123 22523 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 0.963859 (* 0.3 = 0.289158 loss) | |
I0425 11:35:31.112138 22523 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.31528 (* 0.3 = 0.0945839 loss) | |
I0425 11:35:31.112152 22523 solver.cpp:245] Train net output #27: loss1/loss01 = 0.427166 (* 0.0272727 = 0.01165 loss) | |
I0425 11:35:31.112166 22523 solver.cpp:245] Train net output #28: loss1/loss02 = 1.43563 (* 0.0272727 = 0.0391536 loss) | |
I0425 11:35:31.112180 22523 solver.cpp:245] Train net output #29: loss1/loss03 = 1.43331 (* 0.0272727 = 0.0390902 loss) | |
I0425 11:35:31.112195 22523 solver.cpp:245] Train net output #30: loss1/loss04 = 1.47494 (* 0.0272727 = 0.0402256 loss) | |
I0425 11:35:31.112208 22523 solver.cpp:245] Train net output #31: loss1/loss05 = 1.66715 (* 0.0272727 = 0.0454676 loss) | |
I0425 11:35:31.112231 22523 solver.cpp:245] Train net output #32: loss1/loss06 = 0.95138 (* 0.0272727 = 0.0259467 loss) | |
I0425 11:35:31.112244 22523 solver.cpp:245] Train net output #33: loss1/loss07 = 0.91515 (* 0.0272727 = 0.0249586 loss) | |
I0425 11:35:31.112259 22523 solver.cpp:245] Train net output #34: loss1/loss08 = 0.166911 (* 0.0272727 = 0.00455211 loss) | |
I0425 11:35:31.112273 22523 solver.cpp:245] Train net output #35: loss1/loss09 = 0.376686 (* 0.0272727 = 0.0102733 loss) | |
I0425 11:35:31.112295 22523 solver.cpp:245] Train net output #36: loss1/loss10 = 0.039499 (* 0.0272727 = 0.00107725 loss) | |
I0425 11:35:31.112310 22523 solver.cpp:245] Train net output #37: loss1/loss11 = 0.0331752 (* 0.0272727 = 0.000904778 loss) | |
I0425 11:35:31.112324 22523 solver.cpp:245] Train net output #38: loss1/loss12 = 0.0349083 (* 0.0272727 = 0.000952045 loss) | |
I0425 11:35:31.112357 22523 solver.cpp:245] Train net output #39: loss1/loss13 = 0.016687 (* 0.0272727 = 0.000455099 loss) | |
I0425 11:35:31.112373 22523 solver.cpp:245] Train net output #40: loss1/loss14 = 0.0197358 (* 0.0272727 = 0.00053825 loss) | |
I0425 11:35:31.112387 22523 solver.cpp:245] Train net output #41: loss1/loss15 = 0.0110787 (* 0.0272727 = 0.000302147 loss) | |
I0425 11:35:31.112401 22523 solver.cpp:245] Train net output #42: loss1/loss16 = 0.0079175 (* 0.0272727 = 0.000215932 loss) | |
I0425 11:35:31.112416 22523 solver.cpp:245] Train net output #43: loss1/loss17 = 0.00363091 (* 0.0272727 = 9.90247e-05 loss) | |
I0425 11:35:31.112432 22523 solver.cpp:245] Train net output #44: loss1/loss18 = 0.000705396 (* 0.0272727 = 1.92381e-05 loss) | |
I0425 11:35:31.112445 22523 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00132142 (* 0.0272727 = 3.60387e-05 loss) | |
I0425 11:35:31.112459 22523 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000601922 (* 0.0272727 = 1.64161e-05 loss) | |
I0425 11:35:31.112481 22523 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000731236 (* 0.0272727 = 1.99428e-05 loss) | |
I0425 11:35:31.112495 22523 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000225948 (* 0.0272727 = 6.16222e-06 loss) | |
I0425 11:35:31.112507 22523 solver.cpp:245] Train net output #49: loss2/accuracy = 0.863636 | |
I0425 11:35:31.112519 22523 solver.cpp:245] Train net output #50: loss2/accuracy01 = 1 | |
I0425 11:35:31.112530 22523 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.875 | |
I0425 11:35:31.112547 22523 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.875 | |
I0425 11:35:31.112558 22523 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.625 | |
I0425 11:35:31.112571 22523 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.375 | |
I0425 11:35:31.112581 22523 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.75 | |
I0425 11:35:31.112593 22523 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.875 | |
I0425 11:35:31.112604 22523 solver.cpp:245] Train net output #57: loss2/accuracy08 = 1 | |
I0425 11:35:31.112615 22523 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875 | |
I0425 11:35:31.112627 22523 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1 | |
I0425 11:35:31.112638 22523 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1 | |
I0425 11:35:31.112649 22523 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1 | |
I0425 11:35:31.112660 22523 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1 | |
I0425 11:35:31.112671 22523 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1 | |
I0425 11:35:31.112684 22523 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0425 11:35:31.112694 22523 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0425 11:35:31.112705 22523 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0425 11:35:31.112716 22523 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0425 11:35:31.112727 22523 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0425 11:35:31.112738 22523 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0425 11:35:31.112749 22523 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0425 11:35:31.112761 22523 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0425 11:35:31.112771 22523 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.965909 | |
I0425 11:35:31.112787 22523 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.977273 | |
I0425 11:35:31.112802 22523 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.424219 (* 0.3 = 0.127266 loss) | |
I0425 11:35:31.112817 22523 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.123721 (* 0.3 = 0.0371164 loss) | |
I0425 11:35:31.112831 22523 solver.cpp:245] Train net output #76: loss2/loss01 = 0.168774 (* 0.0272727 = 0.00460292 loss) | |
I0425 11:35:31.112845 22523 solver.cpp:245] Train net output #77: loss2/loss02 = 0.403158 (* 0.0272727 = 0.0109952 loss) | |
I0425 11:35:31.112872 22523 solver.cpp:245] Train net output #78: loss2/loss03 = 0.69421 (* 0.0272727 = 0.018933 loss) | |
I0425 11:35:31.112887 22523 solver.cpp:245] Train net output #79: loss2/loss04 = 1.28825 (* 0.0272727 = 0.035134 loss) | |
I0425 11:35:31.112901 22523 solver.cpp:245] Train net output #80: loss2/loss05 = 1.84786 (* 0.0272727 = 0.0503962 loss) | |
I0425 11:35:31.112915 22523 solver.cpp:245] Train net output #81: loss2/loss06 = 0.700843 (* 0.0272727 = 0.0191139 loss) | |
I0425 11:35:31.112929 22523 solver.cpp:245] Train net output #82: loss2/loss07 = 0.510744 (* 0.0272727 = 0.0139294 loss) | |
I0425 11:35:31.112946 22523 solver.cpp:245] Train net output #83: loss2/loss08 = 0.217247 (* 0.0272727 = 0.00592492 loss) | |
I0425 11:35:31.112960 22523 solver.cpp:245] Train net output #84: loss2/loss09 = 0.304149 (* 0.0272727 = 0.00829496 loss) | |
I0425 11:35:31.112974 22523 solver.cpp:245] Train net output #85: loss2/loss10 = 0.08057 (* 0.0272727 = 0.00219737 loss) | |
I0425 11:35:31.112989 22523 solver.cpp:245] Train net output #86: loss2/loss11 = 0.0127946 (* 0.0272727 = 0.000348944 loss) | |
I0425 11:35:31.113003 22523 solver.cpp:245] Train net output #87: loss2/loss12 = 0.00771042 (* 0.0272727 = 0.000210284 loss) | |
I0425 11:35:31.113018 22523 solver.cpp:245] Train net output #88: loss2/loss13 = 0.00352505 (* 0.0272727 = 9.61379e-05 loss) | |
I0425 11:35:31.113032 22523 solver.cpp:245] Train net output #89: loss2/loss14 = 0.00263021 (* 0.0272727 = 7.1733e-05 loss) | |
I0425 11:35:31.113046 22523 solver.cpp:245] Train net output #90: loss2/loss15 = 0.00180101 (* 0.0272727 = 4.91184e-05 loss) | |
I0425 11:35:31.113060 22523 solver.cpp:245] Train net output #91: loss2/loss16 = 0.00052503 (* 0.0272727 = 1.4319e-05 loss) | |
I0425 11:35:31.113075 22523 solver.cpp:245] Train net output #92: loss2/loss17 = 0.000179456 (* 0.0272727 = 4.89425e-06 loss) | |
I0425 11:35:31.113090 22523 solver.cpp:245] Train net output #93: loss2/loss18 = 9.91091e-05 (* 0.0272727 = 2.70298e-06 loss) | |
I0425 11:35:31.113104 22523 solver.cpp:245] Train net output #94: loss2/loss19 = 0.000117441 (* 0.0272727 = 3.20293e-06 loss) | |
I0425 11:35:31.113118 22523 solver.cpp:245] Train net output #95: loss2/loss20 = 4.04377e-05 (* 0.0272727 = 1.10285e-06 loss) | |
I0425 11:35:31.113132 22523 solver.cpp:245] Train net output #96: loss2/loss21 = 5.80745e-05 (* 0.0272727 = 1.58385e-06 loss) | |
I0425 11:35:31.113147 22523 solver.cpp:245] Train net output #97: loss2/loss22 = 3.97768e-05 (* 0.0272727 = 1.08482e-06 loss) | |
I0425 11:35:31.113159 22523 solver.cpp:245] Train net output #98: loss3/accuracy = 0.977273 | |
I0425 11:35:31.113171 22523 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1 | |
I0425 11:35:31.113183 22523 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1 | |
I0425 11:35:31.113194 22523 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1 | |
I0425 11:35:31.113206 22523 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1 | |
I0425 11:35:31.113217 22523 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875 | |
I0425 11:35:31.113229 22523 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.75 | |
I0425 11:35:31.113240 22523 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75 | |
I0425 11:35:31.113252 22523 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1 | |
I0425 11:35:31.113263 22523 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1 | |
I0425 11:35:31.113275 22523 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1 | |
I0425 11:35:31.113286 22523 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1 | |
I0425 11:35:31.113296 22523 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1 | |
I0425 11:35:31.113308 22523 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1 | |
I0425 11:35:31.113319 22523 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1 | |
I0425 11:35:31.113330 22523 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0425 11:35:31.113343 22523 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0425 11:35:31.113364 22523 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0425 11:35:31.113378 22523 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0425 11:35:31.113389 22523 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0425 11:35:31.113400 22523 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0425 11:35:31.113411 22523 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0425 11:35:31.113422 22523 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0425 11:35:31.113435 22523 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.988636 | |
I0425 11:35:31.113446 22523 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 1 | |
I0425 11:35:31.113459 22523 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.136668 (* 1 = 0.136668 loss) | |
I0425 11:35:31.113473 22523 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.0436835 (* 1 = 0.0436835 loss) | |
I0425 11:35:31.113488 22523 solver.cpp:245] Train net output #125: loss3/loss01 = 0.0417291 (* 0.0909091 = 0.00379355 loss) | |
I0425 11:35:31.113502 22523 solver.cpp:245] Train net output #126: loss3/loss02 = 0.0403868 (* 0.0909091 = 0.00367152 loss) | |
I0425 11:35:31.113517 22523 solver.cpp:245] Train net output #127: loss3/loss03 = 0.0289974 (* 0.0909091 = 0.00263613 loss) | |
I0425 11:35:31.113530 22523 solver.cpp:245] Train net output #128: loss3/loss04 = 0.113009 (* 0.0909091 = 0.0102735 loss) | |
I0425 11:35:31.113544 22523 solver.cpp:245] Train net output #129: loss3/loss05 = 0.244796 (* 0.0909091 = 0.0222542 loss) | |
I0425 11:35:31.113559 22523 solver.cpp:245] Train net output #130: loss3/loss06 = 0.41887 (* 0.0909091 = 0.0380791 loss) | |
I0425 11:35:31.113572 22523 solver.cpp:245] Train net output #131: loss3/loss07 = 0.266099 (* 0.0909091 = 0.0241908 loss) | |
I0425 11:35:31.113586 22523 solver.cpp:245] Train net output #132: loss3/loss08 = 0.121596 (* 0.0909091 = 0.0110542 loss) | |
I0425 11:35:31.113600 22523 solver.cpp:245] Train net output #133: loss3/loss09 = 0.144922 (* 0.0909091 = 0.0131747 loss) | |
I0425 11:35:31.113615 22523 solver.cpp:245] Train net output #134: loss3/loss10 = 0.0300495 (* 0.0909091 = 0.00273178 loss) | |
I0425 11:35:31.113628 22523 solver.cpp:245] Train net output #135: loss3/loss11 = 0.00342361 (* 0.0909091 = 0.000311237 loss) | |
I0425 11:35:31.113642 22523 solver.cpp:245] Train net output #136: loss3/loss12 = 0.00145225 (* 0.0909091 = 0.000132023 loss) | |
I0425 11:35:31.113656 22523 solver.cpp:245] Train net output #137: loss3/loss13 = 0.00126537 (* 0.0909091 = 0.000115034 loss) | |
I0425 11:35:31.113672 22523 solver.cpp:245] Train net output #138: loss3/loss14 = 0.000798955 (* 0.0909091 = 7.26323e-05 loss) | |
I0425 11:35:31.113685 22523 solver.cpp:245] Train net output #139: loss3/loss15 = 0.000677681 (* 0.0909091 = 6.16074e-05 loss) | |
I0425 11:35:31.113700 22523 solver.cpp:245] Train net output #140: loss3/loss16 = 0.000353121 (* 0.0909091 = 3.21019e-05 loss) | |
I0425 11:35:31.113714 22523 solver.cpp:245] Train net output #141: loss3/loss17 = 0.000152311 (* 0.0909091 = 1.38465e-05 loss) | |
I0425 11:35:31.113729 22523 solver.cpp:245] Train net output #142: loss3/loss18 = 0.000133168 (* 0.0909091 = 1.21062e-05 loss) | |
I0425 11:35:31.113742 22523 solver.cpp:245] Train net output #143: loss3/loss19 = 6.98463e-05 (* 0.0909091 = 6.34967e-06 loss) | |
I0425 11:35:31.113756 22523 solver.cpp:245] Train net output #144: loss3/loss20 = 4.20629e-05 (* 0.0909091 = 3.8239e-06 loss) | |
I0425 11:35:31.113771 22523 solver.cpp:245] Train net output #145: loss3/loss21 = 1.70773e-05 (* 0.0909091 = 1.55248e-06 loss) | |
I0425 11:35:31.113785 22523 solver.cpp:245] Train net output #146: loss3/loss22 = 5.14095e-06 (* 0.0909091 = 4.67359e-07 loss) | |
I0425 11:35:31.113797 22523 solver.cpp:245] Train net output #147: total_accuracy = 0.75 | |
I0425 11:35:31.113809 22523 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.625 | |
I0425 11:35:31.113834 22523 solver.cpp:245] Train net output #149: total_confidence = 0.674628 | |
I0425 11:35:31.113845 22523 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.565019 | |
I0425 11:35:31.113860 22523 sgd_solver.cpp:106] Iteration 7500, lr = 0.01 | |
I0425 11:40:23.542709 22523 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 30.68 > 30) by scale factor 0.977835 | |
I0425 11:41:12.413755 22523 solver.cpp:229] Iteration 8000, loss = 3.2285 | |
I0425 11:41:12.413878 22523 solver.cpp:245] Train net output #0: loss1/accuracy = 0.487805 | |
I0425 11:41:12.413898 22523 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75 | |
I0425 11:41:12.413911 22523 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.625 | |
I0425 11:41:12.413923 22523 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.5 | |
I0425 11:41:12.413938 22523 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.25 | |
I0425 11:41:12.413950 22523 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.375 | |
I0425 11:41:12.413962 22523 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.625 | |
I0425 11:41:12.413975 22523 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.875 | |
I0425 11:41:12.413986 22523 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875 | |
I0425 11:41:12.413998 22523 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875 | |
I0425 11:41:12.414010 22523 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875 | |
I0425 11:41:12.414021 22523 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.875 | |
I0425 11:41:12.414033 22523 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.875 | |
I0425 11:41:12.414046 22523 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.875 | |
I0425 11:41:12.414057 22523 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.875 | |
I0425 11:41:12.414068 22523 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0425 11:41:12.414080 22523 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0425 11:41:12.414093 22523 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0425 11:41:12.414104 22523 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0425 11:41:12.414115 22523 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0425 11:41:12.414126 22523 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0425 11:41:12.414139 22523 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0425 11:41:12.414149 22523 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0425 11:41:12.414160 22523 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.829545 | |
I0425 11:41:12.414172 22523 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.682927 | |
I0425 11:41:12.414189 22523 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.70565 (* 0.3 = 0.511694 loss) | |
I0425 11:41:12.414204 22523 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.584163 (* 0.3 = 0.175249 loss) | |
I0425 11:41:12.414225 22523 solver.cpp:245] Train net output #27: loss1/loss01 = 0.658037 (* 0.0272727 = 0.0179465 loss) | |
I0425 11:41:12.414239 22523 solver.cpp:245] Train net output #28: loss1/loss02 = 1.18513 (* 0.0272727 = 0.0323218 loss) | |
I0425 11:41:12.414253 22523 solver.cpp:245] Train net output #29: loss1/loss03 = 1.62639 (* 0.0272727 = 0.0443561 loss) | |
I0425 11:41:12.414270 22523 solver.cpp:245] Train net output #30: loss1/loss04 = 1.5481 (* 0.0272727 = 0.0422208 loss) | |
I0425 11:41:12.414293 22523 solver.cpp:245] Train net output #31: loss1/loss05 = 1.76229 (* 0.0272727 = 0.0480624 loss) | |
I0425 11:41:12.414306 22523 solver.cpp:245] Train net output #32: loss1/loss06 = 1.40407 (* 0.0272727 = 0.0382928 loss) | |
I0425 11:41:12.414321 22523 solver.cpp:245] Train net output #33: loss1/loss07 = 0.630835 (* 0.0272727 = 0.0172046 loss) | |
I0425 11:41:12.414335 22523 solver.cpp:245] Train net output #34: loss1/loss08 = 0.596189 (* 0.0272727 = 0.0162597 loss) | |
I0425 11:41:12.414350 22523 solver.cpp:245] Train net output #35: loss1/loss09 = 0.623587 (* 0.0272727 = 0.0170069 loss) | |
I0425 11:41:12.414363 22523 solver.cpp:245] Train net output #36: loss1/loss10 = 0.44373 (* 0.0272727 = 0.0121017 loss) | |
I0425 11:41:12.414377 22523 solver.cpp:245] Train net output #37: loss1/loss11 = 0.626302 (* 0.0272727 = 0.017081 loss) | |
I0425 11:41:12.414391 22523 solver.cpp:245] Train net output #38: loss1/loss12 = 0.72369 (* 0.0272727 = 0.019737 loss) | |
I0425 11:41:12.414423 22523 solver.cpp:245] Train net output #39: loss1/loss13 = 0.84451 (* 0.0272727 = 0.0230321 loss) | |
I0425 11:41:12.414439 22523 solver.cpp:245] Train net output #40: loss1/loss14 = 0.687196 (* 0.0272727 = 0.0187417 loss) | |
I0425 11:41:12.414454 22523 solver.cpp:245] Train net output #41: loss1/loss15 = 0.00302313 (* 0.0272727 = 8.24491e-05 loss) | |
I0425 11:41:12.414469 22523 solver.cpp:245] Train net output #42: loss1/loss16 = 0.00128053 (* 0.0272727 = 3.49235e-05 loss) | |
I0425 11:41:12.414482 22523 solver.cpp:245] Train net output #43: loss1/loss17 = 0.000207114 (* 0.0272727 = 5.64856e-06 loss) | |
I0425 11:41:12.414496 22523 solver.cpp:245] Train net output #44: loss1/loss18 = 8.63142e-05 (* 0.0272727 = 2.35402e-06 loss) | |
I0425 11:41:12.414510 22523 solver.cpp:245] Train net output #45: loss1/loss19 = 4.4148e-05 (* 0.0272727 = 1.20404e-06 loss) | |
I0425 11:41:12.414525 22523 solver.cpp:245] Train net output #46: loss1/loss20 = 2.93055e-05 (* 0.0272727 = 7.99242e-07 loss) | |
I0425 11:41:12.414538 22523 solver.cpp:245] Train net output #47: loss1/loss21 = 1.46929e-05 (* 0.0272727 = 4.00716e-07 loss) | |
I0425 11:41:12.414552 22523 solver.cpp:245] Train net output #48: loss1/loss22 = 1.4976e-05 (* 0.0272727 = 4.08438e-07 loss) | |
I0425 11:41:12.414564 22523 solver.cpp:245] Train net output #49: loss2/accuracy = 0.707317 | |
I0425 11:41:12.414577 22523 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875 | |
I0425 11:41:12.414588 22523 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.875 | |
I0425 11:41:12.414599 22523 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.5 | |
I0425 11:41:12.414610 22523 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.5 | |
I0425 11:41:12.414623 22523 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.625 | |
I0425 11:41:12.414633 22523 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.75 | |
I0425 11:41:12.414645 22523 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.875 | |
I0425 11:41:12.414656 22523 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875 | |
I0425 11:41:12.414669 22523 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875 | |
I0425 11:41:12.414680 22523 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875 | |
I0425 11:41:12.414692 22523 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.875 | |
I0425 11:41:12.414703 22523 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.875 | |
I0425 11:41:12.414715 22523 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.875 | |
I0425 11:41:12.414726 22523 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.875 | |
I0425 11:41:12.414738 22523 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0425 11:41:12.414749 22523 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0425 11:41:12.414760 22523 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0425 11:41:12.414772 22523 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0425 11:41:12.414779 22523 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0425 11:41:12.414788 22523 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0425 11:41:12.414799 22523 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0425 11:41:12.414810 22523 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0425 11:41:12.414822 22523 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.903409 | |
I0425 11:41:12.414834 22523 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.853659 | |
I0425 11:41:12.414847 22523 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.09055 (* 0.3 = 0.327164 loss) | |
I0425 11:41:12.414861 22523 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.362363 (* 0.3 = 0.108709 loss) | |
I0425 11:41:12.414875 22523 solver.cpp:245] Train net output #76: loss2/loss01 = 0.171701 (* 0.0272727 = 0.00468276 loss) | |
I0425 11:41:12.414890 22523 solver.cpp:245] Train net output #77: loss2/loss02 = 0.183685 (* 0.0272727 = 0.00500959 loss) | |
I0425 11:41:12.414916 22523 solver.cpp:245] Train net output #78: loss2/loss03 = 1.1344 (* 0.0272727 = 0.0309383 loss) | |
I0425 11:41:12.414930 22523 solver.cpp:245] Train net output #79: loss2/loss04 = 1.09901 (* 0.0272727 = 0.0299729 loss) | |
I0425 11:41:12.414944 22523 solver.cpp:245] Train net output #80: loss2/loss05 = 1.22402 (* 0.0272727 = 0.0333823 loss) | |
I0425 11:41:12.414958 22523 solver.cpp:245] Train net output #81: loss2/loss06 = 0.719183 (* 0.0272727 = 0.0196141 loss) | |
I0425 11:41:12.414973 22523 solver.cpp:245] Train net output #82: loss2/loss07 = 0.289025 (* 0.0272727 = 0.0078825 loss) | |
I0425 11:41:12.414989 22523 solver.cpp:245] Train net output #83: loss2/loss08 = 0.480871 (* 0.0272727 = 0.0131147 loss) | |
I0425 11:41:12.415004 22523 solver.cpp:245] Train net output #84: loss2/loss09 = 0.572918 (* 0.0272727 = 0.015625 loss) | |
I0425 11:41:12.415017 22523 solver.cpp:245] Train net output #85: loss2/loss10 = 0.414776 (* 0.0272727 = 0.0113121 loss) | |
I0425 11:41:12.415031 22523 solver.cpp:245] Train net output #86: loss2/loss11 = 0.750935 (* 0.0272727 = 0.02048 loss) | |
I0425 11:41:12.415045 22523 solver.cpp:245] Train net output #87: loss2/loss12 = 0.933405 (* 0.0272727 = 0.0254565 loss) | |
I0425 11:41:12.415060 22523 solver.cpp:245] Train net output #88: loss2/loss13 = 1.05988 (* 0.0272727 = 0.0289057 loss) | |
I0425 11:41:12.415072 22523 solver.cpp:245] Train net output #89: loss2/loss14 = 0.781334 (* 0.0272727 = 0.0213091 loss) | |
I0425 11:41:12.415086 22523 solver.cpp:245] Train net output #90: loss2/loss15 = 0.000377655 (* 0.0272727 = 1.02997e-05 loss) | |
I0425 11:41:12.415101 22523 solver.cpp:245] Train net output #91: loss2/loss16 = 6.26329e-05 (* 0.0272727 = 1.70817e-06 loss) | |
I0425 11:41:12.415114 22523 solver.cpp:245] Train net output #92: loss2/loss17 = 8.31493e-06 (* 0.0272727 = 2.26771e-07 loss) | |
I0425 11:41:12.415128 22523 solver.cpp:245] Train net output #93: loss2/loss18 = 1.77324e-06 (* 0.0272727 = 4.83611e-08 loss) | |
I0425 11:41:12.415143 22523 solver.cpp:245] Train net output #94: loss2/loss19 = 1.90736e-06 (* 0.0272727 = 5.20188e-08 loss) | |
I0425 11:41:12.415156 22523 solver.cpp:245] Train net output #95: loss2/loss20 = 7.30158e-07 (* 0.0272727 = 1.99134e-08 loss) | |
I0425 11:41:12.415170 22523 solver.cpp:245] Train net output #96: loss2/loss21 = 4.91739e-07 (* 0.0272727 = 1.34111e-08 loss) | |
I0425 11:41:12.415184 22523 solver.cpp:245] Train net output #97: loss2/loss22 = 1.63913e-07 (* 0.0272727 = 4.47035e-09 loss) | |
I0425 11:41:12.415195 22523 solver.cpp:245] Train net output #98: loss3/accuracy = 0.804878 | |
I0425 11:41:12.415207 22523 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1 | |
I0425 11:41:12.415220 22523 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1 | |
I0425 11:41:12.415230 22523 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.875 | |
I0425 11:41:12.415241 22523 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875 | |
I0425 11:41:12.415253 22523 solver.cpp:245] Train net output #103: loss3/accuracy05 = 1 | |
I0425 11:41:12.415264 22523 solver.cpp:245] Train net output #104: loss3/accuracy06 = 1 | |
I0425 11:41:12.415277 22523 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875 | |
I0425 11:41:12.415287 22523 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875 | |
I0425 11:41:12.415299 22523 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875 | |
I0425 11:41:12.415310 22523 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875 | |
I0425 11:41:12.415339 22523 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.875 | |
I0425 11:41:12.415354 22523 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.875 | |
I0425 11:41:12.415366 22523 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.875 | |
I0425 11:41:12.415379 22523 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.875 | |
I0425 11:41:12.415390 22523 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0425 11:41:12.415413 22523 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0425 11:41:12.415426 22523 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0425 11:41:12.415438 22523 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0425 11:41:12.415449 22523 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0425 11:41:12.415462 22523 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0425 11:41:12.415472 22523 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0425 11:41:12.415484 22523 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0425 11:41:12.415495 22523 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.954545 | |
I0425 11:41:12.415508 22523 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.829268 | |
I0425 11:41:12.415521 22523 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.815622 (* 1 = 0.815622 loss) | |
I0425 11:41:12.415535 22523 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.192985 (* 1 = 0.192985 loss) | |
I0425 11:41:12.415549 22523 solver.cpp:245] Train net output #125: loss3/loss01 = 0.0211376 (* 0.0909091 = 0.0019216 loss) | |
I0425 11:41:12.415565 22523 solver.cpp:245] Train net output #126: loss3/loss02 = 0.00367676 (* 0.0909091 = 0.000334251 loss) | |
I0425 11:41:12.415578 22523 solver.cpp:245] Train net output #127: loss3/loss03 = 0.208188 (* 0.0909091 = 0.0189262 loss) | |
I0425 11:41:12.415592 22523 solver.cpp:245] Train net output #128: loss3/loss04 = 0.251988 (* 0.0909091 = 0.022908 loss) | |
I0425 11:41:12.415606 22523 solver.cpp:245] Train net output #129: loss3/loss05 = 0.145949 (* 0.0909091 = 0.0132681 loss) | |
I0425 11:41:12.415619 22523 solver.cpp:245] Train net output #130: loss3/loss06 = 0.115432 (* 0.0909091 = 0.0104938 loss) | |
I0425 11:41:12.415633 22523 solver.cpp:245] Train net output #131: loss3/loss07 = 0.287401 (* 0.0909091 = 0.0261274 loss) | |
I0425 11:41:12.415647 22523 solver.cpp:245] Train net output #132: loss3/loss08 = 0.326495 (* 0.0909091 = 0.0296814 loss) | |
I0425 11:41:12.415662 22523 solver.cpp:245] Train net output #133: loss3/loss09 = 0.661524 (* 0.0909091 = 0.0601386 loss) | |
I0425 11:41:12.415675 22523 solver.cpp:245] Train net output #134: loss3/loss10 = 0.448003 (* 0.0909091 = 0.0407275 loss) | |
I0425 11:41:12.415689 22523 solver.cpp:245] Train net output #135: loss3/loss11 = 0.434705 (* 0.0909091 = 0.0395186 loss) | |
I0425 11:41:12.415702 22523 solver.cpp:245] Train net output #136: loss3/loss12 = 0.466557 (* 0.0909091 = 0.0424143 loss) | |
I0425 11:41:12.415716 22523 solver.cpp:245] Train net output #137: loss3/loss13 = 0.571797 (* 0.0909091 = 0.0519815 loss) | |
I0425 11:41:12.415729 22523 solver.cpp:245] Train net output #138: loss3/loss14 = 0.475947 (* 0.0909091 = 0.0432679 loss) | |
I0425 11:41:12.415745 22523 solver.cpp:245] Train net output #139: loss3/loss15 = 0.00702464 (* 0.0909091 = 0.000638603 loss) | |
I0425 11:41:12.415758 22523 solver.cpp:245] Train net output #140: loss3/loss16 = 0.00324664 (* 0.0909091 = 0.00029515 loss) | |
I0425 11:41:12.415772 22523 solver.cpp:245] Train net output #141: loss3/loss17 = 0.000933577 (* 0.0909091 = 8.48707e-05 loss) | |
I0425 11:41:12.415786 22523 solver.cpp:245] Train net output #142: loss3/loss18 = 0.000401128 (* 0.0909091 = 3.64662e-05 loss) | |
I0425 11:41:12.415801 22523 solver.cpp:245] Train net output #143: loss3/loss19 = 0.000226805 (* 0.0909091 = 2.06187e-05 loss) | |
I0425 11:41:12.415814 22523 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000113526 (* 0.0909091 = 1.03205e-05 loss) | |
I0425 11:41:12.415828 22523 solver.cpp:245] Train net output #145: loss3/loss21 = 2.20545e-05 (* 0.0909091 = 2.00496e-06 loss) | |
I0425 11:41:12.415843 22523 solver.cpp:245] Train net output #146: loss3/loss22 = 5.46877e-06 (* 0.0909091 = 4.97161e-07 loss) | |
I0425 11:41:12.415855 22523 solver.cpp:245] Train net output #147: total_accuracy = 0.875 | |
I0425 11:41:12.415868 22523 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.75 | |
I0425 11:41:12.415889 22523 solver.cpp:245] Train net output #149: total_confidence = 0.700141 | |
I0425 11:41:12.415901 22523 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.707156 | |
I0425 11:41:12.415916 22523 sgd_solver.cpp:106] Iteration 8000, lr = 0.01 | |
I0425 11:46:53.591812 22523 solver.cpp:229] Iteration 8500, loss = 3.07631 | |
I0425 11:46:53.591998 22523 solver.cpp:245] Train net output #0: loss1/accuracy = 0.608696 | |
I0425 11:46:53.592020 22523 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.5 | |
I0425 11:46:53.592033 22523 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.875 | |
I0425 11:46:53.592046 22523 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375 | |
I0425 11:46:53.592058 22523 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.5 | |
I0425 11:46:53.592070 22523 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.625 | |
I0425 11:46:53.592082 22523 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.5 | |
I0425 11:46:53.592094 22523 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.875 | |
I0425 11:46:53.592108 22523 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875 | |
I0425 11:46:53.592119 22523 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875 | |
I0425 11:46:53.592131 22523 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875 | |
I0425 11:46:53.592144 22523 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.875 | |
I0425 11:46:53.592155 22523 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1 | |
I0425 11:46:53.592167 22523 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1 | |
I0425 11:46:53.592180 22523 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1 | |
I0425 11:46:53.592191 22523 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0425 11:46:53.592206 22523 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0425 11:46:53.592218 22523 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0425 11:46:53.592231 22523 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0425 11:46:53.592242 22523 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0425 11:46:53.592253 22523 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0425 11:46:53.592265 22523 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0425 11:46:53.592278 22523 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0425 11:46:53.592289 22523 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.875 | |
I0425 11:46:53.592301 22523 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.804348 | |
I0425 11:46:53.592319 22523 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.32829 (* 0.3 = 0.398487 loss) | |
I0425 11:46:53.592334 22523 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.434417 (* 0.3 = 0.130325 loss) | |
I0425 11:46:53.592350 22523 solver.cpp:245] Train net output #27: loss1/loss01 = 1.64479 (* 0.0272727 = 0.0448578 loss) | |
I0425 11:46:53.592363 22523 solver.cpp:245] Train net output #28: loss1/loss02 = 1.07785 (* 0.0272727 = 0.0293958 loss) | |
I0425 11:46:53.592377 22523 solver.cpp:245] Train net output #29: loss1/loss03 = 1.62206 (* 0.0272727 = 0.0442381 loss) | |
I0425 11:46:53.592391 22523 solver.cpp:245] Train net output #30: loss1/loss04 = 1.28104 (* 0.0272727 = 0.0349375 loss) | |
I0425 11:46:53.592406 22523 solver.cpp:245] Train net output #31: loss1/loss05 = 1.13644 (* 0.0272727 = 0.0309939 loss) | |
I0425 11:46:53.592419 22523 solver.cpp:245] Train net output #32: loss1/loss06 = 1.34479 (* 0.0272727 = 0.036676 loss) | |
I0425 11:46:53.592433 22523 solver.cpp:245] Train net output #33: loss1/loss07 = 0.594184 (* 0.0272727 = 0.016205 loss) | |
I0425 11:46:53.592447 22523 solver.cpp:245] Train net output #34: loss1/loss08 = 0.4225 (* 0.0272727 = 0.0115227 loss) | |
I0425 11:46:53.592463 22523 solver.cpp:245] Train net output #35: loss1/loss09 = 0.475882 (* 0.0272727 = 0.0129786 loss) | |
I0425 11:46:53.592476 22523 solver.cpp:245] Train net output #36: loss1/loss10 = 0.384332 (* 0.0272727 = 0.0104818 loss) | |
I0425 11:46:53.592490 22523 solver.cpp:245] Train net output #37: loss1/loss11 = 0.524516 (* 0.0272727 = 0.014305 loss) | |
I0425 11:46:53.592505 22523 solver.cpp:245] Train net output #38: loss1/loss12 = 0.058823 (* 0.0272727 = 0.00160426 loss) | |
I0425 11:46:53.592520 22523 solver.cpp:245] Train net output #39: loss1/loss13 = 0.0455361 (* 0.0272727 = 0.00124189 loss) | |
I0425 11:46:53.592555 22523 solver.cpp:245] Train net output #40: loss1/loss14 = 0.0361837 (* 0.0272727 = 0.000986829 loss) | |
I0425 11:46:53.592572 22523 solver.cpp:245] Train net output #41: loss1/loss15 = 0.0181794 (* 0.0272727 = 0.000495802 loss) | |
I0425 11:46:53.592586 22523 solver.cpp:245] Train net output #42: loss1/loss16 = 0.00797412 (* 0.0272727 = 0.000217476 loss) | |
I0425 11:46:53.592608 22523 solver.cpp:245] Train net output #43: loss1/loss17 = 0.00624448 (* 0.0272727 = 0.000170304 loss) | |
I0425 11:46:53.592623 22523 solver.cpp:245] Train net output #44: loss1/loss18 = 0.00287144 (* 0.0272727 = 7.83121e-05 loss) | |
I0425 11:46:53.592638 22523 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00162192 (* 0.0272727 = 4.42342e-05 loss) | |
I0425 11:46:53.592651 22523 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000391019 (* 0.0272727 = 1.06642e-05 loss) | |
I0425 11:46:53.592670 22523 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000887103 (* 0.0272727 = 2.41937e-05 loss) | |
I0425 11:46:53.592684 22523 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000284614 (* 0.0272727 = 7.76221e-06 loss) | |
I0425 11:46:53.592697 22523 solver.cpp:245] Train net output #49: loss2/accuracy = 0.76087 | |
I0425 11:46:53.592710 22523 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.75 | |
I0425 11:46:53.592722 22523 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75 | |
I0425 11:46:53.592735 22523 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.75 | |
I0425 11:46:53.592746 22523 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.625 | |
I0425 11:46:53.592758 22523 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.625 | |
I0425 11:46:53.592770 22523 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.625 | |
I0425 11:46:53.592782 22523 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.875 | |
I0425 11:46:53.592794 22523 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875 | |
I0425 11:46:53.592806 22523 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875 | |
I0425 11:46:53.592818 22523 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875 | |
I0425 11:46:53.592830 22523 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.875 | |
I0425 11:46:53.592842 22523 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1 | |
I0425 11:46:53.592854 22523 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1 | |
I0425 11:46:53.592865 22523 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1 | |
I0425 11:46:53.592877 22523 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0425 11:46:53.592888 22523 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0425 11:46:53.592900 22523 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0425 11:46:53.592912 22523 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0425 11:46:53.592923 22523 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0425 11:46:53.592936 22523 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0425 11:46:53.592947 22523 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0425 11:46:53.592958 22523 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0425 11:46:53.592970 22523 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.903409 | |
I0425 11:46:53.592983 22523 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.891304 | |
I0425 11:46:53.592996 22523 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.821324 (* 0.3 = 0.246397 loss) | |
I0425 11:46:53.593017 22523 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.290102 (* 0.3 = 0.0870305 loss) | |
I0425 11:46:53.593032 22523 solver.cpp:245] Train net output #76: loss2/loss01 = 1.22641 (* 0.0272727 = 0.0334475 loss) | |
I0425 11:46:53.593046 22523 solver.cpp:245] Train net output #77: loss2/loss02 = 0.687575 (* 0.0272727 = 0.0187521 loss) | |
I0425 11:46:53.593072 22523 solver.cpp:245] Train net output #78: loss2/loss03 = 0.793983 (* 0.0272727 = 0.0216541 loss) | |
I0425 11:46:53.593088 22523 solver.cpp:245] Train net output #79: loss2/loss04 = 1.15656 (* 0.0272727 = 0.0315424 loss) | |
I0425 11:46:53.593102 22523 solver.cpp:245] Train net output #80: loss2/loss05 = 1.1208 (* 0.0272727 = 0.0305673 loss) | |
I0425 11:46:53.593116 22523 solver.cpp:245] Train net output #81: loss2/loss06 = 1.32731 (* 0.0272727 = 0.0361992 loss) | |
I0425 11:46:53.593130 22523 solver.cpp:245] Train net output #82: loss2/loss07 = 0.506609 (* 0.0272727 = 0.0138166 loss) | |
I0425 11:46:53.593145 22523 solver.cpp:245] Train net output #83: loss2/loss08 = 0.357603 (* 0.0272727 = 0.00975281 loss) | |
I0425 11:46:53.593159 22523 solver.cpp:245] Train net output #84: loss2/loss09 = 0.564837 (* 0.0272727 = 0.0154046 loss) | |
I0425 11:46:53.593173 22523 solver.cpp:245] Train net output #85: loss2/loss10 = 0.258094 (* 0.0272727 = 0.00703893 loss) | |
I0425 11:46:53.593188 22523 solver.cpp:245] Train net output #86: loss2/loss11 = 0.517765 (* 0.0272727 = 0.0141209 loss) | |
I0425 11:46:53.593202 22523 solver.cpp:245] Train net output #87: loss2/loss12 = 0.071177 (* 0.0272727 = 0.00194119 loss) | |
I0425 11:46:53.593217 22523 solver.cpp:245] Train net output #88: loss2/loss13 = 0.0246697 (* 0.0272727 = 0.00067281 loss) | |
I0425 11:46:53.593232 22523 solver.cpp:245] Train net output #89: loss2/loss14 = 0.00934684 (* 0.0272727 = 0.000254914 loss) | |
I0425 11:46:53.593246 22523 solver.cpp:245] Train net output #90: loss2/loss15 = 0.00633 (* 0.0272727 = 0.000172636 loss) | |
I0425 11:46:53.593263 22523 solver.cpp:245] Train net output #91: loss2/loss16 = 0.00460753 (* 0.0272727 = 0.00012566 loss) | |
I0425 11:46:53.593278 22523 solver.cpp:245] Train net output #92: loss2/loss17 = 0.000583286 (* 0.0272727 = 1.59078e-05 loss) | |
I0425 11:46:53.593292 22523 solver.cpp:245] Train net output #93: loss2/loss18 = 0.000687006 (* 0.0272727 = 1.87365e-05 loss) | |
I0425 11:46:53.593307 22523 solver.cpp:245] Train net output #94: loss2/loss19 = 0.000149204 (* 0.0272727 = 4.06921e-06 loss) | |
I0425 11:46:53.593322 22523 solver.cpp:245] Train net output #95: loss2/loss20 = 0.00013093 (* 0.0272727 = 3.57083e-06 loss) | |
I0425 11:46:53.593336 22523 solver.cpp:245] Train net output #96: loss2/loss21 = 0.000164251 (* 0.0272727 = 4.47959e-06 loss) | |
I0425 11:46:53.593350 22523 solver.cpp:245] Train net output #97: loss2/loss22 = 5.50197e-05 (* 0.0272727 = 1.50054e-06 loss) | |
I0425 11:46:53.593364 22523 solver.cpp:245] Train net output #98: loss3/accuracy = 0.869565 | |
I0425 11:46:53.593376 22523 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875 | |
I0425 11:46:53.593389 22523 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1 | |
I0425 11:46:53.593400 22523 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1 | |
I0425 11:46:53.593412 22523 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1 | |
I0425 11:46:53.593423 22523 solver.cpp:245] Train net output #103: loss3/accuracy05 = 1 | |
I0425 11:46:53.593436 22523 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.75 | |
I0425 11:46:53.593447 22523 solver.cpp:245] Train net output #105: loss3/accuracy07 = 1 | |
I0425 11:46:53.593459 22523 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1 | |
I0425 11:46:53.593472 22523 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875 | |
I0425 11:46:53.593483 22523 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875 | |
I0425 11:46:53.593495 22523 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.875 | |
I0425 11:46:53.593508 22523 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1 | |
I0425 11:46:53.593515 22523 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1 | |
I0425 11:46:53.593523 22523 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1 | |
I0425 11:46:53.593536 22523 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0425 11:46:53.593552 22523 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0425 11:46:53.593575 22523 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0425 11:46:53.593587 22523 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0425 11:46:53.593600 22523 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0425 11:46:53.593611 22523 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0425 11:46:53.593631 22523 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0425 11:46:53.593642 22523 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0425 11:46:53.593654 22523 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.965909 | |
I0425 11:46:53.593667 22523 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.934783 | |
I0425 11:46:53.593688 22523 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.373058 (* 1 = 0.373058 loss) | |
I0425 11:46:53.593703 22523 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.107532 (* 1 = 0.107532 loss) | |
I0425 11:46:53.593716 22523 solver.cpp:245] Train net output #125: loss3/loss01 = 0.324699 (* 0.0909091 = 0.0295181 loss) | |
I0425 11:46:53.593730 22523 solver.cpp:245] Train net output #126: loss3/loss02 = 0.199935 (* 0.0909091 = 0.0181759 loss) | |
I0425 11:46:53.593744 22523 solver.cpp:245] Train net output #127: loss3/loss03 = 0.126674 (* 0.0909091 = 0.0115158 loss) | |
I0425 11:46:53.593760 22523 solver.cpp:245] Train net output #128: loss3/loss04 = 0.086523 (* 0.0909091 = 0.00786573 loss) | |
I0425 11:46:53.593775 22523 solver.cpp:245] Train net output #129: loss3/loss05 = 0.193118 (* 0.0909091 = 0.0175562 loss) | |
I0425 11:46:53.593788 22523 solver.cpp:245] Train net output #130: loss3/loss06 = 0.677191 (* 0.0909091 = 0.0615628 loss) | |
I0425 11:46:53.593802 22523 solver.cpp:245] Train net output #131: loss3/loss07 = 0.235579 (* 0.0909091 = 0.0214163 loss) | |
I0425 11:46:53.593816 22523 solver.cpp:245] Train net output #132: loss3/loss08 = 0.22527 (* 0.0909091 = 0.0204791 loss) | |
I0425 11:46:53.593830 22523 solver.cpp:245] Train net output #133: loss3/loss09 = 0.36078 (* 0.0909091 = 0.0327981 loss) | |
I0425 11:46:53.593852 22523 solver.cpp:245] Train net output #134: loss3/loss10 = 0.248055 (* 0.0909091 = 0.0225505 loss) | |
I0425 11:46:53.593866 22523 solver.cpp:245] Train net output #135: loss3/loss11 = 0.537361 (* 0.0909091 = 0.048851 loss) | |
I0425 11:46:53.593880 22523 solver.cpp:245] Train net output #136: loss3/loss12 = 0.044475 (* 0.0909091 = 0.00404318 loss) | |
I0425 11:46:53.593895 22523 solver.cpp:245] Train net output #137: loss3/loss13 = 0.0123051 (* 0.0909091 = 0.00111865 loss) | |
I0425 11:46:53.593909 22523 solver.cpp:245] Train net output #138: loss3/loss14 = 0.00600407 (* 0.0909091 = 0.000545825 loss) | |
I0425 11:46:53.593924 22523 solver.cpp:245] Train net output #139: loss3/loss15 = 0.00286547 (* 0.0909091 = 0.000260497 loss) | |
I0425 11:46:53.593937 22523 solver.cpp:245] Train net output #140: loss3/loss16 = 0.00186132 (* 0.0909091 = 0.000169211 loss) | |
I0425 11:46:53.593951 22523 solver.cpp:245] Train net output #141: loss3/loss17 = 0.00181019 (* 0.0909091 = 0.000164563 loss) | |
I0425 11:46:53.593966 22523 solver.cpp:245] Train net output #142: loss3/loss18 = 0.000603704 (* 0.0909091 = 5.48822e-05 loss) | |
I0425 11:46:53.593979 22523 solver.cpp:245] Train net output #143: loss3/loss19 = 0.000502962 (* 0.0909091 = 4.57238e-05 loss) | |
I0425 11:46:53.593994 22523 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000329214 (* 0.0909091 = 2.99285e-05 loss) | |
I0425 11:46:53.594008 22523 solver.cpp:245] Train net output #145: loss3/loss21 = 0.000122236 (* 0.0909091 = 1.11123e-05 loss) | |
I0425 11:46:53.594023 22523 solver.cpp:245] Train net output #146: loss3/loss22 = 5.45162e-05 (* 0.0909091 = 4.95602e-06 loss) | |
I0425 11:46:53.594036 22523 solver.cpp:245] Train net output #147: total_accuracy = 0.75 | |
I0425 11:46:53.594048 22523 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.625 | |
I0425 11:46:53.594075 22523 solver.cpp:245] Train net output #149: total_confidence = 0.629441 | |
I0425 11:46:53.594089 22523 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.423382 | |
I0425 11:46:53.594105 22523 sgd_solver.cpp:106] Iteration 8500, lr = 0.01 | |
I0425 11:52:34.817062 22523 solver.cpp:229] Iteration 9000, loss = 3.19371 | |
I0425 11:52:34.817222 22523 solver.cpp:245] Train net output #0: loss1/accuracy = 0.368421 | |
I0425 11:52:34.817244 22523 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.625 | |
I0425 11:52:34.817256 22523 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5 | |
I0425 11:52:34.817268 22523 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375 | |
I0425 11:52:34.817281 22523 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.125 | |
I0425 11:52:34.817292 22523 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.25 | |
I0425 11:52:34.817304 22523 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.75 | |
I0425 11:52:34.817317 22523 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.875 | |
I0425 11:52:34.817328 22523 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875 | |
I0425 11:52:34.817340 22523 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1 | |
I0425 11:52:34.817351 22523 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1 | |
I0425 11:52:34.817363 22523 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1 | |
I0425 11:52:34.817374 22523 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1 | |
I0425 11:52:34.817386 22523 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1 | |
I0425 11:52:34.817399 22523 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1 | |
I0425 11:52:34.817409 22523 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0425 11:52:34.817421 22523 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0425 11:52:34.817432 22523 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0425 11:52:34.817445 22523 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0425 11:52:34.817456 22523 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0425 11:52:34.817467 22523 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0425 11:52:34.817478 22523 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0425 11:52:34.817489 22523 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0425 11:52:34.817502 22523 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.835227 | |
I0425 11:52:34.817513 22523 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.763158 | |
I0425 11:52:34.817530 22523 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.88037 (* 0.3 = 0.564112 loss) | |
I0425 11:52:34.817545 22523 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.509736 (* 0.3 = 0.152921 loss) | |
I0425 11:52:34.817560 22523 solver.cpp:245] Train net output #27: loss1/loss01 = 1.12413 (* 0.0272727 = 0.0306581 loss) | |
I0425 11:52:34.817574 22523 solver.cpp:245] Train net output #28: loss1/loss02 = 2.01683 (* 0.0272727 = 0.0550045 loss) | |
I0425 11:52:34.817589 22523 solver.cpp:245] Train net output #29: loss1/loss03 = 2.41091 (* 0.0272727 = 0.0657521 loss) | |
I0425 11:52:34.817602 22523 solver.cpp:245] Train net output #30: loss1/loss04 = 2.75543 (* 0.0272727 = 0.0751482 loss) | |
I0425 11:52:34.817616 22523 solver.cpp:245] Train net output #31: loss1/loss05 = 2.2065 (* 0.0272727 = 0.0601773 loss) | |
I0425 11:52:34.817631 22523 solver.cpp:245] Train net output #32: loss1/loss06 = 0.846667 (* 0.0272727 = 0.0230909 loss) | |
I0425 11:52:34.817644 22523 solver.cpp:245] Train net output #33: loss1/loss07 = 0.802138 (* 0.0272727 = 0.0218765 loss) | |
I0425 11:52:34.817658 22523 solver.cpp:245] Train net output #34: loss1/loss08 = 0.655848 (* 0.0272727 = 0.0178868 loss) | |
I0425 11:52:34.817673 22523 solver.cpp:245] Train net output #35: loss1/loss09 = 0.015358 (* 0.0272727 = 0.000418854 loss) | |
I0425 11:52:34.817687 22523 solver.cpp:245] Train net output #36: loss1/loss10 = 0.00734701 (* 0.0272727 = 0.000200373 loss) | |
I0425 11:52:34.817703 22523 solver.cpp:245] Train net output #37: loss1/loss11 = 0.00478911 (* 0.0272727 = 0.000130612 loss) | |
I0425 11:52:34.817716 22523 solver.cpp:245] Train net output #38: loss1/loss12 = 0.00277754 (* 0.0272727 = 7.5751e-05 loss) | |
I0425 11:52:34.817749 22523 solver.cpp:245] Train net output #39: loss1/loss13 = 0.00191177 (* 0.0272727 = 5.21392e-05 loss) | |
I0425 11:52:34.817765 22523 solver.cpp:245] Train net output #40: loss1/loss14 = 0.00222408 (* 0.0272727 = 6.06566e-05 loss) | |
I0425 11:52:34.817780 22523 solver.cpp:245] Train net output #41: loss1/loss15 = 0.0018259 (* 0.0272727 = 4.97973e-05 loss) | |
I0425 11:52:34.817795 22523 solver.cpp:245] Train net output #42: loss1/loss16 = 0.000563027 (* 0.0272727 = 1.53553e-05 loss) | |
I0425 11:52:34.817808 22523 solver.cpp:245] Train net output #43: loss1/loss17 = 0.000174488 (* 0.0272727 = 4.75877e-06 loss) | |
I0425 11:52:34.817822 22523 solver.cpp:245] Train net output #44: loss1/loss18 = 6.92621e-05 (* 0.0272727 = 1.88897e-06 loss) | |
I0425 11:52:34.817837 22523 solver.cpp:245] Train net output #45: loss1/loss19 = 4.0841e-05 (* 0.0272727 = 1.11385e-06 loss) | |
I0425 11:52:34.817852 22523 solver.cpp:245] Train net output #46: loss1/loss20 = 2.1399e-05 (* 0.0272727 = 5.83609e-07 loss) | |
I0425 11:52:34.817867 22523 solver.cpp:245] Train net output #47: loss1/loss21 = 7.00362e-06 (* 0.0272727 = 1.91008e-07 loss) | |
I0425 11:52:34.817880 22523 solver.cpp:245] Train net output #48: loss1/loss22 = 7.12285e-06 (* 0.0272727 = 1.94259e-07 loss) | |
I0425 11:52:34.817893 22523 solver.cpp:245] Train net output #49: loss2/accuracy = 0.736842 | |
I0425 11:52:34.817904 22523 solver.cpp:245] Train net output #50: loss2/accuracy01 = 1 | |
I0425 11:52:34.817916 22523 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75 | |
I0425 11:52:34.817929 22523 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.75 | |
I0425 11:52:34.817940 22523 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.375 | |
I0425 11:52:34.817951 22523 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.375 | |
I0425 11:52:34.817963 22523 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.625 | |
I0425 11:52:34.817975 22523 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.875 | |
I0425 11:52:34.817986 22523 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875 | |
I0425 11:52:34.817998 22523 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1 | |
I0425 11:52:34.818009 22523 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1 | |
I0425 11:52:34.818022 22523 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1 | |
I0425 11:52:34.818032 22523 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1 | |
I0425 11:52:34.818043 22523 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1 | |
I0425 11:52:34.818055 22523 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1 | |
I0425 11:52:34.818066 22523 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0425 11:52:34.818078 22523 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0425 11:52:34.818089 22523 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0425 11:52:34.818099 22523 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0425 11:52:34.818111 22523 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0425 11:52:34.818122 22523 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0425 11:52:34.818133 22523 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0425 11:52:34.818145 22523 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0425 11:52:34.818156 22523 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.926136 | |
I0425 11:52:34.818167 22523 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.868421 | |
I0425 11:52:34.818181 22523 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.878985 (* 0.3 = 0.263695 loss) | |
I0425 11:52:34.818195 22523 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.256014 (* 0.3 = 0.0768043 loss) | |
I0425 11:52:34.818214 22523 solver.cpp:245] Train net output #76: loss2/loss01 = 0.18008 (* 0.0272727 = 0.00491128 loss) | |
I0425 11:52:34.818229 22523 solver.cpp:245] Train net output #77: loss2/loss02 = 0.914392 (* 0.0272727 = 0.024938 loss) | |
I0425 11:52:34.818255 22523 solver.cpp:245] Train net output #78: loss2/loss03 = 0.765474 (* 0.0272727 = 0.0208766 loss) | |
I0425 11:52:34.818271 22523 solver.cpp:245] Train net output #79: loss2/loss04 = 2.4814 (* 0.0272727 = 0.0676744 loss) | |
I0425 11:52:34.818285 22523 solver.cpp:245] Train net output #80: loss2/loss05 = 2.67497 (* 0.0272727 = 0.0729538 loss) | |
I0425 11:52:34.818300 22523 solver.cpp:245] Train net output #81: loss2/loss06 = 0.854993 (* 0.0272727 = 0.023318 loss) | |
I0425 11:52:34.818313 22523 solver.cpp:245] Train net output #82: loss2/loss07 = 0.295727 (* 0.0272727 = 0.00806529 loss) | |
I0425 11:52:34.818327 22523 solver.cpp:245] Train net output #83: loss2/loss08 = 0.64349 (* 0.0272727 = 0.0175497 loss) | |
I0425 11:52:34.818342 22523 solver.cpp:245] Train net output #84: loss2/loss09 = 0.0154281 (* 0.0272727 = 0.000420766 loss) | |
I0425 11:52:34.818356 22523 solver.cpp:245] Train net output #85: loss2/loss10 = 0.00580888 (* 0.0272727 = 0.000158424 loss) | |
I0425 11:52:34.818370 22523 solver.cpp:245] Train net output #86: loss2/loss11 = 0.00153527 (* 0.0272727 = 4.1871e-05 loss) | |
I0425 11:52:34.818385 22523 solver.cpp:245] Train net output #87: loss2/loss12 = 0.00154929 (* 0.0272727 = 4.22534e-05 loss) | |
I0425 11:52:34.818399 22523 solver.cpp:245] Train net output #88: loss2/loss13 = 0.000713921 (* 0.0272727 = 1.94706e-05 loss) | |
I0425 11:52:34.818413 22523 solver.cpp:245] Train net output #89: loss2/loss14 = 0.000430244 (* 0.0272727 = 1.17339e-05 loss) | |
I0425 11:52:34.818428 22523 solver.cpp:245] Train net output #90: loss2/loss15 = 0.00023142 (* 0.0272727 = 6.31145e-06 loss) | |
I0425 11:52:34.818442 22523 solver.cpp:245] Train net output #91: loss2/loss16 = 6.91105e-05 (* 0.0272727 = 1.88483e-06 loss) | |
I0425 11:52:34.818456 22523 solver.cpp:245] Train net output #92: loss2/loss17 = 2.26805e-05 (* 0.0272727 = 6.1856e-07 loss) | |
I0425 11:52:34.818470 22523 solver.cpp:245] Train net output #93: loss2/loss18 = 1.93431e-05 (* 0.0272727 = 5.27539e-07 loss) | |
I0425 11:52:34.818485 22523 solver.cpp:245] Train net output #94: loss2/loss19 = 3.15908e-06 (* 0.0272727 = 8.61568e-08 loss) | |
I0425 11:52:34.818500 22523 solver.cpp:245] Train net output #95: loss2/loss20 = 1.77325e-06 (* 0.0272727 = 4.83614e-08 loss) | |
I0425 11:52:34.818513 22523 solver.cpp:245] Train net output #96: loss2/loss21 = 8.34467e-07 (* 0.0272727 = 2.27582e-08 loss) | |
I0425 11:52:34.818527 22523 solver.cpp:245] Train net output #97: loss2/loss22 = 1.08779e-06 (* 0.0272727 = 2.9667e-08 loss) | |
I0425 11:52:34.818541 22523 solver.cpp:245] Train net output #98: loss3/accuracy = 0.894737 | |
I0425 11:52:34.818552 22523 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1 | |
I0425 11:52:34.818563 22523 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875 | |
I0425 11:52:34.818575 22523 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.875 | |
I0425 11:52:34.818586 22523 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.75 | |
I0425 11:52:34.818598 22523 solver.cpp:245] Train net output #103: loss3/accuracy05 = 1 | |
I0425 11:52:34.818610 22523 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.875 | |
I0425 11:52:34.818621 22523 solver.cpp:245] Train net output #105: loss3/accuracy07 = 1 | |
I0425 11:52:34.818634 22523 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1 | |
I0425 11:52:34.818645 22523 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1 | |
I0425 11:52:34.818656 22523 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1 | |
I0425 11:52:34.818667 22523 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1 | |
I0425 11:52:34.818680 22523 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1 | |
I0425 11:52:34.818691 22523 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1 | |
I0425 11:52:34.818701 22523 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1 | |
I0425 11:52:34.818712 22523 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0425 11:52:34.818734 22523 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0425 11:52:34.818747 22523 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0425 11:52:34.818758 22523 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0425 11:52:34.818770 22523 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0425 11:52:34.818781 22523 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0425 11:52:34.818792 22523 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0425 11:52:34.818804 22523 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0425 11:52:34.818815 22523 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.965909 | |
I0425 11:52:34.818827 22523 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.921053 | |
I0425 11:52:34.818841 22523 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.42624 (* 1 = 0.42624 loss) | |
I0425 11:52:34.818856 22523 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.141741 (* 1 = 0.141741 loss) | |
I0425 11:52:34.818869 22523 solver.cpp:245] Train net output #125: loss3/loss01 = 0.175118 (* 0.0909091 = 0.0159198 loss) | |
I0425 11:52:34.818884 22523 solver.cpp:245] Train net output #126: loss3/loss02 = 0.571865 (* 0.0909091 = 0.0519877 loss) | |
I0425 11:52:34.818898 22523 solver.cpp:245] Train net output #127: loss3/loss03 = 0.466731 (* 0.0909091 = 0.0424301 loss) | |
I0425 11:52:34.818912 22523 solver.cpp:245] Train net output #128: loss3/loss04 = 1.28514 (* 0.0909091 = 0.116831 loss) | |
I0425 11:52:34.818927 22523 solver.cpp:245] Train net output #129: loss3/loss05 = 0.187516 (* 0.0909091 = 0.0170469 loss) | |
I0425 11:52:34.818940 22523 solver.cpp:245] Train net output #130: loss3/loss06 = 0.203895 (* 0.0909091 = 0.0185359 loss) | |
I0425 11:52:34.818954 22523 solver.cpp:245] Train net output #131: loss3/loss07 = 0.158453 (* 0.0909091 = 0.0144048 loss) | |
I0425 11:52:34.818969 22523 solver.cpp:245] Train net output #132: loss3/loss08 = 0.231792 (* 0.0909091 = 0.021072 loss) | |
I0425 11:52:34.818982 22523 solver.cpp:245] Train net output #133: loss3/loss09 = 0.0464629 (* 0.0909091 = 0.0042239 loss) | |
I0425 11:52:34.818997 22523 solver.cpp:245] Train net output #134: loss3/loss10 = 0.0177981 (* 0.0909091 = 0.00161801 loss) | |
I0425 11:52:34.819011 22523 solver.cpp:245] Train net output #135: loss3/loss11 = 0.0221401 (* 0.0909091 = 0.00201274 loss) | |
I0425 11:52:34.819026 22523 solver.cpp:245] Train net output #136: loss3/loss12 = 0.0183029 (* 0.0909091 = 0.0016639 loss) | |
I0425 11:52:34.819041 22523 solver.cpp:245] Train net output #137: loss3/loss13 = 0.0143994 (* 0.0909091 = 0.00130904 loss) | |
I0425 11:52:34.819056 22523 solver.cpp:245] Train net output #138: loss3/loss14 = 0.01619 (* 0.0909091 = 0.00147182 loss) | |
I0425 11:52:34.819069 22523 solver.cpp:245] Train net output #139: loss3/loss15 = 0.00984008 (* 0.0909091 = 0.000894553 loss) | |
I0425 11:52:34.819083 22523 solver.cpp:245] Train net output #140: loss3/loss16 = 0.0049765 (* 0.0909091 = 0.000452409 loss) | |
I0425 11:52:34.819097 22523 solver.cpp:245] Train net output #141: loss3/loss17 = 0.00155227 (* 0.0909091 = 0.000141115 loss) | |
I0425 11:52:34.819111 22523 solver.cpp:245] Train net output #142: loss3/loss18 = 0.00122902 (* 0.0909091 = 0.000111729 loss) | |
I0425 11:52:34.819125 22523 solver.cpp:245] Train net output #143: loss3/loss19 = 0.000879711 (* 0.0909091 = 7.99737e-05 loss) | |
I0425 11:52:34.819140 22523 solver.cpp:245] Train net output #144: loss3/loss20 = 0.00119845 (* 0.0909091 = 0.00010895 loss) | |
I0425 11:52:34.819154 22523 solver.cpp:245] Train net output #145: loss3/loss21 = 0.0002855 (* 0.0909091 = 2.59546e-05 loss) | |
I0425 11:52:34.819169 22523 solver.cpp:245] Train net output #146: loss3/loss22 = 0.000126188 (* 0.0909091 = 1.14716e-05 loss) | |
I0425 11:52:34.819181 22523 solver.cpp:245] Train net output #147: total_accuracy = 0.75 | |
I0425 11:52:34.819192 22523 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.625 | |
I0425 11:52:34.819214 22523 solver.cpp:245] Train net output #149: total_confidence = 0.625321 | |
I0425 11:52:34.819227 22523 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.551076 | |
I0425 11:52:34.819242 22523 sgd_solver.cpp:106] Iteration 9000, lr = 0.01 | |
I0425 11:58:16.116564 22523 solver.cpp:229] Iteration 9500, loss = 3.14958 | |
I0425 11:58:16.116669 22523 solver.cpp:245] Train net output #0: loss1/accuracy = 0.711111 | |
I0425 11:58:16.116690 22523 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75 | |
I0425 11:58:16.116703 22523 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.625 | |
I0425 11:58:16.116715 22523 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.25 | |
I0425 11:58:16.116727 22523 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.125 | |
I0425 11:58:16.116739 22523 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.375 | |
I0425 11:58:16.116750 22523 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.625 | |
I0425 11:58:16.116762 22523 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.875 | |
I0425 11:58:16.116775 22523 solver.cpp:245] Train net output #8: loss1/accuracy08 = 1 | |
I0425 11:58:16.116786 22523 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1 | |
I0425 11:58:16.116797 22523 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1 | |
I0425 11:58:16.116809 22523 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1 | |
I0425 11:58:16.116825 22523 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1 | |
I0425 11:58:16.116837 22523 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1 | |
I0425 11:58:16.116848 22523 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1 | |
I0425 11:58:16.116859 22523 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0425 11:58:16.116871 22523 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0425 11:58:16.116883 22523 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0425 11:58:16.116894 22523 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0425 11:58:16.116907 22523 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0425 11:58:16.116919 22523 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0425 11:58:16.116930 22523 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0425 11:58:16.116942 22523 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0425 11:58:16.116955 22523 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.909091 | |
I0425 11:58:16.116966 22523 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.8 | |
I0425 11:58:16.116983 22523 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.15682 (* 0.3 = 0.347045 loss) | |
I0425 11:58:16.116998 22523 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.348879 (* 0.3 = 0.104664 loss) | |
I0425 11:58:16.117012 22523 solver.cpp:245] Train net output #27: loss1/loss01 = 1.74141 (* 0.0272727 = 0.0474929 loss) | |
I0425 11:58:16.117027 22523 solver.cpp:245] Train net output #28: loss1/loss02 = 1.16105 (* 0.0272727 = 0.0316649 loss) | |
I0425 11:58:16.117040 22523 solver.cpp:245] Train net output #29: loss1/loss03 = 2.34236 (* 0.0272727 = 0.0638826 loss) | |
I0425 11:58:16.117054 22523 solver.cpp:245] Train net output #30: loss1/loss04 = 2.3279 (* 0.0272727 = 0.0634882 loss) | |
I0425 11:58:16.117069 22523 solver.cpp:245] Train net output #31: loss1/loss05 = 1.673 (* 0.0272727 = 0.0456272 loss) | |
I0425 11:58:16.117084 22523 solver.cpp:245] Train net output #32: loss1/loss06 = 1.22847 (* 0.0272727 = 0.0335037 loss) | |
I0425 11:58:16.117097 22523 solver.cpp:245] Train net output #33: loss1/loss07 = 0.672877 (* 0.0272727 = 0.0183512 loss) | |
I0425 11:58:16.117111 22523 solver.cpp:245] Train net output #34: loss1/loss08 = 0.190145 (* 0.0272727 = 0.00518576 loss) | |
I0425 11:58:16.117126 22523 solver.cpp:245] Train net output #35: loss1/loss09 = 0.0367259 (* 0.0272727 = 0.00100162 loss) | |
I0425 11:58:16.117141 22523 solver.cpp:245] Train net output #36: loss1/loss10 = 0.0227904 (* 0.0272727 = 0.000621557 loss) | |
I0425 11:58:16.117156 22523 solver.cpp:245] Train net output #37: loss1/loss11 = 0.0319842 (* 0.0272727 = 0.000872295 loss) | |
I0425 11:58:16.117169 22523 solver.cpp:245] Train net output #38: loss1/loss12 = 0.0154939 (* 0.0272727 = 0.00042256 loss) | |
I0425 11:58:16.117183 22523 solver.cpp:245] Train net output #39: loss1/loss13 = 0.008014 (* 0.0272727 = 0.000218564 loss) | |
I0425 11:58:16.117215 22523 solver.cpp:245] Train net output #40: loss1/loss14 = 0.00925032 (* 0.0272727 = 0.000252281 loss) | |
I0425 11:58:16.117230 22523 solver.cpp:245] Train net output #41: loss1/loss15 = 0.00647285 (* 0.0272727 = 0.000176532 loss) | |
I0425 11:58:16.117245 22523 solver.cpp:245] Train net output #42: loss1/loss16 = 0.00666347 (* 0.0272727 = 0.000181731 loss) | |
I0425 11:58:16.117259 22523 solver.cpp:245] Train net output #43: loss1/loss17 = 0.00135767 (* 0.0272727 = 3.70273e-05 loss) | |
I0425 11:58:16.117274 22523 solver.cpp:245] Train net output #44: loss1/loss18 = 0.000787145 (* 0.0272727 = 2.14676e-05 loss) | |
I0425 11:58:16.117290 22523 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00038428 (* 0.0272727 = 1.04804e-05 loss) | |
I0425 11:58:16.117303 22523 solver.cpp:245] Train net output #46: loss1/loss20 = 0.00027218 (* 0.0272727 = 7.4231e-06 loss) | |
I0425 11:58:16.117317 22523 solver.cpp:245] Train net output #47: loss1/loss21 = 0.00024543 (* 0.0272727 = 6.69355e-06 loss) | |
I0425 11:58:16.117331 22523 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000227986 (* 0.0272727 = 6.21779e-06 loss) | |
I0425 11:58:16.117344 22523 solver.cpp:245] Train net output #49: loss2/accuracy = 0.755556 | |
I0425 11:58:16.117357 22523 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.75 | |
I0425 11:58:16.117367 22523 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75 | |
I0425 11:58:16.117379 22523 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.5 | |
I0425 11:58:16.117396 22523 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.25 | |
I0425 11:58:16.117408 22523 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.625 | |
I0425 11:58:16.117420 22523 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.875 | |
I0425 11:58:16.117431 22523 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.875 | |
I0425 11:58:16.117451 22523 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875 | |
I0425 11:58:16.117463 22523 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1 | |
I0425 11:58:16.117475 22523 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1 | |
I0425 11:58:16.117486 22523 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1 | |
I0425 11:58:16.117496 22523 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1 | |
I0425 11:58:16.117507 22523 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1 | |
I0425 11:58:16.117519 22523 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1 | |
I0425 11:58:16.117530 22523 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0425 11:58:16.117542 22523 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0425 11:58:16.117552 22523 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0425 11:58:16.117564 22523 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0425 11:58:16.117575 22523 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0425 11:58:16.117591 22523 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0425 11:58:16.117602 22523 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0425 11:58:16.117614 22523 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0425 11:58:16.117625 22523 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.920455 | |
I0425 11:58:16.117637 22523 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.888889 | |
I0425 11:58:16.117650 22523 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.891026 (* 0.3 = 0.267308 loss) | |
I0425 11:58:16.117666 22523 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.301797 (* 0.3 = 0.0905391 loss) | |
I0425 11:58:16.117684 22523 solver.cpp:245] Train net output #76: loss2/loss01 = 1.06364 (* 0.0272727 = 0.0290084 loss) | |
I0425 11:58:16.117698 22523 solver.cpp:245] Train net output #77: loss2/loss02 = 0.772726 (* 0.0272727 = 0.0210743 loss) | |
I0425 11:58:16.117723 22523 solver.cpp:245] Train net output #78: loss2/loss03 = 1.30409 (* 0.0272727 = 0.035566 loss) | |
I0425 11:58:16.117738 22523 solver.cpp:245] Train net output #79: loss2/loss04 = 2.15991 (* 0.0272727 = 0.0589067 loss) | |
I0425 11:58:16.117753 22523 solver.cpp:245] Train net output #80: loss2/loss05 = 1.51955 (* 0.0272727 = 0.0414422 loss) | |
I0425 11:58:16.117766 22523 solver.cpp:245] Train net output #81: loss2/loss06 = 0.715967 (* 0.0272727 = 0.0195264 loss) | |
I0425 11:58:16.117780 22523 solver.cpp:245] Train net output #82: loss2/loss07 = 0.57602 (* 0.0272727 = 0.0157096 loss) | |
I0425 11:58:16.117794 22523 solver.cpp:245] Train net output #83: loss2/loss08 = 0.334977 (* 0.0272727 = 0.00913575 loss) | |
I0425 11:58:16.117808 22523 solver.cpp:245] Train net output #84: loss2/loss09 = 0.0998563 (* 0.0272727 = 0.00272335 loss) | |
I0425 11:58:16.117823 22523 solver.cpp:245] Train net output #85: loss2/loss10 = 0.0593304 (* 0.0272727 = 0.0016181 loss) | |
I0425 11:58:16.117837 22523 solver.cpp:245] Train net output #86: loss2/loss11 = 0.0373738 (* 0.0272727 = 0.00101929 loss) | |
I0425 11:58:16.117851 22523 solver.cpp:245] Train net output #87: loss2/loss12 = 0.0392262 (* 0.0272727 = 0.00106981 loss) | |
I0425 11:58:16.117869 22523 solver.cpp:245] Train net output #88: loss2/loss13 = 0.00476609 (* 0.0272727 = 0.000129984 loss) | |
I0425 11:58:16.117884 22523 solver.cpp:245] Train net output #89: loss2/loss14 = 0.00252214 (* 0.0272727 = 6.87857e-05 loss) | |
I0425 11:58:16.117899 22523 solver.cpp:245] Train net output #90: loss2/loss15 = 0.0014327 (* 0.0272727 = 3.90736e-05 loss) | |
I0425 11:58:16.117913 22523 solver.cpp:245] Train net output #91: loss2/loss16 = 0.00119768 (* 0.0272727 = 3.2664e-05 loss) | |
I0425 11:58:16.117928 22523 solver.cpp:245] Train net output #92: loss2/loss17 = 0.00056134 (* 0.0272727 = 1.53093e-05 loss) | |
I0425 11:58:16.117943 22523 solver.cpp:245] Train net output #93: loss2/loss18 = 0.000126587 (* 0.0272727 = 3.45238e-06 loss) | |
I0425 11:58:16.117959 22523 solver.cpp:245] Train net output #94: loss2/loss19 = 5.14285e-05 (* 0.0272727 = 1.4026e-06 loss) | |
I0425 11:58:16.117972 22523 solver.cpp:245] Train net output #95: loss2/loss20 = 2.41709e-05 (* 0.0272727 = 6.59206e-07 loss) | |
I0425 11:58:16.117987 22523 solver.cpp:245] Train net output #96: loss2/loss21 = 2.08177e-05 (* 0.0272727 = 5.67754e-07 loss) | |
I0425 11:58:16.118001 22523 solver.cpp:245] Train net output #97: loss2/loss22 = 9.23887e-06 (* 0.0272727 = 2.51969e-07 loss) | |
I0425 11:58:16.118015 22523 solver.cpp:245] Train net output #98: loss3/accuracy = 0.955556 | |
I0425 11:58:16.118026 22523 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875 | |
I0425 11:58:16.118037 22523 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875 | |
I0425 11:58:16.118049 22523 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1 | |
I0425 11:58:16.118060 22523 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.75 | |
I0425 11:58:16.118072 22523 solver.cpp:245] Train net output #103: loss3/accuracy05 = 1 | |
I0425 11:58:16.118083 22523 solver.cpp:245] Train net output #104: loss3/accuracy06 = 1 | |
I0425 11:58:16.118095 22523 solver.cpp:245] Train net output #105: loss3/accuracy07 = 1 | |
I0425 11:58:16.118106 22523 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1 | |
I0425 11:58:16.118118 22523 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1 | |
I0425 11:58:16.118129 22523 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1 | |
I0425 11:58:16.118140 22523 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1 | |
I0425 11:58:16.118152 22523 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1 | |
I0425 11:58:16.118163 22523 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1 | |
I0425 11:58:16.118175 22523 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1 | |
I0425 11:58:16.118185 22523 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0425 11:58:16.118197 22523 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0425 11:58:16.118219 22523 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0425 11:58:16.118232 22523 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0425 11:58:16.118244 22523 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0425 11:58:16.118255 22523 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0425 11:58:16.118268 22523 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0425 11:58:16.118278 22523 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0425 11:58:16.118289 22523 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.988636 | |
I0425 11:58:16.118301 22523 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 1 | |
I0425 11:58:16.118315 22523 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.244285 (* 1 = 0.244285 loss) | |
I0425 11:58:16.118329 22523 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.0672968 (* 1 = 0.0672968 loss) | |
I0425 11:58:16.118343 22523 solver.cpp:245] Train net output #125: loss3/loss01 = 0.868918 (* 0.0909091 = 0.0789925 loss) | |
I0425 11:58:16.118356 22523 solver.cpp:245] Train net output #126: loss3/loss02 = 0.249275 (* 0.0909091 = 0.0226614 loss) | |
I0425 11:58:16.118371 22523 solver.cpp:245] Train net output #127: loss3/loss03 = 0.237139 (* 0.0909091 = 0.0215581 loss) | |
I0425 11:58:16.118384 22523 solver.cpp:245] Train net output #128: loss3/loss04 = 0.718381 (* 0.0909091 = 0.0653073 loss) | |
I0425 11:58:16.118398 22523 solver.cpp:245] Train net output #129: loss3/loss05 = 0.421445 (* 0.0909091 = 0.0383132 loss) | |
I0425 11:58:16.118412 22523 solver.cpp:245] Train net output #130: loss3/loss06 = 0.418574 (* 0.0909091 = 0.0380522 loss) | |
I0425 11:58:16.118427 22523 solver.cpp:245] Train net output #131: loss3/loss07 = 0.208585 (* 0.0909091 = 0.0189623 loss) | |
I0425 11:58:16.118440 22523 solver.cpp:245] Train net output #132: loss3/loss08 = 0.13808 (* 0.0909091 = 0.0125527 loss) | |
I0425 11:58:16.118454 22523 solver.cpp:245] Train net output #133: loss3/loss09 = 0.0123816 (* 0.0909091 = 0.0011256 loss) | |
I0425 11:58:16.118468 22523 solver.cpp:245] Train net output #134: loss3/loss10 = 0.00351136 (* 0.0909091 = 0.000319214 loss) | |
I0425 11:58:16.118482 22523 solver.cpp:245] Train net output #135: loss3/loss11 = 0.00346769 (* 0.0909091 = 0.000315244 loss) | |
I0425 11:58:16.118497 22523 solver.cpp:245] Train net output #136: loss3/loss12 = 0.00195072 (* 0.0909091 = 0.000177338 loss) | |
I0425 11:58:16.118511 22523 solver.cpp:245] Train net output #137: loss3/loss13 = 0.000938944 (* 0.0909091 = 8.53586e-05 loss) | |
I0425 11:58:16.118525 22523 solver.cpp:245] Train net output #138: loss3/loss14 = 0.000584185 (* 0.0909091 = 5.31077e-05 loss) | |
I0425 11:58:16.118541 22523 solver.cpp:245] Train net output #139: loss3/loss15 = 0.00026772 (* 0.0909091 = 2.43382e-05 loss) | |
I0425 11:58:16.118554 22523 solver.cpp:245] Train net output #140: loss3/loss16 = 0.000172376 (* 0.0909091 = 1.56706e-05 loss) | |
I0425 11:58:16.118568 22523 solver.cpp:245] Train net output #141: loss3/loss17 = 5.15109e-05 (* 0.0909091 = 4.68281e-06 loss) | |
I0425 11:58:16.118582 22523 solver.cpp:245] Train net output #142: loss3/loss18 = 5.10132e-05 (* 0.0909091 = 4.63756e-06 loss) | |
I0425 11:58:16.118597 22523 solver.cpp:245] Train net output #143: loss3/loss19 = 3.50135e-05 (* 0.0909091 = 3.18305e-06 loss) | |
I0425 11:58:16.118612 22523 solver.cpp:245] Train net output #144: loss3/loss20 = 1.80164e-05 (* 0.0909091 = 1.63785e-06 loss) | |
I0425 11:58:16.118625 22523 solver.cpp:245] Train net output #145: loss3/loss21 = 6.79505e-06 (* 0.0909091 = 6.17732e-07 loss) | |
I0425 11:58:16.118640 22523 solver.cpp:245] Train net output #146: loss3/loss22 = 1.2815e-06 (* 0.0909091 = 1.165e-07 loss) | |
I0425 11:58:16.118652 22523 solver.cpp:245] Train net output #147: total_accuracy = 0.75 | |
I0425 11:58:16.118664 22523 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.5 | |
I0425 11:58:16.118685 22523 solver.cpp:245] Train net output #149: total_confidence = 0.70095 | |
I0425 11:58:16.118698 22523 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.369621 | |
I0425 11:58:16.118715 22523 sgd_solver.cpp:106] Iteration 9500, lr = 0.01 | |
I0425 12:03:56.950549 22523 solver.cpp:456] Snapshotting to binary proto file /mnt/snapshots/mixed_lstm10_bn_iter_10000.caffemodel | |
I0425 12:03:57.669136 22523 sgd_solver.cpp:273] Snapshotting solver state to binary proto file /mnt/snapshots/mixed_lstm10_bn_iter_10000.solverstate | |
I0425 12:03:58.003831 22523 solver.cpp:338] Iteration 10000, Testing net (#0) | |
I0425 12:04:49.654670 22523 solver.cpp:393] Test loss: 1.47625 | |
I0425 12:04:49.654788 22523 solver.cpp:406] Test net output #0: loss1/accuracy = 0.768785 | |
I0425 12:04:49.654806 22523 solver.cpp:406] Test net output #1: loss1/accuracy01 = 0.888 | |
I0425 12:04:49.654819 22523 solver.cpp:406] Test net output #2: loss1/accuracy02 = 0.687 | |
I0425 12:04:49.654831 22523 solver.cpp:406] Test net output #3: loss1/accuracy03 = 0.508 | |
I0425 12:04:49.654844 22523 solver.cpp:406] Test net output #4: loss1/accuracy04 = 0.512 | |
I0425 12:04:49.654856 22523 solver.cpp:406] Test net output #5: loss1/accuracy05 = 0.597 | |
I0425 12:04:49.654868 22523 solver.cpp:406] Test net output #6: loss1/accuracy06 = 0.672 | |
I0425 12:04:49.654881 22523 solver.cpp:406] Test net output #7: loss1/accuracy07 = 0.827 | |
I0425 12:04:49.654893 22523 solver.cpp:406] Test net output #8: loss1/accuracy08 = 0.919 | |
I0425 12:04:49.654906 22523 solver.cpp:406] Test net output #9: loss1/accuracy09 = 0.983 | |
I0425 12:04:49.654917 22523 solver.cpp:406] Test net output #10: loss1/accuracy10 = 0.994 | |
I0425 12:04:49.654929 22523 solver.cpp:406] Test net output #11: loss1/accuracy11 = 0.998 | |
I0425 12:04:49.654942 22523 solver.cpp:406] Test net output #12: loss1/accuracy12 = 0.999 | |
I0425 12:04:49.654953 22523 solver.cpp:406] Test net output #13: loss1/accuracy13 = 0.999 | |
I0425 12:04:49.654965 22523 solver.cpp:406] Test net output #14: loss1/accuracy14 = 1 | |
I0425 12:04:49.654978 22523 solver.cpp:406] Test net output #15: loss1/accuracy15 = 1 | |
I0425 12:04:49.654989 22523 solver.cpp:406] Test net output #16: loss1/accuracy16 = 1 | |
I0425 12:04:49.655010 22523 solver.cpp:406] Test net output #17: loss1/accuracy17 = 1 | |
I0425 12:04:49.655021 22523 solver.cpp:406] Test net output #18: loss1/accuracy18 = 1 | |
I0425 12:04:49.655033 22523 solver.cpp:406] Test net output #19: loss1/accuracy19 = 1 | |
I0425 12:04:49.655045 22523 solver.cpp:406] Test net output #20: loss1/accuracy20 = 1 | |
I0425 12:04:49.655066 22523 solver.cpp:406] Test net output #21: loss1/accuracy21 = 1 | |
I0425 12:04:49.655077 22523 solver.cpp:406] Test net output #22: loss1/accuracy22 = 1 | |
I0425 12:04:49.655088 22523 solver.cpp:406] Test net output #23: loss1/accuracy_incl_empty = 0.924775 | |
I0425 12:04:49.655100 22523 solver.cpp:406] Test net output #24: loss1/accuracy_top3 = 0.926826 | |
I0425 12:04:49.655118 22523 solver.cpp:406] Test net output #25: loss1/cross_entropy_loss = 0.775221 (* 0.3 = 0.232566 loss) | |
I0425 12:04:49.655133 22523 solver.cpp:406] Test net output #26: loss1/cross_entropy_loss_incl_empty = 0.248959 (* 0.3 = 0.0746876 loss) | |
I0425 12:04:49.655148 22523 solver.cpp:406] Test net output #27: loss1/loss01 = 0.490815 (* 0.0272727 = 0.0133859 loss) | |
I0425 12:04:49.655163 22523 solver.cpp:406] Test net output #28: loss1/loss02 = 1.10652 (* 0.0272727 = 0.0301777 loss) | |
I0425 12:04:49.655176 22523 solver.cpp:406] Test net output #29: loss1/loss03 = 1.44869 (* 0.0272727 = 0.0395097 loss) | |
I0425 12:04:49.655191 22523 solver.cpp:406] Test net output #30: loss1/loss04 = 1.46959 (* 0.0272727 = 0.0400797 loss) | |
I0425 12:04:49.655208 22523 solver.cpp:406] Test net output #31: loss1/loss05 = 1.28637 (* 0.0272727 = 0.0350829 loss) | |
I0425 12:04:49.655223 22523 solver.cpp:406] Test net output #32: loss1/loss06 = 0.993339 (* 0.0272727 = 0.0270911 loss) | |
I0425 12:04:49.655237 22523 solver.cpp:406] Test net output #33: loss1/loss07 = 0.593548 (* 0.0272727 = 0.0161877 loss) | |
I0425 12:04:49.655252 22523 solver.cpp:406] Test net output #34: loss1/loss08 = 0.285546 (* 0.0272727 = 0.00778762 loss) | |
I0425 12:04:49.655267 22523 solver.cpp:406] Test net output #35: loss1/loss09 = 0.0654881 (* 0.0272727 = 0.00178604 loss) | |
I0425 12:04:49.655282 22523 solver.cpp:406] Test net output #36: loss1/loss10 = 0.0304204 (* 0.0272727 = 0.000829649 loss) | |
I0425 12:04:49.655297 22523 solver.cpp:406] Test net output #37: loss1/loss11 = 0.018252 (* 0.0272727 = 0.000497781 loss) | |
I0425 12:04:49.655311 22523 solver.cpp:406] Test net output #38: loss1/loss12 = 0.0122222 (* 0.0272727 = 0.000333333 loss) | |
I0425 12:04:49.655325 22523 solver.cpp:406] Test net output #39: loss1/loss13 = 0.00939786 (* 0.0272727 = 0.000256305 loss) | |
I0425 12:04:49.655382 22523 solver.cpp:406] Test net output #40: loss1/loss14 = 0.00652634 (* 0.0272727 = 0.000177991 loss) | |
I0425 12:04:49.655398 22523 solver.cpp:406] Test net output #41: loss1/loss15 = 0.00484498 (* 0.0272727 = 0.000132136 loss) | |
I0425 12:04:49.655421 22523 solver.cpp:406] Test net output #42: loss1/loss16 = 0.00274248 (* 0.0272727 = 7.47948e-05 loss) | |
I0425 12:04:49.655436 22523 solver.cpp:406] Test net output #43: loss1/loss17 = 0.00095269 (* 0.0272727 = 2.59824e-05 loss) | |
I0425 12:04:49.655450 22523 solver.cpp:406] Test net output #44: loss1/loss18 = 0.000494065 (* 0.0272727 = 1.34745e-05 loss) | |
I0425 12:04:49.655464 22523 solver.cpp:406] Test net output #45: loss1/loss19 = 0.000232738 (* 0.0272727 = 6.3474e-06 loss) | |
I0425 12:04:49.655479 22523 solver.cpp:406] Test net output #46: loss1/loss20 = 0.000140502 (* 0.0272727 = 3.83186e-06 loss) | |
I0425 12:04:49.655493 22523 solver.cpp:406] Test net output #47: loss1/loss21 = 9.86916e-05 (* 0.0272727 = 2.69159e-06 loss) | |
I0425 12:04:49.655508 22523 solver.cpp:406] Test net output #48: loss1/loss22 = 7.0533e-05 (* 0.0272727 = 1.92363e-06 loss) | |
I0425 12:04:49.655519 22523 solver.cpp:406] Test net output #49: loss2/accuracy = 0.88664 | |
I0425 12:04:49.655532 22523 solver.cpp:406] Test net output #50: loss2/accuracy01 = 0.948 | |
I0425 12:04:49.655544 22523 solver.cpp:406] Test net output #51: loss2/accuracy02 = 0.879 | |
I0425 12:04:49.655555 22523 solver.cpp:406] Test net output #52: loss2/accuracy03 = 0.732 | |
I0425 12:04:49.655566 22523 solver.cpp:406] Test net output #53: loss2/accuracy04 = 0.634 | |
I0425 12:04:49.655583 22523 solver.cpp:406] Test net output #54: loss2/accuracy05 = 0.658 | |
I0425 12:04:49.655594 22523 solver.cpp:406] Test net output #55: loss2/accuracy06 = 0.729 | |
I0425 12:04:49.655606 22523 solver.cpp:406] Test net output #56: loss2/accuracy07 = 0.874 | |
I0425 12:04:49.655617 22523 solver.cpp:406] Test net output #57: loss2/accuracy08 = 0.927 | |
I0425 12:04:49.655628 22523 solver.cpp:406] Test net output #58: loss2/accuracy09 = 0.982 | |
I0425 12:04:49.655645 22523 solver.cpp:406] Test net output #59: loss2/accuracy10 = 0.994 | |
I0425 12:04:49.655658 22523 solver.cpp:406] Test net output #60: loss2/accuracy11 = 0.998 | |
I0425 12:04:49.655668 22523 solver.cpp:406] Test net output #61: loss2/accuracy12 = 0.999 | |
I0425 12:04:49.655680 22523 solver.cpp:406] Test net output #62: loss2/accuracy13 = 0.999 | |
I0425 12:04:49.655691 22523 solver.cpp:406] Test net output #63: loss2/accuracy14 = 0.999 | |
I0425 12:04:49.655704 22523 solver.cpp:406] Test net output #64: loss2/accuracy15 = 0.999 | |
I0425 12:04:49.655714 22523 solver.cpp:406] Test net output #65: loss2/accuracy16 = 1 | |
I0425 12:04:49.655725 22523 solver.cpp:406] Test net output #66: loss2/accuracy17 = 1 | |
I0425 12:04:49.655737 22523 solver.cpp:406] Test net output #67: loss2/accuracy18 = 1 | |
I0425 12:04:49.655748 22523 solver.cpp:406] Test net output #68: loss2/accuracy19 = 1 | |
I0425 12:04:49.655760 22523 solver.cpp:406] Test net output #69: loss2/accuracy20 = 1 | |
I0425 12:04:49.655771 22523 solver.cpp:406] Test net output #70: loss2/accuracy21 = 1 | |
I0425 12:04:49.655781 22523 solver.cpp:406] Test net output #71: loss2/accuracy22 = 1 | |
I0425 12:04:49.655792 22523 solver.cpp:406] Test net output #72: loss2/accuracy_incl_empty = 0.963636 | |
I0425 12:04:49.655808 22523 solver.cpp:406] Test net output #73: loss2/accuracy_top3 = 0.96656 | |
I0425 12:04:49.655822 22523 solver.cpp:406] Test net output #74: loss2/cross_entropy_loss = 0.423509 (* 0.3 = 0.127053 loss) | |
I0425 12:04:49.655836 22523 solver.cpp:406] Test net output #75: loss2/cross_entropy_loss_incl_empty = 0.132753 (* 0.3 = 0.0398259 loss) | |
I0425 12:04:49.655850 22523 solver.cpp:406] Test net output #76: loss2/loss01 = 0.248761 (* 0.0272727 = 0.0067844 loss) | |
I0425 12:04:49.655865 22523 solver.cpp:406] Test net output #77: loss2/loss02 = 0.485063 (* 0.0272727 = 0.013229 loss) | |
I0425 12:04:49.655891 22523 solver.cpp:406] Test net output #78: loss2/loss03 = 0.8668 (* 0.0272727 = 0.02364 loss) | |
I0425 12:04:49.655907 22523 solver.cpp:406] Test net output #79: loss2/loss04 = 1.04194 (* 0.0272727 = 0.0284165 loss) | |
I0425 12:04:49.655921 22523 solver.cpp:406] Test net output #80: loss2/loss05 = 0.951057 (* 0.0272727 = 0.0259379 loss) | |
I0425 12:04:49.655936 22523 solver.cpp:406] Test net output #81: loss2/loss06 = 0.736646 (* 0.0272727 = 0.0200904 loss) | |
I0425 12:04:49.655948 22523 solver.cpp:406] Test net output #82: loss2/loss07 = 0.421088 (* 0.0272727 = 0.0114842 loss) | |
I0425 12:04:49.655963 22523 solver.cpp:406] Test net output #83: loss2/loss08 = 0.209087 (* 0.0272727 = 0.00570238 loss) | |
I0425 12:04:49.655977 22523 solver.cpp:406] Test net output #84: loss2/loss09 = 0.0644503 (* 0.0272727 = 0.00175774 loss) | |
I0425 12:04:49.655992 22523 solver.cpp:406] Test net output #85: loss2/loss10 = 0.0259016 (* 0.0272727 = 0.000706406 loss) | |
I0425 12:04:49.656005 22523 solver.cpp:406] Test net output #86: loss2/loss11 = 0.0122043 (* 0.0272727 = 0.000332845 loss) | |
I0425 12:04:49.656019 22523 solver.cpp:406] Test net output #87: loss2/loss12 = 0.00812975 (* 0.0272727 = 0.000221721 loss) | |
I0425 12:04:49.656033 22523 solver.cpp:406] Test net output #88: loss2/loss13 = 0.0062762 (* 0.0272727 = 0.000171169 loss) | |
I0425 12:04:49.656047 22523 solver.cpp:406] Test net output #89: loss2/loss14 = 0.00488162 (* 0.0272727 = 0.000133135 loss) | |
I0425 12:04:49.656061 22523 solver.cpp:406] Test net output #90: loss2/loss15 = 0.00366243 (* 0.0272727 = 9.98843e-05 loss) | |
I0425 12:04:49.656075 22523 solver.cpp:406] Test net output #91: loss2/loss16 = 0.00161634 (* 0.0272727 = 4.40819e-05 loss) | |
I0425 12:04:49.656090 22523 solver.cpp:406] Test net output #92: loss2/loss17 = 0.000358198 (* 0.0272727 = 9.76904e-06 loss) | |
I0425 12:04:49.656103 22523 solver.cpp:406] Test net output #93: loss2/loss18 = 0.000136531 (* 0.0272727 = 3.72357e-06 loss) | |
I0425 12:04:49.656117 22523 solver.cpp:406] Test net output #94: loss2/loss19 = 5.827e-05 (* 0.0272727 = 1.58918e-06 loss) | |
I0425 12:04:49.656131 22523 solver.cpp:406] Test net output #95: loss2/loss20 = 3.26003e-05 (* 0.0272727 = 8.89098e-07 loss) | |
I0425 12:04:49.656146 22523 solver.cpp:406] Test net output #96: loss2/loss21 = 2.21726e-05 (* 0.0272727 = 6.04706e-07 loss) | |
I0425 12:04:49.656160 22523 solver.cpp:406] Test net output #97: loss2/loss22 = 1.62822e-05 (* 0.0272727 = 4.44059e-07 loss) | |
I0425 12:04:49.656172 22523 solver.cpp:406] Test net output #98: loss3/accuracy = 0.926277 | |
I0425 12:04:49.656184 22523 solver.cpp:406] Test net output #99: loss3/accuracy01 = 0.955 | |
I0425 12:04:49.656196 22523 solver.cpp:406] Test net output #100: loss3/accuracy02 = 0.938 | |
I0425 12:04:49.656208 22523 solver.cpp:406] Test net output #101: loss3/accuracy03 = 0.93 | |
I0425 12:04:49.656219 22523 solver.cpp:406] Test net output #102: loss3/accuracy04 = 0.914 | |
I0425 12:04:49.656230 22523 solver.cpp:406] Test net output #103: loss3/accuracy05 = 0.894 | |
I0425 12:04:49.656241 22523 solver.cpp:406] Test net output #104: loss3/accuracy06 = 0.862 | |
I0425 12:04:49.656255 22523 solver.cpp:406] Test net output #105: loss3/accuracy07 = 0.911 | |
I0425 12:04:49.656267 22523 solver.cpp:406] Test net output #106: loss3/accuracy08 = 0.955 | |
I0425 12:04:49.656280 22523 solver.cpp:406] Test net output #107: loss3/accuracy09 = 0.981 | |
I0425 12:04:49.656291 22523 solver.cpp:406] Test net output #108: loss3/accuracy10 = 0.996 | |
I0425 12:04:49.656302 22523 solver.cpp:406] Test net output #109: loss3/accuracy11 = 0.999 | |
I0425 12:04:49.656313 22523 solver.cpp:406] Test net output #110: loss3/accuracy12 = 0.999 | |
I0425 12:04:49.656324 22523 solver.cpp:406] Test net output #111: loss3/accuracy13 = 0.999 | |
I0425 12:04:49.656337 22523 solver.cpp:406] Test net output #112: loss3/accuracy14 = 0.999 | |
I0425 12:04:49.656347 22523 solver.cpp:406] Test net output #113: loss3/accuracy15 = 0.999 | |
I0425 12:04:49.656358 22523 solver.cpp:406] Test net output #114: loss3/accuracy16 = 1 | |
I0425 12:04:49.656379 22523 solver.cpp:406] Test net output #115: loss3/accuracy17 = 1 | |
I0425 12:04:49.656393 22523 solver.cpp:406] Test net output #116: loss3/accuracy18 = 1 | |
I0425 12:04:49.656404 22523 solver.cpp:406] Test net output #117: loss3/accuracy19 = 1 | |
I0425 12:04:49.656415 22523 solver.cpp:406] Test net output #118: loss3/accuracy20 = 1 | |
I0425 12:04:49.656426 22523 solver.cpp:406] Test net output #119: loss3/accuracy21 = 1 | |
I0425 12:04:49.656437 22523 solver.cpp:406] Test net output #120: loss3/accuracy22 = 1 | |
I0425 12:04:49.656448 22523 solver.cpp:406] Test net output #121: loss3/accuracy_incl_empty = 0.974545 | |
I0425 12:04:49.656461 22523 solver.cpp:406] Test net output #122: loss3/accuracy_top3 = 0.972453 | |
I0425 12:04:49.656473 22523 solver.cpp:406] Test net output #123: loss3/cross_entropy_loss = 0.306811 (* 1 = 0.306811 loss) | |
I0425 12:04:49.656488 22523 solver.cpp:406] Test net output #124: loss3/cross_entropy_loss_incl_empty = 0.103134 (* 1 = 0.103134 loss) | |
I0425 12:04:49.656502 22523 solver.cpp:406] Test net output #125: loss3/loss01 = 0.197118 (* 0.0909091 = 0.0179198 loss) | |
I0425 12:04:49.656512 22523 solver.cpp:406] Test net output #126: loss3/loss02 = 0.292826 (* 0.0909091 = 0.0266205 loss) | |
I0425 12:04:49.656522 22523 solver.cpp:406] Test net output #127: loss3/loss03 = 0.297415 (* 0.0909091 = 0.0270377 loss) | |
I0425 12:04:49.656536 22523 solver.cpp:406] Test net output #128: loss3/loss04 = 0.363274 (* 0.0909091 = 0.0330249 loss) | |
I0425 12:04:49.656550 22523 solver.cpp:406] Test net output #129: loss3/loss05 = 0.419176 (* 0.0909091 = 0.0381069 loss) | |
I0425 12:04:49.656564 22523 solver.cpp:406] Test net output #130: loss3/loss06 = 0.444433 (* 0.0909091 = 0.040403 loss) | |
I0425 12:04:49.656577 22523 solver.cpp:406] Test net output #131: loss3/loss07 = 0.313774 (* 0.0909091 = 0.0285249 loss) | |
I0425 12:04:49.656591 22523 solver.cpp:406] Test net output #132: loss3/loss08 = 0.162465 (* 0.0909091 = 0.0147695 loss) | |
I0425 12:04:49.656605 22523 solver.cpp:406] Test net output #133: loss3/loss09 = 0.0644751 (* 0.0909091 = 0.00586137 loss) | |
I0425 12:04:49.656620 22523 solver.cpp:406] Test net output #134: loss3/loss10 = 0.0280745 (* 0.0909091 = 0.00255223 loss) | |
I0425 12:04:49.656632 22523 solver.cpp:406] Test net output #135: loss3/loss11 = 0.0190221 (* 0.0909091 = 0.00172928 loss) | |
I0425 12:04:49.656646 22523 solver.cpp:406] Test net output #136: loss3/loss12 = 0.0118532 (* 0.0909091 = 0.00107757 loss) | |
I0425 12:04:49.656661 22523 solver.cpp:406] Test net output #137: loss3/loss13 = 0.00910418 (* 0.0909091 = 0.000827653 loss) | |
I0425 12:04:49.656683 22523 solver.cpp:406] Test net output #138: loss3/loss14 = 0.00652823 (* 0.0909091 = 0.000593476 loss) | |
I0425 12:04:49.656697 22523 solver.cpp:406] Test net output #139: loss3/loss15 = 0.00489937 (* 0.0909091 = 0.000445398 loss) | |
I0425 12:04:49.656710 22523 solver.cpp:406] Test net output #140: loss3/loss16 = 0.00243641 (* 0.0909091 = 0.000221492 loss) | |
I0425 12:04:49.656723 22523 solver.cpp:406] Test net output #141: loss3/loss17 = 0.000863013 (* 0.0909091 = 7.84558e-05 loss) | |
I0425 12:04:49.656738 22523 solver.cpp:406] Test net output #142: loss3/loss18 = 0.000677801 (* 0.0909091 = 6.16182e-05 loss) | |
I0425 12:04:49.656750 22523 solver.cpp:406] Test net output #143: loss3/loss19 = 0.000482835 (* 0.0909091 = 4.38941e-05 loss) | |
I0425 12:04:49.656764 22523 solver.cpp:406] Test net output #144: loss3/loss20 = 0.000368893 (* 0.0909091 = 3.35358e-05 loss) | |
I0425 12:04:49.656777 22523 solver.cpp:406] Test net output #145: loss3/loss21 = 0.000174286 (* 0.0909091 = 1.58442e-05 loss) | |
I0425 12:04:49.656791 22523 solver.cpp:406] Test net output #146: loss3/loss22 = 9.42158e-05 (* 0.0909091 = 8.56507e-06 loss) | |
I0425 12:04:49.656803 22523 solver.cpp:406] Test net output #147: total_accuracy = 0.79 | |
I0425 12:04:49.656815 22523 solver.cpp:406] Test net output #148: total_accuracy_not_rec = 0.685 | |
I0425 12:04:49.656826 22523 solver.cpp:406] Test net output #149: total_confidence = 0.745846 | |
I0425 12:04:49.656847 22523 solver.cpp:406] Test net output #150: total_confidence_nor_rec = 0.549417 | |
I0425 12:04:49.656865 22523 solver.cpp:338] Iteration 10000, Testing net (#1) | |
I0425 12:05:41.261382 22523 solver.cpp:393] Test loss: 2.63426 | |
I0425 12:05:41.261536 22523 solver.cpp:406] Test net output #0: loss1/accuracy = 0.700349 | |
I0425 12:05:41.261559 22523 solver.cpp:406] Test net output #1: loss1/accuracy01 = 0.825 | |
I0425 12:05:41.261572 22523 solver.cpp:406] Test net output #2: loss1/accuracy02 = 0.632 | |
I0425 12:05:41.261585 22523 solver.cpp:406] Test net output #3: loss1/accuracy03 = 0.472 | |
I0425 12:05:41.261597 22523 solver.cpp:406] Test net output #4: loss1/accuracy04 = 0.476 | |
I0425 12:05:41.261610 22523 solver.cpp:406] Test net output #5: loss1/accuracy05 = 0.549 | |
I0425 12:05:41.261628 22523 solver.cpp:406] Test net output #6: loss1/accuracy06 = 0.58 | |
I0425 12:05:41.261641 22523 solver.cpp:406] Test net output #7: loss1/accuracy07 = 0.722 | |
I0425 12:05:41.261653 22523 solver.cpp:406] Test net output #8: loss1/accuracy08 = 0.824 | |
I0425 12:05:41.261665 22523 solver.cpp:406] Test net output #9: loss1/accuracy09 = 0.903 | |
I0425 12:05:41.261687 22523 solver.cpp:406] Test net output #10: loss1/accuracy10 = 0.907 | |
I0425 12:05:41.261699 22523 solver.cpp:406] Test net output #11: loss1/accuracy11 = 0.911 | |
I0425 12:05:41.261711 22523 solver.cpp:406] Test net output #12: loss1/accuracy12 = 0.927 | |
I0425 12:05:41.261724 22523 solver.cpp:406] Test net output #13: loss1/accuracy13 = 0.942 | |
I0425 12:05:41.261736 22523 solver.cpp:406] Test net output #14: loss1/accuracy14 = 0.953 | |
I0425 12:05:41.261749 22523 solver.cpp:406] Test net output #15: loss1/accuracy15 = 0.966 | |
I0425 12:05:41.261761 22523 solver.cpp:406] Test net output #16: loss1/accuracy16 = 0.972 | |
I0425 12:05:41.261775 22523 solver.cpp:406] Test net output #17: loss1/accuracy17 = 0.992 | |
I0425 12:05:41.261786 22523 solver.cpp:406] Test net output #18: loss1/accuracy18 = 0.994 | |
I0425 12:05:41.261798 22523 solver.cpp:406] Test net output #19: loss1/accuracy19 = 0.996 | |
I0425 12:05:41.261811 22523 solver.cpp:406] Test net output #20: loss1/accuracy20 = 0.998 | |
I0425 12:05:41.261822 22523 solver.cpp:406] Test net output #21: loss1/accuracy21 = 1 | |
I0425 12:05:41.261834 22523 solver.cpp:406] Test net output #22: loss1/accuracy22 = 1 | |
I0425 12:05:41.261847 22523 solver.cpp:406] Test net output #23: loss1/accuracy_incl_empty = 0.874955 | |
I0425 12:05:41.261858 22523 solver.cpp:406] Test net output #24: loss1/accuracy_top3 = 0.86587 | |
I0425 12:05:41.261885 22523 solver.cpp:406] Test net output #25: loss1/cross_entropy_loss = 1.03083 (* 0.3 = 0.309248 loss) | |
I0425 12:05:41.261900 22523 solver.cpp:406] Test net output #26: loss1/cross_entropy_loss_incl_empty = 0.4304 (* 0.3 = 0.12912 loss) | |
I0425 12:05:41.261915 22523 solver.cpp:406] Test net output #27: loss1/loss01 = 0.706348 (* 0.0272727 = 0.019264 loss) | |
I0425 12:05:41.261929 22523 solver.cpp:406] Test net output #28: loss1/loss02 = 1.20604 (* 0.0272727 = 0.0328919 loss) | |
I0425 12:05:41.261952 22523 solver.cpp:406] Test net output #29: loss1/loss03 = 1.59969 (* 0.0272727 = 0.0436279 loss) | |
I0425 12:05:41.261967 22523 solver.cpp:406] Test net output #30: loss1/loss04 = 1.63707 (* 0.0272727 = 0.0446474 loss) | |
I0425 12:05:41.261981 22523 solver.cpp:406] Test net output #31: loss1/loss05 = 1.46691 (* 0.0272727 = 0.0400066 loss) | |
I0425 12:05:41.261996 22523 solver.cpp:406] Test net output #32: loss1/loss06 = 1.29989 (* 0.0272727 = 0.0354516 loss) | |
I0425 12:05:41.262011 22523 solver.cpp:406] Test net output #33: loss1/loss07 = 0.951154 (* 0.0272727 = 0.0259406 loss) | |
I0425 12:05:41.262024 22523 solver.cpp:406] Test net output #34: loss1/loss08 = 0.620157 (* 0.0272727 = 0.0169134 loss) | |
I0425 12:05:41.262039 22523 solver.cpp:406] Test net output #35: loss1/loss09 = 0.383139 (* 0.0272727 = 0.0104492 loss) | |
I0425 12:05:41.262054 22523 solver.cpp:406] Test net output #36: loss1/loss10 = 0.341053 (* 0.0272727 = 0.00930144 loss) | |
I0425 12:05:41.262068 22523 solver.cpp:406] Test net output #37: loss1/loss11 = 0.336817 (* 0.0272727 = 0.00918592 loss) | |
I0425 12:05:41.262084 22523 solver.cpp:406] Test net output #38: loss1/loss12 = 0.312326 (* 0.0272727 = 0.00851797 loss) | |
I0425 12:05:41.262117 22523 solver.cpp:406] Test net output #39: loss1/loss13 = 0.240956 (* 0.0272727 = 0.00657153 loss) | |
I0425 12:05:41.262132 22523 solver.cpp:406] Test net output #40: loss1/loss14 = 0.212296 (* 0.0272727 = 0.00578988 loss) | |
I0425 12:05:41.262147 22523 solver.cpp:406] Test net output #41: loss1/loss15 = 0.159786 (* 0.0272727 = 0.00435781 loss) | |
I0425 12:05:41.262161 22523 solver.cpp:406] Test net output #42: loss1/loss16 = 0.144515 (* 0.0272727 = 0.00394131 loss) | |
I0425 12:05:41.262176 22523 solver.cpp:406] Test net output #43: loss1/loss17 = 0.0552585 (* 0.0272727 = 0.00150705 loss) | |
I0425 12:05:41.262190 22523 solver.cpp:406] Test net output #44: loss1/loss18 = 0.0406491 (* 0.0272727 = 0.00110861 loss) | |
I0425 12:05:41.262208 22523 solver.cpp:406] Test net output #45: loss1/loss19 = 0.0301618 (* 0.0272727 = 0.000822595 loss) | |
I0425 12:05:41.262223 22523 solver.cpp:406] Test net output #46: loss1/loss20 = 0.0178508 (* 0.0272727 = 0.00048684 loss) | |
I0425 12:05:41.262238 22523 solver.cpp:406] Test net output #47: loss1/loss21 = 0.00107461 (* 0.0272727 = 2.93077e-05 loss) | |
I0425 12:05:41.262253 22523 solver.cpp:406] Test net output #48: loss1/loss22 = 0.000700323 (* 0.0272727 = 1.90997e-05 loss) | |
I0425 12:05:41.262269 22523 solver.cpp:406] Test net output #49: loss2/accuracy = 0.811492 | |
I0425 12:05:41.262281 22523 solver.cpp:406] Test net output #50: loss2/accuracy01 = 0.918 | |
I0425 12:05:41.262293 22523 solver.cpp:406] Test net output #51: loss2/accuracy02 = 0.832 | |
I0425 12:05:41.262305 22523 solver.cpp:406] Test net output #52: loss2/accuracy03 = 0.653 | |
I0425 12:05:41.262316 22523 solver.cpp:406] Test net output #53: loss2/accuracy04 = 0.587 | |
I0425 12:05:41.262328 22523 solver.cpp:406] Test net output #54: loss2/accuracy05 = 0.608 | |
I0425 12:05:41.262341 22523 solver.cpp:406] Test net output #55: loss2/accuracy06 = 0.66 | |
I0425 12:05:41.262351 22523 solver.cpp:406] Test net output #56: loss2/accuracy07 = 0.758 | |
I0425 12:05:41.262363 22523 solver.cpp:406] Test net output #57: loss2/accuracy08 = 0.826 | |
I0425 12:05:41.262383 22523 solver.cpp:406] Test net output #58: loss2/accuracy09 = 0.898 | |
I0425 12:05:41.262395 22523 solver.cpp:406] Test net output #59: loss2/accuracy10 = 0.908 | |
I0425 12:05:41.262406 22523 solver.cpp:406] Test net output #60: loss2/accuracy11 = 0.918 | |
I0425 12:05:41.262418 22523 solver.cpp:406] Test net output #61: loss2/accuracy12 = 0.926 | |
I0425 12:05:41.262430 22523 solver.cpp:406] Test net output #62: loss2/accuracy13 = 0.944 | |
I0425 12:05:41.262444 22523 solver.cpp:406] Test net output #63: loss2/accuracy14 = 0.95 | |
I0425 12:05:41.262452 22523 solver.cpp:406] Test net output #64: loss2/accuracy15 = 0.964 | |
I0425 12:05:41.262465 22523 solver.cpp:406] Test net output #65: loss2/accuracy16 = 0.972 | |
I0425 12:05:41.262475 22523 solver.cpp:406] Test net output #66: loss2/accuracy17 = 0.992 | |
I0425 12:05:41.262487 22523 solver.cpp:406] Test net output #67: loss2/accuracy18 = 0.994 | |
I0425 12:05:41.262500 22523 solver.cpp:406] Test net output #68: loss2/accuracy19 = 0.996 | |
I0425 12:05:41.262511 22523 solver.cpp:406] Test net output #69: loss2/accuracy20 = 0.998 | |
I0425 12:05:41.262522 22523 solver.cpp:406] Test net output #70: loss2/accuracy21 = 1 | |
I0425 12:05:41.262534 22523 solver.cpp:406] Test net output #71: loss2/accuracy22 = 1 | |
I0425 12:05:41.262547 22523 solver.cpp:406] Test net output #72: loss2/accuracy_incl_empty = 0.916228 | |
I0425 12:05:41.262557 22523 solver.cpp:406] Test net output #73: loss2/accuracy_top3 = 0.9131 | |
I0425 12:05:41.262572 22523 solver.cpp:406] Test net output #74: loss2/cross_entropy_loss = 0.698277 (* 0.3 = 0.209483 loss) | |
I0425 12:05:41.262584 22523 solver.cpp:406] Test net output #75: loss2/cross_entropy_loss_incl_empty = 0.304415 (* 0.3 = 0.0913246 loss) | |
I0425 12:05:41.262599 22523 solver.cpp:406] Test net output #76: loss2/loss01 = 0.395733 (* 0.0272727 = 0.0107927 loss) | |
I0425 12:05:41.262614 22523 solver.cpp:406] Test net output #77: loss2/loss02 = 0.596945 (* 0.0272727 = 0.0162803 loss) | |
I0425 12:05:41.262639 22523 solver.cpp:406] Test net output #78: loss2/loss03 = 1.06435 (* 0.0272727 = 0.0290278 loss) | |
I0425 12:05:41.262655 22523 solver.cpp:406] Test net output #79: loss2/loss04 = 1.26008 (* 0.0272727 = 0.0343657 loss) | |
I0425 12:05:41.262668 22523 solver.cpp:406] Test net output #80: loss2/loss05 = 1.18656 (* 0.0272727 = 0.0323607 loss) | |
I0425 12:05:41.262681 22523 solver.cpp:406] Test net output #81: loss2/loss06 = 1.01446 (* 0.0272727 = 0.0276671 loss) | |
I0425 12:05:41.262696 22523 solver.cpp:406] Test net output #82: loss2/loss07 = 0.778709 (* 0.0272727 = 0.0212375 loss) | |
I0425 12:05:41.262709 22523 solver.cpp:406] Test net output #83: loss2/loss08 = 0.550006 (* 0.0272727 = 0.0150002 loss) | |
I0425 12:05:41.262723 22523 solver.cpp:406] Test net output #84: loss2/loss09 = 0.357993 (* 0.0272727 = 0.00976345 loss) | |
I0425 12:05:41.262737 22523 solver.cpp:406] Test net output #85: loss2/loss10 = 0.329819 (* 0.0272727 = 0.00899505 loss) | |
I0425 12:05:41.262751 22523 solver.cpp:406] Test net output #86: loss2/loss11 = 0.324596 (* 0.0272727 = 0.00885261 loss) | |
I0425 12:05:41.262765 22523 solver.cpp:406] Test net output #87: loss2/loss12 = 0.299244 (* 0.0272727 = 0.00816121 loss) | |
I0425 12:05:41.262779 22523 solver.cpp:406] Test net output #88: loss2/loss13 = 0.233371 (* 0.0272727 = 0.00636467 loss) | |
I0425 12:05:41.262794 22523 solver.cpp:406] Test net output #89: loss2/loss14 = 0.209719 (* 0.0272727 = 0.0057196 loss) | |
I0425 12:05:41.262807 22523 solver.cpp:406] Test net output #90: loss2/loss15 = 0.154325 (* 0.0272727 = 0.00420886 loss) | |
I0425 12:05:41.262828 22523 solver.cpp:406] Test net output #91: loss2/loss16 = 0.141746 (* 0.0272727 = 0.00386581 loss) | |
I0425 12:05:41.262841 22523 solver.cpp:406] Test net output #92: loss2/loss17 = 0.0495661 (* 0.0272727 = 0.0013518 loss) | |
I0425 12:05:41.262856 22523 solver.cpp:406] Test net output #93: loss2/loss18 = 0.0362619 (* 0.0272727 = 0.00098896 loss) | |
I0425 12:05:41.262869 22523 solver.cpp:406] Test net output #94: loss2/loss19 = 0.0289015 (* 0.0272727 = 0.000788222 loss) | |
I0425 12:05:41.262890 22523 solver.cpp:406] Test net output #95: loss2/loss20 = 0.0159938 (* 0.0272727 = 0.000436196 loss) | |
I0425 12:05:41.262904 22523 solver.cpp:406] Test net output #96: loss2/loss21 = 0.000555651 (* 0.0272727 = 1.51541e-05 loss) | |
I0425 12:05:41.262918 22523 solver.cpp:406] Test net output #97: loss2/loss22 = 0.000392202 (* 0.0272727 = 1.06964e-05 loss) | |
I0425 12:05:41.262930 22523 solver.cpp:406] Test net output #98: loss3/accuracy = 0.867305 | |
I0425 12:05:41.262943 22523 solver.cpp:406] Test net output #99: loss3/accuracy01 = 0.928 | |
I0425 12:05:41.262953 22523 solver.cpp:406] Test net output #100: loss3/accuracy02 = 0.913 | |
I0425 12:05:41.262964 22523 solver.cpp:406] Test net output #101: loss3/accuracy03 = 0.893 | |
I0425 12:05:41.262976 22523 solver.cpp:406] Test net output #102: loss3/accuracy04 = 0.86 | |
I0425 12:05:41.262987 22523 solver.cpp:406] Test net output #103: loss3/accuracy05 = 0.846 | |
I0425 12:05:41.263000 22523 solver.cpp:406] Test net output #104: loss3/accuracy06 = 0.796 | |
I0425 12:05:41.263010 22523 solver.cpp:406] Test net output #105: loss3/accuracy07 = 0.826 | |
I0425 12:05:41.263022 22523 solver.cpp:406] Test net output #106: loss3/accuracy08 = 0.862 | |
I0425 12:05:41.263033 22523 solver.cpp:406] Test net output #107: loss3/accuracy09 = 0.913 | |
I0425 12:05:41.263044 22523 solver.cpp:406] Test net output #108: loss3/accuracy10 = 0.913 | |
I0425 12:05:41.263056 22523 solver.cpp:406] Test net output #109: loss3/accuracy11 = 0.918 | |
I0425 12:05:41.263067 22523 solver.cpp:406] Test net output #110: loss3/accuracy12 = 0.931 | |
I0425 12:05:41.263078 22523 solver.cpp:406] Test net output #111: loss3/accuracy13 = 0.946 | |
I0425 12:05:41.263090 22523 solver.cpp:406] Test net output #112: loss3/accuracy14 = 0.951 | |
I0425 12:05:41.263101 22523 solver.cpp:406] Test net output #113: loss3/accuracy15 = 0.964 | |
I0425 12:05:41.263113 22523 solver.cpp:406] Test net output #114: loss3/accuracy16 = 0.971 | |
I0425 12:05:41.263134 22523 solver.cpp:406] Test net output #115: loss3/accuracy17 = 0.991 | |
I0425 12:05:41.263147 22523 solver.cpp:406] Test net output #116: loss3/accuracy18 = 0.994 | |
I0425 12:05:41.263159 22523 solver.cpp:406] Test net output #117: loss3/accuracy19 = 0.996 | |
I0425 12:05:41.263171 22523 solver.cpp:406] Test net output #118: loss3/accuracy20 = 0.998 | |
I0425 12:05:41.263182 22523 solver.cpp:406] Test net output #119: loss3/accuracy21 = 1 | |
I0425 12:05:41.263193 22523 solver.cpp:406] Test net output #120: loss3/accuracy22 = 1 | |
I0425 12:05:41.263205 22523 solver.cpp:406] Test net output #121: loss3/accuracy_incl_empty = 0.933864 | |
I0425 12:05:41.263216 22523 solver.cpp:406] Test net output #122: loss3/accuracy_top3 = 0.935604 | |
I0425 12:05:41.263231 22523 solver.cpp:406] Test net output #123: loss3/cross_entropy_loss = 0.524098 (* 1 = 0.524098 loss) | |
I0425 12:05:41.263243 22523 solver.cpp:406] Test net output #124: loss3/cross_entropy_loss_incl_empty = 0.247826 (* 1 = 0.247826 loss) | |
I0425 12:05:41.263260 22523 solver.cpp:406] Test net output #125: loss3/loss01 = 0.330966 (* 0.0909091 = 0.0300878 loss) | |
I0425 12:05:41.263275 22523 solver.cpp:406] Test net output #126: loss3/loss02 = 0.357582 (* 0.0909091 = 0.0325075 loss) | |
I0425 12:05:41.263289 22523 solver.cpp:406] Test net output #127: loss3/loss03 = 0.440841 (* 0.0909091 = 0.0400764 loss) | |
I0425 12:05:41.263303 22523 solver.cpp:406] Test net output #128: loss3/loss04 = 0.55831 (* 0.0909091 = 0.0507555 loss) | |
I0425 12:05:41.263332 22523 solver.cpp:406] Test net output #129: loss3/loss05 = 0.606182 (* 0.0909091 = 0.0551074 loss) | |
I0425 12:05:41.263348 22523 solver.cpp:406] Test net output #130: loss3/loss06 = 0.697156 (* 0.0909091 = 0.0633778 loss) | |
I0425 12:05:41.263362 22523 solver.cpp:406] Test net output #131: loss3/loss07 = 0.637439 (* 0.0909091 = 0.057949 loss) | |
I0425 12:05:41.263376 22523 solver.cpp:406] Test net output #132: loss3/loss08 = 0.459259 (* 0.0909091 = 0.0417508 loss) | |
I0425 12:05:41.263391 22523 solver.cpp:406] Test net output #133: loss3/loss09 = 0.325485 (* 0.0909091 = 0.0295895 loss) | |
I0425 12:05:41.263403 22523 solver.cpp:406] Test net output #134: loss3/loss10 = 0.310666 (* 0.0909091 = 0.0282423 loss) | |
I0425 12:05:41.263417 22523 solver.cpp:406] Test net output #135: loss3/loss11 = 0.306196 (* 0.0909091 = 0.027836 loss) | |
I0425 12:05:41.263432 22523 solver.cpp:406] Test net output #136: loss3/loss12 = 0.28082 (* 0.0909091 = 0.0255291 loss) | |
I0425 12:05:41.263444 22523 solver.cpp:406] Test net output #137: loss3/loss13 = 0.222496 (* 0.0909091 = 0.0202269 loss) | |
I0425 12:05:41.263458 22523 solver.cpp:406] Test net output #138: loss3/loss14 = 0.194911 (* 0.0909091 = 0.0177192 loss) | |
I0425 12:05:41.263473 22523 solver.cpp:406] Test net output #139: loss3/loss15 = 0.14335 (* 0.0909091 = 0.0130318 loss) | |
I0425 12:05:41.263486 22523 solver.cpp:406] Test net output #140: loss3/loss16 = 0.121314 (* 0.0909091 = 0.0110285 loss) | |
I0425 12:05:41.263500 22523 solver.cpp:406] Test net output #141: loss3/loss17 = 0.0476576 (* 0.0909091 = 0.00433251 loss) | |
I0425 12:05:41.263514 22523 solver.cpp:406] Test net output #142: loss3/loss18 = 0.0316846 (* 0.0909091 = 0.00288042 loss) | |
I0425 12:05:41.263528 22523 solver.cpp:406] Test net output #143: loss3/loss19 = 0.0259514 (* 0.0909091 = 0.00235922 loss) | |
I0425 12:05:41.263542 22523 solver.cpp:406] Test net output #144: loss3/loss20 = 0.0172669 (* 0.0909091 = 0.00156972 loss) | |
I0425 12:05:41.263556 22523 solver.cpp:406] Test net output #145: loss3/loss21 = 0.00102664 (* 0.0909091 = 9.33311e-05 loss) | |
I0425 12:05:41.263571 22523 solver.cpp:406] Test net output #146: loss3/loss22 = 0.000234677 (* 0.0909091 = 2.13342e-05 loss) | |
I0425 12:05:41.263582 22523 solver.cpp:406] Test net output #147: total_accuracy = 0.675 | |
I0425 12:05:41.263594 22523 solver.cpp:406] Test net output #148: total_accuracy_not_rec = 0.589 | |
I0425 12:05:41.263607 22523 solver.cpp:406] Test net output #149: total_confidence = 0.648002 | |
I0425 12:05:41.263629 22523 solver.cpp:406] Test net output #150: total_confidence_nor_rec = 0.484556 | |
I0425 12:05:41.654481 22523 solver.cpp:229] Iteration 10000, loss = 3.08777 | |
I0425 12:05:41.654534 22523 solver.cpp:245] Train net output #0: loss1/accuracy = 0.690476 | |
I0425 12:05:41.654551 22523 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.625 | |
I0425 12:05:41.654564 22523 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.375 | |
I0425 12:05:41.654577 22523 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.75 | |
I0425 12:05:41.654588 22523 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.5 | |
I0425 12:05:41.654602 22523 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.875 | |
I0425 12:05:41.654613 22523 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.75 | |
I0425 12:05:41.654625 22523 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.75 | |
I0425 12:05:41.654638 22523 solver.cpp:245] Train net output #8: loss1/accuracy08 = 1 | |
I0425 12:05:41.654654 22523 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1 | |
I0425 12:05:41.654665 22523 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1 | |
I0425 12:05:41.654677 22523 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1 | |
I0425 12:05:41.654690 22523 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1 | |
I0425 12:05:41.654700 22523 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1 | |
I0425 12:05:41.654712 22523 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1 | |
I0425 12:05:41.654728 22523 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0425 12:05:41.654748 22523 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0425 12:05:41.654762 22523 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0425 12:05:41.654773 22523 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0425 12:05:41.654789 22523 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0425 12:05:41.654801 22523 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0425 12:05:41.654813 22523 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0425 12:05:41.654824 22523 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0425 12:05:41.654844 22523 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.920455 | |
I0425 12:05:41.654857 22523 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.880952 | |
I0425 12:05:41.654873 22523 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.01853 (* 0.3 = 0.305558 loss) | |
I0425 12:05:41.654888 22523 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.261126 (* 0.3 = 0.0783377 loss) | |
I0425 12:05:41.654907 22523 solver.cpp:245] Train net output #27: loss1/loss01 = 0.810576 (* 0.0272727 = 0.0221066 loss) | |
I0425 12:05:41.654922 22523 solver.cpp:245] Train net output #28: loss1/loss02 = 2.00318 (* 0.0272727 = 0.0546322 loss) | |
I0425 12:05:41.654935 22523 solver.cpp:245] Train net output #29: loss1/loss03 = 1.06261 (* 0.0272727 = 0.0289803 loss) | |
I0425 12:05:41.654949 22523 solver.cpp:245] Train net output #30: loss1/loss04 = 1.64981 (* 0.0272727 = 0.044995 loss) | |
I0425 12:05:41.654963 22523 solver.cpp:245] Train net output #31: loss1/loss05 = 0.886848 (* 0.0272727 = 0.0241868 loss) | |
I0425 12:05:41.654978 22523 solver.cpp:245] Train net output #32: loss1/loss06 = 0.910223 (* 0.0272727 = 0.0248243 loss) | |
I0425 12:05:41.654992 22523 solver.cpp:245] Train net output #33: loss1/loss07 = 0.812586 (* 0.0272727 = 0.0221614 loss) | |
I0425 12:05:41.655007 22523 solver.cpp:245] Train net output #34: loss1/loss08 = 0.0562249 (* 0.0272727 = 0.00153341 loss) | |
I0425 12:05:41.655021 22523 solver.cpp:245] Train net output #35: loss1/loss09 = 0.00938339 (* 0.0272727 = 0.000255911 loss) | |
I0425 12:05:41.655036 22523 solver.cpp:245] Train net output #36: loss1/loss10 = 0.00760259 (* 0.0272727 = 0.000207343 loss) | |
I0425 12:05:41.655050 22523 solver.cpp:245] Train net output #37: loss1/loss11 = 0.020489 (* 0.0272727 = 0.000558791 loss) | |
I0425 12:05:41.655088 22523 solver.cpp:245] Train net output #38: loss1/loss12 = 0.00754422 (* 0.0272727 = 0.000205752 loss) | |
I0425 12:05:41.655104 22523 solver.cpp:245] Train net output #39: loss1/loss13 = 0.00799445 (* 0.0272727 = 0.00021803 loss) | |
I0425 12:05:41.655119 22523 solver.cpp:245] Train net output #40: loss1/loss14 = 0.00273568 (* 0.0272727 = 7.46093e-05 loss) | |
I0425 12:05:41.655133 22523 solver.cpp:245] Train net output #41: loss1/loss15 = 0.00382316 (* 0.0272727 = 0.000104268 loss) | |
I0425 12:05:41.655148 22523 solver.cpp:245] Train net output #42: loss1/loss16 = 0.00102422 (* 0.0272727 = 2.79333e-05 loss) | |
I0425 12:05:41.655163 22523 solver.cpp:245] Train net output #43: loss1/loss17 = 0.000433874 (* 0.0272727 = 1.18329e-05 loss) | |
I0425 12:05:41.655177 22523 solver.cpp:245] Train net output #44: loss1/loss18 = 0.00027316 (* 0.0272727 = 7.44981e-06 loss) | |
I0425 12:05:41.655191 22523 solver.cpp:245] Train net output #45: loss1/loss19 = 9.82447e-05 (* 0.0272727 = 2.6794e-06 loss) | |
I0425 12:05:41.655205 22523 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000215122 (* 0.0272727 = 5.86697e-06 loss) | |
I0425 12:05:41.655220 22523 solver.cpp:245] Train net output #47: loss1/loss21 = 7.53673e-05 (* 0.0272727 = 2.05547e-06 loss) | |
I0425 12:05:41.655235 22523 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000121269 (* 0.0272727 = 3.30735e-06 loss) | |
I0425 12:05:41.655246 22523 solver.cpp:245] Train net output #49: loss2/accuracy = 0.785714 | |
I0425 12:05:41.655258 22523 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875 | |
I0425 12:05:41.655270 22523 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.5 | |
I0425 12:05:41.655282 22523 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.75 | |
I0425 12:05:41.655294 22523 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.625 | |
I0425 12:05:41.655305 22523 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.75 | |
I0425 12:05:41.655318 22523 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.75 | |
I0425 12:05:41.655329 22523 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.75 | |
I0425 12:05:41.655340 22523 solver.cpp:245] Train net output #57: loss2/accuracy08 = 1 | |
I0425 12:05:41.655366 22523 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1 | |
I0425 12:05:41.655380 22523 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1 | |
I0425 12:05:41.655392 22523 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1 | |
I0425 12:05:41.655403 22523 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1 | |
I0425 12:05:41.655416 22523 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1 | |
I0425 12:05:41.655426 22523 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1 | |
I0425 12:05:41.655438 22523 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0425 12:05:41.655449 22523 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0425 12:05:41.655460 22523 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0425 12:05:41.655472 22523 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0425 12:05:41.655483 22523 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0425 12:05:41.655494 22523 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0425 12:05:41.655505 22523 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0425 12:05:41.655517 22523 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0425 12:05:41.655529 22523 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.943182 | |
I0425 12:05:41.655540 22523 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.952381 | |
I0425 12:05:41.655555 22523 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.839953 (* 0.3 = 0.251986 loss) | |
I0425 12:05:41.655568 22523 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.211925 (* 0.3 = 0.0635775 loss) | |
I0425 12:05:41.655596 22523 solver.cpp:245] Train net output #76: loss2/loss01 = 0.363489 (* 0.0272727 = 0.00991333 loss) | |
I0425 12:05:41.655611 22523 solver.cpp:245] Train net output #77: loss2/loss02 = 1.38828 (* 0.0272727 = 0.0378622 loss) | |
I0425 12:05:41.655627 22523 solver.cpp:245] Train net output #78: loss2/loss03 = 1.15091 (* 0.0272727 = 0.0313883 loss) | |
I0425 12:05:41.655639 22523 solver.cpp:245] Train net output #79: loss2/loss04 = 1.18545 (* 0.0272727 = 0.0323305 loss) | |
I0425 12:05:41.655653 22523 solver.cpp:245] Train net output #80: loss2/loss05 = 0.649284 (* 0.0272727 = 0.0177078 loss) | |
I0425 12:05:41.655668 22523 solver.cpp:245] Train net output #81: loss2/loss06 = 0.793419 (* 0.0272727 = 0.0216387 loss) | |
I0425 12:05:41.655681 22523 solver.cpp:245] Train net output #82: loss2/loss07 = 0.6921 (* 0.0272727 = 0.0188754 loss) | |
I0425 12:05:41.655699 22523 solver.cpp:245] Train net output #83: loss2/loss08 = 0.020688 (* 0.0272727 = 0.000564217 loss) | |
I0425 12:05:41.655714 22523 solver.cpp:245] Train net output #84: loss2/loss09 = 0.00243642 (* 0.0272727 = 6.64479e-05 loss) | |
I0425 12:05:41.655727 22523 solver.cpp:245] Train net output #85: loss2/loss10 = 0.00144304 (* 0.0272727 = 3.93556e-05 loss) | |
I0425 12:05:41.655741 22523 solver.cpp:245] Train net output #86: loss2/loss11 = 0.00182836 (* 0.0272727 = 4.98643e-05 loss) | |
I0425 12:05:41.655755 22523 solver.cpp:245] Train net output #87: loss2/loss12 = 0.00186064 (* 0.0272727 = 5.07449e-05 loss) | |
I0425 12:05:41.655769 22523 solver.cpp:245] Train net output #88: loss2/loss13 = 0.000549825 (* 0.0272727 = 1.49952e-05 loss) | |
I0425 12:05:41.655783 22523 solver.cpp:245] Train net output #89: loss2/loss14 = 0.000467997 (* 0.0272727 = 1.27636e-05 loss) | |
I0425 12:05:41.655797 22523 solver.cpp:245] Train net output #90: loss2/loss15 = 0.000383291 (* 0.0272727 = 1.04534e-05 loss) | |
I0425 12:05:41.655812 22523 solver.cpp:245] Train net output #91: loss2/loss16 = 0.000217094 (* 0.0272727 = 5.92074e-06 loss) | |
I0425 12:05:41.655825 22523 solver.cpp:245] Train net output #92: loss2/loss17 = 9.1543e-05 (* 0.0272727 = 2.49663e-06 loss) | |
I0425 12:05:41.655839 22523 solver.cpp:245] Train net output #93: loss2/loss18 = 2.57291e-05 (* 0.0272727 = 7.01702e-07 loss) | |
I0425 12:05:41.655853 22523 solver.cpp:245] Train net output #94: loss2/loss19 = 9.46244e-06 (* 0.0272727 = 2.58067e-07 loss) | |
I0425 12:05:41.655867 22523 solver.cpp:245] Train net output #95: loss2/loss20 = 4.88765e-06 (* 0.0272727 = 1.333e-07 loss) | |
I0425 12:05:41.655882 22523 solver.cpp:245] Train net output #96: loss2/loss21 = 2.414e-06 (* 0.0272727 = 6.58364e-08 loss) | |
I0425 12:05:41.655896 22523 solver.cpp:245] Train net output #97: loss2/loss22 = 8.34467e-07 (* 0.0272727 = 2.27582e-08 loss) | |
I0425 12:05:41.655908 22523 solver.cpp:245] Train net output #98: loss3/accuracy = 0.857143 | |
I0425 12:05:41.655920 22523 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1 | |
I0425 12:05:41.655932 22523 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875 | |
I0425 12:05:41.655946 22523 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.875 | |
I0425 12:05:41.655958 22523 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875 | |
I0425 12:05:41.655969 22523 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875 | |
I0425 12:05:41.655982 22523 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.75 | |
I0425 12:05:41.655992 22523 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875 | |
I0425 12:05:41.656004 22523 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1 | |
I0425 12:05:41.656015 22523 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1 | |
I0425 12:05:41.656026 22523 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1 | |
I0425 12:05:41.656038 22523 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1 | |
I0425 12:05:41.656049 22523 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1 | |
I0425 12:05:41.656060 22523 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1 | |
I0425 12:05:41.656082 22523 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1 | |
I0425 12:05:41.656095 22523 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0425 12:05:41.656107 22523 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0425 12:05:41.656119 22523 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0425 12:05:41.656131 22523 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0425 12:05:41.656141 22523 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0425 12:05:41.656152 22523 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0425 12:05:41.656164 22523 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0425 12:05:41.656175 22523 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0425 12:05:41.656186 22523 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.965909 | |
I0425 12:05:41.656198 22523 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.952381 | |
I0425 12:05:41.656213 22523 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.723317 (* 1 = 0.723317 loss) | |
I0425 12:05:41.656226 22523 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.175299 (* 1 = 0.175299 loss) | |
I0425 12:05:41.656240 22523 solver.cpp:245] Train net output #125: loss3/loss01 = 0.058823 (* 0.0909091 = 0.00534754 loss) | |
I0425 12:05:41.656255 22523 solver.cpp:245] Train net output #126: loss3/loss02 = 0.835133 (* 0.0909091 = 0.0759212 loss) | |
I0425 12:05:41.656270 22523 solver.cpp:245] Train net output #127: loss3/loss03 = 0.659776 (* 0.0909091 = 0.0599796 loss) | |
I0425 12:05:41.656283 22523 solver.cpp:245] Train net output #128: loss3/loss04 = 0.410473 (* 0.0909091 = 0.0373158 loss) | |
I0425 12:05:41.656297 22523 solver.cpp:245] Train net output #129: loss3/loss05 = 0.420167 (* 0.0909091 = 0.038197 loss) | |
I0425 12:05:41.656311 22523 solver.cpp:245] Train net output #130: loss3/loss06 = 0.40665 (* 0.0909091 = 0.0369682 loss) | |
I0425 12:05:41.656324 22523 solver.cpp:245] Train net output #131: loss3/loss07 = 0.322559 (* 0.0909091 = 0.0293235 loss) | |
I0425 12:05:41.656338 22523 solver.cpp:245] Train net output #132: loss3/loss08 = 0.0171714 (* 0.0909091 = 0.00156104 loss) | |
I0425 12:05:41.656353 22523 solver.cpp:245] Train net output #133: loss3/loss09 = 0.000341504 (* 0.0909091 = 3.10458e-05 loss) | |
I0425 12:05:41.656368 22523 solver.cpp:245] Train net output #134: loss3/loss10 = 0.00022779 (* 0.0909091 = 2.07081e-05 loss) | |
I0425 12:05:41.656381 22523 solver.cpp:245] Train net output #135: loss3/loss11 = 0.000666212 (* 0.0909091 = 6.05647e-05 loss) | |
I0425 12:05:41.656395 22523 solver.cpp:245] Train net output #136: loss3/loss12 = 0.00042737 (* 0.0909091 = 3.88519e-05 loss) | |
I0425 12:05:41.656409 22523 solver.cpp:245] Train net output #137: loss3/loss13 = 0.000307438 (* 0.0909091 = 2.79489e-05 loss) | |
I0425 12:05:41.656424 22523 solver.cpp:245] Train net output #138: loss3/loss14 = 0.000156309 (* 0.0909091 = 1.42099e-05 loss) | |
I0425 12:05:41.656437 22523 solver.cpp:245] Train net output #139: loss3/loss15 = 7.45273e-05 (* 0.0909091 = 6.77521e-06 loss) | |
I0425 12:05:41.656456 22523 solver.cpp:245] Train net output #140: loss3/loss16 = 7.00418e-05 (* 0.0909091 = 6.36744e-06 loss) | |
I0425 12:05:41.656471 22523 solver.cpp:245] Train net output #141: loss3/loss17 = 3.43186e-05 (* 0.0909091 = 3.11987e-06 loss) | |
I0425 12:05:41.656486 22523 solver.cpp:245] Train net output #142: loss3/loss18 = 2.62417e-05 (* 0.0909091 = 2.38561e-06 loss) | |
I0425 12:05:41.656512 22523 solver.cpp:245] Train net output #143: loss3/loss19 = 2.53774e-05 (* 0.0909091 = 2.30704e-06 loss) | |
I0425 12:05:41.656527 22523 solver.cpp:245] Train net output #144: loss3/loss20 = 1.30536e-05 (* 0.0909091 = 1.18669e-06 loss) | |
I0425 12:05:41.656541 22523 solver.cpp:245] Train net output #145: loss3/loss21 = 6.82478e-06 (* 0.0909091 = 6.20435e-07 loss) | |
I0425 12:05:41.656556 22523 solver.cpp:245] Train net output #146: loss3/loss22 = 2.27988e-06 (* 0.0909091 = 2.07262e-07 loss) | |
I0425 12:05:41.656579 22523 solver.cpp:245] Train net output #147: total_accuracy = 0.875 | |
I0425 12:05:41.656592 22523 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.75 | |
I0425 12:05:41.656605 22523 solver.cpp:245] Train net output #149: total_confidence = 0.683013 | |
I0425 12:05:41.656616 22523 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.609421 | |
I0425 12:05:41.656630 22523 sgd_solver.cpp:106] Iteration 10000, lr = 0.01 | |
I0425 12:11:23.040144 22523 solver.cpp:229] Iteration 10500, loss = 3.19441 | |
I0425 12:11:23.040309 22523 solver.cpp:245] Train net output #0: loss1/accuracy = 0.542373 | |
I0425 12:11:23.040330 22523 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.625 | |
I0425 12:11:23.040343 22523 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.75 | |
I0425 12:11:23.040356 22523 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.25 | |
I0425 12:11:23.040376 22523 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.5 | |
I0425 12:11:23.040388 22523 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.5 | |
I0425 12:11:23.040401 22523 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.5 | |
I0425 12:11:23.040413 22523 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.75 | |
I0425 12:11:23.040426 22523 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.625 | |
I0425 12:11:23.040438 22523 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.75 | |
I0425 12:11:23.040451 22523 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.75 | |
I0425 12:11:23.040462 22523 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.875 | |
I0425 12:11:23.040474 22523 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.875 | |
I0425 12:11:23.040487 22523 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.875 | |
I0425 12:11:23.040499 22523 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.875 | |
I0425 12:11:23.040511 22523 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.875 | |
I0425 12:11:23.040524 22523 solver.cpp:245] Train net output #16: loss1/accuracy16 = 0.875 | |
I0425 12:11:23.040535 22523 solver.cpp:245] Train net output #17: loss1/accuracy17 = 0.875 | |
I0425 12:11:23.040547 22523 solver.cpp:245] Train net output #18: loss1/accuracy18 = 0.875 | |
I0425 12:11:23.040560 22523 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0425 12:11:23.040571 22523 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0425 12:11:23.040585 22523 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0425 12:11:23.040596 22523 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0425 12:11:23.040608 22523 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.840909 | |
I0425 12:11:23.040621 22523 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.694915 | |
I0425 12:11:23.040638 22523 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.56763 (* 0.3 = 0.47029 loss) | |
I0425 12:11:23.040653 22523 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.538631 (* 0.3 = 0.161589 loss) | |
I0425 12:11:23.040668 22523 solver.cpp:245] Train net output #27: loss1/loss01 = 1.08315 (* 0.0272727 = 0.0295405 loss) | |
I0425 12:11:23.040683 22523 solver.cpp:245] Train net output #28: loss1/loss02 = 0.95817 (* 0.0272727 = 0.0261319 loss) | |
I0425 12:11:23.040698 22523 solver.cpp:245] Train net output #29: loss1/loss03 = 2.30408 (* 0.0272727 = 0.0628386 loss) | |
I0425 12:11:23.040712 22523 solver.cpp:245] Train net output #30: loss1/loss04 = 1.70404 (* 0.0272727 = 0.0464737 loss) | |
I0425 12:11:23.040727 22523 solver.cpp:245] Train net output #31: loss1/loss05 = 1.5467 (* 0.0272727 = 0.0421829 loss) | |
I0425 12:11:23.040741 22523 solver.cpp:245] Train net output #32: loss1/loss06 = 1.349 (* 0.0272727 = 0.0367909 loss) | |
I0425 12:11:23.040755 22523 solver.cpp:245] Train net output #33: loss1/loss07 = 0.841009 (* 0.0272727 = 0.0229366 loss) | |
I0425 12:11:23.040771 22523 solver.cpp:245] Train net output #34: loss1/loss08 = 1.06251 (* 0.0272727 = 0.0289777 loss) | |
I0425 12:11:23.040784 22523 solver.cpp:245] Train net output #35: loss1/loss09 = 0.598307 (* 0.0272727 = 0.0163175 loss) | |
I0425 12:11:23.040799 22523 solver.cpp:245] Train net output #36: loss1/loss10 = 0.750927 (* 0.0272727 = 0.0204798 loss) | |
I0425 12:11:23.040813 22523 solver.cpp:245] Train net output #37: loss1/loss11 = 0.38497 (* 0.0272727 = 0.0104992 loss) | |
I0425 12:11:23.040837 22523 solver.cpp:245] Train net output #38: loss1/loss12 = 0.386806 (* 0.0272727 = 0.0105493 loss) | |
I0425 12:11:23.040863 22523 solver.cpp:245] Train net output #39: loss1/loss13 = 0.592762 (* 0.0272727 = 0.0161662 loss) | |
I0425 12:11:23.040894 22523 solver.cpp:245] Train net output #40: loss1/loss14 = 0.27067 (* 0.0272727 = 0.00738192 loss) | |
I0425 12:11:23.040913 22523 solver.cpp:245] Train net output #41: loss1/loss15 = 0.60825 (* 0.0272727 = 0.0165886 loss) | |
I0425 12:11:23.040933 22523 solver.cpp:245] Train net output #42: loss1/loss16 = 0.703545 (* 0.0272727 = 0.0191876 loss) | |
I0425 12:11:23.040948 22523 solver.cpp:245] Train net output #43: loss1/loss17 = 0.880704 (* 0.0272727 = 0.0240192 loss) | |
I0425 12:11:23.040962 22523 solver.cpp:245] Train net output #44: loss1/loss18 = 0.805342 (* 0.0272727 = 0.0219639 loss) | |
I0425 12:11:23.040977 22523 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00386103 (* 0.0272727 = 0.000105301 loss) | |
I0425 12:11:23.040992 22523 solver.cpp:245] Train net output #46: loss1/loss20 = 0.00173389 (* 0.0272727 = 4.72879e-05 loss) | |
I0425 12:11:23.041007 22523 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000715201 (* 0.0272727 = 1.95055e-05 loss) | |
I0425 12:11:23.041025 22523 solver.cpp:245] Train net output #48: loss1/loss22 = 0.00117961 (* 0.0272727 = 3.21713e-05 loss) | |
I0425 12:11:23.041038 22523 solver.cpp:245] Train net output #49: loss2/accuracy = 0.610169 | |
I0425 12:11:23.041050 22523 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875 | |
I0425 12:11:23.041062 22523 solver.cpp:245] Train net output #51: loss2/accuracy02 = 1 | |
I0425 12:11:23.041074 22523 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.625 | |
I0425 12:11:23.041085 22523 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.5 | |
I0425 12:11:23.041105 22523 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.75 | |
I0425 12:11:23.041117 22523 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.5 | |
I0425 12:11:23.041128 22523 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.875 | |
I0425 12:11:23.041141 22523 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.75 | |
I0425 12:11:23.041160 22523 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.75 | |
I0425 12:11:23.041172 22523 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.75 | |
I0425 12:11:23.041183 22523 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.875 | |
I0425 12:11:23.041195 22523 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.875 | |
I0425 12:11:23.041208 22523 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.875 | |
I0425 12:11:23.041218 22523 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.875 | |
I0425 12:11:23.041230 22523 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.875 | |
I0425 12:11:23.041241 22523 solver.cpp:245] Train net output #65: loss2/accuracy16 = 0.875 | |
I0425 12:11:23.041254 22523 solver.cpp:245] Train net output #66: loss2/accuracy17 = 0.875 | |
I0425 12:11:23.041265 22523 solver.cpp:245] Train net output #67: loss2/accuracy18 = 0.875 | |
I0425 12:11:23.041276 22523 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0425 12:11:23.041287 22523 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0425 12:11:23.041299 22523 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0425 12:11:23.041311 22523 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0425 12:11:23.041322 22523 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.869318 | |
I0425 12:11:23.041334 22523 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.728814 | |
I0425 12:11:23.041348 22523 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.33498 (* 0.3 = 0.400493 loss) | |
I0425 12:11:23.041363 22523 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.461451 (* 0.3 = 0.138435 loss) | |
I0425 12:11:23.041376 22523 solver.cpp:245] Train net output #76: loss2/loss01 = 0.513968 (* 0.0272727 = 0.0140173 loss) | |
I0425 12:11:23.041390 22523 solver.cpp:245] Train net output #77: loss2/loss02 = 0.383085 (* 0.0272727 = 0.0104478 loss) | |
I0425 12:11:23.041416 22523 solver.cpp:245] Train net output #78: loss2/loss03 = 1.20422 (* 0.0272727 = 0.0328424 loss) | |
I0425 12:11:23.041431 22523 solver.cpp:245] Train net output #79: loss2/loss04 = 1.81489 (* 0.0272727 = 0.049497 loss) | |
I0425 12:11:23.041445 22523 solver.cpp:245] Train net output #80: loss2/loss05 = 1.38672 (* 0.0272727 = 0.0378197 loss) | |
I0425 12:11:23.041458 22523 solver.cpp:245] Train net output #81: loss2/loss06 = 1.40804 (* 0.0272727 = 0.0384011 loss) | |
I0425 12:11:23.041472 22523 solver.cpp:245] Train net output #82: loss2/loss07 = 0.834504 (* 0.0272727 = 0.0227592 loss) | |
I0425 12:11:23.041486 22523 solver.cpp:245] Train net output #83: loss2/loss08 = 0.891544 (* 0.0272727 = 0.0243148 loss) | |
I0425 12:11:23.041501 22523 solver.cpp:245] Train net output #84: loss2/loss09 = 0.720228 (* 0.0272727 = 0.0196426 loss) | |
I0425 12:11:23.041514 22523 solver.cpp:245] Train net output #85: loss2/loss10 = 1.02586 (* 0.0272727 = 0.0279781 loss) | |
I0425 12:11:23.041528 22523 solver.cpp:245] Train net output #86: loss2/loss11 = 0.388219 (* 0.0272727 = 0.0105878 loss) | |
I0425 12:11:23.041543 22523 solver.cpp:245] Train net output #87: loss2/loss12 = 0.459845 (* 0.0272727 = 0.0125412 loss) | |
I0425 12:11:23.041556 22523 solver.cpp:245] Train net output #88: loss2/loss13 = 0.497919 (* 0.0272727 = 0.0135796 loss) | |
I0425 12:11:23.041570 22523 solver.cpp:245] Train net output #89: loss2/loss14 = 0.317728 (* 0.0272727 = 0.0086653 loss) | |
I0425 12:11:23.041584 22523 solver.cpp:245] Train net output #90: loss2/loss15 = 0.646352 (* 0.0272727 = 0.0176278 loss) | |
I0425 12:11:23.041599 22523 solver.cpp:245] Train net output #91: loss2/loss16 = 0.53949 (* 0.0272727 = 0.0147134 loss) | |
I0425 12:11:23.041612 22523 solver.cpp:245] Train net output #92: loss2/loss17 = 0.828867 (* 0.0272727 = 0.0226055 loss) | |
I0425 12:11:23.041626 22523 solver.cpp:245] Train net output #93: loss2/loss18 = 0.780895 (* 0.0272727 = 0.0212971 loss) | |
I0425 12:11:23.041640 22523 solver.cpp:245] Train net output #94: loss2/loss19 = 0.00350325 (* 0.0272727 = 9.55433e-05 loss) | |
I0425 12:11:23.041654 22523 solver.cpp:245] Train net output #95: loss2/loss20 = 0.00236584 (* 0.0272727 = 6.4523e-05 loss) | |
I0425 12:11:23.041668 22523 solver.cpp:245] Train net output #96: loss2/loss21 = 0.00140945 (* 0.0272727 = 3.84394e-05 loss) | |
I0425 12:11:23.041683 22523 solver.cpp:245] Train net output #97: loss2/loss22 = 0.000616167 (* 0.0272727 = 1.68046e-05 loss) | |
I0425 12:11:23.041695 22523 solver.cpp:245] Train net output #98: loss3/accuracy = 0.728814 | |
I0425 12:11:23.041707 22523 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875 | |
I0425 12:11:23.041719 22523 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1 | |
I0425 12:11:23.041730 22523 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1 | |
I0425 12:11:23.041743 22523 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875 | |
I0425 12:11:23.041754 22523 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.75 | |
I0425 12:11:23.041766 22523 solver.cpp:245] Train net output #104: loss3/accuracy06 = 1 | |
I0425 12:11:23.041777 22523 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875 | |
I0425 12:11:23.041790 22523 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.75 | |
I0425 12:11:23.041801 22523 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.75 | |
I0425 12:11:23.041812 22523 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.75 | |
I0425 12:11:23.041824 22523 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.875 | |
I0425 12:11:23.041836 22523 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.875 | |
I0425 12:11:23.041847 22523 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.875 | |
I0425 12:11:23.041859 22523 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.875 | |
I0425 12:11:23.041872 22523 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.875 | |
I0425 12:11:23.041893 22523 solver.cpp:245] Train net output #114: loss3/accuracy16 = 0.875 | |
I0425 12:11:23.041908 22523 solver.cpp:245] Train net output #115: loss3/accuracy17 = 0.875 | |
I0425 12:11:23.041918 22523 solver.cpp:245] Train net output #116: loss3/accuracy18 = 0.875 | |
I0425 12:11:23.041930 22523 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0425 12:11:23.041942 22523 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0425 12:11:23.041954 22523 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0425 12:11:23.041968 22523 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0425 12:11:23.041980 22523 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.909091 | |
I0425 12:11:23.041992 22523 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.813559 | |
I0425 12:11:23.042006 22523 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.950346 (* 1 = 0.950346 loss) | |
I0425 12:11:23.042021 22523 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.340625 (* 1 = 0.340625 loss) | |
I0425 12:11:23.042034 22523 solver.cpp:245] Train net output #125: loss3/loss01 = 0.5188 (* 0.0909091 = 0.0471637 loss) | |
I0425 12:11:23.042049 22523 solver.cpp:245] Train net output #126: loss3/loss02 = 0.0812907 (* 0.0909091 = 0.00739006 loss) | |
I0425 12:11:23.042067 22523 solver.cpp:245] Train net output #127: loss3/loss03 = 0.150316 (* 0.0909091 = 0.0136651 loss) | |
I0425 12:11:23.042081 22523 solver.cpp:245] Train net output #128: loss3/loss04 = 0.766139 (* 0.0909091 = 0.069649 loss) | |
I0425 12:11:23.042095 22523 solver.cpp:245] Train net output #129: loss3/loss05 = 0.825353 (* 0.0909091 = 0.0750321 loss) | |
I0425 12:11:23.042109 22523 solver.cpp:245] Train net output #130: loss3/loss06 = 0.38265 (* 0.0909091 = 0.0347864 loss) | |
I0425 12:11:23.042124 22523 solver.cpp:245] Train net output #131: loss3/loss07 = 0.697124 (* 0.0909091 = 0.0633749 loss) | |
I0425 12:11:23.042138 22523 solver.cpp:245] Train net output #132: loss3/loss08 = 0.808527 (* 0.0909091 = 0.0735024 loss) | |
I0425 12:11:23.042152 22523 solver.cpp:245] Train net output #133: loss3/loss09 = 0.476888 (* 0.0909091 = 0.0433534 loss) | |
I0425 12:11:23.042166 22523 solver.cpp:245] Train net output #134: loss3/loss10 = 0.769771 (* 0.0909091 = 0.0699792 loss) | |
I0425 12:11:23.042181 22523 solver.cpp:245] Train net output #135: loss3/loss11 = 0.393652 (* 0.0909091 = 0.0357865 loss) | |
I0425 12:11:23.042194 22523 solver.cpp:245] Train net output #136: loss3/loss12 = 0.389423 (* 0.0909091 = 0.035402 loss) | |
I0425 12:11:23.042208 22523 solver.cpp:245] Train net output #137: loss3/loss13 = 0.488323 (* 0.0909091 = 0.044393 loss) | |
I0425 12:11:23.042223 22523 solver.cpp:245] Train net output #138: loss3/loss14 = 0.320908 (* 0.0909091 = 0.0291734 loss) | |
I0425 12:11:23.042237 22523 solver.cpp:245] Train net output #139: loss3/loss15 = 0.549143 (* 0.0909091 = 0.0499221 loss) | |
I0425 12:11:23.042251 22523 solver.cpp:245] Train net output #140: loss3/loss16 = 0.59003 (* 0.0909091 = 0.0536391 loss) | |
I0425 12:11:23.042265 22523 solver.cpp:245] Train net output #141: loss3/loss17 = 0.776556 (* 0.0909091 = 0.070596 loss) | |
I0425 12:11:23.042279 22523 solver.cpp:245] Train net output #142: loss3/loss18 = 0.618415 (* 0.0909091 = 0.0562195 loss) | |
I0425 12:11:23.042289 22523 solver.cpp:245] Train net output #143: loss3/loss19 = 0.00540043 (* 0.0909091 = 0.000490948 loss) | |
I0425 12:11:23.042306 22523 solver.cpp:245] Train net output #144: loss3/loss20 = 0.00236821 (* 0.0909091 = 0.000215292 loss) | |
I0425 12:11:23.042321 22523 solver.cpp:245] Train net output #145: loss3/loss21 = 0.000337452 (* 0.0909091 = 3.06774e-05 loss) | |
I0425 12:11:23.042335 22523 solver.cpp:245] Train net output #146: loss3/loss22 = 0.000102749 (* 0.0909091 = 9.34086e-06 loss) | |
I0425 12:11:23.042347 22523 solver.cpp:245] Train net output #147: total_accuracy = 0.625 | |
I0425 12:11:23.042359 22523 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.625 | |
I0425 12:11:23.042382 22523 solver.cpp:245] Train net output #149: total_confidence = 0.501055 | |
I0425 12:11:23.042394 22523 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.447291 | |
I0425 12:11:23.042409 22523 sgd_solver.cpp:106] Iteration 10500, lr = 0.01 | |
I0425 12:17:04.356801 22523 solver.cpp:229] Iteration 11000, loss = 3.19586 | |
I0425 12:17:04.356930 22523 solver.cpp:245] Train net output #0: loss1/accuracy = 0.482143 | |
I0425 12:17:04.356951 22523 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75 | |
I0425 12:17:04.356966 22523 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.75 | |
I0425 12:17:04.356978 22523 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375 | |
I0425 12:17:04.356991 22523 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.5 | |
I0425 12:17:04.357002 22523 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.25 | |
I0425 12:17:04.357015 22523 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.625 | |
I0425 12:17:04.357028 22523 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.625 | |
I0425 12:17:04.357041 22523 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875 | |
I0425 12:17:04.357054 22523 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.75 | |
I0425 12:17:04.357066 22523 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875 | |
I0425 12:17:04.357079 22523 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.875 | |
I0425 12:17:04.357096 22523 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.875 | |
I0425 12:17:04.357110 22523 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.875 | |
I0425 12:17:04.357121 22523 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.875 | |
I0425 12:17:04.357134 22523 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0425 12:17:04.357146 22523 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0425 12:17:04.357166 22523 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0425 12:17:04.357178 22523 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0425 12:17:04.357189 22523 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0425 12:17:04.357204 22523 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0425 12:17:04.357216 22523 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0425 12:17:04.357228 22523 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0425 12:17:04.357240 22523 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.823864 | |
I0425 12:17:04.357254 22523 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.732143 | |
I0425 12:17:04.357271 22523 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.65438 (* 0.3 = 0.496314 loss) | |
I0425 12:17:04.357286 22523 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.591553 (* 0.3 = 0.177466 loss) | |
I0425 12:17:04.357302 22523 solver.cpp:245] Train net output #27: loss1/loss01 = 0.880377 (* 0.0272727 = 0.0240103 loss) | |
I0425 12:17:04.357316 22523 solver.cpp:245] Train net output #28: loss1/loss02 = 0.889984 (* 0.0272727 = 0.0242723 loss) | |
I0425 12:17:04.357332 22523 solver.cpp:245] Train net output #29: loss1/loss03 = 1.76417 (* 0.0272727 = 0.0481138 loss) | |
I0425 12:17:04.357347 22523 solver.cpp:245] Train net output #30: loss1/loss04 = 1.78137 (* 0.0272727 = 0.0485828 loss) | |
I0425 12:17:04.357360 22523 solver.cpp:245] Train net output #31: loss1/loss05 = 2.29805 (* 0.0272727 = 0.062674 loss) | |
I0425 12:17:04.357374 22523 solver.cpp:245] Train net output #32: loss1/loss06 = 1.38695 (* 0.0272727 = 0.0378259 loss) | |
I0425 12:17:04.357388 22523 solver.cpp:245] Train net output #33: loss1/loss07 = 1.22964 (* 0.0272727 = 0.0335356 loss) | |
I0425 12:17:04.357403 22523 solver.cpp:245] Train net output #34: loss1/loss08 = 1.04271 (* 0.0272727 = 0.0284376 loss) | |
I0425 12:17:04.357417 22523 solver.cpp:245] Train net output #35: loss1/loss09 = 0.787051 (* 0.0272727 = 0.021465 loss) | |
I0425 12:17:04.357432 22523 solver.cpp:245] Train net output #36: loss1/loss10 = 0.52615 (* 0.0272727 = 0.0143495 loss) | |
I0425 12:17:04.357446 22523 solver.cpp:245] Train net output #37: loss1/loss11 = 0.392756 (* 0.0272727 = 0.0107115 loss) | |
I0425 12:17:04.357461 22523 solver.cpp:245] Train net output #38: loss1/loss12 = 0.368476 (* 0.0272727 = 0.0100493 loss) | |
I0425 12:17:04.357493 22523 solver.cpp:245] Train net output #39: loss1/loss13 = 0.424816 (* 0.0272727 = 0.0115859 loss) | |
I0425 12:17:04.357511 22523 solver.cpp:245] Train net output #40: loss1/loss14 = 0.330601 (* 0.0272727 = 0.00901638 loss) | |
I0425 12:17:04.357524 22523 solver.cpp:245] Train net output #41: loss1/loss15 = 0.0840905 (* 0.0272727 = 0.00229338 loss) | |
I0425 12:17:04.357539 22523 solver.cpp:245] Train net output #42: loss1/loss16 = 0.0302851 (* 0.0272727 = 0.000825957 loss) | |
I0425 12:17:04.357554 22523 solver.cpp:245] Train net output #43: loss1/loss17 = 0.0102353 (* 0.0272727 = 0.000279146 loss) | |
I0425 12:17:04.357569 22523 solver.cpp:245] Train net output #44: loss1/loss18 = 0.00231895 (* 0.0272727 = 6.32441e-05 loss) | |
I0425 12:17:04.357583 22523 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00245766 (* 0.0272727 = 6.70271e-05 loss) | |
I0425 12:17:04.357597 22523 solver.cpp:245] Train net output #46: loss1/loss20 = 0.00085505 (* 0.0272727 = 2.33195e-05 loss) | |
I0425 12:17:04.357612 22523 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000267719 (* 0.0272727 = 7.30144e-06 loss) | |
I0425 12:17:04.357626 22523 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000141631 (* 0.0272727 = 3.86266e-06 loss) | |
I0425 12:17:04.357640 22523 solver.cpp:245] Train net output #49: loss2/accuracy = 0.660714 | |
I0425 12:17:04.357651 22523 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875 | |
I0425 12:17:04.357663 22523 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.875 | |
I0425 12:17:04.357676 22523 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.75 | |
I0425 12:17:04.357686 22523 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.625 | |
I0425 12:17:04.357698 22523 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5 | |
I0425 12:17:04.357710 22523 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.75 | |
I0425 12:17:04.357722 22523 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.5 | |
I0425 12:17:04.357733 22523 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.75 | |
I0425 12:17:04.357744 22523 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.75 | |
I0425 12:17:04.357756 22523 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875 | |
I0425 12:17:04.357767 22523 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.875 | |
I0425 12:17:04.357779 22523 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.875 | |
I0425 12:17:04.357790 22523 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.875 | |
I0425 12:17:04.357802 22523 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.875 | |
I0425 12:17:04.357813 22523 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0425 12:17:04.357825 22523 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0425 12:17:04.357836 22523 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0425 12:17:04.357847 22523 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0425 12:17:04.357858 22523 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0425 12:17:04.357870 22523 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0425 12:17:04.357882 22523 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0425 12:17:04.357892 22523 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0425 12:17:04.357904 22523 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.880682 | |
I0425 12:17:04.357916 22523 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.803571 | |
I0425 12:17:04.357930 22523 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.1996 (* 0.3 = 0.359881 loss) | |
I0425 12:17:04.357949 22523 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.409524 (* 0.3 = 0.122857 loss) | |
I0425 12:17:04.357964 22523 solver.cpp:245] Train net output #76: loss2/loss01 = 0.263778 (* 0.0272727 = 0.00719395 loss) | |
I0425 12:17:04.357978 22523 solver.cpp:245] Train net output #77: loss2/loss02 = 0.416298 (* 0.0272727 = 0.0113536 loss) | |
I0425 12:17:04.358005 22523 solver.cpp:245] Train net output #78: loss2/loss03 = 0.81032 (* 0.0272727 = 0.0220996 loss) | |
I0425 12:17:04.358019 22523 solver.cpp:245] Train net output #79: loss2/loss04 = 1.56463 (* 0.0272727 = 0.0426716 loss) | |
I0425 12:17:04.358033 22523 solver.cpp:245] Train net output #80: loss2/loss05 = 1.71543 (* 0.0272727 = 0.0467845 loss) | |
I0425 12:17:04.358048 22523 solver.cpp:245] Train net output #81: loss2/loss06 = 1.19181 (* 0.0272727 = 0.032504 loss) | |
I0425 12:17:04.358062 22523 solver.cpp:245] Train net output #82: loss2/loss07 = 1.37995 (* 0.0272727 = 0.0376349 loss) | |
I0425 12:17:04.358075 22523 solver.cpp:245] Train net output #83: loss2/loss08 = 0.943147 (* 0.0272727 = 0.0257222 loss) | |
I0425 12:17:04.358089 22523 solver.cpp:245] Train net output #84: loss2/loss09 = 1.08011 (* 0.0272727 = 0.0294575 loss) | |
I0425 12:17:04.358103 22523 solver.cpp:245] Train net output #85: loss2/loss10 = 0.477462 (* 0.0272727 = 0.0130217 loss) | |
I0425 12:17:04.358117 22523 solver.cpp:245] Train net output #86: loss2/loss11 = 0.295516 (* 0.0272727 = 0.00805954 loss) | |
I0425 12:17:04.358131 22523 solver.cpp:245] Train net output #87: loss2/loss12 = 0.430866 (* 0.0272727 = 0.0117509 loss) | |
I0425 12:17:04.358145 22523 solver.cpp:245] Train net output #88: loss2/loss13 = 0.446894 (* 0.0272727 = 0.012188 loss) | |
I0425 12:17:04.358160 22523 solver.cpp:245] Train net output #89: loss2/loss14 = 0.404269 (* 0.0272727 = 0.0110255 loss) | |
I0425 12:17:04.358175 22523 solver.cpp:245] Train net output #90: loss2/loss15 = 0.00660028 (* 0.0272727 = 0.000180008 loss) | |
I0425 12:17:04.358189 22523 solver.cpp:245] Train net output #91: loss2/loss16 = 0.00340462 (* 0.0272727 = 9.28533e-05 loss) | |
I0425 12:17:04.358203 22523 solver.cpp:245] Train net output #92: loss2/loss17 = 0.00132391 (* 0.0272727 = 3.61065e-05 loss) | |
I0425 12:17:04.358217 22523 solver.cpp:245] Train net output #93: loss2/loss18 = 0.000340068 (* 0.0272727 = 9.27459e-06 loss) | |
I0425 12:17:04.358232 22523 solver.cpp:245] Train net output #94: loss2/loss19 = 0.000103869 (* 0.0272727 = 2.83279e-06 loss) | |
I0425 12:17:04.358247 22523 solver.cpp:245] Train net output #95: loss2/loss20 = 8.1903e-05 (* 0.0272727 = 2.23372e-06 loss) | |
I0425 12:17:04.358263 22523 solver.cpp:245] Train net output #96: loss2/loss21 = 3.0281e-05 (* 0.0272727 = 8.25846e-07 loss) | |
I0425 12:17:04.358283 22523 solver.cpp:245] Train net output #97: loss2/loss22 = 9.40283e-06 (* 0.0272727 = 2.56441e-07 loss) | |
I0425 12:17:04.358295 22523 solver.cpp:245] Train net output #98: loss3/accuracy = 0.75 | |
I0425 12:17:04.358309 22523 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1 | |
I0425 12:17:04.358319 22523 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875 | |
I0425 12:17:04.358331 22523 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.875 | |
I0425 12:17:04.358350 22523 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875 | |
I0425 12:17:04.358361 22523 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875 | |
I0425 12:17:04.358372 22523 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.875 | |
I0425 12:17:04.358383 22523 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75 | |
I0425 12:17:04.358395 22523 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.75 | |
I0425 12:17:04.358407 22523 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.75 | |
I0425 12:17:04.358417 22523 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875 | |
I0425 12:17:04.358433 22523 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.875 | |
I0425 12:17:04.358443 22523 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.875 | |
I0425 12:17:04.358454 22523 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.875 | |
I0425 12:17:04.358466 22523 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.875 | |
I0425 12:17:04.358477 22523 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0425 12:17:04.358500 22523 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0425 12:17:04.358512 22523 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0425 12:17:04.358523 22523 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0425 12:17:04.358535 22523 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0425 12:17:04.358546 22523 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0425 12:17:04.358557 22523 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0425 12:17:04.358568 22523 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0425 12:17:04.358579 22523 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.920455 | |
I0425 12:17:04.358592 22523 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.839286 | |
I0425 12:17:04.358605 22523 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.89739 (* 1 = 0.89739 loss) | |
I0425 12:17:04.358619 22523 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.293417 (* 1 = 0.293417 loss) | |
I0425 12:17:04.358634 22523 solver.cpp:245] Train net output #125: loss3/loss01 = 0.0858169 (* 0.0909091 = 0.00780153 loss) | |
I0425 12:17:04.358649 22523 solver.cpp:245] Train net output #126: loss3/loss02 = 0.30653 (* 0.0909091 = 0.0278664 loss) | |
I0425 12:17:04.358662 22523 solver.cpp:245] Train net output #127: loss3/loss03 = 0.529182 (* 0.0909091 = 0.0481074 loss) | |
I0425 12:17:04.358676 22523 solver.cpp:245] Train net output #128: loss3/loss04 = 0.764749 (* 0.0909091 = 0.0695227 loss) | |
I0425 12:17:04.358690 22523 solver.cpp:245] Train net output #129: loss3/loss05 = 0.704929 (* 0.0909091 = 0.0640845 loss) | |
I0425 12:17:04.358703 22523 solver.cpp:245] Train net output #130: loss3/loss06 = 0.772743 (* 0.0909091 = 0.0702493 loss) | |
I0425 12:17:04.358717 22523 solver.cpp:245] Train net output #131: loss3/loss07 = 0.818063 (* 0.0909091 = 0.0743694 loss) | |
I0425 12:17:04.358731 22523 solver.cpp:245] Train net output #132: loss3/loss08 = 0.791517 (* 0.0909091 = 0.0719561 loss) | |
I0425 12:17:04.358746 22523 solver.cpp:245] Train net output #133: loss3/loss09 = 0.918689 (* 0.0909091 = 0.0835172 loss) | |
I0425 12:17:04.358759 22523 solver.cpp:245] Train net output #134: loss3/loss10 = 0.348538 (* 0.0909091 = 0.0316852 loss) | |
I0425 12:17:04.358773 22523 solver.cpp:245] Train net output #135: loss3/loss11 = 0.315624 (* 0.0909091 = 0.0286931 loss) | |
I0425 12:17:04.358788 22523 solver.cpp:245] Train net output #136: loss3/loss12 = 0.416484 (* 0.0909091 = 0.0378622 loss) | |
I0425 12:17:04.358800 22523 solver.cpp:245] Train net output #137: loss3/loss13 = 0.457909 (* 0.0909091 = 0.0416281 loss) | |
I0425 12:17:04.358814 22523 solver.cpp:245] Train net output #138: loss3/loss14 = 0.458496 (* 0.0909091 = 0.0416814 loss) | |
I0425 12:17:04.358829 22523 solver.cpp:245] Train net output #139: loss3/loss15 = 0.0185224 (* 0.0909091 = 0.00168385 loss) | |
I0425 12:17:04.358844 22523 solver.cpp:245] Train net output #140: loss3/loss16 = 0.00914613 (* 0.0909091 = 0.000831466 loss) | |
I0425 12:17:04.358857 22523 solver.cpp:245] Train net output #141: loss3/loss17 = 0.0037099 (* 0.0909091 = 0.000337264 loss) | |
I0425 12:17:04.358871 22523 solver.cpp:245] Train net output #142: loss3/loss18 = 0.0028231 (* 0.0909091 = 0.000256646 loss) | |
I0425 12:17:04.358886 22523 solver.cpp:245] Train net output #143: loss3/loss19 = 0.00149426 (* 0.0909091 = 0.000135841 loss) | |
I0425 12:17:04.358899 22523 solver.cpp:245] Train net output #144: loss3/loss20 = 0.00072437 (* 0.0909091 = 6.58518e-05 loss) | |
I0425 12:17:04.358914 22523 solver.cpp:245] Train net output #145: loss3/loss21 = 0.000210388 (* 0.0909091 = 1.91262e-05 loss) | |
I0425 12:17:04.358928 22523 solver.cpp:245] Train net output #146: loss3/loss22 = 8.41803e-05 (* 0.0909091 = 7.65276e-06 loss) | |
I0425 12:17:04.358940 22523 solver.cpp:245] Train net output #147: total_accuracy = 0.75 | |
I0425 12:17:04.358953 22523 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.75 | |
I0425 12:17:04.358974 22523 solver.cpp:245] Train net output #149: total_confidence = 0.601522 | |
I0425 12:17:04.358988 22523 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.482836 | |
I0425 12:17:04.359007 22523 sgd_solver.cpp:106] Iteration 11000, lr = 0.01 | |
I0425 12:22:45.750010 22523 solver.cpp:229] Iteration 11500, loss = 3.08166 | |
I0425 12:22:45.750146 22523 solver.cpp:245] Train net output #0: loss1/accuracy = 0.777778 | |
I0425 12:22:45.750167 22523 solver.cpp:245] Train net output #1: loss1/accuracy01 = 1 | |
I0425 12:22:45.750181 22523 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5 | |
I0425 12:22:45.750193 22523 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.625 | |
I0425 12:22:45.750210 22523 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.5 | |
I0425 12:22:45.750222 22523 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.5 | |
I0425 12:22:45.750234 22523 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.625 | |
I0425 12:22:45.750247 22523 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.75 | |
I0425 12:22:45.750259 22523 solver.cpp:245] Train net output #8: loss1/accuracy08 = 1 | |
I0425 12:22:45.750272 22523 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875 | |
I0425 12:22:45.750283 22523 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1 | |
I0425 12:22:45.750295 22523 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1 | |
I0425 12:22:45.750308 22523 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1 | |
I0425 12:22:45.750319 22523 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1 | |
I0425 12:22:45.750331 22523 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1 | |
I0425 12:22:45.750342 22523 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0425 12:22:45.750355 22523 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0425 12:22:45.750367 22523 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0425 12:22:45.750380 22523 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0425 12:22:45.750391 22523 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0425 12:22:45.750403 22523 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0425 12:22:45.750414 22523 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0425 12:22:45.750427 22523 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0425 12:22:45.750437 22523 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.931818 | |
I0425 12:22:45.750450 22523 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.888889 | |
I0425 12:22:45.750466 22523 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 0.843027 (* 0.3 = 0.252908 loss) | |
I0425 12:22:45.750483 22523 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.245713 (* 0.3 = 0.0737138 loss) | |
I0425 12:22:45.750497 22523 solver.cpp:245] Train net output #27: loss1/loss01 = 0.295997 (* 0.0272727 = 0.00807264 loss) | |
I0425 12:22:45.750512 22523 solver.cpp:245] Train net output #28: loss1/loss02 = 2.17433 (* 0.0272727 = 0.0593 loss) | |
I0425 12:22:45.750526 22523 solver.cpp:245] Train net output #29: loss1/loss03 = 1.31164 (* 0.0272727 = 0.0357721 loss) | |
I0425 12:22:45.750540 22523 solver.cpp:245] Train net output #30: loss1/loss04 = 1.422 (* 0.0272727 = 0.0387818 loss) | |
I0425 12:22:45.750555 22523 solver.cpp:245] Train net output #31: loss1/loss05 = 1.41227 (* 0.0272727 = 0.0385165 loss) | |
I0425 12:22:45.750569 22523 solver.cpp:245] Train net output #32: loss1/loss06 = 1.56095 (* 0.0272727 = 0.0425714 loss) | |
I0425 12:22:45.750583 22523 solver.cpp:245] Train net output #33: loss1/loss07 = 0.936077 (* 0.0272727 = 0.0255294 loss) | |
I0425 12:22:45.750598 22523 solver.cpp:245] Train net output #34: loss1/loss08 = 0.0658499 (* 0.0272727 = 0.00179591 loss) | |
I0425 12:22:45.750613 22523 solver.cpp:245] Train net output #35: loss1/loss09 = 0.160873 (* 0.0272727 = 0.00438744 loss) | |
I0425 12:22:45.750627 22523 solver.cpp:245] Train net output #36: loss1/loss10 = 0.0561861 (* 0.0272727 = 0.00153235 loss) | |
I0425 12:22:45.750643 22523 solver.cpp:245] Train net output #37: loss1/loss11 = 0.019378 (* 0.0272727 = 0.000528491 loss) | |
I0425 12:22:45.750658 22523 solver.cpp:245] Train net output #38: loss1/loss12 = 0.00993751 (* 0.0272727 = 0.000271023 loss) | |
I0425 12:22:45.750672 22523 solver.cpp:245] Train net output #39: loss1/loss13 = 0.0029266 (* 0.0272727 = 7.98163e-05 loss) | |
I0425 12:22:45.750705 22523 solver.cpp:245] Train net output #40: loss1/loss14 = 0.00289661 (* 0.0272727 = 7.89985e-05 loss) | |
I0425 12:22:45.750720 22523 solver.cpp:245] Train net output #41: loss1/loss15 = 0.00168231 (* 0.0272727 = 4.58812e-05 loss) | |
I0425 12:22:45.750735 22523 solver.cpp:245] Train net output #42: loss1/loss16 = 0.000310916 (* 0.0272727 = 8.47953e-06 loss) | |
I0425 12:22:45.750751 22523 solver.cpp:245] Train net output #43: loss1/loss17 = 0.000124042 (* 0.0272727 = 3.38296e-06 loss) | |
I0425 12:22:45.750764 22523 solver.cpp:245] Train net output #44: loss1/loss18 = 5.88536e-05 (* 0.0272727 = 1.6051e-06 loss) | |
I0425 12:22:45.750779 22523 solver.cpp:245] Train net output #45: loss1/loss19 = 6.46465e-05 (* 0.0272727 = 1.76309e-06 loss) | |
I0425 12:22:45.750794 22523 solver.cpp:245] Train net output #46: loss1/loss20 = 2.88803e-05 (* 0.0272727 = 7.87645e-07 loss) | |
I0425 12:22:45.750808 22523 solver.cpp:245] Train net output #47: loss1/loss21 = 8.34476e-06 (* 0.0272727 = 2.27584e-07 loss) | |
I0425 12:22:45.750823 22523 solver.cpp:245] Train net output #48: loss1/loss22 = 1.23533e-05 (* 0.0272727 = 3.36909e-07 loss) | |
I0425 12:22:45.750835 22523 solver.cpp:245] Train net output #49: loss2/accuracy = 0.955556 | |
I0425 12:22:45.750849 22523 solver.cpp:245] Train net output #50: loss2/accuracy01 = 1 | |
I0425 12:22:45.750859 22523 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.875 | |
I0425 12:22:45.750871 22523 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.75 | |
I0425 12:22:45.750882 22523 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.75 | |
I0425 12:22:45.750895 22523 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.625 | |
I0425 12:22:45.750906 22523 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.75 | |
I0425 12:22:45.750917 22523 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.75 | |
I0425 12:22:45.750928 22523 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875 | |
I0425 12:22:45.750941 22523 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1 | |
I0425 12:22:45.750952 22523 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1 | |
I0425 12:22:45.750962 22523 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1 | |
I0425 12:22:45.750973 22523 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1 | |
I0425 12:22:45.750985 22523 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1 | |
I0425 12:22:45.750996 22523 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1 | |
I0425 12:22:45.751008 22523 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0425 12:22:45.751019 22523 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0425 12:22:45.751030 22523 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0425 12:22:45.751041 22523 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0425 12:22:45.751052 22523 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0425 12:22:45.751065 22523 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0425 12:22:45.751075 22523 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0425 12:22:45.751086 22523 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0425 12:22:45.751098 22523 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.977273 | |
I0425 12:22:45.751109 22523 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 1 | |
I0425 12:22:45.751123 22523 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.262347 (* 0.3 = 0.078704 loss) | |
I0425 12:22:45.751137 22523 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.0830422 (* 0.3 = 0.0249127 loss) | |
I0425 12:22:45.751152 22523 solver.cpp:245] Train net output #76: loss2/loss01 = 0.0716105 (* 0.0272727 = 0.00195301 loss) | |
I0425 12:22:45.751170 22523 solver.cpp:245] Train net output #77: loss2/loss02 = 0.50471 (* 0.0272727 = 0.0137648 loss) | |
I0425 12:22:45.751197 22523 solver.cpp:245] Train net output #78: loss2/loss03 = 0.664559 (* 0.0272727 = 0.0181243 loss) | |
I0425 12:22:45.751212 22523 solver.cpp:245] Train net output #79: loss2/loss04 = 0.793021 (* 0.0272727 = 0.0216279 loss) | |
I0425 12:22:45.751227 22523 solver.cpp:245] Train net output #80: loss2/loss05 = 0.879361 (* 0.0272727 = 0.0239826 loss) | |
I0425 12:22:45.751241 22523 solver.cpp:245] Train net output #81: loss2/loss06 = 0.697795 (* 0.0272727 = 0.0190308 loss) | |
I0425 12:22:45.751257 22523 solver.cpp:245] Train net output #82: loss2/loss07 = 0.715535 (* 0.0272727 = 0.0195146 loss) | |
I0425 12:22:45.751272 22523 solver.cpp:245] Train net output #83: loss2/loss08 = 0.194439 (* 0.0272727 = 0.00530289 loss) | |
I0425 12:22:45.751287 22523 solver.cpp:245] Train net output #84: loss2/loss09 = 0.0365667 (* 0.0272727 = 0.000997273 loss) | |
I0425 12:22:45.751302 22523 solver.cpp:245] Train net output #85: loss2/loss10 = 0.00812463 (* 0.0272727 = 0.000221581 loss) | |
I0425 12:22:45.751315 22523 solver.cpp:245] Train net output #86: loss2/loss11 = 0.00515758 (* 0.0272727 = 0.000140661 loss) | |
I0425 12:22:45.751329 22523 solver.cpp:245] Train net output #87: loss2/loss12 = 0.00304548 (* 0.0272727 = 8.30587e-05 loss) | |
I0425 12:22:45.751343 22523 solver.cpp:245] Train net output #88: loss2/loss13 = 0.000675153 (* 0.0272727 = 1.84133e-05 loss) | |
I0425 12:22:45.751375 22523 solver.cpp:245] Train net output #89: loss2/loss14 = 0.000787504 (* 0.0272727 = 2.14774e-05 loss) | |
I0425 12:22:45.751391 22523 solver.cpp:245] Train net output #90: loss2/loss15 = 0.000290462 (* 0.0272727 = 7.9217e-06 loss) | |
I0425 12:22:45.751406 22523 solver.cpp:245] Train net output #91: loss2/loss16 = 9.58753e-05 (* 0.0272727 = 2.61478e-06 loss) | |
I0425 12:22:45.751420 22523 solver.cpp:245] Train net output #92: loss2/loss17 = 4.70799e-05 (* 0.0272727 = 1.284e-06 loss) | |
I0425 12:22:45.751435 22523 solver.cpp:245] Train net output #93: loss2/loss18 = 2.53418e-05 (* 0.0272727 = 6.91139e-07 loss) | |
I0425 12:22:45.751449 22523 solver.cpp:245] Train net output #94: loss2/loss19 = 2.68223e-06 (* 0.0272727 = 7.31518e-08 loss) | |
I0425 12:22:45.751463 22523 solver.cpp:245] Train net output #95: loss2/loss20 = 1.01328e-06 (* 0.0272727 = 2.76349e-08 loss) | |
I0425 12:22:45.751478 22523 solver.cpp:245] Train net output #96: loss2/loss21 = 7.59961e-07 (* 0.0272727 = 2.07262e-08 loss) | |
I0425 12:22:45.751488 22523 solver.cpp:245] Train net output #97: loss2/loss22 = 2.23517e-07 (* 0.0272727 = 6.09593e-09 loss) | |
I0425 12:22:45.751502 22523 solver.cpp:245] Train net output #98: loss3/accuracy = 1 | |
I0425 12:22:45.751514 22523 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1 | |
I0425 12:22:45.751526 22523 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1 | |
I0425 12:22:45.751538 22523 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1 | |
I0425 12:22:45.751549 22523 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1 | |
I0425 12:22:45.751560 22523 solver.cpp:245] Train net output #103: loss3/accuracy05 = 1 | |
I0425 12:22:45.751571 22523 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.875 | |
I0425 12:22:45.751582 22523 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875 | |
I0425 12:22:45.751595 22523 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1 | |
I0425 12:22:45.751605 22523 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1 | |
I0425 12:22:45.751616 22523 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1 | |
I0425 12:22:45.751628 22523 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1 | |
I0425 12:22:45.751639 22523 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1 | |
I0425 12:22:45.751651 22523 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1 | |
I0425 12:22:45.751662 22523 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1 | |
I0425 12:22:45.751672 22523 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0425 12:22:45.751683 22523 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0425 12:22:45.751708 22523 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0425 12:22:45.751720 22523 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0425 12:22:45.751731 22523 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0425 12:22:45.751744 22523 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0425 12:22:45.751754 22523 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0425 12:22:45.751765 22523 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0425 12:22:45.751777 22523 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.994318 | |
I0425 12:22:45.751788 22523 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 1 | |
I0425 12:22:45.751802 22523 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.0499511 (* 1 = 0.0499511 loss) | |
I0425 12:22:45.751816 22523 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.0250174 (* 1 = 0.0250174 loss) | |
I0425 12:22:45.751830 22523 solver.cpp:245] Train net output #125: loss3/loss01 = 0.0164961 (* 0.0909091 = 0.00149965 loss) | |
I0425 12:22:45.751845 22523 solver.cpp:245] Train net output #126: loss3/loss02 = 0.043058 (* 0.0909091 = 0.00391436 loss) | |
I0425 12:22:45.751859 22523 solver.cpp:245] Train net output #127: loss3/loss03 = 0.0207686 (* 0.0909091 = 0.00188806 loss) | |
I0425 12:22:45.751873 22523 solver.cpp:245] Train net output #128: loss3/loss04 = 0.0300229 (* 0.0909091 = 0.00272935 loss) | |
I0425 12:22:45.751888 22523 solver.cpp:245] Train net output #129: loss3/loss05 = 0.187495 (* 0.0909091 = 0.017045 loss) | |
I0425 12:22:45.751901 22523 solver.cpp:245] Train net output #130: loss3/loss06 = 0.361452 (* 0.0909091 = 0.0328593 loss) | |
I0425 12:22:45.751914 22523 solver.cpp:245] Train net output #131: loss3/loss07 = 0.165923 (* 0.0909091 = 0.0150839 loss) | |
I0425 12:22:45.751929 22523 solver.cpp:245] Train net output #132: loss3/loss08 = 0.0707928 (* 0.0909091 = 0.00643571 loss) | |
I0425 12:22:45.751942 22523 solver.cpp:245] Train net output #133: loss3/loss09 = 0.0477329 (* 0.0909091 = 0.00433936 loss) | |
I0425 12:22:45.751957 22523 solver.cpp:245] Train net output #134: loss3/loss10 = 0.00596799 (* 0.0909091 = 0.000542545 loss) | |
I0425 12:22:45.751971 22523 solver.cpp:245] Train net output #135: loss3/loss11 = 0.00425572 (* 0.0909091 = 0.000386884 loss) | |
I0425 12:22:45.751984 22523 solver.cpp:245] Train net output #136: loss3/loss12 = 0.00145304 (* 0.0909091 = 0.000132095 loss) | |
I0425 12:22:45.751998 22523 solver.cpp:245] Train net output #137: loss3/loss13 = 0.00091983 (* 0.0909091 = 8.36209e-05 loss) | |
I0425 12:22:45.752012 22523 solver.cpp:245] Train net output #138: loss3/loss14 = 0.000713127 (* 0.0909091 = 6.48298e-05 loss) | |
I0425 12:22:45.752027 22523 solver.cpp:245] Train net output #139: loss3/loss15 = 0.000439017 (* 0.0909091 = 3.99107e-05 loss) | |
I0425 12:22:45.752040 22523 solver.cpp:245] Train net output #140: loss3/loss16 = 0.000281684 (* 0.0909091 = 2.56076e-05 loss) | |
I0425 12:22:45.752054 22523 solver.cpp:245] Train net output #141: loss3/loss17 = 0.000324758 (* 0.0909091 = 2.95234e-05 loss) | |
I0425 12:22:45.752068 22523 solver.cpp:245] Train net output #142: loss3/loss18 = 0.000239678 (* 0.0909091 = 2.17889e-05 loss) | |
I0425 12:22:45.752082 22523 solver.cpp:245] Train net output #143: loss3/loss19 = 0.000138015 (* 0.0909091 = 1.25468e-05 loss) | |
I0425 12:22:45.752096 22523 solver.cpp:245] Train net output #144: loss3/loss20 = 6.63446e-05 (* 0.0909091 = 6.03133e-06 loss) | |
I0425 12:22:45.752110 22523 solver.cpp:245] Train net output #145: loss3/loss21 = 2.83438e-05 (* 0.0909091 = 2.57671e-06 loss) | |
I0425 12:22:45.752125 22523 solver.cpp:245] Train net output #146: loss3/loss22 = 1.02075e-05 (* 0.0909091 = 9.27958e-07 loss) | |
I0425 12:22:45.752136 22523 solver.cpp:245] Train net output #147: total_accuracy = 0.875 | |
I0425 12:22:45.752148 22523 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.75 | |
I0425 12:22:45.752169 22523 solver.cpp:245] Train net output #149: total_confidence = 0.763087 | |
I0425 12:22:45.752183 22523 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.547916 | |
I0425 12:22:45.752198 22523 sgd_solver.cpp:106] Iteration 11500, lr = 0.01 | |
I0425 12:28:27.158880 22523 solver.cpp:229] Iteration 12000, loss = 3.13438 | |
I0425 12:28:27.159032 22523 solver.cpp:245] Train net output #0: loss1/accuracy = 0.537037 | |
I0425 12:28:27.159054 22523 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.5 | |
I0425 12:28:27.159067 22523 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5 | |
I0425 12:28:27.159080 22523 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375 | |
I0425 12:28:27.159092 22523 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.5 | |
I0425 12:28:27.159106 22523 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.5 | |
I0425 12:28:27.159117 22523 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.625 | |
I0425 12:28:27.159131 22523 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.75 | |
I0425 12:28:27.159143 22523 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.75 | |
I0425 12:28:27.159155 22523 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875 | |
I0425 12:28:27.159168 22523 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875 | |
I0425 12:28:27.159181 22523 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.875 | |
I0425 12:28:27.159193 22523 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.875 | |
I0425 12:28:27.159205 22523 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.875 | |
I0425 12:28:27.159227 22523 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.875 | |
I0425 12:28:27.159240 22523 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.875 | |
I0425 12:28:27.159252 22523 solver.cpp:245] Train net output #16: loss1/accuracy16 = 0.875 | |
I0425 12:28:27.159265 22523 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0425 12:28:27.159276 22523 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0425 12:28:27.159297 22523 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0425 12:28:27.159309 22523 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0425 12:28:27.159322 22523 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0425 12:28:27.159333 22523 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0425 12:28:27.159345 22523 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.840909 | |
I0425 12:28:27.159373 22523 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.722222 | |
I0425 12:28:27.159391 22523 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.46324 (* 0.3 = 0.438971 loss) | |
I0425 12:28:27.159407 22523 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.474396 (* 0.3 = 0.142319 loss) | |
I0425 12:28:27.159422 22523 solver.cpp:245] Train net output #27: loss1/loss01 = 1.47932 (* 0.0272727 = 0.0403451 loss) | |
I0425 12:28:27.159437 22523 solver.cpp:245] Train net output #28: loss1/loss02 = 1.62303 (* 0.0272727 = 0.0442646 loss) | |
I0425 12:28:27.159452 22523 solver.cpp:245] Train net output #29: loss1/loss03 = 1.93831 (* 0.0272727 = 0.0528629 loss) | |
I0425 12:28:27.159466 22523 solver.cpp:245] Train net output #30: loss1/loss04 = 1.6405 (* 0.0272727 = 0.0447409 loss) | |
I0425 12:28:27.159482 22523 solver.cpp:245] Train net output #31: loss1/loss05 = 1.88192 (* 0.0272727 = 0.0513252 loss) | |
I0425 12:28:27.159499 22523 solver.cpp:245] Train net output #32: loss1/loss06 = 1.14527 (* 0.0272727 = 0.0312346 loss) | |
I0425 12:28:27.159514 22523 solver.cpp:245] Train net output #33: loss1/loss07 = 0.882168 (* 0.0272727 = 0.0240591 loss) | |
I0425 12:28:27.159529 22523 solver.cpp:245] Train net output #34: loss1/loss08 = 0.663173 (* 0.0272727 = 0.0180865 loss) | |
I0425 12:28:27.159543 22523 solver.cpp:245] Train net output #35: loss1/loss09 = 0.369955 (* 0.0272727 = 0.0100897 loss) | |
I0425 12:28:27.159559 22523 solver.cpp:245] Train net output #36: loss1/loss10 = 0.344165 (* 0.0272727 = 0.00938632 loss) | |
I0425 12:28:27.159572 22523 solver.cpp:245] Train net output #37: loss1/loss11 = 0.626065 (* 0.0272727 = 0.0170745 loss) | |
I0425 12:28:27.159587 22523 solver.cpp:245] Train net output #38: loss1/loss12 = 0.359747 (* 0.0272727 = 0.00981129 loss) | |
I0425 12:28:27.159621 22523 solver.cpp:245] Train net output #39: loss1/loss13 = 0.403567 (* 0.0272727 = 0.0110064 loss) | |
I0425 12:28:27.159636 22523 solver.cpp:245] Train net output #40: loss1/loss14 = 0.556617 (* 0.0272727 = 0.0151805 loss) | |
I0425 12:28:27.159651 22523 solver.cpp:245] Train net output #41: loss1/loss15 = 0.592438 (* 0.0272727 = 0.0161574 loss) | |
I0425 12:28:27.159664 22523 solver.cpp:245] Train net output #42: loss1/loss16 = 0.687079 (* 0.0272727 = 0.0187385 loss) | |
I0425 12:28:27.159680 22523 solver.cpp:245] Train net output #43: loss1/loss17 = 0.00506137 (* 0.0272727 = 0.000138037 loss) | |
I0425 12:28:27.159694 22523 solver.cpp:245] Train net output #44: loss1/loss18 = 0.00334949 (* 0.0272727 = 9.13498e-05 loss) | |
I0425 12:28:27.159709 22523 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00120457 (* 0.0272727 = 3.2852e-05 loss) | |
I0425 12:28:27.159723 22523 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000988291 (* 0.0272727 = 2.69534e-05 loss) | |
I0425 12:28:27.159739 22523 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000314099 (* 0.0272727 = 8.56635e-06 loss) | |
I0425 12:28:27.159752 22523 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000334617 (* 0.0272727 = 9.12591e-06 loss) | |
I0425 12:28:27.159765 22523 solver.cpp:245] Train net output #49: loss2/accuracy = 0.62963 | |
I0425 12:28:27.159777 22523 solver.cpp:245] Train net output #50: loss2/accuracy01 = 1 | |
I0425 12:28:27.159790 22523 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75 | |
I0425 12:28:27.159801 22523 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.75 | |
I0425 12:28:27.159812 22523 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.25 | |
I0425 12:28:27.159824 22523 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.375 | |
I0425 12:28:27.159837 22523 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.625 | |
I0425 12:28:27.159847 22523 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.75 | |
I0425 12:28:27.159859 22523 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875 | |
I0425 12:28:27.159870 22523 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875 | |
I0425 12:28:27.159883 22523 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1 | |
I0425 12:28:27.159893 22523 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.875 | |
I0425 12:28:27.159905 22523 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.875 | |
I0425 12:28:27.159916 22523 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.875 | |
I0425 12:28:27.159930 22523 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.875 | |
I0425 12:28:27.159943 22523 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.875 | |
I0425 12:28:27.159955 22523 solver.cpp:245] Train net output #65: loss2/accuracy16 = 0.875 | |
I0425 12:28:27.159966 22523 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0425 12:28:27.159978 22523 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0425 12:28:27.159989 22523 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0425 12:28:27.160001 22523 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0425 12:28:27.160012 22523 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0425 12:28:27.160023 22523 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0425 12:28:27.160035 22523 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.875 | |
I0425 12:28:27.160048 22523 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.833333 | |
I0425 12:28:27.160061 22523 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.0811 (* 0.3 = 0.324329 loss) | |
I0425 12:28:27.160075 22523 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.358973 (* 0.3 = 0.107692 loss) | |
I0425 12:28:27.160090 22523 solver.cpp:245] Train net output #76: loss2/loss01 = 0.362415 (* 0.0272727 = 0.00988405 loss) | |
I0425 12:28:27.160104 22523 solver.cpp:245] Train net output #77: loss2/loss02 = 1.58084 (* 0.0272727 = 0.043114 loss) | |
I0425 12:28:27.160130 22523 solver.cpp:245] Train net output #78: loss2/loss03 = 1.43812 (* 0.0272727 = 0.0392215 loss) | |
I0425 12:28:27.160146 22523 solver.cpp:245] Train net output #79: loss2/loss04 = 1.86513 (* 0.0272727 = 0.0508673 loss) | |
I0425 12:28:27.160161 22523 solver.cpp:245] Train net output #80: loss2/loss05 = 1.6947 (* 0.0272727 = 0.046219 loss) | |
I0425 12:28:27.160174 22523 solver.cpp:245] Train net output #81: loss2/loss06 = 1.76147 (* 0.0272727 = 0.0480402 loss) | |
I0425 12:28:27.160187 22523 solver.cpp:245] Train net output #82: loss2/loss07 = 0.888156 (* 0.0272727 = 0.0242224 loss) | |
I0425 12:28:27.160202 22523 solver.cpp:245] Train net output #83: loss2/loss08 = 0.475239 (* 0.0272727 = 0.0129611 loss) | |
I0425 12:28:27.160215 22523 solver.cpp:245] Train net output #84: loss2/loss09 = 0.413324 (* 0.0272727 = 0.0112725 loss) | |
I0425 12:28:27.160229 22523 solver.cpp:245] Train net output #85: loss2/loss10 = 0.250259 (* 0.0272727 = 0.00682524 loss) | |
I0425 12:28:27.160243 22523 solver.cpp:245] Train net output #86: loss2/loss11 = 0.752533 (* 0.0272727 = 0.0205236 loss) | |
I0425 12:28:27.160259 22523 solver.cpp:245] Train net output #87: loss2/loss12 = 0.306465 (* 0.0272727 = 0.00835814 loss) | |
I0425 12:28:27.160272 22523 solver.cpp:245] Train net output #88: loss2/loss13 = 0.501739 (* 0.0272727 = 0.0136838 loss) | |
I0425 12:28:27.160286 22523 solver.cpp:245] Train net output #89: loss2/loss14 = 0.441175 (* 0.0272727 = 0.012032 loss) | |
I0425 12:28:27.160300 22523 solver.cpp:245] Train net output #90: loss2/loss15 = 0.494822 (* 0.0272727 = 0.0134952 loss) | |
I0425 12:28:27.160315 22523 solver.cpp:245] Train net output #91: loss2/loss16 = 0.527198 (* 0.0272727 = 0.0143781 loss) | |
I0425 12:28:27.160328 22523 solver.cpp:245] Train net output #92: loss2/loss17 = 0.012959 (* 0.0272727 = 0.000353428 loss) | |
I0425 12:28:27.160342 22523 solver.cpp:245] Train net output #93: loss2/loss18 = 0.00431651 (* 0.0272727 = 0.000117723 loss) | |
I0425 12:28:27.160356 22523 solver.cpp:245] Train net output #94: loss2/loss19 = 0.00166298 (* 0.0272727 = 4.53539e-05 loss) | |
I0425 12:28:27.160370 22523 solver.cpp:245] Train net output #95: loss2/loss20 = 0.000745166 (* 0.0272727 = 2.03227e-05 loss) | |
I0425 12:28:27.160384 22523 solver.cpp:245] Train net output #96: loss2/loss21 = 0.000249858 (* 0.0272727 = 6.81432e-06 loss) | |
I0425 12:28:27.160398 22523 solver.cpp:245] Train net output #97: loss2/loss22 = 0.000171843 (* 0.0272727 = 4.68663e-06 loss) | |
I0425 12:28:27.160410 22523 solver.cpp:245] Train net output #98: loss3/accuracy = 0.87037 | |
I0425 12:28:27.160423 22523 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1 | |
I0425 12:28:27.160434 22523 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1 | |
I0425 12:28:27.160445 22523 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1 | |
I0425 12:28:27.160457 22523 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1 | |
I0425 12:28:27.160470 22523 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.625 | |
I0425 12:28:27.160480 22523 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.875 | |
I0425 12:28:27.160492 22523 solver.cpp:245] Train net output #105: loss3/accuracy07 = 1 | |
I0425 12:28:27.160504 22523 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875 | |
I0425 12:28:27.160516 22523 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1 | |
I0425 12:28:27.160527 22523 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875 | |
I0425 12:28:27.160539 22523 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.875 | |
I0425 12:28:27.160555 22523 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1 | |
I0425 12:28:27.160563 22523 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.875 | |
I0425 12:28:27.160572 22523 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.875 | |
I0425 12:28:27.160583 22523 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.875 | |
I0425 12:28:27.160605 22523 solver.cpp:245] Train net output #114: loss3/accuracy16 = 0.875 | |
I0425 12:28:27.160621 22523 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0425 12:28:27.160632 22523 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0425 12:28:27.160645 22523 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0425 12:28:27.160655 22523 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0425 12:28:27.160666 22523 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0425 12:28:27.160678 22523 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0425 12:28:27.160689 22523 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.954545 | |
I0425 12:28:27.160701 22523 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.907407 | |
I0425 12:28:27.160714 22523 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.465315 (* 1 = 0.465315 loss) | |
I0425 12:28:27.160728 22523 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.158715 (* 1 = 0.158715 loss) | |
I0425 12:28:27.160742 22523 solver.cpp:245] Train net output #125: loss3/loss01 = 0.0416117 (* 0.0909091 = 0.00378288 loss) | |
I0425 12:28:27.160756 22523 solver.cpp:245] Train net output #126: loss3/loss02 = 0.0388703 (* 0.0909091 = 0.00353366 loss) | |
I0425 12:28:27.160770 22523 solver.cpp:245] Train net output #127: loss3/loss03 = 0.028129 (* 0.0909091 = 0.00255718 loss) | |
I0425 12:28:27.160784 22523 solver.cpp:245] Train net output #128: loss3/loss04 = 0.138644 (* 0.0909091 = 0.012604 loss) | |
I0425 12:28:27.160797 22523 solver.cpp:245] Train net output #129: loss3/loss05 = 0.842023 (* 0.0909091 = 0.0765476 loss) | |
I0425 12:28:27.160811 22523 solver.cpp:245] Train net output #130: loss3/loss06 = 0.554019 (* 0.0909091 = 0.0503654 loss) | |
I0425 12:28:27.160825 22523 solver.cpp:245] Train net output #131: loss3/loss07 = 0.226164 (* 0.0909091 = 0.0205604 loss) | |
I0425 12:28:27.160838 22523 solver.cpp:245] Train net output #132: loss3/loss08 = 0.61739 (* 0.0909091 = 0.0561263 loss) | |
I0425 12:28:27.160852 22523 solver.cpp:245] Train net output #133: loss3/loss09 = 0.127911 (* 0.0909091 = 0.0116283 loss) | |
I0425 12:28:27.160866 22523 solver.cpp:245] Train net output #134: loss3/loss10 = 0.258724 (* 0.0909091 = 0.0235204 loss) | |
I0425 12:28:27.160879 22523 solver.cpp:245] Train net output #135: loss3/loss11 = 0.68568 (* 0.0909091 = 0.0623345 loss) | |
I0425 12:28:27.160893 22523 solver.cpp:245] Train net output #136: loss3/loss12 = 0.237155 (* 0.0909091 = 0.0215595 loss) | |
I0425 12:28:27.160907 22523 solver.cpp:245] Train net output #137: loss3/loss13 = 0.350828 (* 0.0909091 = 0.0318935 loss) | |
I0425 12:28:27.160922 22523 solver.cpp:245] Train net output #138: loss3/loss14 = 0.36228 (* 0.0909091 = 0.0329345 loss) | |
I0425 12:28:27.160934 22523 solver.cpp:245] Train net output #139: loss3/loss15 = 0.248862 (* 0.0909091 = 0.0226238 loss) | |
I0425 12:28:27.160948 22523 solver.cpp:245] Train net output #140: loss3/loss16 = 0.429946 (* 0.0909091 = 0.039086 loss) | |
I0425 12:28:27.160962 22523 solver.cpp:245] Train net output #141: loss3/loss17 = 0.0281367 (* 0.0909091 = 0.00255788 loss) | |
I0425 12:28:27.160976 22523 solver.cpp:245] Train net output #142: loss3/loss18 = 0.0111879 (* 0.0909091 = 0.00101708 loss) | |
I0425 12:28:27.160994 22523 solver.cpp:245] Train net output #143: loss3/loss19 = 0.00361988 (* 0.0909091 = 0.00032908 loss) | |
I0425 12:28:27.161007 22523 solver.cpp:245] Train net output #144: loss3/loss20 = 0.0011496 (* 0.0909091 = 0.000104509 loss) | |
I0425 12:28:27.161021 22523 solver.cpp:245] Train net output #145: loss3/loss21 = 0.000138569 (* 0.0909091 = 1.25971e-05 loss) | |
I0425 12:28:27.161036 22523 solver.cpp:245] Train net output #146: loss3/loss22 = 1.24727e-05 (* 0.0909091 = 1.13388e-06 loss) | |
I0425 12:28:27.161047 22523 solver.cpp:245] Train net output #147: total_accuracy = 0.75 | |
I0425 12:28:27.161059 22523 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.625 | |
I0425 12:28:27.161082 22523 solver.cpp:245] Train net output #149: total_confidence = 0.673957 | |
I0425 12:28:27.161094 22523 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.468472 | |
I0425 12:28:27.161109 22523 sgd_solver.cpp:106] Iteration 12000, lr = 0.01 | |
I0425 12:34:08.569085 22523 solver.cpp:229] Iteration 12500, loss = 3.01546 | |
I0425 12:34:08.569228 22523 solver.cpp:245] Train net output #0: loss1/accuracy = 0.526316 | |
I0425 12:34:08.569249 22523 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.875 | |
I0425 12:34:08.569263 22523 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.25 | |
I0425 12:34:08.569277 22523 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.875 | |
I0425 12:34:08.569288 22523 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.25 | |
I0425 12:34:08.569301 22523 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.5 | |
I0425 12:34:08.569314 22523 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.75 | |
I0425 12:34:08.569325 22523 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.875 | |
I0425 12:34:08.569339 22523 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875 | |
I0425 12:34:08.569351 22523 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875 | |
I0425 12:34:08.569363 22523 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875 | |
I0425 12:34:08.569375 22523 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.875 | |
I0425 12:34:08.569388 22523 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1 | |
I0425 12:34:08.569401 22523 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1 | |
I0425 12:34:08.569413 22523 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1 | |
I0425 12:34:08.569424 22523 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0425 12:34:08.569437 22523 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0425 12:34:08.569448 22523 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0425 12:34:08.569469 22523 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0425 12:34:08.569480 22523 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0425 12:34:08.569492 22523 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0425 12:34:08.569504 22523 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0425 12:34:08.569524 22523 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0425 12:34:08.569535 22523 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.869318 | |
I0425 12:34:08.569547 22523 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.789474 | |
I0425 12:34:08.569566 22523 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.43655 (* 0.3 = 0.430964 loss) | |
I0425 12:34:08.569581 22523 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.423704 (* 0.3 = 0.127111 loss) | |
I0425 12:34:08.569596 22523 solver.cpp:245] Train net output #27: loss1/loss01 = 0.671131 (* 0.0272727 = 0.0183036 loss) | |
I0425 12:34:08.569610 22523 solver.cpp:245] Train net output #28: loss1/loss02 = 1.70214 (* 0.0272727 = 0.0464221 loss) | |
I0425 12:34:08.569624 22523 solver.cpp:245] Train net output #29: loss1/loss03 = 1.02568 (* 0.0272727 = 0.0279732 loss) | |
I0425 12:34:08.569639 22523 solver.cpp:245] Train net output #30: loss1/loss04 = 1.7466 (* 0.0272727 = 0.0476347 loss) | |
I0425 12:34:08.569653 22523 solver.cpp:245] Train net output #31: loss1/loss05 = 1.39859 (* 0.0272727 = 0.0381432 loss) | |
I0425 12:34:08.569667 22523 solver.cpp:245] Train net output #32: loss1/loss06 = 0.716111 (* 0.0272727 = 0.0195303 loss) | |
I0425 12:34:08.569684 22523 solver.cpp:245] Train net output #33: loss1/loss07 = 0.335829 (* 0.0272727 = 0.00915896 loss) | |
I0425 12:34:08.569699 22523 solver.cpp:245] Train net output #34: loss1/loss08 = 0.501182 (* 0.0272727 = 0.0136686 loss) | |
I0425 12:34:08.569712 22523 solver.cpp:245] Train net output #35: loss1/loss09 = 0.31786 (* 0.0272727 = 0.00866891 loss) | |
I0425 12:34:08.569727 22523 solver.cpp:245] Train net output #36: loss1/loss10 = 0.354662 (* 0.0272727 = 0.00967259 loss) | |
I0425 12:34:08.569741 22523 solver.cpp:245] Train net output #37: loss1/loss11 = 0.448112 (* 0.0272727 = 0.0122212 loss) | |
I0425 12:34:08.569756 22523 solver.cpp:245] Train net output #38: loss1/loss12 = 0.0741195 (* 0.0272727 = 0.00202144 loss) | |
I0425 12:34:08.569788 22523 solver.cpp:245] Train net output #39: loss1/loss13 = 0.0233482 (* 0.0272727 = 0.00063677 loss) | |
I0425 12:34:08.569804 22523 solver.cpp:245] Train net output #40: loss1/loss14 = 0.00863108 (* 0.0272727 = 0.000235393 loss) | |
I0425 12:34:08.569819 22523 solver.cpp:245] Train net output #41: loss1/loss15 = 0.00578503 (* 0.0272727 = 0.000157774 loss) | |
I0425 12:34:08.569833 22523 solver.cpp:245] Train net output #42: loss1/loss16 = 0.00214684 (* 0.0272727 = 5.85501e-05 loss) | |
I0425 12:34:08.569849 22523 solver.cpp:245] Train net output #43: loss1/loss17 = 0.000437242 (* 0.0272727 = 1.19248e-05 loss) | |
I0425 12:34:08.569862 22523 solver.cpp:245] Train net output #44: loss1/loss18 = 0.000518627 (* 0.0272727 = 1.41444e-05 loss) | |
I0425 12:34:08.569877 22523 solver.cpp:245] Train net output #45: loss1/loss19 = 0.000139627 (* 0.0272727 = 3.80802e-06 loss) | |
I0425 12:34:08.569891 22523 solver.cpp:245] Train net output #46: loss1/loss20 = 8.20984e-05 (* 0.0272727 = 2.23905e-06 loss) | |
I0425 12:34:08.569913 22523 solver.cpp:245] Train net output #47: loss1/loss21 = 3.82189e-05 (* 0.0272727 = 1.04233e-06 loss) | |
I0425 12:34:08.569927 22523 solver.cpp:245] Train net output #48: loss1/loss22 = 3.1989e-05 (* 0.0272727 = 8.72427e-07 loss) | |
I0425 12:34:08.569941 22523 solver.cpp:245] Train net output #49: loss2/accuracy = 0.5 | |
I0425 12:34:08.569952 22523 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875 | |
I0425 12:34:08.569963 22523 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.5 | |
I0425 12:34:08.569975 22523 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.75 | |
I0425 12:34:08.569986 22523 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.5 | |
I0425 12:34:08.569998 22523 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.75 | |
I0425 12:34:08.570009 22523 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.75 | |
I0425 12:34:08.570021 22523 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.875 | |
I0425 12:34:08.570032 22523 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875 | |
I0425 12:34:08.570044 22523 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875 | |
I0425 12:34:08.570056 22523 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875 | |
I0425 12:34:08.570068 22523 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.875 | |
I0425 12:34:08.570080 22523 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1 | |
I0425 12:34:08.570091 22523 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1 | |
I0425 12:34:08.570101 22523 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1 | |
I0425 12:34:08.570116 22523 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0425 12:34:08.570128 22523 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0425 12:34:08.570139 22523 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0425 12:34:08.570150 22523 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0425 12:34:08.570161 22523 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0425 12:34:08.570173 22523 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0425 12:34:08.570184 22523 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0425 12:34:08.570195 22523 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0425 12:34:08.570211 22523 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.869318 | |
I0425 12:34:08.570225 22523 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.763158 | |
I0425 12:34:08.570238 22523 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.5174 (* 0.3 = 0.455221 loss) | |
I0425 12:34:08.570252 22523 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.431521 (* 0.3 = 0.129456 loss) | |
I0425 12:34:08.570271 22523 solver.cpp:245] Train net output #76: loss2/loss01 = 0.700163 (* 0.0272727 = 0.0190953 loss) | |
I0425 12:34:08.570284 22523 solver.cpp:245] Train net output #77: loss2/loss02 = 2.0467 (* 0.0272727 = 0.055819 loss) | |
I0425 12:34:08.570310 22523 solver.cpp:245] Train net output #78: loss2/loss03 = 1.04586 (* 0.0272727 = 0.0285233 loss) | |
I0425 12:34:08.570325 22523 solver.cpp:245] Train net output #79: loss2/loss04 = 1.47751 (* 0.0272727 = 0.0402957 loss) | |
I0425 12:34:08.570339 22523 solver.cpp:245] Train net output #80: loss2/loss05 = 1.06258 (* 0.0272727 = 0.0289795 loss) | |
I0425 12:34:08.570353 22523 solver.cpp:245] Train net output #81: loss2/loss06 = 0.567184 (* 0.0272727 = 0.0154687 loss) | |
I0425 12:34:08.570368 22523 solver.cpp:245] Train net output #82: loss2/loss07 = 0.42937 (* 0.0272727 = 0.0117101 loss) | |
I0425 12:34:08.570381 22523 solver.cpp:245] Train net output #83: loss2/loss08 = 0.603886 (* 0.0272727 = 0.0164696 loss) | |
I0425 12:34:08.570395 22523 solver.cpp:245] Train net output #84: loss2/loss09 = 0.484685 (* 0.0272727 = 0.0132187 loss) | |
I0425 12:34:08.570410 22523 solver.cpp:245] Train net output #85: loss2/loss10 = 0.481299 (* 0.0272727 = 0.0131263 loss) | |
I0425 12:34:08.570423 22523 solver.cpp:245] Train net output #86: loss2/loss11 = 0.856864 (* 0.0272727 = 0.023369 loss) | |
I0425 12:34:08.570437 22523 solver.cpp:245] Train net output #87: loss2/loss12 = 0.00463732 (* 0.0272727 = 0.000126472 loss) | |
I0425 12:34:08.570451 22523 solver.cpp:245] Train net output #88: loss2/loss13 = 0.00445281 (* 0.0272727 = 0.00012144 loss) | |
I0425 12:34:08.570472 22523 solver.cpp:245] Train net output #89: loss2/loss14 = 0.0027386 (* 0.0272727 = 7.4689e-05 loss) | |
I0425 12:34:08.570502 22523 solver.cpp:245] Train net output #90: loss2/loss15 = 0.000723651 (* 0.0272727 = 1.97359e-05 loss) | |
I0425 12:34:08.570521 22523 solver.cpp:245] Train net output #91: loss2/loss16 = 0.000771848 (* 0.0272727 = 2.10504e-05 loss) | |
I0425 12:34:08.570536 22523 solver.cpp:245] Train net output #92: loss2/loss17 = 0.000183682 (* 0.0272727 = 5.00952e-06 loss) | |
I0425 12:34:08.570550 22523 solver.cpp:245] Train net output #93: loss2/loss18 = 3.03781e-05 (* 0.0272727 = 8.28495e-07 loss) | |
I0425 12:34:08.570564 22523 solver.cpp:245] Train net output #94: loss2/loss19 = 1.20702e-05 (* 0.0272727 = 3.29187e-07 loss) | |
I0425 12:34:08.570580 22523 solver.cpp:245] Train net output #95: loss2/loss20 = 5.79661e-06 (* 0.0272727 = 1.58089e-07 loss) | |
I0425 12:34:08.570593 22523 solver.cpp:245] Train net output #96: loss2/loss21 = 2.4736e-06 (* 0.0272727 = 6.74619e-08 loss) | |
I0425 12:34:08.570607 22523 solver.cpp:245] Train net output #97: loss2/loss22 = 8.04664e-07 (* 0.0272727 = 2.19454e-08 loss) | |
I0425 12:34:08.570619 22523 solver.cpp:245] Train net output #98: loss3/accuracy = 0.763158 | |
I0425 12:34:08.570631 22523 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875 | |
I0425 12:34:08.570643 22523 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875 | |
I0425 12:34:08.570654 22523 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.875 | |
I0425 12:34:08.570667 22523 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.75 | |
I0425 12:34:08.570678 22523 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875 | |
I0425 12:34:08.570690 22523 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.875 | |
I0425 12:34:08.570701 22523 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875 | |
I0425 12:34:08.570713 22523 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875 | |
I0425 12:34:08.570725 22523 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875 | |
I0425 12:34:08.570736 22523 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1 | |
I0425 12:34:08.570747 22523 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.875 | |
I0425 12:34:08.570760 22523 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1 | |
I0425 12:34:08.570770 22523 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1 | |
I0425 12:34:08.570782 22523 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1 | |
I0425 12:34:08.570793 22523 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0425 12:34:08.570816 22523 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0425 12:34:08.570830 22523 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0425 12:34:08.570842 22523 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0425 12:34:08.570852 22523 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0425 12:34:08.570864 22523 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0425 12:34:08.570875 22523 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0425 12:34:08.570888 22523 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0425 12:34:08.570899 22523 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.9375 | |
I0425 12:34:08.570911 22523 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.842105 | |
I0425 12:34:08.570925 22523 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.686722 (* 1 = 0.686722 loss) | |
I0425 12:34:08.570940 22523 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.191295 (* 1 = 0.191295 loss) | |
I0425 12:34:08.570953 22523 solver.cpp:245] Train net output #125: loss3/loss01 = 0.34375 (* 0.0909091 = 0.03125 loss) | |
I0425 12:34:08.570968 22523 solver.cpp:245] Train net output #126: loss3/loss02 = 0.337757 (* 0.0909091 = 0.0307052 loss) | |
I0425 12:34:08.570981 22523 solver.cpp:245] Train net output #127: loss3/loss03 = 0.432177 (* 0.0909091 = 0.0392888 loss) | |
I0425 12:34:08.570996 22523 solver.cpp:245] Train net output #128: loss3/loss04 = 0.818295 (* 0.0909091 = 0.0743904 loss) | |
I0425 12:34:08.571010 22523 solver.cpp:245] Train net output #129: loss3/loss05 = 0.213707 (* 0.0909091 = 0.0194279 loss) | |
I0425 12:34:08.571024 22523 solver.cpp:245] Train net output #130: loss3/loss06 = 0.253326 (* 0.0909091 = 0.0230297 loss) | |
I0425 12:34:08.571038 22523 solver.cpp:245] Train net output #131: loss3/loss07 = 0.259295 (* 0.0909091 = 0.0235723 loss) | |
I0425 12:34:08.571053 22523 solver.cpp:245] Train net output #132: loss3/loss08 = 0.432095 (* 0.0909091 = 0.0392813 loss) | |
I0425 12:34:08.571066 22523 solver.cpp:245] Train net output #133: loss3/loss09 = 0.260735 (* 0.0909091 = 0.0237032 loss) | |
I0425 12:34:08.571080 22523 solver.cpp:245] Train net output #134: loss3/loss10 = 0.22048 (* 0.0909091 = 0.0200437 loss) | |
I0425 12:34:08.571094 22523 solver.cpp:245] Train net output #135: loss3/loss11 = 0.430647 (* 0.0909091 = 0.0391498 loss) | |
I0425 12:34:08.571108 22523 solver.cpp:245] Train net output #136: loss3/loss12 = 0.0829322 (* 0.0909091 = 0.00753929 loss) | |
I0425 12:34:08.571122 22523 solver.cpp:245] Train net output #137: loss3/loss13 = 0.0448844 (* 0.0909091 = 0.0040804 loss) | |
I0425 12:34:08.571136 22523 solver.cpp:245] Train net output #138: loss3/loss14 = 0.023957 (* 0.0909091 = 0.00217791 loss) | |
I0425 12:34:08.571151 22523 solver.cpp:245] Train net output #139: loss3/loss15 = 0.0182949 (* 0.0909091 = 0.00166318 loss) | |
I0425 12:34:08.571164 22523 solver.cpp:245] Train net output #140: loss3/loss16 = 0.00755773 (* 0.0909091 = 0.000687066 loss) | |
I0425 12:34:08.571178 22523 solver.cpp:245] Train net output #141: loss3/loss17 = 0.00534893 (* 0.0909091 = 0.000486266 loss) | |
I0425 12:34:08.571192 22523 solver.cpp:245] Train net output #142: loss3/loss18 = 0.00364802 (* 0.0909091 = 0.000331638 loss) | |
I0425 12:34:08.571207 22523 solver.cpp:245] Train net output #143: loss3/loss19 = 0.00233565 (* 0.0909091 = 0.000212332 loss) | |
I0425 12:34:08.571220 22523 solver.cpp:245] Train net output #144: loss3/loss20 = 0.00160864 (* 0.0909091 = 0.00014624 loss) | |
I0425 12:34:08.571235 22523 solver.cpp:245] Train net output #145: loss3/loss21 = 0.000156264 (* 0.0909091 = 1.42058e-05 loss) | |
I0425 12:34:08.571254 22523 solver.cpp:245] Train net output #146: loss3/loss22 = 6.21076e-05 (* 0.0909091 = 5.64614e-06 loss) | |
I0425 12:34:08.571264 22523 solver.cpp:245] Train net output #147: total_accuracy = 0.875 | |
I0425 12:34:08.571271 22523 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.75 | |
I0425 12:34:08.571295 22523 solver.cpp:245] Train net output #149: total_confidence = 0.705202 | |
I0425 12:34:08.571307 22523 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.663638 | |
I0425 12:34:08.571322 22523 sgd_solver.cpp:106] Iteration 12500, lr = 0.01 | |
I0425 12:39:49.911934 22523 solver.cpp:229] Iteration 13000, loss = 3.05475 | |
I0425 12:39:49.912072 22523 solver.cpp:245] Train net output #0: loss1/accuracy = 0.617021 | |
I0425 12:39:49.912093 22523 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75 | |
I0425 12:39:49.912107 22523 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5 | |
I0425 12:39:49.912120 22523 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.5 | |
I0425 12:39:49.912132 22523 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375 | |
I0425 12:39:49.912144 22523 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.625 | |
I0425 12:39:49.912158 22523 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.5 | |
I0425 12:39:49.912170 22523 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.625 | |
I0425 12:39:49.912183 22523 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875 | |
I0425 12:39:49.912195 22523 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1 | |
I0425 12:39:49.912210 22523 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1 | |
I0425 12:39:49.912222 22523 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1 | |
I0425 12:39:49.912235 22523 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1 | |
I0425 12:39:49.912247 22523 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1 | |
I0425 12:39:49.912259 22523 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1 | |
I0425 12:39:49.912271 22523 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0425 12:39:49.912283 22523 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0425 12:39:49.912295 22523 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0425 12:39:49.912307 22523 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0425 12:39:49.912319 22523 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0425 12:39:49.912331 22523 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0425 12:39:49.912343 22523 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0425 12:39:49.912355 22523 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0425 12:39:49.912367 22523 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.875 | |
I0425 12:39:49.912379 22523 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.808511 | |
I0425 12:39:49.912396 22523 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.24622 (* 0.3 = 0.373865 loss) | |
I0425 12:39:49.912412 22523 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.435692 (* 0.3 = 0.130708 loss) | |
I0425 12:39:49.912427 22523 solver.cpp:245] Train net output #27: loss1/loss01 = 0.739306 (* 0.0272727 = 0.0201629 loss) | |
I0425 12:39:49.912442 22523 solver.cpp:245] Train net output #28: loss1/loss02 = 1.37588 (* 0.0272727 = 0.0375241 loss) | |
I0425 12:39:49.912457 22523 solver.cpp:245] Train net output #29: loss1/loss03 = 1.71401 (* 0.0272727 = 0.0467459 loss) | |
I0425 12:39:49.912472 22523 solver.cpp:245] Train net output #30: loss1/loss04 = 1.91482 (* 0.0272727 = 0.0522224 loss) | |
I0425 12:39:49.912487 22523 solver.cpp:245] Train net output #31: loss1/loss05 = 1.29586 (* 0.0272727 = 0.0353416 loss) | |
I0425 12:39:49.912500 22523 solver.cpp:245] Train net output #32: loss1/loss06 = 2.3762 (* 0.0272727 = 0.0648054 loss) | |
I0425 12:39:49.912514 22523 solver.cpp:245] Train net output #33: loss1/loss07 = 1.27478 (* 0.0272727 = 0.0347667 loss) | |
I0425 12:39:49.912528 22523 solver.cpp:245] Train net output #34: loss1/loss08 = 0.453186 (* 0.0272727 = 0.0123596 loss) | |
I0425 12:39:49.912544 22523 solver.cpp:245] Train net output #35: loss1/loss09 = 0.203404 (* 0.0272727 = 0.00554739 loss) | |
I0425 12:39:49.912559 22523 solver.cpp:245] Train net output #36: loss1/loss10 = 0.0695254 (* 0.0272727 = 0.00189615 loss) | |
I0425 12:39:49.912574 22523 solver.cpp:245] Train net output #37: loss1/loss11 = 0.0360109 (* 0.0272727 = 0.000982116 loss) | |
I0425 12:39:49.912587 22523 solver.cpp:245] Train net output #38: loss1/loss12 = 0.0304433 (* 0.0272727 = 0.000830271 loss) | |
I0425 12:39:49.912602 22523 solver.cpp:245] Train net output #39: loss1/loss13 = 0.0180499 (* 0.0272727 = 0.000492269 loss) | |
I0425 12:39:49.912634 22523 solver.cpp:245] Train net output #40: loss1/loss14 = 0.00648316 (* 0.0272727 = 0.000176814 loss) | |
I0425 12:39:49.912650 22523 solver.cpp:245] Train net output #41: loss1/loss15 = 0.004459 (* 0.0272727 = 0.000121609 loss) | |
I0425 12:39:49.912665 22523 solver.cpp:245] Train net output #42: loss1/loss16 = 0.00282126 (* 0.0272727 = 7.69434e-05 loss) | |
I0425 12:39:49.912684 22523 solver.cpp:245] Train net output #43: loss1/loss17 = 0.00128828 (* 0.0272727 = 3.5135e-05 loss) | |
I0425 12:39:49.912699 22523 solver.cpp:245] Train net output #44: loss1/loss18 = 0.000644558 (* 0.0272727 = 1.75789e-05 loss) | |
I0425 12:39:49.912714 22523 solver.cpp:245] Train net output #45: loss1/loss19 = 0.000254855 (* 0.0272727 = 6.95059e-06 loss) | |
I0425 12:39:49.912729 22523 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000148719 (* 0.0272727 = 4.05596e-06 loss) | |
I0425 12:39:49.912746 22523 solver.cpp:245] Train net output #47: loss1/loss21 = 9.15153e-05 (* 0.0272727 = 2.49587e-06 loss) | |
I0425 12:39:49.912761 22523 solver.cpp:245] Train net output #48: loss1/loss22 = 4.12271e-05 (* 0.0272727 = 1.12438e-06 loss) | |
I0425 12:39:49.912773 22523 solver.cpp:245] Train net output #49: loss2/accuracy = 0.808511 | |
I0425 12:39:49.912786 22523 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875 | |
I0425 12:39:49.912797 22523 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.875 | |
I0425 12:39:49.912809 22523 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.875 | |
I0425 12:39:49.912820 22523 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.375 | |
I0425 12:39:49.912832 22523 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5 | |
I0425 12:39:49.912844 22523 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.625 | |
I0425 12:39:49.912855 22523 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.625 | |
I0425 12:39:49.912868 22523 solver.cpp:245] Train net output #57: loss2/accuracy08 = 1 | |
I0425 12:39:49.912878 22523 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1 | |
I0425 12:39:49.912890 22523 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1 | |
I0425 12:39:49.912901 22523 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1 | |
I0425 12:39:49.912914 22523 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1 | |
I0425 12:39:49.912925 22523 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1 | |
I0425 12:39:49.912935 22523 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1 | |
I0425 12:39:49.912946 22523 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0425 12:39:49.912957 22523 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0425 12:39:49.912968 22523 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0425 12:39:49.912979 22523 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0425 12:39:49.912992 22523 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0425 12:39:49.913002 22523 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0425 12:39:49.913013 22523 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0425 12:39:49.913025 22523 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0425 12:39:49.913036 22523 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.943182 | |
I0425 12:39:49.913048 22523 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.957447 | |
I0425 12:39:49.913063 22523 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.682063 (* 0.3 = 0.204619 loss) | |
I0425 12:39:49.913076 22523 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.234852 (* 0.3 = 0.0704556 loss) | |
I0425 12:39:49.913094 22523 solver.cpp:245] Train net output #76: loss2/loss01 = 0.47396 (* 0.0272727 = 0.0129262 loss) | |
I0425 12:39:49.913110 22523 solver.cpp:245] Train net output #77: loss2/loss02 = 0.729597 (* 0.0272727 = 0.0198981 loss) | |
I0425 12:39:49.913135 22523 solver.cpp:245] Train net output #78: loss2/loss03 = 0.924527 (* 0.0272727 = 0.0252144 loss) | |
I0425 12:39:49.913151 22523 solver.cpp:245] Train net output #79: loss2/loss04 = 1.92548 (* 0.0272727 = 0.052513 loss) | |
I0425 12:39:49.913164 22523 solver.cpp:245] Train net output #80: loss2/loss05 = 1.46374 (* 0.0272727 = 0.0399202 loss) | |
I0425 12:39:49.913178 22523 solver.cpp:245] Train net output #81: loss2/loss06 = 0.982242 (* 0.0272727 = 0.0267884 loss) | |
I0425 12:39:49.913192 22523 solver.cpp:245] Train net output #82: loss2/loss07 = 0.738729 (* 0.0272727 = 0.0201472 loss) | |
I0425 12:39:49.913206 22523 solver.cpp:245] Train net output #83: loss2/loss08 = 0.0705998 (* 0.0272727 = 0.00192545 loss) | |
I0425 12:39:49.913221 22523 solver.cpp:245] Train net output #84: loss2/loss09 = 0.0194675 (* 0.0272727 = 0.000530933 loss) | |
I0425 12:39:49.913235 22523 solver.cpp:245] Train net output #85: loss2/loss10 = 0.00443939 (* 0.0272727 = 0.000121074 loss) | |
I0425 12:39:49.913251 22523 solver.cpp:245] Train net output #86: loss2/loss11 = 0.00461015 (* 0.0272727 = 0.000125731 loss) | |
I0425 12:39:49.913266 22523 solver.cpp:245] Train net output #87: loss2/loss12 = 0.00191484 (* 0.0272727 = 5.22228e-05 loss) | |
I0425 12:39:49.913281 22523 solver.cpp:245] Train net output #88: loss2/loss13 = 0.00198751 (* 0.0272727 = 5.42047e-05 loss) | |
I0425 12:39:49.913295 22523 solver.cpp:245] Train net output #89: loss2/loss14 = 0.00151418 (* 0.0272727 = 4.12957e-05 loss) | |
I0425 12:39:49.913310 22523 solver.cpp:245] Train net output #90: loss2/loss15 = 0.000600058 (* 0.0272727 = 1.63652e-05 loss) | |
I0425 12:39:49.913323 22523 solver.cpp:245] Train net output #91: loss2/loss16 = 0.000545093 (* 0.0272727 = 1.48662e-05 loss) | |
I0425 12:39:49.913337 22523 solver.cpp:245] Train net output #92: loss2/loss17 = 0.000109168 (* 0.0272727 = 2.9773e-06 loss) | |
I0425 12:39:49.913352 22523 solver.cpp:245] Train net output #93: loss2/loss18 = 2.52884e-05 (* 0.0272727 = 6.89684e-07 loss) | |
I0425 12:39:49.913367 22523 solver.cpp:245] Train net output #94: loss2/loss19 = 8.46397e-06 (* 0.0272727 = 2.30836e-07 loss) | |
I0425 12:39:49.913380 22523 solver.cpp:245] Train net output #95: loss2/loss20 = 3.84452e-06 (* 0.0272727 = 1.04851e-07 loss) | |
I0425 12:39:49.913395 22523 solver.cpp:245] Train net output #96: loss2/loss21 = 5.60292e-06 (* 0.0272727 = 1.52807e-07 loss) | |
I0425 12:39:49.913409 22523 solver.cpp:245] Train net output #97: loss2/loss22 = 1.68384e-06 (* 0.0272727 = 4.59228e-08 loss) | |
I0425 12:39:49.913421 22523 solver.cpp:245] Train net output #98: loss3/accuracy = 0.893617 | |
I0425 12:39:49.913434 22523 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1 | |
I0425 12:39:49.913445 22523 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875 | |
I0425 12:39:49.913456 22523 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1 | |
I0425 12:39:49.913468 22523 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.625 | |
I0425 12:39:49.913480 22523 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875 | |
I0425 12:39:49.913492 22523 solver.cpp:245] Train net output #104: loss3/accuracy06 = 1 | |
I0425 12:39:49.913503 22523 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.625 | |
I0425 12:39:49.913514 22523 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1 | |
I0425 12:39:49.913527 22523 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1 | |
I0425 12:39:49.913537 22523 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1 | |
I0425 12:39:49.913548 22523 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1 | |
I0425 12:39:49.913560 22523 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1 | |
I0425 12:39:49.913571 22523 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1 | |
I0425 12:39:49.913583 22523 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1 | |
I0425 12:39:49.913594 22523 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0425 12:39:49.913605 22523 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0425 12:39:49.913627 22523 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0425 12:39:49.913640 22523 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0425 12:39:49.913651 22523 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0425 12:39:49.913663 22523 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0425 12:39:49.913674 22523 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0425 12:39:49.913686 22523 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0425 12:39:49.913697 22523 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.965909 | |
I0425 12:39:49.913709 22523 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.978723 | |
I0425 12:39:49.913723 22523 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.380249 (* 1 = 0.380249 loss) | |
I0425 12:39:49.913738 22523 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.123009 (* 1 = 0.123009 loss) | |
I0425 12:39:49.913753 22523 solver.cpp:245] Train net output #125: loss3/loss01 = 0.0902554 (* 0.0909091 = 0.00820504 loss) | |
I0425 12:39:49.913766 22523 solver.cpp:245] Train net output #126: loss3/loss02 = 0.225651 (* 0.0909091 = 0.0205137 loss) | |
I0425 12:39:49.913781 22523 solver.cpp:245] Train net output #127: loss3/loss03 = 0.199488 (* 0.0909091 = 0.0181353 loss) | |
I0425 12:39:49.913795 22523 solver.cpp:245] Train net output #128: loss3/loss04 = 1.21378 (* 0.0909091 = 0.110343 loss) | |
I0425 12:39:49.913813 22523 solver.cpp:245] Train net output #129: loss3/loss05 = 0.28517 (* 0.0909091 = 0.0259246 loss) | |
I0425 12:39:49.913828 22523 solver.cpp:245] Train net output #130: loss3/loss06 = 0.259883 (* 0.0909091 = 0.0236257 loss) | |
I0425 12:39:49.913842 22523 solver.cpp:245] Train net output #131: loss3/loss07 = 0.837804 (* 0.0909091 = 0.076164 loss) | |
I0425 12:39:49.913856 22523 solver.cpp:245] Train net output #132: loss3/loss08 = 0.0446316 (* 0.0909091 = 0.00405742 loss) | |
I0425 12:39:49.913871 22523 solver.cpp:245] Train net output #133: loss3/loss09 = 0.0342987 (* 0.0909091 = 0.00311806 loss) | |
I0425 12:39:49.913884 22523 solver.cpp:245] Train net output #134: loss3/loss10 = 0.00603837 (* 0.0909091 = 0.000548942 loss) | |
I0425 12:39:49.913897 22523 solver.cpp:245] Train net output #135: loss3/loss11 = 0.00475584 (* 0.0909091 = 0.000432349 loss) | |
I0425 12:39:49.913911 22523 solver.cpp:245] Train net output #136: loss3/loss12 = 0.0022232 (* 0.0909091 = 0.000202109 loss) | |
I0425 12:39:49.913925 22523 solver.cpp:245] Train net output #137: loss3/loss13 = 0.000820659 (* 0.0909091 = 7.46054e-05 loss) | |
I0425 12:39:49.913939 22523 solver.cpp:245] Train net output #138: loss3/loss14 = 0.000643577 (* 0.0909091 = 5.8507e-05 loss) | |
I0425 12:39:49.913954 22523 solver.cpp:245] Train net output #139: loss3/loss15 = 0.00035069 (* 0.0909091 = 3.18809e-05 loss) | |
I0425 12:39:49.913967 22523 solver.cpp:245] Train net output #140: loss3/loss16 = 0.000332932 (* 0.0909091 = 3.02665e-05 loss) | |
I0425 12:39:49.913981 22523 solver.cpp:245] Train net output #141: loss3/loss17 = 0.00018519 (* 0.0909091 = 1.68355e-05 loss) | |
I0425 12:39:49.913995 22523 solver.cpp:245] Train net output #142: loss3/loss18 = 0.000187574 (* 0.0909091 = 1.70521e-05 loss) | |
I0425 12:39:49.914008 22523 solver.cpp:245] Train net output #143: loss3/loss19 = 0.000138399 (* 0.0909091 = 1.25817e-05 loss) | |
I0425 12:39:49.914022 22523 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000128891 (* 0.0909091 = 1.17174e-05 loss) | |
I0425 12:39:49.914036 22523 solver.cpp:245] Train net output #145: loss3/loss21 = 5.32299e-05 (* 0.0909091 = 4.83908e-06 loss) | |
I0425 12:39:49.914050 22523 solver.cpp:245] Train net output #146: loss3/loss22 = 1.72708e-05 (* 0.0909091 = 1.57007e-06 loss) | |
I0425 12:39:49.914062 22523 solver.cpp:245] Train net output #147: total_accuracy = 0.625 | |
I0425 12:39:49.914074 22523 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.625 | |
I0425 12:39:49.914096 22523 solver.cpp:245] Train net output #149: total_confidence = 0.513311 | |
I0425 12:39:49.914109 22523 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.416636 | |
I0425 12:39:49.914124 22523 sgd_solver.cpp:106] Iteration 13000, lr = 0.01 | |
I0425 12:45:31.265033 22523 solver.cpp:229] Iteration 13500, loss = 3.09215 | |
I0425 12:45:31.265169 22523 solver.cpp:245] Train net output #0: loss1/accuracy = 0.58 | |
I0425 12:45:31.265190 22523 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.625 | |
I0425 12:45:31.265208 22523 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.25 | |
I0425 12:45:31.265220 22523 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.25 | |
I0425 12:45:31.265233 22523 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.25 | |
I0425 12:45:31.265245 22523 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.5 | |
I0425 12:45:31.265259 22523 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.5 | |
I0425 12:45:31.265270 22523 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.625 | |
I0425 12:45:31.265283 22523 solver.cpp:245] Train net output #8: loss1/accuracy08 = 1 | |
I0425 12:45:31.265295 22523 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1 | |
I0425 12:45:31.265308 22523 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1 | |
I0425 12:45:31.265321 22523 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1 | |
I0425 12:45:31.265332 22523 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1 | |
I0425 12:45:31.265344 22523 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1 | |
I0425 12:45:31.265357 22523 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1 | |
I0425 12:45:31.265368 22523 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0425 12:45:31.265380 22523 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0425 12:45:31.265391 22523 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0425 12:45:31.265411 22523 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0425 12:45:31.265422 22523 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0425 12:45:31.265434 22523 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0425 12:45:31.265446 22523 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0425 12:45:31.265465 22523 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0425 12:45:31.265477 22523 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.869318 | |
I0425 12:45:31.265489 22523 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.84 | |
I0425 12:45:31.265506 22523 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.5705 (* 0.3 = 0.471149 loss) | |
I0425 12:45:31.265522 22523 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.485558 (* 0.3 = 0.145667 loss) | |
I0425 12:45:31.265537 22523 solver.cpp:245] Train net output #27: loss1/loss01 = 1.29521 (* 0.0272727 = 0.035324 loss) | |
I0425 12:45:31.265552 22523 solver.cpp:245] Train net output #28: loss1/loss02 = 2.45717 (* 0.0272727 = 0.0670137 loss) | |
I0425 12:45:31.265566 22523 solver.cpp:245] Train net output #29: loss1/loss03 = 1.77905 (* 0.0272727 = 0.0485195 loss) | |
I0425 12:45:31.265581 22523 solver.cpp:245] Train net output #30: loss1/loss04 = 1.87558 (* 0.0272727 = 0.0511522 loss) | |
I0425 12:45:31.265595 22523 solver.cpp:245] Train net output #31: loss1/loss05 = 1.72031 (* 0.0272727 = 0.0469177 loss) | |
I0425 12:45:31.265609 22523 solver.cpp:245] Train net output #32: loss1/loss06 = 1.91251 (* 0.0272727 = 0.0521593 loss) | |
I0425 12:45:31.265624 22523 solver.cpp:245] Train net output #33: loss1/loss07 = 1.24389 (* 0.0272727 = 0.0339243 loss) | |
I0425 12:45:31.265638 22523 solver.cpp:245] Train net output #34: loss1/loss08 = 0.056235 (* 0.0272727 = 0.00153368 loss) | |
I0425 12:45:31.265653 22523 solver.cpp:245] Train net output #35: loss1/loss09 = 0.0097688 (* 0.0272727 = 0.000266422 loss) | |
I0425 12:45:31.265667 22523 solver.cpp:245] Train net output #36: loss1/loss10 = 0.00314875 (* 0.0272727 = 8.58751e-05 loss) | |
I0425 12:45:31.265682 22523 solver.cpp:245] Train net output #37: loss1/loss11 = 0.00367143 (* 0.0272727 = 0.00010013 loss) | |
I0425 12:45:31.265697 22523 solver.cpp:245] Train net output #38: loss1/loss12 = 0.0024616 (* 0.0272727 = 6.71345e-05 loss) | |
I0425 12:45:31.265712 22523 solver.cpp:245] Train net output #39: loss1/loss13 = 0.00202589 (* 0.0272727 = 5.52515e-05 loss) | |
I0425 12:45:31.265743 22523 solver.cpp:245] Train net output #40: loss1/loss14 = 0.0016145 (* 0.0272727 = 4.40319e-05 loss) | |
I0425 12:45:31.265759 22523 solver.cpp:245] Train net output #41: loss1/loss15 = 0.00202957 (* 0.0272727 = 5.53518e-05 loss) | |
I0425 12:45:31.265774 22523 solver.cpp:245] Train net output #42: loss1/loss16 = 0.000409055 (* 0.0272727 = 1.1156e-05 loss) | |
I0425 12:45:31.265789 22523 solver.cpp:245] Train net output #43: loss1/loss17 = 0.000120806 (* 0.0272727 = 3.2947e-06 loss) | |
I0425 12:45:31.265805 22523 solver.cpp:245] Train net output #44: loss1/loss18 = 0.000128954 (* 0.0272727 = 3.51694e-06 loss) | |
I0425 12:45:31.265818 22523 solver.cpp:245] Train net output #45: loss1/loss19 = 5.6823e-05 (* 0.0272727 = 1.54972e-06 loss) | |
I0425 12:45:31.265832 22523 solver.cpp:245] Train net output #46: loss1/loss20 = 2.96105e-05 (* 0.0272727 = 8.07558e-07 loss) | |
I0425 12:45:31.265856 22523 solver.cpp:245] Train net output #47: loss1/loss21 = 2.99162e-05 (* 0.0272727 = 8.15896e-07 loss) | |
I0425 12:45:31.265871 22523 solver.cpp:245] Train net output #48: loss1/loss22 = 1.55125e-05 (* 0.0272727 = 4.23068e-07 loss) | |
I0425 12:45:31.265882 22523 solver.cpp:245] Train net output #49: loss2/accuracy = 0.56 | |
I0425 12:45:31.265894 22523 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875 | |
I0425 12:45:31.265905 22523 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75 | |
I0425 12:45:31.265925 22523 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.5 | |
I0425 12:45:31.265938 22523 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.625 | |
I0425 12:45:31.265949 22523 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5 | |
I0425 12:45:31.265961 22523 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.625 | |
I0425 12:45:31.265972 22523 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.625 | |
I0425 12:45:31.265985 22523 solver.cpp:245] Train net output #57: loss2/accuracy08 = 1 | |
I0425 12:45:31.265995 22523 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1 | |
I0425 12:45:31.266006 22523 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1 | |
I0425 12:45:31.266018 22523 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1 | |
I0425 12:45:31.266029 22523 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1 | |
I0425 12:45:31.266041 22523 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1 | |
I0425 12:45:31.266052 22523 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1 | |
I0425 12:45:31.266063 22523 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0425 12:45:31.266074 22523 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0425 12:45:31.266085 22523 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0425 12:45:31.266096 22523 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0425 12:45:31.266108 22523 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0425 12:45:31.266119 22523 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0425 12:45:31.266130 22523 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0425 12:45:31.266141 22523 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0425 12:45:31.266152 22523 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.863636 | |
I0425 12:45:31.266165 22523 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.84 | |
I0425 12:45:31.266181 22523 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.72331 (* 0.3 = 0.516994 loss) | |
I0425 12:45:31.266196 22523 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.527355 (* 0.3 = 0.158207 loss) | |
I0425 12:45:31.266211 22523 solver.cpp:245] Train net output #76: loss2/loss01 = 0.355843 (* 0.0272727 = 0.0097048 loss) | |
I0425 12:45:31.266225 22523 solver.cpp:245] Train net output #77: loss2/loss02 = 1.76627 (* 0.0272727 = 0.0481709 loss) | |
I0425 12:45:31.266252 22523 solver.cpp:245] Train net output #78: loss2/loss03 = 2.32037 (* 0.0272727 = 0.0632828 loss) | |
I0425 12:45:31.266268 22523 solver.cpp:245] Train net output #79: loss2/loss04 = 1.1801 (* 0.0272727 = 0.0321847 loss) | |
I0425 12:45:31.266283 22523 solver.cpp:245] Train net output #80: loss2/loss05 = 1.8283 (* 0.0272727 = 0.0498627 loss) | |
I0425 12:45:31.266296 22523 solver.cpp:245] Train net output #81: loss2/loss06 = 1.12679 (* 0.0272727 = 0.0307306 loss) | |
I0425 12:45:31.266310 22523 solver.cpp:245] Train net output #82: loss2/loss07 = 1.08174 (* 0.0272727 = 0.0295019 loss) | |
I0425 12:45:31.266324 22523 solver.cpp:245] Train net output #83: loss2/loss08 = 0.0538671 (* 0.0272727 = 0.0014691 loss) | |
I0425 12:45:31.266338 22523 solver.cpp:245] Train net output #84: loss2/loss09 = 0.000720398 (* 0.0272727 = 1.96472e-05 loss) | |
I0425 12:45:31.266352 22523 solver.cpp:245] Train net output #85: loss2/loss10 = 0.000386149 (* 0.0272727 = 1.05313e-05 loss) | |
I0425 12:45:31.266367 22523 solver.cpp:245] Train net output #86: loss2/loss11 = 0.00203486 (* 0.0272727 = 5.54961e-05 loss) | |
I0425 12:45:31.266381 22523 solver.cpp:245] Train net output #87: loss2/loss12 = 0.000780905 (* 0.0272727 = 2.12974e-05 loss) | |
I0425 12:45:31.266396 22523 solver.cpp:245] Train net output #88: loss2/loss13 = 0.000871291 (* 0.0272727 = 2.37625e-05 loss) | |
I0425 12:45:31.266409 22523 solver.cpp:245] Train net output #89: loss2/loss14 = 0.000385549 (* 0.0272727 = 1.0515e-05 loss) | |
I0425 12:45:31.266422 22523 solver.cpp:245] Train net output #90: loss2/loss15 = 0.000235946 (* 0.0272727 = 6.43488e-06 loss) | |
I0425 12:45:31.266438 22523 solver.cpp:245] Train net output #91: loss2/loss16 = 6.20465e-05 (* 0.0272727 = 1.69218e-06 loss) | |
I0425 12:45:31.266450 22523 solver.cpp:245] Train net output #92: loss2/loss17 = 2.66444e-05 (* 0.0272727 = 7.26667e-07 loss) | |
I0425 12:45:31.266465 22523 solver.cpp:245] Train net output #93: loss2/loss18 = 2.58102e-05 (* 0.0272727 = 7.03915e-07 loss) | |
I0425 12:45:31.266479 22523 solver.cpp:245] Train net output #94: loss2/loss19 = 3.27827e-06 (* 0.0272727 = 8.94074e-08 loss) | |
I0425 12:45:31.266494 22523 solver.cpp:245] Train net output #95: loss2/loss20 = 6.18405e-06 (* 0.0272727 = 1.68656e-07 loss) | |
I0425 12:45:31.266507 22523 solver.cpp:245] Train net output #96: loss2/loss21 = 2.07127e-06 (* 0.0272727 = 5.64892e-08 loss) | |
I0425 12:45:31.266522 22523 solver.cpp:245] Train net output #97: loss2/loss22 = 9.23874e-07 (* 0.0272727 = 2.51966e-08 loss) | |
I0425 12:45:31.266535 22523 solver.cpp:245] Train net output #98: loss3/accuracy = 0.8 | |
I0425 12:45:31.266547 22523 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1 | |
I0425 12:45:31.266558 22523 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875 | |
I0425 12:45:31.266571 22523 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.625 | |
I0425 12:45:31.266582 22523 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.75 | |
I0425 12:45:31.266593 22523 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.75 | |
I0425 12:45:31.266605 22523 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.75 | |
I0425 12:45:31.266618 22523 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75 | |
I0425 12:45:31.266628 22523 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1 | |
I0425 12:45:31.266640 22523 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1 | |
I0425 12:45:31.266651 22523 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1 | |
I0425 12:45:31.266662 22523 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1 | |
I0425 12:45:31.266674 22523 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1 | |
I0425 12:45:31.266685 22523 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1 | |
I0425 12:45:31.266697 22523 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1 | |
I0425 12:45:31.266708 22523 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0425 12:45:31.266721 22523 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0425 12:45:31.266741 22523 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0425 12:45:31.266754 22523 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0425 12:45:31.266767 22523 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0425 12:45:31.266777 22523 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0425 12:45:31.266789 22523 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0425 12:45:31.266800 22523 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0425 12:45:31.266811 22523 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.931818 | |
I0425 12:45:31.266824 22523 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.9 | |
I0425 12:45:31.266837 22523 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.20392 (* 1 = 1.20392 loss) | |
I0425 12:45:31.266851 22523 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.38985 (* 1 = 0.38985 loss) | |
I0425 12:45:31.266865 22523 solver.cpp:245] Train net output #125: loss3/loss01 = 0.071281 (* 0.0909091 = 0.00648009 loss) | |
I0425 12:45:31.266880 22523 solver.cpp:245] Train net output #126: loss3/loss02 = 1.08957 (* 0.0909091 = 0.0990521 loss) | |
I0425 12:45:31.266894 22523 solver.cpp:245] Train net output #127: loss3/loss03 = 2.76456 (* 0.0909091 = 0.251323 loss) | |
I0425 12:45:31.266908 22523 solver.cpp:245] Train net output #128: loss3/loss04 = 1.39836 (* 0.0909091 = 0.127124 loss) | |
I0425 12:45:31.266922 22523 solver.cpp:245] Train net output #129: loss3/loss05 = 1.53966 (* 0.0909091 = 0.139969 loss) | |
I0425 12:45:31.266937 22523 solver.cpp:245] Train net output #130: loss3/loss06 = 0.585408 (* 0.0909091 = 0.0532189 loss) | |
I0425 12:45:31.266950 22523 solver.cpp:245] Train net output #131: loss3/loss07 = 0.661223 (* 0.0909091 = 0.0601112 loss) | |
I0425 12:45:31.266964 22523 solver.cpp:245] Train net output #132: loss3/loss08 = 0.0134343 (* 0.0909091 = 0.0012213 loss) | |
I0425 12:45:31.266978 22523 solver.cpp:245] Train net output #133: loss3/loss09 = 0.00394371 (* 0.0909091 = 0.000358519 loss) | |
I0425 12:45:31.266993 22523 solver.cpp:245] Train net output #134: loss3/loss10 = 0.000906264 (* 0.0909091 = 8.23876e-05 loss) | |
I0425 12:45:31.267007 22523 solver.cpp:245] Train net output #135: loss3/loss11 = 0.000707414 (* 0.0909091 = 6.43104e-05 loss) | |
I0425 12:45:31.267021 22523 solver.cpp:245] Train net output #136: loss3/loss12 = 0.00035584 (* 0.0909091 = 3.23491e-05 loss) | |
I0425 12:45:31.267035 22523 solver.cpp:245] Train net output #137: loss3/loss13 = 0.000180856 (* 0.0909091 = 1.64415e-05 loss) | |
I0425 12:45:31.267050 22523 solver.cpp:245] Train net output #138: loss3/loss14 = 0.000124387 (* 0.0909091 = 1.13079e-05 loss) | |
I0425 12:45:31.267063 22523 solver.cpp:245] Train net output #139: loss3/loss15 = 6.52641e-05 (* 0.0909091 = 5.9331e-06 loss) | |
I0425 12:45:31.267077 22523 solver.cpp:245] Train net output #140: loss3/loss16 = 3.78802e-05 (* 0.0909091 = 3.44366e-06 loss) | |
I0425 12:45:31.267091 22523 solver.cpp:245] Train net output #141: loss3/loss17 = 2.70022e-05 (* 0.0909091 = 2.45475e-06 loss) | |
I0425 12:45:31.267105 22523 solver.cpp:245] Train net output #142: loss3/loss18 = 2.31575e-05 (* 0.0909091 = 2.10523e-06 loss) | |
I0425 12:45:31.267119 22523 solver.cpp:245] Train net output #143: loss3/loss19 = 2.53484e-05 (* 0.0909091 = 2.3044e-06 loss) | |
I0425 12:45:31.267133 22523 solver.cpp:245] Train net output #144: loss3/loss20 = 1.54829e-05 (* 0.0909091 = 1.40754e-06 loss) | |
I0425 12:45:31.267148 22523 solver.cpp:245] Train net output #145: loss3/loss21 = 7.55507e-06 (* 0.0909091 = 6.86824e-07 loss) | |
I0425 12:45:31.267163 22523 solver.cpp:245] Train net output #146: loss3/loss22 = 1.89246e-06 (* 0.0909091 = 1.72042e-07 loss) | |
I0425 12:45:31.267175 22523 solver.cpp:245] Train net output #147: total_accuracy = 0.5 | |
I0425 12:45:31.267187 22523 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.375 | |
I0425 12:45:31.267204 22523 solver.cpp:245] Train net output #149: total_confidence = 0.734748 | |
I0425 12:45:31.267212 22523 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.429598 | |
I0425 12:45:31.267233 22523 sgd_solver.cpp:106] Iteration 13500, lr = 0.01 | |
I0425 12:51:12.559489 22523 solver.cpp:229] Iteration 14000, loss = 2.96695 | |
I0425 12:51:12.559643 22523 solver.cpp:245] Train net output #0: loss1/accuracy = 0.630435 | |
I0425 12:51:12.559664 22523 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.875 | |
I0425 12:51:12.559685 22523 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.25 | |
I0425 12:51:12.559698 22523 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375 | |
I0425 12:51:12.559710 22523 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.25 | |
I0425 12:51:12.559722 22523 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.5 | |
I0425 12:51:12.559742 22523 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.625 | |
I0425 12:51:12.559754 22523 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.75 | |
I0425 12:51:12.559767 22523 solver.cpp:245] Train net output #8: loss1/accuracy08 = 1 | |
I0425 12:51:12.559779 22523 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1 | |
I0425 12:51:12.559792 22523 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1 | |
I0425 12:51:12.559804 22523 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1 | |
I0425 12:51:12.559816 22523 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1 | |
I0425 12:51:12.559828 22523 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1 | |
I0425 12:51:12.559840 22523 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1 | |
I0425 12:51:12.559852 22523 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0425 12:51:12.559864 22523 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0425 12:51:12.559876 22523 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0425 12:51:12.559888 22523 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0425 12:51:12.559900 22523 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0425 12:51:12.559912 22523 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0425 12:51:12.559924 22523 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0425 12:51:12.559937 22523 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0425 12:51:12.559948 22523 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.897727 | |
I0425 12:51:12.559960 22523 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.804348 | |
I0425 12:51:12.559978 22523 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.54349 (* 0.3 = 0.463048 loss) | |
I0425 12:51:12.559993 22523 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.429918 (* 0.3 = 0.128975 loss) | |
I0425 12:51:12.560008 22523 solver.cpp:245] Train net output #27: loss1/loss01 = 0.551805 (* 0.0272727 = 0.0150492 loss) | |
I0425 12:51:12.560022 22523 solver.cpp:245] Train net output #28: loss1/loss02 = 2.57394 (* 0.0272727 = 0.0701983 loss) | |
I0425 12:51:12.560036 22523 solver.cpp:245] Train net output #29: loss1/loss03 = 1.55979 (* 0.0272727 = 0.0425398 loss) | |
I0425 12:51:12.560051 22523 solver.cpp:245] Train net output #30: loss1/loss04 = 2.13851 (* 0.0272727 = 0.0583231 loss) | |
I0425 12:51:12.560065 22523 solver.cpp:245] Train net output #31: loss1/loss05 = 2.2401 (* 0.0272727 = 0.0610936 loss) | |
I0425 12:51:12.560080 22523 solver.cpp:245] Train net output #32: loss1/loss06 = 0.984302 (* 0.0272727 = 0.0268446 loss) | |
I0425 12:51:12.560094 22523 solver.cpp:245] Train net output #33: loss1/loss07 = 1.09889 (* 0.0272727 = 0.0299698 loss) | |
I0425 12:51:12.560109 22523 solver.cpp:245] Train net output #34: loss1/loss08 = 0.133238 (* 0.0272727 = 0.00363376 loss) | |
I0425 12:51:12.560124 22523 solver.cpp:245] Train net output #35: loss1/loss09 = 0.0101206 (* 0.0272727 = 0.000276016 loss) | |
I0425 12:51:12.560139 22523 solver.cpp:245] Train net output #36: loss1/loss10 = 0.00902867 (* 0.0272727 = 0.000246236 loss) | |
I0425 12:51:12.560154 22523 solver.cpp:245] Train net output #37: loss1/loss11 = 0.00852316 (* 0.0272727 = 0.00023245 loss) | |
I0425 12:51:12.560168 22523 solver.cpp:245] Train net output #38: loss1/loss12 = 0.00498284 (* 0.0272727 = 0.000135896 loss) | |
I0425 12:51:12.560204 22523 solver.cpp:245] Train net output #39: loss1/loss13 = 0.00270355 (* 0.0272727 = 7.37331e-05 loss) | |
I0425 12:51:12.560225 22523 solver.cpp:245] Train net output #40: loss1/loss14 = 0.00236367 (* 0.0272727 = 6.44637e-05 loss) | |
I0425 12:51:12.560240 22523 solver.cpp:245] Train net output #41: loss1/loss15 = 0.00163836 (* 0.0272727 = 4.46825e-05 loss) | |
I0425 12:51:12.560255 22523 solver.cpp:245] Train net output #42: loss1/loss16 = 0.000936928 (* 0.0272727 = 2.55526e-05 loss) | |
I0425 12:51:12.560269 22523 solver.cpp:245] Train net output #43: loss1/loss17 = 0.00100264 (* 0.0272727 = 2.73447e-05 loss) | |
I0425 12:51:12.560284 22523 solver.cpp:245] Train net output #44: loss1/loss18 = 0.000274408 (* 0.0272727 = 7.48386e-06 loss) | |
I0425 12:51:12.560299 22523 solver.cpp:245] Train net output #45: loss1/loss19 = 8.93462e-05 (* 0.0272727 = 2.43671e-06 loss) | |
I0425 12:51:12.560314 22523 solver.cpp:245] Train net output #46: loss1/loss20 = 9.82943e-05 (* 0.0272727 = 2.68075e-06 loss) | |
I0425 12:51:12.560328 22523 solver.cpp:245] Train net output #47: loss1/loss21 = 7.7628e-05 (* 0.0272727 = 2.11713e-06 loss) | |
I0425 12:51:12.560343 22523 solver.cpp:245] Train net output #48: loss1/loss22 = 5.93501e-05 (* 0.0272727 = 1.61864e-06 loss) | |
I0425 12:51:12.560355 22523 solver.cpp:245] Train net output #49: loss2/accuracy = 0.73913 | |
I0425 12:51:12.560367 22523 solver.cpp:245] Train net output #50: loss2/accuracy01 = 1 | |
I0425 12:51:12.560379 22523 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.625 | |
I0425 12:51:12.560390 22523 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.75 | |
I0425 12:51:12.560402 22523 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.25 | |
I0425 12:51:12.560415 22523 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5 | |
I0425 12:51:12.560426 22523 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.75 | |
I0425 12:51:12.560437 22523 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.75 | |
I0425 12:51:12.560449 22523 solver.cpp:245] Train net output #57: loss2/accuracy08 = 1 | |
I0425 12:51:12.560461 22523 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1 | |
I0425 12:51:12.560472 22523 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1 | |
I0425 12:51:12.560483 22523 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1 | |
I0425 12:51:12.560494 22523 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1 | |
I0425 12:51:12.560505 22523 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1 | |
I0425 12:51:12.560518 22523 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1 | |
I0425 12:51:12.560528 22523 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0425 12:51:12.560539 22523 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0425 12:51:12.560550 22523 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0425 12:51:12.560561 22523 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0425 12:51:12.560573 22523 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0425 12:51:12.560585 22523 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0425 12:51:12.560595 22523 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0425 12:51:12.560607 22523 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0425 12:51:12.560618 22523 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.931818 | |
I0425 12:51:12.560631 22523 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.913043 | |
I0425 12:51:12.560648 22523 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.16648 (* 0.3 = 0.349944 loss) | |
I0425 12:51:12.560663 22523 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.32076 (* 0.3 = 0.0962279 loss) | |
I0425 12:51:12.560678 22523 solver.cpp:245] Train net output #76: loss2/loss01 = 0.199244 (* 0.0272727 = 0.00543393 loss) | |
I0425 12:51:12.560693 22523 solver.cpp:245] Train net output #77: loss2/loss02 = 2.44807 (* 0.0272727 = 0.0667656 loss) | |
I0425 12:51:12.560719 22523 solver.cpp:245] Train net output #78: loss2/loss03 = 1.13655 (* 0.0272727 = 0.0309969 loss) | |
I0425 12:51:12.560734 22523 solver.cpp:245] Train net output #79: loss2/loss04 = 2.23058 (* 0.0272727 = 0.0608341 loss) | |
I0425 12:51:12.560747 22523 solver.cpp:245] Train net output #80: loss2/loss05 = 2.03967 (* 0.0272727 = 0.0556274 loss) | |
I0425 12:51:12.560761 22523 solver.cpp:245] Train net output #81: loss2/loss06 = 1.0192 (* 0.0272727 = 0.0277962 loss) | |
I0425 12:51:12.560775 22523 solver.cpp:245] Train net output #82: loss2/loss07 = 0.937762 (* 0.0272727 = 0.0255753 loss) | |
I0425 12:51:12.560791 22523 solver.cpp:245] Train net output #83: loss2/loss08 = 0.0249825 (* 0.0272727 = 0.000681341 loss) | |
I0425 12:51:12.560804 22523 solver.cpp:245] Train net output #84: loss2/loss09 = 0.00464997 (* 0.0272727 = 0.000126817 loss) | |
I0425 12:51:12.560818 22523 solver.cpp:245] Train net output #85: loss2/loss10 = 0.00252063 (* 0.0272727 = 6.87444e-05 loss) | |
I0425 12:51:12.560832 22523 solver.cpp:245] Train net output #86: loss2/loss11 = 0.00359276 (* 0.0272727 = 9.79844e-05 loss) | |
I0425 12:51:12.560847 22523 solver.cpp:245] Train net output #87: loss2/loss12 = 0.00170695 (* 0.0272727 = 4.65531e-05 loss) | |
I0425 12:51:12.560860 22523 solver.cpp:245] Train net output #88: loss2/loss13 = 0.00113341 (* 0.0272727 = 3.09112e-05 loss) | |
I0425 12:51:12.560875 22523 solver.cpp:245] Train net output #89: loss2/loss14 = 0.000483134 (* 0.0272727 = 1.31764e-05 loss) | |
I0425 12:51:12.560889 22523 solver.cpp:245] Train net output #90: loss2/loss15 = 0.000216504 (* 0.0272727 = 5.90467e-06 loss) | |
I0425 12:51:12.560904 22523 solver.cpp:245] Train net output #91: loss2/loss16 = 7.50349e-05 (* 0.0272727 = 2.04641e-06 loss) | |
I0425 12:51:12.560919 22523 solver.cpp:245] Train net output #92: loss2/loss17 = 0.000157385 (* 0.0272727 = 4.29233e-06 loss) | |
I0425 12:51:12.560932 22523 solver.cpp:245] Train net output #93: loss2/loss18 = 5.1356e-05 (* 0.0272727 = 1.40062e-06 loss) | |
I0425 12:51:12.560946 22523 solver.cpp:245] Train net output #94: loss2/loss19 = 1.3769e-05 (* 0.0272727 = 3.75518e-07 loss) | |
I0425 12:51:12.560961 22523 solver.cpp:245] Train net output #95: loss2/loss20 = 1.40672e-05 (* 0.0272727 = 3.8365e-07 loss) | |
I0425 12:51:12.560976 22523 solver.cpp:245] Train net output #96: loss2/loss21 = 5.78173e-06 (* 0.0272727 = 1.57683e-07 loss) | |
I0425 12:51:12.560989 22523 solver.cpp:245] Train net output #97: loss2/loss22 = 9.00054e-06 (* 0.0272727 = 2.45469e-07 loss) | |
I0425 12:51:12.561002 22523 solver.cpp:245] Train net output #98: loss3/accuracy = 0.869565 | |
I0425 12:51:12.561014 22523 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1 | |
I0425 12:51:12.561025 22523 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1 | |
I0425 12:51:12.561038 22523 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1 | |
I0425 12:51:12.561049 22523 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.75 | |
I0425 12:51:12.561060 22523 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875 | |
I0425 12:51:12.561072 22523 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.875 | |
I0425 12:51:12.561084 22523 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75 | |
I0425 12:51:12.561096 22523 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1 | |
I0425 12:51:12.561107 22523 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1 | |
I0425 12:51:12.561118 22523 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1 | |
I0425 12:51:12.561131 22523 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1 | |
I0425 12:51:12.561141 22523 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1 | |
I0425 12:51:12.561152 22523 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1 | |
I0425 12:51:12.561164 22523 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1 | |
I0425 12:51:12.561175 22523 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0425 12:51:12.561187 22523 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0425 12:51:12.561209 22523 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0425 12:51:12.561223 22523 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0425 12:51:12.561234 22523 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0425 12:51:12.561245 22523 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0425 12:51:12.561260 22523 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0425 12:51:12.561272 22523 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0425 12:51:12.561285 22523 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.965909 | |
I0425 12:51:12.561296 22523 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.956522 | |
I0425 12:51:12.561311 22523 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.626915 (* 1 = 0.626915 loss) | |
I0425 12:51:12.561324 22523 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.168263 (* 1 = 0.168263 loss) | |
I0425 12:51:12.561343 22523 solver.cpp:245] Train net output #125: loss3/loss01 = 0.0275062 (* 0.0909091 = 0.00250057 loss) | |
I0425 12:51:12.561358 22523 solver.cpp:245] Train net output #126: loss3/loss02 = 0.155646 (* 0.0909091 = 0.0141496 loss) | |
I0425 12:51:12.561372 22523 solver.cpp:245] Train net output #127: loss3/loss03 = 0.0296562 (* 0.0909091 = 0.00269602 loss) | |
I0425 12:51:12.561388 22523 solver.cpp:245] Train net output #128: loss3/loss04 = 0.586377 (* 0.0909091 = 0.053307 loss) | |
I0425 12:51:12.561400 22523 solver.cpp:245] Train net output #129: loss3/loss05 = 0.873116 (* 0.0909091 = 0.0793741 loss) | |
I0425 12:51:12.561414 22523 solver.cpp:245] Train net output #130: loss3/loss06 = 0.811314 (* 0.0909091 = 0.0737558 loss) | |
I0425 12:51:12.561434 22523 solver.cpp:245] Train net output #131: loss3/loss07 = 0.885503 (* 0.0909091 = 0.0805003 loss) | |
I0425 12:51:12.561447 22523 solver.cpp:245] Train net output #132: loss3/loss08 = 0.00526601 (* 0.0909091 = 0.000478728 loss) | |
I0425 12:51:12.561461 22523 solver.cpp:245] Train net output #133: loss3/loss09 = 0.000285374 (* 0.0909091 = 2.59431e-05 loss) | |
I0425 12:51:12.561475 22523 solver.cpp:245] Train net output #134: loss3/loss10 = 0.000164205 (* 0.0909091 = 1.49277e-05 loss) | |
I0425 12:51:12.561489 22523 solver.cpp:245] Train net output #135: loss3/loss11 = 0.00099758 (* 0.0909091 = 9.0689e-05 loss) | |
I0425 12:51:12.561508 22523 solver.cpp:245] Train net output #136: loss3/loss12 = 0.000550787 (* 0.0909091 = 5.00715e-05 loss) | |
I0425 12:51:12.561522 22523 solver.cpp:245] Train net output #137: loss3/loss13 = 0.000434765 (* 0.0909091 = 3.9524e-05 loss) | |
I0425 12:51:12.561535 22523 solver.cpp:245] Train net output #138: loss3/loss14 = 0.000232605 (* 0.0909091 = 2.11459e-05 loss) | |
I0425 12:51:12.561549 22523 solver.cpp:245] Train net output #139: loss3/loss15 = 0.000123179 (* 0.0909091 = 1.11981e-05 loss) | |
I0425 12:51:12.561563 22523 solver.cpp:245] Train net output #140: loss3/loss16 = 8.30978e-05 (* 0.0909091 = 7.55435e-06 loss) | |
I0425 12:51:12.561578 22523 solver.cpp:245] Train net output #141: loss3/loss17 = 5.71443e-05 (* 0.0909091 = 5.19493e-06 loss) | |
I0425 12:51:12.561591 22523 solver.cpp:245] Train net output #142: loss3/loss18 = 4.61153e-05 (* 0.0909091 = 4.1923e-06 loss) | |
I0425 12:51:12.561605 22523 solver.cpp:245] Train net output #143: loss3/loss19 = 3.8358e-05 (* 0.0909091 = 3.48709e-06 loss) | |
I0425 12:51:12.561619 22523 solver.cpp:245] Train net output #144: loss3/loss20 = 3.37381e-05 (* 0.0909091 = 3.0671e-06 loss) | |
I0425 12:51:12.561633 22523 solver.cpp:245] Train net output #145: loss3/loss21 = 1.22192e-05 (* 0.0909091 = 1.11084e-06 loss) | |
I0425 12:51:12.561648 22523 solver.cpp:245] Train net output #146: loss3/loss22 = 4.6343e-06 (* 0.0909091 = 4.213e-07 loss) | |
I0425 12:51:12.561661 22523 solver.cpp:245] Train net output #147: total_accuracy = 0.625 | |
I0425 12:51:12.561672 22523 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.625 | |
I0425 12:51:12.561698 22523 solver.cpp:245] Train net output #149: total_confidence = 0.664857 | |
I0425 12:51:12.561712 22523 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.451256 | |
I0425 12:51:12.561727 22523 sgd_solver.cpp:106] Iteration 14000, lr = 0.01 | |
I0425 12:56:53.953660 22523 solver.cpp:229] Iteration 14500, loss = 3.05462 | |
I0425 12:56:53.953814 22523 solver.cpp:245] Train net output #0: loss1/accuracy = 0.575 | |
I0425 12:56:53.953836 22523 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.875 | |
I0425 12:56:53.953850 22523 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5 | |
I0425 12:56:53.953862 22523 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.5 | |
I0425 12:56:53.953874 22523 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375 | |
I0425 12:56:53.953886 22523 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.625 | |
I0425 12:56:53.953899 22523 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.5 | |
I0425 12:56:53.953912 22523 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.625 | |
I0425 12:56:53.953923 22523 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.75 | |
I0425 12:56:53.953938 22523 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1 | |
I0425 12:56:53.953949 22523 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1 | |
I0425 12:56:53.953961 22523 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1 | |
I0425 12:56:53.953974 22523 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1 | |
I0425 12:56:53.953985 22523 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1 | |
I0425 12:56:53.953999 22523 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1 | |
I0425 12:56:53.954010 22523 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0425 12:56:53.954021 22523 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0425 12:56:53.954033 22523 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0425 12:56:53.954046 22523 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0425 12:56:53.954057 22523 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0425 12:56:53.954069 22523 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0425 12:56:53.954082 22523 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0425 12:56:53.954093 22523 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0425 12:56:53.954105 22523 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.875 | |
I0425 12:56:53.954118 22523 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.825 | |
I0425 12:56:53.954135 22523 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.47132 (* 0.3 = 0.441396 loss) | |
I0425 12:56:53.954150 22523 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.476328 (* 0.3 = 0.142898 loss) | |
I0425 12:56:53.954166 22523 solver.cpp:245] Train net output #27: loss1/loss01 = 0.394606 (* 0.0272727 = 0.010762 loss) | |
I0425 12:56:53.954181 22523 solver.cpp:245] Train net output #28: loss1/loss02 = 1.29837 (* 0.0272727 = 0.03541 loss) | |
I0425 12:56:53.954195 22523 solver.cpp:245] Train net output #29: loss1/loss03 = 2.94898 (* 0.0272727 = 0.0804267 loss) | |
I0425 12:56:53.954213 22523 solver.cpp:245] Train net output #30: loss1/loss04 = 1.93942 (* 0.0272727 = 0.0528933 loss) | |
I0425 12:56:53.954227 22523 solver.cpp:245] Train net output #31: loss1/loss05 = 1.28408 (* 0.0272727 = 0.0350202 loss) | |
I0425 12:56:53.954242 22523 solver.cpp:245] Train net output #32: loss1/loss06 = 1.51294 (* 0.0272727 = 0.041262 loss) | |
I0425 12:56:53.954257 22523 solver.cpp:245] Train net output #33: loss1/loss07 = 0.872989 (* 0.0272727 = 0.0238088 loss) | |
I0425 12:56:53.954272 22523 solver.cpp:245] Train net output #34: loss1/loss08 = 0.571273 (* 0.0272727 = 0.0155802 loss) | |
I0425 12:56:53.954287 22523 solver.cpp:245] Train net output #35: loss1/loss09 = 0.0423718 (* 0.0272727 = 0.00115559 loss) | |
I0425 12:56:53.954301 22523 solver.cpp:245] Train net output #36: loss1/loss10 = 0.0163717 (* 0.0272727 = 0.000446502 loss) | |
I0425 12:56:53.954315 22523 solver.cpp:245] Train net output #37: loss1/loss11 = 0.0126504 (* 0.0272727 = 0.000345011 loss) | |
I0425 12:56:53.954330 22523 solver.cpp:245] Train net output #38: loss1/loss12 = 0.00501734 (* 0.0272727 = 0.000136837 loss) | |
I0425 12:56:53.954345 22523 solver.cpp:245] Train net output #39: loss1/loss13 = 0.00225936 (* 0.0272727 = 6.1619e-05 loss) | |
I0425 12:56:53.954378 22523 solver.cpp:245] Train net output #40: loss1/loss14 = 0.0035325 (* 0.0272727 = 9.63409e-05 loss) | |
I0425 12:56:53.954396 22523 solver.cpp:245] Train net output #41: loss1/loss15 = 0.00109305 (* 0.0272727 = 2.98104e-05 loss) | |
I0425 12:56:53.954409 22523 solver.cpp:245] Train net output #42: loss1/loss16 = 0.00109317 (* 0.0272727 = 2.98138e-05 loss) | |
I0425 12:56:53.954424 22523 solver.cpp:245] Train net output #43: loss1/loss17 = 0.000319846 (* 0.0272727 = 8.72308e-06 loss) | |
I0425 12:56:53.954439 22523 solver.cpp:245] Train net output #44: loss1/loss18 = 0.000225119 (* 0.0272727 = 6.13962e-06 loss) | |
I0425 12:56:53.954453 22523 solver.cpp:245] Train net output #45: loss1/loss19 = 5.54397e-05 (* 0.0272727 = 1.51199e-06 loss) | |
I0425 12:56:53.954468 22523 solver.cpp:245] Train net output #46: loss1/loss20 = 3.84576e-05 (* 0.0272727 = 1.04884e-06 loss) | |
I0425 12:56:53.954483 22523 solver.cpp:245] Train net output #47: loss1/loss21 = 1.35159e-05 (* 0.0272727 = 3.68615e-07 loss) | |
I0425 12:56:53.954498 22523 solver.cpp:245] Train net output #48: loss1/loss22 = 1.13699e-05 (* 0.0272727 = 3.10088e-07 loss) | |
I0425 12:56:53.954510 22523 solver.cpp:245] Train net output #49: loss2/accuracy = 0.575 | |
I0425 12:56:53.954522 22523 solver.cpp:245] Train net output #50: loss2/accuracy01 = 1 | |
I0425 12:56:53.954535 22523 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.625 | |
I0425 12:56:53.954546 22523 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.375 | |
I0425 12:56:53.954558 22523 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.625 | |
I0425 12:56:53.954569 22523 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5 | |
I0425 12:56:53.954581 22523 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.625 | |
I0425 12:56:53.954593 22523 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.875 | |
I0425 12:56:53.954604 22523 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.75 | |
I0425 12:56:53.954617 22523 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1 | |
I0425 12:56:53.954628 22523 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1 | |
I0425 12:56:53.954639 22523 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1 | |
I0425 12:56:53.954651 22523 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1 | |
I0425 12:56:53.954663 22523 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1 | |
I0425 12:56:53.954674 22523 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1 | |
I0425 12:56:53.954685 22523 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0425 12:56:53.954696 22523 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0425 12:56:53.954707 22523 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0425 12:56:53.954718 22523 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0425 12:56:53.954730 22523 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0425 12:56:53.954741 22523 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0425 12:56:53.954752 22523 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0425 12:56:53.954763 22523 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0425 12:56:53.954776 22523 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.886364 | |
I0425 12:56:53.954787 22523 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.825 | |
I0425 12:56:53.954800 22523 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.25634 (* 0.3 = 0.376901 loss) | |
I0425 12:56:53.954815 22523 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.372494 (* 0.3 = 0.111748 loss) | |
I0425 12:56:53.954833 22523 solver.cpp:245] Train net output #76: loss2/loss01 = 0.145703 (* 0.0272727 = 0.00397373 loss) | |
I0425 12:56:53.954849 22523 solver.cpp:245] Train net output #77: loss2/loss02 = 1.00811 (* 0.0272727 = 0.0274938 loss) | |
I0425 12:56:53.954874 22523 solver.cpp:245] Train net output #78: loss2/loss03 = 2.56419 (* 0.0272727 = 0.0699325 loss) | |
I0425 12:56:53.954890 22523 solver.cpp:245] Train net output #79: loss2/loss04 = 1.5075 (* 0.0272727 = 0.0411136 loss) | |
I0425 12:56:53.954903 22523 solver.cpp:245] Train net output #80: loss2/loss05 = 1.9115 (* 0.0272727 = 0.0521317 loss) | |
I0425 12:56:53.954917 22523 solver.cpp:245] Train net output #81: loss2/loss06 = 1.10462 (* 0.0272727 = 0.0301261 loss) | |
I0425 12:56:53.954931 22523 solver.cpp:245] Train net output #82: loss2/loss07 = 0.796041 (* 0.0272727 = 0.0217102 loss) | |
I0425 12:56:53.954946 22523 solver.cpp:245] Train net output #83: loss2/loss08 = 0.880032 (* 0.0272727 = 0.0240009 loss) | |
I0425 12:56:53.954960 22523 solver.cpp:245] Train net output #84: loss2/loss09 = 0.106038 (* 0.0272727 = 0.00289195 loss) | |
I0425 12:56:53.954974 22523 solver.cpp:245] Train net output #85: loss2/loss10 = 0.0279216 (* 0.0272727 = 0.000761499 loss) | |
I0425 12:56:53.954988 22523 solver.cpp:245] Train net output #86: loss2/loss11 = 0.00440279 (* 0.0272727 = 0.000120076 loss) | |
I0425 12:56:53.955003 22523 solver.cpp:245] Train net output #87: loss2/loss12 = 0.00393441 (* 0.0272727 = 0.000107302 loss) | |
I0425 12:56:53.955018 22523 solver.cpp:245] Train net output #88: loss2/loss13 = 0.000994064 (* 0.0272727 = 2.71108e-05 loss) | |
I0425 12:56:53.955031 22523 solver.cpp:245] Train net output #89: loss2/loss14 = 0.000521282 (* 0.0272727 = 1.42168e-05 loss) | |
I0425 12:56:53.955045 22523 solver.cpp:245] Train net output #90: loss2/loss15 = 0.000485726 (* 0.0272727 = 1.32471e-05 loss) | |
I0425 12:56:53.955060 22523 solver.cpp:245] Train net output #91: loss2/loss16 = 0.000215062 (* 0.0272727 = 5.86533e-06 loss) | |
I0425 12:56:53.955073 22523 solver.cpp:245] Train net output #92: loss2/loss17 = 5.52664e-05 (* 0.0272727 = 1.50726e-06 loss) | |
I0425 12:56:53.955087 22523 solver.cpp:245] Train net output #93: loss2/loss18 = 2.68089e-05 (* 0.0272727 = 7.31153e-07 loss) | |
I0425 12:56:53.955102 22523 solver.cpp:245] Train net output #94: loss2/loss19 = 1.00883e-05 (* 0.0272727 = 2.75136e-07 loss) | |
I0425 12:56:53.955116 22523 solver.cpp:245] Train net output #95: loss2/loss20 = 3.44219e-06 (* 0.0272727 = 9.38779e-08 loss) | |
I0425 12:56:53.955130 22523 solver.cpp:245] Train net output #96: loss2/loss21 = 9.08972e-07 (* 0.0272727 = 2.47902e-08 loss) | |
I0425 12:56:53.955145 22523 solver.cpp:245] Train net output #97: loss2/loss22 = 5.21541e-07 (* 0.0272727 = 1.42238e-08 loss) | |
I0425 12:56:53.955157 22523 solver.cpp:245] Train net output #98: loss3/accuracy = 0.75 | |
I0425 12:56:53.955169 22523 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1 | |
I0425 12:56:53.955180 22523 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875 | |
I0425 12:56:53.955193 22523 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.75 | |
I0425 12:56:53.955204 22523 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875 | |
I0425 12:56:53.955215 22523 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875 | |
I0425 12:56:53.955227 22523 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.75 | |
I0425 12:56:53.955238 22523 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875 | |
I0425 12:56:53.955252 22523 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.625 | |
I0425 12:56:53.955265 22523 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1 | |
I0425 12:56:53.955277 22523 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1 | |
I0425 12:56:53.955288 22523 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1 | |
I0425 12:56:53.955299 22523 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1 | |
I0425 12:56:53.955312 22523 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1 | |
I0425 12:56:53.955322 22523 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1 | |
I0425 12:56:53.955333 22523 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0425 12:56:53.955345 22523 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0425 12:56:53.955384 22523 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0425 12:56:53.955397 22523 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0425 12:56:53.955410 22523 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0425 12:56:53.955421 22523 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0425 12:56:53.955432 22523 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0425 12:56:53.955445 22523 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0425 12:56:53.955456 22523 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.914773 | |
I0425 12:56:53.955468 22523 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.9 | |
I0425 12:56:53.955482 22523 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.821041 (* 1 = 0.821041 loss) | |
I0425 12:56:53.955497 22523 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.297806 (* 1 = 0.297806 loss) | |
I0425 12:56:53.955512 22523 solver.cpp:245] Train net output #125: loss3/loss01 = 0.0296934 (* 0.0909091 = 0.0026994 loss) | |
I0425 12:56:53.955525 22523 solver.cpp:245] Train net output #126: loss3/loss02 = 0.303645 (* 0.0909091 = 0.0276041 loss) | |
I0425 12:56:53.955539 22523 solver.cpp:245] Train net output #127: loss3/loss03 = 1.27201 (* 0.0909091 = 0.115637 loss) | |
I0425 12:56:53.955554 22523 solver.cpp:245] Train net output #128: loss3/loss04 = 0.709635 (* 0.0909091 = 0.0645123 loss) | |
I0425 12:56:53.955567 22523 solver.cpp:245] Train net output #129: loss3/loss05 = 0.78336 (* 0.0909091 = 0.0712145 loss) | |
I0425 12:56:53.955581 22523 solver.cpp:245] Train net output #130: loss3/loss06 = 0.788687 (* 0.0909091 = 0.0716988 loss) | |
I0425 12:56:53.955595 22523 solver.cpp:245] Train net output #131: loss3/loss07 = 0.647073 (* 0.0909091 = 0.0588248 loss) | |
I0425 12:56:53.955610 22523 solver.cpp:245] Train net output #132: loss3/loss08 = 0.635095 (* 0.0909091 = 0.0577359 loss) | |
I0425 12:56:53.955623 22523 solver.cpp:245] Train net output #133: loss3/loss09 = 0.133921 (* 0.0909091 = 0.0121746 loss) | |
I0425 12:56:53.955638 22523 solver.cpp:245] Train net output #134: loss3/loss10 = 0.0278037 (* 0.0909091 = 0.00252761 loss) | |
I0425 12:56:53.955652 22523 solver.cpp:245] Train net output #135: loss3/loss11 = 0.0173439 (* 0.0909091 = 0.00157672 loss) | |
I0425 12:56:53.955667 22523 solver.cpp:245] Train net output #136: loss3/loss12 = 0.0103664 (* 0.0909091 = 0.0009424 loss) | |
I0425 12:56:53.955682 22523 solver.cpp:245] Train net output #137: loss3/loss13 = 0.00489823 (* 0.0909091 = 0.000445294 loss) | |
I0425 12:56:53.955695 22523 solver.cpp:245] Train net output #138: loss3/loss14 = 0.00280795 (* 0.0909091 = 0.000255268 loss) | |
I0425 12:56:53.955709 22523 solver.cpp:245] Train net output #139: loss3/loss15 = 0.00240467 (* 0.0909091 = 0.000218606 loss) | |
I0425 12:56:53.955724 22523 solver.cpp:245] Train net output #140: loss3/loss16 = 0.00171765 (* 0.0909091 = 0.00015615 loss) | |
I0425 12:56:53.955739 22523 solver.cpp:245] Train net output #141: loss3/loss17 = 0.000963741 (* 0.0909091 = 8.76128e-05 loss) | |
I0425 12:56:53.955752 22523 solver.cpp:245] Train net output #142: loss3/loss18 = 0.00060677 (* 0.0909091 = 5.51609e-05 loss) | |
I0425 12:56:53.955762 22523 solver.cpp:245] Train net output #143: loss3/loss19 = 0.000357746 (* 0.0909091 = 3.25224e-05 loss) | |
I0425 12:56:53.955772 22523 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000258614 (* 0.0909091 = 2.35104e-05 loss) | |
I0425 12:56:53.955786 22523 solver.cpp:245] Train net output #145: loss3/loss21 = 0.000110474 (* 0.0909091 = 1.00431e-05 loss) | |
I0425 12:56:53.955801 22523 solver.cpp:245] Train net output #146: loss3/loss22 = 3.10702e-05 (* 0.0909091 = 2.82456e-06 loss) | |
I0425 12:56:53.955813 22523 solver.cpp:245] Train net output #147: total_accuracy = 0.5 | |
I0425 12:56:53.955826 22523 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.5 | |
I0425 12:56:53.955848 22523 solver.cpp:245] Train net output #149: total_confidence = 0.557251 | |
I0425 12:56:53.955862 22523 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.532522 | |
I0425 12:56:53.955880 22523 sgd_solver.cpp:106] Iteration 14500, lr = 0.01 | |
I0425 13:02:06.212210 22523 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 46.7986 > 30) by scale factor 0.641045 | |
I0425 13:02:34.900357 22523 solver.cpp:338] Iteration 15000, Testing net (#0) | |
I0425 13:03:26.439437 22523 solver.cpp:393] Test loss: 1.53709 | |
I0425 13:03:26.439561 22523 solver.cpp:406] Test net output #0: loss1/accuracy = 0.744025 | |
I0425 13:03:26.439580 22523 solver.cpp:406] Test net output #1: loss1/accuracy01 = 0.879 | |
I0425 13:03:26.439594 22523 solver.cpp:406] Test net output #2: loss1/accuracy02 = 0.672 | |
I0425 13:03:26.439607 22523 solver.cpp:406] Test net output #3: loss1/accuracy03 = 0.534 | |
I0425 13:03:26.439620 22523 solver.cpp:406] Test net output #4: loss1/accuracy04 = 0.506 | |
I0425 13:03:26.439632 22523 solver.cpp:406] Test net output #5: loss1/accuracy05 = 0.588 | |
I0425 13:03:26.439645 22523 solver.cpp:406] Test net output #6: loss1/accuracy06 = 0.67 | |
I0425 13:03:26.439656 22523 solver.cpp:406] Test net output #7: loss1/accuracy07 = 0.804 | |
I0425 13:03:26.439669 22523 solver.cpp:406] Test net output #8: loss1/accuracy08 = 0.914 | |
I0425 13:03:26.439682 22523 solver.cpp:406] Test net output #9: loss1/accuracy09 = 0.981 | |
I0425 13:03:26.439694 22523 solver.cpp:406] Test net output #10: loss1/accuracy10 = 0.994 | |
I0425 13:03:26.439707 22523 solver.cpp:406] Test net output #11: loss1/accuracy11 = 0.999 | |
I0425 13:03:26.439718 22523 solver.cpp:406] Test net output #12: loss1/accuracy12 = 0.999 | |
I0425 13:03:26.439730 22523 solver.cpp:406] Test net output #13: loss1/accuracy13 = 0.999 | |
I0425 13:03:26.439743 22523 solver.cpp:406] Test net output #14: loss1/accuracy14 = 1 | |
I0425 13:03:26.439754 22523 solver.cpp:406] Test net output #15: loss1/accuracy15 = 1 | |
I0425 13:03:26.439766 22523 solver.cpp:406] Test net output #16: loss1/accuracy16 = 1 | |
I0425 13:03:26.439779 22523 solver.cpp:406] Test net output #17: loss1/accuracy17 = 1 | |
I0425 13:03:26.439790 22523 solver.cpp:406] Test net output #18: loss1/accuracy18 = 1 | |
I0425 13:03:26.439802 22523 solver.cpp:406] Test net output #19: loss1/accuracy19 = 1 | |
I0425 13:03:26.439813 22523 solver.cpp:406] Test net output #20: loss1/accuracy20 = 1 | |
I0425 13:03:26.439826 22523 solver.cpp:406] Test net output #21: loss1/accuracy21 = 1 | |
I0425 13:03:26.439837 22523 solver.cpp:406] Test net output #22: loss1/accuracy22 = 1 | |
I0425 13:03:26.439848 22523 solver.cpp:406] Test net output #23: loss1/accuracy_incl_empty = 0.919728 | |
I0425 13:03:26.439862 22523 solver.cpp:406] Test net output #24: loss1/accuracy_top3 = 0.916103 | |
I0425 13:03:26.439878 22523 solver.cpp:406] Test net output #25: loss1/cross_entropy_loss = 0.85125 (* 0.3 = 0.255375 loss) | |
I0425 13:03:26.439894 22523 solver.cpp:406] Test net output #26: loss1/cross_entropy_loss_incl_empty = 0.26647 (* 0.3 = 0.0799409 loss) | |
I0425 13:03:26.439908 22523 solver.cpp:406] Test net output #27: loss1/loss01 = 0.509566 (* 0.0272727 = 0.0138972 loss) | |
I0425 13:03:26.439924 22523 solver.cpp:406] Test net output #28: loss1/loss02 = 1.08951 (* 0.0272727 = 0.029714 loss) | |
I0425 13:03:26.439937 22523 solver.cpp:406] Test net output #29: loss1/loss03 = 1.42948 (* 0.0272727 = 0.0389859 loss) | |
I0425 13:03:26.439952 22523 solver.cpp:406] Test net output #30: loss1/loss04 = 1.48426 (* 0.0272727 = 0.0404798 loss) | |
I0425 13:03:26.439966 22523 solver.cpp:406] Test net output #31: loss1/loss05 = 1.28146 (* 0.0272727 = 0.0349488 loss) | |
I0425 13:03:26.439980 22523 solver.cpp:406] Test net output #32: loss1/loss06 = 0.969239 (* 0.0272727 = 0.0264338 loss) | |
I0425 13:03:26.439995 22523 solver.cpp:406] Test net output #33: loss1/loss07 = 0.580005 (* 0.0272727 = 0.0158183 loss) | |
I0425 13:03:26.440009 22523 solver.cpp:406] Test net output #34: loss1/loss08 = 0.303177 (* 0.0272727 = 0.00826847 loss) | |
I0425 13:03:26.440023 22523 solver.cpp:406] Test net output #35: loss1/loss09 = 0.0855596 (* 0.0272727 = 0.00233344 loss) | |
I0425 13:03:26.440038 22523 solver.cpp:406] Test net output #36: loss1/loss10 = 0.0340021 (* 0.0272727 = 0.000927331 loss) | |
I0425 13:03:26.440053 22523 solver.cpp:406] Test net output #37: loss1/loss11 = 0.0168168 (* 0.0272727 = 0.000458641 loss) | |
I0425 13:03:26.440068 22523 solver.cpp:406] Test net output #38: loss1/loss12 = 0.0101703 (* 0.0272727 = 0.000277372 loss) | |
I0425 13:03:26.440083 22523 solver.cpp:406] Test net output #39: loss1/loss13 = 0.00733002 (* 0.0272727 = 0.00019991 loss) | |
I0425 13:03:26.440116 22523 solver.cpp:406] Test net output #40: loss1/loss14 = 0.00487551 (* 0.0272727 = 0.000132969 loss) | |
I0425 13:03:26.440132 22523 solver.cpp:406] Test net output #41: loss1/loss15 = 0.00375365 (* 0.0272727 = 0.000102372 loss) | |
I0425 13:03:26.440147 22523 solver.cpp:406] Test net output #42: loss1/loss16 = 0.00177192 (* 0.0272727 = 4.83251e-05 loss) | |
I0425 13:03:26.440162 22523 solver.cpp:406] Test net output #43: loss1/loss17 = 0.000709636 (* 0.0272727 = 1.93537e-05 loss) | |
I0425 13:03:26.440177 22523 solver.cpp:406] Test net output #44: loss1/loss18 = 0.000369912 (* 0.0272727 = 1.00885e-05 loss) | |
I0425 13:03:26.440191 22523 solver.cpp:406] Test net output #45: loss1/loss19 = 0.000171336 (* 0.0272727 = 4.67279e-06 loss) | |
I0425 13:03:26.440208 22523 solver.cpp:406] Test net output #46: loss1/loss20 = 9.69515e-05 (* 0.0272727 = 2.64413e-06 loss) | |
I0425 13:03:26.440223 22523 solver.cpp:406] Test net output #47: loss1/loss21 = 5.12442e-05 (* 0.0272727 = 1.39757e-06 loss) | |
I0425 13:03:26.440246 22523 solver.cpp:406] Test net output #48: loss1/loss22 = 3.05602e-05 (* 0.0272727 = 8.3346e-07 loss) | |
I0425 13:03:26.440263 22523 solver.cpp:406] Test net output #49: loss2/accuracy = 0.884829 | |
I0425 13:03:26.440275 22523 solver.cpp:406] Test net output #50: loss2/accuracy01 = 0.946 | |
I0425 13:03:26.440287 22523 solver.cpp:406] Test net output #51: loss2/accuracy02 = 0.879 | |
I0425 13:03:26.440299 22523 solver.cpp:406] Test net output #52: loss2/accuracy03 = 0.752 | |
I0425 13:03:26.440310 22523 solver.cpp:406] Test net output #53: loss2/accuracy04 = 0.631 | |
I0425 13:03:26.440326 22523 solver.cpp:406] Test net output #54: loss2/accuracy05 = 0.651 | |
I0425 13:03:26.440337 22523 solver.cpp:406] Test net output #55: loss2/accuracy06 = 0.745 | |
I0425 13:03:26.440348 22523 solver.cpp:406] Test net output #56: loss2/accuracy07 = 0.88 | |
I0425 13:03:26.440361 22523 solver.cpp:406] Test net output #57: loss2/accuracy08 = 0.926 | |
I0425 13:03:26.440371 22523 solver.cpp:406] Test net output #58: loss2/accuracy09 = 0.98 | |
I0425 13:03:26.440383 22523 solver.cpp:406] Test net output #59: loss2/accuracy10 = 0.993 | |
I0425 13:03:26.440395 22523 solver.cpp:406] Test net output #60: loss2/accuracy11 = 0.998 | |
I0425 13:03:26.440407 22523 solver.cpp:406] Test net output #61: loss2/accuracy12 = 0.999 | |
I0425 13:03:26.440418 22523 solver.cpp:406] Test net output #62: loss2/accuracy13 = 0.999 | |
I0425 13:03:26.440429 22523 solver.cpp:406] Test net output #63: loss2/accuracy14 = 0.999 | |
I0425 13:03:26.440441 22523 solver.cpp:406] Test net output #64: loss2/accuracy15 = 1 | |
I0425 13:03:26.440453 22523 solver.cpp:406] Test net output #65: loss2/accuracy16 = 1 | |
I0425 13:03:26.440464 22523 solver.cpp:406] Test net output #66: loss2/accuracy17 = 1 | |
I0425 13:03:26.440474 22523 solver.cpp:406] Test net output #67: loss2/accuracy18 = 1 | |
I0425 13:03:26.440486 22523 solver.cpp:406] Test net output #68: loss2/accuracy19 = 1 | |
I0425 13:03:26.440497 22523 solver.cpp:406] Test net output #69: loss2/accuracy20 = 1 | |
I0425 13:03:26.440508 22523 solver.cpp:406] Test net output #70: loss2/accuracy21 = 1 | |
I0425 13:03:26.440520 22523 solver.cpp:406] Test net output #71: loss2/accuracy22 = 1 | |
I0425 13:03:26.440531 22523 solver.cpp:406] Test net output #72: loss2/accuracy_incl_empty = 0.959455 | |
I0425 13:03:26.440541 22523 solver.cpp:406] Test net output #73: loss2/accuracy_top3 = 0.962639 | |
I0425 13:03:26.440556 22523 solver.cpp:406] Test net output #74: loss2/cross_entropy_loss = 0.431345 (* 0.3 = 0.129403 loss) | |
I0425 13:03:26.440569 22523 solver.cpp:406] Test net output #75: loss2/cross_entropy_loss_incl_empty = 0.14481 (* 0.3 = 0.0434431 loss) | |
I0425 13:03:26.440583 22523 solver.cpp:406] Test net output #76: loss2/loss01 = 0.264182 (* 0.0272727 = 0.00720496 loss) | |
I0425 13:03:26.440598 22523 solver.cpp:406] Test net output #77: loss2/loss02 = 0.497769 (* 0.0272727 = 0.0135755 loss) | |
I0425 13:03:26.440623 22523 solver.cpp:406] Test net output #78: loss2/loss03 = 0.827161 (* 0.0272727 = 0.0225589 loss) | |
I0425 13:03:26.440639 22523 solver.cpp:406] Test net output #79: loss2/loss04 = 1.05861 (* 0.0272727 = 0.0288713 loss) | |
I0425 13:03:26.440652 22523 solver.cpp:406] Test net output #80: loss2/loss05 = 0.963342 (* 0.0272727 = 0.026273 loss) | |
I0425 13:03:26.440665 22523 solver.cpp:406] Test net output #81: loss2/loss06 = 0.755661 (* 0.0272727 = 0.0206089 loss) | |
I0425 13:03:26.440680 22523 solver.cpp:406] Test net output #82: loss2/loss07 = 0.434694 (* 0.0272727 = 0.0118553 loss) | |
I0425 13:03:26.440693 22523 solver.cpp:406] Test net output #83: loss2/loss08 = 0.233869 (* 0.0272727 = 0.00637825 loss) | |
I0425 13:03:26.440707 22523 solver.cpp:406] Test net output #84: loss2/loss09 = 0.0774089 (* 0.0272727 = 0.00211115 loss) | |
I0425 13:03:26.440721 22523 solver.cpp:406] Test net output #85: loss2/loss10 = 0.0344433 (* 0.0272727 = 0.000939363 loss) | |
I0425 13:03:26.440735 22523 solver.cpp:406] Test net output #86: loss2/loss11 = 0.0180318 (* 0.0272727 = 0.000491776 loss) | |
I0425 13:03:26.440749 22523 solver.cpp:406] Test net output #87: loss2/loss12 = 0.0113805 (* 0.0272727 = 0.000310378 loss) | |
I0425 13:03:26.440763 22523 solver.cpp:406] Test net output #88: loss2/loss13 = 0.00761668 (* 0.0272727 = 0.000207728 loss) | |
I0425 13:03:26.440778 22523 solver.cpp:406] Test net output #89: loss2/loss14 = 0.00551422 (* 0.0272727 = 0.000150388 loss) | |
I0425 13:03:26.440791 22523 solver.cpp:406] Test net output #90: loss2/loss15 = 0.00386871 (* 0.0272727 = 0.00010551 loss) | |
I0425 13:03:26.440805 22523 solver.cpp:406] Test net output #91: loss2/loss16 = 0.00202235 (* 0.0272727 = 5.5155e-05 loss) | |
I0425 13:03:26.440819 22523 solver.cpp:406] Test net output #92: loss2/loss17 = 0.000700229 (* 0.0272727 = 1.90972e-05 loss) | |
I0425 13:03:26.440834 22523 solver.cpp:406] Test net output #93: loss2/loss18 = 0.000322236 (* 0.0272727 = 8.78826e-06 loss) | |
I0425 13:03:26.440847 22523 solver.cpp:406] Test net output #94: loss2/loss19 = 0.000130372 (* 0.0272727 = 3.55559e-06 loss) | |
I0425 13:03:26.440861 22523 solver.cpp:406] Test net output #95: loss2/loss20 = 6.22659e-05 (* 0.0272727 = 1.69816e-06 loss) | |
I0425 13:03:26.440876 22523 solver.cpp:406] Test net output #96: loss2/loss21 = 4.14388e-05 (* 0.0272727 = 1.13015e-06 loss) | |
I0425 13:03:26.440889 22523 solver.cpp:406] Test net output #97: loss2/loss22 = 2.06476e-05 (* 0.0272727 = 5.63116e-07 loss) | |
I0425 13:03:26.440902 22523 solver.cpp:406] Test net output #98: loss3/accuracy = 0.919756 | |
I0425 13:03:26.440913 22523 solver.cpp:406] Test net output #99: loss3/accuracy01 = 0.953 | |
I0425 13:03:26.440927 22523 solver.cpp:406] Test net output #100: loss3/accuracy02 = 0.93 | |
I0425 13:03:26.440937 22523 solver.cpp:406] Test net output #101: loss3/accuracy03 = 0.931 | |
I0425 13:03:26.440949 22523 solver.cpp:406] Test net output #102: loss3/accuracy04 = 0.905 | |
I0425 13:03:26.440960 22523 solver.cpp:406] Test net output #103: loss3/accuracy05 = 0.902 | |
I0425 13:03:26.440973 22523 solver.cpp:406] Test net output #104: loss3/accuracy06 = 0.889 | |
I0425 13:03:26.440984 22523 solver.cpp:406] Test net output #105: loss3/accuracy07 = 0.918 | |
I0425 13:03:26.440994 22523 solver.cpp:406] Test net output #106: loss3/accuracy08 = 0.957 | |
I0425 13:03:26.441005 22523 solver.cpp:406] Test net output #107: loss3/accuracy09 = 0.981 | |
I0425 13:03:26.441017 22523 solver.cpp:406] Test net output #108: loss3/accuracy10 = 0.994 | |
I0425 13:03:26.441028 22523 solver.cpp:406] Test net output #109: loss3/accuracy11 = 0.998 | |
I0425 13:03:26.441040 22523 solver.cpp:406] Test net output #110: loss3/accuracy12 = 0.999 | |
I0425 13:03:26.441051 22523 solver.cpp:406] Test net output #111: loss3/accuracy13 = 0.999 | |
I0425 13:03:26.441062 22523 solver.cpp:406] Test net output #112: loss3/accuracy14 = 0.999 | |
I0425 13:03:26.441074 22523 solver.cpp:406] Test net output #113: loss3/accuracy15 = 0.999 | |
I0425 13:03:26.441085 22523 solver.cpp:406] Test net output #114: loss3/accuracy16 = 1 | |
I0425 13:03:26.441107 22523 solver.cpp:406] Test net output #115: loss3/accuracy17 = 1 | |
I0425 13:03:26.441119 22523 solver.cpp:406] Test net output #116: loss3/accuracy18 = 1 | |
I0425 13:03:26.441131 22523 solver.cpp:406] Test net output #117: loss3/accuracy19 = 1 | |
I0425 13:03:26.441143 22523 solver.cpp:406] Test net output #118: loss3/accuracy20 = 1 | |
I0425 13:03:26.441154 22523 solver.cpp:406] Test net output #119: loss3/accuracy21 = 1 | |
I0425 13:03:26.441165 22523 solver.cpp:406] Test net output #120: loss3/accuracy22 = 1 | |
I0425 13:03:26.441176 22523 solver.cpp:406] Test net output #121: loss3/accuracy_incl_empty = 0.972955 | |
I0425 13:03:26.441189 22523 solver.cpp:406] Test net output #122: loss3/accuracy_top3 = 0.971404 | |
I0425 13:03:26.441202 22523 solver.cpp:406] Test net output #123: loss3/cross_entropy_loss = 0.327676 (* 1 = 0.327676 loss) | |
I0425 13:03:26.441216 22523 solver.cpp:406] Test net output #124: loss3/cross_entropy_loss_incl_empty = 0.109819 (* 1 = 0.109819 loss) | |
I0425 13:03:26.441229 22523 solver.cpp:406] Test net output #125: loss3/loss01 = 0.204162 (* 0.0909091 = 0.0185602 loss) | |
I0425 13:03:26.441243 22523 solver.cpp:406] Test net output #126: loss3/loss02 = 0.326225 (* 0.0909091 = 0.0296568 loss) | |
I0425 13:03:26.441260 22523 solver.cpp:406] Test net output #127: loss3/loss03 = 0.306638 (* 0.0909091 = 0.0278762 loss) | |
I0425 13:03:26.441274 22523 solver.cpp:406] Test net output #128: loss3/loss04 = 0.382483 (* 0.0909091 = 0.0347712 loss) | |
I0425 13:03:26.441288 22523 solver.cpp:406] Test net output #129: loss3/loss05 = 0.388336 (* 0.0909091 = 0.0353032 loss) | |
I0425 13:03:26.441305 22523 solver.cpp:406] Test net output #130: loss3/loss06 = 0.41449 (* 0.0909091 = 0.0376809 loss) | |
I0425 13:03:26.441319 22523 solver.cpp:406] Test net output #131: loss3/loss07 = 0.294186 (* 0.0909091 = 0.0267442 loss) | |
I0425 13:03:26.441334 22523 solver.cpp:406] Test net output #132: loss3/loss08 = 0.151036 (* 0.0909091 = 0.0137305 loss) | |
I0425 13:03:26.441347 22523 solver.cpp:406] Test net output #133: loss3/loss09 = 0.0628351 (* 0.0909091 = 0.00571228 loss) | |
I0425 13:03:26.441361 22523 solver.cpp:406] Test net output #134: loss3/loss10 = 0.0256188 (* 0.0909091 = 0.00232899 loss) | |
I0425 13:03:26.441375 22523 solver.cpp:406] Test net output #135: loss3/loss11 = 0.0154491 (* 0.0909091 = 0.00140447 loss) | |
I0425 13:03:26.441390 22523 solver.cpp:406] Test net output #136: loss3/loss12 = 0.00994234 (* 0.0909091 = 0.000903849 loss) | |
I0425 13:03:26.441403 22523 solver.cpp:406] Test net output #137: loss3/loss13 = 0.00717898 (* 0.0909091 = 0.000652634 loss) | |
I0425 13:03:26.441417 22523 solver.cpp:406] Test net output #138: loss3/loss14 = 0.00574725 (* 0.0909091 = 0.000522477 loss) | |
I0425 13:03:26.441431 22523 solver.cpp:406] Test net output #139: loss3/loss15 = 0.00453183 (* 0.0909091 = 0.000411985 loss) | |
I0425 13:03:26.441445 22523 solver.cpp:406] Test net output #140: loss3/loss16 = 0.00216664 (* 0.0909091 = 0.000196967 loss) | |
I0425 13:03:26.441459 22523 solver.cpp:406] Test net output #141: loss3/loss17 = 0.000717549 (* 0.0909091 = 6.52317e-05 loss) | |
I0425 13:03:26.441473 22523 solver.cpp:406] Test net output #142: loss3/loss18 = 0.000466841 (* 0.0909091 = 4.24401e-05 loss) | |
I0425 13:03:26.441488 22523 solver.cpp:406] Test net output #143: loss3/loss19 = 0.000359761 (* 0.0909091 = 3.27056e-05 loss) | |
I0425 13:03:26.441501 22523 solver.cpp:406] Test net output #144: loss3/loss20 = 0.000272499 (* 0.0909091 = 2.47726e-05 loss) | |
I0425 13:03:26.441512 22523 solver.cpp:406] Test net output #145: loss3/loss21 = 0.000113827 (* 0.0909091 = 1.03479e-05 loss) | |
I0425 13:03:26.441521 22523 solver.cpp:406] Test net output #146: loss3/loss22 = 3.60497e-05 (* 0.0909091 = 3.27724e-06 loss) | |
I0425 13:03:26.441534 22523 solver.cpp:406] Test net output #147: total_accuracy = 0.785 | |
I0425 13:03:26.441545 22523 solver.cpp:406] Test net output #148: total_accuracy_not_rec = 0.705 | |
I0425 13:03:26.441566 22523 solver.cpp:406] Test net output #149: total_confidence = 0.762435 | |
I0425 13:03:26.441579 22523 solver.cpp:406] Test net output #150: total_confidence_nor_rec = 0.603414 | |
I0425 13:03:26.441594 22523 solver.cpp:338] Iteration 15000, Testing net (#1) | |
I0425 13:04:18.053591 22523 solver.cpp:393] Test loss: 2.67589 | |
I0425 13:04:18.053791 22523 solver.cpp:406] Test net output #0: loss1/accuracy = 0.677389 | |
I0425 13:04:18.053822 22523 solver.cpp:406] Test net output #1: loss1/accuracy01 = 0.818 | |
I0425 13:04:18.053834 22523 solver.cpp:406] Test net output #2: loss1/accuracy02 = 0.629 | |
I0425 13:04:18.053848 22523 solver.cpp:406] Test net output #3: loss1/accuracy03 = 0.483 | |
I0425 13:04:18.053860 22523 solver.cpp:406] Test net output #4: loss1/accuracy04 = 0.476 | |
I0425 13:04:18.053881 22523 solver.cpp:406] Test net output #5: loss1/accuracy05 = 0.546 | |
I0425 13:04:18.053894 22523 solver.cpp:406] Test net output #6: loss1/accuracy06 = 0.609 | |
I0425 13:04:18.053906 22523 solver.cpp:406] Test net output #7: loss1/accuracy07 = 0.698 | |
I0425 13:04:18.053920 22523 solver.cpp:406] Test net output #8: loss1/accuracy08 = 0.824 | |
I0425 13:04:18.053931 22523 solver.cpp:406] Test net output #9: loss1/accuracy09 = 0.901 | |
I0425 13:04:18.053944 22523 solver.cpp:406] Test net output #10: loss1/accuracy10 = 0.904 | |
I0425 13:04:18.053957 22523 solver.cpp:406] Test net output #11: loss1/accuracy11 = 0.915 | |
I0425 13:04:18.053969 22523 solver.cpp:406] Test net output #12: loss1/accuracy12 = 0.924 | |
I0425 13:04:18.053982 22523 solver.cpp:406] Test net output #13: loss1/accuracy13 = 0.938 | |
I0425 13:04:18.053994 22523 solver.cpp:406] Test net output #14: loss1/accuracy14 = 0.951 | |
I0425 13:04:18.054013 22523 solver.cpp:406] Test net output #15: loss1/accuracy15 = 0.964 | |
I0425 13:04:18.054025 22523 solver.cpp:406] Test net output #16: loss1/accuracy16 = 0.97 | |
I0425 13:04:18.054038 22523 solver.cpp:406] Test net output #17: loss1/accuracy17 = 0.99 | |
I0425 13:04:18.054049 22523 solver.cpp:406] Test net output #18: loss1/accuracy18 = 0.992 | |
I0425 13:04:18.054061 22523 solver.cpp:406] Test net output #19: loss1/accuracy19 = 0.994 | |
I0425 13:04:18.054074 22523 solver.cpp:406] Test net output #20: loss1/accuracy20 = 0.998 | |
I0425 13:04:18.054085 22523 solver.cpp:406] Test net output #21: loss1/accuracy21 = 1 | |
I0425 13:04:18.054097 22523 solver.cpp:406] Test net output #22: loss1/accuracy22 = 1 | |
I0425 13:04:18.054111 22523 solver.cpp:406] Test net output #23: loss1/accuracy_incl_empty = 0.870819 | |
I0425 13:04:18.054122 22523 solver.cpp:406] Test net output #24: loss1/accuracy_top3 = 0.860137 | |
I0425 13:04:18.054141 22523 solver.cpp:406] Test net output #25: loss1/cross_entropy_loss = 1.07471 (* 0.3 = 0.322414 loss) | |
I0425 13:04:18.054155 22523 solver.cpp:406] Test net output #26: loss1/cross_entropy_loss_incl_empty = 0.441408 (* 0.3 = 0.132422 loss) | |
I0425 13:04:18.054170 22523 solver.cpp:406] Test net output #27: loss1/loss01 = 0.704379 (* 0.0272727 = 0.0192103 loss) | |
I0425 13:04:18.054185 22523 solver.cpp:406] Test net output #28: loss1/loss02 = 1.19959 (* 0.0272727 = 0.0327162 loss) | |
I0425 13:04:18.054203 22523 solver.cpp:406] Test net output #29: loss1/loss03 = 1.59523 (* 0.0272727 = 0.0435062 loss) | |
I0425 13:04:18.054217 22523 solver.cpp:406] Test net output #30: loss1/loss04 = 1.64717 (* 0.0272727 = 0.0449228 loss) | |
I0425 13:04:18.054232 22523 solver.cpp:406] Test net output #31: loss1/loss05 = 1.48559 (* 0.0272727 = 0.0405161 loss) | |
I0425 13:04:18.054246 22523 solver.cpp:406] Test net output #32: loss1/loss06 = 1.25749 (* 0.0272727 = 0.0342951 loss) | |
I0425 13:04:18.054260 22523 solver.cpp:406] Test net output #33: loss1/loss07 = 0.96807 (* 0.0272727 = 0.0264019 loss) | |
I0425 13:04:18.054275 22523 solver.cpp:406] Test net output #34: loss1/loss08 = 0.625462 (* 0.0272727 = 0.0170581 loss) | |
I0425 13:04:18.054289 22523 solver.cpp:406] Test net output #35: loss1/loss09 = 0.378416 (* 0.0272727 = 0.0103204 loss) | |
I0425 13:04:18.054303 22523 solver.cpp:406] Test net output #36: loss1/loss10 = 0.348242 (* 0.0272727 = 0.0094975 loss) | |
I0425 13:04:18.054318 22523 solver.cpp:406] Test net output #37: loss1/loss11 = 0.324199 (* 0.0272727 = 0.00884178 loss) | |
I0425 13:04:18.054332 22523 solver.cpp:406] Test net output #38: loss1/loss12 = 0.294603 (* 0.0272727 = 0.00803464 loss) | |
I0425 13:04:18.054360 22523 solver.cpp:406] Test net output #39: loss1/loss13 = 0.235035 (* 0.0272727 = 0.00641006 loss) | |
I0425 13:04:18.054376 22523 solver.cpp:406] Test net output #40: loss1/loss14 = 0.212487 (* 0.0272727 = 0.00579511 loss) | |
I0425 13:04:18.054390 22523 solver.cpp:406] Test net output #41: loss1/loss15 = 0.164056 (* 0.0272727 = 0.00447425 loss) | |
I0425 13:04:18.054404 22523 solver.cpp:406] Test net output #42: loss1/loss16 = 0.155286 (* 0.0272727 = 0.00423507 loss) | |
I0425 13:04:18.054419 22523 solver.cpp:406] Test net output #43: loss1/loss17 = 0.0670209 (* 0.0272727 = 0.00182784 loss) | |
I0425 13:04:18.054435 22523 solver.cpp:406] Test net output #44: loss1/loss18 = 0.0537765 (* 0.0272727 = 0.00146663 loss) | |
I0425 13:04:18.054448 22523 solver.cpp:406] Test net output #45: loss1/loss19 = 0.0474134 (* 0.0272727 = 0.00129309 loss) | |
I0425 13:04:18.054462 22523 solver.cpp:406] Test net output #46: loss1/loss20 = 0.0191631 (* 0.0272727 = 0.000522631 loss) | |
I0425 13:04:18.054477 22523 solver.cpp:406] Test net output #47: loss1/loss21 = 0.000673694 (* 0.0272727 = 1.83735e-05 loss) | |
I0425 13:04:18.054491 22523 solver.cpp:406] Test net output #48: loss1/loss22 = 0.000372726 (* 0.0272727 = 1.01653e-05 loss) | |
I0425 13:04:18.054504 22523 solver.cpp:406] Test net output #49: loss2/accuracy = 0.813319 | |
I0425 13:04:18.054515 22523 solver.cpp:406] Test net output #50: loss2/accuracy01 = 0.902 | |
I0425 13:04:18.054527 22523 solver.cpp:406] Test net output #51: loss2/accuracy02 = 0.832 | |
I0425 13:04:18.054539 22523 solver.cpp:406] Test net output #52: loss2/accuracy03 = 0.675 | |
I0425 13:04:18.054550 22523 solver.cpp:406] Test net output #53: loss2/accuracy04 = 0.591 | |
I0425 13:04:18.054563 22523 solver.cpp:406] Test net output #54: loss2/accuracy05 = 0.606 | |
I0425 13:04:18.054574 22523 solver.cpp:406] Test net output #55: loss2/accuracy06 = 0.666 | |
I0425 13:04:18.054594 22523 solver.cpp:406] Test net output #56: loss2/accuracy07 = 0.779 | |
I0425 13:04:18.054605 22523 solver.cpp:406] Test net output #57: loss2/accuracy08 = 0.834 | |
I0425 13:04:18.054616 22523 solver.cpp:406] Test net output #58: loss2/accuracy09 = 0.899 | |
I0425 13:04:18.054627 22523 solver.cpp:406] Test net output #59: loss2/accuracy10 = 0.909 | |
I0425 13:04:18.054639 22523 solver.cpp:406] Test net output #60: loss2/accuracy11 = 0.919 | |
I0425 13:04:18.054658 22523 solver.cpp:406] Test net output #61: loss2/accuracy12 = 0.928 | |
I0425 13:04:18.054671 22523 solver.cpp:406] Test net output #62: loss2/accuracy13 = 0.939 | |
I0425 13:04:18.054682 22523 solver.cpp:406] Test net output #63: loss2/accuracy14 = 0.948 | |
I0425 13:04:18.054692 22523 solver.cpp:406] Test net output #64: loss2/accuracy15 = 0.964 | |
I0425 13:04:18.054703 22523 solver.cpp:406] Test net output #65: loss2/accuracy16 = 0.97 | |
I0425 13:04:18.054715 22523 solver.cpp:406] Test net output #66: loss2/accuracy17 = 0.99 | |
I0425 13:04:18.054726 22523 solver.cpp:406] Test net output #67: loss2/accuracy18 = 0.992 | |
I0425 13:04:18.054738 22523 solver.cpp:406] Test net output #68: loss2/accuracy19 = 0.994 | |
I0425 13:04:18.054749 22523 solver.cpp:406] Test net output #69: loss2/accuracy20 = 0.998 | |
I0425 13:04:18.054761 22523 solver.cpp:406] Test net output #70: loss2/accuracy21 = 1 | |
I0425 13:04:18.054772 22523 solver.cpp:406] Test net output #71: loss2/accuracy22 = 1 | |
I0425 13:04:18.054783 22523 solver.cpp:406] Test net output #72: loss2/accuracy_incl_empty = 0.913364 | |
I0425 13:04:18.054798 22523 solver.cpp:406] Test net output #73: loss2/accuracy_top3 = 0.913727 | |
I0425 13:04:18.054813 22523 solver.cpp:406] Test net output #74: loss2/cross_entropy_loss = 0.687838 (* 0.3 = 0.206351 loss) | |
I0425 13:04:18.054827 22523 solver.cpp:406] Test net output #75: loss2/cross_entropy_loss_incl_empty = 0.311589 (* 0.3 = 0.0934768 loss) | |
I0425 13:04:18.054842 22523 solver.cpp:406] Test net output #76: loss2/loss01 = 0.43313 (* 0.0272727 = 0.0118126 loss) | |
I0425 13:04:18.054855 22523 solver.cpp:406] Test net output #77: loss2/loss02 = 0.612059 (* 0.0272727 = 0.0166925 loss) | |
I0425 13:04:18.054880 22523 solver.cpp:406] Test net output #78: loss2/loss03 = 1.06034 (* 0.0272727 = 0.0289182 loss) | |
I0425 13:04:18.054895 22523 solver.cpp:406] Test net output #79: loss2/loss04 = 1.25584 (* 0.0272727 = 0.0342503 loss) | |
I0425 13:04:18.054909 22523 solver.cpp:406] Test net output #80: loss2/loss05 = 1.1907 (* 0.0272727 = 0.0324736 loss) | |
I0425 13:04:18.054924 22523 solver.cpp:406] Test net output #81: loss2/loss06 = 1.0372 (* 0.0272727 = 0.0282871 loss) | |
I0425 13:04:18.054936 22523 solver.cpp:406] Test net output #82: loss2/loss07 = 0.780637 (* 0.0272727 = 0.0212901 loss) | |
I0425 13:04:18.054951 22523 solver.cpp:406] Test net output #83: loss2/loss08 = 0.556834 (* 0.0272727 = 0.0151864 loss) | |
I0425 13:04:18.054965 22523 solver.cpp:406] Test net output #84: loss2/loss09 = 0.357931 (* 0.0272727 = 0.00976175 loss) | |
I0425 13:04:18.054980 22523 solver.cpp:406] Test net output #85: loss2/loss10 = 0.334717 (* 0.0272727 = 0.00912865 loss) | |
I0425 13:04:18.054992 22523 solver.cpp:406] Test net output #86: loss2/loss11 = 0.318861 (* 0.0272727 = 0.00869622 loss) | |
I0425 13:04:18.055006 22523 solver.cpp:406] Test net output #87: loss2/loss12 = 0.287559 (* 0.0272727 = 0.00784252 loss) | |
I0425 13:04:18.055021 22523 solver.cpp:406] Test net output #88: loss2/loss13 = 0.238223 (* 0.0272727 = 0.00649698 loss) | |
I0425 13:04:18.055034 22523 solver.cpp:406] Test net output #89: loss2/loss14 = 0.209769 (* 0.0272727 = 0.00572097 loss) | |
I0425 13:04:18.055048 22523 solver.cpp:406] Test net output #90: loss2/loss15 = 0.160861 (* 0.0272727 = 0.00438713 loss) | |
I0425 13:04:18.055063 22523 solver.cpp:406] Test net output #91: loss2/loss16 = 0.144474 (* 0.0272727 = 0.0039402 loss) | |
I0425 13:04:18.055076 22523 solver.cpp:406] Test net output #92: loss2/loss17 = 0.0592801 (* 0.0272727 = 0.00161673 loss) | |
I0425 13:04:18.055090 22523 solver.cpp:406] Test net output #93: loss2/loss18 = 0.0447156 (* 0.0272727 = 0.00121952 loss) | |
I0425 13:04:18.055104 22523 solver.cpp:406] Test net output #94: loss2/loss19 = 0.0365088 (* 0.0272727 = 0.000995695 loss) | |
I0425 13:04:18.055119 22523 solver.cpp:406] Test net output #95: loss2/loss20 = 0.0150265 (* 0.0272727 = 0.000409814 loss) | |
I0425 13:04:18.055132 22523 solver.cpp:406] Test net output #96: loss2/loss21 = 0.00110906 (* 0.0272727 = 3.02471e-05 loss) | |
I0425 13:04:18.055150 22523 solver.cpp:406] Test net output #97: loss2/loss22 = 0.000561893 (* 0.0272727 = 1.53244e-05 loss) | |
I0425 13:04:18.055161 22523 solver.cpp:406] Test net output #98: loss3/accuracy = 0.862576 | |
I0425 13:04:18.055173 22523 solver.cpp:406] Test net output #99: loss3/accuracy01 = 0.924 | |
I0425 13:04:18.055184 22523 solver.cpp:406] Test net output #100: loss3/accuracy02 = 0.914 | |
I0425 13:04:18.055196 22523 solver.cpp:406] Test net output #101: loss3/accuracy03 = 0.879 | |
I0425 13:04:18.055207 22523 solver.cpp:406] Test net output #102: loss3/accuracy04 = 0.859 | |
I0425 13:04:18.055218 22523 solver.cpp:406] Test net output #103: loss3/accuracy05 = 0.847 | |
I0425 13:04:18.055229 22523 solver.cpp:406] Test net output #104: loss3/accuracy06 = 0.802 | |
I0425 13:04:18.055240 22523 solver.cpp:406] Test net output #105: loss3/accuracy07 = 0.829 | |
I0425 13:04:18.055255 22523 solver.cpp:406] Test net output #106: loss3/accuracy08 = 0.859 | |
I0425 13:04:18.055268 22523 solver.cpp:406] Test net output #107: loss3/accuracy09 = 0.906 | |
I0425 13:04:18.055279 22523 solver.cpp:406] Test net output #108: loss3/accuracy10 = 0.918 | |
I0425 13:04:18.055290 22523 solver.cpp:406] Test net output #109: loss3/accuracy11 = 0.92 | |
I0425 13:04:18.055301 22523 solver.cpp:406] Test net output #110: loss3/accuracy12 = 0.932 | |
I0425 13:04:18.055312 22523 solver.cpp:406] Test net output #111: loss3/accuracy13 = 0.943 | |
I0425 13:04:18.055325 22523 solver.cpp:406] Test net output #112: loss3/accuracy14 = 0.952 | |
I0425 13:04:18.055335 22523 solver.cpp:406] Test net output #113: loss3/accuracy15 = 0.964 | |
I0425 13:04:18.055346 22523 solver.cpp:406] Test net output #114: loss3/accuracy16 = 0.97 | |
I0425 13:04:18.055384 22523 solver.cpp:406] Test net output #115: loss3/accuracy17 = 0.989 | |
I0425 13:04:18.055398 22523 solver.cpp:406] Test net output #116: loss3/accuracy18 = 0.991 | |
I0425 13:04:18.055410 22523 solver.cpp:406] Test net output #117: loss3/accuracy19 = 0.995 | |
I0425 13:04:18.055421 22523 solver.cpp:406] Test net output #118: loss3/accuracy20 = 0.998 | |
I0425 13:04:18.055433 22523 solver.cpp:406] Test net output #119: loss3/accuracy21 = 1 | |
I0425 13:04:18.055444 22523 solver.cpp:406] Test net output #120: loss3/accuracy22 = 1 | |
I0425 13:04:18.055455 22523 solver.cpp:406] Test net output #121: loss3/accuracy_incl_empty = 0.932909 | |
I0425 13:04:18.055467 22523 solver.cpp:406] Test net output #122: loss3/accuracy_top3 = 0.936293 | |
I0425 13:04:18.055481 22523 solver.cpp:406] Test net output #123: loss3/cross_entropy_loss = 0.539762 (* 1 = 0.539762 loss) | |
I0425 13:04:18.055495 22523 solver.cpp:406] Test net output #124: loss3/cross_entropy_loss_incl_empty = 0.250803 (* 1 = 0.250803 loss) | |
I0425 13:04:18.055508 22523 solver.cpp:406] Test net output #125: loss3/loss01 = 0.332699 (* 0.0909091 = 0.0302454 loss) | |
I0425 13:04:18.055521 22523 solver.cpp:406] Test net output #126: loss3/loss02 = 0.381317 (* 0.0909091 = 0.0346652 loss) | |
I0425 13:04:18.055536 22523 solver.cpp:406] Test net output #127: loss3/loss03 = 0.491579 (* 0.0909091 = 0.044689 loss) | |
I0425 13:04:18.055549 22523 solver.cpp:406] Test net output #128: loss3/loss04 = 0.567492 (* 0.0909091 = 0.0515902 loss) | |
I0425 13:04:18.055562 22523 solver.cpp:406] Test net output #129: loss3/loss05 = 0.622051 (* 0.0909091 = 0.0565501 loss) | |
I0425 13:04:18.055577 22523 solver.cpp:406] Test net output #130: loss3/loss06 = 0.697144 (* 0.0909091 = 0.0633767 loss) | |
I0425 13:04:18.055589 22523 solver.cpp:406] Test net output #131: loss3/loss07 = 0.622452 (* 0.0909091 = 0.0565865 loss) | |
I0425 13:04:18.055603 22523 solver.cpp:406] Test net output #132: loss3/loss08 = 0.448272 (* 0.0909091 = 0.040752 loss) | |
I0425 13:04:18.055618 22523 solver.cpp:406] Test net output #133: loss3/loss09 = 0.32611 (* 0.0909091 = 0.0296464 loss) | |
I0425 13:04:18.055631 22523 solver.cpp:406] Test net output #134: loss3/loss10 = 0.292887 (* 0.0909091 = 0.0266261 loss) | |
I0425 13:04:18.055645 22523 solver.cpp:406] Test net output #135: loss3/loss11 = 0.298036 (* 0.0909091 = 0.0270942 loss) | |
I0425 13:04:18.055660 22523 solver.cpp:406] Test net output #136: loss3/loss12 = 0.264918 (* 0.0909091 = 0.0240835 loss) | |
I0425 13:04:18.055673 22523 solver.cpp:406] Test net output #137: loss3/loss13 = 0.213726 (* 0.0909091 = 0.0194297 loss) | |
I0425 13:04:18.055687 22523 solver.cpp:406] Test net output #138: loss3/loss14 = 0.195945 (* 0.0909091 = 0.0178132 loss) | |
I0425 13:04:18.055701 22523 solver.cpp:406] Test net output #139: loss3/loss15 = 0.14004 (* 0.0909091 = 0.0127309 loss) | |
I0425 13:04:18.055714 22523 solver.cpp:406] Test net output #140: loss3/loss16 = 0.126149 (* 0.0909091 = 0.0114681 loss) | |
I0425 13:04:18.055728 22523 solver.cpp:406] Test net output #141: loss3/loss17 = 0.0540343 (* 0.0909091 = 0.00491221 loss) | |
I0425 13:04:18.055742 22523 solver.cpp:406] Test net output #142: loss3/loss18 = 0.0355429 (* 0.0909091 = 0.00323117 loss) | |
I0425 13:04:18.055755 22523 solver.cpp:406] Test net output #143: loss3/loss19 = 0.0331656 (* 0.0909091 = 0.00301506 loss) | |
I0425 13:04:18.055769 22523 solver.cpp:406] Test net output #144: loss3/loss20 = 0.0158786 (* 0.0909091 = 0.00144351 loss) | |
I0425 13:04:18.055783 22523 solver.cpp:406] Test net output #145: loss3/loss21 = 0.00154928 (* 0.0909091 = 0.000140844 loss) | |
I0425 13:04:18.055797 22523 solver.cpp:406] Test net output #146: loss3/loss22 = 0.000249136 (* 0.0909091 = 2.26487e-05 loss) | |
I0425 13:04:18.055809 22523 solver.cpp:406] Test net output #147: total_accuracy = 0.649 | |
I0425 13:04:18.055820 22523 solver.cpp:406] Test net output #148: total_accuracy_not_rec = 0.579 | |
I0425 13:04:18.055832 22523 solver.cpp:406] Test net output #149: total_confidence = 0.645714 | |
I0425 13:04:18.055857 22523 solver.cpp:406] Test net output #150: total_confidence_nor_rec = 0.520323 | |
I0425 13:04:18.448051 22523 solver.cpp:229] Iteration 15000, loss = 3.11564 | |
I0425 13:04:18.448115 22523 solver.cpp:245] Train net output #0: loss1/accuracy = 0.571429 | |
I0425 13:04:18.448134 22523 solver.cpp:245] Train net output #1: loss1/accuracy01 = 1 | |
I0425 13:04:18.448148 22523 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.875 | |
I0425 13:04:18.448160 22523 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375 | |
I0425 13:04:18.448173 22523 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.5 | |
I0425 13:04:18.448186 22523 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.125 | |
I0425 13:04:18.448199 22523 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.5 | |
I0425 13:04:18.448211 22523 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.625 | |
I0425 13:04:18.448225 22523 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.75 | |
I0425 13:04:18.448236 22523 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875 | |
I0425 13:04:18.448249 22523 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875 | |
I0425 13:04:18.448261 22523 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.875 | |
I0425 13:04:18.448274 22523 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.875 | |
I0425 13:04:18.448287 22523 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1 | |
I0425 13:04:18.448300 22523 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1 | |
I0425 13:04:18.448312 22523 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0425 13:04:18.448324 22523 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0425 13:04:18.448343 22523 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0425 13:04:18.448361 22523 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0425 13:04:18.448374 22523 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0425 13:04:18.448386 22523 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0425 13:04:18.448400 22523 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0425 13:04:18.448415 22523 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0425 13:04:18.448428 22523 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.840909 | |
I0425 13:04:18.448441 22523 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.785714 | |
I0425 13:04:18.448467 22523 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.24845 (* 0.3 = 0.374536 loss) | |
I0425 13:04:18.448482 22523 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.452183 (* 0.3 = 0.135655 loss) | |
I0425 13:04:18.448498 22523 solver.cpp:245] Train net output #27: loss1/loss01 = 0.346925 (* 0.0272727 = 0.00946159 loss) | |
I0425 13:04:18.448513 22523 solver.cpp:245] Train net output #28: loss1/loss02 = 1.08119 (* 0.0272727 = 0.0294871 loss) | |
I0425 13:04:18.448529 22523 solver.cpp:245] Train net output #29: loss1/loss03 = 1.75163 (* 0.0272727 = 0.0477716 loss) | |
I0425 13:04:18.448542 22523 solver.cpp:245] Train net output #30: loss1/loss04 = 1.1822 (* 0.0272727 = 0.032242 loss) | |
I0425 13:04:18.448557 22523 solver.cpp:245] Train net output #31: loss1/loss05 = 2.57338 (* 0.0272727 = 0.0701831 loss) | |
I0425 13:04:18.448572 22523 solver.cpp:245] Train net output #32: loss1/loss06 = 1.55851 (* 0.0272727 = 0.0425048 loss) | |
I0425 13:04:18.448586 22523 solver.cpp:245] Train net output #33: loss1/loss07 = 1.16499 (* 0.0272727 = 0.0317725 loss) | |
I0425 13:04:18.448601 22523 solver.cpp:245] Train net output #34: loss1/loss08 = 0.716509 (* 0.0272727 = 0.0195411 loss) | |
I0425 13:04:18.448616 22523 solver.cpp:245] Train net output #35: loss1/loss09 = 0.483247 (* 0.0272727 = 0.0131795 loss) | |
I0425 13:04:18.448631 22523 solver.cpp:245] Train net output #36: loss1/loss10 = 0.424047 (* 0.0272727 = 0.0115649 loss) | |
I0425 13:04:18.448645 22523 solver.cpp:245] Train net output #37: loss1/loss11 = 0.406102 (* 0.0272727 = 0.0110755 loss) | |
I0425 13:04:18.448695 22523 solver.cpp:245] Train net output #38: loss1/loss12 = 0.418999 (* 0.0272727 = 0.0114272 loss) | |
I0425 13:04:18.448712 22523 solver.cpp:245] Train net output #39: loss1/loss13 = 0.0322362 (* 0.0272727 = 0.00087917 loss) | |
I0425 13:04:18.448727 22523 solver.cpp:245] Train net output #40: loss1/loss14 = 0.00948699 (* 0.0272727 = 0.000258736 loss) | |
I0425 13:04:18.448742 22523 solver.cpp:245] Train net output #41: loss1/loss15 = 0.00203937 (* 0.0272727 = 5.56191e-05 loss) | |
I0425 13:04:18.448756 22523 solver.cpp:245] Train net output #42: loss1/loss16 = 0.000815247 (* 0.0272727 = 2.2234e-05 loss) | |
I0425 13:04:18.448771 22523 solver.cpp:245] Train net output #43: loss1/loss17 = 0.000510094 (* 0.0272727 = 1.39117e-05 loss) | |
I0425 13:04:18.448786 22523 solver.cpp:245] Train net output #44: loss1/loss18 = 0.00021347 (* 0.0272727 = 5.8219e-06 loss) | |
I0425 13:04:18.448801 22523 solver.cpp:245] Train net output #45: loss1/loss19 = 3.5899e-05 (* 0.0272727 = 9.79065e-07 loss) | |
I0425 13:04:18.448828 22523 solver.cpp:245] Train net output #46: loss1/loss20 = 1.34113e-05 (* 0.0272727 = 3.65761e-07 loss) | |
I0425 13:04:18.448843 22523 solver.cpp:245] Train net output #47: loss1/loss21 = 7.80829e-06 (* 0.0272727 = 2.12953e-07 loss) | |
I0425 13:04:18.448858 22523 solver.cpp:245] Train net output #48: loss1/loss22 = 5.8562e-06 (* 0.0272727 = 1.59715e-07 loss) | |
I0425 13:04:18.448870 22523 solver.cpp:245] Train net output #49: loss2/accuracy = 0.607143 | |
I0425 13:04:18.448892 22523 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875 | |
I0425 13:04:18.448904 22523 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.875 | |
I0425 13:04:18.448916 22523 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.625 | |
I0425 13:04:18.448928 22523 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.5 | |
I0425 13:04:18.448940 22523 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.25 | |
I0425 13:04:18.448952 22523 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.75 | |
I0425 13:04:18.448964 22523 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.5 | |
I0425 13:04:18.448976 22523 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.625 | |
I0425 13:04:18.448992 22523 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875 | |
I0425 13:04:18.449003 22523 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875 | |
I0425 13:04:18.449015 22523 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.875 | |
I0425 13:04:18.449028 22523 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.875 | |
I0425 13:04:18.449039 22523 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1 | |
I0425 13:04:18.449051 22523 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1 | |
I0425 13:04:18.449062 22523 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0425 13:04:18.449074 22523 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0425 13:04:18.449085 22523 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0425 13:04:18.449097 22523 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0425 13:04:18.449108 22523 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0425 13:04:18.449120 22523 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0425 13:04:18.449131 22523 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0425 13:04:18.449143 22523 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0425 13:04:18.449156 22523 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.857955 | |
I0425 13:04:18.449167 22523 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.892857 | |
I0425 13:04:18.449182 22523 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.25338 (* 0.3 = 0.376015 loss) | |
I0425 13:04:18.449196 22523 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.453648 (* 0.3 = 0.136094 loss) | |
I0425 13:04:18.449223 22523 solver.cpp:245] Train net output #76: loss2/loss01 = 0.538362 (* 0.0272727 = 0.0146826 loss) | |
I0425 13:04:18.449237 22523 solver.cpp:245] Train net output #77: loss2/loss02 = 0.725798 (* 0.0272727 = 0.0197945 loss) | |
I0425 13:04:18.449252 22523 solver.cpp:245] Train net output #78: loss2/loss03 = 1.56511 (* 0.0272727 = 0.0426848 loss) | |
I0425 13:04:18.449266 22523 solver.cpp:245] Train net output #79: loss2/loss04 = 1.28319 (* 0.0272727 = 0.034996 loss) | |
I0425 13:04:18.449280 22523 solver.cpp:245] Train net output #80: loss2/loss05 = 1.85665 (* 0.0272727 = 0.0506358 loss) | |
I0425 13:04:18.449295 22523 solver.cpp:245] Train net output #81: loss2/loss06 = 0.970658 (* 0.0272727 = 0.0264725 loss) | |
I0425 13:04:18.449308 22523 solver.cpp:245] Train net output #82: loss2/loss07 = 1.00809 (* 0.0272727 = 0.0274933 loss) | |
I0425 13:04:18.449322 22523 solver.cpp:245] Train net output #83: loss2/loss08 = 0.640686 (* 0.0272727 = 0.0174732 loss) | |
I0425 13:04:18.449337 22523 solver.cpp:245] Train net output #84: loss2/loss09 = 0.483252 (* 0.0272727 = 0.0131796 loss) | |
I0425 13:04:18.449350 22523 solver.cpp:245] Train net output #85: loss2/loss10 = 0.454851 (* 0.0272727 = 0.012405 loss) | |
I0425 13:04:18.449364 22523 solver.cpp:245] Train net output #86: loss2/loss11 = 0.485553 (* 0.0272727 = 0.0132424 loss) | |
I0425 13:04:18.449379 22523 solver.cpp:245] Train net output #87: loss2/loss12 = 0.360714 (* 0.0272727 = 0.00983766 loss) | |
I0425 13:04:18.449393 22523 solver.cpp:245] Train net output #88: loss2/loss13 = 0.110495 (* 0.0272727 = 0.0030135 loss) | |
I0425 13:04:18.449407 22523 solver.cpp:245] Train net output #89: loss2/loss14 = 0.0641899 (* 0.0272727 = 0.00175063 loss) | |
I0425 13:04:18.449421 22523 solver.cpp:245] Train net output #90: loss2/loss15 = 0.0323365 (* 0.0272727 = 0.000881904 loss) | |
I0425 13:04:18.449435 22523 solver.cpp:245] Train net output #91: loss2/loss16 = 0.0210478 (* 0.0272727 = 0.00057403 loss) | |
I0425 13:04:18.449450 22523 solver.cpp:245] Train net output #92: loss2/loss17 = 0.0057507 (* 0.0272727 = 0.000156837 loss) | |
I0425 13:04:18.449470 22523 solver.cpp:245] Train net output #93: loss2/loss18 = 0.00287521 (* 0.0272727 = 7.84149e-05 loss) | |
I0425 13:04:18.449484 22523 solver.cpp:245] Train net output #94: loss2/loss19 = 0.0020737 (* 0.0272727 = 5.65555e-05 loss) | |
I0425 13:04:18.449498 22523 solver.cpp:245] Train net output #95: loss2/loss20 = 0.000719468 (* 0.0272727 = 1.96218e-05 loss) | |
I0425 13:04:18.449512 22523 solver.cpp:245] Train net output #96: loss2/loss21 = 0.000106186 (* 0.0272727 = 2.89598e-06 loss) | |
I0425 13:04:18.449527 22523 solver.cpp:245] Train net output #97: loss2/loss22 = 0.000190903 (* 0.0272727 = 5.20644e-06 loss) | |
I0425 13:04:18.449540 22523 solver.cpp:245] Train net output #98: loss3/accuracy = 0.75 | |
I0425 13:04:18.449553 22523 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1 | |
I0425 13:04:18.449564 22523 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1 | |
I0425 13:04:18.449575 22523 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.875 | |
I0425 13:04:18.449587 22523 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875 | |
I0425 13:04:18.449599 22523 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.75 | |
I0425 13:04:18.449611 22523 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.875 | |
I0425 13:04:18.449623 22523 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.625 | |
I0425 13:04:18.449635 22523 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875 | |
I0425 13:04:18.449647 22523 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875 | |
I0425 13:04:18.449659 22523 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875 | |
I0425 13:04:18.449671 22523 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.875 | |
I0425 13:04:18.449682 22523 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.875 | |
I0425 13:04:18.449694 22523 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1 | |
I0425 13:04:18.449717 22523 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1 | |
I0425 13:04:18.449730 22523 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0425 13:04:18.449743 22523 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0425 13:04:18.449754 22523 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0425 13:04:18.449766 22523 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0425 13:04:18.449777 22523 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0425 13:04:18.449790 22523 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0425 13:04:18.449800 22523 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0425 13:04:18.449812 22523 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0425 13:04:18.449823 22523 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.903409 | |
I0425 13:04:18.449836 22523 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.910714 | |
I0425 13:04:18.449851 22523 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.704333 (* 1 = 0.704333 loss) | |
I0425 13:04:18.449864 22523 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.277288 (* 1 = 0.277288 loss) | |
I0425 13:04:18.449879 22523 solver.cpp:245] Train net output #125: loss3/loss01 = 0.120645 (* 0.0909091 = 0.0109678 loss) | |
I0425 13:04:18.449893 22523 solver.cpp:245] Train net output #126: loss3/loss02 = 0.0361501 (* 0.0909091 = 0.00328637 loss) | |
I0425 13:04:18.449908 22523 solver.cpp:245] Train net output #127: loss3/loss03 = 0.520257 (* 0.0909091 = 0.0472961 loss) | |
I0425 13:04:18.449923 22523 solver.cpp:245] Train net output #128: loss3/loss04 = 0.29914 (* 0.0909091 = 0.0271946 loss) | |
I0425 13:04:18.449935 22523 solver.cpp:245] Train net output #129: loss3/loss05 = 0.877531 (* 0.0909091 = 0.0797755 loss) | |
I0425 13:04:18.449950 22523 solver.cpp:245] Train net output #130: loss3/loss06 = 0.6442 (* 0.0909091 = 0.0585637 loss) | |
I0425 13:04:18.449965 22523 solver.cpp:245] Train net output #131: loss3/loss07 = 0.720924 (* 0.0909091 = 0.0655385 loss) | |
I0425 13:04:18.449978 22523 solver.cpp:245] Train net output #132: loss3/loss08 = 0.478847 (* 0.0909091 = 0.0435315 loss) | |
I0425 13:04:18.449992 22523 solver.cpp:245] Train net output #133: loss3/loss09 = 0.37183 (* 0.0909091 = 0.0338027 loss) | |
I0425 13:04:18.450006 22523 solver.cpp:245] Train net output #134: loss3/loss10 = 0.367971 (* 0.0909091 = 0.0334519 loss) | |
I0425 13:04:18.450021 22523 solver.cpp:245] Train net output #135: loss3/loss11 = 0.360314 (* 0.0909091 = 0.0327558 loss) | |
I0425 13:04:18.450037 22523 solver.cpp:245] Train net output #136: loss3/loss12 = 0.3188 (* 0.0909091 = 0.0289818 loss) | |
I0425 13:04:18.450052 22523 solver.cpp:245] Train net output #137: loss3/loss13 = 0.114537 (* 0.0909091 = 0.0104124 loss) | |
I0425 13:04:18.450067 22523 solver.cpp:245] Train net output #138: loss3/loss14 = 0.0438241 (* 0.0909091 = 0.00398401 loss) | |
I0425 13:04:18.450080 22523 solver.cpp:245] Train net output #139: loss3/loss15 = 0.0269306 (* 0.0909091 = 0.00244824 loss) | |
I0425 13:04:18.450095 22523 solver.cpp:245] Train net output #140: loss3/loss16 = 0.00838207 (* 0.0909091 = 0.000762006 loss) | |
I0425 13:04:18.450109 22523 solver.cpp:245] Train net output #141: loss3/loss17 = 0.00461667 (* 0.0909091 = 0.000419697 loss) | |
I0425 13:04:18.450124 22523 solver.cpp:245] Train net output #142: loss3/loss18 = 0.00277889 (* 0.0909091 = 0.000252626 loss) | |
I0425 13:04:18.450139 22523 solver.cpp:245] Train net output #143: loss3/loss19 = 0.00149896 (* 0.0909091 = 0.000136269 loss) | |
I0425 13:04:18.450153 22523 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000632759 (* 0.0909091 = 5.75236e-05 loss) | |
I0425 13:04:18.450167 22523 solver.cpp:245] Train net output #145: loss3/loss21 = 0.000221224 (* 0.0909091 = 2.01113e-05 loss) | |
I0425 13:04:18.450182 22523 solver.cpp:245] Train net output #146: loss3/loss22 = 2.7509e-05 (* 0.0909091 = 2.50082e-06 loss) | |
I0425 13:04:18.450201 22523 solver.cpp:245] Train net output #147: total_accuracy = 0.375 | |
I0425 13:04:18.450211 22523 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.625 | |
I0425 13:04:18.450225 22523 solver.cpp:245] Train net output #149: total_confidence = 0.385211 | |
I0425 13:04:18.450238 22523 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.313942 | |
I0425 13:04:18.450253 22523 sgd_solver.cpp:106] Iteration 15000, lr = 0.01 | |
I0425 13:09:59.791797 22523 solver.cpp:229] Iteration 15500, loss = 3.11596 | |
I0425 13:09:59.791929 22523 solver.cpp:245] Train net output #0: loss1/accuracy = 0.625 | |
I0425 13:09:59.791949 22523 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.875 | |
I0425 13:09:59.791961 22523 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.75 | |
I0425 13:09:59.791975 22523 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.5 | |
I0425 13:09:59.791986 22523 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.75 | |
I0425 13:09:59.791999 22523 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.625 | |
I0425 13:09:59.792011 22523 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.75 | |
I0425 13:09:59.792024 22523 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.75 | |
I0425 13:09:59.792037 22523 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.75 | |
I0425 13:09:59.792048 22523 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1 | |
I0425 13:09:59.792062 22523 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875 | |
I0425 13:09:59.792073 22523 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.875 | |
I0425 13:09:59.792085 22523 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.875 | |
I0425 13:09:59.792098 22523 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.875 | |
I0425 13:09:59.792110 22523 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.875 | |
I0425 13:09:59.792122 22523 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.875 | |
I0425 13:09:59.792135 22523 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0425 13:09:59.792146 22523 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0425 13:09:59.792158 22523 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0425 13:09:59.792171 22523 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0425 13:09:59.792182 22523 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0425 13:09:59.792194 22523 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0425 13:09:59.792209 22523 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0425 13:09:59.792222 22523 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.875 | |
I0425 13:09:59.792233 22523 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.791667 | |
I0425 13:09:59.792251 22523 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.1738 (* 0.3 = 0.352139 loss) | |
I0425 13:09:59.792268 22523 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.381612 (* 0.3 = 0.114484 loss) | |
I0425 13:09:59.792282 22523 solver.cpp:245] Train net output #27: loss1/loss01 = 0.482175 (* 0.0272727 = 0.0131502 loss) | |
I0425 13:09:59.792297 22523 solver.cpp:245] Train net output #28: loss1/loss02 = 1.14038 (* 0.0272727 = 0.0311013 loss) | |
I0425 13:09:59.792312 22523 solver.cpp:245] Train net output #29: loss1/loss03 = 1.6371 (* 0.0272727 = 0.0446483 loss) | |
I0425 13:09:59.792326 22523 solver.cpp:245] Train net output #30: loss1/loss04 = 1.0387 (* 0.0272727 = 0.0283282 loss) | |
I0425 13:09:59.792340 22523 solver.cpp:245] Train net output #31: loss1/loss05 = 1.09756 (* 0.0272727 = 0.0299335 loss) | |
I0425 13:09:59.792356 22523 solver.cpp:245] Train net output #32: loss1/loss06 = 0.777333 (* 0.0272727 = 0.0212 loss) | |
I0425 13:09:59.792369 22523 solver.cpp:245] Train net output #33: loss1/loss07 = 0.668485 (* 0.0272727 = 0.0182314 loss) | |
I0425 13:09:59.792383 22523 solver.cpp:245] Train net output #34: loss1/loss08 = 0.570186 (* 0.0272727 = 0.0155505 loss) | |
I0425 13:09:59.792398 22523 solver.cpp:245] Train net output #35: loss1/loss09 = 0.289674 (* 0.0272727 = 0.0079002 loss) | |
I0425 13:09:59.792413 22523 solver.cpp:245] Train net output #36: loss1/loss10 = 0.401584 (* 0.0272727 = 0.0109523 loss) | |
I0425 13:09:59.792428 22523 solver.cpp:245] Train net output #37: loss1/loss11 = 0.374167 (* 0.0272727 = 0.0102046 loss) | |
I0425 13:09:59.792443 22523 solver.cpp:245] Train net output #38: loss1/loss12 = 0.331034 (* 0.0272727 = 0.00902821 loss) | |
I0425 13:09:59.792474 22523 solver.cpp:245] Train net output #39: loss1/loss13 = 0.420252 (* 0.0272727 = 0.0114614 loss) | |
I0425 13:09:59.792490 22523 solver.cpp:245] Train net output #40: loss1/loss14 = 0.576769 (* 0.0272727 = 0.0157301 loss) | |
I0425 13:09:59.792505 22523 solver.cpp:245] Train net output #41: loss1/loss15 = 0.621379 (* 0.0272727 = 0.0169467 loss) | |
I0425 13:09:59.792520 22523 solver.cpp:245] Train net output #42: loss1/loss16 = 0.0763699 (* 0.0272727 = 0.00208281 loss) | |
I0425 13:09:59.792533 22523 solver.cpp:245] Train net output #43: loss1/loss17 = 0.035847 (* 0.0272727 = 0.000977645 loss) | |
I0425 13:09:59.792548 22523 solver.cpp:245] Train net output #44: loss1/loss18 = 0.0111517 (* 0.0272727 = 0.000304138 loss) | |
I0425 13:09:59.792563 22523 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00391605 (* 0.0272727 = 0.000106801 loss) | |
I0425 13:09:59.792577 22523 solver.cpp:245] Train net output #46: loss1/loss20 = 0.00222734 (* 0.0272727 = 6.07457e-05 loss) | |
I0425 13:09:59.792592 22523 solver.cpp:245] Train net output #47: loss1/loss21 = 0.00177633 (* 0.0272727 = 4.84453e-05 loss) | |
I0425 13:09:59.792606 22523 solver.cpp:245] Train net output #48: loss1/loss22 = 0.00115214 (* 0.0272727 = 3.1422e-05 loss) | |
I0425 13:09:59.792618 22523 solver.cpp:245] Train net output #49: loss2/accuracy = 0.5625 | |
I0425 13:09:59.792630 22523 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875 | |
I0425 13:09:59.792642 22523 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.625 | |
I0425 13:09:59.792654 22523 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.375 | |
I0425 13:09:59.792665 22523 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.625 | |
I0425 13:09:59.792676 22523 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.375 | |
I0425 13:09:59.792688 22523 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.5 | |
I0425 13:09:59.792701 22523 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.75 | |
I0425 13:09:59.792711 22523 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875 | |
I0425 13:09:59.792723 22523 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1 | |
I0425 13:09:59.792734 22523 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875 | |
I0425 13:09:59.792747 22523 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.875 | |
I0425 13:09:59.792757 22523 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.875 | |
I0425 13:09:59.792769 22523 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.875 | |
I0425 13:09:59.792780 22523 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.875 | |
I0425 13:09:59.792791 22523 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.875 | |
I0425 13:09:59.792804 22523 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0425 13:09:59.792814 22523 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0425 13:09:59.792826 22523 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0425 13:09:59.792837 22523 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0425 13:09:59.792850 22523 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0425 13:09:59.792860 22523 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0425 13:09:59.792871 22523 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0425 13:09:59.792882 22523 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.852273 | |
I0425 13:09:59.792894 22523 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.8125 | |
I0425 13:09:59.792908 22523 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.33802 (* 0.3 = 0.401407 loss) | |
I0425 13:09:59.792922 22523 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.438317 (* 0.3 = 0.131495 loss) | |
I0425 13:09:59.792937 22523 solver.cpp:245] Train net output #76: loss2/loss01 = 0.539311 (* 0.0272727 = 0.0147085 loss) | |
I0425 13:09:59.792953 22523 solver.cpp:245] Train net output #77: loss2/loss02 = 0.980507 (* 0.0272727 = 0.0267411 loss) | |
I0425 13:09:59.792979 22523 solver.cpp:245] Train net output #78: loss2/loss03 = 2.08427 (* 0.0272727 = 0.0568438 loss) | |
I0425 13:09:59.792995 22523 solver.cpp:245] Train net output #79: loss2/loss04 = 1.003 (* 0.0272727 = 0.0273545 loss) | |
I0425 13:09:59.793009 22523 solver.cpp:245] Train net output #80: loss2/loss05 = 1.45303 (* 0.0272727 = 0.039628 loss) | |
I0425 13:09:59.793023 22523 solver.cpp:245] Train net output #81: loss2/loss06 = 1.58196 (* 0.0272727 = 0.0431444 loss) | |
I0425 13:09:59.793036 22523 solver.cpp:245] Train net output #82: loss2/loss07 = 0.800853 (* 0.0272727 = 0.0218415 loss) | |
I0425 13:09:59.793051 22523 solver.cpp:245] Train net output #83: loss2/loss08 = 0.719918 (* 0.0272727 = 0.0196341 loss) | |
I0425 13:09:59.793064 22523 solver.cpp:245] Train net output #84: loss2/loss09 = 0.197929 (* 0.0272727 = 0.00539806 loss) | |
I0425 13:09:59.793081 22523 solver.cpp:245] Train net output #85: loss2/loss10 = 0.459521 (* 0.0272727 = 0.0125324 loss) | |
I0425 13:09:59.793094 22523 solver.cpp:245] Train net output #86: loss2/loss11 = 0.404958 (* 0.0272727 = 0.0110443 loss) | |
I0425 13:09:59.793109 22523 solver.cpp:245] Train net output #87: loss2/loss12 = 0.456956 (* 0.0272727 = 0.0124624 loss) | |
I0425 13:09:59.793123 22523 solver.cpp:245] Train net output #88: loss2/loss13 = 0.481296 (* 0.0272727 = 0.0131263 loss) | |
I0425 13:09:59.793136 22523 solver.cpp:245] Train net output #89: loss2/loss14 = 0.640353 (* 0.0272727 = 0.0174642 loss) | |
I0425 13:09:59.793153 22523 solver.cpp:245] Train net output #90: loss2/loss15 = 0.58 (* 0.0272727 = 0.0158182 loss) | |
I0425 13:09:59.793166 22523 solver.cpp:245] Train net output #91: loss2/loss16 = 0.0133093 (* 0.0272727 = 0.000362981 loss) | |
I0425 13:09:59.793180 22523 solver.cpp:245] Train net output #92: loss2/loss17 = 0.0152333 (* 0.0272727 = 0.000415454 loss) | |
I0425 13:09:59.793195 22523 solver.cpp:245] Train net output #93: loss2/loss18 = 0.00398779 (* 0.0272727 = 0.000108758 loss) | |
I0425 13:09:59.793210 22523 solver.cpp:245] Train net output #94: loss2/loss19 = 0.00165532 (* 0.0272727 = 4.5145e-05 loss) | |
I0425 13:09:59.793223 22523 solver.cpp:245] Train net output #95: loss2/loss20 = 0.00146957 (* 0.0272727 = 4.00791e-05 loss) | |
I0425 13:09:59.793237 22523 solver.cpp:245] Train net output #96: loss2/loss21 = 0.00209029 (* 0.0272727 = 5.70079e-05 loss) | |
I0425 13:09:59.793254 22523 solver.cpp:245] Train net output #97: loss2/loss22 = 0.000222385 (* 0.0272727 = 6.06506e-06 loss) | |
I0425 13:09:59.793267 22523 solver.cpp:245] Train net output #98: loss3/accuracy = 0.791667 | |
I0425 13:09:59.793279 22523 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1 | |
I0425 13:09:59.793292 22523 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875 | |
I0425 13:09:59.793303 22523 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.875 | |
I0425 13:09:59.793314 22523 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1 | |
I0425 13:09:59.793325 22523 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.75 | |
I0425 13:09:59.793337 22523 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.875 | |
I0425 13:09:59.793349 22523 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75 | |
I0425 13:09:59.793360 22523 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875 | |
I0425 13:09:59.793371 22523 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875 | |
I0425 13:09:59.793383 22523 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875 | |
I0425 13:09:59.793395 22523 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.875 | |
I0425 13:09:59.793406 22523 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.875 | |
I0425 13:09:59.793418 22523 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.875 | |
I0425 13:09:59.793429 22523 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.875 | |
I0425 13:09:59.793442 22523 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.875 | |
I0425 13:09:59.793453 22523 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0425 13:09:59.793475 22523 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0425 13:09:59.793489 22523 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0425 13:09:59.793500 22523 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0425 13:09:59.793512 22523 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0425 13:09:59.793524 22523 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0425 13:09:59.793535 22523 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0425 13:09:59.793546 22523 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.943182 | |
I0425 13:09:59.793558 22523 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.895833 | |
I0425 13:09:59.793572 22523 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.609453 (* 1 = 0.609453 loss) | |
I0425 13:09:59.793596 22523 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.172109 (* 1 = 0.172109 loss) | |
I0425 13:09:59.793609 22523 solver.cpp:245] Train net output #125: loss3/loss01 = 0.0812248 (* 0.0909091 = 0.00738408 loss) | |
I0425 13:09:59.793623 22523 solver.cpp:245] Train net output #126: loss3/loss02 = 0.334752 (* 0.0909091 = 0.030432 loss) | |
I0425 13:09:59.793637 22523 solver.cpp:245] Train net output #127: loss3/loss03 = 0.64167 (* 0.0909091 = 0.0583337 loss) | |
I0425 13:09:59.793658 22523 solver.cpp:245] Train net output #128: loss3/loss04 = 0.03667 (* 0.0909091 = 0.00333364 loss) | |
I0425 13:09:59.793671 22523 solver.cpp:245] Train net output #129: loss3/loss05 = 0.406407 (* 0.0909091 = 0.0369461 loss) | |
I0425 13:09:59.793685 22523 solver.cpp:245] Train net output #130: loss3/loss06 = 0.257044 (* 0.0909091 = 0.0233676 loss) | |
I0425 13:09:59.793699 22523 solver.cpp:245] Train net output #131: loss3/loss07 = 0.595081 (* 0.0909091 = 0.0540982 loss) | |
I0425 13:09:59.793714 22523 solver.cpp:245] Train net output #132: loss3/loss08 = 0.378174 (* 0.0909091 = 0.0343794 loss) | |
I0425 13:09:59.793726 22523 solver.cpp:245] Train net output #133: loss3/loss09 = 0.225348 (* 0.0909091 = 0.0204862 loss) | |
I0425 13:09:59.793740 22523 solver.cpp:245] Train net output #134: loss3/loss10 = 0.385372 (* 0.0909091 = 0.0350338 loss) | |
I0425 13:09:59.793754 22523 solver.cpp:245] Train net output #135: loss3/loss11 = 0.295841 (* 0.0909091 = 0.0268946 loss) | |
I0425 13:09:59.793768 22523 solver.cpp:245] Train net output #136: loss3/loss12 = 0.288528 (* 0.0909091 = 0.0262298 loss) | |
I0425 13:09:59.793782 22523 solver.cpp:245] Train net output #137: loss3/loss13 = 0.40968 (* 0.0909091 = 0.0372437 loss) | |
I0425 13:09:59.793797 22523 solver.cpp:245] Train net output #138: loss3/loss14 = 0.488585 (* 0.0909091 = 0.0444169 loss) | |
I0425 13:09:59.793810 22523 solver.cpp:245] Train net output #139: loss3/loss15 = 0.420161 (* 0.0909091 = 0.0381965 loss) | |
I0425 13:09:59.793824 22523 solver.cpp:245] Train net output #140: loss3/loss16 = 0.0476482 (* 0.0909091 = 0.00433165 loss) | |
I0425 13:09:59.793838 22523 solver.cpp:245] Train net output #141: loss3/loss17 = 0.00622486 (* 0.0909091 = 0.000565896 loss) | |
I0425 13:09:59.793853 22523 solver.cpp:245] Train net output #142: loss3/loss18 = 0.00398867 (* 0.0909091 = 0.000362606 loss) | |
I0425 13:09:59.793866 22523 solver.cpp:245] Train net output #143: loss3/loss19 = 0.0015134 (* 0.0909091 = 0.000137582 loss) | |
I0425 13:09:59.793881 22523 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000739729 (* 0.0909091 = 6.72481e-05 loss) | |
I0425 13:09:59.793895 22523 solver.cpp:245] Train net output #145: loss3/loss21 = 0.00021718 (* 0.0909091 = 1.97436e-05 loss) | |
I0425 13:09:59.793910 22523 solver.cpp:245] Train net output #146: loss3/loss22 = 3.89241e-05 (* 0.0909091 = 3.53856e-06 loss) | |
I0425 13:09:59.793923 22523 solver.cpp:245] Train net output #147: total_accuracy = 0.75 | |
I0425 13:09:59.793934 22523 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.5 | |
I0425 13:09:59.793956 22523 solver.cpp:245] Train net output #149: total_confidence = 0.661104 | |
I0425 13:09:59.793977 22523 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.540794 | |
I0425 13:09:59.793992 22523 sgd_solver.cpp:106] Iteration 15500, lr = 0.01 | |
I0425 13:15:41.108134 22523 solver.cpp:229] Iteration 16000, loss = 3.29372 | |
I0425 13:15:41.108258 22523 solver.cpp:245] Train net output #0: loss1/accuracy = 0.642857 | |
I0425 13:15:41.108278 22523 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75 | |
I0425 13:15:41.108292 22523 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.375 | |
I0425 13:15:41.108304 22523 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375 | |
I0425 13:15:41.108317 22523 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375 | |
I0425 13:15:41.108330 22523 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.375 | |
I0425 13:15:41.108343 22523 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.625 | |
I0425 13:15:41.108355 22523 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.875 | |
I0425 13:15:41.108367 22523 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875 | |
I0425 13:15:41.108379 22523 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1 | |
I0425 13:15:41.108392 22523 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1 | |
I0425 13:15:41.108404 22523 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1 | |
I0425 13:15:41.108417 22523 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1 | |
I0425 13:15:41.108429 22523 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1 | |
I0425 13:15:41.108441 22523 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1 | |
I0425 13:15:41.108453 22523 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0425 13:15:41.108465 22523 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0425 13:15:41.108477 22523 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0425 13:15:41.108489 22523 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0425 13:15:41.108501 22523 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0425 13:15:41.108513 22523 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0425 13:15:41.108525 22523 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0425 13:15:41.108536 22523 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0425 13:15:41.108548 22523 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.897727 | |
I0425 13:15:41.108561 22523 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.738095 | |
I0425 13:15:41.108578 22523 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.42845 (* 0.3 = 0.428536 loss) | |
I0425 13:15:41.108593 22523 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.422633 (* 0.3 = 0.12679 loss) | |
I0425 13:15:41.108608 22523 solver.cpp:245] Train net output #27: loss1/loss01 = 0.971377 (* 0.0272727 = 0.0264921 loss) | |
I0425 13:15:41.108623 22523 solver.cpp:245] Train net output #28: loss1/loss02 = 1.94252 (* 0.0272727 = 0.0529779 loss) | |
I0425 13:15:41.108639 22523 solver.cpp:245] Train net output #29: loss1/loss03 = 2.20104 (* 0.0272727 = 0.0600284 loss) | |
I0425 13:15:41.108654 22523 solver.cpp:245] Train net output #30: loss1/loss04 = 2.04373 (* 0.0272727 = 0.0557382 loss) | |
I0425 13:15:41.108669 22523 solver.cpp:245] Train net output #31: loss1/loss05 = 2.44576 (* 0.0272727 = 0.0667025 loss) | |
I0425 13:15:41.108682 22523 solver.cpp:245] Train net output #32: loss1/loss06 = 0.819812 (* 0.0272727 = 0.0223585 loss) | |
I0425 13:15:41.108697 22523 solver.cpp:245] Train net output #33: loss1/loss07 = 0.693082 (* 0.0272727 = 0.0189022 loss) | |
I0425 13:15:41.108711 22523 solver.cpp:245] Train net output #34: loss1/loss08 = 0.556314 (* 0.0272727 = 0.0151722 loss) | |
I0425 13:15:41.108726 22523 solver.cpp:245] Train net output #35: loss1/loss09 = 0.00784975 (* 0.0272727 = 0.000214084 loss) | |
I0425 13:15:41.108741 22523 solver.cpp:245] Train net output #36: loss1/loss10 = 0.00469429 (* 0.0272727 = 0.000128026 loss) | |
I0425 13:15:41.108755 22523 solver.cpp:245] Train net output #37: loss1/loss11 = 0.00231695 (* 0.0272727 = 6.31895e-05 loss) | |
I0425 13:15:41.108770 22523 solver.cpp:245] Train net output #38: loss1/loss12 = 0.00143014 (* 0.0272727 = 3.90037e-05 loss) | |
I0425 13:15:41.108803 22523 solver.cpp:245] Train net output #39: loss1/loss13 = 0.000827369 (* 0.0272727 = 2.25646e-05 loss) | |
I0425 13:15:41.108819 22523 solver.cpp:245] Train net output #40: loss1/loss14 = 0.000334028 (* 0.0272727 = 9.10986e-06 loss) | |
I0425 13:15:41.108834 22523 solver.cpp:245] Train net output #41: loss1/loss15 = 0.00021971 (* 0.0272727 = 5.9921e-06 loss) | |
I0425 13:15:41.108847 22523 solver.cpp:245] Train net output #42: loss1/loss16 = 0.000110421 (* 0.0272727 = 3.01148e-06 loss) | |
I0425 13:15:41.108862 22523 solver.cpp:245] Train net output #43: loss1/loss17 = 5.78436e-05 (* 0.0272727 = 1.57755e-06 loss) | |
I0425 13:15:41.108877 22523 solver.cpp:245] Train net output #44: loss1/loss18 = 3.3067e-05 (* 0.0272727 = 9.01827e-07 loss) | |
I0425 13:15:41.108891 22523 solver.cpp:245] Train net output #45: loss1/loss19 = 1.02968e-05 (* 0.0272727 = 2.80822e-07 loss) | |
I0425 13:15:41.108906 22523 solver.cpp:245] Train net output #46: loss1/loss20 = 7.80834e-06 (* 0.0272727 = 2.12955e-07 loss) | |
I0425 13:15:41.108921 22523 solver.cpp:245] Train net output #47: loss1/loss21 = 3.75511e-06 (* 0.0272727 = 1.02412e-07 loss) | |
I0425 13:15:41.108935 22523 solver.cpp:245] Train net output #48: loss1/loss22 = 4.00844e-06 (* 0.0272727 = 1.09321e-07 loss) | |
I0425 13:15:41.108947 22523 solver.cpp:245] Train net output #49: loss2/accuracy = 0.666667 | |
I0425 13:15:41.108959 22523 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.75 | |
I0425 13:15:41.108971 22523 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.375 | |
I0425 13:15:41.108983 22523 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.625 | |
I0425 13:15:41.108995 22523 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.25 | |
I0425 13:15:41.109006 22523 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.375 | |
I0425 13:15:41.109019 22523 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.75 | |
I0425 13:15:41.109030 22523 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.875 | |
I0425 13:15:41.109041 22523 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875 | |
I0425 13:15:41.109053 22523 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1 | |
I0425 13:15:41.109064 22523 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1 | |
I0425 13:15:41.109076 22523 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1 | |
I0425 13:15:41.109087 22523 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1 | |
I0425 13:15:41.109098 22523 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1 | |
I0425 13:15:41.109110 22523 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1 | |
I0425 13:15:41.109122 22523 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0425 13:15:41.109133 22523 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0425 13:15:41.109143 22523 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0425 13:15:41.109155 22523 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0425 13:15:41.109166 22523 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0425 13:15:41.109179 22523 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0425 13:15:41.109189 22523 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0425 13:15:41.109205 22523 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0425 13:15:41.109216 22523 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.903409 | |
I0425 13:15:41.109228 22523 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.857143 | |
I0425 13:15:41.109243 22523 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.1646 (* 0.3 = 0.34938 loss) | |
I0425 13:15:41.109257 22523 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.322046 (* 0.3 = 0.0966137 loss) | |
I0425 13:15:41.109274 22523 solver.cpp:245] Train net output #76: loss2/loss01 = 1.23058 (* 0.0272727 = 0.0335614 loss) | |
I0425 13:15:41.109290 22523 solver.cpp:245] Train net output #77: loss2/loss02 = 1.91502 (* 0.0272727 = 0.0522279 loss) | |
I0425 13:15:41.109316 22523 solver.cpp:245] Train net output #78: loss2/loss03 = 1.06259 (* 0.0272727 = 0.0289796 loss) | |
I0425 13:15:41.109331 22523 solver.cpp:245] Train net output #79: loss2/loss04 = 1.63931 (* 0.0272727 = 0.0447084 loss) | |
I0425 13:15:41.109345 22523 solver.cpp:245] Train net output #80: loss2/loss05 = 1.82079 (* 0.0272727 = 0.0496579 loss) | |
I0425 13:15:41.109359 22523 solver.cpp:245] Train net output #81: loss2/loss06 = 0.908246 (* 0.0272727 = 0.0247703 loss) | |
I0425 13:15:41.109374 22523 solver.cpp:245] Train net output #82: loss2/loss07 = 0.457407 (* 0.0272727 = 0.0124747 loss) | |
I0425 13:15:41.109387 22523 solver.cpp:245] Train net output #83: loss2/loss08 = 0.379089 (* 0.0272727 = 0.0103388 loss) | |
I0425 13:15:41.109401 22523 solver.cpp:245] Train net output #84: loss2/loss09 = 0.00718075 (* 0.0272727 = 0.000195839 loss) | |
I0425 13:15:41.109416 22523 solver.cpp:245] Train net output #85: loss2/loss10 = 0.00338596 (* 0.0272727 = 9.23443e-05 loss) | |
I0425 13:15:41.109431 22523 solver.cpp:245] Train net output #86: loss2/loss11 = 0.00387668 (* 0.0272727 = 0.000105728 loss) | |
I0425 13:15:41.109444 22523 solver.cpp:245] Train net output #87: loss2/loss12 = 0.00184421 (* 0.0272727 = 5.02966e-05 loss) | |
I0425 13:15:41.109458 22523 solver.cpp:245] Train net output #88: loss2/loss13 = 0.00100528 (* 0.0272727 = 2.74168e-05 loss) | |
I0425 13:15:41.109473 22523 solver.cpp:245] Train net output #89: loss2/loss14 = 0.000688016 (* 0.0272727 = 1.87641e-05 loss) | |
I0425 13:15:41.109488 22523 solver.cpp:245] Train net output #90: loss2/loss15 = 0.000153119 (* 0.0272727 = 4.17599e-06 loss) | |
I0425 13:15:41.109501 22523 solver.cpp:245] Train net output #91: loss2/loss16 = 9.12037e-05 (* 0.0272727 = 2.48737e-06 loss) | |
I0425 13:15:41.109516 22523 solver.cpp:245] Train net output #92: loss2/loss17 = 3.26647e-05 (* 0.0272727 = 8.90855e-07 loss) | |
I0425 13:15:41.109526 22523 solver.cpp:245] Train net output #93: loss2/loss18 = 1.66449e-05 (* 0.0272727 = 4.53951e-07 loss) | |
I0425 13:15:41.109544 22523 solver.cpp:245] Train net output #94: loss2/loss19 = 7.56989e-06 (* 0.0272727 = 2.06452e-07 loss) | |
I0425 13:15:41.109558 22523 solver.cpp:245] Train net output #95: loss2/loss20 = 8.46405e-06 (* 0.0272727 = 2.30838e-07 loss) | |
I0425 13:15:41.109572 22523 solver.cpp:245] Train net output #96: loss2/loss21 = 1.2815e-06 (* 0.0272727 = 3.49501e-08 loss) | |
I0425 13:15:41.109587 22523 solver.cpp:245] Train net output #97: loss2/loss22 = 1.2964e-06 (* 0.0272727 = 3.53565e-08 loss) | |
I0425 13:15:41.109599 22523 solver.cpp:245] Train net output #98: loss3/accuracy = 0.857143 | |
I0425 13:15:41.109611 22523 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875 | |
I0425 13:15:41.109622 22523 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875 | |
I0425 13:15:41.109634 22523 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.875 | |
I0425 13:15:41.109645 22523 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875 | |
I0425 13:15:41.109658 22523 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.75 | |
I0425 13:15:41.109668 22523 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.875 | |
I0425 13:15:41.109680 22523 solver.cpp:245] Train net output #105: loss3/accuracy07 = 1 | |
I0425 13:15:41.109691 22523 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1 | |
I0425 13:15:41.109702 22523 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1 | |
I0425 13:15:41.109714 22523 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1 | |
I0425 13:15:41.109725 22523 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1 | |
I0425 13:15:41.109736 22523 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1 | |
I0425 13:15:41.109747 22523 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1 | |
I0425 13:15:41.109758 22523 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1 | |
I0425 13:15:41.109769 22523 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0425 13:15:41.109791 22523 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0425 13:15:41.109804 22523 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0425 13:15:41.109815 22523 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0425 13:15:41.109827 22523 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0425 13:15:41.109838 22523 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0425 13:15:41.109849 22523 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0425 13:15:41.109861 22523 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0425 13:15:41.109872 22523 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.960227 | |
I0425 13:15:41.109884 22523 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.97619 | |
I0425 13:15:41.109899 22523 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.418885 (* 1 = 0.418885 loss) | |
I0425 13:15:41.109912 22523 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.120113 (* 1 = 0.120113 loss) | |
I0425 13:15:41.109926 22523 solver.cpp:245] Train net output #125: loss3/loss01 = 0.248953 (* 0.0909091 = 0.0226321 loss) | |
I0425 13:15:41.109941 22523 solver.cpp:245] Train net output #126: loss3/loss02 = 0.692687 (* 0.0909091 = 0.0629716 loss) | |
I0425 13:15:41.109954 22523 solver.cpp:245] Train net output #127: loss3/loss03 = 0.578522 (* 0.0909091 = 0.052593 loss) | |
I0425 13:15:41.109968 22523 solver.cpp:245] Train net output #128: loss3/loss04 = 0.406648 (* 0.0909091 = 0.036968 loss) | |
I0425 13:15:41.109982 22523 solver.cpp:245] Train net output #129: loss3/loss05 = 0.547965 (* 0.0909091 = 0.049815 loss) | |
I0425 13:15:41.109995 22523 solver.cpp:245] Train net output #130: loss3/loss06 = 0.371841 (* 0.0909091 = 0.0338037 loss) | |
I0425 13:15:41.110009 22523 solver.cpp:245] Train net output #131: loss3/loss07 = 0.110104 (* 0.0909091 = 0.0100094 loss) | |
I0425 13:15:41.110023 22523 solver.cpp:245] Train net output #132: loss3/loss08 = 0.116683 (* 0.0909091 = 0.0106075 loss) | |
I0425 13:15:41.110038 22523 solver.cpp:245] Train net output #133: loss3/loss09 = 0.00101825 (* 0.0909091 = 9.25686e-05 loss) | |
I0425 13:15:41.110051 22523 solver.cpp:245] Train net output #134: loss3/loss10 = 0.00143805 (* 0.0909091 = 0.000130732 loss) | |
I0425 13:15:41.110065 22523 solver.cpp:245] Train net output #135: loss3/loss11 = 0.00198548 (* 0.0909091 = 0.000180498 loss) | |
I0425 13:15:41.110080 22523 solver.cpp:245] Train net output #136: loss3/loss12 = 0.00118548 (* 0.0909091 = 0.000107771 loss) | |
I0425 13:15:41.110095 22523 solver.cpp:245] Train net output #137: loss3/loss13 = 0.000691365 (* 0.0909091 = 6.28514e-05 loss) | |
I0425 13:15:41.110108 22523 solver.cpp:245] Train net output #138: loss3/loss14 = 0.000548425 (* 0.0909091 = 4.98569e-05 loss) | |
I0425 13:15:41.110122 22523 solver.cpp:245] Train net output #139: loss3/loss15 = 0.000386976 (* 0.0909091 = 3.51797e-05 loss) | |
I0425 13:15:41.110136 22523 solver.cpp:245] Train net output #140: loss3/loss16 = 0.000284978 (* 0.0909091 = 2.59071e-05 loss) | |
I0425 13:15:41.110151 22523 solver.cpp:245] Train net output #141: loss3/loss17 = 0.000210864 (* 0.0909091 = 1.91694e-05 loss) | |
I0425 13:15:41.110164 22523 solver.cpp:245] Train net output #142: loss3/loss18 = 0.000157477 (* 0.0909091 = 1.43161e-05 loss) | |
I0425 13:15:41.110178 22523 solver.cpp:245] Train net output #143: loss3/loss19 = 0.000128169 (* 0.0909091 = 1.16517e-05 loss) | |
I0425 13:15:41.110193 22523 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000134323 (* 0.0909091 = 1.22112e-05 loss) | |
I0425 13:15:41.110208 22523 solver.cpp:245] Train net output #145: loss3/loss21 = 7.18456e-05 (* 0.0909091 = 6.53142e-06 loss) | |
I0425 13:15:41.110221 22523 solver.cpp:245] Train net output #146: loss3/loss22 = 3.11299e-05 (* 0.0909091 = 2.82999e-06 loss) | |
I0425 13:15:41.110234 22523 solver.cpp:245] Train net output #147: total_accuracy = 0.5 | |
I0425 13:15:41.110246 22523 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.625 | |
I0425 13:15:41.110270 22523 solver.cpp:245] Train net output #149: total_confidence = 0.462219 | |
I0425 13:15:41.110285 22523 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.362417 | |
I0425 13:15:41.110299 22523 sgd_solver.cpp:106] Iteration 16000, lr = 0.01 | |
I0425 13:21:22.493744 22523 solver.cpp:229] Iteration 16500, loss = 3.16791 | |
I0425 13:21:22.493883 22523 solver.cpp:245] Train net output #0: loss1/accuracy = 0.477273 | |
I0425 13:21:22.493904 22523 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.375 | |
I0425 13:21:22.493917 22523 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.75 | |
I0425 13:21:22.493929 22523 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.625 | |
I0425 13:21:22.493942 22523 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375 | |
I0425 13:21:22.493955 22523 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.375 | |
I0425 13:21:22.493968 22523 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.75 | |
I0425 13:21:22.493981 22523 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.5 | |
I0425 13:21:22.493994 22523 solver.cpp:245] Train net output #8: loss1/accuracy08 = 1 | |
I0425 13:21:22.494006 22523 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1 | |
I0425 13:21:22.494019 22523 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1 | |
I0425 13:21:22.494030 22523 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1 | |
I0425 13:21:22.494042 22523 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1 | |
I0425 13:21:22.494055 22523 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1 | |
I0425 13:21:22.494073 22523 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1 | |
I0425 13:21:22.494086 22523 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0425 13:21:22.494097 22523 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0425 13:21:22.494108 22523 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0425 13:21:22.494127 22523 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0425 13:21:22.494139 22523 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0425 13:21:22.494151 22523 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0425 13:21:22.494163 22523 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0425 13:21:22.494175 22523 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0425 13:21:22.494187 22523 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.846591 | |
I0425 13:21:22.494202 22523 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.727273 | |
I0425 13:21:22.494220 22523 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.87576 (* 0.3 = 0.562727 loss) | |
I0425 13:21:22.494236 22523 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.56128 (* 0.3 = 0.168384 loss) | |
I0425 13:21:22.494251 22523 solver.cpp:245] Train net output #27: loss1/loss01 = 2.49627 (* 0.0272727 = 0.06808 loss) | |
I0425 13:21:22.494266 22523 solver.cpp:245] Train net output #28: loss1/loss02 = 0.803123 (* 0.0272727 = 0.0219033 loss) | |
I0425 13:21:22.494282 22523 solver.cpp:245] Train net output #29: loss1/loss03 = 1.20455 (* 0.0272727 = 0.0328514 loss) | |
I0425 13:21:22.494297 22523 solver.cpp:245] Train net output #30: loss1/loss04 = 2.01197 (* 0.0272727 = 0.0548718 loss) | |
I0425 13:21:22.494312 22523 solver.cpp:245] Train net output #31: loss1/loss05 = 3.01028 (* 0.0272727 = 0.0820985 loss) | |
I0425 13:21:22.494325 22523 solver.cpp:245] Train net output #32: loss1/loss06 = 1.16509 (* 0.0272727 = 0.0317751 loss) | |
I0425 13:21:22.494339 22523 solver.cpp:245] Train net output #33: loss1/loss07 = 1.11119 (* 0.0272727 = 0.0303053 loss) | |
I0425 13:21:22.494354 22523 solver.cpp:245] Train net output #34: loss1/loss08 = 0.212986 (* 0.0272727 = 0.00580871 loss) | |
I0425 13:21:22.494369 22523 solver.cpp:245] Train net output #35: loss1/loss09 = 0.0273774 (* 0.0272727 = 0.000746656 loss) | |
I0425 13:21:22.494384 22523 solver.cpp:245] Train net output #36: loss1/loss10 = 0.0146927 (* 0.0272727 = 0.000400711 loss) | |
I0425 13:21:22.494398 22523 solver.cpp:245] Train net output #37: loss1/loss11 = 0.0221982 (* 0.0272727 = 0.000605405 loss) | |
I0425 13:21:22.494412 22523 solver.cpp:245] Train net output #38: loss1/loss12 = 0.0160678 (* 0.0272727 = 0.000438213 loss) | |
I0425 13:21:22.494427 22523 solver.cpp:245] Train net output #39: loss1/loss13 = 0.00842034 (* 0.0272727 = 0.000229646 loss) | |
I0425 13:21:22.494459 22523 solver.cpp:245] Train net output #40: loss1/loss14 = 0.00739674 (* 0.0272727 = 0.000201729 loss) | |
I0425 13:21:22.494475 22523 solver.cpp:245] Train net output #41: loss1/loss15 = 0.00330141 (* 0.0272727 = 9.00386e-05 loss) | |
I0425 13:21:22.494490 22523 solver.cpp:245] Train net output #42: loss1/loss16 = 0.00314766 (* 0.0272727 = 8.58453e-05 loss) | |
I0425 13:21:22.494504 22523 solver.cpp:245] Train net output #43: loss1/loss17 = 0.00172575 (* 0.0272727 = 4.70659e-05 loss) | |
I0425 13:21:22.494519 22523 solver.cpp:245] Train net output #44: loss1/loss18 = 0.00115426 (* 0.0272727 = 3.14798e-05 loss) | |
I0425 13:21:22.494534 22523 solver.cpp:245] Train net output #45: loss1/loss19 = 0.000578899 (* 0.0272727 = 1.57882e-05 loss) | |
I0425 13:21:22.494549 22523 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000509443 (* 0.0272727 = 1.38939e-05 loss) | |
I0425 13:21:22.494562 22523 solver.cpp:245] Train net output #47: loss1/loss21 = 0.00031831 (* 0.0272727 = 8.68118e-06 loss) | |
I0425 13:21:22.494577 22523 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000187786 (* 0.0272727 = 5.12144e-06 loss) | |
I0425 13:21:22.494590 22523 solver.cpp:245] Train net output #49: loss2/accuracy = 0.727273 | |
I0425 13:21:22.494601 22523 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.625 | |
I0425 13:21:22.494613 22523 solver.cpp:245] Train net output #51: loss2/accuracy02 = 1 | |
I0425 13:21:22.494626 22523 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.75 | |
I0425 13:21:22.494637 22523 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.75 | |
I0425 13:21:22.494648 22523 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5 | |
I0425 13:21:22.494660 22523 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.75 | |
I0425 13:21:22.494673 22523 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.625 | |
I0425 13:21:22.494683 22523 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875 | |
I0425 13:21:22.494695 22523 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1 | |
I0425 13:21:22.494706 22523 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1 | |
I0425 13:21:22.494717 22523 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1 | |
I0425 13:21:22.494729 22523 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1 | |
I0425 13:21:22.494740 22523 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1 | |
I0425 13:21:22.494751 22523 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1 | |
I0425 13:21:22.494762 22523 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0425 13:21:22.494773 22523 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0425 13:21:22.494784 22523 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0425 13:21:22.494796 22523 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0425 13:21:22.494807 22523 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0425 13:21:22.494818 22523 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0425 13:21:22.494829 22523 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0425 13:21:22.494842 22523 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0425 13:21:22.494853 22523 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.903409 | |
I0425 13:21:22.494865 22523 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.909091 | |
I0425 13:21:22.494879 22523 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.06398 (* 0.3 = 0.319195 loss) | |
I0425 13:21:22.494896 22523 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.349028 (* 0.3 = 0.104708 loss) | |
I0425 13:21:22.494911 22523 solver.cpp:245] Train net output #76: loss2/loss01 = 1.95973 (* 0.0272727 = 0.0534471 loss) | |
I0425 13:21:22.494926 22523 solver.cpp:245] Train net output #77: loss2/loss02 = 0.252841 (* 0.0272727 = 0.00689567 loss) | |
I0425 13:21:22.494951 22523 solver.cpp:245] Train net output #78: loss2/loss03 = 0.814584 (* 0.0272727 = 0.0222159 loss) | |
I0425 13:21:22.494967 22523 solver.cpp:245] Train net output #79: loss2/loss04 = 1.00076 (* 0.0272727 = 0.0272935 loss) | |
I0425 13:21:22.494982 22523 solver.cpp:245] Train net output #80: loss2/loss05 = 2.74108 (* 0.0272727 = 0.0747566 loss) | |
I0425 13:21:22.494995 22523 solver.cpp:245] Train net output #81: loss2/loss06 = 0.645158 (* 0.0272727 = 0.0175952 loss) | |
I0425 13:21:22.495009 22523 solver.cpp:245] Train net output #82: loss2/loss07 = 0.707783 (* 0.0272727 = 0.0193032 loss) | |
I0425 13:21:22.495024 22523 solver.cpp:245] Train net output #83: loss2/loss08 = 0.228336 (* 0.0272727 = 0.00622734 loss) | |
I0425 13:21:22.495038 22523 solver.cpp:245] Train net output #84: loss2/loss09 = 0.0149786 (* 0.0272727 = 0.000408507 loss) | |
I0425 13:21:22.495054 22523 solver.cpp:245] Train net output #85: loss2/loss10 = 0.00365788 (* 0.0272727 = 9.97602e-05 loss) | |
I0425 13:21:22.495069 22523 solver.cpp:245] Train net output #86: loss2/loss11 = 0.00330799 (* 0.0272727 = 9.0218e-05 loss) | |
I0425 13:21:22.495082 22523 solver.cpp:245] Train net output #87: loss2/loss12 = 0.00150655 (* 0.0272727 = 4.10877e-05 loss) | |
I0425 13:21:22.495096 22523 solver.cpp:245] Train net output #88: loss2/loss13 = 0.00175635 (* 0.0272727 = 4.79006e-05 loss) | |
I0425 13:21:22.495111 22523 solver.cpp:245] Train net output #89: loss2/loss14 = 0.00042088 (* 0.0272727 = 1.14785e-05 loss) | |
I0425 13:21:22.495126 22523 solver.cpp:245] Train net output #90: loss2/loss15 = 0.000305324 (* 0.0272727 = 8.32702e-06 loss) | |
I0425 13:21:22.495139 22523 solver.cpp:245] Train net output #91: loss2/loss16 = 0.000287646 (* 0.0272727 = 7.84488e-06 loss) | |
I0425 13:21:22.495153 22523 solver.cpp:245] Train net output #92: loss2/loss17 = 0.000168069 (* 0.0272727 = 4.58369e-06 loss) | |
I0425 13:21:22.495167 22523 solver.cpp:245] Train net output #93: loss2/loss18 = 4.61967e-05 (* 0.0272727 = 1.25991e-06 loss) | |
I0425 13:21:22.495182 22523 solver.cpp:245] Train net output #94: loss2/loss19 = 2.42454e-05 (* 0.0272727 = 6.61237e-07 loss) | |
I0425 13:21:22.495196 22523 solver.cpp:245] Train net output #95: loss2/loss20 = 1.4857e-05 (* 0.0272727 = 4.05191e-07 loss) | |
I0425 13:21:22.495210 22523 solver.cpp:245] Train net output #96: loss2/loss21 = 1.17126e-05 (* 0.0272727 = 3.19435e-07 loss) | |
I0425 13:21:22.495225 22523 solver.cpp:245] Train net output #97: loss2/loss22 = 1.17723e-05 (* 0.0272727 = 3.21062e-07 loss) | |
I0425 13:21:22.495234 22523 solver.cpp:245] Train net output #98: loss3/accuracy = 0.886364 | |
I0425 13:21:22.495247 22523 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.75 | |
I0425 13:21:22.495262 22523 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1 | |
I0425 13:21:22.495275 22523 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1 | |
I0425 13:21:22.495293 22523 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875 | |
I0425 13:21:22.495306 22523 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.75 | |
I0425 13:21:22.495316 22523 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.75 | |
I0425 13:21:22.495328 22523 solver.cpp:245] Train net output #105: loss3/accuracy07 = 1 | |
I0425 13:21:22.495339 22523 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1 | |
I0425 13:21:22.495367 22523 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1 | |
I0425 13:21:22.495381 22523 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1 | |
I0425 13:21:22.495393 22523 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1 | |
I0425 13:21:22.495404 22523 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1 | |
I0425 13:21:22.495415 22523 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1 | |
I0425 13:21:22.495427 22523 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1 | |
I0425 13:21:22.495439 22523 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0425 13:21:22.495458 22523 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0425 13:21:22.495481 22523 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0425 13:21:22.495494 22523 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0425 13:21:22.495513 22523 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0425 13:21:22.495524 22523 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0425 13:21:22.495537 22523 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0425 13:21:22.495548 22523 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0425 13:21:22.495559 22523 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.954545 | |
I0425 13:21:22.495571 22523 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.954545 | |
I0425 13:21:22.495585 22523 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.541476 (* 1 = 0.541476 loss) | |
I0425 13:21:22.495599 22523 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.172265 (* 1 = 0.172265 loss) | |
I0425 13:21:22.495614 22523 solver.cpp:245] Train net output #125: loss3/loss01 = 1.19006 (* 0.0909091 = 0.108187 loss) | |
I0425 13:21:22.495627 22523 solver.cpp:245] Train net output #126: loss3/loss02 = 0.0714841 (* 0.0909091 = 0.00649856 loss) | |
I0425 13:21:22.495641 22523 solver.cpp:245] Train net output #127: loss3/loss03 = 0.300106 (* 0.0909091 = 0.0272824 loss) | |
I0425 13:21:22.495656 22523 solver.cpp:245] Train net output #128: loss3/loss04 = 0.300897 (* 0.0909091 = 0.0273543 loss) | |
I0425 13:21:22.495671 22523 solver.cpp:245] Train net output #129: loss3/loss05 = 1.40742 (* 0.0909091 = 0.127948 loss) | |
I0425 13:21:22.495684 22523 solver.cpp:245] Train net output #130: loss3/loss06 = 0.611187 (* 0.0909091 = 0.0555624 loss) | |
I0425 13:21:22.495698 22523 solver.cpp:245] Train net output #131: loss3/loss07 = 0.175051 (* 0.0909091 = 0.0159137 loss) | |
I0425 13:21:22.495712 22523 solver.cpp:245] Train net output #132: loss3/loss08 = 0.0414114 (* 0.0909091 = 0.00376467 loss) | |
I0425 13:21:22.495726 22523 solver.cpp:245] Train net output #133: loss3/loss09 = 0.00652075 (* 0.0909091 = 0.000592795 loss) | |
I0425 13:21:22.495739 22523 solver.cpp:245] Train net output #134: loss3/loss10 = 0.00135197 (* 0.0909091 = 0.000122907 loss) | |
I0425 13:21:22.495754 22523 solver.cpp:245] Train net output #135: loss3/loss11 = 0.00138323 (* 0.0909091 = 0.000125748 loss) | |
I0425 13:21:22.495767 22523 solver.cpp:245] Train net output #136: loss3/loss12 = 0.000856816 (* 0.0909091 = 7.78923e-05 loss) | |
I0425 13:21:22.495781 22523 solver.cpp:245] Train net output #137: loss3/loss13 = 0.000618384 (* 0.0909091 = 5.62167e-05 loss) | |
I0425 13:21:22.495795 22523 solver.cpp:245] Train net output #138: loss3/loss14 = 0.000433077 (* 0.0909091 = 3.93706e-05 loss) | |
I0425 13:21:22.495808 22523 solver.cpp:245] Train net output #139: loss3/loss15 = 0.000375857 (* 0.0909091 = 3.41688e-05 loss) | |
I0425 13:21:22.495822 22523 solver.cpp:245] Train net output #140: loss3/loss16 = 0.000292846 (* 0.0909091 = 2.66224e-05 loss) | |
I0425 13:21:22.495836 22523 solver.cpp:245] Train net output #141: loss3/loss17 = 0.000336381 (* 0.0909091 = 3.05801e-05 loss) | |
I0425 13:21:22.495851 22523 solver.cpp:245] Train net output #142: loss3/loss18 = 0.000277007 (* 0.0909091 = 2.51825e-05 loss) | |
I0425 13:21:22.495864 22523 solver.cpp:245] Train net output #143: loss3/loss19 = 0.000289431 (* 0.0909091 = 2.63119e-05 loss) | |
I0425 13:21:22.495878 22523 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000259115 (* 0.0909091 = 2.35559e-05 loss) | |
I0425 13:21:22.495893 22523 solver.cpp:245] Train net output #145: loss3/loss21 = 0.00013017 (* 0.0909091 = 1.18336e-05 loss) | |
I0425 13:21:22.495908 22523 solver.cpp:245] Train net output #146: loss3/loss22 = 5.67365e-05 (* 0.0909091 = 5.15786e-06 loss) | |
I0425 13:21:22.495919 22523 solver.cpp:245] Train net output #147: total_accuracy = 0.5 | |
I0425 13:21:22.495931 22523 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.375 | |
I0425 13:21:22.495956 22523 solver.cpp:245] Train net output #149: total_confidence = 0.517761 | |
I0425 13:21:22.495970 22523 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.403021 | |
I0425 13:21:22.495985 22523 sgd_solver.cpp:106] Iteration 16500, lr = 0.01 | |
I0425 13:27:03.855590 22523 solver.cpp:229] Iteration 17000, loss = 3.21044 | |
I0425 13:27:03.855729 22523 solver.cpp:245] Train net output #0: loss1/accuracy = 0.421053 | |
I0425 13:27:03.855751 22523 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.5 | |
I0425 13:27:03.855764 22523 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5 | |
I0425 13:27:03.855777 22523 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375 | |
I0425 13:27:03.855789 22523 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.125 | |
I0425 13:27:03.855803 22523 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.25 | |
I0425 13:27:03.855814 22523 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.375 | |
I0425 13:27:03.855828 22523 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.625 | |
I0425 13:27:03.855840 22523 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.625 | |
I0425 13:27:03.855854 22523 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875 | |
I0425 13:27:03.855865 22523 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875 | |
I0425 13:27:03.855877 22523 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.875 | |
I0425 13:27:03.855890 22523 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.875 | |
I0425 13:27:03.855903 22523 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.875 | |
I0425 13:27:03.855916 22523 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.875 | |
I0425 13:27:03.855927 22523 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.875 | |
I0425 13:27:03.855940 22523 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0425 13:27:03.855952 22523 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0425 13:27:03.855964 22523 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0425 13:27:03.855976 22523 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0425 13:27:03.855988 22523 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0425 13:27:03.856000 22523 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0425 13:27:03.856012 22523 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0425 13:27:03.856024 22523 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.795455 | |
I0425 13:27:03.856037 22523 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.596491 | |
I0425 13:27:03.856055 22523 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.9656 (* 0.3 = 0.589679 loss) | |
I0425 13:27:03.856071 22523 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.72586 (* 0.3 = 0.217758 loss) | |
I0425 13:27:03.856086 22523 solver.cpp:245] Train net output #27: loss1/loss01 = 1.42875 (* 0.0272727 = 0.0389659 loss) | |
I0425 13:27:03.856109 22523 solver.cpp:245] Train net output #28: loss1/loss02 = 1.51306 (* 0.0272727 = 0.0412652 loss) | |
I0425 13:27:03.856124 22523 solver.cpp:245] Train net output #29: loss1/loss03 = 2.07499 (* 0.0272727 = 0.0565907 loss) | |
I0425 13:27:03.856139 22523 solver.cpp:245] Train net output #30: loss1/loss04 = 2.8799 (* 0.0272727 = 0.0785427 loss) | |
I0425 13:27:03.856161 22523 solver.cpp:245] Train net output #31: loss1/loss05 = 2.36672 (* 0.0272727 = 0.064547 loss) | |
I0425 13:27:03.856175 22523 solver.cpp:245] Train net output #32: loss1/loss06 = 1.60942 (* 0.0272727 = 0.0438932 loss) | |
I0425 13:27:03.856189 22523 solver.cpp:245] Train net output #33: loss1/loss07 = 1.60657 (* 0.0272727 = 0.0438155 loss) | |
I0425 13:27:03.856209 22523 solver.cpp:245] Train net output #34: loss1/loss08 = 1.48524 (* 0.0272727 = 0.0405067 loss) | |
I0425 13:27:03.856223 22523 solver.cpp:245] Train net output #35: loss1/loss09 = 0.302045 (* 0.0272727 = 0.0082376 loss) | |
I0425 13:27:03.856238 22523 solver.cpp:245] Train net output #36: loss1/loss10 = 0.365933 (* 0.0272727 = 0.00997999 loss) | |
I0425 13:27:03.856253 22523 solver.cpp:245] Train net output #37: loss1/loss11 = 0.457599 (* 0.0272727 = 0.01248 loss) | |
I0425 13:27:03.856268 22523 solver.cpp:245] Train net output #38: loss1/loss12 = 0.384448 (* 0.0272727 = 0.0104849 loss) | |
I0425 13:27:03.856302 22523 solver.cpp:245] Train net output #39: loss1/loss13 = 0.496101 (* 0.0272727 = 0.01353 loss) | |
I0425 13:27:03.856317 22523 solver.cpp:245] Train net output #40: loss1/loss14 = 0.594284 (* 0.0272727 = 0.0162077 loss) | |
I0425 13:27:03.856331 22523 solver.cpp:245] Train net output #41: loss1/loss15 = 0.563319 (* 0.0272727 = 0.0153632 loss) | |
I0425 13:27:03.856348 22523 solver.cpp:245] Train net output #42: loss1/loss16 = 0.117412 (* 0.0272727 = 0.00320215 loss) | |
I0425 13:27:03.856361 22523 solver.cpp:245] Train net output #43: loss1/loss17 = 0.0553965 (* 0.0272727 = 0.00151081 loss) | |
I0425 13:27:03.856377 22523 solver.cpp:245] Train net output #44: loss1/loss18 = 0.0238796 (* 0.0272727 = 0.000651261 loss) | |
I0425 13:27:03.856392 22523 solver.cpp:245] Train net output #45: loss1/loss19 = 0.0169485 (* 0.0272727 = 0.000462232 loss) | |
I0425 13:27:03.856406 22523 solver.cpp:245] Train net output #46: loss1/loss20 = 0.00716745 (* 0.0272727 = 0.000195476 loss) | |
I0425 13:27:03.856421 22523 solver.cpp:245] Train net output #47: loss1/loss21 = 0.00483263 (* 0.0272727 = 0.000131799 loss) | |
I0425 13:27:03.856436 22523 solver.cpp:245] Train net output #48: loss1/loss22 = 0.00263221 (* 0.0272727 = 7.17875e-05 loss) | |
I0425 13:27:03.856449 22523 solver.cpp:245] Train net output #49: loss2/accuracy = 0.54386 | |
I0425 13:27:03.856462 22523 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.75 | |
I0425 13:27:03.856473 22523 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.5 | |
I0425 13:27:03.856485 22523 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.5 | |
I0425 13:27:03.856498 22523 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.375 | |
I0425 13:27:03.856511 22523 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5 | |
I0425 13:27:03.856523 22523 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.5 | |
I0425 13:27:03.856535 22523 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.625 | |
I0425 13:27:03.856547 22523 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.75 | |
I0425 13:27:03.856559 22523 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875 | |
I0425 13:27:03.856571 22523 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875 | |
I0425 13:27:03.856583 22523 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.875 | |
I0425 13:27:03.856595 22523 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.875 | |
I0425 13:27:03.856614 22523 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.875 | |
I0425 13:27:03.856626 22523 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.875 | |
I0425 13:27:03.856638 22523 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.875 | |
I0425 13:27:03.856649 22523 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0425 13:27:03.856662 22523 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0425 13:27:03.856673 22523 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0425 13:27:03.856684 22523 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0425 13:27:03.856703 22523 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0425 13:27:03.856714 22523 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0425 13:27:03.856726 22523 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0425 13:27:03.856741 22523 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.852273 | |
I0425 13:27:03.856755 22523 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.719298 | |
I0425 13:27:03.856770 22523 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.66795 (* 0.3 = 0.500386 loss) | |
I0425 13:27:03.856783 22523 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.594443 (* 0.3 = 0.178333 loss) | |
I0425 13:27:03.856797 22523 solver.cpp:245] Train net output #76: loss2/loss01 = 0.922624 (* 0.0272727 = 0.0251625 loss) | |
I0425 13:27:03.856812 22523 solver.cpp:245] Train net output #77: loss2/loss02 = 1.61418 (* 0.0272727 = 0.044023 loss) | |
I0425 13:27:03.856837 22523 solver.cpp:245] Train net output #78: loss2/loss03 = 1.52301 (* 0.0272727 = 0.0415366 loss) | |
I0425 13:27:03.856853 22523 solver.cpp:245] Train net output #79: loss2/loss04 = 2.01345 (* 0.0272727 = 0.0549124 loss) | |
I0425 13:27:03.856866 22523 solver.cpp:245] Train net output #80: loss2/loss05 = 2.16308 (* 0.0272727 = 0.0589931 loss) | |
I0425 13:27:03.856880 22523 solver.cpp:245] Train net output #81: loss2/loss06 = 1.52138 (* 0.0272727 = 0.0414923 loss) | |
I0425 13:27:03.856894 22523 solver.cpp:245] Train net output #82: loss2/loss07 = 2.03891 (* 0.0272727 = 0.0556068 loss) | |
I0425 13:27:03.856909 22523 solver.cpp:245] Train net output #83: loss2/loss08 = 1.35673 (* 0.0272727 = 0.0370016 loss) | |
I0425 13:27:03.856923 22523 solver.cpp:245] Train net output #84: loss2/loss09 = 0.283461 (* 0.0272727 = 0.00773075 loss) | |
I0425 13:27:03.856938 22523 solver.cpp:245] Train net output #85: loss2/loss10 = 0.626773 (* 0.0272727 = 0.0170938 loss) | |
I0425 13:27:03.856952 22523 solver.cpp:245] Train net output #86: loss2/loss11 = 0.452022 (* 0.0272727 = 0.0123279 loss) | |
I0425 13:27:03.856966 22523 solver.cpp:245] Train net output #87: loss2/loss12 = 0.388665 (* 0.0272727 = 0.0105999 loss) | |
I0425 13:27:03.856981 22523 solver.cpp:245] Train net output #88: loss2/loss13 = 0.743964 (* 0.0272727 = 0.0202899 loss) | |
I0425 13:27:03.856994 22523 solver.cpp:245] Train net output #89: loss2/loss14 = 0.552902 (* 0.0272727 = 0.0150791 loss) | |
I0425 13:27:03.857014 22523 solver.cpp:245] Train net output #90: loss2/loss15 = 0.671661 (* 0.0272727 = 0.018318 loss) | |
I0425 13:27:03.857028 22523 solver.cpp:245] Train net output #91: loss2/loss16 = 0.0180587 (* 0.0272727 = 0.000492509 loss) | |
I0425 13:27:03.857043 22523 solver.cpp:245] Train net output #92: loss2/loss17 = 0.0010822 (* 0.0272727 = 2.95145e-05 loss) | |
I0425 13:27:03.857059 22523 solver.cpp:245] Train net output #93: loss2/loss18 = 0.0017643 (* 0.0272727 = 4.81174e-05 loss) | |
I0425 13:27:03.857077 22523 solver.cpp:245] Train net output #94: loss2/loss19 = 0.000262029 (* 0.0272727 = 7.14624e-06 loss) | |
I0425 13:27:03.857091 22523 solver.cpp:245] Train net output #95: loss2/loss20 = 0.00031462 (* 0.0272727 = 8.58055e-06 loss) | |
I0425 13:27:03.857106 22523 solver.cpp:245] Train net output #96: loss2/loss21 = 7.35367e-05 (* 0.0272727 = 2.00555e-06 loss) | |
I0425 13:27:03.857121 22523 solver.cpp:245] Train net output #97: loss2/loss22 = 8.06573e-05 (* 0.0272727 = 2.19974e-06 loss) | |
I0425 13:27:03.857133 22523 solver.cpp:245] Train net output #98: loss3/accuracy = 0.666667 | |
I0425 13:27:03.857146 22523 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.75 | |
I0425 13:27:03.857157 22523 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.625 | |
I0425 13:27:03.857169 22523 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.875 | |
I0425 13:27:03.857182 22523 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.625 | |
I0425 13:27:03.857193 22523 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.75 | |
I0425 13:27:03.857205 22523 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.625 | |
I0425 13:27:03.857218 22523 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75 | |
I0425 13:27:03.857229 22523 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.75 | |
I0425 13:27:03.857240 22523 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875 | |
I0425 13:27:03.857255 22523 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875 | |
I0425 13:27:03.857269 22523 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.875 | |
I0425 13:27:03.857280 22523 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.875 | |
I0425 13:27:03.857291 22523 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.875 | |
I0425 13:27:03.857303 22523 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.875 | |
I0425 13:27:03.857314 22523 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.875 | |
I0425 13:27:03.857336 22523 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0425 13:27:03.857350 22523 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0425 13:27:03.857362 22523 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0425 13:27:03.857374 22523 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0425 13:27:03.857386 22523 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0425 13:27:03.857398 22523 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0425 13:27:03.857409 22523 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0425 13:27:03.857420 22523 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.886364 | |
I0425 13:27:03.857434 22523 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.789474 | |
I0425 13:27:03.857447 22523 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.21023 (* 1 = 1.21023 loss) | |
I0425 13:27:03.857461 22523 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.438143 (* 1 = 0.438143 loss) | |
I0425 13:27:03.857477 22523 solver.cpp:245] Train net output #125: loss3/loss01 = 0.745486 (* 0.0909091 = 0.0677714 loss) | |
I0425 13:27:03.857491 22523 solver.cpp:245] Train net output #126: loss3/loss02 = 1.26891 (* 0.0909091 = 0.115355 loss) | |
I0425 13:27:03.857506 22523 solver.cpp:245] Train net output #127: loss3/loss03 = 0.77687 (* 0.0909091 = 0.0706245 loss) | |
I0425 13:27:03.857519 22523 solver.cpp:245] Train net output #128: loss3/loss04 = 1.50695 (* 0.0909091 = 0.136996 loss) | |
I0425 13:27:03.857533 22523 solver.cpp:245] Train net output #129: loss3/loss05 = 0.597577 (* 0.0909091 = 0.0543252 loss) | |
I0425 13:27:03.857547 22523 solver.cpp:245] Train net output #130: loss3/loss06 = 0.934722 (* 0.0909091 = 0.0849747 loss) | |
I0425 13:27:03.857561 22523 solver.cpp:245] Train net output #131: loss3/loss07 = 1.50004 (* 0.0909091 = 0.136368 loss) | |
I0425 13:27:03.857576 22523 solver.cpp:245] Train net output #132: loss3/loss08 = 1.18898 (* 0.0909091 = 0.108089 loss) | |
I0425 13:27:03.857590 22523 solver.cpp:245] Train net output #133: loss3/loss09 = 0.258633 (* 0.0909091 = 0.0235121 loss) | |
I0425 13:27:03.857604 22523 solver.cpp:245] Train net output #134: loss3/loss10 = 0.462692 (* 0.0909091 = 0.0420629 loss) | |
I0425 13:27:03.857619 22523 solver.cpp:245] Train net output #135: loss3/loss11 = 0.420537 (* 0.0909091 = 0.0382307 loss) | |
I0425 13:27:03.857632 22523 solver.cpp:245] Train net output #136: loss3/loss12 = 0.349381 (* 0.0909091 = 0.0317619 loss) | |
I0425 13:27:03.857645 22523 solver.cpp:245] Train net output #137: loss3/loss13 = 0.508344 (* 0.0909091 = 0.0462131 loss) | |
I0425 13:27:03.857661 22523 solver.cpp:245] Train net output #138: loss3/loss14 = 0.468118 (* 0.0909091 = 0.0425562 loss) | |
I0425 13:27:03.857674 22523 solver.cpp:245] Train net output #139: loss3/loss15 = 0.422484 (* 0.0909091 = 0.0384076 loss) | |
I0425 13:27:03.857688 22523 solver.cpp:245] Train net output #140: loss3/loss16 = 0.0449122 (* 0.0909091 = 0.00408293 loss) | |
I0425 13:27:03.857702 22523 solver.cpp:245] Train net output #141: loss3/loss17 = 0.00911728 (* 0.0909091 = 0.000828844 loss) | |
I0425 13:27:03.857717 22523 solver.cpp:245] Train net output #142: loss3/loss18 = 0.00779119 (* 0.0909091 = 0.00070829 loss) | |
I0425 13:27:03.857731 22523 solver.cpp:245] Train net output #143: loss3/loss19 = 0.00613112 (* 0.0909091 = 0.000557375 loss) | |
I0425 13:27:03.857746 22523 solver.cpp:245] Train net output #144: loss3/loss20 = 0.0044176 (* 0.0909091 = 0.0004016 loss) | |
I0425 13:27:03.857760 22523 solver.cpp:245] Train net output #145: loss3/loss21 = 0.00255055 (* 0.0909091 = 0.000231869 loss) | |
I0425 13:27:03.857774 22523 solver.cpp:245] Train net output #146: loss3/loss22 = 0.00110424 (* 0.0909091 = 0.000100386 loss) | |
I0425 13:27:03.857787 22523 solver.cpp:245] Train net output #147: total_accuracy = 0.625 | |
I0425 13:27:03.857803 22523 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.375 | |
I0425 13:27:03.857825 22523 solver.cpp:245] Train net output #149: total_confidence = 0.422342 | |
I0425 13:27:03.857839 22523 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.22159 | |
I0425 13:27:03.857854 22523 sgd_solver.cpp:106] Iteration 17000, lr = 0.01 | |
I0425 13:32:45.245761 22523 solver.cpp:229] Iteration 17500, loss = 3.12756 | |
I0425 13:32:45.245895 22523 solver.cpp:245] Train net output #0: loss1/accuracy = 0.290323 | |
I0425 13:32:45.245916 22523 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.5 | |
I0425 13:32:45.245930 22523 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.75 | |
I0425 13:32:45.245942 22523 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.125 | |
I0425 13:32:45.245955 22523 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375 | |
I0425 13:32:45.245967 22523 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.625 | |
I0425 13:32:45.245980 22523 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.25 | |
I0425 13:32:45.245992 22523 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.625 | |
I0425 13:32:45.246004 22523 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.5 | |
I0425 13:32:45.246017 22523 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.625 | |
I0425 13:32:45.246029 22523 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.625 | |
I0425 13:32:45.246042 22523 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.75 | |
I0425 13:32:45.246054 22523 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.875 | |
I0425 13:32:45.246067 22523 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.875 | |
I0425 13:32:45.246079 22523 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.875 | |
I0425 13:32:45.246091 22523 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.875 | |
I0425 13:32:45.246104 22523 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0425 13:32:45.246115 22523 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0425 13:32:45.246127 22523 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0425 13:32:45.246140 22523 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0425 13:32:45.246151 22523 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0425 13:32:45.246170 22523 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0425 13:32:45.246181 22523 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0425 13:32:45.246193 22523 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.732955 | |
I0425 13:32:45.246208 22523 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.612903 | |
I0425 13:32:45.246235 22523 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 2.21997 (* 0.3 = 0.665992 loss) | |
I0425 13:32:45.246251 22523 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.856022 (* 0.3 = 0.256807 loss) | |
I0425 13:32:45.246268 22523 solver.cpp:245] Train net output #27: loss1/loss01 = 1.37147 (* 0.0272727 = 0.0374038 loss) | |
I0425 13:32:45.246281 22523 solver.cpp:245] Train net output #28: loss1/loss02 = 1.18204 (* 0.0272727 = 0.0322374 loss) | |
I0425 13:32:45.246296 22523 solver.cpp:245] Train net output #29: loss1/loss03 = 2.85179 (* 0.0272727 = 0.0777761 loss) | |
I0425 13:32:45.246310 22523 solver.cpp:245] Train net output #30: loss1/loss04 = 2.14678 (* 0.0272727 = 0.0585484 loss) | |
I0425 13:32:45.246325 22523 solver.cpp:245] Train net output #31: loss1/loss05 = 1.21548 (* 0.0272727 = 0.0331495 loss) | |
I0425 13:32:45.246340 22523 solver.cpp:245] Train net output #32: loss1/loss06 = 2.8446 (* 0.0272727 = 0.0775801 loss) | |
I0425 13:32:45.246353 22523 solver.cpp:245] Train net output #33: loss1/loss07 = 1.7707 (* 0.0272727 = 0.0482918 loss) | |
I0425 13:32:45.246367 22523 solver.cpp:245] Train net output #34: loss1/loss08 = 1.50913 (* 0.0272727 = 0.0411581 loss) | |
I0425 13:32:45.246382 22523 solver.cpp:245] Train net output #35: loss1/loss09 = 1.48288 (* 0.0272727 = 0.0404422 loss) | |
I0425 13:32:45.246397 22523 solver.cpp:245] Train net output #36: loss1/loss10 = 1.31461 (* 0.0272727 = 0.0358531 loss) | |
I0425 13:32:45.246410 22523 solver.cpp:245] Train net output #37: loss1/loss11 = 1.08209 (* 0.0272727 = 0.0295115 loss) | |
I0425 13:32:45.246424 22523 solver.cpp:245] Train net output #38: loss1/loss12 = 0.384489 (* 0.0272727 = 0.0104861 loss) | |
I0425 13:32:45.246456 22523 solver.cpp:245] Train net output #39: loss1/loss13 = 0.518885 (* 0.0272727 = 0.0141514 loss) | |
I0425 13:32:45.246471 22523 solver.cpp:245] Train net output #40: loss1/loss14 = 0.618331 (* 0.0272727 = 0.0168636 loss) | |
I0425 13:32:45.246486 22523 solver.cpp:245] Train net output #41: loss1/loss15 = 0.461335 (* 0.0272727 = 0.0125819 loss) | |
I0425 13:32:45.246500 22523 solver.cpp:245] Train net output #42: loss1/loss16 = 0.0636274 (* 0.0272727 = 0.00173529 loss) | |
I0425 13:32:45.246515 22523 solver.cpp:245] Train net output #43: loss1/loss17 = 0.0213842 (* 0.0272727 = 0.000583206 loss) | |
I0425 13:32:45.246529 22523 solver.cpp:245] Train net output #44: loss1/loss18 = 0.00997038 (* 0.0272727 = 0.000271919 loss) | |
I0425 13:32:45.246544 22523 solver.cpp:245] Train net output #45: loss1/loss19 = 0.0095128 (* 0.0272727 = 0.00025944 loss) | |
I0425 13:32:45.246558 22523 solver.cpp:245] Train net output #46: loss1/loss20 = 0.00257221 (* 0.0272727 = 7.01511e-05 loss) | |
I0425 13:32:45.246573 22523 solver.cpp:245] Train net output #47: loss1/loss21 = 0.00209248 (* 0.0272727 = 5.70676e-05 loss) | |
I0425 13:32:45.246587 22523 solver.cpp:245] Train net output #48: loss1/loss22 = 0.00140813 (* 0.0272727 = 3.84034e-05 loss) | |
I0425 13:32:45.246600 22523 solver.cpp:245] Train net output #49: loss2/accuracy = 0.483871 | |
I0425 13:32:45.246613 22523 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.625 | |
I0425 13:32:45.246624 22523 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75 | |
I0425 13:32:45.246635 22523 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.625 | |
I0425 13:32:45.246647 22523 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.5 | |
I0425 13:32:45.246659 22523 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5 | |
I0425 13:32:45.246670 22523 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.25 | |
I0425 13:32:45.246682 22523 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.625 | |
I0425 13:32:45.246695 22523 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.5 | |
I0425 13:32:45.246706 22523 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.625 | |
I0425 13:32:45.246717 22523 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.625 | |
I0425 13:32:45.246728 22523 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.75 | |
I0425 13:32:45.246740 22523 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.875 | |
I0425 13:32:45.246752 22523 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.875 | |
I0425 13:32:45.246763 22523 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.875 | |
I0425 13:32:45.246775 22523 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.875 | |
I0425 13:32:45.246786 22523 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0425 13:32:45.246798 22523 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0425 13:32:45.246809 22523 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0425 13:32:45.246820 22523 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0425 13:32:45.246831 22523 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0425 13:32:45.246842 22523 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0425 13:32:45.246855 22523 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0425 13:32:45.246866 22523 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.801136 | |
I0425 13:32:45.246878 22523 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.709677 | |
I0425 13:32:45.246892 22523 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.69154 (* 0.3 = 0.507462 loss) | |
I0425 13:32:45.246909 22523 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.680907 (* 0.3 = 0.204272 loss) | |
I0425 13:32:45.246924 22523 solver.cpp:245] Train net output #76: loss2/loss01 = 1.40053 (* 0.0272727 = 0.0381962 loss) | |
I0425 13:32:45.246939 22523 solver.cpp:245] Train net output #77: loss2/loss02 = 0.866491 (* 0.0272727 = 0.0236316 loss) | |
I0425 13:32:45.246965 22523 solver.cpp:245] Train net output #78: loss2/loss03 = 1.47711 (* 0.0272727 = 0.0402849 loss) | |
I0425 13:32:45.246980 22523 solver.cpp:245] Train net output #79: loss2/loss04 = 1.77594 (* 0.0272727 = 0.0484347 loss) | |
I0425 13:32:45.246994 22523 solver.cpp:245] Train net output #80: loss2/loss05 = 1.36202 (* 0.0272727 = 0.0371459 loss) | |
I0425 13:32:45.247009 22523 solver.cpp:245] Train net output #81: loss2/loss06 = 2.30953 (* 0.0272727 = 0.0629873 loss) | |
I0425 13:32:45.247022 22523 solver.cpp:245] Train net output #82: loss2/loss07 = 1.13533 (* 0.0272727 = 0.0309635 loss) | |
I0425 13:32:45.247036 22523 solver.cpp:245] Train net output #83: loss2/loss08 = 1.413 (* 0.0272727 = 0.0385365 loss) | |
I0425 13:32:45.247051 22523 solver.cpp:245] Train net output #84: loss2/loss09 = 1.18144 (* 0.0272727 = 0.032221 loss) | |
I0425 13:32:45.247063 22523 solver.cpp:245] Train net output #85: loss2/loss10 = 1.15471 (* 0.0272727 = 0.0314921 loss) | |
I0425 13:32:45.247077 22523 solver.cpp:245] Train net output #86: loss2/loss11 = 1.30041 (* 0.0272727 = 0.0354657 loss) | |
I0425 13:32:45.247092 22523 solver.cpp:245] Train net output #87: loss2/loss12 = 0.557678 (* 0.0272727 = 0.0152094 loss) | |
I0425 13:32:45.247105 22523 solver.cpp:245] Train net output #88: loss2/loss13 = 0.422195 (* 0.0272727 = 0.0115144 loss) | |
I0425 13:32:45.247119 22523 solver.cpp:245] Train net output #89: loss2/loss14 = 0.665452 (* 0.0272727 = 0.0181487 loss) | |
I0425 13:32:45.247133 22523 solver.cpp:245] Train net output #90: loss2/loss15 = 0.357667 (* 0.0272727 = 0.00975455 loss) | |
I0425 13:32:45.247148 22523 solver.cpp:245] Train net output #91: loss2/loss16 = 0.0360663 (* 0.0272727 = 0.000983625 loss) | |
I0425 13:32:45.247161 22523 solver.cpp:245] Train net output #92: loss2/loss17 = 0.0176577 (* 0.0272727 = 0.000481574 loss) | |
I0425 13:32:45.247175 22523 solver.cpp:245] Train net output #93: loss2/loss18 = 0.0215528 (* 0.0272727 = 0.000587803 loss) | |
I0425 13:32:45.247186 22523 solver.cpp:245] Train net output #94: loss2/loss19 = 0.000970422 (* 0.0272727 = 2.64661e-05 loss) | |
I0425 13:32:45.247200 22523 solver.cpp:245] Train net output #95: loss2/loss20 = 0.00084058 (* 0.0272727 = 2.29249e-05 loss) | |
I0425 13:32:45.247215 22523 solver.cpp:245] Train net output #96: loss2/loss21 = 0.000820219 (* 0.0272727 = 2.23696e-05 loss) | |
I0425 13:32:45.247228 22523 solver.cpp:245] Train net output #97: loss2/loss22 = 0.000448639 (* 0.0272727 = 1.22356e-05 loss) | |
I0425 13:32:45.247241 22523 solver.cpp:245] Train net output #98: loss3/accuracy = 0.645161 | |
I0425 13:32:45.247256 22523 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875 | |
I0425 13:32:45.247268 22523 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1 | |
I0425 13:32:45.247279 22523 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.75 | |
I0425 13:32:45.247292 22523 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.75 | |
I0425 13:32:45.247303 22523 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.75 | |
I0425 13:32:45.247313 22523 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.5 | |
I0425 13:32:45.247325 22523 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75 | |
I0425 13:32:45.247336 22523 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.5 | |
I0425 13:32:45.247359 22523 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.625 | |
I0425 13:32:45.247375 22523 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.75 | |
I0425 13:32:45.247387 22523 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.75 | |
I0425 13:32:45.247398 22523 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.875 | |
I0425 13:32:45.247411 22523 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.875 | |
I0425 13:32:45.247421 22523 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.875 | |
I0425 13:32:45.247432 22523 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.875 | |
I0425 13:32:45.247457 22523 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0425 13:32:45.247469 22523 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0425 13:32:45.247480 22523 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0425 13:32:45.247491 22523 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0425 13:32:45.247503 22523 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0425 13:32:45.247514 22523 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0425 13:32:45.247526 22523 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0425 13:32:45.247537 22523 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.857955 | |
I0425 13:32:45.247550 22523 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.822581 | |
I0425 13:32:45.247563 22523 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.07355 (* 1 = 1.07355 loss) | |
I0425 13:32:45.247576 22523 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.449593 (* 1 = 0.449593 loss) | |
I0425 13:32:45.247591 22523 solver.cpp:245] Train net output #125: loss3/loss01 = 0.612331 (* 0.0909091 = 0.0556665 loss) | |
I0425 13:32:45.247604 22523 solver.cpp:245] Train net output #126: loss3/loss02 = 0.239941 (* 0.0909091 = 0.0218128 loss) | |
I0425 13:32:45.247618 22523 solver.cpp:245] Train net output #127: loss3/loss03 = 0.573998 (* 0.0909091 = 0.0521816 loss) | |
I0425 13:32:45.247632 22523 solver.cpp:245] Train net output #128: loss3/loss04 = 0.493395 (* 0.0909091 = 0.0448541 loss) | |
I0425 13:32:45.247645 22523 solver.cpp:245] Train net output #129: loss3/loss05 = 1.07634 (* 0.0909091 = 0.0978495 loss) | |
I0425 13:32:45.247659 22523 solver.cpp:245] Train net output #130: loss3/loss06 = 1.42457 (* 0.0909091 = 0.129506 loss) | |
I0425 13:32:45.247673 22523 solver.cpp:245] Train net output #131: loss3/loss07 = 1.02212 (* 0.0909091 = 0.0929203 loss) | |
I0425 13:32:45.247687 22523 solver.cpp:245] Train net output #132: loss3/loss08 = 1.13476 (* 0.0909091 = 0.10316 loss) | |
I0425 13:32:45.247701 22523 solver.cpp:245] Train net output #133: loss3/loss09 = 1.07896 (* 0.0909091 = 0.0980877 loss) | |
I0425 13:32:45.247715 22523 solver.cpp:245] Train net output #134: loss3/loss10 = 1.05474 (* 0.0909091 = 0.0958853 loss) | |
I0425 13:32:45.247730 22523 solver.cpp:245] Train net output #135: loss3/loss11 = 1.01798 (* 0.0909091 = 0.0925441 loss) | |
I0425 13:32:45.247742 22523 solver.cpp:245] Train net output #136: loss3/loss12 = 0.46478 (* 0.0909091 = 0.0422528 loss) | |
I0425 13:32:45.247756 22523 solver.cpp:245] Train net output #137: loss3/loss13 = 0.368182 (* 0.0909091 = 0.0334711 loss) | |
I0425 13:32:45.247771 22523 solver.cpp:245] Train net output #138: loss3/loss14 = 0.554129 (* 0.0909091 = 0.0503754 loss) | |
I0425 13:32:45.247784 22523 solver.cpp:245] Train net output #139: loss3/loss15 = 0.441234 (* 0.0909091 = 0.0401121 loss) | |
I0425 13:32:45.247803 22523 solver.cpp:245] Train net output #140: loss3/loss16 = 0.0279663 (* 0.0909091 = 0.00254239 loss) | |
I0425 13:32:45.247817 22523 solver.cpp:245] Train net output #141: loss3/loss17 = 0.0104301 (* 0.0909091 = 0.000948195 loss) | |
I0425 13:32:45.247831 22523 solver.cpp:245] Train net output #142: loss3/loss18 = 0.00654719 (* 0.0909091 = 0.000595199 loss) | |
I0425 13:32:45.247845 22523 solver.cpp:245] Train net output #143: loss3/loss19 = 0.00369309 (* 0.0909091 = 0.000335735 loss) | |
I0425 13:32:45.247864 22523 solver.cpp:245] Train net output #144: loss3/loss20 = 0.00209207 (* 0.0909091 = 0.000190188 loss) | |
I0425 13:32:45.247879 22523 solver.cpp:245] Train net output #145: loss3/loss21 = 0.000664203 (* 0.0909091 = 6.03821e-05 loss) | |
I0425 13:32:45.247894 22523 solver.cpp:245] Train net output #146: loss3/loss22 = 0.00012621 (* 0.0909091 = 1.14736e-05 loss) | |
I0425 13:32:45.247905 22523 solver.cpp:245] Train net output #147: total_accuracy = 0.5 | |
I0425 13:32:45.247917 22523 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.5 | |
I0425 13:32:45.247938 22523 solver.cpp:245] Train net output #149: total_confidence = 0.380139 | |
I0425 13:32:45.247951 22523 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.318278 | |
I0425 13:32:45.247969 22523 sgd_solver.cpp:106] Iteration 17500, lr = 0.01 | |
I0425 13:38:26.554471 22523 solver.cpp:229] Iteration 18000, loss = 3.04545 | |
I0425 13:38:26.554606 22523 solver.cpp:245] Train net output #0: loss1/accuracy = 0.492308 | |
I0425 13:38:26.554628 22523 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.625 | |
I0425 13:38:26.554641 22523 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5 | |
I0425 13:38:26.554654 22523 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.25 | |
I0425 13:38:26.554667 22523 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.25 | |
I0425 13:38:26.554679 22523 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.25 | |
I0425 13:38:26.554692 22523 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.5 | |
I0425 13:38:26.554705 22523 solver.cpp:245] Train net output #7: loss1/accuracy07 = 1 | |
I0425 13:38:26.554718 22523 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.75 | |
I0425 13:38:26.554731 22523 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.75 | |
I0425 13:38:26.554744 22523 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.75 | |
I0425 13:38:26.554757 22523 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.75 | |
I0425 13:38:26.554770 22523 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.75 | |
I0425 13:38:26.554783 22523 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.75 | |
I0425 13:38:26.554796 22523 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.875 | |
I0425 13:38:26.554816 22523 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.875 | |
I0425 13:38:26.554828 22523 solver.cpp:245] Train net output #16: loss1/accuracy16 = 0.875 | |
I0425 13:38:26.554841 22523 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0425 13:38:26.554852 22523 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0425 13:38:26.554864 22523 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0425 13:38:26.554884 22523 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0425 13:38:26.554896 22523 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0425 13:38:26.554908 22523 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0425 13:38:26.554920 22523 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.801136 | |
I0425 13:38:26.554934 22523 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.676923 | |
I0425 13:38:26.554951 22523 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.78659 (* 0.3 = 0.535978 loss) | |
I0425 13:38:26.554966 22523 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.718952 (* 0.3 = 0.215685 loss) | |
I0425 13:38:26.554982 22523 solver.cpp:245] Train net output #27: loss1/loss01 = 1.1396 (* 0.0272727 = 0.0310801 loss) | |
I0425 13:38:26.554996 22523 solver.cpp:245] Train net output #28: loss1/loss02 = 1.41149 (* 0.0272727 = 0.0384952 loss) | |
I0425 13:38:26.555011 22523 solver.cpp:245] Train net output #29: loss1/loss03 = 2.41112 (* 0.0272727 = 0.0657577 loss) | |
I0425 13:38:26.555027 22523 solver.cpp:245] Train net output #30: loss1/loss04 = 2.30017 (* 0.0272727 = 0.0627319 loss) | |
I0425 13:38:26.555040 22523 solver.cpp:245] Train net output #31: loss1/loss05 = 3.12983 (* 0.0272727 = 0.0853589 loss) | |
I0425 13:38:26.555055 22523 solver.cpp:245] Train net output #32: loss1/loss06 = 1.37843 (* 0.0272727 = 0.0375936 loss) | |
I0425 13:38:26.555069 22523 solver.cpp:245] Train net output #33: loss1/loss07 = 0.574854 (* 0.0272727 = 0.0156778 loss) | |
I0425 13:38:26.555084 22523 solver.cpp:245] Train net output #34: loss1/loss08 = 0.811857 (* 0.0272727 = 0.0221415 loss) | |
I0425 13:38:26.555099 22523 solver.cpp:245] Train net output #35: loss1/loss09 = 0.953621 (* 0.0272727 = 0.0260078 loss) | |
I0425 13:38:26.555114 22523 solver.cpp:245] Train net output #36: loss1/loss10 = 0.658587 (* 0.0272727 = 0.0179615 loss) | |
I0425 13:38:26.555130 22523 solver.cpp:245] Train net output #37: loss1/loss11 = 0.66968 (* 0.0272727 = 0.018264 loss) | |
I0425 13:38:26.555143 22523 solver.cpp:245] Train net output #38: loss1/loss12 = 1.23542 (* 0.0272727 = 0.0336933 loss) | |
I0425 13:38:26.555176 22523 solver.cpp:245] Train net output #39: loss1/loss13 = 1.30978 (* 0.0272727 = 0.0357214 loss) | |
I0425 13:38:26.555192 22523 solver.cpp:245] Train net output #40: loss1/loss14 = 1.1298 (* 0.0272727 = 0.0308126 loss) | |
I0425 13:38:26.555217 22523 solver.cpp:245] Train net output #41: loss1/loss15 = 0.980029 (* 0.0272727 = 0.0267281 loss) | |
I0425 13:38:26.555232 22523 solver.cpp:245] Train net output #42: loss1/loss16 = 1.06391 (* 0.0272727 = 0.0290159 loss) | |
I0425 13:38:26.555246 22523 solver.cpp:245] Train net output #43: loss1/loss17 = 0.0396864 (* 0.0272727 = 0.00108236 loss) | |
I0425 13:38:26.555261 22523 solver.cpp:245] Train net output #44: loss1/loss18 = 0.0255979 (* 0.0272727 = 0.000698124 loss) | |
I0425 13:38:26.555279 22523 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00778794 (* 0.0272727 = 0.000212398 loss) | |
I0425 13:38:26.555294 22523 solver.cpp:245] Train net output #46: loss1/loss20 = 0.00576334 (* 0.0272727 = 0.000157182 loss) | |
I0425 13:38:26.555308 22523 solver.cpp:245] Train net output #47: loss1/loss21 = 0.00198509 (* 0.0272727 = 5.41388e-05 loss) | |
I0425 13:38:26.555322 22523 solver.cpp:245] Train net output #48: loss1/loss22 = 0.00132333 (* 0.0272727 = 3.60909e-05 loss) | |
I0425 13:38:26.555335 22523 solver.cpp:245] Train net output #49: loss2/accuracy = 0.6 | |
I0425 13:38:26.555347 22523 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.75 | |
I0425 13:38:26.555378 22523 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.875 | |
I0425 13:38:26.555392 22523 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.375 | |
I0425 13:38:26.555402 22523 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.375 | |
I0425 13:38:26.555414 22523 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.25 | |
I0425 13:38:26.555426 22523 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.375 | |
I0425 13:38:26.555438 22523 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.875 | |
I0425 13:38:26.555450 22523 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.75 | |
I0425 13:38:26.555462 22523 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.75 | |
I0425 13:38:26.555474 22523 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875 | |
I0425 13:38:26.555485 22523 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.75 | |
I0425 13:38:26.555497 22523 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.75 | |
I0425 13:38:26.555510 22523 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.75 | |
I0425 13:38:26.555521 22523 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.875 | |
I0425 13:38:26.555532 22523 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.875 | |
I0425 13:38:26.555544 22523 solver.cpp:245] Train net output #65: loss2/accuracy16 = 0.875 | |
I0425 13:38:26.555557 22523 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0425 13:38:26.555568 22523 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0425 13:38:26.555579 22523 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0425 13:38:26.555590 22523 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0425 13:38:26.555603 22523 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0425 13:38:26.555616 22523 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0425 13:38:26.555629 22523 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.840909 | |
I0425 13:38:26.555641 22523 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.815385 | |
I0425 13:38:26.555655 22523 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.26428 (* 0.3 = 0.379285 loss) | |
I0425 13:38:26.555670 22523 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.508539 (* 0.3 = 0.152562 loss) | |
I0425 13:38:26.555685 22523 solver.cpp:245] Train net output #76: loss2/loss01 = 0.601154 (* 0.0272727 = 0.0163951 loss) | |
I0425 13:38:26.555698 22523 solver.cpp:245] Train net output #77: loss2/loss02 = 0.498716 (* 0.0272727 = 0.0136013 loss) | |
I0425 13:38:26.555726 22523 solver.cpp:245] Train net output #78: loss2/loss03 = 1.54 (* 0.0272727 = 0.0420001 loss) | |
I0425 13:38:26.555742 22523 solver.cpp:245] Train net output #79: loss2/loss04 = 1.68323 (* 0.0272727 = 0.0459062 loss) | |
I0425 13:38:26.555755 22523 solver.cpp:245] Train net output #80: loss2/loss05 = 2.06375 (* 0.0272727 = 0.0562841 loss) | |
I0425 13:38:26.555770 22523 solver.cpp:245] Train net output #81: loss2/loss06 = 2.13765 (* 0.0272727 = 0.0582996 loss) | |
I0425 13:38:26.555784 22523 solver.cpp:245] Train net output #82: loss2/loss07 = 0.722932 (* 0.0272727 = 0.0197163 loss) | |
I0425 13:38:26.555799 22523 solver.cpp:245] Train net output #83: loss2/loss08 = 0.859749 (* 0.0272727 = 0.0234477 loss) | |
I0425 13:38:26.555812 22523 solver.cpp:245] Train net output #84: loss2/loss09 = 0.791787 (* 0.0272727 = 0.0215942 loss) | |
I0425 13:38:26.555826 22523 solver.cpp:245] Train net output #85: loss2/loss10 = 0.668196 (* 0.0272727 = 0.0182235 loss) | |
I0425 13:38:26.555841 22523 solver.cpp:245] Train net output #86: loss2/loss11 = 0.803021 (* 0.0272727 = 0.0219006 loss) | |
I0425 13:38:26.555855 22523 solver.cpp:245] Train net output #87: loss2/loss12 = 1.06889 (* 0.0272727 = 0.0291514 loss) | |
I0425 13:38:26.555869 22523 solver.cpp:245] Train net output #88: loss2/loss13 = 1.04155 (* 0.0272727 = 0.0284058 loss) | |
I0425 13:38:26.555883 22523 solver.cpp:245] Train net output #89: loss2/loss14 = 0.904856 (* 0.0272727 = 0.0246779 loss) | |
I0425 13:38:26.555897 22523 solver.cpp:245] Train net output #90: loss2/loss15 = 0.637379 (* 0.0272727 = 0.0173831 loss) | |
I0425 13:38:26.555912 22523 solver.cpp:245] Train net output #91: loss2/loss16 = 0.794557 (* 0.0272727 = 0.0216697 loss) | |
I0425 13:38:26.555927 22523 solver.cpp:245] Train net output #92: loss2/loss17 = 0.0168686 (* 0.0272727 = 0.000460052 loss) | |
I0425 13:38:26.555940 22523 solver.cpp:245] Train net output #93: loss2/loss18 = 0.00704704 (* 0.0272727 = 0.000192192 loss) | |
I0425 13:38:26.555955 22523 solver.cpp:245] Train net output #94: loss2/loss19 = 0.0047394 (* 0.0272727 = 0.000129256 loss) | |
I0425 13:38:26.555969 22523 solver.cpp:245] Train net output #95: loss2/loss20 = 0.0024592 (* 0.0272727 = 6.70692e-05 loss) | |
I0425 13:38:26.555984 22523 solver.cpp:245] Train net output #96: loss2/loss21 = 0.000996521 (* 0.0272727 = 2.71779e-05 loss) | |
I0425 13:38:26.555999 22523 solver.cpp:245] Train net output #97: loss2/loss22 = 0.00058141 (* 0.0272727 = 1.58566e-05 loss) | |
I0425 13:38:26.556011 22523 solver.cpp:245] Train net output #98: loss3/accuracy = 0.769231 | |
I0425 13:38:26.556023 22523 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875 | |
I0425 13:38:26.556035 22523 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1 | |
I0425 13:38:26.556046 22523 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.875 | |
I0425 13:38:26.556058 22523 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875 | |
I0425 13:38:26.556069 22523 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.75 | |
I0425 13:38:26.556082 22523 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.875 | |
I0425 13:38:26.556094 22523 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75 | |
I0425 13:38:26.556107 22523 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.75 | |
I0425 13:38:26.556118 22523 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.75 | |
I0425 13:38:26.556130 22523 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875 | |
I0425 13:38:26.556141 22523 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.875 | |
I0425 13:38:26.556156 22523 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.75 | |
I0425 13:38:26.556167 22523 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.75 | |
I0425 13:38:26.556180 22523 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.875 | |
I0425 13:38:26.556190 22523 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.875 | |
I0425 13:38:26.556202 22523 solver.cpp:245] Train net output #114: loss3/accuracy16 = 0.875 | |
I0425 13:38:26.556226 22523 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0425 13:38:26.556238 22523 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0425 13:38:26.556253 22523 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0425 13:38:26.556265 22523 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0425 13:38:26.556277 22523 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0425 13:38:26.556289 22523 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0425 13:38:26.556300 22523 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.909091 | |
I0425 13:38:26.556313 22523 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.907692 | |
I0425 13:38:26.556326 22523 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.853065 (* 1 = 0.853065 loss) | |
I0425 13:38:26.556340 22523 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.323376 (* 1 = 0.323376 loss) | |
I0425 13:38:26.556355 22523 solver.cpp:245] Train net output #125: loss3/loss01 = 0.260802 (* 0.0909091 = 0.0237092 loss) | |
I0425 13:38:26.556370 22523 solver.cpp:245] Train net output #126: loss3/loss02 = 0.249845 (* 0.0909091 = 0.0227132 loss) | |
I0425 13:38:26.556383 22523 solver.cpp:245] Train net output #127: loss3/loss03 = 0.380742 (* 0.0909091 = 0.0346129 loss) | |
I0425 13:38:26.556397 22523 solver.cpp:245] Train net output #128: loss3/loss04 = 0.514833 (* 0.0909091 = 0.046803 loss) | |
I0425 13:38:26.556411 22523 solver.cpp:245] Train net output #129: loss3/loss05 = 0.939624 (* 0.0909091 = 0.0854204 loss) | |
I0425 13:38:26.556422 22523 solver.cpp:245] Train net output #130: loss3/loss06 = 0.501876 (* 0.0909091 = 0.0456251 loss) | |
I0425 13:38:26.556432 22523 solver.cpp:245] Train net output #131: loss3/loss07 = 0.642708 (* 0.0909091 = 0.058428 loss) | |
I0425 13:38:26.556445 22523 solver.cpp:245] Train net output #132: loss3/loss08 = 0.955395 (* 0.0909091 = 0.0868541 loss) | |
I0425 13:38:26.556459 22523 solver.cpp:245] Train net output #133: loss3/loss09 = 0.905283 (* 0.0909091 = 0.0822984 loss) | |
I0425 13:38:26.556473 22523 solver.cpp:245] Train net output #134: loss3/loss10 = 0.412064 (* 0.0909091 = 0.0374603 loss) | |
I0425 13:38:26.556488 22523 solver.cpp:245] Train net output #135: loss3/loss11 = 0.475898 (* 0.0909091 = 0.0432635 loss) | |
I0425 13:38:26.556501 22523 solver.cpp:245] Train net output #136: loss3/loss12 = 0.876967 (* 0.0909091 = 0.0797243 loss) | |
I0425 13:38:26.556515 22523 solver.cpp:245] Train net output #137: loss3/loss13 = 1.07847 (* 0.0909091 = 0.0980423 loss) | |
I0425 13:38:26.556529 22523 solver.cpp:245] Train net output #138: loss3/loss14 = 0.672419 (* 0.0909091 = 0.061129 loss) | |
I0425 13:38:26.556542 22523 solver.cpp:245] Train net output #139: loss3/loss15 = 0.471672 (* 0.0909091 = 0.0428793 loss) | |
I0425 13:38:26.556556 22523 solver.cpp:245] Train net output #140: loss3/loss16 = 0.600521 (* 0.0909091 = 0.0545928 loss) | |
I0425 13:38:26.556571 22523 solver.cpp:245] Train net output #141: loss3/loss17 = 0.0175041 (* 0.0909091 = 0.00159128 loss) | |
I0425 13:38:26.556584 22523 solver.cpp:245] Train net output #142: loss3/loss18 = 0.0147399 (* 0.0909091 = 0.00133999 loss) | |
I0425 13:38:26.556598 22523 solver.cpp:245] Train net output #143: loss3/loss19 = 0.00771243 (* 0.0909091 = 0.00070113 loss) | |
I0425 13:38:26.556612 22523 solver.cpp:245] Train net output #144: loss3/loss20 = 0.0029253 (* 0.0909091 = 0.000265936 loss) | |
I0425 13:38:26.556627 22523 solver.cpp:245] Train net output #145: loss3/loss21 = 0.00169316 (* 0.0909091 = 0.000153924 loss) | |
I0425 13:38:26.556641 22523 solver.cpp:245] Train net output #146: loss3/loss22 = 0.0001496 (* 0.0909091 = 1.36e-05 loss) | |
I0425 13:38:26.556653 22523 solver.cpp:245] Train net output #147: total_accuracy = 0.625 | |
I0425 13:38:26.556668 22523 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.625 | |
I0425 13:38:26.556690 22523 solver.cpp:245] Train net output #149: total_confidence = 0.541295 | |
I0425 13:38:26.556704 22523 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.336203 | |
I0425 13:38:26.556718 22523 sgd_solver.cpp:106] Iteration 18000, lr = 0.01 | |
I0425 13:44:07.917062 22523 solver.cpp:229] Iteration 18500, loss = 3.07818 | |
I0425 13:44:07.917160 22523 solver.cpp:245] Train net output #0: loss1/accuracy = 0.467742 | |
I0425 13:44:07.917179 22523 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.625 | |
I0425 13:44:07.917193 22523 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.125 | |
I0425 13:44:07.917207 22523 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.625 | |
I0425 13:44:07.917218 22523 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375 | |
I0425 13:44:07.917232 22523 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.375 | |
I0425 13:44:07.917243 22523 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.5 | |
I0425 13:44:07.917256 22523 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.375 | |
I0425 13:44:07.917269 22523 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.625 | |
I0425 13:44:07.917281 22523 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.75 | |
I0425 13:44:07.917294 22523 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.75 | |
I0425 13:44:07.917305 22523 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.875 | |
I0425 13:44:07.917318 22523 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.875 | |
I0425 13:44:07.917330 22523 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.875 | |
I0425 13:44:07.917342 22523 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1 | |
I0425 13:44:07.917354 22523 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0425 13:44:07.917366 22523 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0425 13:44:07.917378 22523 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0425 13:44:07.917390 22523 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0425 13:44:07.917402 22523 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0425 13:44:07.917413 22523 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0425 13:44:07.917425 22523 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0425 13:44:07.917436 22523 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0425 13:44:07.917448 22523 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.801136 | |
I0425 13:44:07.917460 22523 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.741935 | |
I0425 13:44:07.917477 22523 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.67358 (* 0.3 = 0.502074 loss) | |
I0425 13:44:07.917492 22523 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.644438 (* 0.3 = 0.193332 loss) | |
I0425 13:44:07.917508 22523 solver.cpp:245] Train net output #27: loss1/loss01 = 1.20442 (* 0.0272727 = 0.0328478 loss) | |
I0425 13:44:07.917523 22523 solver.cpp:245] Train net output #28: loss1/loss02 = 2.00531 (* 0.0272727 = 0.0546903 loss) | |
I0425 13:44:07.917537 22523 solver.cpp:245] Train net output #29: loss1/loss03 = 1.24565 (* 0.0272727 = 0.0339724 loss) | |
I0425 13:44:07.917552 22523 solver.cpp:245] Train net output #30: loss1/loss04 = 1.75549 (* 0.0272727 = 0.0478771 loss) | |
I0425 13:44:07.917567 22523 solver.cpp:245] Train net output #31: loss1/loss05 = 2.22483 (* 0.0272727 = 0.0606771 loss) | |
I0425 13:44:07.917580 22523 solver.cpp:245] Train net output #32: loss1/loss06 = 2.09079 (* 0.0272727 = 0.0570215 loss) | |
I0425 13:44:07.917594 22523 solver.cpp:245] Train net output #33: loss1/loss07 = 2.12063 (* 0.0272727 = 0.0578353 loss) | |
I0425 13:44:07.917609 22523 solver.cpp:245] Train net output #34: loss1/loss08 = 1.13791 (* 0.0272727 = 0.0310339 loss) | |
I0425 13:44:07.917623 22523 solver.cpp:245] Train net output #35: loss1/loss09 = 0.576121 (* 0.0272727 = 0.0157124 loss) | |
I0425 13:44:07.917637 22523 solver.cpp:245] Train net output #36: loss1/loss10 = 0.623129 (* 0.0272727 = 0.0169944 loss) | |
I0425 13:44:07.917652 22523 solver.cpp:245] Train net output #37: loss1/loss11 = 0.563222 (* 0.0272727 = 0.0153606 loss) | |
I0425 13:44:07.917666 22523 solver.cpp:245] Train net output #38: loss1/loss12 = 0.486928 (* 0.0272727 = 0.0132799 loss) | |
I0425 13:44:07.917697 22523 solver.cpp:245] Train net output #39: loss1/loss13 = 0.699736 (* 0.0272727 = 0.0190837 loss) | |
I0425 13:44:07.917713 22523 solver.cpp:245] Train net output #40: loss1/loss14 = 0.0974413 (* 0.0272727 = 0.00265749 loss) | |
I0425 13:44:07.917728 22523 solver.cpp:245] Train net output #41: loss1/loss15 = 0.0307395 (* 0.0272727 = 0.000838349 loss) | |
I0425 13:44:07.917742 22523 solver.cpp:245] Train net output #42: loss1/loss16 = 0.0122266 (* 0.0272727 = 0.000333453 loss) | |
I0425 13:44:07.917757 22523 solver.cpp:245] Train net output #43: loss1/loss17 = 0.00626548 (* 0.0272727 = 0.000170877 loss) | |
I0425 13:44:07.917771 22523 solver.cpp:245] Train net output #44: loss1/loss18 = 0.00181499 (* 0.0272727 = 4.94997e-05 loss) | |
I0425 13:44:07.917786 22523 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00095361 (* 0.0272727 = 2.60075e-05 loss) | |
I0425 13:44:07.917800 22523 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000263477 (* 0.0272727 = 7.18573e-06 loss) | |
I0425 13:44:07.917815 22523 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000374791 (* 0.0272727 = 1.02216e-05 loss) | |
I0425 13:44:07.917829 22523 solver.cpp:245] Train net output #48: loss1/loss22 = 0.00028912 (* 0.0272727 = 7.8851e-06 loss) | |
I0425 13:44:07.917842 22523 solver.cpp:245] Train net output #49: loss2/accuracy = 0.612903 | |
I0425 13:44:07.917855 22523 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875 | |
I0425 13:44:07.917866 22523 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.625 | |
I0425 13:44:07.917877 22523 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.75 | |
I0425 13:44:07.917889 22523 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.625 | |
I0425 13:44:07.917901 22523 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.625 | |
I0425 13:44:07.917912 22523 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.25 | |
I0425 13:44:07.917924 22523 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.25 | |
I0425 13:44:07.917935 22523 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.625 | |
I0425 13:44:07.917950 22523 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.75 | |
I0425 13:44:07.917963 22523 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.75 | |
I0425 13:44:07.917974 22523 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.875 | |
I0425 13:44:07.917985 22523 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.875 | |
I0425 13:44:07.917997 22523 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.875 | |
I0425 13:44:07.918009 22523 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1 | |
I0425 13:44:07.918020 22523 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0425 13:44:07.918031 22523 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0425 13:44:07.918042 22523 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0425 13:44:07.918054 22523 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0425 13:44:07.918066 22523 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0425 13:44:07.918076 22523 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0425 13:44:07.918088 22523 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0425 13:44:07.918099 22523 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0425 13:44:07.918112 22523 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.846591 | |
I0425 13:44:07.918123 22523 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.83871 | |
I0425 13:44:07.918138 22523 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.14872 (* 0.3 = 0.344616 loss) | |
I0425 13:44:07.918150 22523 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.473671 (* 0.3 = 0.142101 loss) | |
I0425 13:44:07.918164 22523 solver.cpp:245] Train net output #76: loss2/loss01 = 0.663775 (* 0.0272727 = 0.018103 loss) | |
I0425 13:44:07.918179 22523 solver.cpp:245] Train net output #77: loss2/loss02 = 0.992117 (* 0.0272727 = 0.0270577 loss) | |
I0425 13:44:07.918207 22523 solver.cpp:245] Train net output #78: loss2/loss03 = 0.892658 (* 0.0272727 = 0.0243452 loss) | |
I0425 13:44:07.918223 22523 solver.cpp:245] Train net output #79: loss2/loss04 = 1.27891 (* 0.0272727 = 0.0348793 loss) | |
I0425 13:44:07.918237 22523 solver.cpp:245] Train net output #80: loss2/loss05 = 1.59892 (* 0.0272727 = 0.0436069 loss) | |
I0425 13:44:07.918251 22523 solver.cpp:245] Train net output #81: loss2/loss06 = 2.08982 (* 0.0272727 = 0.0569952 loss) | |
I0425 13:44:07.918264 22523 solver.cpp:245] Train net output #82: loss2/loss07 = 1.29298 (* 0.0272727 = 0.0352631 loss) | |
I0425 13:44:07.918278 22523 solver.cpp:245] Train net output #83: loss2/loss08 = 1.56187 (* 0.0272727 = 0.0425964 loss) | |
I0425 13:44:07.918292 22523 solver.cpp:245] Train net output #84: loss2/loss09 = 0.699939 (* 0.0272727 = 0.0190893 loss) | |
I0425 13:44:07.918306 22523 solver.cpp:245] Train net output #85: loss2/loss10 = 0.508988 (* 0.0272727 = 0.0138815 loss) | |
I0425 13:44:07.918320 22523 solver.cpp:245] Train net output #86: loss2/loss11 = 0.798623 (* 0.0272727 = 0.0217806 loss) | |
I0425 13:44:07.918335 22523 solver.cpp:245] Train net output #87: loss2/loss12 = 0.364502 (* 0.0272727 = 0.00994097 loss) | |
I0425 13:44:07.918349 22523 solver.cpp:245] Train net output #88: loss2/loss13 = 1.02741 (* 0.0272727 = 0.0280202 loss) | |
I0425 13:44:07.918364 22523 solver.cpp:245] Train net output #89: loss2/loss14 = 0.00756181 (* 0.0272727 = 0.000206231 loss) | |
I0425 13:44:07.918377 22523 solver.cpp:245] Train net output #90: loss2/loss15 = 0.00274078 (* 0.0272727 = 7.47486e-05 loss) | |
I0425 13:44:07.918391 22523 solver.cpp:245] Train net output #91: loss2/loss16 = 0.00155118 (* 0.0272727 = 4.23048e-05 loss) | |
I0425 13:44:07.918406 22523 solver.cpp:245] Train net output #92: loss2/loss17 = 0.000628321 (* 0.0272727 = 1.7136e-05 loss) | |
I0425 13:44:07.918421 22523 solver.cpp:245] Train net output #93: loss2/loss18 = 0.00037509 (* 0.0272727 = 1.02297e-05 loss) | |
I0425 13:44:07.918434 22523 solver.cpp:245] Train net output #94: loss2/loss19 = 0.000196824 (* 0.0272727 = 5.36791e-06 loss) | |
I0425 13:44:07.918448 22523 solver.cpp:245] Train net output #95: loss2/loss20 = 8.88347e-05 (* 0.0272727 = 2.42276e-06 loss) | |
I0425 13:44:07.918463 22523 solver.cpp:245] Train net output #96: loss2/loss21 = 8.56736e-05 (* 0.0272727 = 2.33655e-06 loss) | |
I0425 13:44:07.918478 22523 solver.cpp:245] Train net output #97: loss2/loss22 = 2.19503e-05 (* 0.0272727 = 5.98645e-07 loss) | |
I0425 13:44:07.918489 22523 solver.cpp:245] Train net output #98: loss3/accuracy = 0.822581 | |
I0425 13:44:07.918501 22523 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1 | |
I0425 13:44:07.918514 22523 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1 | |
I0425 13:44:07.918525 22523 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.875 | |
I0425 13:44:07.918537 22523 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875 | |
I0425 13:44:07.918548 22523 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875 | |
I0425 13:44:07.918560 22523 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.75 | |
I0425 13:44:07.918571 22523 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.375 | |
I0425 13:44:07.918583 22523 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.75 | |
I0425 13:44:07.918596 22523 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875 | |
I0425 13:44:07.918606 22523 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875 | |
I0425 13:44:07.918618 22523 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.875 | |
I0425 13:44:07.918629 22523 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.875 | |
I0425 13:44:07.918642 22523 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.875 | |
I0425 13:44:07.918653 22523 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1 | |
I0425 13:44:07.918664 22523 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0425 13:44:07.918685 22523 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0425 13:44:07.918699 22523 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0425 13:44:07.918710 22523 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0425 13:44:07.918721 22523 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0425 13:44:07.918733 22523 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0425 13:44:07.918745 22523 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0425 13:44:07.918756 22523 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0425 13:44:07.918768 22523 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.914773 | |
I0425 13:44:07.918781 22523 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.935484 | |
I0425 13:44:07.918793 22523 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.539621 (* 1 = 0.539621 loss) | |
I0425 13:44:07.918807 22523 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.259453 (* 1 = 0.259453 loss) | |
I0425 13:44:07.918823 22523 solver.cpp:245] Train net output #125: loss3/loss01 = 0.107486 (* 0.0909091 = 0.00977144 loss) | |
I0425 13:44:07.918836 22523 solver.cpp:245] Train net output #126: loss3/loss02 = 0.16671 (* 0.0909091 = 0.0151554 loss) | |
I0425 13:44:07.918850 22523 solver.cpp:245] Train net output #127: loss3/loss03 = 0.35226 (* 0.0909091 = 0.0320236 loss) | |
I0425 13:44:07.918864 22523 solver.cpp:245] Train net output #128: loss3/loss04 = 0.331346 (* 0.0909091 = 0.0301224 loss) | |
I0425 13:44:07.918879 22523 solver.cpp:245] Train net output #129: loss3/loss05 = 0.438777 (* 0.0909091 = 0.0398888 loss) | |
I0425 13:44:07.918889 22523 solver.cpp:245] Train net output #130: loss3/loss06 = 0.568211 (* 0.0909091 = 0.0516555 loss) | |
I0425 13:44:07.918897 22523 solver.cpp:245] Train net output #131: loss3/loss07 = 1.05776 (* 0.0909091 = 0.0961602 loss) | |
I0425 13:44:07.918912 22523 solver.cpp:245] Train net output #132: loss3/loss08 = 0.53773 (* 0.0909091 = 0.0488845 loss) | |
I0425 13:44:07.918926 22523 solver.cpp:245] Train net output #133: loss3/loss09 = 0.455022 (* 0.0909091 = 0.0413657 loss) | |
I0425 13:44:07.918941 22523 solver.cpp:245] Train net output #134: loss3/loss10 = 0.441544 (* 0.0909091 = 0.0401403 loss) | |
I0425 13:44:07.918953 22523 solver.cpp:245] Train net output #135: loss3/loss11 = 0.66023 (* 0.0909091 = 0.0600209 loss) | |
I0425 13:44:07.918967 22523 solver.cpp:245] Train net output #136: loss3/loss12 = 0.47434 (* 0.0909091 = 0.0431218 loss) | |
I0425 13:44:07.918982 22523 solver.cpp:245] Train net output #137: loss3/loss13 = 0.707633 (* 0.0909091 = 0.0643303 loss) | |
I0425 13:44:07.918998 22523 solver.cpp:245] Train net output #138: loss3/loss14 = 0.0450264 (* 0.0909091 = 0.00409331 loss) | |
I0425 13:44:07.919013 22523 solver.cpp:245] Train net output #139: loss3/loss15 = 0.0251889 (* 0.0909091 = 0.0022899 loss) | |
I0425 13:44:07.919026 22523 solver.cpp:245] Train net output #140: loss3/loss16 = 0.00910946 (* 0.0909091 = 0.000828133 loss) | |
I0425 13:44:07.919040 22523 solver.cpp:245] Train net output #141: loss3/loss17 = 0.00491309 (* 0.0909091 = 0.000446645 loss) | |
I0425 13:44:07.919054 22523 solver.cpp:245] Train net output #142: loss3/loss18 = 0.00255116 (* 0.0909091 = 0.000231923 loss) | |
I0425 13:44:07.919069 22523 solver.cpp:245] Train net output #143: loss3/loss19 = 0.00201597 (* 0.0909091 = 0.00018327 loss) | |
I0425 13:44:07.919082 22523 solver.cpp:245] Train net output #144: loss3/loss20 = 0.00108683 (* 0.0909091 = 9.88023e-05 loss) | |
I0425 13:44:07.919096 22523 solver.cpp:245] Train net output #145: loss3/loss21 = 0.000521924 (* 0.0909091 = 4.74477e-05 loss) | |
I0425 13:44:07.919111 22523 solver.cpp:245] Train net output #146: loss3/loss22 = 4.63689e-05 (* 0.0909091 = 4.21536e-06 loss) | |
I0425 13:44:07.919122 22523 solver.cpp:245] Train net output #147: total_accuracy = 0.5 | |
I0425 13:44:07.919134 22523 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.25 | |
I0425 13:44:07.919157 22523 solver.cpp:245] Train net output #149: total_confidence = 0.376691 | |
I0425 13:44:07.919169 22523 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.220297 | |
I0425 13:44:07.919183 22523 sgd_solver.cpp:106] Iteration 18500, lr = 0.01 | |
I0425 13:49:49.327728 22523 solver.cpp:229] Iteration 19000, loss = 3.1844 | |
I0425 13:49:49.327873 22523 solver.cpp:245] Train net output #0: loss1/accuracy = 0.40678 | |
I0425 13:49:49.327894 22523 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.875 | |
I0425 13:49:49.327908 22523 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.375 | |
I0425 13:49:49.327921 22523 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.25 | |
I0425 13:49:49.327934 22523 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.25 | |
I0425 13:49:49.327946 22523 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.375 | |
I0425 13:49:49.327960 22523 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.375 | |
I0425 13:49:49.327972 22523 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.625 | |
I0425 13:49:49.327986 22523 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.75 | |
I0425 13:49:49.327998 22523 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875 | |
I0425 13:49:49.328011 22523 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.75 | |
I0425 13:49:49.328023 22523 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.875 | |
I0425 13:49:49.328035 22523 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.875 | |
I0425 13:49:49.328048 22523 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.875 | |
I0425 13:49:49.328061 22523 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.875 | |
I0425 13:49:49.328073 22523 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.875 | |
I0425 13:49:49.328086 22523 solver.cpp:245] Train net output #16: loss1/accuracy16 = 0.875 | |
I0425 13:49:49.328099 22523 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0425 13:49:49.328119 22523 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0425 13:49:49.328130 22523 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0425 13:49:49.328142 22523 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0425 13:49:49.328155 22523 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0425 13:49:49.328166 22523 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0425 13:49:49.328186 22523 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.795455 | |
I0425 13:49:49.328200 22523 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.644068 | |
I0425 13:49:49.328219 22523 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 2.00958 (* 0.3 = 0.602874 loss) | |
I0425 13:49:49.328235 22523 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.712749 (* 0.3 = 0.213825 loss) | |
I0425 13:49:49.328250 22523 solver.cpp:245] Train net output #27: loss1/loss01 = 0.715559 (* 0.0272727 = 0.0195152 loss) | |
I0425 13:49:49.328265 22523 solver.cpp:245] Train net output #28: loss1/loss02 = 1.94221 (* 0.0272727 = 0.0529693 loss) | |
I0425 13:49:49.328280 22523 solver.cpp:245] Train net output #29: loss1/loss03 = 2.06702 (* 0.0272727 = 0.0563734 loss) | |
I0425 13:49:49.328294 22523 solver.cpp:245] Train net output #30: loss1/loss04 = 2.06703 (* 0.0272727 = 0.0563736 loss) | |
I0425 13:49:49.328310 22523 solver.cpp:245] Train net output #31: loss1/loss05 = 2.65603 (* 0.0272727 = 0.0724371 loss) | |
I0425 13:49:49.328323 22523 solver.cpp:245] Train net output #32: loss1/loss06 = 2.0328 (* 0.0272727 = 0.05544 loss) | |
I0425 13:49:49.328338 22523 solver.cpp:245] Train net output #33: loss1/loss07 = 1.51304 (* 0.0272727 = 0.0412646 loss) | |
I0425 13:49:49.328352 22523 solver.cpp:245] Train net output #34: loss1/loss08 = 0.714674 (* 0.0272727 = 0.0194911 loss) | |
I0425 13:49:49.328367 22523 solver.cpp:245] Train net output #35: loss1/loss09 = 0.388604 (* 0.0272727 = 0.0105983 loss) | |
I0425 13:49:49.328382 22523 solver.cpp:245] Train net output #36: loss1/loss10 = 0.6532 (* 0.0272727 = 0.0178145 loss) | |
I0425 13:49:49.328397 22523 solver.cpp:245] Train net output #37: loss1/loss11 = 0.403367 (* 0.0272727 = 0.0110009 loss) | |
I0425 13:49:49.328411 22523 solver.cpp:245] Train net output #38: loss1/loss12 = 0.304633 (* 0.0272727 = 0.00830818 loss) | |
I0425 13:49:49.328444 22523 solver.cpp:245] Train net output #39: loss1/loss13 = 0.305394 (* 0.0272727 = 0.00832893 loss) | |
I0425 13:49:49.328460 22523 solver.cpp:245] Train net output #40: loss1/loss14 = 0.539471 (* 0.0272727 = 0.0147128 loss) | |
I0425 13:49:49.328475 22523 solver.cpp:245] Train net output #41: loss1/loss15 = 0.603229 (* 0.0272727 = 0.0164517 loss) | |
I0425 13:49:49.328490 22523 solver.cpp:245] Train net output #42: loss1/loss16 = 0.495365 (* 0.0272727 = 0.0135099 loss) | |
I0425 13:49:49.328505 22523 solver.cpp:245] Train net output #43: loss1/loss17 = 0.00187161 (* 0.0272727 = 5.10438e-05 loss) | |
I0425 13:49:49.328521 22523 solver.cpp:245] Train net output #44: loss1/loss18 = 0.00111558 (* 0.0272727 = 3.04249e-05 loss) | |
I0425 13:49:49.328536 22523 solver.cpp:245] Train net output #45: loss1/loss19 = 0.000366756 (* 0.0272727 = 1.00024e-05 loss) | |
I0425 13:49:49.328554 22523 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000232501 (* 0.0272727 = 6.34093e-06 loss) | |
I0425 13:49:49.328568 22523 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000139144 (* 0.0272727 = 3.79485e-06 loss) | |
I0425 13:49:49.328583 22523 solver.cpp:245] Train net output #48: loss1/loss22 = 3.82171e-05 (* 0.0272727 = 1.04228e-06 loss) | |
I0425 13:49:49.328595 22523 solver.cpp:245] Train net output #49: loss2/accuracy = 0.525424 | |
I0425 13:49:49.328614 22523 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875 | |
I0425 13:49:49.328626 22523 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75 | |
I0425 13:49:49.328637 22523 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.5 | |
I0425 13:49:49.328649 22523 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.375 | |
I0425 13:49:49.328661 22523 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.375 | |
I0425 13:49:49.328673 22523 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.5 | |
I0425 13:49:49.328685 22523 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.625 | |
I0425 13:49:49.328696 22523 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.75 | |
I0425 13:49:49.328708 22523 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875 | |
I0425 13:49:49.328721 22523 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.75 | |
I0425 13:49:49.328732 22523 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.875 | |
I0425 13:49:49.328742 22523 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.875 | |
I0425 13:49:49.328754 22523 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.875 | |
I0425 13:49:49.328766 22523 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.875 | |
I0425 13:49:49.328778 22523 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.875 | |
I0425 13:49:49.328789 22523 solver.cpp:245] Train net output #65: loss2/accuracy16 = 0.875 | |
I0425 13:49:49.328800 22523 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0425 13:49:49.328811 22523 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0425 13:49:49.328824 22523 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0425 13:49:49.328835 22523 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0425 13:49:49.328845 22523 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0425 13:49:49.328857 22523 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0425 13:49:49.328868 22523 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.840909 | |
I0425 13:49:49.328881 22523 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.711864 | |
I0425 13:49:49.328897 22523 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.62947 (* 0.3 = 0.488841 loss) | |
I0425 13:49:49.328912 22523 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.558131 (* 0.3 = 0.167439 loss) | |
I0425 13:49:49.328927 22523 solver.cpp:245] Train net output #76: loss2/loss01 = 1.07045 (* 0.0272727 = 0.0291941 loss) | |
I0425 13:49:49.328941 22523 solver.cpp:245] Train net output #77: loss2/loss02 = 1.35405 (* 0.0272727 = 0.0369287 loss) | |
I0425 13:49:49.328968 22523 solver.cpp:245] Train net output #78: loss2/loss03 = 1.28761 (* 0.0272727 = 0.0351167 loss) | |
I0425 13:49:49.328982 22523 solver.cpp:245] Train net output #79: loss2/loss04 = 2.14289 (* 0.0272727 = 0.0584425 loss) | |
I0425 13:49:49.328996 22523 solver.cpp:245] Train net output #80: loss2/loss05 = 2.49391 (* 0.0272727 = 0.0680157 loss) | |
I0425 13:49:49.329010 22523 solver.cpp:245] Train net output #81: loss2/loss06 = 2.05662 (* 0.0272727 = 0.0560896 loss) | |
I0425 13:49:49.329025 22523 solver.cpp:245] Train net output #82: loss2/loss07 = 1.2778 (* 0.0272727 = 0.0348492 loss) | |
I0425 13:49:49.329038 22523 solver.cpp:245] Train net output #83: loss2/loss08 = 0.801185 (* 0.0272727 = 0.0218505 loss) | |
I0425 13:49:49.329052 22523 solver.cpp:245] Train net output #84: loss2/loss09 = 0.337033 (* 0.0272727 = 0.00919181 loss) | |
I0425 13:49:49.329067 22523 solver.cpp:245] Train net output #85: loss2/loss10 = 0.615813 (* 0.0272727 = 0.0167949 loss) | |
I0425 13:49:49.329082 22523 solver.cpp:245] Train net output #86: loss2/loss11 = 0.406691 (* 0.0272727 = 0.0110916 loss) | |
I0425 13:49:49.329097 22523 solver.cpp:245] Train net output #87: loss2/loss12 = 0.304124 (* 0.0272727 = 0.00829429 loss) | |
I0425 13:49:49.329110 22523 solver.cpp:245] Train net output #88: loss2/loss13 = 0.434197 (* 0.0272727 = 0.0118417 loss) | |
I0425 13:49:49.329125 22523 solver.cpp:245] Train net output #89: loss2/loss14 = 0.616068 (* 0.0272727 = 0.0168018 loss) | |
I0425 13:49:49.329139 22523 solver.cpp:245] Train net output #90: loss2/loss15 = 0.529939 (* 0.0272727 = 0.0144529 loss) | |
I0425 13:49:49.329154 22523 solver.cpp:245] Train net output #91: loss2/loss16 = 0.321061 (* 0.0272727 = 0.0087562 loss) | |
I0425 13:49:49.329169 22523 solver.cpp:245] Train net output #92: loss2/loss17 = 0.0124103 (* 0.0272727 = 0.000338464 loss) | |
I0425 13:49:49.329182 22523 solver.cpp:245] Train net output #93: loss2/loss18 = 0.00571114 (* 0.0272727 = 0.000155758 loss) | |
I0425 13:49:49.329197 22523 solver.cpp:245] Train net output #94: loss2/loss19 = 0.00511449 (* 0.0272727 = 0.000139486 loss) | |
I0425 13:49:49.329211 22523 solver.cpp:245] Train net output #95: loss2/loss20 = 0.00265556 (* 0.0272727 = 7.24242e-05 loss) | |
I0425 13:49:49.329226 22523 solver.cpp:245] Train net output #96: loss2/loss21 = 0.000946432 (* 0.0272727 = 2.58118e-05 loss) | |
I0425 13:49:49.329241 22523 solver.cpp:245] Train net output #97: loss2/loss22 = 0.000961497 (* 0.0272727 = 2.62226e-05 loss) | |
I0425 13:49:49.329255 22523 solver.cpp:245] Train net output #98: loss3/accuracy = 0.627119 | |
I0425 13:49:49.329268 22523 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875 | |
I0425 13:49:49.329279 22523 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875 | |
I0425 13:49:49.329291 22523 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.875 | |
I0425 13:49:49.329303 22523 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.625 | |
I0425 13:49:49.329314 22523 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.625 | |
I0425 13:49:49.329326 22523 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.625 | |
I0425 13:49:49.329339 22523 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75 | |
I0425 13:49:49.329349 22523 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.75 | |
I0425 13:49:49.329361 22523 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875 | |
I0425 13:49:49.329373 22523 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.75 | |
I0425 13:49:49.329385 22523 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.875 | |
I0425 13:49:49.329396 22523 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1 | |
I0425 13:49:49.329407 22523 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.875 | |
I0425 13:49:49.329419 22523 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.875 | |
I0425 13:49:49.329430 22523 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.875 | |
I0425 13:49:49.329453 22523 solver.cpp:245] Train net output #114: loss3/accuracy16 = 0.875 | |
I0425 13:49:49.329466 22523 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0425 13:49:49.329478 22523 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0425 13:49:49.329489 22523 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0425 13:49:49.329501 22523 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0425 13:49:49.329514 22523 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0425 13:49:49.329524 22523 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0425 13:49:49.329536 22523 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.875 | |
I0425 13:49:49.329548 22523 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.79661 | |
I0425 13:49:49.329563 22523 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.41658 (* 1 = 1.41658 loss) | |
I0425 13:49:49.329577 22523 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.490018 (* 1 = 0.490018 loss) | |
I0425 13:49:49.329592 22523 solver.cpp:245] Train net output #125: loss3/loss01 = 1.19607 (* 0.0909091 = 0.108734 loss) | |
I0425 13:49:49.329607 22523 solver.cpp:245] Train net output #126: loss3/loss02 = 0.910457 (* 0.0909091 = 0.0827688 loss) | |
I0425 13:49:49.329620 22523 solver.cpp:245] Train net output #127: loss3/loss03 = 0.373776 (* 0.0909091 = 0.0339796 loss) | |
I0425 13:49:49.329634 22523 solver.cpp:245] Train net output #128: loss3/loss04 = 1.37284 (* 0.0909091 = 0.124803 loss) | |
I0425 13:49:49.329649 22523 solver.cpp:245] Train net output #129: loss3/loss05 = 1.31527 (* 0.0909091 = 0.11957 loss) | |
I0425 13:49:49.329663 22523 solver.cpp:245] Train net output #130: loss3/loss06 = 1.29 (* 0.0909091 = 0.117272 loss) | |
I0425 13:49:49.329677 22523 solver.cpp:245] Train net output #131: loss3/loss07 = 1.17253 (* 0.0909091 = 0.106594 loss) | |
I0425 13:49:49.329691 22523 solver.cpp:245] Train net output #132: loss3/loss08 = 0.6161 (* 0.0909091 = 0.0560091 loss) | |
I0425 13:49:49.329705 22523 solver.cpp:245] Train net output #133: loss3/loss09 = 0.465734 (* 0.0909091 = 0.0423395 loss) | |
I0425 13:49:49.329720 22523 solver.cpp:245] Train net output #134: loss3/loss10 = 0.578111 (* 0.0909091 = 0.0525555 loss) | |
I0425 13:49:49.329735 22523 solver.cpp:245] Train net output #135: loss3/loss11 = 0.362855 (* 0.0909091 = 0.0329868 loss) | |
I0425 13:49:49.329748 22523 solver.cpp:245] Train net output #136: loss3/loss12 = 0.280526 (* 0.0909091 = 0.0255024 loss) | |
I0425 13:49:49.329762 22523 solver.cpp:245] Train net output #137: loss3/loss13 = 0.354931 (* 0.0909091 = 0.0322665 loss) | |
I0425 13:49:49.329777 22523 solver.cpp:245] Train net output #138: loss3/loss14 = 0.558084 (* 0.0909091 = 0.0507349 loss) | |
I0425 13:49:49.329792 22523 solver.cpp:245] Train net output #139: loss3/loss15 = 0.451204 (* 0.0909091 = 0.0410186 loss) | |
I0425 13:49:49.329802 22523 solver.cpp:245] Train net output #140: loss3/loss16 = 0.345899 (* 0.0909091 = 0.0314454 loss) | |
I0425 13:49:49.329816 22523 solver.cpp:245] Train net output #141: loss3/loss17 = 0.0117741 (* 0.0909091 = 0.00107037 loss) | |
I0425 13:49:49.329830 22523 solver.cpp:245] Train net output #142: loss3/loss18 = 0.00645263 (* 0.0909091 = 0.000586603 loss) | |
I0425 13:49:49.329844 22523 solver.cpp:245] Train net output #143: loss3/loss19 = 0.0024103 (* 0.0909091 = 0.000219119 loss) | |
I0425 13:49:49.329859 22523 solver.cpp:245] Train net output #144: loss3/loss20 = 0.00198179 (* 0.0909091 = 0.000180163 loss) | |
I0425 13:49:49.329874 22523 solver.cpp:245] Train net output #145: loss3/loss21 = 0.000531283 (* 0.0909091 = 4.82985e-05 loss) | |
I0425 13:49:49.329887 22523 solver.cpp:245] Train net output #146: loss3/loss22 = 5.69207e-05 (* 0.0909091 = 5.17461e-06 loss) | |
I0425 13:49:49.329900 22523 solver.cpp:245] Train net output #147: total_accuracy = 0.5 | |
I0425 13:49:49.329911 22523 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.375 | |
I0425 13:49:49.329933 22523 solver.cpp:245] Train net output #149: total_confidence = 0.471216 | |
I0425 13:49:49.329951 22523 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.314898 | |
I0425 13:49:49.329964 22523 sgd_solver.cpp:106] Iteration 19000, lr = 0.01 | |
I0425 13:55:30.687749 22523 solver.cpp:229] Iteration 19500, loss = 3.05134 | |
I0425 13:55:30.687892 22523 solver.cpp:245] Train net output #0: loss1/accuracy = 0.4375 | |
I0425 13:55:30.687914 22523 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75 | |
I0425 13:55:30.687928 22523 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.375 | |
I0425 13:55:30.687942 22523 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.25 | |
I0425 13:55:30.687955 22523 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.25 | |
I0425 13:55:30.687968 22523 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.25 | |
I0425 13:55:30.687980 22523 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.625 | |
I0425 13:55:30.687994 22523 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.625 | |
I0425 13:55:30.688006 22523 solver.cpp:245] Train net output #8: loss1/accuracy08 = 1 | |
I0425 13:55:30.688019 22523 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1 | |
I0425 13:55:30.688032 22523 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1 | |
I0425 13:55:30.688045 22523 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1 | |
I0425 13:55:30.688057 22523 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1 | |
I0425 13:55:30.688069 22523 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1 | |
I0425 13:55:30.688082 22523 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1 | |
I0425 13:55:30.688094 22523 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0425 13:55:30.688107 22523 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0425 13:55:30.688119 22523 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0425 13:55:30.688133 22523 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0425 13:55:30.688144 22523 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0425 13:55:30.688158 22523 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0425 13:55:30.688169 22523 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0425 13:55:30.688189 22523 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0425 13:55:30.688205 22523 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.829545 | |
I0425 13:55:30.688217 22523 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.6875 | |
I0425 13:55:30.688235 22523 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.91097 (* 0.3 = 0.573292 loss) | |
I0425 13:55:30.688251 22523 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.605014 (* 0.3 = 0.181504 loss) | |
I0425 13:55:30.688273 22523 solver.cpp:245] Train net output #27: loss1/loss01 = 1.17739 (* 0.0272727 = 0.0321108 loss) | |
I0425 13:55:30.688288 22523 solver.cpp:245] Train net output #28: loss1/loss02 = 2.34892 (* 0.0272727 = 0.0640614 loss) | |
I0425 13:55:30.688302 22523 solver.cpp:245] Train net output #29: loss1/loss03 = 2.6807 (* 0.0272727 = 0.0731101 loss) | |
I0425 13:55:30.688318 22523 solver.cpp:245] Train net output #30: loss1/loss04 = 2.24153 (* 0.0272727 = 0.0611327 loss) | |
I0425 13:55:30.688331 22523 solver.cpp:245] Train net output #31: loss1/loss05 = 2.16876 (* 0.0272727 = 0.059148 loss) | |
I0425 13:55:30.688346 22523 solver.cpp:245] Train net output #32: loss1/loss06 = 1.498 (* 0.0272727 = 0.0408547 loss) | |
I0425 13:55:30.688360 22523 solver.cpp:245] Train net output #33: loss1/loss07 = 1.03334 (* 0.0272727 = 0.028182 loss) | |
I0425 13:55:30.688375 22523 solver.cpp:245] Train net output #34: loss1/loss08 = 0.194645 (* 0.0272727 = 0.00530851 loss) | |
I0425 13:55:30.688390 22523 solver.cpp:245] Train net output #35: loss1/loss09 = 0.218346 (* 0.0272727 = 0.00595488 loss) | |
I0425 13:55:30.688405 22523 solver.cpp:245] Train net output #36: loss1/loss10 = 0.121584 (* 0.0272727 = 0.00331594 loss) | |
I0425 13:55:30.688421 22523 solver.cpp:245] Train net output #37: loss1/loss11 = 0.0480841 (* 0.0272727 = 0.00131138 loss) | |
I0425 13:55:30.688436 22523 solver.cpp:245] Train net output #38: loss1/loss12 = 0.0347525 (* 0.0272727 = 0.000947795 loss) | |
I0425 13:55:30.688449 22523 solver.cpp:245] Train net output #39: loss1/loss13 = 0.0141079 (* 0.0272727 = 0.000384762 loss) | |
I0425 13:55:30.688483 22523 solver.cpp:245] Train net output #40: loss1/loss14 = 0.0137899 (* 0.0272727 = 0.000376088 loss) | |
I0425 13:55:30.688499 22523 solver.cpp:245] Train net output #41: loss1/loss15 = 0.00875439 (* 0.0272727 = 0.000238756 loss) | |
I0425 13:55:30.688513 22523 solver.cpp:245] Train net output #42: loss1/loss16 = 0.00689434 (* 0.0272727 = 0.000188027 loss) | |
I0425 13:55:30.688529 22523 solver.cpp:245] Train net output #43: loss1/loss17 = 0.00510196 (* 0.0272727 = 0.000139144 loss) | |
I0425 13:55:30.688544 22523 solver.cpp:245] Train net output #44: loss1/loss18 = 0.00218986 (* 0.0272727 = 5.97234e-05 loss) | |
I0425 13:55:30.688558 22523 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00078652 (* 0.0272727 = 2.14505e-05 loss) | |
I0425 13:55:30.688573 22523 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000697689 (* 0.0272727 = 1.90279e-05 loss) | |
I0425 13:55:30.688587 22523 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000340874 (* 0.0272727 = 9.29658e-06 loss) | |
I0425 13:55:30.688602 22523 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000153233 (* 0.0272727 = 4.17909e-06 loss) | |
I0425 13:55:30.688616 22523 solver.cpp:245] Train net output #49: loss2/accuracy = 0.729167 | |
I0425 13:55:30.688628 22523 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875 | |
I0425 13:55:30.688648 22523 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75 | |
I0425 13:55:30.688660 22523 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.25 | |
I0425 13:55:30.688673 22523 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.5 | |
I0425 13:55:30.688684 22523 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.625 | |
I0425 13:55:30.688696 22523 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.625 | |
I0425 13:55:30.688710 22523 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.875 | |
I0425 13:55:30.688722 22523 solver.cpp:245] Train net output #57: loss2/accuracy08 = 1 | |
I0425 13:55:30.688735 22523 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1 | |
I0425 13:55:30.688745 22523 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1 | |
I0425 13:55:30.688756 22523 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1 | |
I0425 13:55:30.688768 22523 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1 | |
I0425 13:55:30.688779 22523 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1 | |
I0425 13:55:30.688791 22523 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1 | |
I0425 13:55:30.688802 22523 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0425 13:55:30.688813 22523 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0425 13:55:30.688825 22523 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0425 13:55:30.688837 22523 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0425 13:55:30.688848 22523 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0425 13:55:30.688859 22523 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0425 13:55:30.688871 22523 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0425 13:55:30.688882 22523 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0425 13:55:30.688894 22523 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.909091 | |
I0425 13:55:30.688910 22523 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.916667 | |
I0425 13:55:30.688925 22523 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.76247 (* 0.3 = 0.228741 loss) | |
I0425 13:55:30.688940 22523 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.255498 (* 0.3 = 0.0766493 loss) | |
I0425 13:55:30.688954 22523 solver.cpp:245] Train net output #76: loss2/loss01 = 0.286522 (* 0.0272727 = 0.00781424 loss) | |
I0425 13:55:30.688968 22523 solver.cpp:245] Train net output #77: loss2/loss02 = 0.700255 (* 0.0272727 = 0.0190979 loss) | |
I0425 13:55:30.688994 22523 solver.cpp:245] Train net output #78: loss2/loss03 = 2.19739 (* 0.0272727 = 0.0599288 loss) | |
I0425 13:55:30.689009 22523 solver.cpp:245] Train net output #79: loss2/loss04 = 1.80403 (* 0.0272727 = 0.0492009 loss) | |
I0425 13:55:30.689023 22523 solver.cpp:245] Train net output #80: loss2/loss05 = 1.29708 (* 0.0272727 = 0.0353748 loss) | |
I0425 13:55:30.689038 22523 solver.cpp:245] Train net output #81: loss2/loss06 = 0.924506 (* 0.0272727 = 0.0252138 loss) | |
I0425 13:55:30.689052 22523 solver.cpp:245] Train net output #82: loss2/loss07 = 0.339227 (* 0.0272727 = 0.00925165 loss) | |
I0425 13:55:30.689067 22523 solver.cpp:245] Train net output #83: loss2/loss08 = 0.134135 (* 0.0272727 = 0.00365821 loss) | |
I0425 13:55:30.689081 22523 solver.cpp:245] Train net output #84: loss2/loss09 = 0.156779 (* 0.0272727 = 0.00427578 loss) | |
I0425 13:55:30.689095 22523 solver.cpp:245] Train net output #85: loss2/loss10 = 0.0904781 (* 0.0272727 = 0.00246758 loss) | |
I0425 13:55:30.689110 22523 solver.cpp:245] Train net output #86: loss2/loss11 = 0.0233717 (* 0.0272727 = 0.000637409 loss) | |
I0425 13:55:30.689123 22523 solver.cpp:245] Train net output #87: loss2/loss12 = 0.0135076 (* 0.0272727 = 0.00036839 loss) | |
I0425 13:55:30.689138 22523 solver.cpp:245] Train net output #88: loss2/loss13 = 0.0027148 (* 0.0272727 = 7.40399e-05 loss) | |
I0425 13:55:30.689152 22523 solver.cpp:245] Train net output #89: loss2/loss14 = 0.0017419 (* 0.0272727 = 4.75063e-05 loss) | |
I0425 13:55:30.689167 22523 solver.cpp:245] Train net output #90: loss2/loss15 = 0.000697186 (* 0.0272727 = 1.90142e-05 loss) | |
I0425 13:55:30.689180 22523 solver.cpp:245] Train net output #91: loss2/loss16 = 0.000454971 (* 0.0272727 = 1.24083e-05 loss) | |
I0425 13:55:30.689195 22523 solver.cpp:245] Train net output #92: loss2/loss17 = 0.000171821 (* 0.0272727 = 4.68604e-06 loss) | |
I0425 13:55:30.689209 22523 solver.cpp:245] Train net output #93: loss2/loss18 = 0.000186359 (* 0.0272727 = 5.08253e-06 loss) | |
I0425 13:55:30.689224 22523 solver.cpp:245] Train net output #94: loss2/loss19 = 5.42775e-05 (* 0.0272727 = 1.48029e-06 loss) | |
I0425 13:55:30.689239 22523 solver.cpp:245] Train net output #95: loss2/loss20 = 2.89925e-05 (* 0.0272727 = 7.90704e-07 loss) | |
I0425 13:55:30.689255 22523 solver.cpp:245] Train net output #96: loss2/loss21 = 1.81209e-05 (* 0.0272727 = 4.94207e-07 loss) | |
I0425 13:55:30.689270 22523 solver.cpp:245] Train net output #97: loss2/loss22 = 1.30838e-05 (* 0.0272727 = 3.5683e-07 loss) | |
I0425 13:55:30.689291 22523 solver.cpp:245] Train net output #98: loss3/accuracy = 0.895833 | |
I0425 13:55:30.689303 22523 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1 | |
I0425 13:55:30.689316 22523 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1 | |
I0425 13:55:30.689327 22523 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.875 | |
I0425 13:55:30.689339 22523 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.625 | |
I0425 13:55:30.689357 22523 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.75 | |
I0425 13:55:30.689369 22523 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.875 | |
I0425 13:55:30.689381 22523 solver.cpp:245] Train net output #105: loss3/accuracy07 = 1 | |
I0425 13:55:30.689393 22523 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1 | |
I0425 13:55:30.689404 22523 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1 | |
I0425 13:55:30.689416 22523 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1 | |
I0425 13:55:30.689427 22523 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1 | |
I0425 13:55:30.689440 22523 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1 | |
I0425 13:55:30.689450 22523 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1 | |
I0425 13:55:30.689461 22523 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1 | |
I0425 13:55:30.689472 22523 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0425 13:55:30.689484 22523 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0425 13:55:30.689507 22523 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0425 13:55:30.689519 22523 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0425 13:55:30.689532 22523 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0425 13:55:30.689543 22523 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0425 13:55:30.689554 22523 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0425 13:55:30.689566 22523 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0425 13:55:30.689587 22523 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.960227 | |
I0425 13:55:30.689599 22523 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.958333 | |
I0425 13:55:30.689613 22523 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.389942 (* 1 = 0.389942 loss) | |
I0425 13:55:30.689627 22523 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.152404 (* 1 = 0.152404 loss) | |
I0425 13:55:30.689648 22523 solver.cpp:245] Train net output #125: loss3/loss01 = 0.0665776 (* 0.0909091 = 0.00605251 loss) | |
I0425 13:55:30.689662 22523 solver.cpp:245] Train net output #126: loss3/loss02 = 0.0370638 (* 0.0909091 = 0.00336944 loss) | |
I0425 13:55:30.689677 22523 solver.cpp:245] Train net output #127: loss3/loss03 = 0.743441 (* 0.0909091 = 0.0675855 loss) | |
I0425 13:55:30.689692 22523 solver.cpp:245] Train net output #128: loss3/loss04 = 1.10763 (* 0.0909091 = 0.100694 loss) | |
I0425 13:55:30.689705 22523 solver.cpp:245] Train net output #129: loss3/loss05 = 0.462722 (* 0.0909091 = 0.0420657 loss) | |
I0425 13:55:30.689719 22523 solver.cpp:245] Train net output #130: loss3/loss06 = 0.370034 (* 0.0909091 = 0.0336395 loss) | |
I0425 13:55:30.689734 22523 solver.cpp:245] Train net output #131: loss3/loss07 = 0.206489 (* 0.0909091 = 0.0187717 loss) | |
I0425 13:55:30.689749 22523 solver.cpp:245] Train net output #132: loss3/loss08 = 0.134461 (* 0.0909091 = 0.0122238 loss) | |
I0425 13:55:30.689762 22523 solver.cpp:245] Train net output #133: loss3/loss09 = 0.151918 (* 0.0909091 = 0.0138108 loss) | |
I0425 13:55:30.689777 22523 solver.cpp:245] Train net output #134: loss3/loss10 = 0.0498782 (* 0.0909091 = 0.00453438 loss) | |
I0425 13:55:30.689791 22523 solver.cpp:245] Train net output #135: loss3/loss11 = 0.0109101 (* 0.0909091 = 0.000991829 loss) | |
I0425 13:55:30.689805 22523 solver.cpp:245] Train net output #136: loss3/loss12 = 0.00550323 (* 0.0909091 = 0.000500294 loss) | |
I0425 13:55:30.689820 22523 solver.cpp:245] Train net output #137: loss3/loss13 = 0.00277993 (* 0.0909091 = 0.000252721 loss) | |
I0425 13:55:30.689833 22523 solver.cpp:245] Train net output #138: loss3/loss14 = 0.000973167 (* 0.0909091 = 8.84697e-05 loss) | |
I0425 13:55:30.689847 22523 solver.cpp:245] Train net output #139: loss3/loss15 = 0.000645778 (* 0.0909091 = 5.87071e-05 loss) | |
I0425 13:55:30.689862 22523 solver.cpp:245] Train net output #140: loss3/loss16 = 0.000400812 (* 0.0909091 = 3.64374e-05 loss) | |
I0425 13:55:30.689875 22523 solver.cpp:245] Train net output #141: loss3/loss17 = 0.000488907 (* 0.0909091 = 4.44461e-05 loss) | |
I0425 13:55:30.689890 22523 solver.cpp:245] Train net output #142: loss3/loss18 = 0.000265416 (* 0.0909091 = 2.41287e-05 loss) | |
I0425 13:55:30.689904 22523 solver.cpp:245] Train net output #143: loss3/loss19 = 0.000248269 (* 0.0909091 = 2.25699e-05 loss) | |
I0425 13:55:30.689918 22523 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000208189 (* 0.0909091 = 1.89262e-05 loss) | |
I0425 13:55:30.689934 22523 solver.cpp:245] Train net output #145: loss3/loss21 = 0.000109113 (* 0.0909091 = 9.91933e-06 loss) | |
I0425 13:55:30.689947 22523 solver.cpp:245] Train net output #146: loss3/loss22 = 3.82786e-05 (* 0.0909091 = 3.47987e-06 loss) | |
I0425 13:55:30.689963 22523 solver.cpp:245] Train net output #147: total_accuracy = 0.75 | |
I0425 13:55:30.689976 22523 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.375 | |
I0425 13:55:30.689999 22523 solver.cpp:245] Train net output #149: total_confidence = 0.434239 | |
I0425 13:55:30.690012 22523 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.349212 | |
I0425 13:55:30.690028 22523 sgd_solver.cpp:106] Iteration 19500, lr = 0.01 | |
I0425 14:01:11.616948 22523 solver.cpp:456] Snapshotting to binary proto file /mnt/snapshots/mixed_lstm10_bn_iter_20000.caffemodel | |
I0425 14:01:12.265326 22523 sgd_solver.cpp:273] Snapshotting solver state to binary proto file /mnt/snapshots/mixed_lstm10_bn_iter_20000.solverstate | |
I0425 14:01:12.584873 22523 solver.cpp:338] Iteration 20000, Testing net (#0) | |
I0425 14:02:04.247581 22523 solver.cpp:393] Test loss: 1.45594 | |
I0425 14:02:04.247705 22523 solver.cpp:406] Test net output #0: loss1/accuracy = 0.775009 | |
I0425 14:02:04.247725 22523 solver.cpp:406] Test net output #1: loss1/accuracy01 = 0.878 | |
I0425 14:02:04.247738 22523 solver.cpp:406] Test net output #2: loss1/accuracy02 = 0.701 | |
I0425 14:02:04.247751 22523 solver.cpp:406] Test net output #3: loss1/accuracy03 = 0.552 | |
I0425 14:02:04.247764 22523 solver.cpp:406] Test net output #4: loss1/accuracy04 = 0.528 | |
I0425 14:02:04.247776 22523 solver.cpp:406] Test net output #5: loss1/accuracy05 = 0.603 | |
I0425 14:02:04.247789 22523 solver.cpp:406] Test net output #6: loss1/accuracy06 = 0.677 | |
I0425 14:02:04.247802 22523 solver.cpp:406] Test net output #7: loss1/accuracy07 = 0.847 | |
I0425 14:02:04.247813 22523 solver.cpp:406] Test net output #8: loss1/accuracy08 = 0.92 | |
I0425 14:02:04.247826 22523 solver.cpp:406] Test net output #9: loss1/accuracy09 = 0.984 | |
I0425 14:02:04.247838 22523 solver.cpp:406] Test net output #10: loss1/accuracy10 = 0.995 | |
I0425 14:02:04.247851 22523 solver.cpp:406] Test net output #11: loss1/accuracy11 = 0.997 | |
I0425 14:02:04.247864 22523 solver.cpp:406] Test net output #12: loss1/accuracy12 = 0.999 | |
I0425 14:02:04.247875 22523 solver.cpp:406] Test net output #13: loss1/accuracy13 = 0.999 | |
I0425 14:02:04.247887 22523 solver.cpp:406] Test net output #14: loss1/accuracy14 = 0.999 | |
I0425 14:02:04.247900 22523 solver.cpp:406] Test net output #15: loss1/accuracy15 = 0.999 | |
I0425 14:02:04.247911 22523 solver.cpp:406] Test net output #16: loss1/accuracy16 = 1 | |
I0425 14:02:04.247931 22523 solver.cpp:406] Test net output #17: loss1/accuracy17 = 1 | |
I0425 14:02:04.247942 22523 solver.cpp:406] Test net output #18: loss1/accuracy18 = 1 | |
I0425 14:02:04.247953 22523 solver.cpp:406] Test net output #19: loss1/accuracy19 = 1 | |
I0425 14:02:04.247966 22523 solver.cpp:406] Test net output #20: loss1/accuracy20 = 1 | |
I0425 14:02:04.247977 22523 solver.cpp:406] Test net output #21: loss1/accuracy21 = 1 | |
I0425 14:02:04.247995 22523 solver.cpp:406] Test net output #22: loss1/accuracy22 = 1 | |
I0425 14:02:04.248008 22523 solver.cpp:406] Test net output #23: loss1/accuracy_incl_empty = 0.930456 | |
I0425 14:02:04.248019 22523 solver.cpp:406] Test net output #24: loss1/accuracy_top3 = 0.930982 | |
I0425 14:02:04.248037 22523 solver.cpp:406] Test net output #25: loss1/cross_entropy_loss = 0.777635 (* 0.3 = 0.23329 loss) | |
I0425 14:02:04.248052 22523 solver.cpp:406] Test net output #26: loss1/cross_entropy_loss_incl_empty = 0.237776 (* 0.3 = 0.0713329 loss) | |
I0425 14:02:04.248067 22523 solver.cpp:406] Test net output #27: loss1/loss01 = 0.487687 (* 0.0272727 = 0.0133006 loss) | |
I0425 14:02:04.248082 22523 solver.cpp:406] Test net output #28: loss1/loss02 = 1.03026 (* 0.0272727 = 0.0280981 loss) | |
I0425 14:02:04.248096 22523 solver.cpp:406] Test net output #29: loss1/loss03 = 1.39811 (* 0.0272727 = 0.0381304 loss) | |
I0425 14:02:04.248111 22523 solver.cpp:406] Test net output #30: loss1/loss04 = 1.44 (* 0.0272727 = 0.0392727 loss) | |
I0425 14:02:04.248126 22523 solver.cpp:406] Test net output #31: loss1/loss05 = 1.21944 (* 0.0272727 = 0.0332575 loss) | |
I0425 14:02:04.248139 22523 solver.cpp:406] Test net output #32: loss1/loss06 = 0.957512 (* 0.0272727 = 0.026114 loss) | |
I0425 14:02:04.248153 22523 solver.cpp:406] Test net output #33: loss1/loss07 = 0.537717 (* 0.0272727 = 0.014665 loss) | |
I0425 14:02:04.248168 22523 solver.cpp:406] Test net output #34: loss1/loss08 = 0.281445 (* 0.0272727 = 0.00767577 loss) | |
I0425 14:02:04.248183 22523 solver.cpp:406] Test net output #35: loss1/loss09 = 0.0699431 (* 0.0272727 = 0.00190754 loss) | |
I0425 14:02:04.248200 22523 solver.cpp:406] Test net output #36: loss1/loss10 = 0.0328229 (* 0.0272727 = 0.000895169 loss) | |
I0425 14:02:04.248216 22523 solver.cpp:406] Test net output #37: loss1/loss11 = 0.0205477 (* 0.0272727 = 0.000560393 loss) | |
I0425 14:02:04.248230 22523 solver.cpp:406] Test net output #38: loss1/loss12 = 0.0129443 (* 0.0272727 = 0.000353026 loss) | |
I0425 14:02:04.248245 22523 solver.cpp:406] Test net output #39: loss1/loss13 = 0.00979594 (* 0.0272727 = 0.000267162 loss) | |
I0425 14:02:04.248288 22523 solver.cpp:406] Test net output #40: loss1/loss14 = 0.00781158 (* 0.0272727 = 0.000213043 loss) | |
I0425 14:02:04.248304 22523 solver.cpp:406] Test net output #41: loss1/loss15 = 0.0059437 (* 0.0272727 = 0.000162101 loss) | |
I0425 14:02:04.248328 22523 solver.cpp:406] Test net output #42: loss1/loss16 = 0.00315494 (* 0.0272727 = 8.60439e-05 loss) | |
I0425 14:02:04.248342 22523 solver.cpp:406] Test net output #43: loss1/loss17 = 0.00126007 (* 0.0272727 = 3.43655e-05 loss) | |
I0425 14:02:04.248358 22523 solver.cpp:406] Test net output #44: loss1/loss18 = 0.000770402 (* 0.0272727 = 2.1011e-05 loss) | |
I0425 14:02:04.248373 22523 solver.cpp:406] Test net output #45: loss1/loss19 = 0.000409651 (* 0.0272727 = 1.11723e-05 loss) | |
I0425 14:02:04.248386 22523 solver.cpp:406] Test net output #46: loss1/loss20 = 0.000228145 (* 0.0272727 = 6.22214e-06 loss) | |
I0425 14:02:04.248401 22523 solver.cpp:406] Test net output #47: loss1/loss21 = 0.000121729 (* 0.0272727 = 3.31987e-06 loss) | |
I0425 14:02:04.248415 22523 solver.cpp:406] Test net output #48: loss1/loss22 = 6.75964e-05 (* 0.0272727 = 1.84354e-06 loss) | |
I0425 14:02:04.248427 22523 solver.cpp:406] Test net output #49: loss2/accuracy = 0.894575 | |
I0425 14:02:04.248440 22523 solver.cpp:406] Test net output #50: loss2/accuracy01 = 0.949 | |
I0425 14:02:04.248451 22523 solver.cpp:406] Test net output #51: loss2/accuracy02 = 0.889 | |
I0425 14:02:04.248463 22523 solver.cpp:406] Test net output #52: loss2/accuracy03 = 0.755 | |
I0425 14:02:04.248474 22523 solver.cpp:406] Test net output #53: loss2/accuracy04 = 0.655 | |
I0425 14:02:04.248486 22523 solver.cpp:406] Test net output #54: loss2/accuracy05 = 0.673 | |
I0425 14:02:04.248498 22523 solver.cpp:406] Test net output #55: loss2/accuracy06 = 0.732 | |
I0425 14:02:04.248509 22523 solver.cpp:406] Test net output #56: loss2/accuracy07 = 0.887 | |
I0425 14:02:04.248520 22523 solver.cpp:406] Test net output #57: loss2/accuracy08 = 0.928 | |
I0425 14:02:04.248533 22523 solver.cpp:406] Test net output #58: loss2/accuracy09 = 0.984 | |
I0425 14:02:04.248543 22523 solver.cpp:406] Test net output #59: loss2/accuracy10 = 0.994 | |
I0425 14:02:04.248555 22523 solver.cpp:406] Test net output #60: loss2/accuracy11 = 0.998 | |
I0425 14:02:04.248566 22523 solver.cpp:406] Test net output #61: loss2/accuracy12 = 0.999 | |
I0425 14:02:04.248577 22523 solver.cpp:406] Test net output #62: loss2/accuracy13 = 0.999 | |
I0425 14:02:04.248589 22523 solver.cpp:406] Test net output #63: loss2/accuracy14 = 0.999 | |
I0425 14:02:04.248600 22523 solver.cpp:406] Test net output #64: loss2/accuracy15 = 0.999 | |
I0425 14:02:04.248612 22523 solver.cpp:406] Test net output #65: loss2/accuracy16 = 1 | |
I0425 14:02:04.248623 22523 solver.cpp:406] Test net output #66: loss2/accuracy17 = 1 | |
I0425 14:02:04.248634 22523 solver.cpp:406] Test net output #67: loss2/accuracy18 = 1 | |
I0425 14:02:04.248646 22523 solver.cpp:406] Test net output #68: loss2/accuracy19 = 1 | |
I0425 14:02:04.248656 22523 solver.cpp:406] Test net output #69: loss2/accuracy20 = 1 | |
I0425 14:02:04.248667 22523 solver.cpp:406] Test net output #70: loss2/accuracy21 = 1 | |
I0425 14:02:04.248679 22523 solver.cpp:406] Test net output #71: loss2/accuracy22 = 1 | |
I0425 14:02:04.248690 22523 solver.cpp:406] Test net output #72: loss2/accuracy_incl_empty = 0.966227 | |
I0425 14:02:04.248702 22523 solver.cpp:406] Test net output #73: loss2/accuracy_top3 = 0.96665 | |
I0425 14:02:04.248718 22523 solver.cpp:406] Test net output #74: loss2/cross_entropy_loss = 0.433914 (* 0.3 = 0.130174 loss) | |
I0425 14:02:04.248733 22523 solver.cpp:406] Test net output #75: loss2/cross_entropy_loss_incl_empty = 0.131984 (* 0.3 = 0.0395952 loss) | |
I0425 14:02:04.248749 22523 solver.cpp:406] Test net output #76: loss2/loss01 = 0.277909 (* 0.0272727 = 0.00757933 loss) | |
I0425 14:02:04.248762 22523 solver.cpp:406] Test net output #77: loss2/loss02 = 0.476957 (* 0.0272727 = 0.0130079 loss) | |
I0425 14:02:04.248787 22523 solver.cpp:406] Test net output #78: loss2/loss03 = 0.782693 (* 0.0272727 = 0.0213462 loss) | |
I0425 14:02:04.248806 22523 solver.cpp:406] Test net output #79: loss2/loss04 = 1.01408 (* 0.0272727 = 0.0276568 loss) | |
I0425 14:02:04.248821 22523 solver.cpp:406] Test net output #80: loss2/loss05 = 0.912204 (* 0.0272727 = 0.0248783 loss) | |
I0425 14:02:04.248834 22523 solver.cpp:406] Test net output #81: loss2/loss06 = 0.713196 (* 0.0272727 = 0.0194508 loss) | |
I0425 14:02:04.248848 22523 solver.cpp:406] Test net output #82: loss2/loss07 = 0.392274 (* 0.0272727 = 0.0106984 loss) | |
I0425 14:02:04.248863 22523 solver.cpp:406] Test net output #83: loss2/loss08 = 0.217805 (* 0.0272727 = 0.00594013 loss) | |
I0425 14:02:04.248878 22523 solver.cpp:406] Test net output #84: loss2/loss09 = 0.0593711 (* 0.0272727 = 0.00161921 loss) | |
I0425 14:02:04.248891 22523 solver.cpp:406] Test net output #85: loss2/loss10 = 0.0289166 (* 0.0272727 = 0.000788634 loss) | |
I0425 14:02:04.248905 22523 solver.cpp:406] Test net output #86: loss2/loss11 = 0.0121632 (* 0.0272727 = 0.000331724 loss) | |
I0425 14:02:04.248919 22523 solver.cpp:406] Test net output #87: loss2/loss12 = 0.00677671 (* 0.0272727 = 0.000184819 loss) | |
I0425 14:02:04.248934 22523 solver.cpp:406] Test net output #88: loss2/loss13 = 0.00493593 (* 0.0272727 = 0.000134616 loss) | |
I0425 14:02:04.248947 22523 solver.cpp:406] Test net output #89: loss2/loss14 = 0.0040642 (* 0.0272727 = 0.000110842 loss) | |
I0425 14:02:04.248962 22523 solver.cpp:406] Test net output #90: loss2/loss15 = 0.00320519 (* 0.0272727 = 8.74142e-05 loss) | |
I0425 14:02:04.248976 22523 solver.cpp:406] Test net output #91: loss2/loss16 = 0.00153557 (* 0.0272727 = 4.18792e-05 loss) | |
I0425 14:02:04.248991 22523 solver.cpp:406] Test net output #92: loss2/loss17 = 0.000361925 (* 0.0272727 = 9.87068e-06 loss) | |
I0425 14:02:04.249004 22523 solver.cpp:406] Test net output #93: loss2/loss18 = 0.000193693 (* 0.0272727 = 5.28255e-06 loss) | |
I0425 14:02:04.249018 22523 solver.cpp:406] Test net output #94: loss2/loss19 = 6.90858e-05 (* 0.0272727 = 1.88416e-06 loss) | |
I0425 14:02:04.249032 22523 solver.cpp:406] Test net output #95: loss2/loss20 = 3.19305e-05 (* 0.0272727 = 8.70832e-07 loss) | |
I0425 14:02:04.249047 22523 solver.cpp:406] Test net output #96: loss2/loss21 = 1.55178e-05 (* 0.0272727 = 4.23213e-07 loss) | |
I0425 14:02:04.249061 22523 solver.cpp:406] Test net output #97: loss2/loss22 = 7.50338e-06 (* 0.0272727 = 2.04638e-07 loss) | |
I0425 14:02:04.249073 22523 solver.cpp:406] Test net output #98: loss3/accuracy = 0.931608 | |
I0425 14:02:04.249085 22523 solver.cpp:406] Test net output #99: loss3/accuracy01 = 0.963 | |
I0425 14:02:04.249097 22523 solver.cpp:406] Test net output #100: loss3/accuracy02 = 0.941 | |
I0425 14:02:04.249109 22523 solver.cpp:406] Test net output #101: loss3/accuracy03 = 0.934 | |
I0425 14:02:04.249120 22523 solver.cpp:406] Test net output #102: loss3/accuracy04 = 0.92 | |
I0425 14:02:04.249132 22523 solver.cpp:406] Test net output #103: loss3/accuracy05 = 0.88 | |
I0425 14:02:04.249143 22523 solver.cpp:406] Test net output #104: loss3/accuracy06 = 0.866 | |
I0425 14:02:04.249155 22523 solver.cpp:406] Test net output #105: loss3/accuracy07 = 0.926 | |
I0425 14:02:04.249166 22523 solver.cpp:406] Test net output #106: loss3/accuracy08 = 0.971 | |
I0425 14:02:04.249177 22523 solver.cpp:406] Test net output #107: loss3/accuracy09 = 0.983 | |
I0425 14:02:04.249189 22523 solver.cpp:406] Test net output #108: loss3/accuracy10 = 0.994 | |
I0425 14:02:04.249200 22523 solver.cpp:406] Test net output #109: loss3/accuracy11 = 0.999 | |
I0425 14:02:04.249212 22523 solver.cpp:406] Test net output #110: loss3/accuracy12 = 1 | |
I0425 14:02:04.249223 22523 solver.cpp:406] Test net output #111: loss3/accuracy13 = 1 | |
I0425 14:02:04.249234 22523 solver.cpp:406] Test net output #112: loss3/accuracy14 = 1 | |
I0425 14:02:04.249245 22523 solver.cpp:406] Test net output #113: loss3/accuracy15 = 1 | |
I0425 14:02:04.249259 22523 solver.cpp:406] Test net output #114: loss3/accuracy16 = 1 | |
I0425 14:02:04.249281 22523 solver.cpp:406] Test net output #115: loss3/accuracy17 = 1 | |
I0425 14:02:04.249294 22523 solver.cpp:406] Test net output #116: loss3/accuracy18 = 1 | |
I0425 14:02:04.249305 22523 solver.cpp:406] Test net output #117: loss3/accuracy19 = 1 | |
I0425 14:02:04.249316 22523 solver.cpp:406] Test net output #118: loss3/accuracy20 = 1 | |
I0425 14:02:04.249327 22523 solver.cpp:406] Test net output #119: loss3/accuracy21 = 1 | |
I0425 14:02:04.249338 22523 solver.cpp:406] Test net output #120: loss3/accuracy22 = 1 | |
I0425 14:02:04.249351 22523 solver.cpp:406] Test net output #121: loss3/accuracy_incl_empty = 0.976182 | |
I0425 14:02:04.249361 22523 solver.cpp:406] Test net output #122: loss3/accuracy_top3 = 0.971549 | |
I0425 14:02:04.249375 22523 solver.cpp:406] Test net output #123: loss3/cross_entropy_loss = 0.315129 (* 1 = 0.315129 loss) | |
I0425 14:02:04.249389 22523 solver.cpp:406] Test net output #124: loss3/cross_entropy_loss_incl_empty = 0.102581 (* 1 = 0.102581 loss) | |
I0425 14:02:04.249403 22523 solver.cpp:406] Test net output #125: loss3/loss01 = 0.210237 (* 0.0909091 = 0.0191125 loss) | |
I0425 14:02:04.249418 22523 solver.cpp:406] Test net output #126: loss3/loss02 = 0.316895 (* 0.0909091 = 0.0288087 loss) | |
I0425 14:02:04.249431 22523 solver.cpp:406] Test net output #127: loss3/loss03 = 0.30805 (* 0.0909091 = 0.0280045 loss) | |
I0425 14:02:04.249445 22523 solver.cpp:406] Test net output #128: loss3/loss04 = 0.368365 (* 0.0909091 = 0.0334877 loss) | |
I0425 14:02:04.249455 22523 solver.cpp:406] Test net output #129: loss3/loss05 = 0.404549 (* 0.0909091 = 0.0367771 loss) | |
I0425 14:02:04.249464 22523 solver.cpp:406] Test net output #130: loss3/loss06 = 0.417057 (* 0.0909091 = 0.0379143 loss) | |
I0425 14:02:04.249480 22523 solver.cpp:406] Test net output #131: loss3/loss07 = 0.243043 (* 0.0909091 = 0.0220948 loss) | |
I0425 14:02:04.249493 22523 solver.cpp:406] Test net output #132: loss3/loss08 = 0.105708 (* 0.0909091 = 0.00960981 loss) | |
I0425 14:02:04.249507 22523 solver.cpp:406] Test net output #133: loss3/loss09 = 0.0537252 (* 0.0909091 = 0.00488411 loss) | |
I0425 14:02:04.249521 22523 solver.cpp:406] Test net output #134: loss3/loss10 = 0.0231341 (* 0.0909091 = 0.0021031 loss) | |
I0425 14:02:04.249536 22523 solver.cpp:406] Test net output #135: loss3/loss11 = 0.00920281 (* 0.0909091 = 0.000836619 loss) | |
I0425 14:02:04.249549 22523 solver.cpp:406] Test net output #136: loss3/loss12 = 0.00477906 (* 0.0909091 = 0.00043446 loss) | |
I0425 14:02:04.249563 22523 solver.cpp:406] Test net output #137: loss3/loss13 = 0.00333843 (* 0.0909091 = 0.000303494 loss) | |
I0425 14:02:04.249577 22523 solver.cpp:406] Test net output #138: loss3/loss14 = 0.00278543 (* 0.0909091 = 0.000253221 loss) | |
I0425 14:02:04.249591 22523 solver.cpp:406] Test net output #139: loss3/loss15 = 0.0018694 (* 0.0909091 = 0.000169945 loss) | |
I0425 14:02:04.249605 22523 solver.cpp:406] Test net output #140: loss3/loss16 = 0.000724679 (* 0.0909091 = 6.58799e-05 loss) | |
I0425 14:02:04.249619 22523 solver.cpp:406] Test net output #141: loss3/loss17 = 0.000229278 (* 0.0909091 = 2.08435e-05 loss) | |
I0425 14:02:04.249632 22523 solver.cpp:406] Test net output #142: loss3/loss18 = 0.000162727 (* 0.0909091 = 1.47934e-05 loss) | |
I0425 14:02:04.249646 22523 solver.cpp:406] Test net output #143: loss3/loss19 = 0.000142966 (* 0.0909091 = 1.29969e-05 loss) | |
I0425 14:02:04.249660 22523 solver.cpp:406] Test net output #144: loss3/loss20 = 0.000121002 (* 0.0909091 = 1.10002e-05 loss) | |
I0425 14:02:04.249675 22523 solver.cpp:406] Test net output #145: loss3/loss21 = 6.81888e-05 (* 0.0909091 = 6.19898e-06 loss) | |
I0425 14:02:04.249688 22523 solver.cpp:406] Test net output #146: loss3/loss22 = 1.81191e-05 (* 0.0909091 = 1.64719e-06 loss) | |
I0425 14:02:04.249701 22523 solver.cpp:406] Test net output #147: total_accuracy = 0.819 | |
I0425 14:02:04.249711 22523 solver.cpp:406] Test net output #148: total_accuracy_not_rec = 0.707 | |
I0425 14:02:04.249723 22523 solver.cpp:406] Test net output #149: total_confidence = 0.764548 | |
I0425 14:02:04.249744 22523 solver.cpp:406] Test net output #150: total_confidence_nor_rec = 0.622476 | |
I0425 14:02:04.249758 22523 solver.cpp:338] Iteration 20000, Testing net (#1) | |
I0425 14:02:55.861536 22523 solver.cpp:393] Test loss: 2.61214 | |
I0425 14:02:55.861691 22523 solver.cpp:406] Test net output #0: loss1/accuracy = 0.694141 | |
I0425 14:02:55.861713 22523 solver.cpp:406] Test net output #1: loss1/accuracy01 = 0.829 | |
I0425 14:02:55.861727 22523 solver.cpp:406] Test net output #2: loss1/accuracy02 = 0.665 | |
I0425 14:02:55.861740 22523 solver.cpp:406] Test net output #3: loss1/accuracy03 = 0.474 | |
I0425 14:02:55.861752 22523 solver.cpp:406] Test net output #4: loss1/accuracy04 = 0.499 | |
I0425 14:02:55.861765 22523 solver.cpp:406] Test net output #5: loss1/accuracy05 = 0.537 | |
I0425 14:02:55.861778 22523 solver.cpp:406] Test net output #6: loss1/accuracy06 = 0.605 | |
I0425 14:02:55.861789 22523 solver.cpp:406] Test net output #7: loss1/accuracy07 = 0.736 | |
I0425 14:02:55.861801 22523 solver.cpp:406] Test net output #8: loss1/accuracy08 = 0.829 | |
I0425 14:02:55.861822 22523 solver.cpp:406] Test net output #9: loss1/accuracy09 = 0.897 | |
I0425 14:02:55.861835 22523 solver.cpp:406] Test net output #10: loss1/accuracy10 = 0.908 | |
I0425 14:02:55.861847 22523 solver.cpp:406] Test net output #11: loss1/accuracy11 = 0.915 | |
I0425 14:02:55.861860 22523 solver.cpp:406] Test net output #12: loss1/accuracy12 = 0.921 | |
I0425 14:02:55.861881 22523 solver.cpp:406] Test net output #13: loss1/accuracy13 = 0.939 | |
I0425 14:02:55.861892 22523 solver.cpp:406] Test net output #14: loss1/accuracy14 = 0.95 | |
I0425 14:02:55.861904 22523 solver.cpp:406] Test net output #15: loss1/accuracy15 = 0.962 | |
I0425 14:02:55.861917 22523 solver.cpp:406] Test net output #16: loss1/accuracy16 = 0.97 | |
I0425 14:02:55.861929 22523 solver.cpp:406] Test net output #17: loss1/accuracy17 = 0.992 | |
I0425 14:02:55.861942 22523 solver.cpp:406] Test net output #18: loss1/accuracy18 = 0.994 | |
I0425 14:02:55.861954 22523 solver.cpp:406] Test net output #19: loss1/accuracy19 = 0.996 | |
I0425 14:02:55.861966 22523 solver.cpp:406] Test net output #20: loss1/accuracy20 = 0.998 | |
I0425 14:02:55.861986 22523 solver.cpp:406] Test net output #21: loss1/accuracy21 = 1 | |
I0425 14:02:55.861999 22523 solver.cpp:406] Test net output #22: loss1/accuracy22 = 1 | |
I0425 14:02:55.862010 22523 solver.cpp:406] Test net output #23: loss1/accuracy_incl_empty = 0.877684 | |
I0425 14:02:55.862022 22523 solver.cpp:406] Test net output #24: loss1/accuracy_top3 = 0.87212 | |
I0425 14:02:55.862046 22523 solver.cpp:406] Test net output #25: loss1/cross_entropy_loss = 1.00622 (* 0.3 = 0.301865 loss) | |
I0425 14:02:55.862061 22523 solver.cpp:406] Test net output #26: loss1/cross_entropy_loss_incl_empty = 0.412927 (* 0.3 = 0.123878 loss) | |
I0425 14:02:55.862076 22523 solver.cpp:406] Test net output #27: loss1/loss01 = 0.687794 (* 0.0272727 = 0.018758 loss) | |
I0425 14:02:55.862090 22523 solver.cpp:406] Test net output #28: loss1/loss02 = 1.14855 (* 0.0272727 = 0.0313242 loss) | |
I0425 14:02:55.862104 22523 solver.cpp:406] Test net output #29: loss1/loss03 = 1.56449 (* 0.0272727 = 0.042668 loss) | |
I0425 14:02:55.862119 22523 solver.cpp:406] Test net output #30: loss1/loss04 = 1.56721 (* 0.0272727 = 0.0427422 loss) | |
I0425 14:02:55.862133 22523 solver.cpp:406] Test net output #31: loss1/loss05 = 1.43979 (* 0.0272727 = 0.0392669 loss) | |
I0425 14:02:55.862148 22523 solver.cpp:406] Test net output #32: loss1/loss06 = 1.23269 (* 0.0272727 = 0.0336189 loss) | |
I0425 14:02:55.862161 22523 solver.cpp:406] Test net output #33: loss1/loss07 = 0.90444 (* 0.0272727 = 0.0246665 loss) | |
I0425 14:02:55.862175 22523 solver.cpp:406] Test net output #34: loss1/loss08 = 0.600198 (* 0.0272727 = 0.016369 loss) | |
I0425 14:02:55.862190 22523 solver.cpp:406] Test net output #35: loss1/loss09 = 0.384105 (* 0.0272727 = 0.0104756 loss) | |
I0425 14:02:55.862208 22523 solver.cpp:406] Test net output #36: loss1/loss10 = 0.343849 (* 0.0272727 = 0.0093777 loss) | |
I0425 14:02:55.862223 22523 solver.cpp:406] Test net output #37: loss1/loss11 = 0.327929 (* 0.0272727 = 0.00894352 loss) | |
I0425 14:02:55.862238 22523 solver.cpp:406] Test net output #38: loss1/loss12 = 0.311029 (* 0.0272727 = 0.00848262 loss) | |
I0425 14:02:55.862273 22523 solver.cpp:406] Test net output #39: loss1/loss13 = 0.241838 (* 0.0272727 = 0.00659557 loss) | |
I0425 14:02:55.862288 22523 solver.cpp:406] Test net output #40: loss1/loss14 = 0.217568 (* 0.0272727 = 0.00593366 loss) | |
I0425 14:02:55.862303 22523 solver.cpp:406] Test net output #41: loss1/loss15 = 0.170102 (* 0.0272727 = 0.00463914 loss) | |
I0425 14:02:55.862318 22523 solver.cpp:406] Test net output #42: loss1/loss16 = 0.146737 (* 0.0272727 = 0.00400192 loss) | |
I0425 14:02:55.862332 22523 solver.cpp:406] Test net output #43: loss1/loss17 = 0.055119 (* 0.0272727 = 0.00150324 loss) | |
I0425 14:02:55.862347 22523 solver.cpp:406] Test net output #44: loss1/loss18 = 0.0396739 (* 0.0272727 = 0.00108202 loss) | |
I0425 14:02:55.862362 22523 solver.cpp:406] Test net output #45: loss1/loss19 = 0.029457 (* 0.0272727 = 0.000803373 loss) | |
I0425 14:02:55.862376 22523 solver.cpp:406] Test net output #46: loss1/loss20 = 0.0169947 (* 0.0272727 = 0.000463492 loss) | |
I0425 14:02:55.862391 22523 solver.cpp:406] Test net output #47: loss1/loss21 = 0.00117227 (* 0.0272727 = 3.19709e-05 loss) | |
I0425 14:02:55.862406 22523 solver.cpp:406] Test net output #48: loss1/loss22 = 0.000556993 (* 0.0272727 = 1.51907e-05 loss) | |
I0425 14:02:55.862418 22523 solver.cpp:406] Test net output #49: loss2/accuracy = 0.814229 | |
I0425 14:02:55.862431 22523 solver.cpp:406] Test net output #50: loss2/accuracy01 = 0.909 | |
I0425 14:02:55.862442 22523 solver.cpp:406] Test net output #51: loss2/accuracy02 = 0.846 | |
I0425 14:02:55.862453 22523 solver.cpp:406] Test net output #52: loss2/accuracy03 = 0.692 | |
I0425 14:02:55.862465 22523 solver.cpp:406] Test net output #53: loss2/accuracy04 = 0.595 | |
I0425 14:02:55.862478 22523 solver.cpp:406] Test net output #54: loss2/accuracy05 = 0.612 | |
I0425 14:02:55.862488 22523 solver.cpp:406] Test net output #55: loss2/accuracy06 = 0.671 | |
I0425 14:02:55.862499 22523 solver.cpp:406] Test net output #56: loss2/accuracy07 = 0.771 | |
I0425 14:02:55.862511 22523 solver.cpp:406] Test net output #57: loss2/accuracy08 = 0.833 | |
I0425 14:02:55.862522 22523 solver.cpp:406] Test net output #58: loss2/accuracy09 = 0.899 | |
I0425 14:02:55.862534 22523 solver.cpp:406] Test net output #59: loss2/accuracy10 = 0.907 | |
I0425 14:02:55.862545 22523 solver.cpp:406] Test net output #60: loss2/accuracy11 = 0.913 | |
I0425 14:02:55.862557 22523 solver.cpp:406] Test net output #61: loss2/accuracy12 = 0.921 | |
I0425 14:02:55.862568 22523 solver.cpp:406] Test net output #62: loss2/accuracy13 = 0.94 | |
I0425 14:02:55.862581 22523 solver.cpp:406] Test net output #63: loss2/accuracy14 = 0.947 | |
I0425 14:02:55.862591 22523 solver.cpp:406] Test net output #64: loss2/accuracy15 = 0.964 | |
I0425 14:02:55.862602 22523 solver.cpp:406] Test net output #65: loss2/accuracy16 = 0.97 | |
I0425 14:02:55.862614 22523 solver.cpp:406] Test net output #66: loss2/accuracy17 = 0.992 | |
I0425 14:02:55.862627 22523 solver.cpp:406] Test net output #67: loss2/accuracy18 = 0.994 | |
I0425 14:02:55.862637 22523 solver.cpp:406] Test net output #68: loss2/accuracy19 = 0.996 | |
I0425 14:02:55.862649 22523 solver.cpp:406] Test net output #69: loss2/accuracy20 = 0.998 | |
I0425 14:02:55.862660 22523 solver.cpp:406] Test net output #70: loss2/accuracy21 = 1 | |
I0425 14:02:55.862671 22523 solver.cpp:406] Test net output #71: loss2/accuracy22 = 1 | |
I0425 14:02:55.862684 22523 solver.cpp:406] Test net output #72: loss2/accuracy_incl_empty = 0.916409 | |
I0425 14:02:55.862699 22523 solver.cpp:406] Test net output #73: loss2/accuracy_top3 = 0.917755 | |
I0425 14:02:55.862714 22523 solver.cpp:406] Test net output #74: loss2/cross_entropy_loss = 0.68577 (* 0.3 = 0.205731 loss) | |
I0425 14:02:55.862727 22523 solver.cpp:406] Test net output #75: loss2/cross_entropy_loss_incl_empty = 0.302677 (* 0.3 = 0.090803 loss) | |
I0425 14:02:55.862742 22523 solver.cpp:406] Test net output #76: loss2/loss01 = 0.406676 (* 0.0272727 = 0.0110912 loss) | |
I0425 14:02:55.862756 22523 solver.cpp:406] Test net output #77: loss2/loss02 = 0.573987 (* 0.0272727 = 0.0156542 loss) | |
I0425 14:02:55.862782 22523 solver.cpp:406] Test net output #78: loss2/loss03 = 1.01697 (* 0.0272727 = 0.0277356 loss) | |
I0425 14:02:55.862797 22523 solver.cpp:406] Test net output #79: loss2/loss04 = 1.1952 (* 0.0272727 = 0.0325963 loss) | |
I0425 14:02:55.862810 22523 solver.cpp:406] Test net output #80: loss2/loss05 = 1.15111 (* 0.0272727 = 0.031394 loss) | |
I0425 14:02:55.862833 22523 solver.cpp:406] Test net output #81: loss2/loss06 = 0.983471 (* 0.0272727 = 0.0268219 loss) | |
I0425 14:02:55.862846 22523 solver.cpp:406] Test net output #82: loss2/loss07 = 0.766946 (* 0.0272727 = 0.0209167 loss) | |
I0425 14:02:55.862860 22523 solver.cpp:406] Test net output #83: loss2/loss08 = 0.544017 (* 0.0272727 = 0.0148368 loss) | |
I0425 14:02:55.862870 22523 solver.cpp:406] Test net output #84: loss2/loss09 = 0.366095 (* 0.0272727 = 0.0099844 loss) | |
I0425 14:02:55.862889 22523 solver.cpp:406] Test net output #85: loss2/loss10 = 0.334374 (* 0.0272727 = 0.00911928 loss) | |
I0425 14:02:55.862903 22523 solver.cpp:406] Test net output #86: loss2/loss11 = 0.318652 (* 0.0272727 = 0.0086905 loss) | |
I0425 14:02:55.862918 22523 solver.cpp:406] Test net output #87: loss2/loss12 = 0.299246 (* 0.0272727 = 0.00816126 loss) | |
I0425 14:02:55.862932 22523 solver.cpp:406] Test net output #88: loss2/loss13 = 0.233864 (* 0.0272727 = 0.00637811 loss) | |
I0425 14:02:55.862946 22523 solver.cpp:406] Test net output #89: loss2/loss14 = 0.205023 (* 0.0272727 = 0.00559153 loss) | |
I0425 14:02:55.862960 22523 solver.cpp:406] Test net output #90: loss2/loss15 = 0.157105 (* 0.0272727 = 0.00428467 loss) | |
I0425 14:02:55.862974 22523 solver.cpp:406] Test net output #91: loss2/loss16 = 0.139208 (* 0.0272727 = 0.00379659 loss) | |
I0425 14:02:55.862988 22523 solver.cpp:406] Test net output #92: loss2/loss17 = 0.0493391 (* 0.0272727 = 0.00134561 loss) | |
I0425 14:02:55.863008 22523 solver.cpp:406] Test net output #93: loss2/loss18 = 0.035755 (* 0.0272727 = 0.000975138 loss) | |
I0425 14:02:55.863021 22523 solver.cpp:406] Test net output #94: loss2/loss19 = 0.0272942 (* 0.0272727 = 0.000744386 loss) | |
I0425 14:02:55.863034 22523 solver.cpp:406] Test net output #95: loss2/loss20 = 0.0150746 (* 0.0272727 = 0.000411127 loss) | |
I0425 14:02:55.863049 22523 solver.cpp:406] Test net output #96: loss2/loss21 = 0.000976185 (* 0.0272727 = 2.66232e-05 loss) | |
I0425 14:02:55.863062 22523 solver.cpp:406] Test net output #97: loss2/loss22 = 0.000460933 (* 0.0272727 = 1.25709e-05 loss) | |
I0425 14:02:55.863075 22523 solver.cpp:406] Test net output #98: loss3/accuracy = 0.863851 | |
I0425 14:02:55.863092 22523 solver.cpp:406] Test net output #99: loss3/accuracy01 = 0.92 | |
I0425 14:02:55.863104 22523 solver.cpp:406] Test net output #100: loss3/accuracy02 = 0.91 | |
I0425 14:02:55.863116 22523 solver.cpp:406] Test net output #101: loss3/accuracy03 = 0.9 | |
I0425 14:02:55.863129 22523 solver.cpp:406] Test net output #102: loss3/accuracy04 = 0.864 | |
I0425 14:02:55.863150 22523 solver.cpp:406] Test net output #103: loss3/accuracy05 = 0.824 | |
I0425 14:02:55.863165 22523 solver.cpp:406] Test net output #104: loss3/accuracy06 = 0.78 | |
I0425 14:02:55.863180 22523 solver.cpp:406] Test net output #105: loss3/accuracy07 = 0.82 | |
I0425 14:02:55.863191 22523 solver.cpp:406] Test net output #106: loss3/accuracy08 = 0.869 | |
I0425 14:02:55.863204 22523 solver.cpp:406] Test net output #107: loss3/accuracy09 = 0.912 | |
I0425 14:02:55.863214 22523 solver.cpp:406] Test net output #108: loss3/accuracy10 = 0.915 | |
I0425 14:02:55.863225 22523 solver.cpp:406] Test net output #109: loss3/accuracy11 = 0.921 | |
I0425 14:02:55.863242 22523 solver.cpp:406] Test net output #110: loss3/accuracy12 = 0.926 | |
I0425 14:02:55.863256 22523 solver.cpp:406] Test net output #111: loss3/accuracy13 = 0.938 | |
I0425 14:02:55.863268 22523 solver.cpp:406] Test net output #112: loss3/accuracy14 = 0.947 | |
I0425 14:02:55.863279 22523 solver.cpp:406] Test net output #113: loss3/accuracy15 = 0.963 | |
I0425 14:02:55.863291 22523 solver.cpp:406] Test net output #114: loss3/accuracy16 = 0.97 | |
I0425 14:02:55.863313 22523 solver.cpp:406] Test net output #115: loss3/accuracy17 = 0.991 | |
I0425 14:02:55.863327 22523 solver.cpp:406] Test net output #116: loss3/accuracy18 = 0.993 | |
I0425 14:02:55.863337 22523 solver.cpp:406] Test net output #117: loss3/accuracy19 = 0.996 | |
I0425 14:02:55.863361 22523 solver.cpp:406] Test net output #118: loss3/accuracy20 = 0.998 | |
I0425 14:02:55.863376 22523 solver.cpp:406] Test net output #119: loss3/accuracy21 = 1 | |
I0425 14:02:55.863387 22523 solver.cpp:406] Test net output #120: loss3/accuracy22 = 1 | |
I0425 14:02:55.863399 22523 solver.cpp:406] Test net output #121: loss3/accuracy_incl_empty = 0.929818 | |
I0425 14:02:55.863410 22523 solver.cpp:406] Test net output #122: loss3/accuracy_top3 = 0.938974 | |
I0425 14:02:55.863423 22523 solver.cpp:406] Test net output #123: loss3/cross_entropy_loss = 0.522821 (* 1 = 0.522821 loss) | |
I0425 14:02:55.863437 22523 solver.cpp:406] Test net output #124: loss3/cross_entropy_loss_incl_empty = 0.252787 (* 1 = 0.252787 loss) | |
I0425 14:02:55.863452 22523 solver.cpp:406] Test net output #125: loss3/loss01 = 0.342191 (* 0.0909091 = 0.0311083 loss) | |
I0425 14:02:55.863466 22523 solver.cpp:406] Test net output #126: loss3/loss02 = 0.375919 (* 0.0909091 = 0.0341745 loss) | |
I0425 14:02:55.863479 22523 solver.cpp:406] Test net output #127: loss3/loss03 = 0.427196 (* 0.0909091 = 0.038836 loss) | |
I0425 14:02:55.863494 22523 solver.cpp:406] Test net output #128: loss3/loss04 = 0.523911 (* 0.0909091 = 0.0476283 loss) | |
I0425 14:02:55.863507 22523 solver.cpp:406] Test net output #129: loss3/loss05 = 0.669641 (* 0.0909091 = 0.0608765 loss) | |
I0425 14:02:55.863522 22523 solver.cpp:406] Test net output #130: loss3/loss06 = 0.746244 (* 0.0909091 = 0.0678404 loss) | |
I0425 14:02:55.863535 22523 solver.cpp:406] Test net output #131: loss3/loss07 = 0.639539 (* 0.0909091 = 0.0581399 loss) | |
I0425 14:02:55.863549 22523 solver.cpp:406] Test net output #132: loss3/loss08 = 0.448731 (* 0.0909091 = 0.0407937 loss) | |
I0425 14:02:55.863562 22523 solver.cpp:406] Test net output #133: loss3/loss09 = 0.331683 (* 0.0909091 = 0.030153 loss) | |
I0425 14:02:55.863576 22523 solver.cpp:406] Test net output #134: loss3/loss10 = 0.315001 (* 0.0909091 = 0.0286365 loss) | |
I0425 14:02:55.863590 22523 solver.cpp:406] Test net output #135: loss3/loss11 = 0.296149 (* 0.0909091 = 0.0269226 loss) | |
I0425 14:02:55.863605 22523 solver.cpp:406] Test net output #136: loss3/loss12 = 0.273333 (* 0.0909091 = 0.0248484 loss) | |
I0425 14:02:55.863618 22523 solver.cpp:406] Test net output #137: loss3/loss13 = 0.213729 (* 0.0909091 = 0.0194299 loss) | |
I0425 14:02:55.863632 22523 solver.cpp:406] Test net output #138: loss3/loss14 = 0.191369 (* 0.0909091 = 0.0173972 loss) | |
I0425 14:02:55.863646 22523 solver.cpp:406] Test net output #139: loss3/loss15 = 0.142937 (* 0.0909091 = 0.0129943 loss) | |
I0425 14:02:55.863661 22523 solver.cpp:406] Test net output #140: loss3/loss16 = 0.12583 (* 0.0909091 = 0.0114391 loss) | |
I0425 14:02:55.863674 22523 solver.cpp:406] Test net output #141: loss3/loss17 = 0.0453958 (* 0.0909091 = 0.00412689 loss) | |
I0425 14:02:55.863688 22523 solver.cpp:406] Test net output #142: loss3/loss18 = 0.0303521 (* 0.0909091 = 0.00275928 loss) | |
I0425 14:02:55.863701 22523 solver.cpp:406] Test net output #143: loss3/loss19 = 0.0260478 (* 0.0909091 = 0.00236798 loss) | |
I0425 14:02:55.863716 22523 solver.cpp:406] Test net output #144: loss3/loss20 = 0.0146164 (* 0.0909091 = 0.00132877 loss) | |
I0425 14:02:55.863730 22523 solver.cpp:406] Test net output #145: loss3/loss21 = 0.00124179 (* 0.0909091 = 0.00011289 loss) | |
I0425 14:02:55.863749 22523 solver.cpp:406] Test net output #146: loss3/loss22 = 0.0001312 (* 0.0909091 = 1.19273e-05 loss) | |
I0425 14:02:55.863761 22523 solver.cpp:406] Test net output #147: total_accuracy = 0.659 | |
I0425 14:02:55.863773 22523 solver.cpp:406] Test net output #148: total_accuracy_not_rec = 0.575 | |
I0425 14:02:55.863785 22523 solver.cpp:406] Test net output #149: total_confidence = 0.644884 | |
I0425 14:02:55.863807 22523 solver.cpp:406] Test net output #150: total_confidence_nor_rec = 0.529727 | |
I0425 14:02:56.254529 22523 solver.cpp:229] Iteration 20000, loss = 2.99501 | |
I0425 14:02:56.254586 22523 solver.cpp:245] Train net output #0: loss1/accuracy = 0.448276 | |
I0425 14:02:56.254604 22523 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.625 | |
I0425 14:02:56.254617 22523 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.25 | |
I0425 14:02:56.254629 22523 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375 | |
I0425 14:02:56.254642 22523 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.5 | |
I0425 14:02:56.254654 22523 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.375 | |
I0425 14:02:56.254667 22523 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.375 | |
I0425 14:02:56.254679 22523 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.375 | |
I0425 14:02:56.254691 22523 solver.cpp:245] Train net output #8: loss1/accuracy08 = 1 | |
I0425 14:02:56.254703 22523 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875 | |
I0425 14:02:56.254715 22523 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875 | |
I0425 14:02:56.254727 22523 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1 | |
I0425 14:02:56.254739 22523 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.875 | |
I0425 14:02:56.254751 22523 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.875 | |
I0425 14:02:56.254767 22523 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.875 | |
I0425 14:02:56.254781 22523 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.875 | |
I0425 14:02:56.254793 22523 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0425 14:02:56.254804 22523 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0425 14:02:56.254817 22523 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0425 14:02:56.254828 22523 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0425 14:02:56.254840 22523 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0425 14:02:56.254858 22523 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0425 14:02:56.254868 22523 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0425 14:02:56.254883 22523 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.8125 | |
I0425 14:02:56.254894 22523 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.706897 | |
I0425 14:02:56.254920 22523 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.70476 (* 0.3 = 0.511428 loss) | |
I0425 14:02:56.254935 22523 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.587527 (* 0.3 = 0.176258 loss) | |
I0425 14:02:56.254950 22523 solver.cpp:245] Train net output #27: loss1/loss01 = 0.971553 (* 0.0272727 = 0.0264969 loss) | |
I0425 14:02:56.254963 22523 solver.cpp:245] Train net output #28: loss1/loss02 = 2.03318 (* 0.0272727 = 0.0554503 loss) | |
I0425 14:02:56.254978 22523 solver.cpp:245] Train net output #29: loss1/loss03 = 1.79531 (* 0.0272727 = 0.0489631 loss) | |
I0425 14:02:56.254992 22523 solver.cpp:245] Train net output #30: loss1/loss04 = 1.6226 (* 0.0272727 = 0.0442528 loss) | |
I0425 14:02:56.255007 22523 solver.cpp:245] Train net output #31: loss1/loss05 = 2.33673 (* 0.0272727 = 0.063729 loss) | |
I0425 14:02:56.255022 22523 solver.cpp:245] Train net output #32: loss1/loss06 = 2.13202 (* 0.0272727 = 0.0581459 loss) | |
I0425 14:02:56.255035 22523 solver.cpp:245] Train net output #33: loss1/loss07 = 2.50563 (* 0.0272727 = 0.0683353 loss) | |
I0425 14:02:56.255049 22523 solver.cpp:245] Train net output #34: loss1/loss08 = 0.305839 (* 0.0272727 = 0.00834108 loss) | |
I0425 14:02:56.255064 22523 solver.cpp:245] Train net output #35: loss1/loss09 = 0.704406 (* 0.0272727 = 0.0192111 loss) | |
I0425 14:02:56.255079 22523 solver.cpp:245] Train net output #36: loss1/loss10 = 0.325284 (* 0.0272727 = 0.00887138 loss) | |
I0425 14:02:56.255094 22523 solver.cpp:245] Train net output #37: loss1/loss11 = 0.214268 (* 0.0272727 = 0.00584368 loss) | |
I0425 14:02:56.255134 22523 solver.cpp:245] Train net output #38: loss1/loss12 = 0.254361 (* 0.0272727 = 0.00693711 loss) | |
I0425 14:02:56.255151 22523 solver.cpp:245] Train net output #39: loss1/loss13 = 0.581888 (* 0.0272727 = 0.0158697 loss) | |
I0425 14:02:56.255165 22523 solver.cpp:245] Train net output #40: loss1/loss14 = 0.448755 (* 0.0272727 = 0.0122388 loss) | |
I0425 14:02:56.255179 22523 solver.cpp:245] Train net output #41: loss1/loss15 = 0.421819 (* 0.0272727 = 0.0115042 loss) | |
I0425 14:02:56.255194 22523 solver.cpp:245] Train net output #42: loss1/loss16 = 0.0364176 (* 0.0272727 = 0.000993208 loss) | |
I0425 14:02:56.255209 22523 solver.cpp:245] Train net output #43: loss1/loss17 = 0.00135041 (* 0.0272727 = 3.68294e-05 loss) | |
I0425 14:02:56.255224 22523 solver.cpp:245] Train net output #44: loss1/loss18 = 0.00126587 (* 0.0272727 = 3.45238e-05 loss) | |
I0425 14:02:56.255239 22523 solver.cpp:245] Train net output #45: loss1/loss19 = 0.000337344 (* 0.0272727 = 9.20029e-06 loss) | |
I0425 14:02:56.255254 22523 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000195594 (* 0.0272727 = 5.33439e-06 loss) | |
I0425 14:02:56.255267 22523 solver.cpp:245] Train net output #47: loss1/loss21 = 8.0554e-05 (* 0.0272727 = 2.19693e-06 loss) | |
I0425 14:02:56.255281 22523 solver.cpp:245] Train net output #48: loss1/loss22 = 3.34552e-05 (* 0.0272727 = 9.12416e-07 loss) | |
I0425 14:02:56.255295 22523 solver.cpp:245] Train net output #49: loss2/accuracy = 0.62069 | |
I0425 14:02:56.255306 22523 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.75 | |
I0425 14:02:56.255321 22523 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.875 | |
I0425 14:02:56.255332 22523 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.75 | |
I0425 14:02:56.255343 22523 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.75 | |
I0425 14:02:56.255370 22523 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.375 | |
I0425 14:02:56.255383 22523 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.5 | |
I0425 14:02:56.255401 22523 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.625 | |
I0425 14:02:56.255414 22523 solver.cpp:245] Train net output #57: loss2/accuracy08 = 1 | |
I0425 14:02:56.255425 22523 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875 | |
I0425 14:02:56.255436 22523 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875 | |
I0425 14:02:56.255448 22523 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.875 | |
I0425 14:02:56.255460 22523 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.875 | |
I0425 14:02:56.255472 22523 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.875 | |
I0425 14:02:56.255483 22523 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.875 | |
I0425 14:02:56.255496 22523 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.875 | |
I0425 14:02:56.255507 22523 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0425 14:02:56.255518 22523 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0425 14:02:56.255529 22523 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0425 14:02:56.255542 22523 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0425 14:02:56.255553 22523 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0425 14:02:56.255563 22523 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0425 14:02:56.255575 22523 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0425 14:02:56.255587 22523 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.869318 | |
I0425 14:02:56.255599 22523 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.844828 | |
I0425 14:02:56.255612 22523 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.28594 (* 0.3 = 0.385781 loss) | |
I0425 14:02:56.255627 22523 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.445693 (* 0.3 = 0.133708 loss) | |
I0425 14:02:56.255655 22523 solver.cpp:245] Train net output #76: loss2/loss01 = 1.18268 (* 0.0272727 = 0.0322549 loss) | |
I0425 14:02:56.255669 22523 solver.cpp:245] Train net output #77: loss2/loss02 = 1.11292 (* 0.0272727 = 0.0303523 loss) | |
I0425 14:02:56.255683 22523 solver.cpp:245] Train net output #78: loss2/loss03 = 1.06932 (* 0.0272727 = 0.0291634 loss) | |
I0425 14:02:56.255697 22523 solver.cpp:245] Train net output #79: loss2/loss04 = 1.54674 (* 0.0272727 = 0.0421838 loss) | |
I0425 14:02:56.255712 22523 solver.cpp:245] Train net output #80: loss2/loss05 = 1.94645 (* 0.0272727 = 0.0530849 loss) | |
I0425 14:02:56.255727 22523 solver.cpp:245] Train net output #81: loss2/loss06 = 1.70595 (* 0.0272727 = 0.046526 loss) | |
I0425 14:02:56.255740 22523 solver.cpp:245] Train net output #82: loss2/loss07 = 2.24253 (* 0.0272727 = 0.0611599 loss) | |
I0425 14:02:56.255754 22523 solver.cpp:245] Train net output #83: loss2/loss08 = 0.326718 (* 0.0272727 = 0.00891049 loss) | |
I0425 14:02:56.255769 22523 solver.cpp:245] Train net output #84: loss2/loss09 = 0.545157 (* 0.0272727 = 0.0148679 loss) | |
I0425 14:02:56.255784 22523 solver.cpp:245] Train net output #85: loss2/loss10 = 0.448849 (* 0.0272727 = 0.0122413 loss) | |
I0425 14:02:56.255797 22523 solver.cpp:245] Train net output #86: loss2/loss11 = 0.323165 (* 0.0272727 = 0.00881359 loss) | |
I0425 14:02:56.255811 22523 solver.cpp:245] Train net output #87: loss2/loss12 = 0.372321 (* 0.0272727 = 0.0101542 loss) | |
I0425 14:02:56.255830 22523 solver.cpp:245] Train net output #88: loss2/loss13 = 0.515933 (* 0.0272727 = 0.0140709 loss) | |
I0425 14:02:56.255843 22523 solver.cpp:245] Train net output #89: loss2/loss14 = 0.486757 (* 0.0272727 = 0.0132752 loss) | |
I0425 14:02:56.255857 22523 solver.cpp:245] Train net output #90: loss2/loss15 = 0.488252 (* 0.0272727 = 0.013316 loss) | |
I0425 14:02:56.255872 22523 solver.cpp:245] Train net output #91: loss2/loss16 = 0.0238664 (* 0.0272727 = 0.000650902 loss) | |
I0425 14:02:56.255887 22523 solver.cpp:245] Train net output #92: loss2/loss17 = 0.00531729 (* 0.0272727 = 0.000145017 loss) | |
I0425 14:02:56.255900 22523 solver.cpp:245] Train net output #93: loss2/loss18 = 0.00746779 (* 0.0272727 = 0.000203667 loss) | |
I0425 14:02:56.255914 22523 solver.cpp:245] Train net output #94: loss2/loss19 = 0.00153311 (* 0.0272727 = 4.1812e-05 loss) | |
I0425 14:02:56.255931 22523 solver.cpp:245] Train net output #95: loss2/loss20 = 0.000998123 (* 0.0272727 = 2.72215e-05 loss) | |
I0425 14:02:56.255946 22523 solver.cpp:245] Train net output #96: loss2/loss21 = 0.000888577 (* 0.0272727 = 2.42339e-05 loss) | |
I0425 14:02:56.255960 22523 solver.cpp:245] Train net output #97: loss2/loss22 = 0.000229673 (* 0.0272727 = 6.26382e-06 loss) | |
I0425 14:02:56.255973 22523 solver.cpp:245] Train net output #98: loss3/accuracy = 0.793103 | |
I0425 14:02:56.255985 22523 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875 | |
I0425 14:02:56.255998 22523 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.75 | |
I0425 14:02:56.256011 22523 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.875 | |
I0425 14:02:56.256021 22523 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875 | |
I0425 14:02:56.256033 22523 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.75 | |
I0425 14:02:56.256045 22523 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.875 | |
I0425 14:02:56.256057 22523 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875 | |
I0425 14:02:56.256068 22523 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1 | |
I0425 14:02:56.256079 22523 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875 | |
I0425 14:02:56.256091 22523 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875 | |
I0425 14:02:56.256103 22523 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1 | |
I0425 14:02:56.256114 22523 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1 | |
I0425 14:02:56.256126 22523 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.875 | |
I0425 14:02:56.256157 22523 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.875 | |
I0425 14:02:56.256171 22523 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.875 | |
I0425 14:02:56.256182 22523 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0425 14:02:56.256194 22523 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0425 14:02:56.256214 22523 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0425 14:02:56.256225 22523 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0425 14:02:56.256237 22523 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0425 14:02:56.256248 22523 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0425 14:02:56.256260 22523 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0425 14:02:56.256271 22523 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.920455 | |
I0425 14:02:56.256283 22523 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.913793 | |
I0425 14:02:56.256297 22523 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.68179 (* 1 = 0.68179 loss) | |
I0425 14:02:56.256311 22523 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.249337 (* 1 = 0.249337 loss) | |
I0425 14:02:56.256326 22523 solver.cpp:245] Train net output #125: loss3/loss01 = 0.480883 (* 0.0909091 = 0.0437167 loss) | |
I0425 14:02:56.256340 22523 solver.cpp:245] Train net output #126: loss3/loss02 = 0.410349 (* 0.0909091 = 0.0373044 loss) | |
I0425 14:02:56.256355 22523 solver.cpp:245] Train net output #127: loss3/loss03 = 0.427457 (* 0.0909091 = 0.0388597 loss) | |
I0425 14:02:56.256368 22523 solver.cpp:245] Train net output #128: loss3/loss04 = 0.286863 (* 0.0909091 = 0.0260784 loss) | |
I0425 14:02:56.256382 22523 solver.cpp:245] Train net output #129: loss3/loss05 = 1.00983 (* 0.0909091 = 0.0918028 loss) | |
I0425 14:02:56.256397 22523 solver.cpp:245] Train net output #130: loss3/loss06 = 0.453175 (* 0.0909091 = 0.0411977 loss) | |
I0425 14:02:56.256410 22523 solver.cpp:245] Train net output #131: loss3/loss07 = 1.00471 (* 0.0909091 = 0.0913375 loss) | |
I0425 14:02:56.256424 22523 solver.cpp:245] Train net output #132: loss3/loss08 = 0.176772 (* 0.0909091 = 0.0160702 loss) | |
I0425 14:02:56.256438 22523 solver.cpp:245] Train net output #133: loss3/loss09 = 0.470747 (* 0.0909091 = 0.0427952 loss) | |
I0425 14:02:56.256453 22523 solver.cpp:245] Train net output #134: loss3/loss10 = 0.400736 (* 0.0909091 = 0.0364305 loss) | |
I0425 14:02:56.256475 22523 solver.cpp:245] Train net output #135: loss3/loss11 = 0.269579 (* 0.0909091 = 0.0245072 loss) | |
I0425 14:02:56.256489 22523 solver.cpp:245] Train net output #136: loss3/loss12 = 0.293225 (* 0.0909091 = 0.0266568 loss) | |
I0425 14:02:56.256503 22523 solver.cpp:245] Train net output #137: loss3/loss13 = 0.377841 (* 0.0909091 = 0.0343492 loss) | |
I0425 14:02:56.256517 22523 solver.cpp:245] Train net output #138: loss3/loss14 = 0.387599 (* 0.0909091 = 0.0352362 loss) | |
I0425 14:02:56.256537 22523 solver.cpp:245] Train net output #139: loss3/loss15 = 0.341054 (* 0.0909091 = 0.0310049 loss) | |
I0425 14:02:56.256551 22523 solver.cpp:245] Train net output #140: loss3/loss16 = 0.130756 (* 0.0909091 = 0.0118869 loss) | |
I0425 14:02:56.256566 22523 solver.cpp:245] Train net output #141: loss3/loss17 = 0.0143734 (* 0.0909091 = 0.00130667 loss) | |
I0425 14:02:56.256579 22523 solver.cpp:245] Train net output #142: loss3/loss18 = 0.00373106 (* 0.0909091 = 0.000339187 loss) | |
I0425 14:02:56.256593 22523 solver.cpp:245] Train net output #143: loss3/loss19 = 0.00316031 (* 0.0909091 = 0.000287301 loss) | |
I0425 14:02:56.256608 22523 solver.cpp:245] Train net output #144: loss3/loss20 = 0.00211355 (* 0.0909091 = 0.00019214 loss) | |
I0425 14:02:56.256621 22523 solver.cpp:245] Train net output #145: loss3/loss21 = 0.00100189 (* 0.0909091 = 9.10808e-05 loss) | |
I0425 14:02:56.256636 22523 solver.cpp:245] Train net output #146: loss3/loss22 = 8.24204e-05 (* 0.0909091 = 7.49277e-06 loss) | |
I0425 14:02:56.256659 22523 solver.cpp:245] Train net output #147: total_accuracy = 0.625 | |
I0425 14:02:56.256672 22523 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.625 | |
I0425 14:02:56.256685 22523 solver.cpp:245] Train net output #149: total_confidence = 0.54781 | |
I0425 14:02:56.256696 22523 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.350919 | |
I0425 14:02:56.256711 22523 sgd_solver.cpp:106] Iteration 20000, lr = 0.01 | |
I0425 14:08:37.644294 22523 solver.cpp:229] Iteration 20500, loss = 2.95585 | |
I0425 14:08:37.644426 22523 solver.cpp:245] Train net output #0: loss1/accuracy = 0.65 | |
I0425 14:08:37.644446 22523 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.875 | |
I0425 14:08:37.644460 22523 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.625 | |
I0425 14:08:37.644472 22523 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.25 | |
I0425 14:08:37.644485 22523 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.75 | |
I0425 14:08:37.644498 22523 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.75 | |
I0425 14:08:37.644510 22523 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.75 | |
I0425 14:08:37.644522 22523 solver.cpp:245] Train net output #7: loss1/accuracy07 = 1 | |
I0425 14:08:37.644536 22523 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875 | |
I0425 14:08:37.644548 22523 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875 | |
I0425 14:08:37.644561 22523 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875 | |
I0425 14:08:37.644573 22523 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1 | |
I0425 14:08:37.644585 22523 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1 | |
I0425 14:08:37.644598 22523 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1 | |
I0425 14:08:37.644609 22523 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1 | |
I0425 14:08:37.644620 22523 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0425 14:08:37.644634 22523 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0425 14:08:37.644644 22523 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0425 14:08:37.644657 22523 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0425 14:08:37.644670 22523 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0425 14:08:37.644681 22523 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0425 14:08:37.644692 22523 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0425 14:08:37.644704 22523 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0425 14:08:37.644716 22523 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.903409 | |
I0425 14:08:37.644728 22523 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.75 | |
I0425 14:08:37.644745 22523 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.45546 (* 0.3 = 0.436639 loss) | |
I0425 14:08:37.644760 22523 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.384912 (* 0.3 = 0.115474 loss) | |
I0425 14:08:37.644775 22523 solver.cpp:245] Train net output #27: loss1/loss01 = 0.742563 (* 0.0272727 = 0.0202517 loss) | |
I0425 14:08:37.644789 22523 solver.cpp:245] Train net output #28: loss1/loss02 = 1.94582 (* 0.0272727 = 0.0530677 loss) | |
I0425 14:08:37.644804 22523 solver.cpp:245] Train net output #29: loss1/loss03 = 2.37013 (* 0.0272727 = 0.0646398 loss) | |
I0425 14:08:37.644819 22523 solver.cpp:245] Train net output #30: loss1/loss04 = 0.862898 (* 0.0272727 = 0.0235336 loss) | |
I0425 14:08:37.644834 22523 solver.cpp:245] Train net output #31: loss1/loss05 = 1.37284 (* 0.0272727 = 0.037441 loss) | |
I0425 14:08:37.644850 22523 solver.cpp:245] Train net output #32: loss1/loss06 = 0.824631 (* 0.0272727 = 0.0224899 loss) | |
I0425 14:08:37.644863 22523 solver.cpp:245] Train net output #33: loss1/loss07 = 0.23441 (* 0.0272727 = 0.006393 loss) | |
I0425 14:08:37.644878 22523 solver.cpp:245] Train net output #34: loss1/loss08 = 0.312209 (* 0.0272727 = 0.00851479 loss) | |
I0425 14:08:37.644892 22523 solver.cpp:245] Train net output #35: loss1/loss09 = 0.467471 (* 0.0272727 = 0.0127492 loss) | |
I0425 14:08:37.644914 22523 solver.cpp:245] Train net output #36: loss1/loss10 = 0.441066 (* 0.0272727 = 0.0120291 loss) | |
I0425 14:08:37.644929 22523 solver.cpp:245] Train net output #37: loss1/loss11 = 0.147826 (* 0.0272727 = 0.00403163 loss) | |
I0425 14:08:37.644943 22523 solver.cpp:245] Train net output #38: loss1/loss12 = 0.0420235 (* 0.0272727 = 0.0011461 loss) | |
I0425 14:08:37.644958 22523 solver.cpp:245] Train net output #39: loss1/loss13 = 0.0198498 (* 0.0272727 = 0.000541358 loss) | |
I0425 14:08:37.644990 22523 solver.cpp:245] Train net output #40: loss1/loss14 = 0.00928754 (* 0.0272727 = 0.000253296 loss) | |
I0425 14:08:37.645006 22523 solver.cpp:245] Train net output #41: loss1/loss15 = 0.00387412 (* 0.0272727 = 0.000105658 loss) | |
I0425 14:08:37.645020 22523 solver.cpp:245] Train net output #42: loss1/loss16 = 0.00142098 (* 0.0272727 = 3.8754e-05 loss) | |
I0425 14:08:37.645035 22523 solver.cpp:245] Train net output #43: loss1/loss17 = 0.000586205 (* 0.0272727 = 1.59874e-05 loss) | |
I0425 14:08:37.645050 22523 solver.cpp:245] Train net output #44: loss1/loss18 = 0.000718762 (* 0.0272727 = 1.96026e-05 loss) | |
I0425 14:08:37.645064 22523 solver.cpp:245] Train net output #45: loss1/loss19 = 0.000203998 (* 0.0272727 = 5.56358e-06 loss) | |
I0425 14:08:37.645078 22523 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000155227 (* 0.0272727 = 4.23347e-06 loss) | |
I0425 14:08:37.645092 22523 solver.cpp:245] Train net output #47: loss1/loss21 = 6.86787e-05 (* 0.0272727 = 1.87306e-06 loss) | |
I0425 14:08:37.645107 22523 solver.cpp:245] Train net output #48: loss1/loss22 = 3.96551e-05 (* 0.0272727 = 1.0815e-06 loss) | |
I0425 14:08:37.645119 22523 solver.cpp:245] Train net output #49: loss2/accuracy = 0.75 | |
I0425 14:08:37.645131 22523 solver.cpp:245] Train net output #50: loss2/accuracy01 = 1 | |
I0425 14:08:37.645143 22523 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.5 | |
I0425 14:08:37.645155 22523 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.75 | |
I0425 14:08:37.645166 22523 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.875 | |
I0425 14:08:37.645179 22523 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.625 | |
I0425 14:08:37.645190 22523 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.875 | |
I0425 14:08:37.645205 22523 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.875 | |
I0425 14:08:37.645217 22523 solver.cpp:245] Train net output #57: loss2/accuracy08 = 1 | |
I0425 14:08:37.645229 22523 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875 | |
I0425 14:08:37.645241 22523 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875 | |
I0425 14:08:37.645252 22523 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1 | |
I0425 14:08:37.645264 22523 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1 | |
I0425 14:08:37.645275 22523 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1 | |
I0425 14:08:37.645287 22523 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1 | |
I0425 14:08:37.645298 22523 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0425 14:08:37.645309 22523 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0425 14:08:37.645320 22523 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0425 14:08:37.645333 22523 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0425 14:08:37.645342 22523 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0425 14:08:37.645354 22523 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0425 14:08:37.645365 22523 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0425 14:08:37.645377 22523 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0425 14:08:37.645388 22523 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.926136 | |
I0425 14:08:37.645403 22523 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.95 | |
I0425 14:08:37.645417 22523 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.01028 (* 0.3 = 0.303083 loss) | |
I0425 14:08:37.645431 22523 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.304845 (* 0.3 = 0.0914535 loss) | |
I0425 14:08:37.645449 22523 solver.cpp:245] Train net output #76: loss2/loss01 = 0.380961 (* 0.0272727 = 0.0103899 loss) | |
I0425 14:08:37.645463 22523 solver.cpp:245] Train net output #77: loss2/loss02 = 2.09221 (* 0.0272727 = 0.0570603 loss) | |
I0425 14:08:37.645489 22523 solver.cpp:245] Train net output #78: loss2/loss03 = 0.891204 (* 0.0272727 = 0.0243056 loss) | |
I0425 14:08:37.645504 22523 solver.cpp:245] Train net output #79: loss2/loss04 = 0.975289 (* 0.0272727 = 0.0265988 loss) | |
I0425 14:08:37.645519 22523 solver.cpp:245] Train net output #80: loss2/loss05 = 0.881608 (* 0.0272727 = 0.0240438 loss) | |
I0425 14:08:37.645532 22523 solver.cpp:245] Train net output #81: loss2/loss06 = 0.67094 (* 0.0272727 = 0.0182984 loss) | |
I0425 14:08:37.645547 22523 solver.cpp:245] Train net output #82: loss2/loss07 = 0.497143 (* 0.0272727 = 0.0135584 loss) | |
I0425 14:08:37.645561 22523 solver.cpp:245] Train net output #83: loss2/loss08 = 0.216222 (* 0.0272727 = 0.00589698 loss) | |
I0425 14:08:37.645583 22523 solver.cpp:245] Train net output #84: loss2/loss09 = 0.488481 (* 0.0272727 = 0.0133222 loss) | |
I0425 14:08:37.645597 22523 solver.cpp:245] Train net output #85: loss2/loss10 = 0.522326 (* 0.0272727 = 0.0142453 loss) | |
I0425 14:08:37.645612 22523 solver.cpp:245] Train net output #86: loss2/loss11 = 0.0412177 (* 0.0272727 = 0.00112412 loss) | |
I0425 14:08:37.645625 22523 solver.cpp:245] Train net output #87: loss2/loss12 = 0.0152247 (* 0.0272727 = 0.000415218 loss) | |
I0425 14:08:37.645640 22523 solver.cpp:245] Train net output #88: loss2/loss13 = 0.00511931 (* 0.0272727 = 0.000139617 loss) | |
I0425 14:08:37.645656 22523 solver.cpp:245] Train net output #89: loss2/loss14 = 0.00202345 (* 0.0272727 = 5.51851e-05 loss) | |
I0425 14:08:37.645670 22523 solver.cpp:245] Train net output #90: loss2/loss15 = 0.00169807 (* 0.0272727 = 4.63111e-05 loss) | |
I0425 14:08:37.645684 22523 solver.cpp:245] Train net output #91: loss2/loss16 = 0.000562322 (* 0.0272727 = 1.5336e-05 loss) | |
I0425 14:08:37.645699 22523 solver.cpp:245] Train net output #92: loss2/loss17 = 0.00025962 (* 0.0272727 = 7.08055e-06 loss) | |
I0425 14:08:37.645714 22523 solver.cpp:245] Train net output #93: loss2/loss18 = 0.000228495 (* 0.0272727 = 6.23168e-06 loss) | |
I0425 14:08:37.645727 22523 solver.cpp:245] Train net output #94: loss2/loss19 = 0.000316718 (* 0.0272727 = 8.63777e-06 loss) | |
I0425 14:08:37.645741 22523 solver.cpp:245] Train net output #95: loss2/loss20 = 0.00012532 (* 0.0272727 = 3.41782e-06 loss) | |
I0425 14:08:37.645756 22523 solver.cpp:245] Train net output #96: loss2/loss21 = 8.63359e-05 (* 0.0272727 = 2.35462e-06 loss) | |
I0425 14:08:37.645766 22523 solver.cpp:245] Train net output #97: loss2/loss22 = 3.59243e-05 (* 0.0272727 = 9.79752e-07 loss) | |
I0425 14:08:37.645788 22523 solver.cpp:245] Train net output #98: loss3/accuracy = 0.875 | |
I0425 14:08:37.645800 22523 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1 | |
I0425 14:08:37.645812 22523 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875 | |
I0425 14:08:37.645823 22523 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.875 | |
I0425 14:08:37.645835 22523 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1 | |
I0425 14:08:37.645848 22523 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875 | |
I0425 14:08:37.645859 22523 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.875 | |
I0425 14:08:37.645871 22523 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875 | |
I0425 14:08:37.645882 22523 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1 | |
I0425 14:08:37.645895 22523 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875 | |
I0425 14:08:37.645905 22523 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875 | |
I0425 14:08:37.645917 22523 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1 | |
I0425 14:08:37.645928 22523 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1 | |
I0425 14:08:37.645939 22523 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1 | |
I0425 14:08:37.645951 22523 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1 | |
I0425 14:08:37.645961 22523 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0425 14:08:37.645973 22523 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0425 14:08:37.645995 22523 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0425 14:08:37.646008 22523 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0425 14:08:37.646019 22523 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0425 14:08:37.646031 22523 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0425 14:08:37.646042 22523 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0425 14:08:37.646054 22523 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0425 14:08:37.646064 22523 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.954545 | |
I0425 14:08:37.646076 22523 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.95 | |
I0425 14:08:37.646090 22523 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.526542 (* 1 = 0.526542 loss) | |
I0425 14:08:37.646105 22523 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.170553 (* 1 = 0.170553 loss) | |
I0425 14:08:37.646118 22523 solver.cpp:245] Train net output #125: loss3/loss01 = 0.0992946 (* 0.0909091 = 0.00902678 loss) | |
I0425 14:08:37.646132 22523 solver.cpp:245] Train net output #126: loss3/loss02 = 1.01151 (* 0.0909091 = 0.0919554 loss) | |
I0425 14:08:37.646147 22523 solver.cpp:245] Train net output #127: loss3/loss03 = 0.530073 (* 0.0909091 = 0.0481884 loss) | |
I0425 14:08:37.646160 22523 solver.cpp:245] Train net output #128: loss3/loss04 = 0.0847896 (* 0.0909091 = 0.00770815 loss) | |
I0425 14:08:37.646174 22523 solver.cpp:245] Train net output #129: loss3/loss05 = 0.238508 (* 0.0909091 = 0.0216826 loss) | |
I0425 14:08:37.646188 22523 solver.cpp:245] Train net output #130: loss3/loss06 = 0.216205 (* 0.0909091 = 0.019655 loss) | |
I0425 14:08:37.646201 22523 solver.cpp:245] Train net output #131: loss3/loss07 = 0.336894 (* 0.0909091 = 0.0306267 loss) | |
I0425 14:08:37.646215 22523 solver.cpp:245] Train net output #132: loss3/loss08 = 0.113397 (* 0.0909091 = 0.0103088 loss) | |
I0425 14:08:37.646229 22523 solver.cpp:245] Train net output #133: loss3/loss09 = 0.319667 (* 0.0909091 = 0.0290606 loss) | |
I0425 14:08:37.646244 22523 solver.cpp:245] Train net output #134: loss3/loss10 = 0.399911 (* 0.0909091 = 0.0363555 loss) | |
I0425 14:08:37.646260 22523 solver.cpp:245] Train net output #135: loss3/loss11 = 0.1247 (* 0.0909091 = 0.0113364 loss) | |
I0425 14:08:37.646278 22523 solver.cpp:245] Train net output #136: loss3/loss12 = 0.0427805 (* 0.0909091 = 0.00388913 loss) | |
I0425 14:08:37.646292 22523 solver.cpp:245] Train net output #137: loss3/loss13 = 0.0318386 (* 0.0909091 = 0.00289442 loss) | |
I0425 14:08:37.646306 22523 solver.cpp:245] Train net output #138: loss3/loss14 = 0.0135999 (* 0.0909091 = 0.00123635 loss) | |
I0425 14:08:37.646320 22523 solver.cpp:245] Train net output #139: loss3/loss15 = 0.00709225 (* 0.0909091 = 0.00064475 loss) | |
I0425 14:08:37.646334 22523 solver.cpp:245] Train net output #140: loss3/loss16 = 0.0028629 (* 0.0909091 = 0.000260264 loss) | |
I0425 14:08:37.646348 22523 solver.cpp:245] Train net output #141: loss3/loss17 = 0.000764145 (* 0.0909091 = 6.94677e-05 loss) | |
I0425 14:08:37.646363 22523 solver.cpp:245] Train net output #142: loss3/loss18 = 0.000551963 (* 0.0909091 = 5.01785e-05 loss) | |
I0425 14:08:37.646376 22523 solver.cpp:245] Train net output #143: loss3/loss19 = 0.000299385 (* 0.0909091 = 2.72168e-05 loss) | |
I0425 14:08:37.646390 22523 solver.cpp:245] Train net output #144: loss3/loss20 = 0.00030425 (* 0.0909091 = 2.76591e-05 loss) | |
I0425 14:08:37.646414 22523 solver.cpp:245] Train net output #145: loss3/loss21 = 0.000143438 (* 0.0909091 = 1.30398e-05 loss) | |
I0425 14:08:37.646428 22523 solver.cpp:245] Train net output #146: loss3/loss22 = 3.77021e-05 (* 0.0909091 = 3.42747e-06 loss) | |
I0425 14:08:37.646440 22523 solver.cpp:245] Train net output #147: total_accuracy = 0.625 | |
I0425 14:08:37.646452 22523 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.75 | |
I0425 14:08:37.646474 22523 solver.cpp:245] Train net output #149: total_confidence = 0.563487 | |
I0425 14:08:37.646487 22523 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.639209 | |
I0425 14:08:37.646505 22523 sgd_solver.cpp:106] Iteration 20500, lr = 0.01 | |
I0425 14:14:18.974727 22523 solver.cpp:229] Iteration 21000, loss = 3.18448 | |
I0425 14:14:18.974903 22523 solver.cpp:245] Train net output #0: loss1/accuracy = 0.54 | |
I0425 14:14:18.974925 22523 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.625 | |
I0425 14:14:18.974938 22523 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.375 | |
I0425 14:14:18.974951 22523 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0 | |
I0425 14:14:18.974963 22523 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.25 | |
I0425 14:14:18.974977 22523 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.375 | |
I0425 14:14:18.974989 22523 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.625 | |
I0425 14:14:18.975003 22523 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.75 | |
I0425 14:14:18.975014 22523 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.75 | |
I0425 14:14:18.975026 22523 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1 | |
I0425 14:14:18.975039 22523 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1 | |
I0425 14:14:18.975051 22523 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1 | |
I0425 14:14:18.975064 22523 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1 | |
I0425 14:14:18.975081 22523 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1 | |
I0425 14:14:18.975093 22523 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1 | |
I0425 14:14:18.975106 22523 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0425 14:14:18.975117 22523 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0425 14:14:18.975129 22523 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0425 14:14:18.975149 22523 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0425 14:14:18.975162 22523 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0425 14:14:18.975173 22523 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0425 14:14:18.975185 22523 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0425 14:14:18.975198 22523 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0425 14:14:18.975213 22523 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.852273 | |
I0425 14:14:18.975224 22523 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.7 | |
I0425 14:14:18.975242 22523 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.88766 (* 0.3 = 0.566297 loss) | |
I0425 14:14:18.975258 22523 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.656132 (* 0.3 = 0.19684 loss) | |
I0425 14:14:18.975273 22523 solver.cpp:245] Train net output #27: loss1/loss01 = 1.81701 (* 0.0272727 = 0.0495549 loss) | |
I0425 14:14:18.975287 22523 solver.cpp:245] Train net output #28: loss1/loss02 = 2.68535 (* 0.0272727 = 0.0732368 loss) | |
I0425 14:14:18.975302 22523 solver.cpp:245] Train net output #29: loss1/loss03 = 3.16635 (* 0.0272727 = 0.086355 loss) | |
I0425 14:14:18.975317 22523 solver.cpp:245] Train net output #30: loss1/loss04 = 2.73266 (* 0.0272727 = 0.074527 loss) | |
I0425 14:14:18.975332 22523 solver.cpp:245] Train net output #31: loss1/loss05 = 2.13696 (* 0.0272727 = 0.0582807 loss) | |
I0425 14:14:18.975347 22523 solver.cpp:245] Train net output #32: loss1/loss06 = 1.13957 (* 0.0272727 = 0.0310792 loss) | |
I0425 14:14:18.975386 22523 solver.cpp:245] Train net output #33: loss1/loss07 = 0.717311 (* 0.0272727 = 0.019563 loss) | |
I0425 14:14:18.975402 22523 solver.cpp:245] Train net output #34: loss1/loss08 = 1.08177 (* 0.0272727 = 0.0295027 loss) | |
I0425 14:14:18.975416 22523 solver.cpp:245] Train net output #35: loss1/loss09 = 0.391805 (* 0.0272727 = 0.0106856 loss) | |
I0425 14:14:18.975430 22523 solver.cpp:245] Train net output #36: loss1/loss10 = 0.192589 (* 0.0272727 = 0.00525241 loss) | |
I0425 14:14:18.975455 22523 solver.cpp:245] Train net output #37: loss1/loss11 = 0.0961511 (* 0.0272727 = 0.0026223 loss) | |
I0425 14:14:18.975469 22523 solver.cpp:245] Train net output #38: loss1/loss12 = 0.0479747 (* 0.0272727 = 0.0013084 loss) | |
I0425 14:14:18.975484 22523 solver.cpp:245] Train net output #39: loss1/loss13 = 0.0253289 (* 0.0272727 = 0.000690788 loss) | |
I0425 14:14:18.975525 22523 solver.cpp:245] Train net output #40: loss1/loss14 = 0.0176743 (* 0.0272727 = 0.000482027 loss) | |
I0425 14:14:18.975541 22523 solver.cpp:245] Train net output #41: loss1/loss15 = 0.0190825 (* 0.0272727 = 0.000520433 loss) | |
I0425 14:14:18.975556 22523 solver.cpp:245] Train net output #42: loss1/loss16 = 0.00598704 (* 0.0272727 = 0.000163283 loss) | |
I0425 14:14:18.975579 22523 solver.cpp:245] Train net output #43: loss1/loss17 = 0.00542276 (* 0.0272727 = 0.000147893 loss) | |
I0425 14:14:18.975594 22523 solver.cpp:245] Train net output #44: loss1/loss18 = 0.005136 (* 0.0272727 = 0.000140073 loss) | |
I0425 14:14:18.975608 22523 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00146138 (* 0.0272727 = 3.98559e-05 loss) | |
I0425 14:14:18.975622 22523 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000348856 (* 0.0272727 = 9.51424e-06 loss) | |
I0425 14:14:18.975637 22523 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000173965 (* 0.0272727 = 4.7445e-06 loss) | |
I0425 14:14:18.975651 22523 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000151503 (* 0.0272727 = 4.13191e-06 loss) | |
I0425 14:14:18.975664 22523 solver.cpp:245] Train net output #49: loss2/accuracy = 0.52 | |
I0425 14:14:18.975677 22523 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.75 | |
I0425 14:14:18.975687 22523 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.5 | |
I0425 14:14:18.975699 22523 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.375 | |
I0425 14:14:18.975711 22523 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.375 | |
I0425 14:14:18.975723 22523 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.25 | |
I0425 14:14:18.975734 22523 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.625 | |
I0425 14:14:18.975746 22523 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.625 | |
I0425 14:14:18.975759 22523 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.75 | |
I0425 14:14:18.975769 22523 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1 | |
I0425 14:14:18.975780 22523 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1 | |
I0425 14:14:18.975792 22523 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1 | |
I0425 14:14:18.975803 22523 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1 | |
I0425 14:14:18.975814 22523 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1 | |
I0425 14:14:18.975826 22523 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1 | |
I0425 14:14:18.975837 22523 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0425 14:14:18.975848 22523 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0425 14:14:18.975859 22523 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0425 14:14:18.975870 22523 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0425 14:14:18.975883 22523 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0425 14:14:18.975893 22523 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0425 14:14:18.975905 22523 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0425 14:14:18.975916 22523 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0425 14:14:18.975934 22523 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.840909 | |
I0425 14:14:18.975945 22523 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.84 | |
I0425 14:14:18.975960 22523 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.42469 (* 0.3 = 0.427408 loss) | |
I0425 14:14:18.975973 22523 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.514038 (* 0.3 = 0.154211 loss) | |
I0425 14:14:18.975987 22523 solver.cpp:245] Train net output #76: loss2/loss01 = 0.902134 (* 0.0272727 = 0.0246037 loss) | |
I0425 14:14:18.976001 22523 solver.cpp:245] Train net output #77: loss2/loss02 = 1.94454 (* 0.0272727 = 0.053033 loss) | |
I0425 14:14:18.976027 22523 solver.cpp:245] Train net output #78: loss2/loss03 = 2.16165 (* 0.0272727 = 0.058954 loss) | |
I0425 14:14:18.976042 22523 solver.cpp:245] Train net output #79: loss2/loss04 = 1.85906 (* 0.0272727 = 0.0507017 loss) | |
I0425 14:14:18.976057 22523 solver.cpp:245] Train net output #80: loss2/loss05 = 2.23141 (* 0.0272727 = 0.0608567 loss) | |
I0425 14:14:18.976070 22523 solver.cpp:245] Train net output #81: loss2/loss06 = 1.31231 (* 0.0272727 = 0.0357902 loss) | |
I0425 14:14:18.976084 22523 solver.cpp:245] Train net output #82: loss2/loss07 = 0.951401 (* 0.0272727 = 0.0259473 loss) | |
I0425 14:14:18.976099 22523 solver.cpp:245] Train net output #83: loss2/loss08 = 1.05113 (* 0.0272727 = 0.0286671 loss) | |
I0425 14:14:18.976112 22523 solver.cpp:245] Train net output #84: loss2/loss09 = 0.155986 (* 0.0272727 = 0.00425416 loss) | |
I0425 14:14:18.976126 22523 solver.cpp:245] Train net output #85: loss2/loss10 = 0.12598 (* 0.0272727 = 0.00343581 loss) | |
I0425 14:14:18.976140 22523 solver.cpp:245] Train net output #86: loss2/loss11 = 0.0394203 (* 0.0272727 = 0.0010751 loss) | |
I0425 14:14:18.976155 22523 solver.cpp:245] Train net output #87: loss2/loss12 = 0.00898939 (* 0.0272727 = 0.000245165 loss) | |
I0425 14:14:18.976168 22523 solver.cpp:245] Train net output #88: loss2/loss13 = 0.00821493 (* 0.0272727 = 0.000224044 loss) | |
I0425 14:14:18.976182 22523 solver.cpp:245] Train net output #89: loss2/loss14 = 0.00359007 (* 0.0272727 = 9.7911e-05 loss) | |
I0425 14:14:18.976197 22523 solver.cpp:245] Train net output #90: loss2/loss15 = 0.00357486 (* 0.0272727 = 9.74961e-05 loss) | |
I0425 14:14:18.976210 22523 solver.cpp:245] Train net output #91: loss2/loss16 = 0.00368761 (* 0.0272727 = 0.000100571 loss) | |
I0425 14:14:18.976224 22523 solver.cpp:245] Train net output #92: loss2/loss17 = 0.00135426 (* 0.0272727 = 3.69343e-05 loss) | |
I0425 14:14:18.976238 22523 solver.cpp:245] Train net output #93: loss2/loss18 = 0.000784683 (* 0.0272727 = 2.14004e-05 loss) | |
I0425 14:14:18.976255 22523 solver.cpp:245] Train net output #94: loss2/loss19 = 0.000261328 (* 0.0272727 = 7.12712e-06 loss) | |
I0425 14:14:18.976270 22523 solver.cpp:245] Train net output #95: loss2/loss20 = 3.56557e-05 (* 0.0272727 = 9.72429e-07 loss) | |
I0425 14:14:18.976284 22523 solver.cpp:245] Train net output #96: loss2/loss21 = 3.29728e-05 (* 0.0272727 = 8.99258e-07 loss) | |
I0425 14:14:18.976300 22523 solver.cpp:245] Train net output #97: loss2/loss22 = 1.41867e-05 (* 0.0272727 = 3.86909e-07 loss) | |
I0425 14:14:18.976311 22523 solver.cpp:245] Train net output #98: loss3/accuracy = 0.76 | |
I0425 14:14:18.976325 22523 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.75 | |
I0425 14:14:18.976332 22523 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.625 | |
I0425 14:14:18.976341 22523 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.75 | |
I0425 14:14:18.976354 22523 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.75 | |
I0425 14:14:18.976366 22523 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.75 | |
I0425 14:14:18.976378 22523 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.75 | |
I0425 14:14:18.976389 22523 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875 | |
I0425 14:14:18.976408 22523 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.75 | |
I0425 14:14:18.976419 22523 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1 | |
I0425 14:14:18.976430 22523 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1 | |
I0425 14:14:18.976441 22523 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1 | |
I0425 14:14:18.976452 22523 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1 | |
I0425 14:14:18.976471 22523 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1 | |
I0425 14:14:18.976482 22523 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1 | |
I0425 14:14:18.976495 22523 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0425 14:14:18.976505 22523 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0425 14:14:18.976526 22523 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0425 14:14:18.976539 22523 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0425 14:14:18.976552 22523 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0425 14:14:18.976562 22523 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0425 14:14:18.976573 22523 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0425 14:14:18.976585 22523 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0425 14:14:18.976596 22523 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.931818 | |
I0425 14:14:18.976608 22523 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.84 | |
I0425 14:14:18.976621 22523 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.793057 (* 1 = 0.793057 loss) | |
I0425 14:14:18.976634 22523 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.272586 (* 1 = 0.272586 loss) | |
I0425 14:14:18.976649 22523 solver.cpp:245] Train net output #125: loss3/loss01 = 0.531716 (* 0.0909091 = 0.0483378 loss) | |
I0425 14:14:18.976663 22523 solver.cpp:245] Train net output #126: loss3/loss02 = 0.876396 (* 0.0909091 = 0.0796724 loss) | |
I0425 14:14:18.976676 22523 solver.cpp:245] Train net output #127: loss3/loss03 = 0.99437 (* 0.0909091 = 0.0903973 loss) | |
I0425 14:14:18.976691 22523 solver.cpp:245] Train net output #128: loss3/loss04 = 0.858501 (* 0.0909091 = 0.0780456 loss) | |
I0425 14:14:18.976704 22523 solver.cpp:245] Train net output #129: loss3/loss05 = 0.774078 (* 0.0909091 = 0.0703708 loss) | |
I0425 14:14:18.976718 22523 solver.cpp:245] Train net output #130: loss3/loss06 = 0.785287 (* 0.0909091 = 0.0713898 loss) | |
I0425 14:14:18.976732 22523 solver.cpp:245] Train net output #131: loss3/loss07 = 0.549472 (* 0.0909091 = 0.049952 loss) | |
I0425 14:14:18.976745 22523 solver.cpp:245] Train net output #132: loss3/loss08 = 0.742589 (* 0.0909091 = 0.0675081 loss) | |
I0425 14:14:18.976759 22523 solver.cpp:245] Train net output #133: loss3/loss09 = 0.145963 (* 0.0909091 = 0.0132693 loss) | |
I0425 14:14:18.976773 22523 solver.cpp:245] Train net output #134: loss3/loss10 = 0.0438706 (* 0.0909091 = 0.00398823 loss) | |
I0425 14:14:18.976788 22523 solver.cpp:245] Train net output #135: loss3/loss11 = 0.00682462 (* 0.0909091 = 0.00062042 loss) | |
I0425 14:14:18.976801 22523 solver.cpp:245] Train net output #136: loss3/loss12 = 0.00291597 (* 0.0909091 = 0.000265088 loss) | |
I0425 14:14:18.976814 22523 solver.cpp:245] Train net output #137: loss3/loss13 = 0.00186881 (* 0.0909091 = 0.000169892 loss) | |
I0425 14:14:18.976829 22523 solver.cpp:245] Train net output #138: loss3/loss14 = 0.00141616 (* 0.0909091 = 0.000128742 loss) | |
I0425 14:14:18.976842 22523 solver.cpp:245] Train net output #139: loss3/loss15 = 0.00155276 (* 0.0909091 = 0.00014116 loss) | |
I0425 14:14:18.976856 22523 solver.cpp:245] Train net output #140: loss3/loss16 = 0.00169425 (* 0.0909091 = 0.000154022 loss) | |
I0425 14:14:18.976871 22523 solver.cpp:245] Train net output #141: loss3/loss17 = 0.00129811 (* 0.0909091 = 0.00011801 loss) | |
I0425 14:14:18.976884 22523 solver.cpp:245] Train net output #142: loss3/loss18 = 0.00159428 (* 0.0909091 = 0.000144935 loss) | |
I0425 14:14:18.976897 22523 solver.cpp:245] Train net output #143: loss3/loss19 = 0.00171897 (* 0.0909091 = 0.00015627 loss) | |
I0425 14:14:18.976912 22523 solver.cpp:245] Train net output #144: loss3/loss20 = 0.0020629 (* 0.0909091 = 0.000187536 loss) | |
I0425 14:14:18.976927 22523 solver.cpp:245] Train net output #145: loss3/loss21 = 0.00179534 (* 0.0909091 = 0.000163212 loss) | |
I0425 14:14:18.976940 22523 solver.cpp:245] Train net output #146: loss3/loss22 = 0.000507139 (* 0.0909091 = 4.61036e-05 loss) | |
I0425 14:14:18.976953 22523 solver.cpp:245] Train net output #147: total_accuracy = 0.625 | |
I0425 14:14:18.976964 22523 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.5 | |
I0425 14:14:18.976979 22523 solver.cpp:245] Train net output #149: total_confidence = 0.446232 | |
I0425 14:14:18.977001 22523 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.275461 | |
I0425 14:14:18.977016 22523 sgd_solver.cpp:106] Iteration 21000, lr = 0.01 | |
I0425 14:20:00.377557 22523 solver.cpp:229] Iteration 21500, loss = 3.13562 | |
I0425 14:20:00.377687 22523 solver.cpp:245] Train net output #0: loss1/accuracy = 0.449275 | |
I0425 14:20:00.377707 22523 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75 | |
I0425 14:20:00.377728 22523 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.25 | |
I0425 14:20:00.377740 22523 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.625 | |
I0425 14:20:00.377753 22523 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.25 | |
I0425 14:20:00.377766 22523 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.25 | |
I0425 14:20:00.377786 22523 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.625 | |
I0425 14:20:00.377799 22523 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.5 | |
I0425 14:20:00.377811 22523 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.5 | |
I0425 14:20:00.377823 22523 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.5 | |
I0425 14:20:00.377835 22523 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.625 | |
I0425 14:20:00.377848 22523 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.625 | |
I0425 14:20:00.377861 22523 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.75 | |
I0425 14:20:00.377873 22523 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.75 | |
I0425 14:20:00.377887 22523 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.875 | |
I0425 14:20:00.377899 22523 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.875 | |
I0425 14:20:00.377912 22523 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0425 14:20:00.377924 22523 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0425 14:20:00.377936 22523 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0425 14:20:00.377948 22523 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0425 14:20:00.377961 22523 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0425 14:20:00.377972 22523 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0425 14:20:00.377985 22523 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0425 14:20:00.377996 22523 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.767045 | |
I0425 14:20:00.378010 22523 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.608696 | |
I0425 14:20:00.378027 22523 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 2.04447 (* 0.3 = 0.613342 loss) | |
I0425 14:20:00.378042 22523 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.930361 (* 0.3 = 0.279108 loss) | |
I0425 14:20:00.378057 22523 solver.cpp:245] Train net output #27: loss1/loss01 = 1.30795 (* 0.0272727 = 0.0356714 loss) | |
I0425 14:20:00.378072 22523 solver.cpp:245] Train net output #28: loss1/loss02 = 2.44199 (* 0.0272727 = 0.0665998 loss) | |
I0425 14:20:00.378087 22523 solver.cpp:245] Train net output #29: loss1/loss03 = 1.27295 (* 0.0272727 = 0.0347169 loss) | |
I0425 14:20:00.378101 22523 solver.cpp:245] Train net output #30: loss1/loss04 = 2.81255 (* 0.0272727 = 0.0767059 loss) | |
I0425 14:20:00.378115 22523 solver.cpp:245] Train net output #31: loss1/loss05 = 1.69032 (* 0.0272727 = 0.0460997 loss) | |
I0425 14:20:00.378130 22523 solver.cpp:245] Train net output #32: loss1/loss06 = 1.89434 (* 0.0272727 = 0.0516638 loss) | |
I0425 14:20:00.378145 22523 solver.cpp:245] Train net output #33: loss1/loss07 = 1.54403 (* 0.0272727 = 0.04211 loss) | |
I0425 14:20:00.378160 22523 solver.cpp:245] Train net output #34: loss1/loss08 = 1.79095 (* 0.0272727 = 0.0488441 loss) | |
I0425 14:20:00.378175 22523 solver.cpp:245] Train net output #35: loss1/loss09 = 1.48729 (* 0.0272727 = 0.0405625 loss) | |
I0425 14:20:00.378190 22523 solver.cpp:245] Train net output #36: loss1/loss10 = 1.63071 (* 0.0272727 = 0.044474 loss) | |
I0425 14:20:00.378207 22523 solver.cpp:245] Train net output #37: loss1/loss11 = 1.09428 (* 0.0272727 = 0.029844 loss) | |
I0425 14:20:00.378221 22523 solver.cpp:245] Train net output #38: loss1/loss12 = 1.48262 (* 0.0272727 = 0.0404352 loss) | |
I0425 14:20:00.378253 22523 solver.cpp:245] Train net output #39: loss1/loss13 = 1.00344 (* 0.0272727 = 0.0273666 loss) | |
I0425 14:20:00.378269 22523 solver.cpp:245] Train net output #40: loss1/loss14 = 0.567826 (* 0.0272727 = 0.0154862 loss) | |
I0425 14:20:00.378283 22523 solver.cpp:245] Train net output #41: loss1/loss15 = 0.731158 (* 0.0272727 = 0.0199407 loss) | |
I0425 14:20:00.378298 22523 solver.cpp:245] Train net output #42: loss1/loss16 = 0.0555467 (* 0.0272727 = 0.00151491 loss) | |
I0425 14:20:00.378314 22523 solver.cpp:245] Train net output #43: loss1/loss17 = 0.0613677 (* 0.0272727 = 0.00167366 loss) | |
I0425 14:20:00.378329 22523 solver.cpp:245] Train net output #44: loss1/loss18 = 0.0284183 (* 0.0272727 = 0.000775045 loss) | |
I0425 14:20:00.378343 22523 solver.cpp:245] Train net output #45: loss1/loss19 = 0.0126121 (* 0.0272727 = 0.000343967 loss) | |
I0425 14:20:00.378357 22523 solver.cpp:245] Train net output #46: loss1/loss20 = 0.00405681 (* 0.0272727 = 0.00011064 loss) | |
I0425 14:20:00.378372 22523 solver.cpp:245] Train net output #47: loss1/loss21 = 0.00130839 (* 0.0272727 = 3.56834e-05 loss) | |
I0425 14:20:00.378387 22523 solver.cpp:245] Train net output #48: loss1/loss22 = 0.00091171 (* 0.0272727 = 2.48648e-05 loss) | |
I0425 14:20:00.378399 22523 solver.cpp:245] Train net output #49: loss2/accuracy = 0.463768 | |
I0425 14:20:00.378412 22523 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875 | |
I0425 14:20:00.378423 22523 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.625 | |
I0425 14:20:00.378435 22523 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.625 | |
I0425 14:20:00.378448 22523 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.25 | |
I0425 14:20:00.378458 22523 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.375 | |
I0425 14:20:00.378470 22523 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.25 | |
I0425 14:20:00.378482 22523 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.375 | |
I0425 14:20:00.378494 22523 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.625 | |
I0425 14:20:00.378506 22523 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.625 | |
I0425 14:20:00.378517 22523 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.625 | |
I0425 14:20:00.378530 22523 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.625 | |
I0425 14:20:00.378540 22523 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.75 | |
I0425 14:20:00.378552 22523 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.75 | |
I0425 14:20:00.378564 22523 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.875 | |
I0425 14:20:00.378576 22523 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.875 | |
I0425 14:20:00.378587 22523 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0425 14:20:00.378599 22523 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0425 14:20:00.378610 22523 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0425 14:20:00.378623 22523 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0425 14:20:00.378633 22523 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0425 14:20:00.378644 22523 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0425 14:20:00.378655 22523 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0425 14:20:00.378667 22523 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.772727 | |
I0425 14:20:00.378679 22523 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.724638 | |
I0425 14:20:00.378693 22523 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.75932 (* 0.3 = 0.527797 loss) | |
I0425 14:20:00.378712 22523 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.761214 (* 0.3 = 0.228364 loss) | |
I0425 14:20:00.378726 22523 solver.cpp:245] Train net output #76: loss2/loss01 = 1.05464 (* 0.0272727 = 0.0287629 loss) | |
I0425 14:20:00.378741 22523 solver.cpp:245] Train net output #77: loss2/loss02 = 0.895955 (* 0.0272727 = 0.0244351 loss) | |
I0425 14:20:00.378767 22523 solver.cpp:245] Train net output #78: loss2/loss03 = 1.38382 (* 0.0272727 = 0.0377406 loss) | |
I0425 14:20:00.378782 22523 solver.cpp:245] Train net output #79: loss2/loss04 = 2.5307 (* 0.0272727 = 0.0690191 loss) | |
I0425 14:20:00.378795 22523 solver.cpp:245] Train net output #80: loss2/loss05 = 1.84801 (* 0.0272727 = 0.0504003 loss) | |
I0425 14:20:00.378810 22523 solver.cpp:245] Train net output #81: loss2/loss06 = 1.82095 (* 0.0272727 = 0.0496624 loss) | |
I0425 14:20:00.378824 22523 solver.cpp:245] Train net output #82: loss2/loss07 = 1.63003 (* 0.0272727 = 0.0444553 loss) | |
I0425 14:20:00.378839 22523 solver.cpp:245] Train net output #83: loss2/loss08 = 1.42339 (* 0.0272727 = 0.0388197 loss) | |
I0425 14:20:00.378851 22523 solver.cpp:245] Train net output #84: loss2/loss09 = 1.47197 (* 0.0272727 = 0.0401447 loss) | |
I0425 14:20:00.378866 22523 solver.cpp:245] Train net output #85: loss2/loss10 = 1.44156 (* 0.0272727 = 0.0393153 loss) | |
I0425 14:20:00.378880 22523 solver.cpp:245] Train net output #86: loss2/loss11 = 1.47103 (* 0.0272727 = 0.0401191 loss) | |
I0425 14:20:00.378895 22523 solver.cpp:245] Train net output #87: loss2/loss12 = 1.43287 (* 0.0272727 = 0.0390782 loss) | |
I0425 14:20:00.378908 22523 solver.cpp:245] Train net output #88: loss2/loss13 = 1.0542 (* 0.0272727 = 0.0287508 loss) | |
I0425 14:20:00.378922 22523 solver.cpp:245] Train net output #89: loss2/loss14 = 0.367933 (* 0.0272727 = 0.0100345 loss) | |
I0425 14:20:00.378937 22523 solver.cpp:245] Train net output #90: loss2/loss15 = 0.619043 (* 0.0272727 = 0.016883 loss) | |
I0425 14:20:00.378950 22523 solver.cpp:245] Train net output #91: loss2/loss16 = 0.110554 (* 0.0272727 = 0.0030151 loss) | |
I0425 14:20:00.378964 22523 solver.cpp:245] Train net output #92: loss2/loss17 = 0.0620367 (* 0.0272727 = 0.00169191 loss) | |
I0425 14:20:00.378978 22523 solver.cpp:245] Train net output #93: loss2/loss18 = 0.0286375 (* 0.0272727 = 0.000781024 loss) | |
I0425 14:20:00.379001 22523 solver.cpp:245] Train net output #94: loss2/loss19 = 0.00678976 (* 0.0272727 = 0.000185175 loss) | |
I0425 14:20:00.379015 22523 solver.cpp:245] Train net output #95: loss2/loss20 = 0.00619459 (* 0.0272727 = 0.000168943 loss) | |
I0425 14:20:00.379029 22523 solver.cpp:245] Train net output #96: loss2/loss21 = 0.00328837 (* 0.0272727 = 8.96828e-05 loss) | |
I0425 14:20:00.379043 22523 solver.cpp:245] Train net output #97: loss2/loss22 = 0.000874106 (* 0.0272727 = 2.38393e-05 loss) | |
I0425 14:20:00.379062 22523 solver.cpp:245] Train net output #98: loss3/accuracy = 0.695652 | |
I0425 14:20:00.379075 22523 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875 | |
I0425 14:20:00.379086 22523 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1 | |
I0425 14:20:00.379097 22523 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1 | |
I0425 14:20:00.379109 22523 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875 | |
I0425 14:20:00.379120 22523 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.75 | |
I0425 14:20:00.379132 22523 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.875 | |
I0425 14:20:00.379144 22523 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.625 | |
I0425 14:20:00.379155 22523 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.625 | |
I0425 14:20:00.379168 22523 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.5 | |
I0425 14:20:00.379175 22523 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.5 | |
I0425 14:20:00.379184 22523 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.625 | |
I0425 14:20:00.379191 22523 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.75 | |
I0425 14:20:00.379204 22523 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.75 | |
I0425 14:20:00.379215 22523 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.875 | |
I0425 14:20:00.379226 22523 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.875 | |
I0425 14:20:00.379238 22523 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0425 14:20:00.379262 22523 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0425 14:20:00.379276 22523 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0425 14:20:00.379287 22523 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0425 14:20:00.379298 22523 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0425 14:20:00.379309 22523 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0425 14:20:00.379322 22523 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0425 14:20:00.379333 22523 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.857955 | |
I0425 14:20:00.379344 22523 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.855072 | |
I0425 14:20:00.379374 22523 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.904749 (* 1 = 0.904749 loss) | |
I0425 14:20:00.379389 22523 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.439434 (* 1 = 0.439434 loss) | |
I0425 14:20:00.379402 22523 solver.cpp:245] Train net output #125: loss3/loss01 = 0.43034 (* 0.0909091 = 0.0391218 loss) | |
I0425 14:20:00.379417 22523 solver.cpp:245] Train net output #126: loss3/loss02 = 0.16917 (* 0.0909091 = 0.0153791 loss) | |
I0425 14:20:00.379431 22523 solver.cpp:245] Train net output #127: loss3/loss03 = 0.187395 (* 0.0909091 = 0.0170359 loss) | |
I0425 14:20:00.379446 22523 solver.cpp:245] Train net output #128: loss3/loss04 = 0.492096 (* 0.0909091 = 0.044736 loss) | |
I0425 14:20:00.379459 22523 solver.cpp:245] Train net output #129: loss3/loss05 = 0.451228 (* 0.0909091 = 0.0410207 loss) | |
I0425 14:20:00.379473 22523 solver.cpp:245] Train net output #130: loss3/loss06 = 0.933361 (* 0.0909091 = 0.084851 loss) | |
I0425 14:20:00.379487 22523 solver.cpp:245] Train net output #131: loss3/loss07 = 1.06755 (* 0.0909091 = 0.0970499 loss) | |
I0425 14:20:00.379501 22523 solver.cpp:245] Train net output #132: loss3/loss08 = 1.22646 (* 0.0909091 = 0.111496 loss) | |
I0425 14:20:00.379515 22523 solver.cpp:245] Train net output #133: loss3/loss09 = 1.38039 (* 0.0909091 = 0.12549 loss) | |
I0425 14:20:00.379529 22523 solver.cpp:245] Train net output #134: loss3/loss10 = 1.26397 (* 0.0909091 = 0.114906 loss) | |
I0425 14:20:00.379542 22523 solver.cpp:245] Train net output #135: loss3/loss11 = 1.34477 (* 0.0909091 = 0.122252 loss) | |
I0425 14:20:00.379556 22523 solver.cpp:245] Train net output #136: loss3/loss12 = 1.30647 (* 0.0909091 = 0.11877 loss) | |
I0425 14:20:00.379570 22523 solver.cpp:245] Train net output #137: loss3/loss13 = 0.913082 (* 0.0909091 = 0.0830074 loss) | |
I0425 14:20:00.379585 22523 solver.cpp:245] Train net output #138: loss3/loss14 = 0.34883 (* 0.0909091 = 0.0317118 loss) | |
I0425 14:20:00.379597 22523 solver.cpp:245] Train net output #139: loss3/loss15 = 0.54179 (* 0.0909091 = 0.0492536 loss) | |
I0425 14:20:00.379612 22523 solver.cpp:245] Train net output #140: loss3/loss16 = 0.0901875 (* 0.0909091 = 0.00819886 loss) | |
I0425 14:20:00.379626 22523 solver.cpp:245] Train net output #141: loss3/loss17 = 0.067486 (* 0.0909091 = 0.00613509 loss) | |
I0425 14:20:00.379640 22523 solver.cpp:245] Train net output #142: loss3/loss18 = 0.0402649 (* 0.0909091 = 0.00366045 loss) | |
I0425 14:20:00.379654 22523 solver.cpp:245] Train net output #143: loss3/loss19 = 0.0206437 (* 0.0909091 = 0.0018767 loss) | |
I0425 14:20:00.379668 22523 solver.cpp:245] Train net output #144: loss3/loss20 = 0.0092561 (* 0.0909091 = 0.000841464 loss) | |
I0425 14:20:00.379683 22523 solver.cpp:245] Train net output #145: loss3/loss21 = 0.00343693 (* 0.0909091 = 0.000312448 loss) | |
I0425 14:20:00.379696 22523 solver.cpp:245] Train net output #146: loss3/loss22 = 0.000287863 (* 0.0909091 = 2.61694e-05 loss) | |
I0425 14:20:00.379709 22523 solver.cpp:245] Train net output #147: total_accuracy = 0.5 | |
I0425 14:20:00.379721 22523 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.375 | |
I0425 14:20:00.379734 22523 solver.cpp:245] Train net output #149: total_confidence = 0.403609 | |
I0425 14:20:00.379760 22523 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.216558 | |
I0425 14:20:00.379777 22523 sgd_solver.cpp:106] Iteration 21500, lr = 0.01 | |
I0425 14:25:41.735908 22523 solver.cpp:229] Iteration 22000, loss = 2.9961 | |
I0425 14:25:41.736047 22523 solver.cpp:245] Train net output #0: loss1/accuracy = 0.5 | |
I0425 14:25:41.736068 22523 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75 | |
I0425 14:25:41.736080 22523 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5 | |
I0425 14:25:41.736093 22523 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.25 | |
I0425 14:25:41.736105 22523 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.25 | |
I0425 14:25:41.736119 22523 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.375 | |
I0425 14:25:41.736135 22523 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.5 | |
I0425 14:25:41.736147 22523 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.625 | |
I0425 14:25:41.736160 22523 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.625 | |
I0425 14:25:41.736173 22523 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875 | |
I0425 14:25:41.736186 22523 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875 | |
I0425 14:25:41.736198 22523 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.875 | |
I0425 14:25:41.736212 22523 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.875 | |
I0425 14:25:41.736223 22523 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.875 | |
I0425 14:25:41.736244 22523 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1 | |
I0425 14:25:41.736256 22523 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1 | |
I0425 14:25:41.736268 22523 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1 | |
I0425 14:25:41.736280 22523 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1 | |
I0425 14:25:41.736301 22523 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1 | |
I0425 14:25:41.736313 22523 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1 | |
I0425 14:25:41.736325 22523 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1 | |
I0425 14:25:41.736337 22523 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1 | |
I0425 14:25:41.736349 22523 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1 | |
I0425 14:25:41.736361 22523 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.829545 | |
I0425 14:25:41.736373 22523 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.759259 | |
I0425 14:25:41.736390 22523 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.52618 (* 0.3 = 0.457855 loss) | |
I0425 14:25:41.736407 22523 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.548385 (* 0.3 = 0.164515 loss) | |
I0425 14:25:41.736421 22523 solver.cpp:245] Train net output #27: loss1/loss01 = 1.1551 (* 0.0272727 = 0.0315027 loss) | |
I0425 14:25:41.736435 22523 solver.cpp:245] Train net output #28: loss1/loss02 = 1.60168 (* 0.0272727 = 0.0436822 loss) | |
I0425 14:25:41.736449 22523 solver.cpp:245] Train net output #29: loss1/loss03 = 1.43283 (* 0.0272727 = 0.0390773 loss) | |
I0425 14:25:41.736464 22523 solver.cpp:245] Train net output #30: loss1/loss04 = 1.87738 (* 0.0272727 = 0.0512012 loss) | |
I0425 14:25:41.736479 22523 solver.cpp:245] Train net output #31: loss1/loss05 = 1.58594 (* 0.0272727 = 0.043253 loss) | |
I0425 14:25:41.736493 22523 solver.cpp:245] Train net output #32: loss1/loss06 = 1.16 (* 0.0272727 = 0.0316363 loss) | |
I0425 14:25:41.736507 22523 solver.cpp:245] Train net output #33: loss1/loss07 = 1.11867 (* 0.0272727 = 0.0305091 loss) | |
I0425 14:25:41.736522 22523 solver.cpp:245] Train net output #34: loss1/loss08 = 1.50093 (* 0.0272727 = 0.0409343 loss) | |
I0425 14:25:41.736536 22523 solver.cpp:245] Train net output #35: loss1/loss09 = 0.567262 (* 0.0272727 = 0.0154708 loss) | |
I0425 14:25:41.736552 22523 solver.cpp:245] Train net output #36: loss1/loss10 = 0.411993 (* 0.0272727 = 0.0112362 loss) | |
I0425 14:25:41.736565 22523 solver.cpp:245] Train net output #37: loss1/loss11 = 0.398857 (* 0.0272727 = 0.0108779 loss) | |
I0425 14:25:41.736589 22523 solver.cpp:245] Train net output #38: loss1/loss12 = 0.626229 (* 0.0272727 = 0.017079 loss) | |
I0425 14:25:41.736603 22523 solver.cpp:245] Train net output #39: loss1/loss13 = 0.274286 (* 0.0272727 = 0.00748052 loss) | |
I0425 14:25:41.736635 22523 solver.cpp:245] Train net output #40: loss1/loss14 = 0.0750226 (* 0.0272727 = 0.00204607 loss) | |
I0425 14:25:41.736659 22523 solver.cpp:245] Train net output #41: loss1/loss15 = 0.0333662 (* 0.0272727 = 0.000909987 loss) | |
I0425 14:25:41.736672 22523 solver.cpp:245] Train net output #42: loss1/loss16 = 0.021564 (* 0.0272727 = 0.000588109 loss) | |
I0425 14:25:41.736687 22523 solver.cpp:245] Train net output #43: loss1/loss17 = 0.0268562 (* 0.0272727 = 0.000732441 loss) | |
I0425 14:25:41.736701 22523 solver.cpp:245] Train net output #44: loss1/loss18 = 0.00626974 (* 0.0272727 = 0.000170993 loss) | |
I0425 14:25:41.736716 22523 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00229809 (* 0.0272727 = 6.26751e-05 loss) | |
I0425 14:25:41.736731 22523 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000288609 (* 0.0272727 = 7.87114e-06 loss) | |
I0425 14:25:41.736745 22523 solver.cpp:245] Train net output #47: loss1/loss21 = 0.00011906 (* 0.0272727 = 3.24709e-06 loss) | |
I0425 14:25:41.736759 22523 solver.cpp:245] Train net output #48: loss1/loss22 = 2.83289e-05 (* 0.0272727 = 7.72607e-07 loss) | |
I0425 14:25:41.736773 22523 solver.cpp:245] Train net output #49: loss2/accuracy = 0.648148 | |
I0425 14:25:41.736784 22523 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875 | |
I0425 14:25:41.736796 22523 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.625 | |
I0425 14:25:41.736809 22523 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.375 | |
I0425 14:25:41.736819 22523 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.375 | |
I0425 14:25:41.736831 22523 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.625 | |
I0425 14:25:41.736843 22523 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.75 | |
I0425 14:25:41.736855 22523 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.5 | |
I0425 14:25:41.736867 22523 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.625 | |
I0425 14:25:41.736878 22523 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875 | |
I0425 14:25:41.736891 22523 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875 | |
I0425 14:25:41.736901 22523 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.875 | |
I0425 14:25:41.736913 22523 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.875 | |
I0425 14:25:41.736925 22523 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.875 | |
I0425 14:25:41.736937 22523 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1 | |
I0425 14:25:41.736948 22523 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1 | |
I0425 14:25:41.736963 22523 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1 | |
I0425 14:25:41.736974 22523 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1 | |
I0425 14:25:41.736986 22523 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1 | |
I0425 14:25:41.736997 22523 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1 | |
I0425 14:25:41.737009 22523 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1 | |
I0425 14:25:41.737020 22523 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1 | |
I0425 14:25:41.737031 22523 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1 | |
I0425 14:25:41.737042 22523 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.886364 | |
I0425 14:25:41.737053 22523 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.888889 | |
I0425 14:25:41.737067 22523 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.22525 (* 0.3 = 0.367575 loss) | |
I0425 14:25:41.737082 22523 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.409756 (* 0.3 = 0.122927 loss) | |
I0425 14:25:41.737097 22523 solver.cpp:245] Train net output #76: loss2/loss01 = 0.565635 (* 0.0272727 = 0.0154264 loss) | |
I0425 14:25:41.737110 22523 solver.cpp:245] Train net output #77: loss2/loss02 = 0.980367 (* 0.0272727 = 0.0267373 loss) | |
I0425 14:25:41.737136 22523 solver.cpp:245] Train net output #78: loss2/loss03 = 1.82892 (* 0.0272727 = 0.0498795 loss) | |
I0425 14:25:41.737151 22523 solver.cpp:245] Train net output #79: loss2/loss04 = 2.09854 (* 0.0272727 = 0.0572329 loss) | |
I0425 14:25:41.737165 22523 solver.cpp:245] Train net output #80: loss2/loss05 = 0.865605 (* 0.0272727 = 0.0236074 loss) | |
I0425 14:25:41.737182 22523 solver.cpp:245] Train net output #81: loss2/loss06 = 1.00865 (* 0.0272727 = 0.0275087 loss) | |
I0425 14:25:41.737197 22523 solver.cpp:245] Train net output #82: loss2/loss07 = 1.30606 (* 0.0272727 = 0.0356199 loss) | |
I0425 14:25:41.737211 22523 solver.cpp:245] Train net output #83: loss2/loss08 = 1.20738 (* 0.0272727 = 0.0329285 loss) | |
I0425 14:25:41.737226 22523 solver.cpp:245] Train net output #84: loss2/loss09 = 0.512126 (* 0.0272727 = 0.0139671 loss) | |
I0425 14:25:41.737239 22523 solver.cpp:245] Train net output #85: loss2/loss10 = 0.31788 (* 0.0272727 = 0.00866945 loss) | |
I0425 14:25:41.737253 22523 solver.cpp:245] Train net output #86: loss2/loss11 = 0.410586 (* 0.0272727 = 0.0111978 loss) | |
I0425 14:25:41.737267 22523 solver.cpp:245] Train net output #87: loss2/loss12 = 0.751208 (* 0.0272727 = 0.0204875 loss) | |
I0425 14:25:41.737282 22523 solver.cpp:245] Train net output #88: loss2/loss13 = 0.337832 (* 0.0272727 = 0.00921359 loss) | |
I0425 14:25:41.737295 22523 solver.cpp:245] Train net output #89: loss2/loss14 = 0.0329552 (* 0.0272727 = 0.000898779 loss) | |
I0425 14:25:41.737309 22523 solver.cpp:245] Train net output #90: loss2/loss15 = 0.0120589 (* 0.0272727 = 0.00032888 loss) | |
I0425 14:25:41.737323 22523 solver.cpp:245] Train net output #91: loss2/loss16 = 0.00703029 (* 0.0272727 = 0.000191735 loss) | |
I0425 14:25:41.737337 22523 solver.cpp:245] Train net output #92: loss2/loss17 = 0.00536045 (* 0.0272727 = 0.000146194 loss) | |
I0425 14:25:41.737352 22523 solver.cpp:245] Train net output #93: loss2/loss18 = 0.00129154 (* 0.0272727 = 3.52239e-05 loss) | |
I0425 14:25:41.737366 22523 solver.cpp:245] Train net output #94: loss2/loss19 = 0.00036584 (* 0.0272727 = 9.97747e-06 loss) | |
I0425 14:25:41.737380 22523 solver.cpp:245] Train net output #95: loss2/loss20 = 0.000260735 (* 0.0272727 = 7.11096e-06 loss) | |
I0425 14:25:41.737395 22523 solver.cpp:245] Train net output #96: loss2/loss21 = 0.000121846 (* 0.0272727 = 3.32308e-06 loss) | |
I0425 14:25:41.737409 22523 solver.cpp:245] Train net output #97: loss2/loss22 = 4.36233e-05 (* 0.0272727 = 1.18973e-06 loss) | |
I0425 14:25:41.737421 22523 solver.cpp:245] Train net output #98: loss3/accuracy = 0.740741 | |
I0425 14:25:41.737433 22523 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875 | |
I0425 14:25:41.737445 22523 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1 | |
I0425 14:25:41.737457 22523 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.875 | |
I0425 14:25:41.737468 22523 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1 | |
I0425 14:25:41.737479 22523 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875 | |
I0425 14:25:41.737491 22523 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.875 | |
I0425 14:25:41.737503 22523 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.625 | |
I0425 14:25:41.737514 22523 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.625 | |
I0425 14:25:41.737525 22523 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1 | |
I0425 14:25:41.737537 22523 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875 | |
I0425 14:25:41.737548 22523 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.875 | |
I0425 14:25:41.737560 22523 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.875 | |
I0425 14:25:41.737571 22523 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.875 | |
I0425 14:25:41.737588 22523 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1 | |
I0425 14:25:41.737599 22523 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1 | |
I0425 14:25:41.737622 22523 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1 | |
I0425 14:25:41.737634 22523 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1 | |
I0425 14:25:41.737643 22523 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1 | |
I0425 14:25:41.737650 22523 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1 | |
I0425 14:25:41.737673 22523 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1 | |
I0425 14:25:41.737685 22523 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1 | |
I0425 14:25:41.737697 22523 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1 | |
I0425 14:25:41.737709 22523 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.914773 | |
I0425 14:25:41.737720 22523 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.888889 | |
I0425 14:25:41.737735 22523 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.766021 (* 1 = 0.766021 loss) | |
I0425 14:25:41.737749 22523 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.261523 (* 1 = 0.261523 loss) | |
I0425 14:25:41.737763 22523 solver.cpp:245] Train net output #125: loss3/loss01 = 0.322974 (* 0.0909091 = 0.0293612 loss) | |
I0425 14:25:41.737777 22523 solver.cpp:245] Train net output #126: loss3/loss02 = 0.0676578 (* 0.0909091 = 0.00615071 loss) | |
I0425 14:25:41.737797 22523 solver.cpp:245] Train net output #127: loss3/loss03 = 0.291194 (* 0.0909091 = 0.0264722 loss) | |
I0425 14:25:41.737812 22523 solver.cpp:245] Train net output #128: loss3/loss04 = 0.162135 (* 0.0909091 = 0.0147396 loss) | |
I0425 14:25:41.737825 22523 solver.cpp:245] Train net output #129: loss3/loss05 = 0.520505 (* 0.0909091 = 0.0473186 loss) | |
I0425 14:25:41.737839 22523 solver.cpp:245] Train net output #130: loss3/loss06 = 0.503854 (* 0.0909091 = 0.0458049 loss) | |
I0425 14:25:41.737854 22523 solver.cpp:245] Train net output #131: loss3/loss07 = 0.937504 (* 0.0909091 = 0.0852276 loss) | |
I0425 14:25:41.737867 22523 solver.cpp:245] Train net output #132: loss3/loss08 = 1.25143 (* 0.0909091 = 0.113767 loss) | |
I0425 14:25:41.737881 22523 solver.cpp:245] Train net output #133: loss3/loss09 = 0.19523 (* 0.0909091 = 0.0177482 loss) | |
I0425 14:25:41.737895 22523 solver.cpp:245] Train net output #134: loss3/loss10 = 0.279519 (* 0.0909091 = 0.0254108 loss) | |
I0425 14:25:41.737908 22523 solver.cpp:245] Train net output #135: loss3/loss11 = 0.302493 (* 0.0909091 = 0.0274993 loss) | |
I0425 14:25:41.737922 22523 solver.cpp:245] Train net output #136: loss3/loss12 = 0.514732 (* 0.0909091 = 0.0467939 loss) | |
I0425 14:25:41.737936 22523 solver.cpp:245] Train net output #137: loss3/loss13 = 0.372113 (* 0.0909091 = 0.0338285 loss) | |
I0425 14:25:41.737951 22523 solver.cpp:245] Train net output #138: loss3/loss14 = 0.0444504 (* 0.0909091 = 0.00404094 loss) | |
I0425 14:25:41.737964 22523 solver.cpp:245] Train net output #139: loss3/loss15 = 0.0236984 (* 0.0909091 = 0.0021544 loss) | |
I0425 14:25:41.737978 22523 solver.cpp:245] Train net output #140: loss3/loss16 = 0.017706 (* 0.0909091 = 0.00160964 loss) | |
I0425 14:25:41.737993 22523 solver.cpp:245] Train net output #141: loss3/loss17 = 0.00950913 (* 0.0909091 = 0.000864466 loss) | |
I0425 14:25:41.738009 22523 solver.cpp:245] Train net output #142: loss3/loss18 = 0.00536644 (* 0.0909091 = 0.0004878 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment