Skip to content

Instantly share code, notes, and snippets.

@stas-sl
Created April 30, 2016 06:26
Show Gist options
  • Save stas-sl/9d9a1da512498ac8b77dedf3cad4d010 to your computer and use it in GitHub Desktop.
Save stas-sl/9d9a1da512498ac8b77dedf3cad4d010 to your computer and use it in GitHub Desktop.
This file has been truncated, but you can view the full file.
I0429 09:32:51.715076 8162 solver.cpp:280] Solving mixed_lstm
I0429 09:32:51.715093 8162 solver.cpp:281] Learning Rate Policy: fixed
I0429 09:32:52.102222 8162 solver.cpp:229] Iteration 0, loss = 4.62979
I0429 09:32:52.102285 8162 solver.cpp:245] Train net output #0: loss1/accuracy = 0.4
I0429 09:32:52.102303 8162 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.125
I0429 09:32:52.102318 8162 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5
I0429 09:32:52.102329 8162 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375
I0429 09:32:52.102342 8162 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.25
I0429 09:32:52.102355 8162 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.5
I0429 09:32:52.102366 8162 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.5
I0429 09:32:52.102383 8162 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.875
I0429 09:32:52.102397 8162 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875
I0429 09:32:52.102409 8162 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1
I0429 09:32:52.102421 8162 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0429 09:32:52.102434 8162 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0429 09:32:52.102445 8162 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0429 09:32:52.102458 8162 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0429 09:32:52.102469 8162 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0429 09:32:52.102481 8162 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0429 09:32:52.102494 8162 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0429 09:32:52.102505 8162 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0429 09:32:52.102516 8162 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0429 09:32:52.102529 8162 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0429 09:32:52.102540 8162 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0429 09:32:52.102552 8162 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0429 09:32:52.102565 8162 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0429 09:32:52.102576 8162 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.857955
I0429 09:32:52.102588 8162 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.625
I0429 09:32:52.102607 8162 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 2.19491 (* 0.3 = 0.658473 loss)
I0429 09:32:52.102622 8162 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.546154 (* 0.3 = 0.163846 loss)
I0429 09:32:52.102637 8162 solver.cpp:245] Train net output #27: loss1/loss01 = 3.01383 (* 0.0272727 = 0.0821954 loss)
I0429 09:32:52.102650 8162 solver.cpp:245] Train net output #28: loss1/loss02 = 2.32816 (* 0.0272727 = 0.0634952 loss)
I0429 09:32:52.102664 8162 solver.cpp:245] Train net output #29: loss1/loss03 = 1.95394 (* 0.0272727 = 0.0532892 loss)
I0429 09:32:52.102679 8162 solver.cpp:245] Train net output #30: loss1/loss04 = 2.58469 (* 0.0272727 = 0.0704914 loss)
I0429 09:32:52.102692 8162 solver.cpp:245] Train net output #31: loss1/loss05 = 1.81474 (* 0.0272727 = 0.049493 loss)
I0429 09:32:52.102706 8162 solver.cpp:245] Train net output #32: loss1/loss06 = 1.54964 (* 0.0272727 = 0.0422628 loss)
I0429 09:32:52.102721 8162 solver.cpp:245] Train net output #33: loss1/loss07 = 0.296818 (* 0.0272727 = 0.00809503 loss)
I0429 09:32:52.102735 8162 solver.cpp:245] Train net output #34: loss1/loss08 = 0.159875 (* 0.0272727 = 0.00436024 loss)
I0429 09:32:52.102751 8162 solver.cpp:245] Train net output #35: loss1/loss09 = 0.00895014 (* 0.0272727 = 0.000244095 loss)
I0429 09:32:52.102764 8162 solver.cpp:245] Train net output #36: loss1/loss10 = 0.00448512 (* 0.0272727 = 0.000122321 loss)
I0429 09:32:52.102779 8162 solver.cpp:245] Train net output #37: loss1/loss11 = 0.00375304 (* 0.0272727 = 0.000102356 loss)
I0429 09:32:52.102825 8162 solver.cpp:245] Train net output #38: loss1/loss12 = 0.00264201 (* 0.0272727 = 7.20549e-05 loss)
I0429 09:32:52.102841 8162 solver.cpp:245] Train net output #39: loss1/loss13 = 0.0027681 (* 0.0272727 = 7.54935e-05 loss)
I0429 09:32:52.102857 8162 solver.cpp:245] Train net output #40: loss1/loss14 = 0.00171783 (* 0.0272727 = 4.68498e-05 loss)
I0429 09:32:52.102871 8162 solver.cpp:245] Train net output #41: loss1/loss15 = 0.00100219 (* 0.0272727 = 2.73325e-05 loss)
I0429 09:32:52.102885 8162 solver.cpp:245] Train net output #42: loss1/loss16 = 0.000660628 (* 0.0272727 = 1.80171e-05 loss)
I0429 09:32:52.102900 8162 solver.cpp:245] Train net output #43: loss1/loss17 = 0.000615376 (* 0.0272727 = 1.6783e-05 loss)
I0429 09:32:52.102915 8162 solver.cpp:245] Train net output #44: loss1/loss18 = 0.000352294 (* 0.0272727 = 9.60802e-06 loss)
I0429 09:32:52.102928 8162 solver.cpp:245] Train net output #45: loss1/loss19 = 0.000291437 (* 0.0272727 = 7.94827e-06 loss)
I0429 09:32:52.102942 8162 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000383771 (* 0.0272727 = 1.04665e-05 loss)
I0429 09:32:52.102957 8162 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000301055 (* 0.0272727 = 8.2106e-06 loss)
I0429 09:32:52.102970 8162 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000289551 (* 0.0272727 = 7.89686e-06 loss)
I0429 09:32:52.102982 8162 solver.cpp:245] Train net output #49: loss2/accuracy = 0.4
I0429 09:32:52.102995 8162 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.25
I0429 09:32:52.103008 8162 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.5
I0429 09:32:52.103023 8162 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.875
I0429 09:32:52.103035 8162 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.375
I0429 09:32:52.103047 8162 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5
I0429 09:32:52.103060 8162 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.625
I0429 09:32:52.103070 8162 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.875
I0429 09:32:52.103082 8162 solver.cpp:245] Train net output #57: loss2/accuracy08 = 1
I0429 09:32:52.103094 8162 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1
I0429 09:32:52.103106 8162 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0429 09:32:52.103117 8162 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0429 09:32:52.103128 8162 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0429 09:32:52.103140 8162 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0429 09:32:52.103152 8162 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0429 09:32:52.103163 8162 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0429 09:32:52.103175 8162 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0429 09:32:52.103188 8162 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0429 09:32:52.103199 8162 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0429 09:32:52.103210 8162 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0429 09:32:52.103221 8162 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0429 09:32:52.103234 8162 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0429 09:32:52.103245 8162 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0429 09:32:52.103256 8162 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.846591
I0429 09:32:52.103268 8162 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.775
I0429 09:32:52.103282 8162 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.99769 (* 0.3 = 0.599306 loss)
I0429 09:32:52.103296 8162 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.522257 (* 0.3 = 0.156677 loss)
I0429 09:32:52.103310 8162 solver.cpp:245] Train net output #76: loss2/loss01 = 2.43923 (* 0.0272727 = 0.0665246 loss)
I0429 09:32:52.103335 8162 solver.cpp:245] Train net output #77: loss2/loss02 = 1.61137 (* 0.0272727 = 0.0439465 loss)
I0429 09:32:52.103350 8162 solver.cpp:245] Train net output #78: loss2/loss03 = 1.49127 (* 0.0272727 = 0.040671 loss)
I0429 09:32:52.103364 8162 solver.cpp:245] Train net output #79: loss2/loss04 = 2.0381 (* 0.0272727 = 0.0555846 loss)
I0429 09:32:52.103379 8162 solver.cpp:245] Train net output #80: loss2/loss05 = 1.41413 (* 0.0272727 = 0.0385672 loss)
I0429 09:32:52.103392 8162 solver.cpp:245] Train net output #81: loss2/loss06 = 1.658 (* 0.0272727 = 0.0452182 loss)
I0429 09:32:52.103407 8162 solver.cpp:245] Train net output #82: loss2/loss07 = 0.289167 (* 0.0272727 = 0.00788637 loss)
I0429 09:32:52.103421 8162 solver.cpp:245] Train net output #83: loss2/loss08 = 0.122917 (* 0.0272727 = 0.00335227 loss)
I0429 09:32:52.103454 8162 solver.cpp:245] Train net output #84: loss2/loss09 = 0.00856197 (* 0.0272727 = 0.000233508 loss)
I0429 09:32:52.103469 8162 solver.cpp:245] Train net output #85: loss2/loss10 = 0.00389184 (* 0.0272727 = 0.000106141 loss)
I0429 09:32:52.103483 8162 solver.cpp:245] Train net output #86: loss2/loss11 = 0.000760278 (* 0.0272727 = 2.07349e-05 loss)
I0429 09:32:52.103498 8162 solver.cpp:245] Train net output #87: loss2/loss12 = 0.000340542 (* 0.0272727 = 9.28751e-06 loss)
I0429 09:32:52.103513 8162 solver.cpp:245] Train net output #88: loss2/loss13 = 0.000210916 (* 0.0272727 = 5.75225e-06 loss)
I0429 09:32:52.103528 8162 solver.cpp:245] Train net output #89: loss2/loss14 = 0.000106296 (* 0.0272727 = 2.89899e-06 loss)
I0429 09:32:52.103541 8162 solver.cpp:245] Train net output #90: loss2/loss15 = 6.13314e-05 (* 0.0272727 = 1.67267e-06 loss)
I0429 09:32:52.103555 8162 solver.cpp:245] Train net output #91: loss2/loss16 = 3.65696e-05 (* 0.0272727 = 9.97353e-07 loss)
I0429 09:32:52.103570 8162 solver.cpp:245] Train net output #92: loss2/loss17 = 1.1191e-05 (* 0.0272727 = 3.0521e-07 loss)
I0429 09:32:52.103585 8162 solver.cpp:245] Train net output #93: loss2/loss18 = 2.59293e-05 (* 0.0272727 = 7.07163e-07 loss)
I0429 09:32:52.103598 8162 solver.cpp:245] Train net output #94: loss2/loss19 = 1.74353e-05 (* 0.0272727 = 4.75509e-07 loss)
I0429 09:32:52.103612 8162 solver.cpp:245] Train net output #95: loss2/loss20 = 9.17929e-06 (* 0.0272727 = 2.50344e-07 loss)
I0429 09:32:52.103626 8162 solver.cpp:245] Train net output #96: loss2/loss21 = 1.11463e-05 (* 0.0272727 = 3.0399e-07 loss)
I0429 09:32:52.103641 8162 solver.cpp:245] Train net output #97: loss2/loss22 = 1.36499e-05 (* 0.0272727 = 3.72269e-07 loss)
I0429 09:32:52.103653 8162 solver.cpp:245] Train net output #98: loss3/accuracy = 0.6
I0429 09:32:52.103665 8162 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.25
I0429 09:32:52.103677 8162 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.75
I0429 09:32:52.103689 8162 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.625
I0429 09:32:52.103701 8162 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.375
I0429 09:32:52.103713 8162 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.625
I0429 09:32:52.103725 8162 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.625
I0429 09:32:52.103736 8162 solver.cpp:245] Train net output #105: loss3/accuracy07 = 1
I0429 09:32:52.103749 8162 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875
I0429 09:32:52.103760 8162 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1
I0429 09:32:52.103772 8162 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0429 09:32:52.103783 8162 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0429 09:32:52.103796 8162 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0429 09:32:52.103806 8162 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0429 09:32:52.103831 8162 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0429 09:32:52.103843 8162 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0429 09:32:52.103855 8162 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0429 09:32:52.103866 8162 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0429 09:32:52.103878 8162 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0429 09:32:52.103889 8162 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0429 09:32:52.103901 8162 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0429 09:32:52.103914 8162 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0429 09:32:52.103925 8162 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0429 09:32:52.103936 8162 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.880682
I0429 09:32:52.103948 8162 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.825
I0429 09:32:52.103962 8162 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.28987 (* 1 = 1.28987 loss)
I0429 09:32:52.103977 8162 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.352214 (* 1 = 0.352214 loss)
I0429 09:32:52.103991 8162 solver.cpp:245] Train net output #125: loss3/loss01 = 2.20238 (* 0.0909091 = 0.200217 loss)
I0429 09:32:52.104006 8162 solver.cpp:245] Train net output #126: loss3/loss02 = 1.04783 (* 0.0909091 = 0.0952577 loss)
I0429 09:32:52.104019 8162 solver.cpp:245] Train net output #127: loss3/loss03 = 0.953224 (* 0.0909091 = 0.0866567 loss)
I0429 09:32:52.104034 8162 solver.cpp:245] Train net output #128: loss3/loss04 = 1.37852 (* 0.0909091 = 0.12532 loss)
I0429 09:32:52.104048 8162 solver.cpp:245] Train net output #129: loss3/loss05 = 1.08703 (* 0.0909091 = 0.098821 loss)
I0429 09:32:52.104061 8162 solver.cpp:245] Train net output #130: loss3/loss06 = 0.904535 (* 0.0909091 = 0.0822304 loss)
I0429 09:32:52.104079 8162 solver.cpp:245] Train net output #131: loss3/loss07 = 0.136422 (* 0.0909091 = 0.012402 loss)
I0429 09:32:52.104094 8162 solver.cpp:245] Train net output #132: loss3/loss08 = 0.300477 (* 0.0909091 = 0.0273161 loss)
I0429 09:32:52.104107 8162 solver.cpp:245] Train net output #133: loss3/loss09 = 0.0443784 (* 0.0909091 = 0.0040344 loss)
I0429 09:32:52.104122 8162 solver.cpp:245] Train net output #134: loss3/loss10 = 0.00451102 (* 0.0909091 = 0.000410093 loss)
I0429 09:32:52.104136 8162 solver.cpp:245] Train net output #135: loss3/loss11 = 0.000508861 (* 0.0909091 = 4.62601e-05 loss)
I0429 09:32:52.104151 8162 solver.cpp:245] Train net output #136: loss3/loss12 = 0.000299326 (* 0.0909091 = 2.72114e-05 loss)
I0429 09:32:52.104164 8162 solver.cpp:245] Train net output #137: loss3/loss13 = 0.000271463 (* 0.0909091 = 2.46785e-05 loss)
I0429 09:32:52.104178 8162 solver.cpp:245] Train net output #138: loss3/loss14 = 0.000176348 (* 0.0909091 = 1.60316e-05 loss)
I0429 09:32:52.104192 8162 solver.cpp:245] Train net output #139: loss3/loss15 = 0.000125315 (* 0.0909091 = 1.13923e-05 loss)
I0429 09:32:52.104207 8162 solver.cpp:245] Train net output #140: loss3/loss16 = 8.54671e-05 (* 0.0909091 = 7.76974e-06 loss)
I0429 09:32:52.104220 8162 solver.cpp:245] Train net output #141: loss3/loss17 = 3.38205e-05 (* 0.0909091 = 3.07459e-06 loss)
I0429 09:32:52.104234 8162 solver.cpp:245] Train net output #142: loss3/loss18 = 3.22707e-05 (* 0.0909091 = 2.9337e-06 loss)
I0429 09:32:52.104249 8162 solver.cpp:245] Train net output #143: loss3/loss19 = 2.70918e-05 (* 0.0909091 = 2.46289e-06 loss)
I0429 09:32:52.104264 8162 solver.cpp:245] Train net output #144: loss3/loss20 = 2.12053e-05 (* 0.0909091 = 1.92775e-06 loss)
I0429 09:32:52.104277 8162 solver.cpp:245] Train net output #145: loss3/loss21 = 2.31575e-05 (* 0.0909091 = 2.10523e-06 loss)
I0429 09:32:52.104291 8162 solver.cpp:245] Train net output #146: loss3/loss22 = 2.30234e-05 (* 0.0909091 = 2.09303e-06 loss)
I0429 09:32:52.104313 8162 solver.cpp:245] Train net output #147: total_accuracy = 0.125
I0429 09:32:52.104327 8162 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0
I0429 09:32:52.104339 8162 solver.cpp:245] Train net output #149: total_confidence = 0.0716271
I0429 09:32:52.104351 8162 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.112579
I0429 09:32:52.104372 8162 sgd_solver.cpp:106] Iteration 0, lr = 0.005
I0429 09:35:08.772572 8162 solver.cpp:229] Iteration 500, loss = 5.88905
I0429 09:35:08.772733 8162 solver.cpp:245] Train net output #0: loss1/accuracy = 0.361702
I0429 09:35:08.772768 8162 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.125
I0429 09:35:08.772790 8162 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.25
I0429 09:35:08.772811 8162 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.25
I0429 09:35:08.772833 8162 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375
I0429 09:35:08.772856 8162 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.375
I0429 09:35:08.772881 8162 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.375
I0429 09:35:08.772902 8162 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.625
I0429 09:35:08.772924 8162 solver.cpp:245] Train net output #8: loss1/accuracy08 = 1
I0429 09:35:08.772948 8162 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1
I0429 09:35:08.772969 8162 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0429 09:35:08.772989 8162 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0429 09:35:08.773010 8162 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0429 09:35:08.773032 8162 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0429 09:35:08.773054 8162 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0429 09:35:08.773075 8162 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0429 09:35:08.773097 8162 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0429 09:35:08.773121 8162 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0429 09:35:08.773146 8162 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0429 09:35:08.773170 8162 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0429 09:35:08.773193 8162 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0429 09:35:08.773216 8162 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0429 09:35:08.773237 8162 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0429 09:35:08.773260 8162 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.8125
I0429 09:35:08.773283 8162 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.638298
I0429 09:35:08.773318 8162 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 2.20428 (* 0.3 = 0.661283 loss)
I0429 09:35:08.773346 8162 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.660755 (* 0.3 = 0.198226 loss)
I0429 09:35:08.773373 8162 solver.cpp:245] Train net output #27: loss1/loss01 = 2.00513 (* 0.0272727 = 0.0546855 loss)
I0429 09:35:08.773401 8162 solver.cpp:245] Train net output #28: loss1/loss02 = 2.39087 (* 0.0272727 = 0.0652057 loss)
I0429 09:35:08.773427 8162 solver.cpp:245] Train net output #29: loss1/loss03 = 1.85138 (* 0.0272727 = 0.0504921 loss)
I0429 09:35:08.773455 8162 solver.cpp:245] Train net output #30: loss1/loss04 = 2.19238 (* 0.0272727 = 0.0597922 loss)
I0429 09:35:08.773483 8162 solver.cpp:245] Train net output #31: loss1/loss05 = 2.0533 (* 0.0272727 = 0.055999 loss)
I0429 09:35:08.773509 8162 solver.cpp:245] Train net output #32: loss1/loss06 = 1.95535 (* 0.0272727 = 0.0533277 loss)
I0429 09:35:08.773536 8162 solver.cpp:245] Train net output #33: loss1/loss07 = 1.18049 (* 0.0272727 = 0.0321952 loss)
I0429 09:35:08.773563 8162 solver.cpp:245] Train net output #34: loss1/loss08 = 0.0719698 (* 0.0272727 = 0.00196281 loss)
I0429 09:35:08.773591 8162 solver.cpp:245] Train net output #35: loss1/loss09 = 0.0221945 (* 0.0272727 = 0.000605304 loss)
I0429 09:35:08.773618 8162 solver.cpp:245] Train net output #36: loss1/loss10 = 0.00469688 (* 0.0272727 = 0.000128097 loss)
I0429 09:35:08.773645 8162 solver.cpp:245] Train net output #37: loss1/loss11 = 0.000497347 (* 0.0272727 = 1.3564e-05 loss)
I0429 09:35:08.773674 8162 solver.cpp:245] Train net output #38: loss1/loss12 = 0.000328184 (* 0.0272727 = 8.95046e-06 loss)
I0429 09:35:08.773727 8162 solver.cpp:245] Train net output #39: loss1/loss13 = 0.000286672 (* 0.0272727 = 7.81832e-06 loss)
I0429 09:35:08.773763 8162 solver.cpp:245] Train net output #40: loss1/loss14 = 0.000154861 (* 0.0272727 = 4.22349e-06 loss)
I0429 09:35:08.773792 8162 solver.cpp:245] Train net output #41: loss1/loss15 = 0.000183727 (* 0.0272727 = 5.01073e-06 loss)
I0429 09:35:08.773819 8162 solver.cpp:245] Train net output #42: loss1/loss16 = 0.000454349 (* 0.0272727 = 1.23913e-05 loss)
I0429 09:35:08.773847 8162 solver.cpp:245] Train net output #43: loss1/loss17 = 0.000289649 (* 0.0272727 = 7.89953e-06 loss)
I0429 09:35:08.773874 8162 solver.cpp:245] Train net output #44: loss1/loss18 = 0.000350185 (* 0.0272727 = 9.55049e-06 loss)
I0429 09:35:08.773902 8162 solver.cpp:245] Train net output #45: loss1/loss19 = 0.000814805 (* 0.0272727 = 2.22219e-05 loss)
I0429 09:35:08.773931 8162 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000377939 (* 0.0272727 = 1.03074e-05 loss)
I0429 09:35:08.773957 8162 solver.cpp:245] Train net output #47: loss1/loss21 = 0.00113317 (* 0.0272727 = 3.09046e-05 loss)
I0429 09:35:08.773985 8162 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000986145 (* 0.0272727 = 2.68949e-05 loss)
I0429 09:35:08.774009 8162 solver.cpp:245] Train net output #49: loss2/accuracy = 0.382979
I0429 09:35:08.774032 8162 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.625
I0429 09:35:08.774056 8162 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.375
I0429 09:35:08.774075 8162 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.5
I0429 09:35:08.774101 8162 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.625
I0429 09:35:08.774124 8162 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5
I0429 09:35:08.774160 8162 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.375
I0429 09:35:08.774180 8162 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.625
I0429 09:35:08.774204 8162 solver.cpp:245] Train net output #57: loss2/accuracy08 = 1
I0429 09:35:08.774226 8162 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1
I0429 09:35:08.774250 8162 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0429 09:35:08.774271 8162 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0429 09:35:08.774293 8162 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0429 09:35:08.774315 8162 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0429 09:35:08.774336 8162 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0429 09:35:08.774358 8162 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0429 09:35:08.774385 8162 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0429 09:35:08.774407 8162 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0429 09:35:08.774430 8162 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0429 09:35:08.774448 8162 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0429 09:35:08.774468 8162 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0429 09:35:08.774490 8162 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0429 09:35:08.774513 8162 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0429 09:35:08.774535 8162 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.823864
I0429 09:35:08.774559 8162 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.595745
I0429 09:35:08.774585 8162 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 2.17985 (* 0.3 = 0.653954 loss)
I0429 09:35:08.774612 8162 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.638543 (* 0.3 = 0.191563 loss)
I0429 09:35:08.774641 8162 solver.cpp:245] Train net output #76: loss2/loss01 = 1.49903 (* 0.0272727 = 0.0408827 loss)
I0429 09:35:08.774667 8162 solver.cpp:245] Train net output #77: loss2/loss02 = 2.61329 (* 0.0272727 = 0.0712714 loss)
I0429 09:35:08.774711 8162 solver.cpp:245] Train net output #78: loss2/loss03 = 1.82457 (* 0.0272727 = 0.049761 loss)
I0429 09:35:08.774739 8162 solver.cpp:245] Train net output #79: loss2/loss04 = 1.71615 (* 0.0272727 = 0.0468042 loss)
I0429 09:35:08.774766 8162 solver.cpp:245] Train net output #80: loss2/loss05 = 1.87661 (* 0.0272727 = 0.0511801 loss)
I0429 09:35:08.774797 8162 solver.cpp:245] Train net output #81: loss2/loss06 = 1.89664 (* 0.0272727 = 0.0517265 loss)
I0429 09:35:08.774824 8162 solver.cpp:245] Train net output #82: loss2/loss07 = 1.4169 (* 0.0272727 = 0.0386427 loss)
I0429 09:35:08.774852 8162 solver.cpp:245] Train net output #83: loss2/loss08 = 0.14544 (* 0.0272727 = 0.00396653 loss)
I0429 09:35:08.774881 8162 solver.cpp:245] Train net output #84: loss2/loss09 = 0.0252198 (* 0.0272727 = 0.000687812 loss)
I0429 09:35:08.774909 8162 solver.cpp:245] Train net output #85: loss2/loss10 = 0.00314291 (* 0.0272727 = 8.57158e-05 loss)
I0429 09:35:08.774935 8162 solver.cpp:245] Train net output #86: loss2/loss11 = 0.001029 (* 0.0272727 = 2.80636e-05 loss)
I0429 09:35:08.774963 8162 solver.cpp:245] Train net output #87: loss2/loss12 = 0.000894679 (* 0.0272727 = 2.44003e-05 loss)
I0429 09:35:08.774991 8162 solver.cpp:245] Train net output #88: loss2/loss13 = 0.00125883 (* 0.0272727 = 3.43316e-05 loss)
I0429 09:35:08.775017 8162 solver.cpp:245] Train net output #89: loss2/loss14 = 0.00132439 (* 0.0272727 = 3.61198e-05 loss)
I0429 09:35:08.775043 8162 solver.cpp:245] Train net output #90: loss2/loss15 = 0.00183819 (* 0.0272727 = 5.01325e-05 loss)
I0429 09:35:08.775070 8162 solver.cpp:245] Train net output #91: loss2/loss16 = 0.000921252 (* 0.0272727 = 2.51251e-05 loss)
I0429 09:35:08.775097 8162 solver.cpp:245] Train net output #92: loss2/loss17 = 0.000635137 (* 0.0272727 = 1.73219e-05 loss)
I0429 09:35:08.775125 8162 solver.cpp:245] Train net output #93: loss2/loss18 = 0.000694021 (* 0.0272727 = 1.89278e-05 loss)
I0429 09:35:08.775153 8162 solver.cpp:245] Train net output #94: loss2/loss19 = 0.000684929 (* 0.0272727 = 1.86799e-05 loss)
I0429 09:35:08.775180 8162 solver.cpp:245] Train net output #95: loss2/loss20 = 0.000990673 (* 0.0272727 = 2.70184e-05 loss)
I0429 09:35:08.775207 8162 solver.cpp:245] Train net output #96: loss2/loss21 = 0.00151388 (* 0.0272727 = 4.12877e-05 loss)
I0429 09:35:08.775233 8162 solver.cpp:245] Train net output #97: loss2/loss22 = 0.00151057 (* 0.0272727 = 4.11973e-05 loss)
I0429 09:35:08.775256 8162 solver.cpp:245] Train net output #98: loss3/accuracy = 0.680851
I0429 09:35:08.775279 8162 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.75
I0429 09:35:08.775302 8162 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.75
I0429 09:35:08.775323 8162 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.5
I0429 09:35:08.775346 8162 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.625
I0429 09:35:08.775368 8162 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.625
I0429 09:35:08.775389 8162 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.5
I0429 09:35:08.775411 8162 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75
I0429 09:35:08.775454 8162 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1
I0429 09:35:08.775478 8162 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1
I0429 09:35:08.775501 8162 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0429 09:35:08.775521 8162 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0429 09:35:08.775543 8162 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0429 09:35:08.775565 8162 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0429 09:35:08.775588 8162 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0429 09:35:08.775609 8162 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0429 09:35:08.775648 8162 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0429 09:35:08.775672 8162 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0429 09:35:08.775694 8162 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0429 09:35:08.775717 8162 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0429 09:35:08.775738 8162 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0429 09:35:08.775759 8162 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0429 09:35:08.775781 8162 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0429 09:35:08.775804 8162 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.909091
I0429 09:35:08.775825 8162 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.851064
I0429 09:35:08.775857 8162 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.17114 (* 1 = 1.17114 loss)
I0429 09:35:08.775884 8162 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.346988 (* 1 = 0.346988 loss)
I0429 09:35:08.775912 8162 solver.cpp:245] Train net output #125: loss3/loss01 = 0.84224 (* 0.0909091 = 0.0765673 loss)
I0429 09:35:08.775939 8162 solver.cpp:245] Train net output #126: loss3/loss02 = 1.32963 (* 0.0909091 = 0.120875 loss)
I0429 09:35:08.775966 8162 solver.cpp:245] Train net output #127: loss3/loss03 = 1.16671 (* 0.0909091 = 0.106064 loss)
I0429 09:35:08.775993 8162 solver.cpp:245] Train net output #128: loss3/loss04 = 1.12023 (* 0.0909091 = 0.101839 loss)
I0429 09:35:08.776021 8162 solver.cpp:245] Train net output #129: loss3/loss05 = 1.07277 (* 0.0909091 = 0.0975246 loss)
I0429 09:35:08.776048 8162 solver.cpp:245] Train net output #130: loss3/loss06 = 1.25988 (* 0.0909091 = 0.114534 loss)
I0429 09:35:08.776074 8162 solver.cpp:245] Train net output #131: loss3/loss07 = 0.598256 (* 0.0909091 = 0.0543869 loss)
I0429 09:35:08.776101 8162 solver.cpp:245] Train net output #132: loss3/loss08 = 0.125222 (* 0.0909091 = 0.0113838 loss)
I0429 09:35:08.776129 8162 solver.cpp:245] Train net output #133: loss3/loss09 = 0.020059 (* 0.0909091 = 0.00182355 loss)
I0429 09:35:08.776155 8162 solver.cpp:245] Train net output #134: loss3/loss10 = 0.00438484 (* 0.0909091 = 0.000398621 loss)
I0429 09:35:08.776181 8162 solver.cpp:245] Train net output #135: loss3/loss11 = 0.00152939 (* 0.0909091 = 0.000139035 loss)
I0429 09:35:08.776209 8162 solver.cpp:245] Train net output #136: loss3/loss12 = 0.000675105 (* 0.0909091 = 6.13732e-05 loss)
I0429 09:35:08.776237 8162 solver.cpp:245] Train net output #137: loss3/loss13 = 0.000369707 (* 0.0909091 = 3.36097e-05 loss)
I0429 09:35:08.776262 8162 solver.cpp:245] Train net output #138: loss3/loss14 = 0.000227175 (* 0.0909091 = 2.06522e-05 loss)
I0429 09:35:08.776290 8162 solver.cpp:245] Train net output #139: loss3/loss15 = 0.000131969 (* 0.0909091 = 1.19972e-05 loss)
I0429 09:35:08.776319 8162 solver.cpp:245] Train net output #140: loss3/loss16 = 0.000111478 (* 0.0909091 = 1.01344e-05 loss)
I0429 09:35:08.776345 8162 solver.cpp:245] Train net output #141: loss3/loss17 = 3.95901e-05 (* 0.0909091 = 3.5991e-06 loss)
I0429 09:35:08.776372 8162 solver.cpp:245] Train net output #142: loss3/loss18 = 3.69075e-05 (* 0.0909091 = 3.35523e-06 loss)
I0429 09:35:08.776399 8162 solver.cpp:245] Train net output #143: loss3/loss19 = 2.90529e-05 (* 0.0909091 = 2.64117e-06 loss)
I0429 09:35:08.776427 8162 solver.cpp:245] Train net output #144: loss3/loss20 = 2.7786e-05 (* 0.0909091 = 2.526e-06 loss)
I0429 09:35:08.776454 8162 solver.cpp:245] Train net output #145: loss3/loss21 = 2.50436e-05 (* 0.0909091 = 2.27669e-06 loss)
I0429 09:35:08.776485 8162 solver.cpp:245] Train net output #146: loss3/loss22 = 2.8725e-05 (* 0.0909091 = 2.61136e-06 loss)
I0429 09:35:08.776509 8162 solver.cpp:245] Train net output #147: total_accuracy = 0.125
I0429 09:35:08.776530 8162 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.25
I0429 09:35:08.776568 8162 solver.cpp:245] Train net output #149: total_confidence = 0.11969
I0429 09:35:08.776592 8162 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.142902
I0429 09:35:08.776614 8162 sgd_solver.cpp:106] Iteration 500, lr = 0.005
I0429 09:36:05.924826 8162 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 51.8638 > 30) by scale factor 0.578438
I0429 09:37:25.422806 8162 solver.cpp:229] Iteration 1000, loss = 5.71098
I0429 09:37:25.422972 8162 solver.cpp:245] Train net output #0: loss1/accuracy = 0.263158
I0429 09:37:25.423002 8162 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.375
I0429 09:37:25.423027 8162 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.375
I0429 09:37:25.423049 8162 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375
I0429 09:37:25.423071 8162 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.25
I0429 09:37:25.423094 8162 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.125
I0429 09:37:25.423115 8162 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.5
I0429 09:37:25.423138 8162 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.375
I0429 09:37:25.423161 8162 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.75
I0429 09:37:25.423183 8162 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.75
I0429 09:37:25.423205 8162 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.75
I0429 09:37:25.423229 8162 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.75
I0429 09:37:25.423254 8162 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0429 09:37:25.423279 8162 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0429 09:37:25.423301 8162 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0429 09:37:25.423328 8162 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0429 09:37:25.423351 8162 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0429 09:37:25.423372 8162 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0429 09:37:25.423408 8162 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0429 09:37:25.423429 8162 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0429 09:37:25.423451 8162 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0429 09:37:25.423499 8162 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0429 09:37:25.423527 8162 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0429 09:37:25.423550 8162 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.744318
I0429 09:37:25.423573 8162 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.578947
I0429 09:37:25.423601 8162 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 2.26516 (* 0.3 = 0.679548 loss)
I0429 09:37:25.423630 8162 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.872068 (* 0.3 = 0.26162 loss)
I0429 09:37:25.423658 8162 solver.cpp:245] Train net output #27: loss1/loss01 = 1.71984 (* 0.0272727 = 0.0469048 loss)
I0429 09:37:25.423687 8162 solver.cpp:245] Train net output #28: loss1/loss02 = 2.10702 (* 0.0272727 = 0.0574643 loss)
I0429 09:37:25.423714 8162 solver.cpp:245] Train net output #29: loss1/loss03 = 2.09071 (* 0.0272727 = 0.0570194 loss)
I0429 09:37:25.423743 8162 solver.cpp:245] Train net output #30: loss1/loss04 = 2.37536 (* 0.0272727 = 0.0647827 loss)
I0429 09:37:25.423769 8162 solver.cpp:245] Train net output #31: loss1/loss05 = 2.81289 (* 0.0272727 = 0.0767151 loss)
I0429 09:37:25.423797 8162 solver.cpp:245] Train net output #32: loss1/loss06 = 1.93397 (* 0.0272727 = 0.0527446 loss)
I0429 09:37:25.423825 8162 solver.cpp:245] Train net output #33: loss1/loss07 = 2.01668 (* 0.0272727 = 0.0550003 loss)
I0429 09:37:25.423851 8162 solver.cpp:245] Train net output #34: loss1/loss08 = 0.875674 (* 0.0272727 = 0.023882 loss)
I0429 09:37:25.423879 8162 solver.cpp:245] Train net output #35: loss1/loss09 = 0.665146 (* 0.0272727 = 0.0181403 loss)
I0429 09:37:25.423907 8162 solver.cpp:245] Train net output #36: loss1/loss10 = 0.791333 (* 0.0272727 = 0.0215818 loss)
I0429 09:37:25.423934 8162 solver.cpp:245] Train net output #37: loss1/loss11 = 0.722316 (* 0.0272727 = 0.0196995 loss)
I0429 09:37:25.423965 8162 solver.cpp:245] Train net output #38: loss1/loss12 = 0.360304 (* 0.0272727 = 0.00982648 loss)
I0429 09:37:25.424005 8162 solver.cpp:245] Train net output #39: loss1/loss13 = 0.130719 (* 0.0272727 = 0.00356506 loss)
I0429 09:37:25.424062 8162 solver.cpp:245] Train net output #40: loss1/loss14 = 0.0288563 (* 0.0272727 = 0.000786991 loss)
I0429 09:37:25.424093 8162 solver.cpp:245] Train net output #41: loss1/loss15 = 0.0110306 (* 0.0272727 = 0.000300834 loss)
I0429 09:37:25.424124 8162 solver.cpp:245] Train net output #42: loss1/loss16 = 0.00419681 (* 0.0272727 = 0.000114458 loss)
I0429 09:37:25.424150 8162 solver.cpp:245] Train net output #43: loss1/loss17 = 0.00130953 (* 0.0272727 = 3.57143e-05 loss)
I0429 09:37:25.424180 8162 solver.cpp:245] Train net output #44: loss1/loss18 = 0.000315696 (* 0.0272727 = 8.6099e-06 loss)
I0429 09:37:25.424207 8162 solver.cpp:245] Train net output #45: loss1/loss19 = 0.000176664 (* 0.0272727 = 4.81812e-06 loss)
I0429 09:37:25.424234 8162 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000104042 (* 0.0272727 = 2.8375e-06 loss)
I0429 09:37:25.424263 8162 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000162304 (* 0.0272727 = 4.42647e-06 loss)
I0429 09:37:25.424290 8162 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000165284 (* 0.0272727 = 4.50776e-06 loss)
I0429 09:37:25.424315 8162 solver.cpp:245] Train net output #49: loss2/accuracy = 0.368421
I0429 09:37:25.424338 8162 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.625
I0429 09:37:25.424361 8162 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75
I0429 09:37:25.424389 8162 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.25
I0429 09:37:25.424412 8162 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.5
I0429 09:37:25.424437 8162 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.25
I0429 09:37:25.424459 8162 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.375
I0429 09:37:25.424482 8162 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.25
I0429 09:37:25.424505 8162 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.75
I0429 09:37:25.424528 8162 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.75
I0429 09:37:25.424552 8162 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.75
I0429 09:37:25.424576 8162 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.875
I0429 09:37:25.424597 8162 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0429 09:37:25.424621 8162 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0429 09:37:25.424643 8162 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0429 09:37:25.424666 8162 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0429 09:37:25.424690 8162 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0429 09:37:25.424712 8162 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0429 09:37:25.424734 8162 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0429 09:37:25.424757 8162 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0429 09:37:25.424778 8162 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0429 09:37:25.424803 8162 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0429 09:37:25.424824 8162 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0429 09:37:25.424846 8162 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.778409
I0429 09:37:25.424870 8162 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.596491
I0429 09:37:25.424896 8162 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 2.0708 (* 0.3 = 0.621239 loss)
I0429 09:37:25.424924 8162 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.823728 (* 0.3 = 0.247118 loss)
I0429 09:37:25.424952 8162 solver.cpp:245] Train net output #76: loss2/loss01 = 1.25292 (* 0.0272727 = 0.0341705 loss)
I0429 09:37:25.424980 8162 solver.cpp:245] Train net output #77: loss2/loss02 = 1.19728 (* 0.0272727 = 0.0326532 loss)
I0429 09:37:25.425025 8162 solver.cpp:245] Train net output #78: loss2/loss03 = 1.87297 (* 0.0272727 = 0.0510809 loss)
I0429 09:37:25.425058 8162 solver.cpp:245] Train net output #79: loss2/loss04 = 2.12149 (* 0.0272727 = 0.0578588 loss)
I0429 09:37:25.425087 8162 solver.cpp:245] Train net output #80: loss2/loss05 = 2.92485 (* 0.0272727 = 0.0797687 loss)
I0429 09:37:25.425114 8162 solver.cpp:245] Train net output #81: loss2/loss06 = 1.61697 (* 0.0272727 = 0.0440992 loss)
I0429 09:37:25.425142 8162 solver.cpp:245] Train net output #82: loss2/loss07 = 2.03035 (* 0.0272727 = 0.0553731 loss)
I0429 09:37:25.425168 8162 solver.cpp:245] Train net output #83: loss2/loss08 = 0.937576 (* 0.0272727 = 0.0255703 loss)
I0429 09:37:25.425194 8162 solver.cpp:245] Train net output #84: loss2/loss09 = 0.72998 (* 0.0272727 = 0.0199086 loss)
I0429 09:37:25.425221 8162 solver.cpp:245] Train net output #85: loss2/loss10 = 0.881306 (* 0.0272727 = 0.0240356 loss)
I0429 09:37:25.425248 8162 solver.cpp:245] Train net output #86: loss2/loss11 = 0.587184 (* 0.0272727 = 0.0160141 loss)
I0429 09:37:25.425276 8162 solver.cpp:245] Train net output #87: loss2/loss12 = 0.291249 (* 0.0272727 = 0.00794315 loss)
I0429 09:37:25.425302 8162 solver.cpp:245] Train net output #88: loss2/loss13 = 0.142538 (* 0.0272727 = 0.00388741 loss)
I0429 09:37:25.425329 8162 solver.cpp:245] Train net output #89: loss2/loss14 = 0.0589025 (* 0.0272727 = 0.00160643 loss)
I0429 09:37:25.425355 8162 solver.cpp:245] Train net output #90: loss2/loss15 = 0.0229186 (* 0.0272727 = 0.000625054 loss)
I0429 09:37:25.425382 8162 solver.cpp:245] Train net output #91: loss2/loss16 = 0.0178568 (* 0.0272727 = 0.000487004 loss)
I0429 09:37:25.425410 8162 solver.cpp:245] Train net output #92: loss2/loss17 = 0.0120331 (* 0.0272727 = 0.000328175 loss)
I0429 09:37:25.425441 8162 solver.cpp:245] Train net output #93: loss2/loss18 = 0.0105697 (* 0.0272727 = 0.000288265 loss)
I0429 09:37:25.425469 8162 solver.cpp:245] Train net output #94: loss2/loss19 = 0.0109921 (* 0.0272727 = 0.000299784 loss)
I0429 09:37:25.425498 8162 solver.cpp:245] Train net output #95: loss2/loss20 = 0.0123659 (* 0.0272727 = 0.000337252 loss)
I0429 09:37:25.425523 8162 solver.cpp:245] Train net output #96: loss2/loss21 = 0.00543938 (* 0.0272727 = 0.000148347 loss)
I0429 09:37:25.425550 8162 solver.cpp:245] Train net output #97: loss2/loss22 = 0.004616 (* 0.0272727 = 0.000125891 loss)
I0429 09:37:25.425575 8162 solver.cpp:245] Train net output #98: loss3/accuracy = 0.508772
I0429 09:37:25.425595 8162 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875
I0429 09:37:25.425617 8162 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875
I0429 09:37:25.425640 8162 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.625
I0429 09:37:25.425662 8162 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.625
I0429 09:37:25.425684 8162 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.375
I0429 09:37:25.425707 8162 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.625
I0429 09:37:25.425729 8162 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.625
I0429 09:37:25.425751 8162 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.75
I0429 09:37:25.425775 8162 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.75
I0429 09:37:25.425797 8162 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.75
I0429 09:37:25.425819 8162 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.875
I0429 09:37:25.425842 8162 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0429 09:37:25.425863 8162 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0429 09:37:25.425885 8162 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0429 09:37:25.425907 8162 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0429 09:37:25.425928 8162 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0429 09:37:25.425966 8162 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0429 09:37:25.425988 8162 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0429 09:37:25.426010 8162 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0429 09:37:25.426034 8162 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0429 09:37:25.426057 8162 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0429 09:37:25.426079 8162 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0429 09:37:25.426108 8162 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.818182
I0429 09:37:25.426132 8162 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.719298
I0429 09:37:25.426167 8162 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.57878 (* 1 = 1.57878 loss)
I0429 09:37:25.426199 8162 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.600785 (* 1 = 0.600785 loss)
I0429 09:37:25.426229 8162 solver.cpp:245] Train net output #125: loss3/loss01 = 0.836351 (* 0.0909091 = 0.0760319 loss)
I0429 09:37:25.426256 8162 solver.cpp:245] Train net output #126: loss3/loss02 = 0.497238 (* 0.0909091 = 0.0452034 loss)
I0429 09:37:25.426282 8162 solver.cpp:245] Train net output #127: loss3/loss03 = 1.24663 (* 0.0909091 = 0.11333 loss)
I0429 09:37:25.426311 8162 solver.cpp:245] Train net output #128: loss3/loss04 = 1.50034 (* 0.0909091 = 0.136394 loss)
I0429 09:37:25.426337 8162 solver.cpp:245] Train net output #129: loss3/loss05 = 2.04866 (* 0.0909091 = 0.186241 loss)
I0429 09:37:25.426363 8162 solver.cpp:245] Train net output #130: loss3/loss06 = 1.41937 (* 0.0909091 = 0.129033 loss)
I0429 09:37:25.426390 8162 solver.cpp:245] Train net output #131: loss3/loss07 = 1.52757 (* 0.0909091 = 0.13887 loss)
I0429 09:37:25.426416 8162 solver.cpp:245] Train net output #132: loss3/loss08 = 0.968761 (* 0.0909091 = 0.0880692 loss)
I0429 09:37:25.426442 8162 solver.cpp:245] Train net output #133: loss3/loss09 = 0.746731 (* 0.0909091 = 0.0678846 loss)
I0429 09:37:25.426475 8162 solver.cpp:245] Train net output #134: loss3/loss10 = 0.76729 (* 0.0909091 = 0.0697537 loss)
I0429 09:37:25.426502 8162 solver.cpp:245] Train net output #135: loss3/loss11 = 0.404259 (* 0.0909091 = 0.0367508 loss)
I0429 09:37:25.426528 8162 solver.cpp:245] Train net output #136: loss3/loss12 = 0.141214 (* 0.0909091 = 0.0128377 loss)
I0429 09:37:25.426558 8162 solver.cpp:245] Train net output #137: loss3/loss13 = 0.0499061 (* 0.0909091 = 0.00453692 loss)
I0429 09:37:25.426584 8162 solver.cpp:245] Train net output #138: loss3/loss14 = 0.0148899 (* 0.0909091 = 0.00135363 loss)
I0429 09:37:25.426610 8162 solver.cpp:245] Train net output #139: loss3/loss15 = 0.00596069 (* 0.0909091 = 0.000541881 loss)
I0429 09:37:25.426638 8162 solver.cpp:245] Train net output #140: loss3/loss16 = 0.0028547 (* 0.0909091 = 0.000259519 loss)
I0429 09:37:25.426666 8162 solver.cpp:245] Train net output #141: loss3/loss17 = 0.00230731 (* 0.0909091 = 0.000209755 loss)
I0429 09:37:25.426692 8162 solver.cpp:245] Train net output #142: loss3/loss18 = 0.00226953 (* 0.0909091 = 0.000206321 loss)
I0429 09:37:25.426718 8162 solver.cpp:245] Train net output #143: loss3/loss19 = 0.00193038 (* 0.0909091 = 0.000175489 loss)
I0429 09:37:25.426745 8162 solver.cpp:245] Train net output #144: loss3/loss20 = 0.00138767 (* 0.0909091 = 0.000126152 loss)
I0429 09:37:25.426772 8162 solver.cpp:245] Train net output #145: loss3/loss21 = 0.00120038 (* 0.0909091 = 0.000109125 loss)
I0429 09:37:25.426800 8162 solver.cpp:245] Train net output #146: loss3/loss22 = 0.000702898 (* 0.0909091 = 6.38999e-05 loss)
I0429 09:37:25.426823 8162 solver.cpp:245] Train net output #147: total_accuracy = 0.125
I0429 09:37:25.426844 8162 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.25
I0429 09:37:25.426883 8162 solver.cpp:245] Train net output #149: total_confidence = 0.129051
I0429 09:37:25.426906 8162 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.101503
I0429 09:37:25.426928 8162 sgd_solver.cpp:106] Iteration 1000, lr = 0.005
I0429 09:39:42.036032 8162 solver.cpp:229] Iteration 1500, loss = 5.90892
I0429 09:39:42.036206 8162 solver.cpp:245] Train net output #0: loss1/accuracy = 0.380952
I0429 09:39:42.036227 8162 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.625
I0429 09:39:42.036242 8162 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.625
I0429 09:39:42.036255 8162 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.625
I0429 09:39:42.036268 8162 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.25
I0429 09:39:42.036281 8162 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.625
I0429 09:39:42.036294 8162 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.75
I0429 09:39:42.036306 8162 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.75
I0429 09:39:42.036321 8162 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875
I0429 09:39:42.036335 8162 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875
I0429 09:39:42.036347 8162 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875
I0429 09:39:42.036360 8162 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.875
I0429 09:39:42.036373 8162 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0429 09:39:42.036386 8162 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0429 09:39:42.036398 8162 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0429 09:39:42.036411 8162 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0429 09:39:42.036423 8162 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0429 09:39:42.036435 8162 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0429 09:39:42.036448 8162 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0429 09:39:42.036459 8162 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0429 09:39:42.036473 8162 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0429 09:39:42.036484 8162 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0429 09:39:42.036496 8162 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0429 09:39:42.036509 8162 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.840909
I0429 09:39:42.036521 8162 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.690476
I0429 09:39:42.036537 8162 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.94916 (* 0.3 = 0.584749 loss)
I0429 09:39:42.036552 8162 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.544775 (* 0.3 = 0.163432 loss)
I0429 09:39:42.036567 8162 solver.cpp:245] Train net output #27: loss1/loss01 = 1.19503 (* 0.0272727 = 0.0325918 loss)
I0429 09:39:42.036582 8162 solver.cpp:245] Train net output #28: loss1/loss02 = 1.53086 (* 0.0272727 = 0.0417507 loss)
I0429 09:39:42.036597 8162 solver.cpp:245] Train net output #29: loss1/loss03 = 1.37937 (* 0.0272727 = 0.0376192 loss)
I0429 09:39:42.036612 8162 solver.cpp:245] Train net output #30: loss1/loss04 = 1.5391 (* 0.0272727 = 0.0419756 loss)
I0429 09:39:42.036626 8162 solver.cpp:245] Train net output #31: loss1/loss05 = 1.3535 (* 0.0272727 = 0.0369136 loss)
I0429 09:39:42.036640 8162 solver.cpp:245] Train net output #32: loss1/loss06 = 1.28297 (* 0.0272727 = 0.0349901 loss)
I0429 09:39:42.036655 8162 solver.cpp:245] Train net output #33: loss1/loss07 = 0.8617 (* 0.0272727 = 0.0235009 loss)
I0429 09:39:42.036669 8162 solver.cpp:245] Train net output #34: loss1/loss08 = 0.544858 (* 0.0272727 = 0.0148597 loss)
I0429 09:39:42.036684 8162 solver.cpp:245] Train net output #35: loss1/loss09 = 0.376098 (* 0.0272727 = 0.0102572 loss)
I0429 09:39:42.036698 8162 solver.cpp:245] Train net output #36: loss1/loss10 = 0.446161 (* 0.0272727 = 0.012168 loss)
I0429 09:39:42.036713 8162 solver.cpp:245] Train net output #37: loss1/loss11 = 0.57358 (* 0.0272727 = 0.0156431 loss)
I0429 09:39:42.036728 8162 solver.cpp:245] Train net output #38: loss1/loss12 = 0.0336287 (* 0.0272727 = 0.000917146 loss)
I0429 09:39:42.036764 8162 solver.cpp:245] Train net output #39: loss1/loss13 = 0.0110498 (* 0.0272727 = 0.000301358 loss)
I0429 09:39:42.036780 8162 solver.cpp:245] Train net output #40: loss1/loss14 = 0.0046039 (* 0.0272727 = 0.000125561 loss)
I0429 09:39:42.036795 8162 solver.cpp:245] Train net output #41: loss1/loss15 = 0.00324604 (* 0.0272727 = 8.85283e-05 loss)
I0429 09:39:42.036809 8162 solver.cpp:245] Train net output #42: loss1/loss16 = 0.00140972 (* 0.0272727 = 3.8447e-05 loss)
I0429 09:39:42.036824 8162 solver.cpp:245] Train net output #43: loss1/loss17 = 0.00175716 (* 0.0272727 = 4.79224e-05 loss)
I0429 09:39:42.036839 8162 solver.cpp:245] Train net output #44: loss1/loss18 = 0.0023301 (* 0.0272727 = 6.35482e-05 loss)
I0429 09:39:42.036854 8162 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00125791 (* 0.0272727 = 3.43066e-05 loss)
I0429 09:39:42.036869 8162 solver.cpp:245] Train net output #46: loss1/loss20 = 0.00161928 (* 0.0272727 = 4.41623e-05 loss)
I0429 09:39:42.036883 8162 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000887931 (* 0.0272727 = 2.42163e-05 loss)
I0429 09:39:42.036897 8162 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000467989 (* 0.0272727 = 1.27633e-05 loss)
I0429 09:39:42.036911 8162 solver.cpp:245] Train net output #49: loss2/accuracy = 0.428571
I0429 09:39:42.036923 8162 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875
I0429 09:39:42.036936 8162 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.5
I0429 09:39:42.036949 8162 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.5
I0429 09:39:42.036962 8162 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.375
I0429 09:39:42.036974 8162 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5
I0429 09:39:42.036986 8162 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.625
I0429 09:39:42.036999 8162 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.75
I0429 09:39:42.037011 8162 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875
I0429 09:39:42.037024 8162 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875
I0429 09:39:42.037036 8162 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875
I0429 09:39:42.037050 8162 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.875
I0429 09:39:42.037061 8162 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0429 09:39:42.037075 8162 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0429 09:39:42.037086 8162 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0429 09:39:42.037098 8162 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0429 09:39:42.037111 8162 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0429 09:39:42.037122 8162 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0429 09:39:42.037133 8162 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0429 09:39:42.037145 8162 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0429 09:39:42.037158 8162 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0429 09:39:42.037170 8162 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0429 09:39:42.037183 8162 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0429 09:39:42.037194 8162 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.852273
I0429 09:39:42.037209 8162 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.642857
I0429 09:39:42.037225 8162 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 2.06548 (* 0.3 = 0.619645 loss)
I0429 09:39:42.037240 8162 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.537556 (* 0.3 = 0.161267 loss)
I0429 09:39:42.037255 8162 solver.cpp:245] Train net output #76: loss2/loss01 = 0.973244 (* 0.0272727 = 0.026543 loss)
I0429 09:39:42.037268 8162 solver.cpp:245] Train net output #77: loss2/loss02 = 1.55304 (* 0.0272727 = 0.0423555 loss)
I0429 09:39:42.037294 8162 solver.cpp:245] Train net output #78: loss2/loss03 = 1.91367 (* 0.0272727 = 0.052191 loss)
I0429 09:39:42.037310 8162 solver.cpp:245] Train net output #79: loss2/loss04 = 1.45435 (* 0.0272727 = 0.0396642 loss)
I0429 09:39:42.037324 8162 solver.cpp:245] Train net output #80: loss2/loss05 = 1.50074 (* 0.0272727 = 0.0409293 loss)
I0429 09:39:42.037339 8162 solver.cpp:245] Train net output #81: loss2/loss06 = 1.18013 (* 0.0272727 = 0.0321854 loss)
I0429 09:39:42.037353 8162 solver.cpp:245] Train net output #82: loss2/loss07 = 0.896952 (* 0.0272727 = 0.0244623 loss)
I0429 09:39:42.037370 8162 solver.cpp:245] Train net output #83: loss2/loss08 = 0.626005 (* 0.0272727 = 0.0170729 loss)
I0429 09:39:42.037385 8162 solver.cpp:245] Train net output #84: loss2/loss09 = 0.479828 (* 0.0272727 = 0.0130862 loss)
I0429 09:39:42.037400 8162 solver.cpp:245] Train net output #85: loss2/loss10 = 0.669901 (* 0.0272727 = 0.01827 loss)
I0429 09:39:42.037415 8162 solver.cpp:245] Train net output #86: loss2/loss11 = 0.843572 (* 0.0272727 = 0.0230065 loss)
I0429 09:39:42.037430 8162 solver.cpp:245] Train net output #87: loss2/loss12 = 0.00468623 (* 0.0272727 = 0.000127806 loss)
I0429 09:39:42.037443 8162 solver.cpp:245] Train net output #88: loss2/loss13 = 0.00178444 (* 0.0272727 = 4.86665e-05 loss)
I0429 09:39:42.037458 8162 solver.cpp:245] Train net output #89: loss2/loss14 = 0.00125204 (* 0.0272727 = 3.41466e-05 loss)
I0429 09:39:42.037473 8162 solver.cpp:245] Train net output #90: loss2/loss15 = 0.00147473 (* 0.0272727 = 4.022e-05 loss)
I0429 09:39:42.037488 8162 solver.cpp:245] Train net output #91: loss2/loss16 = 0.000795393 (* 0.0272727 = 2.16925e-05 loss)
I0429 09:39:42.037503 8162 solver.cpp:245] Train net output #92: loss2/loss17 = 0.000840091 (* 0.0272727 = 2.29116e-05 loss)
I0429 09:39:42.037518 8162 solver.cpp:245] Train net output #93: loss2/loss18 = 0.00133055 (* 0.0272727 = 3.62877e-05 loss)
I0429 09:39:42.037533 8162 solver.cpp:245] Train net output #94: loss2/loss19 = 0.000867149 (* 0.0272727 = 2.36495e-05 loss)
I0429 09:39:42.037547 8162 solver.cpp:245] Train net output #95: loss2/loss20 = 0.000631848 (* 0.0272727 = 1.72322e-05 loss)
I0429 09:39:42.037561 8162 solver.cpp:245] Train net output #96: loss2/loss21 = 0.000495881 (* 0.0272727 = 1.3524e-05 loss)
I0429 09:39:42.037576 8162 solver.cpp:245] Train net output #97: loss2/loss22 = 0.000281451 (* 0.0272727 = 7.67593e-06 loss)
I0429 09:39:42.037590 8162 solver.cpp:245] Train net output #98: loss3/accuracy = 0.52381
I0429 09:39:42.037602 8162 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0429 09:39:42.037614 8162 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.75
I0429 09:39:42.037626 8162 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.625
I0429 09:39:42.037639 8162 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.5
I0429 09:39:42.037652 8162 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.5
I0429 09:39:42.037663 8162 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.75
I0429 09:39:42.037675 8162 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75
I0429 09:39:42.037688 8162 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875
I0429 09:39:42.037700 8162 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875
I0429 09:39:42.037714 8162 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875
I0429 09:39:42.037726 8162 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.875
I0429 09:39:42.037739 8162 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0429 09:39:42.037750 8162 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0429 09:39:42.037762 8162 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0429 09:39:42.037775 8162 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0429 09:39:42.037796 8162 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0429 09:39:42.037811 8162 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0429 09:39:42.037822 8162 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0429 09:39:42.037834 8162 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0429 09:39:42.037847 8162 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0429 09:39:42.037858 8162 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0429 09:39:42.037870 8162 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0429 09:39:42.037883 8162 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.875
I0429 09:39:42.037894 8162 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.785714
I0429 09:39:42.037909 8162 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.40829 (* 1 = 1.40829 loss)
I0429 09:39:42.037924 8162 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.372991 (* 1 = 0.372991 loss)
I0429 09:39:42.037938 8162 solver.cpp:245] Train net output #125: loss3/loss01 = 0.513023 (* 0.0909091 = 0.0466385 loss)
I0429 09:39:42.037953 8162 solver.cpp:245] Train net output #126: loss3/loss02 = 0.717455 (* 0.0909091 = 0.0652232 loss)
I0429 09:39:42.037967 8162 solver.cpp:245] Train net output #127: loss3/loss03 = 1.15083 (* 0.0909091 = 0.104621 loss)
I0429 09:39:42.037982 8162 solver.cpp:245] Train net output #128: loss3/loss04 = 1.37338 (* 0.0909091 = 0.124852 loss)
I0429 09:39:42.037997 8162 solver.cpp:245] Train net output #129: loss3/loss05 = 1.32606 (* 0.0909091 = 0.12055 loss)
I0429 09:39:42.038010 8162 solver.cpp:245] Train net output #130: loss3/loss06 = 0.845139 (* 0.0909091 = 0.0768308 loss)
I0429 09:39:42.038025 8162 solver.cpp:245] Train net output #131: loss3/loss07 = 0.895847 (* 0.0909091 = 0.0814407 loss)
I0429 09:39:42.038039 8162 solver.cpp:245] Train net output #132: loss3/loss08 = 0.574947 (* 0.0909091 = 0.0522679 loss)
I0429 09:39:42.038053 8162 solver.cpp:245] Train net output #133: loss3/loss09 = 0.413925 (* 0.0909091 = 0.0376295 loss)
I0429 09:39:42.038069 8162 solver.cpp:245] Train net output #134: loss3/loss10 = 0.453319 (* 0.0909091 = 0.0412108 loss)
I0429 09:39:42.038082 8162 solver.cpp:245] Train net output #135: loss3/loss11 = 0.545841 (* 0.0909091 = 0.0496219 loss)
I0429 09:39:42.038096 8162 solver.cpp:245] Train net output #136: loss3/loss12 = 0.0206042 (* 0.0909091 = 0.00187311 loss)
I0429 09:39:42.038111 8162 solver.cpp:245] Train net output #137: loss3/loss13 = 0.00913654 (* 0.0909091 = 0.000830595 loss)
I0429 09:39:42.038126 8162 solver.cpp:245] Train net output #138: loss3/loss14 = 0.00346314 (* 0.0909091 = 0.00031483 loss)
I0429 09:39:42.038141 8162 solver.cpp:245] Train net output #139: loss3/loss15 = 0.00172861 (* 0.0909091 = 0.000157146 loss)
I0429 09:39:42.038154 8162 solver.cpp:245] Train net output #140: loss3/loss16 = 0.00089402 (* 0.0909091 = 8.12745e-05 loss)
I0429 09:39:42.038168 8162 solver.cpp:245] Train net output #141: loss3/loss17 = 0.000415155 (* 0.0909091 = 3.77414e-05 loss)
I0429 09:39:42.038183 8162 solver.cpp:245] Train net output #142: loss3/loss18 = 0.000387079 (* 0.0909091 = 3.5189e-05 loss)
I0429 09:39:42.038197 8162 solver.cpp:245] Train net output #143: loss3/loss19 = 0.000346579 (* 0.0909091 = 3.15072e-05 loss)
I0429 09:39:42.038211 8162 solver.cpp:245] Train net output #144: loss3/loss20 = 0.00033155 (* 0.0909091 = 3.01409e-05 loss)
I0429 09:39:42.038226 8162 solver.cpp:245] Train net output #145: loss3/loss21 = 0.000259334 (* 0.0909091 = 2.35758e-05 loss)
I0429 09:39:42.038241 8162 solver.cpp:245] Train net output #146: loss3/loss22 = 0.000136751 (* 0.0909091 = 1.24319e-05 loss)
I0429 09:39:42.038254 8162 solver.cpp:245] Train net output #147: total_accuracy = 0.25
I0429 09:39:42.038269 8162 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.25
I0429 09:39:42.038291 8162 solver.cpp:245] Train net output #149: total_confidence = 0.205138
I0429 09:39:42.038305 8162 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.232839
I0429 09:39:42.038318 8162 sgd_solver.cpp:106] Iteration 1500, lr = 0.005
I0429 09:40:24.990082 8162 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 34.0057 > 30) by scale factor 0.882205
I0429 09:41:58.771714 8162 solver.cpp:229] Iteration 2000, loss = 5.69067
I0429 09:41:58.771878 8162 solver.cpp:245] Train net output #0: loss1/accuracy = 0.3
I0429 09:41:58.771899 8162 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75
I0429 09:41:58.771914 8162 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.25
I0429 09:41:58.771926 8162 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.125
I0429 09:41:58.771939 8162 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.25
I0429 09:41:58.771951 8162 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.375
I0429 09:41:58.771965 8162 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.5
I0429 09:41:58.771977 8162 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.5
I0429 09:41:58.771989 8162 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875
I0429 09:41:58.772003 8162 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875
I0429 09:41:58.772016 8162 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875
I0429 09:41:58.772027 8162 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.875
I0429 09:41:58.772040 8162 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0429 09:41:58.772053 8162 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0429 09:41:58.772064 8162 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0429 09:41:58.772078 8162 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0429 09:41:58.772089 8162 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0429 09:41:58.772101 8162 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0429 09:41:58.772114 8162 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0429 09:41:58.772125 8162 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0429 09:41:58.772137 8162 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0429 09:41:58.772150 8162 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0429 09:41:58.772162 8162 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0429 09:41:58.772174 8162 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.795455
I0429 09:41:58.772186 8162 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.56
I0429 09:41:58.772203 8162 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 2.39854 (* 0.3 = 0.719563 loss)
I0429 09:41:58.772218 8162 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.749479 (* 0.3 = 0.224844 loss)
I0429 09:41:58.772233 8162 solver.cpp:245] Train net output #27: loss1/loss01 = 1.07658 (* 0.0272727 = 0.0293612 loss)
I0429 09:41:58.772248 8162 solver.cpp:245] Train net output #28: loss1/loss02 = 3.13091 (* 0.0272727 = 0.0853884 loss)
I0429 09:41:58.772263 8162 solver.cpp:245] Train net output #29: loss1/loss03 = 2.54258 (* 0.0272727 = 0.069343 loss)
I0429 09:41:58.772276 8162 solver.cpp:245] Train net output #30: loss1/loss04 = 2.6856 (* 0.0272727 = 0.0732437 loss)
I0429 09:41:58.772290 8162 solver.cpp:245] Train net output #31: loss1/loss05 = 1.72827 (* 0.0272727 = 0.0471345 loss)
I0429 09:41:58.772305 8162 solver.cpp:245] Train net output #32: loss1/loss06 = 1.48037 (* 0.0272727 = 0.0403737 loss)
I0429 09:41:58.772321 8162 solver.cpp:245] Train net output #33: loss1/loss07 = 1.71923 (* 0.0272727 = 0.046888 loss)
I0429 09:41:58.772336 8162 solver.cpp:245] Train net output #34: loss1/loss08 = 0.48575 (* 0.0272727 = 0.0132477 loss)
I0429 09:41:58.772351 8162 solver.cpp:245] Train net output #35: loss1/loss09 = 0.474893 (* 0.0272727 = 0.0129516 loss)
I0429 09:41:58.772366 8162 solver.cpp:245] Train net output #36: loss1/loss10 = 0.513127 (* 0.0272727 = 0.0139944 loss)
I0429 09:41:58.772379 8162 solver.cpp:245] Train net output #37: loss1/loss11 = 0.443424 (* 0.0272727 = 0.0120934 loss)
I0429 09:41:58.772394 8162 solver.cpp:245] Train net output #38: loss1/loss12 = 0.0790963 (* 0.0272727 = 0.00215717 loss)
I0429 09:41:58.772409 8162 solver.cpp:245] Train net output #39: loss1/loss13 = 0.0663726 (* 0.0272727 = 0.00181016 loss)
I0429 09:41:58.772446 8162 solver.cpp:245] Train net output #40: loss1/loss14 = 0.0550156 (* 0.0272727 = 0.00150043 loss)
I0429 09:41:58.772462 8162 solver.cpp:245] Train net output #41: loss1/loss15 = 0.0521763 (* 0.0272727 = 0.00142299 loss)
I0429 09:41:58.772477 8162 solver.cpp:245] Train net output #42: loss1/loss16 = 0.0281947 (* 0.0272727 = 0.000768946 loss)
I0429 09:41:58.772491 8162 solver.cpp:245] Train net output #43: loss1/loss17 = 0.0210049 (* 0.0272727 = 0.000572861 loss)
I0429 09:41:58.772506 8162 solver.cpp:245] Train net output #44: loss1/loss18 = 0.0137328 (* 0.0272727 = 0.00037453 loss)
I0429 09:41:58.772521 8162 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00986353 (* 0.0272727 = 0.000269005 loss)
I0429 09:41:58.772534 8162 solver.cpp:245] Train net output #46: loss1/loss20 = 0.00562252 (* 0.0272727 = 0.000153342 loss)
I0429 09:41:58.772549 8162 solver.cpp:245] Train net output #47: loss1/loss21 = 0.00165966 (* 0.0272727 = 4.52636e-05 loss)
I0429 09:41:58.772563 8162 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000881547 (* 0.0272727 = 2.40422e-05 loss)
I0429 09:41:58.772578 8162 solver.cpp:245] Train net output #49: loss2/accuracy = 0.28
I0429 09:41:58.772590 8162 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.75
I0429 09:41:58.772603 8162 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.375
I0429 09:41:58.772615 8162 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.375
I0429 09:41:58.772627 8162 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.375
I0429 09:41:58.772640 8162 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5
I0429 09:41:58.772652 8162 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.625
I0429 09:41:58.772665 8162 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.5
I0429 09:41:58.772677 8162 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875
I0429 09:41:58.772689 8162 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875
I0429 09:41:58.772701 8162 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875
I0429 09:41:58.772713 8162 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.875
I0429 09:41:58.772727 8162 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0429 09:41:58.772738 8162 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0429 09:41:58.772750 8162 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0429 09:41:58.772763 8162 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0429 09:41:58.772774 8162 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0429 09:41:58.772786 8162 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0429 09:41:58.772799 8162 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0429 09:41:58.772809 8162 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0429 09:41:58.772821 8162 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0429 09:41:58.772833 8162 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0429 09:41:58.772845 8162 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0429 09:41:58.772857 8162 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.784091
I0429 09:41:58.772869 8162 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.6
I0429 09:41:58.772883 8162 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 2.22465 (* 0.3 = 0.667395 loss)
I0429 09:41:58.772902 8162 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.740079 (* 0.3 = 0.222024 loss)
I0429 09:41:58.772917 8162 solver.cpp:245] Train net output #76: loss2/loss01 = 1.55044 (* 0.0272727 = 0.0422848 loss)
I0429 09:41:58.772932 8162 solver.cpp:245] Train net output #77: loss2/loss02 = 2.59908 (* 0.0272727 = 0.0708839 loss)
I0429 09:41:58.772956 8162 solver.cpp:245] Train net output #78: loss2/loss03 = 2.28197 (* 0.0272727 = 0.0622355 loss)
I0429 09:41:58.772971 8162 solver.cpp:245] Train net output #79: loss2/loss04 = 2.11186 (* 0.0272727 = 0.0575963 loss)
I0429 09:41:58.772986 8162 solver.cpp:245] Train net output #80: loss2/loss05 = 1.89326 (* 0.0272727 = 0.0516345 loss)
I0429 09:41:58.773000 8162 solver.cpp:245] Train net output #81: loss2/loss06 = 1.5875 (* 0.0272727 = 0.0432956 loss)
I0429 09:41:58.773015 8162 solver.cpp:245] Train net output #82: loss2/loss07 = 1.33904 (* 0.0272727 = 0.0365192 loss)
I0429 09:41:58.773030 8162 solver.cpp:245] Train net output #83: loss2/loss08 = 0.480388 (* 0.0272727 = 0.0131015 loss)
I0429 09:41:58.773043 8162 solver.cpp:245] Train net output #84: loss2/loss09 = 0.408228 (* 0.0272727 = 0.0111335 loss)
I0429 09:41:58.773057 8162 solver.cpp:245] Train net output #85: loss2/loss10 = 0.42656 (* 0.0272727 = 0.0116335 loss)
I0429 09:41:58.773072 8162 solver.cpp:245] Train net output #86: loss2/loss11 = 0.34073 (* 0.0272727 = 0.00929264 loss)
I0429 09:41:58.773087 8162 solver.cpp:245] Train net output #87: loss2/loss12 = 0.147214 (* 0.0272727 = 0.00401492 loss)
I0429 09:41:58.773102 8162 solver.cpp:245] Train net output #88: loss2/loss13 = 0.107598 (* 0.0272727 = 0.00293448 loss)
I0429 09:41:58.773115 8162 solver.cpp:245] Train net output #89: loss2/loss14 = 0.0753176 (* 0.0272727 = 0.00205412 loss)
I0429 09:41:58.773130 8162 solver.cpp:245] Train net output #90: loss2/loss15 = 0.0566245 (* 0.0272727 = 0.00154431 loss)
I0429 09:41:58.773144 8162 solver.cpp:245] Train net output #91: loss2/loss16 = 0.0356712 (* 0.0272727 = 0.000972851 loss)
I0429 09:41:58.773159 8162 solver.cpp:245] Train net output #92: loss2/loss17 = 0.0200306 (* 0.0272727 = 0.000546289 loss)
I0429 09:41:58.773175 8162 solver.cpp:245] Train net output #93: loss2/loss18 = 0.0157865 (* 0.0272727 = 0.00043054 loss)
I0429 09:41:58.773190 8162 solver.cpp:245] Train net output #94: loss2/loss19 = 0.0108881 (* 0.0272727 = 0.000296949 loss)
I0429 09:41:58.773203 8162 solver.cpp:245] Train net output #95: loss2/loss20 = 0.0101118 (* 0.0272727 = 0.000275776 loss)
I0429 09:41:58.773218 8162 solver.cpp:245] Train net output #96: loss2/loss21 = 0.00498441 (* 0.0272727 = 0.000135938 loss)
I0429 09:41:58.773233 8162 solver.cpp:245] Train net output #97: loss2/loss22 = 0.0023178 (* 0.0272727 = 6.32126e-05 loss)
I0429 09:41:58.773247 8162 solver.cpp:245] Train net output #98: loss3/accuracy = 0.6
I0429 09:41:58.773258 8162 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.75
I0429 09:41:58.773272 8162 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.625
I0429 09:41:58.773283 8162 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.375
I0429 09:41:58.773295 8162 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.75
I0429 09:41:58.773308 8162 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875
I0429 09:41:58.773320 8162 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.875
I0429 09:41:58.773332 8162 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.625
I0429 09:41:58.773344 8162 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875
I0429 09:41:58.773357 8162 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875
I0429 09:41:58.773372 8162 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875
I0429 09:41:58.773386 8162 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.875
I0429 09:41:58.773397 8162 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0429 09:41:58.773409 8162 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0429 09:41:58.773422 8162 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0429 09:41:58.773434 8162 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0429 09:41:58.773447 8162 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0429 09:41:58.773468 8162 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0429 09:41:58.773481 8162 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0429 09:41:58.773494 8162 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0429 09:41:58.773506 8162 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0429 09:41:58.773519 8162 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0429 09:41:58.773530 8162 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0429 09:41:58.773541 8162 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.875
I0429 09:41:58.773553 8162 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.8
I0429 09:41:58.773568 8162 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.42273 (* 1 = 1.42273 loss)
I0429 09:41:58.773582 8162 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.492415 (* 1 = 0.492415 loss)
I0429 09:41:58.773597 8162 solver.cpp:245] Train net output #125: loss3/loss01 = 0.835285 (* 0.0909091 = 0.075935 loss)
I0429 09:41:58.773612 8162 solver.cpp:245] Train net output #126: loss3/loss02 = 1.70416 (* 0.0909091 = 0.154924 loss)
I0429 09:41:58.773627 8162 solver.cpp:245] Train net output #127: loss3/loss03 = 1.63929 (* 0.0909091 = 0.149026 loss)
I0429 09:41:58.773640 8162 solver.cpp:245] Train net output #128: loss3/loss04 = 1.24267 (* 0.0909091 = 0.11297 loss)
I0429 09:41:58.773654 8162 solver.cpp:245] Train net output #129: loss3/loss05 = 0.638969 (* 0.0909091 = 0.0580881 loss)
I0429 09:41:58.773669 8162 solver.cpp:245] Train net output #130: loss3/loss06 = 0.85922 (* 0.0909091 = 0.0781109 loss)
I0429 09:41:58.773684 8162 solver.cpp:245] Train net output #131: loss3/loss07 = 0.949677 (* 0.0909091 = 0.0863342 loss)
I0429 09:41:58.773697 8162 solver.cpp:245] Train net output #132: loss3/loss08 = 0.449228 (* 0.0909091 = 0.0408389 loss)
I0429 09:41:58.773712 8162 solver.cpp:245] Train net output #133: loss3/loss09 = 0.375138 (* 0.0909091 = 0.0341034 loss)
I0429 09:41:58.773726 8162 solver.cpp:245] Train net output #134: loss3/loss10 = 0.457572 (* 0.0909091 = 0.0415975 loss)
I0429 09:41:58.773741 8162 solver.cpp:245] Train net output #135: loss3/loss11 = 0.303548 (* 0.0909091 = 0.0275952 loss)
I0429 09:41:58.773756 8162 solver.cpp:245] Train net output #136: loss3/loss12 = 0.0521997 (* 0.0909091 = 0.00474543 loss)
I0429 09:41:58.773771 8162 solver.cpp:245] Train net output #137: loss3/loss13 = 0.0378026 (* 0.0909091 = 0.0034366 loss)
I0429 09:41:58.773785 8162 solver.cpp:245] Train net output #138: loss3/loss14 = 0.024708 (* 0.0909091 = 0.00224618 loss)
I0429 09:41:58.773797 8162 solver.cpp:245] Train net output #139: loss3/loss15 = 0.0167642 (* 0.0909091 = 0.00152402 loss)
I0429 09:41:58.773810 8162 solver.cpp:245] Train net output #140: loss3/loss16 = 0.0098518 (* 0.0909091 = 0.000895619 loss)
I0429 09:41:58.773825 8162 solver.cpp:245] Train net output #141: loss3/loss17 = 0.00730207 (* 0.0909091 = 0.000663825 loss)
I0429 09:41:58.773840 8162 solver.cpp:245] Train net output #142: loss3/loss18 = 0.00411154 (* 0.0909091 = 0.000373777 loss)
I0429 09:41:58.773854 8162 solver.cpp:245] Train net output #143: loss3/loss19 = 0.0033096 (* 0.0909091 = 0.000300873 loss)
I0429 09:41:58.773869 8162 solver.cpp:245] Train net output #144: loss3/loss20 = 0.00196043 (* 0.0909091 = 0.000178221 loss)
I0429 09:41:58.773882 8162 solver.cpp:245] Train net output #145: loss3/loss21 = 0.00136827 (* 0.0909091 = 0.000124388 loss)
I0429 09:41:58.773897 8162 solver.cpp:245] Train net output #146: loss3/loss22 = 0.00061728 (* 0.0909091 = 5.61164e-05 loss)
I0429 09:41:58.773910 8162 solver.cpp:245] Train net output #147: total_accuracy = 0
I0429 09:41:58.773922 8162 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.25
I0429 09:41:58.773934 8162 solver.cpp:245] Train net output #149: total_confidence = 0.0389162
I0429 09:41:58.773960 8162 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.089649
I0429 09:41:58.773975 8162 sgd_solver.cpp:106] Iteration 2000, lr = 0.005
I0429 09:44:15.359568 8162 solver.cpp:229] Iteration 2500, loss = 5.74909
I0429 09:44:15.359779 8162 solver.cpp:245] Train net output #0: loss1/accuracy = 0.28
I0429 09:44:15.359800 8162 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.625
I0429 09:44:15.359815 8162 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.25
I0429 09:44:15.359830 8162 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375
I0429 09:44:15.359853 8162 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375
I0429 09:44:15.359875 8162 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.5
I0429 09:44:15.359894 8162 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.5
I0429 09:44:15.359906 8162 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.75
I0429 09:44:15.359920 8162 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.75
I0429 09:44:15.359931 8162 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875
I0429 09:44:15.359944 8162 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875
I0429 09:44:15.359957 8162 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0429 09:44:15.359971 8162 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0429 09:44:15.359982 8162 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0429 09:44:15.359993 8162 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0429 09:44:15.360005 8162 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0429 09:44:15.360018 8162 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0429 09:44:15.360030 8162 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0429 09:44:15.360043 8162 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0429 09:44:15.360054 8162 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0429 09:44:15.360066 8162 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0429 09:44:15.360079 8162 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0429 09:44:15.360090 8162 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0429 09:44:15.360102 8162 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.784091
I0429 09:44:15.360115 8162 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.66
I0429 09:44:15.360132 8162 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 2.09002 (* 0.3 = 0.627006 loss)
I0429 09:44:15.360147 8162 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.628552 (* 0.3 = 0.188566 loss)
I0429 09:44:15.360162 8162 solver.cpp:245] Train net output #27: loss1/loss01 = 1.28199 (* 0.0272727 = 0.0349634 loss)
I0429 09:44:15.360177 8162 solver.cpp:245] Train net output #28: loss1/loss02 = 2.06587 (* 0.0272727 = 0.0563418 loss)
I0429 09:44:15.360191 8162 solver.cpp:245] Train net output #29: loss1/loss03 = 1.73648 (* 0.0272727 = 0.0473586 loss)
I0429 09:44:15.360205 8162 solver.cpp:245] Train net output #30: loss1/loss04 = 1.73716 (* 0.0272727 = 0.0473772 loss)
I0429 09:44:15.360219 8162 solver.cpp:245] Train net output #31: loss1/loss05 = 1.55832 (* 0.0272727 = 0.0424996 loss)
I0429 09:44:15.360234 8162 solver.cpp:245] Train net output #32: loss1/loss06 = 1.29672 (* 0.0272727 = 0.0353651 loss)
I0429 09:44:15.360249 8162 solver.cpp:245] Train net output #33: loss1/loss07 = 0.854067 (* 0.0272727 = 0.0232927 loss)
I0429 09:44:15.360262 8162 solver.cpp:245] Train net output #34: loss1/loss08 = 1.17497 (* 0.0272727 = 0.0320445 loss)
I0429 09:44:15.360276 8162 solver.cpp:245] Train net output #35: loss1/loss09 = 0.546328 (* 0.0272727 = 0.0148999 loss)
I0429 09:44:15.360291 8162 solver.cpp:245] Train net output #36: loss1/loss10 = 0.615266 (* 0.0272727 = 0.01678 loss)
I0429 09:44:15.360306 8162 solver.cpp:245] Train net output #37: loss1/loss11 = 0.139439 (* 0.0272727 = 0.00380289 loss)
I0429 09:44:15.360324 8162 solver.cpp:245] Train net output #38: loss1/loss12 = 0.0276202 (* 0.0272727 = 0.000753277 loss)
I0429 09:44:15.360339 8162 solver.cpp:245] Train net output #39: loss1/loss13 = 0.00695875 (* 0.0272727 = 0.000189784 loss)
I0429 09:44:15.360375 8162 solver.cpp:245] Train net output #40: loss1/loss14 = 0.00366202 (* 0.0272727 = 9.98733e-05 loss)
I0429 09:44:15.360391 8162 solver.cpp:245] Train net output #41: loss1/loss15 = 0.000501383 (* 0.0272727 = 1.36741e-05 loss)
I0429 09:44:15.360406 8162 solver.cpp:245] Train net output #42: loss1/loss16 = 4.81981e-05 (* 0.0272727 = 1.31449e-06 loss)
I0429 09:44:15.360421 8162 solver.cpp:245] Train net output #43: loss1/loss17 = 1.09975e-05 (* 0.0272727 = 2.99931e-07 loss)
I0429 09:44:15.360435 8162 solver.cpp:245] Train net output #44: loss1/loss18 = 4.24688e-06 (* 0.0272727 = 1.15824e-07 loss)
I0429 09:44:15.360450 8162 solver.cpp:245] Train net output #45: loss1/loss19 = 1.59443e-06 (* 0.0272727 = 4.34845e-08 loss)
I0429 09:44:15.360465 8162 solver.cpp:245] Train net output #46: loss1/loss20 = 1.31131e-06 (* 0.0272727 = 3.57629e-08 loss)
I0429 09:44:15.360479 8162 solver.cpp:245] Train net output #47: loss1/loss21 = 1.75834e-06 (* 0.0272727 = 4.79548e-08 loss)
I0429 09:44:15.360494 8162 solver.cpp:245] Train net output #48: loss1/loss22 = 7.15257e-07 (* 0.0272727 = 1.9507e-08 loss)
I0429 09:44:15.360507 8162 solver.cpp:245] Train net output #49: loss2/accuracy = 0.48
I0429 09:44:15.360520 8162 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.625
I0429 09:44:15.360533 8162 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.25
I0429 09:44:15.360546 8162 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.375
I0429 09:44:15.360558 8162 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.5
I0429 09:44:15.360571 8162 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.75
I0429 09:44:15.360584 8162 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.625
I0429 09:44:15.360596 8162 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.5
I0429 09:44:15.360608 8162 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.75
I0429 09:44:15.360620 8162 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875
I0429 09:44:15.360633 8162 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875
I0429 09:44:15.360646 8162 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0429 09:44:15.360657 8162 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0429 09:44:15.360668 8162 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0429 09:44:15.360680 8162 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0429 09:44:15.360692 8162 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0429 09:44:15.360704 8162 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0429 09:44:15.360716 8162 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0429 09:44:15.360728 8162 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0429 09:44:15.360739 8162 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0429 09:44:15.360751 8162 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0429 09:44:15.360764 8162 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0429 09:44:15.360775 8162 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0429 09:44:15.360791 8162 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.846591
I0429 09:44:15.360805 8162 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.7
I0429 09:44:15.360819 8162 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.79453 (* 0.3 = 0.538359 loss)
I0429 09:44:15.360834 8162 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.540789 (* 0.3 = 0.162237 loss)
I0429 09:44:15.360848 8162 solver.cpp:245] Train net output #76: loss2/loss01 = 0.958453 (* 0.0272727 = 0.0261396 loss)
I0429 09:44:15.360863 8162 solver.cpp:245] Train net output #77: loss2/loss02 = 2.00939 (* 0.0272727 = 0.0548017 loss)
I0429 09:44:15.360888 8162 solver.cpp:245] Train net output #78: loss2/loss03 = 1.74718 (* 0.0272727 = 0.0476502 loss)
I0429 09:44:15.360904 8162 solver.cpp:245] Train net output #79: loss2/loss04 = 1.39333 (* 0.0272727 = 0.038 loss)
I0429 09:44:15.360918 8162 solver.cpp:245] Train net output #80: loss2/loss05 = 0.955067 (* 0.0272727 = 0.0260473 loss)
I0429 09:44:15.360934 8162 solver.cpp:245] Train net output #81: loss2/loss06 = 1.41664 (* 0.0272727 = 0.0386357 loss)
I0429 09:44:15.360947 8162 solver.cpp:245] Train net output #82: loss2/loss07 = 1.33294 (* 0.0272727 = 0.0363529 loss)
I0429 09:44:15.360961 8162 solver.cpp:245] Train net output #83: loss2/loss08 = 0.970192 (* 0.0272727 = 0.0264598 loss)
I0429 09:44:15.360976 8162 solver.cpp:245] Train net output #84: loss2/loss09 = 0.566154 (* 0.0272727 = 0.0154406 loss)
I0429 09:44:15.360991 8162 solver.cpp:245] Train net output #85: loss2/loss10 = 0.818343 (* 0.0272727 = 0.0223184 loss)
I0429 09:44:15.361006 8162 solver.cpp:245] Train net output #86: loss2/loss11 = 0.0217475 (* 0.0272727 = 0.000593115 loss)
I0429 09:44:15.361019 8162 solver.cpp:245] Train net output #87: loss2/loss12 = 0.00310057 (* 0.0272727 = 8.45611e-05 loss)
I0429 09:44:15.361034 8162 solver.cpp:245] Train net output #88: loss2/loss13 = 0.000626425 (* 0.0272727 = 1.70843e-05 loss)
I0429 09:44:15.361048 8162 solver.cpp:245] Train net output #89: loss2/loss14 = 0.00022194 (* 0.0272727 = 6.0529e-06 loss)
I0429 09:44:15.361063 8162 solver.cpp:245] Train net output #90: loss2/loss15 = 4.98853e-05 (* 0.0272727 = 1.36051e-06 loss)
I0429 09:44:15.361078 8162 solver.cpp:245] Train net output #91: loss2/loss16 = 2.74047e-05 (* 0.0272727 = 7.47402e-07 loss)
I0429 09:44:15.361093 8162 solver.cpp:245] Train net output #92: loss2/loss17 = 5.06642e-06 (* 0.0272727 = 1.38175e-07 loss)
I0429 09:44:15.361107 8162 solver.cpp:245] Train net output #93: loss2/loss18 = 7.98715e-06 (* 0.0272727 = 2.17831e-07 loss)
I0429 09:44:15.361122 8162 solver.cpp:245] Train net output #94: loss2/loss19 = 6.75031e-06 (* 0.0272727 = 1.84099e-07 loss)
I0429 09:44:15.361137 8162 solver.cpp:245] Train net output #95: loss2/loss20 = 7.25695e-06 (* 0.0272727 = 1.97917e-07 loss)
I0429 09:44:15.361151 8162 solver.cpp:245] Train net output #96: loss2/loss21 = 3.97863e-06 (* 0.0272727 = 1.08508e-07 loss)
I0429 09:44:15.361166 8162 solver.cpp:245] Train net output #97: loss2/loss22 = 8.09143e-06 (* 0.0272727 = 2.20675e-07 loss)
I0429 09:44:15.361179 8162 solver.cpp:245] Train net output #98: loss3/accuracy = 0.64
I0429 09:44:15.361192 8162 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.75
I0429 09:44:15.361204 8162 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.375
I0429 09:44:15.361217 8162 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.625
I0429 09:44:15.361229 8162 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.75
I0429 09:44:15.361241 8162 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.625
I0429 09:44:15.361253 8162 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.75
I0429 09:44:15.361265 8162 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.625
I0429 09:44:15.361277 8162 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.75
I0429 09:44:15.361289 8162 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875
I0429 09:44:15.361301 8162 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875
I0429 09:44:15.361313 8162 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0429 09:44:15.361325 8162 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0429 09:44:15.361337 8162 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0429 09:44:15.361349 8162 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0429 09:44:15.361361 8162 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0429 09:44:15.361376 8162 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0429 09:44:15.361398 8162 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0429 09:44:15.361413 8162 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0429 09:44:15.361424 8162 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0429 09:44:15.361436 8162 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0429 09:44:15.361449 8162 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0429 09:44:15.361460 8162 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0429 09:44:15.361471 8162 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.886364
I0429 09:44:15.361485 8162 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.8
I0429 09:44:15.361500 8162 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.18781 (* 1 = 1.18781 loss)
I0429 09:44:15.361510 8162 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.370891 (* 1 = 0.370891 loss)
I0429 09:44:15.361526 8162 solver.cpp:245] Train net output #125: loss3/loss01 = 0.442794 (* 0.0909091 = 0.040254 loss)
I0429 09:44:15.361539 8162 solver.cpp:245] Train net output #126: loss3/loss02 = 1.52648 (* 0.0909091 = 0.138771 loss)
I0429 09:44:15.361553 8162 solver.cpp:245] Train net output #127: loss3/loss03 = 1.2373 (* 0.0909091 = 0.112481 loss)
I0429 09:44:15.361567 8162 solver.cpp:245] Train net output #128: loss3/loss04 = 1.03886 (* 0.0909091 = 0.0944422 loss)
I0429 09:44:15.361582 8162 solver.cpp:245] Train net output #129: loss3/loss05 = 1.22279 (* 0.0909091 = 0.111163 loss)
I0429 09:44:15.361596 8162 solver.cpp:245] Train net output #130: loss3/loss06 = 0.912856 (* 0.0909091 = 0.0829869 loss)
I0429 09:44:15.361610 8162 solver.cpp:245] Train net output #131: loss3/loss07 = 0.999226 (* 0.0909091 = 0.0908387 loss)
I0429 09:44:15.361624 8162 solver.cpp:245] Train net output #132: loss3/loss08 = 0.719169 (* 0.0909091 = 0.065379 loss)
I0429 09:44:15.361639 8162 solver.cpp:245] Train net output #133: loss3/loss09 = 0.494654 (* 0.0909091 = 0.0449686 loss)
I0429 09:44:15.361654 8162 solver.cpp:245] Train net output #134: loss3/loss10 = 0.445663 (* 0.0909091 = 0.0405148 loss)
I0429 09:44:15.361667 8162 solver.cpp:245] Train net output #135: loss3/loss11 = 0.0836514 (* 0.0909091 = 0.00760467 loss)
I0429 09:44:15.361682 8162 solver.cpp:245] Train net output #136: loss3/loss12 = 0.0316744 (* 0.0909091 = 0.00287949 loss)
I0429 09:44:15.361696 8162 solver.cpp:245] Train net output #137: loss3/loss13 = 0.00882552 (* 0.0909091 = 0.00080232 loss)
I0429 09:44:15.361711 8162 solver.cpp:245] Train net output #138: loss3/loss14 = 0.00308204 (* 0.0909091 = 0.000280186 loss)
I0429 09:44:15.361724 8162 solver.cpp:245] Train net output #139: loss3/loss15 = 0.00105086 (* 0.0909091 = 9.55326e-05 loss)
I0429 09:44:15.361738 8162 solver.cpp:245] Train net output #140: loss3/loss16 = 0.000149403 (* 0.0909091 = 1.35821e-05 loss)
I0429 09:44:15.361752 8162 solver.cpp:245] Train net output #141: loss3/loss17 = 4.42789e-05 (* 0.0909091 = 4.02535e-06 loss)
I0429 09:44:15.361768 8162 solver.cpp:245] Train net output #142: loss3/loss18 = 2.1221e-05 (* 0.0909091 = 1.92918e-06 loss)
I0429 09:44:15.361781 8162 solver.cpp:245] Train net output #143: loss3/loss19 = 6.76529e-06 (* 0.0909091 = 6.15026e-07 loss)
I0429 09:44:15.361801 8162 solver.cpp:245] Train net output #144: loss3/loss20 = 2.69713e-06 (* 0.0909091 = 2.45194e-07 loss)
I0429 09:44:15.361815 8162 solver.cpp:245] Train net output #145: loss3/loss21 = 1.2815e-06 (* 0.0909091 = 1.165e-07 loss)
I0429 09:44:15.361830 8162 solver.cpp:245] Train net output #146: loss3/loss22 = 4.91739e-07 (* 0.0909091 = 4.47035e-08 loss)
I0429 09:44:15.361847 8162 solver.cpp:245] Train net output #147: total_accuracy = 0.125
I0429 09:44:15.361860 8162 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.125
I0429 09:44:15.361882 8162 solver.cpp:245] Train net output #149: total_confidence = 0.181939
I0429 09:44:15.361896 8162 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.194347
I0429 09:44:15.361908 8162 sgd_solver.cpp:106] Iteration 2500, lr = 0.005
I0429 09:46:31.930790 8162 solver.cpp:229] Iteration 3000, loss = 5.58997
I0429 09:46:31.930963 8162 solver.cpp:245] Train net output #0: loss1/accuracy = 0.245283
I0429 09:46:31.930984 8162 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.5
I0429 09:46:31.930997 8162 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.25
I0429 09:46:31.931010 8162 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.25
I0429 09:46:31.931022 8162 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.125
I0429 09:46:31.931035 8162 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.5
I0429 09:46:31.931048 8162 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.375
I0429 09:46:31.931061 8162 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.5
I0429 09:46:31.931073 8162 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875
I0429 09:46:31.931087 8162 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875
I0429 09:46:31.931098 8162 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875
I0429 09:46:31.931112 8162 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0429 09:46:31.931123 8162 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0429 09:46:31.931136 8162 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0429 09:46:31.931149 8162 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0429 09:46:31.931161 8162 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0429 09:46:31.931174 8162 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0429 09:46:31.931185 8162 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0429 09:46:31.931198 8162 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0429 09:46:31.931210 8162 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0429 09:46:31.931222 8162 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0429 09:46:31.931234 8162 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0429 09:46:31.931246 8162 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0429 09:46:31.931258 8162 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.755682
I0429 09:46:31.931272 8162 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.528302
I0429 09:46:31.931288 8162 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 2.15562 (* 0.3 = 0.646686 loss)
I0429 09:46:31.931303 8162 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.744932 (* 0.3 = 0.22348 loss)
I0429 09:46:31.931321 8162 solver.cpp:245] Train net output #27: loss1/loss01 = 1.27164 (* 0.0272727 = 0.0346812 loss)
I0429 09:46:31.931337 8162 solver.cpp:245] Train net output #28: loss1/loss02 = 2.2825 (* 0.0272727 = 0.0622501 loss)
I0429 09:46:31.931352 8162 solver.cpp:245] Train net output #29: loss1/loss03 = 2.59972 (* 0.0272727 = 0.0709015 loss)
I0429 09:46:31.931366 8162 solver.cpp:245] Train net output #30: loss1/loss04 = 2.49133 (* 0.0272727 = 0.0679453 loss)
I0429 09:46:31.931381 8162 solver.cpp:245] Train net output #31: loss1/loss05 = 1.60232 (* 0.0272727 = 0.0436997 loss)
I0429 09:46:31.931396 8162 solver.cpp:245] Train net output #32: loss1/loss06 = 1.96042 (* 0.0272727 = 0.0534661 loss)
I0429 09:46:31.931409 8162 solver.cpp:245] Train net output #33: loss1/loss07 = 1.94067 (* 0.0272727 = 0.0529273 loss)
I0429 09:46:31.931424 8162 solver.cpp:245] Train net output #34: loss1/loss08 = 0.482715 (* 0.0272727 = 0.013165 loss)
I0429 09:46:31.931439 8162 solver.cpp:245] Train net output #35: loss1/loss09 = 0.322346 (* 0.0272727 = 0.00879125 loss)
I0429 09:46:31.931454 8162 solver.cpp:245] Train net output #36: loss1/loss10 = 0.493262 (* 0.0272727 = 0.0134526 loss)
I0429 09:46:31.931483 8162 solver.cpp:245] Train net output #37: loss1/loss11 = 0.240199 (* 0.0272727 = 0.0065509 loss)
I0429 09:46:31.931500 8162 solver.cpp:245] Train net output #38: loss1/loss12 = 0.130547 (* 0.0272727 = 0.00356038 loss)
I0429 09:46:31.931515 8162 solver.cpp:245] Train net output #39: loss1/loss13 = 0.0707419 (* 0.0272727 = 0.00192932 loss)
I0429 09:46:31.931552 8162 solver.cpp:245] Train net output #40: loss1/loss14 = 0.0286374 (* 0.0272727 = 0.000781019 loss)
I0429 09:46:31.931568 8162 solver.cpp:245] Train net output #41: loss1/loss15 = 0.0118249 (* 0.0272727 = 0.000322497 loss)
I0429 09:46:31.931583 8162 solver.cpp:245] Train net output #42: loss1/loss16 = 0.00578575 (* 0.0272727 = 0.000157793 loss)
I0429 09:46:31.931598 8162 solver.cpp:245] Train net output #43: loss1/loss17 = 0.00267505 (* 0.0272727 = 7.2956e-05 loss)
I0429 09:46:31.931612 8162 solver.cpp:245] Train net output #44: loss1/loss18 = 0.000916442 (* 0.0272727 = 2.49939e-05 loss)
I0429 09:46:31.931627 8162 solver.cpp:245] Train net output #45: loss1/loss19 = 0.000664402 (* 0.0272727 = 1.81201e-05 loss)
I0429 09:46:31.931643 8162 solver.cpp:245] Train net output #46: loss1/loss20 = 0.00031437 (* 0.0272727 = 8.57372e-06 loss)
I0429 09:46:31.931656 8162 solver.cpp:245] Train net output #47: loss1/loss21 = 6.53877e-05 (* 0.0272727 = 1.7833e-06 loss)
I0429 09:46:31.931671 8162 solver.cpp:245] Train net output #48: loss1/loss22 = 3.06018e-05 (* 0.0272727 = 8.34596e-07 loss)
I0429 09:46:31.931684 8162 solver.cpp:245] Train net output #49: loss2/accuracy = 0.339623
I0429 09:46:31.931697 8162 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.625
I0429 09:46:31.931710 8162 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.25
I0429 09:46:31.931723 8162 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.125
I0429 09:46:31.931735 8162 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.125
I0429 09:46:31.931747 8162 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.875
I0429 09:46:31.931761 8162 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.5
I0429 09:46:31.931773 8162 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.5
I0429 09:46:31.931785 8162 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875
I0429 09:46:31.931797 8162 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875
I0429 09:46:31.931809 8162 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875
I0429 09:46:31.931821 8162 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0429 09:46:31.931833 8162 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0429 09:46:31.931845 8162 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0429 09:46:31.931856 8162 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0429 09:46:31.931869 8162 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0429 09:46:31.931880 8162 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0429 09:46:31.931892 8162 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0429 09:46:31.931905 8162 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0429 09:46:31.931915 8162 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0429 09:46:31.931927 8162 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0429 09:46:31.931939 8162 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0429 09:46:31.931951 8162 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0429 09:46:31.931963 8162 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.789773
I0429 09:46:31.931980 8162 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.603774
I0429 09:46:31.931995 8162 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.93138 (* 0.3 = 0.579413 loss)
I0429 09:46:31.932010 8162 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.654359 (* 0.3 = 0.196308 loss)
I0429 09:46:31.932024 8162 solver.cpp:245] Train net output #76: loss2/loss01 = 1.12643 (* 0.0272727 = 0.0307208 loss)
I0429 09:46:31.932039 8162 solver.cpp:245] Train net output #77: loss2/loss02 = 2.46501 (* 0.0272727 = 0.0672275 loss)
I0429 09:46:31.932065 8162 solver.cpp:245] Train net output #78: loss2/loss03 = 2.5812 (* 0.0272727 = 0.0703962 loss)
I0429 09:46:31.932080 8162 solver.cpp:245] Train net output #79: loss2/loss04 = 2.35133 (* 0.0272727 = 0.0641272 loss)
I0429 09:46:31.932095 8162 solver.cpp:245] Train net output #80: loss2/loss05 = 1.22927 (* 0.0272727 = 0.0335255 loss)
I0429 09:46:31.932108 8162 solver.cpp:245] Train net output #81: loss2/loss06 = 1.90263 (* 0.0272727 = 0.0518899 loss)
I0429 09:46:31.932122 8162 solver.cpp:245] Train net output #82: loss2/loss07 = 1.34842 (* 0.0272727 = 0.0367751 loss)
I0429 09:46:31.932137 8162 solver.cpp:245] Train net output #83: loss2/loss08 = 0.501008 (* 0.0272727 = 0.0136639 loss)
I0429 09:46:31.932152 8162 solver.cpp:245] Train net output #84: loss2/loss09 = 0.302607 (* 0.0272727 = 0.00825292 loss)
I0429 09:46:31.932166 8162 solver.cpp:245] Train net output #85: loss2/loss10 = 0.442885 (* 0.0272727 = 0.0120787 loss)
I0429 09:46:31.932181 8162 solver.cpp:245] Train net output #86: loss2/loss11 = 0.21244 (* 0.0272727 = 0.00579382 loss)
I0429 09:46:31.932196 8162 solver.cpp:245] Train net output #87: loss2/loss12 = 0.0853996 (* 0.0272727 = 0.00232908 loss)
I0429 09:46:31.932210 8162 solver.cpp:245] Train net output #88: loss2/loss13 = 0.0235662 (* 0.0272727 = 0.000642716 loss)
I0429 09:46:31.932224 8162 solver.cpp:245] Train net output #89: loss2/loss14 = 0.0113248 (* 0.0272727 = 0.000308859 loss)
I0429 09:46:31.932238 8162 solver.cpp:245] Train net output #90: loss2/loss15 = 0.00481003 (* 0.0272727 = 0.000131183 loss)
I0429 09:46:31.932253 8162 solver.cpp:245] Train net output #91: loss2/loss16 = 0.00345232 (* 0.0272727 = 9.41542e-05 loss)
I0429 09:46:31.932268 8162 solver.cpp:245] Train net output #92: loss2/loss17 = 0.00356716 (* 0.0272727 = 9.72861e-05 loss)
I0429 09:46:31.932282 8162 solver.cpp:245] Train net output #93: loss2/loss18 = 0.00235706 (* 0.0272727 = 6.42833e-05 loss)
I0429 09:46:31.932297 8162 solver.cpp:245] Train net output #94: loss2/loss19 = 0.00156366 (* 0.0272727 = 4.26453e-05 loss)
I0429 09:46:31.932312 8162 solver.cpp:245] Train net output #95: loss2/loss20 = 0.00119779 (* 0.0272727 = 3.2667e-05 loss)
I0429 09:46:31.932327 8162 solver.cpp:245] Train net output #96: loss2/loss21 = 0.000476735 (* 0.0272727 = 1.30019e-05 loss)
I0429 09:46:31.932340 8162 solver.cpp:245] Train net output #97: loss2/loss22 = 0.000164027 (* 0.0272727 = 4.47347e-06 loss)
I0429 09:46:31.932353 8162 solver.cpp:245] Train net output #98: loss3/accuracy = 0.584906
I0429 09:46:31.932368 8162 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.75
I0429 09:46:31.932381 8162 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.625
I0429 09:46:31.932394 8162 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.5
I0429 09:46:31.932406 8162 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.25
I0429 09:46:31.932418 8162 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.75
I0429 09:46:31.932431 8162 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.5
I0429 09:46:31.932443 8162 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75
I0429 09:46:31.932456 8162 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875
I0429 09:46:31.932467 8162 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875
I0429 09:46:31.932479 8162 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875
I0429 09:46:31.932492 8162 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0429 09:46:31.932502 8162 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0429 09:46:31.932514 8162 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0429 09:46:31.932526 8162 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0429 09:46:31.932538 8162 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0429 09:46:31.932550 8162 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0429 09:46:31.932571 8162 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0429 09:46:31.932585 8162 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0429 09:46:31.932596 8162 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0429 09:46:31.932608 8162 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0429 09:46:31.932620 8162 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0429 09:46:31.932631 8162 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0429 09:46:31.932643 8162 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.857955
I0429 09:46:31.932656 8162 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.811321
I0429 09:46:31.932669 8162 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.24287 (* 1 = 1.24287 loss)
I0429 09:46:31.932684 8162 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.445369 (* 1 = 0.445369 loss)
I0429 09:46:31.932698 8162 solver.cpp:245] Train net output #125: loss3/loss01 = 0.754192 (* 0.0909091 = 0.0685629 loss)
I0429 09:46:31.932713 8162 solver.cpp:245] Train net output #126: loss3/loss02 = 0.874388 (* 0.0909091 = 0.0794898 loss)
I0429 09:46:31.932728 8162 solver.cpp:245] Train net output #127: loss3/loss03 = 1.51115 (* 0.0909091 = 0.137377 loss)
I0429 09:46:31.932741 8162 solver.cpp:245] Train net output #128: loss3/loss04 = 1.82005 (* 0.0909091 = 0.165459 loss)
I0429 09:46:31.932756 8162 solver.cpp:245] Train net output #129: loss3/loss05 = 0.91982 (* 0.0909091 = 0.08362 loss)
I0429 09:46:31.932770 8162 solver.cpp:245] Train net output #130: loss3/loss06 = 1.26154 (* 0.0909091 = 0.114686 loss)
I0429 09:46:31.932785 8162 solver.cpp:245] Train net output #131: loss3/loss07 = 0.743687 (* 0.0909091 = 0.067608 loss)
I0429 09:46:31.932798 8162 solver.cpp:245] Train net output #132: loss3/loss08 = 0.554816 (* 0.0909091 = 0.0504378 loss)
I0429 09:46:31.932812 8162 solver.cpp:245] Train net output #133: loss3/loss09 = 0.360181 (* 0.0909091 = 0.0327437 loss)
I0429 09:46:31.932827 8162 solver.cpp:245] Train net output #134: loss3/loss10 = 0.49318 (* 0.0909091 = 0.0448346 loss)
I0429 09:46:31.932842 8162 solver.cpp:245] Train net output #135: loss3/loss11 = 0.113501 (* 0.0909091 = 0.0103182 loss)
I0429 09:46:31.932857 8162 solver.cpp:245] Train net output #136: loss3/loss12 = 0.0537155 (* 0.0909091 = 0.00488323 loss)
I0429 09:46:31.932870 8162 solver.cpp:245] Train net output #137: loss3/loss13 = 0.0298622 (* 0.0909091 = 0.00271474 loss)
I0429 09:46:31.932884 8162 solver.cpp:245] Train net output #138: loss3/loss14 = 0.0124246 (* 0.0909091 = 0.00112951 loss)
I0429 09:46:31.932899 8162 solver.cpp:245] Train net output #139: loss3/loss15 = 0.00803941 (* 0.0909091 = 0.000730855 loss)
I0429 09:46:31.932914 8162 solver.cpp:245] Train net output #140: loss3/loss16 = 0.00546362 (* 0.0909091 = 0.000496693 loss)
I0429 09:46:31.932927 8162 solver.cpp:245] Train net output #141: loss3/loss17 = 0.00542891 (* 0.0909091 = 0.000493537 loss)
I0429 09:46:31.932942 8162 solver.cpp:245] Train net output #142: loss3/loss18 = 0.00437717 (* 0.0909091 = 0.000397924 loss)
I0429 09:46:31.932956 8162 solver.cpp:245] Train net output #143: loss3/loss19 = 0.00463379 (* 0.0909091 = 0.000421254 loss)
I0429 09:46:31.932971 8162 solver.cpp:245] Train net output #144: loss3/loss20 = 0.00371831 (* 0.0909091 = 0.000338028 loss)
I0429 09:46:31.932984 8162 solver.cpp:245] Train net output #145: loss3/loss21 = 0.00327482 (* 0.0909091 = 0.000297711 loss)
I0429 09:46:31.933002 8162 solver.cpp:245] Train net output #146: loss3/loss22 = 0.00159069 (* 0.0909091 = 0.000144608 loss)
I0429 09:46:31.933034 8162 solver.cpp:245] Train net output #147: total_accuracy = 0.125
I0429 09:46:31.933051 8162 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0
I0429 09:46:31.933080 8162 solver.cpp:245] Train net output #149: total_confidence = 0.0723165
I0429 09:46:31.933095 8162 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.148654
I0429 09:46:31.933109 8162 sgd_solver.cpp:106] Iteration 3000, lr = 0.005
I0429 09:48:48.514284 8162 solver.cpp:229] Iteration 3500, loss = 5.58822
I0429 09:48:48.514436 8162 solver.cpp:245] Train net output #0: loss1/accuracy = 0.272727
I0429 09:48:48.514456 8162 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.5
I0429 09:48:48.514472 8162 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.25
I0429 09:48:48.514483 8162 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.125
I0429 09:48:48.514497 8162 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.25
I0429 09:48:48.514508 8162 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.25
I0429 09:48:48.514521 8162 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.5
I0429 09:48:48.514533 8162 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.75
I0429 09:48:48.514546 8162 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875
I0429 09:48:48.514559 8162 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1
I0429 09:48:48.514571 8162 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0429 09:48:48.514583 8162 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0429 09:48:48.514595 8162 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0429 09:48:48.514607 8162 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0429 09:48:48.514619 8162 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0429 09:48:48.514632 8162 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0429 09:48:48.514644 8162 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0429 09:48:48.514657 8162 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0429 09:48:48.514668 8162 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0429 09:48:48.514680 8162 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0429 09:48:48.514693 8162 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0429 09:48:48.514704 8162 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0429 09:48:48.514716 8162 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0429 09:48:48.514729 8162 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.795455
I0429 09:48:48.514741 8162 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.5
I0429 09:48:48.514758 8162 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 2.4397 (* 0.3 = 0.73191 loss)
I0429 09:48:48.514773 8162 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.744938 (* 0.3 = 0.223481 loss)
I0429 09:48:48.514788 8162 solver.cpp:245] Train net output #27: loss1/loss01 = 1.86657 (* 0.0272727 = 0.0509064 loss)
I0429 09:48:48.514803 8162 solver.cpp:245] Train net output #28: loss1/loss02 = 1.99557 (* 0.0272727 = 0.0544247 loss)
I0429 09:48:48.514817 8162 solver.cpp:245] Train net output #29: loss1/loss03 = 2.54359 (* 0.0272727 = 0.0693707 loss)
I0429 09:48:48.514832 8162 solver.cpp:245] Train net output #30: loss1/loss04 = 2.69385 (* 0.0272727 = 0.0734686 loss)
I0429 09:48:48.514847 8162 solver.cpp:245] Train net output #31: loss1/loss05 = 2.87336 (* 0.0272727 = 0.0783645 loss)
I0429 09:48:48.514860 8162 solver.cpp:245] Train net output #32: loss1/loss06 = 1.55572 (* 0.0272727 = 0.0424288 loss)
I0429 09:48:48.514874 8162 solver.cpp:245] Train net output #33: loss1/loss07 = 0.934702 (* 0.0272727 = 0.0254919 loss)
I0429 09:48:48.514889 8162 solver.cpp:245] Train net output #34: loss1/loss08 = 0.566561 (* 0.0272727 = 0.0154517 loss)
I0429 09:48:48.514905 8162 solver.cpp:245] Train net output #35: loss1/loss09 = 0.0307999 (* 0.0272727 = 0.000839997 loss)
I0429 09:48:48.514919 8162 solver.cpp:245] Train net output #36: loss1/loss10 = 0.0202087 (* 0.0272727 = 0.000551146 loss)
I0429 09:48:48.514935 8162 solver.cpp:245] Train net output #37: loss1/loss11 = 0.0250551 (* 0.0272727 = 0.000683322 loss)
I0429 09:48:48.514950 8162 solver.cpp:245] Train net output #38: loss1/loss12 = 0.0105497 (* 0.0272727 = 0.000287719 loss)
I0429 09:48:48.514963 8162 solver.cpp:245] Train net output #39: loss1/loss13 = 0.0115025 (* 0.0272727 = 0.000313704 loss)
I0429 09:48:48.514997 8162 solver.cpp:245] Train net output #40: loss1/loss14 = 0.00820711 (* 0.0272727 = 0.00022383 loss)
I0429 09:48:48.515013 8162 solver.cpp:245] Train net output #41: loss1/loss15 = 0.00436595 (* 0.0272727 = 0.000119071 loss)
I0429 09:48:48.515028 8162 solver.cpp:245] Train net output #42: loss1/loss16 = 0.00311671 (* 0.0272727 = 8.50011e-05 loss)
I0429 09:48:48.515043 8162 solver.cpp:245] Train net output #43: loss1/loss17 = 0.00195636 (* 0.0272727 = 5.33552e-05 loss)
I0429 09:48:48.515058 8162 solver.cpp:245] Train net output #44: loss1/loss18 = 0.00200633 (* 0.0272727 = 5.4718e-05 loss)
I0429 09:48:48.515072 8162 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00130163 (* 0.0272727 = 3.5499e-05 loss)
I0429 09:48:48.515087 8162 solver.cpp:245] Train net output #46: loss1/loss20 = 0.00176204 (* 0.0272727 = 4.80555e-05 loss)
I0429 09:48:48.515102 8162 solver.cpp:245] Train net output #47: loss1/loss21 = 0.00146518 (* 0.0272727 = 3.99595e-05 loss)
I0429 09:48:48.515116 8162 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000476314 (* 0.0272727 = 1.29904e-05 loss)
I0429 09:48:48.515130 8162 solver.cpp:245] Train net output #49: loss2/accuracy = 0.295455
I0429 09:48:48.515142 8162 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.5
I0429 09:48:48.515154 8162 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.25
I0429 09:48:48.515167 8162 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.5
I0429 09:48:48.515179 8162 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.25
I0429 09:48:48.515192 8162 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.25
I0429 09:48:48.515204 8162 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.5
I0429 09:48:48.515216 8162 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.75
I0429 09:48:48.515228 8162 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875
I0429 09:48:48.515241 8162 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1
I0429 09:48:48.515254 8162 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0429 09:48:48.515264 8162 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0429 09:48:48.515276 8162 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0429 09:48:48.515288 8162 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0429 09:48:48.515300 8162 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0429 09:48:48.515316 8162 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0429 09:48:48.515328 8162 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0429 09:48:48.515341 8162 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0429 09:48:48.515352 8162 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0429 09:48:48.515363 8162 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0429 09:48:48.515375 8162 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0429 09:48:48.515388 8162 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0429 09:48:48.515399 8162 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0429 09:48:48.515411 8162 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.801136
I0429 09:48:48.515424 8162 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.545455
I0429 09:48:48.515439 8162 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 2.36333 (* 0.3 = 0.708998 loss)
I0429 09:48:48.515471 8162 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.705283 (* 0.3 = 0.211585 loss)
I0429 09:48:48.515488 8162 solver.cpp:245] Train net output #76: loss2/loss01 = 2.24668 (* 0.0272727 = 0.0612731 loss)
I0429 09:48:48.515503 8162 solver.cpp:245] Train net output #77: loss2/loss02 = 2.18429 (* 0.0272727 = 0.0595717 loss)
I0429 09:48:48.515529 8162 solver.cpp:245] Train net output #78: loss2/loss03 = 2.22173 (* 0.0272727 = 0.0605927 loss)
I0429 09:48:48.515545 8162 solver.cpp:245] Train net output #79: loss2/loss04 = 2.55762 (* 0.0272727 = 0.0697532 loss)
I0429 09:48:48.515559 8162 solver.cpp:245] Train net output #80: loss2/loss05 = 2.69465 (* 0.0272727 = 0.0734905 loss)
I0429 09:48:48.515573 8162 solver.cpp:245] Train net output #81: loss2/loss06 = 1.59784 (* 0.0272727 = 0.0435774 loss)
I0429 09:48:48.515588 8162 solver.cpp:245] Train net output #82: loss2/loss07 = 0.701035 (* 0.0272727 = 0.0191191 loss)
I0429 09:48:48.515602 8162 solver.cpp:245] Train net output #83: loss2/loss08 = 0.315423 (* 0.0272727 = 0.00860245 loss)
I0429 09:48:48.515617 8162 solver.cpp:245] Train net output #84: loss2/loss09 = 0.0168113 (* 0.0272727 = 0.000458491 loss)
I0429 09:48:48.515631 8162 solver.cpp:245] Train net output #85: loss2/loss10 = 0.00538497 (* 0.0272727 = 0.000146863 loss)
I0429 09:48:48.515646 8162 solver.cpp:245] Train net output #86: loss2/loss11 = 0.00281006 (* 0.0272727 = 7.66379e-05 loss)
I0429 09:48:48.515661 8162 solver.cpp:245] Train net output #87: loss2/loss12 = 0.00153153 (* 0.0272727 = 4.1769e-05 loss)
I0429 09:48:48.515674 8162 solver.cpp:245] Train net output #88: loss2/loss13 = 0.00106138 (* 0.0272727 = 2.89466e-05 loss)
I0429 09:48:48.515689 8162 solver.cpp:245] Train net output #89: loss2/loss14 = 0.000676783 (* 0.0272727 = 1.84577e-05 loss)
I0429 09:48:48.515703 8162 solver.cpp:245] Train net output #90: loss2/loss15 = 0.00057737 (* 0.0272727 = 1.57465e-05 loss)
I0429 09:48:48.515718 8162 solver.cpp:245] Train net output #91: loss2/loss16 = 0.000454734 (* 0.0272727 = 1.24018e-05 loss)
I0429 09:48:48.515733 8162 solver.cpp:245] Train net output #92: loss2/loss17 = 0.000305826 (* 0.0272727 = 8.3407e-06 loss)
I0429 09:48:48.515748 8162 solver.cpp:245] Train net output #93: loss2/loss18 = 0.000273702 (* 0.0272727 = 7.46459e-06 loss)
I0429 09:48:48.515763 8162 solver.cpp:245] Train net output #94: loss2/loss19 = 0.000223071 (* 0.0272727 = 6.08376e-06 loss)
I0429 09:48:48.515776 8162 solver.cpp:245] Train net output #95: loss2/loss20 = 0.00030445 (* 0.0272727 = 8.30319e-06 loss)
I0429 09:48:48.515790 8162 solver.cpp:245] Train net output #96: loss2/loss21 = 0.000272807 (* 0.0272727 = 7.4402e-06 loss)
I0429 09:48:48.515805 8162 solver.cpp:245] Train net output #97: loss2/loss22 = 0.000155092 (* 0.0272727 = 4.22977e-06 loss)
I0429 09:48:48.515817 8162 solver.cpp:245] Train net output #98: loss3/accuracy = 0.545455
I0429 09:48:48.515830 8162 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.625
I0429 09:48:48.515842 8162 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.625
I0429 09:48:48.515854 8162 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.625
I0429 09:48:48.515866 8162 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.625
I0429 09:48:48.515878 8162 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.625
I0429 09:48:48.515890 8162 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.75
I0429 09:48:48.515902 8162 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75
I0429 09:48:48.515914 8162 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875
I0429 09:48:48.515926 8162 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1
I0429 09:48:48.515938 8162 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0429 09:48:48.515950 8162 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0429 09:48:48.515962 8162 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0429 09:48:48.515974 8162 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0429 09:48:48.515986 8162 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0429 09:48:48.515998 8162 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0429 09:48:48.516010 8162 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0429 09:48:48.516031 8162 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0429 09:48:48.516044 8162 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0429 09:48:48.516057 8162 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0429 09:48:48.516069 8162 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0429 09:48:48.516082 8162 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0429 09:48:48.516093 8162 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0429 09:48:48.516105 8162 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.875
I0429 09:48:48.516118 8162 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.75
I0429 09:48:48.516131 8162 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.58677 (* 1 = 1.58677 loss)
I0429 09:48:48.516146 8162 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.443542 (* 1 = 0.443542 loss)
I0429 09:48:48.516160 8162 solver.cpp:245] Train net output #125: loss3/loss01 = 1.6622 (* 0.0909091 = 0.15111 loss)
I0429 09:48:48.516175 8162 solver.cpp:245] Train net output #126: loss3/loss02 = 1.46892 (* 0.0909091 = 0.133538 loss)
I0429 09:48:48.516191 8162 solver.cpp:245] Train net output #127: loss3/loss03 = 1.37918 (* 0.0909091 = 0.12538 loss)
I0429 09:48:48.516206 8162 solver.cpp:245] Train net output #128: loss3/loss04 = 1.49325 (* 0.0909091 = 0.13575 loss)
I0429 09:48:48.516216 8162 solver.cpp:245] Train net output #129: loss3/loss05 = 1.82828 (* 0.0909091 = 0.166207 loss)
I0429 09:48:48.516230 8162 solver.cpp:245] Train net output #130: loss3/loss06 = 1.06229 (* 0.0909091 = 0.0965718 loss)
I0429 09:48:48.516245 8162 solver.cpp:245] Train net output #131: loss3/loss07 = 0.659145 (* 0.0909091 = 0.0599222 loss)
I0429 09:48:48.516260 8162 solver.cpp:245] Train net output #132: loss3/loss08 = 0.112321 (* 0.0909091 = 0.010211 loss)
I0429 09:48:48.516274 8162 solver.cpp:245] Train net output #133: loss3/loss09 = 0.0053832 (* 0.0909091 = 0.000489382 loss)
I0429 09:48:48.516289 8162 solver.cpp:245] Train net output #134: loss3/loss10 = 0.00309654 (* 0.0909091 = 0.000281503 loss)
I0429 09:48:48.516304 8162 solver.cpp:245] Train net output #135: loss3/loss11 = 0.00309723 (* 0.0909091 = 0.000281567 loss)
I0429 09:48:48.516317 8162 solver.cpp:245] Train net output #136: loss3/loss12 = 0.00235904 (* 0.0909091 = 0.000214458 loss)
I0429 09:48:48.516332 8162 solver.cpp:245] Train net output #137: loss3/loss13 = 0.00193882 (* 0.0909091 = 0.000176256 loss)
I0429 09:48:48.516346 8162 solver.cpp:245] Train net output #138: loss3/loss14 = 0.00152122 (* 0.0909091 = 0.000138293 loss)
I0429 09:48:48.516361 8162 solver.cpp:245] Train net output #139: loss3/loss15 = 0.00141943 (* 0.0909091 = 0.000129039 loss)
I0429 09:48:48.516379 8162 solver.cpp:245] Train net output #140: loss3/loss16 = 0.000984613 (* 0.0909091 = 8.95102e-05 loss)
I0429 09:48:48.516393 8162 solver.cpp:245] Train net output #141: loss3/loss17 = 0.000678805 (* 0.0909091 = 6.17095e-05 loss)
I0429 09:48:48.516408 8162 solver.cpp:245] Train net output #142: loss3/loss18 = 0.000505094 (* 0.0909091 = 4.59177e-05 loss)
I0429 09:48:48.516422 8162 solver.cpp:245] Train net output #143: loss3/loss19 = 0.000506564 (* 0.0909091 = 4.60512e-05 loss)
I0429 09:48:48.516436 8162 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000460579 (* 0.0909091 = 4.18709e-05 loss)
I0429 09:48:48.516451 8162 solver.cpp:245] Train net output #145: loss3/loss21 = 0.000461368 (* 0.0909091 = 4.19425e-05 loss)
I0429 09:48:48.516465 8162 solver.cpp:245] Train net output #146: loss3/loss22 = 0.00045624 (* 0.0909091 = 4.14764e-05 loss)
I0429 09:48:48.516479 8162 solver.cpp:245] Train net output #147: total_accuracy = 0
I0429 09:48:48.516490 8162 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.125
I0429 09:48:48.516516 8162 solver.cpp:245] Train net output #149: total_confidence = 0.0540569
I0429 09:48:48.516530 8162 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.0686209
I0429 09:48:48.516543 8162 sgd_solver.cpp:106] Iteration 3500, lr = 0.005
I0429 09:49:31.513065 8162 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 32.9255 > 30) by scale factor 0.911147
I0429 09:51:05.204396 8162 solver.cpp:229] Iteration 4000, loss = 5.6664
I0429 09:51:05.204602 8162 solver.cpp:245] Train net output #0: loss1/accuracy = 0.357143
I0429 09:51:05.204623 8162 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.625
I0429 09:51:05.204637 8162 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.375
I0429 09:51:05.204649 8162 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.5
I0429 09:51:05.204661 8162 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.625
I0429 09:51:05.204674 8162 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.375
I0429 09:51:05.204686 8162 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.625
I0429 09:51:05.204699 8162 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.75
I0429 09:51:05.204711 8162 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875
I0429 09:51:05.204723 8162 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1
I0429 09:51:05.204735 8162 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0429 09:51:05.204747 8162 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0429 09:51:05.204759 8162 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0429 09:51:05.204771 8162 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0429 09:51:05.204783 8162 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0429 09:51:05.204797 8162 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0429 09:51:05.204808 8162 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0429 09:51:05.204820 8162 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0429 09:51:05.204833 8162 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0429 09:51:05.204844 8162 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0429 09:51:05.204856 8162 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0429 09:51:05.204869 8162 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0429 09:51:05.204880 8162 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0429 09:51:05.204892 8162 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.840909
I0429 09:51:05.204905 8162 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.52381
I0429 09:51:05.204921 8162 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 2.09772 (* 0.3 = 0.629316 loss)
I0429 09:51:05.204936 8162 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.527321 (* 0.3 = 0.158196 loss)
I0429 09:51:05.204952 8162 solver.cpp:245] Train net output #27: loss1/loss01 = 1.20826 (* 0.0272727 = 0.0329526 loss)
I0429 09:51:05.204967 8162 solver.cpp:245] Train net output #28: loss1/loss02 = 1.92993 (* 0.0272727 = 0.0526344 loss)
I0429 09:51:05.204980 8162 solver.cpp:245] Train net output #29: loss1/loss03 = 1.52674 (* 0.0272727 = 0.0416383 loss)
I0429 09:51:05.204994 8162 solver.cpp:245] Train net output #30: loss1/loss04 = 1.70336 (* 0.0272727 = 0.0464552 loss)
I0429 09:51:05.205009 8162 solver.cpp:245] Train net output #31: loss1/loss05 = 2.29526 (* 0.0272727 = 0.0625981 loss)
I0429 09:51:05.205024 8162 solver.cpp:245] Train net output #32: loss1/loss06 = 1.42623 (* 0.0272727 = 0.0388972 loss)
I0429 09:51:05.205039 8162 solver.cpp:245] Train net output #33: loss1/loss07 = 0.683718 (* 0.0272727 = 0.0186468 loss)
I0429 09:51:05.205052 8162 solver.cpp:245] Train net output #34: loss1/loss08 = 0.570305 (* 0.0272727 = 0.0155538 loss)
I0429 09:51:05.205068 8162 solver.cpp:245] Train net output #35: loss1/loss09 = 0.00696456 (* 0.0272727 = 0.000189943 loss)
I0429 09:51:05.205082 8162 solver.cpp:245] Train net output #36: loss1/loss10 = 0.00148747 (* 0.0272727 = 4.05673e-05 loss)
I0429 09:51:05.205097 8162 solver.cpp:245] Train net output #37: loss1/loss11 = 0.000477211 (* 0.0272727 = 1.30148e-05 loss)
I0429 09:51:05.205112 8162 solver.cpp:245] Train net output #38: loss1/loss12 = 0.00035819 (* 0.0272727 = 9.76881e-06 loss)
I0429 09:51:05.205142 8162 solver.cpp:245] Train net output #39: loss1/loss13 = 0.000255498 (* 0.0272727 = 6.96812e-06 loss)
I0429 09:51:05.205157 8162 solver.cpp:245] Train net output #40: loss1/loss14 = 0.000211855 (* 0.0272727 = 5.77787e-06 loss)
I0429 09:51:05.205173 8162 solver.cpp:245] Train net output #41: loss1/loss15 = 0.000180422 (* 0.0272727 = 4.9206e-06 loss)
I0429 09:51:05.205186 8162 solver.cpp:245] Train net output #42: loss1/loss16 = 0.000256966 (* 0.0272727 = 7.00817e-06 loss)
I0429 09:51:05.205201 8162 solver.cpp:245] Train net output #43: loss1/loss17 = 0.000150996 (* 0.0272727 = 4.11809e-06 loss)
I0429 09:51:05.205216 8162 solver.cpp:245] Train net output #44: loss1/loss18 = 0.000137135 (* 0.0272727 = 3.74003e-06 loss)
I0429 09:51:05.205230 8162 solver.cpp:245] Train net output #45: loss1/loss19 = 0.000324934 (* 0.0272727 = 8.86184e-06 loss)
I0429 09:51:05.205245 8162 solver.cpp:245] Train net output #46: loss1/loss20 = 0.00012897 (* 0.0272727 = 3.51735e-06 loss)
I0429 09:51:05.205265 8162 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000308304 (* 0.0272727 = 8.4083e-06 loss)
I0429 09:51:05.205281 8162 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000157509 (* 0.0272727 = 4.2957e-06 loss)
I0429 09:51:05.205293 8162 solver.cpp:245] Train net output #49: loss2/accuracy = 0.333333
I0429 09:51:05.205307 8162 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.625
I0429 09:51:05.205322 8162 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.375
I0429 09:51:05.205335 8162 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.375
I0429 09:51:05.205348 8162 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.375
I0429 09:51:05.205360 8162 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5
I0429 09:51:05.205374 8162 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.625
I0429 09:51:05.205385 8162 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.75
I0429 09:51:05.205397 8162 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875
I0429 09:51:05.205410 8162 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1
I0429 09:51:05.205421 8162 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0429 09:51:05.205433 8162 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0429 09:51:05.205446 8162 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0429 09:51:05.205457 8162 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0429 09:51:05.205469 8162 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0429 09:51:05.205482 8162 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0429 09:51:05.205493 8162 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0429 09:51:05.205505 8162 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0429 09:51:05.205518 8162 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0429 09:51:05.205529 8162 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0429 09:51:05.205540 8162 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0429 09:51:05.205552 8162 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0429 09:51:05.205564 8162 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0429 09:51:05.205576 8162 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.835227
I0429 09:51:05.205588 8162 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.666667
I0429 09:51:05.205602 8162 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.89192 (* 0.3 = 0.567576 loss)
I0429 09:51:05.205621 8162 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.47609 (* 0.3 = 0.142827 loss)
I0429 09:51:05.205636 8162 solver.cpp:245] Train net output #76: loss2/loss01 = 1.28611 (* 0.0272727 = 0.0350758 loss)
I0429 09:51:05.205651 8162 solver.cpp:245] Train net output #77: loss2/loss02 = 1.76995 (* 0.0272727 = 0.0482712 loss)
I0429 09:51:05.205677 8162 solver.cpp:245] Train net output #78: loss2/loss03 = 1.58686 (* 0.0272727 = 0.0432779 loss)
I0429 09:51:05.205693 8162 solver.cpp:245] Train net output #79: loss2/loss04 = 1.79166 (* 0.0272727 = 0.0488634 loss)
I0429 09:51:05.205708 8162 solver.cpp:245] Train net output #80: loss2/loss05 = 2.16151 (* 0.0272727 = 0.0589503 loss)
I0429 09:51:05.205723 8162 solver.cpp:245] Train net output #81: loss2/loss06 = 1.1736 (* 0.0272727 = 0.0320071 loss)
I0429 09:51:05.205736 8162 solver.cpp:245] Train net output #82: loss2/loss07 = 0.618836 (* 0.0272727 = 0.0168773 loss)
I0429 09:51:05.205750 8162 solver.cpp:245] Train net output #83: loss2/loss08 = 0.42665 (* 0.0272727 = 0.0116359 loss)
I0429 09:51:05.205765 8162 solver.cpp:245] Train net output #84: loss2/loss09 = 0.00691997 (* 0.0272727 = 0.000188726 loss)
I0429 09:51:05.205780 8162 solver.cpp:245] Train net output #85: loss2/loss10 = 0.0011036 (* 0.0272727 = 3.00982e-05 loss)
I0429 09:51:05.205795 8162 solver.cpp:245] Train net output #86: loss2/loss11 = 0.000314363 (* 0.0272727 = 8.57353e-06 loss)
I0429 09:51:05.205809 8162 solver.cpp:245] Train net output #87: loss2/loss12 = 0.000182927 (* 0.0272727 = 4.98892e-06 loss)
I0429 09:51:05.205829 8162 solver.cpp:245] Train net output #88: loss2/loss13 = 0.000131753 (* 0.0272727 = 3.59326e-06 loss)
I0429 09:51:05.205843 8162 solver.cpp:245] Train net output #89: loss2/loss14 = 7.47872e-05 (* 0.0272727 = 2.03965e-06 loss)
I0429 09:51:05.205858 8162 solver.cpp:245] Train net output #90: loss2/loss15 = 7.43953e-05 (* 0.0272727 = 2.02896e-06 loss)
I0429 09:51:05.205873 8162 solver.cpp:245] Train net output #91: loss2/loss16 = 6.02137e-05 (* 0.0272727 = 1.64219e-06 loss)
I0429 09:51:05.205888 8162 solver.cpp:245] Train net output #92: loss2/loss17 = 3.54808e-05 (* 0.0272727 = 9.67658e-07 loss)
I0429 09:51:05.205901 8162 solver.cpp:245] Train net output #93: loss2/loss18 = 5.76942e-05 (* 0.0272727 = 1.57348e-06 loss)
I0429 09:51:05.205915 8162 solver.cpp:245] Train net output #94: loss2/loss19 = 4.64046e-05 (* 0.0272727 = 1.26558e-06 loss)
I0429 09:51:05.205930 8162 solver.cpp:245] Train net output #95: loss2/loss20 = 7.09366e-05 (* 0.0272727 = 1.93463e-06 loss)
I0429 09:51:05.205945 8162 solver.cpp:245] Train net output #96: loss2/loss21 = 7.55718e-05 (* 0.0272727 = 2.06105e-06 loss)
I0429 09:51:05.205960 8162 solver.cpp:245] Train net output #97: loss2/loss22 = 9.54711e-05 (* 0.0272727 = 2.60376e-06 loss)
I0429 09:51:05.205971 8162 solver.cpp:245] Train net output #98: loss3/accuracy = 0.714286
I0429 09:51:05.205984 8162 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875
I0429 09:51:05.205997 8162 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.625
I0429 09:51:05.206009 8162 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.75
I0429 09:51:05.206022 8162 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.75
I0429 09:51:05.206034 8162 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.5
I0429 09:51:05.206048 8162 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.625
I0429 09:51:05.206059 8162 solver.cpp:245] Train net output #105: loss3/accuracy07 = 1
I0429 09:51:05.206071 8162 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1
I0429 09:51:05.206084 8162 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1
I0429 09:51:05.206095 8162 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0429 09:51:05.206106 8162 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0429 09:51:05.206118 8162 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0429 09:51:05.206130 8162 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0429 09:51:05.206142 8162 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0429 09:51:05.206154 8162 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0429 09:51:05.206176 8162 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0429 09:51:05.206189 8162 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0429 09:51:05.206202 8162 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0429 09:51:05.206213 8162 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0429 09:51:05.206225 8162 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0429 09:51:05.206238 8162 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0429 09:51:05.206249 8162 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0429 09:51:05.206261 8162 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.926136
I0429 09:51:05.206274 8162 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.857143
I0429 09:51:05.206287 8162 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.93485 (* 1 = 0.93485 loss)
I0429 09:51:05.206302 8162 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.244233 (* 1 = 0.244233 loss)
I0429 09:51:05.206317 8162 solver.cpp:245] Train net output #125: loss3/loss01 = 0.530933 (* 0.0909091 = 0.0482667 loss)
I0429 09:51:05.206331 8162 solver.cpp:245] Train net output #126: loss3/loss02 = 1.83062 (* 0.0909091 = 0.16642 loss)
I0429 09:51:05.206346 8162 solver.cpp:245] Train net output #127: loss3/loss03 = 0.694603 (* 0.0909091 = 0.0631457 loss)
I0429 09:51:05.206360 8162 solver.cpp:245] Train net output #128: loss3/loss04 = 0.745338 (* 0.0909091 = 0.067758 loss)
I0429 09:51:05.206378 8162 solver.cpp:245] Train net output #129: loss3/loss05 = 1.31005 (* 0.0909091 = 0.119096 loss)
I0429 09:51:05.206393 8162 solver.cpp:245] Train net output #130: loss3/loss06 = 1.13911 (* 0.0909091 = 0.103556 loss)
I0429 09:51:05.206408 8162 solver.cpp:245] Train net output #131: loss3/loss07 = 0.245722 (* 0.0909091 = 0.0223384 loss)
I0429 09:51:05.206421 8162 solver.cpp:245] Train net output #132: loss3/loss08 = 0.193207 (* 0.0909091 = 0.0175643 loss)
I0429 09:51:05.206435 8162 solver.cpp:245] Train net output #133: loss3/loss09 = 0.0138457 (* 0.0909091 = 0.0012587 loss)
I0429 09:51:05.206450 8162 solver.cpp:245] Train net output #134: loss3/loss10 = 0.00323742 (* 0.0909091 = 0.000294311 loss)
I0429 09:51:05.206465 8162 solver.cpp:245] Train net output #135: loss3/loss11 = 0.000738433 (* 0.0909091 = 6.71303e-05 loss)
I0429 09:51:05.206480 8162 solver.cpp:245] Train net output #136: loss3/loss12 = 0.000403094 (* 0.0909091 = 3.66449e-05 loss)
I0429 09:51:05.206493 8162 solver.cpp:245] Train net output #137: loss3/loss13 = 0.000344942 (* 0.0909091 = 3.13584e-05 loss)
I0429 09:51:05.206508 8162 solver.cpp:245] Train net output #138: loss3/loss14 = 0.000230631 (* 0.0909091 = 2.09665e-05 loss)
I0429 09:51:05.206523 8162 solver.cpp:245] Train net output #139: loss3/loss15 = 0.000185528 (* 0.0909091 = 1.68662e-05 loss)
I0429 09:51:05.206537 8162 solver.cpp:245] Train net output #140: loss3/loss16 = 0.000171671 (* 0.0909091 = 1.56065e-05 loss)
I0429 09:51:05.206552 8162 solver.cpp:245] Train net output #141: loss3/loss17 = 0.000146986 (* 0.0909091 = 1.33623e-05 loss)
I0429 09:51:05.206567 8162 solver.cpp:245] Train net output #142: loss3/loss18 = 0.00012709 (* 0.0909091 = 1.15537e-05 loss)
I0429 09:51:05.206580 8162 solver.cpp:245] Train net output #143: loss3/loss19 = 0.000123664 (* 0.0909091 = 1.12422e-05 loss)
I0429 09:51:05.206595 8162 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000107959 (* 0.0909091 = 9.81446e-06 loss)
I0429 09:51:05.206609 8162 solver.cpp:245] Train net output #145: loss3/loss21 = 0.000105535 (* 0.0909091 = 9.59413e-06 loss)
I0429 09:51:05.206624 8162 solver.cpp:245] Train net output #146: loss3/loss22 = 7.28186e-05 (* 0.0909091 = 6.61987e-06 loss)
I0429 09:51:05.206636 8162 solver.cpp:245] Train net output #147: total_accuracy = 0.375
I0429 09:51:05.206648 8162 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.25
I0429 09:51:05.206675 8162 solver.cpp:245] Train net output #149: total_confidence = 0.290645
I0429 09:51:05.206689 8162 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.224936
I0429 09:51:05.206703 8162 sgd_solver.cpp:106] Iteration 4000, lr = 0.005
I0429 09:53:21.775902 8162 solver.cpp:229] Iteration 4500, loss = 5.66577
I0429 09:53:21.776074 8162 solver.cpp:245] Train net output #0: loss1/accuracy = 0.268293
I0429 09:53:21.776096 8162 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.375
I0429 09:53:21.776110 8162 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.125
I0429 09:53:21.776124 8162 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.625
I0429 09:53:21.776136 8162 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375
I0429 09:53:21.776149 8162 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.375
I0429 09:53:21.776161 8162 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.5
I0429 09:53:21.776173 8162 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.75
I0429 09:53:21.776185 8162 solver.cpp:245] Train net output #8: loss1/accuracy08 = 1
I0429 09:53:21.776198 8162 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1
I0429 09:53:21.776211 8162 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0429 09:53:21.776222 8162 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0429 09:53:21.776234 8162 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0429 09:53:21.776247 8162 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0429 09:53:21.776259 8162 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0429 09:53:21.776271 8162 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0429 09:53:21.776283 8162 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0429 09:53:21.776295 8162 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0429 09:53:21.776307 8162 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0429 09:53:21.776322 8162 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0429 09:53:21.776335 8162 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0429 09:53:21.776347 8162 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0429 09:53:21.776360 8162 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0429 09:53:21.776372 8162 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.801136
I0429 09:53:21.776384 8162 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.585366
I0429 09:53:21.776401 8162 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 2.367 (* 0.3 = 0.7101 loss)
I0429 09:53:21.776417 8162 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.707902 (* 0.3 = 0.212371 loss)
I0429 09:53:21.776432 8162 solver.cpp:245] Train net output #27: loss1/loss01 = 1.71146 (* 0.0272727 = 0.0466761 loss)
I0429 09:53:21.776446 8162 solver.cpp:245] Train net output #28: loss1/loss02 = 2.46701 (* 0.0272727 = 0.0672821 loss)
I0429 09:53:21.776461 8162 solver.cpp:245] Train net output #29: loss1/loss03 = 1.81901 (* 0.0272727 = 0.0496093 loss)
I0429 09:53:21.776475 8162 solver.cpp:245] Train net output #30: loss1/loss04 = 2.76349 (* 0.0272727 = 0.075368 loss)
I0429 09:53:21.776489 8162 solver.cpp:245] Train net output #31: loss1/loss05 = 2.02024 (* 0.0272727 = 0.0550976 loss)
I0429 09:53:21.776504 8162 solver.cpp:245] Train net output #32: loss1/loss06 = 1.46774 (* 0.0272727 = 0.0400294 loss)
I0429 09:53:21.776517 8162 solver.cpp:245] Train net output #33: loss1/loss07 = 1.56658 (* 0.0272727 = 0.0427249 loss)
I0429 09:53:21.776532 8162 solver.cpp:245] Train net output #34: loss1/loss08 = 0.0207358 (* 0.0272727 = 0.000565521 loss)
I0429 09:53:21.776547 8162 solver.cpp:245] Train net output #35: loss1/loss09 = 1.07886e-05 (* 0.0272727 = 2.94233e-07 loss)
I0429 09:53:21.776562 8162 solver.cpp:245] Train net output #36: loss1/loss10 = 3.3826e-06 (* 0.0272727 = 9.22526e-08 loss)
I0429 09:53:21.776577 8162 solver.cpp:245] Train net output #37: loss1/loss11 = 6.70553e-07 (* 0.0272727 = 1.82878e-08 loss)
I0429 09:53:21.776592 8162 solver.cpp:245] Train net output #38: loss1/loss12 = 1.14739e-06 (* 0.0272727 = 3.12925e-08 loss)
I0429 09:53:21.776628 8162 solver.cpp:245] Train net output #39: loss1/loss13 = 1.01328e-06 (* 0.0272727 = 2.76349e-08 loss)
I0429 09:53:21.776643 8162 solver.cpp:245] Train net output #40: loss1/loss14 = 8.04664e-07 (* 0.0272727 = 2.19454e-08 loss)
I0429 09:53:21.776657 8162 solver.cpp:245] Train net output #41: loss1/loss15 = 1.80305e-06 (* 0.0272727 = 4.91741e-08 loss)
I0429 09:53:21.776672 8162 solver.cpp:245] Train net output #42: loss1/loss16 = 4.17233e-07 (* 0.0272727 = 1.13791e-08 loss)
I0429 09:53:21.776686 8162 solver.cpp:245] Train net output #43: loss1/loss17 = 1.13249e-06 (* 0.0272727 = 3.08861e-08 loss)
I0429 09:53:21.776701 8162 solver.cpp:245] Train net output #44: loss1/loss18 = 7.4506e-07 (* 0.0272727 = 2.03198e-08 loss)
I0429 09:53:21.776715 8162 solver.cpp:245] Train net output #45: loss1/loss19 = 9.08973e-07 (* 0.0272727 = 2.47902e-08 loss)
I0429 09:53:21.776731 8162 solver.cpp:245] Train net output #46: loss1/loss20 = 7.74862e-07 (* 0.0272727 = 2.11326e-08 loss)
I0429 09:53:21.776744 8162 solver.cpp:245] Train net output #47: loss1/loss21 = 1.207e-06 (* 0.0272727 = 3.29181e-08 loss)
I0429 09:53:21.776759 8162 solver.cpp:245] Train net output #48: loss1/loss22 = 2.65243e-06 (* 0.0272727 = 7.23389e-08 loss)
I0429 09:53:21.776772 8162 solver.cpp:245] Train net output #49: loss2/accuracy = 0.341463
I0429 09:53:21.776784 8162 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.625
I0429 09:53:21.776798 8162 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.25
I0429 09:53:21.776809 8162 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.125
I0429 09:53:21.776823 8162 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.25
I0429 09:53:21.776835 8162 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.375
I0429 09:53:21.776844 8162 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.75
I0429 09:53:21.776852 8162 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.875
I0429 09:53:21.776865 8162 solver.cpp:245] Train net output #57: loss2/accuracy08 = 1
I0429 09:53:21.776876 8162 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1
I0429 09:53:21.776888 8162 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0429 09:53:21.776901 8162 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0429 09:53:21.776911 8162 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0429 09:53:21.776923 8162 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0429 09:53:21.776935 8162 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0429 09:53:21.776947 8162 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0429 09:53:21.776958 8162 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0429 09:53:21.776970 8162 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0429 09:53:21.776983 8162 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0429 09:53:21.776994 8162 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0429 09:53:21.777005 8162 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0429 09:53:21.777017 8162 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0429 09:53:21.777029 8162 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0429 09:53:21.777040 8162 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.8125
I0429 09:53:21.777052 8162 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.658537
I0429 09:53:21.777066 8162 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 2.06427 (* 0.3 = 0.619281 loss)
I0429 09:53:21.777084 8162 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.638992 (* 0.3 = 0.191697 loss)
I0429 09:53:21.777099 8162 solver.cpp:245] Train net output #76: loss2/loss01 = 1.19325 (* 0.0272727 = 0.0325432 loss)
I0429 09:53:21.777113 8162 solver.cpp:245] Train net output #77: loss2/loss02 = 2.32456 (* 0.0272727 = 0.0633972 loss)
I0429 09:53:21.777138 8162 solver.cpp:245] Train net output #78: loss2/loss03 = 2.30919 (* 0.0272727 = 0.062978 loss)
I0429 09:53:21.777154 8162 solver.cpp:245] Train net output #79: loss2/loss04 = 2.70812 (* 0.0272727 = 0.0738578 loss)
I0429 09:53:21.777168 8162 solver.cpp:245] Train net output #80: loss2/loss05 = 2.42741 (* 0.0272727 = 0.066202 loss)
I0429 09:53:21.777182 8162 solver.cpp:245] Train net output #81: loss2/loss06 = 1.21652 (* 0.0272727 = 0.0331777 loss)
I0429 09:53:21.777196 8162 solver.cpp:245] Train net output #82: loss2/loss07 = 0.651342 (* 0.0272727 = 0.0177639 loss)
I0429 09:53:21.777210 8162 solver.cpp:245] Train net output #83: loss2/loss08 = 0.0192823 (* 0.0272727 = 0.00052588 loss)
I0429 09:53:21.777225 8162 solver.cpp:245] Train net output #84: loss2/loss09 = 0.000338535 (* 0.0272727 = 9.23278e-06 loss)
I0429 09:53:21.777240 8162 solver.cpp:245] Train net output #85: loss2/loss10 = 0.000140858 (* 0.0272727 = 3.84158e-06 loss)
I0429 09:53:21.777254 8162 solver.cpp:245] Train net output #86: loss2/loss11 = 8.63565e-05 (* 0.0272727 = 2.35518e-06 loss)
I0429 09:53:21.777268 8162 solver.cpp:245] Train net output #87: loss2/loss12 = 6.56903e-05 (* 0.0272727 = 1.79155e-06 loss)
I0429 09:53:21.777282 8162 solver.cpp:245] Train net output #88: loss2/loss13 = 5.44917e-05 (* 0.0272727 = 1.48614e-06 loss)
I0429 09:53:21.777297 8162 solver.cpp:245] Train net output #89: loss2/loss14 = 3.93418e-05 (* 0.0272727 = 1.07296e-06 loss)
I0429 09:53:21.777310 8162 solver.cpp:245] Train net output #90: loss2/loss15 = 0.000174022 (* 0.0272727 = 4.74605e-06 loss)
I0429 09:53:21.777324 8162 solver.cpp:245] Train net output #91: loss2/loss16 = 4.72128e-05 (* 0.0272727 = 1.28762e-06 loss)
I0429 09:53:21.777339 8162 solver.cpp:245] Train net output #92: loss2/loss17 = 6.6145e-05 (* 0.0272727 = 1.80395e-06 loss)
I0429 09:53:21.777354 8162 solver.cpp:245] Train net output #93: loss2/loss18 = 0.000104959 (* 0.0272727 = 2.86252e-06 loss)
I0429 09:53:21.777370 8162 solver.cpp:245] Train net output #94: loss2/loss19 = 3.92674e-05 (* 0.0272727 = 1.07093e-06 loss)
I0429 09:53:21.777385 8162 solver.cpp:245] Train net output #95: loss2/loss20 = 8.45577e-05 (* 0.0272727 = 2.30612e-06 loss)
I0429 09:53:21.777400 8162 solver.cpp:245] Train net output #96: loss2/loss21 = 7.16645e-05 (* 0.0272727 = 1.95449e-06 loss)
I0429 09:53:21.777413 8162 solver.cpp:245] Train net output #97: loss2/loss22 = 8.05249e-05 (* 0.0272727 = 2.19613e-06 loss)
I0429 09:53:21.777426 8162 solver.cpp:245] Train net output #98: loss3/accuracy = 0.609756
I0429 09:53:21.777438 8162 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.75
I0429 09:53:21.777451 8162 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.5
I0429 09:53:21.777462 8162 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.75
I0429 09:53:21.777474 8162 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.25
I0429 09:53:21.777487 8162 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.25
I0429 09:53:21.777498 8162 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.625
I0429 09:53:21.777510 8162 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75
I0429 09:53:21.777523 8162 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1
I0429 09:53:21.777534 8162 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1
I0429 09:53:21.777546 8162 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0429 09:53:21.777559 8162 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0429 09:53:21.777570 8162 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0429 09:53:21.777581 8162 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0429 09:53:21.777593 8162 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0429 09:53:21.777604 8162 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0429 09:53:21.777626 8162 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0429 09:53:21.777639 8162 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0429 09:53:21.777652 8162 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0429 09:53:21.777663 8162 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0429 09:53:21.777675 8162 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0429 09:53:21.777688 8162 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0429 09:53:21.777698 8162 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0429 09:53:21.777710 8162 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.880682
I0429 09:53:21.777722 8162 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.780488
I0429 09:53:21.777736 8162 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.5047 (* 1 = 1.5047 loss)
I0429 09:53:21.777751 8162 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.526578 (* 1 = 0.526578 loss)
I0429 09:53:21.777765 8162 solver.cpp:245] Train net output #125: loss3/loss01 = 0.713808 (* 0.0909091 = 0.0648916 loss)
I0429 09:53:21.777779 8162 solver.cpp:245] Train net output #126: loss3/loss02 = 1.72201 (* 0.0909091 = 0.156547 loss)
I0429 09:53:21.777794 8162 solver.cpp:245] Train net output #127: loss3/loss03 = 1.33991 (* 0.0909091 = 0.12181 loss)
I0429 09:53:21.777808 8162 solver.cpp:245] Train net output #128: loss3/loss04 = 2.31343 (* 0.0909091 = 0.210312 loss)
I0429 09:53:21.777822 8162 solver.cpp:245] Train net output #129: loss3/loss05 = 2.35991 (* 0.0909091 = 0.214537 loss)
I0429 09:53:21.777837 8162 solver.cpp:245] Train net output #130: loss3/loss06 = 0.931363 (* 0.0909091 = 0.0846693 loss)
I0429 09:53:21.777850 8162 solver.cpp:245] Train net output #131: loss3/loss07 = 0.816726 (* 0.0909091 = 0.0742478 loss)
I0429 09:53:21.777864 8162 solver.cpp:245] Train net output #132: loss3/loss08 = 0.0130673 (* 0.0909091 = 0.00118793 loss)
I0429 09:53:21.777878 8162 solver.cpp:245] Train net output #133: loss3/loss09 = 0.00246582 (* 0.0909091 = 0.000224166 loss)
I0429 09:53:21.777894 8162 solver.cpp:245] Train net output #134: loss3/loss10 = 0.00136457 (* 0.0909091 = 0.000124052 loss)
I0429 09:53:21.777907 8162 solver.cpp:245] Train net output #135: loss3/loss11 = 0.00110807 (* 0.0909091 = 0.000100733 loss)
I0429 09:53:21.777921 8162 solver.cpp:245] Train net output #136: loss3/loss12 = 0.000741106 (* 0.0909091 = 6.73733e-05 loss)
I0429 09:53:21.777935 8162 solver.cpp:245] Train net output #137: loss3/loss13 = 0.000629055 (* 0.0909091 = 5.71868e-05 loss)
I0429 09:53:21.777950 8162 solver.cpp:245] Train net output #138: loss3/loss14 = 0.0003935 (* 0.0909091 = 3.57727e-05 loss)
I0429 09:53:21.777963 8162 solver.cpp:245] Train net output #139: loss3/loss15 = 0.000339655 (* 0.0909091 = 3.08777e-05 loss)
I0429 09:53:21.777978 8162 solver.cpp:245] Train net output #140: loss3/loss16 = 0.000222939 (* 0.0909091 = 2.02672e-05 loss)
I0429 09:53:21.777992 8162 solver.cpp:245] Train net output #141: loss3/loss17 = 7.94525e-05 (* 0.0909091 = 7.22296e-06 loss)
I0429 09:53:21.778007 8162 solver.cpp:245] Train net output #142: loss3/loss18 = 6.02243e-05 (* 0.0909091 = 5.47494e-06 loss)
I0429 09:53:21.778020 8162 solver.cpp:245] Train net output #143: loss3/loss19 = 5.97185e-05 (* 0.0909091 = 5.42895e-06 loss)
I0429 09:53:21.778034 8162 solver.cpp:245] Train net output #144: loss3/loss20 = 5.48151e-05 (* 0.0909091 = 4.98319e-06 loss)
I0429 09:53:21.778049 8162 solver.cpp:245] Train net output #145: loss3/loss21 = 5.06414e-05 (* 0.0909091 = 4.60376e-06 loss)
I0429 09:53:21.778064 8162 solver.cpp:245] Train net output #146: loss3/loss22 = 6.47297e-05 (* 0.0909091 = 5.88452e-06 loss)
I0429 09:53:21.778075 8162 solver.cpp:245] Train net output #147: total_accuracy = 0
I0429 09:53:21.778087 8162 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0
I0429 09:53:21.778108 8162 solver.cpp:245] Train net output #149: total_confidence = 0.0322908
I0429 09:53:21.778121 8162 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.0477808
I0429 09:53:21.778139 8162 sgd_solver.cpp:106] Iteration 4500, lr = 0.005
I0429 09:55:38.273767 8162 solver.cpp:338] Iteration 5000, Testing net (#0)
I0429 09:56:20.030771 8162 solver.cpp:393] Test loss: 4.13054
I0429 09:56:20.030911 8162 solver.cpp:406] Test net output #0: loss1/accuracy = 0.441758
I0429 09:56:20.030939 8162 solver.cpp:406] Test net output #1: loss1/accuracy01 = 0.684
I0429 09:56:20.030961 8162 solver.cpp:406] Test net output #2: loss1/accuracy02 = 0.479
I0429 09:56:20.030980 8162 solver.cpp:406] Test net output #3: loss1/accuracy03 = 0.367
I0429 09:56:20.031002 8162 solver.cpp:406] Test net output #4: loss1/accuracy04 = 0.431
I0429 09:56:20.031025 8162 solver.cpp:406] Test net output #5: loss1/accuracy05 = 0.485
I0429 09:56:20.031045 8162 solver.cpp:406] Test net output #6: loss1/accuracy06 = 0.609
I0429 09:56:20.031067 8162 solver.cpp:406] Test net output #7: loss1/accuracy07 = 0.787
I0429 09:56:20.031090 8162 solver.cpp:406] Test net output #8: loss1/accuracy08 = 0.919
I0429 09:56:20.031112 8162 solver.cpp:406] Test net output #9: loss1/accuracy09 = 0.992
I0429 09:56:20.031133 8162 solver.cpp:406] Test net output #10: loss1/accuracy10 = 0.998
I0429 09:56:20.031152 8162 solver.cpp:406] Test net output #11: loss1/accuracy11 = 0.999
I0429 09:56:20.031173 8162 solver.cpp:406] Test net output #12: loss1/accuracy12 = 0.999
I0429 09:56:20.031198 8162 solver.cpp:406] Test net output #13: loss1/accuracy13 = 1
I0429 09:56:20.031222 8162 solver.cpp:406] Test net output #14: loss1/accuracy14 = 1
I0429 09:56:20.031244 8162 solver.cpp:406] Test net output #15: loss1/accuracy15 = 1
I0429 09:56:20.031266 8162 solver.cpp:406] Test net output #16: loss1/accuracy16 = 1
I0429 09:56:20.031287 8162 solver.cpp:406] Test net output #17: loss1/accuracy17 = 1
I0429 09:56:20.031308 8162 solver.cpp:406] Test net output #18: loss1/accuracy18 = 1
I0429 09:56:20.031335 8162 solver.cpp:406] Test net output #19: loss1/accuracy19 = 1
I0429 09:56:20.031358 8162 solver.cpp:406] Test net output #20: loss1/accuracy20 = 1
I0429 09:56:20.031378 8162 solver.cpp:406] Test net output #21: loss1/accuracy21 = 1
I0429 09:56:20.031399 8162 solver.cpp:406] Test net output #22: loss1/accuracy22 = 1
I0429 09:56:20.031421 8162 solver.cpp:406] Test net output #23: loss1/accuracy_incl_empty = 0.843364
I0429 09:56:20.031442 8162 solver.cpp:406] Test net output #24: loss1/accuracy_top3 = 0.685555
I0429 09:56:20.031487 8162 solver.cpp:406] Test net output #25: loss1/cross_entropy_loss = 1.87833 (* 0.3 = 0.563499 loss)
I0429 09:56:20.031522 8162 solver.cpp:406] Test net output #26: loss1/cross_entropy_loss_incl_empty = 0.541724 (* 0.3 = 0.162517 loss)
I0429 09:56:20.031549 8162 solver.cpp:406] Test net output #27: loss1/loss01 = 1.16046 (* 0.0272727 = 0.0316489 loss)
I0429 09:56:20.031576 8162 solver.cpp:406] Test net output #28: loss1/loss02 = 1.83218 (* 0.0272727 = 0.0499685 loss)
I0429 09:56:20.031602 8162 solver.cpp:406] Test net output #29: loss1/loss03 = 2.19167 (* 0.0272727 = 0.0597728 loss)
I0429 09:56:20.031630 8162 solver.cpp:406] Test net output #30: loss1/loss04 = 1.99253 (* 0.0272727 = 0.0543418 loss)
I0429 09:56:20.031656 8162 solver.cpp:406] Test net output #31: loss1/loss05 = 1.80388 (* 0.0272727 = 0.0491969 loss)
I0429 09:56:20.031682 8162 solver.cpp:406] Test net output #32: loss1/loss06 = 1.36188 (* 0.0272727 = 0.0371422 loss)
I0429 09:56:20.031708 8162 solver.cpp:406] Test net output #33: loss1/loss07 = 0.774523 (* 0.0272727 = 0.0211234 loss)
I0429 09:56:20.031735 8162 solver.cpp:406] Test net output #34: loss1/loss08 = 0.30891 (* 0.0272727 = 0.00842482 loss)
I0429 09:56:20.031762 8162 solver.cpp:406] Test net output #35: loss1/loss09 = 0.0561349 (* 0.0272727 = 0.00153095 loss)
I0429 09:56:20.031790 8162 solver.cpp:406] Test net output #36: loss1/loss10 = 0.0201988 (* 0.0272727 = 0.000550877 loss)
I0429 09:56:20.031816 8162 solver.cpp:406] Test net output #37: loss1/loss11 = 0.0115679 (* 0.0272727 = 0.000315487 loss)
I0429 09:56:20.031842 8162 solver.cpp:406] Test net output #38: loss1/loss12 = 0.00772223 (* 0.0272727 = 0.000210606 loss)
I0429 09:56:20.031868 8162 solver.cpp:406] Test net output #39: loss1/loss13 = 0.00555513 (* 0.0272727 = 0.000151503 loss)
I0429 09:56:20.031925 8162 solver.cpp:406] Test net output #40: loss1/loss14 = 0.00388628 (* 0.0272727 = 0.000105989 loss)
I0429 09:56:20.031955 8162 solver.cpp:406] Test net output #41: loss1/loss15 = 0.00264438 (* 0.0272727 = 7.21194e-05 loss)
I0429 09:56:20.031983 8162 solver.cpp:406] Test net output #42: loss1/loss16 = 0.00134296 (* 0.0272727 = 3.66263e-05 loss)
I0429 09:56:20.032012 8162 solver.cpp:406] Test net output #43: loss1/loss17 = 0.000670985 (* 0.0272727 = 1.82996e-05 loss)
I0429 09:56:20.032042 8162 solver.cpp:406] Test net output #44: loss1/loss18 = 0.000547291 (* 0.0272727 = 1.49261e-05 loss)
I0429 09:56:20.032069 8162 solver.cpp:406] Test net output #45: loss1/loss19 = 0.000552415 (* 0.0272727 = 1.50659e-05 loss)
I0429 09:56:20.032097 8162 solver.cpp:406] Test net output #46: loss1/loss20 = 0.000440823 (* 0.0272727 = 1.20224e-05 loss)
I0429 09:56:20.032124 8162 solver.cpp:406] Test net output #47: loss1/loss21 = 0.000464196 (* 0.0272727 = 1.26599e-05 loss)
I0429 09:56:20.032150 8162 solver.cpp:406] Test net output #48: loss1/loss22 = 0.000377681 (* 0.0272727 = 1.03004e-05 loss)
I0429 09:56:20.032172 8162 solver.cpp:406] Test net output #49: loss2/accuracy = 0.502958
I0429 09:56:20.032194 8162 solver.cpp:406] Test net output #50: loss2/accuracy01 = 0.744
I0429 09:56:20.032217 8162 solver.cpp:406] Test net output #51: loss2/accuracy02 = 0.594
I0429 09:56:20.032239 8162 solver.cpp:406] Test net output #52: loss2/accuracy03 = 0.405
I0429 09:56:20.032260 8162 solver.cpp:406] Test net output #53: loss2/accuracy04 = 0.449
I0429 09:56:20.032284 8162 solver.cpp:406] Test net output #54: loss2/accuracy05 = 0.511
I0429 09:56:20.032305 8162 solver.cpp:406] Test net output #55: loss2/accuracy06 = 0.633
I0429 09:56:20.032326 8162 solver.cpp:406] Test net output #56: loss2/accuracy07 = 0.791
I0429 09:56:20.032349 8162 solver.cpp:406] Test net output #57: loss2/accuracy08 = 0.919
I0429 09:56:20.032376 8162 solver.cpp:406] Test net output #58: loss2/accuracy09 = 0.991
I0429 09:56:20.032398 8162 solver.cpp:406] Test net output #59: loss2/accuracy10 = 0.997
I0429 09:56:20.032420 8162 solver.cpp:406] Test net output #60: loss2/accuracy11 = 0.997
I0429 09:56:20.032441 8162 solver.cpp:406] Test net output #61: loss2/accuracy12 = 0.999
I0429 09:56:20.032464 8162 solver.cpp:406] Test net output #62: loss2/accuracy13 = 0.999
I0429 09:56:20.032486 8162 solver.cpp:406] Test net output #63: loss2/accuracy14 = 0.999
I0429 09:56:20.032507 8162 solver.cpp:406] Test net output #64: loss2/accuracy15 = 1
I0429 09:56:20.032529 8162 solver.cpp:406] Test net output #65: loss2/accuracy16 = 1
I0429 09:56:20.032549 8162 solver.cpp:406] Test net output #66: loss2/accuracy17 = 1
I0429 09:56:20.032572 8162 solver.cpp:406] Test net output #67: loss2/accuracy18 = 1
I0429 09:56:20.032593 8162 solver.cpp:406] Test net output #68: loss2/accuracy19 = 1
I0429 09:56:20.032614 8162 solver.cpp:406] Test net output #69: loss2/accuracy20 = 1
I0429 09:56:20.032635 8162 solver.cpp:406] Test net output #70: loss2/accuracy21 = 1
I0429 09:56:20.032657 8162 solver.cpp:406] Test net output #71: loss2/accuracy22 = 1
I0429 09:56:20.032678 8162 solver.cpp:406] Test net output #72: loss2/accuracy_incl_empty = 0.859092
I0429 09:56:20.032701 8162 solver.cpp:406] Test net output #73: loss2/accuracy_top3 = 0.742652
I0429 09:56:20.032727 8162 solver.cpp:406] Test net output #74: loss2/cross_entropy_loss = 1.66012 (* 0.3 = 0.498035 loss)
I0429 09:56:20.032753 8162 solver.cpp:406] Test net output #75: loss2/cross_entropy_loss_incl_empty = 0.485008 (* 0.3 = 0.145502 loss)
I0429 09:56:20.032779 8162 solver.cpp:406] Test net output #76: loss2/loss01 = 0.998608 (* 0.0272727 = 0.0272347 loss)
I0429 09:56:20.032805 8162 solver.cpp:406] Test net output #77: loss2/loss02 = 1.49987 (* 0.0272727 = 0.0409055 loss)
I0429 09:56:20.032850 8162 solver.cpp:406] Test net output #78: loss2/loss03 = 2.01947 (* 0.0272727 = 0.0550764 loss)
I0429 09:56:20.032877 8162 solver.cpp:406] Test net output #79: loss2/loss04 = 1.86205 (* 0.0272727 = 0.0507832 loss)
I0429 09:56:20.032903 8162 solver.cpp:406] Test net output #80: loss2/loss05 = 1.70356 (* 0.0272727 = 0.0464609 loss)
I0429 09:56:20.032928 8162 solver.cpp:406] Test net output #81: loss2/loss06 = 1.26709 (* 0.0272727 = 0.034557 loss)
I0429 09:56:20.032953 8162 solver.cpp:406] Test net output #82: loss2/loss07 = 0.735314 (* 0.0272727 = 0.020054 loss)
I0429 09:56:20.032984 8162 solver.cpp:406] Test net output #83: loss2/loss08 = 0.318698 (* 0.0272727 = 0.00869176 loss)
I0429 09:56:20.033010 8162 solver.cpp:406] Test net output #84: loss2/loss09 = 0.0573486 (* 0.0272727 = 0.00156405 loss)
I0429 09:56:20.033035 8162 solver.cpp:406] Test net output #85: loss2/loss10 = 0.0210742 (* 0.0272727 = 0.00057475 loss)
I0429 09:56:20.033062 8162 solver.cpp:406] Test net output #86: loss2/loss11 = 0.0145183 (* 0.0272727 = 0.000395955 loss)
I0429 09:56:20.033088 8162 solver.cpp:406] Test net output #87: loss2/loss12 = 0.00927431 (* 0.0272727 = 0.000252936 loss)
I0429 09:56:20.033114 8162 solver.cpp:406] Test net output #88: loss2/loss13 = 0.00660207 (* 0.0272727 = 0.000180057 loss)
I0429 09:56:20.033140 8162 solver.cpp:406] Test net output #89: loss2/loss14 = 0.00456021 (* 0.0272727 = 0.000124369 loss)
I0429 09:56:20.033165 8162 solver.cpp:406] Test net output #90: loss2/loss15 = 0.00297619 (* 0.0272727 = 8.1169e-05 loss)
I0429 09:56:20.033191 8162 solver.cpp:406] Test net output #91: loss2/loss16 = 0.00114497 (* 0.0272727 = 3.12265e-05 loss)
I0429 09:56:20.033217 8162 solver.cpp:406] Test net output #92: loss2/loss17 = 0.000634244 (* 0.0272727 = 1.72976e-05 loss)
I0429 09:56:20.033242 8162 solver.cpp:406] Test net output #93: loss2/loss18 = 0.000587844 (* 0.0272727 = 1.60321e-05 loss)
I0429 09:56:20.033268 8162 solver.cpp:406] Test net output #94: loss2/loss19 = 0.000537181 (* 0.0272727 = 1.46504e-05 loss)
I0429 09:56:20.033294 8162 solver.cpp:406] Test net output #95: loss2/loss20 = 0.000547332 (* 0.0272727 = 1.49272e-05 loss)
I0429 09:56:20.033320 8162 solver.cpp:406] Test net output #96: loss2/loss21 = 0.00045233 (* 0.0272727 = 1.23363e-05 loss)
I0429 09:56:20.033346 8162 solver.cpp:406] Test net output #97: loss2/loss22 = 0.000369617 (* 0.0272727 = 1.00805e-05 loss)
I0429 09:56:20.033370 8162 solver.cpp:406] Test net output #98: loss3/accuracy = 0.676102
I0429 09:56:20.033391 8162 solver.cpp:406] Test net output #99: loss3/accuracy01 = 0.818
I0429 09:56:20.033411 8162 solver.cpp:406] Test net output #100: loss3/accuracy02 = 0.754
I0429 09:56:20.033437 8162 solver.cpp:406] Test net output #101: loss3/accuracy03 = 0.655
I0429 09:56:20.033458 8162 solver.cpp:406] Test net output #102: loss3/accuracy04 = 0.592
I0429 09:56:20.033478 8162 solver.cpp:406] Test net output #103: loss3/accuracy05 = 0.589
I0429 09:56:20.033499 8162 solver.cpp:406] Test net output #104: loss3/accuracy06 = 0.678
I0429 09:56:20.033520 8162 solver.cpp:406] Test net output #105: loss3/accuracy07 = 0.835
I0429 09:56:20.033542 8162 solver.cpp:406] Test net output #106: loss3/accuracy08 = 0.923
I0429 09:56:20.033563 8162 solver.cpp:406] Test net output #107: loss3/accuracy09 = 0.989
I0429 09:56:20.033584 8162 solver.cpp:406] Test net output #108: loss3/accuracy10 = 0.997
I0429 09:56:20.033607 8162 solver.cpp:406] Test net output #109: loss3/accuracy11 = 0.997
I0429 09:56:20.033627 8162 solver.cpp:406] Test net output #110: loss3/accuracy12 = 0.998
I0429 09:56:20.033648 8162 solver.cpp:406] Test net output #111: loss3/accuracy13 = 0.998
I0429 09:56:20.033669 8162 solver.cpp:406] Test net output #112: loss3/accuracy14 = 0.999
I0429 09:56:20.033690 8162 solver.cpp:406] Test net output #113: loss3/accuracy15 = 0.999
I0429 09:56:20.033711 8162 solver.cpp:406] Test net output #114: loss3/accuracy16 = 1
I0429 09:56:20.033747 8162 solver.cpp:406] Test net output #115: loss3/accuracy17 = 1
I0429 09:56:20.033771 8162 solver.cpp:406] Test net output #116: loss3/accuracy18 = 1
I0429 09:56:20.033792 8162 solver.cpp:406] Test net output #117: loss3/accuracy19 = 1
I0429 09:56:20.033812 8162 solver.cpp:406] Test net output #118: loss3/accuracy20 = 1
I0429 09:56:20.033833 8162 solver.cpp:406] Test net output #119: loss3/accuracy21 = 1
I0429 09:56:20.033855 8162 solver.cpp:406] Test net output #120: loss3/accuracy22 = 1
I0429 09:56:20.033876 8162 solver.cpp:406] Test net output #121: loss3/accuracy_incl_empty = 0.90182
I0429 09:56:20.033895 8162 solver.cpp:406] Test net output #122: loss3/accuracy_top3 = 0.844423
I0429 09:56:20.033916 8162 solver.cpp:406] Test net output #123: loss3/cross_entropy_loss = 1.1255 (* 1 = 1.1255 loss)
I0429 09:56:20.033941 8162 solver.cpp:406] Test net output #124: loss3/cross_entropy_loss_incl_empty = 0.344287 (* 1 = 0.344287 loss)
I0429 09:56:20.033968 8162 solver.cpp:406] Test net output #125: loss3/loss01 = 0.697834 (* 0.0909091 = 0.0634394 loss)
I0429 09:56:20.033995 8162 solver.cpp:406] Test net output #126: loss3/loss02 = 0.927803 (* 0.0909091 = 0.0843457 loss)
I0429 09:56:20.034024 8162 solver.cpp:406] Test net output #127: loss3/loss03 = 1.27174 (* 0.0909091 = 0.115612 loss)
I0429 09:56:20.034052 8162 solver.cpp:406] Test net output #128: loss3/loss04 = 1.39569 (* 0.0909091 = 0.126881 loss)
I0429 09:56:20.034080 8162 solver.cpp:406] Test net output #129: loss3/loss05 = 1.33221 (* 0.0909091 = 0.12111 loss)
I0429 09:56:20.034104 8162 solver.cpp:406] Test net output #130: loss3/loss06 = 1.00543 (* 0.0909091 = 0.0914024 loss)
I0429 09:56:20.034129 8162 solver.cpp:406] Test net output #131: loss3/loss07 = 0.55454 (* 0.0909091 = 0.0504127 loss)
I0429 09:56:20.034155 8162 solver.cpp:406] Test net output #132: loss3/loss08 = 0.267944 (* 0.0909091 = 0.0243585 loss)
I0429 09:56:20.034181 8162 solver.cpp:406] Test net output #133: loss3/loss09 = 0.0639045 (* 0.0909091 = 0.0058095 loss)
I0429 09:56:20.034207 8162 solver.cpp:406] Test net output #134: loss3/loss10 = 0.0226053 (* 0.0909091 = 0.00205503 loss)
I0429 09:56:20.034234 8162 solver.cpp:406] Test net output #135: loss3/loss11 = 0.0156911 (* 0.0909091 = 0.00142647 loss)
I0429 09:56:20.034260 8162 solver.cpp:406] Test net output #136: loss3/loss12 = 0.00970767 (* 0.0909091 = 0.000882516 loss)
I0429 09:56:20.034286 8162 solver.cpp:406] Test net output #137: loss3/loss13 = 0.00787441 (* 0.0909091 = 0.000715856 loss)
I0429 09:56:20.034313 8162 solver.cpp:406] Test net output #138: loss3/loss14 = 0.00493904 (* 0.0909091 = 0.000449004 loss)
I0429 09:56:20.034339 8162 solver.cpp:406] Test net output #139: loss3/loss15 = 0.00363802 (* 0.0909091 = 0.00033073 loss)
I0429 09:56:20.034364 8162 solver.cpp:406] Test net output #140: loss3/loss16 = 0.0011939 (* 0.0909091 = 0.000108536 loss)
I0429 09:56:20.034392 8162 solver.cpp:406] Test net output #141: loss3/loss17 = 0.000359463 (* 0.0909091 = 3.26785e-05 loss)
I0429 09:56:20.034420 8162 solver.cpp:406] Test net output #142: loss3/loss18 = 0.000252785 (* 0.0909091 = 2.29805e-05 loss)
I0429 09:56:20.034451 8162 solver.cpp:406] Test net output #143: loss3/loss19 = 0.00023222 (* 0.0909091 = 2.11109e-05 loss)
I0429 09:56:20.034482 8162 solver.cpp:406] Test net output #144: loss3/loss20 = 0.000205834 (* 0.0909091 = 1.87122e-05 loss)
I0429 09:56:20.034510 8162 solver.cpp:406] Test net output #145: loss3/loss21 = 0.000198838 (* 0.0909091 = 1.80762e-05 loss)
I0429 09:56:20.034536 8162 solver.cpp:406] Test net output #146: loss3/loss22 = 0.000153179 (* 0.0909091 = 1.39254e-05 loss)
I0429 09:56:20.034559 8162 solver.cpp:406] Test net output #147: total_accuracy = 0.258
I0429 09:56:20.034580 8162 solver.cpp:406] Test net output #148: total_accuracy_not_rec = 0.243
I0429 09:56:20.034602 8162 solver.cpp:406] Test net output #149: total_confidence = 0.213988
I0429 09:56:20.034641 8162 solver.cpp:406] Test net output #150: total_confidence_not_rec = 0.195716
I0429 09:56:20.034665 8162 solver.cpp:338] Iteration 5000, Testing net (#1)
I0429 09:57:01.738373 8162 solver.cpp:393] Test loss: 5.07415
I0429 09:57:01.738518 8162 solver.cpp:406] Test net output #0: loss1/accuracy = 0.411997
I0429 09:57:01.738546 8162 solver.cpp:406] Test net output #1: loss1/accuracy01 = 0.63
I0429 09:57:01.738566 8162 solver.cpp:406] Test net output #2: loss1/accuracy02 = 0.426
I0429 09:57:01.738587 8162 solver.cpp:406] Test net output #3: loss1/accuracy03 = 0.361
I0429 09:57:01.738610 8162 solver.cpp:406] Test net output #4: loss1/accuracy04 = 0.412
I0429 09:57:01.738631 8162 solver.cpp:406] Test net output #5: loss1/accuracy05 = 0.448
I0429 09:57:01.738651 8162 solver.cpp:406] Test net output #6: loss1/accuracy06 = 0.576
I0429 09:57:01.738672 8162 solver.cpp:406] Test net output #7: loss1/accuracy07 = 0.681
I0429 09:57:01.738694 8162 solver.cpp:406] Test net output #8: loss1/accuracy08 = 0.821
I0429 09:57:01.738718 8162 solver.cpp:406] Test net output #9: loss1/accuracy09 = 0.896
I0429 09:57:01.738739 8162 solver.cpp:406] Test net output #10: loss1/accuracy10 = 0.92
I0429 09:57:01.738759 8162 solver.cpp:406] Test net output #11: loss1/accuracy11 = 0.933
I0429 09:57:01.738780 8162 solver.cpp:406] Test net output #12: loss1/accuracy12 = 0.948
I0429 09:57:01.738803 8162 solver.cpp:406] Test net output #13: loss1/accuracy13 = 0.959
I0429 09:57:01.738827 8162 solver.cpp:406] Test net output #14: loss1/accuracy14 = 0.965
I0429 09:57:01.738849 8162 solver.cpp:406] Test net output #15: loss1/accuracy15 = 0.976
I0429 09:57:01.738873 8162 solver.cpp:406] Test net output #16: loss1/accuracy16 = 0.983
I0429 09:57:01.738894 8162 solver.cpp:406] Test net output #17: loss1/accuracy17 = 0.988
I0429 09:57:01.738915 8162 solver.cpp:406] Test net output #18: loss1/accuracy18 = 0.993
I0429 09:57:01.738939 8162 solver.cpp:406] Test net output #19: loss1/accuracy19 = 0.996
I0429 09:57:01.738961 8162 solver.cpp:406] Test net output #20: loss1/accuracy20 = 0.997
I0429 09:57:01.738982 8162 solver.cpp:406] Test net output #21: loss1/accuracy21 = 0.999
I0429 09:57:01.739003 8162 solver.cpp:406] Test net output #22: loss1/accuracy22 = 0.999
I0429 09:57:01.739027 8162 solver.cpp:406] Test net output #23: loss1/accuracy_incl_empty = 0.807001
I0429 09:57:01.739048 8162 solver.cpp:406] Test net output #24: loss1/accuracy_top3 = 0.659604
I0429 09:57:01.739075 8162 solver.cpp:406] Test net output #25: loss1/cross_entropy_loss = 1.98871 (* 0.3 = 0.596613 loss)
I0429 09:57:01.739104 8162 solver.cpp:406] Test net output #26: loss1/cross_entropy_loss_incl_empty = 0.672543 (* 0.3 = 0.201763 loss)
I0429 09:57:01.739130 8162 solver.cpp:406] Test net output #27: loss1/loss01 = 1.32955 (* 0.0272727 = 0.0362605 loss)
I0429 09:57:01.739156 8162 solver.cpp:406] Test net output #28: loss1/loss02 = 1.98796 (* 0.0272727 = 0.0542172 loss)
I0429 09:57:01.739182 8162 solver.cpp:406] Test net output #29: loss1/loss03 = 2.19087 (* 0.0272727 = 0.059751 loss)
I0429 09:57:01.739209 8162 solver.cpp:406] Test net output #30: loss1/loss04 = 2.04735 (* 0.0272727 = 0.0558367 loss)
I0429 09:57:01.739235 8162 solver.cpp:406] Test net output #31: loss1/loss05 = 1.85188 (* 0.0272727 = 0.0505057 loss)
I0429 09:57:01.739260 8162 solver.cpp:406] Test net output #32: loss1/loss06 = 1.55501 (* 0.0272727 = 0.0424093 loss)
I0429 09:57:01.739286 8162 solver.cpp:406] Test net output #33: loss1/loss07 = 1.10145 (* 0.0272727 = 0.0300395 loss)
I0429 09:57:01.739315 8162 solver.cpp:406] Test net output #34: loss1/loss08 = 0.652781 (* 0.0272727 = 0.0178031 loss)
I0429 09:57:01.739343 8162 solver.cpp:406] Test net output #35: loss1/loss09 = 0.398715 (* 0.0272727 = 0.010874 loss)
I0429 09:57:01.739372 8162 solver.cpp:406] Test net output #36: loss1/loss10 = 0.304445 (* 0.0272727 = 0.00830304 loss)
I0429 09:57:01.739399 8162 solver.cpp:406] Test net output #37: loss1/loss11 = 0.246136 (* 0.0272727 = 0.0067128 loss)
I0429 09:57:01.739426 8162 solver.cpp:406] Test net output #38: loss1/loss12 = 0.207767 (* 0.0272727 = 0.00566637 loss)
I0429 09:57:01.739498 8162 solver.cpp:406] Test net output #39: loss1/loss13 = 0.170926 (* 0.0272727 = 0.00466161 loss)
I0429 09:57:01.739534 8162 solver.cpp:406] Test net output #40: loss1/loss14 = 0.137424 (* 0.0272727 = 0.00374793 loss)
I0429 09:57:01.739562 8162 solver.cpp:406] Test net output #41: loss1/loss15 = 0.0963864 (* 0.0272727 = 0.00262872 loss)
I0429 09:57:01.739590 8162 solver.cpp:406] Test net output #42: loss1/loss16 = 0.0655798 (* 0.0272727 = 0.00178854 loss)
I0429 09:57:01.739619 8162 solver.cpp:406] Test net output #43: loss1/loss17 = 0.0559285 (* 0.0272727 = 0.00152532 loss)
I0429 09:57:01.739650 8162 solver.cpp:406] Test net output #44: loss1/loss18 = 0.0351113 (* 0.0272727 = 0.000957581 loss)
I0429 09:57:01.739680 8162 solver.cpp:406] Test net output #45: loss1/loss19 = 0.0261409 (* 0.0272727 = 0.000712933 loss)
I0429 09:57:01.739707 8162 solver.cpp:406] Test net output #46: loss1/loss20 = 0.0148617 (* 0.0272727 = 0.000405318 loss)
I0429 09:57:01.739733 8162 solver.cpp:406] Test net output #47: loss1/loss21 = 0.00737401 (* 0.0272727 = 0.000201109 loss)
I0429 09:57:01.739760 8162 solver.cpp:406] Test net output #48: loss1/loss22 = 0.00793551 (* 0.0272727 = 0.000216423 loss)
I0429 09:57:01.739784 8162 solver.cpp:406] Test net output #49: loss2/accuracy = 0.468483
I0429 09:57:01.739805 8162 solver.cpp:406] Test net output #50: loss2/accuracy01 = 0.702
I0429 09:57:01.739828 8162 solver.cpp:406] Test net output #51: loss2/accuracy02 = 0.543
I0429 09:57:01.739850 8162 solver.cpp:406] Test net output #52: loss2/accuracy03 = 0.379
I0429 09:57:01.739872 8162 solver.cpp:406] Test net output #53: loss2/accuracy04 = 0.441
I0429 09:57:01.739894 8162 solver.cpp:406] Test net output #54: loss2/accuracy05 = 0.477
I0429 09:57:01.739917 8162 solver.cpp:406] Test net output #55: loss2/accuracy06 = 0.585
I0429 09:57:01.739938 8162 solver.cpp:406] Test net output #56: loss2/accuracy07 = 0.689
I0429 09:57:01.739960 8162 solver.cpp:406] Test net output #57: loss2/accuracy08 = 0.825
I0429 09:57:01.739982 8162 solver.cpp:406] Test net output #58: loss2/accuracy09 = 0.899
I0429 09:57:01.740005 8162 solver.cpp:406] Test net output #59: loss2/accuracy10 = 0.917
I0429 09:57:01.740026 8162 solver.cpp:406] Test net output #60: loss2/accuracy11 = 0.935
I0429 09:57:01.740048 8162 solver.cpp:406] Test net output #61: loss2/accuracy12 = 0.945
I0429 09:57:01.740069 8162 solver.cpp:406] Test net output #62: loss2/accuracy13 = 0.959
I0429 09:57:01.740092 8162 solver.cpp:406] Test net output #63: loss2/accuracy14 = 0.965
I0429 09:57:01.740113 8162 solver.cpp:406] Test net output #64: loss2/accuracy15 = 0.975
I0429 09:57:01.740134 8162 solver.cpp:406] Test net output #65: loss2/accuracy16 = 0.983
I0429 09:57:01.740155 8162 solver.cpp:406] Test net output #66: loss2/accuracy17 = 0.988
I0429 09:57:01.740177 8162 solver.cpp:406] Test net output #67: loss2/accuracy18 = 0.993
I0429 09:57:01.740200 8162 solver.cpp:406] Test net output #68: loss2/accuracy19 = 0.996
I0429 09:57:01.740221 8162 solver.cpp:406] Test net output #69: loss2/accuracy20 = 0.997
I0429 09:57:01.740243 8162 solver.cpp:406] Test net output #70: loss2/accuracy21 = 0.999
I0429 09:57:01.740264 8162 solver.cpp:406] Test net output #71: loss2/accuracy22 = 0.999
I0429 09:57:01.740286 8162 solver.cpp:406] Test net output #72: loss2/accuracy_incl_empty = 0.822773
I0429 09:57:01.740309 8162 solver.cpp:406] Test net output #73: loss2/accuracy_top3 = 0.705692
I0429 09:57:01.740334 8162 solver.cpp:406] Test net output #74: loss2/cross_entropy_loss = 1.81289 (* 0.3 = 0.543866 loss)
I0429 09:57:01.740361 8162 solver.cpp:406] Test net output #75: loss2/cross_entropy_loss_incl_empty = 0.618686 (* 0.3 = 0.185606 loss)
I0429 09:57:01.740392 8162 solver.cpp:406] Test net output #76: loss2/loss01 = 1.15596 (* 0.0272727 = 0.0315262 loss)
I0429 09:57:01.740419 8162 solver.cpp:406] Test net output #77: loss2/loss02 = 1.64259 (* 0.0272727 = 0.0447979 loss)
I0429 09:57:01.740464 8162 solver.cpp:406] Test net output #78: loss2/loss03 = 2.10344 (* 0.0272727 = 0.0573665 loss)
I0429 09:57:01.740492 8162 solver.cpp:406] Test net output #79: loss2/loss04 = 1.9355 (* 0.0272727 = 0.0527864 loss)
I0429 09:57:01.740519 8162 solver.cpp:406] Test net output #80: loss2/loss05 = 1.7863 (* 0.0272727 = 0.0487172 loss)
I0429 09:57:01.740545 8162 solver.cpp:406] Test net output #81: loss2/loss06 = 1.49771 (* 0.0272727 = 0.0408468 loss)
I0429 09:57:01.740571 8162 solver.cpp:406] Test net output #82: loss2/loss07 = 1.0658 (* 0.0272727 = 0.0290674 loss)
I0429 09:57:01.740599 8162 solver.cpp:406] Test net output #83: loss2/loss08 = 0.636826 (* 0.0272727 = 0.017368 loss)
I0429 09:57:01.740627 8162 solver.cpp:406] Test net output #84: loss2/loss09 = 0.388571 (* 0.0272727 = 0.0105974 loss)
I0429 09:57:01.740653 8162 solver.cpp:406] Test net output #85: loss2/loss10 = 0.300515 (* 0.0272727 = 0.00819587 loss)
I0429 09:57:01.740679 8162 solver.cpp:406] Test net output #86: loss2/loss11 = 0.242 (* 0.0272727 = 0.00660001 loss)
I0429 09:57:01.740705 8162 solver.cpp:406] Test net output #87: loss2/loss12 = 0.203657 (* 0.0272727 = 0.00555428 loss)
I0429 09:57:01.740731 8162 solver.cpp:406] Test net output #88: loss2/loss13 = 0.164164 (* 0.0272727 = 0.0044772 loss)
I0429 09:57:01.740756 8162 solver.cpp:406] Test net output #89: loss2/loss14 = 0.137038 (* 0.0272727 = 0.00373739 loss)
I0429 09:57:01.740782 8162 solver.cpp:406] Test net output #90: loss2/loss15 = 0.09895 (* 0.0272727 = 0.00269864 loss)
I0429 09:57:01.740809 8162 solver.cpp:406] Test net output #91: loss2/loss16 = 0.0683863 (* 0.0272727 = 0.00186508 loss)
I0429 09:57:01.740834 8162 solver.cpp:406] Test net output #92: loss2/loss17 = 0.0631321 (* 0.0272727 = 0.00172178 loss)
I0429 09:57:01.740860 8162 solver.cpp:406] Test net output #93: loss2/loss18 = 0.0368443 (* 0.0272727 = 0.00100484 loss)
I0429 09:57:01.740887 8162 solver.cpp:406] Test net output #94: loss2/loss19 = 0.0281867 (* 0.0272727 = 0.000768729 loss)
I0429 09:57:01.740913 8162 solver.cpp:406] Test net output #95: loss2/loss20 = 0.0178347 (* 0.0272727 = 0.000486401 loss)
I0429 09:57:01.740939 8162 solver.cpp:406] Test net output #96: loss2/loss21 = 0.00769812 (* 0.0272727 = 0.000209949 loss)
I0429 09:57:01.740965 8162 solver.cpp:406] Test net output #97: loss2/loss22 = 0.00936385 (* 0.0272727 = 0.000255378 loss)
I0429 09:57:01.740986 8162 solver.cpp:406] Test net output #98: loss3/accuracy = 0.620516
I0429 09:57:01.741008 8162 solver.cpp:406] Test net output #99: loss3/accuracy01 = 0.784
I0429 09:57:01.741031 8162 solver.cpp:406] Test net output #100: loss3/accuracy02 = 0.687
I0429 09:57:01.741052 8162 solver.cpp:406] Test net output #101: loss3/accuracy03 = 0.61
I0429 09:57:01.741073 8162 solver.cpp:406] Test net output #102: loss3/accuracy04 = 0.565
I0429 09:57:01.741094 8162 solver.cpp:406] Test net output #103: loss3/accuracy05 = 0.56
I0429 09:57:01.741117 8162 solver.cpp:406] Test net output #104: loss3/accuracy06 = 0.622
I0429 09:57:01.741137 8162 solver.cpp:406] Test net output #105: loss3/accuracy07 = 0.737
I0429 09:57:01.741158 8162 solver.cpp:406] Test net output #106: loss3/accuracy08 = 0.84
I0429 09:57:01.741179 8162 solver.cpp:406] Test net output #107: loss3/accuracy09 = 0.9
I0429 09:57:01.741201 8162 solver.cpp:406] Test net output #108: loss3/accuracy10 = 0.92
I0429 09:57:01.741222 8162 solver.cpp:406] Test net output #109: loss3/accuracy11 = 0.94
I0429 09:57:01.741243 8162 solver.cpp:406] Test net output #110: loss3/accuracy12 = 0.947
I0429 09:57:01.741264 8162 solver.cpp:406] Test net output #111: loss3/accuracy13 = 0.96
I0429 09:57:01.741286 8162 solver.cpp:406] Test net output #112: loss3/accuracy14 = 0.969
I0429 09:57:01.741307 8162 solver.cpp:406] Test net output #113: loss3/accuracy15 = 0.974
I0429 09:57:01.741327 8162 solver.cpp:406] Test net output #114: loss3/accuracy16 = 0.982
I0429 09:57:01.741363 8162 solver.cpp:406] Test net output #115: loss3/accuracy17 = 0.988
I0429 09:57:01.741384 8162 solver.cpp:406] Test net output #116: loss3/accuracy18 = 0.993
I0429 09:57:01.741406 8162 solver.cpp:406] Test net output #117: loss3/accuracy19 = 0.996
I0429 09:57:01.741432 8162 solver.cpp:406] Test net output #118: loss3/accuracy20 = 0.997
I0429 09:57:01.741454 8162 solver.cpp:406] Test net output #119: loss3/accuracy21 = 0.999
I0429 09:57:01.741474 8162 solver.cpp:406] Test net output #120: loss3/accuracy22 = 0.999
I0429 09:57:01.741495 8162 solver.cpp:406] Test net output #121: loss3/accuracy_incl_empty = 0.861183
I0429 09:57:01.741518 8162 solver.cpp:406] Test net output #122: loss3/accuracy_top3 = 0.802608
I0429 09:57:01.741544 8162 solver.cpp:406] Test net output #123: loss3/cross_entropy_loss = 1.31886 (* 1 = 1.31886 loss)
I0429 09:57:01.741569 8162 solver.cpp:406] Test net output #124: loss3/cross_entropy_loss_incl_empty = 0.485455 (* 1 = 0.485455 loss)
I0429 09:57:01.741596 8162 solver.cpp:406] Test net output #125: loss3/loss01 = 0.858938 (* 0.0909091 = 0.0780853 loss)
I0429 09:57:01.741622 8162 solver.cpp:406] Test net output #126: loss3/loss02 = 1.12261 (* 0.0909091 = 0.102056 loss)
I0429 09:57:01.741652 8162 solver.cpp:406] Test net output #127: loss3/loss03 = 1.42316 (* 0.0909091 = 0.129378 loss)
I0429 09:57:01.741680 8162 solver.cpp:406] Test net output #128: loss3/loss04 = 1.47553 (* 0.0909091 = 0.134139 loss)
I0429 09:57:01.741705 8162 solver.cpp:406] Test net output #129: loss3/loss05 = 1.44419 (* 0.0909091 = 0.13129 loss)
I0429 09:57:01.741730 8162 solver.cpp:406] Test net output #130: loss3/loss06 = 1.29817 (* 0.0909091 = 0.118015 loss)
I0429 09:57:01.741757 8162 solver.cpp:406] Test net output #131: loss3/loss07 = 0.861413 (* 0.0909091 = 0.0783103 loss)
I0429 09:57:01.741782 8162 solver.cpp:406] Test net output #132: loss3/loss08 = 0.56621 (* 0.0909091 = 0.0514736 loss)
I0429 09:57:01.741808 8162 solver.cpp:406] Test net output #133: loss3/loss09 = 0.370086 (* 0.0909091 = 0.0336442 loss)
I0429 09:57:01.741834 8162 solver.cpp:406] Test net output #134: loss3/loss10 = 0.282491 (* 0.0909091 = 0.025681 loss)
I0429 09:57:01.741861 8162 solver.cpp:406] Test net output #135: loss3/loss11 = 0.230937 (* 0.0909091 = 0.0209943 loss)
I0429 09:57:01.741886 8162 solver.cpp:406] Test net output #136: loss3/loss12 = 0.198974 (* 0.0909091 = 0.0180885 loss)
I0429 09:57:01.741912 8162 solver.cpp:406] Test net output #137: loss3/loss13 = 0.163203 (* 0.0909091 = 0.0148367 loss)
I0429 09:57:01.741938 8162 solver.cpp:406] Test net output #138: loss3/loss14 = 0.130555 (* 0.0909091 = 0.0118686 loss)
I0429 09:57:01.741964 8162 solver.cpp:406] Test net output #139: loss3/loss15 = 0.0947238 (* 0.0909091 = 0.00861125 loss)
I0429 09:57:01.741992 8162 solver.cpp:406] Test net output #140: loss3/loss16 = 0.064932 (* 0.0909091 = 0.00590291 loss)
I0429 09:57:01.742014 8162 solver.cpp:406] Test net output #141: loss3/loss17 = 0.0558924 (* 0.0909091 = 0.00508113 loss)
I0429 09:57:01.742043 8162 solver.cpp:406] Test net output #142: loss3/loss18 = 0.0361105 (* 0.0909091 = 0.00328277 loss)
I0429 09:57:01.742069 8162 solver.cpp:406] Test net output #143: loss3/loss19 = 0.0280459 (* 0.0909091 = 0.00254963 loss)
I0429 09:57:01.742096 8162 solver.cpp:406] Test net output #144: loss3/loss20 = 0.0157792 (* 0.0909091 = 0.00143447 loss)
I0429 09:57:01.742122 8162 solver.cpp:406] Test net output #145: loss3/loss21 = 0.0066636 (* 0.0909091 = 0.000605782 loss)
I0429 09:57:01.742148 8162 solver.cpp:406] Test net output #146: loss3/loss22 = 0.00865702 (* 0.0909091 = 0.000787002 loss)
I0429 09:57:01.742172 8162 solver.cpp:406] Test net output #147: total_accuracy = 0.223
I0429 09:57:01.742192 8162 solver.cpp:406] Test net output #148: total_accuracy_not_rec = 0.203
I0429 09:57:01.742214 8162 solver.cpp:406] Test net output #149: total_confidence = 0.189799
I0429 09:57:01.742252 8162 solver.cpp:406] Test net output #150: total_confidence_not_rec = 0.172
I0429 09:57:01.921727 8162 solver.cpp:229] Iteration 5000, loss = 5.76052
I0429 09:57:01.921795 8162 solver.cpp:245] Train net output #0: loss1/accuracy = 0.384615
I0429 09:57:01.921813 8162 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.625
I0429 09:57:01.921826 8162 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.375
I0429 09:57:01.921839 8162 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375
I0429 09:57:01.921851 8162 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.5
I0429 09:57:01.921864 8162 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.625
I0429 09:57:01.921876 8162 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.625
I0429 09:57:01.921888 8162 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.75
I0429 09:57:01.921901 8162 solver.cpp:245] Train net output #8: loss1/accuracy08 = 1
I0429 09:57:01.921913 8162 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1
I0429 09:57:01.921926 8162 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0429 09:57:01.921937 8162 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0429 09:57:01.921949 8162 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0429 09:57:01.921962 8162 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0429 09:57:01.921973 8162 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0429 09:57:01.921985 8162 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0429 09:57:01.921998 8162 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0429 09:57:01.922010 8162 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0429 09:57:01.922021 8162 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0429 09:57:01.922034 8162 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0429 09:57:01.922046 8162 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0429 09:57:01.922058 8162 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0429 09:57:01.922070 8162 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0429 09:57:01.922081 8162 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.840909
I0429 09:57:01.922094 8162 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.641026
I0429 09:57:01.922111 8162 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.98184 (* 0.3 = 0.594553 loss)
I0429 09:57:01.922125 8162 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.566295 (* 0.3 = 0.169888 loss)
I0429 09:57:01.922140 8162 solver.cpp:245] Train net output #27: loss1/loss01 = 1.37386 (* 0.0272727 = 0.0374689 loss)
I0429 09:57:01.922155 8162 solver.cpp:245] Train net output #28: loss1/loss02 = 2.49978 (* 0.0272727 = 0.0681758 loss)
I0429 09:57:01.922169 8162 solver.cpp:245] Train net output #29: loss1/loss03 = 1.98147 (* 0.0272727 = 0.05404 loss)
I0429 09:57:01.922183 8162 solver.cpp:245] Train net output #30: loss1/loss04 = 1.65465 (* 0.0272727 = 0.0451269 loss)
I0429 09:57:01.922197 8162 solver.cpp:245] Train net output #31: loss1/loss05 = 1.43171 (* 0.0272727 = 0.0390465 loss)
I0429 09:57:01.922212 8162 solver.cpp:245] Train net output #32: loss1/loss06 = 1.26972 (* 0.0272727 = 0.0346287 loss)
I0429 09:57:01.922226 8162 solver.cpp:245] Train net output #33: loss1/loss07 = 0.853832 (* 0.0272727 = 0.0232863 loss)
I0429 09:57:01.922240 8162 solver.cpp:245] Train net output #34: loss1/loss08 = 0.114312 (* 0.0272727 = 0.0031176 loss)
I0429 09:57:01.922256 8162 solver.cpp:245] Train net output #35: loss1/loss09 = 0.0176002 (* 0.0272727 = 0.000480005 loss)
I0429 09:57:01.922271 8162 solver.cpp:245] Train net output #36: loss1/loss10 = 0.0121951 (* 0.0272727 = 0.000332594 loss)
I0429 09:57:01.922286 8162 solver.cpp:245] Train net output #37: loss1/loss11 = 0.0102728 (* 0.0272727 = 0.000280168 loss)
I0429 09:57:01.922335 8162 solver.cpp:245] Train net output #38: loss1/loss12 = 0.00897093 (* 0.0272727 = 0.000244662 loss)
I0429 09:57:01.922351 8162 solver.cpp:245] Train net output #39: loss1/loss13 = 0.0123344 (* 0.0272727 = 0.000336391 loss)
I0429 09:57:01.922370 8162 solver.cpp:245] Train net output #40: loss1/loss14 = 0.00589369 (* 0.0272727 = 0.000160737 loss)
I0429 09:57:01.922385 8162 solver.cpp:245] Train net output #41: loss1/loss15 = 0.00732313 (* 0.0272727 = 0.000199722 loss)
I0429 09:57:01.922399 8162 solver.cpp:245] Train net output #42: loss1/loss16 = 0.0107056 (* 0.0272727 = 0.000291972 loss)
I0429 09:57:01.922415 8162 solver.cpp:245] Train net output #43: loss1/loss17 = 0.00887238 (* 0.0272727 = 0.000241974 loss)
I0429 09:57:01.922428 8162 solver.cpp:245] Train net output #44: loss1/loss18 = 0.00740209 (* 0.0272727 = 0.000201875 loss)
I0429 09:57:01.922442 8162 solver.cpp:245] Train net output #45: loss1/loss19 = 0.0124989 (* 0.0272727 = 0.00034088 loss)
I0429 09:57:01.922456 8162 solver.cpp:245] Train net output #46: loss1/loss20 = 0.0107196 (* 0.0272727 = 0.000292353 loss)
I0429 09:57:01.922471 8162 solver.cpp:245] Train net output #47: loss1/loss21 = 0.00838802 (* 0.0272727 = 0.000228764 loss)
I0429 09:57:01.922484 8162 solver.cpp:245] Train net output #48: loss1/loss22 = 0.00475515 (* 0.0272727 = 0.000129686 loss)
I0429 09:57:01.922497 8162 solver.cpp:245] Train net output #49: loss2/accuracy = 0.358974
I0429 09:57:01.922510 8162 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.625
I0429 09:57:01.922523 8162 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.375
I0429 09:57:01.922535 8162 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.25
I0429 09:57:01.922547 8162 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.375
I0429 09:57:01.922559 8162 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.625
I0429 09:57:01.922575 8162 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.75
I0429 09:57:01.922585 8162 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.75
I0429 09:57:01.922592 8162 solver.cpp:245] Train net output #57: loss2/accuracy08 = 1
I0429 09:57:01.922606 8162 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1
I0429 09:57:01.922618 8162 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0429 09:57:01.922631 8162 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0429 09:57:01.922642 8162 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0429 09:57:01.922654 8162 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0429 09:57:01.922667 8162 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0429 09:57:01.922679 8162 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0429 09:57:01.922691 8162 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0429 09:57:01.922703 8162 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0429 09:57:01.922715 8162 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0429 09:57:01.922727 8162 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0429 09:57:01.922739 8162 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0429 09:57:01.922751 8162 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0429 09:57:01.922763 8162 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0429 09:57:01.922775 8162 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.818182
I0429 09:57:01.922787 8162 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.641026
I0429 09:57:01.922802 8162 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 2.05659 (* 0.3 = 0.616976 loss)
I0429 09:57:01.922816 8162 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.631416 (* 0.3 = 0.189425 loss)
I0429 09:57:01.922843 8162 solver.cpp:245] Train net output #76: loss2/loss01 = 1.37258 (* 0.0272727 = 0.0374339 loss)
I0429 09:57:01.922858 8162 solver.cpp:245] Train net output #77: loss2/loss02 = 2.89437 (* 0.0272727 = 0.0789374 loss)
I0429 09:57:01.922873 8162 solver.cpp:245] Train net output #78: loss2/loss03 = 2.71078 (* 0.0272727 = 0.0739303 loss)
I0429 09:57:01.922888 8162 solver.cpp:245] Train net output #79: loss2/loss04 = 1.84648 (* 0.0272727 = 0.0503584 loss)
I0429 09:57:01.922901 8162 solver.cpp:245] Train net output #80: loss2/loss05 = 1.54414 (* 0.0272727 = 0.0421129 loss)
I0429 09:57:01.922915 8162 solver.cpp:245] Train net output #81: loss2/loss06 = 1.4691 (* 0.0272727 = 0.0400663 loss)
I0429 09:57:01.922930 8162 solver.cpp:245] Train net output #82: loss2/loss07 = 0.867661 (* 0.0272727 = 0.0236635 loss)
I0429 09:57:01.922945 8162 solver.cpp:245] Train net output #83: loss2/loss08 = 0.186428 (* 0.0272727 = 0.00508441 loss)
I0429 09:57:01.922958 8162 solver.cpp:245] Train net output #84: loss2/loss09 = 0.0223615 (* 0.0272727 = 0.00060986 loss)
I0429 09:57:01.922972 8162 solver.cpp:245] Train net output #85: loss2/loss10 = 0.0102258 (* 0.0272727 = 0.000278884 loss)
I0429 09:57:01.922987 8162 solver.cpp:245] Train net output #86: loss2/loss11 = 0.00985196 (* 0.0272727 = 0.00026869 loss)
I0429 09:57:01.923002 8162 solver.cpp:245] Train net output #87: loss2/loss12 = 0.0055841 (* 0.0272727 = 0.000152294 loss)
I0429 09:57:01.923015 8162 solver.cpp:245] Train net output #88: loss2/loss13 = 0.0059498 (* 0.0272727 = 0.000162267 loss)
I0429 09:57:01.923030 8162 solver.cpp:245] Train net output #89: loss2/loss14 = 0.00478276 (* 0.0272727 = 0.000130439 loss)
I0429 09:57:01.923044 8162 solver.cpp:245] Train net output #90: loss2/loss15 = 0.00255984 (* 0.0272727 = 6.98138e-05 loss)
I0429 09:57:01.923059 8162 solver.cpp:245] Train net output #91: loss2/loss16 = 0.0030063 (* 0.0272727 = 8.199e-05 loss)
I0429 09:57:01.923074 8162 solver.cpp:245] Train net output #92: loss2/loss17 = 0.00302732 (* 0.0272727 = 8.25634e-05 loss)
I0429 09:57:01.923089 8162 solver.cpp:245] Train net output #93: loss2/loss18 = 0.00308267 (* 0.0272727 = 8.40727e-05 loss)
I0429 09:57:01.923104 8162 solver.cpp:245] Train net output #94: loss2/loss19 = 0.0025921 (* 0.0272727 = 7.06936e-05 loss)
I0429 09:57:01.923117 8162 solver.cpp:245] Train net output #95: loss2/loss20 = 0.00369513 (* 0.0272727 = 0.000100776 loss)
I0429 09:57:01.923131 8162 solver.cpp:245] Train net output #96: loss2/loss21 = 0.00256679 (* 0.0272727 = 7.00033e-05 loss)
I0429 09:57:01.923146 8162 solver.cpp:245] Train net output #97: loss2/loss22 = 0.00198528 (* 0.0272727 = 5.41439e-05 loss)
I0429 09:57:01.923158 8162 solver.cpp:245] Train net output #98: loss3/accuracy = 0.589744
I0429 09:57:01.923171 8162 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.75
I0429 09:57:01.923183 8162 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.625
I0429 09:57:01.923195 8162 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.75
I0429 09:57:01.923208 8162 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.625
I0429 09:57:01.923219 8162 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.75
I0429 09:57:01.923233 8162 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.75
I0429 09:57:01.923244 8162 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.625
I0429 09:57:01.923256 8162 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1
I0429 09:57:01.923269 8162 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1
I0429 09:57:01.923280 8162 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0429 09:57:01.923291 8162 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0429 09:57:01.923303 8162 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0429 09:57:01.923316 8162 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0429 09:57:01.923336 8162 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0429 09:57:01.923349 8162 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0429 09:57:01.923362 8162 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0429 09:57:01.923373 8162 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0429 09:57:01.923385 8162 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0429 09:57:01.923398 8162 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0429 09:57:01.923409 8162 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0429 09:57:01.923425 8162 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0429 09:57:01.923439 8162 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0429 09:57:01.923450 8162 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.880682
I0429 09:57:01.923462 8162 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.846154
I0429 09:57:01.923493 8162 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.2661 (* 1 = 1.2661 loss)
I0429 09:57:01.923508 8162 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.394891 (* 1 = 0.394891 loss)
I0429 09:57:01.923523 8162 solver.cpp:245] Train net output #125: loss3/loss01 = 0.817824 (* 0.0909091 = 0.0743476 loss)
I0429 09:57:01.923538 8162 solver.cpp:245] Train net output #126: loss3/loss02 = 1.20538 (* 0.0909091 = 0.10958 loss)
I0429 09:57:01.923552 8162 solver.cpp:245] Train net output #127: loss3/loss03 = 1.16716 (* 0.0909091 = 0.106105 loss)
I0429 09:57:01.923566 8162 solver.cpp:245] Train net output #128: loss3/loss04 = 1.38829 (* 0.0909091 = 0.126208 loss)
I0429 09:57:01.923580 8162 solver.cpp:245] Train net output #129: loss3/loss05 = 0.884449 (* 0.0909091 = 0.0804045 loss)
I0429 09:57:01.923594 8162 solver.cpp:245] Train net output #130: loss3/loss06 = 1.01332 (* 0.0909091 = 0.0921199 loss)
I0429 09:57:01.923609 8162 solver.cpp:245] Train net output #131: loss3/loss07 = 0.611597 (* 0.0909091 = 0.0555998 loss)
I0429 09:57:01.923626 8162 solver.cpp:245] Train net output #132: loss3/loss08 = 0.147473 (* 0.0909091 = 0.0134066 loss)
I0429 09:57:01.923641 8162 solver.cpp:245] Train net output #133: loss3/loss09 = 0.00931696 (* 0.0909091 = 0.000846996 loss)
I0429 09:57:01.923655 8162 solver.cpp:245] Train net output #134: loss3/loss10 = 0.00223513 (* 0.0909091 = 0.000203194 loss)
I0429 09:57:01.923669 8162 solver.cpp:245] Train net output #135: loss3/loss11 = 0.000964546 (* 0.0909091 = 8.7686e-05 loss)
I0429 09:57:01.923684 8162 solver.cpp:245] Train net output #136: loss3/loss12 = 0.000445226 (* 0.0909091 = 4.04751e-05 loss)
I0429 09:57:01.923699 8162 solver.cpp:245] Train net output #137: loss3/loss13 = 0.000312583 (* 0.0909091 = 2.84166e-05 loss)
I0429 09:57:01.923713 8162 solver.cpp:245] Train net output #138: loss3/loss14 = 0.000206997 (* 0.0909091 = 1.88179e-05 loss)
I0429 09:57:01.923729 8162 solver.cpp:245] Train net output #139: loss3/loss15 = 0.000144023 (* 0.0909091 = 1.3093e-05 loss)
I0429 09:57:01.923743 8162 solver.cpp:245] Train net output #140: loss3/loss16 = 9.34823e-05 (* 0.0909091 = 8.49839e-06 loss)
I0429 09:57:01.923758 8162 solver.cpp:245] Train net output #141: loss3/loss17 = 5.31752e-05 (* 0.0909091 = 4.83411e-06 loss)
I0429 09:57:01.923773 8162 solver.cpp:245] Train net output #142: loss3/loss18 = 4.29283e-05 (* 0.0909091 = 3.90257e-06 loss)
I0429 09:57:01.923787 8162 solver.cpp:245] Train net output #143: loss3/loss19 = 4.06334e-05 (* 0.0909091 = 3.69394e-06 loss)
I0429 09:57:01.923801 8162 solver.cpp:245] Train net output #144: loss3/loss20 = 3.37622e-05 (* 0.0909091 = 3.0693e-06 loss)
I0429 09:57:01.923826 8162 solver.cpp:245] Train net output #145: loss3/loss21 = 3.40753e-05 (* 0.0909091 = 3.09776e-06 loss)
I0429 09:57:01.923847 8162 solver.cpp:245] Train net output #146: loss3/loss22 = 2.3583e-05 (* 0.0909091 = 2.14391e-06 loss)
I0429 09:57:01.923872 8162 solver.cpp:245] Train net output #147: total_accuracy = 0.125
I0429 09:57:01.923887 8162 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.125
I0429 09:57:01.923898 8162 solver.cpp:245] Train net output #149: total_confidence = 0.256308
I0429 09:57:01.923910 8162 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.215388
I0429 09:57:01.923924 8162 sgd_solver.cpp:106] Iteration 5000, lr = 0.005
I0429 09:59:18.617208 8162 solver.cpp:229] Iteration 5500, loss = 5.61746
I0429 09:59:18.617375 8162 solver.cpp:245] Train net output #0: loss1/accuracy = 0.25
I0429 09:59:18.617396 8162 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.5
I0429 09:59:18.617410 8162 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.25
I0429 09:59:18.617424 8162 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.25
I0429 09:59:18.617435 8162 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.125
I0429 09:59:18.617449 8162 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.25
I0429 09:59:18.617460 8162 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.25
I0429 09:59:18.617472 8162 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.625
I0429 09:59:18.617486 8162 solver.cpp:245] Train net output #8: loss1/accuracy08 = 1
I0429 09:59:18.617497 8162 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1
I0429 09:59:18.617517 8162 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0429 09:59:18.617538 8162 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0429 09:59:18.617553 8162 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0429 09:59:18.617565 8162 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0429 09:59:18.617578 8162 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0429 09:59:18.617590 8162 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0429 09:59:18.617602 8162 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0429 09:59:18.617614 8162 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0429 09:59:18.617627 8162 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0429 09:59:18.617638 8162 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0429 09:59:18.617651 8162 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0429 09:59:18.617663 8162 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0429 09:59:18.617676 8162 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0429 09:59:18.617696 8162 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.789773
I0429 09:59:18.617717 8162 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.458333
I0429 09:59:18.617744 8162 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 2.66456 (* 0.3 = 0.799367 loss)
I0429 09:59:18.617769 8162 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.799345 (* 0.3 = 0.239804 loss)
I0429 09:59:18.617795 8162 solver.cpp:245] Train net output #27: loss1/loss01 = 2.07281 (* 0.0272727 = 0.0565311 loss)
I0429 09:59:18.617820 8162 solver.cpp:245] Train net output #28: loss1/loss02 = 2.67328 (* 0.0272727 = 0.0729076 loss)
I0429 09:59:18.617846 8162 solver.cpp:245] Train net output #29: loss1/loss03 = 3.03027 (* 0.0272727 = 0.0826438 loss)
I0429 09:59:18.617872 8162 solver.cpp:245] Train net output #30: loss1/loss04 = 3.03942 (* 0.0272727 = 0.0828932 loss)
I0429 09:59:18.617899 8162 solver.cpp:245] Train net output #31: loss1/loss05 = 2.9035 (* 0.0272727 = 0.0791864 loss)
I0429 09:59:18.617923 8162 solver.cpp:245] Train net output #32: loss1/loss06 = 2.06186 (* 0.0272727 = 0.0562325 loss)
I0429 09:59:18.617938 8162 solver.cpp:245] Train net output #33: loss1/loss07 = 0.88802 (* 0.0272727 = 0.0242187 loss)
I0429 09:59:18.617952 8162 solver.cpp:245] Train net output #34: loss1/loss08 = 0.139336 (* 0.0272727 = 0.00380007 loss)
I0429 09:59:18.617967 8162 solver.cpp:245] Train net output #35: loss1/loss09 = 0.078301 (* 0.0272727 = 0.00213548 loss)
I0429 09:59:18.617981 8162 solver.cpp:245] Train net output #36: loss1/loss10 = 0.0610623 (* 0.0272727 = 0.00166534 loss)
I0429 09:59:18.617996 8162 solver.cpp:245] Train net output #37: loss1/loss11 = 0.0512124 (* 0.0272727 = 0.0013967 loss)
I0429 09:59:18.618012 8162 solver.cpp:245] Train net output #38: loss1/loss12 = 0.0351605 (* 0.0272727 = 0.000958922 loss)
I0429 09:59:18.618026 8162 solver.cpp:245] Train net output #39: loss1/loss13 = 0.044078 (* 0.0272727 = 0.00120213 loss)
I0429 09:59:18.618062 8162 solver.cpp:245] Train net output #40: loss1/loss14 = 0.0327927 (* 0.0272727 = 0.000894346 loss)
I0429 09:59:18.618077 8162 solver.cpp:245] Train net output #41: loss1/loss15 = 0.0310102 (* 0.0272727 = 0.000845734 loss)
I0429 09:59:18.618093 8162 solver.cpp:245] Train net output #42: loss1/loss16 = 0.0255511 (* 0.0272727 = 0.000696849 loss)
I0429 09:59:18.618108 8162 solver.cpp:245] Train net output #43: loss1/loss17 = 0.0260817 (* 0.0272727 = 0.000711318 loss)
I0429 09:59:18.618121 8162 solver.cpp:245] Train net output #44: loss1/loss18 = 0.0278997 (* 0.0272727 = 0.000760902 loss)
I0429 09:59:18.618136 8162 solver.cpp:245] Train net output #45: loss1/loss19 = 0.0350666 (* 0.0272727 = 0.000956361 loss)
I0429 09:59:18.618150 8162 solver.cpp:245] Train net output #46: loss1/loss20 = 0.032391 (* 0.0272727 = 0.00088339 loss)
I0429 09:59:18.618165 8162 solver.cpp:245] Train net output #47: loss1/loss21 = 0.0356512 (* 0.0272727 = 0.000972306 loss)
I0429 09:59:18.618186 8162 solver.cpp:245] Train net output #48: loss1/loss22 = 0.0304945 (* 0.0272727 = 0.000831669 loss)
I0429 09:59:18.618211 8162 solver.cpp:245] Train net output #49: loss2/accuracy = 0.291667
I0429 09:59:18.618237 8162 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.5
I0429 09:59:18.618264 8162 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.375
I0429 09:59:18.618285 8162 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.25
I0429 09:59:18.618299 8162 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0
I0429 09:59:18.618314 8162 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.25
I0429 09:59:18.618327 8162 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.5
I0429 09:59:18.618340 8162 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.625
I0429 09:59:18.618352 8162 solver.cpp:245] Train net output #57: loss2/accuracy08 = 1
I0429 09:59:18.618363 8162 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1
I0429 09:59:18.618376 8162 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0429 09:59:18.618392 8162 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0429 09:59:18.618404 8162 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0429 09:59:18.618417 8162 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0429 09:59:18.618428 8162 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0429 09:59:18.618440 8162 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0429 09:59:18.618453 8162 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0429 09:59:18.618464 8162 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0429 09:59:18.618476 8162 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0429 09:59:18.618487 8162 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0429 09:59:18.618499 8162 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0429 09:59:18.618511 8162 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0429 09:59:18.618523 8162 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0429 09:59:18.618535 8162 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.795455
I0429 09:59:18.618547 8162 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.520833
I0429 09:59:18.618562 8162 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 2.33597 (* 0.3 = 0.700792 loss)
I0429 09:59:18.618577 8162 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.684714 (* 0.3 = 0.205414 loss)
I0429 09:59:18.618590 8162 solver.cpp:245] Train net output #76: loss2/loss01 = 1.54208 (* 0.0272727 = 0.0420567 loss)
I0429 09:59:18.618605 8162 solver.cpp:245] Train net output #77: loss2/loss02 = 2.16545 (* 0.0272727 = 0.0590577 loss)
I0429 09:59:18.618633 8162 solver.cpp:245] Train net output #78: loss2/loss03 = 2.367 (* 0.0272727 = 0.0645546 loss)
I0429 09:59:18.618649 8162 solver.cpp:245] Train net output #79: loss2/loss04 = 3.49826 (* 0.0272727 = 0.095407 loss)
I0429 09:59:18.618662 8162 solver.cpp:245] Train net output #80: loss2/loss05 = 2.47163 (* 0.0272727 = 0.0674082 loss)
I0429 09:59:18.618676 8162 solver.cpp:245] Train net output #81: loss2/loss06 = 2.02101 (* 0.0272727 = 0.0551184 loss)
I0429 09:59:18.618690 8162 solver.cpp:245] Train net output #82: loss2/loss07 = 0.997177 (* 0.0272727 = 0.0271957 loss)
I0429 09:59:18.618705 8162 solver.cpp:245] Train net output #83: loss2/loss08 = 0.0868252 (* 0.0272727 = 0.00236796 loss)
I0429 09:59:18.618719 8162 solver.cpp:245] Train net output #84: loss2/loss09 = 0.0646869 (* 0.0272727 = 0.00176419 loss)
I0429 09:59:18.618733 8162 solver.cpp:245] Train net output #85: loss2/loss10 = 0.0496877 (* 0.0272727 = 0.00135512 loss)
I0429 09:59:18.618748 8162 solver.cpp:245] Train net output #86: loss2/loss11 = 0.0458215 (* 0.0272727 = 0.00124968 loss)
I0429 09:59:18.618763 8162 solver.cpp:245] Train net output #87: loss2/loss12 = 0.0342485 (* 0.0272727 = 0.000934051 loss)
I0429 09:59:18.618777 8162 solver.cpp:245] Train net output #88: loss2/loss13 = 0.0318022 (* 0.0272727 = 0.000867333 loss)
I0429 09:59:18.618791 8162 solver.cpp:245] Train net output #89: loss2/loss14 = 0.0264434 (* 0.0272727 = 0.000721185 loss)
I0429 09:59:18.618806 8162 solver.cpp:245] Train net output #90: loss2/loss15 = 0.0238262 (* 0.0272727 = 0.000649805 loss)
I0429 09:59:18.618820 8162 solver.cpp:245] Train net output #91: loss2/loss16 = 0.0205712 (* 0.0272727 = 0.000561032 loss)
I0429 09:59:18.618834 8162 solver.cpp:245] Train net output #92: loss2/loss17 = 0.0245469 (* 0.0272727 = 0.000669461 loss)
I0429 09:59:18.618849 8162 solver.cpp:245] Train net output #93: loss2/loss18 = 0.0237327 (* 0.0272727 = 0.000647256 loss)
I0429 09:59:18.618863 8162 solver.cpp:245] Train net output #94: loss2/loss19 = 0.029031 (* 0.0272727 = 0.000791756 loss)
I0429 09:59:18.618877 8162 solver.cpp:245] Train net output #95: loss2/loss20 = 0.0218273 (* 0.0272727 = 0.000595291 loss)
I0429 09:59:18.618892 8162 solver.cpp:245] Train net output #96: loss2/loss21 = 0.022932 (* 0.0272727 = 0.000625418 loss)
I0429 09:59:18.618906 8162 solver.cpp:245] Train net output #97: loss2/loss22 = 0.0198428 (* 0.0272727 = 0.000541167 loss)
I0429 09:59:18.618919 8162 solver.cpp:245] Train net output #98: loss3/accuracy = 0.583333
I0429 09:59:18.618932 8162 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.625
I0429 09:59:18.618944 8162 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.625
I0429 09:59:18.618957 8162 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.625
I0429 09:59:18.618968 8162 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.375
I0429 09:59:18.618980 8162 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.375
I0429 09:59:18.618993 8162 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.75
I0429 09:59:18.619004 8162 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875
I0429 09:59:18.619016 8162 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1
I0429 09:59:18.619029 8162 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1
I0429 09:59:18.619040 8162 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0429 09:59:18.619052 8162 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0429 09:59:18.619065 8162 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0429 09:59:18.619076 8162 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0429 09:59:18.619087 8162 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0429 09:59:18.619099 8162 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0429 09:59:18.619112 8162 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0429 09:59:18.619132 8162 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0429 09:59:18.619146 8162 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0429 09:59:18.619158 8162 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0429 09:59:18.619170 8162 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0429 09:59:18.619182 8162 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0429 09:59:18.619195 8162 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0429 09:59:18.619207 8162 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.880682
I0429 09:59:18.619220 8162 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.791667
I0429 09:59:18.619235 8162 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.52375 (* 1 = 1.52375 loss)
I0429 09:59:18.619248 8162 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.439985 (* 1 = 0.439985 loss)
I0429 09:59:18.619263 8162 solver.cpp:245] Train net output #125: loss3/loss01 = 1.23447 (* 0.0909091 = 0.112224 loss)
I0429 09:59:18.619278 8162 solver.cpp:245] Train net output #126: loss3/loss02 = 1.39027 (* 0.0909091 = 0.126388 loss)
I0429 09:59:18.619292 8162 solver.cpp:245] Train net output #127: loss3/loss03 = 1.75409 (* 0.0909091 = 0.159463 loss)
I0429 09:59:18.619307 8162 solver.cpp:245] Train net output #128: loss3/loss04 = 2.29217 (* 0.0909091 = 0.208379 loss)
I0429 09:59:18.619320 8162 solver.cpp:245] Train net output #129: loss3/loss05 = 1.91437 (* 0.0909091 = 0.174033 loss)
I0429 09:59:18.619334 8162 solver.cpp:245] Train net output #130: loss3/loss06 = 0.987119 (* 0.0909091 = 0.0897381 loss)
I0429 09:59:18.619349 8162 solver.cpp:245] Train net output #131: loss3/loss07 = 0.551441 (* 0.0909091 = 0.050131 loss)
I0429 09:59:18.619366 8162 solver.cpp:245] Train net output #132: loss3/loss08 = 0.0363728 (* 0.0909091 = 0.00330662 loss)
I0429 09:59:18.619381 8162 solver.cpp:245] Train net output #133: loss3/loss09 = 0.0296609 (* 0.0909091 = 0.00269645 loss)
I0429 09:59:18.619392 8162 solver.cpp:245] Train net output #134: loss3/loss10 = 0.0220051 (* 0.0909091 = 0.00200046 loss)
I0429 09:59:18.619407 8162 solver.cpp:245] Train net output #135: loss3/loss11 = 0.0223708 (* 0.0909091 = 0.00203371 loss)
I0429 09:59:18.619422 8162 solver.cpp:245] Train net output #136: loss3/loss12 = 0.0163588 (* 0.0909091 = 0.00148716 loss)
I0429 09:59:18.619472 8162 solver.cpp:245] Train net output #137: loss3/loss13 = 0.0153346 (* 0.0909091 = 0.00139406 loss)
I0429 09:59:18.619504 8162 solver.cpp:245] Train net output #138: loss3/loss14 = 0.0137492 (* 0.0909091 = 0.00124993 loss)
I0429 09:59:18.619537 8162 solver.cpp:245] Train net output #139: loss3/loss15 = 0.0138337 (* 0.0909091 = 0.00125761 loss)
I0429 09:59:18.619555 8162 solver.cpp:245] Train net output #140: loss3/loss16 = 0.0112642 (* 0.0909091 = 0.00102402 loss)
I0429 09:59:18.619570 8162 solver.cpp:245] Train net output #141: loss3/loss17 = 0.0115095 (* 0.0909091 = 0.00104632 loss)
I0429 09:59:18.619585 8162 solver.cpp:245] Train net output #142: loss3/loss18 = 0.0103479 (* 0.0909091 = 0.000940721 loss)
I0429 09:59:18.619599 8162 solver.cpp:245] Train net output #143: loss3/loss19 = 0.0105598 (* 0.0909091 = 0.000959984 loss)
I0429 09:59:18.619613 8162 solver.cpp:245] Train net output #144: loss3/loss20 = 0.0111162 (* 0.0909091 = 0.00101056 loss)
I0429 09:59:18.619627 8162 solver.cpp:245] Train net output #145: loss3/loss21 = 0.0109803 (* 0.0909091 = 0.000998211 loss)
I0429 09:59:18.619642 8162 solver.cpp:245] Train net output #146: loss3/loss22 = 0.010674 (* 0.0909091 = 0.000970364 loss)
I0429 09:59:18.619654 8162 solver.cpp:245] Train net output #147: total_accuracy = 0.25
I0429 09:59:18.619668 8162 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.25
I0429 09:59:18.619679 8162 solver.cpp:245] Train net output #149: total_confidence = 0.0568948
I0429 09:59:18.619704 8162 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.0916212
I0429 09:59:18.619719 8162 sgd_solver.cpp:106] Iteration 5500, lr = 0.005
I0429 10:01:35.412792 8162 solver.cpp:229] Iteration 6000, loss = 5.65093
I0429 10:01:35.412969 8162 solver.cpp:245] Train net output #0: loss1/accuracy = 0.333333
I0429 10:01:35.412992 8162 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75
I0429 10:01:35.413005 8162 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.25
I0429 10:01:35.413018 8162 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.5
I0429 10:01:35.413030 8162 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.5
I0429 10:01:35.413043 8162 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.625
I0429 10:01:35.413055 8162 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.625
I0429 10:01:35.413067 8162 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.75
I0429 10:01:35.413080 8162 solver.cpp:245] Train net output #8: loss1/accuracy08 = 1
I0429 10:01:35.413092 8162 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1
I0429 10:01:35.413105 8162 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0429 10:01:35.413116 8162 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0429 10:01:35.413130 8162 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0429 10:01:35.413141 8162 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0429 10:01:35.413153 8162 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0429 10:01:35.413166 8162 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0429 10:01:35.413178 8162 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0429 10:01:35.413192 8162 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0429 10:01:35.413203 8162 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0429 10:01:35.413215 8162 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0429 10:01:35.413228 8162 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0429 10:01:35.413240 8162 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0429 10:01:35.413252 8162 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0429 10:01:35.413269 8162 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.829545
I0429 10:01:35.413290 8162 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.666667
I0429 10:01:35.413321 8162 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 2.2132 (* 0.3 = 0.66396 loss)
I0429 10:01:35.413348 8162 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.560113 (* 0.3 = 0.168034 loss)
I0429 10:01:35.413375 8162 solver.cpp:245] Train net output #27: loss1/loss01 = 1.20691 (* 0.0272727 = 0.0329157 loss)
I0429 10:01:35.413401 8162 solver.cpp:245] Train net output #28: loss1/loss02 = 3.02909 (* 0.0272727 = 0.0826117 loss)
I0429 10:01:35.413429 8162 solver.cpp:245] Train net output #29: loss1/loss03 = 2.00794 (* 0.0272727 = 0.054762 loss)
I0429 10:01:35.413449 8162 solver.cpp:245] Train net output #30: loss1/loss04 = 2.01946 (* 0.0272727 = 0.0550761 loss)
I0429 10:01:35.413463 8162 solver.cpp:245] Train net output #31: loss1/loss05 = 1.89988 (* 0.0272727 = 0.0518149 loss)
I0429 10:01:35.413478 8162 solver.cpp:245] Train net output #32: loss1/loss06 = 1.1359 (* 0.0272727 = 0.0309792 loss)
I0429 10:01:35.413492 8162 solver.cpp:245] Train net output #33: loss1/loss07 = 0.912508 (* 0.0272727 = 0.0248866 loss)
I0429 10:01:35.413507 8162 solver.cpp:245] Train net output #34: loss1/loss08 = 0.0032764 (* 0.0272727 = 8.93564e-05 loss)
I0429 10:01:35.413522 8162 solver.cpp:245] Train net output #35: loss1/loss09 = 0.000129479 (* 0.0272727 = 3.53125e-06 loss)
I0429 10:01:35.413537 8162 solver.cpp:245] Train net output #36: loss1/loss10 = 5.79417e-05 (* 0.0272727 = 1.58023e-06 loss)
I0429 10:01:35.413552 8162 solver.cpp:245] Train net output #37: loss1/loss11 = 4.42834e-05 (* 0.0272727 = 1.20773e-06 loss)
I0429 10:01:35.413568 8162 solver.cpp:245] Train net output #38: loss1/loss12 = 2.62571e-05 (* 0.0272727 = 7.16104e-07 loss)
I0429 10:01:35.413602 8162 solver.cpp:245] Train net output #39: loss1/loss13 = 1.87614e-05 (* 0.0272727 = 5.11675e-07 loss)
I0429 10:01:35.413619 8162 solver.cpp:245] Train net output #40: loss1/loss14 = 1.3635e-05 (* 0.0272727 = 3.71863e-07 loss)
I0429 10:01:35.413632 8162 solver.cpp:245] Train net output #41: loss1/loss15 = 2.17126e-05 (* 0.0272727 = 5.92161e-07 loss)
I0429 10:01:35.413647 8162 solver.cpp:245] Train net output #42: loss1/loss16 = 1.03865e-05 (* 0.0272727 = 2.83267e-07 loss)
I0429 10:01:35.413662 8162 solver.cpp:245] Train net output #43: loss1/loss17 = 2.69513e-05 (* 0.0272727 = 7.35036e-07 loss)
I0429 10:01:35.413677 8162 solver.cpp:245] Train net output #44: loss1/loss18 = 1.42612e-05 (* 0.0272727 = 3.88941e-07 loss)
I0429 10:01:35.413691 8162 solver.cpp:245] Train net output #45: loss1/loss19 = 2.45221e-05 (* 0.0272727 = 6.68784e-07 loss)
I0429 10:01:35.413705 8162 solver.cpp:245] Train net output #46: loss1/loss20 = 1.72566e-05 (* 0.0272727 = 4.70636e-07 loss)
I0429 10:01:35.413720 8162 solver.cpp:245] Train net output #47: loss1/loss21 = 2.26443e-05 (* 0.0272727 = 6.17572e-07 loss)
I0429 10:01:35.413734 8162 solver.cpp:245] Train net output #48: loss1/loss22 = 6.8696e-06 (* 0.0272727 = 1.87353e-07 loss)
I0429 10:01:35.413748 8162 solver.cpp:245] Train net output #49: loss2/accuracy = 0.5
I0429 10:01:35.413760 8162 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.75
I0429 10:01:35.413774 8162 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.625
I0429 10:01:35.413786 8162 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.625
I0429 10:01:35.413800 8162 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.5
I0429 10:01:35.413818 8162 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.375
I0429 10:01:35.413843 8162 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.625
I0429 10:01:35.413871 8162 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.875
I0429 10:01:35.413899 8162 solver.cpp:245] Train net output #57: loss2/accuracy08 = 1
I0429 10:01:35.413918 8162 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1
I0429 10:01:35.413930 8162 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0429 10:01:35.413943 8162 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0429 10:01:35.413954 8162 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0429 10:01:35.413966 8162 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0429 10:01:35.413982 8162 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0429 10:01:35.413996 8162 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0429 10:01:35.414008 8162 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0429 10:01:35.414021 8162 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0429 10:01:35.414032 8162 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0429 10:01:35.414044 8162 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0429 10:01:35.414057 8162 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0429 10:01:35.414068 8162 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0429 10:01:35.414080 8162 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0429 10:01:35.414093 8162 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.863636
I0429 10:01:35.414104 8162 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.642857
I0429 10:01:35.414119 8162 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 2.0286 (* 0.3 = 0.608579 loss)
I0429 10:01:35.414134 8162 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.517619 (* 0.3 = 0.155286 loss)
I0429 10:01:35.414149 8162 solver.cpp:245] Train net output #76: loss2/loss01 = 1.53792 (* 0.0272727 = 0.0419434 loss)
I0429 10:01:35.414162 8162 solver.cpp:245] Train net output #77: loss2/loss02 = 2.32264 (* 0.0272727 = 0.0633449 loss)
I0429 10:01:35.414191 8162 solver.cpp:245] Train net output #78: loss2/loss03 = 1.88374 (* 0.0272727 = 0.0513747 loss)
I0429 10:01:35.414206 8162 solver.cpp:245] Train net output #79: loss2/loss04 = 1.79803 (* 0.0272727 = 0.0490373 loss)
I0429 10:01:35.414221 8162 solver.cpp:245] Train net output #80: loss2/loss05 = 1.96678 (* 0.0272727 = 0.0536396 loss)
I0429 10:01:35.414235 8162 solver.cpp:245] Train net output #81: loss2/loss06 = 1.31632 (* 0.0272727 = 0.0358996 loss)
I0429 10:01:35.414249 8162 solver.cpp:245] Train net output #82: loss2/loss07 = 1.01656 (* 0.0272727 = 0.0277244 loss)
I0429 10:01:35.414264 8162 solver.cpp:245] Train net output #83: loss2/loss08 = 0.00939008 (* 0.0272727 = 0.000256093 loss)
I0429 10:01:35.414278 8162 solver.cpp:245] Train net output #84: loss2/loss09 = 0.000372992 (* 0.0272727 = 1.01725e-05 loss)
I0429 10:01:35.414294 8162 solver.cpp:245] Train net output #85: loss2/loss10 = 9.28033e-05 (* 0.0272727 = 2.531e-06 loss)
I0429 10:01:35.414309 8162 solver.cpp:245] Train net output #86: loss2/loss11 = 5.77356e-05 (* 0.0272727 = 1.57461e-06 loss)
I0429 10:01:35.414322 8162 solver.cpp:245] Train net output #87: loss2/loss12 = 2.24272e-05 (* 0.0272727 = 6.11651e-07 loss)
I0429 10:01:35.414336 8162 solver.cpp:245] Train net output #88: loss2/loss13 = 1.28153e-05 (* 0.0272727 = 3.49508e-07 loss)
I0429 10:01:35.414351 8162 solver.cpp:245] Train net output #89: loss2/loss14 = 8.47894e-06 (* 0.0272727 = 2.31244e-07 loss)
I0429 10:01:35.414368 8162 solver.cpp:245] Train net output #90: loss2/loss15 = 9.44751e-06 (* 0.0272727 = 2.57659e-07 loss)
I0429 10:01:35.414384 8162 solver.cpp:245] Train net output #91: loss2/loss16 = 5.52839e-06 (* 0.0272727 = 1.50774e-07 loss)
I0429 10:01:35.414398 8162 solver.cpp:245] Train net output #92: loss2/loss17 = 2.96535e-06 (* 0.0272727 = 8.08731e-08 loss)
I0429 10:01:35.414413 8162 solver.cpp:245] Train net output #93: loss2/loss18 = 5.91584e-06 (* 0.0272727 = 1.61341e-07 loss)
I0429 10:01:35.414428 8162 solver.cpp:245] Train net output #94: loss2/loss19 = 6.45231e-06 (* 0.0272727 = 1.75972e-07 loss)
I0429 10:01:35.414443 8162 solver.cpp:245] Train net output #95: loss2/loss20 = 2.3693e-06 (* 0.0272727 = 6.46172e-08 loss)
I0429 10:01:35.414458 8162 solver.cpp:245] Train net output #96: loss2/loss21 = 7.42096e-06 (* 0.0272727 = 2.0239e-07 loss)
I0429 10:01:35.414472 8162 solver.cpp:245] Train net output #97: loss2/loss22 = 5.46878e-06 (* 0.0272727 = 1.49148e-07 loss)
I0429 10:01:35.414485 8162 solver.cpp:245] Train net output #98: loss3/accuracy = 0.809524
I0429 10:01:35.414497 8162 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.75
I0429 10:01:35.414510 8162 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.75
I0429 10:01:35.414522 8162 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.75
I0429 10:01:35.414535 8162 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.75
I0429 10:01:35.414547 8162 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.75
I0429 10:01:35.414559 8162 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.875
I0429 10:01:35.414572 8162 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75
I0429 10:01:35.414583 8162 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1
I0429 10:01:35.414595 8162 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1
I0429 10:01:35.414608 8162 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0429 10:01:35.414619 8162 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0429 10:01:35.414631 8162 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0429 10:01:35.414644 8162 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0429 10:01:35.414655 8162 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0429 10:01:35.414666 8162 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0429 10:01:35.414688 8162 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0429 10:01:35.414701 8162 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0429 10:01:35.414715 8162 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0429 10:01:35.414726 8162 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0429 10:01:35.414738 8162 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0429 10:01:35.414751 8162 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0429 10:01:35.414762 8162 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0429 10:01:35.414774 8162 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.943182
I0429 10:01:35.414786 8162 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.880952
I0429 10:01:35.414800 8162 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.86844 (* 1 = 0.86844 loss)
I0429 10:01:35.414816 8162 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.23375 (* 1 = 0.23375 loss)
I0429 10:01:35.414830 8162 solver.cpp:245] Train net output #125: loss3/loss01 = 0.840854 (* 0.0909091 = 0.0764413 loss)
I0429 10:01:35.414845 8162 solver.cpp:245] Train net output #126: loss3/loss02 = 0.528939 (* 0.0909091 = 0.0480854 loss)
I0429 10:01:35.414860 8162 solver.cpp:245] Train net output #127: loss3/loss03 = 0.776572 (* 0.0909091 = 0.0705974 loss)
I0429 10:01:35.414873 8162 solver.cpp:245] Train net output #128: loss3/loss04 = 0.689701 (* 0.0909091 = 0.0627001 loss)
I0429 10:01:35.414887 8162 solver.cpp:245] Train net output #129: loss3/loss05 = 0.840786 (* 0.0909091 = 0.0764351 loss)
I0429 10:01:35.414901 8162 solver.cpp:245] Train net output #130: loss3/loss06 = 0.352325 (* 0.0909091 = 0.0320295 loss)
I0429 10:01:35.414916 8162 solver.cpp:245] Train net output #131: loss3/loss07 = 0.658647 (* 0.0909091 = 0.059877 loss)
I0429 10:01:35.414930 8162 solver.cpp:245] Train net output #132: loss3/loss08 = 0.00840612 (* 0.0909091 = 0.000764193 loss)
I0429 10:01:35.414945 8162 solver.cpp:245] Train net output #133: loss3/loss09 = 0.00227772 (* 0.0909091 = 0.000207065 loss)
I0429 10:01:35.414960 8162 solver.cpp:245] Train net output #134: loss3/loss10 = 0.000725692 (* 0.0909091 = 6.5972e-05 loss)
I0429 10:01:35.414974 8162 solver.cpp:245] Train net output #135: loss3/loss11 = 0.000309406 (* 0.0909091 = 2.81278e-05 loss)
I0429 10:01:35.414989 8162 solver.cpp:245] Train net output #136: loss3/loss12 = 0.000143529 (* 0.0909091 = 1.30481e-05 loss)
I0429 10:01:35.415004 8162 solver.cpp:245] Train net output #137: loss3/loss13 = 0.0001037 (* 0.0909091 = 9.42729e-06 loss)
I0429 10:01:35.415017 8162 solver.cpp:245] Train net output #138: loss3/loss14 = 7.15972e-05 (* 0.0909091 = 6.50884e-06 loss)
I0429 10:01:35.415035 8162 solver.cpp:245] Train net output #139: loss3/loss15 = 4.9936e-05 (* 0.0909091 = 4.53964e-06 loss)
I0429 10:01:35.415050 8162 solver.cpp:245] Train net output #140: loss3/loss16 = 2.91873e-05 (* 0.0909091 = 2.65339e-06 loss)
I0429 10:01:35.415066 8162 solver.cpp:245] Train net output #141: loss3/loss17 = 2.41497e-05 (* 0.0909091 = 2.19542e-06 loss)
I0429 10:01:35.415079 8162 solver.cpp:245] Train net output #142: loss3/loss18 = 2.11316e-05 (* 0.0909091 = 1.92106e-06 loss)
I0429 10:01:35.415094 8162 solver.cpp:245] Train net output #143: loss3/loss19 = 1.94475e-05 (* 0.0909091 = 1.76796e-06 loss)
I0429 10:01:35.415108 8162 solver.cpp:245] Train net output #144: loss3/loss20 = 1.89557e-05 (* 0.0909091 = 1.72325e-06 loss)
I0429 10:01:35.415123 8162 solver.cpp:245] Train net output #145: loss3/loss21 = 2.42391e-05 (* 0.0909091 = 2.20355e-06 loss)
I0429 10:01:35.415138 8162 solver.cpp:245] Train net output #146: loss3/loss22 = 2.9858e-05 (* 0.0909091 = 2.71437e-06 loss)
I0429 10:01:35.415150 8162 solver.cpp:245] Train net output #147: total_accuracy = 0.375
I0429 10:01:35.415163 8162 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.25
I0429 10:01:35.415184 8162 solver.cpp:245] Train net output #149: total_confidence = 0.277402
I0429 10:01:35.415197 8162 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.306369
I0429 10:01:35.415211 8162 sgd_solver.cpp:106] Iteration 6000, lr = 0.005
I0429 10:03:52.210711 8162 solver.cpp:229] Iteration 6500, loss = 5.50036
I0429 10:03:52.210870 8162 solver.cpp:245] Train net output #0: loss1/accuracy = 0.438596
I0429 10:03:52.210901 8162 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.875
I0429 10:03:52.210922 8162 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5
I0429 10:03:52.210943 8162 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375
I0429 10:03:52.210966 8162 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.125
I0429 10:03:52.210988 8162 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.5
I0429 10:03:52.211010 8162 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.625
I0429 10:03:52.211033 8162 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.375
I0429 10:03:52.211057 8162 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.75
I0429 10:03:52.211081 8162 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1
I0429 10:03:52.211102 8162 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.75
I0429 10:03:52.211123 8162 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.875
I0429 10:03:52.211145 8162 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.875
I0429 10:03:52.211171 8162 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.875
I0429 10:03:52.211195 8162 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0429 10:03:52.211218 8162 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0429 10:03:52.211241 8162 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0429 10:03:52.211264 8162 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0429 10:03:52.211285 8162 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0429 10:03:52.211308 8162 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0429 10:03:52.211335 8162 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0429 10:03:52.211359 8162 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0429 10:03:52.211381 8162 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0429 10:03:52.211403 8162 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.8125
I0429 10:03:52.211426 8162 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.631579
I0429 10:03:52.211457 8162 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 2.02316 (* 0.3 = 0.606948 loss)
I0429 10:03:52.211503 8162 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.703077 (* 0.3 = 0.210923 loss)
I0429 10:03:52.211534 8162 solver.cpp:245] Train net output #27: loss1/loss01 = 0.749708 (* 0.0272727 = 0.0204466 loss)
I0429 10:03:52.211565 8162 solver.cpp:245] Train net output #28: loss1/loss02 = 1.79878 (* 0.0272727 = 0.0490576 loss)
I0429 10:03:52.211591 8162 solver.cpp:245] Train net output #29: loss1/loss03 = 2.3357 (* 0.0272727 = 0.0637008 loss)
I0429 10:03:52.211619 8162 solver.cpp:245] Train net output #30: loss1/loss04 = 2.65389 (* 0.0272727 = 0.0723787 loss)
I0429 10:03:52.211647 8162 solver.cpp:245] Train net output #31: loss1/loss05 = 2.02891 (* 0.0272727 = 0.055334 loss)
I0429 10:03:52.211674 8162 solver.cpp:245] Train net output #32: loss1/loss06 = 1.32124 (* 0.0272727 = 0.0360339 loss)
I0429 10:03:52.211702 8162 solver.cpp:245] Train net output #33: loss1/loss07 = 1.63814 (* 0.0272727 = 0.0446765 loss)
I0429 10:03:52.211730 8162 solver.cpp:245] Train net output #34: loss1/loss08 = 0.913735 (* 0.0272727 = 0.0249201 loss)
I0429 10:03:52.211758 8162 solver.cpp:245] Train net output #35: loss1/loss09 = 0.334166 (* 0.0272727 = 0.00911362 loss)
I0429 10:03:52.211786 8162 solver.cpp:245] Train net output #36: loss1/loss10 = 0.72254 (* 0.0272727 = 0.0197056 loss)
I0429 10:03:52.211813 8162 solver.cpp:245] Train net output #37: loss1/loss11 = 0.408542 (* 0.0272727 = 0.0111421 loss)
I0429 10:03:52.211840 8162 solver.cpp:245] Train net output #38: loss1/loss12 = 0.418058 (* 0.0272727 = 0.0114016 loss)
I0429 10:03:52.211901 8162 solver.cpp:245] Train net output #39: loss1/loss13 = 0.451746 (* 0.0272727 = 0.0123203 loss)
I0429 10:03:52.211932 8162 solver.cpp:245] Train net output #40: loss1/loss14 = 0.0826946 (* 0.0272727 = 0.00225531 loss)
I0429 10:03:52.211961 8162 solver.cpp:245] Train net output #41: loss1/loss15 = 0.0437816 (* 0.0272727 = 0.00119404 loss)
I0429 10:03:52.211992 8162 solver.cpp:245] Train net output #42: loss1/loss16 = 0.0230258 (* 0.0272727 = 0.000627977 loss)
I0429 10:03:52.212021 8162 solver.cpp:245] Train net output #43: loss1/loss17 = 0.0127244 (* 0.0272727 = 0.000347029 loss)
I0429 10:03:52.212050 8162 solver.cpp:245] Train net output #44: loss1/loss18 = 0.00414067 (* 0.0272727 = 0.000112927 loss)
I0429 10:03:52.212079 8162 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00193489 (* 0.0272727 = 5.27697e-05 loss)
I0429 10:03:52.212107 8162 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000784554 (* 0.0272727 = 2.13969e-05 loss)
I0429 10:03:52.212136 8162 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000632889 (* 0.0272727 = 1.72606e-05 loss)
I0429 10:03:52.212162 8162 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000196853 (* 0.0272727 = 5.36872e-06 loss)
I0429 10:03:52.212187 8162 solver.cpp:245] Train net output #49: loss2/accuracy = 0.438596
I0429 10:03:52.212210 8162 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875
I0429 10:03:52.212234 8162 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.625
I0429 10:03:52.212258 8162 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.375
I0429 10:03:52.212280 8162 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.25
I0429 10:03:52.212304 8162 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5
I0429 10:03:52.212327 8162 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.5
I0429 10:03:52.212349 8162 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.5
I0429 10:03:52.212376 8162 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.75
I0429 10:03:52.212399 8162 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1
I0429 10:03:52.212424 8162 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.75
I0429 10:03:52.212446 8162 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.875
I0429 10:03:52.212469 8162 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.875
I0429 10:03:52.212493 8162 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.875
I0429 10:03:52.212515 8162 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0429 10:03:52.212539 8162 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0429 10:03:52.212563 8162 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0429 10:03:52.212585 8162 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0429 10:03:52.212609 8162 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0429 10:03:52.212631 8162 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0429 10:03:52.212652 8162 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0429 10:03:52.212676 8162 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0429 10:03:52.212698 8162 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0429 10:03:52.212720 8162 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.806818
I0429 10:03:52.212743 8162 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.701754
I0429 10:03:52.212770 8162 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.84698 (* 0.3 = 0.554095 loss)
I0429 10:03:52.212798 8162 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.657541 (* 0.3 = 0.197262 loss)
I0429 10:03:52.212826 8162 solver.cpp:245] Train net output #76: loss2/loss01 = 0.518603 (* 0.0272727 = 0.0141437 loss)
I0429 10:03:52.212853 8162 solver.cpp:245] Train net output #77: loss2/loss02 = 1.23742 (* 0.0272727 = 0.0337479 loss)
I0429 10:03:52.212898 8162 solver.cpp:245] Train net output #78: loss2/loss03 = 1.47143 (* 0.0272727 = 0.04013 loss)
I0429 10:03:52.212930 8162 solver.cpp:245] Train net output #79: loss2/loss04 = 2.2931 (* 0.0272727 = 0.0625392 loss)
I0429 10:03:52.212960 8162 solver.cpp:245] Train net output #80: loss2/loss05 = 2.12353 (* 0.0272727 = 0.0579144 loss)
I0429 10:03:52.212987 8162 solver.cpp:245] Train net output #81: loss2/loss06 = 1.46932 (* 0.0272727 = 0.0400723 loss)
I0429 10:03:52.213014 8162 solver.cpp:245] Train net output #82: loss2/loss07 = 1.73989 (* 0.0272727 = 0.0474517 loss)
I0429 10:03:52.213042 8162 solver.cpp:245] Train net output #83: loss2/loss08 = 0.951779 (* 0.0272727 = 0.0259576 loss)
I0429 10:03:52.213068 8162 solver.cpp:245] Train net output #84: loss2/loss09 = 0.290984 (* 0.0272727 = 0.00793592 loss)
I0429 10:03:52.213095 8162 solver.cpp:245] Train net output #85: loss2/loss10 = 0.671559 (* 0.0272727 = 0.0183152 loss)
I0429 10:03:52.213124 8162 solver.cpp:245] Train net output #86: loss2/loss11 = 0.399717 (* 0.0272727 = 0.0109014 loss)
I0429 10:03:52.213150 8162 solver.cpp:245] Train net output #87: loss2/loss12 = 0.444144 (* 0.0272727 = 0.012113 loss)
I0429 10:03:52.213176 8162 solver.cpp:245] Train net output #88: loss2/loss13 = 0.435491 (* 0.0272727 = 0.011877 loss)
I0429 10:03:52.213204 8162 solver.cpp:245] Train net output #89: loss2/loss14 = 0.148659 (* 0.0272727 = 0.00405433 loss)
I0429 10:03:52.213230 8162 solver.cpp:245] Train net output #90: loss2/loss15 = 0.0784355 (* 0.0272727 = 0.00213915 loss)
I0429 10:03:52.213258 8162 solver.cpp:245] Train net output #91: loss2/loss16 = 0.0180206 (* 0.0272727 = 0.000491472 loss)
I0429 10:03:52.213286 8162 solver.cpp:245] Train net output #92: loss2/loss17 = 0.00451016 (* 0.0272727 = 0.000123004 loss)
I0429 10:03:52.213312 8162 solver.cpp:245] Train net output #93: loss2/loss18 = 0.0021119 (* 0.0272727 = 5.75972e-05 loss)
I0429 10:03:52.213340 8162 solver.cpp:245] Train net output #94: loss2/loss19 = 0.000900425 (* 0.0272727 = 2.45571e-05 loss)
I0429 10:03:52.213368 8162 solver.cpp:245] Train net output #95: loss2/loss20 = 0.000665787 (* 0.0272727 = 1.81578e-05 loss)
I0429 10:03:52.213395 8162 solver.cpp:245] Train net output #96: loss2/loss21 = 0.000559833 (* 0.0272727 = 1.52682e-05 loss)
I0429 10:03:52.213425 8162 solver.cpp:245] Train net output #97: loss2/loss22 = 0.000468797 (* 0.0272727 = 1.27854e-05 loss)
I0429 10:03:52.213449 8162 solver.cpp:245] Train net output #98: loss3/accuracy = 0.684211
I0429 10:03:52.213472 8162 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875
I0429 10:03:52.213495 8162 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875
I0429 10:03:52.213517 8162 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.875
I0429 10:03:52.213539 8162 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.75
I0429 10:03:52.213562 8162 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.625
I0429 10:03:52.213584 8162 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.625
I0429 10:03:52.213608 8162 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75
I0429 10:03:52.213629 8162 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.75
I0429 10:03:52.213650 8162 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1
I0429 10:03:52.213675 8162 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.75
I0429 10:03:52.213696 8162 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.875
I0429 10:03:52.213717 8162 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.875
I0429 10:03:52.213739 8162 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.875
I0429 10:03:52.213762 8162 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0429 10:03:52.213783 8162 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0429 10:03:52.213805 8162 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0429 10:03:52.213842 8162 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0429 10:03:52.213865 8162 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0429 10:03:52.213887 8162 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0429 10:03:52.213910 8162 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0429 10:03:52.213932 8162 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0429 10:03:52.213954 8162 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0429 10:03:52.213982 8162 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.892045
I0429 10:03:52.214007 8162 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.807018
I0429 10:03:52.214035 8162 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.15671 (* 1 = 1.15671 loss)
I0429 10:03:52.214061 8162 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.406986 (* 1 = 0.406986 loss)
I0429 10:03:52.214089 8162 solver.cpp:245] Train net output #125: loss3/loss01 = 0.422348 (* 0.0909091 = 0.0383953 loss)
I0429 10:03:52.214115 8162 solver.cpp:245] Train net output #126: loss3/loss02 = 0.788906 (* 0.0909091 = 0.0717187 loss)
I0429 10:03:52.214143 8162 solver.cpp:245] Train net output #127: loss3/loss03 = 0.569906 (* 0.0909091 = 0.0518096 loss)
I0429 10:03:52.214180 8162 solver.cpp:245] Train net output #128: loss3/loss04 = 1.03338 (* 0.0909091 = 0.0939436 loss)
I0429 10:03:52.214211 8162 solver.cpp:245] Train net output #129: loss3/loss05 = 1.02352 (* 0.0909091 = 0.0930473 loss)
I0429 10:03:52.214239 8162 solver.cpp:245] Train net output #130: loss3/loss06 = 0.963615 (* 0.0909091 = 0.0876014 loss)
I0429 10:03:52.214267 8162 solver.cpp:245] Train net output #131: loss3/loss07 = 1.00681 (* 0.0909091 = 0.0915284 loss)
I0429 10:03:52.214293 8162 solver.cpp:245] Train net output #132: loss3/loss08 = 0.800673 (* 0.0909091 = 0.0727884 loss)
I0429 10:03:52.214320 8162 solver.cpp:245] Train net output #133: loss3/loss09 = 0.400297 (* 0.0909091 = 0.0363906 loss)
I0429 10:03:52.214346 8162 solver.cpp:245] Train net output #134: loss3/loss10 = 0.834265 (* 0.0909091 = 0.0758423 loss)
I0429 10:03:52.214372 8162 solver.cpp:245] Train net output #135: loss3/loss11 = 0.431016 (* 0.0909091 = 0.0391833 loss)
I0429 10:03:52.214401 8162 solver.cpp:245] Train net output #136: loss3/loss12 = 0.431776 (* 0.0909091 = 0.0392523 loss)
I0429 10:03:52.214426 8162 solver.cpp:245] Train net output #137: loss3/loss13 = 0.475197 (* 0.0909091 = 0.0431997 loss)
I0429 10:03:52.214453 8162 solver.cpp:245] Train net output #138: loss3/loss14 = 0.13339 (* 0.0909091 = 0.0121263 loss)
I0429 10:03:52.214485 8162 solver.cpp:245] Train net output #139: loss3/loss15 = 0.0883134 (* 0.0909091 = 0.00802849 loss)
I0429 10:03:52.214512 8162 solver.cpp:245] Train net output #140: loss3/loss16 = 0.0634287 (* 0.0909091 = 0.00576625 loss)
I0429 10:03:52.214539 8162 solver.cpp:245] Train net output #141: loss3/loss17 = 0.0376194 (* 0.0909091 = 0.00341994 loss)
I0429 10:03:52.214565 8162 solver.cpp:245] Train net output #142: loss3/loss18 = 0.0238929 (* 0.0909091 = 0.00217208 loss)
I0429 10:03:52.214591 8162 solver.cpp:245] Train net output #143: loss3/loss19 = 0.0164011 (* 0.0909091 = 0.00149101 loss)
I0429 10:03:52.214617 8162 solver.cpp:245] Train net output #144: loss3/loss20 = 0.0114612 (* 0.0909091 = 0.00104193 loss)
I0429 10:03:52.214645 8162 solver.cpp:245] Train net output #145: loss3/loss21 = 0.00533638 (* 0.0909091 = 0.000485125 loss)
I0429 10:03:52.214671 8162 solver.cpp:245] Train net output #146: loss3/loss22 = 0.00310095 (* 0.0909091 = 0.000281905 loss)
I0429 10:03:52.214694 8162 solver.cpp:245] Train net output #147: total_accuracy = 0.5
I0429 10:03:52.214716 8162 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.625
I0429 10:03:52.214753 8162 solver.cpp:245] Train net output #149: total_confidence = 0.242425
I0429 10:03:52.214777 8162 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.327234
I0429 10:03:52.214802 8162 sgd_solver.cpp:106] Iteration 6500, lr = 0.005
I0429 10:06:09.002686 8162 solver.cpp:229] Iteration 7000, loss = 5.55535
I0429 10:06:09.002858 8162 solver.cpp:245] Train net output #0: loss1/accuracy = 0.381818
I0429 10:06:09.002879 8162 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.625
I0429 10:06:09.002894 8162 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.375
I0429 10:06:09.002907 8162 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375
I0429 10:06:09.002919 8162 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.25
I0429 10:06:09.002933 8162 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.125
I0429 10:06:09.002944 8162 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.375
I0429 10:06:09.002956 8162 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.875
I0429 10:06:09.002969 8162 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875
I0429 10:06:09.002980 8162 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875
I0429 10:06:09.002993 8162 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875
I0429 10:06:09.003005 8162 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.875
I0429 10:06:09.003018 8162 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.875
I0429 10:06:09.003031 8162 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.875
I0429 10:06:09.003043 8162 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.875
I0429 10:06:09.003056 8162 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.875
I0429 10:06:09.003068 8162 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0429 10:06:09.003080 8162 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0429 10:06:09.003093 8162 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0429 10:06:09.003105 8162 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0429 10:06:09.003118 8162 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0429 10:06:09.003129 8162 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0429 10:06:09.003142 8162 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0429 10:06:09.003154 8162 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.795455
I0429 10:06:09.003167 8162 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.490909
I0429 10:06:09.003185 8162 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 2.48463 (* 0.3 = 0.745389 loss)
I0429 10:06:09.003199 8162 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.845834 (* 0.3 = 0.25375 loss)
I0429 10:06:09.003214 8162 solver.cpp:245] Train net output #27: loss1/loss01 = 2.15287 (* 0.0272727 = 0.0587147 loss)
I0429 10:06:09.003228 8162 solver.cpp:245] Train net output #28: loss1/loss02 = 2.40617 (* 0.0272727 = 0.0656228 loss)
I0429 10:06:09.003243 8162 solver.cpp:245] Train net output #29: loss1/loss03 = 2.01433 (* 0.0272727 = 0.0549363 loss)
I0429 10:06:09.003257 8162 solver.cpp:245] Train net output #30: loss1/loss04 = 2.31018 (* 0.0272727 = 0.0630049 loss)
I0429 10:06:09.003274 8162 solver.cpp:245] Train net output #31: loss1/loss05 = 2.43542 (* 0.0272727 = 0.0664207 loss)
I0429 10:06:09.003299 8162 solver.cpp:245] Train net output #32: loss1/loss06 = 2.32598 (* 0.0272727 = 0.0634357 loss)
I0429 10:06:09.003319 8162 solver.cpp:245] Train net output #33: loss1/loss07 = 0.522716 (* 0.0272727 = 0.0142559 loss)
I0429 10:06:09.003334 8162 solver.cpp:245] Train net output #34: loss1/loss08 = 0.406715 (* 0.0272727 = 0.0110922 loss)
I0429 10:06:09.003348 8162 solver.cpp:245] Train net output #35: loss1/loss09 = 0.430663 (* 0.0272727 = 0.0117453 loss)
I0429 10:06:09.003363 8162 solver.cpp:245] Train net output #36: loss1/loss10 = 0.565901 (* 0.0272727 = 0.0154337 loss)
I0429 10:06:09.003378 8162 solver.cpp:245] Train net output #37: loss1/loss11 = 0.345396 (* 0.0272727 = 0.00941988 loss)
I0429 10:06:09.003393 8162 solver.cpp:245] Train net output #38: loss1/loss12 = 0.527864 (* 0.0272727 = 0.0143963 loss)
I0429 10:06:09.003427 8162 solver.cpp:245] Train net output #39: loss1/loss13 = 0.314393 (* 0.0272727 = 0.00857435 loss)
I0429 10:06:09.003443 8162 solver.cpp:245] Train net output #40: loss1/loss14 = 0.446442 (* 0.0272727 = 0.0121757 loss)
I0429 10:06:09.003458 8162 solver.cpp:245] Train net output #41: loss1/loss15 = 0.407432 (* 0.0272727 = 0.0111118 loss)
I0429 10:06:09.003492 8162 solver.cpp:245] Train net output #42: loss1/loss16 = 0.0417492 (* 0.0272727 = 0.00113862 loss)
I0429 10:06:09.003509 8162 solver.cpp:245] Train net output #43: loss1/loss17 = 0.0119493 (* 0.0272727 = 0.000325891 loss)
I0429 10:06:09.003523 8162 solver.cpp:245] Train net output #44: loss1/loss18 = 0.00389357 (* 0.0272727 = 0.000106188 loss)
I0429 10:06:09.003537 8162 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00205434 (* 0.0272727 = 5.60273e-05 loss)
I0429 10:06:09.003552 8162 solver.cpp:245] Train net output #46: loss1/loss20 = 0.00139553 (* 0.0272727 = 3.80599e-05 loss)
I0429 10:06:09.003566 8162 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000800397 (* 0.0272727 = 2.1829e-05 loss)
I0429 10:06:09.003582 8162 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000391349 (* 0.0272727 = 1.06732e-05 loss)
I0429 10:06:09.003593 8162 solver.cpp:245] Train net output #49: loss2/accuracy = 0.381818
I0429 10:06:09.003607 8162 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.75
I0429 10:06:09.003619 8162 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.625
I0429 10:06:09.003633 8162 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.375
I0429 10:06:09.003644 8162 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.25
I0429 10:06:09.003654 8162 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.625
I0429 10:06:09.003662 8162 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.375
I0429 10:06:09.003674 8162 solver.cpp:245] Train net output #56: loss2/accuracy07 = 1
I0429 10:06:09.003687 8162 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875
I0429 10:06:09.003700 8162 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875
I0429 10:06:09.003712 8162 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875
I0429 10:06:09.003725 8162 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0429 10:06:09.003744 8162 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.875
I0429 10:06:09.003764 8162 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.875
I0429 10:06:09.003778 8162 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.875
I0429 10:06:09.003792 8162 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.875
I0429 10:06:09.003803 8162 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0429 10:06:09.003815 8162 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0429 10:06:09.003828 8162 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0429 10:06:09.003839 8162 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0429 10:06:09.003851 8162 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0429 10:06:09.003866 8162 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0429 10:06:09.003880 8162 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0429 10:06:09.003891 8162 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.784091
I0429 10:06:09.003904 8162 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.672727
I0429 10:06:09.003918 8162 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 2.06726 (* 0.3 = 0.620179 loss)
I0429 10:06:09.003933 8162 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.73815 (* 0.3 = 0.221445 loss)
I0429 10:06:09.003947 8162 solver.cpp:245] Train net output #76: loss2/loss01 = 1.98681 (* 0.0272727 = 0.0541858 loss)
I0429 10:06:09.003962 8162 solver.cpp:245] Train net output #77: loss2/loss02 = 1.32144 (* 0.0272727 = 0.0360392 loss)
I0429 10:06:09.003989 8162 solver.cpp:245] Train net output #78: loss2/loss03 = 1.62975 (* 0.0272727 = 0.0444478 loss)
I0429 10:06:09.004005 8162 solver.cpp:245] Train net output #79: loss2/loss04 = 2.78222 (* 0.0272727 = 0.0758787 loss)
I0429 10:06:09.004019 8162 solver.cpp:245] Train net output #80: loss2/loss05 = 1.70883 (* 0.0272727 = 0.0466045 loss)
I0429 10:06:09.004034 8162 solver.cpp:245] Train net output #81: loss2/loss06 = 2.2568 (* 0.0272727 = 0.061549 loss)
I0429 10:06:09.004047 8162 solver.cpp:245] Train net output #82: loss2/loss07 = 0.655358 (* 0.0272727 = 0.0178734 loss)
I0429 10:06:09.004062 8162 solver.cpp:245] Train net output #83: loss2/loss08 = 0.480132 (* 0.0272727 = 0.0130945 loss)
I0429 10:06:09.004076 8162 solver.cpp:245] Train net output #84: loss2/loss09 = 0.463211 (* 0.0272727 = 0.012633 loss)
I0429 10:06:09.004091 8162 solver.cpp:245] Train net output #85: loss2/loss10 = 0.551337 (* 0.0272727 = 0.0150365 loss)
I0429 10:06:09.004106 8162 solver.cpp:245] Train net output #86: loss2/loss11 = 0.316333 (* 0.0272727 = 0.00862728 loss)
I0429 10:06:09.004120 8162 solver.cpp:245] Train net output #87: loss2/loss12 = 0.550458 (* 0.0272727 = 0.0150125 loss)
I0429 10:06:09.004135 8162 solver.cpp:245] Train net output #88: loss2/loss13 = 0.409564 (* 0.0272727 = 0.0111699 loss)
I0429 10:06:09.004149 8162 solver.cpp:245] Train net output #89: loss2/loss14 = 0.43396 (* 0.0272727 = 0.0118353 loss)
I0429 10:06:09.004163 8162 solver.cpp:245] Train net output #90: loss2/loss15 = 0.478638 (* 0.0272727 = 0.0130538 loss)
I0429 10:06:09.004178 8162 solver.cpp:245] Train net output #91: loss2/loss16 = 0.0996029 (* 0.0272727 = 0.00271644 loss)
I0429 10:06:09.004192 8162 solver.cpp:245] Train net output #92: loss2/loss17 = 0.0689627 (* 0.0272727 = 0.0018808 loss)
I0429 10:06:09.004207 8162 solver.cpp:245] Train net output #93: loss2/loss18 = 0.0621875 (* 0.0272727 = 0.00169602 loss)
I0429 10:06:09.004221 8162 solver.cpp:245] Train net output #94: loss2/loss19 = 0.0332145 (* 0.0272727 = 0.00090585 loss)
I0429 10:06:09.004235 8162 solver.cpp:245] Train net output #95: loss2/loss20 = 0.0315146 (* 0.0272727 = 0.000859489 loss)
I0429 10:06:09.004250 8162 solver.cpp:245] Train net output #96: loss2/loss21 = 0.0121808 (* 0.0272727 = 0.000332205 loss)
I0429 10:06:09.004263 8162 solver.cpp:245] Train net output #97: loss2/loss22 = 0.00461029 (* 0.0272727 = 0.000125735 loss)
I0429 10:06:09.004276 8162 solver.cpp:245] Train net output #98: loss3/accuracy = 0.490909
I0429 10:06:09.004288 8162 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.75
I0429 10:06:09.004302 8162 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.75
I0429 10:06:09.004313 8162 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.5
I0429 10:06:09.004325 8162 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.5
I0429 10:06:09.004338 8162 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.375
I0429 10:06:09.004349 8162 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.375
I0429 10:06:09.004361 8162 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875
I0429 10:06:09.004376 8162 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875
I0429 10:06:09.004389 8162 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875
I0429 10:06:09.004401 8162 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875
I0429 10:06:09.004413 8162 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.875
I0429 10:06:09.004426 8162 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.875
I0429 10:06:09.004437 8162 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.875
I0429 10:06:09.004449 8162 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.875
I0429 10:06:09.004462 8162 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.875
I0429 10:06:09.004482 8162 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0429 10:06:09.004497 8162 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0429 10:06:09.004508 8162 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0429 10:06:09.004520 8162 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0429 10:06:09.004533 8162 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0429 10:06:09.004544 8162 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0429 10:06:09.004556 8162 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0429 10:06:09.004568 8162 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.8125
I0429 10:06:09.004580 8162 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.690909
I0429 10:06:09.004595 8162 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.81852 (* 1 = 1.81852 loss)
I0429 10:06:09.004609 8162 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.664623 (* 1 = 0.664623 loss)
I0429 10:06:09.004623 8162 solver.cpp:245] Train net output #125: loss3/loss01 = 1.50614 (* 0.0909091 = 0.136922 loss)
I0429 10:06:09.004638 8162 solver.cpp:245] Train net output #126: loss3/loss02 = 0.991376 (* 0.0909091 = 0.0901251 loss)
I0429 10:06:09.004652 8162 solver.cpp:245] Train net output #127: loss3/loss03 = 1.37573 (* 0.0909091 = 0.125066 loss)
I0429 10:06:09.004667 8162 solver.cpp:245] Train net output #128: loss3/loss04 = 1.31625 (* 0.0909091 = 0.119659 loss)
I0429 10:06:09.004681 8162 solver.cpp:245] Train net output #129: loss3/loss05 = 1.42298 (* 0.0909091 = 0.129362 loss)
I0429 10:06:09.004695 8162 solver.cpp:245] Train net output #130: loss3/loss06 = 2.02066 (* 0.0909091 = 0.183696 loss)
I0429 10:06:09.004709 8162 solver.cpp:245] Train net output #131: loss3/loss07 = 0.515364 (* 0.0909091 = 0.0468512 loss)
I0429 10:06:09.004724 8162 solver.cpp:245] Train net output #132: loss3/loss08 = 0.44235 (* 0.0909091 = 0.0402137 loss)
I0429 10:06:09.004737 8162 solver.cpp:245] Train net output #133: loss3/loss09 = 0.421468 (* 0.0909091 = 0.0383153 loss)
I0429 10:06:09.004752 8162 solver.cpp:245] Train net output #134: loss3/loss10 = 0.491328 (* 0.0909091 = 0.0446662 loss)
I0429 10:06:09.004765 8162 solver.cpp:245] Train net output #135: loss3/loss11 = 0.30883 (* 0.0909091 = 0.0280754 loss)
I0429 10:06:09.004781 8162 solver.cpp:245] Train net output #136: loss3/loss12 = 0.478982 (* 0.0909091 = 0.0435438 loss)
I0429 10:06:09.004794 8162 solver.cpp:245] Train net output #137: loss3/loss13 = 0.337377 (* 0.0909091 = 0.0306706 loss)
I0429 10:06:09.004808 8162 solver.cpp:245] Train net output #138: loss3/loss14 = 0.386805 (* 0.0909091 = 0.0351641 loss)
I0429 10:06:09.004822 8162 solver.cpp:245] Train net output #139: loss3/loss15 = 0.441195 (* 0.0909091 = 0.0401087 loss)
I0429 10:06:09.004837 8162 solver.cpp:245] Train net output #140: loss3/loss16 = 0.0610244 (* 0.0909091 = 0.00554768 loss)
I0429 10:06:09.004851 8162 solver.cpp:245] Train net output #141: loss3/loss17 = 0.0444762 (* 0.0909091 = 0.00404329 loss)
I0429 10:06:09.004865 8162 solver.cpp:245] Train net output #142: loss3/loss18 = 0.0188504 (* 0.0909091 = 0.00171367 loss)
I0429 10:06:09.004880 8162 solver.cpp:245] Train net output #143: loss3/loss19 = 0.0088004 (* 0.0909091 = 0.000800036 loss)
I0429 10:06:09.004894 8162 solver.cpp:245] Train net output #144: loss3/loss20 = 0.00421831 (* 0.0909091 = 0.000383483 loss)
I0429 10:06:09.004909 8162 solver.cpp:245] Train net output #145: loss3/loss21 = 0.00153722 (* 0.0909091 = 0.000139748 loss)
I0429 10:06:09.004927 8162 solver.cpp:245] Train net output #146: loss3/loss22 = 0.000792014 (* 0.0909091 = 7.20013e-05 loss)
I0429 10:06:09.004940 8162 solver.cpp:245] Train net output #147: total_accuracy = 0.125
I0429 10:06:09.004952 8162 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.125
I0429 10:06:09.004974 8162 solver.cpp:245] Train net output #149: total_confidence = 0.0883538
I0429 10:06:09.004988 8162 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.125795
I0429 10:06:09.005002 8162 sgd_solver.cpp:106] Iteration 7000, lr = 0.005
I0429 10:08:25.697751 8162 solver.cpp:229] Iteration 7500, loss = 5.46105
I0429 10:08:25.697929 8162 solver.cpp:245] Train net output #0: loss1/accuracy = 0.318182
I0429 10:08:25.697950 8162 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.625
I0429 10:08:25.697965 8162 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5
I0429 10:08:25.697978 8162 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.25
I0429 10:08:25.697990 8162 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.5
I0429 10:08:25.698002 8162 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.375
I0429 10:08:25.698014 8162 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.625
I0429 10:08:25.698027 8162 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.75
I0429 10:08:25.698040 8162 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875
I0429 10:08:25.698052 8162 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1
I0429 10:08:25.698065 8162 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0429 10:08:25.698076 8162 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0429 10:08:25.698088 8162 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0429 10:08:25.698101 8162 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0429 10:08:25.698113 8162 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0429 10:08:25.698125 8162 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0429 10:08:25.698137 8162 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0429 10:08:25.698149 8162 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0429 10:08:25.698161 8162 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0429 10:08:25.698173 8162 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0429 10:08:25.698185 8162 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0429 10:08:25.698197 8162 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0429 10:08:25.698210 8162 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0429 10:08:25.698222 8162 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.818182
I0429 10:08:25.698235 8162 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.568182
I0429 10:08:25.698251 8162 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 2.45116 (* 0.3 = 0.735347 loss)
I0429 10:08:25.698266 8162 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.674934 (* 0.3 = 0.20248 loss)
I0429 10:08:25.698282 8162 solver.cpp:245] Train net output #27: loss1/loss01 = 1.59672 (* 0.0272727 = 0.043547 loss)
I0429 10:08:25.698295 8162 solver.cpp:245] Train net output #28: loss1/loss02 = 2.16294 (* 0.0272727 = 0.0589892 loss)
I0429 10:08:25.698310 8162 solver.cpp:245] Train net output #29: loss1/loss03 = 3.06781 (* 0.0272727 = 0.0836677 loss)
I0429 10:08:25.698328 8162 solver.cpp:245] Train net output #30: loss1/loss04 = 2.53928 (* 0.0272727 = 0.0692532 loss)
I0429 10:08:25.698343 8162 solver.cpp:245] Train net output #31: loss1/loss05 = 2.09349 (* 0.0272727 = 0.0570952 loss)
I0429 10:08:25.698357 8162 solver.cpp:245] Train net output #32: loss1/loss06 = 1.3049 (* 0.0272727 = 0.0355881 loss)
I0429 10:08:25.698371 8162 solver.cpp:245] Train net output #33: loss1/loss07 = 0.957256 (* 0.0272727 = 0.026107 loss)
I0429 10:08:25.698386 8162 solver.cpp:245] Train net output #34: loss1/loss08 = 0.40324 (* 0.0272727 = 0.0109974 loss)
I0429 10:08:25.698401 8162 solver.cpp:245] Train net output #35: loss1/loss09 = 0.0329689 (* 0.0272727 = 0.000899151 loss)
I0429 10:08:25.698416 8162 solver.cpp:245] Train net output #36: loss1/loss10 = 0.00699486 (* 0.0272727 = 0.000190769 loss)
I0429 10:08:25.698431 8162 solver.cpp:245] Train net output #37: loss1/loss11 = 0.000509692 (* 0.0272727 = 1.39007e-05 loss)
I0429 10:08:25.698446 8162 solver.cpp:245] Train net output #38: loss1/loss12 = 0.00010722 (* 0.0272727 = 2.92419e-06 loss)
I0429 10:08:25.698480 8162 solver.cpp:245] Train net output #39: loss1/loss13 = 8.29131e-05 (* 0.0272727 = 2.26127e-06 loss)
I0429 10:08:25.698496 8162 solver.cpp:245] Train net output #40: loss1/loss14 = 4.22027e-05 (* 0.0272727 = 1.15098e-06 loss)
I0429 10:08:25.698511 8162 solver.cpp:245] Train net output #41: loss1/loss15 = 3.06978e-05 (* 0.0272727 = 8.37213e-07 loss)
I0429 10:08:25.698525 8162 solver.cpp:245] Train net output #42: loss1/loss16 = 2.10411e-05 (* 0.0272727 = 5.73848e-07 loss)
I0429 10:08:25.698539 8162 solver.cpp:245] Train net output #43: loss1/loss17 = 9.68587e-06 (* 0.0272727 = 2.6416e-07 loss)
I0429 10:08:25.698554 8162 solver.cpp:245] Train net output #44: loss1/loss18 = 5.63268e-06 (* 0.0272727 = 1.53618e-07 loss)
I0429 10:08:25.698568 8162 solver.cpp:245] Train net output #45: loss1/loss19 = 5.73699e-06 (* 0.0272727 = 1.56463e-07 loss)
I0429 10:08:25.698583 8162 solver.cpp:245] Train net output #46: loss1/loss20 = 6.18402e-06 (* 0.0272727 = 1.68655e-07 loss)
I0429 10:08:25.698597 8162 solver.cpp:245] Train net output #47: loss1/loss21 = 8.50874e-06 (* 0.0272727 = 2.32056e-07 loss)
I0429 10:08:25.698612 8162 solver.cpp:245] Train net output #48: loss1/loss22 = 6.22878e-06 (* 0.0272727 = 1.69876e-07 loss)
I0429 10:08:25.698626 8162 solver.cpp:245] Train net output #49: loss2/accuracy = 0.295455
I0429 10:08:25.698638 8162 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.5
I0429 10:08:25.698650 8162 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.25
I0429 10:08:25.698662 8162 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.25
I0429 10:08:25.698675 8162 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.25
I0429 10:08:25.698688 8162 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.375
I0429 10:08:25.698696 8162 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.75
I0429 10:08:25.698704 8162 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.75
I0429 10:08:25.698712 8162 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875
I0429 10:08:25.698724 8162 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1
I0429 10:08:25.698737 8162 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0429 10:08:25.698748 8162 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0429 10:08:25.698760 8162 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0429 10:08:25.698772 8162 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0429 10:08:25.698784 8162 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0429 10:08:25.698796 8162 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0429 10:08:25.698808 8162 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0429 10:08:25.698820 8162 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0429 10:08:25.698832 8162 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0429 10:08:25.698844 8162 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0429 10:08:25.698855 8162 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0429 10:08:25.698868 8162 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0429 10:08:25.698879 8162 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0429 10:08:25.698891 8162 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.806818
I0429 10:08:25.698904 8162 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.590909
I0429 10:08:25.698918 8162 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 2.26908 (* 0.3 = 0.680723 loss)
I0429 10:08:25.698936 8162 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.631276 (* 0.3 = 0.189383 loss)
I0429 10:08:25.698951 8162 solver.cpp:245] Train net output #76: loss2/loss01 = 1.62193 (* 0.0272727 = 0.0442344 loss)
I0429 10:08:25.698966 8162 solver.cpp:245] Train net output #77: loss2/loss02 = 2.26473 (* 0.0272727 = 0.0617653 loss)
I0429 10:08:25.698992 8162 solver.cpp:245] Train net output #78: loss2/loss03 = 2.26043 (* 0.0272727 = 0.061648 loss)
I0429 10:08:25.699007 8162 solver.cpp:245] Train net output #79: loss2/loss04 = 2.59123 (* 0.0272727 = 0.0706698 loss)
I0429 10:08:25.699020 8162 solver.cpp:245] Train net output #80: loss2/loss05 = 2.29862 (* 0.0272727 = 0.0626897 loss)
I0429 10:08:25.699035 8162 solver.cpp:245] Train net output #81: loss2/loss06 = 1.44303 (* 0.0272727 = 0.0393554 loss)
I0429 10:08:25.699049 8162 solver.cpp:245] Train net output #82: loss2/loss07 = 0.882445 (* 0.0272727 = 0.0240667 loss)
I0429 10:08:25.699064 8162 solver.cpp:245] Train net output #83: loss2/loss08 = 0.373112 (* 0.0272727 = 0.0101758 loss)
I0429 10:08:25.699079 8162 solver.cpp:245] Train net output #84: loss2/loss09 = 0.0208321 (* 0.0272727 = 0.000568148 loss)
I0429 10:08:25.699093 8162 solver.cpp:245] Train net output #85: loss2/loss10 = 0.00531464 (* 0.0272727 = 0.000144945 loss)
I0429 10:08:25.699107 8162 solver.cpp:245] Train net output #86: loss2/loss11 = 0.00167417 (* 0.0272727 = 4.56591e-05 loss)
I0429 10:08:25.699121 8162 solver.cpp:245] Train net output #87: loss2/loss12 = 0.000934399 (* 0.0272727 = 2.54836e-05 loss)
I0429 10:08:25.699136 8162 solver.cpp:245] Train net output #88: loss2/loss13 = 0.000561361 (* 0.0272727 = 1.53098e-05 loss)
I0429 10:08:25.699151 8162 solver.cpp:245] Train net output #89: loss2/loss14 = 0.000366694 (* 0.0272727 = 1.00007e-05 loss)
I0429 10:08:25.699164 8162 solver.cpp:245] Train net output #90: loss2/loss15 = 0.000325789 (* 0.0272727 = 8.88516e-06 loss)
I0429 10:08:25.699179 8162 solver.cpp:245] Train net output #91: loss2/loss16 = 0.000224592 (* 0.0272727 = 6.12523e-06 loss)
I0429 10:08:25.699193 8162 solver.cpp:245] Train net output #92: loss2/loss17 = 0.000237652 (* 0.0272727 = 6.48141e-06 loss)
I0429 10:08:25.699208 8162 solver.cpp:245] Train net output #93: loss2/loss18 = 0.00029137 (* 0.0272727 = 7.94644e-06 loss)
I0429 10:08:25.699223 8162 solver.cpp:245] Train net output #94: loss2/loss19 = 0.000338686 (* 0.0272727 = 9.2369e-06 loss)
I0429 10:08:25.699237 8162 solver.cpp:245] Train net output #95: loss2/loss20 = 0.000155748 (* 0.0272727 = 4.24767e-06 loss)
I0429 10:08:25.699252 8162 solver.cpp:245] Train net output #96: loss2/loss21 = 0.000266754 (* 0.0272727 = 7.2751e-06 loss)
I0429 10:08:25.699266 8162 solver.cpp:245] Train net output #97: loss2/loss22 = 0.000188976 (* 0.0272727 = 5.15388e-06 loss)
I0429 10:08:25.699280 8162 solver.cpp:245] Train net output #98: loss3/accuracy = 0.409091
I0429 10:08:25.699291 8162 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.75
I0429 10:08:25.699304 8162 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.5
I0429 10:08:25.699317 8162 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.375
I0429 10:08:25.699329 8162 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.25
I0429 10:08:25.699342 8162 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.125
I0429 10:08:25.699354 8162 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.75
I0429 10:08:25.699368 8162 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75
I0429 10:08:25.699381 8162 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875
I0429 10:08:25.699393 8162 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1
I0429 10:08:25.699405 8162 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0429 10:08:25.699417 8162 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0429 10:08:25.699429 8162 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0429 10:08:25.699440 8162 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0429 10:08:25.699452 8162 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0429 10:08:25.699476 8162 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0429 10:08:25.699503 8162 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0429 10:08:25.699517 8162 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0429 10:08:25.699530 8162 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0429 10:08:25.699542 8162 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0429 10:08:25.699554 8162 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0429 10:08:25.699566 8162 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0429 10:08:25.699579 8162 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0429 10:08:25.699590 8162 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.840909
I0429 10:08:25.699602 8162 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.681818
I0429 10:08:25.699617 8162 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.9595 (* 1 = 1.9595 loss)
I0429 10:08:25.699631 8162 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.536447 (* 1 = 0.536447 loss)
I0429 10:08:25.699646 8162 solver.cpp:245] Train net output #125: loss3/loss01 = 1.46724 (* 0.0909091 = 0.133385 loss)
I0429 10:08:25.699661 8162 solver.cpp:245] Train net output #126: loss3/loss02 = 1.37607 (* 0.0909091 = 0.125097 loss)
I0429 10:08:25.699676 8162 solver.cpp:245] Train net output #127: loss3/loss03 = 1.98274 (* 0.0909091 = 0.180249 loss)
I0429 10:08:25.699690 8162 solver.cpp:245] Train net output #128: loss3/loss04 = 2.98902 (* 0.0909091 = 0.271729 loss)
I0429 10:08:25.699704 8162 solver.cpp:245] Train net output #129: loss3/loss05 = 2.25322 (* 0.0909091 = 0.204838 loss)
I0429 10:08:25.699718 8162 solver.cpp:245] Train net output #130: loss3/loss06 = 1.20527 (* 0.0909091 = 0.10957 loss)
I0429 10:08:25.699733 8162 solver.cpp:245] Train net output #131: loss3/loss07 = 0.856461 (* 0.0909091 = 0.0778601 loss)
I0429 10:08:25.699746 8162 solver.cpp:245] Train net output #132: loss3/loss08 = 0.22616 (* 0.0909091 = 0.02056 loss)
I0429 10:08:25.699761 8162 solver.cpp:245] Train net output #133: loss3/loss09 = 0.0340844 (* 0.0909091 = 0.00309858 loss)
I0429 10:08:25.699775 8162 solver.cpp:245] Train net output #134: loss3/loss10 = 0.012201 (* 0.0909091 = 0.00110918 loss)
I0429 10:08:25.699790 8162 solver.cpp:245] Train net output #135: loss3/loss11 = 0.00669681 (* 0.0909091 = 0.000608801 loss)
I0429 10:08:25.699805 8162 solver.cpp:245] Train net output #136: loss3/loss12 = 0.00413469 (* 0.0909091 = 0.000375881 loss)
I0429 10:08:25.699820 8162 solver.cpp:245] Train net output #137: loss3/loss13 = 0.00310599 (* 0.0909091 = 0.000282362 loss)
I0429 10:08:25.699833 8162 solver.cpp:245] Train net output #138: loss3/loss14 = 0.00219863 (* 0.0909091 = 0.000199876 loss)
I0429 10:08:25.699848 8162 solver.cpp:245] Train net output #139: loss3/loss15 = 0.00161335 (* 0.0909091 = 0.000146668 loss)
I0429 10:08:25.699862 8162 solver.cpp:245] Train net output #140: loss3/loss16 = 0.000956445 (* 0.0909091 = 8.69496e-05 loss)
I0429 10:08:25.699877 8162 solver.cpp:245] Train net output #141: loss3/loss17 = 0.000644787 (* 0.0909091 = 5.8617e-05 loss)
I0429 10:08:25.699890 8162 solver.cpp:245] Train net output #142: loss3/loss18 = 0.000597395 (* 0.0909091 = 5.43086e-05 loss)
I0429 10:08:25.699905 8162 solver.cpp:245] Train net output #143: loss3/loss19 = 0.000616121 (* 0.0909091 = 5.6011e-05 loss)
I0429 10:08:25.699919 8162 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000537593 (* 0.0909091 = 4.88721e-05 loss)
I0429 10:08:25.699934 8162 solver.cpp:245] Train net output #145: loss3/loss21 = 0.000566384 (* 0.0909091 = 5.14895e-05 loss)
I0429 10:08:25.699949 8162 solver.cpp:245] Train net output #146: loss3/loss22 = 0.000577262 (* 0.0909091 = 5.24784e-05 loss)
I0429 10:08:25.699960 8162 solver.cpp:245] Train net output #147: total_accuracy = 0
I0429 10:08:25.699972 8162 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0
I0429 10:08:25.699997 8162 solver.cpp:245] Train net output #149: total_confidence = 0.0670599
I0429 10:08:25.700012 8162 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.0702446
I0429 10:08:25.700026 8162 sgd_solver.cpp:106] Iteration 7500, lr = 0.005
I0429 10:10:42.400487 8162 solver.cpp:229] Iteration 8000, loss = 5.5193
I0429 10:10:42.400655 8162 solver.cpp:245] Train net output #0: loss1/accuracy = 0.355556
I0429 10:10:42.400676 8162 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.5
I0429 10:10:42.400689 8162 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.25
I0429 10:10:42.400702 8162 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.125
I0429 10:10:42.400714 8162 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375
I0429 10:10:42.400727 8162 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.5
I0429 10:10:42.400738 8162 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.75
I0429 10:10:42.400751 8162 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.625
I0429 10:10:42.400763 8162 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.75
I0429 10:10:42.400775 8162 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1
I0429 10:10:42.400789 8162 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0429 10:10:42.400799 8162 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0429 10:10:42.400811 8162 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0429 10:10:42.400823 8162 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0429 10:10:42.400835 8162 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0429 10:10:42.400847 8162 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0429 10:10:42.400859 8162 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0429 10:10:42.400872 8162 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0429 10:10:42.400883 8162 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0429 10:10:42.400895 8162 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0429 10:10:42.400907 8162 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0429 10:10:42.400919 8162 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0429 10:10:42.400931 8162 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0429 10:10:42.400943 8162 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.8125
I0429 10:10:42.400956 8162 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.6
I0429 10:10:42.400972 8162 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 2.1458 (* 0.3 = 0.643741 loss)
I0429 10:10:42.400987 8162 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.641192 (* 0.3 = 0.192358 loss)
I0429 10:10:42.401002 8162 solver.cpp:245] Train net output #27: loss1/loss01 = 1.5249 (* 0.0272727 = 0.0415883 loss)
I0429 10:10:42.401016 8162 solver.cpp:245] Train net output #28: loss1/loss02 = 2.69766 (* 0.0272727 = 0.0735726 loss)
I0429 10:10:42.401031 8162 solver.cpp:245] Train net output #29: loss1/loss03 = 2.50103 (* 0.0272727 = 0.0682098 loss)
I0429 10:10:42.401046 8162 solver.cpp:245] Train net output #30: loss1/loss04 = 1.80188 (* 0.0272727 = 0.0491422 loss)
I0429 10:10:42.401059 8162 solver.cpp:245] Train net output #31: loss1/loss05 = 1.73077 (* 0.0272727 = 0.0472028 loss)
I0429 10:10:42.401085 8162 solver.cpp:245] Train net output #32: loss1/loss06 = 1.25527 (* 0.0272727 = 0.0342345 loss)
I0429 10:10:42.401103 8162 solver.cpp:245] Train net output #33: loss1/loss07 = 1.38729 (* 0.0272727 = 0.0378351 loss)
I0429 10:10:42.401118 8162 solver.cpp:245] Train net output #34: loss1/loss08 = 1.00992 (* 0.0272727 = 0.0275434 loss)
I0429 10:10:42.401134 8162 solver.cpp:245] Train net output #35: loss1/loss09 = 0.0525135 (* 0.0272727 = 0.00143219 loss)
I0429 10:10:42.401147 8162 solver.cpp:245] Train net output #36: loss1/loss10 = 0.0204309 (* 0.0272727 = 0.000557206 loss)
I0429 10:10:42.401162 8162 solver.cpp:245] Train net output #37: loss1/loss11 = 0.00202714 (* 0.0272727 = 5.52857e-05 loss)
I0429 10:10:42.401177 8162 solver.cpp:245] Train net output #38: loss1/loss12 = 0.000758251 (* 0.0272727 = 2.06796e-05 loss)
I0429 10:10:42.401192 8162 solver.cpp:245] Train net output #39: loss1/loss13 = 0.000428315 (* 0.0272727 = 1.16813e-05 loss)
I0429 10:10:42.401228 8162 solver.cpp:245] Train net output #40: loss1/loss14 = 0.000202993 (* 0.0272727 = 5.53617e-06 loss)
I0429 10:10:42.401244 8162 solver.cpp:245] Train net output #41: loss1/loss15 = 0.000222879 (* 0.0272727 = 6.07851e-06 loss)
I0429 10:10:42.401259 8162 solver.cpp:245] Train net output #42: loss1/loss16 = 7.65141e-05 (* 0.0272727 = 2.08675e-06 loss)
I0429 10:10:42.401273 8162 solver.cpp:245] Train net output #43: loss1/loss17 = 1.45589e-05 (* 0.0272727 = 3.97062e-07 loss)
I0429 10:10:42.401288 8162 solver.cpp:245] Train net output #44: loss1/loss18 = 7.52519e-06 (* 0.0272727 = 2.05233e-07 loss)
I0429 10:10:42.401303 8162 solver.cpp:245] Train net output #45: loss1/loss19 = 5.12606e-06 (* 0.0272727 = 1.39802e-07 loss)
I0429 10:10:42.401320 8162 solver.cpp:245] Train net output #46: loss1/loss20 = 5.88603e-06 (* 0.0272727 = 1.60528e-07 loss)
I0429 10:10:42.401335 8162 solver.cpp:245] Train net output #47: loss1/loss21 = 6.70561e-06 (* 0.0272727 = 1.8288e-07 loss)
I0429 10:10:42.401350 8162 solver.cpp:245] Train net output #48: loss1/loss22 = 4.48531e-06 (* 0.0272727 = 1.22327e-07 loss)
I0429 10:10:42.401362 8162 solver.cpp:245] Train net output #49: loss2/accuracy = 0.466667
I0429 10:10:42.401376 8162 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.75
I0429 10:10:42.401388 8162 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.5
I0429 10:10:42.401401 8162 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.625
I0429 10:10:42.401413 8162 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.375
I0429 10:10:42.401425 8162 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.375
I0429 10:10:42.401437 8162 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.625
I0429 10:10:42.401450 8162 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.75
I0429 10:10:42.401463 8162 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.75
I0429 10:10:42.401475 8162 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1
I0429 10:10:42.401484 8162 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0429 10:10:42.401491 8162 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0429 10:10:42.401504 8162 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0429 10:10:42.401516 8162 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0429 10:10:42.401528 8162 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0429 10:10:42.401540 8162 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0429 10:10:42.401553 8162 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0429 10:10:42.401576 8162 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0429 10:10:42.401595 8162 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0429 10:10:42.401607 8162 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0429 10:10:42.401620 8162 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0429 10:10:42.401633 8162 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0429 10:10:42.401644 8162 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0429 10:10:42.401656 8162 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.835227
I0429 10:10:42.401672 8162 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.733333
I0429 10:10:42.401687 8162 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 2.04111 (* 0.3 = 0.612334 loss)
I0429 10:10:42.401701 8162 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.632186 (* 0.3 = 0.189656 loss)
I0429 10:10:42.401716 8162 solver.cpp:245] Train net output #76: loss2/loss01 = 1.02858 (* 0.0272727 = 0.0280523 loss)
I0429 10:10:42.401731 8162 solver.cpp:245] Train net output #77: loss2/loss02 = 2.43692 (* 0.0272727 = 0.0664615 loss)
I0429 10:10:42.401757 8162 solver.cpp:245] Train net output #78: loss2/loss03 = 1.60498 (* 0.0272727 = 0.0437722 loss)
I0429 10:10:42.401772 8162 solver.cpp:245] Train net output #79: loss2/loss04 = 1.83478 (* 0.0272727 = 0.0500395 loss)
I0429 10:10:42.401787 8162 solver.cpp:245] Train net output #80: loss2/loss05 = 1.72476 (* 0.0272727 = 0.047039 loss)
I0429 10:10:42.401801 8162 solver.cpp:245] Train net output #81: loss2/loss06 = 1.29283 (* 0.0272727 = 0.035259 loss)
I0429 10:10:42.401815 8162 solver.cpp:245] Train net output #82: loss2/loss07 = 1.10083 (* 0.0272727 = 0.0300227 loss)
I0429 10:10:42.401829 8162 solver.cpp:245] Train net output #83: loss2/loss08 = 0.890251 (* 0.0272727 = 0.0242796 loss)
I0429 10:10:42.401844 8162 solver.cpp:245] Train net output #84: loss2/loss09 = 0.0820474 (* 0.0272727 = 0.00223766 loss)
I0429 10:10:42.401859 8162 solver.cpp:245] Train net output #85: loss2/loss10 = 0.019437 (* 0.0272727 = 0.000530101 loss)
I0429 10:10:42.401873 8162 solver.cpp:245] Train net output #86: loss2/loss11 = 0.00113967 (* 0.0272727 = 3.1082e-05 loss)
I0429 10:10:42.401888 8162 solver.cpp:245] Train net output #87: loss2/loss12 = 0.000680878 (* 0.0272727 = 1.85694e-05 loss)
I0429 10:10:42.401902 8162 solver.cpp:245] Train net output #88: loss2/loss13 = 0.000282694 (* 0.0272727 = 7.70984e-06 loss)
I0429 10:10:42.401917 8162 solver.cpp:245] Train net output #89: loss2/loss14 = 0.000177119 (* 0.0272727 = 4.83052e-06 loss)
I0429 10:10:42.401932 8162 solver.cpp:245] Train net output #90: loss2/loss15 = 4.83659e-05 (* 0.0272727 = 1.31907e-06 loss)
I0429 10:10:42.401945 8162 solver.cpp:245] Train net output #91: loss2/loss16 = 2.91482e-05 (* 0.0272727 = 7.9495e-07 loss)
I0429 10:10:42.401959 8162 solver.cpp:245] Train net output #92: loss2/loss17 = 1.22343e-05 (* 0.0272727 = 3.33662e-07 loss)
I0429 10:10:42.401974 8162 solver.cpp:245] Train net output #93: loss2/loss18 = 8.01696e-06 (* 0.0272727 = 2.18644e-07 loss)
I0429 10:10:42.401988 8162 solver.cpp:245] Train net output #94: loss2/loss19 = 4.44058e-06 (* 0.0272727 = 1.21107e-07 loss)
I0429 10:10:42.402004 8162 solver.cpp:245] Train net output #95: loss2/loss20 = 3.09946e-06 (* 0.0272727 = 8.45306e-08 loss)
I0429 10:10:42.402019 8162 solver.cpp:245] Train net output #96: loss2/loss21 = 2.87593e-06 (* 0.0272727 = 7.84346e-08 loss)
I0429 10:10:42.402032 8162 solver.cpp:245] Train net output #97: loss2/loss22 = 3.94883e-06 (* 0.0272727 = 1.07695e-07 loss)
I0429 10:10:42.402045 8162 solver.cpp:245] Train net output #98: loss3/accuracy = 0.6
I0429 10:10:42.402057 8162 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0429 10:10:42.402070 8162 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.625
I0429 10:10:42.402082 8162 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.5
I0429 10:10:42.402094 8162 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.25
I0429 10:10:42.402107 8162 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.625
I0429 10:10:42.402118 8162 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.5
I0429 10:10:42.402130 8162 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875
I0429 10:10:42.402143 8162 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.75
I0429 10:10:42.402154 8162 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1
I0429 10:10:42.402166 8162 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0429 10:10:42.402179 8162 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0429 10:10:42.402190 8162 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0429 10:10:42.402202 8162 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0429 10:10:42.402215 8162 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0429 10:10:42.402226 8162 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0429 10:10:42.402238 8162 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0429 10:10:42.402259 8162 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0429 10:10:42.402273 8162 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0429 10:10:42.402286 8162 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0429 10:10:42.402297 8162 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0429 10:10:42.402308 8162 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0429 10:10:42.402320 8162 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0429 10:10:42.402333 8162 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.880682
I0429 10:10:42.402344 8162 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.755556
I0429 10:10:42.402359 8162 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.4215 (* 1 = 1.4215 loss)
I0429 10:10:42.402376 8162 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.421471 (* 1 = 0.421471 loss)
I0429 10:10:42.402391 8162 solver.cpp:245] Train net output #125: loss3/loss01 = 0.410165 (* 0.0909091 = 0.0372877 loss)
I0429 10:10:42.402406 8162 solver.cpp:245] Train net output #126: loss3/loss02 = 1.51506 (* 0.0909091 = 0.137732 loss)
I0429 10:10:42.402420 8162 solver.cpp:245] Train net output #127: loss3/loss03 = 1.24171 (* 0.0909091 = 0.112883 loss)
I0429 10:10:42.402434 8162 solver.cpp:245] Train net output #128: loss3/loss04 = 2.06483 (* 0.0909091 = 0.187712 loss)
I0429 10:10:42.402448 8162 solver.cpp:245] Train net output #129: loss3/loss05 = 1.24674 (* 0.0909091 = 0.11334 loss)
I0429 10:10:42.402462 8162 solver.cpp:245] Train net output #130: loss3/loss06 = 1.27913 (* 0.0909091 = 0.116285 loss)
I0429 10:10:42.402477 8162 solver.cpp:245] Train net output #131: loss3/loss07 = 0.862089 (* 0.0909091 = 0.0783717 loss)
I0429 10:10:42.402492 8162 solver.cpp:245] Train net output #132: loss3/loss08 = 0.815221 (* 0.0909091 = 0.074111 loss)
I0429 10:10:42.402505 8162 solver.cpp:245] Train net output #133: loss3/loss09 = 0.0133484 (* 0.0909091 = 0.00121349 loss)
I0429 10:10:42.402520 8162 solver.cpp:245] Train net output #134: loss3/loss10 = 0.00337114 (* 0.0909091 = 0.000306467 loss)
I0429 10:10:42.402534 8162 solver.cpp:245] Train net output #135: loss3/loss11 = 0.000245535 (* 0.0909091 = 2.23214e-05 loss)
I0429 10:10:42.402549 8162 solver.cpp:245] Train net output #136: loss3/loss12 = 0.000116493 (* 0.0909091 = 1.05902e-05 loss)
I0429 10:10:42.402564 8162 solver.cpp:245] Train net output #137: loss3/loss13 = 5.66815e-05 (* 0.0909091 = 5.15286e-06 loss)
I0429 10:10:42.402578 8162 solver.cpp:245] Train net output #138: loss3/loss14 = 3.93265e-05 (* 0.0909091 = 3.57514e-06 loss)
I0429 10:10:42.402592 8162 solver.cpp:245] Train net output #139: loss3/loss15 = 3.60409e-05 (* 0.0909091 = 3.27644e-06 loss)
I0429 10:10:42.402606 8162 solver.cpp:245] Train net output #140: loss3/loss16 = 2.8582e-05 (* 0.0909091 = 2.59837e-06 loss)
I0429 10:10:42.402621 8162 solver.cpp:245] Train net output #141: loss3/loss17 = 1.18467e-05 (* 0.0909091 = 1.07697e-06 loss)
I0429 10:10:42.402636 8162 solver.cpp:245] Train net output #142: loss3/loss18 = 8.92595e-06 (* 0.0909091 = 8.1145e-07 loss)
I0429 10:10:42.402649 8162 solver.cpp:245] Train net output #143: loss3/loss19 = 7.555e-06 (* 0.0909091 = 6.86819e-07 loss)
I0429 10:10:42.402664 8162 solver.cpp:245] Train net output #144: loss3/loss20 = 6.79505e-06 (* 0.0909091 = 6.17731e-07 loss)
I0429 10:10:42.402678 8162 solver.cpp:245] Train net output #145: loss3/loss21 = 7.28682e-06 (* 0.0909091 = 6.62438e-07 loss)
I0429 10:10:42.402693 8162 solver.cpp:245] Train net output #146: loss3/loss22 = 9.74565e-06 (* 0.0909091 = 8.85969e-07 loss)
I0429 10:10:42.402705 8162 solver.cpp:245] Train net output #147: total_accuracy = 0.125
I0429 10:10:42.402721 8162 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0
I0429 10:10:42.402743 8162 solver.cpp:245] Train net output #149: total_confidence = 0.14329
I0429 10:10:42.402757 8162 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.0931727
I0429 10:10:42.402771 8162 sgd_solver.cpp:106] Iteration 8000, lr = 0.005
I0429 10:12:59.061935 8162 solver.cpp:229] Iteration 8500, loss = 5.5202
I0429 10:12:59.062151 8162 solver.cpp:245] Train net output #0: loss1/accuracy = 0.315789
I0429 10:12:59.062173 8162 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.625
I0429 10:12:59.062187 8162 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.375
I0429 10:12:59.062201 8162 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.125
I0429 10:12:59.062212 8162 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375
I0429 10:12:59.062225 8162 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.25
I0429 10:12:59.062237 8162 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.25
I0429 10:12:59.062250 8162 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.75
I0429 10:12:59.062263 8162 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.75
I0429 10:12:59.062274 8162 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1
I0429 10:12:59.062286 8162 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875
I0429 10:12:59.062299 8162 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0429 10:12:59.062314 8162 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.875
I0429 10:12:59.062327 8162 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.875
I0429 10:12:59.062340 8162 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0429 10:12:59.062352 8162 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.875
I0429 10:12:59.062364 8162 solver.cpp:245] Train net output #16: loss1/accuracy16 = 0.875
I0429 10:12:59.062376 8162 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0429 10:12:59.062388 8162 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0429 10:12:59.062400 8162 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0429 10:12:59.062412 8162 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0429 10:12:59.062424 8162 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0429 10:12:59.062436 8162 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0429 10:12:59.062448 8162 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.761364
I0429 10:12:59.062460 8162 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.54386
I0429 10:12:59.062477 8162 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 2.17543 (* 0.3 = 0.652628 loss)
I0429 10:12:59.062492 8162 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.814014 (* 0.3 = 0.244204 loss)
I0429 10:12:59.062507 8162 solver.cpp:245] Train net output #27: loss1/loss01 = 1.16076 (* 0.0272727 = 0.031657 loss)
I0429 10:12:59.062522 8162 solver.cpp:245] Train net output #28: loss1/loss02 = 1.85808 (* 0.0272727 = 0.0506749 loss)
I0429 10:12:59.062537 8162 solver.cpp:245] Train net output #29: loss1/loss03 = 2.96826 (* 0.0272727 = 0.0809524 loss)
I0429 10:12:59.062551 8162 solver.cpp:245] Train net output #30: loss1/loss04 = 2.51749 (* 0.0272727 = 0.0686587 loss)
I0429 10:12:59.062566 8162 solver.cpp:245] Train net output #31: loss1/loss05 = 2.4827 (* 0.0272727 = 0.0677101 loss)
I0429 10:12:59.062579 8162 solver.cpp:245] Train net output #32: loss1/loss06 = 2.58928 (* 0.0272727 = 0.0706168 loss)
I0429 10:12:59.062593 8162 solver.cpp:245] Train net output #33: loss1/loss07 = 0.98094 (* 0.0272727 = 0.0267529 loss)
I0429 10:12:59.062608 8162 solver.cpp:245] Train net output #34: loss1/loss08 = 1.05702 (* 0.0272727 = 0.0288277 loss)
I0429 10:12:59.062623 8162 solver.cpp:245] Train net output #35: loss1/loss09 = 0.107318 (* 0.0272727 = 0.00292686 loss)
I0429 10:12:59.062636 8162 solver.cpp:245] Train net output #36: loss1/loss10 = 0.368088 (* 0.0272727 = 0.0100388 loss)
I0429 10:12:59.062651 8162 solver.cpp:245] Train net output #37: loss1/loss11 = 0.219971 (* 0.0272727 = 0.00599921 loss)
I0429 10:12:59.062665 8162 solver.cpp:245] Train net output #38: loss1/loss12 = 0.35924 (* 0.0272727 = 0.00979745 loss)
I0429 10:12:59.062695 8162 solver.cpp:245] Train net output #39: loss1/loss13 = 0.359784 (* 0.0272727 = 0.00981228 loss)
I0429 10:12:59.062710 8162 solver.cpp:245] Train net output #40: loss1/loss14 = 0.21412 (* 0.0272727 = 0.00583965 loss)
I0429 10:12:59.062724 8162 solver.cpp:245] Train net output #41: loss1/loss15 = 0.311923 (* 0.0272727 = 0.00850698 loss)
I0429 10:12:59.062738 8162 solver.cpp:245] Train net output #42: loss1/loss16 = 0.457253 (* 0.0272727 = 0.0124705 loss)
I0429 10:12:59.062753 8162 solver.cpp:245] Train net output #43: loss1/loss17 = 0.00108062 (* 0.0272727 = 2.94715e-05 loss)
I0429 10:12:59.062768 8162 solver.cpp:245] Train net output #44: loss1/loss18 = 0.000375282 (* 0.0272727 = 1.0235e-05 loss)
I0429 10:12:59.062783 8162 solver.cpp:245] Train net output #45: loss1/loss19 = 0.000316303 (* 0.0272727 = 8.62643e-06 loss)
I0429 10:12:59.062798 8162 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000154087 (* 0.0272727 = 4.20237e-06 loss)
I0429 10:12:59.062811 8162 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000125588 (* 0.0272727 = 3.42512e-06 loss)
I0429 10:12:59.062826 8162 solver.cpp:245] Train net output #48: loss1/loss22 = 8.91368e-05 (* 0.0272727 = 2.431e-06 loss)
I0429 10:12:59.062839 8162 solver.cpp:245] Train net output #49: loss2/accuracy = 0.421053
I0429 10:12:59.062851 8162 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.75
I0429 10:12:59.062865 8162 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.5
I0429 10:12:59.062876 8162 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.375
I0429 10:12:59.062890 8162 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.5
I0429 10:12:59.062897 8162 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.25
I0429 10:12:59.062906 8162 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.625
I0429 10:12:59.062918 8162 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.75
I0429 10:12:59.062930 8162 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.75
I0429 10:12:59.062942 8162 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1
I0429 10:12:59.062954 8162 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875
I0429 10:12:59.062966 8162 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0429 10:12:59.062978 8162 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.875
I0429 10:12:59.062990 8162 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.875
I0429 10:12:59.063002 8162 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0429 10:12:59.063014 8162 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.875
I0429 10:12:59.063025 8162 solver.cpp:245] Train net output #65: loss2/accuracy16 = 0.875
I0429 10:12:59.063037 8162 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0429 10:12:59.063050 8162 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0429 10:12:59.063061 8162 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0429 10:12:59.063072 8162 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0429 10:12:59.063084 8162 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0429 10:12:59.063097 8162 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0429 10:12:59.063108 8162 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.789773
I0429 10:12:59.063120 8162 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.631579
I0429 10:12:59.063134 8162 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.93619 (* 0.3 = 0.580857 loss)
I0429 10:12:59.063148 8162 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.742612 (* 0.3 = 0.222784 loss)
I0429 10:12:59.063166 8162 solver.cpp:245] Train net output #76: loss2/loss01 = 0.879599 (* 0.0272727 = 0.0239891 loss)
I0429 10:12:59.063181 8162 solver.cpp:245] Train net output #77: loss2/loss02 = 1.56631 (* 0.0272727 = 0.0427175 loss)
I0429 10:12:59.063207 8162 solver.cpp:245] Train net output #78: loss2/loss03 = 1.98657 (* 0.0272727 = 0.0541791 loss)
I0429 10:12:59.063222 8162 solver.cpp:245] Train net output #79: loss2/loss04 = 1.86753 (* 0.0272727 = 0.0509326 loss)
I0429 10:12:59.063236 8162 solver.cpp:245] Train net output #80: loss2/loss05 = 2.92842 (* 0.0272727 = 0.0798659 loss)
I0429 10:12:59.063251 8162 solver.cpp:245] Train net output #81: loss2/loss06 = 1.74235 (* 0.0272727 = 0.0475186 loss)
I0429 10:12:59.063264 8162 solver.cpp:245] Train net output #82: loss2/loss07 = 0.943851 (* 0.0272727 = 0.0257414 loss)
I0429 10:12:59.063278 8162 solver.cpp:245] Train net output #83: loss2/loss08 = 1.20015 (* 0.0272727 = 0.0327313 loss)
I0429 10:12:59.063293 8162 solver.cpp:245] Train net output #84: loss2/loss09 = 0.355087 (* 0.0272727 = 0.00968418 loss)
I0429 10:12:59.063308 8162 solver.cpp:245] Train net output #85: loss2/loss10 = 0.477182 (* 0.0272727 = 0.0130141 loss)
I0429 10:12:59.063321 8162 solver.cpp:245] Train net output #86: loss2/loss11 = 0.405888 (* 0.0272727 = 0.0110697 loss)
I0429 10:12:59.063336 8162 solver.cpp:245] Train net output #87: loss2/loss12 = 0.410724 (* 0.0272727 = 0.0112016 loss)
I0429 10:12:59.063350 8162 solver.cpp:245] Train net output #88: loss2/loss13 = 0.487647 (* 0.0272727 = 0.0132995 loss)
I0429 10:12:59.063367 8162 solver.cpp:245] Train net output #89: loss2/loss14 = 0.317702 (* 0.0272727 = 0.00866461 loss)
I0429 10:12:59.063382 8162 solver.cpp:245] Train net output #90: loss2/loss15 = 0.371124 (* 0.0272727 = 0.0101216 loss)
I0429 10:12:59.063396 8162 solver.cpp:245] Train net output #91: loss2/loss16 = 0.551317 (* 0.0272727 = 0.0150359 loss)
I0429 10:12:59.063411 8162 solver.cpp:245] Train net output #92: loss2/loss17 = 0.0612361 (* 0.0272727 = 0.00167008 loss)
I0429 10:12:59.063426 8162 solver.cpp:245] Train net output #93: loss2/loss18 = 0.0646391 (* 0.0272727 = 0.00176289 loss)
I0429 10:12:59.063439 8162 solver.cpp:245] Train net output #94: loss2/loss19 = 0.0627673 (* 0.0272727 = 0.00171184 loss)
I0429 10:12:59.063453 8162 solver.cpp:245] Train net output #95: loss2/loss20 = 0.0588223 (* 0.0272727 = 0.00160424 loss)
I0429 10:12:59.063482 8162 solver.cpp:245] Train net output #96: loss2/loss21 = 0.06261 (* 0.0272727 = 0.00170755 loss)
I0429 10:12:59.063499 8162 solver.cpp:245] Train net output #97: loss2/loss22 = 0.0473362 (* 0.0272727 = 0.00129099 loss)
I0429 10:12:59.063513 8162 solver.cpp:245] Train net output #98: loss3/accuracy = 0.631579
I0429 10:12:59.063525 8162 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875
I0429 10:12:59.063537 8162 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875
I0429 10:12:59.063550 8162 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.625
I0429 10:12:59.063562 8162 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.625
I0429 10:12:59.063575 8162 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.25
I0429 10:12:59.063587 8162 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.625
I0429 10:12:59.063599 8162 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75
I0429 10:12:59.063611 8162 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.75
I0429 10:12:59.063623 8162 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1
I0429 10:12:59.063637 8162 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875
I0429 10:12:59.063648 8162 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0429 10:12:59.063659 8162 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.875
I0429 10:12:59.063673 8162 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.875
I0429 10:12:59.063684 8162 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.875
I0429 10:12:59.063696 8162 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.875
I0429 10:12:59.063709 8162 solver.cpp:245] Train net output #114: loss3/accuracy16 = 0.875
I0429 10:12:59.063731 8162 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0429 10:12:59.063745 8162 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0429 10:12:59.063757 8162 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0429 10:12:59.063769 8162 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0429 10:12:59.063781 8162 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0429 10:12:59.063793 8162 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0429 10:12:59.063805 8162 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.875
I0429 10:12:59.063817 8162 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.77193
I0429 10:12:59.063832 8162 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.36367 (* 1 = 1.36367 loss)
I0429 10:12:59.063846 8162 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.511464 (* 1 = 0.511464 loss)
I0429 10:12:59.063861 8162 solver.cpp:245] Train net output #125: loss3/loss01 = 0.579109 (* 0.0909091 = 0.0526463 loss)
I0429 10:12:59.063876 8162 solver.cpp:245] Train net output #126: loss3/loss02 = 0.900736 (* 0.0909091 = 0.0818851 loss)
I0429 10:12:59.063890 8162 solver.cpp:245] Train net output #127: loss3/loss03 = 1.33217 (* 0.0909091 = 0.121106 loss)
I0429 10:12:59.063905 8162 solver.cpp:245] Train net output #128: loss3/loss04 = 1.42309 (* 0.0909091 = 0.129372 loss)
I0429 10:12:59.063918 8162 solver.cpp:245] Train net output #129: loss3/loss05 = 2.10061 (* 0.0909091 = 0.190965 loss)
I0429 10:12:59.063932 8162 solver.cpp:245] Train net output #130: loss3/loss06 = 1.50159 (* 0.0909091 = 0.136508 loss)
I0429 10:12:59.063946 8162 solver.cpp:245] Train net output #131: loss3/loss07 = 0.51841 (* 0.0909091 = 0.0471282 loss)
I0429 10:12:59.063961 8162 solver.cpp:245] Train net output #132: loss3/loss08 = 0.931458 (* 0.0909091 = 0.084678 loss)
I0429 10:12:59.063976 8162 solver.cpp:245] Train net output #133: loss3/loss09 = 0.195848 (* 0.0909091 = 0.0178043 loss)
I0429 10:12:59.063989 8162 solver.cpp:245] Train net output #134: loss3/loss10 = 0.375022 (* 0.0909091 = 0.0340929 loss)
I0429 10:12:59.064003 8162 solver.cpp:245] Train net output #135: loss3/loss11 = 0.255603 (* 0.0909091 = 0.0232366 loss)
I0429 10:12:59.064018 8162 solver.cpp:245] Train net output #136: loss3/loss12 = 0.423424 (* 0.0909091 = 0.0384931 loss)
I0429 10:12:59.064033 8162 solver.cpp:245] Train net output #137: loss3/loss13 = 0.352475 (* 0.0909091 = 0.0320432 loss)
I0429 10:12:59.064046 8162 solver.cpp:245] Train net output #138: loss3/loss14 = 0.300095 (* 0.0909091 = 0.0272814 loss)
I0429 10:12:59.064060 8162 solver.cpp:245] Train net output #139: loss3/loss15 = 0.325243 (* 0.0909091 = 0.0295676 loss)
I0429 10:12:59.064075 8162 solver.cpp:245] Train net output #140: loss3/loss16 = 0.407075 (* 0.0909091 = 0.0370068 loss)
I0429 10:12:59.064090 8162 solver.cpp:245] Train net output #141: loss3/loss17 = 0.00628405 (* 0.0909091 = 0.000571277 loss)
I0429 10:12:59.064105 8162 solver.cpp:245] Train net output #142: loss3/loss18 = 0.00386714 (* 0.0909091 = 0.000351558 loss)
I0429 10:12:59.064118 8162 solver.cpp:245] Train net output #143: loss3/loss19 = 0.00292973 (* 0.0909091 = 0.000266339 loss)
I0429 10:12:59.064132 8162 solver.cpp:245] Train net output #144: loss3/loss20 = 0.00208315 (* 0.0909091 = 0.000189377 loss)
I0429 10:12:59.064146 8162 solver.cpp:245] Train net output #145: loss3/loss21 = 0.00163457 (* 0.0909091 = 0.000148597 loss)
I0429 10:12:59.064162 8162 solver.cpp:245] Train net output #146: loss3/loss22 = 0.000823194 (* 0.0909091 = 7.48358e-05 loss)
I0429 10:12:59.064174 8162 solver.cpp:245] Train net output #147: total_accuracy = 0.25
I0429 10:12:59.064187 8162 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.125
I0429 10:12:59.064211 8162 solver.cpp:245] Train net output #149: total_confidence = 0.161839
I0429 10:12:59.064226 8162 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.0978437
I0429 10:12:59.064240 8162 sgd_solver.cpp:106] Iteration 8500, lr = 0.005
I0429 10:15:15.802893 8162 solver.cpp:229] Iteration 9000, loss = 5.44546
I0429 10:15:15.803071 8162 solver.cpp:245] Train net output #0: loss1/accuracy = 0.230769
I0429 10:15:15.803091 8162 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.375
I0429 10:15:15.803104 8162 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.25
I0429 10:15:15.803117 8162 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0
I0429 10:15:15.803129 8162 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375
I0429 10:15:15.803141 8162 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.125
I0429 10:15:15.803154 8162 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.5
I0429 10:15:15.803166 8162 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.5
I0429 10:15:15.803179 8162 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.5
I0429 10:15:15.803191 8162 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.75
I0429 10:15:15.803203 8162 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.75
I0429 10:15:15.803215 8162 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.875
I0429 10:15:15.803227 8162 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0429 10:15:15.803241 8162 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0429 10:15:15.803252 8162 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0429 10:15:15.803264 8162 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0429 10:15:15.803277 8162 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0429 10:15:15.803288 8162 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0429 10:15:15.803300 8162 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0429 10:15:15.803316 8162 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0429 10:15:15.803329 8162 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0429 10:15:15.803341 8162 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0429 10:15:15.803354 8162 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0429 10:15:15.803365 8162 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.693182
I0429 10:15:15.803377 8162 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.403846
I0429 10:15:15.803395 8162 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 2.84483 (* 0.3 = 0.853449 loss)
I0429 10:15:15.803409 8162 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 1.19831 (* 0.3 = 0.359493 loss)
I0429 10:15:15.803424 8162 solver.cpp:245] Train net output #27: loss1/loss01 = 2.49868 (* 0.0272727 = 0.0681458 loss)
I0429 10:15:15.803438 8162 solver.cpp:245] Train net output #28: loss1/loss02 = 2.79368 (* 0.0272727 = 0.0761912 loss)
I0429 10:15:15.803452 8162 solver.cpp:245] Train net output #29: loss1/loss03 = 2.93183 (* 0.0272727 = 0.0799591 loss)
I0429 10:15:15.803480 8162 solver.cpp:245] Train net output #30: loss1/loss04 = 2.86192 (* 0.0272727 = 0.0780525 loss)
I0429 10:15:15.803508 8162 solver.cpp:245] Train net output #31: loss1/loss05 = 2.92674 (* 0.0272727 = 0.0798201 loss)
I0429 10:15:15.803525 8162 solver.cpp:245] Train net output #32: loss1/loss06 = 1.99922 (* 0.0272727 = 0.054524 loss)
I0429 10:15:15.803540 8162 solver.cpp:245] Train net output #33: loss1/loss07 = 1.7908 (* 0.0272727 = 0.0488399 loss)
I0429 10:15:15.803555 8162 solver.cpp:245] Train net output #34: loss1/loss08 = 1.79982 (* 0.0272727 = 0.0490861 loss)
I0429 10:15:15.803568 8162 solver.cpp:245] Train net output #35: loss1/loss09 = 0.84881 (* 0.0272727 = 0.0231494 loss)
I0429 10:15:15.803583 8162 solver.cpp:245] Train net output #36: loss1/loss10 = 0.828709 (* 0.0272727 = 0.0226012 loss)
I0429 10:15:15.803597 8162 solver.cpp:245] Train net output #37: loss1/loss11 = 0.709699 (* 0.0272727 = 0.0193554 loss)
I0429 10:15:15.803612 8162 solver.cpp:245] Train net output #38: loss1/loss12 = 0.469173 (* 0.0272727 = 0.0127956 loss)
I0429 10:15:15.803627 8162 solver.cpp:245] Train net output #39: loss1/loss13 = 0.330675 (* 0.0272727 = 0.00901842 loss)
I0429 10:15:15.803663 8162 solver.cpp:245] Train net output #40: loss1/loss14 = 0.250671 (* 0.0272727 = 0.00683649 loss)
I0429 10:15:15.803678 8162 solver.cpp:245] Train net output #41: loss1/loss15 = 0.164034 (* 0.0272727 = 0.00447367 loss)
I0429 10:15:15.803694 8162 solver.cpp:245] Train net output #42: loss1/loss16 = 0.105378 (* 0.0272727 = 0.00287394 loss)
I0429 10:15:15.803707 8162 solver.cpp:245] Train net output #43: loss1/loss17 = 0.0692102 (* 0.0272727 = 0.00188755 loss)
I0429 10:15:15.803721 8162 solver.cpp:245] Train net output #44: loss1/loss18 = 0.0627087 (* 0.0272727 = 0.00171024 loss)
I0429 10:15:15.803736 8162 solver.cpp:245] Train net output #45: loss1/loss19 = 0.0354149 (* 0.0272727 = 0.000965861 loss)
I0429 10:15:15.803750 8162 solver.cpp:245] Train net output #46: loss1/loss20 = 0.022321 (* 0.0272727 = 0.000608754 loss)
I0429 10:15:15.803764 8162 solver.cpp:245] Train net output #47: loss1/loss21 = 0.0118737 (* 0.0272727 = 0.000323828 loss)
I0429 10:15:15.803779 8162 solver.cpp:245] Train net output #48: loss1/loss22 = 0.00552091 (* 0.0272727 = 0.00015057 loss)
I0429 10:15:15.803791 8162 solver.cpp:245] Train net output #49: loss2/accuracy = 0.307692
I0429 10:15:15.803804 8162 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.375
I0429 10:15:15.803817 8162 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.375
I0429 10:15:15.803828 8162 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.375
I0429 10:15:15.803840 8162 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.25
I0429 10:15:15.803853 8162 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5
I0429 10:15:15.803861 8162 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.25
I0429 10:15:15.803869 8162 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.5
I0429 10:15:15.803881 8162 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.5
I0429 10:15:15.803894 8162 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875
I0429 10:15:15.803906 8162 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.75
I0429 10:15:15.803918 8162 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.875
I0429 10:15:15.803930 8162 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0429 10:15:15.803951 8162 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0429 10:15:15.803966 8162 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0429 10:15:15.803982 8162 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0429 10:15:15.803998 8162 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0429 10:15:15.804011 8162 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0429 10:15:15.804023 8162 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0429 10:15:15.804035 8162 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0429 10:15:15.804047 8162 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0429 10:15:15.804059 8162 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0429 10:15:15.804070 8162 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0429 10:15:15.804087 8162 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.698864
I0429 10:15:15.804100 8162 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.461538
I0429 10:15:15.804116 8162 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 2.86504 (* 0.3 = 0.859511 loss)
I0429 10:15:15.804129 8162 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 1.24533 (* 0.3 = 0.3736 loss)
I0429 10:15:15.804143 8162 solver.cpp:245] Train net output #76: loss2/loss01 = 2.56397 (* 0.0272727 = 0.0699265 loss)
I0429 10:15:15.804157 8162 solver.cpp:245] Train net output #77: loss2/loss02 = 2.77896 (* 0.0272727 = 0.0757898 loss)
I0429 10:15:15.804183 8162 solver.cpp:245] Train net output #78: loss2/loss03 = 2.52864 (* 0.0272727 = 0.068963 loss)
I0429 10:15:15.804198 8162 solver.cpp:245] Train net output #79: loss2/loss04 = 3.15839 (* 0.0272727 = 0.0861379 loss)
I0429 10:15:15.804214 8162 solver.cpp:245] Train net output #80: loss2/loss05 = 2.99489 (* 0.0272727 = 0.0816789 loss)
I0429 10:15:15.804227 8162 solver.cpp:245] Train net output #81: loss2/loss06 = 1.88305 (* 0.0272727 = 0.0513558 loss)
I0429 10:15:15.804241 8162 solver.cpp:245] Train net output #82: loss2/loss07 = 1.83111 (* 0.0272727 = 0.0499394 loss)
I0429 10:15:15.804255 8162 solver.cpp:245] Train net output #83: loss2/loss08 = 1.82286 (* 0.0272727 = 0.0497144 loss)
I0429 10:15:15.804270 8162 solver.cpp:245] Train net output #84: loss2/loss09 = 0.655487 (* 0.0272727 = 0.0178769 loss)
I0429 10:15:15.804283 8162 solver.cpp:245] Train net output #85: loss2/loss10 = 0.708505 (* 0.0272727 = 0.0193229 loss)
I0429 10:15:15.804298 8162 solver.cpp:245] Train net output #86: loss2/loss11 = 0.658623 (* 0.0272727 = 0.0179625 loss)
I0429 10:15:15.804312 8162 solver.cpp:245] Train net output #87: loss2/loss12 = 0.44611 (* 0.0272727 = 0.0121666 loss)
I0429 10:15:15.804327 8162 solver.cpp:245] Train net output #88: loss2/loss13 = 0.318885 (* 0.0272727 = 0.00869687 loss)
I0429 10:15:15.804342 8162 solver.cpp:245] Train net output #89: loss2/loss14 = 0.261099 (* 0.0272727 = 0.00712089 loss)
I0429 10:15:15.804357 8162 solver.cpp:245] Train net output #90: loss2/loss15 = 0.140452 (* 0.0272727 = 0.0038305 loss)
I0429 10:15:15.804373 8162 solver.cpp:245] Train net output #91: loss2/loss16 = 0.132418 (* 0.0272727 = 0.0036114 loss)
I0429 10:15:15.804388 8162 solver.cpp:245] Train net output #92: loss2/loss17 = 0.0656075 (* 0.0272727 = 0.0017893 loss)
I0429 10:15:15.804404 8162 solver.cpp:245] Train net output #93: loss2/loss18 = 0.0194117 (* 0.0272727 = 0.000529411 loss)
I0429 10:15:15.804417 8162 solver.cpp:245] Train net output #94: loss2/loss19 = 0.0140382 (* 0.0272727 = 0.000382861 loss)
I0429 10:15:15.804432 8162 solver.cpp:245] Train net output #95: loss2/loss20 = 0.00508478 (* 0.0272727 = 0.000138676 loss)
I0429 10:15:15.804446 8162 solver.cpp:245] Train net output #96: loss2/loss21 = 0.00305778 (* 0.0272727 = 8.3394e-05 loss)
I0429 10:15:15.804461 8162 solver.cpp:245] Train net output #97: loss2/loss22 = 0.00322232 (* 0.0272727 = 8.78814e-05 loss)
I0429 10:15:15.804473 8162 solver.cpp:245] Train net output #98: loss3/accuracy = 0.442308
I0429 10:15:15.804486 8162 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.625
I0429 10:15:15.804498 8162 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.5
I0429 10:15:15.804510 8162 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.5
I0429 10:15:15.804523 8162 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.25
I0429 10:15:15.804535 8162 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.375
I0429 10:15:15.804548 8162 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.5
I0429 10:15:15.804559 8162 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.625
I0429 10:15:15.804571 8162 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.5
I0429 10:15:15.804584 8162 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.75
I0429 10:15:15.804595 8162 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.75
I0429 10:15:15.804607 8162 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.875
I0429 10:15:15.804620 8162 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0429 10:15:15.804631 8162 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0429 10:15:15.804643 8162 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0429 10:15:15.804656 8162 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0429 10:15:15.804667 8162 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0429 10:15:15.804689 8162 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0429 10:15:15.804702 8162 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0429 10:15:15.804714 8162 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0429 10:15:15.804726 8162 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0429 10:15:15.804738 8162 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0429 10:15:15.804750 8162 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0429 10:15:15.804761 8162 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.75
I0429 10:15:15.804774 8162 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.615385
I0429 10:15:15.804788 8162 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 2.21844 (* 1 = 2.21844 loss)
I0429 10:15:15.804802 8162 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 1.01437 (* 1 = 1.01437 loss)
I0429 10:15:15.804816 8162 solver.cpp:245] Train net output #125: loss3/loss01 = 1.83209 (* 0.0909091 = 0.166554 loss)
I0429 10:15:15.804831 8162 solver.cpp:245] Train net output #126: loss3/loss02 = 1.99816 (* 0.0909091 = 0.181651 loss)
I0429 10:15:15.804844 8162 solver.cpp:245] Train net output #127: loss3/loss03 = 2.05853 (* 0.0909091 = 0.187139 loss)
I0429 10:15:15.804859 8162 solver.cpp:245] Train net output #128: loss3/loss04 = 2.53257 (* 0.0909091 = 0.230233 loss)
I0429 10:15:15.804873 8162 solver.cpp:245] Train net output #129: loss3/loss05 = 2.61944 (* 0.0909091 = 0.238131 loss)
I0429 10:15:15.804888 8162 solver.cpp:245] Train net output #130: loss3/loss06 = 1.55417 (* 0.0909091 = 0.141288 loss)
I0429 10:15:15.804900 8162 solver.cpp:245] Train net output #131: loss3/loss07 = 1.43289 (* 0.0909091 = 0.130263 loss)
I0429 10:15:15.804914 8162 solver.cpp:245] Train net output #132: loss3/loss08 = 1.52526 (* 0.0909091 = 0.13866 loss)
I0429 10:15:15.804929 8162 solver.cpp:245] Train net output #133: loss3/loss09 = 0.682394 (* 0.0909091 = 0.0620358 loss)
I0429 10:15:15.804942 8162 solver.cpp:245] Train net output #134: loss3/loss10 = 0.672059 (* 0.0909091 = 0.0610963 loss)
I0429 10:15:15.804956 8162 solver.cpp:245] Train net output #135: loss3/loss11 = 0.656875 (* 0.0909091 = 0.0597159 loss)
I0429 10:15:15.804970 8162 solver.cpp:245] Train net output #136: loss3/loss12 = 0.40872 (* 0.0909091 = 0.0371563 loss)
I0429 10:15:15.804985 8162 solver.cpp:245] Train net output #137: loss3/loss13 = 0.297698 (* 0.0909091 = 0.0270634 loss)
I0429 10:15:15.804999 8162 solver.cpp:245] Train net output #138: loss3/loss14 = 0.229984 (* 0.0909091 = 0.0209077 loss)
I0429 10:15:15.805013 8162 solver.cpp:245] Train net output #139: loss3/loss15 = 0.146189 (* 0.0909091 = 0.0132899 loss)
I0429 10:15:15.805027 8162 solver.cpp:245] Train net output #140: loss3/loss16 = 0.104316 (* 0.0909091 = 0.00948329 loss)
I0429 10:15:15.805042 8162 solver.cpp:245] Train net output #141: loss3/loss17 = 0.0710145 (* 0.0909091 = 0.00645586 loss)
I0429 10:15:15.805057 8162 solver.cpp:245] Train net output #142: loss3/loss18 = 0.0388574 (* 0.0909091 = 0.00353249 loss)
I0429 10:15:15.805070 8162 solver.cpp:245] Train net output #143: loss3/loss19 = 0.0305254 (* 0.0909091 = 0.00277503 loss)
I0429 10:15:15.805084 8162 solver.cpp:245] Train net output #144: loss3/loss20 = 0.0248938 (* 0.0909091 = 0.00226307 loss)
I0429 10:15:15.805099 8162 solver.cpp:245] Train net output #145: loss3/loss21 = 0.0161481 (* 0.0909091 = 0.00146801 loss)
I0429 10:15:15.805114 8162 solver.cpp:245] Train net output #146: loss3/loss22 = 0.000659408 (* 0.0909091 = 5.99461e-05 loss)
I0429 10:15:15.805130 8162 solver.cpp:245] Train net output #147: total_accuracy = 0.125
I0429 10:15:15.805142 8162 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.125
I0429 10:15:15.805155 8162 solver.cpp:245] Train net output #149: total_confidence = 0.0586332
I0429 10:15:15.805176 8162 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.0547705
I0429 10:15:15.805191 8162 sgd_solver.cpp:106] Iteration 9000, lr = 0.005
I0429 10:17:32.515800 8162 solver.cpp:229] Iteration 9500, loss = 5.48537
I0429 10:17:32.515986 8162 solver.cpp:245] Train net output #0: loss1/accuracy = 0.255319
I0429 10:17:32.516008 8162 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.625
I0429 10:17:32.516023 8162 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.125
I0429 10:17:32.516036 8162 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.625
I0429 10:17:32.516048 8162 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.125
I0429 10:17:32.516062 8162 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.125
I0429 10:17:32.516073 8162 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.625
I0429 10:17:32.516086 8162 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.625
I0429 10:17:32.516098 8162 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875
I0429 10:17:32.516110 8162 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1
I0429 10:17:32.516124 8162 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0429 10:17:32.516135 8162 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0429 10:17:32.516147 8162 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0429 10:17:32.516160 8162 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0429 10:17:32.516173 8162 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0429 10:17:32.516196 8162 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0429 10:17:32.516216 8162 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0429 10:17:32.516242 8162 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0429 10:17:32.516268 8162 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0429 10:17:32.516294 8162 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0429 10:17:32.516324 8162 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0429 10:17:32.516348 8162 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0429 10:17:32.516371 8162 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0429 10:17:32.516392 8162 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.778409
I0429 10:17:32.516417 8162 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.468085
I0429 10:17:32.516450 8162 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 2.4622 (* 0.3 = 0.73866 loss)
I0429 10:17:32.516479 8162 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.754009 (* 0.3 = 0.226203 loss)
I0429 10:17:32.516499 8162 solver.cpp:245] Train net output #27: loss1/loss01 = 1.74323 (* 0.0272727 = 0.0475426 loss)
I0429 10:17:32.516513 8162 solver.cpp:245] Train net output #28: loss1/loss02 = 2.81252 (* 0.0272727 = 0.076705 loss)
I0429 10:17:32.516528 8162 solver.cpp:245] Train net output #29: loss1/loss03 = 2.07981 (* 0.0272727 = 0.056722 loss)
I0429 10:17:32.516542 8162 solver.cpp:245] Train net output #30: loss1/loss04 = 2.51422 (* 0.0272727 = 0.0685696 loss)
I0429 10:17:32.516562 8162 solver.cpp:245] Train net output #31: loss1/loss05 = 2.30851 (* 0.0272727 = 0.0629595 loss)
I0429 10:17:32.516592 8162 solver.cpp:245] Train net output #32: loss1/loss06 = 1.61773 (* 0.0272727 = 0.04412 loss)
I0429 10:17:32.516619 8162 solver.cpp:245] Train net output #33: loss1/loss07 = 1.70269 (* 0.0272727 = 0.0464371 loss)
I0429 10:17:32.516636 8162 solver.cpp:245] Train net output #34: loss1/loss08 = 0.690014 (* 0.0272727 = 0.0188186 loss)
I0429 10:17:32.516651 8162 solver.cpp:245] Train net output #35: loss1/loss09 = 0.145356 (* 0.0272727 = 0.00396426 loss)
I0429 10:17:32.516666 8162 solver.cpp:245] Train net output #36: loss1/loss10 = 0.0260078 (* 0.0272727 = 0.000709303 loss)
I0429 10:17:32.516681 8162 solver.cpp:245] Train net output #37: loss1/loss11 = 0.0018998 (* 0.0272727 = 5.18126e-05 loss)
I0429 10:17:32.516695 8162 solver.cpp:245] Train net output #38: loss1/loss12 = 0.000591465 (* 0.0272727 = 1.61309e-05 loss)
I0429 10:17:32.516731 8162 solver.cpp:245] Train net output #39: loss1/loss13 = 0.00043128 (* 0.0272727 = 1.17622e-05 loss)
I0429 10:17:32.516748 8162 solver.cpp:245] Train net output #40: loss1/loss14 = 0.000333423 (* 0.0272727 = 9.09336e-06 loss)
I0429 10:17:32.516773 8162 solver.cpp:245] Train net output #41: loss1/loss15 = 0.000187138 (* 0.0272727 = 5.10377e-06 loss)
I0429 10:17:32.516800 8162 solver.cpp:245] Train net output #42: loss1/loss16 = 0.000270698 (* 0.0272727 = 7.38268e-06 loss)
I0429 10:17:32.516819 8162 solver.cpp:245] Train net output #43: loss1/loss17 = 0.000128527 (* 0.0272727 = 3.50528e-06 loss)
I0429 10:17:32.516837 8162 solver.cpp:245] Train net output #44: loss1/loss18 = 9.29718e-05 (* 0.0272727 = 2.53559e-06 loss)
I0429 10:17:32.516852 8162 solver.cpp:245] Train net output #45: loss1/loss19 = 9.27001e-05 (* 0.0272727 = 2.52818e-06 loss)
I0429 10:17:32.516867 8162 solver.cpp:245] Train net output #46: loss1/loss20 = 9.57717e-05 (* 0.0272727 = 2.61195e-06 loss)
I0429 10:17:32.516887 8162 solver.cpp:245] Train net output #47: loss1/loss21 = 5.16141e-05 (* 0.0272727 = 1.40766e-06 loss)
I0429 10:17:32.516916 8162 solver.cpp:245] Train net output #48: loss1/loss22 = 5.51876e-05 (* 0.0272727 = 1.50512e-06 loss)
I0429 10:17:32.516943 8162 solver.cpp:245] Train net output #49: loss2/accuracy = 0.234043
I0429 10:17:32.516966 8162 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.25
I0429 10:17:32.516985 8162 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.375
I0429 10:17:32.516999 8162 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0
I0429 10:17:32.517014 8162 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.25
I0429 10:17:32.517035 8162 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.375
I0429 10:17:32.517060 8162 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.625
I0429 10:17:32.517081 8162 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.625
I0429 10:17:32.517094 8162 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875
I0429 10:17:32.517107 8162 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1
I0429 10:17:32.517118 8162 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0429 10:17:32.517133 8162 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0429 10:17:32.517146 8162 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0429 10:17:32.517158 8162 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0429 10:17:32.517170 8162 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0429 10:17:32.517182 8162 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0429 10:17:32.517194 8162 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0429 10:17:32.517206 8162 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0429 10:17:32.517218 8162 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0429 10:17:32.517230 8162 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0429 10:17:32.517241 8162 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0429 10:17:32.517253 8162 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0429 10:17:32.517266 8162 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0429 10:17:32.517278 8162 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.767045
I0429 10:17:32.517298 8162 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.531915
I0429 10:17:32.517324 8162 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 2.31274 (* 0.3 = 0.693823 loss)
I0429 10:17:32.517348 8162 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.744706 (* 0.3 = 0.223412 loss)
I0429 10:17:32.517379 8162 solver.cpp:245] Train net output #76: loss2/loss01 = 2.01559 (* 0.0272727 = 0.0549706 loss)
I0429 10:17:32.517410 8162 solver.cpp:245] Train net output #77: loss2/loss02 = 2.16152 (* 0.0272727 = 0.0589504 loss)
I0429 10:17:32.517454 8162 solver.cpp:245] Train net output #78: loss2/loss03 = 2.31471 (* 0.0272727 = 0.0631284 loss)
I0429 10:17:32.517472 8162 solver.cpp:245] Train net output #79: loss2/loss04 = 2.34502 (* 0.0272727 = 0.0639551 loss)
I0429 10:17:32.517487 8162 solver.cpp:245] Train net output #80: loss2/loss05 = 2.03709 (* 0.0272727 = 0.055557 loss)
I0429 10:17:32.517500 8162 solver.cpp:245] Train net output #81: loss2/loss06 = 1.4776 (* 0.0272727 = 0.0402982 loss)
I0429 10:17:32.517514 8162 solver.cpp:245] Train net output #82: loss2/loss07 = 1.71502 (* 0.0272727 = 0.0467734 loss)
I0429 10:17:32.517532 8162 solver.cpp:245] Train net output #83: loss2/loss08 = 0.769802 (* 0.0272727 = 0.0209946 loss)
I0429 10:17:32.517549 8162 solver.cpp:245] Train net output #84: loss2/loss09 = 0.143464 (* 0.0272727 = 0.00391266 loss)
I0429 10:17:32.517563 8162 solver.cpp:245] Train net output #85: loss2/loss10 = 0.0374535 (* 0.0272727 = 0.00102146 loss)
I0429 10:17:32.517582 8162 solver.cpp:245] Train net output #86: loss2/loss11 = 0.0116334 (* 0.0272727 = 0.000317274 loss)
I0429 10:17:32.517609 8162 solver.cpp:245] Train net output #87: loss2/loss12 = 0.00482463 (* 0.0272727 = 0.000131581 loss)
I0429 10:17:32.517640 8162 solver.cpp:245] Train net output #88: loss2/loss13 = 0.00300241 (* 0.0272727 = 8.18839e-05 loss)
I0429 10:17:32.517659 8162 solver.cpp:245] Train net output #89: loss2/loss14 = 0.00159086 (* 0.0272727 = 4.3387e-05 loss)
I0429 10:17:32.517675 8162 solver.cpp:245] Train net output #90: loss2/loss15 = 0.000908148 (* 0.0272727 = 2.47677e-05 loss)
I0429 10:17:32.517689 8162 solver.cpp:245] Train net output #91: loss2/loss16 = 0.000613355 (* 0.0272727 = 1.67279e-05 loss)
I0429 10:17:32.517704 8162 solver.cpp:245] Train net output #92: loss2/loss17 = 0.000734033 (* 0.0272727 = 2.00191e-05 loss)
I0429 10:17:32.517721 8162 solver.cpp:245] Train net output #93: loss2/loss18 = 0.000506913 (* 0.0272727 = 1.38249e-05 loss)
I0429 10:17:32.517750 8162 solver.cpp:245] Train net output #94: loss2/loss19 = 0.000510987 (* 0.0272727 = 1.3936e-05 loss)
I0429 10:17:32.517781 8162 solver.cpp:245] Train net output #95: loss2/loss20 = 0.000204921 (* 0.0272727 = 5.58877e-06 loss)
I0429 10:17:32.517802 8162 solver.cpp:245] Train net output #96: loss2/loss21 = 0.000225051 (* 0.0272727 = 6.13775e-06 loss)
I0429 10:17:32.517829 8162 solver.cpp:245] Train net output #97: loss2/loss22 = 0.000122641 (* 0.0272727 = 3.34474e-06 loss)
I0429 10:17:32.517855 8162 solver.cpp:245] Train net output #98: loss3/accuracy = 0.510638
I0429 10:17:32.517874 8162 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.625
I0429 10:17:32.517884 8162 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.75
I0429 10:17:32.517891 8162 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.75
I0429 10:17:32.517899 8162 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.375
I0429 10:17:32.517911 8162 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.625
I0429 10:17:32.517926 8162 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.75
I0429 10:17:32.517942 8162 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.625
I0429 10:17:32.517958 8162 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875
I0429 10:17:32.517971 8162 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875
I0429 10:17:32.517982 8162 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0429 10:17:32.517990 8162 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0429 10:17:32.518004 8162 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0429 10:17:32.518016 8162 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0429 10:17:32.518038 8162 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0429 10:17:32.518062 8162 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0429 10:17:32.518103 8162 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0429 10:17:32.518126 8162 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0429 10:17:32.518146 8162 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0429 10:17:32.518167 8162 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0429 10:17:32.518187 8162 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0429 10:17:32.518208 8162 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0429 10:17:32.518232 8162 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0429 10:17:32.518249 8162 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.852273
I0429 10:17:32.518262 8162 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.659574
I0429 10:17:32.518276 8162 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.95372 (* 1 = 1.95372 loss)
I0429 10:17:32.518291 8162 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.600562 (* 1 = 0.600562 loss)
I0429 10:17:32.518306 8162 solver.cpp:245] Train net output #125: loss3/loss01 = 2.07192 (* 0.0909091 = 0.188356 loss)
I0429 10:17:32.518324 8162 solver.cpp:245] Train net output #126: loss3/loss02 = 1.46316 (* 0.0909091 = 0.133014 loss)
I0429 10:17:32.518353 8162 solver.cpp:245] Train net output #127: loss3/loss03 = 0.847232 (* 0.0909091 = 0.0770211 loss)
I0429 10:17:32.518383 8162 solver.cpp:245] Train net output #128: loss3/loss04 = 2.12214 (* 0.0909091 = 0.192922 loss)
I0429 10:17:32.518412 8162 solver.cpp:245] Train net output #129: loss3/loss05 = 1.27331 (* 0.0909091 = 0.115756 loss)
I0429 10:17:32.518446 8162 solver.cpp:245] Train net output #130: loss3/loss06 = 1.22376 (* 0.0909091 = 0.111251 loss)
I0429 10:17:32.518473 8162 solver.cpp:245] Train net output #131: loss3/loss07 = 1.42238 (* 0.0909091 = 0.129308 loss)
I0429 10:17:32.518499 8162 solver.cpp:245] Train net output #132: loss3/loss08 = 0.812766 (* 0.0909091 = 0.0738878 loss)
I0429 10:17:32.518517 8162 solver.cpp:245] Train net output #133: loss3/loss09 = 0.225334 (* 0.0909091 = 0.0204849 loss)
I0429 10:17:32.518535 8162 solver.cpp:245] Train net output #134: loss3/loss10 = 0.0790162 (* 0.0909091 = 0.00718329 loss)
I0429 10:17:32.518563 8162 solver.cpp:245] Train net output #135: loss3/loss11 = 0.0140032 (* 0.0909091 = 0.00127302 loss)
I0429 10:17:32.518594 8162 solver.cpp:245] Train net output #136: loss3/loss12 = 0.00990774 (* 0.0909091 = 0.000900703 loss)
I0429 10:17:32.518625 8162 solver.cpp:245] Train net output #137: loss3/loss13 = 0.00684504 (* 0.0909091 = 0.000622277 loss)
I0429 10:17:32.518656 8162 solver.cpp:245] Train net output #138: loss3/loss14 = 0.00441624 (* 0.0909091 = 0.000401476 loss)
I0429 10:17:32.518685 8162 solver.cpp:245] Train net output #139: loss3/loss15 = 0.00343738 (* 0.0909091 = 0.000312489 loss)
I0429 10:17:32.518713 8162 solver.cpp:245] Train net output #140: loss3/loss16 = 0.00248893 (* 0.0909091 = 0.000226267 loss)
I0429 10:17:32.518733 8162 solver.cpp:245] Train net output #141: loss3/loss17 = 0.00173034 (* 0.0909091 = 0.000157304 loss)
I0429 10:17:32.518753 8162 solver.cpp:245] Train net output #142: loss3/loss18 = 0.00159318 (* 0.0909091 = 0.000144834 loss)
I0429 10:17:32.518781 8162 solver.cpp:245] Train net output #143: loss3/loss19 = 0.00104855 (* 0.0909091 = 9.53226e-05 loss)
I0429 10:17:32.518812 8162 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000732805 (* 0.0909091 = 6.66187e-05 loss)
I0429 10:17:32.518842 8162 solver.cpp:245] Train net output #145: loss3/loss21 = 0.00049756 (* 0.0909091 = 4.52327e-05 loss)
I0429 10:17:32.518870 8162 solver.cpp:245] Train net output #146: loss3/loss22 = 0.00022961 (* 0.0909091 = 2.08736e-05 loss)
I0429 10:17:32.518894 8162 solver.cpp:245] Train net output #147: total_accuracy = 0
I0429 10:17:32.518918 8162 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.125
I0429 10:17:32.518954 8162 solver.cpp:245] Train net output #149: total_confidence = 0.0792552
I0429 10:17:32.518970 8162 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.133843
I0429 10:17:32.518990 8162 sgd_solver.cpp:106] Iteration 9500, lr = 0.005
I0429 10:19:49.066846 8162 solver.cpp:456] Snapshotting to binary proto file /mnt/snapshots/mixed_lstm14_bn_iter_10000.caffemodel
I0429 10:19:53.399674 8162 sgd_solver.cpp:273] Snapshotting solver state to binary proto file /mnt/snapshots/mixed_lstm14_bn_iter_10000.solverstate
I0429 10:19:54.512984 8162 solver.cpp:338] Iteration 10000, Testing net (#0)
I0429 10:20:35.806864 8162 solver.cpp:393] Test loss: 3.82815
I0429 10:20:35.806978 8162 solver.cpp:406] Test net output #0: loss1/accuracy = 0.454638
I0429 10:20:35.806998 8162 solver.cpp:406] Test net output #1: loss1/accuracy01 = 0.693
I0429 10:20:35.807010 8162 solver.cpp:406] Test net output #2: loss1/accuracy02 = 0.499
I0429 10:20:35.807024 8162 solver.cpp:406] Test net output #3: loss1/accuracy03 = 0.362
I0429 10:20:35.807035 8162 solver.cpp:406] Test net output #4: loss1/accuracy04 = 0.44
I0429 10:20:35.807047 8162 solver.cpp:406] Test net output #5: loss1/accuracy05 = 0.474
I0429 10:20:35.807060 8162 solver.cpp:406] Test net output #6: loss1/accuracy06 = 0.638
I0429 10:20:35.807071 8162 solver.cpp:406] Test net output #7: loss1/accuracy07 = 0.784
I0429 10:20:35.807083 8162 solver.cpp:406] Test net output #8: loss1/accuracy08 = 0.92
I0429 10:20:35.807096 8162 solver.cpp:406] Test net output #9: loss1/accuracy09 = 0.991
I0429 10:20:35.807106 8162 solver.cpp:406] Test net output #10: loss1/accuracy10 = 0.998
I0429 10:20:35.807118 8162 solver.cpp:406] Test net output #11: loss1/accuracy11 = 0.998
I0429 10:20:35.807131 8162 solver.cpp:406] Test net output #12: loss1/accuracy12 = 0.999
I0429 10:20:35.807142 8162 solver.cpp:406] Test net output #13: loss1/accuracy13 = 0.999
I0429 10:20:35.807153 8162 solver.cpp:406] Test net output #14: loss1/accuracy14 = 0.999
I0429 10:20:35.807165 8162 solver.cpp:406] Test net output #15: loss1/accuracy15 = 1
I0429 10:20:35.807178 8162 solver.cpp:406] Test net output #16: loss1/accuracy16 = 1
I0429 10:20:35.807188 8162 solver.cpp:406] Test net output #17: loss1/accuracy17 = 1
I0429 10:20:35.807200 8162 solver.cpp:406] Test net output #18: loss1/accuracy18 = 1
I0429 10:20:35.807211 8162 solver.cpp:406] Test net output #19: loss1/accuracy19 = 1
I0429 10:20:35.807224 8162 solver.cpp:406] Test net output #20: loss1/accuracy20 = 1
I0429 10:20:35.807235 8162 solver.cpp:406] Test net output #21: loss1/accuracy21 = 1
I0429 10:20:35.807252 8162 solver.cpp:406] Test net output #22: loss1/accuracy22 = 1
I0429 10:20:35.807273 8162 solver.cpp:406] Test net output #23: loss1/accuracy_incl_empty = 0.847365
I0429 10:20:35.807304 8162 solver.cpp:406] Test net output #24: loss1/accuracy_top3 = 0.702628
I0429 10:20:35.807337 8162 solver.cpp:406] Test net output #25: loss1/cross_entropy_loss = 1.80681 (* 0.3 = 0.542044 loss)
I0429 10:20:35.807360 8162 solver.cpp:406] Test net output #26: loss1/cross_entropy_loss_incl_empty = 0.519395 (* 0.3 = 0.155818 loss)
I0429 10:20:35.807385 8162 solver.cpp:406] Test net output #27: loss1/loss01 = 1.09893 (* 0.0272727 = 0.0299708 loss)
I0429 10:20:35.807410 8162 solver.cpp:406] Test net output #28: loss1/loss02 = 1.75227 (* 0.0272727 = 0.0477892 loss)
I0429 10:20:35.807430 8162 solver.cpp:406] Test net output #29: loss1/loss03 = 2.10403 (* 0.0272727 = 0.0573826 loss)
I0429 10:20:35.807443 8162 solver.cpp:406] Test net output #30: loss1/loss04 = 1.93407 (* 0.0272727 = 0.0527473 loss)
I0429 10:20:35.807458 8162 solver.cpp:406] Test net output #31: loss1/loss05 = 1.7178 (* 0.0272727 = 0.0468491 loss)
I0429 10:20:35.807492 8162 solver.cpp:406] Test net output #32: loss1/loss06 = 1.26174 (* 0.0272727 = 0.0344111 loss)
I0429 10:20:35.807508 8162 solver.cpp:406] Test net output #33: loss1/loss07 = 0.747221 (* 0.0272727 = 0.0203788 loss)
I0429 10:20:35.807523 8162 solver.cpp:406] Test net output #34: loss1/loss08 = 0.28601 (* 0.0272727 = 0.00780028 loss)
I0429 10:20:35.807536 8162 solver.cpp:406] Test net output #35: loss1/loss09 = 0.0460743 (* 0.0272727 = 0.00125657 loss)
I0429 10:20:35.807551 8162 solver.cpp:406] Test net output #36: loss1/loss10 = 0.0176478 (* 0.0272727 = 0.000481305 loss)
I0429 10:20:35.807565 8162 solver.cpp:406] Test net output #37: loss1/loss11 = 0.0119941 (* 0.0272727 = 0.000327112 loss)
I0429 10:20:35.807579 8162 solver.cpp:406] Test net output #38: loss1/loss12 = 0.00826259 (* 0.0272727 = 0.000225343 loss)
I0429 10:20:35.807593 8162 solver.cpp:406] Test net output #39: loss1/loss13 = 0.00587987 (* 0.0272727 = 0.00016036 loss)
I0429 10:20:35.807629 8162 solver.cpp:406] Test net output #40: loss1/loss14 = 0.00440458 (* 0.0272727 = 0.000120125 loss)
I0429 10:20:35.807646 8162 solver.cpp:406] Test net output #41: loss1/loss15 = 0.00302251 (* 0.0272727 = 8.24322e-05 loss)
I0429 10:20:35.807660 8162 solver.cpp:406] Test net output #42: loss1/loss16 = 0.00135928 (* 0.0272727 = 3.70713e-05 loss)
I0429 10:20:35.807674 8162 solver.cpp:406] Test net output #43: loss1/loss17 = 0.00037376 (* 0.0272727 = 1.01934e-05 loss)
I0429 10:20:35.807689 8162 solver.cpp:406] Test net output #44: loss1/loss18 = 0.00028045 (* 0.0272727 = 7.64863e-06 loss)
I0429 10:20:35.807703 8162 solver.cpp:406] Test net output #45: loss1/loss19 = 0.000265315 (* 0.0272727 = 7.23586e-06 loss)
I0429 10:20:35.807718 8162 solver.cpp:406] Test net output #46: loss1/loss20 = 0.000228204 (* 0.0272727 = 6.22375e-06 loss)
I0429 10:20:35.807739 8162 solver.cpp:406] Test net output #47: loss1/loss21 = 0.000212028 (* 0.0272727 = 5.78258e-06 loss)
I0429 10:20:35.807767 8162 solver.cpp:406] Test net output #48: loss1/loss22 = 0.000156648 (* 0.0272727 = 4.27223e-06 loss)
I0429 10:20:35.807802 8162 solver.cpp:406] Test net output #49: loss2/accuracy = 0.522196
I0429 10:20:35.807827 8162 solver.cpp:406] Test net output #50: loss2/accuracy01 = 0.75
I0429 10:20:35.807842 8162 solver.cpp:406] Test net output #51: loss2/accuracy02 = 0.613
I0429 10:20:35.807854 8162 solver.cpp:406] Test net output #52: loss2/accuracy03 = 0.416
I0429 10:20:35.807867 8162 solver.cpp:406] Test net output #53: loss2/accuracy04 = 0.465
I0429 10:20:35.807878 8162 solver.cpp:406] Test net output #54: loss2/accuracy05 = 0.509
I0429 10:20:35.807889 8162 solver.cpp:406] Test net output #55: loss2/accuracy06 = 0.653
I0429 10:20:35.807901 8162 solver.cpp:406] Test net output #56: loss2/accuracy07 = 0.791
I0429 10:20:35.807914 8162 solver.cpp:406] Test net output #57: loss2/accuracy08 = 0.921
I0429 10:20:35.807924 8162 solver.cpp:406] Test net output #58: loss2/accuracy09 = 0.991
I0429 10:20:35.807936 8162 solver.cpp:406] Test net output #59: loss2/accuracy10 = 0.997
I0429 10:20:35.807948 8162 solver.cpp:406] Test net output #60: loss2/accuracy11 = 0.998
I0429 10:20:35.807960 8162 solver.cpp:406] Test net output #61: loss2/accuracy12 = 0.999
I0429 10:20:35.807971 8162 solver.cpp:406] Test net output #62: loss2/accuracy13 = 0.999
I0429 10:20:35.807983 8162 solver.cpp:406] Test net output #63: loss2/accuracy14 = 0.999
I0429 10:20:35.807996 8162 solver.cpp:406] Test net output #64: loss2/accuracy15 = 1
I0429 10:20:35.808007 8162 solver.cpp:406] Test net output #65: loss2/accuracy16 = 1
I0429 10:20:35.808018 8162 solver.cpp:406] Test net output #66: loss2/accuracy17 = 1
I0429 10:20:35.808029 8162 solver.cpp:406] Test net output #67: loss2/accuracy18 = 1
I0429 10:20:35.808040 8162 solver.cpp:406] Test net output #68: loss2/accuracy19 = 1
I0429 10:20:35.808053 8162 solver.cpp:406] Test net output #69: loss2/accuracy20 = 1
I0429 10:20:35.808063 8162 solver.cpp:406] Test net output #70: loss2/accuracy21 = 1
I0429 10:20:35.808074 8162 solver.cpp:406] Test net output #71: loss2/accuracy22 = 1
I0429 10:20:35.808086 8162 solver.cpp:406] Test net output #72: loss2/accuracy_incl_empty = 0.86582
I0429 10:20:35.808097 8162 solver.cpp:406] Test net output #73: loss2/accuracy_top3 = 0.760092
I0429 10:20:35.808112 8162 solver.cpp:406] Test net output #74: loss2/cross_entropy_loss = 1.57128 (* 0.3 = 0.471384 loss)
I0429 10:20:35.808126 8162 solver.cpp:406] Test net output #75: loss2/cross_entropy_loss_incl_empty = 0.451603 (* 0.3 = 0.135481 loss)
I0429 10:20:35.808140 8162 solver.cpp:406] Test net output #76: loss2/loss01 = 0.960317 (* 0.0272727 = 0.0261905 loss)
I0429 10:20:35.808154 8162 solver.cpp:406] Test net output #77: loss2/loss02 = 1.38178 (* 0.0272727 = 0.037685 loss)
I0429 10:20:35.808182 8162 solver.cpp:406] Test net output #78: loss2/loss03 = 1.92873 (* 0.0272727 = 0.0526017 loss)
I0429 10:20:35.808197 8162 solver.cpp:406] Test net output #79: loss2/loss04 = 1.78243 (* 0.0272727 = 0.0486117 loss)
I0429 10:20:35.808212 8162 solver.cpp:406] Test net output #80: loss2/loss05 = 1.63245 (* 0.0272727 = 0.0445213 loss)
I0429 10:20:35.808224 8162 solver.cpp:406] Test net output #81: loss2/loss06 = 1.1611 (* 0.0272727 = 0.0316664 loss)
I0429 10:20:35.808238 8162 solver.cpp:406] Test net output #82: loss2/loss07 = 0.68857 (* 0.0272727 = 0.0187792 loss)
I0429 10:20:35.808254 8162 solver.cpp:406] Test net output #83: loss2/loss08 = 0.281811 (* 0.0272727 = 0.00768576 loss)
I0429 10:20:35.808266 8162 solver.cpp:406] Test net output #84: loss2/loss09 = 0.0445145 (* 0.0272727 = 0.00121403 loss)
I0429 10:20:35.808280 8162 solver.cpp:406] Test net output #85: loss2/loss10 = 0.0164947 (* 0.0272727 = 0.000449855 loss)
I0429 10:20:35.808295 8162 solver.cpp:406] Test net output #86: loss2/loss11 = 0.0116034 (* 0.0272727 = 0.000316456 loss)
I0429 10:20:35.808308 8162 solver.cpp:406] Test net output #87: loss2/loss12 = 0.00738093 (* 0.0272727 = 0.000201298 loss)
I0429 10:20:35.808321 8162 solver.cpp:406] Test net output #88: loss2/loss13 = 0.00508029 (* 0.0272727 = 0.000138553 loss)
I0429 10:20:35.808336 8162 solver.cpp:406] Test net output #89: loss2/loss14 = 0.00384006 (* 0.0272727 = 0.000104729 loss)
I0429 10:20:35.808349 8162 solver.cpp:406] Test net output #90: loss2/loss15 = 0.00253812 (* 0.0272727 = 6.92214e-05 loss)
I0429 10:20:35.808367 8162 solver.cpp:406] Test net output #91: loss2/loss16 = 0.000979967 (* 0.0272727 = 2.67264e-05 loss)
I0429 10:20:35.808382 8162 solver.cpp:406] Test net output #92: loss2/loss17 = 0.000243051 (* 0.0272727 = 6.62865e-06 loss)
I0429 10:20:35.808396 8162 solver.cpp:406] Test net output #93: loss2/loss18 = 0.000187242 (* 0.0272727 = 5.10661e-06 loss)
I0429 10:20:35.808409 8162 solver.cpp:406] Test net output #94: loss2/loss19 = 0.000164542 (* 0.0272727 = 4.48751e-06 loss)
I0429 10:20:35.808423 8162 solver.cpp:406] Test net output #95: loss2/loss20 = 0.000141 (* 0.0272727 = 3.84546e-06 loss)
I0429 10:20:35.808437 8162 solver.cpp:406] Test net output #96: loss2/loss21 = 0.000124237 (* 0.0272727 = 3.38828e-06 loss)
I0429 10:20:35.808451 8162 solver.cpp:406] Test net output #97: loss2/loss22 = 9.70913e-05 (* 0.0272727 = 2.64794e-06 loss)
I0429 10:20:35.808465 8162 solver.cpp:406] Test net output #98: loss3/accuracy = 0.708592
I0429 10:20:35.808476 8162 solver.cpp:406] Test net output #99: loss3/accuracy01 = 0.816
I0429 10:20:35.808488 8162 solver.cpp:406] Test net output #100: loss3/accuracy02 = 0.762
I0429 10:20:35.808500 8162 solver.cpp:406] Test net output #101: loss3/accuracy03 = 0.681
I0429 10:20:35.808511 8162 solver.cpp:406] Test net output #102: loss3/accuracy04 = 0.643
I0429 10:20:35.808526 8162 solver.cpp:406] Test net output #103: loss3/accuracy05 = 0.63
I0429 10:20:35.808538 8162 solver.cpp:406] Test net output #104: loss3/accuracy06 = 0.709
I0429 10:20:35.808550 8162 solver.cpp:406] Test net output #105: loss3/accuracy07 = 0.832
I0429 10:20:35.808562 8162 solver.cpp:406] Test net output #106: loss3/accuracy08 = 0.931
I0429 10:20:35.808573 8162 solver.cpp:406] Test net output #107: loss3/accuracy09 = 0.99
I0429 10:20:35.808584 8162 solver.cpp:406] Test net output #108: loss3/accuracy10 = 0.997
I0429 10:20:35.808596 8162 solver.cpp:406] Test net output #109: loss3/accuracy11 = 0.998
I0429 10:20:35.808607 8162 solver.cpp:406] Test net output #110: loss3/accuracy12 = 0.998
I0429 10:20:35.808619 8162 solver.cpp:406] Test net output #111: loss3/accuracy13 = 0.999
I0429 10:20:35.808631 8162 solver.cpp:406] Test net output #112: loss3/accuracy14 = 0.999
I0429 10:20:35.808642 8162 solver.cpp:406] Test net output #113: loss3/accuracy15 = 1
I0429 10:20:35.808655 8162 solver.cpp:406] Test net output #114: loss3/accuracy16 = 1
I0429 10:20:35.808676 8162 solver.cpp:406] Test net output #115: loss3/accuracy17 = 1
I0429 10:20:35.808688 8162 solver.cpp:406] Test net output #116: loss3/accuracy18 = 1
I0429 10:20:35.808701 8162 solver.cpp:406] Test net output #117: loss3/accuracy19 = 1
I0429 10:20:35.808712 8162 solver.cpp:406] Test net output #118: loss3/accuracy20 = 1
I0429 10:20:35.808722 8162 solver.cpp:406] Test net output #119: loss3/accuracy21 = 1
I0429 10:20:35.808733 8162 solver.cpp:406] Test net output #120: loss3/accuracy22 = 1
I0429 10:20:35.808745 8162 solver.cpp:406] Test net output #121: loss3/accuracy_incl_empty = 0.911229
I0429 10:20:35.808756 8162 solver.cpp:406] Test net output #122: loss3/accuracy_top3 = 0.862051
I0429 10:20:35.808770 8162 solver.cpp:406] Test net output #123: loss3/cross_entropy_loss = 1.02067 (* 1 = 1.02067 loss)
I0429 10:20:35.808784 8162 solver.cpp:406] Test net output #124: loss3/cross_entropy_loss_incl_empty = 0.308075 (* 1 = 0.308075 loss)
I0429 10:20:35.808799 8162 solver.cpp:406] Test net output #125: loss3/loss01 = 0.676372 (* 0.0909091 = 0.0614884 loss)
I0429 10:20:35.808812 8162 solver.cpp:406] Test net output #126: loss3/loss02 = 0.840808 (* 0.0909091 = 0.0764371 loss)
I0429 10:20:35.808826 8162 solver.cpp:406] Test net output #127: loss3/loss03 = 1.16656 (* 0.0909091 = 0.106051 loss)
I0429 10:20:35.808840 8162 solver.cpp:406] Test net output #128: loss3/loss04 = 1.25572 (* 0.0909091 = 0.114156 loss)
I0429 10:20:35.808853 8162 solver.cpp:406] Test net output #129: loss3/loss05 = 1.21329 (* 0.0909091 = 0.110299 loss)
I0429 10:20:35.808867 8162 solver.cpp:406] Test net output #130: loss3/loss06 = 0.855253 (* 0.0909091 = 0.0777503 loss)
I0429 10:20:35.808884 8162 solver.cpp:406] Test net output #131: loss3/loss07 = 0.543331 (* 0.0909091 = 0.0493938 loss)
I0429 10:20:35.808898 8162 solver.cpp:406] Test net output #132: loss3/loss08 = 0.218866 (* 0.0909091 = 0.0198969 loss)
I0429 10:20:35.808912 8162 solver.cpp:406] Test net output #133: loss3/loss09 = 0.0453883 (* 0.0909091 = 0.00412621 loss)
I0429 10:20:35.808926 8162 solver.cpp:406] Test net output #134: loss3/loss10 = 0.016423 (* 0.0909091 = 0.001493 loss)
I0429 10:20:35.808940 8162 solver.cpp:406] Test net output #135: loss3/loss11 = 0.0124244 (* 0.0909091 = 0.00112949 loss)
I0429 10:20:35.808954 8162 solver.cpp:406] Test net output #136: loss3/loss12 = 0.00808753 (* 0.0909091 = 0.00073523 loss)
I0429 10:20:35.808967 8162 solver.cpp:406] Test net output #137: loss3/loss13 = 0.00616605 (* 0.0909091 = 0.00056055 loss)
I0429 10:20:35.808981 8162 solver.cpp:406] Test net output #138: loss3/loss14 = 0.00415674 (* 0.0909091 = 0.000377886 loss)
I0429 10:20:35.808995 8162 solver.cpp:406] Test net output #139: loss3/loss15 = 0.0025204 (* 0.0909091 = 0.000229128 loss)
I0429 10:20:35.809008 8162 solver.cpp:406] Test net output #140: loss3/loss16 = 0.00119669 (* 0.0909091 = 0.00010879 loss)
I0429 10:20:35.809022 8162 solver.cpp:406] Test net output #141: loss3/loss17 = 0.000332153 (* 0.0909091 = 3.01957e-05 loss)
I0429 10:20:35.809036 8162 solver.cpp:406] Test net output #142: loss3/loss18 = 0.00019672 (* 0.0909091 = 1.78836e-05 loss)
I0429 10:20:35.809049 8162 solver.cpp:406] Test net output #143: loss3/loss19 = 0.000144108 (* 0.0909091 = 1.31007e-05 loss)
I0429 10:20:35.809063 8162 solver.cpp:406] Test net output #144: loss3/loss20 = 0.000118332 (* 0.0909091 = 1.07574e-05 loss)
I0429 10:20:35.809077 8162 solver.cpp:406] Test net output #145: loss3/loss21 = 0.000104408 (* 0.0909091 = 9.49159e-06 loss)
I0429 10:20:35.809090 8162 solver.cpp:406] Test net output #146: loss3/loss22 = 8.31082e-05 (* 0.0909091 = 7.55529e-06 loss)
I0429 10:20:35.809103 8162 solver.cpp:406] Test net output #147: total_accuracy = 0.285
I0429 10:20:35.809113 8162 solver.cpp:406] Test net output #148: total_accuracy_not_rec = 0.261
I0429 10:20:35.809125 8162 solver.cpp:406] Test net output #149: total_confidence = 0.240073
I0429 10:20:35.809146 8162 solver.cpp:406] Test net output #150: total_confidence_not_rec = 0.215285
I0429 10:20:35.809160 8162 solver.cpp:338] Iteration 10000, Testing net (#1)
I0429 10:21:16.827394 8162 solver.cpp:393] Test loss: 4.87549
I0429 10:21:16.827548 8162 solver.cpp:406] Test net output #0: loss1/accuracy = 0.424348
I0429 10:21:16.827569 8162 solver.cpp:406] Test net output #1: loss1/accuracy01 = 0.657
I0429 10:21:16.827582 8162 solver.cpp:406] Test net output #2: loss1/accuracy02 = 0.43
I0429 10:21:16.827594 8162 solver.cpp:406] Test net output #3: loss1/accuracy03 = 0.392
I0429 10:21:16.827606 8162 solver.cpp:406] Test net output #4: loss1/accuracy04 = 0.432
I0429 10:21:16.827617 8162 solver.cpp:406] Test net output #5: loss1/accuracy05 = 0.452
I0429 10:21:16.827630 8162 solver.cpp:406] Test net output #6: loss1/accuracy06 = 0.579
I0429 10:21:16.827641 8162 solver.cpp:406] Test net output #7: loss1/accuracy07 = 0.691
I0429 10:21:16.827652 8162 solver.cpp:406] Test net output #8: loss1/accuracy08 = 0.822
I0429 10:21:16.827664 8162 solver.cpp:406] Test net output #9: loss1/accuracy09 = 0.896
I0429 10:21:16.827677 8162 solver.cpp:406] Test net output #10: loss1/accuracy10 = 0.92
I0429 10:21:16.827688 8162 solver.cpp:406] Test net output #11: loss1/accuracy11 = 0.936
I0429 10:21:16.827700 8162 solver.cpp:406] Test net output #12: loss1/accuracy12 = 0.95
I0429 10:21:16.827713 8162 solver.cpp:406] Test net output #13: loss1/accuracy13 = 0.961
I0429 10:21:16.827724 8162 solver.cpp:406] Test net output #14: loss1/accuracy14 = 0.968
I0429 10:21:16.827736 8162 solver.cpp:406] Test net output #15: loss1/accuracy15 = 0.977
I0429 10:21:16.827749 8162 solver.cpp:406] Test net output #16: loss1/accuracy16 = 0.985
I0429 10:21:16.827760 8162 solver.cpp:406] Test net output #17: loss1/accuracy17 = 0.988
I0429 10:21:16.827772 8162 solver.cpp:406] Test net output #18: loss1/accuracy18 = 0.993
I0429 10:21:16.827785 8162 solver.cpp:406] Test net output #19: loss1/accuracy19 = 0.996
I0429 10:21:16.827795 8162 solver.cpp:406] Test net output #20: loss1/accuracy20 = 0.997
I0429 10:21:16.827807 8162 solver.cpp:406] Test net output #21: loss1/accuracy21 = 0.999
I0429 10:21:16.827818 8162 solver.cpp:406] Test net output #22: loss1/accuracy22 = 0.999
I0429 10:21:16.827831 8162 solver.cpp:406] Test net output #23: loss1/accuracy_incl_empty = 0.809819
I0429 10:21:16.827842 8162 solver.cpp:406] Test net output #24: loss1/accuracy_top3 = 0.671869
I0429 10:21:16.827858 8162 solver.cpp:406] Test net output #25: loss1/cross_entropy_loss = 1.93239 (* 0.3 = 0.579716 loss)
I0429 10:21:16.827873 8162 solver.cpp:406] Test net output #26: loss1/cross_entropy_loss_incl_empty = 0.656996 (* 0.3 = 0.197099 loss)
I0429 10:21:16.827888 8162 solver.cpp:406] Test net output #27: loss1/loss01 = 1.22518 (* 0.0272727 = 0.033414 loss)
I0429 10:21:16.827900 8162 solver.cpp:406] Test net output #28: loss1/loss02 = 1.93327 (* 0.0272727 = 0.0527255 loss)
I0429 10:21:16.827914 8162 solver.cpp:406] Test net output #29: loss1/loss03 = 2.13385 (* 0.0272727 = 0.0581959 loss)
I0429 10:21:16.827929 8162 solver.cpp:406] Test net output #30: loss1/loss04 = 1.97994 (* 0.0272727 = 0.0539983 loss)
I0429 10:21:16.827941 8162 solver.cpp:406] Test net output #31: loss1/loss05 = 1.81872 (* 0.0272727 = 0.0496015 loss)
I0429 10:21:16.827955 8162 solver.cpp:406] Test net output #32: loss1/loss06 = 1.51742 (* 0.0272727 = 0.0413842 loss)
I0429 10:21:16.827970 8162 solver.cpp:406] Test net output #33: loss1/loss07 = 1.0634 (* 0.0272727 = 0.0290019 loss)
I0429 10:21:16.827982 8162 solver.cpp:406] Test net output #34: loss1/loss08 = 0.65135 (* 0.0272727 = 0.0177641 loss)
I0429 10:21:16.827996 8162 solver.cpp:406] Test net output #35: loss1/loss09 = 0.399681 (* 0.0272727 = 0.0109004 loss)
I0429 10:21:16.828011 8162 solver.cpp:406] Test net output #36: loss1/loss10 = 0.298181 (* 0.0272727 = 0.0081322 loss)
I0429 10:21:16.828024 8162 solver.cpp:406] Test net output #37: loss1/loss11 = 0.237983 (* 0.0272727 = 0.00649044 loss)
I0429 10:21:16.828038 8162 solver.cpp:406] Test net output #38: loss1/loss12 = 0.198027 (* 0.0272727 = 0.00540075 loss)
I0429 10:21:16.828073 8162 solver.cpp:406] Test net output #39: loss1/loss13 = 0.155379 (* 0.0272727 = 0.00423761 loss)
I0429 10:21:16.828088 8162 solver.cpp:406] Test net output #40: loss1/loss14 = 0.130509 (* 0.0272727 = 0.00355933 loss)
I0429 10:21:16.828101 8162 solver.cpp:406] Test net output #41: loss1/loss15 = 0.0922605 (* 0.0272727 = 0.00251619 loss)
I0429 10:21:16.828115 8162 solver.cpp:406] Test net output #42: loss1/loss16 = 0.0624701 (* 0.0272727 = 0.00170373 loss)
I0429 10:21:16.828130 8162 solver.cpp:406] Test net output #43: loss1/loss17 = 0.0572803 (* 0.0272727 = 0.00156219 loss)
I0429 10:21:16.828143 8162 solver.cpp:406] Test net output #44: loss1/loss18 = 0.0365431 (* 0.0272727 = 0.00099663 loss)
I0429 10:21:16.828157 8162 solver.cpp:406] Test net output #45: loss1/loss19 = 0.0285518 (* 0.0272727 = 0.000778684 loss)
I0429 10:21:16.828172 8162 solver.cpp:406] Test net output #46: loss1/loss20 = 0.017662 (* 0.0272727 = 0.000481691 loss)
I0429 10:21:16.828186 8162 solver.cpp:406] Test net output #47: loss1/loss21 = 0.0054224 (* 0.0272727 = 0.000147884 loss)
I0429 10:21:16.828199 8162 solver.cpp:406] Test net output #48: loss1/loss22 = 0.00605899 (* 0.0272727 = 0.000165245 loss)
I0429 10:21:16.828212 8162 solver.cpp:406] Test net output #49: loss2/accuracy = 0.484944
I0429 10:21:16.828223 8162 solver.cpp:406] Test net output #50: loss2/accuracy01 = 0.716
I0429 10:21:16.828235 8162 solver.cpp:406] Test net output #51: loss2/accuracy02 = 0.56
I0429 10:21:16.828246 8162 solver.cpp:406] Test net output #52: loss2/accuracy03 = 0.396
I0429 10:21:16.828258 8162 solver.cpp:406] Test net output #53: loss2/accuracy04 = 0.428
I0429 10:21:16.828269 8162 solver.cpp:406] Test net output #54: loss2/accuracy05 = 0.47
I0429 10:21:16.828280 8162 solver.cpp:406] Test net output #55: loss2/accuracy06 = 0.58
I0429 10:21:16.828291 8162 solver.cpp:406] Test net output #56: loss2/accuracy07 = 0.692
I0429 10:21:16.828304 8162 solver.cpp:406] Test net output #57: loss2/accuracy08 = 0.822
I0429 10:21:16.828317 8162 solver.cpp:406] Test net output #58: loss2/accuracy09 = 0.895
I0429 10:21:16.828330 8162 solver.cpp:406] Test net output #59: loss2/accuracy10 = 0.918
I0429 10:21:16.828341 8162 solver.cpp:406] Test net output #60: loss2/accuracy11 = 0.935
I0429 10:21:16.828353 8162 solver.cpp:406] Test net output #61: loss2/accuracy12 = 0.95
I0429 10:21:16.828364 8162 solver.cpp:406] Test net output #62: loss2/accuracy13 = 0.962
I0429 10:21:16.828372 8162 solver.cpp:406] Test net output #63: loss2/accuracy14 = 0.966
I0429 10:21:16.828380 8162 solver.cpp:406] Test net output #64: loss2/accuracy15 = 0.978
I0429 10:21:16.828392 8162 solver.cpp:406] Test net output #65: loss2/accuracy16 = 0.985
I0429 10:21:16.828404 8162 solver.cpp:406] Test net output #66: loss2/accuracy17 = 0.988
I0429 10:21:16.828415 8162 solver.cpp:406] Test net output #67: loss2/accuracy18 = 0.993
I0429 10:21:16.828426 8162 solver.cpp:406] Test net output #68: loss2/accuracy19 = 0.996
I0429 10:21:16.828438 8162 solver.cpp:406] Test net output #69: loss2/accuracy20 = 0.997
I0429 10:21:16.828449 8162 solver.cpp:406] Test net output #70: loss2/accuracy21 = 0.999
I0429 10:21:16.828461 8162 solver.cpp:406] Test net output #71: loss2/accuracy22 = 0.999
I0429 10:21:16.828472 8162 solver.cpp:406] Test net output #72: loss2/accuracy_incl_empty = 0.827365
I0429 10:21:16.828483 8162 solver.cpp:406] Test net output #73: loss2/accuracy_top3 = 0.721908
I0429 10:21:16.828497 8162 solver.cpp:406] Test net output #74: loss2/cross_entropy_loss = 1.75569 (* 0.3 = 0.526708 loss)
I0429 10:21:16.828511 8162 solver.cpp:406] Test net output #75: loss2/cross_entropy_loss_incl_empty = 0.597736 (* 0.3 = 0.179321 loss)
I0429 10:21:16.828524 8162 solver.cpp:406] Test net output #76: loss2/loss01 = 1.09026 (* 0.0272727 = 0.0297343 loss)
I0429 10:21:16.828538 8162 solver.cpp:406] Test net output #77: loss2/loss02 = 1.58676 (* 0.0272727 = 0.0432751 loss)
I0429 10:21:16.828565 8162 solver.cpp:406] Test net output #78: loss2/loss03 = 2.02453 (* 0.0272727 = 0.0552145 loss)
I0429 10:21:16.828582 8162 solver.cpp:406] Test net output #79: loss2/loss04 = 1.87305 (* 0.0272727 = 0.0510833 loss)
I0429 10:21:16.828594 8162 solver.cpp:406] Test net output #80: loss2/loss05 = 1.72721 (* 0.0272727 = 0.0471057 loss)
I0429 10:21:16.828608 8162 solver.cpp:406] Test net output #81: loss2/loss06 = 1.45267 (* 0.0272727 = 0.0396182 loss)
I0429 10:21:16.828621 8162 solver.cpp:406] Test net output #82: loss2/loss07 = 1.04229 (* 0.0272727 = 0.0284261 loss)
I0429 10:21:16.828635 8162 solver.cpp:406] Test net output #83: loss2/loss08 = 0.639005 (* 0.0272727 = 0.0174274 loss)
I0429 10:21:16.828649 8162 solver.cpp:406] Test net output #84: loss2/loss09 = 0.399703 (* 0.0272727 = 0.010901 loss)
I0429 10:21:16.828662 8162 solver.cpp:406] Test net output #85: loss2/loss10 = 0.298266 (* 0.0272727 = 0.00813453 loss)
I0429 10:21:16.828676 8162 solver.cpp:406] Test net output #86: loss2/loss11 = 0.236959 (* 0.0272727 = 0.00646253 loss)
I0429 10:21:16.828690 8162 solver.cpp:406] Test net output #87: loss2/loss12 = 0.199303 (* 0.0272727 = 0.00543554 loss)
I0429 10:21:16.828703 8162 solver.cpp:406] Test net output #88: loss2/loss13 = 0.15623 (* 0.0272727 = 0.00426081 loss)
I0429 10:21:16.828717 8162 solver.cpp:406] Test net output #89: loss2/loss14 = 0.135799 (* 0.0272727 = 0.0037036 loss)
I0429 10:21:16.828732 8162 solver.cpp:406] Test net output #90: loss2/loss15 = 0.0984259 (* 0.0272727 = 0.00268434 loss)
I0429 10:21:16.828744 8162 solver.cpp:406] Test net output #91: loss2/loss16 = 0.0676993 (* 0.0272727 = 0.00184634 loss)
I0429 10:21:16.828758 8162 solver.cpp:406] Test net output #92: loss2/loss17 = 0.0640372 (* 0.0272727 = 0.00174647 loss)
I0429 10:21:16.828771 8162 solver.cpp:406] Test net output #93: loss2/loss18 = 0.0386673 (* 0.0272727 = 0.00105456 loss)
I0429 10:21:16.828785 8162 solver.cpp:406] Test net output #94: loss2/loss19 = 0.0301349 (* 0.0272727 = 0.000821862 loss)
I0429 10:21:16.828799 8162 solver.cpp:406] Test net output #95: loss2/loss20 = 0.0199455 (* 0.0272727 = 0.000543969 loss)
I0429 10:21:16.828812 8162 solver.cpp:406] Test net output #96: loss2/loss21 = 0.00611512 (* 0.0272727 = 0.000166776 loss)
I0429 10:21:16.828826 8162 solver.cpp:406] Test net output #97: loss2/loss22 = 0.00725342 (* 0.0272727 = 0.000197821 loss)
I0429 10:21:16.828837 8162 solver.cpp:406] Test net output #98: loss3/accuracy = 0.64959
I0429 10:21:16.828850 8162 solver.cpp:406] Test net output #99: loss3/accuracy01 = 0.795
I0429 10:21:16.828860 8162 solver.cpp:406] Test net output #100: loss3/accuracy02 = 0.698
I0429 10:21:16.828871 8162 solver.cpp:406] Test net output #101: loss3/accuracy03 = 0.604
I0429 10:21:16.828883 8162 solver.cpp:406] Test net output #102: loss3/accuracy04 = 0.611
I0429 10:21:16.828894 8162 solver.cpp:406] Test net output #103: loss3/accuracy05 = 0.583
I0429 10:21:16.828905 8162 solver.cpp:406] Test net output #104: loss3/accuracy06 = 0.645
I0429 10:21:16.828917 8162 solver.cpp:406] Test net output #105: loss3/accuracy07 = 0.746
I0429 10:21:16.828928 8162 solver.cpp:406] Test net output #106: loss3/accuracy08 = 0.839
I0429 10:21:16.828939 8162 solver.cpp:406] Test net output #107: loss3/accuracy09 = 0.903
I0429 10:21:16.828951 8162 solver.cpp:406] Test net output #108: loss3/accuracy10 = 0.92
I0429 10:21:16.828963 8162 solver.cpp:406] Test net output #109: loss3/accuracy11 = 0.937
I0429 10:21:16.828974 8162 solver.cpp:406] Test net output #110: loss3/accuracy12 = 0.95
I0429 10:21:16.828985 8162 solver.cpp:406] Test net output #111: loss3/accuracy13 = 0.964
I0429 10:21:16.828996 8162 solver.cpp:406] Test net output #112: loss3/accuracy14 = 0.97
I0429 10:21:16.829008 8162 solver.cpp:406] Test net output #113: loss3/accuracy15 = 0.977
I0429 10:21:16.829020 8162 solver.cpp:406] Test net output #114: loss3/accuracy16 = 0.985
I0429 10:21:16.829041 8162 solver.cpp:406] Test net output #115: loss3/accuracy17 = 0.988
I0429 10:21:16.829053 8162 solver.cpp:406] Test net output #116: loss3/accuracy18 = 0.993
I0429 10:21:16.829064 8162 solver.cpp:406] Test net output #117: loss3/accuracy19 = 0.996
I0429 10:21:16.829076 8162 solver.cpp:406] Test net output #118: loss3/accuracy20 = 0.997
I0429 10:21:16.829087 8162 solver.cpp:406] Test net output #119: loss3/accuracy21 = 0.999
I0429 10:21:16.829098 8162 solver.cpp:406] Test net output #120: loss3/accuracy22 = 0.999
I0429 10:21:16.829110 8162 solver.cpp:406] Test net output #121: loss3/accuracy_incl_empty = 0.869183
I0429 10:21:16.829121 8162 solver.cpp:406] Test net output #122: loss3/accuracy_top3 = 0.811783
I0429 10:21:16.829135 8162 solver.cpp:406] Test net output #123: loss3/cross_entropy_loss = 1.24839 (* 1 = 1.24839 loss)
I0429 10:21:16.829149 8162 solver.cpp:406] Test net output #124: loss3/cross_entropy_loss_incl_empty = 0.464952 (* 1 = 0.464952 loss)
I0429 10:21:16.829162 8162 solver.cpp:406] Test net output #125: loss3/loss01 = 0.78792 (* 0.0909091 = 0.071629 loss)
I0429 10:21:16.829176 8162 solver.cpp:406] Test net output #126: loss3/loss02 = 1.10732 (* 0.0909091 = 0.100665 loss)
I0429 10:21:16.829190 8162 solver.cpp:406] Test net output #127: loss3/loss03 = 1.34414 (* 0.0909091 = 0.122194 loss)
I0429 10:21:16.829205 8162 solver.cpp:406] Test net output #128: loss3/loss04 = 1.37477 (* 0.0909091 = 0.124979 loss)
I0429 10:21:16.829217 8162 solver.cpp:406] Test net output #129: loss3/loss05 = 1.36753 (* 0.0909091 = 0.124321 loss)
I0429 10:21:16.829231 8162 solver.cpp:406] Test net output #130: loss3/loss06 = 1.2354 (* 0.0909091 = 0.112309 loss)
I0429 10:21:16.829244 8162 solver.cpp:406] Test net output #131: loss3/loss07 = 0.841522 (* 0.0909091 = 0.076502 loss)
I0429 10:21:16.829257 8162 solver.cpp:406] Test net output #132: loss3/loss08 = 0.5616 (* 0.0909091 = 0.0510545 loss)
I0429 10:21:16.829272 8162 solver.cpp:406] Test net output #133: loss3/loss09 = 0.382163 (* 0.0909091 = 0.0347421 loss)
I0429 10:21:16.829284 8162 solver.cpp:406] Test net output #134: loss3/loss10 = 0.279601 (* 0.0909091 = 0.0254183 loss)
I0429 10:21:16.829298 8162 solver.cpp:406] Test net output #135: loss3/loss11 = 0.231226 (* 0.0909091 = 0.0210205 loss)
I0429 10:21:16.829311 8162 solver.cpp:406] Test net output #136: loss3/loss12 = 0.192998 (* 0.0909091 = 0.0175453 loss)
I0429 10:21:16.829325 8162 solver.cpp:406] Test net output #137: loss3/loss13 = 0.157773 (* 0.0909091 = 0.014343 loss)
I0429 10:21:16.829339 8162 solver.cpp:406] Test net output #138: loss3/loss14 = 0.128292 (* 0.0909091 = 0.0116629 loss)
I0429 10:21:16.829352 8162 solver.cpp:406] Test net output #139: loss3/loss15 = 0.0954726 (* 0.0909091 = 0.00867933 loss)
I0429 10:21:16.829368 8162 solver.cpp:406] Test net output #140: loss3/loss16 = 0.0635992 (* 0.0909091 = 0.00578174 loss)
I0429 10:21:16.829383 8162 solver.cpp:406] Test net output #141: loss3/loss17 = 0.0555146 (* 0.0909091 = 0.00504678 loss)
I0429 10:21:16.829397 8162 solver.cpp:406] Test net output #142: loss3/loss18 = 0.0347744 (* 0.0909091 = 0.00316131 loss)
I0429 10:21:16.829411 8162 solver.cpp:406] Test net output #143: loss3/loss19 = 0.0275799 (* 0.0909091 = 0.00250726 loss)
I0429 10:21:16.829424 8162 solver.cpp:406] Test net output #144: loss3/loss20 = 0.0162704 (* 0.0909091 = 0.00147912 loss)
I0429 10:21:16.829438 8162 solver.cpp:406] Test net output #145: loss3/loss21 = 0.00605408 (* 0.0909091 = 0.00055037 loss)
I0429 10:21:16.829452 8162 solver.cpp:406] Test net output #146: loss3/loss22 = 0.00781893 (* 0.0909091 = 0.000710812 loss)
I0429 10:21:16.829464 8162 solver.cpp:406] Test net output #147: total_accuracy = 0.255
I0429 10:21:16.829475 8162 solver.cpp:406] Test net output #148: total_accuracy_not_rec = 0.242
I0429 10:21:16.829486 8162 solver.cpp:406] Test net output #149: total_confidence = 0.212244
I0429 10:21:16.829507 8162 solver.cpp:406] Test net output #150: total_confidence_not_rec = 0.191416
I0429 10:21:17.009425 8162 solver.cpp:229] Iteration 10000, loss = 5.504
I0429 10:21:17.009484 8162 solver.cpp:245] Train net output #0: loss1/accuracy = 0.25
I0429 10:21:17.009502 8162 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.625
I0429 10:21:17.009518 8162 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.25
I0429 10:21:17.009531 8162 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.25
I0429 10:21:17.009544 8162 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375
I0429 10:21:17.009557 8162 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.375
I0429 10:21:17.009569 8162 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.375
I0429 10:21:17.009582 8162 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.875
I0429 10:21:17.009594 8162 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875
I0429 10:21:17.009606 8162 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.75
I0429 10:21:17.009618 8162 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875
I0429 10:21:17.009631 8162 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.875
I0429 10:21:17.009644 8162 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.875
I0429 10:21:17.009655 8162 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.875
I0429 10:21:17.009668 8162 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.875
I0429 10:21:17.009681 8162 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.875
I0429 10:21:17.009693 8162 solver.cpp:245] Train net output #16: loss1/accuracy16 = 0.875
I0429 10:21:17.009706 8162 solver.cpp:245] Train net output #17: loss1/accuracy17 = 0.875
I0429 10:21:17.009718 8162 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0429 10:21:17.009730 8162 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0429 10:21:17.009742 8162 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0429 10:21:17.009754 8162 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0429 10:21:17.009768 8162 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0429 10:21:17.009780 8162 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.738636
I0429 10:21:17.009793 8162 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.464286
I0429 10:21:17.009810 8162 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 2.45886 (* 0.3 = 0.737659 loss)
I0429 10:21:17.009825 8162 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.851215 (* 0.3 = 0.255365 loss)
I0429 10:21:17.009841 8162 solver.cpp:245] Train net output #27: loss1/loss01 = 1.1846 (* 0.0272727 = 0.0323073 loss)
I0429 10:21:17.009856 8162 solver.cpp:245] Train net output #28: loss1/loss02 = 2.67553 (* 0.0272727 = 0.072969 loss)
I0429 10:21:17.009871 8162 solver.cpp:245] Train net output #29: loss1/loss03 = 2.34974 (* 0.0272727 = 0.0640838 loss)
I0429 10:21:17.009886 8162 solver.cpp:245] Train net output #30: loss1/loss04 = 2.28899 (* 0.0272727 = 0.0624271 loss)
I0429 10:21:17.009899 8162 solver.cpp:245] Train net output #31: loss1/loss05 = 2.14916 (* 0.0272727 = 0.0586135 loss)
I0429 10:21:17.009913 8162 solver.cpp:245] Train net output #32: loss1/loss06 = 1.62164 (* 0.0272727 = 0.0442265 loss)
I0429 10:21:17.009932 8162 solver.cpp:245] Train net output #33: loss1/loss07 = 0.810704 (* 0.0272727 = 0.0221101 loss)
I0429 10:21:17.009948 8162 solver.cpp:245] Train net output #34: loss1/loss08 = 0.654772 (* 0.0272727 = 0.0178574 loss)
I0429 10:21:17.009961 8162 solver.cpp:245] Train net output #35: loss1/loss09 = 1.39144 (* 0.0272727 = 0.0379483 loss)
I0429 10:21:17.009976 8162 solver.cpp:245] Train net output #36: loss1/loss10 = 0.759864 (* 0.0272727 = 0.0207236 loss)
I0429 10:21:17.010025 8162 solver.cpp:245] Train net output #37: loss1/loss11 = 0.515067 (* 0.0272727 = 0.0140473 loss)
I0429 10:21:17.010042 8162 solver.cpp:245] Train net output #38: loss1/loss12 = 0.331748 (* 0.0272727 = 0.00904768 loss)
I0429 10:21:17.010056 8162 solver.cpp:245] Train net output #39: loss1/loss13 = 0.397963 (* 0.0272727 = 0.0108535 loss)
I0429 10:21:17.010071 8162 solver.cpp:245] Train net output #40: loss1/loss14 = 0.313347 (* 0.0272727 = 0.00854582 loss)
I0429 10:21:17.010087 8162 solver.cpp:245] Train net output #41: loss1/loss15 = 0.416546 (* 0.0272727 = 0.0113603 loss)
I0429 10:21:17.010100 8162 solver.cpp:245] Train net output #42: loss1/loss16 = 0.543489 (* 0.0272727 = 0.0148224 loss)
I0429 10:21:17.010115 8162 solver.cpp:245] Train net output #43: loss1/loss17 = 0.380639 (* 0.0272727 = 0.0103811 loss)
I0429 10:21:17.010129 8162 solver.cpp:245] Train net output #44: loss1/loss18 = 0.082665 (* 0.0272727 = 0.0022545 loss)
I0429 10:21:17.010144 8162 solver.cpp:245] Train net output #45: loss1/loss19 = 0.0370871 (* 0.0272727 = 0.00101147 loss)
I0429 10:21:17.010159 8162 solver.cpp:245] Train net output #46: loss1/loss20 = 0.0320928 (* 0.0272727 = 0.000875258 loss)
I0429 10:21:17.010174 8162 solver.cpp:245] Train net output #47: loss1/loss21 = 0.00990473 (* 0.0272727 = 0.000270129 loss)
I0429 10:21:17.010190 8162 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000298169 (* 0.0272727 = 8.13187e-06 loss)
I0429 10:21:17.010202 8162 solver.cpp:245] Train net output #49: loss2/accuracy = 0.267857
I0429 10:21:17.010215 8162 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.625
I0429 10:21:17.010227 8162 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.25
I0429 10:21:17.010239 8162 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.25
I0429 10:21:17.010251 8162 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.75
I0429 10:21:17.010263 8162 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.375
I0429 10:21:17.010275 8162 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.75
I0429 10:21:17.010288 8162 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.875
I0429 10:21:17.010300 8162 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.75
I0429 10:21:17.010313 8162 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.75
I0429 10:21:17.010324 8162 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.75
I0429 10:21:17.010336 8162 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.875
I0429 10:21:17.010349 8162 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.875
I0429 10:21:17.010360 8162 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.875
I0429 10:21:17.010372 8162 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.875
I0429 10:21:17.010381 8162 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.875
I0429 10:21:17.010390 8162 solver.cpp:245] Train net output #65: loss2/accuracy16 = 0.875
I0429 10:21:17.010402 8162 solver.cpp:245] Train net output #66: loss2/accuracy17 = 0.875
I0429 10:21:17.010414 8162 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0429 10:21:17.010426 8162 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0429 10:21:17.010438 8162 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0429 10:21:17.010450 8162 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0429 10:21:17.010462 8162 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0429 10:21:17.010473 8162 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.755682
I0429 10:21:17.010485 8162 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.571429
I0429 10:21:17.010500 8162 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 2.42243 (* 0.3 = 0.72673 loss)
I0429 10:21:17.010514 8162 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.815362 (* 0.3 = 0.244609 loss)
I0429 10:21:17.010540 8162 solver.cpp:245] Train net output #76: loss2/loss01 = 1.63514 (* 0.0272727 = 0.0445947 loss)
I0429 10:21:17.010555 8162 solver.cpp:245] Train net output #77: loss2/loss02 = 2.43881 (* 0.0272727 = 0.066513 loss)
I0429 10:21:17.010572 8162 solver.cpp:245] Train net output #78: loss2/loss03 = 2.46187 (* 0.0272727 = 0.0671419 loss)
I0429 10:21:17.010587 8162 solver.cpp:245] Train net output #79: loss2/loss04 = 1.96555 (* 0.0272727 = 0.0536058 loss)
I0429 10:21:17.010602 8162 solver.cpp:245] Train net output #80: loss2/loss05 = 2.00581 (* 0.0272727 = 0.0547039 loss)
I0429 10:21:17.010617 8162 solver.cpp:245] Train net output #81: loss2/loss06 = 1.06113 (* 0.0272727 = 0.0289398 loss)
I0429 10:21:17.010630 8162 solver.cpp:245] Train net output #82: loss2/loss07 = 0.729546 (* 0.0272727 = 0.0198967 loss)
I0429 10:21:17.010645 8162 solver.cpp:245] Train net output #83: loss2/loss08 = 0.706627 (* 0.0272727 = 0.0192716 loss)
I0429 10:21:17.010659 8162 solver.cpp:245] Train net output #84: loss2/loss09 = 1.26362 (* 0.0272727 = 0.0344623 loss)
I0429 10:21:17.010673 8162 solver.cpp:245] Train net output #85: loss2/loss10 = 0.803148 (* 0.0272727 = 0.021904 loss)
I0429 10:21:17.010689 8162 solver.cpp:245] Train net output #86: loss2/loss11 = 0.481788 (* 0.0272727 = 0.0131397 loss)
I0429 10:21:17.010704 8162 solver.cpp:245] Train net output #87: loss2/loss12 = 0.331777 (* 0.0272727 = 0.00904847 loss)
I0429 10:21:17.010717 8162 solver.cpp:245] Train net output #88: loss2/loss13 = 0.370849 (* 0.0272727 = 0.0101141 loss)
I0429 10:21:17.010731 8162 solver.cpp:245] Train net output #89: loss2/loss14 = 0.286592 (* 0.0272727 = 0.00781614 loss)
I0429 10:21:17.010746 8162 solver.cpp:245] Train net output #90: loss2/loss15 = 0.391611 (* 0.0272727 = 0.0106803 loss)
I0429 10:21:17.010761 8162 solver.cpp:245] Train net output #91: loss2/loss16 = 0.49914 (* 0.0272727 = 0.0136129 loss)
I0429 10:21:17.010774 8162 solver.cpp:245] Train net output #92: loss2/loss17 = 0.373869 (* 0.0272727 = 0.0101964 loss)
I0429 10:21:17.010789 8162 solver.cpp:245] Train net output #93: loss2/loss18 = 0.0272249 (* 0.0272727 = 0.000742497 loss)
I0429 10:21:17.010803 8162 solver.cpp:245] Train net output #94: loss2/loss19 = 0.00920631 (* 0.0272727 = 0.000251081 loss)
I0429 10:21:17.010818 8162 solver.cpp:245] Train net output #95: loss2/loss20 = 0.00320775 (* 0.0272727 = 8.7484e-05 loss)
I0429 10:21:17.010833 8162 solver.cpp:245] Train net output #96: loss2/loss21 = 0.000997029 (* 0.0272727 = 2.71917e-05 loss)
I0429 10:21:17.010846 8162 solver.cpp:245] Train net output #97: loss2/loss22 = 0.00067851 (* 0.0272727 = 1.85048e-05 loss)
I0429 10:21:17.010859 8162 solver.cpp:245] Train net output #98: loss3/accuracy = 0.553571
I0429 10:21:17.010871 8162 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875
I0429 10:21:17.010884 8162 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.625
I0429 10:21:17.010895 8162 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.5
I0429 10:21:17.010908 8162 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.625
I0429 10:21:17.010921 8162 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.5
I0429 10:21:17.010932 8162 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.875
I0429 10:21:17.010944 8162 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75
I0429 10:21:17.010957 8162 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875
I0429 10:21:17.010968 8162 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.75
I0429 10:21:17.010984 8162 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.75
I0429 10:21:17.010998 8162 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.875
I0429 10:21:17.011009 8162 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.875
I0429 10:21:17.011021 8162 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.875
I0429 10:21:17.011044 8162 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.875
I0429 10:21:17.011057 8162 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.875
I0429 10:21:17.011070 8162 solver.cpp:245] Train net output #114: loss3/accuracy16 = 0.875
I0429 10:21:17.011082 8162 solver.cpp:245] Train net output #115: loss3/accuracy17 = 0.875
I0429 10:21:17.011095 8162 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0429 10:21:17.011106 8162 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0429 10:21:17.011117 8162 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0429 10:21:17.011129 8162 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0429 10:21:17.011142 8162 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0429 10:21:17.011152 8162 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.846591
I0429 10:21:17.011165 8162 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.714286
I0429 10:21:17.011179 8162 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.74664 (* 1 = 1.74664 loss)
I0429 10:21:17.011193 8162 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.61048 (* 1 = 0.61048 loss)
I0429 10:21:17.011209 8162 solver.cpp:245] Train net output #125: loss3/loss01 = 0.389239 (* 0.0909091 = 0.0353854 loss)
I0429 10:21:17.011222 8162 solver.cpp:245] Train net output #126: loss3/loss02 = 2.15983 (* 0.0909091 = 0.196349 loss)
I0429 10:21:17.011236 8162 solver.cpp:245] Train net output #127: loss3/loss03 = 2.08838 (* 0.0909091 = 0.189853 loss)
I0429 10:21:17.011251 8162 solver.cpp:245] Train net output #128: loss3/loss04 = 1.4458 (* 0.0909091 = 0.131436 loss)
I0429 10:21:17.011265 8162 solver.cpp:245] Train net output #129: loss3/loss05 = 1.65507 (* 0.0909091 = 0.150461 loss)
I0429 10:21:17.011278 8162 solver.cpp:245] Train net output #130: loss3/loss06 = 0.615978 (* 0.0909091 = 0.055998 loss)
I0429 10:21:17.011292 8162 solver.cpp:245] Train net output #131: loss3/loss07 = 1.01448 (* 0.0909091 = 0.0922254 loss)
I0429 10:21:17.011307 8162 solver.cpp:245] Train net output #132: loss3/loss08 = 0.645112 (* 0.0909091 = 0.0586466 loss)
I0429 10:21:17.011322 8162 solver.cpp:245] Train net output #133: loss3/loss09 = 1.2153 (* 0.0909091 = 0.110481 loss)
I0429 10:21:17.011335 8162 solver.cpp:245] Train net output #134: loss3/loss10 = 0.672804 (* 0.0909091 = 0.061164 loss)
I0429 10:21:17.011349 8162 solver.cpp:245] Train net output #135: loss3/loss11 = 0.440582 (* 0.0909091 = 0.0400529 loss)
I0429 10:21:17.011364 8162 solver.cpp:245] Train net output #136: loss3/loss12 = 0.381651 (* 0.0909091 = 0.0346955 loss)
I0429 10:21:17.011379 8162 solver.cpp:245] Train net output #137: loss3/loss13 = 0.374247 (* 0.0909091 = 0.0340225 loss)
I0429 10:21:17.011392 8162 solver.cpp:245] Train net output #138: loss3/loss14 = 0.260678 (* 0.0909091 = 0.023698 loss)
I0429 10:21:17.011406 8162 solver.cpp:245] Train net output #139: loss3/loss15 = 0.430465 (* 0.0909091 = 0.0391332 loss)
I0429 10:21:17.011420 8162 solver.cpp:245] Train net output #140: loss3/loss16 = 0.424182 (* 0.0909091 = 0.038562 loss)
I0429 10:21:17.011435 8162 solver.cpp:245] Train net output #141: loss3/loss17 = 0.296076 (* 0.0909091 = 0.026916 loss)
I0429 10:21:17.011448 8162 solver.cpp:245] Train net output #142: loss3/loss18 = 0.0434642 (* 0.0909091 = 0.00395129 loss)
I0429 10:21:17.011462 8162 solver.cpp:245] Train net output #143: loss3/loss19 = 0.0315179 (* 0.0909091 = 0.00286526 loss)
I0429 10:21:17.011499 8162 solver.cpp:245] Train net output #144: loss3/loss20 = 0.0249205 (* 0.0909091 = 0.0022655 loss)
I0429 10:21:17.011515 8162 solver.cpp:245] Train net output #145: loss3/loss21 = 0.0147162 (* 0.0909091 = 0.00133784 loss)
I0429 10:21:17.011530 8162 solver.cpp:245] Train net output #146: loss3/loss22 = 0.00040093 (* 0.0909091 = 3.64482e-05 loss)
I0429 10:21:17.011555 8162 solver.cpp:245] Train net output #147: total_accuracy = 0.375
I0429 10:21:17.011569 8162 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.25
I0429 10:21:17.011580 8162 solver.cpp:245] Train net output #149: total_confidence = 0.0441466
I0429 10:21:17.011592 8162 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.0813376
I0429 10:21:17.011605 8162 sgd_solver.cpp:106] Iteration 10000, lr = 0.005
I0429 10:23:33.735959 8162 solver.cpp:229] Iteration 10500, loss = 5.32015
I0429 10:23:33.736134 8162 solver.cpp:245] Train net output #0: loss1/accuracy = 0.423077
I0429 10:23:33.736155 8162 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75
I0429 10:23:33.736168 8162 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.25
I0429 10:23:33.736181 8162 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.5
I0429 10:23:33.736193 8162 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.625
I0429 10:23:33.736207 8162 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.375
I0429 10:23:33.736218 8162 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.625
I0429 10:23:33.736232 8162 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.625
I0429 10:23:33.736243 8162 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875
I0429 10:23:33.736256 8162 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875
I0429 10:23:33.736268 8162 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875
I0429 10:23:33.736280 8162 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.875
I0429 10:23:33.736294 8162 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0429 10:23:33.736306 8162 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0429 10:23:33.736321 8162 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0429 10:23:33.736335 8162 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0429 10:23:33.736346 8162 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0429 10:23:33.736358 8162 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0429 10:23:33.736371 8162 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0429 10:23:33.736382 8162 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0429 10:23:33.736394 8162 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0429 10:23:33.736407 8162 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0429 10:23:33.736419 8162 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0429 10:23:33.736431 8162 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.818182
I0429 10:23:33.736443 8162 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.596154
I0429 10:23:33.736460 8162 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 2.13064 (* 0.3 = 0.639192 loss)
I0429 10:23:33.736475 8162 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.69065 (* 0.3 = 0.207195 loss)
I0429 10:23:33.736490 8162 solver.cpp:245] Train net output #27: loss1/loss01 = 1.04051 (* 0.0272727 = 0.0283774 loss)
I0429 10:23:33.736505 8162 solver.cpp:245] Train net output #28: loss1/loss02 = 2.50084 (* 0.0272727 = 0.0682046 loss)
I0429 10:23:33.736520 8162 solver.cpp:245] Train net output #29: loss1/loss03 = 2.44806 (* 0.0272727 = 0.0667654 loss)
I0429 10:23:33.736534 8162 solver.cpp:245] Train net output #30: loss1/loss04 = 1.87155 (* 0.0272727 = 0.0510422 loss)
I0429 10:23:33.736548 8162 solver.cpp:245] Train net output #31: loss1/loss05 = 2.11045 (* 0.0272727 = 0.0575577 loss)
I0429 10:23:33.736563 8162 solver.cpp:245] Train net output #32: loss1/loss06 = 1.469 (* 0.0272727 = 0.0400637 loss)
I0429 10:23:33.736577 8162 solver.cpp:245] Train net output #33: loss1/loss07 = 1.13887 (* 0.0272727 = 0.0310602 loss)
I0429 10:23:33.736591 8162 solver.cpp:245] Train net output #34: loss1/loss08 = 0.589609 (* 0.0272727 = 0.0160803 loss)
I0429 10:23:33.736606 8162 solver.cpp:245] Train net output #35: loss1/loss09 = 0.778532 (* 0.0272727 = 0.0212327 loss)
I0429 10:23:33.736621 8162 solver.cpp:245] Train net output #36: loss1/loss10 = 0.584668 (* 0.0272727 = 0.0159455 loss)
I0429 10:23:33.736635 8162 solver.cpp:245] Train net output #37: loss1/loss11 = 0.665636 (* 0.0272727 = 0.0181537 loss)
I0429 10:23:33.736650 8162 solver.cpp:245] Train net output #38: loss1/loss12 = 0.0221563 (* 0.0272727 = 0.000604264 loss)
I0429 10:23:33.736685 8162 solver.cpp:245] Train net output #39: loss1/loss13 = 0.0076187 (* 0.0272727 = 0.000207783 loss)
I0429 10:23:33.736701 8162 solver.cpp:245] Train net output #40: loss1/loss14 = 0.00624594 (* 0.0272727 = 0.000170344 loss)
I0429 10:23:33.736716 8162 solver.cpp:245] Train net output #41: loss1/loss15 = 0.00375064 (* 0.0272727 = 0.00010229 loss)
I0429 10:23:33.736732 8162 solver.cpp:245] Train net output #42: loss1/loss16 = 0.0012978 (* 0.0272727 = 3.53945e-05 loss)
I0429 10:23:33.736747 8162 solver.cpp:245] Train net output #43: loss1/loss17 = 0.00116728 (* 0.0272727 = 3.1835e-05 loss)
I0429 10:23:33.736762 8162 solver.cpp:245] Train net output #44: loss1/loss18 = 0.000413855 (* 0.0272727 = 1.12869e-05 loss)
I0429 10:23:33.736776 8162 solver.cpp:245] Train net output #45: loss1/loss19 = 0.000273736 (* 0.0272727 = 7.46553e-06 loss)
I0429 10:23:33.736791 8162 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000346107 (* 0.0272727 = 9.43929e-06 loss)
I0429 10:23:33.736805 8162 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000172387 (* 0.0272727 = 4.70147e-06 loss)
I0429 10:23:33.736820 8162 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000113517 (* 0.0272727 = 3.09592e-06 loss)
I0429 10:23:33.736835 8162 solver.cpp:245] Train net output #49: loss2/accuracy = 0.384615
I0429 10:23:33.736846 8162 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.625
I0429 10:23:33.736860 8162 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.25
I0429 10:23:33.736871 8162 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.5
I0429 10:23:33.736883 8162 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.5
I0429 10:23:33.736896 8162 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5
I0429 10:23:33.736908 8162 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.375
I0429 10:23:33.736920 8162 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.625
I0429 10:23:33.736933 8162 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875
I0429 10:23:33.736945 8162 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875
I0429 10:23:33.736958 8162 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875
I0429 10:23:33.736969 8162 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.875
I0429 10:23:33.736981 8162 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0429 10:23:33.736994 8162 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0429 10:23:33.737006 8162 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0429 10:23:33.737018 8162 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0429 10:23:33.737030 8162 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0429 10:23:33.737042 8162 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0429 10:23:33.737053 8162 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0429 10:23:33.737066 8162 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0429 10:23:33.737077 8162 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0429 10:23:33.737089 8162 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0429 10:23:33.737102 8162 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0429 10:23:33.737113 8162 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.8125
I0429 10:23:33.737125 8162 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.653846
I0429 10:23:33.737143 8162 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.98404 (* 0.3 = 0.595211 loss)
I0429 10:23:33.737159 8162 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.649634 (* 0.3 = 0.19489 loss)
I0429 10:23:33.737174 8162 solver.cpp:245] Train net output #76: loss2/loss01 = 1.24028 (* 0.0272727 = 0.0338258 loss)
I0429 10:23:33.737187 8162 solver.cpp:245] Train net output #77: loss2/loss02 = 2.45093 (* 0.0272727 = 0.0668437 loss)
I0429 10:23:33.737213 8162 solver.cpp:245] Train net output #78: loss2/loss03 = 1.6945 (* 0.0272727 = 0.0462137 loss)
I0429 10:23:33.737228 8162 solver.cpp:245] Train net output #79: loss2/loss04 = 1.36842 (* 0.0272727 = 0.0373206 loss)
I0429 10:23:33.737243 8162 solver.cpp:245] Train net output #80: loss2/loss05 = 1.80155 (* 0.0272727 = 0.0491331 loss)
I0429 10:23:33.737257 8162 solver.cpp:245] Train net output #81: loss2/loss06 = 1.72263 (* 0.0272727 = 0.0469808 loss)
I0429 10:23:33.737272 8162 solver.cpp:245] Train net output #82: loss2/loss07 = 1.48229 (* 0.0272727 = 0.040426 loss)
I0429 10:23:33.737285 8162 solver.cpp:245] Train net output #83: loss2/loss08 = 0.520313 (* 0.0272727 = 0.0141904 loss)
I0429 10:23:33.737299 8162 solver.cpp:245] Train net output #84: loss2/loss09 = 0.619818 (* 0.0272727 = 0.0169041 loss)
I0429 10:23:33.737313 8162 solver.cpp:245] Train net output #85: loss2/loss10 = 0.543084 (* 0.0272727 = 0.0148114 loss)
I0429 10:23:33.737329 8162 solver.cpp:245] Train net output #86: loss2/loss11 = 0.651044 (* 0.0272727 = 0.0177558 loss)
I0429 10:23:33.737342 8162 solver.cpp:245] Train net output #87: loss2/loss12 = 0.0414971 (* 0.0272727 = 0.00113174 loss)
I0429 10:23:33.737357 8162 solver.cpp:245] Train net output #88: loss2/loss13 = 0.0164622 (* 0.0272727 = 0.000448969 loss)
I0429 10:23:33.737375 8162 solver.cpp:245] Train net output #89: loss2/loss14 = 0.00654377 (* 0.0272727 = 0.000178466 loss)
I0429 10:23:33.737390 8162 solver.cpp:245] Train net output #90: loss2/loss15 = 0.00202453 (* 0.0272727 = 5.52144e-05 loss)
I0429 10:23:33.737404 8162 solver.cpp:245] Train net output #91: loss2/loss16 = 0.00047332 (* 0.0272727 = 1.29087e-05 loss)
I0429 10:23:33.737419 8162 solver.cpp:245] Train net output #92: loss2/loss17 = 0.000305907 (* 0.0272727 = 8.34292e-06 loss)
I0429 10:23:33.737433 8162 solver.cpp:245] Train net output #93: loss2/loss18 = 0.000288746 (* 0.0272727 = 7.8749e-06 loss)
I0429 10:23:33.737448 8162 solver.cpp:245] Train net output #94: loss2/loss19 = 0.000101601 (* 0.0272727 = 2.77094e-06 loss)
I0429 10:23:33.737462 8162 solver.cpp:245] Train net output #95: loss2/loss20 = 9.78389e-05 (* 0.0272727 = 2.66833e-06 loss)
I0429 10:23:33.737478 8162 solver.cpp:245] Train net output #96: loss2/loss21 = 0.000186119 (* 0.0272727 = 5.07597e-06 loss)
I0429 10:23:33.737491 8162 solver.cpp:245] Train net output #97: loss2/loss22 = 0.000104317 (* 0.0272727 = 2.84501e-06 loss)
I0429 10:23:33.737504 8162 solver.cpp:245] Train net output #98: loss3/accuracy = 0.692308
I0429 10:23:33.737516 8162 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.75
I0429 10:23:33.737529 8162 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.625
I0429 10:23:33.737541 8162 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.875
I0429 10:23:33.737553 8162 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.75
I0429 10:23:33.737565 8162 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.75
I0429 10:23:33.737577 8162 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.625
I0429 10:23:33.737589 8162 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75
I0429 10:23:33.737602 8162 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875
I0429 10:23:33.737614 8162 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875
I0429 10:23:33.737627 8162 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875
I0429 10:23:33.737638 8162 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.875
I0429 10:23:33.737650 8162 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0429 10:23:33.737663 8162 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0429 10:23:33.737674 8162 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0429 10:23:33.737686 8162 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0429 10:23:33.737709 8162 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0429 10:23:33.737721 8162 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0429 10:23:33.737733 8162 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0429 10:23:33.737746 8162 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0429 10:23:33.737757 8162 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0429 10:23:33.737769 8162 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0429 10:23:33.737782 8162 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0429 10:23:33.737793 8162 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.897727
I0429 10:23:33.737805 8162 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.865385
I0429 10:23:33.737820 8162 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.00102 (* 1 = 1.00102 loss)
I0429 10:23:33.737834 8162 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.321694 (* 1 = 0.321694 loss)
I0429 10:23:33.737849 8162 solver.cpp:245] Train net output #125: loss3/loss01 = 0.783767 (* 0.0909091 = 0.0712515 loss)
I0429 10:23:33.737864 8162 solver.cpp:245] Train net output #126: loss3/loss02 = 1.01218 (* 0.0909091 = 0.0920166 loss)
I0429 10:23:33.737879 8162 solver.cpp:245] Train net output #127: loss3/loss03 = 0.503366 (* 0.0909091 = 0.0457606 loss)
I0429 10:23:33.737892 8162 solver.cpp:245] Train net output #128: loss3/loss04 = 0.755984 (* 0.0909091 = 0.0687258 loss)
I0429 10:23:33.737906 8162 solver.cpp:245] Train net output #129: loss3/loss05 = 1.12704 (* 0.0909091 = 0.102458 loss)
I0429 10:23:33.737920 8162 solver.cpp:245] Train net output #130: loss3/loss06 = 0.950006 (* 0.0909091 = 0.0863642 loss)
I0429 10:23:33.737936 8162 solver.cpp:245] Train net output #131: loss3/loss07 = 0.950079 (* 0.0909091 = 0.0863709 loss)
I0429 10:23:33.737949 8162 solver.cpp:245] Train net output #132: loss3/loss08 = 0.388104 (* 0.0909091 = 0.0352822 loss)
I0429 10:23:33.737964 8162 solver.cpp:245] Train net output #133: loss3/loss09 = 0.672042 (* 0.0909091 = 0.0610947 loss)
I0429 10:23:33.737978 8162 solver.cpp:245] Train net output #134: loss3/loss10 = 0.393048 (* 0.0909091 = 0.0357317 loss)
I0429 10:23:33.737993 8162 solver.cpp:245] Train net output #135: loss3/loss11 = 0.518988 (* 0.0909091 = 0.0471807 loss)
I0429 10:23:33.738008 8162 solver.cpp:245] Train net output #136: loss3/loss12 = 0.0102818 (* 0.0909091 = 0.00093471 loss)
I0429 10:23:33.738021 8162 solver.cpp:245] Train net output #137: loss3/loss13 = 0.00401712 (* 0.0909091 = 0.000365193 loss)
I0429 10:23:33.738036 8162 solver.cpp:245] Train net output #138: loss3/loss14 = 0.00141992 (* 0.0909091 = 0.000129084 loss)
I0429 10:23:33.738050 8162 solver.cpp:245] Train net output #139: loss3/loss15 = 0.000756947 (* 0.0909091 = 6.88134e-05 loss)
I0429 10:23:33.738065 8162 solver.cpp:245] Train net output #140: loss3/loss16 = 0.000331724 (* 0.0909091 = 3.01567e-05 loss)
I0429 10:23:33.738080 8162 solver.cpp:245] Train net output #141: loss3/loss17 = 0.00011925 (* 0.0909091 = 1.08409e-05 loss)
I0429 10:23:33.738095 8162 solver.cpp:245] Train net output #142: loss3/loss18 = 5.60674e-05 (* 0.0909091 = 5.09703e-06 loss)
I0429 10:23:33.738109 8162 solver.cpp:245] Train net output #143: loss3/loss19 = 3.19879e-05 (* 0.0909091 = 2.90799e-06 loss)
I0429 10:23:33.738123 8162 solver.cpp:245] Train net output #144: loss3/loss20 = 2.45884e-05 (* 0.0909091 = 2.23531e-06 loss)
I0429 10:23:33.738138 8162 solver.cpp:245] Train net output #145: loss3/loss21 = 1.71966e-05 (* 0.0909091 = 1.56332e-06 loss)
I0429 10:23:33.738152 8162 solver.cpp:245] Train net output #146: loss3/loss22 = 1.47377e-05 (* 0.0909091 = 1.33979e-06 loss)
I0429 10:23:33.738165 8162 solver.cpp:245] Train net output #147: total_accuracy = 0.125
I0429 10:23:33.738178 8162 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.25
I0429 10:23:33.738203 8162 solver.cpp:245] Train net output #149: total_confidence = 0.13973
I0429 10:23:33.738216 8162 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.20603
I0429 10:23:33.738229 8162 sgd_solver.cpp:106] Iteration 10500, lr = 0.005
I0429 10:25:50.506039 8162 solver.cpp:229] Iteration 11000, loss = 5.48313
I0429 10:25:50.506148 8162 solver.cpp:245] Train net output #0: loss1/accuracy = 0.361702
I0429 10:25:50.506167 8162 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75
I0429 10:25:50.506181 8162 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0
I0429 10:25:50.506193 8162 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.25
I0429 10:25:50.506206 8162 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.25
I0429 10:25:50.506218 8162 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.5
I0429 10:25:50.506230 8162 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.625
I0429 10:25:50.506242 8162 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.625
I0429 10:25:50.506254 8162 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875
I0429 10:25:50.506268 8162 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1
I0429 10:25:50.506279 8162 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0429 10:25:50.506291 8162 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0429 10:25:50.506304 8162 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0429 10:25:50.506315 8162 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0429 10:25:50.506327 8162 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0429 10:25:50.506341 8162 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0429 10:25:50.506353 8162 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0429 10:25:50.506368 8162 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0429 10:25:50.506381 8162 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0429 10:25:50.506393 8162 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0429 10:25:50.506405 8162 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0429 10:25:50.506417 8162 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0429 10:25:50.506429 8162 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0429 10:25:50.506441 8162 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.801136
I0429 10:25:50.506453 8162 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.617021
I0429 10:25:50.506469 8162 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 2.17052 (* 0.3 = 0.651157 loss)
I0429 10:25:50.506484 8162 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.664773 (* 0.3 = 0.199432 loss)
I0429 10:25:50.506500 8162 solver.cpp:245] Train net output #27: loss1/loss01 = 0.721715 (* 0.0272727 = 0.0196831 loss)
I0429 10:25:50.506516 8162 solver.cpp:245] Train net output #28: loss1/loss02 = 2.70318 (* 0.0272727 = 0.073723 loss)
I0429 10:25:50.506531 8162 solver.cpp:245] Train net output #29: loss1/loss03 = 2.645 (* 0.0272727 = 0.0721363 loss)
I0429 10:25:50.506546 8162 solver.cpp:245] Train net output #30: loss1/loss04 = 2.6202 (* 0.0272727 = 0.0714601 loss)
I0429 10:25:50.506561 8162 solver.cpp:245] Train net output #31: loss1/loss05 = 2.40344 (* 0.0272727 = 0.0655484 loss)
I0429 10:25:50.506575 8162 solver.cpp:245] Train net output #32: loss1/loss06 = 1.35499 (* 0.0272727 = 0.0369544 loss)
I0429 10:25:50.506589 8162 solver.cpp:245] Train net output #33: loss1/loss07 = 1.04983 (* 0.0272727 = 0.0286317 loss)
I0429 10:25:50.506603 8162 solver.cpp:245] Train net output #34: loss1/loss08 = 0.302364 (* 0.0272727 = 0.0082463 loss)
I0429 10:25:50.506618 8162 solver.cpp:245] Train net output #35: loss1/loss09 = 0.0570144 (* 0.0272727 = 0.00155494 loss)
I0429 10:25:50.506633 8162 solver.cpp:245] Train net output #36: loss1/loss10 = 0.00689698 (* 0.0272727 = 0.0001881 loss)
I0429 10:25:50.506649 8162 solver.cpp:245] Train net output #37: loss1/loss11 = 0.00132413 (* 0.0272727 = 3.61126e-05 loss)
I0429 10:25:50.506664 8162 solver.cpp:245] Train net output #38: loss1/loss12 = 0.00020051 (* 0.0272727 = 5.46845e-06 loss)
I0429 10:25:50.506677 8162 solver.cpp:245] Train net output #39: loss1/loss13 = 0.000343206 (* 0.0272727 = 9.36017e-06 loss)
I0429 10:25:50.506711 8162 solver.cpp:245] Train net output #40: loss1/loss14 = 0.000111452 (* 0.0272727 = 3.03959e-06 loss)
I0429 10:25:50.506727 8162 solver.cpp:245] Train net output #41: loss1/loss15 = 0.000126083 (* 0.0272727 = 3.43863e-06 loss)
I0429 10:25:50.506742 8162 solver.cpp:245] Train net output #42: loss1/loss16 = 0.000178723 (* 0.0272727 = 4.87426e-06 loss)
I0429 10:25:50.506757 8162 solver.cpp:245] Train net output #43: loss1/loss17 = 7.70602e-05 (* 0.0272727 = 2.10164e-06 loss)
I0429 10:25:50.506770 8162 solver.cpp:245] Train net output #44: loss1/loss18 = 8.23085e-05 (* 0.0272727 = 2.24478e-06 loss)
I0429 10:25:50.506785 8162 solver.cpp:245] Train net output #45: loss1/loss19 = 0.000115569 (* 0.0272727 = 3.15187e-06 loss)
I0429 10:25:50.506799 8162 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000181802 (* 0.0272727 = 4.95824e-06 loss)
I0429 10:25:50.506814 8162 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000230969 (* 0.0272727 = 6.29915e-06 loss)
I0429 10:25:50.506829 8162 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000101898 (* 0.0272727 = 2.77904e-06 loss)
I0429 10:25:50.506841 8162 solver.cpp:245] Train net output #49: loss2/accuracy = 0.404255
I0429 10:25:50.506850 8162 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.75
I0429 10:25:50.506858 8162 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.375
I0429 10:25:50.506866 8162 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.25
I0429 10:25:50.506878 8162 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.125
I0429 10:25:50.506891 8162 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5
I0429 10:25:50.506903 8162 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.375
I0429 10:25:50.506916 8162 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.75
I0429 10:25:50.506928 8162 solver.cpp:245] Train net output #57: loss2/accuracy08 = 1
I0429 10:25:50.506940 8162 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1
I0429 10:25:50.506953 8162 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0429 10:25:50.506964 8162 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0429 10:25:50.506976 8162 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0429 10:25:50.506989 8162 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0429 10:25:50.506999 8162 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0429 10:25:50.507011 8162 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0429 10:25:50.507024 8162 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0429 10:25:50.507035 8162 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0429 10:25:50.507047 8162 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0429 10:25:50.507058 8162 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0429 10:25:50.507071 8162 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0429 10:25:50.507082 8162 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0429 10:25:50.507094 8162 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0429 10:25:50.507107 8162 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.8125
I0429 10:25:50.507118 8162 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.702128
I0429 10:25:50.507133 8162 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.88077 (* 0.3 = 0.564232 loss)
I0429 10:25:50.507148 8162 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.59656 (* 0.3 = 0.178968 loss)
I0429 10:25:50.507161 8162 solver.cpp:245] Train net output #76: loss2/loss01 = 0.744045 (* 0.0272727 = 0.0202921 loss)
I0429 10:25:50.507176 8162 solver.cpp:245] Train net output #77: loss2/loss02 = 1.77743 (* 0.0272727 = 0.0484754 loss)
I0429 10:25:50.507201 8162 solver.cpp:245] Train net output #78: loss2/loss03 = 2.28686 (* 0.0272727 = 0.0623688 loss)
I0429 10:25:50.507216 8162 solver.cpp:245] Train net output #79: loss2/loss04 = 2.47437 (* 0.0272727 = 0.0674829 loss)
I0429 10:25:50.507230 8162 solver.cpp:245] Train net output #80: loss2/loss05 = 2.22446 (* 0.0272727 = 0.0606672 loss)
I0429 10:25:50.507244 8162 solver.cpp:245] Train net output #81: loss2/loss06 = 2.03627 (* 0.0272727 = 0.0555347 loss)
I0429 10:25:50.507258 8162 solver.cpp:245] Train net output #82: loss2/loss07 = 1.05732 (* 0.0272727 = 0.0288359 loss)
I0429 10:25:50.507272 8162 solver.cpp:245] Train net output #83: loss2/loss08 = 0.200018 (* 0.0272727 = 0.00545503 loss)
I0429 10:25:50.507287 8162 solver.cpp:245] Train net output #84: loss2/loss09 = 0.0496452 (* 0.0272727 = 0.00135396 loss)
I0429 10:25:50.507302 8162 solver.cpp:245] Train net output #85: loss2/loss10 = 0.0145455 (* 0.0272727 = 0.000396695 loss)
I0429 10:25:50.507316 8162 solver.cpp:245] Train net output #86: loss2/loss11 = 0.00190589 (* 0.0272727 = 5.19787e-05 loss)
I0429 10:25:50.507330 8162 solver.cpp:245] Train net output #87: loss2/loss12 = 0.00090087 (* 0.0272727 = 2.45692e-05 loss)
I0429 10:25:50.507345 8162 solver.cpp:245] Train net output #88: loss2/loss13 = 0.000707366 (* 0.0272727 = 1.92918e-05 loss)
I0429 10:25:50.507359 8162 solver.cpp:245] Train net output #89: loss2/loss14 = 0.000188808 (* 0.0272727 = 5.14931e-06 loss)
I0429 10:25:50.507375 8162 solver.cpp:245] Train net output #90: loss2/loss15 = 9.6704e-05 (* 0.0272727 = 2.63738e-06 loss)
I0429 10:25:50.507388 8162 solver.cpp:245] Train net output #91: loss2/loss16 = 5.25913e-05 (* 0.0272727 = 1.43431e-06 loss)
I0429 10:25:50.507403 8162 solver.cpp:245] Train net output #92: loss2/loss17 = 2.97079e-05 (* 0.0272727 = 8.10216e-07 loss)
I0429 10:25:50.507421 8162 solver.cpp:245] Train net output #93: loss2/loss18 = 1.78375e-05 (* 0.0272727 = 4.86478e-07 loss)
I0429 10:25:50.507436 8162 solver.cpp:245] Train net output #94: loss2/loss19 = 2.26366e-05 (* 0.0272727 = 6.17362e-07 loss)
I0429 10:25:50.507452 8162 solver.cpp:245] Train net output #95: loss2/loss20 = 1.71672e-05 (* 0.0272727 = 4.68197e-07 loss)
I0429 10:25:50.507478 8162 solver.cpp:245] Train net output #96: loss2/loss21 = 1.94773e-05 (* 0.0272727 = 5.31198e-07 loss)
I0429 10:25:50.507496 8162 solver.cpp:245] Train net output #97: loss2/loss22 = 1.97158e-05 (* 0.0272727 = 5.37703e-07 loss)
I0429 10:25:50.507509 8162 solver.cpp:245] Train net output #98: loss3/accuracy = 0.702128
I0429 10:25:50.507522 8162 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0429 10:25:50.507534 8162 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.625
I0429 10:25:50.507546 8162 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.625
I0429 10:25:50.507558 8162 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.25
I0429 10:25:50.507573 8162 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.625
I0429 10:25:50.507586 8162 solver.cpp:245] Train net output #104: loss3/accuracy06 = 1
I0429 10:25:50.507597 8162 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875
I0429 10:25:50.507609 8162 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1
I0429 10:25:50.507622 8162 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1
I0429 10:25:50.507633 8162 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0429 10:25:50.507645 8162 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0429 10:25:50.507658 8162 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0429 10:25:50.507668 8162 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0429 10:25:50.507680 8162 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0429 10:25:50.507693 8162 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0429 10:25:50.507704 8162 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0429 10:25:50.507727 8162 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0429 10:25:50.507741 8162 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0429 10:25:50.507753 8162 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0429 10:25:50.507766 8162 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0429 10:25:50.507777 8162 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0429 10:25:50.507789 8162 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0429 10:25:50.507800 8162 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.909091
I0429 10:25:50.507813 8162 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.829787
I0429 10:25:50.507827 8162 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.0631 (* 1 = 1.0631 loss)
I0429 10:25:50.507843 8162 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.30769 (* 1 = 0.30769 loss)
I0429 10:25:50.507858 8162 solver.cpp:245] Train net output #125: loss3/loss01 = 0.259004 (* 0.0909091 = 0.0235458 loss)
I0429 10:25:50.507871 8162 solver.cpp:245] Train net output #126: loss3/loss02 = 1.12735 (* 0.0909091 = 0.102486 loss)
I0429 10:25:50.507885 8162 solver.cpp:245] Train net output #127: loss3/loss03 = 1.45692 (* 0.0909091 = 0.132447 loss)
I0429 10:25:50.507900 8162 solver.cpp:245] Train net output #128: loss3/loss04 = 1.69448 (* 0.0909091 = 0.154044 loss)
I0429 10:25:50.507913 8162 solver.cpp:245] Train net output #129: loss3/loss05 = 1.56942 (* 0.0909091 = 0.142674 loss)
I0429 10:25:50.507928 8162 solver.cpp:245] Train net output #130: loss3/loss06 = 0.683552 (* 0.0909091 = 0.0621411 loss)
I0429 10:25:50.507942 8162 solver.cpp:245] Train net output #131: loss3/loss07 = 0.685718 (* 0.0909091 = 0.062338 loss)
I0429 10:25:50.507957 8162 solver.cpp:245] Train net output #132: loss3/loss08 = 0.0631501 (* 0.0909091 = 0.00574092 loss)
I0429 10:25:50.507972 8162 solver.cpp:245] Train net output #133: loss3/loss09 = 0.00940327 (* 0.0909091 = 0.000854842 loss)
I0429 10:25:50.507987 8162 solver.cpp:245] Train net output #134: loss3/loss10 = 0.00166977 (* 0.0909091 = 0.000151798 loss)
I0429 10:25:50.508000 8162 solver.cpp:245] Train net output #135: loss3/loss11 = 0.000894057 (* 0.0909091 = 8.12779e-05 loss)
I0429 10:25:50.508015 8162 solver.cpp:245] Train net output #136: loss3/loss12 = 0.000356902 (* 0.0909091 = 3.24457e-05 loss)
I0429 10:25:50.508029 8162 solver.cpp:245] Train net output #137: loss3/loss13 = 0.000289991 (* 0.0909091 = 2.63628e-05 loss)
I0429 10:25:50.508044 8162 solver.cpp:245] Train net output #138: loss3/loss14 = 0.000177989 (* 0.0909091 = 1.61809e-05 loss)
I0429 10:25:50.508059 8162 solver.cpp:245] Train net output #139: loss3/loss15 = 0.000121099 (* 0.0909091 = 1.1009e-05 loss)
I0429 10:25:50.508072 8162 solver.cpp:245] Train net output #140: loss3/loss16 = 8.21639e-05 (* 0.0909091 = 7.46945e-06 loss)
I0429 10:25:50.508086 8162 solver.cpp:245] Train net output #141: loss3/loss17 = 5.01176e-05 (* 0.0909091 = 4.55615e-06 loss)
I0429 10:25:50.508101 8162 solver.cpp:245] Train net output #142: loss3/loss18 = 3.05792e-05 (* 0.0909091 = 2.77993e-06 loss)
I0429 10:25:50.508116 8162 solver.cpp:245] Train net output #143: loss3/loss19 = 2.57062e-05 (* 0.0909091 = 2.33693e-06 loss)
I0429 10:25:50.508129 8162 solver.cpp:245] Train net output #144: loss3/loss20 = 2.18314e-05 (* 0.0909091 = 1.98467e-06 loss)
I0429 10:25:50.508144 8162 solver.cpp:245] Train net output #145: loss3/loss21 = 2.22487e-05 (* 0.0909091 = 2.02261e-06 loss)
I0429 10:25:50.508159 8162 solver.cpp:245] Train net output #146: loss3/loss22 = 1.57809e-05 (* 0.0909091 = 1.43463e-06 loss)
I0429 10:25:50.508172 8162 solver.cpp:245] Train net output #147: total_accuracy = 0.125
I0429 10:25:50.508183 8162 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0
I0429 10:25:50.508204 8162 solver.cpp:245] Train net output #149: total_confidence = 0.101664
I0429 10:25:50.508219 8162 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.0659429
I0429 10:25:50.508231 8162 sgd_solver.cpp:106] Iteration 11000, lr = 0.005
I0429 10:28:07.261219 8162 solver.cpp:229] Iteration 11500, loss = 5.387
I0429 10:28:07.261384 8162 solver.cpp:245] Train net output #0: loss1/accuracy = 0.378378
I0429 10:28:07.261404 8162 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.375
I0429 10:28:07.261418 8162 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5
I0429 10:28:07.261431 8162 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.125
I0429 10:28:07.261443 8162 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.5
I0429 10:28:07.261456 8162 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.75
I0429 10:28:07.261468 8162 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.875
I0429 10:28:07.261482 8162 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.75
I0429 10:28:07.261493 8162 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.75
I0429 10:28:07.261505 8162 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875
I0429 10:28:07.261518 8162 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875
I0429 10:28:07.261530 8162 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.875
I0429 10:28:07.261543 8162 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.875
I0429 10:28:07.261555 8162 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0429 10:28:07.261567 8162 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0429 10:28:07.261580 8162 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0429 10:28:07.261592 8162 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0429 10:28:07.261605 8162 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0429 10:28:07.261616 8162 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0429 10:28:07.261628 8162 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0429 10:28:07.261641 8162 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0429 10:28:07.261652 8162 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0429 10:28:07.261665 8162 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0429 10:28:07.261677 8162 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.8125
I0429 10:28:07.261689 8162 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.702703
I0429 10:28:07.261706 8162 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.70342 (* 0.3 = 0.511027 loss)
I0429 10:28:07.261721 8162 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.635559 (* 0.3 = 0.190668 loss)
I0429 10:28:07.261736 8162 solver.cpp:245] Train net output #27: loss1/loss01 = 1.50857 (* 0.0272727 = 0.0411428 loss)
I0429 10:28:07.261751 8162 solver.cpp:245] Train net output #28: loss1/loss02 = 1.91406 (* 0.0272727 = 0.0522017 loss)
I0429 10:28:07.261765 8162 solver.cpp:245] Train net output #29: loss1/loss03 = 1.87226 (* 0.0272727 = 0.0510618 loss)
I0429 10:28:07.261780 8162 solver.cpp:245] Train net output #30: loss1/loss04 = 1.88144 (* 0.0272727 = 0.051312 loss)
I0429 10:28:07.261795 8162 solver.cpp:245] Train net output #31: loss1/loss05 = 0.823184 (* 0.0272727 = 0.0224505 loss)
I0429 10:28:07.261809 8162 solver.cpp:245] Train net output #32: loss1/loss06 = 0.478532 (* 0.0272727 = 0.0130509 loss)
I0429 10:28:07.261823 8162 solver.cpp:245] Train net output #33: loss1/loss07 = 1.11898 (* 0.0272727 = 0.0305176 loss)
I0429 10:28:07.261838 8162 solver.cpp:245] Train net output #34: loss1/loss08 = 1.01267 (* 0.0272727 = 0.0276182 loss)
I0429 10:28:07.261852 8162 solver.cpp:245] Train net output #35: loss1/loss09 = 0.592927 (* 0.0272727 = 0.0161707 loss)
I0429 10:28:07.261868 8162 solver.cpp:245] Train net output #36: loss1/loss10 = 0.478857 (* 0.0272727 = 0.0130597 loss)
I0429 10:28:07.261883 8162 solver.cpp:245] Train net output #37: loss1/loss11 = 0.413554 (* 0.0272727 = 0.0112787 loss)
I0429 10:28:07.261898 8162 solver.cpp:245] Train net output #38: loss1/loss12 = 0.344023 (* 0.0272727 = 0.00938245 loss)
I0429 10:28:07.261932 8162 solver.cpp:245] Train net output #39: loss1/loss13 = 0.277025 (* 0.0272727 = 0.00755524 loss)
I0429 10:28:07.261948 8162 solver.cpp:245] Train net output #40: loss1/loss14 = 0.222392 (* 0.0272727 = 0.00606524 loss)
I0429 10:28:07.261962 8162 solver.cpp:245] Train net output #41: loss1/loss15 = 0.127392 (* 0.0272727 = 0.00347433 loss)
I0429 10:28:07.261977 8162 solver.cpp:245] Train net output #42: loss1/loss16 = 0.0657016 (* 0.0272727 = 0.00179186 loss)
I0429 10:28:07.261992 8162 solver.cpp:245] Train net output #43: loss1/loss17 = 0.0233764 (* 0.0272727 = 0.000637538 loss)
I0429 10:28:07.262006 8162 solver.cpp:245] Train net output #44: loss1/loss18 = 0.00524795 (* 0.0272727 = 0.000143126 loss)
I0429 10:28:07.262022 8162 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00124161 (* 0.0272727 = 3.3862e-05 loss)
I0429 10:28:07.262037 8162 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000281898 (* 0.0272727 = 7.68814e-06 loss)
I0429 10:28:07.262051 8162 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000146523 (* 0.0272727 = 3.99608e-06 loss)
I0429 10:28:07.262065 8162 solver.cpp:245] Train net output #48: loss1/loss22 = 7.74654e-05 (* 0.0272727 = 2.11269e-06 loss)
I0429 10:28:07.262079 8162 solver.cpp:245] Train net output #49: loss2/accuracy = 0.513514
I0429 10:28:07.262091 8162 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.5
I0429 10:28:07.262104 8162 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.625
I0429 10:28:07.262116 8162 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.375
I0429 10:28:07.262128 8162 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.5
I0429 10:28:07.262141 8162 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.75
I0429 10:28:07.262154 8162 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.75
I0429 10:28:07.262166 8162 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.75
I0429 10:28:07.262179 8162 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.75
I0429 10:28:07.262192 8162 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875
I0429 10:28:07.262204 8162 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875
I0429 10:28:07.262217 8162 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.875
I0429 10:28:07.262229 8162 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.875
I0429 10:28:07.262241 8162 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0429 10:28:07.262254 8162 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0429 10:28:07.262266 8162 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0429 10:28:07.262277 8162 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0429 10:28:07.262290 8162 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0429 10:28:07.262301 8162 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0429 10:28:07.262316 8162 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0429 10:28:07.262328 8162 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0429 10:28:07.262341 8162 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0429 10:28:07.262353 8162 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0429 10:28:07.262364 8162 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.846591
I0429 10:28:07.262377 8162 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.72973
I0429 10:28:07.262394 8162 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.62588 (* 0.3 = 0.487763 loss)
I0429 10:28:07.262409 8162 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.579876 (* 0.3 = 0.173963 loss)
I0429 10:28:07.262424 8162 solver.cpp:245] Train net output #76: loss2/loss01 = 1.32924 (* 0.0272727 = 0.036252 loss)
I0429 10:28:07.262439 8162 solver.cpp:245] Train net output #77: loss2/loss02 = 1.38427 (* 0.0272727 = 0.0377529 loss)
I0429 10:28:07.262465 8162 solver.cpp:245] Train net output #78: loss2/loss03 = 1.69697 (* 0.0272727 = 0.0462809 loss)
I0429 10:28:07.262480 8162 solver.cpp:245] Train net output #79: loss2/loss04 = 1.69045 (* 0.0272727 = 0.0461033 loss)
I0429 10:28:07.262495 8162 solver.cpp:245] Train net output #80: loss2/loss05 = 0.878948 (* 0.0272727 = 0.0239713 loss)
I0429 10:28:07.262508 8162 solver.cpp:245] Train net output #81: loss2/loss06 = 0.709383 (* 0.0272727 = 0.0193468 loss)
I0429 10:28:07.262522 8162 solver.cpp:245] Train net output #82: loss2/loss07 = 0.837716 (* 0.0272727 = 0.0228468 loss)
I0429 10:28:07.262537 8162 solver.cpp:245] Train net output #83: loss2/loss08 = 0.694068 (* 0.0272727 = 0.0189291 loss)
I0429 10:28:07.262552 8162 solver.cpp:245] Train net output #84: loss2/loss09 = 0.465045 (* 0.0272727 = 0.012683 loss)
I0429 10:28:07.262567 8162 solver.cpp:245] Train net output #85: loss2/loss10 = 0.495833 (* 0.0272727 = 0.0135227 loss)
I0429 10:28:07.262580 8162 solver.cpp:245] Train net output #86: loss2/loss11 = 0.39561 (* 0.0272727 = 0.0107894 loss)
I0429 10:28:07.262595 8162 solver.cpp:245] Train net output #87: loss2/loss12 = 0.323141 (* 0.0272727 = 0.00881294 loss)
I0429 10:28:07.262609 8162 solver.cpp:245] Train net output #88: loss2/loss13 = 0.231831 (* 0.0272727 = 0.00632265 loss)
I0429 10:28:07.262624 8162 solver.cpp:245] Train net output #89: loss2/loss14 = 0.144573 (* 0.0272727 = 0.00394291 loss)
I0429 10:28:07.262639 8162 solver.cpp:245] Train net output #90: loss2/loss15 = 0.0766995 (* 0.0272727 = 0.00209181 loss)
I0429 10:28:07.262652 8162 solver.cpp:245] Train net output #91: loss2/loss16 = 0.0338534 (* 0.0272727 = 0.000923274 loss)
I0429 10:28:07.262666 8162 solver.cpp:245] Train net output #92: loss2/loss17 = 0.0120663 (* 0.0272727 = 0.000329081 loss)
I0429 10:28:07.262681 8162 solver.cpp:245] Train net output #93: loss2/loss18 = 0.00588304 (* 0.0272727 = 0.000160447 loss)
I0429 10:28:07.262696 8162 solver.cpp:245] Train net output #94: loss2/loss19 = 0.00166112 (* 0.0272727 = 4.53034e-05 loss)
I0429 10:28:07.262711 8162 solver.cpp:245] Train net output #95: loss2/loss20 = 0.00143402 (* 0.0272727 = 3.91097e-05 loss)
I0429 10:28:07.262724 8162 solver.cpp:245] Train net output #96: loss2/loss21 = 0.00060708 (* 0.0272727 = 1.65567e-05 loss)
I0429 10:28:07.262739 8162 solver.cpp:245] Train net output #97: loss2/loss22 = 0.000342021 (* 0.0272727 = 9.32785e-06 loss)
I0429 10:28:07.262753 8162 solver.cpp:245] Train net output #98: loss3/accuracy = 0.621622
I0429 10:28:07.262764 8162 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.5
I0429 10:28:07.262778 8162 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.5
I0429 10:28:07.262789 8162 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.375
I0429 10:28:07.262801 8162 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.625
I0429 10:28:07.262814 8162 solver.cpp:245] Train net output #103: loss3/accuracy05 = 1
I0429 10:28:07.262825 8162 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.75
I0429 10:28:07.262837 8162 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75
I0429 10:28:07.262850 8162 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.75
I0429 10:28:07.262861 8162 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875
I0429 10:28:07.262873 8162 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875
I0429 10:28:07.262886 8162 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.875
I0429 10:28:07.262898 8162 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.875
I0429 10:28:07.262910 8162 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.875
I0429 10:28:07.262923 8162 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0429 10:28:07.262934 8162 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0429 10:28:07.262946 8162 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0429 10:28:07.262967 8162 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0429 10:28:07.262980 8162 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0429 10:28:07.262994 8162 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0429 10:28:07.263005 8162 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0429 10:28:07.263017 8162 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0429 10:28:07.263030 8162 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0429 10:28:07.263041 8162 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.863636
I0429 10:28:07.263053 8162 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.702703
I0429 10:28:07.263067 8162 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.26777 (* 1 = 1.26777 loss)
I0429 10:28:07.263082 8162 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.53942 (* 1 = 0.53942 loss)
I0429 10:28:07.263097 8162 solver.cpp:245] Train net output #125: loss3/loss01 = 1.74732 (* 0.0909091 = 0.158847 loss)
I0429 10:28:07.263111 8162 solver.cpp:245] Train net output #126: loss3/loss02 = 1.46845 (* 0.0909091 = 0.133495 loss)
I0429 10:28:07.263125 8162 solver.cpp:245] Train net output #127: loss3/loss03 = 1.25602 (* 0.0909091 = 0.114183 loss)
I0429 10:28:07.263139 8162 solver.cpp:245] Train net output #128: loss3/loss04 = 1.69247 (* 0.0909091 = 0.153861 loss)
I0429 10:28:07.263154 8162 solver.cpp:245] Train net output #129: loss3/loss05 = 0.454882 (* 0.0909091 = 0.0413529 loss)
I0429 10:28:07.263169 8162 solver.cpp:245] Train net output #130: loss3/loss06 = 0.855922 (* 0.0909091 = 0.0778111 loss)
I0429 10:28:07.263182 8162 solver.cpp:245] Train net output #131: loss3/loss07 = 0.888851 (* 0.0909091 = 0.0808046 loss)
I0429 10:28:07.263196 8162 solver.cpp:245] Train net output #132: loss3/loss08 = 0.835343 (* 0.0909091 = 0.0759403 loss)
I0429 10:28:07.263211 8162 solver.cpp:245] Train net output #133: loss3/loss09 = 0.660382 (* 0.0909091 = 0.0600348 loss)
I0429 10:28:07.263226 8162 solver.cpp:245] Train net output #134: loss3/loss10 = 0.650577 (* 0.0909091 = 0.0591434 loss)
I0429 10:28:07.263239 8162 solver.cpp:245] Train net output #135: loss3/loss11 = 0.583123 (* 0.0909091 = 0.0530111 loss)
I0429 10:28:07.263253 8162 solver.cpp:245] Train net output #136: loss3/loss12 = 0.48927 (* 0.0909091 = 0.0444791 loss)
I0429 10:28:07.263267 8162 solver.cpp:245] Train net output #137: loss3/loss13 = 0.376006 (* 0.0909091 = 0.0341824 loss)
I0429 10:28:07.263283 8162 solver.cpp:245] Train net output #138: loss3/loss14 = 0.225984 (* 0.0909091 = 0.020544 loss)
I0429 10:28:07.263296 8162 solver.cpp:245] Train net output #139: loss3/loss15 = 0.119309 (* 0.0909091 = 0.0108462 loss)
I0429 10:28:07.263311 8162 solver.cpp:245] Train net output #140: loss3/loss16 = 0.0749086 (* 0.0909091 = 0.00680988 loss)
I0429 10:28:07.263325 8162 solver.cpp:245] Train net output #141: loss3/loss17 = 0.0313845 (* 0.0909091 = 0.00285314 loss)
I0429 10:28:07.263339 8162 solver.cpp:245] Train net output #142: loss3/loss18 = 0.0110013 (* 0.0909091 = 0.00100011 loss)
I0429 10:28:07.263355 8162 solver.cpp:245] Train net output #143: loss3/loss19 = 0.00430035 (* 0.0909091 = 0.000390941 loss)
I0429 10:28:07.263371 8162 solver.cpp:245] Train net output #144: loss3/loss20 = 0.00169398 (* 0.0909091 = 0.000153998 loss)
I0429 10:28:07.263386 8162 solver.cpp:245] Train net output #145: loss3/loss21 = 0.0010491 (* 0.0909091 = 9.53731e-05 loss)
I0429 10:28:07.263401 8162 solver.cpp:245] Train net output #146: loss3/loss22 = 0.0010865 (* 0.0909091 = 9.8773e-05 loss)
I0429 10:28:07.263414 8162 solver.cpp:245] Train net output #147: total_accuracy = 0.125
I0429 10:28:07.263427 8162 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.125
I0429 10:28:07.263438 8162 solver.cpp:245] Train net output #149: total_confidence = 0.260938
I0429 10:28:07.263478 8162 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.279584
I0429 10:28:07.263494 8162 sgd_solver.cpp:106] Iteration 11500, lr = 0.005
I0429 10:30:23.922402 8162 solver.cpp:229] Iteration 12000, loss = 5.3674
I0429 10:30:23.922571 8162 solver.cpp:245] Train net output #0: loss1/accuracy = 0.27907
I0429 10:30:23.922592 8162 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.5
I0429 10:30:23.922606 8162 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.375
I0429 10:30:23.922619 8162 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375
I0429 10:30:23.922631 8162 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.25
I0429 10:30:23.922644 8162 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.625
I0429 10:30:23.922657 8162 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.5
I0429 10:30:23.922669 8162 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.5
I0429 10:30:23.922682 8162 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875
I0429 10:30:23.922694 8162 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1
I0429 10:30:23.922706 8162 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0429 10:30:23.922719 8162 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0429 10:30:23.922730 8162 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0429 10:30:23.922744 8162 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0429 10:30:23.922755 8162 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0429 10:30:23.922767 8162 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0429 10:30:23.922780 8162 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0429 10:30:23.922791 8162 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0429 10:30:23.922804 8162 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0429 10:30:23.922816 8162 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0429 10:30:23.922828 8162 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0429 10:30:23.922840 8162 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0429 10:30:23.922853 8162 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0429 10:30:23.922865 8162 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.806818
I0429 10:30:23.922878 8162 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.604651
I0429 10:30:23.922894 8162 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 2.25035 (* 0.3 = 0.675105 loss)
I0429 10:30:23.922910 8162 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.601851 (* 0.3 = 0.180555 loss)
I0429 10:30:23.922925 8162 solver.cpp:245] Train net output #27: loss1/loss01 = 1.7744 (* 0.0272727 = 0.0483928 loss)
I0429 10:30:23.922940 8162 solver.cpp:245] Train net output #28: loss1/loss02 = 2.36138 (* 0.0272727 = 0.0644012 loss)
I0429 10:30:23.922955 8162 solver.cpp:245] Train net output #29: loss1/loss03 = 2.21439 (* 0.0272727 = 0.0603923 loss)
I0429 10:30:23.922969 8162 solver.cpp:245] Train net output #30: loss1/loss04 = 1.85563 (* 0.0272727 = 0.0506082 loss)
I0429 10:30:23.922991 8162 solver.cpp:245] Train net output #31: loss1/loss05 = 1.29944 (* 0.0272727 = 0.0354393 loss)
I0429 10:30:23.923014 8162 solver.cpp:245] Train net output #32: loss1/loss06 = 1.80322 (* 0.0272727 = 0.0491786 loss)
I0429 10:30:23.923029 8162 solver.cpp:245] Train net output #33: loss1/loss07 = 1.89767 (* 0.0272727 = 0.0517547 loss)
I0429 10:30:23.923044 8162 solver.cpp:245] Train net output #34: loss1/loss08 = 0.152276 (* 0.0272727 = 0.00415298 loss)
I0429 10:30:23.923059 8162 solver.cpp:245] Train net output #35: loss1/loss09 = 0.000893112 (* 0.0272727 = 2.43576e-05 loss)
I0429 10:30:23.923074 8162 solver.cpp:245] Train net output #36: loss1/loss10 = 0.000618415 (* 0.0272727 = 1.68659e-05 loss)
I0429 10:30:23.923089 8162 solver.cpp:245] Train net output #37: loss1/loss11 = 0.000142738 (* 0.0272727 = 3.89285e-06 loss)
I0429 10:30:23.923104 8162 solver.cpp:245] Train net output #38: loss1/loss12 = 0.000160551 (* 0.0272727 = 4.37867e-06 loss)
I0429 10:30:23.923140 8162 solver.cpp:245] Train net output #39: loss1/loss13 = 6.98508e-05 (* 0.0272727 = 1.90502e-06 loss)
I0429 10:30:23.923156 8162 solver.cpp:245] Train net output #40: loss1/loss14 = 2.01917e-05 (* 0.0272727 = 5.50683e-07 loss)
I0429 10:30:23.923171 8162 solver.cpp:245] Train net output #41: loss1/loss15 = 4.29568e-05 (* 0.0272727 = 1.17155e-06 loss)
I0429 10:30:23.923185 8162 solver.cpp:245] Train net output #42: loss1/loss16 = 6.37658e-05 (* 0.0272727 = 1.73907e-06 loss)
I0429 10:30:23.923199 8162 solver.cpp:245] Train net output #43: loss1/loss17 = 2.18013e-05 (* 0.0272727 = 5.94582e-07 loss)
I0429 10:30:23.923214 8162 solver.cpp:245] Train net output #44: loss1/loss18 = 2.43351e-05 (* 0.0272727 = 6.63684e-07 loss)
I0429 10:30:23.923228 8162 solver.cpp:245] Train net output #45: loss1/loss19 = 3.93655e-05 (* 0.0272727 = 1.0736e-06 loss)
I0429 10:30:23.923243 8162 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000385783 (* 0.0272727 = 1.05213e-05 loss)
I0429 10:30:23.923257 8162 solver.cpp:245] Train net output #47: loss1/loss21 = 9.05918e-05 (* 0.0272727 = 2.47069e-06 loss)
I0429 10:30:23.923272 8162 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000160251 (* 0.0272727 = 4.37049e-06 loss)
I0429 10:30:23.923285 8162 solver.cpp:245] Train net output #49: loss2/accuracy = 0.418605
I0429 10:30:23.923298 8162 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.75
I0429 10:30:23.923310 8162 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.375
I0429 10:30:23.923328 8162 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.5
I0429 10:30:23.923341 8162 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.375
I0429 10:30:23.923353 8162 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.75
I0429 10:30:23.923367 8162 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.5
I0429 10:30:23.923378 8162 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.625
I0429 10:30:23.923390 8162 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875
I0429 10:30:23.923413 8162 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1
I0429 10:30:23.923427 8162 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0429 10:30:23.923445 8162 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0429 10:30:23.923461 8162 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0429 10:30:23.923490 8162 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0429 10:30:23.923503 8162 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0429 10:30:23.923516 8162 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0429 10:30:23.923527 8162 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0429 10:30:23.923538 8162 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0429 10:30:23.923550 8162 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0429 10:30:23.923563 8162 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0429 10:30:23.923573 8162 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0429 10:30:23.923589 8162 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0429 10:30:23.923602 8162 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0429 10:30:23.923614 8162 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.829545
I0429 10:30:23.923626 8162 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.674419
I0429 10:30:23.923641 8162 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.96232 (* 0.3 = 0.588695 loss)
I0429 10:30:23.923655 8162 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.598402 (* 0.3 = 0.179521 loss)
I0429 10:30:23.923671 8162 solver.cpp:245] Train net output #76: loss2/loss01 = 0.965925 (* 0.0272727 = 0.0263434 loss)
I0429 10:30:23.923684 8162 solver.cpp:245] Train net output #77: loss2/loss02 = 2.2109 (* 0.0272727 = 0.0602972 loss)
I0429 10:30:23.923712 8162 solver.cpp:245] Train net output #78: loss2/loss03 = 2.1309 (* 0.0272727 = 0.0581155 loss)
I0429 10:30:23.923727 8162 solver.cpp:245] Train net output #79: loss2/loss04 = 2.52696 (* 0.0272727 = 0.0689172 loss)
I0429 10:30:23.923741 8162 solver.cpp:245] Train net output #80: loss2/loss05 = 1.12716 (* 0.0272727 = 0.0307408 loss)
I0429 10:30:23.923755 8162 solver.cpp:245] Train net output #81: loss2/loss06 = 1.80659 (* 0.0272727 = 0.0492707 loss)
I0429 10:30:23.923769 8162 solver.cpp:245] Train net output #82: loss2/loss07 = 1.7627 (* 0.0272727 = 0.0480737 loss)
I0429 10:30:23.923784 8162 solver.cpp:245] Train net output #83: loss2/loss08 = 0.37375 (* 0.0272727 = 0.0101932 loss)
I0429 10:30:23.923799 8162 solver.cpp:245] Train net output #84: loss2/loss09 = 0.00250003 (* 0.0272727 = 6.81826e-05 loss)
I0429 10:30:23.923812 8162 solver.cpp:245] Train net output #85: loss2/loss10 = 0.00123043 (* 0.0272727 = 3.35571e-05 loss)
I0429 10:30:23.923827 8162 solver.cpp:245] Train net output #86: loss2/loss11 = 0.000600456 (* 0.0272727 = 1.63761e-05 loss)
I0429 10:30:23.923841 8162 solver.cpp:245] Train net output #87: loss2/loss12 = 0.000230502 (* 0.0272727 = 6.28642e-06 loss)
I0429 10:30:23.923856 8162 solver.cpp:245] Train net output #88: loss2/loss13 = 0.000241574 (* 0.0272727 = 6.58837e-06 loss)
I0429 10:30:23.923869 8162 solver.cpp:245] Train net output #89: loss2/loss14 = 0.00015194 (* 0.0272727 = 4.14383e-06 loss)
I0429 10:30:23.923884 8162 solver.cpp:245] Train net output #90: loss2/loss15 = 0.000137993 (* 0.0272727 = 3.76345e-06 loss)
I0429 10:30:23.923899 8162 solver.cpp:245] Train net output #91: loss2/loss16 = 0.000139967 (* 0.0272727 = 3.81728e-06 loss)
I0429 10:30:23.923913 8162 solver.cpp:245] Train net output #92: loss2/loss17 = 0.000117822 (* 0.0272727 = 3.21332e-06 loss)
I0429 10:30:23.923928 8162 solver.cpp:245] Train net output #93: loss2/loss18 = 0.000118516 (* 0.0272727 = 3.23225e-06 loss)
I0429 10:30:23.923943 8162 solver.cpp:245] Train net output #94: loss2/loss19 = 8.45204e-05 (* 0.0272727 = 2.3051e-06 loss)
I0429 10:30:23.923956 8162 solver.cpp:245] Train net output #95: loss2/loss20 = 0.000103772 (* 0.0272727 = 2.83014e-06 loss)
I0429 10:30:23.923970 8162 solver.cpp:245] Train net output #96: loss2/loss21 = 2.65107e-05 (* 0.0272727 = 7.2302e-07 loss)
I0429 10:30:23.923985 8162 solver.cpp:245] Train net output #97: loss2/loss22 = 9.18801e-05 (* 0.0272727 = 2.50582e-06 loss)
I0429 10:30:23.923998 8162 solver.cpp:245] Train net output #98: loss3/accuracy = 0.674419
I0429 10:30:23.924010 8162 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.75
I0429 10:30:23.924022 8162 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.75
I0429 10:30:23.924034 8162 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.625
I0429 10:30:23.924046 8162 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.5
I0429 10:30:23.924058 8162 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.625
I0429 10:30:23.924072 8162 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.625
I0429 10:30:23.924082 8162 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.625
I0429 10:30:23.924094 8162 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875
I0429 10:30:23.924106 8162 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1
I0429 10:30:23.924118 8162 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0429 10:30:23.924130 8162 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0429 10:30:23.924142 8162 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0429 10:30:23.924154 8162 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0429 10:30:23.924165 8162 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0429 10:30:23.924177 8162 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0429 10:30:23.924199 8162 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0429 10:30:23.924212 8162 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0429 10:30:23.924224 8162 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0429 10:30:23.924237 8162 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0429 10:30:23.924248 8162 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0429 10:30:23.924260 8162 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0429 10:30:23.924273 8162 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0429 10:30:23.924283 8162 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.903409
I0429 10:30:23.924295 8162 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.837209
I0429 10:30:23.924310 8162 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.3497 (* 1 = 1.3497 loss)
I0429 10:30:23.924324 8162 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.429482 (* 1 = 0.429482 loss)
I0429 10:30:23.924340 8162 solver.cpp:245] Train net output #125: loss3/loss01 = 1.12761 (* 0.0909091 = 0.10251 loss)
I0429 10:30:23.924353 8162 solver.cpp:245] Train net output #126: loss3/loss02 = 1.14113 (* 0.0909091 = 0.103739 loss)
I0429 10:30:23.924370 8162 solver.cpp:245] Train net output #127: loss3/loss03 = 1.48156 (* 0.0909091 = 0.134687 loss)
I0429 10:30:23.924384 8162 solver.cpp:245] Train net output #128: loss3/loss04 = 2.20883 (* 0.0909091 = 0.200802 loss)
I0429 10:30:23.924398 8162 solver.cpp:245] Train net output #129: loss3/loss05 = 1.37392 (* 0.0909091 = 0.124902 loss)
I0429 10:30:23.924412 8162 solver.cpp:245] Train net output #130: loss3/loss06 = 0.978151 (* 0.0909091 = 0.0889228 loss)
I0429 10:30:23.924427 8162 solver.cpp:245] Train net output #131: loss3/loss07 = 0.862515 (* 0.0909091 = 0.0784104 loss)
I0429 10:30:23.924442 8162 solver.cpp:245] Train net output #132: loss3/loss08 = 0.448811 (* 0.0909091 = 0.040801 loss)
I0429 10:30:23.924455 8162 solver.cpp:245] Train net output #133: loss3/loss09 = 0.00039175 (* 0.0909091 = 3.56136e-05 loss)
I0429 10:30:23.924470 8162 solver.cpp:245] Train net output #134: loss3/loss10 = 0.000226238 (* 0.0909091 = 2.05671e-05 loss)
I0429 10:30:23.924484 8162 solver.cpp:245] Train net output #135: loss3/loss11 = 0.000100137 (* 0.0909091 = 9.10335e-06 loss)
I0429 10:30:23.924499 8162 solver.cpp:245] Train net output #136: loss3/loss12 = 5.17046e-05 (* 0.0909091 = 4.70042e-06 loss)
I0429 10:30:23.924513 8162 solver.cpp:245] Train net output #137: loss3/loss13 = 4.44476e-05 (* 0.0909091 = 4.04069e-06 loss)
I0429 10:30:23.924528 8162 solver.cpp:245] Train net output #138: loss3/loss14 = 2.1891e-05 (* 0.0909091 = 1.99009e-06 loss)
I0429 10:30:23.924542 8162 solver.cpp:245] Train net output #139: loss3/loss15 = 1.63324e-05 (* 0.0909091 = 1.48477e-06 loss)
I0429 10:30:23.924556 8162 solver.cpp:245] Train net output #140: loss3/loss16 = 9.59661e-06 (* 0.0909091 = 8.72419e-07 loss)
I0429 10:30:23.924571 8162 solver.cpp:245] Train net output #141: loss3/loss17 = 5.00687e-06 (* 0.0909091 = 4.5517e-07 loss)
I0429 10:30:23.924585 8162 solver.cpp:245] Train net output #142: loss3/loss18 = 3.50181e-06 (* 0.0909091 = 3.18347e-07 loss)
I0429 10:30:23.924599 8162 solver.cpp:245] Train net output #143: loss3/loss19 = 2.02657e-06 (* 0.0909091 = 1.84234e-07 loss)
I0429 10:30:23.924614 8162 solver.cpp:245] Train net output #144: loss3/loss20 = 2.22029e-06 (* 0.0909091 = 2.01845e-07 loss)
I0429 10:30:23.924631 8162 solver.cpp:245] Train net output #145: loss3/loss21 = 2.02657e-06 (* 0.0909091 = 1.84234e-07 loss)
I0429 10:30:23.924648 8162 solver.cpp:245] Train net output #146: loss3/loss22 = 2.72694e-06 (* 0.0909091 = 2.47904e-07 loss)
I0429 10:30:23.924659 8162 solver.cpp:245] Train net output #147: total_accuracy = 0.375
I0429 10:30:23.924671 8162 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.5
I0429 10:30:23.924693 8162 solver.cpp:245] Train net output #149: total_confidence = 0.265826
I0429 10:30:23.924707 8162 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.372502
I0429 10:30:23.924721 8162 sgd_solver.cpp:106] Iteration 12000, lr = 0.005
I0429 10:32:40.708958 8162 solver.cpp:229] Iteration 12500, loss = 5.53632
I0429 10:32:40.709132 8162 solver.cpp:245] Train net output #0: loss1/accuracy = 0.423077
I0429 10:32:40.709153 8162 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75
I0429 10:32:40.709167 8162 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.375
I0429 10:32:40.709180 8162 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.25
I0429 10:32:40.709192 8162 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.625
I0429 10:32:40.709205 8162 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.5
I0429 10:32:40.709218 8162 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.375
I0429 10:32:40.709229 8162 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.625
I0429 10:32:40.709241 8162 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.75
I0429 10:32:40.709254 8162 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875
I0429 10:32:40.709266 8162 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875
I0429 10:32:40.709278 8162 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0429 10:32:40.709290 8162 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0429 10:32:40.709302 8162 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0429 10:32:40.709317 8162 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0429 10:32:40.709331 8162 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0429 10:32:40.709342 8162 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0429 10:32:40.709354 8162 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0429 10:32:40.709367 8162 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0429 10:32:40.709378 8162 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0429 10:32:40.709390 8162 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0429 10:32:40.709403 8162 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0429 10:32:40.709414 8162 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0429 10:32:40.709426 8162 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.818182
I0429 10:32:40.709439 8162 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.596154
I0429 10:32:40.709455 8162 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 2.33058 (* 0.3 = 0.699173 loss)
I0429 10:32:40.709470 8162 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.739896 (* 0.3 = 0.221969 loss)
I0429 10:32:40.709486 8162 solver.cpp:245] Train net output #27: loss1/loss01 = 0.759325 (* 0.0272727 = 0.0207089 loss)
I0429 10:32:40.709501 8162 solver.cpp:245] Train net output #28: loss1/loss02 = 2.26685 (* 0.0272727 = 0.0618231 loss)
I0429 10:32:40.709514 8162 solver.cpp:245] Train net output #29: loss1/loss03 = 2.49807 (* 0.0272727 = 0.0681291 loss)
I0429 10:32:40.709529 8162 solver.cpp:245] Train net output #30: loss1/loss04 = 1.66377 (* 0.0272727 = 0.0453755 loss)
I0429 10:32:40.709543 8162 solver.cpp:245] Train net output #31: loss1/loss05 = 1.99295 (* 0.0272727 = 0.0543533 loss)
I0429 10:32:40.709558 8162 solver.cpp:245] Train net output #32: loss1/loss06 = 1.59028 (* 0.0272727 = 0.0433714 loss)
I0429 10:32:40.709573 8162 solver.cpp:245] Train net output #33: loss1/loss07 = 1.81634 (* 0.0272727 = 0.0495365 loss)
I0429 10:32:40.709586 8162 solver.cpp:245] Train net output #34: loss1/loss08 = 1.30623 (* 0.0272727 = 0.0356244 loss)
I0429 10:32:40.709600 8162 solver.cpp:245] Train net output #35: loss1/loss09 = 0.545486 (* 0.0272727 = 0.0148769 loss)
I0429 10:32:40.709614 8162 solver.cpp:245] Train net output #36: loss1/loss10 = 0.830673 (* 0.0272727 = 0.0226547 loss)
I0429 10:32:40.709630 8162 solver.cpp:245] Train net output #37: loss1/loss11 = 0.0342336 (* 0.0272727 = 0.000933645 loss)
I0429 10:32:40.709645 8162 solver.cpp:245] Train net output #38: loss1/loss12 = 0.0229587 (* 0.0272727 = 0.000626146 loss)
I0429 10:32:40.709681 8162 solver.cpp:245] Train net output #39: loss1/loss13 = 0.0164174 (* 0.0272727 = 0.000447749 loss)
I0429 10:32:40.709695 8162 solver.cpp:245] Train net output #40: loss1/loss14 = 0.0117892 (* 0.0272727 = 0.000321523 loss)
I0429 10:32:40.709710 8162 solver.cpp:245] Train net output #41: loss1/loss15 = 0.00688985 (* 0.0272727 = 0.000187905 loss)
I0429 10:32:40.709724 8162 solver.cpp:245] Train net output #42: loss1/loss16 = 0.00552102 (* 0.0272727 = 0.000150573 loss)
I0429 10:32:40.709739 8162 solver.cpp:245] Train net output #43: loss1/loss17 = 0.00478808 (* 0.0272727 = 0.000130584 loss)
I0429 10:32:40.709753 8162 solver.cpp:245] Train net output #44: loss1/loss18 = 0.00818571 (* 0.0272727 = 0.000223247 loss)
I0429 10:32:40.709769 8162 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00734483 (* 0.0272727 = 0.000200314 loss)
I0429 10:32:40.709784 8162 solver.cpp:245] Train net output #46: loss1/loss20 = 0.00436894 (* 0.0272727 = 0.000119153 loss)
I0429 10:32:40.709797 8162 solver.cpp:245] Train net output #47: loss1/loss21 = 0.00323317 (* 0.0272727 = 8.81774e-05 loss)
I0429 10:32:40.709813 8162 solver.cpp:245] Train net output #48: loss1/loss22 = 0.00350018 (* 0.0272727 = 9.54594e-05 loss)
I0429 10:32:40.709826 8162 solver.cpp:245] Train net output #49: loss2/accuracy = 0.403846
I0429 10:32:40.709838 8162 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.75
I0429 10:32:40.709851 8162 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75
I0429 10:32:40.709863 8162 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.25
I0429 10:32:40.709875 8162 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.5
I0429 10:32:40.709888 8162 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5
I0429 10:32:40.709900 8162 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.5
I0429 10:32:40.709913 8162 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.625
I0429 10:32:40.709924 8162 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.75
I0429 10:32:40.709938 8162 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875
I0429 10:32:40.709949 8162 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875
I0429 10:32:40.709961 8162 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0429 10:32:40.709974 8162 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0429 10:32:40.709985 8162 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0429 10:32:40.709997 8162 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0429 10:32:40.710016 8162 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0429 10:32:40.710033 8162 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0429 10:32:40.710046 8162 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0429 10:32:40.710057 8162 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0429 10:32:40.710069 8162 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0429 10:32:40.710081 8162 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0429 10:32:40.710093 8162 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0429 10:32:40.710104 8162 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0429 10:32:40.710116 8162 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.8125
I0429 10:32:40.710129 8162 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.634615
I0429 10:32:40.710147 8162 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 2.2452 (* 0.3 = 0.673559 loss)
I0429 10:32:40.710162 8162 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.708595 (* 0.3 = 0.212579 loss)
I0429 10:32:40.710177 8162 solver.cpp:245] Train net output #76: loss2/loss01 = 0.985572 (* 0.0272727 = 0.0268792 loss)
I0429 10:32:40.710191 8162 solver.cpp:245] Train net output #77: loss2/loss02 = 1.41681 (* 0.0272727 = 0.0386404 loss)
I0429 10:32:40.710217 8162 solver.cpp:245] Train net output #78: loss2/loss03 = 2.8892 (* 0.0272727 = 0.0787963 loss)
I0429 10:32:40.710232 8162 solver.cpp:245] Train net output #79: loss2/loss04 = 1.84917 (* 0.0272727 = 0.0504319 loss)
I0429 10:32:40.710247 8162 solver.cpp:245] Train net output #80: loss2/loss05 = 1.95204 (* 0.0272727 = 0.0532375 loss)
I0429 10:32:40.710261 8162 solver.cpp:245] Train net output #81: loss2/loss06 = 1.69826 (* 0.0272727 = 0.0463163 loss)
I0429 10:32:40.710275 8162 solver.cpp:245] Train net output #82: loss2/loss07 = 1.52069 (* 0.0272727 = 0.0414733 loss)
I0429 10:32:40.710289 8162 solver.cpp:245] Train net output #83: loss2/loss08 = 1.26038 (* 0.0272727 = 0.0343741 loss)
I0429 10:32:40.710304 8162 solver.cpp:245] Train net output #84: loss2/loss09 = 0.877626 (* 0.0272727 = 0.0239353 loss)
I0429 10:32:40.710319 8162 solver.cpp:245] Train net output #85: loss2/loss10 = 0.989867 (* 0.0272727 = 0.0269964 loss)
I0429 10:32:40.710332 8162 solver.cpp:245] Train net output #86: loss2/loss11 = 0.0037201 (* 0.0272727 = 0.000101457 loss)
I0429 10:32:40.710347 8162 solver.cpp:245] Train net output #87: loss2/loss12 = 0.000863569 (* 0.0272727 = 2.35519e-05 loss)
I0429 10:32:40.710361 8162 solver.cpp:245] Train net output #88: loss2/loss13 = 0.000522303 (* 0.0272727 = 1.42446e-05 loss)
I0429 10:32:40.710379 8162 solver.cpp:245] Train net output #89: loss2/loss14 = 0.000316922 (* 0.0272727 = 8.64334e-06 loss)
I0429 10:32:40.710394 8162 solver.cpp:245] Train net output #90: loss2/loss15 = 0.000103302 (* 0.0272727 = 2.81733e-06 loss)
I0429 10:32:40.710409 8162 solver.cpp:245] Train net output #91: loss2/loss16 = 6.86369e-05 (* 0.0272727 = 1.87192e-06 loss)
I0429 10:32:40.710424 8162 solver.cpp:245] Train net output #92: loss2/loss17 = 0.000106274 (* 0.0272727 = 2.89839e-06 loss)
I0429 10:32:40.710438 8162 solver.cpp:245] Train net output #93: loss2/loss18 = 3.63863e-05 (* 0.0272727 = 9.92355e-07 loss)
I0429 10:32:40.710453 8162 solver.cpp:245] Train net output #94: loss2/loss19 = 3.57008e-05 (* 0.0272727 = 9.73658e-07 loss)
I0429 10:32:40.710469 8162 solver.cpp:245] Train net output #95: loss2/loss20 = 8.56363e-05 (* 0.0272727 = 2.33553e-06 loss)
I0429 10:32:40.710482 8162 solver.cpp:245] Train net output #96: loss2/loss21 = 6.03791e-05 (* 0.0272727 = 1.6467e-06 loss)
I0429 10:32:40.710497 8162 solver.cpp:245] Train net output #97: loss2/loss22 = 2.39707e-05 (* 0.0272727 = 6.53747e-07 loss)
I0429 10:32:40.710510 8162 solver.cpp:245] Train net output #98: loss3/accuracy = 0.634615
I0429 10:32:40.710523 8162 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.75
I0429 10:32:40.710536 8162 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875
I0429 10:32:40.710547 8162 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.5
I0429 10:32:40.710561 8162 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.75
I0429 10:32:40.710572 8162 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.625
I0429 10:32:40.710584 8162 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.625
I0429 10:32:40.710597 8162 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.375
I0429 10:32:40.710608 8162 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.75
I0429 10:32:40.710620 8162 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875
I0429 10:32:40.710633 8162 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875
I0429 10:32:40.710644 8162 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0429 10:32:40.710656 8162 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0429 10:32:40.710669 8162 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0429 10:32:40.710680 8162 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0429 10:32:40.710692 8162 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0429 10:32:40.710713 8162 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0429 10:32:40.710727 8162 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0429 10:32:40.710739 8162 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0429 10:32:40.710752 8162 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0429 10:32:40.710763 8162 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0429 10:32:40.710775 8162 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0429 10:32:40.710788 8162 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0429 10:32:40.710798 8162 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.886364
I0429 10:32:40.710811 8162 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.730769
I0429 10:32:40.710825 8162 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.79594 (* 1 = 1.79594 loss)
I0429 10:32:40.710839 8162 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.545298 (* 1 = 0.545298 loss)
I0429 10:32:40.710855 8162 solver.cpp:245] Train net output #125: loss3/loss01 = 0.610456 (* 0.0909091 = 0.055496 loss)
I0429 10:32:40.710868 8162 solver.cpp:245] Train net output #126: loss3/loss02 = 0.9134 (* 0.0909091 = 0.0830364 loss)
I0429 10:32:40.710883 8162 solver.cpp:245] Train net output #127: loss3/loss03 = 1.63505 (* 0.0909091 = 0.148641 loss)
I0429 10:32:40.710897 8162 solver.cpp:245] Train net output #128: loss3/loss04 = 1.15744 (* 0.0909091 = 0.105222 loss)
I0429 10:32:40.710911 8162 solver.cpp:245] Train net output #129: loss3/loss05 = 1.58413 (* 0.0909091 = 0.144012 loss)
I0429 10:32:40.710925 8162 solver.cpp:245] Train net output #130: loss3/loss06 = 1.37762 (* 0.0909091 = 0.125238 loss)
I0429 10:32:40.710939 8162 solver.cpp:245] Train net output #131: loss3/loss07 = 1.43697 (* 0.0909091 = 0.130634 loss)
I0429 10:32:40.710953 8162 solver.cpp:245] Train net output #132: loss3/loss08 = 1.48708 (* 0.0909091 = 0.135189 loss)
I0429 10:32:40.710968 8162 solver.cpp:245] Train net output #133: loss3/loss09 = 0.97491 (* 0.0909091 = 0.0886282 loss)
I0429 10:32:40.710983 8162 solver.cpp:245] Train net output #134: loss3/loss10 = 1.23341 (* 0.0909091 = 0.112128 loss)
I0429 10:32:40.710997 8162 solver.cpp:245] Train net output #135: loss3/loss11 = 0.00105532 (* 0.0909091 = 9.59383e-05 loss)
I0429 10:32:40.711011 8162 solver.cpp:245] Train net output #136: loss3/loss12 = 0.000466726 (* 0.0909091 = 4.24296e-05 loss)
I0429 10:32:40.711026 8162 solver.cpp:245] Train net output #137: loss3/loss13 = 0.000317659 (* 0.0909091 = 2.88781e-05 loss)
I0429 10:32:40.711040 8162 solver.cpp:245] Train net output #138: loss3/loss14 = 0.000188906 (* 0.0909091 = 1.71733e-05 loss)
I0429 10:32:40.711055 8162 solver.cpp:245] Train net output #139: loss3/loss15 = 0.000117617 (* 0.0909091 = 1.06924e-05 loss)
I0429 10:32:40.711069 8162 solver.cpp:245] Train net output #140: loss3/loss16 = 7.13602e-05 (* 0.0909091 = 6.48729e-06 loss)
I0429 10:32:40.711084 8162 solver.cpp:245] Train net output #141: loss3/loss17 = 3.19734e-05 (* 0.0909091 = 2.90667e-06 loss)
I0429 10:32:40.711098 8162 solver.cpp:245] Train net output #142: loss3/loss18 = 2.76814e-05 (* 0.0909091 = 2.51649e-06 loss)
I0429 10:32:40.711113 8162 solver.cpp:245] Train net output #143: loss3/loss19 = 1.81507e-05 (* 0.0909091 = 1.65006e-06 loss)
I0429 10:32:40.711127 8162 solver.cpp:245] Train net output #144: loss3/loss20 = 1.56023e-05 (* 0.0909091 = 1.41839e-06 loss)
I0429 10:32:40.711141 8162 solver.cpp:245] Train net output #145: loss3/loss21 = 1.44101e-05 (* 0.0909091 = 1.31001e-06 loss)
I0429 10:32:40.711156 8162 solver.cpp:245] Train net output #146: loss3/loss22 = 1.23684e-05 (* 0.0909091 = 1.1244e-06 loss)
I0429 10:32:40.711169 8162 solver.cpp:245] Train net output #147: total_accuracy = 0.125
I0429 10:32:40.711181 8162 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.25
I0429 10:32:40.711204 8162 solver.cpp:245] Train net output #149: total_confidence = 0.264451
I0429 10:32:40.711218 8162 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.210398
I0429 10:32:40.711232 8162 sgd_solver.cpp:106] Iteration 12500, lr = 0.005
I0429 10:34:57.453001 8162 solver.cpp:229] Iteration 13000, loss = 5.403
I0429 10:34:57.453217 8162 solver.cpp:245] Train net output #0: loss1/accuracy = 0.27451
I0429 10:34:57.453248 8162 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.5
I0429 10:34:57.453271 8162 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5
I0429 10:34:57.453294 8162 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.25
I0429 10:34:57.453318 8162 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375
I0429 10:34:57.453339 8162 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.375
I0429 10:34:57.453352 8162 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.375
I0429 10:34:57.453366 8162 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.75
I0429 10:34:57.453377 8162 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.75
I0429 10:34:57.453389 8162 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875
I0429 10:34:57.453402 8162 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875
I0429 10:34:57.453414 8162 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.875
I0429 10:34:57.453428 8162 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.875
I0429 10:34:57.453439 8162 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.875
I0429 10:34:57.453452 8162 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.875
I0429 10:34:57.453464 8162 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0429 10:34:57.453477 8162 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0429 10:34:57.453490 8162 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0429 10:34:57.453501 8162 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0429 10:34:57.453513 8162 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0429 10:34:57.453526 8162 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0429 10:34:57.453537 8162 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0429 10:34:57.453549 8162 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0429 10:34:57.453562 8162 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.772727
I0429 10:34:57.453574 8162 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.470588
I0429 10:34:57.453591 8162 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 2.2596 (* 0.3 = 0.677881 loss)
I0429 10:34:57.453608 8162 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.733663 (* 0.3 = 0.220099 loss)
I0429 10:34:57.453622 8162 solver.cpp:245] Train net output #27: loss1/loss01 = 1.20659 (* 0.0272727 = 0.032907 loss)
I0429 10:34:57.453636 8162 solver.cpp:245] Train net output #28: loss1/loss02 = 1.74011 (* 0.0272727 = 0.0474576 loss)
I0429 10:34:57.453651 8162 solver.cpp:245] Train net output #29: loss1/loss03 = 2.08408 (* 0.0272727 = 0.0568387 loss)
I0429 10:34:57.453665 8162 solver.cpp:245] Train net output #30: loss1/loss04 = 1.77345 (* 0.0272727 = 0.0483669 loss)
I0429 10:34:57.453680 8162 solver.cpp:245] Train net output #31: loss1/loss05 = 1.78715 (* 0.0272727 = 0.0487405 loss)
I0429 10:34:57.453694 8162 solver.cpp:245] Train net output #32: loss1/loss06 = 1.93288 (* 0.0272727 = 0.0527148 loss)
I0429 10:34:57.453708 8162 solver.cpp:245] Train net output #33: loss1/loss07 = 1.13974 (* 0.0272727 = 0.0310838 loss)
I0429 10:34:57.453722 8162 solver.cpp:245] Train net output #34: loss1/loss08 = 0.912538 (* 0.0272727 = 0.0248874 loss)
I0429 10:34:57.453737 8162 solver.cpp:245] Train net output #35: loss1/loss09 = 0.399092 (* 0.0272727 = 0.0108843 loss)
I0429 10:34:57.453752 8162 solver.cpp:245] Train net output #36: loss1/loss10 = 0.369433 (* 0.0272727 = 0.0100754 loss)
I0429 10:34:57.453766 8162 solver.cpp:245] Train net output #37: loss1/loss11 = 0.344402 (* 0.0272727 = 0.00939279 loss)
I0429 10:34:57.453781 8162 solver.cpp:245] Train net output #38: loss1/loss12 = 0.474032 (* 0.0272727 = 0.0129282 loss)
I0429 10:34:57.453810 8162 solver.cpp:245] Train net output #39: loss1/loss13 = 0.428348 (* 0.0272727 = 0.0116822 loss)
I0429 10:34:57.453826 8162 solver.cpp:245] Train net output #40: loss1/loss14 = 0.377433 (* 0.0272727 = 0.0102936 loss)
I0429 10:34:57.453857 8162 solver.cpp:245] Train net output #41: loss1/loss15 = 0.0630466 (* 0.0272727 = 0.00171945 loss)
I0429 10:34:57.453877 8162 solver.cpp:245] Train net output #42: loss1/loss16 = 0.0362962 (* 0.0272727 = 0.000989896 loss)
I0429 10:34:57.453892 8162 solver.cpp:245] Train net output #43: loss1/loss17 = 0.016047 (* 0.0272727 = 0.000437644 loss)
I0429 10:34:57.453907 8162 solver.cpp:245] Train net output #44: loss1/loss18 = 0.00567006 (* 0.0272727 = 0.000154638 loss)
I0429 10:34:57.453922 8162 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00190355 (* 0.0272727 = 5.1915e-05 loss)
I0429 10:34:57.453936 8162 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000815431 (* 0.0272727 = 2.2239e-05 loss)
I0429 10:34:57.453951 8162 solver.cpp:245] Train net output #47: loss1/loss21 = 0.00026112 (* 0.0272727 = 7.12147e-06 loss)
I0429 10:34:57.453966 8162 solver.cpp:245] Train net output #48: loss1/loss22 = 7.55719e-05 (* 0.0272727 = 2.06105e-06 loss)
I0429 10:34:57.453979 8162 solver.cpp:245] Train net output #49: loss2/accuracy = 0.372549
I0429 10:34:57.453992 8162 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.75
I0429 10:34:57.454005 8162 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.625
I0429 10:34:57.454017 8162 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.5
I0429 10:34:57.454030 8162 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.375
I0429 10:34:57.454041 8162 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5
I0429 10:34:57.454053 8162 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.5
I0429 10:34:57.454066 8162 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.875
I0429 10:34:57.454077 8162 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.75
I0429 10:34:57.454090 8162 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875
I0429 10:34:57.454102 8162 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875
I0429 10:34:57.454114 8162 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.875
I0429 10:34:57.454126 8162 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.875
I0429 10:34:57.454138 8162 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.875
I0429 10:34:57.454151 8162 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.875
I0429 10:34:57.454164 8162 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0429 10:34:57.454175 8162 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0429 10:34:57.454187 8162 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0429 10:34:57.454200 8162 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0429 10:34:57.454216 8162 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0429 10:34:57.454228 8162 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0429 10:34:57.454241 8162 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0429 10:34:57.454252 8162 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0429 10:34:57.454263 8162 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.795455
I0429 10:34:57.454277 8162 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.588235
I0429 10:34:57.454290 8162 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 2.06589 (* 0.3 = 0.619766 loss)
I0429 10:34:57.454305 8162 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.680141 (* 0.3 = 0.204042 loss)
I0429 10:34:57.454319 8162 solver.cpp:245] Train net output #76: loss2/loss01 = 1.19646 (* 0.0272727 = 0.0326307 loss)
I0429 10:34:57.454334 8162 solver.cpp:245] Train net output #77: loss2/loss02 = 1.30376 (* 0.0272727 = 0.0355572 loss)
I0429 10:34:57.454360 8162 solver.cpp:245] Train net output #78: loss2/loss03 = 1.59648 (* 0.0272727 = 0.0435405 loss)
I0429 10:34:57.454378 8162 solver.cpp:245] Train net output #79: loss2/loss04 = 1.98908 (* 0.0272727 = 0.0542477 loss)
I0429 10:34:57.454393 8162 solver.cpp:245] Train net output #80: loss2/loss05 = 1.81149 (* 0.0272727 = 0.0494043 loss)
I0429 10:34:57.454408 8162 solver.cpp:245] Train net output #81: loss2/loss06 = 1.66398 (* 0.0272727 = 0.0453813 loss)
I0429 10:34:57.454422 8162 solver.cpp:245] Train net output #82: loss2/loss07 = 0.863486 (* 0.0272727 = 0.0235496 loss)
I0429 10:34:57.454437 8162 solver.cpp:245] Train net output #83: loss2/loss08 = 1.08526 (* 0.0272727 = 0.0295979 loss)
I0429 10:34:57.454452 8162 solver.cpp:245] Train net output #84: loss2/loss09 = 0.360773 (* 0.0272727 = 0.00983926 loss)
I0429 10:34:57.454466 8162 solver.cpp:245] Train net output #85: loss2/loss10 = 0.343078 (* 0.0272727 = 0.00935667 loss)
I0429 10:34:57.454480 8162 solver.cpp:245] Train net output #86: loss2/loss11 = 0.412634 (* 0.0272727 = 0.0112536 loss)
I0429 10:34:57.454495 8162 solver.cpp:245] Train net output #87: loss2/loss12 = 0.463877 (* 0.0272727 = 0.0126512 loss)
I0429 10:34:57.454509 8162 solver.cpp:245] Train net output #88: loss2/loss13 = 0.385074 (* 0.0272727 = 0.010502 loss)
I0429 10:34:57.454524 8162 solver.cpp:245] Train net output #89: loss2/loss14 = 0.382429 (* 0.0272727 = 0.0104299 loss)
I0429 10:34:57.454538 8162 solver.cpp:245] Train net output #90: loss2/loss15 = 0.0929801 (* 0.0272727 = 0.00253582 loss)
I0429 10:34:57.454553 8162 solver.cpp:245] Train net output #91: loss2/loss16 = 0.041669 (* 0.0272727 = 0.00113643 loss)
I0429 10:34:57.454567 8162 solver.cpp:245] Train net output #92: loss2/loss17 = 0.0241328 (* 0.0272727 = 0.000658167 loss)
I0429 10:34:57.454581 8162 solver.cpp:245] Train net output #93: loss2/loss18 = 0.0111076 (* 0.0272727 = 0.000302933 loss)
I0429 10:34:57.454596 8162 solver.cpp:245] Train net output #94: loss2/loss19 = 0.00627918 (* 0.0272727 = 0.00017125 loss)
I0429 10:34:57.454610 8162 solver.cpp:245] Train net output #95: loss2/loss20 = 0.00448969 (* 0.0272727 = 0.000122446 loss)
I0429 10:34:57.454625 8162 solver.cpp:245] Train net output #96: loss2/loss21 = 0.00268004 (* 0.0272727 = 7.30921e-05 loss)
I0429 10:34:57.454639 8162 solver.cpp:245] Train net output #97: loss2/loss22 = 0.00087659 (* 0.0272727 = 2.3907e-05 loss)
I0429 10:34:57.454653 8162 solver.cpp:245] Train net output #98: loss3/accuracy = 0.509804
I0429 10:34:57.454665 8162 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.75
I0429 10:34:57.454677 8162 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.625
I0429 10:34:57.454689 8162 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.5
I0429 10:34:57.454701 8162 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.5
I0429 10:34:57.454713 8162 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.375
I0429 10:34:57.454726 8162 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.5
I0429 10:34:57.454738 8162 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875
I0429 10:34:57.454751 8162 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.75
I0429 10:34:57.454762 8162 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875
I0429 10:34:57.454774 8162 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875
I0429 10:34:57.454787 8162 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.875
I0429 10:34:57.454798 8162 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.875
I0429 10:34:57.454810 8162 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.875
I0429 10:34:57.454823 8162 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.875
I0429 10:34:57.454834 8162 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0429 10:34:57.454856 8162 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0429 10:34:57.454870 8162 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0429 10:34:57.454882 8162 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0429 10:34:57.454895 8162 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0429 10:34:57.454906 8162 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0429 10:34:57.454918 8162 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0429 10:34:57.454931 8162 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0429 10:34:57.454943 8162 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.857955
I0429 10:34:57.454955 8162 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.647059
I0429 10:34:57.454970 8162 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.6423 (* 1 = 1.6423 loss)
I0429 10:34:57.454984 8162 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.514991 (* 1 = 0.514991 loss)
I0429 10:34:57.454999 8162 solver.cpp:245] Train net output #125: loss3/loss01 = 0.821302 (* 0.0909091 = 0.0746638 loss)
I0429 10:34:57.455013 8162 solver.cpp:245] Train net output #126: loss3/loss02 = 0.967284 (* 0.0909091 = 0.0879349 loss)
I0429 10:34:57.455027 8162 solver.cpp:245] Train net output #127: loss3/loss03 = 1.45124 (* 0.0909091 = 0.131931 loss)
I0429 10:34:57.455042 8162 solver.cpp:245] Train net output #128: loss3/loss04 = 1.91915 (* 0.0909091 = 0.174468 loss)
I0429 10:34:57.455056 8162 solver.cpp:245] Train net output #129: loss3/loss05 = 1.84204 (* 0.0909091 = 0.167458 loss)
I0429 10:34:57.455070 8162 solver.cpp:245] Train net output #130: loss3/loss06 = 1.59438 (* 0.0909091 = 0.144943 loss)
I0429 10:34:57.455085 8162 solver.cpp:245] Train net output #131: loss3/loss07 = 0.970482 (* 0.0909091 = 0.0882257 loss)
I0429 10:34:57.455099 8162 solver.cpp:245] Train net output #132: loss3/loss08 = 0.758944 (* 0.0909091 = 0.0689949 loss)
I0429 10:34:57.455113 8162 solver.cpp:245] Train net output #133: loss3/loss09 = 0.352504 (* 0.0909091 = 0.0320458 loss)
I0429 10:34:57.455128 8162 solver.cpp:245] Train net output #134: loss3/loss10 = 0.409834 (* 0.0909091 = 0.0372576 loss)
I0429 10:34:57.455142 8162 solver.cpp:245] Train net output #135: loss3/loss11 = 0.348838 (* 0.0909091 = 0.0317125 loss)
I0429 10:34:57.455157 8162 solver.cpp:245] Train net output #136: loss3/loss12 = 0.455736 (* 0.0909091 = 0.0414305 loss)
I0429 10:34:57.455171 8162 solver.cpp:245] Train net output #137: loss3/loss13 = 0.410404 (* 0.0909091 = 0.0373095 loss)
I0429 10:34:57.455185 8162 solver.cpp:245] Train net output #138: loss3/loss14 = 0.393893 (* 0.0909091 = 0.0358084 loss)
I0429 10:34:57.455200 8162 solver.cpp:245] Train net output #139: loss3/loss15 = 0.0621811 (* 0.0909091 = 0.00565283 loss)
I0429 10:34:57.455214 8162 solver.cpp:245] Train net output #140: loss3/loss16 = 0.0289777 (* 0.0909091 = 0.00263434 loss)
I0429 10:34:57.455229 8162 solver.cpp:245] Train net output #141: loss3/loss17 = 0.0122792 (* 0.0909091 = 0.00111629 loss)
I0429 10:34:57.455243 8162 solver.cpp:245] Train net output #142: loss3/loss18 = 0.00563622 (* 0.0909091 = 0.000512384 loss)
I0429 10:34:57.455257 8162 solver.cpp:245] Train net output #143: loss3/loss19 = 0.00319893 (* 0.0909091 = 0.000290812 loss)
I0429 10:34:57.455276 8162 solver.cpp:245] Train net output #144: loss3/loss20 = 0.00189154 (* 0.0909091 = 0.000171958 loss)
I0429 10:34:57.455291 8162 solver.cpp:245] Train net output #145: loss3/loss21 = 0.00133865 (* 0.0909091 = 0.000121695 loss)
I0429 10:34:57.455307 8162 solver.cpp:245] Train net output #146: loss3/loss22 = 0.000632852 (* 0.0909091 = 5.7532e-05 loss)
I0429 10:34:57.455319 8162 solver.cpp:245] Train net output #147: total_accuracy = 0.25
I0429 10:34:57.455332 8162 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.25
I0429 10:34:57.455353 8162 solver.cpp:245] Train net output #149: total_confidence = 0.228513
I0429 10:34:57.455363 8162 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.233799
I0429 10:34:57.455373 8162 sgd_solver.cpp:106] Iteration 13000, lr = 0.005
I0429 10:37:14.183754 8162 solver.cpp:229] Iteration 13500, loss = 5.45828
I0429 10:37:14.183881 8162 solver.cpp:245] Train net output #0: loss1/accuracy = 0.344828
I0429 10:37:14.183902 8162 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.5
I0429 10:37:14.183917 8162 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.375
I0429 10:37:14.183928 8162 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.125
I0429 10:37:14.183940 8162 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375
I0429 10:37:14.183954 8162 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.5
I0429 10:37:14.183965 8162 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.25
I0429 10:37:14.183979 8162 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.5
I0429 10:37:14.183990 8162 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.75
I0429 10:37:14.184002 8162 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.75
I0429 10:37:14.184015 8162 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875
I0429 10:37:14.184026 8162 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.875
I0429 10:37:14.184038 8162 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0429 10:37:14.184051 8162 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0429 10:37:14.184062 8162 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0429 10:37:14.184074 8162 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0429 10:37:14.184087 8162 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0429 10:37:14.184098 8162 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0429 10:37:14.184109 8162 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0429 10:37:14.184121 8162 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0429 10:37:14.184134 8162 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0429 10:37:14.184145 8162 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0429 10:37:14.184157 8162 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0429 10:37:14.184168 8162 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.778409
I0429 10:37:14.184181 8162 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.551724
I0429 10:37:14.184197 8162 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 2.38085 (* 0.3 = 0.714254 loss)
I0429 10:37:14.184212 8162 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.850754 (* 0.3 = 0.255226 loss)
I0429 10:37:14.184227 8162 solver.cpp:245] Train net output #27: loss1/loss01 = 1.8362 (* 0.0272727 = 0.0500782 loss)
I0429 10:37:14.184242 8162 solver.cpp:245] Train net output #28: loss1/loss02 = 1.76844 (* 0.0272727 = 0.0482302 loss)
I0429 10:37:14.184257 8162 solver.cpp:245] Train net output #29: loss1/loss03 = 3.59427 (* 0.0272727 = 0.0980256 loss)
I0429 10:37:14.184272 8162 solver.cpp:245] Train net output #30: loss1/loss04 = 2.14229 (* 0.0272727 = 0.0584262 loss)
I0429 10:37:14.184285 8162 solver.cpp:245] Train net output #31: loss1/loss05 = 2.07047 (* 0.0272727 = 0.0564674 loss)
I0429 10:37:14.184299 8162 solver.cpp:245] Train net output #32: loss1/loss06 = 2.59634 (* 0.0272727 = 0.0708092 loss)
I0429 10:37:14.184316 8162 solver.cpp:245] Train net output #33: loss1/loss07 = 1.42442 (* 0.0272727 = 0.0388478 loss)
I0429 10:37:14.184331 8162 solver.cpp:245] Train net output #34: loss1/loss08 = 0.885269 (* 0.0272727 = 0.0241437 loss)
I0429 10:37:14.184346 8162 solver.cpp:245] Train net output #35: loss1/loss09 = 0.881147 (* 0.0272727 = 0.0240313 loss)
I0429 10:37:14.184360 8162 solver.cpp:245] Train net output #36: loss1/loss10 = 0.434687 (* 0.0272727 = 0.0118551 loss)
I0429 10:37:14.184375 8162 solver.cpp:245] Train net output #37: loss1/loss11 = 0.418949 (* 0.0272727 = 0.0114259 loss)
I0429 10:37:14.184389 8162 solver.cpp:245] Train net output #38: loss1/loss12 = 0.0422868 (* 0.0272727 = 0.00115328 loss)
I0429 10:37:14.184404 8162 solver.cpp:245] Train net output #39: loss1/loss13 = 0.0236514 (* 0.0272727 = 0.000645039 loss)
I0429 10:37:14.184437 8162 solver.cpp:245] Train net output #40: loss1/loss14 = 0.0102092 (* 0.0272727 = 0.000278433 loss)
I0429 10:37:14.184453 8162 solver.cpp:245] Train net output #41: loss1/loss15 = 0.00513617 (* 0.0272727 = 0.000140077 loss)
I0429 10:37:14.184468 8162 solver.cpp:245] Train net output #42: loss1/loss16 = 0.0023489 (* 0.0272727 = 6.4061e-05 loss)
I0429 10:37:14.184483 8162 solver.cpp:245] Train net output #43: loss1/loss17 = 0.001468 (* 0.0272727 = 4.00364e-05 loss)
I0429 10:37:14.184496 8162 solver.cpp:245] Train net output #44: loss1/loss18 = 0.00192158 (* 0.0272727 = 5.24068e-05 loss)
I0429 10:37:14.184511 8162 solver.cpp:245] Train net output #45: loss1/loss19 = 0.000522779 (* 0.0272727 = 1.42576e-05 loss)
I0429 10:37:14.184525 8162 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000890647 (* 0.0272727 = 2.42904e-05 loss)
I0429 10:37:14.184540 8162 solver.cpp:245] Train net output #47: loss1/loss21 = 0.0012092 (* 0.0272727 = 3.29781e-05 loss)
I0429 10:37:14.184554 8162 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000535563 (* 0.0272727 = 1.46063e-05 loss)
I0429 10:37:14.184567 8162 solver.cpp:245] Train net output #49: loss2/accuracy = 0.310345
I0429 10:37:14.184581 8162 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.5
I0429 10:37:14.184592 8162 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.25
I0429 10:37:14.184604 8162 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.25
I0429 10:37:14.184617 8162 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.25
I0429 10:37:14.184628 8162 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5
I0429 10:37:14.184640 8162 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.125
I0429 10:37:14.184651 8162 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.625
I0429 10:37:14.184664 8162 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.75
I0429 10:37:14.184675 8162 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.75
I0429 10:37:14.184689 8162 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875
I0429 10:37:14.184700 8162 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.875
I0429 10:37:14.184711 8162 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0429 10:37:14.184723 8162 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0429 10:37:14.184736 8162 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0429 10:37:14.184747 8162 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0429 10:37:14.184758 8162 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0429 10:37:14.184770 8162 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0429 10:37:14.184782 8162 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0429 10:37:14.184793 8162 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0429 10:37:14.184805 8162 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0429 10:37:14.184818 8162 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0429 10:37:14.184828 8162 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0429 10:37:14.184840 8162 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.767045
I0429 10:37:14.184852 8162 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.568965
I0429 10:37:14.184866 8162 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 2.26213 (* 0.3 = 0.678639 loss)
I0429 10:37:14.184880 8162 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.81282 (* 0.3 = 0.243846 loss)
I0429 10:37:14.184898 8162 solver.cpp:245] Train net output #76: loss2/loss01 = 1.93797 (* 0.0272727 = 0.0528538 loss)
I0429 10:37:14.184913 8162 solver.cpp:245] Train net output #77: loss2/loss02 = 2.22109 (* 0.0272727 = 0.0605751 loss)
I0429 10:37:14.184939 8162 solver.cpp:245] Train net output #78: loss2/loss03 = 3.01364 (* 0.0272727 = 0.0821903 loss)
I0429 10:37:14.184954 8162 solver.cpp:245] Train net output #79: loss2/loss04 = 2.7585 (* 0.0272727 = 0.0752319 loss)
I0429 10:37:14.184968 8162 solver.cpp:245] Train net output #80: loss2/loss05 = 1.55079 (* 0.0272727 = 0.0422943 loss)
I0429 10:37:14.184983 8162 solver.cpp:245] Train net output #81: loss2/loss06 = 2.26864 (* 0.0272727 = 0.061872 loss)
I0429 10:37:14.184998 8162 solver.cpp:245] Train net output #82: loss2/loss07 = 1.06311 (* 0.0272727 = 0.028994 loss)
I0429 10:37:14.185011 8162 solver.cpp:245] Train net output #83: loss2/loss08 = 0.863359 (* 0.0272727 = 0.0235462 loss)
I0429 10:37:14.185025 8162 solver.cpp:245] Train net output #84: loss2/loss09 = 0.841662 (* 0.0272727 = 0.0229544 loss)
I0429 10:37:14.185039 8162 solver.cpp:245] Train net output #85: loss2/loss10 = 0.376679 (* 0.0272727 = 0.0102731 loss)
I0429 10:37:14.185053 8162 solver.cpp:245] Train net output #86: loss2/loss11 = 0.408121 (* 0.0272727 = 0.0111306 loss)
I0429 10:37:14.185068 8162 solver.cpp:245] Train net output #87: loss2/loss12 = 0.0604985 (* 0.0272727 = 0.00164996 loss)
I0429 10:37:14.185082 8162 solver.cpp:245] Train net output #88: loss2/loss13 = 0.0298465 (* 0.0272727 = 0.000813997 loss)
I0429 10:37:14.185096 8162 solver.cpp:245] Train net output #89: loss2/loss14 = 0.0197683 (* 0.0272727 = 0.000539136 loss)
I0429 10:37:14.185111 8162 solver.cpp:245] Train net output #90: loss2/loss15 = 0.0148852 (* 0.0272727 = 0.000405961 loss)
I0429 10:37:14.185125 8162 solver.cpp:245] Train net output #91: loss2/loss16 = 0.00435956 (* 0.0272727 = 0.000118897 loss)
I0429 10:37:14.185140 8162 solver.cpp:245] Train net output #92: loss2/loss17 = 0.00312395 (* 0.0272727 = 8.51987e-05 loss)
I0429 10:37:14.185154 8162 solver.cpp:245] Train net output #93: loss2/loss18 = 0.00278062 (* 0.0272727 = 7.5835e-05 loss)
I0429 10:37:14.185169 8162 solver.cpp:245] Train net output #94: loss2/loss19 = 0.00181433 (* 0.0272727 = 4.94818e-05 loss)
I0429 10:37:14.185184 8162 solver.cpp:245] Train net output #95: loss2/loss20 = 0.0013832 (* 0.0272727 = 3.77236e-05 loss)
I0429 10:37:14.185197 8162 solver.cpp:245] Train net output #96: loss2/loss21 = 0.00162238 (* 0.0272727 = 4.42467e-05 loss)
I0429 10:37:14.185212 8162 solver.cpp:245] Train net output #97: loss2/loss22 = 0.000422299 (* 0.0272727 = 1.15172e-05 loss)
I0429 10:37:14.185225 8162 solver.cpp:245] Train net output #98: loss3/accuracy = 0.568965
I0429 10:37:14.185236 8162 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.75
I0429 10:37:14.185248 8162 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.75
I0429 10:37:14.185261 8162 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.25
I0429 10:37:14.185272 8162 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.625
I0429 10:37:14.185284 8162 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.625
I0429 10:37:14.185297 8162 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.375
I0429 10:37:14.185313 8162 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875
I0429 10:37:14.185322 8162 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875
I0429 10:37:14.185333 8162 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.75
I0429 10:37:14.185346 8162 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875
I0429 10:37:14.185359 8162 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.875
I0429 10:37:14.185374 8162 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0429 10:37:14.185385 8162 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0429 10:37:14.185397 8162 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0429 10:37:14.185408 8162 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0429 10:37:14.185420 8162 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0429 10:37:14.185441 8162 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0429 10:37:14.185454 8162 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0429 10:37:14.185467 8162 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0429 10:37:14.185477 8162 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0429 10:37:14.185489 8162 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0429 10:37:14.185500 8162 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0429 10:37:14.185513 8162 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.846591
I0429 10:37:14.185523 8162 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.775862
I0429 10:37:14.185537 8162 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.41844 (* 1 = 1.41844 loss)
I0429 10:37:14.185551 8162 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.530738 (* 1 = 0.530738 loss)
I0429 10:37:14.185565 8162 solver.cpp:245] Train net output #125: loss3/loss01 = 1.0601 (* 0.0909091 = 0.0963724 loss)
I0429 10:37:14.185580 8162 solver.cpp:245] Train net output #126: loss3/loss02 = 1.09107 (* 0.0909091 = 0.0991878 loss)
I0429 10:37:14.185595 8162 solver.cpp:245] Train net output #127: loss3/loss03 = 2.82172 (* 0.0909091 = 0.25652 loss)
I0429 10:37:14.185608 8162 solver.cpp:245] Train net output #128: loss3/loss04 = 2.08764 (* 0.0909091 = 0.189786 loss)
I0429 10:37:14.185622 8162 solver.cpp:245] Train net output #129: loss3/loss05 = 1.37353 (* 0.0909091 = 0.124866 loss)
I0429 10:37:14.185636 8162 solver.cpp:245] Train net output #130: loss3/loss06 = 1.83595 (* 0.0909091 = 0.166905 loss)
I0429 10:37:14.185650 8162 solver.cpp:245] Train net output #131: loss3/loss07 = 0.789503 (* 0.0909091 = 0.071773 loss)
I0429 10:37:14.185663 8162 solver.cpp:245] Train net output #132: loss3/loss08 = 0.580859 (* 0.0909091 = 0.0528053 loss)
I0429 10:37:14.185678 8162 solver.cpp:245] Train net output #133: loss3/loss09 = 0.511843 (* 0.0909091 = 0.0465312 loss)
I0429 10:37:14.185691 8162 solver.cpp:245] Train net output #134: loss3/loss10 = 0.402904 (* 0.0909091 = 0.0366277 loss)
I0429 10:37:14.185705 8162 solver.cpp:245] Train net output #135: loss3/loss11 = 0.376914 (* 0.0909091 = 0.0342649 loss)
I0429 10:37:14.185720 8162 solver.cpp:245] Train net output #136: loss3/loss12 = 0.0247626 (* 0.0909091 = 0.00225115 loss)
I0429 10:37:14.185734 8162 solver.cpp:245] Train net output #137: loss3/loss13 = 0.00839787 (* 0.0909091 = 0.000763443 loss)
I0429 10:37:14.185748 8162 solver.cpp:245] Train net output #138: loss3/loss14 = 0.00320533 (* 0.0909091 = 0.000291394 loss)
I0429 10:37:14.185762 8162 solver.cpp:245] Train net output #139: loss3/loss15 = 0.00124605 (* 0.0909091 = 0.000113277 loss)
I0429 10:37:14.185776 8162 solver.cpp:245] Train net output #140: loss3/loss16 = 0.000514118 (* 0.0909091 = 4.6738e-05 loss)
I0429 10:37:14.185791 8162 solver.cpp:245] Train net output #141: loss3/loss17 = 0.000298631 (* 0.0909091 = 2.71483e-05 loss)
I0429 10:37:14.185804 8162 solver.cpp:245] Train net output #142: loss3/loss18 = 0.000123188 (* 0.0909091 = 1.11989e-05 loss)
I0429 10:37:14.185818 8162 solver.cpp:245] Train net output #143: loss3/loss19 = 7.91595e-05 (* 0.0909091 = 7.19632e-06 loss)
I0429 10:37:14.185833 8162 solver.cpp:245] Train net output #144: loss3/loss20 = 5.68113e-05 (* 0.0909091 = 5.16466e-06 loss)
I0429 10:37:14.185847 8162 solver.cpp:245] Train net output #145: loss3/loss21 = 6.0577e-05 (* 0.0909091 = 5.507e-06 loss)
I0429 10:37:14.185863 8162 solver.cpp:245] Train net output #146: loss3/loss22 = 4.23554e-05 (* 0.0909091 = 3.85049e-06 loss)
I0429 10:37:14.185874 8162 solver.cpp:245] Train net output #147: total_accuracy = 0
I0429 10:37:14.185886 8162 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0
I0429 10:37:14.185907 8162 solver.cpp:245] Train net output #149: total_confidence = 0.0207284
I0429 10:37:14.185921 8162 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.0207399
I0429 10:37:14.185935 8162 sgd_solver.cpp:106] Iteration 13500, lr = 0.005
I0429 10:39:30.920931 8162 solver.cpp:229] Iteration 14000, loss = 5.23398
I0429 10:39:30.921098 8162 solver.cpp:245] Train net output #0: loss1/accuracy = 0.425532
I0429 10:39:30.921119 8162 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75
I0429 10:39:30.921134 8162 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.125
I0429 10:39:30.921147 8162 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.25
I0429 10:39:30.921160 8162 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.25
I0429 10:39:30.921172 8162 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.375
I0429 10:39:30.921185 8162 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.75
I0429 10:39:30.921197 8162 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.75
I0429 10:39:30.921211 8162 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875
I0429 10:39:30.921222 8162 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875
I0429 10:39:30.921236 8162 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875
I0429 10:39:30.921247 8162 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0429 10:39:30.921260 8162 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0429 10:39:30.921272 8162 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0429 10:39:30.921284 8162 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0429 10:39:30.921298 8162 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0429 10:39:30.921309 8162 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0429 10:39:30.921324 8162 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0429 10:39:30.921337 8162 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0429 10:39:30.921350 8162 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0429 10:39:30.921361 8162 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0429 10:39:30.921373 8162 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0429 10:39:30.921386 8162 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0429 10:39:30.921398 8162 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.835227
I0429 10:39:30.921411 8162 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.638298
I0429 10:39:30.921427 8162 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 2.18127 (* 0.3 = 0.65438 loss)
I0429 10:39:30.921442 8162 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.623931 (* 0.3 = 0.187179 loss)
I0429 10:39:30.921458 8162 solver.cpp:245] Train net output #27: loss1/loss01 = 1.09825 (* 0.0272727 = 0.0299524 loss)
I0429 10:39:30.921473 8162 solver.cpp:245] Train net output #28: loss1/loss02 = 3.53899 (* 0.0272727 = 0.0965178 loss)
I0429 10:39:30.921486 8162 solver.cpp:245] Train net output #29: loss1/loss03 = 2.05345 (* 0.0272727 = 0.0560032 loss)
I0429 10:39:30.921501 8162 solver.cpp:245] Train net output #30: loss1/loss04 = 3.02093 (* 0.0272727 = 0.082389 loss)
I0429 10:39:30.921515 8162 solver.cpp:245] Train net output #31: loss1/loss05 = 1.96124 (* 0.0272727 = 0.0534884 loss)
I0429 10:39:30.921530 8162 solver.cpp:245] Train net output #32: loss1/loss06 = 0.8857 (* 0.0272727 = 0.0241555 loss)
I0429 10:39:30.921545 8162 solver.cpp:245] Train net output #33: loss1/loss07 = 0.873156 (* 0.0272727 = 0.0238134 loss)
I0429 10:39:30.921560 8162 solver.cpp:245] Train net output #34: loss1/loss08 = 0.423489 (* 0.0272727 = 0.0115497 loss)
I0429 10:39:30.921573 8162 solver.cpp:245] Train net output #35: loss1/loss09 = 0.371301 (* 0.0272727 = 0.0101264 loss)
I0429 10:39:30.921588 8162 solver.cpp:245] Train net output #36: loss1/loss10 = 0.391862 (* 0.0272727 = 0.0106871 loss)
I0429 10:39:30.921603 8162 solver.cpp:245] Train net output #37: loss1/loss11 = 0.0522049 (* 0.0272727 = 0.00142377 loss)
I0429 10:39:30.921618 8162 solver.cpp:245] Train net output #38: loss1/loss12 = 0.0269174 (* 0.0272727 = 0.000734112 loss)
I0429 10:39:30.921653 8162 solver.cpp:245] Train net output #39: loss1/loss13 = 0.0118932 (* 0.0272727 = 0.000324359 loss)
I0429 10:39:30.921669 8162 solver.cpp:245] Train net output #40: loss1/loss14 = 0.00713178 (* 0.0272727 = 0.000194503 loss)
I0429 10:39:30.921684 8162 solver.cpp:245] Train net output #41: loss1/loss15 = 0.00376256 (* 0.0272727 = 0.000102615 loss)
I0429 10:39:30.921699 8162 solver.cpp:245] Train net output #42: loss1/loss16 = 0.00202425 (* 0.0272727 = 5.52067e-05 loss)
I0429 10:39:30.921713 8162 solver.cpp:245] Train net output #43: loss1/loss17 = 0.00221316 (* 0.0272727 = 6.03589e-05 loss)
I0429 10:39:30.921727 8162 solver.cpp:245] Train net output #44: loss1/loss18 = 0.00212948 (* 0.0272727 = 5.80768e-05 loss)
I0429 10:39:30.921742 8162 solver.cpp:245] Train net output #45: loss1/loss19 = 0.0016911 (* 0.0272727 = 4.61209e-05 loss)
I0429 10:39:30.921757 8162 solver.cpp:245] Train net output #46: loss1/loss20 = 0.00259917 (* 0.0272727 = 7.08865e-05 loss)
I0429 10:39:30.921772 8162 solver.cpp:245] Train net output #47: loss1/loss21 = 0.00293116 (* 0.0272727 = 7.99406e-05 loss)
I0429 10:39:30.921787 8162 solver.cpp:245] Train net output #48: loss1/loss22 = 0.00288867 (* 0.0272727 = 7.87818e-05 loss)
I0429 10:39:30.921799 8162 solver.cpp:245] Train net output #49: loss2/accuracy = 0.468085
I0429 10:39:30.921813 8162 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.625
I0429 10:39:30.921824 8162 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.25
I0429 10:39:30.921836 8162 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.625
I0429 10:39:30.921849 8162 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.25
I0429 10:39:30.921860 8162 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5
I0429 10:39:30.921874 8162 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.625
I0429 10:39:30.921885 8162 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.625
I0429 10:39:30.921897 8162 solver.cpp:245] Train net output #57: loss2/accuracy08 = 1
I0429 10:39:30.921905 8162 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1
I0429 10:39:30.921913 8162 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875
I0429 10:39:30.921926 8162 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0429 10:39:30.921938 8162 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0429 10:39:30.921950 8162 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0429 10:39:30.921962 8162 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0429 10:39:30.921974 8162 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0429 10:39:30.921986 8162 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0429 10:39:30.921998 8162 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0429 10:39:30.922009 8162 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0429 10:39:30.922021 8162 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0429 10:39:30.922034 8162 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0429 10:39:30.922045 8162 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0429 10:39:30.922057 8162 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0429 10:39:30.922070 8162 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.835227
I0429 10:39:30.922081 8162 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.659574
I0429 10:39:30.922096 8162 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 2.21 (* 0.3 = 0.663001 loss)
I0429 10:39:30.922116 8162 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.712763 (* 0.3 = 0.213829 loss)
I0429 10:39:30.922130 8162 solver.cpp:245] Train net output #76: loss2/loss01 = 1.09192 (* 0.0272727 = 0.0297797 loss)
I0429 10:39:30.922144 8162 solver.cpp:245] Train net output #77: loss2/loss02 = 3.52282 (* 0.0272727 = 0.0960769 loss)
I0429 10:39:30.922169 8162 solver.cpp:245] Train net output #78: loss2/loss03 = 1.51664 (* 0.0272727 = 0.0413629 loss)
I0429 10:39:30.922185 8162 solver.cpp:245] Train net output #79: loss2/loss04 = 2.96561 (* 0.0272727 = 0.0808804 loss)
I0429 10:39:30.922199 8162 solver.cpp:245] Train net output #80: loss2/loss05 = 1.81489 (* 0.0272727 = 0.049497 loss)
I0429 10:39:30.922214 8162 solver.cpp:245] Train net output #81: loss2/loss06 = 1.1475 (* 0.0272727 = 0.0312955 loss)
I0429 10:39:30.922229 8162 solver.cpp:245] Train net output #82: loss2/loss07 = 1.72048 (* 0.0272727 = 0.0469223 loss)
I0429 10:39:30.922242 8162 solver.cpp:245] Train net output #83: loss2/loss08 = 0.265154 (* 0.0272727 = 0.00723148 loss)
I0429 10:39:30.922257 8162 solver.cpp:245] Train net output #84: loss2/loss09 = 0.31287 (* 0.0272727 = 0.00853283 loss)
I0429 10:39:30.922271 8162 solver.cpp:245] Train net output #85: loss2/loss10 = 0.493108 (* 0.0272727 = 0.0134484 loss)
I0429 10:39:30.922286 8162 solver.cpp:245] Train net output #86: loss2/loss11 = 0.198308 (* 0.0272727 = 0.00540839 loss)
I0429 10:39:30.922300 8162 solver.cpp:245] Train net output #87: loss2/loss12 = 0.0989841 (* 0.0272727 = 0.00269957 loss)
I0429 10:39:30.922315 8162 solver.cpp:245] Train net output #88: loss2/loss13 = 0.0526974 (* 0.0272727 = 0.0014372 loss)
I0429 10:39:30.922329 8162 solver.cpp:245] Train net output #89: loss2/loss14 = 0.0350825 (* 0.0272727 = 0.000956796 loss)
I0429 10:39:30.922344 8162 solver.cpp:245] Train net output #90: loss2/loss15 = 0.0222956 (* 0.0272727 = 0.000608061 loss)
I0429 10:39:30.922358 8162 solver.cpp:245] Train net output #91: loss2/loss16 = 0.0132514 (* 0.0272727 = 0.000361403 loss)
I0429 10:39:30.922376 8162 solver.cpp:245] Train net output #92: loss2/loss17 = 0.00887766 (* 0.0272727 = 0.000242118 loss)
I0429 10:39:30.922390 8162 solver.cpp:245] Train net output #93: loss2/loss18 = 0.0072096 (* 0.0272727 = 0.000196625 loss)
I0429 10:39:30.922405 8162 solver.cpp:245] Train net output #94: loss2/loss19 = 0.00519495 (* 0.0272727 = 0.00014168 loss)
I0429 10:39:30.922420 8162 solver.cpp:245] Train net output #95: loss2/loss20 = 0.00621857 (* 0.0272727 = 0.000169597 loss)
I0429 10:39:30.922435 8162 solver.cpp:245] Train net output #96: loss2/loss21 = 0.00308308 (* 0.0272727 = 8.40841e-05 loss)
I0429 10:39:30.922448 8162 solver.cpp:245] Train net output #97: loss2/loss22 = 0.00265228 (* 0.0272727 = 7.23349e-05 loss)
I0429 10:39:30.922461 8162 solver.cpp:245] Train net output #98: loss3/accuracy = 0.680851
I0429 10:39:30.922473 8162 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875
I0429 10:39:30.922485 8162 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.75
I0429 10:39:30.922498 8162 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.5
I0429 10:39:30.922510 8162 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.5
I0429 10:39:30.922523 8162 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.75
I0429 10:39:30.922534 8162 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.625
I0429 10:39:30.922546 8162 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75
I0429 10:39:30.922559 8162 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875
I0429 10:39:30.922570 8162 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875
I0429 10:39:30.922583 8162 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875
I0429 10:39:30.922595 8162 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0429 10:39:30.922607 8162 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0429 10:39:30.922618 8162 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0429 10:39:30.922631 8162 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0429 10:39:30.922642 8162 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0429 10:39:30.922654 8162 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0429 10:39:30.922677 8162 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0429 10:39:30.922689 8162 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0429 10:39:30.922701 8162 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0429 10:39:30.922713 8162 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0429 10:39:30.922725 8162 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0429 10:39:30.922737 8162 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0429 10:39:30.922749 8162 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.897727
I0429 10:39:30.922761 8162 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.787234
I0429 10:39:30.922775 8162 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.37206 (* 1 = 1.37206 loss)
I0429 10:39:30.922791 8162 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.443998 (* 1 = 0.443998 loss)
I0429 10:39:30.922806 8162 solver.cpp:245] Train net output #125: loss3/loss01 = 0.536548 (* 0.0909091 = 0.0487771 loss)
I0429 10:39:30.922819 8162 solver.cpp:245] Train net output #126: loss3/loss02 = 1.74716 (* 0.0909091 = 0.158833 loss)
I0429 10:39:30.922833 8162 solver.cpp:245] Train net output #127: loss3/loss03 = 1.35209 (* 0.0909091 = 0.122917 loss)
I0429 10:39:30.922847 8162 solver.cpp:245] Train net output #128: loss3/loss04 = 1.77067 (* 0.0909091 = 0.16097 loss)
I0429 10:39:30.922862 8162 solver.cpp:245] Train net output #129: loss3/loss05 = 1.2451 (* 0.0909091 = 0.113191 loss)
I0429 10:39:30.922876 8162 solver.cpp:245] Train net output #130: loss3/loss06 = 0.842295 (* 0.0909091 = 0.0765722 loss)
I0429 10:39:30.922890 8162 solver.cpp:245] Train net output #131: loss3/loss07 = 0.826302 (* 0.0909091 = 0.0751184 loss)
I0429 10:39:30.922904 8162 solver.cpp:245] Train net output #132: loss3/loss08 = 0.325803 (* 0.0909091 = 0.0296184 loss)
I0429 10:39:30.922919 8162 solver.cpp:245] Train net output #133: loss3/loss09 = 0.320471 (* 0.0909091 = 0.0291337 loss)
I0429 10:39:30.922933 8162 solver.cpp:245] Train net output #134: loss3/loss10 = 0.35478 (* 0.0909091 = 0.0322527 loss)
I0429 10:39:30.922947 8162 solver.cpp:245] Train net output #135: loss3/loss11 = 0.0722779 (* 0.0909091 = 0.00657072 loss)
I0429 10:39:30.922961 8162 solver.cpp:245] Train net output #136: loss3/loss12 = 0.0334186 (* 0.0909091 = 0.00303806 loss)
I0429 10:39:30.922976 8162 solver.cpp:245] Train net output #137: loss3/loss13 = 0.0183288 (* 0.0909091 = 0.00166626 loss)
I0429 10:39:30.922991 8162 solver.cpp:245] Train net output #138: loss3/loss14 = 0.010557 (* 0.0909091 = 0.000959729 loss)
I0429 10:39:30.923004 8162 solver.cpp:245] Train net output #139: loss3/loss15 = 0.00611298 (* 0.0909091 = 0.000555725 loss)
I0429 10:39:30.923019 8162 solver.cpp:245] Train net output #140: loss3/loss16 = 0.00359862 (* 0.0909091 = 0.000327147 loss)
I0429 10:39:30.923033 8162 solver.cpp:245] Train net output #141: loss3/loss17 = 0.00175153 (* 0.0909091 = 0.00015923 loss)
I0429 10:39:30.923048 8162 solver.cpp:245] Train net output #142: loss3/loss18 = 0.00120371 (* 0.0909091 = 0.000109428 loss)
I0429 10:39:30.923063 8162 solver.cpp:245] Train net output #143: loss3/loss19 = 0.000854856 (* 0.0909091 = 7.77141e-05 loss)
I0429 10:39:30.923076 8162 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000456522 (* 0.0909091 = 4.1502e-05 loss)
I0429 10:39:30.923091 8162 solver.cpp:245] Train net output #145: loss3/loss21 = 0.000329615 (* 0.0909091 = 2.9965e-05 loss)
I0429 10:39:30.923105 8162 solver.cpp:245] Train net output #146: loss3/loss22 = 0.000141929 (* 0.0909091 = 1.29026e-05 loss)
I0429 10:39:30.923118 8162 solver.cpp:245] Train net output #147: total_accuracy = 0.25
I0429 10:39:30.923130 8162 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.125
I0429 10:39:30.923152 8162 solver.cpp:245] Train net output #149: total_confidence = 0.165153
I0429 10:39:30.923171 8162 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.180418
I0429 10:39:30.923184 8162 sgd_solver.cpp:106] Iteration 14000, lr = 0.005
I0429 10:41:47.595487 8162 solver.cpp:229] Iteration 14500, loss = 5.50498
I0429 10:41:47.595656 8162 solver.cpp:245] Train net output #0: loss1/accuracy = 0.297872
I0429 10:41:47.595676 8162 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.5
I0429 10:41:47.595690 8162 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.125
I0429 10:41:47.595703 8162 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.5
I0429 10:41:47.595716 8162 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.25
I0429 10:41:47.595728 8162 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.375
I0429 10:41:47.595741 8162 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.375
I0429 10:41:47.595753 8162 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.75
I0429 10:41:47.595765 8162 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.75
I0429 10:41:47.595777 8162 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1
I0429 10:41:47.595790 8162 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0429 10:41:47.595803 8162 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0429 10:41:47.595814 8162 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0429 10:41:47.595826 8162 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0429 10:41:47.595839 8162 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0429 10:41:47.595851 8162 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0429 10:41:47.595863 8162 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0429 10:41:47.595876 8162 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0429 10:41:47.595888 8162 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0429 10:41:47.595901 8162 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0429 10:41:47.595912 8162 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0429 10:41:47.595924 8162 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0429 10:41:47.595937 8162 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0429 10:41:47.595948 8162 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.795455
I0429 10:41:47.595962 8162 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.468085
I0429 10:41:47.595978 8162 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 2.48706 (* 0.3 = 0.746118 loss)
I0429 10:41:47.595994 8162 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.731213 (* 0.3 = 0.219364 loss)
I0429 10:41:47.596009 8162 solver.cpp:245] Train net output #27: loss1/loss01 = 2.44385 (* 0.0272727 = 0.0666505 loss)
I0429 10:41:47.596024 8162 solver.cpp:245] Train net output #28: loss1/loss02 = 2.97661 (* 0.0272727 = 0.0811803 loss)
I0429 10:41:47.596038 8162 solver.cpp:245] Train net output #29: loss1/loss03 = 2.30556 (* 0.0272727 = 0.062879 loss)
I0429 10:41:47.596053 8162 solver.cpp:245] Train net output #30: loss1/loss04 = 2.55545 (* 0.0272727 = 0.0696942 loss)
I0429 10:41:47.596067 8162 solver.cpp:245] Train net output #31: loss1/loss05 = 2.14516 (* 0.0272727 = 0.0585043 loss)
I0429 10:41:47.596087 8162 solver.cpp:245] Train net output #32: loss1/loss06 = 2.09337 (* 0.0272727 = 0.0570918 loss)
I0429 10:41:47.596108 8162 solver.cpp:245] Train net output #33: loss1/loss07 = 0.765397 (* 0.0272727 = 0.0208745 loss)
I0429 10:41:47.596124 8162 solver.cpp:245] Train net output #34: loss1/loss08 = 1.08909 (* 0.0272727 = 0.0297024 loss)
I0429 10:41:47.596140 8162 solver.cpp:245] Train net output #35: loss1/loss09 = 0.0333449 (* 0.0272727 = 0.000909405 loss)
I0429 10:41:47.596155 8162 solver.cpp:245] Train net output #36: loss1/loss10 = 0.00443308 (* 0.0272727 = 0.000120902 loss)
I0429 10:41:47.596170 8162 solver.cpp:245] Train net output #37: loss1/loss11 = 0.000948166 (* 0.0272727 = 2.58591e-05 loss)
I0429 10:41:47.596185 8162 solver.cpp:245] Train net output #38: loss1/loss12 = 0.000292715 (* 0.0272727 = 7.98314e-06 loss)
I0429 10:41:47.596220 8162 solver.cpp:245] Train net output #39: loss1/loss13 = 0.000217942 (* 0.0272727 = 5.94388e-06 loss)
I0429 10:41:47.596236 8162 solver.cpp:245] Train net output #40: loss1/loss14 = 0.000301081 (* 0.0272727 = 8.2113e-06 loss)
I0429 10:41:47.596251 8162 solver.cpp:245] Train net output #41: loss1/loss15 = 0.000128213 (* 0.0272727 = 3.49671e-06 loss)
I0429 10:41:47.596266 8162 solver.cpp:245] Train net output #42: loss1/loss16 = 0.00017157 (* 0.0272727 = 4.67919e-06 loss)
I0429 10:41:47.596281 8162 solver.cpp:245] Train net output #43: loss1/loss17 = 6.88338e-05 (* 0.0272727 = 1.87729e-06 loss)
I0429 10:41:47.596295 8162 solver.cpp:245] Train net output #44: loss1/loss18 = 6.21923e-05 (* 0.0272727 = 1.69615e-06 loss)
I0429 10:41:47.596309 8162 solver.cpp:245] Train net output #45: loss1/loss19 = 0.000142672 (* 0.0272727 = 3.89105e-06 loss)
I0429 10:41:47.596328 8162 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000208078 (* 0.0272727 = 5.67487e-06 loss)
I0429 10:41:47.596343 8162 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000216617 (* 0.0272727 = 5.90775e-06 loss)
I0429 10:41:47.596359 8162 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000136796 (* 0.0272727 = 3.7308e-06 loss)
I0429 10:41:47.596371 8162 solver.cpp:245] Train net output #49: loss2/accuracy = 0.319149
I0429 10:41:47.596385 8162 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.5
I0429 10:41:47.596398 8162 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.375
I0429 10:41:47.596410 8162 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.375
I0429 10:41:47.596423 8162 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.125
I0429 10:41:47.596437 8162 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.25
I0429 10:41:47.596452 8162 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.5
I0429 10:41:47.596464 8162 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.75
I0429 10:41:47.596477 8162 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.75
I0429 10:41:47.596489 8162 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1
I0429 10:41:47.596501 8162 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0429 10:41:47.596513 8162 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0429 10:41:47.596525 8162 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0429 10:41:47.596537 8162 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0429 10:41:47.596549 8162 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0429 10:41:47.596560 8162 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0429 10:41:47.596572 8162 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0429 10:41:47.596585 8162 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0429 10:41:47.596596 8162 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0429 10:41:47.596608 8162 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0429 10:41:47.596621 8162 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0429 10:41:47.596632 8162 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0429 10:41:47.596644 8162 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0429 10:41:47.596657 8162 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.789773
I0429 10:41:47.596673 8162 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.531915
I0429 10:41:47.596688 8162 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 2.08916 (* 0.3 = 0.626748 loss)
I0429 10:41:47.596703 8162 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.645956 (* 0.3 = 0.193787 loss)
I0429 10:41:47.596717 8162 solver.cpp:245] Train net output #76: loss2/loss01 = 1.72061 (* 0.0272727 = 0.0469257 loss)
I0429 10:41:47.596731 8162 solver.cpp:245] Train net output #77: loss2/loss02 = 1.98767 (* 0.0272727 = 0.0542091 loss)
I0429 10:41:47.596757 8162 solver.cpp:245] Train net output #78: loss2/loss03 = 2.25707 (* 0.0272727 = 0.0615565 loss)
I0429 10:41:47.596773 8162 solver.cpp:245] Train net output #79: loss2/loss04 = 2.33127 (* 0.0272727 = 0.0635802 loss)
I0429 10:41:47.596787 8162 solver.cpp:245] Train net output #80: loss2/loss05 = 2.17824 (* 0.0272727 = 0.0594065 loss)
I0429 10:41:47.596801 8162 solver.cpp:245] Train net output #81: loss2/loss06 = 1.70423 (* 0.0272727 = 0.0464789 loss)
I0429 10:41:47.596817 8162 solver.cpp:245] Train net output #82: loss2/loss07 = 0.862366 (* 0.0272727 = 0.0235191 loss)
I0429 10:41:47.596830 8162 solver.cpp:245] Train net output #83: loss2/loss08 = 0.969216 (* 0.0272727 = 0.0264332 loss)
I0429 10:41:47.596845 8162 solver.cpp:245] Train net output #84: loss2/loss09 = 0.029587 (* 0.0272727 = 0.000806917 loss)
I0429 10:41:47.596860 8162 solver.cpp:245] Train net output #85: loss2/loss10 = 0.00285194 (* 0.0272727 = 7.77803e-05 loss)
I0429 10:41:47.596875 8162 solver.cpp:245] Train net output #86: loss2/loss11 = 0.00136433 (* 0.0272727 = 3.7209e-05 loss)
I0429 10:41:47.596890 8162 solver.cpp:245] Train net output #87: loss2/loss12 = 0.000813917 (* 0.0272727 = 2.21977e-05 loss)
I0429 10:41:47.596904 8162 solver.cpp:245] Train net output #88: loss2/loss13 = 0.000713847 (* 0.0272727 = 1.94685e-05 loss)
I0429 10:41:47.596920 8162 solver.cpp:245] Train net output #89: loss2/loss14 = 0.000535049 (* 0.0272727 = 1.45922e-05 loss)
I0429 10:41:47.596933 8162 solver.cpp:245] Train net output #90: loss2/loss15 = 0.00044997 (* 0.0272727 = 1.22719e-05 loss)
I0429 10:41:47.596948 8162 solver.cpp:245] Train net output #91: loss2/loss16 = 0.000254286 (* 0.0272727 = 6.93506e-06 loss)
I0429 10:41:47.596963 8162 solver.cpp:245] Train net output #92: loss2/loss17 = 0.000261944 (* 0.0272727 = 7.14392e-06 loss)
I0429 10:41:47.596977 8162 solver.cpp:245] Train net output #93: loss2/loss18 = 0.000190315 (* 0.0272727 = 5.19041e-06 loss)
I0429 10:41:47.596992 8162 solver.cpp:245] Train net output #94: loss2/loss19 = 0.000255818 (* 0.0272727 = 6.97685e-06 loss)
I0429 10:41:47.597007 8162 solver.cpp:245] Train net output #95: loss2/loss20 = 0.000234147 (* 0.0272727 = 6.38584e-06 loss)
I0429 10:41:47.597021 8162 solver.cpp:245] Train net output #96: loss2/loss21 = 0.000325569 (* 0.0272727 = 8.87915e-06 loss)
I0429 10:41:47.597035 8162 solver.cpp:245] Train net output #97: loss2/loss22 = 0.000301468 (* 0.0272727 = 8.22186e-06 loss)
I0429 10:41:47.597048 8162 solver.cpp:245] Train net output #98: loss3/accuracy = 0.468085
I0429 10:41:47.597061 8162 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.5
I0429 10:41:47.597074 8162 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.625
I0429 10:41:47.597085 8162 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.625
I0429 10:41:47.597097 8162 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.375
I0429 10:41:47.597110 8162 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.5
I0429 10:41:47.597121 8162 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.5
I0429 10:41:47.597133 8162 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75
I0429 10:41:47.597146 8162 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.75
I0429 10:41:47.597157 8162 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1
I0429 10:41:47.597169 8162 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0429 10:41:47.597182 8162 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0429 10:41:47.597193 8162 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0429 10:41:47.597205 8162 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0429 10:41:47.597218 8162 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0429 10:41:47.597229 8162 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0429 10:41:47.597250 8162 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0429 10:41:47.597264 8162 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0429 10:41:47.597275 8162 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0429 10:41:47.597287 8162 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0429 10:41:47.597300 8162 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0429 10:41:47.597311 8162 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0429 10:41:47.597323 8162 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0429 10:41:47.597335 8162 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.840909
I0429 10:41:47.597347 8162 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.702128
I0429 10:41:47.597362 8162 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.51145 (* 1 = 1.51145 loss)
I0429 10:41:47.597379 8162 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.441543 (* 1 = 0.441543 loss)
I0429 10:41:47.597394 8162 solver.cpp:245] Train net output #125: loss3/loss01 = 1.54724 (* 0.0909091 = 0.140658 loss)
I0429 10:41:47.597409 8162 solver.cpp:245] Train net output #126: loss3/loss02 = 1.28031 (* 0.0909091 = 0.116392 loss)
I0429 10:41:47.597424 8162 solver.cpp:245] Train net output #127: loss3/loss03 = 1.48885 (* 0.0909091 = 0.13535 loss)
I0429 10:41:47.597437 8162 solver.cpp:245] Train net output #128: loss3/loss04 = 1.60863 (* 0.0909091 = 0.146239 loss)
I0429 10:41:47.597451 8162 solver.cpp:245] Train net output #129: loss3/loss05 = 1.50543 (* 0.0909091 = 0.136858 loss)
I0429 10:41:47.597465 8162 solver.cpp:245] Train net output #130: loss3/loss06 = 1.42646 (* 0.0909091 = 0.129678 loss)
I0429 10:41:47.597481 8162 solver.cpp:245] Train net output #131: loss3/loss07 = 0.522842 (* 0.0909091 = 0.0475311 loss)
I0429 10:41:47.597494 8162 solver.cpp:245] Train net output #132: loss3/loss08 = 0.495072 (* 0.0909091 = 0.0450065 loss)
I0429 10:41:47.597509 8162 solver.cpp:245] Train net output #133: loss3/loss09 = 0.0500759 (* 0.0909091 = 0.00455236 loss)
I0429 10:41:47.597524 8162 solver.cpp:245] Train net output #134: loss3/loss10 = 0.00865443 (* 0.0909091 = 0.000786766 loss)
I0429 10:41:47.597539 8162 solver.cpp:245] Train net output #135: loss3/loss11 = 0.00163943 (* 0.0909091 = 0.000149039 loss)
I0429 10:41:47.597553 8162 solver.cpp:245] Train net output #136: loss3/loss12 = 0.000990958 (* 0.0909091 = 9.00871e-05 loss)
I0429 10:41:47.597568 8162 solver.cpp:245] Train net output #137: loss3/loss13 = 0.000614218 (* 0.0909091 = 5.5838e-05 loss)
I0429 10:41:47.597584 8162 solver.cpp:245] Train net output #138: loss3/loss14 = 0.000297679 (* 0.0909091 = 2.70617e-05 loss)
I0429 10:41:47.597599 8162 solver.cpp:245] Train net output #139: loss3/loss15 = 0.000307238 (* 0.0909091 = 2.79308e-05 loss)
I0429 10:41:47.597612 8162 solver.cpp:245] Train net output #140: loss3/loss16 = 0.000152694 (* 0.0909091 = 1.38813e-05 loss)
I0429 10:41:47.597627 8162 solver.cpp:245] Train net output #141: loss3/loss17 = 6.07844e-05 (* 0.0909091 = 5.52586e-06 loss)
I0429 10:41:47.597642 8162 solver.cpp:245] Train net output #142: loss3/loss18 = 2.97229e-05 (* 0.0909091 = 2.70208e-06 loss)
I0429 10:41:47.597656 8162 solver.cpp:245] Train net output #143: loss3/loss19 = 1.28751e-05 (* 0.0909091 = 1.17046e-06 loss)
I0429 10:41:47.597671 8162 solver.cpp:245] Train net output #144: loss3/loss20 = 7.34642e-06 (* 0.0909091 = 6.67856e-07 loss)
I0429 10:41:47.597686 8162 solver.cpp:245] Train net output #145: loss3/loss21 = 4.03826e-06 (* 0.0909091 = 3.67114e-07 loss)
I0429 10:41:47.597699 8162 solver.cpp:245] Train net output #146: loss3/loss22 = 3.97866e-06 (* 0.0909091 = 3.61696e-07 loss)
I0429 10:41:47.597717 8162 solver.cpp:245] Train net output #147: total_accuracy = 0
I0429 10:41:47.597729 8162 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.125
I0429 10:41:47.597748 8162 solver.cpp:245] Train net output #149: total_confidence = 0.109466
I0429 10:41:47.597761 8162 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.0988563
I0429 10:41:47.597775 8162 sgd_solver.cpp:106] Iteration 14500, lr = 0.005
I0429 10:44:04.170801 8162 solver.cpp:338] Iteration 15000, Testing net (#0)
I0429 10:44:45.083016 8162 solver.cpp:393] Test loss: 3.72665
I0429 10:44:45.083163 8162 solver.cpp:406] Test net output #0: loss1/accuracy = 0.460769
I0429 10:44:45.083184 8162 solver.cpp:406] Test net output #1: loss1/accuracy01 = 0.704
I0429 10:44:45.083197 8162 solver.cpp:406] Test net output #2: loss1/accuracy02 = 0.505
I0429 10:44:45.083209 8162 solver.cpp:406] Test net output #3: loss1/accuracy03 = 0.365
I0429 10:44:45.083221 8162 solver.cpp:406] Test net output #4: loss1/accuracy04 = 0.445
I0429 10:44:45.083233 8162 solver.cpp:406] Test net output #5: loss1/accuracy05 = 0.492
I0429 10:44:45.083245 8162 solver.cpp:406] Test net output #6: loss1/accuracy06 = 0.628
I0429 10:44:45.083256 8162 solver.cpp:406] Test net output #7: loss1/accuracy07 = 0.783
I0429 10:44:45.083268 8162 solver.cpp:406] Test net output #8: loss1/accuracy08 = 0.916
I0429 10:44:45.083281 8162 solver.cpp:406] Test net output #9: loss1/accuracy09 = 0.992
I0429 10:44:45.083292 8162 solver.cpp:406] Test net output #10: loss1/accuracy10 = 0.997
I0429 10:44:45.083303 8162 solver.cpp:406] Test net output #11: loss1/accuracy11 = 0.998
I0429 10:44:45.083318 8162 solver.cpp:406] Test net output #12: loss1/accuracy12 = 0.999
I0429 10:44:45.083330 8162 solver.cpp:406] Test net output #13: loss1/accuracy13 = 0.999
I0429 10:44:45.083343 8162 solver.cpp:406] Test net output #14: loss1/accuracy14 = 0.999
I0429 10:44:45.083354 8162 solver.cpp:406] Test net output #15: loss1/accuracy15 = 1
I0429 10:44:45.083367 8162 solver.cpp:406] Test net output #16: loss1/accuracy16 = 1
I0429 10:44:45.083379 8162 solver.cpp:406] Test net output #17: loss1/accuracy17 = 1
I0429 10:44:45.083390 8162 solver.cpp:406] Test net output #18: loss1/accuracy18 = 1
I0429 10:44:45.083401 8162 solver.cpp:406] Test net output #19: loss1/accuracy19 = 1
I0429 10:44:45.083413 8162 solver.cpp:406] Test net output #20: loss1/accuracy20 = 1
I0429 10:44:45.083425 8162 solver.cpp:406] Test net output #21: loss1/accuracy21 = 1
I0429 10:44:45.083436 8162 solver.cpp:406] Test net output #22: loss1/accuracy22 = 1
I0429 10:44:45.083447 8162 solver.cpp:406] Test net output #23: loss1/accuracy_incl_empty = 0.849728
I0429 10:44:45.083459 8162 solver.cpp:406] Test net output #24: loss1/accuracy_top3 = 0.710773
I0429 10:44:45.083494 8162 solver.cpp:406] Test net output #25: loss1/cross_entropy_loss = 1.76596 (* 0.3 = 0.529788 loss)
I0429 10:44:45.083510 8162 solver.cpp:406] Test net output #26: loss1/cross_entropy_loss_incl_empty = 0.506277 (* 0.3 = 0.151883 loss)
I0429 10:44:45.083525 8162 solver.cpp:406] Test net output #27: loss1/loss01 = 1.02889 (* 0.0272727 = 0.0280607 loss)
I0429 10:44:45.083539 8162 solver.cpp:406] Test net output #28: loss1/loss02 = 1.72297 (* 0.0272727 = 0.04699 loss)
I0429 10:44:45.083554 8162 solver.cpp:406] Test net output #29: loss1/loss03 = 2.06644 (* 0.0272727 = 0.0563575 loss)
I0429 10:44:45.083567 8162 solver.cpp:406] Test net output #30: loss1/loss04 = 1.88867 (* 0.0272727 = 0.0515092 loss)
I0429 10:44:45.083580 8162 solver.cpp:406] Test net output #31: loss1/loss05 = 1.69876 (* 0.0272727 = 0.0463298 loss)
I0429 10:44:45.083595 8162 solver.cpp:406] Test net output #32: loss1/loss06 = 1.27798 (* 0.0272727 = 0.034854 loss)
I0429 10:44:45.083607 8162 solver.cpp:406] Test net output #33: loss1/loss07 = 0.728815 (* 0.0272727 = 0.0198768 loss)
I0429 10:44:45.083621 8162 solver.cpp:406] Test net output #34: loss1/loss08 = 0.296465 (* 0.0272727 = 0.00808541 loss)
I0429 10:44:45.083636 8162 solver.cpp:406] Test net output #35: loss1/loss09 = 0.0491731 (* 0.0272727 = 0.00134108 loss)
I0429 10:44:45.083650 8162 solver.cpp:406] Test net output #36: loss1/loss10 = 0.0192048 (* 0.0272727 = 0.000523768 loss)
I0429 10:44:45.083663 8162 solver.cpp:406] Test net output #37: loss1/loss11 = 0.0111619 (* 0.0272727 = 0.000304417 loss)
I0429 10:44:45.083678 8162 solver.cpp:406] Test net output #38: loss1/loss12 = 0.00752307 (* 0.0272727 = 0.000205175 loss)
I0429 10:44:45.083691 8162 solver.cpp:406] Test net output #39: loss1/loss13 = 0.00562519 (* 0.0272727 = 0.000153414 loss)
I0429 10:44:45.083729 8162 solver.cpp:406] Test net output #40: loss1/loss14 = 0.00399709 (* 0.0272727 = 0.000109012 loss)
I0429 10:44:45.083745 8162 solver.cpp:406] Test net output #41: loss1/loss15 = 0.00253362 (* 0.0272727 = 6.90986e-05 loss)
I0429 10:44:45.083758 8162 solver.cpp:406] Test net output #42: loss1/loss16 = 0.000953217 (* 0.0272727 = 2.59968e-05 loss)
I0429 10:44:45.083772 8162 solver.cpp:406] Test net output #43: loss1/loss17 = 0.000357265 (* 0.0272727 = 9.74358e-06 loss)
I0429 10:44:45.083786 8162 solver.cpp:406] Test net output #44: loss1/loss18 = 0.000266534 (* 0.0272727 = 7.2691e-06 loss)
I0429 10:44:45.083801 8162 solver.cpp:406] Test net output #45: loss1/loss19 = 0.000235358 (* 0.0272727 = 6.41885e-06 loss)
I0429 10:44:45.083813 8162 solver.cpp:406] Test net output #46: loss1/loss20 = 0.000180071 (* 0.0272727 = 4.91103e-06 loss)
I0429 10:44:45.083827 8162 solver.cpp:406] Test net output #47: loss1/loss21 = 0.000157494 (* 0.0272727 = 4.29528e-06 loss)
I0429 10:44:45.083842 8162 solver.cpp:406] Test net output #48: loss1/loss22 = 0.000114388 (* 0.0272727 = 3.11967e-06 loss)
I0429 10:44:45.083853 8162 solver.cpp:406] Test net output #49: loss2/accuracy = 0.535875
I0429 10:44:45.083865 8162 solver.cpp:406] Test net output #50: loss2/accuracy01 = 0.762
I0429 10:44:45.083878 8162 solver.cpp:406] Test net output #51: loss2/accuracy02 = 0.643
I0429 10:44:45.083889 8162 solver.cpp:406] Test net output #52: loss2/accuracy03 = 0.451
I0429 10:44:45.083900 8162 solver.cpp:406] Test net output #53: loss2/accuracy04 = 0.475
I0429 10:44:45.083911 8162 solver.cpp:406] Test net output #54: loss2/accuracy05 = 0.516
I0429 10:44:45.083923 8162 solver.cpp:406] Test net output #55: loss2/accuracy06 = 0.641
I0429 10:44:45.083935 8162 solver.cpp:406] Test net output #56: loss2/accuracy07 = 0.784
I0429 10:44:45.083947 8162 solver.cpp:406] Test net output #57: loss2/accuracy08 = 0.918
I0429 10:44:45.083958 8162 solver.cpp:406] Test net output #58: loss2/accuracy09 = 0.991
I0429 10:44:45.083967 8162 solver.cpp:406] Test net output #59: loss2/accuracy10 = 0.997
I0429 10:44:45.083974 8162 solver.cpp:406] Test net output #60: loss2/accuracy11 = 0.997
I0429 10:44:45.083982 8162 solver.cpp:406] Test net output #61: loss2/accuracy12 = 0.999
I0429 10:44:45.083995 8162 solver.cpp:406] Test net output #62: loss2/accuracy13 = 0.999
I0429 10:44:45.084007 8162 solver.cpp:406] Test net output #63: loss2/accuracy14 = 0.999
I0429 10:44:45.084018 8162 solver.cpp:406] Test net output #64: loss2/accuracy15 = 1
I0429 10:44:45.084029 8162 solver.cpp:406] Test net output #65: loss2/accuracy16 = 1
I0429 10:44:45.084041 8162 solver.cpp:406] Test net output #66: loss2/accuracy17 = 1
I0429 10:44:45.084053 8162 solver.cpp:406] Test net output #67: loss2/accuracy18 = 1
I0429 10:44:45.084064 8162 solver.cpp:406] Test net output #68: loss2/accuracy19 = 1
I0429 10:44:45.084074 8162 solver.cpp:406] Test net output #69: loss2/accuracy20 = 1
I0429 10:44:45.084085 8162 solver.cpp:406] Test net output #70: loss2/accuracy21 = 1
I0429 10:44:45.084096 8162 solver.cpp:406] Test net output #71: loss2/accuracy22 = 1
I0429 10:44:45.084108 8162 solver.cpp:406] Test net output #72: loss2/accuracy_incl_empty = 0.869184
I0429 10:44:45.084120 8162 solver.cpp:406] Test net output #73: loss2/accuracy_top3 = 0.777055
I0429 10:44:45.084133 8162 solver.cpp:406] Test net output #74: loss2/cross_entropy_loss = 1.53171 (* 0.3 = 0.459513 loss)
I0429 10:44:45.084146 8162 solver.cpp:406] Test net output #75: loss2/cross_entropy_loss_incl_empty = 0.443319 (* 0.3 = 0.132996 loss)
I0429 10:44:45.084161 8162 solver.cpp:406] Test net output #76: loss2/loss01 = 0.896247 (* 0.0272727 = 0.0244431 loss)
I0429 10:44:45.084178 8162 solver.cpp:406] Test net output #77: loss2/loss02 = 1.32558 (* 0.0272727 = 0.0361522 loss)
I0429 10:44:45.084204 8162 solver.cpp:406] Test net output #78: loss2/loss03 = 1.86532 (* 0.0272727 = 0.0508724 loss)
I0429 10:44:45.084219 8162 solver.cpp:406] Test net output #79: loss2/loss04 = 1.76871 (* 0.0272727 = 0.0482375 loss)
I0429 10:44:45.084233 8162 solver.cpp:406] Test net output #80: loss2/loss05 = 1.6021 (* 0.0272727 = 0.0436937 loss)
I0429 10:44:45.084246 8162 solver.cpp:406] Test net output #81: loss2/loss06 = 1.19791 (* 0.0272727 = 0.0326702 loss)
I0429 10:44:45.084260 8162 solver.cpp:406] Test net output #82: loss2/loss07 = 0.694464 (* 0.0272727 = 0.0189399 loss)
I0429 10:44:45.084275 8162 solver.cpp:406] Test net output #83: loss2/loss08 = 0.288321 (* 0.0272727 = 0.0078633 loss)
I0429 10:44:45.084288 8162 solver.cpp:406] Test net output #84: loss2/loss09 = 0.0511142 (* 0.0272727 = 0.00139402 loss)
I0429 10:44:45.084302 8162 solver.cpp:406] Test net output #85: loss2/loss10 = 0.0203507 (* 0.0272727 = 0.000555018 loss)
I0429 10:44:45.084316 8162 solver.cpp:406] Test net output #86: loss2/loss11 = 0.0127052 (* 0.0272727 = 0.000346504 loss)
I0429 10:44:45.084331 8162 solver.cpp:406] Test net output #87: loss2/loss12 = 0.00787655 (* 0.0272727 = 0.000214815 loss)
I0429 10:44:45.084343 8162 solver.cpp:406] Test net output #88: loss2/loss13 = 0.00553126 (* 0.0272727 = 0.000150853 loss)
I0429 10:44:45.084357 8162 solver.cpp:406] Test net output #89: loss2/loss14 = 0.00398222 (* 0.0272727 = 0.000108606 loss)
I0429 10:44:45.084374 8162 solver.cpp:406] Test net output #90: loss2/loss15 = 0.00233562 (* 0.0272727 = 6.36986e-05 loss)
I0429 10:44:45.084388 8162 solver.cpp:406] Test net output #91: loss2/loss16 = 0.000798364 (* 0.0272727 = 2.17736e-05 loss)
I0429 10:44:45.084403 8162 solver.cpp:406] Test net output #92: loss2/loss17 = 0.00041479 (* 0.0272727 = 1.13124e-05 loss)
I0429 10:44:45.084416 8162 solver.cpp:406] Test net output #93: loss2/loss18 = 0.000318883 (* 0.0272727 = 8.6968e-06 loss)
I0429 10:44:45.084429 8162 solver.cpp:406] Test net output #94: loss2/loss19 = 0.000260432 (* 0.0272727 = 7.1027e-06 loss)
I0429 10:44:45.084444 8162 solver.cpp:406] Test net output #95: loss2/loss20 = 0.000185754 (* 0.0272727 = 5.06602e-06 loss)
I0429 10:44:45.084456 8162 solver.cpp:406] Test net output #96: loss2/loss21 = 0.000151327 (* 0.0272727 = 4.12709e-06 loss)
I0429 10:44:45.084470 8162 solver.cpp:406] Test net output #97: loss2/loss22 = 0.000102575 (* 0.0272727 = 2.79751e-06 loss)
I0429 10:44:45.084482 8162 solver.cpp:406] Test net output #98: loss3/accuracy = 0.7138
I0429 10:44:45.084493 8162 solver.cpp:406] Test net output #99: loss3/accuracy01 = 0.828
I0429 10:44:45.084506 8162 solver.cpp:406] Test net output #100: loss3/accuracy02 = 0.765
I0429 10:44:45.084517 8162 solver.cpp:406] Test net output #101: loss3/accuracy03 = 0.695
I0429 10:44:45.084528 8162 solver.cpp:406] Test net output #102: loss3/accuracy04 = 0.645
I0429 10:44:45.084540 8162 solver.cpp:406] Test net output #103: loss3/accuracy05 = 0.643
I0429 10:44:45.084553 8162 solver.cpp:406] Test net output #104: loss3/accuracy06 = 0.723
I0429 10:44:45.084563 8162 solver.cpp:406] Test net output #105: loss3/accuracy07 = 0.841
I0429 10:44:45.084575 8162 solver.cpp:406] Test net output #106: loss3/accuracy08 = 0.931
I0429 10:44:45.084586 8162 solver.cpp:406] Test net output #107: loss3/accuracy09 = 0.989
I0429 10:44:45.084599 8162 solver.cpp:406] Test net output #108: loss3/accuracy10 = 0.997
I0429 10:44:45.084609 8162 solver.cpp:406] Test net output #109: loss3/accuracy11 = 0.998
I0429 10:44:45.084621 8162 solver.cpp:406] Test net output #110: loss3/accuracy12 = 0.998
I0429 10:44:45.084633 8162 solver.cpp:406] Test net output #111: loss3/accuracy13 = 0.999
I0429 10:44:45.084645 8162 solver.cpp:406] Test net output #112: loss3/accuracy14 = 0.999
I0429 10:44:45.084656 8162 solver.cpp:406] Test net output #113: loss3/accuracy15 = 0.999
I0429 10:44:45.084668 8162 solver.cpp:406] Test net output #114: loss3/accuracy16 = 1
I0429 10:44:45.084691 8162 solver.cpp:406] Test net output #115: loss3/accuracy17 = 1
I0429 10:44:45.084703 8162 solver.cpp:406] Test net output #116: loss3/accuracy18 = 1
I0429 10:44:45.084715 8162 solver.cpp:406] Test net output #117: loss3/accuracy19 = 1
I0429 10:44:45.084727 8162 solver.cpp:406] Test net output #118: loss3/accuracy20 = 1
I0429 10:44:45.084738 8162 solver.cpp:406] Test net output #119: loss3/accuracy21 = 1
I0429 10:44:45.084749 8162 solver.cpp:406] Test net output #120: loss3/accuracy22 = 1
I0429 10:44:45.084760 8162 solver.cpp:406] Test net output #121: loss3/accuracy_incl_empty = 0.915592
I0429 10:44:45.084772 8162 solver.cpp:406] Test net output #122: loss3/accuracy_top3 = 0.865855
I0429 10:44:45.084785 8162 solver.cpp:406] Test net output #123: loss3/cross_entropy_loss = 0.982323 (* 1 = 0.982323 loss)
I0429 10:44:45.084800 8162 solver.cpp:406] Test net output #124: loss3/cross_entropy_loss_incl_empty = 0.295382 (* 1 = 0.295382 loss)
I0429 10:44:45.084813 8162 solver.cpp:406] Test net output #125: loss3/loss01 = 0.63677 (* 0.0909091 = 0.0578881 loss)
I0429 10:44:45.084827 8162 solver.cpp:406] Test net output #126: loss3/loss02 = 0.821935 (* 0.0909091 = 0.0747214 loss)
I0429 10:44:45.084841 8162 solver.cpp:406] Test net output #127: loss3/loss03 = 1.12771 (* 0.0909091 = 0.102519 loss)
I0429 10:44:45.084854 8162 solver.cpp:406] Test net output #128: loss3/loss04 = 1.23389 (* 0.0909091 = 0.112172 loss)
I0429 10:44:45.084868 8162 solver.cpp:406] Test net output #129: loss3/loss05 = 1.19453 (* 0.0909091 = 0.108594 loss)
I0429 10:44:45.084882 8162 solver.cpp:406] Test net output #130: loss3/loss06 = 0.876586 (* 0.0909091 = 0.0796896 loss)
I0429 10:44:45.084894 8162 solver.cpp:406] Test net output #131: loss3/loss07 = 0.512475 (* 0.0909091 = 0.0465886 loss)
I0429 10:44:45.084908 8162 solver.cpp:406] Test net output #132: loss3/loss08 = 0.230969 (* 0.0909091 = 0.0209972 loss)
I0429 10:44:45.084923 8162 solver.cpp:406] Test net output #133: loss3/loss09 = 0.0527101 (* 0.0909091 = 0.00479183 loss)
I0429 10:44:45.084936 8162 solver.cpp:406] Test net output #134: loss3/loss10 = 0.0226779 (* 0.0909091 = 0.00206163 loss)
I0429 10:44:45.084950 8162 solver.cpp:406] Test net output #135: loss3/loss11 = 0.0141328 (* 0.0909091 = 0.0012848 loss)
I0429 10:44:45.084964 8162 solver.cpp:406] Test net output #136: loss3/loss12 = 0.00993005 (* 0.0909091 = 0.000902732 loss)
I0429 10:44:45.084977 8162 solver.cpp:406] Test net output #137: loss3/loss13 = 0.00805752 (* 0.0909091 = 0.000732502 loss)
I0429 10:44:45.084991 8162 solver.cpp:406] Test net output #138: loss3/loss14 = 0.00599082 (* 0.0909091 = 0.00054462 loss)
I0429 10:44:45.085005 8162 solver.cpp:406] Test net output #139: loss3/loss15 = 0.00416195 (* 0.0909091 = 0.000378359 loss)
I0429 10:44:45.085019 8162 solver.cpp:406] Test net output #140: loss3/loss16 = 0.00148153 (* 0.0909091 = 0.000134685 loss)
I0429 10:44:45.085032 8162 solver.cpp:406] Test net output #141: loss3/loss17 = 0.000580363 (* 0.0909091 = 5.27603e-05 loss)
I0429 10:44:45.085047 8162 solver.cpp:406] Test net output #142: loss3/loss18 = 0.000428617 (* 0.0909091 = 3.89652e-05 loss)
I0429 10:44:45.085060 8162 solver.cpp:406] Test net output #143: loss3/loss19 = 0.000283903 (* 0.0909091 = 2.58093e-05 loss)
I0429 10:44:45.085073 8162 solver.cpp:406] Test net output #144: loss3/loss20 = 0.000213059 (* 0.0909091 = 1.9369e-05 loss)
I0429 10:44:45.085088 8162 solver.cpp:406] Test net output #145: loss3/loss21 = 0.000191408 (* 0.0909091 = 1.74008e-05 loss)
I0429 10:44:45.085101 8162 solver.cpp:406] Test net output #146: loss3/loss22 = 0.000142797 (* 0.0909091 = 1.29816e-05 loss)
I0429 10:44:45.085114 8162 solver.cpp:406] Test net output #147: total_accuracy = 0.315
I0429 10:44:45.085124 8162 solver.cpp:406] Test net output #148: total_accuracy_not_rec = 0.288
I0429 10:44:45.085135 8162 solver.cpp:406] Test net output #149: total_confidence = 0.252996
I0429 10:44:45.085156 8162 solver.cpp:406] Test net output #150: total_confidence_not_rec = 0.218037
I0429 10:44:45.085172 8162 solver.cpp:338] Iteration 15000, Testing net (#1)
I0429 10:45:26.034320 8162 solver.cpp:393] Test loss: 4.64989
I0429 10:45:26.034438 8162 solver.cpp:406] Test net output #0: loss1/accuracy = 0.431078
I0429 10:45:26.034469 8162 solver.cpp:406] Test net output #1: loss1/accuracy01 = 0.666
I0429 10:45:26.034494 8162 solver.cpp:406] Test net output #2: loss1/accuracy02 = 0.443
I0429 10:45:26.034518 8162 solver.cpp:406] Test net output #3: loss1/accuracy03 = 0.389
I0429 10:45:26.034539 8162 solver.cpp:406] Test net output #4: loss1/accuracy04 = 0.409
I0429 10:45:26.034564 8162 solver.cpp:406] Test net output #5: loss1/accuracy05 = 0.462
I0429 10:45:26.034590 8162 solver.cpp:406] Test net output #6: loss1/accuracy06 = 0.576
I0429 10:45:26.034612 8162 solver.cpp:406] Test net output #7: loss1/accuracy07 = 0.679
I0429 10:45:26.034634 8162 solver.cpp:406] Test net output #8: loss1/accuracy08 = 0.828
I0429 10:45:26.034657 8162 solver.cpp:406] Test net output #9: loss1/accuracy09 = 0.902
I0429 10:45:26.034678 8162 solver.cpp:406] Test net output #10: loss1/accuracy10 = 0.928
I0429 10:45:26.034700 8162 solver.cpp:406] Test net output #11: loss1/accuracy11 = 0.939
I0429 10:45:26.034723 8162 solver.cpp:406] Test net output #12: loss1/accuracy12 = 0.949
I0429 10:45:26.034745 8162 solver.cpp:406] Test net output #13: loss1/accuracy13 = 0.96
I0429 10:45:26.034767 8162 solver.cpp:406] Test net output #14: loss1/accuracy14 = 0.968
I0429 10:45:26.034790 8162 solver.cpp:406] Test net output #15: loss1/accuracy15 = 0.976
I0429 10:45:26.034813 8162 solver.cpp:406] Test net output #16: loss1/accuracy16 = 0.984
I0429 10:45:26.034834 8162 solver.cpp:406] Test net output #17: loss1/accuracy17 = 0.988
I0429 10:45:26.034857 8162 solver.cpp:406] Test net output #18: loss1/accuracy18 = 0.993
I0429 10:45:26.034878 8162 solver.cpp:406] Test net output #19: loss1/accuracy19 = 0.996
I0429 10:45:26.034900 8162 solver.cpp:406] Test net output #20: loss1/accuracy20 = 0.997
I0429 10:45:26.034922 8162 solver.cpp:406] Test net output #21: loss1/accuracy21 = 0.999
I0429 10:45:26.034945 8162 solver.cpp:406] Test net output #22: loss1/accuracy22 = 0.999
I0429 10:45:26.034970 8162 solver.cpp:406] Test net output #23: loss1/accuracy_incl_empty = 0.815046
I0429 10:45:26.034994 8162 solver.cpp:406] Test net output #24: loss1/accuracy_top3 = 0.681523
I0429 10:45:26.035022 8162 solver.cpp:406] Test net output #25: loss1/cross_entropy_loss = 1.88692 (* 0.3 = 0.566077 loss)
I0429 10:45:26.035050 8162 solver.cpp:406] Test net output #26: loss1/cross_entropy_loss_incl_empty = 0.632783 (* 0.3 = 0.189835 loss)
I0429 10:45:26.035078 8162 solver.cpp:406] Test net output #27: loss1/loss01 = 1.19748 (* 0.0272727 = 0.0326587 loss)
I0429 10:45:26.035104 8162 solver.cpp:406] Test net output #28: loss1/loss02 = 1.86575 (* 0.0272727 = 0.0508841 loss)
I0429 10:45:26.035126 8162 solver.cpp:406] Test net output #29: loss1/loss03 = 2.13265 (* 0.0272727 = 0.0581632 loss)
I0429 10:45:26.035151 8162 solver.cpp:406] Test net output #30: loss1/loss04 = 1.96682 (* 0.0272727 = 0.0536406 loss)
I0429 10:45:26.035176 8162 solver.cpp:406] Test net output #31: loss1/loss05 = 1.77095 (* 0.0272727 = 0.0482987 loss)
I0429 10:45:26.035203 8162 solver.cpp:406] Test net output #32: loss1/loss06 = 1.51242 (* 0.0272727 = 0.0412477 loss)
I0429 10:45:26.035230 8162 solver.cpp:406] Test net output #33: loss1/loss07 = 1.06418 (* 0.0272727 = 0.0290231 loss)
I0429 10:45:26.035256 8162 solver.cpp:406] Test net output #34: loss1/loss08 = 0.624088 (* 0.0272727 = 0.0170206 loss)
I0429 10:45:26.035282 8162 solver.cpp:406] Test net output #35: loss1/loss09 = 0.373448 (* 0.0272727 = 0.0101849 loss)
I0429 10:45:26.035310 8162 solver.cpp:406] Test net output #36: loss1/loss10 = 0.276639 (* 0.0272727 = 0.0075447 loss)
I0429 10:45:26.035342 8162 solver.cpp:406] Test net output #37: loss1/loss11 = 0.225857 (* 0.0272727 = 0.00615974 loss)
I0429 10:45:26.035369 8162 solver.cpp:406] Test net output #38: loss1/loss12 = 0.188445 (* 0.0272727 = 0.00513942 loss)
I0429 10:45:26.035420 8162 solver.cpp:406] Test net output #39: loss1/loss13 = 0.150508 (* 0.0272727 = 0.00410477 loss)
I0429 10:45:26.035449 8162 solver.cpp:406] Test net output #40: loss1/loss14 = 0.123068 (* 0.0272727 = 0.0033564 loss)
I0429 10:45:26.035500 8162 solver.cpp:406] Test net output #41: loss1/loss15 = 0.0897324 (* 0.0272727 = 0.00244725 loss)
I0429 10:45:26.035527 8162 solver.cpp:406] Test net output #42: loss1/loss16 = 0.0622505 (* 0.0272727 = 0.00169774 loss)
I0429 10:45:26.035554 8162 solver.cpp:406] Test net output #43: loss1/loss17 = 0.0541493 (* 0.0272727 = 0.0014768 loss)
I0429 10:45:26.035580 8162 solver.cpp:406] Test net output #44: loss1/loss18 = 0.0307022 (* 0.0272727 = 0.000837333 loss)
I0429 10:45:26.035609 8162 solver.cpp:406] Test net output #45: loss1/loss19 = 0.0235358 (* 0.0272727 = 0.000641884 loss)
I0429 10:45:26.035634 8162 solver.cpp:406] Test net output #46: loss1/loss20 = 0.0144315 (* 0.0272727 = 0.000393587 loss)
I0429 10:45:26.035660 8162 solver.cpp:406] Test net output #47: loss1/loss21 = 0.00510925 (* 0.0272727 = 0.000139343 loss)
I0429 10:45:26.035687 8162 solver.cpp:406] Test net output #48: loss1/loss22 = 0.00635697 (* 0.0272727 = 0.000173372 loss)
I0429 10:45:26.035709 8162 solver.cpp:406] Test net output #49: loss2/accuracy = 0.495596
I0429 10:45:26.035732 8162 solver.cpp:406] Test net output #50: loss2/accuracy01 = 0.72
I0429 10:45:26.035753 8162 solver.cpp:406] Test net output #51: loss2/accuracy02 = 0.57
I0429 10:45:26.035774 8162 solver.cpp:406] Test net output #52: loss2/accuracy03 = 0.423
I0429 10:45:26.035796 8162 solver.cpp:406] Test net output #53: loss2/accuracy04 = 0.436
I0429 10:45:26.035818 8162 solver.cpp:406] Test net output #54: loss2/accuracy05 = 0.475
I0429 10:45:26.035840 8162 solver.cpp:406] Test net output #55: loss2/accuracy06 = 0.608
I0429 10:45:26.035862 8162 solver.cpp:406] Test net output #56: loss2/accuracy07 = 0.692
I0429 10:45:26.035883 8162 solver.cpp:406] Test net output #57: loss2/accuracy08 = 0.828
I0429 10:45:26.035904 8162 solver.cpp:406] Test net output #58: loss2/accuracy09 = 0.904
I0429 10:45:26.035926 8162 solver.cpp:406] Test net output #59: loss2/accuracy10 = 0.924
I0429 10:45:26.035946 8162 solver.cpp:406] Test net output #60: loss2/accuracy11 = 0.938
I0429 10:45:26.035967 8162 solver.cpp:406] Test net output #61: loss2/accuracy12 = 0.951
I0429 10:45:26.035989 8162 solver.cpp:406] Test net output #62: loss2/accuracy13 = 0.962
I0429 10:45:26.036010 8162 solver.cpp:406] Test net output #63: loss2/accuracy14 = 0.967
I0429 10:45:26.036032 8162 solver.cpp:406] Test net output #64: loss2/accuracy15 = 0.976
I0429 10:45:26.036054 8162 solver.cpp:406] Test net output #65: loss2/accuracy16 = 0.984
I0429 10:45:26.036075 8162 solver.cpp:406] Test net output #66: loss2/accuracy17 = 0.988
I0429 10:45:26.036095 8162 solver.cpp:406] Test net output #67: loss2/accuracy18 = 0.993
I0429 10:45:26.036118 8162 solver.cpp:406] Test net output #68: loss2/accuracy19 = 0.996
I0429 10:45:26.036139 8162 solver.cpp:406] Test net output #69: loss2/accuracy20 = 0.997
I0429 10:45:26.036161 8162 solver.cpp:406] Test net output #70: loss2/accuracy21 = 0.999
I0429 10:45:26.036182 8162 solver.cpp:406] Test net output #71: loss2/accuracy22 = 0.999
I0429 10:45:26.036204 8162 solver.cpp:406] Test net output #72: loss2/accuracy_incl_empty = 0.832274
I0429 10:45:26.036226 8162 solver.cpp:406] Test net output #73: loss2/accuracy_top3 = 0.735476
I0429 10:45:26.036248 8162 solver.cpp:406] Test net output #74: loss2/cross_entropy_loss = 1.6957 (* 0.3 = 0.50871 loss)
I0429 10:45:26.036279 8162 solver.cpp:406] Test net output #75: loss2/cross_entropy_loss_incl_empty = 0.576332 (* 0.3 = 0.172899 loss)
I0429 10:45:26.036309 8162 solver.cpp:406] Test net output #76: loss2/loss01 = 1.04111 (* 0.0272727 = 0.0283938 loss)
I0429 10:45:26.036334 8162 solver.cpp:406] Test net output #77: loss2/loss02 = 1.48716 (* 0.0272727 = 0.0405589 loss)
I0429 10:45:26.036382 8162 solver.cpp:406] Test net output #78: loss2/loss03 = 1.9628 (* 0.0272727 = 0.0535308 loss)
I0429 10:45:26.036411 8162 solver.cpp:406] Test net output #79: loss2/loss04 = 1.84372 (* 0.0272727 = 0.0502833 loss)
I0429 10:45:26.036435 8162 solver.cpp:406] Test net output #80: loss2/loss05 = 1.70549 (* 0.0272727 = 0.0465135 loss)
I0429 10:45:26.036461 8162 solver.cpp:406] Test net output #81: loss2/loss06 = 1.4235 (* 0.0272727 = 0.0388228 loss)
I0429 10:45:26.036486 8162 solver.cpp:406] Test net output #82: loss2/loss07 = 1.02761 (* 0.0272727 = 0.0280258 loss)
I0429 10:45:26.036516 8162 solver.cpp:406] Test net output #83: loss2/loss08 = 0.612296 (* 0.0272727 = 0.016699 loss)
I0429 10:45:26.036543 8162 solver.cpp:406] Test net output #84: loss2/loss09 = 0.370358 (* 0.0272727 = 0.0101007 loss)
I0429 10:45:26.036569 8162 solver.cpp:406] Test net output #85: loss2/loss10 = 0.277947 (* 0.0272727 = 0.00758037 loss)
I0429 10:45:26.036594 8162 solver.cpp:406] Test net output #86: loss2/loss11 = 0.229408 (* 0.0272727 = 0.00625659 loss)
I0429 10:45:26.036622 8162 solver.cpp:406] Test net output #87: loss2/loss12 = 0.19129 (* 0.0272727 = 0.00521699 loss)
I0429 10:45:26.036648 8162 solver.cpp:406] Test net output #88: loss2/loss13 = 0.150109 (* 0.0272727 = 0.00409388 loss)
I0429 10:45:26.036674 8162 solver.cpp:406] Test net output #89: loss2/loss14 = 0.126442 (* 0.0272727 = 0.00344843 loss)
I0429 10:45:26.036698 8162 solver.cpp:406] Test net output #90: loss2/loss15 = 0.0963027 (* 0.0272727 = 0.00262644 loss)
I0429 10:45:26.036725 8162 solver.cpp:406] Test net output #91: loss2/loss16 = 0.0662522 (* 0.0272727 = 0.00180688 loss)
I0429 10:45:26.036751 8162 solver.cpp:406] Test net output #92: loss2/loss17 = 0.0603613 (* 0.0272727 = 0.00164622 loss)
I0429 10:45:26.036777 8162 solver.cpp:406] Test net output #93: loss2/loss18 = 0.0341497 (* 0.0272727 = 0.000931356 loss)
I0429 10:45:26.036804 8162 solver.cpp:406] Test net output #94: loss2/loss19 = 0.026249 (* 0.0272727 = 0.000715883 loss)
I0429 10:45:26.036829 8162 solver.cpp:406] Test net output #95: loss2/loss20 = 0.016913 (* 0.0272727 = 0.000461262 loss)
I0429 10:45:26.036854 8162 solver.cpp:406] Test net output #96: loss2/loss21 = 0.00637283 (* 0.0272727 = 0.000173804 loss)
I0429 10:45:26.036881 8162 solver.cpp:406] Test net output #97: loss2/loss22 = 0.00796891 (* 0.0272727 = 0.000217334 loss)
I0429 10:45:26.036902 8162 solver.cpp:406] Test net output #98: loss3/accuracy = 0.668231
I0429 10:45:26.036923 8162 solver.cpp:406] Test net output #99: loss3/accuracy01 = 0.806
I0429 10:45:26.036945 8162 solver.cpp:406] Test net output #100: loss3/accuracy02 = 0.731
I0429 10:45:26.036967 8162 solver.cpp:406] Test net output #101: loss3/accuracy03 = 0.658
I0429 10:45:26.036986 8162 solver.cpp:406] Test net output #102: loss3/accuracy04 = 0.648
I0429 10:45:26.037008 8162 solver.cpp:406] Test net output #103: loss3/accuracy05 = 0.608
I0429 10:45:26.037029 8162 solver.cpp:406] Test net output #104: loss3/accuracy06 = 0.656
I0429 10:45:26.037050 8162 solver.cpp:406] Test net output #105: loss3/accuracy07 = 0.758
I0429 10:45:26.037070 8162 solver.cpp:406] Test net output #106: loss3/accuracy08 = 0.847
I0429 10:45:26.037091 8162 solver.cpp:406] Test net output #107: loss3/accuracy09 = 0.907
I0429 10:45:26.037113 8162 solver.cpp:406] Test net output #108: loss3/accuracy10 = 0.936
I0429 10:45:26.037133 8162 solver.cpp:406] Test net output #109: loss3/accuracy11 = 0.942
I0429 10:45:26.037153 8162 solver.cpp:406] Test net output #110: loss3/accuracy12 = 0.95
I0429 10:45:26.037175 8162 solver.cpp:406] Test net output #111: loss3/accuracy13 = 0.962
I0429 10:45:26.037196 8162 solver.cpp:406] Test net output #112: loss3/accuracy14 = 0.969
I0429 10:45:26.037217 8162 solver.cpp:406] Test net output #113: loss3/accuracy15 = 0.977
I0429 10:45:26.037237 8162 solver.cpp:406] Test net output #114: loss3/accuracy16 = 0.985
I0429 10:45:26.037274 8162 solver.cpp:406] Test net output #115: loss3/accuracy17 = 0.988
I0429 10:45:26.037297 8162 solver.cpp:406] Test net output #116: loss3/accuracy18 = 0.993
I0429 10:45:26.037318 8162 solver.cpp:406] Test net output #117: loss3/accuracy19 = 0.996
I0429 10:45:26.037339 8162 solver.cpp:406] Test net output #118: loss3/accuracy20 = 0.997
I0429 10:45:26.037361 8162 solver.cpp:406] Test net output #119: loss3/accuracy21 = 0.999
I0429 10:45:26.037381 8162 solver.cpp:406] Test net output #120: loss3/accuracy22 = 0.999
I0429 10:45:26.037402 8162 solver.cpp:406] Test net output #121: loss3/accuracy_incl_empty = 0.879001
I0429 10:45:26.037427 8162 solver.cpp:406] Test net output #122: loss3/accuracy_top3 = 0.827764
I0429 10:45:26.037454 8162 solver.cpp:406] Test net output #123: loss3/cross_entropy_loss = 1.1715 (* 1 = 1.1715 loss)
I0429 10:45:26.037479 8162 solver.cpp:406] Test net output #124: loss3/cross_entropy_loss_incl_empty = 0.433693 (* 1 = 0.433693 loss)
I0429 10:45:26.037505 8162 solver.cpp:406] Test net output #125: loss3/loss01 = 0.778653 (* 0.0909091 = 0.0707867 loss)
I0429 10:45:26.037531 8162 solver.cpp:406] Test net output #126: loss3/loss02 = 1.01186 (* 0.0909091 = 0.0919875 loss)
I0429 10:45:26.037559 8162 solver.cpp:406] Test net output #127: loss3/loss03 = 1.27095 (* 0.0909091 = 0.115541 loss)
I0429 10:45:26.037587 8162 solver.cpp:406] Test net output #128: loss3/loss04 = 1.27587 (* 0.0909091 = 0.115988 loss)
I0429 10:45:26.037613 8162 solver.cpp:406] Test net output #129: loss3/loss05 = 1.31285 (* 0.0909091 = 0.11935 loss)
I0429 10:45:26.037639 8162 solver.cpp:406] Test net output #130: loss3/loss06 = 1.18128 (* 0.0909091 = 0.107389 loss)
I0429 10:45:26.037664 8162 solver.cpp:406] Test net output #131: loss3/loss07 = 0.824146 (* 0.0909091 = 0.0749224 loss)
I0429 10:45:26.037690 8162 solver.cpp:406] Test net output #132: loss3/loss08 = 0.534049 (* 0.0909091 = 0.0485499 loss)
I0429 10:45:26.037715 8162 solver.cpp:406] Test net output #133: loss3/loss09 = 0.342905 (* 0.0909091 = 0.0311732 loss)
I0429 10:45:26.037741 8162 solver.cpp:406] Test net output #134: loss3/loss10 = 0.252595 (* 0.0909091 = 0.0229632 loss)
I0429 10:45:26.037768 8162 solver.cpp:406] Test net output #135: loss3/loss11 = 0.215273 (* 0.0909091 = 0.0195703 loss)
I0429 10:45:26.037792 8162 solver.cpp:406] Test net output #136: loss3/loss12 = 0.18133 (* 0.0909091 = 0.0164846 loss)
I0429 10:45:26.037818 8162 solver.cpp:406] Test net output #137: loss3/loss13 = 0.147832 (* 0.0909091 = 0.0134393 loss)
I0429 10:45:26.037845 8162 solver.cpp:406] Test net output #138: loss3/loss14 = 0.115306 (* 0.0909091 = 0.0104824 loss)
I0429 10:45:26.037870 8162 solver.cpp:406] Test net output #139: loss3/loss15 = 0.0873321 (* 0.0909091 = 0.00793928 loss)
I0429 10:45:26.037895 8162 solver.cpp:406] Test net output #140: loss3/loss16 = 0.0597246 (* 0.0909091 = 0.00542951 loss)
I0429 10:45:26.037921 8162 solver.cpp:406] Test net output #141: loss3/loss17 = 0.0508364 (* 0.0909091 = 0.00462149 loss)
I0429 10:45:26.037946 8162 solver.cpp:406] Test net output #142: loss3/loss18 = 0.0302901 (* 0.0909091 = 0.00275365 loss)
I0429 10:45:26.037971 8162 solver.cpp:406] Test net output #143: loss3/loss19 = 0.0237214 (* 0.0909091 = 0.00215649 loss)
I0429 10:45:26.037997 8162 solver.cpp:406] Test net output #144: loss3/loss20 = 0.0125892 (* 0.0909091 = 0.00114447 loss)
I0429 10:45:26.038022 8162 solver.cpp:406] Test net output #145: loss3/loss21 = 0.00574719 (* 0.0909091 = 0.000522471 loss)
I0429 10:45:26.038048 8162 solver.cpp:406] Test net output #146: loss3/loss22 = 0.00720939 (* 0.0909091 = 0.000655399 loss)
I0429 10:45:26.038070 8162 solver.cpp:406] Test net output #147: total_accuracy = 0.283
I0429 10:45:26.038092 8162 solver.cpp:406] Test net output #148: total_accuracy_not_rec = 0.263
I0429 10:45:26.038112 8162 solver.cpp:406] Test net output #149: total_confidence = 0.228579
I0429 10:45:26.038148 8162 solver.cpp:406] Test net output #150: total_confidence_not_rec = 0.202016
I0429 10:45:26.217308 8162 solver.cpp:229] Iteration 15000, loss = 5.21796
I0429 10:45:26.217365 8162 solver.cpp:245] Train net output #0: loss1/accuracy = 0.380952
I0429 10:45:26.217392 8162 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.5
I0429 10:45:26.217418 8162 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5
I0429 10:45:26.217442 8162 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375
I0429 10:45:26.217464 8162 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375
I0429 10:45:26.217488 8162 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.625
I0429 10:45:26.217515 8162 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.625
I0429 10:45:26.217542 8162 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.75
I0429 10:45:26.217566 8162 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875
I0429 10:45:26.217591 8162 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1
I0429 10:45:26.217613 8162 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0429 10:45:26.217635 8162 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0429 10:45:26.217658 8162 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0429 10:45:26.217680 8162 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0429 10:45:26.217701 8162 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0429 10:45:26.217725 8162 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0429 10:45:26.217747 8162 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0429 10:45:26.217769 8162 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0429 10:45:26.217792 8162 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0429 10:45:26.217815 8162 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0429 10:45:26.217838 8162 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0429 10:45:26.217861 8162 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0429 10:45:26.217883 8162 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0429 10:45:26.217906 8162 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.840909
I0429 10:45:26.217929 8162 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.642857
I0429 10:45:26.217958 8162 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.97136 (* 0.3 = 0.591408 loss)
I0429 10:45:26.217988 8162 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.515724 (* 0.3 = 0.154717 loss)
I0429 10:45:26.218020 8162 solver.cpp:245] Train net output #27: loss1/loss01 = 1.54849 (* 0.0272727 = 0.0422315 loss)
I0429 10:45:26.218049 8162 solver.cpp:245] Train net output #28: loss1/loss02 = 1.99608 (* 0.0272727 = 0.0544385 loss)
I0429 10:45:26.218076 8162 solver.cpp:245] Train net output #29: loss1/loss03 = 1.80036 (* 0.0272727 = 0.0491007 loss)
I0429 10:45:26.218103 8162 solver.cpp:245] Train net output #30: loss1/loss04 = 1.88771 (* 0.0272727 = 0.051483 loss)
I0429 10:45:26.218132 8162 solver.cpp:245] Train net output #31: loss1/loss05 = 1.49707 (* 0.0272727 = 0.0408291 loss)
I0429 10:45:26.218158 8162 solver.cpp:245] Train net output #32: loss1/loss06 = 1.14191 (* 0.0272727 = 0.031143 loss)
I0429 10:45:26.218186 8162 solver.cpp:245] Train net output #33: loss1/loss07 = 1.06451 (* 0.0272727 = 0.0290321 loss)
I0429 10:45:26.218214 8162 solver.cpp:245] Train net output #34: loss1/loss08 = 0.400317 (* 0.0272727 = 0.0109178 loss)
I0429 10:45:26.218241 8162 solver.cpp:245] Train net output #35: loss1/loss09 = 0.00066307 (* 0.0272727 = 1.80837e-05 loss)
I0429 10:45:26.218271 8162 solver.cpp:245] Train net output #36: loss1/loss10 = 0.000471917 (* 0.0272727 = 1.28705e-05 loss)
I0429 10:45:26.218298 8162 solver.cpp:245] Train net output #37: loss1/loss11 = 0.000382284 (* 0.0272727 = 1.04259e-05 loss)
I0429 10:45:26.218364 8162 solver.cpp:245] Train net output #38: loss1/loss12 = 0.000251181 (* 0.0272727 = 6.85039e-06 loss)
I0429 10:45:26.218394 8162 solver.cpp:245] Train net output #39: loss1/loss13 = 0.000115939 (* 0.0272727 = 3.16196e-06 loss)
I0429 10:45:26.218422 8162 solver.cpp:245] Train net output #40: loss1/loss14 = 4.97811e-05 (* 0.0272727 = 1.35767e-06 loss)
I0429 10:45:26.218451 8162 solver.cpp:245] Train net output #41: loss1/loss15 = 5.1228e-05 (* 0.0272727 = 1.39713e-06 loss)
I0429 10:45:26.218479 8162 solver.cpp:245] Train net output #42: loss1/loss16 = 5.46101e-05 (* 0.0272727 = 1.48937e-06 loss)
I0429 10:45:26.218508 8162 solver.cpp:245] Train net output #43: loss1/loss17 = 2.56756e-05 (* 0.0272727 = 7.00243e-07 loss)
I0429 10:45:26.218535 8162 solver.cpp:245] Train net output #44: loss1/loss18 = 5.39848e-05 (* 0.0272727 = 1.47231e-06 loss)
I0429 10:45:26.218569 8162 solver.cpp:245] Train net output #45: loss1/loss19 = 2.5899e-05 (* 0.0272727 = 7.06337e-07 loss)
I0429 10:45:26.218598 8162 solver.cpp:245] Train net output #46: loss1/loss20 = 9.52764e-05 (* 0.0272727 = 2.59845e-06 loss)
I0429 10:45:26.218626 8162 solver.cpp:245] Train net output #47: loss1/loss21 = 3.74787e-05 (* 0.0272727 = 1.02215e-06 loss)
I0429 10:45:26.218654 8162 solver.cpp:245] Train net output #48: loss1/loss22 = 6.07497e-05 (* 0.0272727 = 1.65681e-06 loss)
I0429 10:45:26.218678 8162 solver.cpp:245] Train net output #49: loss2/accuracy = 0.47619
I0429 10:45:26.218701 8162 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.75
I0429 10:45:26.218724 8162 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.625
I0429 10:45:26.218749 8162 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.25
I0429 10:45:26.218770 8162 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.5
I0429 10:45:26.218793 8162 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5
I0429 10:45:26.218816 8162 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.625
I0429 10:45:26.218838 8162 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.75
I0429 10:45:26.218860 8162 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875
I0429 10:45:26.218883 8162 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1
I0429 10:45:26.218905 8162 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0429 10:45:26.218929 8162 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0429 10:45:26.218950 8162 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0429 10:45:26.218972 8162 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0429 10:45:26.218996 8162 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0429 10:45:26.219017 8162 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0429 10:45:26.219040 8162 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0429 10:45:26.219063 8162 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0429 10:45:26.219085 8162 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0429 10:45:26.219107 8162 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0429 10:45:26.219130 8162 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0429 10:45:26.219151 8162 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0429 10:45:26.219172 8162 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0429 10:45:26.219194 8162 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.869318
I0429 10:45:26.219216 8162 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.761905
I0429 10:45:26.219244 8162 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.69125 (* 0.3 = 0.507375 loss)
I0429 10:45:26.219270 8162 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.433858 (* 0.3 = 0.130157 loss)
I0429 10:45:26.219316 8162 solver.cpp:245] Train net output #76: loss2/loss01 = 0.915075 (* 0.0272727 = 0.0249566 loss)
I0429 10:45:26.219338 8162 solver.cpp:245] Train net output #77: loss2/loss02 = 1.51737 (* 0.0272727 = 0.0413827 loss)
I0429 10:45:26.219360 8162 solver.cpp:245] Train net output #78: loss2/loss03 = 1.95196 (* 0.0272727 = 0.0532352 loss)
I0429 10:45:26.219389 8162 solver.cpp:245] Train net output #79: loss2/loss04 = 1.49108 (* 0.0272727 = 0.0406659 loss)
I0429 10:45:26.219418 8162 solver.cpp:245] Train net output #80: loss2/loss05 = 1.43541 (* 0.0272727 = 0.0391475 loss)
I0429 10:45:26.219444 8162 solver.cpp:245] Train net output #81: loss2/loss06 = 1.13178 (* 0.0272727 = 0.0308669 loss)
I0429 10:45:26.219486 8162 solver.cpp:245] Train net output #82: loss2/loss07 = 1.40431 (* 0.0272727 = 0.0382995 loss)
I0429 10:45:26.219518 8162 solver.cpp:245] Train net output #83: loss2/loss08 = 0.335006 (* 0.0272727 = 0.00913652 loss)
I0429 10:45:26.219547 8162 solver.cpp:245] Train net output #84: loss2/loss09 = 0.00733629 (* 0.0272727 = 0.000200081 loss)
I0429 10:45:26.219574 8162 solver.cpp:245] Train net output #85: loss2/loss10 = 0.00218888 (* 0.0272727 = 5.96968e-05 loss)
I0429 10:45:26.219602 8162 solver.cpp:245] Train net output #86: loss2/loss11 = 0.000802345 (* 0.0272727 = 2.18821e-05 loss)
I0429 10:45:26.219635 8162 solver.cpp:245] Train net output #87: loss2/loss12 = 0.00101046 (* 0.0272727 = 2.7558e-05 loss)
I0429 10:45:26.219663 8162 solver.cpp:245] Train net output #88: loss2/loss13 = 0.000775371 (* 0.0272727 = 2.11465e-05 loss)
I0429 10:45:26.219691 8162 solver.cpp:245] Train net output #89: loss2/loss14 = 0.000520862 (* 0.0272727 = 1.42053e-05 loss)
I0429 10:45:26.219719 8162 solver.cpp:245] Train net output #90: loss2/loss15 = 0.000477174 (* 0.0272727 = 1.30138e-05 loss)
I0429 10:45:26.219746 8162 solver.cpp:245] Train net output #91: loss2/loss16 = 0.000119927 (* 0.0272727 = 3.27074e-06 loss)
I0429 10:45:26.219774 8162 solver.cpp:245] Train net output #92: loss2/loss17 = 0.000287284 (* 0.0272727 = 7.835e-06 loss)
I0429 10:45:26.219802 8162 solver.cpp:245] Train net output #93: loss2/loss18 = 0.000164135 (* 0.0272727 = 4.47641e-06 loss)
I0429 10:45:26.219830 8162 solver.cpp:245] Train net output #94: loss2/loss19 = 0.000234626 (* 0.0272727 = 6.3989e-06 loss)
I0429 10:45:26.219856 8162 solver.cpp:245] Train net output #95: loss2/loss20 = 0.000225247 (* 0.0272727 = 6.14311e-06 loss)
I0429 10:45:26.219884 8162 solver.cpp:245] Train net output #96: loss2/loss21 = 0.000544884 (* 0.0272727 = 1.48605e-05 loss)
I0429 10:45:26.219913 8162 solver.cpp:245] Train net output #97: loss2/loss22 = 0.000167876 (* 0.0272727 = 4.57844e-06 loss)
I0429 10:45:26.219936 8162 solver.cpp:245] Train net output #98: loss3/accuracy = 0.714286
I0429 10:45:26.219957 8162 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0429 10:45:26.219980 8162 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.75
I0429 10:45:26.220003 8162 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.625
I0429 10:45:26.220024 8162 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.75
I0429 10:45:26.220046 8162 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.75
I0429 10:45:26.220068 8162 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.625
I0429 10:45:26.220090 8162 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75
I0429 10:45:26.220111 8162 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1
I0429 10:45:26.220132 8162 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1
I0429 10:45:26.220155 8162 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0429 10:45:26.220176 8162 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0429 10:45:26.220198 8162 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0429 10:45:26.220219 8162 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0429 10:45:26.220259 8162 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0429 10:45:26.220283 8162 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0429 10:45:26.220305 8162 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0429 10:45:26.220329 8162 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0429 10:45:26.220350 8162 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0429 10:45:26.220371 8162 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0429 10:45:26.220392 8162 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0429 10:45:26.220414 8162 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0429 10:45:26.220437 8162 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0429 10:45:26.220458 8162 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.926136
I0429 10:45:26.220481 8162 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.857143
I0429 10:45:26.220509 8162 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.01136 (* 1 = 1.01136 loss)
I0429 10:45:26.220535 8162 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.263151 (* 1 = 0.263151 loss)
I0429 10:45:26.220561 8162 solver.cpp:245] Train net output #125: loss3/loss01 = 0.205978 (* 0.0909091 = 0.0187253 loss)
I0429 10:45:26.220589 8162 solver.cpp:245] Train net output #126: loss3/loss02 = 0.881304 (* 0.0909091 = 0.0801185 loss)
I0429 10:45:26.220615 8162 solver.cpp:245] Train net output #127: loss3/loss03 = 1.0654 (* 0.0909091 = 0.0968546 loss)
I0429 10:45:26.220641 8162 solver.cpp:245] Train net output #128: loss3/loss04 = 0.812463 (* 0.0909091 = 0.0738603 loss)
I0429 10:45:26.220674 8162 solver.cpp:245] Train net output #129: loss3/loss05 = 1.34264 (* 0.0909091 = 0.122059 loss)
I0429 10:45:26.220701 8162 solver.cpp:245] Train net output #130: loss3/loss06 = 1.21792 (* 0.0909091 = 0.11072 loss)
I0429 10:45:26.220727 8162 solver.cpp:245] Train net output #131: loss3/loss07 = 1.52744 (* 0.0909091 = 0.138859 loss)
I0429 10:45:26.220754 8162 solver.cpp:245] Train net output #132: loss3/loss08 = 0.116873 (* 0.0909091 = 0.0106249 loss)
I0429 10:45:26.220782 8162 solver.cpp:245] Train net output #133: loss3/loss09 = 0.0019458 (* 0.0909091 = 0.000176891 loss)
I0429 10:45:26.220808 8162 solver.cpp:245] Train net output #134: loss3/loss10 = 0.000817669 (* 0.0909091 = 7.43336e-05 loss)
I0429 10:45:26.220836 8162 solver.cpp:245] Train net output #135: loss3/loss11 = 0.000381087 (* 0.0909091 = 3.46443e-05 loss)
I0429 10:45:26.220863 8162 solver.cpp:245] Train net output #136: loss3/loss12 = 0.000131214 (* 0.0909091 = 1.19285e-05 loss)
I0429 10:45:26.220890 8162 solver.cpp:245] Train net output #137: loss3/loss13 = 8.16405e-05 (* 0.0909091 = 7.42186e-06 loss)
I0429 10:45:26.220918 8162 solver.cpp:245] Train net output #138: loss3/loss14 = 3.97366e-05 (* 0.0909091 = 3.61242e-06 loss)
I0429 10:45:26.220944 8162 solver.cpp:245] Train net output #139: loss3/loss15 = 2.81794e-05 (* 0.0909091 = 2.56176e-06 loss)
I0429 10:45:26.220971 8162 solver.cpp:245] Train net output #140: loss3/loss16 = 1.42906e-05 (* 0.0909091 = 1.29914e-06 loss)
I0429 10:45:26.220999 8162 solver.cpp:245] Train net output #141: loss3/loss17 = 8.06165e-06 (* 0.0909091 = 7.32877e-07 loss)
I0429 10:45:26.221026 8162 solver.cpp:245] Train net output #142: loss3/loss18 = 4.78331e-06 (* 0.0909091 = 4.34847e-07 loss)
I0429 10:45:26.221053 8162 solver.cpp:245] Train net output #143: loss3/loss19 = 4.20216e-06 (* 0.0909091 = 3.82015e-07 loss)
I0429 10:45:26.221081 8162 solver.cpp:245] Train net output #144: loss3/loss20 = 3.08456e-06 (* 0.0909091 = 2.80414e-07 loss)
I0429 10:45:26.221107 8162 solver.cpp:245] Train net output #145: loss3/loss21 = 3.39749e-06 (* 0.0909091 = 3.08862e-07 loss)
I0429 10:45:26.221134 8162 solver.cpp:245] Train net output #146: loss3/loss22 = 3.85943e-06 (* 0.0909091 = 3.50857e-07 loss)
I0429 10:45:26.221174 8162 solver.cpp:245] Train net output #147: total_accuracy = 0.375
I0429 10:45:26.221197 8162 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.375
I0429 10:45:26.221220 8162 solver.cpp:245] Train net output #149: total_confidence = 0.184194
I0429 10:45:26.221243 8162 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.20625
I0429 10:45:26.221264 8162 sgd_solver.cpp:106] Iteration 15000, lr = 0.005
I0429 10:47:42.964246 8162 solver.cpp:229] Iteration 15500, loss = 5.33976
I0429 10:47:42.964440 8162 solver.cpp:245] Train net output #0: loss1/accuracy = 0.377358
I0429 10:47:42.964462 8162 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.625
I0429 10:47:42.964475 8162 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.25
I0429 10:47:42.964488 8162 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.125
I0429 10:47:42.964500 8162 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.5
I0429 10:47:42.964514 8162 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.25
I0429 10:47:42.964525 8162 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.125
I0429 10:47:42.964537 8162 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.75
I0429 10:47:42.964550 8162 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.625
I0429 10:47:42.964563 8162 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875
I0429 10:47:42.964576 8162 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0429 10:47:42.964587 8162 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0429 10:47:42.964599 8162 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0429 10:47:42.964612 8162 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0429 10:47:42.964624 8162 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0429 10:47:42.964637 8162 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0429 10:47:42.964649 8162 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0429 10:47:42.964661 8162 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0429 10:47:42.964673 8162 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0429 10:47:42.964685 8162 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0429 10:47:42.964697 8162 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0429 10:47:42.964709 8162 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0429 10:47:42.964722 8162 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0429 10:47:42.964735 8162 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.795455
I0429 10:47:42.964746 8162 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.584906
I0429 10:47:42.964763 8162 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 2.20536 (* 0.3 = 0.661608 loss)
I0429 10:47:42.964778 8162 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.718255 (* 0.3 = 0.215476 loss)
I0429 10:47:42.964793 8162 solver.cpp:245] Train net output #27: loss1/loss01 = 0.973804 (* 0.0272727 = 0.0265583 loss)
I0429 10:47:42.964808 8162 solver.cpp:245] Train net output #28: loss1/loss02 = 2.59875 (* 0.0272727 = 0.0708749 loss)
I0429 10:47:42.964823 8162 solver.cpp:245] Train net output #29: loss1/loss03 = 2.87788 (* 0.0272727 = 0.0784876 loss)
I0429 10:47:42.964838 8162 solver.cpp:245] Train net output #30: loss1/loss04 = 2.09243 (* 0.0272727 = 0.0570663 loss)
I0429 10:47:42.964851 8162 solver.cpp:245] Train net output #31: loss1/loss05 = 2.67054 (* 0.0272727 = 0.0728329 loss)
I0429 10:47:42.964872 8162 solver.cpp:245] Train net output #32: loss1/loss06 = 2.78266 (* 0.0272727 = 0.0758908 loss)
I0429 10:47:42.964896 8162 solver.cpp:245] Train net output #33: loss1/loss07 = 1.34041 (* 0.0272727 = 0.0365567 loss)
I0429 10:47:42.964911 8162 solver.cpp:245] Train net output #34: loss1/loss08 = 0.970951 (* 0.0272727 = 0.0264805 loss)
I0429 10:47:42.964926 8162 solver.cpp:245] Train net output #35: loss1/loss09 = 0.892594 (* 0.0272727 = 0.0243435 loss)
I0429 10:47:42.964941 8162 solver.cpp:245] Train net output #36: loss1/loss10 = 0.0390161 (* 0.0272727 = 0.00106408 loss)
I0429 10:47:42.964956 8162 solver.cpp:245] Train net output #37: loss1/loss11 = 0.00317472 (* 0.0272727 = 8.65833e-05 loss)
I0429 10:47:42.964972 8162 solver.cpp:245] Train net output #38: loss1/loss12 = 0.000933191 (* 0.0272727 = 2.54507e-05 loss)
I0429 10:47:42.965006 8162 solver.cpp:245] Train net output #39: loss1/loss13 = 0.000667654 (* 0.0272727 = 1.82087e-05 loss)
I0429 10:47:42.965023 8162 solver.cpp:245] Train net output #40: loss1/loss14 = 0.000364336 (* 0.0272727 = 9.93644e-06 loss)
I0429 10:47:42.965036 8162 solver.cpp:245] Train net output #41: loss1/loss15 = 0.000251861 (* 0.0272727 = 6.86894e-06 loss)
I0429 10:47:42.965051 8162 solver.cpp:245] Train net output #42: loss1/loss16 = 0.000271065 (* 0.0272727 = 7.39267e-06 loss)
I0429 10:47:42.965065 8162 solver.cpp:245] Train net output #43: loss1/loss17 = 0.000393752 (* 0.0272727 = 1.07387e-05 loss)
I0429 10:47:42.965080 8162 solver.cpp:245] Train net output #44: loss1/loss18 = 0.000354559 (* 0.0272727 = 9.66978e-06 loss)
I0429 10:47:42.965093 8162 solver.cpp:245] Train net output #45: loss1/loss19 = 0.000526291 (* 0.0272727 = 1.43534e-05 loss)
I0429 10:47:42.965107 8162 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000511528 (* 0.0272727 = 1.39508e-05 loss)
I0429 10:47:42.965122 8162 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000677694 (* 0.0272727 = 1.84826e-05 loss)
I0429 10:47:42.965137 8162 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000190567 (* 0.0272727 = 5.19729e-06 loss)
I0429 10:47:42.965149 8162 solver.cpp:245] Train net output #49: loss2/accuracy = 0.358491
I0429 10:47:42.965162 8162 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.75
I0429 10:47:42.965174 8162 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.375
I0429 10:47:42.965186 8162 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.375
I0429 10:47:42.965198 8162 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.25
I0429 10:47:42.965210 8162 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.375
I0429 10:47:42.965222 8162 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.25
I0429 10:47:42.965234 8162 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.75
I0429 10:47:42.965243 8162 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.75
I0429 10:47:42.965251 8162 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875
I0429 10:47:42.965265 8162 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0429 10:47:42.965277 8162 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0429 10:47:42.965288 8162 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0429 10:47:42.965301 8162 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0429 10:47:42.965315 8162 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0429 10:47:42.965337 8162 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0429 10:47:42.965353 8162 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0429 10:47:42.965371 8162 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0429 10:47:42.965385 8162 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0429 10:47:42.965397 8162 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0429 10:47:42.965409 8162 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0429 10:47:42.965421 8162 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0429 10:47:42.965432 8162 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0429 10:47:42.965445 8162 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.789773
I0429 10:47:42.965461 8162 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.603774
I0429 10:47:42.965476 8162 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.97569 (* 0.3 = 0.592707 loss)
I0429 10:47:42.965492 8162 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.662568 (* 0.3 = 0.19877 loss)
I0429 10:47:42.965505 8162 solver.cpp:245] Train net output #76: loss2/loss01 = 0.549523 (* 0.0272727 = 0.014987 loss)
I0429 10:47:42.965519 8162 solver.cpp:245] Train net output #77: loss2/loss02 = 2.24298 (* 0.0272727 = 0.0611722 loss)
I0429 10:47:42.965545 8162 solver.cpp:245] Train net output #78: loss2/loss03 = 2.12786 (* 0.0272727 = 0.0580325 loss)
I0429 10:47:42.965561 8162 solver.cpp:245] Train net output #79: loss2/loss04 = 2.07168 (* 0.0272727 = 0.0565004 loss)
I0429 10:47:42.965575 8162 solver.cpp:245] Train net output #80: loss2/loss05 = 1.9651 (* 0.0272727 = 0.0535937 loss)
I0429 10:47:42.965590 8162 solver.cpp:245] Train net output #81: loss2/loss06 = 2.66216 (* 0.0272727 = 0.0726043 loss)
I0429 10:47:42.965603 8162 solver.cpp:245] Train net output #82: loss2/loss07 = 1.021 (* 0.0272727 = 0.0278455 loss)
I0429 10:47:42.965617 8162 solver.cpp:245] Train net output #83: loss2/loss08 = 0.666508 (* 0.0272727 = 0.0181775 loss)
I0429 10:47:42.965631 8162 solver.cpp:245] Train net output #84: loss2/loss09 = 0.679287 (* 0.0272727 = 0.018526 loss)
I0429 10:47:42.965646 8162 solver.cpp:245] Train net output #85: loss2/loss10 = 0.0105665 (* 0.0272727 = 0.000288178 loss)
I0429 10:47:42.965661 8162 solver.cpp:245] Train net output #86: loss2/loss11 = 0.000287925 (* 0.0272727 = 7.85251e-06 loss)
I0429 10:47:42.965675 8162 solver.cpp:245] Train net output #87: loss2/loss12 = 7.9011e-05 (* 0.0272727 = 2.15484e-06 loss)
I0429 10:47:42.965689 8162 solver.cpp:245] Train net output #88: loss2/loss13 = 0.000101832 (* 0.0272727 = 2.77725e-06 loss)
I0429 10:47:42.965704 8162 solver.cpp:245] Train net output #89: loss2/loss14 = 1.89852e-05 (* 0.0272727 = 5.17778e-07 loss)
I0429 10:47:42.965718 8162 solver.cpp:245] Train net output #90: loss2/loss15 = 3.68335e-05 (* 0.0272727 = 1.00455e-06 loss)
I0429 10:47:42.965733 8162 solver.cpp:245] Train net output #91: loss2/loss16 = 2.44774e-05 (* 0.0272727 = 6.67565e-07 loss)
I0429 10:47:42.965746 8162 solver.cpp:245] Train net output #92: loss2/loss17 = 1.04908e-05 (* 0.0272727 = 2.86112e-07 loss)
I0429 10:47:42.965761 8162 solver.cpp:245] Train net output #93: loss2/loss18 = 1.43207e-05 (* 0.0272727 = 3.90566e-07 loss)
I0429 10:47:42.965776 8162 solver.cpp:245] Train net output #94: loss2/loss19 = 8.67272e-06 (* 0.0272727 = 2.36529e-07 loss)
I0429 10:47:42.965791 8162 solver.cpp:245] Train net output #95: loss2/loss20 = 2.45968e-05 (* 0.0272727 = 6.70821e-07 loss)
I0429 10:47:42.965806 8162 solver.cpp:245] Train net output #96: loss2/loss21 = 5.54368e-05 (* 0.0272727 = 1.51191e-06 loss)
I0429 10:47:42.965819 8162 solver.cpp:245] Train net output #97: loss2/loss22 = 3.29731e-05 (* 0.0272727 = 8.99268e-07 loss)
I0429 10:47:42.965832 8162 solver.cpp:245] Train net output #98: loss3/accuracy = 0.566038
I0429 10:47:42.965844 8162 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875
I0429 10:47:42.965857 8162 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.5
I0429 10:47:42.965869 8162 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.625
I0429 10:47:42.965881 8162 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.375
I0429 10:47:42.965893 8162 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.5
I0429 10:47:42.965905 8162 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.375
I0429 10:47:42.965916 8162 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75
I0429 10:47:42.965929 8162 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875
I0429 10:47:42.965940 8162 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.75
I0429 10:47:42.965952 8162 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0429 10:47:42.965965 8162 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0429 10:47:42.965976 8162 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0429 10:47:42.965987 8162 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0429 10:47:42.965999 8162 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0429 10:47:42.966012 8162 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0429 10:47:42.966032 8162 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0429 10:47:42.966044 8162 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0429 10:47:42.966056 8162 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0429 10:47:42.966068 8162 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0429 10:47:42.966080 8162 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0429 10:47:42.966092 8162 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0429 10:47:42.966104 8162 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0429 10:47:42.966115 8162 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.852273
I0429 10:47:42.966128 8162 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.716981
I0429 10:47:42.966142 8162 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.45035 (* 1 = 1.45035 loss)
I0429 10:47:42.966157 8162 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.512223 (* 1 = 0.512223 loss)
I0429 10:47:42.966171 8162 solver.cpp:245] Train net output #125: loss3/loss01 = 0.466397 (* 0.0909091 = 0.0423998 loss)
I0429 10:47:42.966187 8162 solver.cpp:245] Train net output #126: loss3/loss02 = 1.71791 (* 0.0909091 = 0.156173 loss)
I0429 10:47:42.966200 8162 solver.cpp:245] Train net output #127: loss3/loss03 = 1.41527 (* 0.0909091 = 0.12866 loss)
I0429 10:47:42.966214 8162 solver.cpp:245] Train net output #128: loss3/loss04 = 2.14667 (* 0.0909091 = 0.195152 loss)
I0429 10:47:42.966228 8162 solver.cpp:245] Train net output #129: loss3/loss05 = 1.88314 (* 0.0909091 = 0.171194 loss)
I0429 10:47:42.966243 8162 solver.cpp:245] Train net output #130: loss3/loss06 = 1.98658 (* 0.0909091 = 0.180599 loss)
I0429 10:47:42.966256 8162 solver.cpp:245] Train net output #131: loss3/loss07 = 0.816649 (* 0.0909091 = 0.0742408 loss)
I0429 10:47:42.966271 8162 solver.cpp:245] Train net output #132: loss3/loss08 = 0.581021 (* 0.0909091 = 0.0528201 loss)
I0429 10:47:42.966285 8162 solver.cpp:245] Train net output #133: loss3/loss09 = 0.785131 (* 0.0909091 = 0.0713755 loss)
I0429 10:47:42.966300 8162 solver.cpp:245] Train net output #134: loss3/loss10 = 0.074632 (* 0.0909091 = 0.00678472 loss)
I0429 10:47:42.966315 8162 solver.cpp:245] Train net output #135: loss3/loss11 = 0.00752978 (* 0.0909091 = 0.000684526 loss)
I0429 10:47:42.966330 8162 solver.cpp:245] Train net output #136: loss3/loss12 = 0.00265372 (* 0.0909091 = 0.000241247 loss)
I0429 10:47:42.966344 8162 solver.cpp:245] Train net output #137: loss3/loss13 = 0.00133276 (* 0.0909091 = 0.00012116 loss)
I0429 10:47:42.966358 8162 solver.cpp:245] Train net output #138: loss3/loss14 = 0.000604077 (* 0.0909091 = 5.49161e-05 loss)
I0429 10:47:42.966377 8162 solver.cpp:245] Train net output #139: loss3/loss15 = 0.000422823 (* 0.0909091 = 3.84385e-05 loss)
I0429 10:47:42.966392 8162 solver.cpp:245] Train net output #140: loss3/loss16 = 0.000281933 (* 0.0909091 = 2.56303e-05 loss)
I0429 10:47:42.966406 8162 solver.cpp:245] Train net output #141: loss3/loss17 = 0.000162337 (* 0.0909091 = 1.47579e-05 loss)
I0429 10:47:42.966420 8162 solver.cpp:245] Train net output #142: loss3/loss18 = 9.19768e-05 (* 0.0909091 = 8.36153e-06 loss)
I0429 10:47:42.966435 8162 solver.cpp:245] Train net output #143: loss3/loss19 = 4.38808e-05 (* 0.0909091 = 3.98917e-06 loss)
I0429 10:47:42.966449 8162 solver.cpp:245] Train net output #144: loss3/loss20 = 2.51397e-05 (* 0.0909091 = 2.28543e-06 loss)
I0429 10:47:42.966464 8162 solver.cpp:245] Train net output #145: loss3/loss21 = 1.82994e-05 (* 0.0909091 = 1.66358e-06 loss)
I0429 10:47:42.966478 8162 solver.cpp:245] Train net output #146: loss3/loss22 = 1.22341e-05 (* 0.0909091 = 1.11219e-06 loss)
I0429 10:47:42.966491 8162 solver.cpp:245] Train net output #147: total_accuracy = 0.25
I0429 10:47:42.966507 8162 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.25
I0429 10:47:42.966529 8162 solver.cpp:245] Train net output #149: total_confidence = 0.202445
I0429 10:47:42.966542 8162 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.163994
I0429 10:47:42.966557 8162 sgd_solver.cpp:106] Iteration 15500, lr = 0.005
I0429 10:49:59.637231 8162 solver.cpp:229] Iteration 16000, loss = 5.36142
I0429 10:49:59.637359 8162 solver.cpp:245] Train net output #0: loss1/accuracy = 0.38
I0429 10:49:59.637378 8162 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.625
I0429 10:49:59.637392 8162 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.375
I0429 10:49:59.637404 8162 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.25
I0429 10:49:59.637418 8162 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.25
I0429 10:49:59.637429 8162 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.375
I0429 10:49:59.637442 8162 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.5
I0429 10:49:59.637454 8162 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.625
I0429 10:49:59.637466 8162 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.75
I0429 10:49:59.637480 8162 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.75
I0429 10:49:59.637491 8162 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.75
I0429 10:49:59.637503 8162 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.875
I0429 10:49:59.637518 8162 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0429 10:49:59.637531 8162 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0429 10:49:59.637543 8162 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0429 10:49:59.637555 8162 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0429 10:49:59.637567 8162 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0429 10:49:59.637579 8162 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0429 10:49:59.637590 8162 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0429 10:49:59.637603 8162 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0429 10:49:59.637614 8162 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0429 10:49:59.637625 8162 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0429 10:49:59.637637 8162 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0429 10:49:59.637650 8162 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.795455
I0429 10:49:59.637662 8162 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.58
I0429 10:49:59.637679 8162 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 2.28325 (* 0.3 = 0.684974 loss)
I0429 10:49:59.637694 8162 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.733833 (* 0.3 = 0.22015 loss)
I0429 10:49:59.637709 8162 solver.cpp:245] Train net output #27: loss1/loss01 = 1.46989 (* 0.0272727 = 0.040088 loss)
I0429 10:49:59.637723 8162 solver.cpp:245] Train net output #28: loss1/loss02 = 1.8346 (* 0.0272727 = 0.0500346 loss)
I0429 10:49:59.637738 8162 solver.cpp:245] Train net output #29: loss1/loss03 = 2.30728 (* 0.0272727 = 0.0629259 loss)
I0429 10:49:59.637753 8162 solver.cpp:245] Train net output #30: loss1/loss04 = 2.07576 (* 0.0272727 = 0.0566116 loss)
I0429 10:49:59.637766 8162 solver.cpp:245] Train net output #31: loss1/loss05 = 2.1026 (* 0.0272727 = 0.0573438 loss)
I0429 10:49:59.637781 8162 solver.cpp:245] Train net output #32: loss1/loss06 = 1.50674 (* 0.0272727 = 0.0410928 loss)
I0429 10:49:59.637795 8162 solver.cpp:245] Train net output #33: loss1/loss07 = 1.34397 (* 0.0272727 = 0.0366538 loss)
I0429 10:49:59.637809 8162 solver.cpp:245] Train net output #34: loss1/loss08 = 1.11555 (* 0.0272727 = 0.0304241 loss)
I0429 10:49:59.637823 8162 solver.cpp:245] Train net output #35: loss1/loss09 = 1.06992 (* 0.0272727 = 0.0291796 loss)
I0429 10:49:59.637837 8162 solver.cpp:245] Train net output #36: loss1/loss10 = 1.56546 (* 0.0272727 = 0.0426944 loss)
I0429 10:49:59.637852 8162 solver.cpp:245] Train net output #37: loss1/loss11 = 0.258329 (* 0.0272727 = 0.00704533 loss)
I0429 10:49:59.637866 8162 solver.cpp:245] Train net output #38: loss1/loss12 = 0.223456 (* 0.0272727 = 0.00609424 loss)
I0429 10:49:59.637881 8162 solver.cpp:245] Train net output #39: loss1/loss13 = 0.0875596 (* 0.0272727 = 0.00238799 loss)
I0429 10:49:59.637917 8162 solver.cpp:245] Train net output #40: loss1/loss14 = 0.023183 (* 0.0272727 = 0.000632263 loss)
I0429 10:49:59.637933 8162 solver.cpp:245] Train net output #41: loss1/loss15 = 0.00906369 (* 0.0272727 = 0.000247191 loss)
I0429 10:49:59.637948 8162 solver.cpp:245] Train net output #42: loss1/loss16 = 0.00163771 (* 0.0272727 = 4.46648e-05 loss)
I0429 10:49:59.637962 8162 solver.cpp:245] Train net output #43: loss1/loss17 = 0.00034751 (* 0.0272727 = 9.47756e-06 loss)
I0429 10:49:59.637976 8162 solver.cpp:245] Train net output #44: loss1/loss18 = 9.79788e-05 (* 0.0272727 = 2.67215e-06 loss)
I0429 10:49:59.637991 8162 solver.cpp:245] Train net output #45: loss1/loss19 = 3.00057e-05 (* 0.0272727 = 8.18337e-07 loss)
I0429 10:49:59.638005 8162 solver.cpp:245] Train net output #46: loss1/loss20 = 4.00661e-05 (* 0.0272727 = 1.09271e-06 loss)
I0429 10:49:59.638020 8162 solver.cpp:245] Train net output #47: loss1/loss21 = 2.27851e-05 (* 0.0272727 = 6.21412e-07 loss)
I0429 10:49:59.638034 8162 solver.cpp:245] Train net output #48: loss1/loss22 = 2.24573e-05 (* 0.0272727 = 6.12472e-07 loss)
I0429 10:49:59.638047 8162 solver.cpp:245] Train net output #49: loss2/accuracy = 0.34
I0429 10:49:59.638059 8162 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.625
I0429 10:49:59.638072 8162 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.5
I0429 10:49:59.638087 8162 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.375
I0429 10:49:59.638100 8162 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.375
I0429 10:49:59.638113 8162 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.625
I0429 10:49:59.638125 8162 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.625
I0429 10:49:59.638137 8162 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.75
I0429 10:49:59.638149 8162 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.75
I0429 10:49:59.638161 8162 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.75
I0429 10:49:59.638173 8162 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.75
I0429 10:49:59.638185 8162 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.875
I0429 10:49:59.638197 8162 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0429 10:49:59.638209 8162 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0429 10:49:59.638221 8162 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0429 10:49:59.638232 8162 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0429 10:49:59.638244 8162 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0429 10:49:59.638257 8162 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0429 10:49:59.638268 8162 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0429 10:49:59.638280 8162 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0429 10:49:59.638291 8162 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0429 10:49:59.638303 8162 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0429 10:49:59.638315 8162 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0429 10:49:59.638327 8162 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.789773
I0429 10:49:59.638339 8162 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.56
I0429 10:49:59.638353 8162 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 2.23625 (* 0.3 = 0.670875 loss)
I0429 10:49:59.638367 8162 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.698973 (* 0.3 = 0.209692 loss)
I0429 10:49:59.638382 8162 solver.cpp:245] Train net output #76: loss2/loss01 = 1.47149 (* 0.0272727 = 0.0401317 loss)
I0429 10:49:59.638396 8162 solver.cpp:245] Train net output #77: loss2/loss02 = 1.54 (* 0.0272727 = 0.0419999 loss)
I0429 10:49:59.638420 8162 solver.cpp:245] Train net output #78: loss2/loss03 = 2.32447 (* 0.0272727 = 0.0633947 loss)
I0429 10:49:59.638435 8162 solver.cpp:245] Train net output #79: loss2/loss04 = 2.08329 (* 0.0272727 = 0.0568169 loss)
I0429 10:49:59.638449 8162 solver.cpp:245] Train net output #80: loss2/loss05 = 1.58581 (* 0.0272727 = 0.0432493 loss)
I0429 10:49:59.638464 8162 solver.cpp:245] Train net output #81: loss2/loss06 = 1.62623 (* 0.0272727 = 0.0443517 loss)
I0429 10:49:59.638478 8162 solver.cpp:245] Train net output #82: loss2/loss07 = 1.17567 (* 0.0272727 = 0.0320638 loss)
I0429 10:49:59.638492 8162 solver.cpp:245] Train net output #83: loss2/loss08 = 1.12698 (* 0.0272727 = 0.0307358 loss)
I0429 10:49:59.638507 8162 solver.cpp:245] Train net output #84: loss2/loss09 = 0.827931 (* 0.0272727 = 0.0225799 loss)
I0429 10:49:59.638521 8162 solver.cpp:245] Train net output #85: loss2/loss10 = 1.75296 (* 0.0272727 = 0.0478081 loss)
I0429 10:49:59.638536 8162 solver.cpp:245] Train net output #86: loss2/loss11 = 0.353537 (* 0.0272727 = 0.00964192 loss)
I0429 10:49:59.638550 8162 solver.cpp:245] Train net output #87: loss2/loss12 = 0.151501 (* 0.0272727 = 0.00413185 loss)
I0429 10:49:59.638568 8162 solver.cpp:245] Train net output #88: loss2/loss13 = 0.0636526 (* 0.0272727 = 0.00173598 loss)
I0429 10:49:59.638583 8162 solver.cpp:245] Train net output #89: loss2/loss14 = 0.0261391 (* 0.0272727 = 0.000712885 loss)
I0429 10:49:59.638597 8162 solver.cpp:245] Train net output #90: loss2/loss15 = 0.0307268 (* 0.0272727 = 0.000838004 loss)
I0429 10:49:59.638612 8162 solver.cpp:245] Train net output #91: loss2/loss16 = 0.0167805 (* 0.0272727 = 0.00045765 loss)
I0429 10:49:59.638628 8162 solver.cpp:245] Train net output #92: loss2/loss17 = 0.00420486 (* 0.0272727 = 0.000114678 loss)
I0429 10:49:59.638641 8162 solver.cpp:245] Train net output #93: loss2/loss18 = 0.00166536 (* 0.0272727 = 4.5419e-05 loss)
I0429 10:49:59.638656 8162 solver.cpp:245] Train net output #94: loss2/loss19 = 0.00092315 (* 0.0272727 = 2.51768e-05 loss)
I0429 10:49:59.638670 8162 solver.cpp:245] Train net output #95: loss2/loss20 = 0.000579339 (* 0.0272727 = 1.58001e-05 loss)
I0429 10:49:59.638684 8162 solver.cpp:245] Train net output #96: loss2/loss21 = 0.000311498 (* 0.0272727 = 8.4954e-06 loss)
I0429 10:49:59.638700 8162 solver.cpp:245] Train net output #97: loss2/loss22 = 4.28924e-05 (* 0.0272727 = 1.16979e-06 loss)
I0429 10:49:59.638711 8162 solver.cpp:245] Train net output #98: loss3/accuracy = 0.5
I0429 10:49:59.638725 8162 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.625
I0429 10:49:59.638736 8162 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.75
I0429 10:49:59.638748 8162 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.375
I0429 10:49:59.638761 8162 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.75
I0429 10:49:59.638772 8162 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.625
I0429 10:49:59.638784 8162 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.625
I0429 10:49:59.638797 8162 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75
I0429 10:49:59.638808 8162 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.75
I0429 10:49:59.638820 8162 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.75
I0429 10:49:59.638833 8162 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875
I0429 10:49:59.638844 8162 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.875
I0429 10:49:59.638857 8162 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0429 10:49:59.638869 8162 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0429 10:49:59.638880 8162 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0429 10:49:59.638892 8162 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0429 10:49:59.638905 8162 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0429 10:49:59.638926 8162 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0429 10:49:59.638938 8162 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0429 10:49:59.638950 8162 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0429 10:49:59.638962 8162 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0429 10:49:59.638974 8162 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0429 10:49:59.638986 8162 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0429 10:49:59.638998 8162 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.840909
I0429 10:49:59.639010 8162 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.66
I0429 10:49:59.639024 8162 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.79495 (* 1 = 1.79495 loss)
I0429 10:49:59.639039 8162 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.56926 (* 1 = 0.56926 loss)
I0429 10:49:59.639053 8162 solver.cpp:245] Train net output #125: loss3/loss01 = 1.12918 (* 0.0909091 = 0.102653 loss)
I0429 10:49:59.639068 8162 solver.cpp:245] Train net output #126: loss3/loss02 = 0.787374 (* 0.0909091 = 0.0715794 loss)
I0429 10:49:59.639082 8162 solver.cpp:245] Train net output #127: loss3/loss03 = 2.54365 (* 0.0909091 = 0.231241 loss)
I0429 10:49:59.639096 8162 solver.cpp:245] Train net output #128: loss3/loss04 = 1.46902 (* 0.0909091 = 0.133547 loss)
I0429 10:49:59.639111 8162 solver.cpp:245] Train net output #129: loss3/loss05 = 1.83858 (* 0.0909091 = 0.167144 loss)
I0429 10:49:59.639124 8162 solver.cpp:245] Train net output #130: loss3/loss06 = 1.95551 (* 0.0909091 = 0.177774 loss)
I0429 10:49:59.639142 8162 solver.cpp:245] Train net output #131: loss3/loss07 = 1.36596 (* 0.0909091 = 0.124178 loss)
I0429 10:49:59.639158 8162 solver.cpp:245] Train net output #132: loss3/loss08 = 0.665985 (* 0.0909091 = 0.0605441 loss)
I0429 10:49:59.639171 8162 solver.cpp:245] Train net output #133: loss3/loss09 = 0.725515 (* 0.0909091 = 0.0659559 loss)
I0429 10:49:59.639185 8162 solver.cpp:245] Train net output #134: loss3/loss10 = 1.08941 (* 0.0909091 = 0.099037 loss)
I0429 10:49:59.639200 8162 solver.cpp:245] Train net output #135: loss3/loss11 = 0.246079 (* 0.0909091 = 0.0223708 loss)
I0429 10:49:59.639214 8162 solver.cpp:245] Train net output #136: loss3/loss12 = 0.180567 (* 0.0909091 = 0.0164152 loss)
I0429 10:49:59.639230 8162 solver.cpp:245] Train net output #137: loss3/loss13 = 0.0927335 (* 0.0909091 = 0.00843031 loss)
I0429 10:49:59.639243 8162 solver.cpp:245] Train net output #138: loss3/loss14 = 0.0378249 (* 0.0909091 = 0.00343863 loss)
I0429 10:49:59.639258 8162 solver.cpp:245] Train net output #139: loss3/loss15 = 0.0115523 (* 0.0909091 = 0.00105021 loss)
I0429 10:49:59.639272 8162 solver.cpp:245] Train net output #140: loss3/loss16 = 0.00619281 (* 0.0909091 = 0.000562983 loss)
I0429 10:49:59.639287 8162 solver.cpp:245] Train net output #141: loss3/loss17 = 0.00792791 (* 0.0909091 = 0.000720719 loss)
I0429 10:49:59.639302 8162 solver.cpp:245] Train net output #142: loss3/loss18 = 0.00411348 (* 0.0909091 = 0.000373953 loss)
I0429 10:49:59.639317 8162 solver.cpp:245] Train net output #143: loss3/loss19 = 0.00138081 (* 0.0909091 = 0.000125528 loss)
I0429 10:49:59.639330 8162 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000658994 (* 0.0909091 = 5.99085e-05 loss)
I0429 10:49:59.639344 8162 solver.cpp:245] Train net output #145: loss3/loss21 = 0.000271832 (* 0.0909091 = 2.4712e-05 loss)
I0429 10:49:59.639359 8162 solver.cpp:245] Train net output #146: loss3/loss22 = 8.44882e-05 (* 0.0909091 = 7.68075e-06 loss)
I0429 10:49:59.639371 8162 solver.cpp:245] Train net output #147: total_accuracy = 0.125
I0429 10:49:59.639384 8162 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.25
I0429 10:49:59.639396 8162 solver.cpp:245] Train net output #149: total_confidence = 0.207245
I0429 10:49:59.639417 8162 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.19718
I0429 10:49:59.639432 8162 sgd_solver.cpp:106] Iteration 16000, lr = 0.005
I0429 10:50:42.312657 8162 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 30.5216 > 30) by scale factor 0.982911
I0429 10:52:16.665048 8162 solver.cpp:229] Iteration 16500, loss = 5.46251
I0429 10:52:16.665218 8162 solver.cpp:245] Train net output #0: loss1/accuracy = 0.307692
I0429 10:52:16.665240 8162 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.5
I0429 10:52:16.665253 8162 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5
I0429 10:52:16.665266 8162 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.25
I0429 10:52:16.665278 8162 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.25
I0429 10:52:16.665292 8162 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.375
I0429 10:52:16.665304 8162 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.375
I0429 10:52:16.665319 8162 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.75
I0429 10:52:16.665333 8162 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.625
I0429 10:52:16.665345 8162 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875
I0429 10:52:16.665359 8162 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875
I0429 10:52:16.665370 8162 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0429 10:52:16.665382 8162 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0429 10:52:16.665395 8162 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0429 10:52:16.665406 8162 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0429 10:52:16.665418 8162 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0429 10:52:16.665431 8162 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0429 10:52:16.665443 8162 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0429 10:52:16.665455 8162 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0429 10:52:16.665467 8162 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0429 10:52:16.665478 8162 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0429 10:52:16.665490 8162 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0429 10:52:16.665503 8162 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0429 10:52:16.665514 8162 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.761364
I0429 10:52:16.665527 8162 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.538462
I0429 10:52:16.665544 8162 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 2.51478 (* 0.3 = 0.754433 loss)
I0429 10:52:16.665558 8162 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.910481 (* 0.3 = 0.273144 loss)
I0429 10:52:16.665573 8162 solver.cpp:245] Train net output #27: loss1/loss01 = 2.48766 (* 0.0272727 = 0.0678452 loss)
I0429 10:52:16.665588 8162 solver.cpp:245] Train net output #28: loss1/loss02 = 1.88913 (* 0.0272727 = 0.0515216 loss)
I0429 10:52:16.665602 8162 solver.cpp:245] Train net output #29: loss1/loss03 = 1.79118 (* 0.0272727 = 0.0488503 loss)
I0429 10:52:16.665616 8162 solver.cpp:245] Train net output #30: loss1/loss04 = 3.33637 (* 0.0272727 = 0.0909918 loss)
I0429 10:52:16.665632 8162 solver.cpp:245] Train net output #31: loss1/loss05 = 2.49004 (* 0.0272727 = 0.0679101 loss)
I0429 10:52:16.665645 8162 solver.cpp:245] Train net output #32: loss1/loss06 = 2.36862 (* 0.0272727 = 0.0645988 loss)
I0429 10:52:16.665659 8162 solver.cpp:245] Train net output #33: loss1/loss07 = 1.42901 (* 0.0272727 = 0.0389731 loss)
I0429 10:52:16.665673 8162 solver.cpp:245] Train net output #34: loss1/loss08 = 1.42789 (* 0.0272727 = 0.0389425 loss)
I0429 10:52:16.665688 8162 solver.cpp:245] Train net output #35: loss1/loss09 = 0.61928 (* 0.0272727 = 0.0168895 loss)
I0429 10:52:16.665702 8162 solver.cpp:245] Train net output #36: loss1/loss10 = 0.524216 (* 0.0272727 = 0.0142968 loss)
I0429 10:52:16.665717 8162 solver.cpp:245] Train net output #37: loss1/loss11 = 0.21779 (* 0.0272727 = 0.00593973 loss)
I0429 10:52:16.665732 8162 solver.cpp:245] Train net output #38: loss1/loss12 = 0.107036 (* 0.0272727 = 0.00291916 loss)
I0429 10:52:16.665747 8162 solver.cpp:245] Train net output #39: loss1/loss13 = 0.0434434 (* 0.0272727 = 0.00118482 loss)
I0429 10:52:16.665783 8162 solver.cpp:245] Train net output #40: loss1/loss14 = 0.0148248 (* 0.0272727 = 0.000404312 loss)
I0429 10:52:16.665799 8162 solver.cpp:245] Train net output #41: loss1/loss15 = 0.00594985 (* 0.0272727 = 0.000162269 loss)
I0429 10:52:16.665814 8162 solver.cpp:245] Train net output #42: loss1/loss16 = 0.00132493 (* 0.0272727 = 3.61345e-05 loss)
I0429 10:52:16.665828 8162 solver.cpp:245] Train net output #43: loss1/loss17 = 0.000713876 (* 0.0272727 = 1.94694e-05 loss)
I0429 10:52:16.665843 8162 solver.cpp:245] Train net output #44: loss1/loss18 = 0.000263451 (* 0.0272727 = 7.18504e-06 loss)
I0429 10:52:16.665858 8162 solver.cpp:245] Train net output #45: loss1/loss19 = 0.000163039 (* 0.0272727 = 4.44652e-06 loss)
I0429 10:52:16.665873 8162 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000128246 (* 0.0272727 = 3.49762e-06 loss)
I0429 10:52:16.665886 8162 solver.cpp:245] Train net output #47: loss1/loss21 = 0.00018737 (* 0.0272727 = 5.1101e-06 loss)
I0429 10:52:16.665901 8162 solver.cpp:245] Train net output #48: loss1/loss22 = 5.58439e-05 (* 0.0272727 = 1.52301e-06 loss)
I0429 10:52:16.665915 8162 solver.cpp:245] Train net output #49: loss2/accuracy = 0.365385
I0429 10:52:16.665926 8162 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.375
I0429 10:52:16.665940 8162 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75
I0429 10:52:16.665951 8162 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.375
I0429 10:52:16.665963 8162 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.375
I0429 10:52:16.665977 8162 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.375
I0429 10:52:16.665988 8162 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.375
I0429 10:52:16.666000 8162 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.625
I0429 10:52:16.666013 8162 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.75
I0429 10:52:16.666025 8162 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875
I0429 10:52:16.666038 8162 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875
I0429 10:52:16.666049 8162 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0429 10:52:16.666061 8162 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0429 10:52:16.666074 8162 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0429 10:52:16.666085 8162 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0429 10:52:16.666096 8162 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0429 10:52:16.666108 8162 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0429 10:52:16.666121 8162 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0429 10:52:16.666131 8162 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0429 10:52:16.666144 8162 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0429 10:52:16.666157 8162 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0429 10:52:16.666169 8162 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0429 10:52:16.666182 8162 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0429 10:52:16.666193 8162 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.778409
I0429 10:52:16.666205 8162 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.557692
I0429 10:52:16.666219 8162 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 2.32362 (* 0.3 = 0.697087 loss)
I0429 10:52:16.666239 8162 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.852634 (* 0.3 = 0.25579 loss)
I0429 10:52:16.666254 8162 solver.cpp:245] Train net output #76: loss2/loss01 = 1.95509 (* 0.0272727 = 0.0533206 loss)
I0429 10:52:16.666268 8162 solver.cpp:245] Train net output #77: loss2/loss02 = 1.5222 (* 0.0272727 = 0.0415145 loss)
I0429 10:52:16.666295 8162 solver.cpp:245] Train net output #78: loss2/loss03 = 1.76783 (* 0.0272727 = 0.0482135 loss)
I0429 10:52:16.666309 8162 solver.cpp:245] Train net output #79: loss2/loss04 = 2.66535 (* 0.0272727 = 0.0726913 loss)
I0429 10:52:16.666324 8162 solver.cpp:245] Train net output #80: loss2/loss05 = 2.41023 (* 0.0272727 = 0.0657336 loss)
I0429 10:52:16.666338 8162 solver.cpp:245] Train net output #81: loss2/loss06 = 2.72647 (* 0.0272727 = 0.0743583 loss)
I0429 10:52:16.666352 8162 solver.cpp:245] Train net output #82: loss2/loss07 = 1.701 (* 0.0272727 = 0.046391 loss)
I0429 10:52:16.666369 8162 solver.cpp:245] Train net output #83: loss2/loss08 = 1.33635 (* 0.0272727 = 0.036446 loss)
I0429 10:52:16.666384 8162 solver.cpp:245] Train net output #84: loss2/loss09 = 0.608496 (* 0.0272727 = 0.0165954 loss)
I0429 10:52:16.666399 8162 solver.cpp:245] Train net output #85: loss2/loss10 = 0.508467 (* 0.0272727 = 0.0138673 loss)
I0429 10:52:16.666414 8162 solver.cpp:245] Train net output #86: loss2/loss11 = 0.253654 (* 0.0272727 = 0.00691783 loss)
I0429 10:52:16.666429 8162 solver.cpp:245] Train net output #87: loss2/loss12 = 0.169654 (* 0.0272727 = 0.00462692 loss)
I0429 10:52:16.666442 8162 solver.cpp:245] Train net output #88: loss2/loss13 = 0.0890401 (* 0.0272727 = 0.00242837 loss)
I0429 10:52:16.666457 8162 solver.cpp:245] Train net output #89: loss2/loss14 = 0.0250357 (* 0.0272727 = 0.000682791 loss)
I0429 10:52:16.666472 8162 solver.cpp:245] Train net output #90: loss2/loss15 = 0.0157241 (* 0.0272727 = 0.00042884 loss)
I0429 10:52:16.666486 8162 solver.cpp:245] Train net output #91: loss2/loss16 = 0.0108604 (* 0.0272727 = 0.000296193 loss)
I0429 10:52:16.666501 8162 solver.cpp:245] Train net output #92: loss2/loss17 = 0.00585204 (* 0.0272727 = 0.000159601 loss)
I0429 10:52:16.666515 8162 solver.cpp:245] Train net output #93: loss2/loss18 = 0.00178082 (* 0.0272727 = 4.85678e-05 loss)
I0429 10:52:16.666530 8162 solver.cpp:245] Train net output #94: loss2/loss19 = 0.00107894 (* 0.0272727 = 2.94256e-05 loss)
I0429 10:52:16.666544 8162 solver.cpp:245] Train net output #95: loss2/loss20 = 0.000783317 (* 0.0272727 = 2.13632e-05 loss)
I0429 10:52:16.666559 8162 solver.cpp:245] Train net output #96: loss2/loss21 = 0.00020094 (* 0.0272727 = 5.48017e-06 loss)
I0429 10:52:16.666574 8162 solver.cpp:245] Train net output #97: loss2/loss22 = 4.54217e-05 (* 0.0272727 = 1.23877e-06 loss)
I0429 10:52:16.666587 8162 solver.cpp:245] Train net output #98: loss3/accuracy = 0.557692
I0429 10:52:16.666599 8162 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.75
I0429 10:52:16.666611 8162 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.75
I0429 10:52:16.666625 8162 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.75
I0429 10:52:16.666636 8162 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.75
I0429 10:52:16.666648 8162 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.5
I0429 10:52:16.666661 8162 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.625
I0429 10:52:16.666673 8162 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75
I0429 10:52:16.666685 8162 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.625
I0429 10:52:16.666697 8162 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875
I0429 10:52:16.666709 8162 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875
I0429 10:52:16.666723 8162 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0429 10:52:16.666735 8162 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0429 10:52:16.666748 8162 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0429 10:52:16.666759 8162 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0429 10:52:16.666771 8162 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0429 10:52:16.666784 8162 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0429 10:52:16.666805 8162 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0429 10:52:16.666817 8162 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0429 10:52:16.666831 8162 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0429 10:52:16.666842 8162 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0429 10:52:16.666854 8162 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0429 10:52:16.666867 8162 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0429 10:52:16.666877 8162 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.840909
I0429 10:52:16.666890 8162 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.730769
I0429 10:52:16.666904 8162 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.67724 (* 1 = 1.67724 loss)
I0429 10:52:16.666919 8162 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.65355 (* 1 = 0.65355 loss)
I0429 10:52:16.666934 8162 solver.cpp:245] Train net output #125: loss3/loss01 = 0.968645 (* 0.0909091 = 0.0880586 loss)
I0429 10:52:16.666949 8162 solver.cpp:245] Train net output #126: loss3/loss02 = 0.983148 (* 0.0909091 = 0.0893771 loss)
I0429 10:52:16.666963 8162 solver.cpp:245] Train net output #127: loss3/loss03 = 0.757137 (* 0.0909091 = 0.0688306 loss)
I0429 10:52:16.666978 8162 solver.cpp:245] Train net output #128: loss3/loss04 = 1.59039 (* 0.0909091 = 0.144581 loss)
I0429 10:52:16.666992 8162 solver.cpp:245] Train net output #129: loss3/loss05 = 1.47159 (* 0.0909091 = 0.133781 loss)
I0429 10:52:16.667006 8162 solver.cpp:245] Train net output #130: loss3/loss06 = 1.53105 (* 0.0909091 = 0.139186 loss)
I0429 10:52:16.667021 8162 solver.cpp:245] Train net output #131: loss3/loss07 = 1.46154 (* 0.0909091 = 0.132867 loss)
I0429 10:52:16.667034 8162 solver.cpp:245] Train net output #132: loss3/loss08 = 1.17817 (* 0.0909091 = 0.107106 loss)
I0429 10:52:16.667049 8162 solver.cpp:245] Train net output #133: loss3/loss09 = 0.639067 (* 0.0909091 = 0.058097 loss)
I0429 10:52:16.667063 8162 solver.cpp:245] Train net output #134: loss3/loss10 = 0.630827 (* 0.0909091 = 0.0573479 loss)
I0429 10:52:16.667078 8162 solver.cpp:245] Train net output #135: loss3/loss11 = 0.282882 (* 0.0909091 = 0.0257166 loss)
I0429 10:52:16.667093 8162 solver.cpp:245] Train net output #136: loss3/loss12 = 0.17163 (* 0.0909091 = 0.0156028 loss)
I0429 10:52:16.667107 8162 solver.cpp:245] Train net output #137: loss3/loss13 = 0.0968871 (* 0.0909091 = 0.00880791 loss)
I0429 10:52:16.667121 8162 solver.cpp:245] Train net output #138: loss3/loss14 = 0.0445879 (* 0.0909091 = 0.00405344 loss)
I0429 10:52:16.667136 8162 solver.cpp:245] Train net output #139: loss3/loss15 = 0.0262224 (* 0.0909091 = 0.00238385 loss)
I0429 10:52:16.667150 8162 solver.cpp:245] Train net output #140: loss3/loss16 = 0.00912443 (* 0.0909091 = 0.000829494 loss)
I0429 10:52:16.667165 8162 solver.cpp:245] Train net output #141: loss3/loss17 = 0.00313324 (* 0.0909091 = 0.00028484 loss)
I0429 10:52:16.667179 8162 solver.cpp:245] Train net output #142: loss3/loss18 = 0.0019517 (* 0.0909091 = 0.000177428 loss)
I0429 10:52:16.667193 8162 solver.cpp:245] Train net output #143: loss3/loss19 = 0.000738862 (* 0.0909091 = 6.71692e-05 loss)
I0429 10:52:16.667207 8162 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000467599 (* 0.0909091 = 4.2509e-05 loss)
I0429 10:52:16.667222 8162 solver.cpp:245] Train net output #145: loss3/loss21 = 0.000299763 (* 0.0909091 = 2.72511e-05 loss)
I0429 10:52:16.667237 8162 solver.cpp:245] Train net output #146: loss3/loss22 = 0.00020906 (* 0.0909091 = 1.90054e-05 loss)
I0429 10:52:16.667249 8162 solver.cpp:245] Train net output #147: total_accuracy = 0.25
I0429 10:52:16.667261 8162 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.25
I0429 10:52:16.667286 8162 solver.cpp:245] Train net output #149: total_confidence = 0.141657
I0429 10:52:16.667300 8162 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.289344
I0429 10:52:16.667315 8162 sgd_solver.cpp:106] Iteration 16500, lr = 0.005
I0429 10:54:33.627912 8162 solver.cpp:229] Iteration 17000, loss = 5.30974
I0429 10:54:33.628108 8162 solver.cpp:245] Train net output #0: loss1/accuracy = 0.340909
I0429 10:54:33.628129 8162 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75
I0429 10:54:33.628142 8162 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.25
I0429 10:54:33.628154 8162 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.5
I0429 10:54:33.628167 8162 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.625
I0429 10:54:33.628180 8162 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.5
I0429 10:54:33.628192 8162 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.5
I0429 10:54:33.628204 8162 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.625
I0429 10:54:33.628217 8162 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875
I0429 10:54:33.628229 8162 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1
I0429 10:54:33.628242 8162 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0429 10:54:33.628253 8162 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0429 10:54:33.628265 8162 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0429 10:54:33.628278 8162 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0429 10:54:33.628289 8162 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0429 10:54:33.628301 8162 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0429 10:54:33.628316 8162 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0429 10:54:33.628329 8162 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0429 10:54:33.628341 8162 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0429 10:54:33.628353 8162 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0429 10:54:33.628365 8162 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0429 10:54:33.628377 8162 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0429 10:54:33.628389 8162 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0429 10:54:33.628401 8162 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.823864
I0429 10:54:33.628413 8162 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.568182
I0429 10:54:33.628429 8162 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 2.13596 (* 0.3 = 0.640787 loss)
I0429 10:54:33.628445 8162 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.586195 (* 0.3 = 0.175859 loss)
I0429 10:54:33.628460 8162 solver.cpp:245] Train net output #27: loss1/loss01 = 1.36229 (* 0.0272727 = 0.0371534 loss)
I0429 10:54:33.628475 8162 solver.cpp:245] Train net output #28: loss1/loss02 = 2.47643 (* 0.0272727 = 0.0675391 loss)
I0429 10:54:33.628489 8162 solver.cpp:245] Train net output #29: loss1/loss03 = 1.93449 (* 0.0272727 = 0.0527588 loss)
I0429 10:54:33.628504 8162 solver.cpp:245] Train net output #30: loss1/loss04 = 2.06007 (* 0.0272727 = 0.0561837 loss)
I0429 10:54:33.628517 8162 solver.cpp:245] Train net output #31: loss1/loss05 = 1.82871 (* 0.0272727 = 0.0498739 loss)
I0429 10:54:33.628532 8162 solver.cpp:245] Train net output #32: loss1/loss06 = 1.31967 (* 0.0272727 = 0.0359911 loss)
I0429 10:54:33.628546 8162 solver.cpp:245] Train net output #33: loss1/loss07 = 0.994629 (* 0.0272727 = 0.0271263 loss)
I0429 10:54:33.628561 8162 solver.cpp:245] Train net output #34: loss1/loss08 = 0.311483 (* 0.0272727 = 0.008495 loss)
I0429 10:54:33.628576 8162 solver.cpp:245] Train net output #35: loss1/loss09 = 0.00390341 (* 0.0272727 = 0.000106457 loss)
I0429 10:54:33.628590 8162 solver.cpp:245] Train net output #36: loss1/loss10 = 0.00129237 (* 0.0272727 = 3.52465e-05 loss)
I0429 10:54:33.628605 8162 solver.cpp:245] Train net output #37: loss1/loss11 = 0.000510789 (* 0.0272727 = 1.39306e-05 loss)
I0429 10:54:33.628620 8162 solver.cpp:245] Train net output #38: loss1/loss12 = 0.000458452 (* 0.0272727 = 1.25032e-05 loss)
I0429 10:54:33.628664 8162 solver.cpp:245] Train net output #39: loss1/loss13 = 0.000507117 (* 0.0272727 = 1.38305e-05 loss)
I0429 10:54:33.628680 8162 solver.cpp:245] Train net output #40: loss1/loss14 = 0.000370019 (* 0.0272727 = 1.00914e-05 loss)
I0429 10:54:33.628695 8162 solver.cpp:245] Train net output #41: loss1/loss15 = 0.000405377 (* 0.0272727 = 1.10557e-05 loss)
I0429 10:54:33.628710 8162 solver.cpp:245] Train net output #42: loss1/loss16 = 0.000348377 (* 0.0272727 = 9.50119e-06 loss)
I0429 10:54:33.628725 8162 solver.cpp:245] Train net output #43: loss1/loss17 = 0.000278776 (* 0.0272727 = 7.60298e-06 loss)
I0429 10:54:33.628738 8162 solver.cpp:245] Train net output #44: loss1/loss18 = 0.000308254 (* 0.0272727 = 8.40693e-06 loss)
I0429 10:54:33.628752 8162 solver.cpp:245] Train net output #45: loss1/loss19 = 0.000288273 (* 0.0272727 = 7.86199e-06 loss)
I0429 10:54:33.628767 8162 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000231327 (* 0.0272727 = 6.30892e-06 loss)
I0429 10:54:33.628782 8162 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000543804 (* 0.0272727 = 1.4831e-05 loss)
I0429 10:54:33.628795 8162 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000449403 (* 0.0272727 = 1.22564e-05 loss)
I0429 10:54:33.628808 8162 solver.cpp:245] Train net output #49: loss2/accuracy = 0.409091
I0429 10:54:33.628821 8162 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.5
I0429 10:54:33.628834 8162 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.5
I0429 10:54:33.628845 8162 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.25
I0429 10:54:33.628857 8162 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.75
I0429 10:54:33.628870 8162 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.25
I0429 10:54:33.628881 8162 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.5
I0429 10:54:33.628893 8162 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.875
I0429 10:54:33.628906 8162 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875
I0429 10:54:33.628917 8162 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1
I0429 10:54:33.628929 8162 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0429 10:54:33.628942 8162 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0429 10:54:33.628953 8162 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0429 10:54:33.628965 8162 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0429 10:54:33.628978 8162 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0429 10:54:33.628989 8162 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0429 10:54:33.629000 8162 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0429 10:54:33.629014 8162 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0429 10:54:33.629024 8162 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0429 10:54:33.629036 8162 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0429 10:54:33.629048 8162 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0429 10:54:33.629060 8162 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0429 10:54:33.629071 8162 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0429 10:54:33.629083 8162 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.840909
I0429 10:54:33.629096 8162 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.659091
I0429 10:54:33.629111 8162 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.88208 (* 0.3 = 0.564624 loss)
I0429 10:54:33.629128 8162 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.523886 (* 0.3 = 0.157166 loss)
I0429 10:54:33.629143 8162 solver.cpp:245] Train net output #76: loss2/loss01 = 1.46948 (* 0.0272727 = 0.0400766 loss)
I0429 10:54:33.629158 8162 solver.cpp:245] Train net output #77: loss2/loss02 = 1.64087 (* 0.0272727 = 0.044751 loss)
I0429 10:54:33.629184 8162 solver.cpp:245] Train net output #78: loss2/loss03 = 2.21599 (* 0.0272727 = 0.0604361 loss)
I0429 10:54:33.629199 8162 solver.cpp:245] Train net output #79: loss2/loss04 = 1.48473 (* 0.0272727 = 0.0404927 loss)
I0429 10:54:33.629212 8162 solver.cpp:245] Train net output #80: loss2/loss05 = 2.06576 (* 0.0272727 = 0.0563388 loss)
I0429 10:54:33.629226 8162 solver.cpp:245] Train net output #81: loss2/loss06 = 1.43463 (* 0.0272727 = 0.0391262 loss)
I0429 10:54:33.629240 8162 solver.cpp:245] Train net output #82: loss2/loss07 = 0.802314 (* 0.0272727 = 0.0218813 loss)
I0429 10:54:33.629256 8162 solver.cpp:245] Train net output #83: loss2/loss08 = 0.367041 (* 0.0272727 = 0.0100102 loss)
I0429 10:54:33.629269 8162 solver.cpp:245] Train net output #84: loss2/loss09 = 0.00149033 (* 0.0272727 = 4.06453e-05 loss)
I0429 10:54:33.629283 8162 solver.cpp:245] Train net output #85: loss2/loss10 = 0.00077384 (* 0.0272727 = 2.11047e-05 loss)
I0429 10:54:33.629298 8162 solver.cpp:245] Train net output #86: loss2/loss11 = 0.000553081 (* 0.0272727 = 1.5084e-05 loss)
I0429 10:54:33.629312 8162 solver.cpp:245] Train net output #87: loss2/loss12 = 0.000365435 (* 0.0272727 = 9.96642e-06 loss)
I0429 10:54:33.629328 8162 solver.cpp:245] Train net output #88: loss2/loss13 = 0.000356418 (* 0.0272727 = 9.7205e-06 loss)
I0429 10:54:33.629341 8162 solver.cpp:245] Train net output #89: loss2/loss14 = 0.000142961 (* 0.0272727 = 3.89893e-06 loss)
I0429 10:54:33.629356 8162 solver.cpp:245] Train net output #90: loss2/loss15 = 0.00011753 (* 0.0272727 = 3.20536e-06 loss)
I0429 10:54:33.629374 8162 solver.cpp:245] Train net output #91: loss2/loss16 = 4.38353e-05 (* 0.0272727 = 1.19551e-06 loss)
I0429 10:54:33.629389 8162 solver.cpp:245] Train net output #92: loss2/loss17 = 0.000147527 (* 0.0272727 = 4.02345e-06 loss)
I0429 10:54:33.629403 8162 solver.cpp:245] Train net output #93: loss2/loss18 = 9.56475e-05 (* 0.0272727 = 2.60857e-06 loss)
I0429 10:54:33.629417 8162 solver.cpp:245] Train net output #94: loss2/loss19 = 8.5169e-05 (* 0.0272727 = 2.32279e-06 loss)
I0429 10:54:33.629431 8162 solver.cpp:245] Train net output #95: loss2/loss20 = 0.000176532 (* 0.0272727 = 4.8145e-06 loss)
I0429 10:54:33.629446 8162 solver.cpp:245] Train net output #96: loss2/loss21 = 0.000133116 (* 0.0272727 = 3.63044e-06 loss)
I0429 10:54:33.629459 8162 solver.cpp:245] Train net output #97: loss2/loss22 = 0.000203789 (* 0.0272727 = 5.55787e-06 loss)
I0429 10:54:33.629472 8162 solver.cpp:245] Train net output #98: loss3/accuracy = 0.681818
I0429 10:54:33.629484 8162 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875
I0429 10:54:33.629493 8162 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.625
I0429 10:54:33.629500 8162 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.5
I0429 10:54:33.629509 8162 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.625
I0429 10:54:33.629521 8162 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.625
I0429 10:54:33.629534 8162 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.75
I0429 10:54:33.629546 8162 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75
I0429 10:54:33.629559 8162 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1
I0429 10:54:33.629570 8162 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1
I0429 10:54:33.629582 8162 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0429 10:54:33.629593 8162 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0429 10:54:33.629606 8162 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0429 10:54:33.629617 8162 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0429 10:54:33.629628 8162 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0429 10:54:33.629640 8162 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0429 10:54:33.629662 8162 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0429 10:54:33.629675 8162 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0429 10:54:33.629688 8162 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0429 10:54:33.629699 8162 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0429 10:54:33.629711 8162 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0429 10:54:33.629724 8162 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0429 10:54:33.629734 8162 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0429 10:54:33.629746 8162 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.909091
I0429 10:54:33.629760 8162 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.863636
I0429 10:54:33.629773 8162 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.11493 (* 1 = 1.11493 loss)
I0429 10:54:33.629787 8162 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.332608 (* 1 = 0.332608 loss)
I0429 10:54:33.629802 8162 solver.cpp:245] Train net output #125: loss3/loss01 = 0.735419 (* 0.0909091 = 0.0668562 loss)
I0429 10:54:33.629817 8162 solver.cpp:245] Train net output #126: loss3/loss02 = 1.37274 (* 0.0909091 = 0.124795 loss)
I0429 10:54:33.629830 8162 solver.cpp:245] Train net output #127: loss3/loss03 = 1.08285 (* 0.0909091 = 0.0984405 loss)
I0429 10:54:33.629845 8162 solver.cpp:245] Train net output #128: loss3/loss04 = 1.19902 (* 0.0909091 = 0.109002 loss)
I0429 10:54:33.629859 8162 solver.cpp:245] Train net output #129: loss3/loss05 = 1.27817 (* 0.0909091 = 0.116197 loss)
I0429 10:54:33.629873 8162 solver.cpp:245] Train net output #130: loss3/loss06 = 0.723146 (* 0.0909091 = 0.0657405 loss)
I0429 10:54:33.629887 8162 solver.cpp:245] Train net output #131: loss3/loss07 = 0.62037 (* 0.0909091 = 0.0563973 loss)
I0429 10:54:33.629901 8162 solver.cpp:245] Train net output #132: loss3/loss08 = 0.132028 (* 0.0909091 = 0.0120026 loss)
I0429 10:54:33.629915 8162 solver.cpp:245] Train net output #133: loss3/loss09 = 0.00156059 (* 0.0909091 = 0.000141872 loss)
I0429 10:54:33.629930 8162 solver.cpp:245] Train net output #134: loss3/loss10 = 0.00107277 (* 0.0909091 = 9.75242e-05 loss)
I0429 10:54:33.629945 8162 solver.cpp:245] Train net output #135: loss3/loss11 = 0.000991681 (* 0.0909091 = 9.01528e-05 loss)
I0429 10:54:33.629959 8162 solver.cpp:245] Train net output #136: loss3/loss12 = 0.000745503 (* 0.0909091 = 6.7773e-05 loss)
I0429 10:54:33.629973 8162 solver.cpp:245] Train net output #137: loss3/loss13 = 0.00059248 (* 0.0909091 = 5.38619e-05 loss)
I0429 10:54:33.629987 8162 solver.cpp:245] Train net output #138: loss3/loss14 = 0.00046114 (* 0.0909091 = 4.19218e-05 loss)
I0429 10:54:33.630002 8162 solver.cpp:245] Train net output #139: loss3/loss15 = 0.000487315 (* 0.0909091 = 4.43014e-05 loss)
I0429 10:54:33.630017 8162 solver.cpp:245] Train net output #140: loss3/loss16 = 0.000377858 (* 0.0909091 = 3.43507e-05 loss)
I0429 10:54:33.630030 8162 solver.cpp:245] Train net output #141: loss3/loss17 = 0.000307333 (* 0.0909091 = 2.79394e-05 loss)
I0429 10:54:33.630044 8162 solver.cpp:245] Train net output #142: loss3/loss18 = 0.000271113 (* 0.0909091 = 2.46466e-05 loss)
I0429 10:54:33.630059 8162 solver.cpp:245] Train net output #143: loss3/loss19 = 0.000253254 (* 0.0909091 = 2.30231e-05 loss)
I0429 10:54:33.630074 8162 solver.cpp:245] Train net output #144: loss3/loss20 = 0.00023972 (* 0.0909091 = 2.17927e-05 loss)
I0429 10:54:33.630087 8162 solver.cpp:245] Train net output #145: loss3/loss21 = 0.000277951 (* 0.0909091 = 2.52682e-05 loss)
I0429 10:54:33.630101 8162 solver.cpp:245] Train net output #146: loss3/loss22 = 0.00023135 (* 0.0909091 = 2.10318e-05 loss)
I0429 10:54:33.630115 8162 solver.cpp:245] Train net output #147: total_accuracy = 0.125
I0429 10:54:33.630126 8162 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.25
I0429 10:54:33.630147 8162 solver.cpp:245] Train net output #149: total_confidence = 0.151694
I0429 10:54:33.630161 8162 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.227417
I0429 10:54:33.630177 8162 sgd_solver.cpp:106] Iteration 17000, lr = 0.005
I0429 10:56:51.091398 8162 solver.cpp:229] Iteration 17500, loss = 5.35388
I0429 10:56:51.091606 8162 solver.cpp:245] Train net output #0: loss1/accuracy = 0.386364
I0429 10:56:51.091637 8162 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.625
I0429 10:56:51.091660 8162 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.375
I0429 10:56:51.091681 8162 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.125
I0429 10:56:51.091702 8162 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.625
I0429 10:56:51.091725 8162 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.625
I0429 10:56:51.091747 8162 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.625
I0429 10:56:51.091768 8162 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.625
I0429 10:56:51.091789 8162 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875
I0429 10:56:51.091811 8162 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875
I0429 10:56:51.091835 8162 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875
I0429 10:56:51.091856 8162 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0429 10:56:51.091877 8162 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0429 10:56:51.091898 8162 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0429 10:56:51.091919 8162 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0429 10:56:51.091940 8162 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0429 10:56:51.091963 8162 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0429 10:56:51.091984 8162 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0429 10:56:51.092005 8162 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0429 10:56:51.092027 8162 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0429 10:56:51.092049 8162 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0429 10:56:51.092072 8162 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0429 10:56:51.092095 8162 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0429 10:56:51.092118 8162 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.835227
I0429 10:56:51.092140 8162 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.727273
I0429 10:56:51.092170 8162 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.89917 (* 0.3 = 0.569751 loss)
I0429 10:56:51.092197 8162 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.528156 (* 0.3 = 0.158447 loss)
I0429 10:56:51.092224 8162 solver.cpp:245] Train net output #27: loss1/loss01 = 0.842938 (* 0.0272727 = 0.0229892 loss)
I0429 10:56:51.092250 8162 solver.cpp:245] Train net output #28: loss1/loss02 = 1.65775 (* 0.0272727 = 0.0452113 loss)
I0429 10:56:51.092277 8162 solver.cpp:245] Train net output #29: loss1/loss03 = 2.14587 (* 0.0272727 = 0.0585239 loss)
I0429 10:56:51.092303 8162 solver.cpp:245] Train net output #30: loss1/loss04 = 1.33774 (* 0.0272727 = 0.0364839 loss)
I0429 10:56:51.092334 8162 solver.cpp:245] Train net output #31: loss1/loss05 = 1.06842 (* 0.0272727 = 0.0291387 loss)
I0429 10:56:51.092362 8162 solver.cpp:245] Train net output #32: loss1/loss06 = 1.12347 (* 0.0272727 = 0.03064 loss)
I0429 10:56:51.092388 8162 solver.cpp:245] Train net output #33: loss1/loss07 = 1.07034 (* 0.0272727 = 0.0291911 loss)
I0429 10:56:51.092416 8162 solver.cpp:245] Train net output #34: loss1/loss08 = 0.296491 (* 0.0272727 = 0.00808612 loss)
I0429 10:56:51.092442 8162 solver.cpp:245] Train net output #35: loss1/loss09 = 0.281977 (* 0.0272727 = 0.00769029 loss)
I0429 10:56:51.092473 8162 solver.cpp:245] Train net output #36: loss1/loss10 = 0.534277 (* 0.0272727 = 0.0145712 loss)
I0429 10:56:51.092501 8162 solver.cpp:245] Train net output #37: loss1/loss11 = 0.0232705 (* 0.0272727 = 0.000634649 loss)
I0429 10:56:51.092530 8162 solver.cpp:245] Train net output #38: loss1/loss12 = 0.0101397 (* 0.0272727 = 0.000276536 loss)
I0429 10:56:51.092586 8162 solver.cpp:245] Train net output #39: loss1/loss13 = 0.0109592 (* 0.0272727 = 0.000298887 loss)
I0429 10:56:51.092618 8162 solver.cpp:245] Train net output #40: loss1/loss14 = 0.00686643 (* 0.0272727 = 0.000187266 loss)
I0429 10:56:51.092648 8162 solver.cpp:245] Train net output #41: loss1/loss15 = 0.00326745 (* 0.0272727 = 8.91123e-05 loss)
I0429 10:56:51.092674 8162 solver.cpp:245] Train net output #42: loss1/loss16 = 0.00280018 (* 0.0272727 = 7.63684e-05 loss)
I0429 10:56:51.092700 8162 solver.cpp:245] Train net output #43: loss1/loss17 = 0.000390102 (* 0.0272727 = 1.06391e-05 loss)
I0429 10:56:51.092727 8162 solver.cpp:245] Train net output #44: loss1/loss18 = 0.00010254 (* 0.0272727 = 2.79654e-06 loss)
I0429 10:56:51.092754 8162 solver.cpp:245] Train net output #45: loss1/loss19 = 5.0309e-05 (* 0.0272727 = 1.37206e-06 loss)
I0429 10:56:51.092782 8162 solver.cpp:245] Train net output #46: loss1/loss20 = 5.81131e-05 (* 0.0272727 = 1.5849e-06 loss)
I0429 10:56:51.092808 8162 solver.cpp:245] Train net output #47: loss1/loss21 = 1.57515e-05 (* 0.0272727 = 4.29587e-07 loss)
I0429 10:56:51.092834 8162 solver.cpp:245] Train net output #48: loss1/loss22 = 5.37943e-06 (* 0.0272727 = 1.46712e-07 loss)
I0429 10:56:51.092857 8162 solver.cpp:245] Train net output #49: loss2/accuracy = 0.431818
I0429 10:56:51.092880 8162 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.75
I0429 10:56:51.092901 8162 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75
I0429 10:56:51.092923 8162 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0
I0429 10:56:51.092946 8162 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.75
I0429 10:56:51.092967 8162 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.625
I0429 10:56:51.092988 8162 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.625
I0429 10:56:51.093009 8162 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.625
I0429 10:56:51.093032 8162 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875
I0429 10:56:51.093057 8162 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875
I0429 10:56:51.093080 8162 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875
I0429 10:56:51.093102 8162 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0429 10:56:51.093123 8162 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0429 10:56:51.093145 8162 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0429 10:56:51.093168 8162 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0429 10:56:51.093189 8162 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0429 10:56:51.093211 8162 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0429 10:56:51.093232 8162 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0429 10:56:51.093255 8162 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0429 10:56:51.093276 8162 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0429 10:56:51.093297 8162 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0429 10:56:51.093317 8162 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0429 10:56:51.093338 8162 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0429 10:56:51.093360 8162 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.857955
I0429 10:56:51.093386 8162 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.75
I0429 10:56:51.093413 8162 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.71272 (* 0.3 = 0.513816 loss)
I0429 10:56:51.093439 8162 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.446229 (* 0.3 = 0.133869 loss)
I0429 10:56:51.093466 8162 solver.cpp:245] Train net output #76: loss2/loss01 = 0.892846 (* 0.0272727 = 0.0243503 loss)
I0429 10:56:51.093492 8162 solver.cpp:245] Train net output #77: loss2/loss02 = 1.07439 (* 0.0272727 = 0.0293017 loss)
I0429 10:56:51.093535 8162 solver.cpp:245] Train net output #78: loss2/loss03 = 2.59552 (* 0.0272727 = 0.0707869 loss)
I0429 10:56:51.093564 8162 solver.cpp:245] Train net output #79: loss2/loss04 = 0.997384 (* 0.0272727 = 0.0272014 loss)
I0429 10:56:51.093590 8162 solver.cpp:245] Train net output #80: loss2/loss05 = 1.27582 (* 0.0272727 = 0.0347952 loss)
I0429 10:56:51.093617 8162 solver.cpp:245] Train net output #81: loss2/loss06 = 1.02075 (* 0.0272727 = 0.0278385 loss)
I0429 10:56:51.093646 8162 solver.cpp:245] Train net output #82: loss2/loss07 = 1.59555 (* 0.0272727 = 0.0435151 loss)
I0429 10:56:51.093678 8162 solver.cpp:245] Train net output #83: loss2/loss08 = 0.40488 (* 0.0272727 = 0.0110422 loss)
I0429 10:56:51.093706 8162 solver.cpp:245] Train net output #84: loss2/loss09 = 0.406285 (* 0.0272727 = 0.0110805 loss)
I0429 10:56:51.093734 8162 solver.cpp:245] Train net output #85: loss2/loss10 = 0.516504 (* 0.0272727 = 0.0140865 loss)
I0429 10:56:51.093762 8162 solver.cpp:245] Train net output #86: loss2/loss11 = 0.0107781 (* 0.0272727 = 0.000293948 loss)
I0429 10:56:51.093792 8162 solver.cpp:245] Train net output #87: loss2/loss12 = 0.0108143 (* 0.0272727 = 0.000294934 loss)
I0429 10:56:51.093821 8162 solver.cpp:245] Train net output #88: loss2/loss13 = 0.00596577 (* 0.0272727 = 0.000162703 loss)
I0429 10:56:51.093847 8162 solver.cpp:245] Train net output #89: loss2/loss14 = 0.00327858 (* 0.0272727 = 8.94159e-05 loss)
I0429 10:56:51.093874 8162 solver.cpp:245] Train net output #90: loss2/loss15 = 0.00291875 (* 0.0272727 = 7.96022e-05 loss)
I0429 10:56:51.093901 8162 solver.cpp:245] Train net output #91: loss2/loss16 = 0.00161698 (* 0.0272727 = 4.40994e-05 loss)
I0429 10:56:51.093930 8162 solver.cpp:245] Train net output #92: loss2/loss17 = 0.000988254 (* 0.0272727 = 2.69524e-05 loss)
I0429 10:56:51.093956 8162 solver.cpp:245] Train net output #93: loss2/loss18 = 0.00105077 (* 0.0272727 = 2.86573e-05 loss)
I0429 10:56:51.093984 8162 solver.cpp:245] Train net output #94: loss2/loss19 = 0.00108187 (* 0.0272727 = 2.95056e-05 loss)
I0429 10:56:51.094012 8162 solver.cpp:245] Train net output #95: loss2/loss20 = 0.000578854 (* 0.0272727 = 1.57869e-05 loss)
I0429 10:56:51.094041 8162 solver.cpp:245] Train net output #96: loss2/loss21 = 0.000660843 (* 0.0272727 = 1.8023e-05 loss)
I0429 10:56:51.094069 8162 solver.cpp:245] Train net output #97: loss2/loss22 = 0.00020008 (* 0.0272727 = 5.45673e-06 loss)
I0429 10:56:51.094092 8162 solver.cpp:245] Train net output #98: loss3/accuracy = 0.772727
I0429 10:56:51.094116 8162 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0429 10:56:51.094138 8162 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0429 10:56:51.094159 8162 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.625
I0429 10:56:51.094182 8162 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875
I0429 10:56:51.094205 8162 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875
I0429 10:56:51.094228 8162 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.625
I0429 10:56:51.094250 8162 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.5
I0429 10:56:51.094272 8162 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875
I0429 10:56:51.094295 8162 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875
I0429 10:56:51.094315 8162 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875
I0429 10:56:51.094337 8162 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0429 10:56:51.094357 8162 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0429 10:56:51.094378 8162 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0429 10:56:51.094400 8162 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0429 10:56:51.094425 8162 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0429 10:56:51.094463 8162 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0429 10:56:51.094486 8162 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0429 10:56:51.094508 8162 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0429 10:56:51.094528 8162 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0429 10:56:51.094550 8162 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0429 10:56:51.094573 8162 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0429 10:56:51.094594 8162 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0429 10:56:51.094615 8162 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.9375
I0429 10:56:51.094637 8162 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.909091
I0429 10:56:51.094665 8162 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.959018 (* 1 = 0.959018 loss)
I0429 10:56:51.094691 8162 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.260282 (* 1 = 0.260282 loss)
I0429 10:56:51.094725 8162 solver.cpp:245] Train net output #125: loss3/loss01 = 0.117277 (* 0.0909091 = 0.0106616 loss)
I0429 10:56:51.094746 8162 solver.cpp:245] Train net output #126: loss3/loss02 = 0.292929 (* 0.0909091 = 0.0266299 loss)
I0429 10:56:51.094774 8162 solver.cpp:245] Train net output #127: loss3/loss03 = 1.34171 (* 0.0909091 = 0.121973 loss)
I0429 10:56:51.094801 8162 solver.cpp:245] Train net output #128: loss3/loss04 = 0.325455 (* 0.0909091 = 0.0295868 loss)
I0429 10:56:51.094830 8162 solver.cpp:245] Train net output #129: loss3/loss05 = 0.395003 (* 0.0909091 = 0.0359094 loss)
I0429 10:56:51.094856 8162 solver.cpp:245] Train net output #130: loss3/loss06 = 0.833336 (* 0.0909091 = 0.0757578 loss)
I0429 10:56:51.094882 8162 solver.cpp:245] Train net output #131: loss3/loss07 = 1.03813 (* 0.0909091 = 0.0943756 loss)
I0429 10:56:51.094907 8162 solver.cpp:245] Train net output #132: loss3/loss08 = 0.325167 (* 0.0909091 = 0.0295607 loss)
I0429 10:56:51.094931 8162 solver.cpp:245] Train net output #133: loss3/loss09 = 0.315636 (* 0.0909091 = 0.0286942 loss)
I0429 10:56:51.094954 8162 solver.cpp:245] Train net output #134: loss3/loss10 = 0.59698 (* 0.0909091 = 0.0542709 loss)
I0429 10:56:51.094980 8162 solver.cpp:245] Train net output #135: loss3/loss11 = 0.00393527 (* 0.0909091 = 0.000357752 loss)
I0429 10:56:51.095008 8162 solver.cpp:245] Train net output #136: loss3/loss12 = 0.0022803 (* 0.0909091 = 0.0002073 loss)
I0429 10:56:51.095036 8162 solver.cpp:245] Train net output #137: loss3/loss13 = 0.0019795 (* 0.0909091 = 0.000179954 loss)
I0429 10:56:51.095062 8162 solver.cpp:245] Train net output #138: loss3/loss14 = 0.00155243 (* 0.0909091 = 0.00014113 loss)
I0429 10:56:51.095088 8162 solver.cpp:245] Train net output #139: loss3/loss15 = 0.00121381 (* 0.0909091 = 0.000110347 loss)
I0429 10:56:51.095114 8162 solver.cpp:245] Train net output #140: loss3/loss16 = 0.000930573 (* 0.0909091 = 8.45976e-05 loss)
I0429 10:56:51.095141 8162 solver.cpp:245] Train net output #141: loss3/loss17 = 0.000326799 (* 0.0909091 = 2.9709e-05 loss)
I0429 10:56:51.095167 8162 solver.cpp:245] Train net output #142: loss3/loss18 = 0.000178091 (* 0.0909091 = 1.61901e-05 loss)
I0429 10:56:51.095194 8162 solver.cpp:245] Train net output #143: loss3/loss19 = 0.000111906 (* 0.0909091 = 1.01732e-05 loss)
I0429 10:56:51.095221 8162 solver.cpp:245] Train net output #144: loss3/loss20 = 8.5711e-05 (* 0.0909091 = 7.79191e-06 loss)
I0429 10:56:51.095247 8162 solver.cpp:245] Train net output #145: loss3/loss21 = 7.34843e-05 (* 0.0909091 = 6.68039e-06 loss)
I0429 10:56:51.095273 8162 solver.cpp:245] Train net output #146: loss3/loss22 = 6.11842e-05 (* 0.0909091 = 5.5622e-06 loss)
I0429 10:56:51.095294 8162 solver.cpp:245] Train net output #147: total_accuracy = 0.5
I0429 10:56:51.095316 8162 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.375
I0429 10:56:51.095356 8162 solver.cpp:245] Train net output #149: total_confidence = 0.369209
I0429 10:56:51.095381 8162 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.351397
I0429 10:56:51.095403 8162 sgd_solver.cpp:106] Iteration 17500, lr = 0.005
I0429 10:57:23.280498 8162 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 56.1727 > 30) by scale factor 0.534067
I0429 10:59:08.309645 8162 solver.cpp:229] Iteration 18000, loss = 5.31649
I0429 10:59:08.309808 8162 solver.cpp:245] Train net output #0: loss1/accuracy = 0.305085
I0429 10:59:08.309829 8162 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.625
I0429 10:59:08.309844 8162 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.375
I0429 10:59:08.309867 8162 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.25
I0429 10:59:08.309888 8162 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375
I0429 10:59:08.309909 8162 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.25
I0429 10:59:08.309931 8162 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.375
I0429 10:59:08.309947 8162 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.5
I0429 10:59:08.309960 8162 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.5
I0429 10:59:08.309973 8162 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.75
I0429 10:59:08.309984 8162 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875
I0429 10:59:08.309998 8162 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.875
I0429 10:59:08.310010 8162 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.875
I0429 10:59:08.310022 8162 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0429 10:59:08.310034 8162 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0429 10:59:08.310046 8162 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0429 10:59:08.310058 8162 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0429 10:59:08.310070 8162 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0429 10:59:08.310081 8162 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0429 10:59:08.310093 8162 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0429 10:59:08.310106 8162 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0429 10:59:08.310117 8162 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0429 10:59:08.310129 8162 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0429 10:59:08.310142 8162 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.755682
I0429 10:59:08.310153 8162 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.559322
I0429 10:59:08.310170 8162 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 2.3492 (* 0.3 = 0.70476 loss)
I0429 10:59:08.310185 8162 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.865886 (* 0.3 = 0.259766 loss)
I0429 10:59:08.310200 8162 solver.cpp:245] Train net output #27: loss1/loss01 = 1.25381 (* 0.0272727 = 0.0341949 loss)
I0429 10:59:08.310215 8162 solver.cpp:245] Train net output #28: loss1/loss02 = 2.3683 (* 0.0272727 = 0.06459 loss)
I0429 10:59:08.310230 8162 solver.cpp:245] Train net output #29: loss1/loss03 = 2.4704 (* 0.0272727 = 0.0673745 loss)
I0429 10:59:08.310245 8162 solver.cpp:245] Train net output #30: loss1/loss04 = 2.46248 (* 0.0272727 = 0.0671585 loss)
I0429 10:59:08.310258 8162 solver.cpp:245] Train net output #31: loss1/loss05 = 2.43836 (* 0.0272727 = 0.0665006 loss)
I0429 10:59:08.310272 8162 solver.cpp:245] Train net output #32: loss1/loss06 = 2.18371 (* 0.0272727 = 0.0595558 loss)
I0429 10:59:08.310287 8162 solver.cpp:245] Train net output #33: loss1/loss07 = 1.85545 (* 0.0272727 = 0.0506033 loss)
I0429 10:59:08.310302 8162 solver.cpp:245] Train net output #34: loss1/loss08 = 1.32922 (* 0.0272727 = 0.0362515 loss)
I0429 10:59:08.310318 8162 solver.cpp:245] Train net output #35: loss1/loss09 = 1.30573 (* 0.0272727 = 0.0356109 loss)
I0429 10:59:08.310333 8162 solver.cpp:245] Train net output #36: loss1/loss10 = 0.431829 (* 0.0272727 = 0.0117772 loss)
I0429 10:59:08.310349 8162 solver.cpp:245] Train net output #37: loss1/loss11 = 0.341392 (* 0.0272727 = 0.00931069 loss)
I0429 10:59:08.310364 8162 solver.cpp:245] Train net output #38: loss1/loss12 = 0.37392 (* 0.0272727 = 0.0101978 loss)
I0429 10:59:08.310379 8162 solver.cpp:245] Train net output #39: loss1/loss13 = 0.0814162 (* 0.0272727 = 0.00222044 loss)
I0429 10:59:08.310416 8162 solver.cpp:245] Train net output #40: loss1/loss14 = 0.0610502 (* 0.0272727 = 0.001665 loss)
I0429 10:59:08.310432 8162 solver.cpp:245] Train net output #41: loss1/loss15 = 0.0533752 (* 0.0272727 = 0.00145569 loss)
I0429 10:59:08.310447 8162 solver.cpp:245] Train net output #42: loss1/loss16 = 0.0245099 (* 0.0272727 = 0.000668451 loss)
I0429 10:59:08.310462 8162 solver.cpp:245] Train net output #43: loss1/loss17 = 0.0184237 (* 0.0272727 = 0.000502463 loss)
I0429 10:59:08.310477 8162 solver.cpp:245] Train net output #44: loss1/loss18 = 0.0152175 (* 0.0272727 = 0.000415022 loss)
I0429 10:59:08.310492 8162 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00799859 (* 0.0272727 = 0.000218143 loss)
I0429 10:59:08.310505 8162 solver.cpp:245] Train net output #46: loss1/loss20 = 0.00701713 (* 0.0272727 = 0.000191376 loss)
I0429 10:59:08.310519 8162 solver.cpp:245] Train net output #47: loss1/loss21 = 0.00912134 (* 0.0272727 = 0.000248764 loss)
I0429 10:59:08.310534 8162 solver.cpp:245] Train net output #48: loss1/loss22 = 0.00440244 (* 0.0272727 = 0.000120066 loss)
I0429 10:59:08.310546 8162 solver.cpp:245] Train net output #49: loss2/accuracy = 0.355932
I0429 10:59:08.310559 8162 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.75
I0429 10:59:08.310571 8162 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.5
I0429 10:59:08.310585 8162 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.25
I0429 10:59:08.310596 8162 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.125
I0429 10:59:08.310608 8162 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.25
I0429 10:59:08.310621 8162 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.5
I0429 10:59:08.310632 8162 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.625
I0429 10:59:08.310644 8162 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.625
I0429 10:59:08.310657 8162 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.625
I0429 10:59:08.310668 8162 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875
I0429 10:59:08.310680 8162 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.875
I0429 10:59:08.310693 8162 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.875
I0429 10:59:08.310704 8162 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0429 10:59:08.310716 8162 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0429 10:59:08.310729 8162 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0429 10:59:08.310740 8162 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0429 10:59:08.310752 8162 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0429 10:59:08.310765 8162 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0429 10:59:08.310776 8162 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0429 10:59:08.310787 8162 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0429 10:59:08.310799 8162 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0429 10:59:08.310811 8162 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0429 10:59:08.310827 8162 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.784091
I0429 10:59:08.310840 8162 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.559322
I0429 10:59:08.310854 8162 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 2.2455 (* 0.3 = 0.673649 loss)
I0429 10:59:08.310869 8162 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.794126 (* 0.3 = 0.238238 loss)
I0429 10:59:08.310886 8162 solver.cpp:245] Train net output #76: loss2/loss01 = 1.13159 (* 0.0272727 = 0.0308615 loss)
I0429 10:59:08.310911 8162 solver.cpp:245] Train net output #77: loss2/loss02 = 2.34003 (* 0.0272727 = 0.0638191 loss)
I0429 10:59:08.310941 8162 solver.cpp:245] Train net output #78: loss2/loss03 = 2.24318 (* 0.0272727 = 0.0611777 loss)
I0429 10:59:08.310957 8162 solver.cpp:245] Train net output #79: loss2/loss04 = 2.9712 (* 0.0272727 = 0.0810327 loss)
I0429 10:59:08.310971 8162 solver.cpp:245] Train net output #80: loss2/loss05 = 2.94968 (* 0.0272727 = 0.0804457 loss)
I0429 10:59:08.310986 8162 solver.cpp:245] Train net output #81: loss2/loss06 = 1.9581 (* 0.0272727 = 0.0534027 loss)
I0429 10:59:08.311000 8162 solver.cpp:245] Train net output #82: loss2/loss07 = 1.44699 (* 0.0272727 = 0.0394633 loss)
I0429 10:59:08.311014 8162 solver.cpp:245] Train net output #83: loss2/loss08 = 1.156 (* 0.0272727 = 0.0315272 loss)
I0429 10:59:08.311028 8162 solver.cpp:245] Train net output #84: loss2/loss09 = 1.29186 (* 0.0272727 = 0.0352326 loss)
I0429 10:59:08.311043 8162 solver.cpp:245] Train net output #85: loss2/loss10 = 0.448792 (* 0.0272727 = 0.0122398 loss)
I0429 10:59:08.311058 8162 solver.cpp:245] Train net output #86: loss2/loss11 = 0.452977 (* 0.0272727 = 0.0123539 loss)
I0429 10:59:08.311071 8162 solver.cpp:245] Train net output #87: loss2/loss12 = 0.409236 (* 0.0272727 = 0.011161 loss)
I0429 10:59:08.311086 8162 solver.cpp:245] Train net output #88: loss2/loss13 = 0.0314286 (* 0.0272727 = 0.000857144 loss)
I0429 10:59:08.311100 8162 solver.cpp:245] Train net output #89: loss2/loss14 = 0.0123202 (* 0.0272727 = 0.000336007 loss)
I0429 10:59:08.311115 8162 solver.cpp:245] Train net output #90: loss2/loss15 = 0.00550373 (* 0.0272727 = 0.000150102 loss)
I0429 10:59:08.311130 8162 solver.cpp:245] Train net output #91: loss2/loss16 = 0.00272501 (* 0.0272727 = 7.43184e-05 loss)
I0429 10:59:08.311144 8162 solver.cpp:245] Train net output #92: loss2/loss17 = 0.00144986 (* 0.0272727 = 3.95417e-05 loss)
I0429 10:59:08.311158 8162 solver.cpp:245] Train net output #93: loss2/loss18 = 0.000919196 (* 0.0272727 = 2.5069e-05 loss)
I0429 10:59:08.311173 8162 solver.cpp:245] Train net output #94: loss2/loss19 = 0.000798103 (* 0.0272727 = 2.17665e-05 loss)
I0429 10:59:08.311188 8162 solver.cpp:245] Train net output #95: loss2/loss20 = 0.000403302 (* 0.0272727 = 1.09991e-05 loss)
I0429 10:59:08.311203 8162 solver.cpp:245] Train net output #96: loss2/loss21 = 0.000170684 (* 0.0272727 = 4.65501e-06 loss)
I0429 10:59:08.311218 8162 solver.cpp:245] Train net output #97: loss2/loss22 = 6.06756e-05 (* 0.0272727 = 1.65479e-06 loss)
I0429 10:59:08.311230 8162 solver.cpp:245] Train net output #98: loss3/accuracy = 0.508475
I0429 10:59:08.311242 8162 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.75
I0429 10:59:08.311254 8162 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.625
I0429 10:59:08.311266 8162 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.75
I0429 10:59:08.311278 8162 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.375
I0429 10:59:08.311290 8162 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.5
I0429 10:59:08.311302 8162 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.5
I0429 10:59:08.311316 8162 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.625
I0429 10:59:08.311327 8162 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.625
I0429 10:59:08.311339 8162 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.75
I0429 10:59:08.311352 8162 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875
I0429 10:59:08.311365 8162 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.875
I0429 10:59:08.311378 8162 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.875
I0429 10:59:08.311391 8162 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0429 10:59:08.311403 8162 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0429 10:59:08.311415 8162 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0429 10:59:08.311426 8162 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0429 10:59:08.311449 8162 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0429 10:59:08.311461 8162 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0429 10:59:08.311489 8162 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0429 10:59:08.311502 8162 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0429 10:59:08.311514 8162 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0429 10:59:08.311527 8162 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0429 10:59:08.311539 8162 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.823864
I0429 10:59:08.311552 8162 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.728814
I0429 10:59:08.311565 8162 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.57824 (* 1 = 1.57824 loss)
I0429 10:59:08.311580 8162 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.574353 (* 1 = 0.574353 loss)
I0429 10:59:08.311594 8162 solver.cpp:245] Train net output #125: loss3/loss01 = 0.782574 (* 0.0909091 = 0.0711431 loss)
I0429 10:59:08.311609 8162 solver.cpp:245] Train net output #126: loss3/loss02 = 1.17073 (* 0.0909091 = 0.10643 loss)
I0429 10:59:08.311625 8162 solver.cpp:245] Train net output #127: loss3/loss03 = 1.34917 (* 0.0909091 = 0.122652 loss)
I0429 10:59:08.311638 8162 solver.cpp:245] Train net output #128: loss3/loss04 = 2.16378 (* 0.0909091 = 0.196707 loss)
I0429 10:59:08.311652 8162 solver.cpp:245] Train net output #129: loss3/loss05 = 1.60222 (* 0.0909091 = 0.145656 loss)
I0429 10:59:08.311666 8162 solver.cpp:245] Train net output #130: loss3/loss06 = 1.43952 (* 0.0909091 = 0.130865 loss)
I0429 10:59:08.311681 8162 solver.cpp:245] Train net output #131: loss3/loss07 = 1.38333 (* 0.0909091 = 0.125758 loss)
I0429 10:59:08.311696 8162 solver.cpp:245] Train net output #132: loss3/loss08 = 0.979219 (* 0.0909091 = 0.0890199 loss)
I0429 10:59:08.311709 8162 solver.cpp:245] Train net output #133: loss3/loss09 = 0.901892 (* 0.0909091 = 0.0819902 loss)
I0429 10:59:08.311723 8162 solver.cpp:245] Train net output #134: loss3/loss10 = 0.464718 (* 0.0909091 = 0.0422471 loss)
I0429 10:59:08.311738 8162 solver.cpp:245] Train net output #135: loss3/loss11 = 0.308324 (* 0.0909091 = 0.0280295 loss)
I0429 10:59:08.311753 8162 solver.cpp:245] Train net output #136: loss3/loss12 = 0.342384 (* 0.0909091 = 0.0311258 loss)
I0429 10:59:08.311767 8162 solver.cpp:245] Train net output #137: loss3/loss13 = 0.103813 (* 0.0909091 = 0.00943757 loss)
I0429 10:59:08.311782 8162 solver.cpp:245] Train net output #138: loss3/loss14 = 0.0633505 (* 0.0909091 = 0.00575913 loss)
I0429 10:59:08.311797 8162 solver.cpp:245] Train net output #139: loss3/loss15 = 0.0291391 (* 0.0909091 = 0.00264901 loss)
I0429 10:59:08.311807 8162 solver.cpp:245] Train net output #140: loss3/loss16 = 0.00897579 (* 0.0909091 = 0.000815981 loss)
I0429 10:59:08.311822 8162 solver.cpp:245] Train net output #141: loss3/loss17 = 0.00266121 (* 0.0909091 = 0.000241928 loss)
I0429 10:59:08.311837 8162 solver.cpp:245] Train net output #142: loss3/loss18 = 0.00105134 (* 0.0909091 = 9.55765e-05 loss)
I0429 10:59:08.311851 8162 solver.cpp:245] Train net output #143: loss3/loss19 = 0.000365526 (* 0.0909091 = 3.32297e-05 loss)
I0429 10:59:08.311866 8162 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000166658 (* 0.0909091 = 1.51507e-05 loss)
I0429 10:59:08.311884 8162 solver.cpp:245] Train net output #145: loss3/loss21 = 6.96111e-05 (* 0.0909091 = 6.32828e-06 loss)
I0429 10:59:08.311899 8162 solver.cpp:245] Train net output #146: loss3/loss22 = 4.74413e-05 (* 0.0909091 = 4.31284e-06 loss)
I0429 10:59:08.311911 8162 solver.cpp:245] Train net output #147: total_accuracy = 0
I0429 10:59:08.311923 8162 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0
I0429 10:59:08.311946 8162 solver.cpp:245] Train net output #149: total_confidence = 0.0466708
I0429 10:59:08.311960 8162 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.0312583
I0429 10:59:08.311974 8162 sgd_solver.cpp:106] Iteration 18000, lr = 0.005
I0429 11:01:25.379243 8162 solver.cpp:229] Iteration 18500, loss = 5.23841
I0429 11:01:25.379425 8162 solver.cpp:245] Train net output #0: loss1/accuracy = 0.346939
I0429 11:01:25.379446 8162 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75
I0429 11:01:25.379459 8162 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.25
I0429 11:01:25.379472 8162 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.5
I0429 11:01:25.379484 8162 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375
I0429 11:01:25.379497 8162 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.5
I0429 11:01:25.379509 8162 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.5
I0429 11:01:25.379521 8162 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.625
I0429 11:01:25.379534 8162 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.625
I0429 11:01:25.379561 8162 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1
I0429 11:01:25.379575 8162 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0429 11:01:25.379586 8162 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0429 11:01:25.379598 8162 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0429 11:01:25.379611 8162 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0429 11:01:25.379622 8162 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0429 11:01:25.379634 8162 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0429 11:01:25.379647 8162 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0429 11:01:25.379658 8162 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0429 11:01:25.379670 8162 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0429 11:01:25.379683 8162 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0429 11:01:25.379694 8162 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0429 11:01:25.379706 8162 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0429 11:01:25.379719 8162 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0429 11:01:25.379730 8162 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.806818
I0429 11:01:25.379742 8162 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.55102
I0429 11:01:25.379760 8162 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 2.04676 (* 0.3 = 0.614027 loss)
I0429 11:01:25.379775 8162 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.630162 (* 0.3 = 0.189049 loss)
I0429 11:01:25.379789 8162 solver.cpp:245] Train net output #27: loss1/loss01 = 0.740613 (* 0.0272727 = 0.0201985 loss)
I0429 11:01:25.379804 8162 solver.cpp:245] Train net output #28: loss1/loss02 = 1.67526 (* 0.0272727 = 0.045689 loss)
I0429 11:01:25.379819 8162 solver.cpp:245] Train net output #29: loss1/loss03 = 1.8538 (* 0.0272727 = 0.0505583 loss)
I0429 11:01:25.379834 8162 solver.cpp:245] Train net output #30: loss1/loss04 = 2.25819 (* 0.0272727 = 0.0615869 loss)
I0429 11:01:25.379848 8162 solver.cpp:245] Train net output #31: loss1/loss05 = 1.64905 (* 0.0272727 = 0.044974 loss)
I0429 11:01:25.379863 8162 solver.cpp:245] Train net output #32: loss1/loss06 = 1.34586 (* 0.0272727 = 0.0367053 loss)
I0429 11:01:25.379878 8162 solver.cpp:245] Train net output #33: loss1/loss07 = 1.72408 (* 0.0272727 = 0.0470203 loss)
I0429 11:01:25.379891 8162 solver.cpp:245] Train net output #34: loss1/loss08 = 1.09137 (* 0.0272727 = 0.0297646 loss)
I0429 11:01:25.379906 8162 solver.cpp:245] Train net output #35: loss1/loss09 = 0.0524105 (* 0.0272727 = 0.00142938 loss)
I0429 11:01:25.379921 8162 solver.cpp:245] Train net output #36: loss1/loss10 = 0.0182518 (* 0.0272727 = 0.000497776 loss)
I0429 11:01:25.379936 8162 solver.cpp:245] Train net output #37: loss1/loss11 = 0.00109338 (* 0.0272727 = 2.98194e-05 loss)
I0429 11:01:25.379951 8162 solver.cpp:245] Train net output #38: loss1/loss12 = 0.000462887 (* 0.0272727 = 1.26242e-05 loss)
I0429 11:01:25.379966 8162 solver.cpp:245] Train net output #39: loss1/loss13 = 0.000548023 (* 0.0272727 = 1.49461e-05 loss)
I0429 11:01:25.380002 8162 solver.cpp:245] Train net output #40: loss1/loss14 = 8.20368e-05 (* 0.0272727 = 2.23737e-06 loss)
I0429 11:01:25.380018 8162 solver.cpp:245] Train net output #41: loss1/loss15 = 0.000158604 (* 0.0272727 = 4.32557e-06 loss)
I0429 11:01:25.380033 8162 solver.cpp:245] Train net output #42: loss1/loss16 = 9.64906e-05 (* 0.0272727 = 2.63156e-06 loss)
I0429 11:01:25.380048 8162 solver.cpp:245] Train net output #43: loss1/loss17 = 6.86751e-05 (* 0.0272727 = 1.87296e-06 loss)
I0429 11:01:25.380061 8162 solver.cpp:245] Train net output #44: loss1/loss18 = 3.66247e-05 (* 0.0272727 = 9.98857e-07 loss)
I0429 11:01:25.380076 8162 solver.cpp:245] Train net output #45: loss1/loss19 = 6.85266e-05 (* 0.0272727 = 1.86891e-06 loss)
I0429 11:01:25.380091 8162 solver.cpp:245] Train net output #46: loss1/loss20 = 7.24255e-05 (* 0.0272727 = 1.97524e-06 loss)
I0429 11:01:25.380105 8162 solver.cpp:245] Train net output #47: loss1/loss21 = 6.22574e-05 (* 0.0272727 = 1.69793e-06 loss)
I0429 11:01:25.380120 8162 solver.cpp:245] Train net output #48: loss1/loss22 = 3.06629e-05 (* 0.0272727 = 8.3626e-07 loss)
I0429 11:01:25.380132 8162 solver.cpp:245] Train net output #49: loss2/accuracy = 0.44898
I0429 11:01:25.380146 8162 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.75
I0429 11:01:25.380158 8162 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75
I0429 11:01:25.380170 8162 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.5
I0429 11:01:25.380182 8162 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.25
I0429 11:01:25.380195 8162 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5
I0429 11:01:25.380208 8162 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.625
I0429 11:01:25.380219 8162 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.5
I0429 11:01:25.380233 8162 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.625
I0429 11:01:25.380244 8162 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1
I0429 11:01:25.380256 8162 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0429 11:01:25.380269 8162 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0429 11:01:25.380280 8162 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0429 11:01:25.380292 8162 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0429 11:01:25.380305 8162 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0429 11:01:25.380319 8162 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0429 11:01:25.380331 8162 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0429 11:01:25.380343 8162 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0429 11:01:25.380357 8162 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0429 11:01:25.380368 8162 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0429 11:01:25.380380 8162 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0429 11:01:25.380393 8162 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0429 11:01:25.380404 8162 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0429 11:01:25.380416 8162 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.840909
I0429 11:01:25.380432 8162 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.693878
I0429 11:01:25.380448 8162 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.81981 (* 0.3 = 0.545943 loss)
I0429 11:01:25.380462 8162 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.540374 (* 0.3 = 0.162112 loss)
I0429 11:01:25.380477 8162 solver.cpp:245] Train net output #76: loss2/loss01 = 0.989209 (* 0.0272727 = 0.0269784 loss)
I0429 11:01:25.380492 8162 solver.cpp:245] Train net output #77: loss2/loss02 = 0.967374 (* 0.0272727 = 0.0263829 loss)
I0429 11:01:25.380517 8162 solver.cpp:245] Train net output #78: loss2/loss03 = 1.67299 (* 0.0272727 = 0.045627 loss)
I0429 11:01:25.380533 8162 solver.cpp:245] Train net output #79: loss2/loss04 = 2.59095 (* 0.0272727 = 0.0706623 loss)
I0429 11:01:25.380548 8162 solver.cpp:245] Train net output #80: loss2/loss05 = 1.54243 (* 0.0272727 = 0.0420661 loss)
I0429 11:01:25.380561 8162 solver.cpp:245] Train net output #81: loss2/loss06 = 1.35513 (* 0.0272727 = 0.0369582 loss)
I0429 11:01:25.380576 8162 solver.cpp:245] Train net output #82: loss2/loss07 = 1.49475 (* 0.0272727 = 0.0407658 loss)
I0429 11:01:25.380590 8162 solver.cpp:245] Train net output #83: loss2/loss08 = 1.40114 (* 0.0272727 = 0.038213 loss)
I0429 11:01:25.380605 8162 solver.cpp:245] Train net output #84: loss2/loss09 = 0.0445117 (* 0.0272727 = 0.00121396 loss)
I0429 11:01:25.380620 8162 solver.cpp:245] Train net output #85: loss2/loss10 = 0.0194236 (* 0.0272727 = 0.000529735 loss)
I0429 11:01:25.380635 8162 solver.cpp:245] Train net output #86: loss2/loss11 = 0.00677386 (* 0.0272727 = 0.000184742 loss)
I0429 11:01:25.380648 8162 solver.cpp:245] Train net output #87: loss2/loss12 = 0.00621602 (* 0.0272727 = 0.000169528 loss)
I0429 11:01:25.380663 8162 solver.cpp:245] Train net output #88: loss2/loss13 = 0.00226317 (* 0.0272727 = 6.17229e-05 loss)
I0429 11:01:25.380678 8162 solver.cpp:245] Train net output #89: loss2/loss14 = 0.0022163 (* 0.0272727 = 6.04445e-05 loss)
I0429 11:01:25.380693 8162 solver.cpp:245] Train net output #90: loss2/loss15 = 0.00104438 (* 0.0272727 = 2.8483e-05 loss)
I0429 11:01:25.380708 8162 solver.cpp:245] Train net output #91: loss2/loss16 = 0.000929635 (* 0.0272727 = 2.53537e-05 loss)
I0429 11:01:25.380723 8162 solver.cpp:245] Train net output #92: loss2/loss17 = 0.000242668 (* 0.0272727 = 6.61821e-06 loss)
I0429 11:01:25.380738 8162 solver.cpp:245] Train net output #93: loss2/loss18 = 9.56046e-05 (* 0.0272727 = 2.6074e-06 loss)
I0429 11:01:25.380753 8162 solver.cpp:245] Train net output #94: loss2/loss19 = 4.36576e-05 (* 0.0272727 = 1.19066e-06 loss)
I0429 11:01:25.380767 8162 solver.cpp:245] Train net output #95: loss2/loss20 = 4.68715e-05 (* 0.0272727 = 1.27831e-06 loss)
I0429 11:01:25.380781 8162 solver.cpp:245] Train net output #96: loss2/loss21 = 7.16559e-05 (* 0.0272727 = 1.95425e-06 loss)
I0429 11:01:25.380796 8162 solver.cpp:245] Train net output #97: loss2/loss22 = 0.00029183 (* 0.0272727 = 7.95901e-06 loss)
I0429 11:01:25.380810 8162 solver.cpp:245] Train net output #98: loss3/accuracy = 0.77551
I0429 11:01:25.380822 8162 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0429 11:01:25.380834 8162 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875
I0429 11:01:25.380846 8162 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.75
I0429 11:01:25.380859 8162 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.75
I0429 11:01:25.380872 8162 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.75
I0429 11:01:25.380883 8162 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.5
I0429 11:01:25.380892 8162 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.5
I0429 11:01:25.380899 8162 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.75
I0429 11:01:25.380913 8162 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1
I0429 11:01:25.380924 8162 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0429 11:01:25.380936 8162 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0429 11:01:25.380949 8162 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0429 11:01:25.380960 8162 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0429 11:01:25.380971 8162 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0429 11:01:25.380983 8162 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0429 11:01:25.380995 8162 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0429 11:01:25.381016 8162 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0429 11:01:25.381029 8162 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0429 11:01:25.381042 8162 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0429 11:01:25.381053 8162 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0429 11:01:25.381065 8162 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0429 11:01:25.381077 8162 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0429 11:01:25.381088 8162 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.931818
I0429 11:01:25.381100 8162 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.918367
I0429 11:01:25.381115 8162 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.81734 (* 1 = 0.81734 loss)
I0429 11:01:25.381129 8162 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.237602 (* 1 = 0.237602 loss)
I0429 11:01:25.381145 8162 solver.cpp:245] Train net output #125: loss3/loss01 = 0.122942 (* 0.0909091 = 0.0111766 loss)
I0429 11:01:25.381160 8162 solver.cpp:245] Train net output #126: loss3/loss02 = 0.637702 (* 0.0909091 = 0.0579729 loss)
I0429 11:01:25.381173 8162 solver.cpp:245] Train net output #127: loss3/loss03 = 0.817867 (* 0.0909091 = 0.0743515 loss)
I0429 11:01:25.381187 8162 solver.cpp:245] Train net output #128: loss3/loss04 = 0.981755 (* 0.0909091 = 0.0892505 loss)
I0429 11:01:25.381202 8162 solver.cpp:245] Train net output #129: loss3/loss05 = 0.802258 (* 0.0909091 = 0.0729325 loss)
I0429 11:01:25.381217 8162 solver.cpp:245] Train net output #130: loss3/loss06 = 0.862658 (* 0.0909091 = 0.0784235 loss)
I0429 11:01:25.381230 8162 solver.cpp:245] Train net output #131: loss3/loss07 = 0.937671 (* 0.0909091 = 0.0852428 loss)
I0429 11:01:25.381245 8162 solver.cpp:245] Train net output #132: loss3/loss08 = 0.933004 (* 0.0909091 = 0.0848186 loss)
I0429 11:01:25.381259 8162 solver.cpp:245] Train net output #133: loss3/loss09 = 0.0444269 (* 0.0909091 = 0.00403881 loss)
I0429 11:01:25.381274 8162 solver.cpp:245] Train net output #134: loss3/loss10 = 0.0197076 (* 0.0909091 = 0.0017916 loss)
I0429 11:01:25.381289 8162 solver.cpp:245] Train net output #135: loss3/loss11 = 0.00909979 (* 0.0909091 = 0.000827254 loss)
I0429 11:01:25.381304 8162 solver.cpp:245] Train net output #136: loss3/loss12 = 0.00209462 (* 0.0909091 = 0.00019042 loss)
I0429 11:01:25.381317 8162 solver.cpp:245] Train net output #137: loss3/loss13 = 0.000924498 (* 0.0909091 = 8.40453e-05 loss)
I0429 11:01:25.381332 8162 solver.cpp:245] Train net output #138: loss3/loss14 = 0.000912385 (* 0.0909091 = 8.29441e-05 loss)
I0429 11:01:25.381346 8162 solver.cpp:245] Train net output #139: loss3/loss15 = 0.00047484 (* 0.0909091 = 4.31672e-05 loss)
I0429 11:01:25.381361 8162 solver.cpp:245] Train net output #140: loss3/loss16 = 0.000219887 (* 0.0909091 = 1.99897e-05 loss)
I0429 11:01:25.381378 8162 solver.cpp:245] Train net output #141: loss3/loss17 = 6.78111e-05 (* 0.0909091 = 6.16465e-06 loss)
I0429 11:01:25.381393 8162 solver.cpp:245] Train net output #142: loss3/loss18 = 3.12889e-05 (* 0.0909091 = 2.84444e-06 loss)
I0429 11:01:25.381407 8162 solver.cpp:245] Train net output #143: loss3/loss19 = 9.77554e-06 (* 0.0909091 = 8.88685e-07 loss)
I0429 11:01:25.381422 8162 solver.cpp:245] Train net output #144: loss3/loss20 = 5.8861e-06 (* 0.0909091 = 5.351e-07 loss)
I0429 11:01:25.381438 8162 solver.cpp:245] Train net output #145: loss3/loss21 = 2.50342e-06 (* 0.0909091 = 2.27584e-07 loss)
I0429 11:01:25.381453 8162 solver.cpp:245] Train net output #146: loss3/loss22 = 1.63914e-06 (* 0.0909091 = 1.49013e-07 loss)
I0429 11:01:25.381464 8162 solver.cpp:245] Train net output #147: total_accuracy = 0.375
I0429 11:01:25.381480 8162 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.375
I0429 11:01:25.381503 8162 solver.cpp:245] Train net output #149: total_confidence = 0.273593
I0429 11:01:25.381516 8162 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.289713
I0429 11:01:25.381531 8162 sgd_solver.cpp:106] Iteration 18500, lr = 0.005
I0429 11:03:43.333570 8162 solver.cpp:229] Iteration 19000, loss = 5.36379
I0429 11:03:43.333752 8162 solver.cpp:245] Train net output #0: loss1/accuracy = 0.422222
I0429 11:03:43.333773 8162 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75
I0429 11:03:43.333787 8162 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.625
I0429 11:03:43.333801 8162 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.5
I0429 11:03:43.333812 8162 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.25
I0429 11:03:43.333824 8162 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.625
I0429 11:03:43.333837 8162 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.375
I0429 11:03:43.333848 8162 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.875
I0429 11:03:43.333861 8162 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875
I0429 11:03:43.333873 8162 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875
I0429 11:03:43.333885 8162 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875
I0429 11:03:43.333899 8162 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0429 11:03:43.333910 8162 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0429 11:03:43.333922 8162 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0429 11:03:43.333935 8162 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0429 11:03:43.333946 8162 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0429 11:03:43.333958 8162 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0429 11:03:43.333971 8162 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0429 11:03:43.333982 8162 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0429 11:03:43.333993 8162 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0429 11:03:43.334005 8162 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0429 11:03:43.334017 8162 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0429 11:03:43.334029 8162 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0429 11:03:43.334041 8162 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.829545
I0429 11:03:43.334053 8162 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.666667
I0429 11:03:43.334070 8162 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 2.11853 (* 0.3 = 0.635558 loss)
I0429 11:03:43.334085 8162 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.619131 (* 0.3 = 0.185739 loss)
I0429 11:03:43.334100 8162 solver.cpp:245] Train net output #27: loss1/loss01 = 0.960483 (* 0.0272727 = 0.026195 loss)
I0429 11:03:43.334115 8162 solver.cpp:245] Train net output #28: loss1/loss02 = 1.18449 (* 0.0272727 = 0.0323044 loss)
I0429 11:03:43.334131 8162 solver.cpp:245] Train net output #29: loss1/loss03 = 1.97945 (* 0.0272727 = 0.053985 loss)
I0429 11:03:43.334144 8162 solver.cpp:245] Train net output #30: loss1/loss04 = 2.37286 (* 0.0272727 = 0.0647145 loss)
I0429 11:03:43.334158 8162 solver.cpp:245] Train net output #31: loss1/loss05 = 1.61363 (* 0.0272727 = 0.0440081 loss)
I0429 11:03:43.334173 8162 solver.cpp:245] Train net output #32: loss1/loss06 = 2.66826 (* 0.0272727 = 0.0727707 loss)
I0429 11:03:43.334187 8162 solver.cpp:245] Train net output #33: loss1/loss07 = 0.888272 (* 0.0272727 = 0.0242256 loss)
I0429 11:03:43.334203 8162 solver.cpp:245] Train net output #34: loss1/loss08 = 0.599104 (* 0.0272727 = 0.0163392 loss)
I0429 11:03:43.334216 8162 solver.cpp:245] Train net output #35: loss1/loss09 = 0.616081 (* 0.0272727 = 0.0168022 loss)
I0429 11:03:43.334231 8162 solver.cpp:245] Train net output #36: loss1/loss10 = 1.34365 (* 0.0272727 = 0.0366449 loss)
I0429 11:03:43.334245 8162 solver.cpp:245] Train net output #37: loss1/loss11 = 0.00227504 (* 0.0272727 = 6.20466e-05 loss)
I0429 11:03:43.334260 8162 solver.cpp:245] Train net output #38: loss1/loss12 = 0.00137795 (* 0.0272727 = 3.75804e-05 loss)
I0429 11:03:43.334295 8162 solver.cpp:245] Train net output #39: loss1/loss13 = 0.000807244 (* 0.0272727 = 2.20158e-05 loss)
I0429 11:03:43.334314 8162 solver.cpp:245] Train net output #40: loss1/loss14 = 0.00072765 (* 0.0272727 = 1.9845e-05 loss)
I0429 11:03:43.334331 8162 solver.cpp:245] Train net output #41: loss1/loss15 = 0.00118025 (* 0.0272727 = 3.21886e-05 loss)
I0429 11:03:43.334344 8162 solver.cpp:245] Train net output #42: loss1/loss16 = 0.00081624 (* 0.0272727 = 2.22611e-05 loss)
I0429 11:03:43.334359 8162 solver.cpp:245] Train net output #43: loss1/loss17 = 0.000183926 (* 0.0272727 = 5.01617e-06 loss)
I0429 11:03:43.334373 8162 solver.cpp:245] Train net output #44: loss1/loss18 = 6.36591e-05 (* 0.0272727 = 1.73616e-06 loss)
I0429 11:03:43.334388 8162 solver.cpp:245] Train net output #45: loss1/loss19 = 0.000126642 (* 0.0272727 = 3.45387e-06 loss)
I0429 11:03:43.334403 8162 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000269629 (* 0.0272727 = 7.35352e-06 loss)
I0429 11:03:43.334416 8162 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000171764 (* 0.0272727 = 4.68448e-06 loss)
I0429 11:03:43.334434 8162 solver.cpp:245] Train net output #48: loss1/loss22 = 9.27867e-05 (* 0.0272727 = 2.53055e-06 loss)
I0429 11:03:43.334445 8162 solver.cpp:245] Train net output #49: loss2/accuracy = 0.444444
I0429 11:03:43.334458 8162 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.75
I0429 11:03:43.334470 8162 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75
I0429 11:03:43.334482 8162 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.625
I0429 11:03:43.334496 8162 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.375
I0429 11:03:43.334507 8162 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.375
I0429 11:03:43.334519 8162 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.5
I0429 11:03:43.334532 8162 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.875
I0429 11:03:43.334543 8162 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875
I0429 11:03:43.334555 8162 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875
I0429 11:03:43.334568 8162 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875
I0429 11:03:43.334580 8162 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0429 11:03:43.334591 8162 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0429 11:03:43.334604 8162 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0429 11:03:43.334615 8162 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0429 11:03:43.334627 8162 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0429 11:03:43.334640 8162 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0429 11:03:43.334651 8162 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0429 11:03:43.334662 8162 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0429 11:03:43.334674 8162 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0429 11:03:43.334686 8162 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0429 11:03:43.334698 8162 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0429 11:03:43.334710 8162 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0429 11:03:43.334722 8162 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.846591
I0429 11:03:43.334734 8162 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.688889
I0429 11:03:43.334748 8162 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.86256 (* 0.3 = 0.558769 loss)
I0429 11:03:43.334767 8162 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.525734 (* 0.3 = 0.15772 loss)
I0429 11:03:43.334782 8162 solver.cpp:245] Train net output #76: loss2/loss01 = 0.687947 (* 0.0272727 = 0.0187622 loss)
I0429 11:03:43.334797 8162 solver.cpp:245] Train net output #77: loss2/loss02 = 1.13367 (* 0.0272727 = 0.0309183 loss)
I0429 11:03:43.334822 8162 solver.cpp:245] Train net output #78: loss2/loss03 = 1.62004 (* 0.0272727 = 0.0441829 loss)
I0429 11:03:43.334838 8162 solver.cpp:245] Train net output #79: loss2/loss04 = 1.76982 (* 0.0272727 = 0.0482677 loss)
I0429 11:03:43.334852 8162 solver.cpp:245] Train net output #80: loss2/loss05 = 1.67395 (* 0.0272727 = 0.0456531 loss)
I0429 11:03:43.334867 8162 solver.cpp:245] Train net output #81: loss2/loss06 = 2.60992 (* 0.0272727 = 0.0711796 loss)
I0429 11:03:43.334880 8162 solver.cpp:245] Train net output #82: loss2/loss07 = 0.615873 (* 0.0272727 = 0.0167965 loss)
I0429 11:03:43.334895 8162 solver.cpp:245] Train net output #83: loss2/loss08 = 0.530905 (* 0.0272727 = 0.0144792 loss)
I0429 11:03:43.334909 8162 solver.cpp:245] Train net output #84: loss2/loss09 = 0.395301 (* 0.0272727 = 0.0107809 loss)
I0429 11:03:43.334924 8162 solver.cpp:245] Train net output #85: loss2/loss10 = 1.35675 (* 0.0272727 = 0.0370023 loss)
I0429 11:03:43.334939 8162 solver.cpp:245] Train net output #86: loss2/loss11 = 0.000238511 (* 0.0272727 = 6.50484e-06 loss)
I0429 11:03:43.334949 8162 solver.cpp:245] Train net output #87: loss2/loss12 = 8.16018e-05 (* 0.0272727 = 2.2255e-06 loss)
I0429 11:03:43.334959 8162 solver.cpp:245] Train net output #88: loss2/loss13 = 3.27345e-05 (* 0.0272727 = 8.9276e-07 loss)
I0429 11:03:43.334969 8162 solver.cpp:245] Train net output #89: loss2/loss14 = 8.58335e-06 (* 0.0272727 = 2.34091e-07 loss)
I0429 11:03:43.334985 8162 solver.cpp:245] Train net output #90: loss2/loss15 = 4.64924e-06 (* 0.0272727 = 1.26798e-07 loss)
I0429 11:03:43.334998 8162 solver.cpp:245] Train net output #91: loss2/loss16 = 3.60613e-06 (* 0.0272727 = 9.8349e-08 loss)
I0429 11:03:43.335013 8162 solver.cpp:245] Train net output #92: loss2/loss17 = 4.76838e-07 (* 0.0272727 = 1.30047e-08 loss)
I0429 11:03:43.335027 8162 solver.cpp:245] Train net output #93: loss2/loss18 = 4.02332e-07 (* 0.0272727 = 1.09727e-08 loss)
I0429 11:03:43.335042 8162 solver.cpp:245] Train net output #94: loss2/loss19 = 1.63913e-07 (* 0.0272727 = 4.47035e-09 loss)
I0429 11:03:43.335057 8162 solver.cpp:245] Train net output #95: loss2/loss20 = 1.19209e-07 (* 0.0272727 = 3.25116e-09 loss)
I0429 11:03:43.335070 8162 solver.cpp:245] Train net output #96: loss2/loss21 = 2.08616e-07 (* 0.0272727 = 5.68954e-09 loss)
I0429 11:03:43.335085 8162 solver.cpp:245] Train net output #97: loss2/loss22 = 2.5332e-07 (* 0.0272727 = 6.90872e-09 loss)
I0429 11:03:43.335098 8162 solver.cpp:245] Train net output #98: loss3/accuracy = 0.688889
I0429 11:03:43.335110 8162 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.75
I0429 11:03:43.335122 8162 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875
I0429 11:03:43.335134 8162 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.75
I0429 11:03:43.335146 8162 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875
I0429 11:03:43.335158 8162 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.625
I0429 11:03:43.335170 8162 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.375
I0429 11:03:43.335182 8162 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875
I0429 11:03:43.335194 8162 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875
I0429 11:03:43.335206 8162 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875
I0429 11:03:43.335218 8162 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875
I0429 11:03:43.335230 8162 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0429 11:03:43.335242 8162 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0429 11:03:43.335254 8162 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0429 11:03:43.335266 8162 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0429 11:03:43.335278 8162 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0429 11:03:43.335299 8162 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0429 11:03:43.335312 8162 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0429 11:03:43.335325 8162 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0429 11:03:43.335336 8162 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0429 11:03:43.335348 8162 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0429 11:03:43.335360 8162 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0429 11:03:43.335374 8162 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0429 11:03:43.335387 8162 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.909091
I0429 11:03:43.335399 8162 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.844444
I0429 11:03:43.335414 8162 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.16586 (* 1 = 1.16586 loss)
I0429 11:03:43.335428 8162 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.352494 (* 1 = 0.352494 loss)
I0429 11:03:43.335443 8162 solver.cpp:245] Train net output #125: loss3/loss01 = 0.527671 (* 0.0909091 = 0.0479701 loss)
I0429 11:03:43.335458 8162 solver.cpp:245] Train net output #126: loss3/loss02 = 0.280481 (* 0.0909091 = 0.0254983 loss)
I0429 11:03:43.335490 8162 solver.cpp:245] Train net output #127: loss3/loss03 = 0.983142 (* 0.0909091 = 0.0893765 loss)
I0429 11:03:43.335506 8162 solver.cpp:245] Train net output #128: loss3/loss04 = 0.839655 (* 0.0909091 = 0.0763322 loss)
I0429 11:03:43.335521 8162 solver.cpp:245] Train net output #129: loss3/loss05 = 1.39933 (* 0.0909091 = 0.127212 loss)
I0429 11:03:43.335536 8162 solver.cpp:245] Train net output #130: loss3/loss06 = 2.68212 (* 0.0909091 = 0.243829 loss)
I0429 11:03:43.335549 8162 solver.cpp:245] Train net output #131: loss3/loss07 = 0.463372 (* 0.0909091 = 0.0421248 loss)
I0429 11:03:43.335564 8162 solver.cpp:245] Train net output #132: loss3/loss08 = 0.611938 (* 0.0909091 = 0.0556307 loss)
I0429 11:03:43.335578 8162 solver.cpp:245] Train net output #133: loss3/loss09 = 0.256975 (* 0.0909091 = 0.0233613 loss)
I0429 11:03:43.335592 8162 solver.cpp:245] Train net output #134: loss3/loss10 = 1.25673 (* 0.0909091 = 0.114248 loss)
I0429 11:03:43.335607 8162 solver.cpp:245] Train net output #135: loss3/loss11 = 0.00577384 (* 0.0909091 = 0.000524895 loss)
I0429 11:03:43.335621 8162 solver.cpp:245] Train net output #136: loss3/loss12 = 0.00227481 (* 0.0909091 = 0.000206801 loss)
I0429 11:03:43.335635 8162 solver.cpp:245] Train net output #137: loss3/loss13 = 0.00170234 (* 0.0909091 = 0.000154759 loss)
I0429 11:03:43.335650 8162 solver.cpp:245] Train net output #138: loss3/loss14 = 0.00135832 (* 0.0909091 = 0.000123483 loss)
I0429 11:03:43.335664 8162 solver.cpp:245] Train net output #139: loss3/loss15 = 0.000967954 (* 0.0909091 = 8.79958e-05 loss)
I0429 11:03:43.335675 8162 solver.cpp:245] Train net output #140: loss3/loss16 = 0.000588089 (* 0.0909091 = 5.34627e-05 loss)
I0429 11:03:43.335685 8162 solver.cpp:245] Train net output #141: loss3/loss17 = 0.000254449 (* 0.0909091 = 2.31317e-05 loss)
I0429 11:03:43.335700 8162 solver.cpp:245] Train net output #142: loss3/loss18 = 0.000122338 (* 0.0909091 = 1.11217e-05 loss)
I0429 11:03:43.335714 8162 solver.cpp:245] Train net output #143: loss3/loss19 = 7.75695e-05 (* 0.0909091 = 7.05177e-06 loss)
I0429 11:03:43.335728 8162 solver.cpp:245] Train net output #144: loss3/loss20 = 5.16654e-05 (* 0.0909091 = 4.69686e-06 loss)
I0429 11:03:43.335743 8162 solver.cpp:245] Train net output #145: loss3/loss21 = 2.97238e-05 (* 0.0909091 = 2.70217e-06 loss)
I0429 11:03:43.335757 8162 solver.cpp:245] Train net output #146: loss3/loss22 = 1.19364e-05 (* 0.0909091 = 1.08512e-06 loss)
I0429 11:03:43.335769 8162 solver.cpp:245] Train net output #147: total_accuracy = 0.25
I0429 11:03:43.335782 8162 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.25
I0429 11:03:43.335808 8162 solver.cpp:245] Train net output #149: total_confidence = 0.321653
I0429 11:03:43.335824 8162 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.325474
I0429 11:03:43.335836 8162 sgd_solver.cpp:106] Iteration 19000, lr = 0.005
I0429 11:05:59.986258 8162 solver.cpp:229] Iteration 19500, loss = 5.38413
I0429 11:05:59.986431 8162 solver.cpp:245] Train net output #0: loss1/accuracy = 0.415094
I0429 11:05:59.986452 8162 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75
I0429 11:05:59.986466 8162 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5
I0429 11:05:59.986479 8162 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.5
I0429 11:05:59.986491 8162 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.25
I0429 11:05:59.986503 8162 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.5
I0429 11:05:59.986516 8162 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.75
I0429 11:05:59.986528 8162 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.875
I0429 11:05:59.986541 8162 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.75
I0429 11:05:59.986554 8162 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1
I0429 11:05:59.986567 8162 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0429 11:05:59.986578 8162 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.875
I0429 11:05:59.986590 8162 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.875
I0429 11:05:59.986603 8162 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.875
I0429 11:05:59.986615 8162 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.875
I0429 11:05:59.986627 8162 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.875
I0429 11:05:59.986639 8162 solver.cpp:245] Train net output #16: loss1/accuracy16 = 0.875
I0429 11:05:59.986651 8162 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0429 11:05:59.986663 8162 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0429 11:05:59.986675 8162 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0429 11:05:59.986687 8162 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0429 11:05:59.986699 8162 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0429 11:05:59.986711 8162 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0429 11:05:59.986724 8162 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.8125
I0429 11:05:59.986737 8162 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.679245
I0429 11:05:59.986752 8162 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.99711 (* 0.3 = 0.599133 loss)
I0429 11:05:59.986768 8162 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.661075 (* 0.3 = 0.198323 loss)
I0429 11:05:59.986783 8162 solver.cpp:245] Train net output #27: loss1/loss01 = 0.846124 (* 0.0272727 = 0.0230761 loss)
I0429 11:05:59.986798 8162 solver.cpp:245] Train net output #28: loss1/loss02 = 1.51003 (* 0.0272727 = 0.0411825 loss)
I0429 11:05:59.986812 8162 solver.cpp:245] Train net output #29: loss1/loss03 = 2.14041 (* 0.0272727 = 0.0583747 loss)
I0429 11:05:59.986827 8162 solver.cpp:245] Train net output #30: loss1/loss04 = 1.87082 (* 0.0272727 = 0.0510223 loss)
I0429 11:05:59.986841 8162 solver.cpp:245] Train net output #31: loss1/loss05 = 1.79942 (* 0.0272727 = 0.049075 loss)
I0429 11:05:59.986855 8162 solver.cpp:245] Train net output #32: loss1/loss06 = 0.883389 (* 0.0272727 = 0.0240924 loss)
I0429 11:05:59.986871 8162 solver.cpp:245] Train net output #33: loss1/loss07 = 0.827273 (* 0.0272727 = 0.022562 loss)
I0429 11:05:59.986884 8162 solver.cpp:245] Train net output #34: loss1/loss08 = 0.646622 (* 0.0272727 = 0.0176352 loss)
I0429 11:05:59.986899 8162 solver.cpp:245] Train net output #35: loss1/loss09 = 0.289913 (* 0.0272727 = 0.00790671 loss)
I0429 11:05:59.986913 8162 solver.cpp:245] Train net output #36: loss1/loss10 = 0.31172 (* 0.0272727 = 0.00850146 loss)
I0429 11:05:59.986928 8162 solver.cpp:245] Train net output #37: loss1/loss11 = 0.392323 (* 0.0272727 = 0.0106997 loss)
I0429 11:05:59.986943 8162 solver.cpp:245] Train net output #38: loss1/loss12 = 0.471137 (* 0.0272727 = 0.0128492 loss)
I0429 11:05:59.986979 8162 solver.cpp:245] Train net output #39: loss1/loss13 = 0.334495 (* 0.0272727 = 0.00912258 loss)
I0429 11:05:59.986994 8162 solver.cpp:245] Train net output #40: loss1/loss14 = 0.307615 (* 0.0272727 = 0.00838951 loss)
I0429 11:05:59.987010 8162 solver.cpp:245] Train net output #41: loss1/loss15 = 0.637745 (* 0.0272727 = 0.017393 loss)
I0429 11:05:59.987025 8162 solver.cpp:245] Train net output #42: loss1/loss16 = 0.42497 (* 0.0272727 = 0.0115901 loss)
I0429 11:05:59.987038 8162 solver.cpp:245] Train net output #43: loss1/loss17 = 0.0689325 (* 0.0272727 = 0.00187998 loss)
I0429 11:05:59.987053 8162 solver.cpp:245] Train net output #44: loss1/loss18 = 0.0507765 (* 0.0272727 = 0.00138481 loss)
I0429 11:05:59.987067 8162 solver.cpp:245] Train net output #45: loss1/loss19 = 0.0184783 (* 0.0272727 = 0.000503954 loss)
I0429 11:05:59.987082 8162 solver.cpp:245] Train net output #46: loss1/loss20 = 0.00596269 (* 0.0272727 = 0.000162619 loss)
I0429 11:05:59.987097 8162 solver.cpp:245] Train net output #47: loss1/loss21 = 0.00189572 (* 0.0272727 = 5.17013e-05 loss)
I0429 11:05:59.987113 8162 solver.cpp:245] Train net output #48: loss1/loss22 = 0.00024579 (* 0.0272727 = 6.70337e-06 loss)
I0429 11:05:59.987125 8162 solver.cpp:245] Train net output #49: loss2/accuracy = 0.433962
I0429 11:05:59.987138 8162 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875
I0429 11:05:59.987151 8162 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.375
I0429 11:05:59.987164 8162 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.25
I0429 11:05:59.987175 8162 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.625
I0429 11:05:59.987188 8162 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5
I0429 11:05:59.987200 8162 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.75
I0429 11:05:59.987212 8162 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.75
I0429 11:05:59.987224 8162 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.75
I0429 11:05:59.987236 8162 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1
I0429 11:05:59.987248 8162 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875
I0429 11:05:59.987262 8162 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.875
I0429 11:05:59.987273 8162 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.875
I0429 11:05:59.987285 8162 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.875
I0429 11:05:59.987298 8162 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.875
I0429 11:05:59.987309 8162 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.875
I0429 11:05:59.987325 8162 solver.cpp:245] Train net output #65: loss2/accuracy16 = 0.875
I0429 11:05:59.987337 8162 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0429 11:05:59.987349 8162 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0429 11:05:59.987362 8162 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0429 11:05:59.987373 8162 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0429 11:05:59.987386 8162 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0429 11:05:59.987398 8162 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0429 11:05:59.987409 8162 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.818182
I0429 11:05:59.987421 8162 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.641509
I0429 11:05:59.987450 8162 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.81197 (* 0.3 = 0.543591 loss)
I0429 11:05:59.987468 8162 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.601575 (* 0.3 = 0.180472 loss)
I0429 11:05:59.987483 8162 solver.cpp:245] Train net output #76: loss2/loss01 = 0.668944 (* 0.0272727 = 0.0182439 loss)
I0429 11:05:59.987498 8162 solver.cpp:245] Train net output #77: loss2/loss02 = 1.86721 (* 0.0272727 = 0.050924 loss)
I0429 11:05:59.987524 8162 solver.cpp:245] Train net output #78: loss2/loss03 = 1.93584 (* 0.0272727 = 0.0527957 loss)
I0429 11:05:59.987540 8162 solver.cpp:245] Train net output #79: loss2/loss04 = 1.31613 (* 0.0272727 = 0.0358944 loss)
I0429 11:05:59.987555 8162 solver.cpp:245] Train net output #80: loss2/loss05 = 1.85043 (* 0.0272727 = 0.0504664 loss)
I0429 11:05:59.987568 8162 solver.cpp:245] Train net output #81: loss2/loss06 = 1.02789 (* 0.0272727 = 0.0280334 loss)
I0429 11:05:59.987583 8162 solver.cpp:245] Train net output #82: loss2/loss07 = 0.915112 (* 0.0272727 = 0.0249576 loss)
I0429 11:05:59.987597 8162 solver.cpp:245] Train net output #83: loss2/loss08 = 0.808295 (* 0.0272727 = 0.0220444 loss)
I0429 11:05:59.987612 8162 solver.cpp:245] Train net output #84: loss2/loss09 = 0.191461 (* 0.0272727 = 0.00522165 loss)
I0429 11:05:59.987627 8162 solver.cpp:245] Train net output #85: loss2/loss10 = 0.358497 (* 0.0272727 = 0.00977719 loss)
I0429 11:05:59.987642 8162 solver.cpp:245] Train net output #86: loss2/loss11 = 0.389183 (* 0.0272727 = 0.0106141 loss)
I0429 11:05:59.987655 8162 solver.cpp:245] Train net output #87: loss2/loss12 = 0.412982 (* 0.0272727 = 0.0112631 loss)
I0429 11:05:59.987669 8162 solver.cpp:245] Train net output #88: loss2/loss13 = 0.391915 (* 0.0272727 = 0.0106886 loss)
I0429 11:05:59.987685 8162 solver.cpp:245] Train net output #89: loss2/loss14 = 0.284245 (* 0.0272727 = 0.00775215 loss)
I0429 11:05:59.987699 8162 solver.cpp:245] Train net output #90: loss2/loss15 = 0.672163 (* 0.0272727 = 0.0183317 loss)
I0429 11:05:59.987714 8162 solver.cpp:245] Train net output #91: loss2/loss16 = 0.395766 (* 0.0272727 = 0.0107936 loss)
I0429 11:05:59.987728 8162 solver.cpp:245] Train net output #92: loss2/loss17 = 0.0735108 (* 0.0272727 = 0.00200484 loss)
I0429 11:05:59.987743 8162 solver.cpp:245] Train net output #93: loss2/loss18 = 0.0465581 (* 0.0272727 = 0.00126977 loss)
I0429 11:05:59.987758 8162 solver.cpp:245] Train net output #94: loss2/loss19 = 0.0153679 (* 0.0272727 = 0.000419125 loss)
I0429 11:05:59.987772 8162 solver.cpp:245] Train net output #95: loss2/loss20 = 0.0114566 (* 0.0272727 = 0.000312454 loss)
I0429 11:05:59.987787 8162 solver.cpp:245] Train net output #96: loss2/loss21 = 0.00241715 (* 0.0272727 = 6.59223e-05 loss)
I0429 11:05:59.987802 8162 solver.cpp:245] Train net output #97: loss2/loss22 = 0.000560087 (* 0.0272727 = 1.52751e-05 loss)
I0429 11:05:59.987814 8162 solver.cpp:245] Train net output #98: loss3/accuracy = 0.641509
I0429 11:05:59.987826 8162 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875
I0429 11:05:59.987839 8162 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.75
I0429 11:05:59.987851 8162 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.75
I0429 11:05:59.987864 8162 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.75
I0429 11:05:59.987875 8162 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.75
I0429 11:05:59.987887 8162 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.75
I0429 11:05:59.987900 8162 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875
I0429 11:05:59.987911 8162 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.75
I0429 11:05:59.987925 8162 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1
I0429 11:05:59.987936 8162 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875
I0429 11:05:59.987948 8162 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.875
I0429 11:05:59.987960 8162 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.875
I0429 11:05:59.987972 8162 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.875
I0429 11:05:59.987985 8162 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.875
I0429 11:05:59.987998 8162 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.875
I0429 11:05:59.988019 8162 solver.cpp:245] Train net output #114: loss3/accuracy16 = 0.875
I0429 11:05:59.988032 8162 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0429 11:05:59.988045 8162 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0429 11:05:59.988057 8162 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0429 11:05:59.988070 8162 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0429 11:05:59.988081 8162 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0429 11:05:59.988093 8162 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0429 11:05:59.988106 8162 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.875
I0429 11:05:59.988117 8162 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.754717
I0429 11:05:59.988132 8162 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.2891 (* 1 = 1.2891 loss)
I0429 11:05:59.988147 8162 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.460523 (* 1 = 0.460523 loss)
I0429 11:05:59.988162 8162 solver.cpp:245] Train net output #125: loss3/loss01 = 0.536245 (* 0.0909091 = 0.0487496 loss)
I0429 11:05:59.988176 8162 solver.cpp:245] Train net output #126: loss3/loss02 = 1.0643 (* 0.0909091 = 0.0967542 loss)
I0429 11:05:59.988193 8162 solver.cpp:245] Train net output #127: loss3/loss03 = 0.713017 (* 0.0909091 = 0.0648197 loss)
I0429 11:05:59.988207 8162 solver.cpp:245] Train net output #128: loss3/loss04 = 1.00313 (* 0.0909091 = 0.0911933 loss)
I0429 11:05:59.988222 8162 solver.cpp:245] Train net output #129: loss3/loss05 = 0.828852 (* 0.0909091 = 0.0753502 loss)
I0429 11:05:59.988236 8162 solver.cpp:245] Train net output #130: loss3/loss06 = 0.810909 (* 0.0909091 = 0.073719 loss)
I0429 11:05:59.988251 8162 solver.cpp:245] Train net output #131: loss3/loss07 = 0.777271 (* 0.0909091 = 0.070661 loss)
I0429 11:05:59.988265 8162 solver.cpp:245] Train net output #132: loss3/loss08 = 0.557582 (* 0.0909091 = 0.0506893 loss)
I0429 11:05:59.988279 8162 solver.cpp:245] Train net output #133: loss3/loss09 = 0.263801 (* 0.0909091 = 0.023982 loss)
I0429 11:05:59.988294 8162 solver.cpp:245] Train net output #134: loss3/loss10 = 0.327831 (* 0.0909091 = 0.0298028 loss)
I0429 11:05:59.988308 8162 solver.cpp:245] Train net output #135: loss3/loss11 = 0.402081 (* 0.0909091 = 0.0365528 loss)
I0429 11:05:59.988323 8162 solver.cpp:245] Train net output #136: loss3/loss12 = 0.428431 (* 0.0909091 = 0.0389483 loss)
I0429 11:05:59.988337 8162 solver.cpp:245] Train net output #137: loss3/loss13 = 0.342373 (* 0.0909091 = 0.0311248 loss)
I0429 11:05:59.988351 8162 solver.cpp:245] Train net output #138: loss3/loss14 = 0.302758 (* 0.0909091 = 0.0275235 loss)
I0429 11:05:59.988368 8162 solver.cpp:245] Train net output #139: loss3/loss15 = 0.532911 (* 0.0909091 = 0.0484464 loss)
I0429 11:05:59.988384 8162 solver.cpp:245] Train net output #140: loss3/loss16 = 0.362826 (* 0.0909091 = 0.0329842 loss)
I0429 11:05:59.988399 8162 solver.cpp:245] Train net output #141: loss3/loss17 = 0.112533 (* 0.0909091 = 0.0102302 loss)
I0429 11:05:59.988414 8162 solver.cpp:245] Train net output #142: loss3/loss18 = 0.0757428 (* 0.0909091 = 0.00688571 loss)
I0429 11:05:59.988428 8162 solver.cpp:245] Train net output #143: loss3/loss19 = 0.0445245 (* 0.0909091 = 0.00404768 loss)
I0429 11:05:59.988442 8162 solver.cpp:245] Train net output #144: loss3/loss20 = 0.0177316 (* 0.0909091 = 0.00161196 loss)
I0429 11:05:59.988456 8162 solver.cpp:245] Train net output #145: loss3/loss21 = 0.0055337 (* 0.0909091 = 0.000503063 loss)
I0429 11:05:59.988471 8162 solver.cpp:245] Train net output #146: loss3/loss22 = 0.00177897 (* 0.0909091 = 0.000161725 loss)
I0429 11:05:59.988484 8162 solver.cpp:245] Train net output #147: total_accuracy = 0.5
I0429 11:05:59.988499 8162 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.5
I0429 11:05:59.988522 8162 solver.cpp:245] Train net output #149: total_confidence = 0.340925
I0429 11:05:59.988535 8162 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.34057
I0429 11:05:59.988549 8162 sgd_solver.cpp:106] Iteration 19500, lr = 0.005
I0429 11:08:16.440541 8162 solver.cpp:456] Snapshotting to binary proto file /mnt/snapshots/mixed_lstm14_bn_iter_20000.caffemodel
I0429 11:08:25.902309 8162 sgd_solver.cpp:273] Snapshotting solver state to binary proto file /mnt/snapshots/mixed_lstm14_bn_iter_20000.solverstate
I0429 11:08:27.757987 8162 solver.cpp:338] Iteration 20000, Testing net (#0)
I0429 11:09:08.986320 8162 solver.cpp:393] Test loss: 3.64715
I0429 11:09:08.986421 8162 solver.cpp:406] Test net output #0: loss1/accuracy = 0.475531
I0429 11:09:08.986440 8162 solver.cpp:406] Test net output #1: loss1/accuracy01 = 0.726
I0429 11:09:08.986454 8162 solver.cpp:406] Test net output #2: loss1/accuracy02 = 0.526
I0429 11:09:08.986466 8162 solver.cpp:406] Test net output #3: loss1/accuracy03 = 0.406
I0429 11:09:08.986477 8162 solver.cpp:406] Test net output #4: loss1/accuracy04 = 0.464
I0429 11:09:08.986490 8162 solver.cpp:406] Test net output #5: loss1/accuracy05 = 0.506
I0429 11:09:08.986501 8162 solver.cpp:406] Test net output #6: loss1/accuracy06 = 0.633
I0429 11:09:08.986513 8162 solver.cpp:406] Test net output #7: loss1/accuracy07 = 0.79
I0429 11:09:08.986526 8162 solver.cpp:406] Test net output #8: loss1/accuracy08 = 0.923
I0429 11:09:08.986537 8162 solver.cpp:406] Test net output #9: loss1/accuracy09 = 0.992
I0429 11:09:08.986549 8162 solver.cpp:406] Test net output #10: loss1/accuracy10 = 0.997
I0429 11:09:08.986562 8162 solver.cpp:406] Test net output #11: loss1/accuracy11 = 0.997
I0429 11:09:08.986572 8162 solver.cpp:406] Test net output #12: loss1/accuracy12 = 0.999
I0429 11:09:08.986584 8162 solver.cpp:406] Test net output #13: loss1/accuracy13 = 0.999
I0429 11:09:08.986596 8162 solver.cpp:406] Test net output #14: loss1/accuracy14 = 1
I0429 11:09:08.986608 8162 solver.cpp:406] Test net output #15: loss1/accuracy15 = 1
I0429 11:09:08.986619 8162 solver.cpp:406] Test net output #16: loss1/accuracy16 = 1
I0429 11:09:08.986630 8162 solver.cpp:406] Test net output #17: loss1/accuracy17 = 1
I0429 11:09:08.986642 8162 solver.cpp:406] Test net output #18: loss1/accuracy18 = 1
I0429 11:09:08.986654 8162 solver.cpp:406] Test net output #19: loss1/accuracy19 = 1
I0429 11:09:08.986665 8162 solver.cpp:406] Test net output #20: loss1/accuracy20 = 1
I0429 11:09:08.986677 8162 solver.cpp:406] Test net output #21: loss1/accuracy21 = 1
I0429 11:09:08.986688 8162 solver.cpp:406] Test net output #22: loss1/accuracy22 = 1
I0429 11:09:08.986699 8162 solver.cpp:406] Test net output #23: loss1/accuracy_incl_empty = 0.851955
I0429 11:09:08.986711 8162 solver.cpp:406] Test net output #24: loss1/accuracy_top3 = 0.734048
I0429 11:09:08.986726 8162 solver.cpp:406] Test net output #25: loss1/cross_entropy_loss = 1.71981 (* 0.3 = 0.515942 loss)
I0429 11:09:08.986742 8162 solver.cpp:406] Test net output #26: loss1/cross_entropy_loss_incl_empty = 0.497371 (* 0.3 = 0.149211 loss)
I0429 11:09:08.986755 8162 solver.cpp:406] Test net output #27: loss1/loss01 = 1.00288 (* 0.0272727 = 0.0273513 loss)
I0429 11:09:08.986770 8162 solver.cpp:406] Test net output #28: loss1/loss02 = 1.65594 (* 0.0272727 = 0.0451621 loss)
I0429 11:09:08.986783 8162 solver.cpp:406] Test net output #29: loss1/loss03 = 2.00775 (* 0.0272727 = 0.0547568 loss)
I0429 11:09:08.986798 8162 solver.cpp:406] Test net output #30: loss1/loss04 = 1.86817 (* 0.0272727 = 0.0509502 loss)
I0429 11:09:08.986810 8162 solver.cpp:406] Test net output #31: loss1/loss05 = 1.66743 (* 0.0272727 = 0.0454754 loss)
I0429 11:09:08.986824 8162 solver.cpp:406] Test net output #32: loss1/loss06 = 1.21959 (* 0.0272727 = 0.0332616 loss)
I0429 11:09:08.986837 8162 solver.cpp:406] Test net output #33: loss1/loss07 = 0.706121 (* 0.0272727 = 0.0192579 loss)
I0429 11:09:08.986851 8162 solver.cpp:406] Test net output #34: loss1/loss08 = 0.27745 (* 0.0272727 = 0.00756682 loss)
I0429 11:09:08.986865 8162 solver.cpp:406] Test net output #35: loss1/loss09 = 0.04622 (* 0.0272727 = 0.00126054 loss)
I0429 11:09:08.986879 8162 solver.cpp:406] Test net output #36: loss1/loss10 = 0.0217884 (* 0.0272727 = 0.000594228 loss)
I0429 11:09:08.986893 8162 solver.cpp:406] Test net output #37: loss1/loss11 = 0.0121028 (* 0.0272727 = 0.000330076 loss)
I0429 11:09:08.986907 8162 solver.cpp:406] Test net output #38: loss1/loss12 = 0.00774378 (* 0.0272727 = 0.000211194 loss)
I0429 11:09:08.986922 8162 solver.cpp:406] Test net output #39: loss1/loss13 = 0.00473916 (* 0.0272727 = 0.00012925 loss)
I0429 11:09:08.986968 8162 solver.cpp:406] Test net output #40: loss1/loss14 = 0.00322428 (* 0.0272727 = 8.7935e-05 loss)
I0429 11:09:08.986984 8162 solver.cpp:406] Test net output #41: loss1/loss15 = 0.00204879 (* 0.0272727 = 5.58762e-05 loss)
I0429 11:09:08.986997 8162 solver.cpp:406] Test net output #42: loss1/loss16 = 0.000872908 (* 0.0272727 = 2.38066e-05 loss)
I0429 11:09:08.987011 8162 solver.cpp:406] Test net output #43: loss1/loss17 = 0.000284214 (* 0.0272727 = 7.75129e-06 loss)
I0429 11:09:08.987026 8162 solver.cpp:406] Test net output #44: loss1/loss18 = 0.000210855 (* 0.0272727 = 5.7506e-06 loss)
I0429 11:09:08.987040 8162 solver.cpp:406] Test net output #45: loss1/loss19 = 0.00018947 (* 0.0272727 = 5.16735e-06 loss)
I0429 11:09:08.987054 8162 solver.cpp:406] Test net output #46: loss1/loss20 = 0.000148161 (* 0.0272727 = 4.04076e-06 loss)
I0429 11:09:08.987069 8162 solver.cpp:406] Test net output #47: loss1/loss21 = 0.000141482 (* 0.0272727 = 3.85859e-06 loss)
I0429 11:09:08.987083 8162 solver.cpp:406] Test net output #48: loss1/loss22 = 0.000107621 (* 0.0272727 = 2.93511e-06 loss)
I0429 11:09:08.987095 8162 solver.cpp:406] Test net output #49: loss2/accuracy = 0.544867
I0429 11:09:08.987108 8162 solver.cpp:406] Test net output #50: loss2/accuracy01 = 0.775
I0429 11:09:08.987119 8162 solver.cpp:406] Test net output #51: loss2/accuracy02 = 0.647
I0429 11:09:08.987131 8162 solver.cpp:406] Test net output #52: loss2/accuracy03 = 0.424
I0429 11:09:08.987143 8162 solver.cpp:406] Test net output #53: loss2/accuracy04 = 0.496
I0429 11:09:08.987155 8162 solver.cpp:406] Test net output #54: loss2/accuracy05 = 0.54
I0429 11:09:08.987166 8162 solver.cpp:406] Test net output #55: loss2/accuracy06 = 0.655
I0429 11:09:08.987179 8162 solver.cpp:406] Test net output #56: loss2/accuracy07 = 0.804
I0429 11:09:08.987190 8162 solver.cpp:406] Test net output #57: loss2/accuracy08 = 0.926
I0429 11:09:08.987201 8162 solver.cpp:406] Test net output #58: loss2/accuracy09 = 0.991
I0429 11:09:08.987213 8162 solver.cpp:406] Test net output #59: loss2/accuracy10 = 0.997
I0429 11:09:08.987226 8162 solver.cpp:406] Test net output #60: loss2/accuracy11 = 0.997
I0429 11:09:08.987236 8162 solver.cpp:406] Test net output #61: loss2/accuracy12 = 0.999
I0429 11:09:08.987248 8162 solver.cpp:406] Test net output #62: loss2/accuracy13 = 0.999
I0429 11:09:08.987259 8162 solver.cpp:406] Test net output #63: loss2/accuracy14 = 0.999
I0429 11:09:08.987272 8162 solver.cpp:406] Test net output #64: loss2/accuracy15 = 1
I0429 11:09:08.987282 8162 solver.cpp:406] Test net output #65: loss2/accuracy16 = 1
I0429 11:09:08.987293 8162 solver.cpp:406] Test net output #66: loss2/accuracy17 = 1
I0429 11:09:08.987305 8162 solver.cpp:406] Test net output #67: loss2/accuracy18 = 1
I0429 11:09:08.987316 8162 solver.cpp:406] Test net output #68: loss2/accuracy19 = 1
I0429 11:09:08.987328 8162 solver.cpp:406] Test net output #69: loss2/accuracy20 = 1
I0429 11:09:08.987339 8162 solver.cpp:406] Test net output #70: loss2/accuracy21 = 1
I0429 11:09:08.987349 8162 solver.cpp:406] Test net output #71: loss2/accuracy22 = 1
I0429 11:09:08.987360 8162 solver.cpp:406] Test net output #72: loss2/accuracy_incl_empty = 0.87082
I0429 11:09:08.987375 8162 solver.cpp:406] Test net output #73: loss2/accuracy_top3 = 0.788895
I0429 11:09:08.987390 8162 solver.cpp:406] Test net output #74: loss2/cross_entropy_loss = 1.48849 (* 0.3 = 0.446548 loss)
I0429 11:09:08.987403 8162 solver.cpp:406] Test net output #75: loss2/cross_entropy_loss_incl_empty = 0.43437 (* 0.3 = 0.130311 loss)
I0429 11:09:08.987417 8162 solver.cpp:406] Test net output #76: loss2/loss01 = 0.863569 (* 0.0272727 = 0.0235519 loss)
I0429 11:09:08.987431 8162 solver.cpp:406] Test net output #77: loss2/loss02 = 1.28772 (* 0.0272727 = 0.0351196 loss)
I0429 11:09:08.987455 8162 solver.cpp:406] Test net output #78: loss2/loss03 = 1.82409 (* 0.0272727 = 0.049748 loss)
I0429 11:09:08.987485 8162 solver.cpp:406] Test net output #79: loss2/loss04 = 1.72929 (* 0.0272727 = 0.0471625 loss)
I0429 11:09:08.987500 8162 solver.cpp:406] Test net output #80: loss2/loss05 = 1.53234 (* 0.0272727 = 0.0417911 loss)
I0429 11:09:08.987514 8162 solver.cpp:406] Test net output #81: loss2/loss06 = 1.1186 (* 0.0272727 = 0.0305073 loss)
I0429 11:09:08.987529 8162 solver.cpp:406] Test net output #82: loss2/loss07 = 0.662125 (* 0.0272727 = 0.018058 loss)
I0429 11:09:08.987542 8162 solver.cpp:406] Test net output #83: loss2/loss08 = 0.274347 (* 0.0272727 = 0.00748219 loss)
I0429 11:09:08.987556 8162 solver.cpp:406] Test net output #84: loss2/loss09 = 0.0458134 (* 0.0272727 = 0.00124946 loss)
I0429 11:09:08.987571 8162 solver.cpp:406] Test net output #85: loss2/loss10 = 0.0194027 (* 0.0272727 = 0.000529164 loss)
I0429 11:09:08.987584 8162 solver.cpp:406] Test net output #86: loss2/loss11 = 0.0126335 (* 0.0272727 = 0.000344551 loss)
I0429 11:09:08.987599 8162 solver.cpp:406] Test net output #87: loss2/loss12 = 0.00848831 (* 0.0272727 = 0.000231499 loss)
I0429 11:09:08.987613 8162 solver.cpp:406] Test net output #88: loss2/loss13 = 0.00604227 (* 0.0272727 = 0.000164789 loss)
I0429 11:09:08.987627 8162 solver.cpp:406] Test net output #89: loss2/loss14 = 0.00466305 (* 0.0272727 = 0.000127174 loss)
I0429 11:09:08.987642 8162 solver.cpp:406] Test net output #90: loss2/loss15 = 0.00293835 (* 0.0272727 = 8.01369e-05 loss)
I0429 11:09:08.987655 8162 solver.cpp:406] Test net output #91: loss2/loss16 = 0.00138511 (* 0.0272727 = 3.77758e-05 loss)
I0429 11:09:08.987669 8162 solver.cpp:406] Test net output #92: loss2/loss17 = 0.000431429 (* 0.0272727 = 1.17662e-05 loss)
I0429 11:09:08.987684 8162 solver.cpp:406] Test net output #93: loss2/loss18 = 0.000336441 (* 0.0272727 = 9.17565e-06 loss)
I0429 11:09:08.987696 8162 solver.cpp:406] Test net output #94: loss2/loss19 = 0.000314462 (* 0.0272727 = 8.57624e-06 loss)
I0429 11:09:08.987710 8162 solver.cpp:406] Test net output #95: loss2/loss20 = 0.000280666 (* 0.0272727 = 7.65453e-06 loss)
I0429 11:09:08.987725 8162 solver.cpp:406] Test net output #96: loss2/loss21 = 0.000259755 (* 0.0272727 = 7.08423e-06 loss)
I0429 11:09:08.987738 8162 solver.cpp:406] Test net output #97: loss2/loss22 = 0.000221415 (* 0.0272727 = 6.03858e-06 loss)
I0429 11:09:08.987751 8162 solver.cpp:406] Test net output #98: loss3/accuracy = 0.723565
I0429 11:09:08.987762 8162 solver.cpp:406] Test net output #99: loss3/accuracy01 = 0.836
I0429 11:09:08.987773 8162 solver.cpp:406] Test net output #100: loss3/accuracy02 = 0.774
I0429 11:09:08.987785 8162 solver.cpp:406] Test net output #101: loss3/accuracy03 = 0.703
I0429 11:09:08.987797 8162 solver.cpp:406] Test net output #102: loss3/accuracy04 = 0.668
I0429 11:09:08.987808 8162 solver.cpp:406] Test net output #103: loss3/accuracy05 = 0.664
I0429 11:09:08.987819 8162 solver.cpp:406] Test net output #104: loss3/accuracy06 = 0.721
I0429 11:09:08.987831 8162 solver.cpp:406] Test net output #105: loss3/accuracy07 = 0.836
I0429 11:09:08.987843 8162 solver.cpp:406] Test net output #106: loss3/accuracy08 = 0.932
I0429 11:09:08.987854 8162 solver.cpp:406] Test net output #107: loss3/accuracy09 = 0.991
I0429 11:09:08.987866 8162 solver.cpp:406] Test net output #108: loss3/accuracy10 = 0.997
I0429 11:09:08.987877 8162 solver.cpp:406] Test net output #109: loss3/accuracy11 = 0.997
I0429 11:09:08.987890 8162 solver.cpp:406] Test net output #110: loss3/accuracy12 = 0.997
I0429 11:09:08.987900 8162 solver.cpp:406] Test net output #111: loss3/accuracy13 = 0.997
I0429 11:09:08.987912 8162 solver.cpp:406] Test net output #112: loss3/accuracy14 = 0.999
I0429 11:09:08.987925 8162 solver.cpp:406] Test net output #113: loss3/accuracy15 = 1
I0429 11:09:08.987936 8162 solver.cpp:406] Test net output #114: loss3/accuracy16 = 1
I0429 11:09:08.987958 8162 solver.cpp:406] Test net output #115: loss3/accuracy17 = 1
I0429 11:09:08.987972 8162 solver.cpp:406] Test net output #116: loss3/accuracy18 = 1
I0429 11:09:08.987985 8162 solver.cpp:406] Test net output #117: loss3/accuracy19 = 1
I0429 11:09:08.987998 8162 solver.cpp:406] Test net output #118: loss3/accuracy20 = 1
I0429 11:09:08.988009 8162 solver.cpp:406] Test net output #119: loss3/accuracy21 = 1
I0429 11:09:08.988020 8162 solver.cpp:406] Test net output #120: loss3/accuracy22 = 1
I0429 11:09:08.988031 8162 solver.cpp:406] Test net output #121: loss3/accuracy_incl_empty = 0.917911
I0429 11:09:08.988044 8162 solver.cpp:406] Test net output #122: loss3/accuracy_top3 = 0.871667
I0429 11:09:08.988057 8162 solver.cpp:406] Test net output #123: loss3/cross_entropy_loss = 0.970484 (* 1 = 0.970484 loss)
I0429 11:09:08.988070 8162 solver.cpp:406] Test net output #124: loss3/cross_entropy_loss_incl_empty = 0.291719 (* 1 = 0.291719 loss)
I0429 11:09:08.988085 8162 solver.cpp:406] Test net output #125: loss3/loss01 = 0.647394 (* 0.0909091 = 0.058854 loss)
I0429 11:09:08.988098 8162 solver.cpp:406] Test net output #126: loss3/loss02 = 0.858872 (* 0.0909091 = 0.0780792 loss)
I0429 11:09:08.988111 8162 solver.cpp:406] Test net output #127: loss3/loss03 = 1.09488 (* 0.0909091 = 0.0995348 loss)
I0429 11:09:08.988126 8162 solver.cpp:406] Test net output #128: loss3/loss04 = 1.20457 (* 0.0909091 = 0.109507 loss)
I0429 11:09:08.988139 8162 solver.cpp:406] Test net output #129: loss3/loss05 = 1.12801 (* 0.0909091 = 0.102547 loss)
I0429 11:09:08.988152 8162 solver.cpp:406] Test net output #130: loss3/loss06 = 0.814359 (* 0.0909091 = 0.0740326 loss)
I0429 11:09:08.988167 8162 solver.cpp:406] Test net output #131: loss3/loss07 = 0.503933 (* 0.0909091 = 0.0458121 loss)
I0429 11:09:08.988180 8162 solver.cpp:406] Test net output #132: loss3/loss08 = 0.221009 (* 0.0909091 = 0.0200918 loss)
I0429 11:09:08.988193 8162 solver.cpp:406] Test net output #133: loss3/loss09 = 0.0515982 (* 0.0909091 = 0.00469074 loss)
I0429 11:09:08.988207 8162 solver.cpp:406] Test net output #134: loss3/loss10 = 0.0253857 (* 0.0909091 = 0.00230779 loss)
I0429 11:09:08.988221 8162 solver.cpp:406] Test net output #135: loss3/loss11 = 0.0166121 (* 0.0909091 = 0.00151019 loss)
I0429 11:09:08.988235 8162 solver.cpp:406] Test net output #136: loss3/loss12 = 0.0124545 (* 0.0909091 = 0.00113223 loss)
I0429 11:09:08.988245 8162 solver.cpp:406] Test net output #137: loss3/loss13 = 0.00999263 (* 0.0909091 = 0.000908421 loss)
I0429 11:09:08.988255 8162 solver.cpp:406] Test net output #138: loss3/loss14 = 0.00628365 (* 0.0909091 = 0.000571241 loss)
I0429 11:09:08.988270 8162 solver.cpp:406] Test net output #139: loss3/loss15 = 0.00393606 (* 0.0909091 = 0.000357824 loss)
I0429 11:09:08.988283 8162 solver.cpp:406] Test net output #140: loss3/loss16 = 0.00181722 (* 0.0909091 = 0.000165201 loss)
I0429 11:09:08.988297 8162 solver.cpp:406] Test net output #141: loss3/loss17 = 0.000491323 (* 0.0909091 = 4.46657e-05 loss)
I0429 11:09:08.988312 8162 solver.cpp:406] Test net output #142: loss3/loss18 = 0.000216304 (* 0.0909091 = 1.9664e-05 loss)
I0429 11:09:08.988324 8162 solver.cpp:406] Test net output #143: loss3/loss19 = 0.000113977 (* 0.0909091 = 1.03616e-05 loss)
I0429 11:09:08.988338 8162 solver.cpp:406] Test net output #144: loss3/loss20 = 8.67092e-05 (* 0.0909091 = 7.88266e-06 loss)
I0429 11:09:08.988353 8162 solver.cpp:406] Test net output #145: loss3/loss21 = 7.99308e-05 (* 0.0909091 = 7.26644e-06 loss)
I0429 11:09:08.988365 8162 solver.cpp:406] Test net output #146: loss3/loss22 = 7.11515e-05 (* 0.0909091 = 6.46832e-06 loss)
I0429 11:09:08.988378 8162 solver.cpp:406] Test net output #147: total_accuracy = 0.316
I0429 11:09:08.988389 8162 solver.cpp:406] Test net output #148: total_accuracy_not_rec = 0.31
I0429 11:09:08.988400 8162 solver.cpp:406] Test net output #149: total_confidence = 0.280055
I0429 11:09:08.988425 8162 solver.cpp:406] Test net output #150: total_confidence_not_rec = 0.260538
I0429 11:09:08.988440 8162 solver.cpp:338] Iteration 20000, Testing net (#1)
I0429 11:09:49.875524 8162 solver.cpp:393] Test loss: 4.67634
I0429 11:09:49.875681 8162 solver.cpp:406] Test net output #0: loss1/accuracy = 0.434026
I0429 11:09:49.875702 8162 solver.cpp:406] Test net output #1: loss1/accuracy01 = 0.671
I0429 11:09:49.875715 8162 solver.cpp:406] Test net output #2: loss1/accuracy02 = 0.453
I0429 11:09:49.875728 8162 solver.cpp:406] Test net output #3: loss1/accuracy03 = 0.38
I0429 11:09:49.875741 8162 solver.cpp:406] Test net output #4: loss1/accuracy04 = 0.426
I0429 11:09:49.875752 8162 solver.cpp:406] Test net output #5: loss1/accuracy05 = 0.465
I0429 11:09:49.875764 8162 solver.cpp:406] Test net output #6: loss1/accuracy06 = 0.598
I0429 11:09:49.875777 8162 solver.cpp:406] Test net output #7: loss1/accuracy07 = 0.707
I0429 11:09:49.875788 8162 solver.cpp:406] Test net output #8: loss1/accuracy08 = 0.824
I0429 11:09:49.875800 8162 solver.cpp:406] Test net output #9: loss1/accuracy09 = 0.893
I0429 11:09:49.875813 8162 solver.cpp:406] Test net output #10: loss1/accuracy10 = 0.92
I0429 11:09:49.875824 8162 solver.cpp:406] Test net output #11: loss1/accuracy11 = 0.932
I0429 11:09:49.875836 8162 solver.cpp:406] Test net output #12: loss1/accuracy12 = 0.944
I0429 11:09:49.875849 8162 solver.cpp:406] Test net output #13: loss1/accuracy13 = 0.956
I0429 11:09:49.875860 8162 solver.cpp:406] Test net output #14: loss1/accuracy14 = 0.963
I0429 11:09:49.875872 8162 solver.cpp:406] Test net output #15: loss1/accuracy15 = 0.973
I0429 11:09:49.875885 8162 solver.cpp:406] Test net output #16: loss1/accuracy16 = 0.983
I0429 11:09:49.875896 8162 solver.cpp:406] Test net output #17: loss1/accuracy17 = 0.987
I0429 11:09:49.875907 8162 solver.cpp:406] Test net output #18: loss1/accuracy18 = 0.993
I0429 11:09:49.875919 8162 solver.cpp:406] Test net output #19: loss1/accuracy19 = 0.996
I0429 11:09:49.875931 8162 solver.cpp:406] Test net output #20: loss1/accuracy20 = 0.997
I0429 11:09:49.875942 8162 solver.cpp:406] Test net output #21: loss1/accuracy21 = 0.999
I0429 11:09:49.875954 8162 solver.cpp:406] Test net output #22: loss1/accuracy22 = 0.999
I0429 11:09:49.875967 8162 solver.cpp:406] Test net output #23: loss1/accuracy_incl_empty = 0.813274
I0429 11:09:49.875978 8162 solver.cpp:406] Test net output #24: loss1/accuracy_top3 = 0.692765
I0429 11:09:49.875994 8162 solver.cpp:406] Test net output #25: loss1/cross_entropy_loss = 1.88656 (* 0.3 = 0.565968 loss)
I0429 11:09:49.876008 8162 solver.cpp:406] Test net output #26: loss1/cross_entropy_loss_incl_empty = 0.643921 (* 0.3 = 0.193176 loss)
I0429 11:09:49.876024 8162 solver.cpp:406] Test net output #27: loss1/loss01 = 1.16901 (* 0.0272727 = 0.0318822 loss)
I0429 11:09:49.876037 8162 solver.cpp:406] Test net output #28: loss1/loss02 = 1.84436 (* 0.0272727 = 0.0503007 loss)
I0429 11:09:49.876051 8162 solver.cpp:406] Test net output #29: loss1/loss03 = 2.08759 (* 0.0272727 = 0.0569343 loss)
I0429 11:09:49.876065 8162 solver.cpp:406] Test net output #30: loss1/loss04 = 1.94544 (* 0.0272727 = 0.0530574 loss)
I0429 11:09:49.876080 8162 solver.cpp:406] Test net output #31: loss1/loss05 = 1.74349 (* 0.0272727 = 0.0475498 loss)
I0429 11:09:49.876092 8162 solver.cpp:406] Test net output #32: loss1/loss06 = 1.46838 (* 0.0272727 = 0.0400467 loss)
I0429 11:09:49.876106 8162 solver.cpp:406] Test net output #33: loss1/loss07 = 1.01515 (* 0.0272727 = 0.0276859 loss)
I0429 11:09:49.876119 8162 solver.cpp:406] Test net output #34: loss1/loss08 = 0.642464 (* 0.0272727 = 0.0175217 loss)
I0429 11:09:49.876133 8162 solver.cpp:406] Test net output #35: loss1/loss09 = 0.410227 (* 0.0272727 = 0.011188 loss)
I0429 11:09:49.876148 8162 solver.cpp:406] Test net output #36: loss1/loss10 = 0.297511 (* 0.0272727 = 0.00811393 loss)
I0429 11:09:49.876162 8162 solver.cpp:406] Test net output #37: loss1/loss11 = 0.249246 (* 0.0272727 = 0.00679762 loss)
I0429 11:09:49.876175 8162 solver.cpp:406] Test net output #38: loss1/loss12 = 0.206359 (* 0.0272727 = 0.00562796 loss)
I0429 11:09:49.876210 8162 solver.cpp:406] Test net output #39: loss1/loss13 = 0.165006 (* 0.0272727 = 0.00450015 loss)
I0429 11:09:49.876225 8162 solver.cpp:406] Test net output #40: loss1/loss14 = 0.138666 (* 0.0272727 = 0.0037818 loss)
I0429 11:09:49.876240 8162 solver.cpp:406] Test net output #41: loss1/loss15 = 0.104668 (* 0.0272727 = 0.00285458 loss)
I0429 11:09:49.876255 8162 solver.cpp:406] Test net output #42: loss1/loss16 = 0.0661492 (* 0.0272727 = 0.00180407 loss)
I0429 11:09:49.876268 8162 solver.cpp:406] Test net output #43: loss1/loss17 = 0.0590063 (* 0.0272727 = 0.00160926 loss)
I0429 11:09:49.876282 8162 solver.cpp:406] Test net output #44: loss1/loss18 = 0.0317335 (* 0.0272727 = 0.000865459 loss)
I0429 11:09:49.876296 8162 solver.cpp:406] Test net output #45: loss1/loss19 = 0.0265248 (* 0.0272727 = 0.000723405 loss)
I0429 11:09:49.876310 8162 solver.cpp:406] Test net output #46: loss1/loss20 = 0.013774 (* 0.0272727 = 0.000375654 loss)
I0429 11:09:49.876328 8162 solver.cpp:406] Test net output #47: loss1/loss21 = 0.00669279 (* 0.0272727 = 0.000182531 loss)
I0429 11:09:49.876343 8162 solver.cpp:406] Test net output #48: loss1/loss22 = 0.00888509 (* 0.0272727 = 0.000242321 loss)
I0429 11:09:49.876355 8162 solver.cpp:406] Test net output #49: loss2/accuracy = 0.507672
I0429 11:09:49.876368 8162 solver.cpp:406] Test net output #50: loss2/accuracy01 = 0.74
I0429 11:09:49.876379 8162 solver.cpp:406] Test net output #51: loss2/accuracy02 = 0.601
I0429 11:09:49.876391 8162 solver.cpp:406] Test net output #52: loss2/accuracy03 = 0.435
I0429 11:09:49.876404 8162 solver.cpp:406] Test net output #53: loss2/accuracy04 = 0.472
I0429 11:09:49.876415 8162 solver.cpp:406] Test net output #54: loss2/accuracy05 = 0.469
I0429 11:09:49.876426 8162 solver.cpp:406] Test net output #55: loss2/accuracy06 = 0.607
I0429 11:09:49.876438 8162 solver.cpp:406] Test net output #56: loss2/accuracy07 = 0.709
I0429 11:09:49.876449 8162 solver.cpp:406] Test net output #57: loss2/accuracy08 = 0.822
I0429 11:09:49.876461 8162 solver.cpp:406] Test net output #58: loss2/accuracy09 = 0.896
I0429 11:09:49.876472 8162 solver.cpp:406] Test net output #59: loss2/accuracy10 = 0.919
I0429 11:09:49.876484 8162 solver.cpp:406] Test net output #60: loss2/accuracy11 = 0.931
I0429 11:09:49.876495 8162 solver.cpp:406] Test net output #61: loss2/accuracy12 = 0.945
I0429 11:09:49.876507 8162 solver.cpp:406] Test net output #62: loss2/accuracy13 = 0.957
I0429 11:09:49.876519 8162 solver.cpp:406] Test net output #63: loss2/accuracy14 = 0.963
I0429 11:09:49.876530 8162 solver.cpp:406] Test net output #64: loss2/accuracy15 = 0.973
I0429 11:09:49.876543 8162 solver.cpp:406] Test net output #65: loss2/accuracy16 = 0.983
I0429 11:09:49.876554 8162 solver.cpp:406] Test net output #66: loss2/accuracy17 = 0.987
I0429 11:09:49.876565 8162 solver.cpp:406] Test net output #67: loss2/accuracy18 = 0.993
I0429 11:09:49.876577 8162 solver.cpp:406] Test net output #68: loss2/accuracy19 = 0.996
I0429 11:09:49.876588 8162 solver.cpp:406] Test net output #69: loss2/accuracy20 = 0.997
I0429 11:09:49.876600 8162 solver.cpp:406] Test net output #70: loss2/accuracy21 = 0.999
I0429 11:09:49.876611 8162 solver.cpp:406] Test net output #71: loss2/accuracy22 = 0.999
I0429 11:09:49.876623 8162 solver.cpp:406] Test net output #72: loss2/accuracy_incl_empty = 0.833729
I0429 11:09:49.876636 8162 solver.cpp:406] Test net output #73: loss2/accuracy_top3 = 0.741095
I0429 11:09:49.876648 8162 solver.cpp:406] Test net output #74: loss2/cross_entropy_loss = 1.6679 (* 0.3 = 0.500369 loss)
I0429 11:09:49.876662 8162 solver.cpp:406] Test net output #75: loss2/cross_entropy_loss_incl_empty = 0.578952 (* 0.3 = 0.173686 loss)
I0429 11:09:49.876677 8162 solver.cpp:406] Test net output #76: loss2/loss01 = 1.00931 (* 0.0272727 = 0.0275267 loss)
I0429 11:09:49.876694 8162 solver.cpp:406] Test net output #77: loss2/loss02 = 1.43842 (* 0.0272727 = 0.0392297 loss)
I0429 11:09:49.876720 8162 solver.cpp:406] Test net output #78: loss2/loss03 = 1.94022 (* 0.0272727 = 0.052915 loss)
I0429 11:09:49.876735 8162 solver.cpp:406] Test net output #79: loss2/loss04 = 1.79075 (* 0.0272727 = 0.0488385 loss)
I0429 11:09:49.876749 8162 solver.cpp:406] Test net output #80: loss2/loss05 = 1.66364 (* 0.0272727 = 0.0453719 loss)
I0429 11:09:49.876763 8162 solver.cpp:406] Test net output #81: loss2/loss06 = 1.37373 (* 0.0272727 = 0.0374653 loss)
I0429 11:09:49.876776 8162 solver.cpp:406] Test net output #82: loss2/loss07 = 0.979125 (* 0.0272727 = 0.0267034 loss)
I0429 11:09:49.876791 8162 solver.cpp:406] Test net output #83: loss2/loss08 = 0.636349 (* 0.0272727 = 0.017355 loss)
I0429 11:09:49.876804 8162 solver.cpp:406] Test net output #84: loss2/loss09 = 0.404879 (* 0.0272727 = 0.0110422 loss)
I0429 11:09:49.876818 8162 solver.cpp:406] Test net output #85: loss2/loss10 = 0.29924 (* 0.0272727 = 0.00816109 loss)
I0429 11:09:49.876832 8162 solver.cpp:406] Test net output #86: loss2/loss11 = 0.253378 (* 0.0272727 = 0.00691032 loss)
I0429 11:09:49.876847 8162 solver.cpp:406] Test net output #87: loss2/loss12 = 0.210621 (* 0.0272727 = 0.00574421 loss)
I0429 11:09:49.876862 8162 solver.cpp:406] Test net output #88: loss2/loss13 = 0.167091 (* 0.0272727 = 0.00455703 loss)
I0429 11:09:49.876875 8162 solver.cpp:406] Test net output #89: loss2/loss14 = 0.142418 (* 0.0272727 = 0.00388414 loss)
I0429 11:09:49.876888 8162 solver.cpp:406] Test net output #90: loss2/loss15 = 0.114492 (* 0.0272727 = 0.0031225 loss)
I0429 11:09:49.876902 8162 solver.cpp:406] Test net output #91: loss2/loss16 = 0.073705 (* 0.0272727 = 0.00201014 loss)
I0429 11:09:49.876916 8162 solver.cpp:406] Test net output #92: loss2/loss17 = 0.0689716 (* 0.0272727 = 0.00188104 loss)
I0429 11:09:49.876930 8162 solver.cpp:406] Test net output #93: loss2/loss18 = 0.0369621 (* 0.0272727 = 0.00100806 loss)
I0429 11:09:49.876945 8162 solver.cpp:406] Test net output #94: loss2/loss19 = 0.0281654 (* 0.0272727 = 0.000768146 loss)
I0429 11:09:49.876957 8162 solver.cpp:406] Test net output #95: loss2/loss20 = 0.0165916 (* 0.0272727 = 0.000452497 loss)
I0429 11:09:49.876971 8162 solver.cpp:406] Test net output #96: loss2/loss21 = 0.00880739 (* 0.0272727 = 0.000240201 loss)
I0429 11:09:49.876986 8162 solver.cpp:406] Test net output #97: loss2/loss22 = 0.0123397 (* 0.0272727 = 0.000336536 loss)
I0429 11:09:49.876997 8162 solver.cpp:406] Test net output #98: loss3/accuracy = 0.668579
I0429 11:09:49.877009 8162 solver.cpp:406] Test net output #99: loss3/accuracy01 = 0.802
I0429 11:09:49.877022 8162 solver.cpp:406] Test net output #100: loss3/accuracy02 = 0.742
I0429 11:09:49.877033 8162 solver.cpp:406] Test net output #101: loss3/accuracy03 = 0.648
I0429 11:09:49.877044 8162 solver.cpp:406] Test net output #102: loss3/accuracy04 = 0.641
I0429 11:09:49.877056 8162 solver.cpp:406] Test net output #103: loss3/accuracy05 = 0.618
I0429 11:09:49.877068 8162 solver.cpp:406] Test net output #104: loss3/accuracy06 = 0.652
I0429 11:09:49.877079 8162 solver.cpp:406] Test net output #105: loss3/accuracy07 = 0.759
I0429 11:09:49.877091 8162 solver.cpp:406] Test net output #106: loss3/accuracy08 = 0.844
I0429 11:09:49.877102 8162 solver.cpp:406] Test net output #107: loss3/accuracy09 = 0.899
I0429 11:09:49.877115 8162 solver.cpp:406] Test net output #108: loss3/accuracy10 = 0.922
I0429 11:09:49.877126 8162 solver.cpp:406] Test net output #109: loss3/accuracy11 = 0.936
I0429 11:09:49.877137 8162 solver.cpp:406] Test net output #110: loss3/accuracy12 = 0.945
I0429 11:09:49.877148 8162 solver.cpp:406] Test net output #111: loss3/accuracy13 = 0.956
I0429 11:09:49.877161 8162 solver.cpp:406] Test net output #112: loss3/accuracy14 = 0.967
I0429 11:09:49.877171 8162 solver.cpp:406] Test net output #113: loss3/accuracy15 = 0.973
I0429 11:09:49.877183 8162 solver.cpp:406] Test net output #114: loss3/accuracy16 = 0.983
I0429 11:09:49.877205 8162 solver.cpp:406] Test net output #115: loss3/accuracy17 = 0.987
I0429 11:09:49.877218 8162 solver.cpp:406] Test net output #116: loss3/accuracy18 = 0.993
I0429 11:09:49.877230 8162 solver.cpp:406] Test net output #117: loss3/accuracy19 = 0.996
I0429 11:09:49.877241 8162 solver.cpp:406] Test net output #118: loss3/accuracy20 = 0.997
I0429 11:09:49.877254 8162 solver.cpp:406] Test net output #119: loss3/accuracy21 = 0.999
I0429 11:09:49.877265 8162 solver.cpp:406] Test net output #120: loss3/accuracy22 = 0.999
I0429 11:09:49.877276 8162 solver.cpp:406] Test net output #121: loss3/accuracy_incl_empty = 0.877638
I0429 11:09:49.877288 8162 solver.cpp:406] Test net output #122: loss3/accuracy_top3 = 0.821902
I0429 11:09:49.877302 8162 solver.cpp:406] Test net output #123: loss3/cross_entropy_loss = 1.19015 (* 1 = 1.19015 loss)
I0429 11:09:49.877316 8162 solver.cpp:406] Test net output #124: loss3/cross_entropy_loss_incl_empty = 0.444182 (* 1 = 0.444182 loss)
I0429 11:09:49.877331 8162 solver.cpp:406] Test net output #125: loss3/loss01 = 0.785481 (* 0.0909091 = 0.0714073 loss)
I0429 11:09:49.877344 8162 solver.cpp:406] Test net output #126: loss3/loss02 = 0.995194 (* 0.0909091 = 0.0904722 loss)
I0429 11:09:49.877358 8162 solver.cpp:406] Test net output #127: loss3/loss03 = 1.25479 (* 0.0909091 = 0.114072 loss)
I0429 11:09:49.877374 8162 solver.cpp:406] Test net output #128: loss3/loss04 = 1.27117 (* 0.0909091 = 0.115561 loss)
I0429 11:09:49.877388 8162 solver.cpp:406] Test net output #129: loss3/loss05 = 1.27025 (* 0.0909091 = 0.115477 loss)
I0429 11:09:49.877403 8162 solver.cpp:406] Test net output #130: loss3/loss06 = 1.14099 (* 0.0909091 = 0.103727 loss)
I0429 11:09:49.877415 8162 solver.cpp:406] Test net output #131: loss3/loss07 = 0.801534 (* 0.0909091 = 0.0728667 loss)
I0429 11:09:49.877429 8162 solver.cpp:406] Test net output #132: loss3/loss08 = 0.548733 (* 0.0909091 = 0.0498849 loss)
I0429 11:09:49.877444 8162 solver.cpp:406] Test net output #133: loss3/loss09 = 0.381679 (* 0.0909091 = 0.0346981 loss)
I0429 11:09:49.877457 8162 solver.cpp:406] Test net output #134: loss3/loss10 = 0.276675 (* 0.0909091 = 0.0251523 loss)
I0429 11:09:49.877470 8162 solver.cpp:406] Test net output #135: loss3/loss11 = 0.236196 (* 0.0909091 = 0.0214724 loss)
I0429 11:09:49.877483 8162 solver.cpp:406] Test net output #136: loss3/loss12 = 0.200899 (* 0.0909091 = 0.0182635 loss)
I0429 11:09:49.877497 8162 solver.cpp:406] Test net output #137: loss3/loss13 = 0.165226 (* 0.0909091 = 0.0150205 loss)
I0429 11:09:49.877511 8162 solver.cpp:406] Test net output #138: loss3/loss14 = 0.131552 (* 0.0909091 = 0.0119593 loss)
I0429 11:09:49.877524 8162 solver.cpp:406] Test net output #139: loss3/loss15 = 0.102681 (* 0.0909091 = 0.00933459 loss)
I0429 11:09:49.877538 8162 solver.cpp:406] Test net output #140: loss3/loss16 = 0.06681 (* 0.0909091 = 0.00607363 loss)
I0429 11:09:49.877548 8162 solver.cpp:406] Test net output #141: loss3/loss17 = 0.0601856 (* 0.0909091 = 0.00547142 loss)
I0429 11:09:49.877558 8162 solver.cpp:406] Test net output #142: loss3/loss18 = 0.0339977 (* 0.0909091 = 0.0030907 loss)
I0429 11:09:49.877573 8162 solver.cpp:406] Test net output #143: loss3/loss19 = 0.0295752 (* 0.0909091 = 0.00268865 loss)
I0429 11:09:49.877586 8162 solver.cpp:406] Test net output #144: loss3/loss20 = 0.0143723 (* 0.0909091 = 0.00130657 loss)
I0429 11:09:49.877600 8162 solver.cpp:406] Test net output #145: loss3/loss21 = 0.00743973 (* 0.0909091 = 0.000676339 loss)
I0429 11:09:49.877614 8162 solver.cpp:406] Test net output #146: loss3/loss22 = 0.010521 (* 0.0909091 = 0.000956456 loss)
I0429 11:09:49.877626 8162 solver.cpp:406] Test net output #147: total_accuracy = 0.287
I0429 11:09:49.877638 8162 solver.cpp:406] Test net output #148: total_accuracy_not_rec = 0.266
I0429 11:09:49.877650 8162 solver.cpp:406] Test net output #149: total_confidence = 0.24447
I0429 11:09:49.877671 8162 solver.cpp:406] Test net output #150: total_confidence_not_rec = 0.225541
I0429 11:09:50.056372 8162 solver.cpp:229] Iteration 20000, loss = 5.37529
I0429 11:09:50.056427 8162 solver.cpp:245] Train net output #0: loss1/accuracy = 0.454545
I0429 11:09:50.056445 8162 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75
I0429 11:09:50.056459 8162 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.25
I0429 11:09:50.056473 8162 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375
I0429 11:09:50.056484 8162 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375
I0429 11:09:50.056498 8162 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.5
I0429 11:09:50.056509 8162 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.625
I0429 11:09:50.056526 8162 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.875
I0429 11:09:50.056540 8162 solver.cpp:245] Train net output #8: loss1/accuracy08 = 1
I0429 11:09:50.056552 8162 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1
I0429 11:09:50.056565 8162 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0429 11:09:50.056576 8162 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0429 11:09:50.056591 8162 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0429 11:09:50.056602 8162 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0429 11:09:50.056614 8162 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0429 11:09:50.056627 8162 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0429 11:09:50.056638 8162 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0429 11:09:50.056650 8162 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0429 11:09:50.056663 8162 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0429 11:09:50.056674 8162 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0429 11:09:50.056686 8162 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0429 11:09:50.056699 8162 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0429 11:09:50.056710 8162 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0429 11:09:50.056722 8162 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.846591
I0429 11:09:50.056735 8162 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.590909
I0429 11:09:50.056752 8162 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.8413 (* 0.3 = 0.552389 loss)
I0429 11:09:50.056767 8162 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.520036 (* 0.3 = 0.156011 loss)
I0429 11:09:50.056782 8162 solver.cpp:245] Train net output #27: loss1/loss01 = 0.653874 (* 0.0272727 = 0.0178329 loss)
I0429 11:09:50.056797 8162 solver.cpp:245] Train net output #28: loss1/loss02 = 1.8891 (* 0.0272727 = 0.0515209 loss)
I0429 11:09:50.056812 8162 solver.cpp:245] Train net output #29: loss1/loss03 = 2.0905 (* 0.0272727 = 0.0570137 loss)
I0429 11:09:50.056826 8162 solver.cpp:245] Train net output #30: loss1/loss04 = 1.79624 (* 0.0272727 = 0.0489884 loss)
I0429 11:09:50.056840 8162 solver.cpp:245] Train net output #31: loss1/loss05 = 1.62294 (* 0.0272727 = 0.044262 loss)
I0429 11:09:50.056854 8162 solver.cpp:245] Train net output #32: loss1/loss06 = 1.52837 (* 0.0272727 = 0.0416828 loss)
I0429 11:09:50.056869 8162 solver.cpp:245] Train net output #33: loss1/loss07 = 0.441006 (* 0.0272727 = 0.0120274 loss)
I0429 11:09:50.056884 8162 solver.cpp:245] Train net output #34: loss1/loss08 = 0.0392761 (* 0.0272727 = 0.00107117 loss)
I0429 11:09:50.056898 8162 solver.cpp:245] Train net output #35: loss1/loss09 = 0.000421237 (* 0.0272727 = 1.14883e-05 loss)
I0429 11:09:50.056912 8162 solver.cpp:245] Train net output #36: loss1/loss10 = 6.30088e-05 (* 0.0272727 = 1.71842e-06 loss)
I0429 11:09:50.056927 8162 solver.cpp:245] Train net output #37: loss1/loss11 = 3.21811e-05 (* 0.0272727 = 8.77668e-07 loss)
I0429 11:09:50.056972 8162 solver.cpp:245] Train net output #38: loss1/loss12 = 2.58851e-05 (* 0.0272727 = 7.05958e-07 loss)
I0429 11:09:50.056988 8162 solver.cpp:245] Train net output #39: loss1/loss13 = 6.05486e-05 (* 0.0272727 = 1.65133e-06 loss)
I0429 11:09:50.057003 8162 solver.cpp:245] Train net output #40: loss1/loss14 = 1.63175e-05 (* 0.0272727 = 4.45023e-07 loss)
I0429 11:09:50.057016 8162 solver.cpp:245] Train net output #41: loss1/loss15 = 2.91869e-05 (* 0.0272727 = 7.96007e-07 loss)
I0429 11:09:50.057031 8162 solver.cpp:245] Train net output #42: loss1/loss16 = 4.00846e-06 (* 0.0272727 = 1.09322e-07 loss)
I0429 11:09:50.057045 8162 solver.cpp:245] Train net output #43: loss1/loss17 = 2.51831e-06 (* 0.0272727 = 6.86811e-08 loss)
I0429 11:09:50.057060 8162 solver.cpp:245] Train net output #44: loss1/loss18 = 2.53321e-06 (* 0.0272727 = 6.90875e-08 loss)
I0429 11:09:50.057075 8162 solver.cpp:245] Train net output #45: loss1/loss19 = 2.66732e-06 (* 0.0272727 = 7.2745e-08 loss)
I0429 11:09:50.057090 8162 solver.cpp:245] Train net output #46: loss1/loss20 = 2.36929e-06 (* 0.0272727 = 6.4617e-08 loss)
I0429 11:09:50.057103 8162 solver.cpp:245] Train net output #47: loss1/loss21 = 3.39749e-06 (* 0.0272727 = 9.26589e-08 loss)
I0429 11:09:50.057118 8162 solver.cpp:245] Train net output #48: loss1/loss22 = 4.24689e-06 (* 0.0272727 = 1.15824e-07 loss)
I0429 11:09:50.057132 8162 solver.cpp:245] Train net output #49: loss2/accuracy = 0.409091
I0429 11:09:50.057143 8162 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.625
I0429 11:09:50.057157 8162 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.625
I0429 11:09:50.057168 8162 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.25
I0429 11:09:50.057180 8162 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.375
I0429 11:09:50.057193 8162 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.375
I0429 11:09:50.057204 8162 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.5
I0429 11:09:50.057216 8162 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.875
I0429 11:09:50.057229 8162 solver.cpp:245] Train net output #57: loss2/accuracy08 = 1
I0429 11:09:50.057241 8162 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1
I0429 11:09:50.057252 8162 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0429 11:09:50.057265 8162 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0429 11:09:50.057276 8162 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0429 11:09:50.057288 8162 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0429 11:09:50.057299 8162 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0429 11:09:50.057312 8162 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0429 11:09:50.057323 8162 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0429 11:09:50.057335 8162 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0429 11:09:50.057348 8162 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0429 11:09:50.057359 8162 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0429 11:09:50.057371 8162 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0429 11:09:50.057384 8162 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0429 11:09:50.057395 8162 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0429 11:09:50.057407 8162 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.835227
I0429 11:09:50.057420 8162 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.75
I0429 11:09:50.057435 8162 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.86999 (* 0.3 = 0.560997 loss)
I0429 11:09:50.057448 8162 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.537794 (* 0.3 = 0.161338 loss)
I0429 11:09:50.057473 8162 solver.cpp:245] Train net output #76: loss2/loss01 = 1.02302 (* 0.0272727 = 0.0279005 loss)
I0429 11:09:50.057488 8162 solver.cpp:245] Train net output #77: loss2/loss02 = 1.34955 (* 0.0272727 = 0.0368059 loss)
I0429 11:09:50.057503 8162 solver.cpp:245] Train net output #78: loss2/loss03 = 3.15922 (* 0.0272727 = 0.0861605 loss)
I0429 11:09:50.057518 8162 solver.cpp:245] Train net output #79: loss2/loss04 = 2.342 (* 0.0272727 = 0.0638727 loss)
I0429 11:09:50.057531 8162 solver.cpp:245] Train net output #80: loss2/loss05 = 1.83426 (* 0.0272727 = 0.0500251 loss)
I0429 11:09:50.057546 8162 solver.cpp:245] Train net output #81: loss2/loss06 = 1.31893 (* 0.0272727 = 0.0359708 loss)
I0429 11:09:50.057560 8162 solver.cpp:245] Train net output #82: loss2/loss07 = 0.353177 (* 0.0272727 = 0.0096321 loss)
I0429 11:09:50.057579 8162 solver.cpp:245] Train net output #83: loss2/loss08 = 0.037657 (* 0.0272727 = 0.00102701 loss)
I0429 11:09:50.057595 8162 solver.cpp:245] Train net output #84: loss2/loss09 = 0.00414345 (* 0.0272727 = 0.000113003 loss)
I0429 11:09:50.057610 8162 solver.cpp:245] Train net output #85: loss2/loss10 = 0.00120477 (* 0.0272727 = 3.28572e-05 loss)
I0429 11:09:50.057623 8162 solver.cpp:245] Train net output #86: loss2/loss11 = 0.000838732 (* 0.0272727 = 2.28745e-05 loss)
I0429 11:09:50.057638 8162 solver.cpp:245] Train net output #87: loss2/loss12 = 0.000406833 (* 0.0272727 = 1.10955e-05 loss)
I0429 11:09:50.057652 8162 solver.cpp:245] Train net output #88: loss2/loss13 = 0.000172683 (* 0.0272727 = 4.70953e-06 loss)
I0429 11:09:50.057667 8162 solver.cpp:245] Train net output #89: loss2/loss14 = 0.00017366 (* 0.0272727 = 4.73618e-06 loss)
I0429 11:09:50.057682 8162 solver.cpp:245] Train net output #90: loss2/loss15 = 0.000122511 (* 0.0272727 = 3.34121e-06 loss)
I0429 11:09:50.057695 8162 solver.cpp:245] Train net output #91: loss2/loss16 = 5.18393e-05 (* 0.0272727 = 1.4138e-06 loss)
I0429 11:09:50.057709 8162 solver.cpp:245] Train net output #92: loss2/loss17 = 4.29858e-05 (* 0.0272727 = 1.17234e-06 loss)
I0429 11:09:50.057724 8162 solver.cpp:245] Train net output #93: loss2/loss18 = 1.8031e-05 (* 0.0272727 = 4.91754e-07 loss)
I0429 11:09:50.057739 8162 solver.cpp:245] Train net output #94: loss2/loss19 = 1.97596e-05 (* 0.0272727 = 5.38898e-07 loss)
I0429 11:09:50.057754 8162 solver.cpp:245] Train net output #95: loss2/loss20 = 7.56991e-06 (* 0.0272727 = 2.06452e-07 loss)
I0429 11:09:50.057767 8162 solver.cpp:245] Train net output #96: loss2/loss21 = 6.98878e-06 (* 0.0272727 = 1.90603e-07 loss)
I0429 11:09:50.057781 8162 solver.cpp:245] Train net output #97: loss2/loss22 = 4.87272e-06 (* 0.0272727 = 1.32892e-07 loss)
I0429 11:09:50.057795 8162 solver.cpp:245] Train net output #98: loss3/accuracy = 0.636364
I0429 11:09:50.057807 8162 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875
I0429 11:09:50.057819 8162 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.75
I0429 11:09:50.057832 8162 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.5
I0429 11:09:50.057844 8162 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.75
I0429 11:09:50.057857 8162 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.625
I0429 11:09:50.057868 8162 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.5
I0429 11:09:50.057880 8162 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875
I0429 11:09:50.057893 8162 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1
I0429 11:09:50.057904 8162 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1
I0429 11:09:50.057916 8162 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0429 11:09:50.057929 8162 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0429 11:09:50.057937 8162 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0429 11:09:50.057945 8162 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0429 11:09:50.057966 8162 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0429 11:09:50.057981 8162 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0429 11:09:50.057992 8162 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0429 11:09:50.058003 8162 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0429 11:09:50.058015 8162 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0429 11:09:50.058027 8162 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0429 11:09:50.058039 8162 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0429 11:09:50.058050 8162 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0429 11:09:50.058063 8162 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0429 11:09:50.058074 8162 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.897727
I0429 11:09:50.058086 8162 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.840909
I0429 11:09:50.058100 8162 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.26128 (* 1 = 1.26128 loss)
I0429 11:09:50.058115 8162 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.347884 (* 1 = 0.347884 loss)
I0429 11:09:50.058130 8162 solver.cpp:245] Train net output #125: loss3/loss01 = 0.333867 (* 0.0909091 = 0.0303515 loss)
I0429 11:09:50.058145 8162 solver.cpp:245] Train net output #126: loss3/loss02 = 0.931022 (* 0.0909091 = 0.0846383 loss)
I0429 11:09:50.058158 8162 solver.cpp:245] Train net output #127: loss3/loss03 = 2.17771 (* 0.0909091 = 0.197974 loss)
I0429 11:09:50.058173 8162 solver.cpp:245] Train net output #128: loss3/loss04 = 1.08277 (* 0.0909091 = 0.0984335 loss)
I0429 11:09:50.058187 8162 solver.cpp:245] Train net output #129: loss3/loss05 = 1.30384 (* 0.0909091 = 0.118531 loss)
I0429 11:09:50.058202 8162 solver.cpp:245] Train net output #130: loss3/loss06 = 1.18143 (* 0.0909091 = 0.107402 loss)
I0429 11:09:50.058215 8162 solver.cpp:245] Train net output #131: loss3/loss07 = 0.482758 (* 0.0909091 = 0.0438871 loss)
I0429 11:09:50.058230 8162 solver.cpp:245] Train net output #132: loss3/loss08 = 0.00635307 (* 0.0909091 = 0.000577551 loss)
I0429 11:09:50.058245 8162 solver.cpp:245] Train net output #133: loss3/loss09 = 0.0014892 (* 0.0909091 = 0.000135382 loss)
I0429 11:09:50.058259 8162 solver.cpp:245] Train net output #134: loss3/loss10 = 0.000650398 (* 0.0909091 = 5.91271e-05 loss)
I0429 11:09:50.058274 8162 solver.cpp:245] Train net output #135: loss3/loss11 = 0.000415502 (* 0.0909091 = 3.77729e-05 loss)
I0429 11:09:50.058289 8162 solver.cpp:245] Train net output #136: loss3/loss12 = 0.000181512 (* 0.0909091 = 1.65011e-05 loss)
I0429 11:09:50.058302 8162 solver.cpp:245] Train net output #137: loss3/loss13 = 0.000105588 (* 0.0909091 = 9.59888e-06 loss)
I0429 11:09:50.058317 8162 solver.cpp:245] Train net output #138: loss3/loss14 = 6.45611e-05 (* 0.0909091 = 5.86919e-06 loss)
I0429 11:09:50.058331 8162 solver.cpp:245] Train net output #139: loss3/loss15 = 3.92757e-05 (* 0.0909091 = 3.57052e-06 loss)
I0429 11:09:50.058346 8162 solver.cpp:245] Train net output #140: loss3/loss16 = 3.172e-05 (* 0.0909091 = 2.88364e-06 loss)
I0429 11:09:50.058360 8162 solver.cpp:245] Train net output #141: loss3/loss17 = 1.12955e-05 (* 0.0909091 = 1.02686e-06 loss)
I0429 11:09:50.058375 8162 solver.cpp:245] Train net output #142: loss3/loss18 = 8.73231e-06 (* 0.0909091 = 7.93846e-07 loss)
I0429 11:09:50.058389 8162 solver.cpp:245] Train net output #143: loss3/loss19 = 7.10801e-06 (* 0.0909091 = 6.46183e-07 loss)
I0429 11:09:50.058403 8162 solver.cpp:245] Train net output #144: loss3/loss20 = 5.81156e-06 (* 0.0909091 = 5.28323e-07 loss)
I0429 11:09:50.058418 8162 solver.cpp:245] Train net output #145: loss3/loss21 = 5.88606e-06 (* 0.0909091 = 5.35096e-07 loss)
I0429 11:09:50.058432 8162 solver.cpp:245] Train net output #146: loss3/loss22 = 7.15271e-06 (* 0.0909091 = 6.50247e-07 loss)
I0429 11:09:50.058455 8162 solver.cpp:245] Train net output #147: total_accuracy = 0.25
I0429 11:09:50.058468 8162 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.25
I0429 11:09:50.058480 8162 solver.cpp:245] Train net output #149: total_confidence = 0.199301
I0429 11:09:50.058493 8162 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.216262
I0429 11:09:50.058506 8162 sgd_solver.cpp:106] Iteration 20000, lr = 0.005
I0429 11:12:06.700899 8162 solver.cpp:229] Iteration 20500, loss = 5.32082
I0429 11:12:06.701072 8162 solver.cpp:245] Train net output #0: loss1/accuracy = 0.291667
I0429 11:12:06.701094 8162 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.375
I0429 11:12:06.701108 8162 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5
I0429 11:12:06.701120 8162 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.125
I0429 11:12:06.701133 8162 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.25
I0429 11:12:06.701146 8162 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.375
I0429 11:12:06.701159 8162 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.375
I0429 11:12:06.701170 8162 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.75
I0429 11:12:06.701184 8162 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.75
I0429 11:12:06.701195 8162 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875
I0429 11:12:06.701208 8162 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0429 11:12:06.701220 8162 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0429 11:12:06.701233 8162 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0429 11:12:06.701246 8162 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0429 11:12:06.701257 8162 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0429 11:12:06.701269 8162 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0429 11:12:06.701282 8162 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0429 11:12:06.701293 8162 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0429 11:12:06.701305 8162 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0429 11:12:06.701320 8162 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0429 11:12:06.701333 8162 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0429 11:12:06.701345 8162 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0429 11:12:06.701357 8162 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0429 11:12:06.701370 8162 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.784091
I0429 11:12:06.701382 8162 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.479167
I0429 11:12:06.701400 8162 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 2.71114 (* 0.3 = 0.813342 loss)
I0429 11:12:06.701414 8162 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.886927 (* 0.3 = 0.266078 loss)
I0429 11:12:06.701429 8162 solver.cpp:245] Train net output #27: loss1/loss01 = 2.19681 (* 0.0272727 = 0.0599131 loss)
I0429 11:12:06.701443 8162 solver.cpp:245] Train net output #28: loss1/loss02 = 2.08749 (* 0.0272727 = 0.0569317 loss)
I0429 11:12:06.701458 8162 solver.cpp:245] Train net output #29: loss1/loss03 = 3.10946 (* 0.0272727 = 0.0848034 loss)
I0429 11:12:06.701473 8162 solver.cpp:245] Train net output #30: loss1/loss04 = 2.7328 (* 0.0272727 = 0.0745308 loss)
I0429 11:12:06.701488 8162 solver.cpp:245] Train net output #31: loss1/loss05 = 2.39454 (* 0.0272727 = 0.0653057 loss)
I0429 11:12:06.701503 8162 solver.cpp:245] Train net output #32: loss1/loss06 = 2.4296 (* 0.0272727 = 0.0662619 loss)
I0429 11:12:06.701516 8162 solver.cpp:245] Train net output #33: loss1/loss07 = 1.04659 (* 0.0272727 = 0.0285435 loss)
I0429 11:12:06.701531 8162 solver.cpp:245] Train net output #34: loss1/loss08 = 0.833109 (* 0.0272727 = 0.0227212 loss)
I0429 11:12:06.701545 8162 solver.cpp:245] Train net output #35: loss1/loss09 = 0.591015 (* 0.0272727 = 0.0161186 loss)
I0429 11:12:06.701560 8162 solver.cpp:245] Train net output #36: loss1/loss10 = 0.108911 (* 0.0272727 = 0.00297031 loss)
I0429 11:12:06.701575 8162 solver.cpp:245] Train net output #37: loss1/loss11 = 0.0750991 (* 0.0272727 = 0.00204816 loss)
I0429 11:12:06.701591 8162 solver.cpp:245] Train net output #38: loss1/loss12 = 0.0496714 (* 0.0272727 = 0.00135468 loss)
I0429 11:12:06.701606 8162 solver.cpp:245] Train net output #39: loss1/loss13 = 0.0309985 (* 0.0272727 = 0.000845415 loss)
I0429 11:12:06.701640 8162 solver.cpp:245] Train net output #40: loss1/loss14 = 0.0210844 (* 0.0272727 = 0.00057503 loss)
I0429 11:12:06.701655 8162 solver.cpp:245] Train net output #41: loss1/loss15 = 0.011359 (* 0.0272727 = 0.000309792 loss)
I0429 11:12:06.701670 8162 solver.cpp:245] Train net output #42: loss1/loss16 = 0.00649142 (* 0.0272727 = 0.000177039 loss)
I0429 11:12:06.701685 8162 solver.cpp:245] Train net output #43: loss1/loss17 = 0.00328746 (* 0.0272727 = 8.96579e-05 loss)
I0429 11:12:06.701700 8162 solver.cpp:245] Train net output #44: loss1/loss18 = 0.00159447 (* 0.0272727 = 4.34855e-05 loss)
I0429 11:12:06.701715 8162 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00102544 (* 0.0272727 = 2.79666e-05 loss)
I0429 11:12:06.701730 8162 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000572627 (* 0.0272727 = 1.56171e-05 loss)
I0429 11:12:06.701745 8162 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000307043 (* 0.0272727 = 8.3739e-06 loss)
I0429 11:12:06.701758 8162 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000134251 (* 0.0272727 = 3.66139e-06 loss)
I0429 11:12:06.701771 8162 solver.cpp:245] Train net output #49: loss2/accuracy = 0.333333
I0429 11:12:06.701784 8162 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.625
I0429 11:12:06.701797 8162 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.25
I0429 11:12:06.701809 8162 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.375
I0429 11:12:06.701822 8162 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.25
I0429 11:12:06.701834 8162 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.375
I0429 11:12:06.701848 8162 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.375
I0429 11:12:06.701859 8162 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.75
I0429 11:12:06.701871 8162 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.75
I0429 11:12:06.701884 8162 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875
I0429 11:12:06.701895 8162 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0429 11:12:06.701907 8162 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0429 11:12:06.701920 8162 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0429 11:12:06.701931 8162 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0429 11:12:06.701943 8162 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0429 11:12:06.701956 8162 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0429 11:12:06.701967 8162 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0429 11:12:06.701979 8162 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0429 11:12:06.701992 8162 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0429 11:12:06.702003 8162 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0429 11:12:06.702014 8162 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0429 11:12:06.702026 8162 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0429 11:12:06.702039 8162 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0429 11:12:06.702050 8162 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.778409
I0429 11:12:06.702062 8162 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.541667
I0429 11:12:06.702081 8162 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 2.38822 (* 0.3 = 0.716466 loss)
I0429 11:12:06.702096 8162 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.822698 (* 0.3 = 0.246809 loss)
I0429 11:12:06.702111 8162 solver.cpp:245] Train net output #76: loss2/loss01 = 1.73099 (* 0.0272727 = 0.0472089 loss)
I0429 11:12:06.702126 8162 solver.cpp:245] Train net output #77: loss2/loss02 = 2.6458 (* 0.0272727 = 0.0721581 loss)
I0429 11:12:06.702152 8162 solver.cpp:245] Train net output #78: loss2/loss03 = 2.07599 (* 0.0272727 = 0.056618 loss)
I0429 11:12:06.702167 8162 solver.cpp:245] Train net output #79: loss2/loss04 = 2.55841 (* 0.0272727 = 0.0697748 loss)
I0429 11:12:06.702181 8162 solver.cpp:245] Train net output #80: loss2/loss05 = 2.12827 (* 0.0272727 = 0.0580437 loss)
I0429 11:12:06.702196 8162 solver.cpp:245] Train net output #81: loss2/loss06 = 2.512 (* 0.0272727 = 0.068509 loss)
I0429 11:12:06.702210 8162 solver.cpp:245] Train net output #82: loss2/loss07 = 1.01997 (* 0.0272727 = 0.0278175 loss)
I0429 11:12:06.702225 8162 solver.cpp:245] Train net output #83: loss2/loss08 = 1.02111 (* 0.0272727 = 0.0278486 loss)
I0429 11:12:06.702239 8162 solver.cpp:245] Train net output #84: loss2/loss09 = 0.584455 (* 0.0272727 = 0.0159397 loss)
I0429 11:12:06.702255 8162 solver.cpp:245] Train net output #85: loss2/loss10 = 0.189782 (* 0.0272727 = 0.00517588 loss)
I0429 11:12:06.702268 8162 solver.cpp:245] Train net output #86: loss2/loss11 = 0.111229 (* 0.0272727 = 0.0030335 loss)
I0429 11:12:06.702283 8162 solver.cpp:245] Train net output #87: loss2/loss12 = 0.0579447 (* 0.0272727 = 0.00158031 loss)
I0429 11:12:06.702298 8162 solver.cpp:245] Train net output #88: loss2/loss13 = 0.028711 (* 0.0272727 = 0.000783027 loss)
I0429 11:12:06.702313 8162 solver.cpp:245] Train net output #89: loss2/loss14 = 0.0117815 (* 0.0272727 = 0.000321313 loss)
I0429 11:12:06.702328 8162 solver.cpp:245] Train net output #90: loss2/loss15 = 0.00593769 (* 0.0272727 = 0.000161937 loss)
I0429 11:12:06.702342 8162 solver.cpp:245] Train net output #91: loss2/loss16 = 0.0026674 (* 0.0272727 = 7.27472e-05 loss)
I0429 11:12:06.702358 8162 solver.cpp:245] Train net output #92: loss2/loss17 = 0.00109515 (* 0.0272727 = 2.98676e-05 loss)
I0429 11:12:06.702375 8162 solver.cpp:245] Train net output #93: loss2/loss18 = 0.000318244 (* 0.0272727 = 8.67938e-06 loss)
I0429 11:12:06.702389 8162 solver.cpp:245] Train net output #94: loss2/loss19 = 0.000233928 (* 0.0272727 = 6.37986e-06 loss)
I0429 11:12:06.702404 8162 solver.cpp:245] Train net output #95: loss2/loss20 = 0.000133161 (* 0.0272727 = 3.63166e-06 loss)
I0429 11:12:06.702419 8162 solver.cpp:245] Train net output #96: loss2/loss21 = 7.52437e-05 (* 0.0272727 = 2.0521e-06 loss)
I0429 11:12:06.702433 8162 solver.cpp:245] Train net output #97: loss2/loss22 = 3.81125e-05 (* 0.0272727 = 1.03943e-06 loss)
I0429 11:12:06.702446 8162 solver.cpp:245] Train net output #98: loss3/accuracy = 0.416667
I0429 11:12:06.702458 8162 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.625
I0429 11:12:06.702471 8162 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.625
I0429 11:12:06.702483 8162 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.5
I0429 11:12:06.702497 8162 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.25
I0429 11:12:06.702508 8162 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.5
I0429 11:12:06.702520 8162 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.375
I0429 11:12:06.702533 8162 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75
I0429 11:12:06.702545 8162 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.75
I0429 11:12:06.702558 8162 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875
I0429 11:12:06.702569 8162 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0429 11:12:06.702581 8162 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0429 11:12:06.702594 8162 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0429 11:12:06.702605 8162 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0429 11:12:06.702617 8162 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0429 11:12:06.702628 8162 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0429 11:12:06.702641 8162 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0429 11:12:06.702662 8162 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0429 11:12:06.702675 8162 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0429 11:12:06.702688 8162 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0429 11:12:06.702700 8162 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0429 11:12:06.702713 8162 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0429 11:12:06.702724 8162 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0429 11:12:06.702736 8162 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.818182
I0429 11:12:06.702749 8162 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.604167
I0429 11:12:06.702764 8162 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.91114 (* 1 = 1.91114 loss)
I0429 11:12:06.702777 8162 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.63016 (* 1 = 0.63016 loss)
I0429 11:12:06.702792 8162 solver.cpp:245] Train net output #125: loss3/loss01 = 1.46742 (* 0.0909091 = 0.133402 loss)
I0429 11:12:06.702807 8162 solver.cpp:245] Train net output #126: loss3/loss02 = 1.51073 (* 0.0909091 = 0.137339 loss)
I0429 11:12:06.702821 8162 solver.cpp:245] Train net output #127: loss3/loss03 = 1.61975 (* 0.0909091 = 0.14725 loss)
I0429 11:12:06.702836 8162 solver.cpp:245] Train net output #128: loss3/loss04 = 2.24551 (* 0.0909091 = 0.204137 loss)
I0429 11:12:06.702849 8162 solver.cpp:245] Train net output #129: loss3/loss05 = 1.93506 (* 0.0909091 = 0.175914 loss)
I0429 11:12:06.702864 8162 solver.cpp:245] Train net output #130: loss3/loss06 = 2.06955 (* 0.0909091 = 0.188141 loss)
I0429 11:12:06.702878 8162 solver.cpp:245] Train net output #131: loss3/loss07 = 0.842865 (* 0.0909091 = 0.0766241 loss)
I0429 11:12:06.702893 8162 solver.cpp:245] Train net output #132: loss3/loss08 = 0.704407 (* 0.0909091 = 0.064037 loss)
I0429 11:12:06.702908 8162 solver.cpp:245] Train net output #133: loss3/loss09 = 0.536966 (* 0.0909091 = 0.0488151 loss)
I0429 11:12:06.702922 8162 solver.cpp:245] Train net output #134: loss3/loss10 = 0.151171 (* 0.0909091 = 0.0137428 loss)
I0429 11:12:06.702936 8162 solver.cpp:245] Train net output #135: loss3/loss11 = 0.0949587 (* 0.0909091 = 0.00863261 loss)
I0429 11:12:06.702950 8162 solver.cpp:245] Train net output #136: loss3/loss12 = 0.0411641 (* 0.0909091 = 0.00374219 loss)
I0429 11:12:06.702965 8162 solver.cpp:245] Train net output #137: loss3/loss13 = 0.0180671 (* 0.0909091 = 0.00164247 loss)
I0429 11:12:06.702980 8162 solver.cpp:245] Train net output #138: loss3/loss14 = 0.0103217 (* 0.0909091 = 0.000938334 loss)
I0429 11:12:06.702994 8162 solver.cpp:245] Train net output #139: loss3/loss15 = 0.00541658 (* 0.0909091 = 0.000492416 loss)
I0429 11:12:06.703008 8162 solver.cpp:245] Train net output #140: loss3/loss16 = 0.00321258 (* 0.0909091 = 0.000292053 loss)
I0429 11:12:06.703027 8162 solver.cpp:245] Train net output #141: loss3/loss17 = 0.00135626 (* 0.0909091 = 0.000123297 loss)
I0429 11:12:06.703037 8162 solver.cpp:245] Train net output #142: loss3/loss18 = 0.000573251 (* 0.0909091 = 5.21138e-05 loss)
I0429 11:12:06.703052 8162 solver.cpp:245] Train net output #143: loss3/loss19 = 0.000340974 (* 0.0909091 = 3.09976e-05 loss)
I0429 11:12:06.703065 8162 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000155867 (* 0.0909091 = 1.41697e-05 loss)
I0429 11:12:06.703080 8162 solver.cpp:245] Train net output #145: loss3/loss21 = 0.000101011 (* 0.0909091 = 9.1828e-06 loss)
I0429 11:12:06.703094 8162 solver.cpp:245] Train net output #146: loss3/loss22 = 6.43098e-05 (* 0.0909091 = 5.84635e-06 loss)
I0429 11:12:06.703107 8162 solver.cpp:245] Train net output #147: total_accuracy = 0.125
I0429 11:12:06.703119 8162 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.125
I0429 11:12:06.703145 8162 solver.cpp:245] Train net output #149: total_confidence = 0.116752
I0429 11:12:06.703160 8162 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.115325
I0429 11:12:06.703172 8162 sgd_solver.cpp:106] Iteration 20500, lr = 0.005
I0429 11:14:23.452916 8162 solver.cpp:229] Iteration 21000, loss = 5.27913
I0429 11:14:23.453101 8162 solver.cpp:245] Train net output #0: loss1/accuracy = 0.475
I0429 11:14:23.453122 8162 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.625
I0429 11:14:23.453135 8162 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.625
I0429 11:14:23.453147 8162 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.625
I0429 11:14:23.453161 8162 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375
I0429 11:14:23.453172 8162 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.625
I0429 11:14:23.453186 8162 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.75
I0429 11:14:23.453197 8162 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.875
I0429 11:14:23.453210 8162 solver.cpp:245] Train net output #8: loss1/accuracy08 = 1
I0429 11:14:23.453222 8162 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1
I0429 11:14:23.453234 8162 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0429 11:14:23.453246 8162 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0429 11:14:23.453258 8162 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0429 11:14:23.453270 8162 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0429 11:14:23.453282 8162 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0429 11:14:23.453294 8162 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0429 11:14:23.453306 8162 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0429 11:14:23.453320 8162 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0429 11:14:23.453333 8162 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0429 11:14:23.453346 8162 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0429 11:14:23.453357 8162 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0429 11:14:23.453369 8162 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0429 11:14:23.453382 8162 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0429 11:14:23.453393 8162 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.863636
I0429 11:14:23.453405 8162 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.675
I0429 11:14:23.453423 8162 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.93909 (* 0.3 = 0.581728 loss)
I0429 11:14:23.453438 8162 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.508141 (* 0.3 = 0.152442 loss)
I0429 11:14:23.453452 8162 solver.cpp:245] Train net output #27: loss1/loss01 = 1.39012 (* 0.0272727 = 0.0379123 loss)
I0429 11:14:23.453467 8162 solver.cpp:245] Train net output #28: loss1/loss02 = 1.62363 (* 0.0272727 = 0.0442807 loss)
I0429 11:14:23.453482 8162 solver.cpp:245] Train net output #29: loss1/loss03 = 1.69122 (* 0.0272727 = 0.0461241 loss)
I0429 11:14:23.453496 8162 solver.cpp:245] Train net output #30: loss1/loss04 = 2.77788 (* 0.0272727 = 0.0757603 loss)
I0429 11:14:23.453510 8162 solver.cpp:245] Train net output #31: loss1/loss05 = 1.59876 (* 0.0272727 = 0.0436025 loss)
I0429 11:14:23.453526 8162 solver.cpp:245] Train net output #32: loss1/loss06 = 0.904904 (* 0.0272727 = 0.0246792 loss)
I0429 11:14:23.453539 8162 solver.cpp:245] Train net output #33: loss1/loss07 = 0.403564 (* 0.0272727 = 0.0110063 loss)
I0429 11:14:23.453555 8162 solver.cpp:245] Train net output #34: loss1/loss08 = 0.0247611 (* 0.0272727 = 0.000675304 loss)
I0429 11:14:23.453569 8162 solver.cpp:245] Train net output #35: loss1/loss09 = 5.90604e-05 (* 0.0272727 = 1.61074e-06 loss)
I0429 11:14:23.453584 8162 solver.cpp:245] Train net output #36: loss1/loss10 = 1.31879e-05 (* 0.0272727 = 3.59669e-07 loss)
I0429 11:14:23.453599 8162 solver.cpp:245] Train net output #37: loss1/loss11 = 7.21228e-06 (* 0.0272727 = 1.96699e-07 loss)
I0429 11:14:23.453614 8162 solver.cpp:245] Train net output #38: loss1/loss12 = 4.21707e-06 (* 0.0272727 = 1.15011e-07 loss)
I0429 11:14:23.453644 8162 solver.cpp:245] Train net output #39: loss1/loss13 = 5.27508e-06 (* 0.0272727 = 1.43866e-07 loss)
I0429 11:14:23.453658 8162 solver.cpp:245] Train net output #40: loss1/loss14 = 2.90574e-06 (* 0.0272727 = 7.92475e-08 loss)
I0429 11:14:23.453677 8162 solver.cpp:245] Train net output #41: loss1/loss15 = 2.45871e-06 (* 0.0272727 = 6.70557e-08 loss)
I0429 11:14:23.453693 8162 solver.cpp:245] Train net output #42: loss1/loss16 = 1.207e-06 (* 0.0272727 = 3.29181e-08 loss)
I0429 11:14:23.453708 8162 solver.cpp:245] Train net output #43: loss1/loss17 = 8.34466e-07 (* 0.0272727 = 2.27582e-08 loss)
I0429 11:14:23.453722 8162 solver.cpp:245] Train net output #44: loss1/loss18 = 1.56463e-06 (* 0.0272727 = 4.26716e-08 loss)
I0429 11:14:23.453737 8162 solver.cpp:245] Train net output #45: loss1/loss19 = 1.93716e-06 (* 0.0272727 = 5.28317e-08 loss)
I0429 11:14:23.453752 8162 solver.cpp:245] Train net output #46: loss1/loss20 = 1.05798e-06 (* 0.0272727 = 2.88541e-08 loss)
I0429 11:14:23.453766 8162 solver.cpp:245] Train net output #47: loss1/loss21 = 1.3113e-06 (* 0.0272727 = 3.57629e-08 loss)
I0429 11:14:23.453781 8162 solver.cpp:245] Train net output #48: loss1/loss22 = 2.29479e-06 (* 0.0272727 = 6.25852e-08 loss)
I0429 11:14:23.453794 8162 solver.cpp:245] Train net output #49: loss2/accuracy = 0.525
I0429 11:14:23.453806 8162 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.625
I0429 11:14:23.453819 8162 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.625
I0429 11:14:23.453831 8162 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.375
I0429 11:14:23.453843 8162 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.5
I0429 11:14:23.453855 8162 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.75
I0429 11:14:23.453867 8162 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.875
I0429 11:14:23.453879 8162 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.75
I0429 11:14:23.453891 8162 solver.cpp:245] Train net output #57: loss2/accuracy08 = 1
I0429 11:14:23.453903 8162 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1
I0429 11:14:23.453915 8162 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0429 11:14:23.453927 8162 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0429 11:14:23.453938 8162 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0429 11:14:23.453950 8162 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0429 11:14:23.453963 8162 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0429 11:14:23.453975 8162 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0429 11:14:23.453986 8162 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0429 11:14:23.453999 8162 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0429 11:14:23.454010 8162 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0429 11:14:23.454022 8162 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0429 11:14:23.454035 8162 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0429 11:14:23.454046 8162 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0429 11:14:23.454058 8162 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0429 11:14:23.454071 8162 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.886364
I0429 11:14:23.454082 8162 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.725
I0429 11:14:23.454097 8162 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.64878 (* 0.3 = 0.494633 loss)
I0429 11:14:23.454112 8162 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.397632 (* 0.3 = 0.11929 loss)
I0429 11:14:23.454130 8162 solver.cpp:245] Train net output #76: loss2/loss01 = 1.24471 (* 0.0272727 = 0.0339465 loss)
I0429 11:14:23.454144 8162 solver.cpp:245] Train net output #77: loss2/loss02 = 1.00823 (* 0.0272727 = 0.0274973 loss)
I0429 11:14:23.454170 8162 solver.cpp:245] Train net output #78: loss2/loss03 = 2.03613 (* 0.0272727 = 0.0555308 loss)
I0429 11:14:23.454186 8162 solver.cpp:245] Train net output #79: loss2/loss04 = 2.04567 (* 0.0272727 = 0.0557909 loss)
I0429 11:14:23.454200 8162 solver.cpp:245] Train net output #80: loss2/loss05 = 0.901275 (* 0.0272727 = 0.0245802 loss)
I0429 11:14:23.454215 8162 solver.cpp:245] Train net output #81: loss2/loss06 = 0.72467 (* 0.0272727 = 0.0197637 loss)
I0429 11:14:23.454229 8162 solver.cpp:245] Train net output #82: loss2/loss07 = 0.661721 (* 0.0272727 = 0.0180469 loss)
I0429 11:14:23.454244 8162 solver.cpp:245] Train net output #83: loss2/loss08 = 0.0141952 (* 0.0272727 = 0.000387141 loss)
I0429 11:14:23.454259 8162 solver.cpp:245] Train net output #84: loss2/loss09 = 0.00118799 (* 0.0272727 = 3.23997e-05 loss)
I0429 11:14:23.454273 8162 solver.cpp:245] Train net output #85: loss2/loss10 = 0.000987065 (* 0.0272727 = 2.69199e-05 loss)
I0429 11:14:23.454288 8162 solver.cpp:245] Train net output #86: loss2/loss11 = 0.0005215 (* 0.0272727 = 1.42227e-05 loss)
I0429 11:14:23.454303 8162 solver.cpp:245] Train net output #87: loss2/loss12 = 0.000241042 (* 0.0272727 = 6.57387e-06 loss)
I0429 11:14:23.454318 8162 solver.cpp:245] Train net output #88: loss2/loss13 = 0.000145528 (* 0.0272727 = 3.96895e-06 loss)
I0429 11:14:23.454332 8162 solver.cpp:245] Train net output #89: loss2/loss14 = 0.000456589 (* 0.0272727 = 1.24524e-05 loss)
I0429 11:14:23.454346 8162 solver.cpp:245] Train net output #90: loss2/loss15 = 9.09806e-05 (* 0.0272727 = 2.48129e-06 loss)
I0429 11:14:23.454361 8162 solver.cpp:245] Train net output #91: loss2/loss16 = 8.891e-05 (* 0.0272727 = 2.42482e-06 loss)
I0429 11:14:23.454380 8162 solver.cpp:245] Train net output #92: loss2/loss17 = 3.08324e-05 (* 0.0272727 = 8.40884e-07 loss)
I0429 11:14:23.454394 8162 solver.cpp:245] Train net output #93: loss2/loss18 = 5.37565e-05 (* 0.0272727 = 1.46609e-06 loss)
I0429 11:14:23.454408 8162 solver.cpp:245] Train net output #94: loss2/loss19 = 0.000173578 (* 0.0272727 = 4.73395e-06 loss)
I0429 11:14:23.454423 8162 solver.cpp:245] Train net output #95: loss2/loss20 = 0.000133469 (* 0.0272727 = 3.64007e-06 loss)
I0429 11:14:23.454437 8162 solver.cpp:245] Train net output #96: loss2/loss21 = 0.000226802 (* 0.0272727 = 6.18552e-06 loss)
I0429 11:14:23.454452 8162 solver.cpp:245] Train net output #97: loss2/loss22 = 0.000328238 (* 0.0272727 = 8.95193e-06 loss)
I0429 11:14:23.454465 8162 solver.cpp:245] Train net output #98: loss3/accuracy = 0.725
I0429 11:14:23.454478 8162 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.75
I0429 11:14:23.454490 8162 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0429 11:14:23.454502 8162 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.75
I0429 11:14:23.454514 8162 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.5
I0429 11:14:23.454526 8162 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.75
I0429 11:14:23.454540 8162 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.625
I0429 11:14:23.454551 8162 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875
I0429 11:14:23.454563 8162 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1
I0429 11:14:23.454574 8162 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1
I0429 11:14:23.454586 8162 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0429 11:14:23.454598 8162 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0429 11:14:23.454612 8162 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0429 11:14:23.454622 8162 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0429 11:14:23.454634 8162 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0429 11:14:23.454646 8162 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0429 11:14:23.454668 8162 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0429 11:14:23.454682 8162 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0429 11:14:23.454694 8162 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0429 11:14:23.454706 8162 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0429 11:14:23.454718 8162 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0429 11:14:23.454730 8162 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0429 11:14:23.454742 8162 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0429 11:14:23.454754 8162 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.931818
I0429 11:14:23.454766 8162 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.9
I0429 11:14:23.454782 8162 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.749379 (* 1 = 0.749379 loss)
I0429 11:14:23.454795 8162 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.187837 (* 1 = 0.187837 loss)
I0429 11:14:23.454810 8162 solver.cpp:245] Train net output #125: loss3/loss01 = 0.681869 (* 0.0909091 = 0.0619881 loss)
I0429 11:14:23.454824 8162 solver.cpp:245] Train net output #126: loss3/loss02 = 0.286204 (* 0.0909091 = 0.0260186 loss)
I0429 11:14:23.454839 8162 solver.cpp:245] Train net output #127: loss3/loss03 = 0.74426 (* 0.0909091 = 0.06766 loss)
I0429 11:14:23.454854 8162 solver.cpp:245] Train net output #128: loss3/loss04 = 1.52766 (* 0.0909091 = 0.138879 loss)
I0429 11:14:23.454869 8162 solver.cpp:245] Train net output #129: loss3/loss05 = 0.585544 (* 0.0909091 = 0.0532313 loss)
I0429 11:14:23.454882 8162 solver.cpp:245] Train net output #130: loss3/loss06 = 0.82375 (* 0.0909091 = 0.0748864 loss)
I0429 11:14:23.454896 8162 solver.cpp:245] Train net output #131: loss3/loss07 = 0.506997 (* 0.0909091 = 0.0460907 loss)
I0429 11:14:23.454911 8162 solver.cpp:245] Train net output #132: loss3/loss08 = 0.0149366 (* 0.0909091 = 0.00135787 loss)
I0429 11:14:23.454926 8162 solver.cpp:245] Train net output #133: loss3/loss09 = 0.000342836 (* 0.0909091 = 3.11669e-05 loss)
I0429 11:14:23.454941 8162 solver.cpp:245] Train net output #134: loss3/loss10 = 0.00039137 (* 0.0909091 = 3.55791e-05 loss)
I0429 11:14:23.454955 8162 solver.cpp:245] Train net output #135: loss3/loss11 = 0.000186766 (* 0.0909091 = 1.69787e-05 loss)
I0429 11:14:23.454970 8162 solver.cpp:245] Train net output #136: loss3/loss12 = 9.39416e-05 (* 0.0909091 = 8.54015e-06 loss)
I0429 11:14:23.454984 8162 solver.cpp:245] Train net output #137: loss3/loss13 = 6.39549e-05 (* 0.0909091 = 5.81408e-06 loss)
I0429 11:14:23.454999 8162 solver.cpp:245] Train net output #138: loss3/loss14 = 4.24044e-05 (* 0.0909091 = 3.85495e-06 loss)
I0429 11:14:23.455013 8162 solver.cpp:245] Train net output #139: loss3/loss15 = 3.63836e-05 (* 0.0909091 = 3.3076e-06 loss)
I0429 11:14:23.455029 8162 solver.cpp:245] Train net output #140: loss3/loss16 = 2.78819e-05 (* 0.0909091 = 2.53472e-06 loss)
I0429 11:14:23.455042 8162 solver.cpp:245] Train net output #141: loss3/loss17 = 1.44697e-05 (* 0.0909091 = 1.31542e-06 loss)
I0429 11:14:23.455056 8162 solver.cpp:245] Train net output #142: loss3/loss18 = 9.76056e-06 (* 0.0909091 = 8.87323e-07 loss)
I0429 11:14:23.455071 8162 solver.cpp:245] Train net output #143: loss3/loss19 = 7.89781e-06 (* 0.0909091 = 7.17983e-07 loss)
I0429 11:14:23.455085 8162 solver.cpp:245] Train net output #144: loss3/loss20 = 6.94409e-06 (* 0.0909091 = 6.31281e-07 loss)
I0429 11:14:23.455101 8162 solver.cpp:245] Train net output #145: loss3/loss21 = 7.65937e-06 (* 0.0909091 = 6.96306e-07 loss)
I0429 11:14:23.455114 8162 solver.cpp:245] Train net output #146: loss3/loss22 = 8.50876e-06 (* 0.0909091 = 7.73524e-07 loss)
I0429 11:14:23.455127 8162 solver.cpp:245] Train net output #147: total_accuracy = 0.25
I0429 11:14:23.455139 8162 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.25
I0429 11:14:23.455162 8162 solver.cpp:245] Train net output #149: total_confidence = 0.298507
I0429 11:14:23.455178 8162 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.311125
I0429 11:14:23.455191 8162 sgd_solver.cpp:106] Iteration 21000, lr = 0.005
I0429 11:16:40.249907 8162 solver.cpp:229] Iteration 21500, loss = 5.19769
I0429 11:16:40.250080 8162 solver.cpp:245] Train net output #0: loss1/accuracy = 0.288136
I0429 11:16:40.250102 8162 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.5
I0429 11:16:40.250115 8162 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.375
I0429 11:16:40.250128 8162 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375
I0429 11:16:40.250140 8162 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375
I0429 11:16:40.250152 8162 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.25
I0429 11:16:40.250164 8162 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.625
I0429 11:16:40.250177 8162 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.5
I0429 11:16:40.250190 8162 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.625
I0429 11:16:40.250202 8162 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875
I0429 11:16:40.250214 8162 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875
I0429 11:16:40.250226 8162 solver.cpp:245] Train net output #11: loss1/accuracy11 = 0.875
I0429 11:16:40.250239 8162 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.875
I0429 11:16:40.250252 8162 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.875
I0429 11:16:40.250264 8162 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.875
I0429 11:16:40.250277 8162 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.875
I0429 11:16:40.250289 8162 solver.cpp:245] Train net output #16: loss1/accuracy16 = 0.875
I0429 11:16:40.250301 8162 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0429 11:16:40.250318 8162 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0429 11:16:40.250330 8162 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0429 11:16:40.250342 8162 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0429 11:16:40.250355 8162 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0429 11:16:40.250367 8162 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0429 11:16:40.250380 8162 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.75
I0429 11:16:40.250391 8162 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.59322
I0429 11:16:40.250408 8162 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 2.44759 (* 0.3 = 0.734276 loss)
I0429 11:16:40.250424 8162 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.87624 (* 0.3 = 0.262872 loss)
I0429 11:16:40.250440 8162 solver.cpp:245] Train net output #27: loss1/loss01 = 2.0235 (* 0.0272727 = 0.0551863 loss)
I0429 11:16:40.250455 8162 solver.cpp:245] Train net output #28: loss1/loss02 = 2.50443 (* 0.0272727 = 0.0683025 loss)
I0429 11:16:40.250469 8162 solver.cpp:245] Train net output #29: loss1/loss03 = 1.99427 (* 0.0272727 = 0.0543891 loss)
I0429 11:16:40.250484 8162 solver.cpp:245] Train net output #30: loss1/loss04 = 2.31774 (* 0.0272727 = 0.0632111 loss)
I0429 11:16:40.250499 8162 solver.cpp:245] Train net output #31: loss1/loss05 = 2.18252 (* 0.0272727 = 0.0595233 loss)
I0429 11:16:40.250514 8162 solver.cpp:245] Train net output #32: loss1/loss06 = 1.65467 (* 0.0272727 = 0.0451272 loss)
I0429 11:16:40.250527 8162 solver.cpp:245] Train net output #33: loss1/loss07 = 1.66699 (* 0.0272727 = 0.0454632 loss)
I0429 11:16:40.250542 8162 solver.cpp:245] Train net output #34: loss1/loss08 = 0.879181 (* 0.0272727 = 0.0239777 loss)
I0429 11:16:40.250556 8162 solver.cpp:245] Train net output #35: loss1/loss09 = 0.457263 (* 0.0272727 = 0.0124708 loss)
I0429 11:16:40.250571 8162 solver.cpp:245] Train net output #36: loss1/loss10 = 0.421048 (* 0.0272727 = 0.0114831 loss)
I0429 11:16:40.250586 8162 solver.cpp:245] Train net output #37: loss1/loss11 = 0.484255 (* 0.0272727 = 0.013207 loss)
I0429 11:16:40.250600 8162 solver.cpp:245] Train net output #38: loss1/loss12 = 0.574239 (* 0.0272727 = 0.0156611 loss)
I0429 11:16:40.250636 8162 solver.cpp:245] Train net output #39: loss1/loss13 = 0.698451 (* 0.0272727 = 0.0190487 loss)
I0429 11:16:40.250653 8162 solver.cpp:245] Train net output #40: loss1/loss14 = 0.95483 (* 0.0272727 = 0.0260408 loss)
I0429 11:16:40.250668 8162 solver.cpp:245] Train net output #41: loss1/loss15 = 0.328183 (* 0.0272727 = 0.00895044 loss)
I0429 11:16:40.250682 8162 solver.cpp:245] Train net output #42: loss1/loss16 = 0.871753 (* 0.0272727 = 0.0237751 loss)
I0429 11:16:40.250697 8162 solver.cpp:245] Train net output #43: loss1/loss17 = 0.00155572 (* 0.0272727 = 4.24288e-05 loss)
I0429 11:16:40.250712 8162 solver.cpp:245] Train net output #44: loss1/loss18 = 0.00089541 (* 0.0272727 = 2.44203e-05 loss)
I0429 11:16:40.250727 8162 solver.cpp:245] Train net output #45: loss1/loss19 = 0.000641518 (* 0.0272727 = 1.74959e-05 loss)
I0429 11:16:40.250742 8162 solver.cpp:245] Train net output #46: loss1/loss20 = 0.00038094 (* 0.0272727 = 1.03893e-05 loss)
I0429 11:16:40.250757 8162 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000312142 (* 0.0272727 = 8.51296e-06 loss)
I0429 11:16:40.250772 8162 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000195757 (* 0.0272727 = 5.33883e-06 loss)
I0429 11:16:40.250785 8162 solver.cpp:245] Train net output #49: loss2/accuracy = 0.355932
I0429 11:16:40.250797 8162 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.625
I0429 11:16:40.250810 8162 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.375
I0429 11:16:40.250823 8162 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.375
I0429 11:16:40.250834 8162 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.375
I0429 11:16:40.250846 8162 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.375
I0429 11:16:40.250859 8162 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.5
I0429 11:16:40.250870 8162 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.625
I0429 11:16:40.250883 8162 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.625
I0429 11:16:40.250895 8162 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875
I0429 11:16:40.250907 8162 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875
I0429 11:16:40.250916 8162 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.875
I0429 11:16:40.250924 8162 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.875
I0429 11:16:40.250937 8162 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.875
I0429 11:16:40.250951 8162 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.875
I0429 11:16:40.250962 8162 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.875
I0429 11:16:40.250975 8162 solver.cpp:245] Train net output #65: loss2/accuracy16 = 0.875
I0429 11:16:40.250988 8162 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0429 11:16:40.250999 8162 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0429 11:16:40.251011 8162 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0429 11:16:40.251024 8162 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0429 11:16:40.251035 8162 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0429 11:16:40.251047 8162 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0429 11:16:40.251058 8162 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.772727
I0429 11:16:40.251070 8162 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.610169
I0429 11:16:40.251088 8162 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 2.30988 (* 0.3 = 0.692964 loss)
I0429 11:16:40.251104 8162 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.817298 (* 0.3 = 0.245189 loss)
I0429 11:16:40.251119 8162 solver.cpp:245] Train net output #76: loss2/loss01 = 1.76057 (* 0.0272727 = 0.0480154 loss)
I0429 11:16:40.251133 8162 solver.cpp:245] Train net output #77: loss2/loss02 = 1.93828 (* 0.0272727 = 0.0528623 loss)
I0429 11:16:40.251162 8162 solver.cpp:245] Train net output #78: loss2/loss03 = 2.30937 (* 0.0272727 = 0.0629828 loss)
I0429 11:16:40.251176 8162 solver.cpp:245] Train net output #79: loss2/loss04 = 2.15098 (* 0.0272727 = 0.058663 loss)
I0429 11:16:40.251191 8162 solver.cpp:245] Train net output #80: loss2/loss05 = 2.2363 (* 0.0272727 = 0.0609899 loss)
I0429 11:16:40.251205 8162 solver.cpp:245] Train net output #81: loss2/loss06 = 1.55901 (* 0.0272727 = 0.0425183 loss)
I0429 11:16:40.251220 8162 solver.cpp:245] Train net output #82: loss2/loss07 = 1.43221 (* 0.0272727 = 0.0390603 loss)
I0429 11:16:40.251235 8162 solver.cpp:245] Train net output #83: loss2/loss08 = 0.734385 (* 0.0272727 = 0.0200287 loss)
I0429 11:16:40.251250 8162 solver.cpp:245] Train net output #84: loss2/loss09 = 0.394497 (* 0.0272727 = 0.010759 loss)
I0429 11:16:40.251263 8162 solver.cpp:245] Train net output #85: loss2/loss10 = 0.471271 (* 0.0272727 = 0.0128528 loss)
I0429 11:16:40.251277 8162 solver.cpp:245] Train net output #86: loss2/loss11 = 0.564278 (* 0.0272727 = 0.0153894 loss)
I0429 11:16:40.251292 8162 solver.cpp:245] Train net output #87: loss2/loss12 = 0.60159 (* 0.0272727 = 0.016407 loss)
I0429 11:16:40.251307 8162 solver.cpp:245] Train net output #88: loss2/loss13 = 0.72364 (* 0.0272727 = 0.0197356 loss)
I0429 11:16:40.251322 8162 solver.cpp:245] Train net output #89: loss2/loss14 = 0.881758 (* 0.0272727 = 0.024048 loss)
I0429 11:16:40.251335 8162 solver.cpp:245] Train net output #90: loss2/loss15 = 0.42819 (* 0.0272727 = 0.0116779 loss)
I0429 11:16:40.251350 8162 solver.cpp:245] Train net output #91: loss2/loss16 = 0.8387 (* 0.0272727 = 0.0228736 loss)
I0429 11:16:40.251368 8162 solver.cpp:245] Train net output #92: loss2/loss17 = 0.00482082 (* 0.0272727 = 0.000131477 loss)
I0429 11:16:40.251382 8162 solver.cpp:245] Train net output #93: loss2/loss18 = 0.00213968 (* 0.0272727 = 5.83548e-05 loss)
I0429 11:16:40.251396 8162 solver.cpp:245] Train net output #94: loss2/loss19 = 0.0010678 (* 0.0272727 = 2.91218e-05 loss)
I0429 11:16:40.251411 8162 solver.cpp:245] Train net output #95: loss2/loss20 = 0.00101954 (* 0.0272727 = 2.78056e-05 loss)
I0429 11:16:40.251425 8162 solver.cpp:245] Train net output #96: loss2/loss21 = 0.0014999 (* 0.0272727 = 4.09064e-05 loss)
I0429 11:16:40.251441 8162 solver.cpp:245] Train net output #97: loss2/loss22 = 0.00114956 (* 0.0272727 = 3.13517e-05 loss)
I0429 11:16:40.251453 8162 solver.cpp:245] Train net output #98: loss3/accuracy = 0.59322
I0429 11:16:40.251480 8162 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.75
I0429 11:16:40.251497 8162 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.5
I0429 11:16:40.251508 8162 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.625
I0429 11:16:40.251521 8162 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.75
I0429 11:16:40.251533 8162 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.625
I0429 11:16:40.251545 8162 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.625
I0429 11:16:40.251557 8162 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.625
I0429 11:16:40.251569 8162 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.625
I0429 11:16:40.251581 8162 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875
I0429 11:16:40.251593 8162 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875
I0429 11:16:40.251605 8162 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.875
I0429 11:16:40.251617 8162 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.875
I0429 11:16:40.251629 8162 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.875
I0429 11:16:40.251641 8162 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.875
I0429 11:16:40.251653 8162 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.875
I0429 11:16:40.251678 8162 solver.cpp:245] Train net output #114: loss3/accuracy16 = 0.875
I0429 11:16:40.251691 8162 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0429 11:16:40.251703 8162 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0429 11:16:40.251715 8162 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0429 11:16:40.251727 8162 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0429 11:16:40.251739 8162 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0429 11:16:40.251751 8162 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0429 11:16:40.251763 8162 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.857955
I0429 11:16:40.251776 8162 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.762712
I0429 11:16:40.251791 8162 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.70968 (* 1 = 1.70968 loss)
I0429 11:16:40.251806 8162 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.606408 (* 1 = 0.606408 loss)
I0429 11:16:40.251821 8162 solver.cpp:245] Train net output #125: loss3/loss01 = 1.25517 (* 0.0909091 = 0.114107 loss)
I0429 11:16:40.251834 8162 solver.cpp:245] Train net output #126: loss3/loss02 = 1.51402 (* 0.0909091 = 0.137638 loss)
I0429 11:16:40.251849 8162 solver.cpp:245] Train net output #127: loss3/loss03 = 1.10571 (* 0.0909091 = 0.100519 loss)
I0429 11:16:40.251863 8162 solver.cpp:245] Train net output #128: loss3/loss04 = 0.843272 (* 0.0909091 = 0.0766611 loss)
I0429 11:16:40.251878 8162 solver.cpp:245] Train net output #129: loss3/loss05 = 1.17039 (* 0.0909091 = 0.106399 loss)
I0429 11:16:40.251893 8162 solver.cpp:245] Train net output #130: loss3/loss06 = 1.13588 (* 0.0909091 = 0.103262 loss)
I0429 11:16:40.251906 8162 solver.cpp:245] Train net output #131: loss3/loss07 = 1.41411 (* 0.0909091 = 0.128555 loss)
I0429 11:16:40.251920 8162 solver.cpp:245] Train net output #132: loss3/loss08 = 0.913832 (* 0.0909091 = 0.0830756 loss)
I0429 11:16:40.251935 8162 solver.cpp:245] Train net output #133: loss3/loss09 = 0.592627 (* 0.0909091 = 0.0538752 loss)
I0429 11:16:40.251950 8162 solver.cpp:245] Train net output #134: loss3/loss10 = 0.626781 (* 0.0909091 = 0.0569801 loss)
I0429 11:16:40.251963 8162 solver.cpp:245] Train net output #135: loss3/loss11 = 0.700944 (* 0.0909091 = 0.0637222 loss)
I0429 11:16:40.251977 8162 solver.cpp:245] Train net output #136: loss3/loss12 = 0.66156 (* 0.0909091 = 0.0601418 loss)
I0429 11:16:40.251991 8162 solver.cpp:245] Train net output #137: loss3/loss13 = 0.584259 (* 0.0909091 = 0.0531145 loss)
I0429 11:16:40.252007 8162 solver.cpp:245] Train net output #138: loss3/loss14 = 0.963123 (* 0.0909091 = 0.0875567 loss)
I0429 11:16:40.252020 8162 solver.cpp:245] Train net output #139: loss3/loss15 = 0.381889 (* 0.0909091 = 0.0347172 loss)
I0429 11:16:40.252034 8162 solver.cpp:245] Train net output #140: loss3/loss16 = 0.556774 (* 0.0909091 = 0.0506158 loss)
I0429 11:16:40.252049 8162 solver.cpp:245] Train net output #141: loss3/loss17 = 0.00251692 (* 0.0909091 = 0.000228811 loss)
I0429 11:16:40.252063 8162 solver.cpp:245] Train net output #142: loss3/loss18 = 0.00127783 (* 0.0909091 = 0.000116166 loss)
I0429 11:16:40.252079 8162 solver.cpp:245] Train net output #143: loss3/loss19 = 0.000727442 (* 0.0909091 = 6.61311e-05 loss)
I0429 11:16:40.252094 8162 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000425159 (* 0.0909091 = 3.86508e-05 loss)
I0429 11:16:40.252107 8162 solver.cpp:245] Train net output #145: loss3/loss21 = 0.000319306 (* 0.0909091 = 2.90278e-05 loss)
I0429 11:16:40.252122 8162 solver.cpp:245] Train net output #146: loss3/loss22 = 0.000159912 (* 0.0909091 = 1.45375e-05 loss)
I0429 11:16:40.252135 8162 solver.cpp:245] Train net output #147: total_accuracy = 0.25
I0429 11:16:40.252151 8162 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0
I0429 11:16:40.252172 8162 solver.cpp:245] Train net output #149: total_confidence = 0.183933
I0429 11:16:40.252185 8162 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.127072
I0429 11:16:40.252199 8162 sgd_solver.cpp:106] Iteration 21500, lr = 0.005
I0429 11:18:56.793365 8162 solver.cpp:229] Iteration 22000, loss = 5.37559
I0429 11:18:56.793540 8162 solver.cpp:245] Train net output #0: loss1/accuracy = 0.32
I0429 11:18:56.793561 8162 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.625
I0429 11:18:56.793576 8162 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.125
I0429 11:18:56.793589 8162 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375
I0429 11:18:56.793601 8162 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.25
I0429 11:18:56.793614 8162 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.375
I0429 11:18:56.793627 8162 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.5
I0429 11:18:56.793638 8162 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.625
I0429 11:18:56.793651 8162 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.75
I0429 11:18:56.793663 8162 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875
I0429 11:18:56.793676 8162 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875
I0429 11:18:56.793689 8162 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0429 11:18:56.793700 8162 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.875
I0429 11:18:56.793714 8162 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.875
I0429 11:18:56.793726 8162 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0429 11:18:56.793738 8162 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0429 11:18:56.793751 8162 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0429 11:18:56.793762 8162 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0429 11:18:56.793774 8162 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0429 11:18:56.793787 8162 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0429 11:18:56.793798 8162 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0429 11:18:56.793810 8162 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0429 11:18:56.793823 8162 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0429 11:18:56.793834 8162 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.801136
I0429 11:18:56.793848 8162 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.5
I0429 11:18:56.793864 8162 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 2.43765 (* 0.3 = 0.731296 loss)
I0429 11:18:56.793879 8162 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.746275 (* 0.3 = 0.223882 loss)
I0429 11:18:56.793895 8162 solver.cpp:245] Train net output #27: loss1/loss01 = 1.38677 (* 0.0272727 = 0.037821 loss)
I0429 11:18:56.793908 8162 solver.cpp:245] Train net output #28: loss1/loss02 = 2.99243 (* 0.0272727 = 0.0816117 loss)
I0429 11:18:56.793922 8162 solver.cpp:245] Train net output #29: loss1/loss03 = 2.02808 (* 0.0272727 = 0.0553114 loss)
I0429 11:18:56.793937 8162 solver.cpp:245] Train net output #30: loss1/loss04 = 2.2254 (* 0.0272727 = 0.0606928 loss)
I0429 11:18:56.793951 8162 solver.cpp:245] Train net output #31: loss1/loss05 = 2.34431 (* 0.0272727 = 0.0639358 loss)
I0429 11:18:56.793965 8162 solver.cpp:245] Train net output #32: loss1/loss06 = 1.27453 (* 0.0272727 = 0.0347599 loss)
I0429 11:18:56.793979 8162 solver.cpp:245] Train net output #33: loss1/loss07 = 1.51405 (* 0.0272727 = 0.0412923 loss)
I0429 11:18:56.793994 8162 solver.cpp:245] Train net output #34: loss1/loss08 = 0.958487 (* 0.0272727 = 0.0261406 loss)
I0429 11:18:56.794008 8162 solver.cpp:245] Train net output #35: loss1/loss09 = 0.480769 (* 0.0272727 = 0.0131119 loss)
I0429 11:18:56.794023 8162 solver.cpp:245] Train net output #36: loss1/loss10 = 0.507407 (* 0.0272727 = 0.0138384 loss)
I0429 11:18:56.794037 8162 solver.cpp:245] Train net output #37: loss1/loss11 = 0.191785 (* 0.0272727 = 0.00523051 loss)
I0429 11:18:56.794059 8162 solver.cpp:245] Train net output #38: loss1/loss12 = 0.414317 (* 0.0272727 = 0.0112995 loss)
I0429 11:18:56.794073 8162 solver.cpp:245] Train net output #39: loss1/loss13 = 0.439994 (* 0.0272727 = 0.0119998 loss)
I0429 11:18:56.794108 8162 solver.cpp:245] Train net output #40: loss1/loss14 = 0.0178633 (* 0.0272727 = 0.00048718 loss)
I0429 11:18:56.794124 8162 solver.cpp:245] Train net output #41: loss1/loss15 = 0.00445619 (* 0.0272727 = 0.000121532 loss)
I0429 11:18:56.794139 8162 solver.cpp:245] Train net output #42: loss1/loss16 = 0.00206751 (* 0.0272727 = 5.63865e-05 loss)
I0429 11:18:56.794154 8162 solver.cpp:245] Train net output #43: loss1/loss17 = 0.000404262 (* 0.0272727 = 1.10253e-05 loss)
I0429 11:18:56.794169 8162 solver.cpp:245] Train net output #44: loss1/loss18 = 6.13921e-05 (* 0.0272727 = 1.67433e-06 loss)
I0429 11:18:56.794184 8162 solver.cpp:245] Train net output #45: loss1/loss19 = 1.1221e-05 (* 0.0272727 = 3.06027e-07 loss)
I0429 11:18:56.794199 8162 solver.cpp:245] Train net output #46: loss1/loss20 = 1.83285e-06 (* 0.0272727 = 4.99867e-08 loss)
I0429 11:18:56.794214 8162 solver.cpp:245] Train net output #47: loss1/loss21 = 3.12928e-06 (* 0.0272727 = 8.53439e-08 loss)
I0429 11:18:56.794229 8162 solver.cpp:245] Train net output #48: loss1/loss22 = 3.96375e-06 (* 0.0272727 = 1.08102e-07 loss)
I0429 11:18:56.794242 8162 solver.cpp:245] Train net output #49: loss2/accuracy = 0.48
I0429 11:18:56.794251 8162 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.75
I0429 11:18:56.794260 8162 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.375
I0429 11:18:56.794272 8162 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.375
I0429 11:18:56.794284 8162 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.375
I0429 11:18:56.794296 8162 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.375
I0429 11:18:56.794308 8162 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.625
I0429 11:18:56.794320 8162 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.625
I0429 11:18:56.794332 8162 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.75
I0429 11:18:56.794344 8162 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875
I0429 11:18:56.794356 8162 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875
I0429 11:18:56.794368 8162 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.875
I0429 11:18:56.794380 8162 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.875
I0429 11:18:56.794392 8162 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.875
I0429 11:18:56.794404 8162 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0429 11:18:56.794417 8162 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0429 11:18:56.794428 8162 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0429 11:18:56.794440 8162 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0429 11:18:56.794452 8162 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0429 11:18:56.794464 8162 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0429 11:18:56.794483 8162 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0429 11:18:56.794505 8162 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0429 11:18:56.794519 8162 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0429 11:18:56.794531 8162 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.829545
I0429 11:18:56.794543 8162 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.58
I0429 11:18:56.794559 8162 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 2.16556 (* 0.3 = 0.649669 loss)
I0429 11:18:56.794576 8162 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.710305 (* 0.3 = 0.213092 loss)
I0429 11:18:56.794591 8162 solver.cpp:245] Train net output #76: loss2/loss01 = 0.971005 (* 0.0272727 = 0.026482 loss)
I0429 11:18:56.794605 8162 solver.cpp:245] Train net output #77: loss2/loss02 = 1.50215 (* 0.0272727 = 0.0409677 loss)
I0429 11:18:56.794632 8162 solver.cpp:245] Train net output #78: loss2/loss03 = 2.11794 (* 0.0272727 = 0.0577619 loss)
I0429 11:18:56.794647 8162 solver.cpp:245] Train net output #79: loss2/loss04 = 2.24388 (* 0.0272727 = 0.0611966 loss)
I0429 11:18:56.794661 8162 solver.cpp:245] Train net output #80: loss2/loss05 = 2.6784 (* 0.0272727 = 0.0730473 loss)
I0429 11:18:56.794677 8162 solver.cpp:245] Train net output #81: loss2/loss06 = 1.20357 (* 0.0272727 = 0.0328247 loss)
I0429 11:18:56.794690 8162 solver.cpp:245] Train net output #82: loss2/loss07 = 1.32388 (* 0.0272727 = 0.0361057 loss)
I0429 11:18:56.794704 8162 solver.cpp:245] Train net output #83: loss2/loss08 = 0.913736 (* 0.0272727 = 0.0249201 loss)
I0429 11:18:56.794719 8162 solver.cpp:245] Train net output #84: loss2/loss09 = 0.492775 (* 0.0272727 = 0.0134393 loss)
I0429 11:18:56.794734 8162 solver.cpp:245] Train net output #85: loss2/loss10 = 0.452649 (* 0.0272727 = 0.012345 loss)
I0429 11:18:56.794747 8162 solver.cpp:245] Train net output #86: loss2/loss11 = 0.39071 (* 0.0272727 = 0.0106557 loss)
I0429 11:18:56.794762 8162 solver.cpp:245] Train net output #87: loss2/loss12 = 0.360286 (* 0.0272727 = 0.00982598 loss)
I0429 11:18:56.794777 8162 solver.cpp:245] Train net output #88: loss2/loss13 = 0.382518 (* 0.0272727 = 0.0104323 loss)
I0429 11:18:56.794791 8162 solver.cpp:245] Train net output #89: loss2/loss14 = 0.14561 (* 0.0272727 = 0.00397119 loss)
I0429 11:18:56.794806 8162 solver.cpp:245] Train net output #90: loss2/loss15 = 0.0950121 (* 0.0272727 = 0.00259124 loss)
I0429 11:18:56.794821 8162 solver.cpp:245] Train net output #91: loss2/loss16 = 0.0717591 (* 0.0272727 = 0.00195707 loss)
I0429 11:18:56.794834 8162 solver.cpp:245] Train net output #92: loss2/loss17 = 0.0299247 (* 0.0272727 = 0.000816129 loss)
I0429 11:18:56.794849 8162 solver.cpp:245] Train net output #93: loss2/loss18 = 0.0123774 (* 0.0272727 = 0.000337566 loss)
I0429 11:18:56.794863 8162 solver.cpp:245] Train net output #94: loss2/loss19 = 0.00296702 (* 0.0272727 = 8.09187e-05 loss)
I0429 11:18:56.794878 8162 solver.cpp:245] Train net output #95: loss2/loss20 = 0.00197897 (* 0.0272727 = 5.3972e-05 loss)
I0429 11:18:56.794893 8162 solver.cpp:245] Train net output #96: loss2/loss21 = 0.000690563 (* 0.0272727 = 1.88335e-05 loss)
I0429 11:18:56.794908 8162 solver.cpp:245] Train net output #97: loss2/loss22 = 0.000619623 (* 0.0272727 = 1.68988e-05 loss)
I0429 11:18:56.794919 8162 solver.cpp:245] Train net output #98: loss3/accuracy = 0.48
I0429 11:18:56.794932 8162 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.75
I0429 11:18:56.794945 8162 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.75
I0429 11:18:56.794956 8162 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.375
I0429 11:18:56.794968 8162 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.75
I0429 11:18:56.794981 8162 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.625
I0429 11:18:56.794993 8162 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.625
I0429 11:18:56.795006 8162 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75
I0429 11:18:56.795017 8162 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.75
I0429 11:18:56.795029 8162 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875
I0429 11:18:56.795042 8162 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875
I0429 11:18:56.795053 8162 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0429 11:18:56.795065 8162 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.875
I0429 11:18:56.795078 8162 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.875
I0429 11:18:56.795089 8162 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0429 11:18:56.795107 8162 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0429 11:18:56.795120 8162 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0429 11:18:56.795141 8162 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0429 11:18:56.795156 8162 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0429 11:18:56.795167 8162 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0429 11:18:56.795179 8162 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0429 11:18:56.795192 8162 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0429 11:18:56.795203 8162 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0429 11:18:56.795215 8162 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.840909
I0429 11:18:56.795228 8162 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.72
I0429 11:18:56.795241 8162 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.69463 (* 1 = 1.69463 loss)
I0429 11:18:56.795256 8162 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.528496 (* 1 = 0.528496 loss)
I0429 11:18:56.795270 8162 solver.cpp:245] Train net output #125: loss3/loss01 = 1.24161 (* 0.0909091 = 0.112873 loss)
I0429 11:18:56.795285 8162 solver.cpp:245] Train net output #126: loss3/loss02 = 0.866182 (* 0.0909091 = 0.0787438 loss)
I0429 11:18:56.795300 8162 solver.cpp:245] Train net output #127: loss3/loss03 = 1.26704 (* 0.0909091 = 0.115185 loss)
I0429 11:18:56.795315 8162 solver.cpp:245] Train net output #128: loss3/loss04 = 1.15636 (* 0.0909091 = 0.105123 loss)
I0429 11:18:56.795328 8162 solver.cpp:245] Train net output #129: loss3/loss05 = 1.42989 (* 0.0909091 = 0.12999 loss)
I0429 11:18:56.795342 8162 solver.cpp:245] Train net output #130: loss3/loss06 = 0.96083 (* 0.0909091 = 0.0873482 loss)
I0429 11:18:56.795357 8162 solver.cpp:245] Train net output #131: loss3/loss07 = 1.07423 (* 0.0909091 = 0.0976572 loss)
I0429 11:18:56.795372 8162 solver.cpp:245] Train net output #132: loss3/loss08 = 0.940395 (* 0.0909091 = 0.0854905 loss)
I0429 11:18:56.795385 8162 solver.cpp:245] Train net output #133: loss3/loss09 = 0.594486 (* 0.0909091 = 0.0540442 loss)
I0429 11:18:56.795399 8162 solver.cpp:245] Train net output #134: loss3/loss10 = 0.449429 (* 0.0909091 = 0.0408572 loss)
I0429 11:18:56.795413 8162 solver.cpp:245] Train net output #135: loss3/loss11 = 0.258942 (* 0.0909091 = 0.0235402 loss)
I0429 11:18:56.795428 8162 solver.cpp:245] Train net output #136: loss3/loss12 = 0.377186 (* 0.0909091 = 0.0342896 loss)
I0429 11:18:56.795441 8162 solver.cpp:245] Train net output #137: loss3/loss13 = 0.355921 (* 0.0909091 = 0.0323565 loss)
I0429 11:18:56.795456 8162 solver.cpp:245] Train net output #138: loss3/loss14 = 0.0682876 (* 0.0909091 = 0.00620796 loss)
I0429 11:18:56.795491 8162 solver.cpp:245] Train net output #139: loss3/loss15 = 0.0379627 (* 0.0909091 = 0.00345116 loss)
I0429 11:18:56.795507 8162 solver.cpp:245] Train net output #140: loss3/loss16 = 0.0247858 (* 0.0909091 = 0.00225326 loss)
I0429 11:18:56.795522 8162 solver.cpp:245] Train net output #141: loss3/loss17 = 0.0106179 (* 0.0909091 = 0.000965266 loss)
I0429 11:18:56.795536 8162 solver.cpp:245] Train net output #142: loss3/loss18 = 0.00362249 (* 0.0909091 = 0.000329318 loss)
I0429 11:18:56.795550 8162 solver.cpp:245] Train net output #143: loss3/loss19 = 0.000813873 (* 0.0909091 = 7.39884e-05 loss)
I0429 11:18:56.795565 8162 solver.cpp:245] Train net output #144: loss3/loss20 = 0.00063114 (* 0.0909091 = 5.73764e-05 loss)
I0429 11:18:56.795580 8162 solver.cpp:245] Train net output #145: loss3/loss21 = 0.000183478 (* 0.0909091 = 1.66798e-05 loss)
I0429 11:18:56.795594 8162 solver.cpp:245] Train net output #146: loss3/loss22 = 7.26492e-05 (* 0.0909091 = 6.60447e-06 loss)
I0429 11:18:56.795608 8162 solver.cpp:245] Train net output #147: total_accuracy = 0.25
I0429 11:18:56.795622 8162 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.25
I0429 11:18:56.795647 8162 solver.cpp:245] Train net output #149: total_confidence = 0.24186
I0429 11:18:56.795670 8162 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.355763
I0429 11:18:56.795692 8162 sgd_solver.cpp:106] Iteration 22000, lr = 0.005
I0429 11:21:13.591289 8162 solver.cpp:229] Iteration 22500, loss = 5.31728
I0429 11:21:13.591467 8162 solver.cpp:245] Train net output #0: loss1/accuracy = 0.478261
I0429 11:21:13.591488 8162 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75
I0429 11:21:13.591502 8162 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5
I0429 11:21:13.591514 8162 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.625
I0429 11:21:13.591527 8162 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375
I0429 11:21:13.591539 8162 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.5
I0429 11:21:13.591552 8162 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.625
I0429 11:21:13.591564 8162 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.5
I0429 11:21:13.591578 8162 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.75
I0429 11:21:13.591589 8162 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875
I0429 11:21:13.591601 8162 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0429 11:21:13.591614 8162 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0429 11:21:13.591626 8162 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0429 11:21:13.591639 8162 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0429 11:21:13.591651 8162 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0429 11:21:13.591663 8162 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0429 11:21:13.591675 8162 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0429 11:21:13.591687 8162 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0429 11:21:13.591701 8162 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0429 11:21:13.591712 8162 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0429 11:21:13.591724 8162 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0429 11:21:13.591737 8162 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0429 11:21:13.591748 8162 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0429 11:21:13.591761 8162 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.852273
I0429 11:21:13.591773 8162 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.76087
I0429 11:21:13.591790 8162 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.69424 (* 0.3 = 0.508273 loss)
I0429 11:21:13.591806 8162 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.513467 (* 0.3 = 0.15404 loss)
I0429 11:21:13.591821 8162 solver.cpp:245] Train net output #27: loss1/loss01 = 0.765142 (* 0.0272727 = 0.0208675 loss)
I0429 11:21:13.591836 8162 solver.cpp:245] Train net output #28: loss1/loss02 = 1.64067 (* 0.0272727 = 0.0447456 loss)
I0429 11:21:13.591850 8162 solver.cpp:245] Train net output #29: loss1/loss03 = 1.53038 (* 0.0272727 = 0.0417376 loss)
I0429 11:21:13.591866 8162 solver.cpp:245] Train net output #30: loss1/loss04 = 1.41566 (* 0.0272727 = 0.038609 loss)
I0429 11:21:13.591881 8162 solver.cpp:245] Train net output #31: loss1/loss05 = 1.57885 (* 0.0272727 = 0.0430595 loss)
I0429 11:21:13.591894 8162 solver.cpp:245] Train net output #32: loss1/loss06 = 1.93568 (* 0.0272727 = 0.0527912 loss)
I0429 11:21:13.591908 8162 solver.cpp:245] Train net output #33: loss1/loss07 = 0.91293 (* 0.0272727 = 0.0248981 loss)
I0429 11:21:13.591923 8162 solver.cpp:245] Train net output #34: loss1/loss08 = 0.872163 (* 0.0272727 = 0.0237863 loss)
I0429 11:21:13.591938 8162 solver.cpp:245] Train net output #35: loss1/loss09 = 0.979164 (* 0.0272727 = 0.0267045 loss)
I0429 11:21:13.591953 8162 solver.cpp:245] Train net output #36: loss1/loss10 = 0.0815949 (* 0.0272727 = 0.00222532 loss)
I0429 11:21:13.591969 8162 solver.cpp:245] Train net output #37: loss1/loss11 = 0.00960335 (* 0.0272727 = 0.00026191 loss)
I0429 11:21:13.591984 8162 solver.cpp:245] Train net output #38: loss1/loss12 = 0.00684144 (* 0.0272727 = 0.000186585 loss)
I0429 11:21:13.591998 8162 solver.cpp:245] Train net output #39: loss1/loss13 = 0.00341244 (* 0.0272727 = 9.30666e-05 loss)
I0429 11:21:13.592034 8162 solver.cpp:245] Train net output #40: loss1/loss14 = 0.00324636 (* 0.0272727 = 8.85371e-05 loss)
I0429 11:21:13.592051 8162 solver.cpp:245] Train net output #41: loss1/loss15 = 0.00355626 (* 0.0272727 = 9.6989e-05 loss)
I0429 11:21:13.592066 8162 solver.cpp:245] Train net output #42: loss1/loss16 = 0.00213742 (* 0.0272727 = 5.82934e-05 loss)
I0429 11:21:13.592080 8162 solver.cpp:245] Train net output #43: loss1/loss17 = 0.00166217 (* 0.0272727 = 4.5332e-05 loss)
I0429 11:21:13.592095 8162 solver.cpp:245] Train net output #44: loss1/loss18 = 0.00196989 (* 0.0272727 = 5.37243e-05 loss)
I0429 11:21:13.592109 8162 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00174234 (* 0.0272727 = 4.75182e-05 loss)
I0429 11:21:13.592124 8162 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000908331 (* 0.0272727 = 2.47727e-05 loss)
I0429 11:21:13.592139 8162 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000537956 (* 0.0272727 = 1.46715e-05 loss)
I0429 11:21:13.592154 8162 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000361786 (* 0.0272727 = 9.86688e-06 loss)
I0429 11:21:13.592166 8162 solver.cpp:245] Train net output #49: loss2/accuracy = 0.586957
I0429 11:21:13.592180 8162 solver.cpp:245] Train net output #50: loss2/accuracy01 = 1
I0429 11:21:13.592192 8162 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.625
I0429 11:21:13.592205 8162 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.5
I0429 11:21:13.592216 8162 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.5
I0429 11:21:13.592228 8162 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5
I0429 11:21:13.592241 8162 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.625
I0429 11:21:13.592254 8162 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.75
I0429 11:21:13.592267 8162 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.625
I0429 11:21:13.592278 8162 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875
I0429 11:21:13.592290 8162 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0429 11:21:13.592303 8162 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0429 11:21:13.592317 8162 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0429 11:21:13.592330 8162 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0429 11:21:13.592342 8162 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0429 11:21:13.592355 8162 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0429 11:21:13.592366 8162 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0429 11:21:13.592380 8162 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0429 11:21:13.592391 8162 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0429 11:21:13.592403 8162 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0429 11:21:13.592416 8162 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0429 11:21:13.592427 8162 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0429 11:21:13.592439 8162 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0429 11:21:13.592452 8162 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.875
I0429 11:21:13.592464 8162 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.826087
I0429 11:21:13.592483 8162 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.51166 (* 0.3 = 0.453498 loss)
I0429 11:21:13.592499 8162 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.485692 (* 0.3 = 0.145707 loss)
I0429 11:21:13.592514 8162 solver.cpp:245] Train net output #76: loss2/loss01 = 0.452968 (* 0.0272727 = 0.0123537 loss)
I0429 11:21:13.592527 8162 solver.cpp:245] Train net output #77: loss2/loss02 = 1.08783 (* 0.0272727 = 0.0296681 loss)
I0429 11:21:13.592553 8162 solver.cpp:245] Train net output #78: loss2/loss03 = 1.77733 (* 0.0272727 = 0.0484725 loss)
I0429 11:21:13.592569 8162 solver.cpp:245] Train net output #79: loss2/loss04 = 1.83229 (* 0.0272727 = 0.0499715 loss)
I0429 11:21:13.592584 8162 solver.cpp:245] Train net output #80: loss2/loss05 = 1.44922 (* 0.0272727 = 0.0395243 loss)
I0429 11:21:13.592598 8162 solver.cpp:245] Train net output #81: loss2/loss06 = 1.54031 (* 0.0272727 = 0.0420084 loss)
I0429 11:21:13.592613 8162 solver.cpp:245] Train net output #82: loss2/loss07 = 0.774954 (* 0.0272727 = 0.0211351 loss)
I0429 11:21:13.592628 8162 solver.cpp:245] Train net output #83: loss2/loss08 = 1.00543 (* 0.0272727 = 0.0274209 loss)
I0429 11:21:13.592641 8162 solver.cpp:245] Train net output #84: loss2/loss09 = 0.778758 (* 0.0272727 = 0.0212389 loss)
I0429 11:21:13.592656 8162 solver.cpp:245] Train net output #85: loss2/loss10 = 0.043969 (* 0.0272727 = 0.00119915 loss)
I0429 11:21:13.592671 8162 solver.cpp:245] Train net output #86: loss2/loss11 = 0.00572247 (* 0.0272727 = 0.000156067 loss)
I0429 11:21:13.592686 8162 solver.cpp:245] Train net output #87: loss2/loss12 = 0.00276637 (* 0.0272727 = 7.54464e-05 loss)
I0429 11:21:13.592701 8162 solver.cpp:245] Train net output #88: loss2/loss13 = 0.00163193 (* 0.0272727 = 4.45073e-05 loss)
I0429 11:21:13.592716 8162 solver.cpp:245] Train net output #89: loss2/loss14 = 0.000438437 (* 0.0272727 = 1.19574e-05 loss)
I0429 11:21:13.592730 8162 solver.cpp:245] Train net output #90: loss2/loss15 = 0.000260011 (* 0.0272727 = 7.0912e-06 loss)
I0429 11:21:13.592746 8162 solver.cpp:245] Train net output #91: loss2/loss16 = 0.000165012 (* 0.0272727 = 4.50033e-06 loss)
I0429 11:21:13.592761 8162 solver.cpp:245] Train net output #92: loss2/loss17 = 9.0528e-05 (* 0.0272727 = 2.46895e-06 loss)
I0429 11:21:13.592775 8162 solver.cpp:245] Train net output #93: loss2/loss18 = 7.73369e-05 (* 0.0272727 = 2.10919e-06 loss)
I0429 11:21:13.592790 8162 solver.cpp:245] Train net output #94: loss2/loss19 = 4.24509e-05 (* 0.0272727 = 1.15775e-06 loss)
I0429 11:21:13.592804 8162 solver.cpp:245] Train net output #95: loss2/loss20 = 2.41113e-05 (* 0.0272727 = 6.57581e-07 loss)
I0429 11:21:13.592819 8162 solver.cpp:245] Train net output #96: loss2/loss21 = 1.9298e-05 (* 0.0272727 = 5.26308e-07 loss)
I0429 11:21:13.592834 8162 solver.cpp:245] Train net output #97: loss2/loss22 = 1.02522e-05 (* 0.0272727 = 2.79606e-07 loss)
I0429 11:21:13.592847 8162 solver.cpp:245] Train net output #98: loss3/accuracy = 0.695652
I0429 11:21:13.592859 8162 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875
I0429 11:21:13.592872 8162 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.75
I0429 11:21:13.592885 8162 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.875
I0429 11:21:13.592896 8162 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.75
I0429 11:21:13.592908 8162 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.5
I0429 11:21:13.592921 8162 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.625
I0429 11:21:13.592933 8162 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.625
I0429 11:21:13.592946 8162 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875
I0429 11:21:13.592957 8162 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875
I0429 11:21:13.592969 8162 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0429 11:21:13.592981 8162 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0429 11:21:13.592993 8162 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0429 11:21:13.593005 8162 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0429 11:21:13.593017 8162 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0429 11:21:13.593029 8162 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0429 11:21:13.593050 8162 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0429 11:21:13.593063 8162 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0429 11:21:13.593075 8162 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0429 11:21:13.593087 8162 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0429 11:21:13.593101 8162 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0429 11:21:13.593111 8162 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0429 11:21:13.593123 8162 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0429 11:21:13.593135 8162 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.914773
I0429 11:21:13.593147 8162 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.847826
I0429 11:21:13.593163 8162 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.01126 (* 1 = 1.01126 loss)
I0429 11:21:13.593176 8162 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.308931 (* 1 = 0.308931 loss)
I0429 11:21:13.593191 8162 solver.cpp:245] Train net output #125: loss3/loss01 = 0.332967 (* 0.0909091 = 0.0302698 loss)
I0429 11:21:13.593206 8162 solver.cpp:245] Train net output #126: loss3/loss02 = 0.497924 (* 0.0909091 = 0.0452658 loss)
I0429 11:21:13.593220 8162 solver.cpp:245] Train net output #127: loss3/loss03 = 0.544766 (* 0.0909091 = 0.0495242 loss)
I0429 11:21:13.593235 8162 solver.cpp:245] Train net output #128: loss3/loss04 = 0.692434 (* 0.0909091 = 0.0629485 loss)
I0429 11:21:13.593250 8162 solver.cpp:245] Train net output #129: loss3/loss05 = 1.14969 (* 0.0909091 = 0.104517 loss)
I0429 11:21:13.593263 8162 solver.cpp:245] Train net output #130: loss3/loss06 = 1.21415 (* 0.0909091 = 0.110378 loss)
I0429 11:21:13.593278 8162 solver.cpp:245] Train net output #131: loss3/loss07 = 0.754237 (* 0.0909091 = 0.068567 loss)
I0429 11:21:13.593292 8162 solver.cpp:245] Train net output #132: loss3/loss08 = 0.556697 (* 0.0909091 = 0.0506089 loss)
I0429 11:21:13.593307 8162 solver.cpp:245] Train net output #133: loss3/loss09 = 0.716546 (* 0.0909091 = 0.0651405 loss)
I0429 11:21:13.593322 8162 solver.cpp:245] Train net output #134: loss3/loss10 = 0.0231272 (* 0.0909091 = 0.00210247 loss)
I0429 11:21:13.593336 8162 solver.cpp:245] Train net output #135: loss3/loss11 = 0.00868581 (* 0.0909091 = 0.000789619 loss)
I0429 11:21:13.593350 8162 solver.cpp:245] Train net output #136: loss3/loss12 = 0.00328699 (* 0.0909091 = 0.000298818 loss)
I0429 11:21:13.593367 8162 solver.cpp:245] Train net output #137: loss3/loss13 = 0.00243312 (* 0.0909091 = 0.000221192 loss)
I0429 11:21:13.593384 8162 solver.cpp:245] Train net output #138: loss3/loss14 = 0.00123148 (* 0.0909091 = 0.000111952 loss)
I0429 11:21:13.593399 8162 solver.cpp:245] Train net output #139: loss3/loss15 = 0.00114757 (* 0.0909091 = 0.000104325 loss)
I0429 11:21:13.593412 8162 solver.cpp:245] Train net output #140: loss3/loss16 = 0.00104154 (* 0.0909091 = 9.46859e-05 loss)
I0429 11:21:13.593427 8162 solver.cpp:245] Train net output #141: loss3/loss17 = 0.000981102 (* 0.0909091 = 8.91911e-05 loss)
I0429 11:21:13.593442 8162 solver.cpp:245] Train net output #142: loss3/loss18 = 0.000792723 (* 0.0909091 = 7.20657e-05 loss)
I0429 11:21:13.593456 8162 solver.cpp:245] Train net output #143: loss3/loss19 = 0.000584061 (* 0.0909091 = 5.30965e-05 loss)
I0429 11:21:13.593472 8162 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000469849 (* 0.0909091 = 4.27136e-05 loss)
I0429 11:21:13.593485 8162 solver.cpp:245] Train net output #145: loss3/loss21 = 0.000477149 (* 0.0909091 = 4.33772e-05 loss)
I0429 11:21:13.593500 8162 solver.cpp:245] Train net output #146: loss3/loss22 = 0.000305017 (* 0.0909091 = 2.77288e-05 loss)
I0429 11:21:13.593513 8162 solver.cpp:245] Train net output #147: total_accuracy = 0.5
I0429 11:21:13.593529 8162 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.5
I0429 11:21:13.593551 8162 solver.cpp:245] Train net output #149: total_confidence = 0.438107
I0429 11:21:13.593565 8162 solver.cpp:245] Train net output #150: total_confidence_not_rec = 0.433317
I0429 11:21:13.593578 8162 sgd_solver.cpp:106] Iteration 22500, lr = 0.005
I0429 11:23:30.277021 8162 solver.cpp:229] Iteration 23000, loss = 5.16408
I0429 11:23:30.277190 8162 solver.cpp:245] Train net output #0: loss1/accuracy = 0.309091
I0429 11:23:30.277211 8162 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.625
I0429 11:23:30.277225 8162 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.625
I0429 11:23:30.277237 8162 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375
I0429 11:23:30.277251 8162 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375
I0429 11:23:30.277262 8162 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.375
I0429 11:23:30.277276 8162 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.5
I0429 11:23:30.277287 8162 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.625
I0429 11:23:30.277300 8162 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.75
I0429 11:23:30.277314 8162 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875
I0429 11:23:30.277328 8162 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875
I0429 11:23:30.277340 8162 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0429 11:23:30.277354 8162 solver.cpp:245] Train net output #12: loss1/accuracy12 = 0.875
I0429 11:23:30.277366 8162 solver.cpp:245] Train net output #13: loss1/accuracy13 = 0.875
I0429 11:23:30.277379 8162 solver.cpp:245] Train net output #14: loss1/accuracy14 = 0.875
I0429 11:23:30.277391 8162 solver.cpp:245] Train net output #15: loss1/accuracy15 = 0.875
I0429 11:23:30.277405 8162 solver.cpp:245] Train net output #16: loss1/accuracy16 = 0.875
I0429 11:23:30.277416 8162 solver.cpp:245] Train net output #17: loss1/accuracy17 = 0.875
I0429 11:23:30.277429 8162 solver.cpp:245] Train net output #18: loss1/accuracy18 = 0.875
I0429 11:23:30.277441 8162 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0429 11:23:30.277453 8162 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0429 11:23:30.277465 8162 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0429 11:23:30.277477 8162 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0429 11:23:30.277489 8162 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.738636
I0429 11:23:30.277501 8162 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.618182
I0429 11:23:30.277518 8162 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 2.5044 (* 0.3 = 0.751319 loss)
I0429 11:23:30.277534 8162 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.994693 (* 0.3 = 0.298408 loss)
I0429 11:23:30.277549 8162 solver.cpp:245] Train net output #27: loss1/loss01 = 1.35183 (* 0.0272727 = 0.036868 loss)
I0429 11:23:30.277564 8162 solver.cpp:245] Train net output #28: loss1/loss02 = 1.60583 (* 0.0272727 = 0.0437953 loss)
I0429 11:23:30.277577 8162 solver.cpp:245] Train net output #29: loss1/loss03 = 2.23972 (* 0.0272727 = 0.0610832 loss)
I0429 11:23:30.277592 8162 solver.cpp:245] Train net output #30: loss1/loss04 = 2.00098 (* 0.0272727 = 0.0545721 loss)
I0429 11:23:30.277607 8162 solver.cpp:245] Train net output #31: loss1/loss05 = 1.84896 (* 0.0272727 = 0.0504263 loss)
I0429 11:23:30.277621 8162 solver.cpp:245] Train net output #32: loss1/loss06 = 2.15771 (* 0.0272727 = 0.0588466 loss)
I0429 11:23:30.277636 8162 solver.cpp:245] Train net output #33: loss1/loss07 = 1.46084 (* 0.0272727 = 0.039841 loss)
I0429 11:23:30.277649 8162 solver.cpp:245] Train net output #34: loss1/loss08 = 1.49977 (* 0.0272727 = 0.0409028 loss)
I0429 11:23:30.277664 8162 solver.cpp:245] Train net output #35: loss1/loss09 = 0.501386 (* 0.0272727 = 0.0136742 loss)
I0429 11:23:30.277678 8162 solver.cpp:245] Train net output #36: loss1/loss10 = 0.700443 (* 0.0272727 = 0.019103 loss)
I0429 11:23:30.277693 8162 solver.cpp:245] Train net output #37: loss1/loss11 = 0.444516 (* 0.0272727 = 0.0121232 loss)
I0429 11:23:30.277707 8162 solver.cpp:245] Train net output #38: loss1/loss12 = 0.403755 (* 0.0272727 = 0.0110115 loss)
I0429 11:23:30.277742 8162 solver.cpp:245] Train net output #39: loss1/loss13 = 0.612489 (* 0.0272727 = 0.0167042 loss)
I0429 11:23:30.277760 8162 solver.cpp:245] Train net output #40: loss1/loss14 = 0.362708 (* 0.0272727 = 0.00989203 loss)
I0429 11:23:30.277773 8162 solver.cpp:245] Train net output #41: loss1/loss15 = 0.518337 (* 0.0272727 = 0.0141365 loss)
I0429 11:23:30.277788 8162 solver.cpp:245] Train net output #42: loss1/loss16 = 0.687084 (* 0.0272727 = 0.0187387 loss)
I0429 11:23:30.277802 8162 solver.cpp:245] Train net output #43: loss1/loss17 = 0.612019 (* 0.0272727 = 0.0166914 loss)
I0429 11:23:30.277817 8162 solver.cpp:245] Train net output #44: loss1/loss18 = 1.01045 (* 0.0272727 = 0.0275578 loss)
I0429 11:23:30.277832 8162 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00399804 (* 0.0272727 = 0.000109037 loss)
I0429 11:23:30.277847 8162 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000893516 (* 0.0272727 = 2.43686e-05 loss)
I0429 11:23:30.277861 8162 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000534275 (* 0.0272727 = 1.45711e-05 loss)
I0429 11:23:30.277875 8162 solver.cpp:245] Train net output #48: loss1/loss22 = 7.68636e-05 (* 0.0272727 = 2.09628e-06 loss)
I0429 11:23:30.277889 8162 solver.cpp:245] Train net output #49: loss2/accuracy = 0.4
I0429 11:23:30.277900 8162 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.625
I0429 11:23:30.277914 8162 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75
I0429 11:23:30.277925 8162 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.25
I0429 11:23:30.277937 8162 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.625
I0429 11:23:30.277950 8162 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5
I0429 11:23:30.277961 8162 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.375
I0429 11:23:30.277973 8162 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.625
I0429 11:23:30.277986 8162 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875
I0429 11:23:30.277997 8162 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1
I0429 11:23:30.278009 8162 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875
I0429 11:23:30.278022 8162 solver.cpp:245] Train net output #60: loss2/accuracy11 = 0.875
I0429 11:23:30.278033 8162 solver.cpp:245] Train net output #61: loss2/accuracy12 = 0.875
I0429 11:23:30.278045 8162 solver.cpp:245] Train net output #62: loss2/accuracy13 = 0.875
I0429 11:23:30.278058 8162 solver.cpp:245] Train net output #63: loss2/accuracy14 = 0.875
I0429 11:23:30.278069 8162 solver.cpp:245] Train net output #64: loss2/accuracy15 = 0.875
I0429 11:23:30.278082 8162 solver.cpp:245] Train net output #65: loss2/accuracy16 = 0.875
I0429 11:23:30.278095 8162 solver.cpp:245] Train net output #66: loss2/accuracy17 = 0.875
I0429 11:23:30.278105 8162 solver.cpp:245] Train net output #67: loss2/accuracy18 = 0.875
I0429 11:23:30.278118 8162 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0429 11:23:30.278129 8162 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0429 11:23:30.278141 8162 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0429 11:23:30.278153 8162 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0429 11:23:30.278165 8162 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.789773
I0429 11:23:30.278177 8162 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.654545
I0429 11:23:30.278192 8162 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 2.22325 (* 0.3 = 0.666975 loss)
I0429 11:23:30.278210 8162 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.824672 (* 0.3 = 0.247402 loss)
I0429 11:23:30.278225 8162 solver.cpp:245] Train net output #76: loss2/loss01 = 1.33663 (* 0.0272727 = 0.0364535 loss)
I0429 11:23:30.278240 8162 solver.cpp:245] Train net output #77: loss2/loss02 = 0.936569 (* 0.0272727 = 0.0255428 loss)
I0429 11:23:30.278266 8162 solver.cpp:245] Train net output #78: loss2/loss03 = 2.43003 (* 0.0272727 = 0.0662735 loss)
I0429 11:23:30.278281 8162 solver.cpp:245] Train net output #79: loss2/loss04 = 1.61292 (* 0.0272727 = 0.0439886 loss)
I0429 11:23:30.278295 8162 solver.cpp:245] Train net output #80: loss2/loss05 = 1.89404 (* 0.0272727 = 0.0516557 loss)
I0429 11:23:30.278311 8162 solver.cpp:245] Train net output #81: loss2/loss06 = 1.95516 (* 0.0272727 = 0.0533226 loss)
I0429 11:23:30.278324 8162 solver.cpp:245] Train net output #82: loss2/loss07 = 1.34708 (* 0.0272727 = 0.0367386 loss)
I0429 11:23:30.278337 8162 solver.cpp:245] Train net output #83: loss2/loss08 = 1.16372 (* 0.0272727 = 0.0317377 loss)
I0429 11:23:30.278352 8162 solver.cpp:245] Train net output #84: loss2/loss09 = 0.27821 (* 0.0272727 = 0.00758754 loss)
I0429 11:23:30.278369 8162 solver.cpp:245] Train net output #85: loss2/loss10 = 0.609894 (* 0.0272727 = 0.0166335 loss)
I0429 11:23:30.278384 8162 solver.cpp:245] Train net output #86: loss2/loss11 = 0.417746 (* 0.0272727 = 0.0113931 loss)
I0429 11:23:30.278398 8162 solver.cpp:245] Train net output #87: loss2/loss12 = 0.460596 (* 0.0272727 = 0.0125617 loss)
I0429 11:23:30.278412 8162 solver.cpp:245] Train net output #88: loss2/loss13 = 0.624877 (* 0.0272727 = 0.0170421 loss)
I0429 11:23:30.278427 8162 solver.cpp:245] Train net output #89: loss2/loss14 = 0.52763 (* 0.0272727 = 0.0143899 loss)
I0429 11:23:30.278441 8162 solver.cpp:245] Train net output #90: loss2/loss15 = 0.705492 (* 0.0272727 = 0.0192407 loss)
I0429 11:23:30.278455 8162 solver.cpp:245] Train net output #91: loss2/loss16 = 0.653473 (* 0.0272727 = 0.017822 loss)
I0429 11:23:30.278470 8162 solver.cpp:245] Train net output #92: loss2/loss17 = 0.753416 (* 0.0272727 = 0.0205477 loss)
I0429 11:23:30.278484 8162 solver.cpp:245] Train net output #93: loss2/loss18 = 0.88972 (* 0.0272727 = 0.0242651 loss)
I0429 11:23:30.278499 8162 solver.cpp:245] Train net output #94: loss2/loss19 = 0.00220999 (* 0.0272727 = 6.02725e-05 loss)
I0429 11:23:30.278513 8162 solver.cpp:245] Train net output #95: loss2/loss20 = 0.00115772 (* 0.0272727 = 3.15742e-05 loss)
I0429 11:23:30.278528 8162 solver.cpp:245] Train net output #96: loss2/loss21 = 0.00156688 (* 0.0272727 = 4.2733e-05 loss)
I0429 11:23:30.278543 8162 solver.cpp:245] Train net output #97: loss2/loss22 = 0.000312312 (* 0.0272727 = 8.51761e-06 loss)
I0429 11:23:30.278555 8162 solver.cpp:245] Train net output #98: loss3/accuracy = 0.490909
I0429 11:23:30.278568 8162 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.75
I0429 11:23:30.278580 8162 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.75
I0429 11:23:30.278592 8162 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.5
I0429 11:23:30.278604 8162 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.625
I0429 11:23:30.278616 8162 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.25
I0429 11:23:30.278628 8162 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.5
I0429 11:23:30.278640 8162 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.625
I0429 11:23:30.278652 8162 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.75
I0429 11:23:30.278664 8162 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.75
I0429 11:23:30.278676 8162 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875
I0429 11:23:30.278688 8162 solver.cpp:245] Train net output #109: loss3/accuracy11 = 0.875
I0429 11:23:30.278700 8162 solver.cpp:245] Train net output #110: loss3/accuracy12 = 0.875
I0429 11:23:30.278712 8162 solver.cpp:245] Train net output #111: loss3/accuracy13 = 0.875
I0429 11:23:30.278724 8162 solver.cpp:245] Train net output #112: loss3/accuracy14 = 0.875
I0429 11:23:30.278736 8162 solver.cpp:245] Train net output #113: loss3/accuracy15 = 0.875
I0429 11:23:30.278758 8162 solver.cpp:245] Train net output #114: loss3/accuracy16 = 0.875
I0429 11:23:30.278771 8162 solver.cpp:245] Train net output #115: loss3/accuracy17 = 0.875
I0429 11:23:30.278784 8162 solver.cpp:245] Train net output #116: loss3/accuracy18 = 0.875
I0429 11:23:30.278795 8162 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0429 11:23:30.278807 8162 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0429 11:23:30.278820 8162 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0429 11:23:30.278831 8162 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0429 11:23:30.278843 8162 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.8125
I0429 11:23:30.278856 8162 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.690909
I0429 11:23:30.278870 8162 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.84653 (* 1 = 1.84653 loss)
I0429 11:23:30.278884 8162 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.699308 (* 1 = 0.699308 loss)
I0429 11:23:30.278898 8162 solver.cpp:245] Train net output #125: loss3/loss01 = 0.989906 (* 0.0909091 = 0.0899915 loss)
I0429 11:23:30.278913 8162 solver.cpp:245] Train net output #126: loss3/loss02 = 0.752402 (* 0.0909091 = 0.0684002 loss)
I0429 11:23:30.278928 8162 solver.cpp:245] Train net output #127: loss3/loss03 = 1.36564 (* 0.0909091 = 0.124149 loss)
I0429 11:23:30.278941 8162 solver.cpp:245] Train net output #128: loss3/loss04 = 1.48897 (* 0.0909091 = 0.135361 loss)
I0429 11:23:30.278955 8162 solver.cpp:245] Train net output #129: loss3/loss05 = 1.91969 (* 0.0909091 = 0.174517 loss)
I0429 11:23:30.278970 8162 solver.cpp:245] Train net output #130: loss3/loss06 = 2.09194 (* 0.0909091 = 0.190177 loss)
I0429 11:23:30.278985 8162 solver.cpp:245] Train net output #131: loss3/loss07 = 1.04361 (* 0.0909091 = 0.0948732 loss)
I0429 11:23:30.278998 8162 solver.cpp:245] Train net output #132: loss3/loss08 = 1.52362 (* 0.0909091 = 0.138511 loss)
I0429 11:23:30.279012 8162 solver.cpp:245] Train net output #133: loss3/loss09 = 0.56455 (* 0.0909091 = 0.0513228 loss)
I0429 11:23:30.279026 8162 solver.cpp:245] Train net output #134: loss3/loss10 = 0.739142 (* 0.0909091 = 0.0671947 loss)
I0429 11:23:30.279041 8162 solver.cpp:245] Train net output #135: loss3/loss11 = 0.377951 (* 0.0909091 = 0.0343592 loss)
I0429 11:23:30.279054 8162 solver.cpp:245] Train net output #136: loss3/loss12 = 0.341789 (* 0.0909091 = 0.0310717 loss)
I0429 11:23:30.279069 8162 solver.cpp:245] Train net output #137: loss3/loss13 = 0.594329 (* 0.0909091 = 0.05403 loss)
I0429 11:23:30.279083 8162 solver.cpp:245] Train net output #138: loss3/loss14 = 0.322689 (* 0.0909091 = 0.0293354
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment