Skip to content

Instantly share code, notes, and snippets.

@stas-sl
Created April 22, 2016 21:04
Show Gist options
  • Save stas-sl/c282bc3cebb23edb927c097ad4c716b7 to your computer and use it in GitHub Desktop.
Save stas-sl/c282bc3cebb23edb927c097ad4c716b7 to your computer and use it in GitHub Desktop.
This file has been truncated, but you can view the full file.
I0421 23:25:34.773021 32397 solver.cpp:280] Solving mixed_lstm
I0421 23:25:34.773036 32397 solver.cpp:281] Learning Rate Policy: fixed
I0421 23:25:35.594626 32397 solver.cpp:229] Iteration 0, loss = 2.77223
I0421 23:25:35.594671 32397 solver.cpp:245] Train net output #0: loss1/accuracy = 0.528302
I0421 23:25:35.594687 32397 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.875
I0421 23:25:35.594701 32397 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.625
I0421 23:25:35.594712 32397 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.25
I0421 23:25:35.594724 32397 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375
I0421 23:25:35.594737 32397 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0
I0421 23:25:35.594748 32397 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.625
I0421 23:25:35.594760 32397 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.625
I0421 23:25:35.594772 32397 solver.cpp:245] Train net output #8: loss1/accuracy08 = 1
I0421 23:25:35.594784 32397 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875
I0421 23:25:35.594796 32397 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0421 23:25:35.594807 32397 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0421 23:25:35.594820 32397 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0421 23:25:35.594830 32397 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0421 23:25:35.594842 32397 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0421 23:25:35.594853 32397 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0421 23:25:35.594866 32397 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0421 23:25:35.594877 32397 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0421 23:25:35.594888 32397 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0421 23:25:35.594928 32397 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0421 23:25:35.594941 32397 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0421 23:25:35.594952 32397 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0421 23:25:35.594964 32397 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0421 23:25:35.594975 32397 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.857955
I0421 23:25:35.594987 32397 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.849057
I0421 23:25:35.595003 32397 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.46353 (* 0.3 = 0.439059 loss)
I0421 23:25:35.595018 32397 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.454348 (* 0.3 = 0.136304 loss)
I0421 23:25:35.595032 32397 solver.cpp:245] Train net output #27: loss1/loss01 = 0.444653 (* 0.0272727 = 0.0121269 loss)
I0421 23:25:35.595046 32397 solver.cpp:245] Train net output #28: loss1/loss02 = 1.72235 (* 0.0272727 = 0.0469733 loss)
I0421 23:25:35.595060 32397 solver.cpp:245] Train net output #29: loss1/loss03 = 2.3096 (* 0.0272727 = 0.0629891 loss)
I0421 23:25:35.595074 32397 solver.cpp:245] Train net output #30: loss1/loss04 = 2.16494 (* 0.0272727 = 0.0590439 loss)
I0421 23:25:35.595088 32397 solver.cpp:245] Train net output #31: loss1/loss05 = 3.27889 (* 0.0272727 = 0.0894244 loss)
I0421 23:25:35.595101 32397 solver.cpp:245] Train net output #32: loss1/loss06 = 1.38063 (* 0.0272727 = 0.0376535 loss)
I0421 23:25:35.595114 32397 solver.cpp:245] Train net output #33: loss1/loss07 = 1.14687 (* 0.0272727 = 0.0312783 loss)
I0421 23:25:35.595129 32397 solver.cpp:245] Train net output #34: loss1/loss08 = 0.238824 (* 0.0272727 = 0.00651337 loss)
I0421 23:25:35.595142 32397 solver.cpp:245] Train net output #35: loss1/loss09 = 0.573087 (* 0.0272727 = 0.0156297 loss)
I0421 23:25:35.595156 32397 solver.cpp:245] Train net output #36: loss1/loss10 = 0.0455876 (* 0.0272727 = 0.0012433 loss)
I0421 23:25:35.595170 32397 solver.cpp:245] Train net output #37: loss1/loss11 = 3.93392e-06 (* 0.0272727 = 1.07289e-07 loss)
I0421 23:25:35.595185 32397 solver.cpp:245] Train net output #38: loss1/loss12 = 7.46556e-06 (* 0.0272727 = 2.03606e-07 loss)
I0421 23:25:35.595198 32397 solver.cpp:245] Train net output #39: loss1/loss13 = 8.37455e-06 (* 0.0272727 = 2.28397e-07 loss)
I0421 23:25:35.595212 32397 solver.cpp:245] Train net output #40: loss1/loss14 = 7.82319e-06 (* 0.0272727 = 2.1336e-07 loss)
I0421 23:25:35.595227 32397 solver.cpp:245] Train net output #41: loss1/loss15 = 7.8381e-06 (* 0.0272727 = 2.13766e-07 loss)
I0421 23:25:35.595240 32397 solver.cpp:245] Train net output #42: loss1/loss16 = 5.9009e-06 (* 0.0272727 = 1.60934e-07 loss)
I0421 23:25:35.595253 32397 solver.cpp:245] Train net output #43: loss1/loss17 = 6.7801e-06 (* 0.0272727 = 1.84912e-07 loss)
I0421 23:25:35.595268 32397 solver.cpp:245] Train net output #44: loss1/loss18 = 6.944e-06 (* 0.0272727 = 1.89382e-07 loss)
I0421 23:25:35.595281 32397 solver.cpp:245] Train net output #45: loss1/loss19 = 3.05475e-06 (* 0.0272727 = 8.33113e-08 loss)
I0421 23:25:35.595294 32397 solver.cpp:245] Train net output #46: loss1/loss20 = 5.12603e-06 (* 0.0272727 = 1.39801e-07 loss)
I0421 23:25:35.595309 32397 solver.cpp:245] Train net output #47: loss1/loss21 = 7.71887e-06 (* 0.0272727 = 2.10515e-07 loss)
I0421 23:25:35.595322 32397 solver.cpp:245] Train net output #48: loss1/loss22 = 6.52678e-06 (* 0.0272727 = 1.78003e-07 loss)
I0421 23:25:35.595334 32397 solver.cpp:245] Train net output #49: loss2/accuracy = 0.735849
I0421 23:25:35.595345 32397 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875
I0421 23:25:35.595378 32397 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.875
I0421 23:25:35.595391 32397 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.75
I0421 23:25:35.595403 32397 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.5
I0421 23:25:35.595427 32397 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.25
I0421 23:25:35.595440 32397 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.5
I0421 23:25:35.595453 32397 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.75
I0421 23:25:35.595463 32397 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875
I0421 23:25:35.595475 32397 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875
I0421 23:25:35.595486 32397 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0421 23:25:35.595501 32397 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0421 23:25:35.595513 32397 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0421 23:25:35.595525 32397 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0421 23:25:35.595536 32397 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0421 23:25:35.595547 32397 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0421 23:25:35.595558 32397 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0421 23:25:35.595568 32397 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0421 23:25:35.595580 32397 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0421 23:25:35.595592 32397 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0421 23:25:35.595602 32397 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0421 23:25:35.595614 32397 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0421 23:25:35.595625 32397 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0421 23:25:35.595636 32397 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.909091
I0421 23:25:35.595649 32397 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.962264
I0421 23:25:35.595662 32397 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.912403 (* 0.3 = 0.273721 loss)
I0421 23:25:35.595675 32397 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.308512 (* 0.3 = 0.0925536 loss)
I0421 23:25:35.595690 32397 solver.cpp:245] Train net output #76: loss2/loss01 = 0.572132 (* 0.0272727 = 0.0156036 loss)
I0421 23:25:35.595705 32397 solver.cpp:245] Train net output #77: loss2/loss02 = 0.431227 (* 0.0272727 = 0.0117607 loss)
I0421 23:25:35.595718 32397 solver.cpp:245] Train net output #78: loss2/loss03 = 1.94368 (* 0.0272727 = 0.0530095 loss)
I0421 23:25:35.595732 32397 solver.cpp:245] Train net output #79: loss2/loss04 = 1.69191 (* 0.0272727 = 0.046143 loss)
I0421 23:25:35.595746 32397 solver.cpp:245] Train net output #80: loss2/loss05 = 3.11635 (* 0.0272727 = 0.0849914 loss)
I0421 23:25:35.595759 32397 solver.cpp:245] Train net output #81: loss2/loss06 = 1.39332 (* 0.0272727 = 0.0379997 loss)
I0421 23:25:35.595773 32397 solver.cpp:245] Train net output #82: loss2/loss07 = 0.717001 (* 0.0272727 = 0.0195546 loss)
I0421 23:25:35.595783 32397 solver.cpp:245] Train net output #83: loss2/loss08 = 0.308708 (* 0.0272727 = 0.00841932 loss)
I0421 23:25:35.595800 32397 solver.cpp:245] Train net output #84: loss2/loss09 = 0.681002 (* 0.0272727 = 0.0185728 loss)
I0421 23:25:35.595819 32397 solver.cpp:245] Train net output #85: loss2/loss10 = 0.136127 (* 0.0272727 = 0.00371255 loss)
I0421 23:25:35.595845 32397 solver.cpp:245] Train net output #86: loss2/loss11 = 7.16757e-06 (* 0.0272727 = 1.95479e-07 loss)
I0421 23:25:35.595861 32397 solver.cpp:245] Train net output #87: loss2/loss12 = 1.84787e-05 (* 0.0272727 = 5.03964e-07 loss)
I0421 23:25:35.595875 32397 solver.cpp:245] Train net output #88: loss2/loss13 = 1.05056e-05 (* 0.0272727 = 2.86516e-07 loss)
I0421 23:25:35.595890 32397 solver.cpp:245] Train net output #89: loss2/loss14 = 6.2884e-06 (* 0.0272727 = 1.71502e-07 loss)
I0421 23:25:35.595903 32397 solver.cpp:245] Train net output #90: loss2/loss15 = 1.0297e-05 (* 0.0272727 = 2.80827e-07 loss)
I0421 23:25:35.595917 32397 solver.cpp:245] Train net output #91: loss2/loss16 = 2.05205e-05 (* 0.0272727 = 5.59649e-07 loss)
I0421 23:25:35.595943 32397 solver.cpp:245] Train net output #92: loss2/loss17 = 1.09229e-05 (* 0.0272727 = 2.97898e-07 loss)
I0421 23:25:35.595958 32397 solver.cpp:245] Train net output #93: loss2/loss18 = 6.73546e-06 (* 0.0272727 = 1.83694e-07 loss)
I0421 23:25:35.595973 32397 solver.cpp:245] Train net output #94: loss2/loss19 = 9.29853e-06 (* 0.0272727 = 2.53596e-07 loss)
I0421 23:25:35.595985 32397 solver.cpp:245] Train net output #95: loss2/loss20 = 1.02076e-05 (* 0.0272727 = 2.78389e-07 loss)
I0421 23:25:35.595999 32397 solver.cpp:245] Train net output #96: loss2/loss21 = 1.03715e-05 (* 0.0272727 = 2.8286e-07 loss)
I0421 23:25:35.596012 32397 solver.cpp:245] Train net output #97: loss2/loss22 = 6.19898e-06 (* 0.0272727 = 1.69063e-07 loss)
I0421 23:25:35.596024 32397 solver.cpp:245] Train net output #98: loss3/accuracy = 0.849057
I0421 23:25:35.596036 32397 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875
I0421 23:25:35.596047 32397 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0421 23:25:35.596058 32397 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.875
I0421 23:25:35.596071 32397 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875
I0421 23:25:35.596081 32397 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875
I0421 23:25:35.596092 32397 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.625
I0421 23:25:35.596103 32397 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75
I0421 23:25:35.596115 32397 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875
I0421 23:25:35.596127 32397 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875
I0421 23:25:35.596138 32397 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0421 23:25:35.596148 32397 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0421 23:25:35.596159 32397 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0421 23:25:35.596170 32397 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0421 23:25:35.596181 32397 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0421 23:25:35.596192 32397 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0421 23:25:35.596204 32397 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0421 23:25:35.596213 32397 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0421 23:25:35.596225 32397 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0421 23:25:35.596235 32397 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0421 23:25:35.596246 32397 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0421 23:25:35.596257 32397 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0421 23:25:35.596268 32397 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0421 23:25:35.596278 32397 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.948864
I0421 23:25:35.596290 32397 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.981132
I0421 23:25:35.596303 32397 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.560692 (* 1 = 0.560692 loss)
I0421 23:25:35.596317 32397 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.193868 (* 1 = 0.193868 loss)
I0421 23:25:35.596330 32397 solver.cpp:245] Train net output #125: loss3/loss01 = 0.480123 (* 0.0909091 = 0.0436475 loss)
I0421 23:25:35.596344 32397 solver.cpp:245] Train net output #126: loss3/loss02 = 0.241038 (* 0.0909091 = 0.0219126 loss)
I0421 23:25:35.596357 32397 solver.cpp:245] Train net output #127: loss3/loss03 = 0.439323 (* 0.0909091 = 0.0399384 loss)
I0421 23:25:35.596370 32397 solver.cpp:245] Train net output #128: loss3/loss04 = 0.282769 (* 0.0909091 = 0.0257063 loss)
I0421 23:25:35.596384 32397 solver.cpp:245] Train net output #129: loss3/loss05 = 0.622265 (* 0.0909091 = 0.0565695 loss)
I0421 23:25:35.596407 32397 solver.cpp:245] Train net output #130: loss3/loss06 = 1.0505 (* 0.0909091 = 0.0954997 loss)
I0421 23:25:35.596421 32397 solver.cpp:245] Train net output #131: loss3/loss07 = 0.469918 (* 0.0909091 = 0.0427198 loss)
I0421 23:25:35.596436 32397 solver.cpp:245] Train net output #132: loss3/loss08 = 0.347597 (* 0.0909091 = 0.0315998 loss)
I0421 23:25:35.596448 32397 solver.cpp:245] Train net output #133: loss3/loss09 = 0.588185 (* 0.0909091 = 0.0534713 loss)
I0421 23:25:35.596462 32397 solver.cpp:245] Train net output #134: loss3/loss10 = 0.0252197 (* 0.0909091 = 0.0022927 loss)
I0421 23:25:35.596477 32397 solver.cpp:245] Train net output #135: loss3/loss11 = 2.27405e-05 (* 0.0909091 = 2.06732e-06 loss)
I0421 23:25:35.596490 32397 solver.cpp:245] Train net output #136: loss3/loss12 = 2.38138e-05 (* 0.0909091 = 2.16489e-06 loss)
I0421 23:25:35.596504 32397 solver.cpp:245] Train net output #137: loss3/loss13 = 2.32472e-05 (* 0.0909091 = 2.11339e-06 loss)
I0421 23:25:35.596518 32397 solver.cpp:245] Train net output #138: loss3/loss14 = 1.92981e-05 (* 0.0909091 = 1.75437e-06 loss)
I0421 23:25:35.596532 32397 solver.cpp:245] Train net output #139: loss3/loss15 = 1.87763e-05 (* 0.0909091 = 1.70694e-06 loss)
I0421 23:25:35.596550 32397 solver.cpp:245] Train net output #140: loss3/loss16 = 2.09821e-05 (* 0.0909091 = 1.90746e-06 loss)
I0421 23:25:35.596565 32397 solver.cpp:245] Train net output #141: loss3/loss17 = 2.19805e-05 (* 0.0909091 = 1.99823e-06 loss)
I0421 23:25:35.596578 32397 solver.cpp:245] Train net output #142: loss3/loss18 = 1.49613e-05 (* 0.0909091 = 1.36012e-06 loss)
I0421 23:25:35.596592 32397 solver.cpp:245] Train net output #143: loss3/loss19 = 2.20849e-05 (* 0.0909091 = 2.00772e-06 loss)
I0421 23:25:35.596606 32397 solver.cpp:245] Train net output #144: loss3/loss20 = 2.17271e-05 (* 0.0909091 = 1.97519e-06 loss)
I0421 23:25:35.596621 32397 solver.cpp:245] Train net output #145: loss3/loss21 = 1.62728e-05 (* 0.0909091 = 1.47935e-06 loss)
I0421 23:25:35.596633 32397 solver.cpp:245] Train net output #146: loss3/loss22 = 2.2383e-05 (* 0.0909091 = 2.03482e-06 loss)
I0421 23:25:35.596645 32397 solver.cpp:245] Train net output #147: total_accuracy = 0.5
I0421 23:25:35.596657 32397 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.25
I0421 23:25:35.596668 32397 solver.cpp:245] Train net output #149: total_confidence = 0.584732
I0421 23:25:35.596680 32397 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.305455
I0421 23:25:35.596698 32397 sgd_solver.cpp:106] Iteration 0, lr = 0.001
I0421 23:31:17.116477 32397 solver.cpp:229] Iteration 500, loss = 2.28289
I0421 23:31:17.116916 32397 solver.cpp:245] Train net output #0: loss1/accuracy = 0.711111
I0421 23:31:17.116936 32397 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75
I0421 23:31:17.116950 32397 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.625
I0421 23:31:17.116961 32397 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.75
I0421 23:31:17.116973 32397 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375
I0421 23:31:17.116986 32397 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.25
I0421 23:31:17.116997 32397 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.5
I0421 23:31:17.117017 32397 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.875
I0421 23:31:17.117036 32397 solver.cpp:245] Train net output #8: loss1/accuracy08 = 1
I0421 23:31:17.117048 32397 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1
I0421 23:31:17.117059 32397 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0421 23:31:17.117071 32397 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0421 23:31:17.117084 32397 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0421 23:31:17.117094 32397 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0421 23:31:17.117106 32397 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0421 23:31:17.117117 32397 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0421 23:31:17.117135 32397 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0421 23:31:17.117146 32397 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0421 23:31:17.117157 32397 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0421 23:31:17.117179 32397 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0421 23:31:17.117205 32397 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0421 23:31:17.117218 32397 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0421 23:31:17.117228 32397 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0421 23:31:17.117239 32397 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.914773
I0421 23:31:17.117251 32397 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.844444
I0421 23:31:17.117267 32397 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.23572 (* 0.3 = 0.370716 loss)
I0421 23:31:17.117281 32397 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.375157 (* 0.3 = 0.112547 loss)
I0421 23:31:17.117295 32397 solver.cpp:245] Train net output #27: loss1/loss01 = 1.0218 (* 0.0272727 = 0.0278673 loss)
I0421 23:31:17.117310 32397 solver.cpp:245] Train net output #28: loss1/loss02 = 1.15435 (* 0.0272727 = 0.0314824 loss)
I0421 23:31:17.117323 32397 solver.cpp:245] Train net output #29: loss1/loss03 = 1.09092 (* 0.0272727 = 0.0297524 loss)
I0421 23:31:17.117337 32397 solver.cpp:245] Train net output #30: loss1/loss04 = 1.97352 (* 0.0272727 = 0.0538234 loss)
I0421 23:31:17.117352 32397 solver.cpp:245] Train net output #31: loss1/loss05 = 2.71952 (* 0.0272727 = 0.0741689 loss)
I0421 23:31:17.117365 32397 solver.cpp:245] Train net output #32: loss1/loss06 = 1.32855 (* 0.0272727 = 0.0362332 loss)
I0421 23:31:17.117378 32397 solver.cpp:245] Train net output #33: loss1/loss07 = 0.381547 (* 0.0272727 = 0.0104058 loss)
I0421 23:31:17.117393 32397 solver.cpp:245] Train net output #34: loss1/loss08 = 0.0540148 (* 0.0272727 = 0.00147313 loss)
I0421 23:31:17.117406 32397 solver.cpp:245] Train net output #35: loss1/loss09 = 0.00639974 (* 0.0272727 = 0.000174538 loss)
I0421 23:31:17.117422 32397 solver.cpp:245] Train net output #36: loss1/loss10 = 0.00182964 (* 0.0272727 = 4.98994e-05 loss)
I0421 23:31:17.117442 32397 solver.cpp:245] Train net output #37: loss1/loss11 = 1.85527e-05 (* 0.0272727 = 5.05984e-07 loss)
I0421 23:31:17.117461 32397 solver.cpp:245] Train net output #38: loss1/loss12 = 4.95095e-05 (* 0.0272727 = 1.35026e-06 loss)
I0421 23:31:17.117499 32397 solver.cpp:245] Train net output #39: loss1/loss13 = 2.87992e-05 (* 0.0272727 = 7.85432e-07 loss)
I0421 23:31:17.117516 32397 solver.cpp:245] Train net output #40: loss1/loss14 = 4.06031e-05 (* 0.0272727 = 1.10736e-06 loss)
I0421 23:31:17.117529 32397 solver.cpp:245] Train net output #41: loss1/loss15 = 3.79803e-05 (* 0.0272727 = 1.03583e-06 loss)
I0421 23:31:17.117547 32397 solver.cpp:245] Train net output #42: loss1/loss16 = 3.44331e-05 (* 0.0272727 = 9.39085e-07 loss)
I0421 23:31:17.117560 32397 solver.cpp:245] Train net output #43: loss1/loss17 = 2.67127e-05 (* 0.0272727 = 7.28527e-07 loss)
I0421 23:31:17.117573 32397 solver.cpp:245] Train net output #44: loss1/loss18 = 2.93504e-05 (* 0.0272727 = 8.00465e-07 loss)
I0421 23:31:17.117588 32397 solver.cpp:245] Train net output #45: loss1/loss19 = 4.40696e-05 (* 0.0272727 = 1.2019e-06 loss)
I0421 23:31:17.117601 32397 solver.cpp:245] Train net output #46: loss1/loss20 = 3.9277e-05 (* 0.0272727 = 1.07119e-06 loss)
I0421 23:31:17.117615 32397 solver.cpp:245] Train net output #47: loss1/loss21 = 2.2219e-05 (* 0.0272727 = 6.05974e-07 loss)
I0421 23:31:17.117630 32397 solver.cpp:245] Train net output #48: loss1/loss22 = 2.22189e-05 (* 0.0272727 = 6.05971e-07 loss)
I0421 23:31:17.117641 32397 solver.cpp:245] Train net output #49: loss2/accuracy = 0.777778
I0421 23:31:17.117652 32397 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875
I0421 23:31:17.117665 32397 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.875
I0421 23:31:17.117676 32397 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.75
I0421 23:31:17.117687 32397 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.625
I0421 23:31:17.117698 32397 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5
I0421 23:31:17.117710 32397 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.5
I0421 23:31:17.117722 32397 solver.cpp:245] Train net output #56: loss2/accuracy07 = 1
I0421 23:31:17.117733 32397 solver.cpp:245] Train net output #57: loss2/accuracy08 = 1
I0421 23:31:17.117744 32397 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1
I0421 23:31:17.117754 32397 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0421 23:31:17.117766 32397 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0421 23:31:17.117777 32397 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0421 23:31:17.117787 32397 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0421 23:31:17.117799 32397 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0421 23:31:17.117810 32397 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0421 23:31:17.117821 32397 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0421 23:31:17.117832 32397 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0421 23:31:17.117843 32397 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0421 23:31:17.117854 32397 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0421 23:31:17.117866 32397 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0421 23:31:17.117877 32397 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0421 23:31:17.117887 32397 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0421 23:31:17.117899 32397 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.943182
I0421 23:31:17.117910 32397 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.933333
I0421 23:31:17.117924 32397 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.761166 (* 0.3 = 0.22835 loss)
I0421 23:31:17.117938 32397 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.238555 (* 0.3 = 0.0715666 loss)
I0421 23:31:17.117951 32397 solver.cpp:245] Train net output #76: loss2/loss01 = 0.444397 (* 0.0272727 = 0.0121199 loss)
I0421 23:31:17.117965 32397 solver.cpp:245] Train net output #77: loss2/loss02 = 0.6154 (* 0.0272727 = 0.0167836 loss)
I0421 23:31:17.117990 32397 solver.cpp:245] Train net output #78: loss2/loss03 = 0.859976 (* 0.0272727 = 0.0234539 loss)
I0421 23:31:17.118006 32397 solver.cpp:245] Train net output #79: loss2/loss04 = 1.2985 (* 0.0272727 = 0.0354136 loss)
I0421 23:31:17.118021 32397 solver.cpp:245] Train net output #80: loss2/loss05 = 2.16167 (* 0.0272727 = 0.0589545 loss)
I0421 23:31:17.118033 32397 solver.cpp:245] Train net output #81: loss2/loss06 = 1.20084 (* 0.0272727 = 0.0327503 loss)
I0421 23:31:17.118047 32397 solver.cpp:245] Train net output #82: loss2/loss07 = 0.230229 (* 0.0272727 = 0.00627896 loss)
I0421 23:31:17.118072 32397 solver.cpp:245] Train net output #83: loss2/loss08 = 0.0405167 (* 0.0272727 = 0.001105 loss)
I0421 23:31:17.118086 32397 solver.cpp:245] Train net output #84: loss2/loss09 = 0.0186592 (* 0.0272727 = 0.000508886 loss)
I0421 23:31:17.118101 32397 solver.cpp:245] Train net output #85: loss2/loss10 = 0.00480267 (* 0.0272727 = 0.000130982 loss)
I0421 23:31:17.118115 32397 solver.cpp:245] Train net output #86: loss2/loss11 = 3.74224e-05 (* 0.0272727 = 1.02061e-06 loss)
I0421 23:31:17.118129 32397 solver.cpp:245] Train net output #87: loss2/loss12 = 1.59899e-05 (* 0.0272727 = 4.36089e-07 loss)
I0421 23:31:17.118144 32397 solver.cpp:245] Train net output #88: loss2/loss13 = 1.48275e-05 (* 0.0272727 = 4.04387e-07 loss)
I0421 23:31:17.118154 32397 solver.cpp:245] Train net output #89: loss2/loss14 = 1.12509e-05 (* 0.0272727 = 3.06842e-07 loss)
I0421 23:31:17.118163 32397 solver.cpp:245] Train net output #90: loss2/loss15 = 1.48722e-05 (* 0.0272727 = 4.05606e-07 loss)
I0421 23:31:17.118177 32397 solver.cpp:245] Train net output #91: loss2/loss16 = 4.60454e-06 (* 0.0272727 = 1.25578e-07 loss)
I0421 23:31:17.118191 32397 solver.cpp:245] Train net output #92: loss2/loss17 = 5.86647e-05 (* 0.0272727 = 1.59995e-06 loss)
I0421 23:31:17.118206 32397 solver.cpp:245] Train net output #93: loss2/loss18 = 1.78827e-05 (* 0.0272727 = 4.87709e-07 loss)
I0421 23:31:17.118219 32397 solver.cpp:245] Train net output #94: loss2/loss19 = 2.31064e-05 (* 0.0272727 = 6.30174e-07 loss)
I0421 23:31:17.118238 32397 solver.cpp:245] Train net output #95: loss2/loss20 = 8.92611e-06 (* 0.0272727 = 2.43439e-07 loss)
I0421 23:31:17.118255 32397 solver.cpp:245] Train net output #96: loss2/loss21 = 2.70858e-05 (* 0.0272727 = 7.38703e-07 loss)
I0421 23:31:17.118279 32397 solver.cpp:245] Train net output #97: loss2/loss22 = 1.22792e-05 (* 0.0272727 = 3.34886e-07 loss)
I0421 23:31:17.118296 32397 solver.cpp:245] Train net output #98: loss3/accuracy = 0.955556
I0421 23:31:17.118309 32397 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0421 23:31:17.118319 32397 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0421 23:31:17.118333 32397 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.875
I0421 23:31:17.118350 32397 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875
I0421 23:31:17.118362 32397 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875
I0421 23:31:17.118373 32397 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.875
I0421 23:31:17.118386 32397 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875
I0421 23:31:17.118396 32397 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1
I0421 23:31:17.118407 32397 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1
I0421 23:31:17.118418 32397 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0421 23:31:17.118429 32397 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0421 23:31:17.118440 32397 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0421 23:31:17.118451 32397 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0421 23:31:17.118463 32397 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0421 23:31:17.118474 32397 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0421 23:31:17.118494 32397 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0421 23:31:17.118507 32397 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0421 23:31:17.118518 32397 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0421 23:31:17.118530 32397 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0421 23:31:17.118541 32397 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0421 23:31:17.118551 32397 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0421 23:31:17.118562 32397 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0421 23:31:17.118573 32397 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.982955
I0421 23:31:17.118584 32397 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.977778
I0421 23:31:17.118598 32397 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.342739 (* 1 = 0.342739 loss)
I0421 23:31:17.118612 32397 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.118882 (* 1 = 0.118882 loss)
I0421 23:31:17.118625 32397 solver.cpp:245] Train net output #125: loss3/loss01 = 0.119198 (* 0.0909091 = 0.0108362 loss)
I0421 23:31:17.118638 32397 solver.cpp:245] Train net output #126: loss3/loss02 = 0.0901621 (* 0.0909091 = 0.00819655 loss)
I0421 23:31:17.118652 32397 solver.cpp:245] Train net output #127: loss3/loss03 = 0.405197 (* 0.0909091 = 0.0368361 loss)
I0421 23:31:17.118665 32397 solver.cpp:245] Train net output #128: loss3/loss04 = 0.474237 (* 0.0909091 = 0.0431125 loss)
I0421 23:31:17.118680 32397 solver.cpp:245] Train net output #129: loss3/loss05 = 1.197 (* 0.0909091 = 0.108818 loss)
I0421 23:31:17.118692 32397 solver.cpp:245] Train net output #130: loss3/loss06 = 0.522984 (* 0.0909091 = 0.047544 loss)
I0421 23:31:17.118706 32397 solver.cpp:245] Train net output #131: loss3/loss07 = 0.147241 (* 0.0909091 = 0.0133855 loss)
I0421 23:31:17.118719 32397 solver.cpp:245] Train net output #132: loss3/loss08 = 0.0100529 (* 0.0909091 = 0.000913901 loss)
I0421 23:31:17.118734 32397 solver.cpp:245] Train net output #133: loss3/loss09 = 0.00206849 (* 0.0909091 = 0.000188045 loss)
I0421 23:31:17.118747 32397 solver.cpp:245] Train net output #134: loss3/loss10 = 0.00130942 (* 0.0909091 = 0.000119039 loss)
I0421 23:31:17.118762 32397 solver.cpp:245] Train net output #135: loss3/loss11 = 0.000119645 (* 0.0909091 = 1.08769e-05 loss)
I0421 23:31:17.118775 32397 solver.cpp:245] Train net output #136: loss3/loss12 = 0.000133264 (* 0.0909091 = 1.21149e-05 loss)
I0421 23:31:17.118789 32397 solver.cpp:245] Train net output #137: loss3/loss13 = 0.000153523 (* 0.0909091 = 1.39566e-05 loss)
I0421 23:31:17.118803 32397 solver.cpp:245] Train net output #138: loss3/loss14 = 0.000127059 (* 0.0909091 = 1.15508e-05 loss)
I0421 23:31:17.118816 32397 solver.cpp:245] Train net output #139: loss3/loss15 = 0.000140529 (* 0.0909091 = 1.27753e-05 loss)
I0421 23:31:17.118830 32397 solver.cpp:245] Train net output #140: loss3/loss16 = 0.00015397 (* 0.0909091 = 1.39973e-05 loss)
I0421 23:31:17.118844 32397 solver.cpp:245] Train net output #141: loss3/loss17 = 0.000137284 (* 0.0909091 = 1.24804e-05 loss)
I0421 23:31:17.118857 32397 solver.cpp:245] Train net output #142: loss3/loss18 = 0.000134174 (* 0.0909091 = 1.21976e-05 loss)
I0421 23:31:17.118871 32397 solver.cpp:245] Train net output #143: loss3/loss19 = 0.000144982 (* 0.0909091 = 1.31802e-05 loss)
I0421 23:31:17.118885 32397 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000122234 (* 0.0909091 = 1.11121e-05 loss)
I0421 23:31:17.118898 32397 solver.cpp:245] Train net output #145: loss3/loss21 = 0.000108124 (* 0.0909091 = 9.82949e-06 loss)
I0421 23:31:17.118912 32397 solver.cpp:245] Train net output #146: loss3/loss22 = 0.000134547 (* 0.0909091 = 1.22315e-05 loss)
I0421 23:31:17.118924 32397 solver.cpp:245] Train net output #147: total_accuracy = 0.75
I0421 23:31:17.118935 32397 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.5
I0421 23:31:17.118957 32397 solver.cpp:245] Train net output #149: total_confidence = 0.575878
I0421 23:31:17.118968 32397 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.398524
I0421 23:31:17.118981 32397 sgd_solver.cpp:106] Iteration 500, lr = 0.001
I0421 23:36:58.941272 32397 solver.cpp:229] Iteration 1000, loss = 2.30408
I0421 23:36:58.941395 32397 solver.cpp:245] Train net output #0: loss1/accuracy = 0.651163
I0421 23:36:58.941416 32397 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75
I0421 23:36:58.941428 32397 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.625
I0421 23:36:58.941440 32397 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.25
I0421 23:36:58.941452 32397 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.625
I0421 23:36:58.941464 32397 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.375
I0421 23:36:58.941476 32397 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.625
I0421 23:36:58.941488 32397 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.875
I0421 23:36:58.941499 32397 solver.cpp:245] Train net output #8: loss1/accuracy08 = 1
I0421 23:36:58.941511 32397 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1
I0421 23:36:58.941524 32397 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0421 23:36:58.941535 32397 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0421 23:36:58.941546 32397 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0421 23:36:58.941558 32397 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0421 23:36:58.941570 32397 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0421 23:36:58.941581 32397 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0421 23:36:58.941592 32397 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0421 23:36:58.941603 32397 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0421 23:36:58.941615 32397 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0421 23:36:58.941627 32397 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0421 23:36:58.941638 32397 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0421 23:36:58.941649 32397 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0421 23:36:58.941669 32397 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0421 23:36:58.941680 32397 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.892045
I0421 23:36:58.941692 32397 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.860465
I0421 23:36:58.941707 32397 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.24507 (* 0.3 = 0.373521 loss)
I0421 23:36:58.941730 32397 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.374442 (* 0.3 = 0.112333 loss)
I0421 23:36:58.941745 32397 solver.cpp:245] Train net output #27: loss1/loss01 = 0.826078 (* 0.0272727 = 0.0225294 loss)
I0421 23:36:58.941759 32397 solver.cpp:245] Train net output #28: loss1/loss02 = 1.78179 (* 0.0272727 = 0.0485942 loss)
I0421 23:36:58.941773 32397 solver.cpp:245] Train net output #29: loss1/loss03 = 1.64786 (* 0.0272727 = 0.0449416 loss)
I0421 23:36:58.941787 32397 solver.cpp:245] Train net output #30: loss1/loss04 = 1.43349 (* 0.0272727 = 0.0390951 loss)
I0421 23:36:58.941800 32397 solver.cpp:245] Train net output #31: loss1/loss05 = 1.23158 (* 0.0272727 = 0.0335885 loss)
I0421 23:36:58.941814 32397 solver.cpp:245] Train net output #32: loss1/loss06 = 0.949641 (* 0.0272727 = 0.0258993 loss)
I0421 23:36:58.941828 32397 solver.cpp:245] Train net output #33: loss1/loss07 = 0.639676 (* 0.0272727 = 0.0174457 loss)
I0421 23:36:58.941843 32397 solver.cpp:245] Train net output #34: loss1/loss08 = 0.0835906 (* 0.0272727 = 0.00227974 loss)
I0421 23:36:58.941856 32397 solver.cpp:245] Train net output #35: loss1/loss09 = 0.00766297 (* 0.0272727 = 0.00020899 loss)
I0421 23:36:58.941870 32397 solver.cpp:245] Train net output #36: loss1/loss10 = 0.000498775 (* 0.0272727 = 1.36029e-05 loss)
I0421 23:36:58.941884 32397 solver.cpp:245] Train net output #37: loss1/loss11 = 2.38582e-05 (* 0.0272727 = 6.50678e-07 loss)
I0421 23:36:58.941898 32397 solver.cpp:245] Train net output #38: loss1/loss12 = 2.31276e-05 (* 0.0272727 = 6.30751e-07 loss)
I0421 23:36:58.941929 32397 solver.cpp:245] Train net output #39: loss1/loss13 = 1.33667e-05 (* 0.0272727 = 3.64548e-07 loss)
I0421 23:36:58.941946 32397 solver.cpp:245] Train net output #40: loss1/loss14 = 2.24123e-05 (* 0.0272727 = 6.11244e-07 loss)
I0421 23:36:58.941958 32397 solver.cpp:245] Train net output #41: loss1/loss15 = 2.09966e-05 (* 0.0272727 = 5.72634e-07 loss)
I0421 23:36:58.941972 32397 solver.cpp:245] Train net output #42: loss1/loss16 = 2.75984e-05 (* 0.0272727 = 7.52684e-07 loss)
I0421 23:36:58.941987 32397 solver.cpp:245] Train net output #43: loss1/loss17 = 5.5476e-05 (* 0.0272727 = 1.51298e-06 loss)
I0421 23:36:58.942000 32397 solver.cpp:245] Train net output #44: loss1/loss18 = 2.29787e-05 (* 0.0272727 = 6.26691e-07 loss)
I0421 23:36:58.942014 32397 solver.cpp:245] Train net output #45: loss1/loss19 = 2.44838e-05 (* 0.0272727 = 6.6774e-07 loss)
I0421 23:36:58.942028 32397 solver.cpp:245] Train net output #46: loss1/loss20 = 1.72262e-05 (* 0.0272727 = 4.69807e-07 loss)
I0421 23:36:58.942042 32397 solver.cpp:245] Train net output #47: loss1/loss21 = 1.72262e-05 (* 0.0272727 = 4.69806e-07 loss)
I0421 23:36:58.942056 32397 solver.cpp:245] Train net output #48: loss1/loss22 = 1.69133e-05 (* 0.0272727 = 4.61273e-07 loss)
I0421 23:36:58.942068 32397 solver.cpp:245] Train net output #49: loss2/accuracy = 0.883721
I0421 23:36:58.942080 32397 solver.cpp:245] Train net output #50: loss2/accuracy01 = 1
I0421 23:36:58.942092 32397 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.875
I0421 23:36:58.942103 32397 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.75
I0421 23:36:58.942116 32397 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.625
I0421 23:36:58.942127 32397 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5
I0421 23:36:58.942138 32397 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.75
I0421 23:36:58.942150 32397 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.875
I0421 23:36:58.942162 32397 solver.cpp:245] Train net output #57: loss2/accuracy08 = 1
I0421 23:36:58.942173 32397 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1
I0421 23:36:58.942184 32397 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0421 23:36:58.942195 32397 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0421 23:36:58.942210 32397 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0421 23:36:58.942221 32397 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0421 23:36:58.942232 32397 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0421 23:36:58.942244 32397 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0421 23:36:58.942255 32397 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0421 23:36:58.942265 32397 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0421 23:36:58.942277 32397 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0421 23:36:58.942288 32397 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0421 23:36:58.942299 32397 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0421 23:36:58.942311 32397 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0421 23:36:58.942322 32397 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0421 23:36:58.942332 32397 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.965909
I0421 23:36:58.942344 32397 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.930233
I0421 23:36:58.942358 32397 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.778172 (* 0.3 = 0.233452 loss)
I0421 23:36:58.942371 32397 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.21166 (* 0.3 = 0.0634981 loss)
I0421 23:36:58.942385 32397 solver.cpp:245] Train net output #76: loss2/loss01 = 0.124419 (* 0.0272727 = 0.00339324 loss)
I0421 23:36:58.942399 32397 solver.cpp:245] Train net output #77: loss2/loss02 = 1.78982 (* 0.0272727 = 0.0488134 loss)
I0421 23:36:58.942427 32397 solver.cpp:245] Train net output #78: loss2/loss03 = 1.1894 (* 0.0272727 = 0.0324382 loss)
I0421 23:36:58.942442 32397 solver.cpp:245] Train net output #79: loss2/loss04 = 1.43712 (* 0.0272727 = 0.0391942 loss)
I0421 23:36:58.942456 32397 solver.cpp:245] Train net output #80: loss2/loss05 = 1.37021 (* 0.0272727 = 0.0373695 loss)
I0421 23:36:58.942471 32397 solver.cpp:245] Train net output #81: loss2/loss06 = 0.740334 (* 0.0272727 = 0.0201909 loss)
I0421 23:36:58.942483 32397 solver.cpp:245] Train net output #82: loss2/loss07 = 0.754495 (* 0.0272727 = 0.0205771 loss)
I0421 23:36:58.942504 32397 solver.cpp:245] Train net output #83: loss2/loss08 = 0.106943 (* 0.0272727 = 0.00291662 loss)
I0421 23:36:58.942533 32397 solver.cpp:245] Train net output #84: loss2/loss09 = 0.0109215 (* 0.0272727 = 0.000297859 loss)
I0421 23:36:58.942560 32397 solver.cpp:245] Train net output #85: loss2/loss10 = 0.000503229 (* 0.0272727 = 1.37244e-05 loss)
I0421 23:36:58.942575 32397 solver.cpp:245] Train net output #86: loss2/loss11 = 2.5804e-05 (* 0.0272727 = 7.03745e-07 loss)
I0421 23:36:58.942589 32397 solver.cpp:245] Train net output #87: loss2/loss12 = 3.63417e-05 (* 0.0272727 = 9.91138e-07 loss)
I0421 23:36:58.942607 32397 solver.cpp:245] Train net output #88: loss2/loss13 = 9.10717e-05 (* 0.0272727 = 2.48378e-06 loss)
I0421 23:36:58.942621 32397 solver.cpp:245] Train net output #89: loss2/loss14 = 7.15236e-05 (* 0.0272727 = 1.95064e-06 loss)
I0421 23:36:58.942636 32397 solver.cpp:245] Train net output #90: loss2/loss15 = 0.000113389 (* 0.0272727 = 3.09244e-06 loss)
I0421 23:36:58.942651 32397 solver.cpp:245] Train net output #91: loss2/loss16 = 4.814e-05 (* 0.0272727 = 1.31291e-06 loss)
I0421 23:36:58.942664 32397 solver.cpp:245] Train net output #92: loss2/loss17 = 3.13932e-05 (* 0.0272727 = 8.56177e-07 loss)
I0421 23:36:58.942678 32397 solver.cpp:245] Train net output #93: loss2/loss18 = 0.000114448 (* 0.0272727 = 3.12132e-06 loss)
I0421 23:36:58.942692 32397 solver.cpp:245] Train net output #94: loss2/loss19 = 8.03206e-05 (* 0.0272727 = 2.19056e-06 loss)
I0421 23:36:58.942713 32397 solver.cpp:245] Train net output #95: loss2/loss20 = 0.000109445 (* 0.0272727 = 2.98485e-06 loss)
I0421 23:36:58.942726 32397 solver.cpp:245] Train net output #96: loss2/loss21 = 4.48008e-05 (* 0.0272727 = 1.22184e-06 loss)
I0421 23:36:58.942739 32397 solver.cpp:245] Train net output #97: loss2/loss22 = 3.12591e-05 (* 0.0272727 = 8.5252e-07 loss)
I0421 23:36:58.942751 32397 solver.cpp:245] Train net output #98: loss3/accuracy = 0.930233
I0421 23:36:58.942764 32397 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0421 23:36:58.942776 32397 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875
I0421 23:36:58.942787 32397 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0421 23:36:58.942798 32397 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875
I0421 23:36:58.942809 32397 solver.cpp:245] Train net output #103: loss3/accuracy05 = 1
I0421 23:36:58.942821 32397 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.875
I0421 23:36:58.942832 32397 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75
I0421 23:36:58.942844 32397 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1
I0421 23:36:58.942855 32397 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1
I0421 23:36:58.942867 32397 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0421 23:36:58.942878 32397 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0421 23:36:58.942888 32397 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0421 23:36:58.942899 32397 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0421 23:36:58.942910 32397 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0421 23:36:58.942921 32397 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0421 23:36:58.942945 32397 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0421 23:36:58.942957 32397 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0421 23:36:58.942968 32397 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0421 23:36:58.942981 32397 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0421 23:36:58.942991 32397 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0421 23:36:58.943001 32397 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0421 23:36:58.943013 32397 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0421 23:36:58.943023 32397 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.982955
I0421 23:36:58.943035 32397 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.930233
I0421 23:36:58.943049 32397 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.680379 (* 1 = 0.680379 loss)
I0421 23:36:58.943063 32397 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.170617 (* 1 = 0.170617 loss)
I0421 23:36:58.943076 32397 solver.cpp:245] Train net output #125: loss3/loss01 = 0.0571026 (* 0.0909091 = 0.00519114 loss)
I0421 23:36:58.943089 32397 solver.cpp:245] Train net output #126: loss3/loss02 = 0.885299 (* 0.0909091 = 0.0804817 loss)
I0421 23:36:58.943104 32397 solver.cpp:245] Train net output #127: loss3/loss03 = 0.100152 (* 0.0909091 = 0.00910469 loss)
I0421 23:36:58.943117 32397 solver.cpp:245] Train net output #128: loss3/loss04 = 0.951043 (* 0.0909091 = 0.0864585 loss)
I0421 23:36:58.943130 32397 solver.cpp:245] Train net output #129: loss3/loss05 = 0.119595 (* 0.0909091 = 0.0108723 loss)
I0421 23:36:58.943145 32397 solver.cpp:245] Train net output #130: loss3/loss06 = 0.19533 (* 0.0909091 = 0.0177572 loss)
I0421 23:36:58.943157 32397 solver.cpp:245] Train net output #131: loss3/loss07 = 1.20063 (* 0.0909091 = 0.109148 loss)
I0421 23:36:58.943171 32397 solver.cpp:245] Train net output #132: loss3/loss08 = 0.010309 (* 0.0909091 = 0.00093718 loss)
I0421 23:36:58.943186 32397 solver.cpp:245] Train net output #133: loss3/loss09 = 0.000828171 (* 0.0909091 = 7.52882e-05 loss)
I0421 23:36:58.943199 32397 solver.cpp:245] Train net output #134: loss3/loss10 = 9.77031e-05 (* 0.0909091 = 8.8821e-06 loss)
I0421 23:36:58.943220 32397 solver.cpp:245] Train net output #135: loss3/loss11 = 2.59281e-06 (* 0.0909091 = 2.3571e-07 loss)
I0421 23:36:58.943236 32397 solver.cpp:245] Train net output #136: loss3/loss12 = 3.21867e-06 (* 0.0909091 = 2.92606e-07 loss)
I0421 23:36:58.943253 32397 solver.cpp:245] Train net output #137: loss3/loss13 = 2.75673e-06 (* 0.0909091 = 2.50612e-07 loss)
I0421 23:36:58.943267 32397 solver.cpp:245] Train net output #138: loss3/loss14 = 2.54811e-06 (* 0.0909091 = 2.31646e-07 loss)
I0421 23:36:58.943281 32397 solver.cpp:245] Train net output #139: loss3/loss15 = 2.4289e-06 (* 0.0909091 = 2.20809e-07 loss)
I0421 23:36:58.943295 32397 solver.cpp:245] Train net output #140: loss3/loss16 = 3.08456e-06 (* 0.0909091 = 2.80414e-07 loss)
I0421 23:36:58.943311 32397 solver.cpp:245] Train net output #141: loss3/loss17 = 2.53321e-06 (* 0.0909091 = 2.30292e-07 loss)
I0421 23:36:58.943325 32397 solver.cpp:245] Train net output #142: loss3/loss18 = 2.72693e-06 (* 0.0909091 = 2.47902e-07 loss)
I0421 23:36:58.943338 32397 solver.cpp:245] Train net output #143: loss3/loss19 = 2.414e-06 (* 0.0909091 = 2.19454e-07 loss)
I0421 23:36:58.943370 32397 solver.cpp:245] Train net output #144: loss3/loss20 = 3.06966e-06 (* 0.0909091 = 2.7906e-07 loss)
I0421 23:36:58.943387 32397 solver.cpp:245] Train net output #145: loss3/loss21 = 2.81633e-06 (* 0.0909091 = 2.5603e-07 loss)
I0421 23:36:58.943400 32397 solver.cpp:245] Train net output #146: loss3/loss22 = 2.414e-06 (* 0.0909091 = 2.19454e-07 loss)
I0421 23:36:58.943413 32397 solver.cpp:245] Train net output #147: total_accuracy = 0.875
I0421 23:36:58.943424 32397 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.75
I0421 23:36:58.943447 32397 solver.cpp:245] Train net output #149: total_confidence = 0.775307
I0421 23:36:58.943464 32397 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.576129
I0421 23:36:58.943477 32397 sgd_solver.cpp:106] Iteration 1000, lr = 0.001
I0421 23:42:40.586979 32397 solver.cpp:229] Iteration 1500, loss = 2.35826
I0421 23:42:40.587116 32397 solver.cpp:245] Train net output #0: loss1/accuracy = 0.64
I0421 23:42:40.587136 32397 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75
I0421 23:42:40.587149 32397 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5
I0421 23:42:40.587162 32397 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.5
I0421 23:42:40.587172 32397 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.5
I0421 23:42:40.587184 32397 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.5
I0421 23:42:40.587196 32397 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.5
I0421 23:42:40.587210 32397 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.5
I0421 23:42:40.587224 32397 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.75
I0421 23:42:40.587235 32397 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875
I0421 23:42:40.587249 32397 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875
I0421 23:42:40.587260 32397 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0421 23:42:40.587271 32397 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0421 23:42:40.587283 32397 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0421 23:42:40.587294 32397 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0421 23:42:40.587306 32397 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0421 23:42:40.587317 32397 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0421 23:42:40.587329 32397 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0421 23:42:40.587340 32397 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0421 23:42:40.587364 32397 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0421 23:42:40.587378 32397 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0421 23:42:40.587390 32397 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0421 23:42:40.587401 32397 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0421 23:42:40.587414 32397 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.886364
I0421 23:42:40.587425 32397 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.84
I0421 23:42:40.587440 32397 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.15109 (* 0.3 = 0.345327 loss)
I0421 23:42:40.587455 32397 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.363967 (* 0.3 = 0.10919 loss)
I0421 23:42:40.587468 32397 solver.cpp:245] Train net output #27: loss1/loss01 = 0.750386 (* 0.0272727 = 0.0204651 loss)
I0421 23:42:40.587482 32397 solver.cpp:245] Train net output #28: loss1/loss02 = 1.58808 (* 0.0272727 = 0.0433111 loss)
I0421 23:42:40.587496 32397 solver.cpp:245] Train net output #29: loss1/loss03 = 1.77743 (* 0.0272727 = 0.0484755 loss)
I0421 23:42:40.587510 32397 solver.cpp:245] Train net output #30: loss1/loss04 = 2.10356 (* 0.0272727 = 0.0573699 loss)
I0421 23:42:40.587524 32397 solver.cpp:245] Train net output #31: loss1/loss05 = 1.99281 (* 0.0272727 = 0.0543495 loss)
I0421 23:42:40.587538 32397 solver.cpp:245] Train net output #32: loss1/loss06 = 1.51465 (* 0.0272727 = 0.0413086 loss)
I0421 23:42:40.587553 32397 solver.cpp:245] Train net output #33: loss1/loss07 = 1.57178 (* 0.0272727 = 0.0428666 loss)
I0421 23:42:40.587565 32397 solver.cpp:245] Train net output #34: loss1/loss08 = 0.543553 (* 0.0272727 = 0.0148242 loss)
I0421 23:42:40.587584 32397 solver.cpp:245] Train net output #35: loss1/loss09 = 0.62713 (* 0.0272727 = 0.0171035 loss)
I0421 23:42:40.587596 32397 solver.cpp:245] Train net output #36: loss1/loss10 = 0.565163 (* 0.0272727 = 0.0154135 loss)
I0421 23:42:40.587611 32397 solver.cpp:245] Train net output #37: loss1/loss11 = 7.19668e-05 (* 0.0272727 = 1.96273e-06 loss)
I0421 23:42:40.587625 32397 solver.cpp:245] Train net output #38: loss1/loss12 = 0.000135262 (* 0.0272727 = 3.68897e-06 loss)
I0421 23:42:40.587646 32397 solver.cpp:245] Train net output #39: loss1/loss13 = 4.93045e-05 (* 0.0272727 = 1.34467e-06 loss)
I0421 23:42:40.587677 32397 solver.cpp:245] Train net output #40: loss1/loss14 = 0.000109086 (* 0.0272727 = 2.97506e-06 loss)
I0421 23:42:40.587692 32397 solver.cpp:245] Train net output #41: loss1/loss15 = 0.000115484 (* 0.0272727 = 3.14957e-06 loss)
I0421 23:42:40.587707 32397 solver.cpp:245] Train net output #42: loss1/loss16 = 5.75844e-05 (* 0.0272727 = 1.57048e-06 loss)
I0421 23:42:40.587720 32397 solver.cpp:245] Train net output #43: loss1/loss17 = 0.000109676 (* 0.0272727 = 2.99115e-06 loss)
I0421 23:42:40.587734 32397 solver.cpp:245] Train net output #44: loss1/loss18 = 0.000148051 (* 0.0272727 = 4.03775e-06 loss)
I0421 23:42:40.587748 32397 solver.cpp:245] Train net output #45: loss1/loss19 = 0.000262171 (* 0.0272727 = 7.15013e-06 loss)
I0421 23:42:40.587761 32397 solver.cpp:245] Train net output #46: loss1/loss20 = 7.40176e-05 (* 0.0272727 = 2.01866e-06 loss)
I0421 23:42:40.587774 32397 solver.cpp:245] Train net output #47: loss1/loss21 = 8.14331e-05 (* 0.0272727 = 2.2209e-06 loss)
I0421 23:42:40.587788 32397 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000125155 (* 0.0272727 = 3.41332e-06 loss)
I0421 23:42:40.587800 32397 solver.cpp:245] Train net output #49: loss2/accuracy = 0.7
I0421 23:42:40.587812 32397 solver.cpp:245] Train net output #50: loss2/accuracy01 = 1
I0421 23:42:40.587823 32397 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.5
I0421 23:42:40.587836 32397 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.75
I0421 23:42:40.587847 32397 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.375
I0421 23:42:40.587859 32397 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.625
I0421 23:42:40.587870 32397 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.375
I0421 23:42:40.587882 32397 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.75
I0421 23:42:40.587893 32397 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875
I0421 23:42:40.587905 32397 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875
I0421 23:42:40.587916 32397 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875
I0421 23:42:40.587929 32397 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0421 23:42:40.587939 32397 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0421 23:42:40.587950 32397 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0421 23:42:40.587961 32397 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0421 23:42:40.587972 32397 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0421 23:42:40.587983 32397 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0421 23:42:40.587995 32397 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0421 23:42:40.588006 32397 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0421 23:42:40.588016 32397 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0421 23:42:40.588027 32397 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0421 23:42:40.588038 32397 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0421 23:42:40.588049 32397 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0421 23:42:40.588062 32397 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.914773
I0421 23:42:40.588073 32397 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.9
I0421 23:42:40.588086 32397 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.906916 (* 0.3 = 0.272075 loss)
I0421 23:42:40.588099 32397 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.263097 (* 0.3 = 0.078929 loss)
I0421 23:42:40.588114 32397 solver.cpp:245] Train net output #76: loss2/loss01 = 0.340758 (* 0.0272727 = 0.0092934 loss)
I0421 23:42:40.588127 32397 solver.cpp:245] Train net output #77: loss2/loss02 = 1.20648 (* 0.0272727 = 0.032904 loss)
I0421 23:42:40.588157 32397 solver.cpp:245] Train net output #78: loss2/loss03 = 1.20619 (* 0.0272727 = 0.0328961 loss)
I0421 23:42:40.588172 32397 solver.cpp:245] Train net output #79: loss2/loss04 = 1.85403 (* 0.0272727 = 0.0505645 loss)
I0421 23:42:40.588186 32397 solver.cpp:245] Train net output #80: loss2/loss05 = 1.4943 (* 0.0272727 = 0.0407536 loss)
I0421 23:42:40.588201 32397 solver.cpp:245] Train net output #81: loss2/loss06 = 1.49376 (* 0.0272727 = 0.040739 loss)
I0421 23:42:40.588214 32397 solver.cpp:245] Train net output #82: loss2/loss07 = 0.690645 (* 0.0272727 = 0.0188358 loss)
I0421 23:42:40.588228 32397 solver.cpp:245] Train net output #83: loss2/loss08 = 0.430631 (* 0.0272727 = 0.0117445 loss)
I0421 23:42:40.588243 32397 solver.cpp:245] Train net output #84: loss2/loss09 = 0.493102 (* 0.0272727 = 0.0134482 loss)
I0421 23:42:40.588264 32397 solver.cpp:245] Train net output #85: loss2/loss10 = 0.689746 (* 0.0272727 = 0.0188112 loss)
I0421 23:42:40.588279 32397 solver.cpp:245] Train net output #86: loss2/loss11 = 1.16234e-05 (* 0.0272727 = 3.17002e-07 loss)
I0421 23:42:40.588292 32397 solver.cpp:245] Train net output #87: loss2/loss12 = 2.14445e-05 (* 0.0272727 = 5.84849e-07 loss)
I0421 23:42:40.588306 32397 solver.cpp:245] Train net output #88: loss2/loss13 = 1.46188e-05 (* 0.0272727 = 3.98693e-07 loss)
I0421 23:42:40.588320 32397 solver.cpp:245] Train net output #89: loss2/loss14 = 8.13624e-06 (* 0.0272727 = 2.21897e-07 loss)
I0421 23:42:40.588333 32397 solver.cpp:245] Train net output #90: loss2/loss15 = 6.348e-06 (* 0.0272727 = 1.73127e-07 loss)
I0421 23:42:40.588347 32397 solver.cpp:245] Train net output #91: loss2/loss16 = 1.16382e-05 (* 0.0272727 = 3.17405e-07 loss)
I0421 23:42:40.588361 32397 solver.cpp:245] Train net output #92: loss2/loss17 = 1.60792e-05 (* 0.0272727 = 4.38523e-07 loss)
I0421 23:42:40.588374 32397 solver.cpp:245] Train net output #93: loss2/loss18 = 2.19211e-05 (* 0.0272727 = 5.97849e-07 loss)
I0421 23:42:40.588388 32397 solver.cpp:245] Train net output #94: loss2/loss19 = 9.82012e-06 (* 0.0272727 = 2.67821e-07 loss)
I0421 23:42:40.588402 32397 solver.cpp:245] Train net output #95: loss2/loss20 = 1.04013e-05 (* 0.0272727 = 2.83671e-07 loss)
I0421 23:42:40.588415 32397 solver.cpp:245] Train net output #96: loss2/loss21 = 1.67348e-05 (* 0.0272727 = 4.56405e-07 loss)
I0421 23:42:40.588428 32397 solver.cpp:245] Train net output #97: loss2/loss22 = 1.34116e-05 (* 0.0272727 = 3.6577e-07 loss)
I0421 23:42:40.588440 32397 solver.cpp:245] Train net output #98: loss3/accuracy = 0.92
I0421 23:42:40.588451 32397 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0421 23:42:40.588464 32397 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0421 23:42:40.588474 32397 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.875
I0421 23:42:40.588486 32397 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.75
I0421 23:42:40.588497 32397 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.75
I0421 23:42:40.588508 32397 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.75
I0421 23:42:40.588520 32397 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75
I0421 23:42:40.588531 32397 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.75
I0421 23:42:40.588542 32397 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875
I0421 23:42:40.588554 32397 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875
I0421 23:42:40.588565 32397 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0421 23:42:40.588577 32397 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0421 23:42:40.588587 32397 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0421 23:42:40.588598 32397 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0421 23:42:40.588610 32397 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0421 23:42:40.588621 32397 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0421 23:42:40.588641 32397 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0421 23:42:40.588654 32397 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0421 23:42:40.588665 32397 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0421 23:42:40.588676 32397 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0421 23:42:40.588687 32397 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0421 23:42:40.588698 32397 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0421 23:42:40.588709 32397 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.977273
I0421 23:42:40.588721 32397 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.98
I0421 23:42:40.588734 32397 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.357367 (* 1 = 0.357367 loss)
I0421 23:42:40.588748 32397 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.108431 (* 1 = 0.108431 loss)
I0421 23:42:40.588762 32397 solver.cpp:245] Train net output #125: loss3/loss01 = 0.0274854 (* 0.0909091 = 0.00249867 loss)
I0421 23:42:40.588775 32397 solver.cpp:245] Train net output #126: loss3/loss02 = 0.140848 (* 0.0909091 = 0.0128043 loss)
I0421 23:42:40.588789 32397 solver.cpp:245] Train net output #127: loss3/loss03 = 0.294027 (* 0.0909091 = 0.0267297 loss)
I0421 23:42:40.588804 32397 solver.cpp:245] Train net output #128: loss3/loss04 = 0.808913 (* 0.0909091 = 0.0735375 loss)
I0421 23:42:40.588817 32397 solver.cpp:245] Train net output #129: loss3/loss05 = 0.442986 (* 0.0909091 = 0.0402715 loss)
I0421 23:42:40.588831 32397 solver.cpp:245] Train net output #130: loss3/loss06 = 0.830895 (* 0.0909091 = 0.0755359 loss)
I0421 23:42:40.588841 32397 solver.cpp:245] Train net output #131: loss3/loss07 = 0.625935 (* 0.0909091 = 0.0569032 loss)
I0421 23:42:40.588850 32397 solver.cpp:245] Train net output #132: loss3/loss08 = 0.504985 (* 0.0909091 = 0.0459077 loss)
I0421 23:42:40.588865 32397 solver.cpp:245] Train net output #133: loss3/loss09 = 0.397245 (* 0.0909091 = 0.0361132 loss)
I0421 23:42:40.588878 32397 solver.cpp:245] Train net output #134: loss3/loss10 = 0.343517 (* 0.0909091 = 0.0312288 loss)
I0421 23:42:40.588891 32397 solver.cpp:245] Train net output #135: loss3/loss11 = 2.88503e-05 (* 0.0909091 = 2.62275e-06 loss)
I0421 23:42:40.588906 32397 solver.cpp:245] Train net output #136: loss3/loss12 = 3.14284e-05 (* 0.0909091 = 2.85713e-06 loss)
I0421 23:42:40.588919 32397 solver.cpp:245] Train net output #137: loss3/loss13 = 3.18904e-05 (* 0.0909091 = 2.89913e-06 loss)
I0421 23:42:40.588932 32397 solver.cpp:245] Train net output #138: loss3/loss14 = 3.08621e-05 (* 0.0909091 = 2.80565e-06 loss)
I0421 23:42:40.588946 32397 solver.cpp:245] Train net output #139: loss3/loss15 = 3.59292e-05 (* 0.0909091 = 3.26629e-06 loss)
I0421 23:42:40.588959 32397 solver.cpp:245] Train net output #140: loss3/loss16 = 3.41855e-05 (* 0.0909091 = 3.10778e-06 loss)
I0421 23:42:40.588973 32397 solver.cpp:245] Train net output #141: loss3/loss17 = 3.43196e-05 (* 0.0909091 = 3.11997e-06 loss)
I0421 23:42:40.588986 32397 solver.cpp:245] Train net output #142: loss3/loss18 = 2.82243e-05 (* 0.0909091 = 2.56585e-06 loss)
I0421 23:42:40.589000 32397 solver.cpp:245] Train net output #143: loss3/loss19 = 3.26654e-05 (* 0.0909091 = 2.96958e-06 loss)
I0421 23:42:40.589013 32397 solver.cpp:245] Train net output #144: loss3/loss20 = 2.94464e-05 (* 0.0909091 = 2.67694e-06 loss)
I0421 23:42:40.589027 32397 solver.cpp:245] Train net output #145: loss3/loss21 = 3.32616e-05 (* 0.0909091 = 3.02378e-06 loss)
I0421 23:42:40.589040 32397 solver.cpp:245] Train net output #146: loss3/loss22 = 2.80604e-05 (* 0.0909091 = 2.55094e-06 loss)
I0421 23:42:40.589052 32397 solver.cpp:245] Train net output #147: total_accuracy = 0.625
I0421 23:42:40.589064 32397 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.5
I0421 23:42:40.589084 32397 solver.cpp:245] Train net output #149: total_confidence = 0.535683
I0421 23:42:40.589097 32397 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.44182
I0421 23:42:40.589110 32397 sgd_solver.cpp:106] Iteration 1500, lr = 0.001
I0421 23:48:22.243710 32397 solver.cpp:229] Iteration 2000, loss = 2.24597
I0421 23:48:22.243881 32397 solver.cpp:245] Train net output #0: loss1/accuracy = 0.84
I0421 23:48:22.243911 32397 solver.cpp:245] Train net output #1: loss1/accuracy01 = 1
I0421 23:48:22.243923 32397 solver.cpp:245] Train net output #2: loss1/accuracy02 = 1
I0421 23:48:22.243935 32397 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.125
I0421 23:48:22.243947 32397 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.125
I0421 23:48:22.243962 32397 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.5
I0421 23:48:22.243973 32397 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.625
I0421 23:48:22.243985 32397 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.625
I0421 23:48:22.243998 32397 solver.cpp:245] Train net output #8: loss1/accuracy08 = 1
I0421 23:48:22.244009 32397 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1
I0421 23:48:22.244021 32397 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0421 23:48:22.244032 32397 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0421 23:48:22.244045 32397 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0421 23:48:22.244056 32397 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0421 23:48:22.244068 32397 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0421 23:48:22.244079 32397 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0421 23:48:22.244091 32397 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0421 23:48:22.244102 32397 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0421 23:48:22.244114 32397 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0421 23:48:22.244127 32397 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0421 23:48:22.244138 32397 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0421 23:48:22.244149 32397 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0421 23:48:22.244161 32397 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0421 23:48:22.244173 32397 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.954545
I0421 23:48:22.244184 32397 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.92
I0421 23:48:22.244204 32397 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 0.718095 (* 0.3 = 0.215429 loss)
I0421 23:48:22.244220 32397 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.209033 (* 0.3 = 0.0627098 loss)
I0421 23:48:22.244235 32397 solver.cpp:245] Train net output #27: loss1/loss01 = 0.261159 (* 0.0272727 = 0.00712252 loss)
I0421 23:48:22.244248 32397 solver.cpp:245] Train net output #28: loss1/loss02 = 0.498924 (* 0.0272727 = 0.013607 loss)
I0421 23:48:22.244262 32397 solver.cpp:245] Train net output #29: loss1/loss03 = 2.08619 (* 0.0272727 = 0.0568962 loss)
I0421 23:48:22.244277 32397 solver.cpp:245] Train net output #30: loss1/loss04 = 1.70441 (* 0.0272727 = 0.046484 loss)
I0421 23:48:22.244290 32397 solver.cpp:245] Train net output #31: loss1/loss05 = 2.5923 (* 0.0272727 = 0.070699 loss)
I0421 23:48:22.244305 32397 solver.cpp:245] Train net output #32: loss1/loss06 = 1.17923 (* 0.0272727 = 0.0321608 loss)
I0421 23:48:22.244319 32397 solver.cpp:245] Train net output #33: loss1/loss07 = 0.864089 (* 0.0272727 = 0.0235661 loss)
I0421 23:48:22.244333 32397 solver.cpp:245] Train net output #34: loss1/loss08 = 0.0239744 (* 0.0272727 = 0.000653847 loss)
I0421 23:48:22.244349 32397 solver.cpp:245] Train net output #35: loss1/loss09 = 0.00247863 (* 0.0272727 = 6.75989e-05 loss)
I0421 23:48:22.244362 32397 solver.cpp:245] Train net output #36: loss1/loss10 = 0.000290411 (* 0.0272727 = 7.9203e-06 loss)
I0421 23:48:22.244376 32397 solver.cpp:245] Train net output #37: loss1/loss11 = 7.37614e-06 (* 0.0272727 = 2.01167e-07 loss)
I0421 23:48:22.244390 32397 solver.cpp:245] Train net output #38: loss1/loss12 = 8.41924e-06 (* 0.0272727 = 2.29616e-07 loss)
I0421 23:48:22.244405 32397 solver.cpp:245] Train net output #39: loss1/loss13 = 7.15264e-06 (* 0.0272727 = 1.95072e-07 loss)
I0421 23:48:22.244437 32397 solver.cpp:245] Train net output #40: loss1/loss14 = 6.07972e-06 (* 0.0272727 = 1.65811e-07 loss)
I0421 23:48:22.244454 32397 solver.cpp:245] Train net output #41: loss1/loss15 = 6.9738e-06 (* 0.0272727 = 1.90194e-07 loss)
I0421 23:48:22.244468 32397 solver.cpp:245] Train net output #42: loss1/loss16 = 1.11611e-05 (* 0.0272727 = 3.04394e-07 loss)
I0421 23:48:22.244482 32397 solver.cpp:245] Train net output #43: loss1/loss17 = 5.31974e-06 (* 0.0272727 = 1.45084e-07 loss)
I0421 23:48:22.244496 32397 solver.cpp:245] Train net output #44: loss1/loss18 = 9.70078e-06 (* 0.0272727 = 2.64567e-07 loss)
I0421 23:48:22.244510 32397 solver.cpp:245] Train net output #45: loss1/loss19 = 7.97222e-06 (* 0.0272727 = 2.17424e-07 loss)
I0421 23:48:22.244524 32397 solver.cpp:245] Train net output #46: loss1/loss20 = 9.04509e-06 (* 0.0272727 = 2.46684e-07 loss)
I0421 23:48:22.244539 32397 solver.cpp:245] Train net output #47: loss1/loss21 = 9.70074e-06 (* 0.0272727 = 2.64566e-07 loss)
I0421 23:48:22.244552 32397 solver.cpp:245] Train net output #48: loss1/loss22 = 7.25694e-06 (* 0.0272727 = 1.97917e-07 loss)
I0421 23:48:22.244565 32397 solver.cpp:245] Train net output #49: loss2/accuracy = 0.84
I0421 23:48:22.244576 32397 solver.cpp:245] Train net output #50: loss2/accuracy01 = 1
I0421 23:48:22.244587 32397 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75
I0421 23:48:22.244599 32397 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.5
I0421 23:48:22.244611 32397 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.375
I0421 23:48:22.244622 32397 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.375
I0421 23:48:22.244634 32397 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.625
I0421 23:48:22.244645 32397 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.75
I0421 23:48:22.244657 32397 solver.cpp:245] Train net output #57: loss2/accuracy08 = 1
I0421 23:48:22.244668 32397 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1
I0421 23:48:22.244679 32397 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0421 23:48:22.244690 32397 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0421 23:48:22.244702 32397 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0421 23:48:22.244714 32397 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0421 23:48:22.244724 32397 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0421 23:48:22.244735 32397 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0421 23:48:22.244746 32397 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0421 23:48:22.244757 32397 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0421 23:48:22.244770 32397 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0421 23:48:22.244781 32397 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0421 23:48:22.244791 32397 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0421 23:48:22.244802 32397 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0421 23:48:22.244814 32397 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0421 23:48:22.244825 32397 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.948864
I0421 23:48:22.244837 32397 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.98
I0421 23:48:22.244850 32397 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.563844 (* 0.3 = 0.169153 loss)
I0421 23:48:22.244863 32397 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.176456 (* 0.3 = 0.0529369 loss)
I0421 23:48:22.244880 32397 solver.cpp:245] Train net output #76: loss2/loss01 = 0.131832 (* 0.0272727 = 0.00359542 loss)
I0421 23:48:22.244895 32397 solver.cpp:245] Train net output #77: loss2/loss02 = 0.651823 (* 0.0272727 = 0.017777 loss)
I0421 23:48:22.244920 32397 solver.cpp:245] Train net output #78: loss2/loss03 = 1.00902 (* 0.0272727 = 0.0275188 loss)
I0421 23:48:22.244935 32397 solver.cpp:245] Train net output #79: loss2/loss04 = 1.18937 (* 0.0272727 = 0.0324372 loss)
I0421 23:48:22.244949 32397 solver.cpp:245] Train net output #80: loss2/loss05 = 1.78935 (* 0.0272727 = 0.0488005 loss)
I0421 23:48:22.244962 32397 solver.cpp:245] Train net output #81: loss2/loss06 = 0.973553 (* 0.0272727 = 0.0265515 loss)
I0421 23:48:22.244976 32397 solver.cpp:245] Train net output #82: loss2/loss07 = 0.558249 (* 0.0272727 = 0.015225 loss)
I0421 23:48:22.244990 32397 solver.cpp:245] Train net output #83: loss2/loss08 = 0.0565189 (* 0.0272727 = 0.00154143 loss)
I0421 23:48:22.245004 32397 solver.cpp:245] Train net output #84: loss2/loss09 = 0.00426226 (* 0.0272727 = 0.000116243 loss)
I0421 23:48:22.245018 32397 solver.cpp:245] Train net output #85: loss2/loss10 = 0.000873171 (* 0.0272727 = 2.38138e-05 loss)
I0421 23:48:22.245033 32397 solver.cpp:245] Train net output #86: loss2/loss11 = 3.15906e-06 (* 0.0272727 = 8.61562e-08 loss)
I0421 23:48:22.245046 32397 solver.cpp:245] Train net output #87: loss2/loss12 = 1.62423e-06 (* 0.0272727 = 4.42971e-08 loss)
I0421 23:48:22.245059 32397 solver.cpp:245] Train net output #88: loss2/loss13 = 2.10107e-06 (* 0.0272727 = 5.7302e-08 loss)
I0421 23:48:22.245074 32397 solver.cpp:245] Train net output #89: loss2/loss14 = 2.33949e-06 (* 0.0272727 = 6.38044e-08 loss)
I0421 23:48:22.245087 32397 solver.cpp:245] Train net output #90: loss2/loss15 = 2.04146e-06 (* 0.0272727 = 5.56763e-08 loss)
I0421 23:48:22.245100 32397 solver.cpp:245] Train net output #91: loss2/loss16 = 2.77163e-06 (* 0.0272727 = 7.55898e-08 loss)
I0421 23:48:22.245115 32397 solver.cpp:245] Train net output #92: loss2/loss17 = 2.13087e-06 (* 0.0272727 = 5.81147e-08 loss)
I0421 23:48:22.245128 32397 solver.cpp:245] Train net output #93: loss2/loss18 = 2.30969e-06 (* 0.0272727 = 6.29915e-08 loss)
I0421 23:48:22.245142 32397 solver.cpp:245] Train net output #94: loss2/loss19 = 1.207e-06 (* 0.0272727 = 3.29181e-08 loss)
I0421 23:48:22.245157 32397 solver.cpp:245] Train net output #95: loss2/loss20 = 2.68222e-06 (* 0.0272727 = 7.31515e-08 loss)
I0421 23:48:22.245170 32397 solver.cpp:245] Train net output #96: loss2/loss21 = 1.62423e-06 (* 0.0272727 = 4.42972e-08 loss)
I0421 23:48:22.245183 32397 solver.cpp:245] Train net output #97: loss2/loss22 = 2.22028e-06 (* 0.0272727 = 6.05532e-08 loss)
I0421 23:48:22.245195 32397 solver.cpp:245] Train net output #98: loss3/accuracy = 0.96
I0421 23:48:22.245208 32397 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0421 23:48:22.245219 32397 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0421 23:48:22.245230 32397 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0421 23:48:22.245241 32397 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1
I0421 23:48:22.245255 32397 solver.cpp:245] Train net output #103: loss3/accuracy05 = 1
I0421 23:48:22.245267 32397 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.875
I0421 23:48:22.245275 32397 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875
I0421 23:48:22.245282 32397 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1
I0421 23:48:22.245295 32397 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1
I0421 23:48:22.245306 32397 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0421 23:48:22.245317 32397 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0421 23:48:22.245328 32397 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0421 23:48:22.245339 32397 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0421 23:48:22.245350 32397 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0421 23:48:22.245362 32397 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0421 23:48:22.245373 32397 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0421 23:48:22.245394 32397 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0421 23:48:22.245406 32397 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0421 23:48:22.245419 32397 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0421 23:48:22.245429 32397 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0421 23:48:22.245440 32397 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0421 23:48:22.245451 32397 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0421 23:48:22.245462 32397 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.988636
I0421 23:48:22.245474 32397 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 1
I0421 23:48:22.245488 32397 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.0837662 (* 1 = 0.0837662 loss)
I0421 23:48:22.245502 32397 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.0261475 (* 1 = 0.0261475 loss)
I0421 23:48:22.245517 32397 solver.cpp:245] Train net output #125: loss3/loss01 = 0.014466 (* 0.0909091 = 0.00131509 loss)
I0421 23:48:22.245530 32397 solver.cpp:245] Train net output #126: loss3/loss02 = 0.024941 (* 0.0909091 = 0.00226736 loss)
I0421 23:48:22.245544 32397 solver.cpp:245] Train net output #127: loss3/loss03 = 0.0842156 (* 0.0909091 = 0.00765596 loss)
I0421 23:48:22.245558 32397 solver.cpp:245] Train net output #128: loss3/loss04 = 0.0406713 (* 0.0909091 = 0.00369739 loss)
I0421 23:48:22.245571 32397 solver.cpp:245] Train net output #129: loss3/loss05 = 0.081405 (* 0.0909091 = 0.00740046 loss)
I0421 23:48:22.245585 32397 solver.cpp:245] Train net output #130: loss3/loss06 = 0.765834 (* 0.0909091 = 0.0696213 loss)
I0421 23:48:22.245599 32397 solver.cpp:245] Train net output #131: loss3/loss07 = 0.195136 (* 0.0909091 = 0.0177396 loss)
I0421 23:48:22.245612 32397 solver.cpp:245] Train net output #132: loss3/loss08 = 0.0417465 (* 0.0909091 = 0.00379514 loss)
I0421 23:48:22.245626 32397 solver.cpp:245] Train net output #133: loss3/loss09 = 0.0012209 (* 0.0909091 = 0.000110991 loss)
I0421 23:48:22.245640 32397 solver.cpp:245] Train net output #134: loss3/loss10 = 0.000292692 (* 0.0909091 = 2.66084e-05 loss)
I0421 23:48:22.245654 32397 solver.cpp:245] Train net output #135: loss3/loss11 = 1.17719e-06 (* 0.0909091 = 1.07018e-07 loss)
I0421 23:48:22.245667 32397 solver.cpp:245] Train net output #136: loss3/loss12 = 1.2666e-06 (* 0.0909091 = 1.15146e-07 loss)
I0421 23:48:22.245682 32397 solver.cpp:245] Train net output #137: loss3/loss13 = 1.07289e-06 (* 0.0909091 = 9.75351e-08 loss)
I0421 23:48:22.245695 32397 solver.cpp:245] Train net output #138: loss3/loss14 = 9.38775e-07 (* 0.0909091 = 8.53432e-08 loss)
I0421 23:48:22.245709 32397 solver.cpp:245] Train net output #139: loss3/loss15 = 1.43052e-06 (* 0.0909091 = 1.30047e-07 loss)
I0421 23:48:22.245723 32397 solver.cpp:245] Train net output #140: loss3/loss16 = 1.05798e-06 (* 0.0909091 = 9.61804e-08 loss)
I0421 23:48:22.245736 32397 solver.cpp:245] Train net output #141: loss3/loss17 = 1.34111e-06 (* 0.0909091 = 1.21919e-07 loss)
I0421 23:48:22.245750 32397 solver.cpp:245] Train net output #142: loss3/loss18 = 1.07289e-06 (* 0.0909091 = 9.75351e-08 loss)
I0421 23:48:22.245764 32397 solver.cpp:245] Train net output #143: loss3/loss19 = 1.207e-06 (* 0.0909091 = 1.09727e-07 loss)
I0421 23:48:22.245779 32397 solver.cpp:245] Train net output #144: loss3/loss20 = 8.49367e-07 (* 0.0909091 = 7.72152e-08 loss)
I0421 23:48:22.245792 32397 solver.cpp:245] Train net output #145: loss3/loss21 = 8.04664e-07 (* 0.0909091 = 7.31513e-08 loss)
I0421 23:48:22.245806 32397 solver.cpp:245] Train net output #146: loss3/loss22 = 8.94071e-07 (* 0.0909091 = 8.12792e-08 loss)
I0421 23:48:22.245818 32397 solver.cpp:245] Train net output #147: total_accuracy = 0.875
I0421 23:48:22.245831 32397 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.75
I0421 23:48:22.245851 32397 solver.cpp:245] Train net output #149: total_confidence = 0.751845
I0421 23:48:22.245863 32397 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.57534
I0421 23:48:22.245877 32397 sgd_solver.cpp:106] Iteration 2000, lr = 0.001
I0421 23:54:03.824345 32397 solver.cpp:229] Iteration 2500, loss = 2.35205
I0421 23:54:03.824477 32397 solver.cpp:245] Train net output #0: loss1/accuracy = 0.65
I0421 23:54:03.824497 32397 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75
I0421 23:54:03.824511 32397 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.375
I0421 23:54:03.824522 32397 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.625
I0421 23:54:03.824537 32397 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.5
I0421 23:54:03.824548 32397 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.5
I0421 23:54:03.824560 32397 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.75
I0421 23:54:03.824573 32397 solver.cpp:245] Train net output #7: loss1/accuracy07 = 1
I0421 23:54:03.824584 32397 solver.cpp:245] Train net output #8: loss1/accuracy08 = 1
I0421 23:54:03.824595 32397 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1
I0421 23:54:03.824606 32397 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0421 23:54:03.824618 32397 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0421 23:54:03.824630 32397 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0421 23:54:03.824640 32397 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0421 23:54:03.824652 32397 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0421 23:54:03.824663 32397 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0421 23:54:03.824674 32397 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0421 23:54:03.824687 32397 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0421 23:54:03.824698 32397 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0421 23:54:03.824709 32397 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0421 23:54:03.824720 32397 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0421 23:54:03.824733 32397 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0421 23:54:03.824743 32397 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0421 23:54:03.824755 32397 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.886364
I0421 23:54:03.824767 32397 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.85
I0421 23:54:03.824782 32397 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.04818 (* 0.3 = 0.314454 loss)
I0421 23:54:03.824797 32397 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.317872 (* 0.3 = 0.0953617 loss)
I0421 23:54:03.824812 32397 solver.cpp:245] Train net output #27: loss1/loss01 = 0.850599 (* 0.0272727 = 0.0231982 loss)
I0421 23:54:03.824826 32397 solver.cpp:245] Train net output #28: loss1/loss02 = 1.91114 (* 0.0272727 = 0.052122 loss)
I0421 23:54:03.824841 32397 solver.cpp:245] Train net output #29: loss1/loss03 = 1.62884 (* 0.0272727 = 0.044423 loss)
I0421 23:54:03.824853 32397 solver.cpp:245] Train net output #30: loss1/loss04 = 1.65819 (* 0.0272727 = 0.0452235 loss)
I0421 23:54:03.824867 32397 solver.cpp:245] Train net output #31: loss1/loss05 = 1.52015 (* 0.0272727 = 0.0414586 loss)
I0421 23:54:03.824882 32397 solver.cpp:245] Train net output #32: loss1/loss06 = 0.80417 (* 0.0272727 = 0.0219319 loss)
I0421 23:54:03.824895 32397 solver.cpp:245] Train net output #33: loss1/loss07 = 0.172121 (* 0.0272727 = 0.00469421 loss)
I0421 23:54:03.824909 32397 solver.cpp:245] Train net output #34: loss1/loss08 = 0.0113326 (* 0.0272727 = 0.000309071 loss)
I0421 23:54:03.824924 32397 solver.cpp:245] Train net output #35: loss1/loss09 = 0.00162548 (* 0.0272727 = 4.43313e-05 loss)
I0421 23:54:03.824939 32397 solver.cpp:245] Train net output #36: loss1/loss10 = 0.000186832 (* 0.0272727 = 5.09542e-06 loss)
I0421 23:54:03.824952 32397 solver.cpp:245] Train net output #37: loss1/loss11 = 1.33368e-05 (* 0.0272727 = 3.63731e-07 loss)
I0421 23:54:03.824966 32397 solver.cpp:245] Train net output #38: loss1/loss12 = 1.15336e-05 (* 0.0272727 = 3.14554e-07 loss)
I0421 23:54:03.824980 32397 solver.cpp:245] Train net output #39: loss1/loss13 = 1.12654e-05 (* 0.0272727 = 3.07238e-07 loss)
I0421 23:54:03.825013 32397 solver.cpp:245] Train net output #40: loss1/loss14 = 1.60193e-05 (* 0.0272727 = 4.3689e-07 loss)
I0421 23:54:03.825029 32397 solver.cpp:245] Train net output #41: loss1/loss15 = 1.06544e-05 (* 0.0272727 = 2.90576e-07 loss)
I0421 23:54:03.825043 32397 solver.cpp:245] Train net output #42: loss1/loss16 = 2.47824e-05 (* 0.0272727 = 6.75883e-07 loss)
I0421 23:54:03.825057 32397 solver.cpp:245] Train net output #43: loss1/loss17 = 1.88357e-05 (* 0.0272727 = 5.13701e-07 loss)
I0421 23:54:03.825072 32397 solver.cpp:245] Train net output #44: loss1/loss18 = 1.44545e-05 (* 0.0272727 = 3.94213e-07 loss)
I0421 23:54:03.825084 32397 solver.cpp:245] Train net output #45: loss1/loss19 = 1.49908e-05 (* 0.0272727 = 4.08841e-07 loss)
I0421 23:54:03.825098 32397 solver.cpp:245] Train net output #46: loss1/loss20 = 1.25022e-05 (* 0.0272727 = 3.4097e-07 loss)
I0421 23:54:03.825112 32397 solver.cpp:245] Train net output #47: loss1/loss21 = 1.28301e-05 (* 0.0272727 = 3.49911e-07 loss)
I0421 23:54:03.825126 32397 solver.cpp:245] Train net output #48: loss1/loss22 = 1.34709e-05 (* 0.0272727 = 3.67387e-07 loss)
I0421 23:54:03.825139 32397 solver.cpp:245] Train net output #49: loss2/accuracy = 0.875
I0421 23:54:03.825150 32397 solver.cpp:245] Train net output #50: loss2/accuracy01 = 1
I0421 23:54:03.825161 32397 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75
I0421 23:54:03.825173 32397 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.25
I0421 23:54:03.825186 32397 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.625
I0421 23:54:03.825196 32397 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5
I0421 23:54:03.825212 32397 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.75
I0421 23:54:03.825223 32397 solver.cpp:245] Train net output #56: loss2/accuracy07 = 1
I0421 23:54:03.825235 32397 solver.cpp:245] Train net output #57: loss2/accuracy08 = 1
I0421 23:54:03.825247 32397 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1
I0421 23:54:03.825258 32397 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0421 23:54:03.825268 32397 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0421 23:54:03.825280 32397 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0421 23:54:03.825291 32397 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0421 23:54:03.825302 32397 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0421 23:54:03.825314 32397 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0421 23:54:03.825325 32397 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0421 23:54:03.825336 32397 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0421 23:54:03.825347 32397 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0421 23:54:03.825358 32397 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0421 23:54:03.825371 32397 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0421 23:54:03.825381 32397 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0421 23:54:03.825392 32397 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0421 23:54:03.825403 32397 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.960227
I0421 23:54:03.825414 32397 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 1
I0421 23:54:03.825428 32397 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.320908 (* 0.3 = 0.0962725 loss)
I0421 23:54:03.825443 32397 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.115251 (* 0.3 = 0.0345752 loss)
I0421 23:54:03.825456 32397 solver.cpp:245] Train net output #76: loss2/loss01 = 0.198049 (* 0.0272727 = 0.00540133 loss)
I0421 23:54:03.825469 32397 solver.cpp:245] Train net output #77: loss2/loss02 = 0.961741 (* 0.0272727 = 0.0262293 loss)
I0421 23:54:03.825497 32397 solver.cpp:245] Train net output #78: loss2/loss03 = 1.62545 (* 0.0272727 = 0.0443303 loss)
I0421 23:54:03.825513 32397 solver.cpp:245] Train net output #79: loss2/loss04 = 1.56103 (* 0.0272727 = 0.0425734 loss)
I0421 23:54:03.825527 32397 solver.cpp:245] Train net output #80: loss2/loss05 = 1.14735 (* 0.0272727 = 0.0312913 loss)
I0421 23:54:03.825541 32397 solver.cpp:245] Train net output #81: loss2/loss06 = 0.579659 (* 0.0272727 = 0.0158089 loss)
I0421 23:54:03.825554 32397 solver.cpp:245] Train net output #82: loss2/loss07 = 0.0674304 (* 0.0272727 = 0.00183901 loss)
I0421 23:54:03.825568 32397 solver.cpp:245] Train net output #83: loss2/loss08 = 0.0485575 (* 0.0272727 = 0.00132429 loss)
I0421 23:54:03.825582 32397 solver.cpp:245] Train net output #84: loss2/loss09 = 0.0074835 (* 0.0272727 = 0.000204095 loss)
I0421 23:54:03.825597 32397 solver.cpp:245] Train net output #85: loss2/loss10 = 0.000521883 (* 0.0272727 = 1.42332e-05 loss)
I0421 23:54:03.825610 32397 solver.cpp:245] Train net output #86: loss2/loss11 = 1.4753e-05 (* 0.0272727 = 4.02354e-07 loss)
I0421 23:54:03.825624 32397 solver.cpp:245] Train net output #87: loss2/loss12 = 4.18729e-06 (* 0.0272727 = 1.14199e-07 loss)
I0421 23:54:03.825637 32397 solver.cpp:245] Train net output #88: loss2/loss13 = 4.60452e-06 (* 0.0272727 = 1.25578e-07 loss)
I0421 23:54:03.825651 32397 solver.cpp:245] Train net output #89: loss2/loss14 = 2.07127e-06 (* 0.0272727 = 5.64893e-08 loss)
I0421 23:54:03.825665 32397 solver.cpp:245] Train net output #90: loss2/loss15 = 4.44059e-06 (* 0.0272727 = 1.21107e-07 loss)
I0421 23:54:03.825680 32397 solver.cpp:245] Train net output #91: loss2/loss16 = 2.02657e-06 (* 0.0272727 = 5.52701e-08 loss)
I0421 23:54:03.825693 32397 solver.cpp:245] Train net output #92: loss2/loss17 = 4.60453e-06 (* 0.0272727 = 1.25578e-07 loss)
I0421 23:54:03.825707 32397 solver.cpp:245] Train net output #93: loss2/loss18 = 1.37091e-06 (* 0.0272727 = 3.73885e-08 loss)
I0421 23:54:03.825721 32397 solver.cpp:245] Train net output #94: loss2/loss19 = 2.23518e-06 (* 0.0272727 = 6.09596e-08 loss)
I0421 23:54:03.825734 32397 solver.cpp:245] Train net output #95: loss2/loss20 = 4.45551e-06 (* 0.0272727 = 1.21514e-07 loss)
I0421 23:54:03.825748 32397 solver.cpp:245] Train net output #96: loss2/loss21 = 5.70725e-06 (* 0.0272727 = 1.55652e-07 loss)
I0421 23:54:03.825762 32397 solver.cpp:245] Train net output #97: loss2/loss22 = 7.52523e-06 (* 0.0272727 = 2.05234e-07 loss)
I0421 23:54:03.825773 32397 solver.cpp:245] Train net output #98: loss3/accuracy = 0.975
I0421 23:54:03.825785 32397 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0421 23:54:03.825798 32397 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0421 23:54:03.825809 32397 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0421 23:54:03.825819 32397 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875
I0421 23:54:03.825830 32397 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875
I0421 23:54:03.825842 32397 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.875
I0421 23:54:03.825853 32397 solver.cpp:245] Train net output #105: loss3/accuracy07 = 1
I0421 23:54:03.825865 32397 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1
I0421 23:54:03.825875 32397 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1
I0421 23:54:03.825887 32397 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0421 23:54:03.825898 32397 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0421 23:54:03.825909 32397 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0421 23:54:03.825920 32397 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0421 23:54:03.825932 32397 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0421 23:54:03.825942 32397 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0421 23:54:03.825953 32397 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0421 23:54:03.825974 32397 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0421 23:54:03.825987 32397 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0421 23:54:03.825999 32397 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0421 23:54:03.826009 32397 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0421 23:54:03.826020 32397 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0421 23:54:03.826031 32397 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0421 23:54:03.826042 32397 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.994318
I0421 23:54:03.826055 32397 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 1
I0421 23:54:03.826067 32397 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.175951 (* 1 = 0.175951 loss)
I0421 23:54:03.826081 32397 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.0456792 (* 1 = 0.0456792 loss)
I0421 23:54:03.826095 32397 solver.cpp:245] Train net output #125: loss3/loss01 = 0.136809 (* 0.0909091 = 0.0124372 loss)
I0421 23:54:03.826117 32397 solver.cpp:245] Train net output #126: loss3/loss02 = 0.182827 (* 0.0909091 = 0.0166207 loss)
I0421 23:54:03.826129 32397 solver.cpp:245] Train net output #127: loss3/loss03 = 0.0776339 (* 0.0909091 = 0.00705763 loss)
I0421 23:54:03.826143 32397 solver.cpp:245] Train net output #128: loss3/loss04 = 0.335512 (* 0.0909091 = 0.0305011 loss)
I0421 23:54:03.826158 32397 solver.cpp:245] Train net output #129: loss3/loss05 = 0.181804 (* 0.0909091 = 0.0165277 loss)
I0421 23:54:03.826179 32397 solver.cpp:245] Train net output #130: loss3/loss06 = 0.216117 (* 0.0909091 = 0.019647 loss)
I0421 23:54:03.826191 32397 solver.cpp:245] Train net output #131: loss3/loss07 = 0.0654546 (* 0.0909091 = 0.00595041 loss)
I0421 23:54:03.826205 32397 solver.cpp:245] Train net output #132: loss3/loss08 = 0.0011797 (* 0.0909091 = 0.000107246 loss)
I0421 23:54:03.826220 32397 solver.cpp:245] Train net output #133: loss3/loss09 = 0.000108274 (* 0.0909091 = 9.84313e-06 loss)
I0421 23:54:03.826232 32397 solver.cpp:245] Train net output #134: loss3/loss10 = 3.54304e-05 (* 0.0909091 = 3.22094e-06 loss)
I0421 23:54:03.826246 32397 solver.cpp:245] Train net output #135: loss3/loss11 = 1.85973e-05 (* 0.0909091 = 1.69066e-06 loss)
I0421 23:54:03.826263 32397 solver.cpp:245] Train net output #136: loss3/loss12 = 1.77478e-05 (* 0.0909091 = 1.61344e-06 loss)
I0421 23:54:03.826278 32397 solver.cpp:245] Train net output #137: loss3/loss13 = 1.73604e-05 (* 0.0909091 = 1.57822e-06 loss)
I0421 23:54:03.826292 32397 solver.cpp:245] Train net output #138: loss3/loss14 = 1.6347e-05 (* 0.0909091 = 1.48609e-06 loss)
I0421 23:54:03.826306 32397 solver.cpp:245] Train net output #139: loss3/loss15 = 1.87612e-05 (* 0.0909091 = 1.70556e-06 loss)
I0421 23:54:03.826323 32397 solver.cpp:245] Train net output #140: loss3/loss16 = 1.78819e-05 (* 0.0909091 = 1.62563e-06 loss)
I0421 23:54:03.826336 32397 solver.cpp:245] Train net output #141: loss3/loss17 = 1.47525e-05 (* 0.0909091 = 1.34114e-06 loss)
I0421 23:54:03.826349 32397 solver.cpp:245] Train net output #142: loss3/loss18 = 1.44396e-05 (* 0.0909091 = 1.31269e-06 loss)
I0421 23:54:03.826364 32397 solver.cpp:245] Train net output #143: loss3/loss19 = 1.87761e-05 (* 0.0909091 = 1.70692e-06 loss)
I0421 23:54:03.826376 32397 solver.cpp:245] Train net output #144: loss3/loss20 = 1.58404e-05 (* 0.0909091 = 1.44003e-06 loss)
I0421 23:54:03.826390 32397 solver.cpp:245] Train net output #145: loss3/loss21 = 1.85675e-05 (* 0.0909091 = 1.68795e-06 loss)
I0421 23:54:03.826405 32397 solver.cpp:245] Train net output #146: loss3/loss22 = 1.4067e-05 (* 0.0909091 = 1.27882e-06 loss)
I0421 23:54:03.826416 32397 solver.cpp:245] Train net output #147: total_accuracy = 0.875
I0421 23:54:03.826427 32397 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.625
I0421 23:54:03.826448 32397 solver.cpp:245] Train net output #149: total_confidence = 0.599545
I0421 23:54:03.826462 32397 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.519731
I0421 23:54:03.826475 32397 sgd_solver.cpp:106] Iteration 2500, lr = 0.001
I0421 23:59:45.553874 32397 solver.cpp:229] Iteration 3000, loss = 2.24909
I0421 23:59:45.553990 32397 solver.cpp:245] Train net output #0: loss1/accuracy = 0.808511
I0421 23:59:45.554020 32397 solver.cpp:245] Train net output #1: loss1/accuracy01 = 1
I0421 23:59:45.554052 32397 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.625
I0421 23:59:45.554082 32397 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.875
I0421 23:59:45.554116 32397 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.75
I0421 23:59:45.554139 32397 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.75
I0421 23:59:45.554164 32397 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.875
I0421 23:59:45.554189 32397 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.875
I0421 23:59:45.554213 32397 solver.cpp:245] Train net output #8: loss1/accuracy08 = 1
I0421 23:59:45.554234 32397 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875
I0421 23:59:45.554257 32397 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0421 23:59:45.554280 32397 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0421 23:59:45.554303 32397 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0421 23:59:45.554327 32397 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0421 23:59:45.554348 32397 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0421 23:59:45.554370 32397 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0421 23:59:45.554394 32397 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0421 23:59:45.554415 32397 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0421 23:59:45.554437 32397 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0421 23:59:45.554461 32397 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0421 23:59:45.554482 32397 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0421 23:59:45.554505 32397 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0421 23:59:45.554529 32397 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0421 23:59:45.554551 32397 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.943182
I0421 23:59:45.554574 32397 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.87234
I0421 23:59:45.554601 32397 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 0.835388 (* 0.3 = 0.250616 loss)
I0421 23:59:45.554630 32397 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.245629 (* 0.3 = 0.0736888 loss)
I0421 23:59:45.554657 32397 solver.cpp:245] Train net output #27: loss1/loss01 = 0.433454 (* 0.0272727 = 0.0118215 loss)
I0421 23:59:45.554685 32397 solver.cpp:245] Train net output #28: loss1/loss02 = 0.976766 (* 0.0272727 = 0.0266391 loss)
I0421 23:59:45.554713 32397 solver.cpp:245] Train net output #29: loss1/loss03 = 0.9115 (* 0.0272727 = 0.0248591 loss)
I0421 23:59:45.554741 32397 solver.cpp:245] Train net output #30: loss1/loss04 = 1.50844 (* 0.0272727 = 0.0411393 loss)
I0421 23:59:45.554771 32397 solver.cpp:245] Train net output #31: loss1/loss05 = 1.53221 (* 0.0272727 = 0.0417876 loss)
I0421 23:59:45.554798 32397 solver.cpp:245] Train net output #32: loss1/loss06 = 1.04743 (* 0.0272727 = 0.0285662 loss)
I0421 23:59:45.554826 32397 solver.cpp:245] Train net output #33: loss1/loss07 = 0.374225 (* 0.0272727 = 0.0102061 loss)
I0421 23:59:45.554853 32397 solver.cpp:245] Train net output #34: loss1/loss08 = 0.160778 (* 0.0272727 = 0.00438487 loss)
I0421 23:59:45.554880 32397 solver.cpp:245] Train net output #35: loss1/loss09 = 0.733389 (* 0.0272727 = 0.0200015 loss)
I0421 23:59:45.554908 32397 solver.cpp:245] Train net output #36: loss1/loss10 = 0.0126769 (* 0.0272727 = 0.000345732 loss)
I0421 23:59:45.554935 32397 solver.cpp:245] Train net output #37: loss1/loss11 = 2.88351e-05 (* 0.0272727 = 7.86412e-07 loss)
I0421 23:59:45.554961 32397 solver.cpp:245] Train net output #38: loss1/loss12 = 3.96623e-05 (* 0.0272727 = 1.0817e-06 loss)
I0421 23:59:45.555014 32397 solver.cpp:245] Train net output #39: loss1/loss13 = 3.07727e-05 (* 0.0272727 = 8.39254e-07 loss)
I0421 23:59:45.555044 32397 solver.cpp:245] Train net output #40: loss1/loss14 = 2.84177e-05 (* 0.0272727 = 7.75028e-07 loss)
I0421 23:59:45.555071 32397 solver.cpp:245] Train net output #41: loss1/loss15 = 4.26727e-05 (* 0.0272727 = 1.1638e-06 loss)
I0421 23:59:45.555099 32397 solver.cpp:245] Train net output #42: loss1/loss16 = 6.06247e-05 (* 0.0272727 = 1.6534e-06 loss)
I0421 23:59:45.555131 32397 solver.cpp:245] Train net output #43: loss1/loss17 = 4.62198e-05 (* 0.0272727 = 1.26054e-06 loss)
I0421 23:59:45.555160 32397 solver.cpp:245] Train net output #44: loss1/loss18 = 7.83396e-05 (* 0.0272727 = 2.13654e-06 loss)
I0421 23:59:45.555186 32397 solver.cpp:245] Train net output #45: loss1/loss19 = 5.78748e-05 (* 0.0272727 = 1.5784e-06 loss)
I0421 23:59:45.555212 32397 solver.cpp:245] Train net output #46: loss1/loss20 = 7.80675e-05 (* 0.0272727 = 2.12911e-06 loss)
I0421 23:59:45.555238 32397 solver.cpp:245] Train net output #47: loss1/loss21 = 4.14806e-05 (* 0.0272727 = 1.13129e-06 loss)
I0421 23:59:45.555265 32397 solver.cpp:245] Train net output #48: loss1/loss22 = 4.84563e-05 (* 0.0272727 = 1.32153e-06 loss)
I0421 23:59:45.555287 32397 solver.cpp:245] Train net output #49: loss2/accuracy = 0.87234
I0421 23:59:45.555310 32397 solver.cpp:245] Train net output #50: loss2/accuracy01 = 1
I0421 23:59:45.555330 32397 solver.cpp:245] Train net output #51: loss2/accuracy02 = 1
I0421 23:59:45.555368 32397 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.625
I0421 23:59:45.555397 32397 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.5
I0421 23:59:45.555419 32397 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.75
I0421 23:59:45.555440 32397 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.875
I0421 23:59:45.555461 32397 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.875
I0421 23:59:45.555483 32397 solver.cpp:245] Train net output #57: loss2/accuracy08 = 1
I0421 23:59:45.555505 32397 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875
I0421 23:59:45.555526 32397 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0421 23:59:45.555546 32397 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0421 23:59:45.555568 32397 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0421 23:59:45.555588 32397 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0421 23:59:45.555610 32397 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0421 23:59:45.555634 32397 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0421 23:59:45.555655 32397 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0421 23:59:45.555676 32397 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0421 23:59:45.555698 32397 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0421 23:59:45.555719 32397 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0421 23:59:45.555742 32397 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0421 23:59:45.555763 32397 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0421 23:59:45.555784 32397 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0421 23:59:45.555805 32397 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.965909
I0421 23:59:45.555827 32397 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.978723
I0421 23:59:45.555852 32397 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.42474 (* 0.3 = 0.127422 loss)
I0421 23:59:45.555878 32397 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.122719 (* 0.3 = 0.0368157 loss)
I0421 23:59:45.555907 32397 solver.cpp:245] Train net output #76: loss2/loss01 = 0.225492 (* 0.0272727 = 0.00614979 loss)
I0421 23:59:45.555932 32397 solver.cpp:245] Train net output #77: loss2/loss02 = 0.368798 (* 0.0272727 = 0.0100581 loss)
I0421 23:59:45.555977 32397 solver.cpp:245] Train net output #78: loss2/loss03 = 1.03418 (* 0.0272727 = 0.0282049 loss)
I0421 23:59:45.556006 32397 solver.cpp:245] Train net output #79: loss2/loss04 = 1.44593 (* 0.0272727 = 0.0394344 loss)
I0421 23:59:45.556033 32397 solver.cpp:245] Train net output #80: loss2/loss05 = 0.945118 (* 0.0272727 = 0.0257759 loss)
I0421 23:59:45.556066 32397 solver.cpp:245] Train net output #81: loss2/loss06 = 0.976027 (* 0.0272727 = 0.0266189 loss)
I0421 23:59:45.556094 32397 solver.cpp:245] Train net output #82: loss2/loss07 = 0.458514 (* 0.0272727 = 0.0125049 loss)
I0421 23:59:45.556123 32397 solver.cpp:245] Train net output #83: loss2/loss08 = 0.138069 (* 0.0272727 = 0.00376552 loss)
I0421 23:59:45.556149 32397 solver.cpp:245] Train net output #84: loss2/loss09 = 0.582614 (* 0.0272727 = 0.0158895 loss)
I0421 23:59:45.556181 32397 solver.cpp:245] Train net output #85: loss2/loss10 = 0.00887202 (* 0.0272727 = 0.000241964 loss)
I0421 23:59:45.556210 32397 solver.cpp:245] Train net output #86: loss2/loss11 = 8.28518e-06 (* 0.0272727 = 2.25959e-07 loss)
I0421 23:59:45.556237 32397 solver.cpp:245] Train net output #87: loss2/loss12 = 6.51187e-06 (* 0.0272727 = 1.77596e-07 loss)
I0421 23:59:45.556264 32397 solver.cpp:245] Train net output #88: loss2/loss13 = 1.1191e-05 (* 0.0272727 = 3.05209e-07 loss)
I0421 23:59:45.556293 32397 solver.cpp:245] Train net output #89: loss2/loss14 = 2.51545e-05 (* 0.0272727 = 6.86031e-07 loss)
I0421 23:59:45.556321 32397 solver.cpp:245] Train net output #90: loss2/loss15 = 1.10271e-05 (* 0.0272727 = 3.00738e-07 loss)
I0421 23:59:45.556350 32397 solver.cpp:245] Train net output #91: loss2/loss16 = 1.63919e-05 (* 0.0272727 = 4.47053e-07 loss)
I0421 23:59:45.556380 32397 solver.cpp:245] Train net output #92: loss2/loss17 = 9.13453e-06 (* 0.0272727 = 2.49124e-07 loss)
I0421 23:59:45.556406 32397 solver.cpp:245] Train net output #93: loss2/loss18 = 1.53784e-05 (* 0.0272727 = 4.19412e-07 loss)
I0421 23:59:45.556434 32397 solver.cpp:245] Train net output #94: loss2/loss19 = 8.37459e-06 (* 0.0272727 = 2.28398e-07 loss)
I0421 23:59:45.556463 32397 solver.cpp:245] Train net output #95: loss2/loss20 = 2.02666e-05 (* 0.0272727 = 5.52727e-07 loss)
I0421 23:59:45.556489 32397 solver.cpp:245] Train net output #96: loss2/loss21 = 8.55347e-06 (* 0.0272727 = 2.33276e-07 loss)
I0421 23:59:45.556516 32397 solver.cpp:245] Train net output #97: loss2/loss22 = 9.37297e-06 (* 0.0272727 = 2.55626e-07 loss)
I0421 23:59:45.556540 32397 solver.cpp:245] Train net output #98: loss3/accuracy = 0.957447
I0421 23:59:45.556562 32397 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875
I0421 23:59:45.556584 32397 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875
I0421 23:59:45.556607 32397 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0421 23:59:45.556628 32397 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875
I0421 23:59:45.556649 32397 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875
I0421 23:59:45.556671 32397 solver.cpp:245] Train net output #104: loss3/accuracy06 = 1
I0421 23:59:45.556692 32397 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875
I0421 23:59:45.556713 32397 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1
I0421 23:59:45.556735 32397 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875
I0421 23:59:45.556756 32397 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0421 23:59:45.556777 32397 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0421 23:59:45.556797 32397 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0421 23:59:45.556818 32397 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0421 23:59:45.556838 32397 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0421 23:59:45.556859 32397 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0421 23:59:45.556896 32397 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0421 23:59:45.556920 32397 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0421 23:59:45.556941 32397 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0421 23:59:45.556962 32397 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0421 23:59:45.556982 32397 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0421 23:59:45.557003 32397 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0421 23:59:45.557024 32397 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0421 23:59:45.557045 32397 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.988636
I0421 23:59:45.557067 32397 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 1
I0421 23:59:45.557092 32397 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.180139 (* 1 = 0.180139 loss)
I0421 23:59:45.557122 32397 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.0541509 (* 1 = 0.0541509 loss)
I0421 23:59:45.557149 32397 solver.cpp:245] Train net output #125: loss3/loss01 = 0.269997 (* 0.0909091 = 0.0245452 loss)
I0421 23:59:45.557176 32397 solver.cpp:245] Train net output #126: loss3/loss02 = 0.199711 (* 0.0909091 = 0.0181555 loss)
I0421 23:59:45.557202 32397 solver.cpp:245] Train net output #127: loss3/loss03 = 0.262887 (* 0.0909091 = 0.0238988 loss)
I0421 23:59:45.557234 32397 solver.cpp:245] Train net output #128: loss3/loss04 = 0.266823 (* 0.0909091 = 0.0242566 loss)
I0421 23:59:45.557261 32397 solver.cpp:245] Train net output #129: loss3/loss05 = 0.469492 (* 0.0909091 = 0.0426811 loss)
I0421 23:59:45.557282 32397 solver.cpp:245] Train net output #130: loss3/loss06 = 0.322502 (* 0.0909091 = 0.0293183 loss)
I0421 23:59:45.557310 32397 solver.cpp:245] Train net output #131: loss3/loss07 = 0.288505 (* 0.0909091 = 0.0262278 loss)
I0421 23:59:45.557337 32397 solver.cpp:245] Train net output #132: loss3/loss08 = 0.134796 (* 0.0909091 = 0.0122542 loss)
I0421 23:59:45.557363 32397 solver.cpp:245] Train net output #133: loss3/loss09 = 0.501992 (* 0.0909091 = 0.0456356 loss)
I0421 23:59:45.557390 32397 solver.cpp:245] Train net output #134: loss3/loss10 = 0.00737212 (* 0.0909091 = 0.000670192 loss)
I0421 23:59:45.557416 32397 solver.cpp:245] Train net output #135: loss3/loss11 = 2.68025e-05 (* 0.0909091 = 2.43659e-06 loss)
I0421 23:59:45.557442 32397 solver.cpp:245] Train net output #136: loss3/loss12 = 2.40751e-05 (* 0.0909091 = 2.18864e-06 loss)
I0421 23:59:45.557468 32397 solver.cpp:245] Train net output #137: loss3/loss13 = 2.83228e-05 (* 0.0909091 = 2.5748e-06 loss)
I0421 23:59:45.557495 32397 solver.cpp:245] Train net output #138: loss3/loss14 = 1.81211e-05 (* 0.0909091 = 1.64737e-06 loss)
I0421 23:59:45.557521 32397 solver.cpp:245] Train net output #139: loss3/loss15 = 2.81737e-05 (* 0.0909091 = 2.56125e-06 loss)
I0421 23:59:45.557548 32397 solver.cpp:245] Train net output #140: loss3/loss16 = 2.85016e-05 (* 0.0909091 = 2.59106e-06 loss)
I0421 23:59:45.557574 32397 solver.cpp:245] Train net output #141: loss3/loss17 = 2.2689e-05 (* 0.0909091 = 2.06264e-06 loss)
I0421 23:59:45.557600 32397 solver.cpp:245] Train net output #142: loss3/loss18 = 1.88513e-05 (* 0.0909091 = 1.71376e-06 loss)
I0421 23:59:45.557626 32397 solver.cpp:245] Train net output #143: loss3/loss19 = 2.31361e-05 (* 0.0909091 = 2.10328e-06 loss)
I0421 23:59:45.557652 32397 solver.cpp:245] Train net output #144: loss3/loss20 = 1.97157e-05 (* 0.0909091 = 1.79234e-06 loss)
I0421 23:59:45.557680 32397 solver.cpp:245] Train net output #145: loss3/loss21 = 1.82552e-05 (* 0.0909091 = 1.65956e-06 loss)
I0421 23:59:45.557706 32397 solver.cpp:245] Train net output #146: loss3/loss22 = 1.96412e-05 (* 0.0909091 = 1.78556e-06 loss)
I0421 23:59:45.557729 32397 solver.cpp:245] Train net output #147: total_accuracy = 0.875
I0421 23:59:45.557751 32397 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.625
I0421 23:59:45.557790 32397 solver.cpp:245] Train net output #149: total_confidence = 0.566261
I0421 23:59:45.557812 32397 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.428432
I0421 23:59:45.557834 32397 sgd_solver.cpp:106] Iteration 3000, lr = 0.001
I0422 00:05:27.168274 32397 solver.cpp:229] Iteration 3500, loss = 2.23416
I0422 00:05:27.168436 32397 solver.cpp:245] Train net output #0: loss1/accuracy = 0.52381
I0422 00:05:27.168457 32397 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75
I0422 00:05:27.168469 32397 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.625
I0422 00:05:27.168483 32397 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375
I0422 00:05:27.168494 32397 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375
I0422 00:05:27.168506 32397 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.375
I0422 00:05:27.168519 32397 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.5
I0422 00:05:27.168530 32397 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.75
I0422 00:05:27.168542 32397 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875
I0422 00:05:27.168555 32397 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1
I0422 00:05:27.168566 32397 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0422 00:05:27.168578 32397 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0422 00:05:27.168591 32397 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0422 00:05:27.168602 32397 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0422 00:05:27.168613 32397 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0422 00:05:27.168625 32397 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0422 00:05:27.168637 32397 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0422 00:05:27.168648 32397 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0422 00:05:27.168660 32397 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0422 00:05:27.168673 32397 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0422 00:05:27.168684 32397 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0422 00:05:27.168695 32397 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0422 00:05:27.168707 32397 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0422 00:05:27.168720 32397 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.880682
I0422 00:05:27.168731 32397 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.738095
I0422 00:05:27.168748 32397 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.76406 (* 0.3 = 0.529218 loss)
I0422 00:05:27.168762 32397 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.481046 (* 0.3 = 0.144314 loss)
I0422 00:05:27.168777 32397 solver.cpp:245] Train net output #27: loss1/loss01 = 1.8354 (* 0.0272727 = 0.0500565 loss)
I0422 00:05:27.168792 32397 solver.cpp:245] Train net output #28: loss1/loss02 = 1.19862 (* 0.0272727 = 0.0326895 loss)
I0422 00:05:27.168805 32397 solver.cpp:245] Train net output #29: loss1/loss03 = 1.86333 (* 0.0272727 = 0.050818 loss)
I0422 00:05:27.168819 32397 solver.cpp:245] Train net output #30: loss1/loss04 = 2.47613 (* 0.0272727 = 0.0675307 loss)
I0422 00:05:27.168833 32397 solver.cpp:245] Train net output #31: loss1/loss05 = 1.74357 (* 0.0272727 = 0.0475518 loss)
I0422 00:05:27.168848 32397 solver.cpp:245] Train net output #32: loss1/loss06 = 1.17129 (* 0.0272727 = 0.0319442 loss)
I0422 00:05:27.168860 32397 solver.cpp:245] Train net output #33: loss1/loss07 = 0.735492 (* 0.0272727 = 0.0200589 loss)
I0422 00:05:27.168875 32397 solver.cpp:245] Train net output #34: loss1/loss08 = 0.585368 (* 0.0272727 = 0.0159646 loss)
I0422 00:05:27.168889 32397 solver.cpp:245] Train net output #35: loss1/loss09 = 0.0391643 (* 0.0272727 = 0.00106812 loss)
I0422 00:05:27.168903 32397 solver.cpp:245] Train net output #36: loss1/loss10 = 0.0169493 (* 0.0272727 = 0.000462254 loss)
I0422 00:05:27.168918 32397 solver.cpp:245] Train net output #37: loss1/loss11 = 0.000138931 (* 0.0272727 = 3.78903e-06 loss)
I0422 00:05:27.168932 32397 solver.cpp:245] Train net output #38: loss1/loss12 = 0.000130944 (* 0.0272727 = 3.57121e-06 loss)
I0422 00:05:27.168965 32397 solver.cpp:245] Train net output #39: loss1/loss13 = 0.000156035 (* 0.0272727 = 4.2555e-06 loss)
I0422 00:05:27.168982 32397 solver.cpp:245] Train net output #40: loss1/loss14 = 8.91989e-05 (* 0.0272727 = 2.4327e-06 loss)
I0422 00:05:27.168995 32397 solver.cpp:245] Train net output #41: loss1/loss15 = 0.000123884 (* 0.0272727 = 3.37865e-06 loss)
I0422 00:05:27.169009 32397 solver.cpp:245] Train net output #42: loss1/loss16 = 0.000152316 (* 0.0272727 = 4.15408e-06 loss)
I0422 00:05:27.169023 32397 solver.cpp:245] Train net output #43: loss1/loss17 = 0.000127134 (* 0.0272727 = 3.4673e-06 loss)
I0422 00:05:27.169037 32397 solver.cpp:245] Train net output #44: loss1/loss18 = 0.000104605 (* 0.0272727 = 2.85286e-06 loss)
I0422 00:05:27.169051 32397 solver.cpp:245] Train net output #45: loss1/loss19 = 0.000114452 (* 0.0272727 = 3.12143e-06 loss)
I0422 00:05:27.169065 32397 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000137315 (* 0.0272727 = 3.74496e-06 loss)
I0422 00:05:27.169080 32397 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000205832 (* 0.0272727 = 5.61359e-06 loss)
I0422 00:05:27.169093 32397 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000250384 (* 0.0272727 = 6.82866e-06 loss)
I0422 00:05:27.169106 32397 solver.cpp:245] Train net output #49: loss2/accuracy = 0.809524
I0422 00:05:27.169117 32397 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875
I0422 00:05:27.169129 32397 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.875
I0422 00:05:27.169140 32397 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.375
I0422 00:05:27.169152 32397 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.5
I0422 00:05:27.169163 32397 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.625
I0422 00:05:27.169175 32397 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.75
I0422 00:05:27.169186 32397 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.875
I0422 00:05:27.169201 32397 solver.cpp:245] Train net output #57: loss2/accuracy08 = 1
I0422 00:05:27.169214 32397 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1
I0422 00:05:27.169225 32397 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0422 00:05:27.169236 32397 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0422 00:05:27.169248 32397 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0422 00:05:27.169260 32397 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0422 00:05:27.169270 32397 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0422 00:05:27.169281 32397 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0422 00:05:27.169292 32397 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0422 00:05:27.169304 32397 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0422 00:05:27.169315 32397 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0422 00:05:27.169327 32397 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0422 00:05:27.169337 32397 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0422 00:05:27.169349 32397 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0422 00:05:27.169360 32397 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0422 00:05:27.169371 32397 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.943182
I0422 00:05:27.169384 32397 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.904762
I0422 00:05:27.169396 32397 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.674222 (* 0.3 = 0.202267 loss)
I0422 00:05:27.169410 32397 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.227963 (* 0.3 = 0.068389 loss)
I0422 00:05:27.169425 32397 solver.cpp:245] Train net output #76: loss2/loss01 = 0.392232 (* 0.0272727 = 0.0106972 loss)
I0422 00:05:27.169438 32397 solver.cpp:245] Train net output #77: loss2/loss02 = 0.560639 (* 0.0272727 = 0.0152901 loss)
I0422 00:05:27.169467 32397 solver.cpp:245] Train net output #78: loss2/loss03 = 1.70759 (* 0.0272727 = 0.0465707 loss)
I0422 00:05:27.169482 32397 solver.cpp:245] Train net output #79: loss2/loss04 = 1.43881 (* 0.0272727 = 0.0392402 loss)
I0422 00:05:27.169497 32397 solver.cpp:245] Train net output #80: loss2/loss05 = 0.989564 (* 0.0272727 = 0.0269881 loss)
I0422 00:05:27.169510 32397 solver.cpp:245] Train net output #81: loss2/loss06 = 0.826971 (* 0.0272727 = 0.0225537 loss)
I0422 00:05:27.169525 32397 solver.cpp:245] Train net output #82: loss2/loss07 = 0.337332 (* 0.0272727 = 0.00919996 loss)
I0422 00:05:27.169539 32397 solver.cpp:245] Train net output #83: loss2/loss08 = 0.103415 (* 0.0272727 = 0.0028204 loss)
I0422 00:05:27.169553 32397 solver.cpp:245] Train net output #84: loss2/loss09 = 0.0196716 (* 0.0272727 = 0.000536498 loss)
I0422 00:05:27.169567 32397 solver.cpp:245] Train net output #85: loss2/loss10 = 0.0032861 (* 0.0272727 = 8.96209e-05 loss)
I0422 00:05:27.169580 32397 solver.cpp:245] Train net output #86: loss2/loss11 = 3.12927e-06 (* 0.0272727 = 8.53437e-08 loss)
I0422 00:05:27.169595 32397 solver.cpp:245] Train net output #87: loss2/loss12 = 2.81634e-06 (* 0.0272727 = 7.68092e-08 loss)
I0422 00:05:27.169608 32397 solver.cpp:245] Train net output #88: loss2/loss13 = 3.24848e-06 (* 0.0272727 = 8.8595e-08 loss)
I0422 00:05:27.169622 32397 solver.cpp:245] Train net output #89: loss2/loss14 = 4.70883e-06 (* 0.0272727 = 1.28423e-07 loss)
I0422 00:05:27.169636 32397 solver.cpp:245] Train net output #90: loss2/loss15 = 3.26339e-06 (* 0.0272727 = 8.90016e-08 loss)
I0422 00:05:27.169651 32397 solver.cpp:245] Train net output #91: loss2/loss16 = 2.81634e-06 (* 0.0272727 = 7.68091e-08 loss)
I0422 00:05:27.169664 32397 solver.cpp:245] Train net output #92: loss2/loss17 = 2.99515e-06 (* 0.0272727 = 8.16859e-08 loss)
I0422 00:05:27.169677 32397 solver.cpp:245] Train net output #93: loss2/loss18 = 2.50341e-06 (* 0.0272727 = 6.82748e-08 loss)
I0422 00:05:27.169692 32397 solver.cpp:245] Train net output #94: loss2/loss19 = 2.02657e-06 (* 0.0272727 = 5.52701e-08 loss)
I0422 00:05:27.169705 32397 solver.cpp:245] Train net output #95: loss2/loss20 = 4.82805e-06 (* 0.0272727 = 1.31674e-07 loss)
I0422 00:05:27.169719 32397 solver.cpp:245] Train net output #96: loss2/loss21 = 3.17398e-06 (* 0.0272727 = 8.65631e-08 loss)
I0422 00:05:27.169733 32397 solver.cpp:245] Train net output #97: loss2/loss22 = 3.87434e-06 (* 0.0272727 = 1.05664e-07 loss)
I0422 00:05:27.169745 32397 solver.cpp:245] Train net output #98: loss3/accuracy = 0.857143
I0422 00:05:27.169756 32397 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875
I0422 00:05:27.169770 32397 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0422 00:05:27.169780 32397 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.5
I0422 00:05:27.169792 32397 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.75
I0422 00:05:27.169805 32397 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.75
I0422 00:05:27.169816 32397 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.75
I0422 00:05:27.169827 32397 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875
I0422 00:05:27.169838 32397 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1
I0422 00:05:27.169849 32397 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1
I0422 00:05:27.169862 32397 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0422 00:05:27.169872 32397 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0422 00:05:27.169884 32397 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0422 00:05:27.169895 32397 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0422 00:05:27.169908 32397 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0422 00:05:27.169914 32397 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0422 00:05:27.169937 32397 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0422 00:05:27.169950 32397 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0422 00:05:27.169962 32397 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0422 00:05:27.169973 32397 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0422 00:05:27.169984 32397 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0422 00:05:27.169996 32397 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0422 00:05:27.170007 32397 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0422 00:05:27.170018 32397 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.960227
I0422 00:05:27.170030 32397 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.952381
I0422 00:05:27.170044 32397 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.458023 (* 1 = 0.458023 loss)
I0422 00:05:27.170058 32397 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.12825 (* 1 = 0.12825 loss)
I0422 00:05:27.170071 32397 solver.cpp:245] Train net output #125: loss3/loss01 = 0.509342 (* 0.0909091 = 0.0463038 loss)
I0422 00:05:27.170085 32397 solver.cpp:245] Train net output #126: loss3/loss02 = 0.115617 (* 0.0909091 = 0.0105107 loss)
I0422 00:05:27.170099 32397 solver.cpp:245] Train net output #127: loss3/loss03 = 1.42267 (* 0.0909091 = 0.129334 loss)
I0422 00:05:27.170114 32397 solver.cpp:245] Train net output #128: loss3/loss04 = 0.383047 (* 0.0909091 = 0.0348225 loss)
I0422 00:05:27.170127 32397 solver.cpp:245] Train net output #129: loss3/loss05 = 0.445312 (* 0.0909091 = 0.0404829 loss)
I0422 00:05:27.170141 32397 solver.cpp:245] Train net output #130: loss3/loss06 = 0.429335 (* 0.0909091 = 0.0390305 loss)
I0422 00:05:27.170155 32397 solver.cpp:245] Train net output #131: loss3/loss07 = 0.348109 (* 0.0909091 = 0.0316463 loss)
I0422 00:05:27.170169 32397 solver.cpp:245] Train net output #132: loss3/loss08 = 0.0393793 (* 0.0909091 = 0.00357993 loss)
I0422 00:05:27.170182 32397 solver.cpp:245] Train net output #133: loss3/loss09 = 0.00189045 (* 0.0909091 = 0.000171859 loss)
I0422 00:05:27.170197 32397 solver.cpp:245] Train net output #134: loss3/loss10 = 0.000504898 (* 0.0909091 = 4.58998e-05 loss)
I0422 00:05:27.170210 32397 solver.cpp:245] Train net output #135: loss3/loss11 = 4.49194e-05 (* 0.0909091 = 4.08358e-06 loss)
I0422 00:05:27.170224 32397 solver.cpp:245] Train net output #136: loss3/loss12 = 4.69019e-05 (* 0.0909091 = 4.26381e-06 loss)
I0422 00:05:27.170238 32397 solver.cpp:245] Train net output #137: loss3/loss13 = 4.12078e-05 (* 0.0909091 = 3.74616e-06 loss)
I0422 00:05:27.170254 32397 solver.cpp:245] Train net output #138: loss3/loss14 = 5.17541e-05 (* 0.0909091 = 4.70492e-06 loss)
I0422 00:05:27.170269 32397 solver.cpp:245] Train net output #139: loss3/loss15 = 4.13718e-05 (* 0.0909091 = 3.76107e-06 loss)
I0422 00:05:27.170282 32397 solver.cpp:245] Train net output #140: loss3/loss16 = 4.35034e-05 (* 0.0909091 = 3.95485e-06 loss)
I0422 00:05:27.170296 32397 solver.cpp:245] Train net output #141: loss3/loss17 = 4.61865e-05 (* 0.0909091 = 4.19877e-06 loss)
I0422 00:05:27.170310 32397 solver.cpp:245] Train net output #142: loss3/loss18 = 4.69767e-05 (* 0.0909091 = 4.27061e-06 loss)
I0422 00:05:27.170323 32397 solver.cpp:245] Train net output #143: loss3/loss19 = 5.21269e-05 (* 0.0909091 = 4.73881e-06 loss)
I0422 00:05:27.170337 32397 solver.cpp:245] Train net output #144: loss3/loss20 = 4.1834e-05 (* 0.0909091 = 3.80309e-06 loss)
I0422 00:05:27.170351 32397 solver.cpp:245] Train net output #145: loss3/loss21 = 3.21232e-05 (* 0.0909091 = 2.92029e-06 loss)
I0422 00:05:27.170366 32397 solver.cpp:245] Train net output #146: loss3/loss22 = 4.58734e-05 (* 0.0909091 = 4.17031e-06 loss)
I0422 00:05:27.170377 32397 solver.cpp:245] Train net output #147: total_accuracy = 0.5
I0422 00:05:27.170389 32397 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.125
I0422 00:05:27.170411 32397 solver.cpp:245] Train net output #149: total_confidence = 0.441034
I0422 00:05:27.170424 32397 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.409433
I0422 00:05:27.170438 32397 sgd_solver.cpp:106] Iteration 3500, lr = 0.001
I0422 00:11:08.863991 32397 solver.cpp:229] Iteration 4000, loss = 2.31892
I0422 00:11:08.864114 32397 solver.cpp:245] Train net output #0: loss1/accuracy = 0.595745
I0422 00:11:08.864135 32397 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.5
I0422 00:11:08.864147 32397 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5
I0422 00:11:08.864159 32397 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.75
I0422 00:11:08.864171 32397 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375
I0422 00:11:08.864183 32397 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.5
I0422 00:11:08.864195 32397 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.375
I0422 00:11:08.864210 32397 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.625
I0422 00:11:08.864223 32397 solver.cpp:245] Train net output #8: loss1/accuracy08 = 1
I0422 00:11:08.864235 32397 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1
I0422 00:11:08.864248 32397 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0422 00:11:08.864259 32397 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0422 00:11:08.864270 32397 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0422 00:11:08.864281 32397 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0422 00:11:08.864294 32397 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0422 00:11:08.864305 32397 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0422 00:11:08.864315 32397 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0422 00:11:08.864327 32397 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0422 00:11:08.864338 32397 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0422 00:11:08.864351 32397 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0422 00:11:08.864362 32397 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0422 00:11:08.864373 32397 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0422 00:11:08.864384 32397 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0422 00:11:08.864398 32397 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.875
I0422 00:11:08.864409 32397 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.765957
I0422 00:11:08.864425 32397 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.47225 (* 0.3 = 0.441674 loss)
I0422 00:11:08.864439 32397 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.449226 (* 0.3 = 0.134768 loss)
I0422 00:11:08.864454 32397 solver.cpp:245] Train net output #27: loss1/loss01 = 1.70471 (* 0.0272727 = 0.046492 loss)
I0422 00:11:08.864469 32397 solver.cpp:245] Train net output #28: loss1/loss02 = 1.31439 (* 0.0272727 = 0.035847 loss)
I0422 00:11:08.864482 32397 solver.cpp:245] Train net output #29: loss1/loss03 = 1.31696 (* 0.0272727 = 0.035917 loss)
I0422 00:11:08.864495 32397 solver.cpp:245] Train net output #30: loss1/loss04 = 2.26944 (* 0.0272727 = 0.0618938 loss)
I0422 00:11:08.864509 32397 solver.cpp:245] Train net output #31: loss1/loss05 = 2.03209 (* 0.0272727 = 0.0554208 loss)
I0422 00:11:08.864523 32397 solver.cpp:245] Train net output #32: loss1/loss06 = 1.33405 (* 0.0272727 = 0.0363831 loss)
I0422 00:11:08.864537 32397 solver.cpp:245] Train net output #33: loss1/loss07 = 0.851473 (* 0.0272727 = 0.023222 loss)
I0422 00:11:08.864552 32397 solver.cpp:245] Train net output #34: loss1/loss08 = 0.148157 (* 0.0272727 = 0.00404064 loss)
I0422 00:11:08.864565 32397 solver.cpp:245] Train net output #35: loss1/loss09 = 0.0247107 (* 0.0272727 = 0.000673928 loss)
I0422 00:11:08.864579 32397 solver.cpp:245] Train net output #36: loss1/loss10 = 0.0102531 (* 0.0272727 = 0.000279629 loss)
I0422 00:11:08.864594 32397 solver.cpp:245] Train net output #37: loss1/loss11 = 0.000450832 (* 0.0272727 = 1.22954e-05 loss)
I0422 00:11:08.864609 32397 solver.cpp:245] Train net output #38: loss1/loss12 = 0.000246836 (* 0.0272727 = 6.7319e-06 loss)
I0422 00:11:08.864622 32397 solver.cpp:245] Train net output #39: loss1/loss13 = 0.000393035 (* 0.0272727 = 1.07191e-05 loss)
I0422 00:11:08.864655 32397 solver.cpp:245] Train net output #40: loss1/loss14 = 0.000209929 (* 0.0272727 = 5.72533e-06 loss)
I0422 00:11:08.864670 32397 solver.cpp:245] Train net output #41: loss1/loss15 = 0.000272291 (* 0.0272727 = 7.42611e-06 loss)
I0422 00:11:08.864684 32397 solver.cpp:245] Train net output #42: loss1/loss16 = 0.000353581 (* 0.0272727 = 9.64312e-06 loss)
I0422 00:11:08.864698 32397 solver.cpp:245] Train net output #43: loss1/loss17 = 0.000221015 (* 0.0272727 = 6.02768e-06 loss)
I0422 00:11:08.864712 32397 solver.cpp:245] Train net output #44: loss1/loss18 = 0.000253378 (* 0.0272727 = 6.91032e-06 loss)
I0422 00:11:08.864727 32397 solver.cpp:245] Train net output #45: loss1/loss19 = 0.000199505 (* 0.0272727 = 5.44104e-06 loss)
I0422 00:11:08.864740 32397 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000302884 (* 0.0272727 = 8.26046e-06 loss)
I0422 00:11:08.864754 32397 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000330459 (* 0.0272727 = 9.01253e-06 loss)
I0422 00:11:08.864768 32397 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000315258 (* 0.0272727 = 8.59794e-06 loss)
I0422 00:11:08.864779 32397 solver.cpp:245] Train net output #49: loss2/accuracy = 0.702128
I0422 00:11:08.864791 32397 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.75
I0422 00:11:08.864804 32397 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75
I0422 00:11:08.864814 32397 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.625
I0422 00:11:08.864826 32397 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.5
I0422 00:11:08.864838 32397 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.375
I0422 00:11:08.864850 32397 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.625
I0422 00:11:08.864861 32397 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.75
I0422 00:11:08.864873 32397 solver.cpp:245] Train net output #57: loss2/accuracy08 = 1
I0422 00:11:08.864884 32397 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1
I0422 00:11:08.864897 32397 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0422 00:11:08.864908 32397 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0422 00:11:08.864919 32397 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0422 00:11:08.864930 32397 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0422 00:11:08.864941 32397 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0422 00:11:08.864953 32397 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0422 00:11:08.864964 32397 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0422 00:11:08.864975 32397 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0422 00:11:08.864986 32397 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0422 00:11:08.864997 32397 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0422 00:11:08.865010 32397 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0422 00:11:08.865020 32397 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0422 00:11:08.865031 32397 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0422 00:11:08.865042 32397 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.909091
I0422 00:11:08.865054 32397 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.829787
I0422 00:11:08.865067 32397 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.43319 (* 0.3 = 0.429957 loss)
I0422 00:11:08.865082 32397 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.465004 (* 0.3 = 0.139501 loss)
I0422 00:11:08.865095 32397 solver.cpp:245] Train net output #76: loss2/loss01 = 1.94002 (* 0.0272727 = 0.0529097 loss)
I0422 00:11:08.865108 32397 solver.cpp:245] Train net output #77: loss2/loss02 = 0.702267 (* 0.0272727 = 0.0191527 loss)
I0422 00:11:08.865137 32397 solver.cpp:245] Train net output #78: loss2/loss03 = 1.3614 (* 0.0272727 = 0.037129 loss)
I0422 00:11:08.865152 32397 solver.cpp:245] Train net output #79: loss2/loss04 = 1.57603 (* 0.0272727 = 0.0429826 loss)
I0422 00:11:08.865166 32397 solver.cpp:245] Train net output #80: loss2/loss05 = 1.49743 (* 0.0272727 = 0.0408391 loss)
I0422 00:11:08.865180 32397 solver.cpp:245] Train net output #81: loss2/loss06 = 1.43428 (* 0.0272727 = 0.0391167 loss)
I0422 00:11:08.865195 32397 solver.cpp:245] Train net output #82: loss2/loss07 = 0.646206 (* 0.0272727 = 0.0176238 loss)
I0422 00:11:08.865208 32397 solver.cpp:245] Train net output #83: loss2/loss08 = 0.0462661 (* 0.0272727 = 0.0012618 loss)
I0422 00:11:08.865222 32397 solver.cpp:245] Train net output #84: loss2/loss09 = 0.00217062 (* 0.0272727 = 5.91988e-05 loss)
I0422 00:11:08.865236 32397 solver.cpp:245] Train net output #85: loss2/loss10 = 0.000660585 (* 0.0272727 = 1.80159e-05 loss)
I0422 00:11:08.865252 32397 solver.cpp:245] Train net output #86: loss2/loss11 = 2.77415e-05 (* 0.0272727 = 7.56586e-07 loss)
I0422 00:11:08.865267 32397 solver.cpp:245] Train net output #87: loss2/loss12 = 2.9381e-05 (* 0.0272727 = 8.01299e-07 loss)
I0422 00:11:08.865281 32397 solver.cpp:245] Train net output #88: loss2/loss13 = 2.38812e-05 (* 0.0272727 = 6.51306e-07 loss)
I0422 00:11:08.865295 32397 solver.cpp:245] Train net output #89: loss2/loss14 = 1.80316e-05 (* 0.0272727 = 4.91772e-07 loss)
I0422 00:11:08.865309 32397 solver.cpp:245] Train net output #90: loss2/loss15 = 2.89636e-05 (* 0.0272727 = 7.89917e-07 loss)
I0422 00:11:08.865324 32397 solver.cpp:245] Train net output #91: loss2/loss16 = 6.04528e-05 (* 0.0272727 = 1.64871e-06 loss)
I0422 00:11:08.865337 32397 solver.cpp:245] Train net output #92: loss2/loss17 = 3.43442e-05 (* 0.0272727 = 9.36661e-07 loss)
I0422 00:11:08.865351 32397 solver.cpp:245] Train net output #93: loss2/loss18 = 5.06067e-05 (* 0.0272727 = 1.38018e-06 loss)
I0422 00:11:08.865365 32397 solver.cpp:245] Train net output #94: loss2/loss19 = 3.49107e-05 (* 0.0272727 = 9.52109e-07 loss)
I0422 00:11:08.865380 32397 solver.cpp:245] Train net output #95: loss2/loss20 = 3.1408e-05 (* 0.0272727 = 8.56581e-07 loss)
I0422 00:11:08.865392 32397 solver.cpp:245] Train net output #96: loss2/loss21 = 1.51702e-05 (* 0.0272727 = 4.13732e-07 loss)
I0422 00:11:08.865406 32397 solver.cpp:245] Train net output #97: loss2/loss22 = 5.56755e-05 (* 0.0272727 = 1.51842e-06 loss)
I0422 00:11:08.865418 32397 solver.cpp:245] Train net output #98: loss3/accuracy = 0.787234
I0422 00:11:08.865430 32397 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.75
I0422 00:11:08.865442 32397 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875
I0422 00:11:08.865454 32397 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.75
I0422 00:11:08.865466 32397 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1
I0422 00:11:08.865478 32397 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.625
I0422 00:11:08.865489 32397 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.875
I0422 00:11:08.865501 32397 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75
I0422 00:11:08.865512 32397 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1
I0422 00:11:08.865523 32397 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1
I0422 00:11:08.865535 32397 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0422 00:11:08.865545 32397 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0422 00:11:08.865556 32397 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0422 00:11:08.865568 32397 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0422 00:11:08.865579 32397 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0422 00:11:08.865591 32397 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0422 00:11:08.865612 32397 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0422 00:11:08.865624 32397 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0422 00:11:08.865636 32397 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0422 00:11:08.865648 32397 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0422 00:11:08.865659 32397 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0422 00:11:08.865670 32397 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0422 00:11:08.865681 32397 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0422 00:11:08.865694 32397 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.9375
I0422 00:11:08.865705 32397 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.893617
I0422 00:11:08.865718 32397 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.01062 (* 1 = 1.01062 loss)
I0422 00:11:08.865732 32397 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.319665 (* 1 = 0.319665 loss)
I0422 00:11:08.865746 32397 solver.cpp:245] Train net output #125: loss3/loss01 = 1.4495 (* 0.0909091 = 0.131773 loss)
I0422 00:11:08.865759 32397 solver.cpp:245] Train net output #126: loss3/loss02 = 0.840282 (* 0.0909091 = 0.0763893 loss)
I0422 00:11:08.865773 32397 solver.cpp:245] Train net output #127: loss3/loss03 = 1.17793 (* 0.0909091 = 0.107085 loss)
I0422 00:11:08.865787 32397 solver.cpp:245] Train net output #128: loss3/loss04 = 0.261484 (* 0.0909091 = 0.0237712 loss)
I0422 00:11:08.865800 32397 solver.cpp:245] Train net output #129: loss3/loss05 = 1.22998 (* 0.0909091 = 0.111816 loss)
I0422 00:11:08.865814 32397 solver.cpp:245] Train net output #130: loss3/loss06 = 0.658379 (* 0.0909091 = 0.0598527 loss)
I0422 00:11:08.865828 32397 solver.cpp:245] Train net output #131: loss3/loss07 = 0.53377 (* 0.0909091 = 0.0485246 loss)
I0422 00:11:08.865842 32397 solver.cpp:245] Train net output #132: loss3/loss08 = 0.00766236 (* 0.0909091 = 0.000696578 loss)
I0422 00:11:08.865856 32397 solver.cpp:245] Train net output #133: loss3/loss09 = 0.0012002 (* 0.0909091 = 0.000109109 loss)
I0422 00:11:08.865870 32397 solver.cpp:245] Train net output #134: loss3/loss10 = 0.000344093 (* 0.0909091 = 3.12812e-05 loss)
I0422 00:11:08.865885 32397 solver.cpp:245] Train net output #135: loss3/loss11 = 2.83228e-05 (* 0.0909091 = 2.5748e-06 loss)
I0422 00:11:08.865900 32397 solver.cpp:245] Train net output #136: loss3/loss12 = 1.98349e-05 (* 0.0909091 = 1.80318e-06 loss)
I0422 00:11:08.865909 32397 solver.cpp:245] Train net output #137: loss3/loss13 = 2.27188e-05 (* 0.0909091 = 2.06535e-06 loss)
I0422 00:11:08.865923 32397 solver.cpp:245] Train net output #138: loss3/loss14 = 1.97008e-05 (* 0.0909091 = 1.79098e-06 loss)
I0422 00:11:08.865937 32397 solver.cpp:245] Train net output #139: loss3/loss15 = 2.34491e-05 (* 0.0909091 = 2.13174e-06 loss)
I0422 00:11:08.865952 32397 solver.cpp:245] Train net output #140: loss3/loss16 = 2.15637e-05 (* 0.0909091 = 1.96034e-06 loss)
I0422 00:11:08.865965 32397 solver.cpp:245] Train net output #141: loss3/loss17 = 2.07143e-05 (* 0.0909091 = 1.88311e-06 loss)
I0422 00:11:08.865978 32397 solver.cpp:245] Train net output #142: loss3/loss18 = 1.82701e-05 (* 0.0909091 = 1.66092e-06 loss)
I0422 00:11:08.865993 32397 solver.cpp:245] Train net output #143: loss3/loss19 = 2.32405e-05 (* 0.0909091 = 2.11277e-06 loss)
I0422 00:11:08.866006 32397 solver.cpp:245] Train net output #144: loss3/loss20 = 2.30169e-05 (* 0.0909091 = 2.09244e-06 loss)
I0422 00:11:08.866020 32397 solver.cpp:245] Train net output #145: loss3/loss21 = 1.5975e-05 (* 0.0909091 = 1.45228e-06 loss)
I0422 00:11:08.866034 32397 solver.cpp:245] Train net output #146: loss3/loss22 = 2.44179e-05 (* 0.0909091 = 2.21981e-06 loss)
I0422 00:11:08.866045 32397 solver.cpp:245] Train net output #147: total_accuracy = 0.625
I0422 00:11:08.866057 32397 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.5
I0422 00:11:08.866080 32397 solver.cpp:245] Train net output #149: total_confidence = 0.652286
I0422 00:11:08.866092 32397 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.502662
I0422 00:11:08.866106 32397 sgd_solver.cpp:106] Iteration 4000, lr = 0.001
I0422 00:16:50.615187 32397 solver.cpp:229] Iteration 4500, loss = 2.23827
I0422 00:16:50.615326 32397 solver.cpp:245] Train net output #0: loss1/accuracy = 0.75
I0422 00:16:50.615346 32397 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.875
I0422 00:16:50.615360 32397 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.75
I0422 00:16:50.615371 32397 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375
I0422 00:16:50.615383 32397 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.25
I0422 00:16:50.615396 32397 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.625
I0422 00:16:50.615409 32397 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.75
I0422 00:16:50.615422 32397 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.875
I0422 00:16:50.615433 32397 solver.cpp:245] Train net output #8: loss1/accuracy08 = 1
I0422 00:16:50.615455 32397 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1
I0422 00:16:50.615471 32397 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0422 00:16:50.615483 32397 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0422 00:16:50.615495 32397 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0422 00:16:50.615506 32397 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0422 00:16:50.615519 32397 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0422 00:16:50.615530 32397 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0422 00:16:50.615541 32397 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0422 00:16:50.615553 32397 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0422 00:16:50.615566 32397 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0422 00:16:50.615577 32397 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0422 00:16:50.615588 32397 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0422 00:16:50.615600 32397 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0422 00:16:50.615619 32397 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0422 00:16:50.615638 32397 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.920455
I0422 00:16:50.615649 32397 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.825
I0422 00:16:50.615674 32397 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.00843 (* 0.3 = 0.302529 loss)
I0422 00:16:50.615687 32397 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.351256 (* 0.3 = 0.105377 loss)
I0422 00:16:50.615702 32397 solver.cpp:245] Train net output #27: loss1/loss01 = 0.398631 (* 0.0272727 = 0.0108718 loss)
I0422 00:16:50.615716 32397 solver.cpp:245] Train net output #28: loss1/loss02 = 0.848511 (* 0.0272727 = 0.0231412 loss)
I0422 00:16:50.615731 32397 solver.cpp:245] Train net output #29: loss1/loss03 = 1.76775 (* 0.0272727 = 0.0482113 loss)
I0422 00:16:50.615747 32397 solver.cpp:245] Train net output #30: loss1/loss04 = 1.7498 (* 0.0272727 = 0.0477217 loss)
I0422 00:16:50.615761 32397 solver.cpp:245] Train net output #31: loss1/loss05 = 1.23569 (* 0.0272727 = 0.0337007 loss)
I0422 00:16:50.615775 32397 solver.cpp:245] Train net output #32: loss1/loss06 = 1.87782 (* 0.0272727 = 0.0512133 loss)
I0422 00:16:50.615788 32397 solver.cpp:245] Train net output #33: loss1/loss07 = 0.595404 (* 0.0272727 = 0.0162383 loss)
I0422 00:16:50.615803 32397 solver.cpp:245] Train net output #34: loss1/loss08 = 0.176117 (* 0.0272727 = 0.00480319 loss)
I0422 00:16:50.615818 32397 solver.cpp:245] Train net output #35: loss1/loss09 = 0.0394874 (* 0.0272727 = 0.00107693 loss)
I0422 00:16:50.615831 32397 solver.cpp:245] Train net output #36: loss1/loss10 = 0.018592 (* 0.0272727 = 0.000507054 loss)
I0422 00:16:50.615845 32397 solver.cpp:245] Train net output #37: loss1/loss11 = 9.02571e-05 (* 0.0272727 = 2.46156e-06 loss)
I0422 00:16:50.615859 32397 solver.cpp:245] Train net output #38: loss1/loss12 = 9.35663e-05 (* 0.0272727 = 2.55181e-06 loss)
I0422 00:16:50.615874 32397 solver.cpp:245] Train net output #39: loss1/loss13 = 7.14628e-05 (* 0.0272727 = 1.94899e-06 loss)
I0422 00:16:50.615906 32397 solver.cpp:245] Train net output #40: loss1/loss14 = 0.00012581 (* 0.0272727 = 3.43119e-06 loss)
I0422 00:16:50.615922 32397 solver.cpp:245] Train net output #41: loss1/loss15 = 0.000120182 (* 0.0272727 = 3.27769e-06 loss)
I0422 00:16:50.615936 32397 solver.cpp:245] Train net output #42: loss1/loss16 = 8.57016e-05 (* 0.0272727 = 2.33732e-06 loss)
I0422 00:16:50.615950 32397 solver.cpp:245] Train net output #43: loss1/loss17 = 4.65739e-05 (* 0.0272727 = 1.2702e-06 loss)
I0422 00:16:50.615964 32397 solver.cpp:245] Train net output #44: loss1/loss18 = 9.32034e-05 (* 0.0272727 = 2.54191e-06 loss)
I0422 00:16:50.615978 32397 solver.cpp:245] Train net output #45: loss1/loss19 = 7.92826e-05 (* 0.0272727 = 2.16225e-06 loss)
I0422 00:16:50.615991 32397 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000111008 (* 0.0272727 = 3.0275e-06 loss)
I0422 00:16:50.616005 32397 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000192808 (* 0.0272727 = 5.25841e-06 loss)
I0422 00:16:50.616019 32397 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000117915 (* 0.0272727 = 3.21586e-06 loss)
I0422 00:16:50.616031 32397 solver.cpp:245] Train net output #49: loss2/accuracy = 0.825
I0422 00:16:50.616044 32397 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.75
I0422 00:16:50.616055 32397 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75
I0422 00:16:50.616066 32397 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.75
I0422 00:16:50.616077 32397 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.5
I0422 00:16:50.616089 32397 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.625
I0422 00:16:50.616097 32397 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.875
I0422 00:16:50.616106 32397 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.875
I0422 00:16:50.616117 32397 solver.cpp:245] Train net output #57: loss2/accuracy08 = 1
I0422 00:16:50.616127 32397 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1
I0422 00:16:50.616139 32397 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0422 00:16:50.616150 32397 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0422 00:16:50.616161 32397 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0422 00:16:50.616173 32397 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0422 00:16:50.616183 32397 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0422 00:16:50.616194 32397 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0422 00:16:50.616209 32397 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0422 00:16:50.616220 32397 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0422 00:16:50.616231 32397 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0422 00:16:50.616242 32397 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0422 00:16:50.616260 32397 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0422 00:16:50.616271 32397 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0422 00:16:50.616281 32397 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0422 00:16:50.616292 32397 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.9375
I0422 00:16:50.616304 32397 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.9
I0422 00:16:50.616324 32397 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.982864 (* 0.3 = 0.294859 loss)
I0422 00:16:50.616338 32397 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.318098 (* 0.3 = 0.0954293 loss)
I0422 00:16:50.616356 32397 solver.cpp:245] Train net output #76: loss2/loss01 = 0.562652 (* 0.0272727 = 0.015345 loss)
I0422 00:16:50.616370 32397 solver.cpp:245] Train net output #77: loss2/loss02 = 1.44735 (* 0.0272727 = 0.0394732 loss)
I0422 00:16:50.616397 32397 solver.cpp:245] Train net output #78: loss2/loss03 = 1.09302 (* 0.0272727 = 0.0298095 loss)
I0422 00:16:50.616413 32397 solver.cpp:245] Train net output #79: loss2/loss04 = 1.58172 (* 0.0272727 = 0.0431378 loss)
I0422 00:16:50.616426 32397 solver.cpp:245] Train net output #80: loss2/loss05 = 1.14682 (* 0.0272727 = 0.031277 loss)
I0422 00:16:50.616439 32397 solver.cpp:245] Train net output #81: loss2/loss06 = 0.952007 (* 0.0272727 = 0.0259638 loss)
I0422 00:16:50.616453 32397 solver.cpp:245] Train net output #82: loss2/loss07 = 0.504292 (* 0.0272727 = 0.0137534 loss)
I0422 00:16:50.616467 32397 solver.cpp:245] Train net output #83: loss2/loss08 = 0.0201538 (* 0.0272727 = 0.000549649 loss)
I0422 00:16:50.616482 32397 solver.cpp:245] Train net output #84: loss2/loss09 = 0.0014368 (* 0.0272727 = 3.91855e-05 loss)
I0422 00:16:50.616495 32397 solver.cpp:245] Train net output #85: loss2/loss10 = 0.000310366 (* 0.0272727 = 8.46454e-06 loss)
I0422 00:16:50.616509 32397 solver.cpp:245] Train net output #86: loss2/loss11 = 3.71041e-06 (* 0.0272727 = 1.01193e-07 loss)
I0422 00:16:50.616523 32397 solver.cpp:245] Train net output #87: loss2/loss12 = 4.94722e-06 (* 0.0272727 = 1.34924e-07 loss)
I0422 00:16:50.616538 32397 solver.cpp:245] Train net output #88: loss2/loss13 = 3.71041e-06 (* 0.0272727 = 1.01193e-07 loss)
I0422 00:16:50.616550 32397 solver.cpp:245] Train net output #89: loss2/loss14 = 3.90413e-06 (* 0.0272727 = 1.06476e-07 loss)
I0422 00:16:50.616564 32397 solver.cpp:245] Train net output #90: loss2/loss15 = 3.90412e-06 (* 0.0272727 = 1.06476e-07 loss)
I0422 00:16:50.616578 32397 solver.cpp:245] Train net output #91: loss2/loss16 = 5.55818e-06 (* 0.0272727 = 1.51587e-07 loss)
I0422 00:16:50.616592 32397 solver.cpp:245] Train net output #92: loss2/loss17 = 4.73863e-06 (* 0.0272727 = 1.29235e-07 loss)
I0422 00:16:50.616606 32397 solver.cpp:245] Train net output #93: loss2/loss18 = 6.7652e-06 (* 0.0272727 = 1.84506e-07 loss)
I0422 00:16:50.616621 32397 solver.cpp:245] Train net output #94: loss2/loss19 = 3.42728e-06 (* 0.0272727 = 9.34713e-08 loss)
I0422 00:16:50.616634 32397 solver.cpp:245] Train net output #95: loss2/loss20 = 5.23036e-06 (* 0.0272727 = 1.42646e-07 loss)
I0422 00:16:50.616647 32397 solver.cpp:245] Train net output #96: loss2/loss21 = 2.32459e-06 (* 0.0272727 = 6.33979e-08 loss)
I0422 00:16:50.616662 32397 solver.cpp:245] Train net output #97: loss2/loss22 = 1.77324e-06 (* 0.0272727 = 4.83612e-08 loss)
I0422 00:16:50.616673 32397 solver.cpp:245] Train net output #98: loss3/accuracy = 0.9
I0422 00:16:50.616685 32397 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0422 00:16:50.616698 32397 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875
I0422 00:16:50.616708 32397 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.875
I0422 00:16:50.616720 32397 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875
I0422 00:16:50.616732 32397 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.75
I0422 00:16:50.616744 32397 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.75
I0422 00:16:50.616755 32397 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875
I0422 00:16:50.616766 32397 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1
I0422 00:16:50.616777 32397 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1
I0422 00:16:50.616788 32397 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0422 00:16:50.616799 32397 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0422 00:16:50.616811 32397 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0422 00:16:50.616822 32397 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0422 00:16:50.616833 32397 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0422 00:16:50.616844 32397 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0422 00:16:50.616855 32397 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0422 00:16:50.616875 32397 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0422 00:16:50.616888 32397 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0422 00:16:50.616900 32397 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0422 00:16:50.616911 32397 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0422 00:16:50.616922 32397 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0422 00:16:50.616933 32397 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0422 00:16:50.616945 32397 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.960227
I0422 00:16:50.616956 32397 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.975
I0422 00:16:50.616969 32397 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.631529 (* 1 = 0.631529 loss)
I0422 00:16:50.616983 32397 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.23519 (* 1 = 0.23519 loss)
I0422 00:16:50.616998 32397 solver.cpp:245] Train net output #125: loss3/loss01 = 0.0980171 (* 0.0909091 = 0.00891065 loss)
I0422 00:16:50.617012 32397 solver.cpp:245] Train net output #126: loss3/loss02 = 0.445228 (* 0.0909091 = 0.0404753 loss)
I0422 00:16:50.617025 32397 solver.cpp:245] Train net output #127: loss3/loss03 = 0.77444 (* 0.0909091 = 0.0704036 loss)
I0422 00:16:50.617039 32397 solver.cpp:245] Train net output #128: loss3/loss04 = 0.775868 (* 0.0909091 = 0.0705334 loss)
I0422 00:16:50.617053 32397 solver.cpp:245] Train net output #129: loss3/loss05 = 1.4147 (* 0.0909091 = 0.128609 loss)
I0422 00:16:50.617068 32397 solver.cpp:245] Train net output #130: loss3/loss06 = 1.71225 (* 0.0909091 = 0.155659 loss)
I0422 00:16:50.617080 32397 solver.cpp:245] Train net output #131: loss3/loss07 = 0.707758 (* 0.0909091 = 0.0643416 loss)
I0422 00:16:50.617094 32397 solver.cpp:245] Train net output #132: loss3/loss08 = 0.00407542 (* 0.0909091 = 0.000370493 loss)
I0422 00:16:50.617110 32397 solver.cpp:245] Train net output #133: loss3/loss09 = 0.000443436 (* 0.0909091 = 4.03124e-05 loss)
I0422 00:16:50.617123 32397 solver.cpp:245] Train net output #134: loss3/loss10 = 0.00026609 (* 0.0909091 = 2.419e-05 loss)
I0422 00:16:50.617137 32397 solver.cpp:245] Train net output #135: loss3/loss11 = 0.000102657 (* 0.0909091 = 9.33246e-06 loss)
I0422 00:16:50.617151 32397 solver.cpp:245] Train net output #136: loss3/loss12 = 0.000101456 (* 0.0909091 = 9.2233e-06 loss)
I0422 00:16:50.617166 32397 solver.cpp:245] Train net output #137: loss3/loss13 = 9.55588e-05 (* 0.0909091 = 8.68716e-06 loss)
I0422 00:16:50.617179 32397 solver.cpp:245] Train net output #138: loss3/loss14 = 9.48425e-05 (* 0.0909091 = 8.62205e-06 loss)
I0422 00:16:50.617193 32397 solver.cpp:245] Train net output #139: loss3/loss15 = 9.15695e-05 (* 0.0909091 = 8.3245e-06 loss)
I0422 00:16:50.617208 32397 solver.cpp:245] Train net output #140: loss3/loss16 = 9.62142e-05 (* 0.0909091 = 8.74674e-06 loss)
I0422 00:16:50.617221 32397 solver.cpp:245] Train net output #141: loss3/loss17 = 9.43805e-05 (* 0.0909091 = 8.58005e-06 loss)
I0422 00:16:50.617235 32397 solver.cpp:245] Train net output #142: loss3/loss18 = 7.87014e-05 (* 0.0909091 = 7.15467e-06 loss)
I0422 00:16:50.617249 32397 solver.cpp:245] Train net output #143: loss3/loss19 = 0.000100756 (* 0.0909091 = 9.15961e-06 loss)
I0422 00:16:50.617266 32397 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000110546 (* 0.0909091 = 1.00497e-05 loss)
I0422 00:16:50.617280 32397 solver.cpp:245] Train net output #145: loss3/loss21 = 7.99838e-05 (* 0.0909091 = 7.27126e-06 loss)
I0422 00:16:50.617295 32397 solver.cpp:245] Train net output #146: loss3/loss22 = 0.000101054 (* 0.0909091 = 9.18673e-06 loss)
I0422 00:16:50.617307 32397 solver.cpp:245] Train net output #147: total_accuracy = 0.75
I0422 00:16:50.617318 32397 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.75
I0422 00:16:50.617339 32397 solver.cpp:245] Train net output #149: total_confidence = 0.724474
I0422 00:16:50.617353 32397 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.533177
I0422 00:16:50.617365 32397 sgd_solver.cpp:106] Iteration 4500, lr = 0.001
I0422 00:21:03.950162 32397 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 30.1164 > 30) by scale factor 0.996135
I0422 00:22:32.174686 32397 solver.cpp:338] Iteration 5000, Testing net (#0)
I0422 00:23:23.661607 32397 solver.cpp:393] Test loss: 2.03043
I0422 00:23:23.661732 32397 solver.cpp:406] Test net output #0: loss1/accuracy = 0.737769
I0422 00:23:23.661753 32397 solver.cpp:406] Test net output #1: loss1/accuracy01 = 0.749
I0422 00:23:23.661767 32397 solver.cpp:406] Test net output #2: loss1/accuracy02 = 0.633
I0422 00:23:23.661778 32397 solver.cpp:406] Test net output #3: loss1/accuracy03 = 0.539
I0422 00:23:23.661792 32397 solver.cpp:406] Test net output #4: loss1/accuracy04 = 0.424
I0422 00:23:23.661803 32397 solver.cpp:406] Test net output #5: loss1/accuracy05 = 0.487
I0422 00:23:23.661815 32397 solver.cpp:406] Test net output #6: loss1/accuracy06 = 0.785
I0422 00:23:23.661828 32397 solver.cpp:406] Test net output #7: loss1/accuracy07 = 0.905
I0422 00:23:23.661839 32397 solver.cpp:406] Test net output #8: loss1/accuracy08 = 0.969
I0422 00:23:23.661851 32397 solver.cpp:406] Test net output #9: loss1/accuracy09 = 0.995
I0422 00:23:23.661864 32397 solver.cpp:406] Test net output #10: loss1/accuracy10 = 0.998
I0422 00:23:23.661875 32397 solver.cpp:406] Test net output #11: loss1/accuracy11 = 1
I0422 00:23:23.661887 32397 solver.cpp:406] Test net output #12: loss1/accuracy12 = 1
I0422 00:23:23.661898 32397 solver.cpp:406] Test net output #13: loss1/accuracy13 = 1
I0422 00:23:23.661918 32397 solver.cpp:406] Test net output #14: loss1/accuracy14 = 1
I0422 00:23:23.661929 32397 solver.cpp:406] Test net output #15: loss1/accuracy15 = 1
I0422 00:23:23.661942 32397 solver.cpp:406] Test net output #16: loss1/accuracy16 = 1
I0422 00:23:23.661958 32397 solver.cpp:406] Test net output #17: loss1/accuracy17 = 1
I0422 00:23:23.661985 32397 solver.cpp:406] Test net output #18: loss1/accuracy18 = 1
I0422 00:23:23.661998 32397 solver.cpp:406] Test net output #19: loss1/accuracy19 = 1
I0422 00:23:23.662009 32397 solver.cpp:406] Test net output #20: loss1/accuracy20 = 1
I0422 00:23:23.662020 32397 solver.cpp:406] Test net output #21: loss1/accuracy21 = 1
I0422 00:23:23.662031 32397 solver.cpp:406] Test net output #22: loss1/accuracy22 = 1
I0422 00:23:23.662044 32397 solver.cpp:406] Test net output #23: loss1/accuracy_incl_empty = 0.932365
I0422 00:23:23.662055 32397 solver.cpp:406] Test net output #24: loss1/accuracy_top3 = 0.899554
I0422 00:23:23.662071 32397 solver.cpp:406] Test net output #25: loss1/cross_entropy_loss = 0.978794 (* 0.3 = 0.293638 loss)
I0422 00:23:23.662086 32397 solver.cpp:406] Test net output #26: loss1/cross_entropy_loss_incl_empty = 0.259628 (* 0.3 = 0.0778884 loss)
I0422 00:23:23.662101 32397 solver.cpp:406] Test net output #27: loss1/loss01 = 0.956429 (* 0.0272727 = 0.0260844 loss)
I0422 00:23:23.662116 32397 solver.cpp:406] Test net output #28: loss1/loss02 = 1.31054 (* 0.0272727 = 0.035742 loss)
I0422 00:23:23.662130 32397 solver.cpp:406] Test net output #29: loss1/loss03 = 1.51733 (* 0.0272727 = 0.0413817 loss)
I0422 00:23:23.662144 32397 solver.cpp:406] Test net output #30: loss1/loss04 = 1.72188 (* 0.0272727 = 0.0469604 loss)
I0422 00:23:23.662158 32397 solver.cpp:406] Test net output #31: loss1/loss05 = 1.55426 (* 0.0272727 = 0.0423888 loss)
I0422 00:23:23.662173 32397 solver.cpp:406] Test net output #32: loss1/loss06 = 0.759166 (* 0.0272727 = 0.0207045 loss)
I0422 00:23:23.662192 32397 solver.cpp:406] Test net output #33: loss1/loss07 = 0.32105 (* 0.0272727 = 0.0087559 loss)
I0422 00:23:23.662215 32397 solver.cpp:406] Test net output #34: loss1/loss08 = 0.160738 (* 0.0272727 = 0.00438376 loss)
I0422 00:23:23.662245 32397 solver.cpp:406] Test net output #35: loss1/loss09 = 0.05005 (* 0.0272727 = 0.001365 loss)
I0422 00:23:23.662259 32397 solver.cpp:406] Test net output #36: loss1/loss10 = 0.0246234 (* 0.0272727 = 0.000671546 loss)
I0422 00:23:23.662273 32397 solver.cpp:406] Test net output #37: loss1/loss11 = 0.00015028 (* 0.0272727 = 4.09854e-06 loss)
I0422 00:23:23.662288 32397 solver.cpp:406] Test net output #38: loss1/loss12 = 0.000169629 (* 0.0272727 = 4.62625e-06 loss)
I0422 00:23:23.662302 32397 solver.cpp:406] Test net output #39: loss1/loss13 = 0.000178911 (* 0.0272727 = 4.87939e-06 loss)
I0422 00:23:23.662338 32397 solver.cpp:406] Test net output #40: loss1/loss14 = 0.000166006 (* 0.0272727 = 4.52743e-06 loss)
I0422 00:23:23.662353 32397 solver.cpp:406] Test net output #41: loss1/loss15 = 0.000160638 (* 0.0272727 = 4.38105e-06 loss)
I0422 00:23:23.662369 32397 solver.cpp:406] Test net output #42: loss1/loss16 = 0.000153345 (* 0.0272727 = 4.18215e-06 loss)
I0422 00:23:23.662382 32397 solver.cpp:406] Test net output #43: loss1/loss17 = 0.000155817 (* 0.0272727 = 4.24955e-06 loss)
I0422 00:23:23.662396 32397 solver.cpp:406] Test net output #44: loss1/loss18 = 0.000165015 (* 0.0272727 = 4.5004e-06 loss)
I0422 00:23:23.662410 32397 solver.cpp:406] Test net output #45: loss1/loss19 = 0.000152784 (* 0.0272727 = 4.16685e-06 loss)
I0422 00:23:23.662425 32397 solver.cpp:406] Test net output #46: loss1/loss20 = 0.000160843 (* 0.0272727 = 4.38663e-06 loss)
I0422 00:23:23.662438 32397 solver.cpp:406] Test net output #47: loss1/loss21 = 0.000151065 (* 0.0272727 = 4.11995e-06 loss)
I0422 00:23:23.662452 32397 solver.cpp:406] Test net output #48: loss1/loss22 = 0.000149616 (* 0.0272727 = 4.08044e-06 loss)
I0422 00:23:23.662464 32397 solver.cpp:406] Test net output #49: loss2/accuracy = 0.853994
I0422 00:23:23.662480 32397 solver.cpp:406] Test net output #50: loss2/accuracy01 = 0.872
I0422 00:23:23.662492 32397 solver.cpp:406] Test net output #51: loss2/accuracy02 = 0.828
I0422 00:23:23.662504 32397 solver.cpp:406] Test net output #52: loss2/accuracy03 = 0.692
I0422 00:23:23.662515 32397 solver.cpp:406] Test net output #53: loss2/accuracy04 = 0.535
I0422 00:23:23.662528 32397 solver.cpp:406] Test net output #54: loss2/accuracy05 = 0.56
I0422 00:23:23.662542 32397 solver.cpp:406] Test net output #55: loss2/accuracy06 = 0.836
I0422 00:23:23.662554 32397 solver.cpp:406] Test net output #56: loss2/accuracy07 = 0.931
I0422 00:23:23.662565 32397 solver.cpp:406] Test net output #57: loss2/accuracy08 = 0.969
I0422 00:23:23.662577 32397 solver.cpp:406] Test net output #58: loss2/accuracy09 = 0.995
I0422 00:23:23.662590 32397 solver.cpp:406] Test net output #59: loss2/accuracy10 = 0.998
I0422 00:23:23.662601 32397 solver.cpp:406] Test net output #60: loss2/accuracy11 = 1
I0422 00:23:23.662612 32397 solver.cpp:406] Test net output #61: loss2/accuracy12 = 1
I0422 00:23:23.662623 32397 solver.cpp:406] Test net output #62: loss2/accuracy13 = 1
I0422 00:23:23.662634 32397 solver.cpp:406] Test net output #63: loss2/accuracy14 = 1
I0422 00:23:23.662645 32397 solver.cpp:406] Test net output #64: loss2/accuracy15 = 1
I0422 00:23:23.662657 32397 solver.cpp:406] Test net output #65: loss2/accuracy16 = 1
I0422 00:23:23.662667 32397 solver.cpp:406] Test net output #66: loss2/accuracy17 = 1
I0422 00:23:23.662678 32397 solver.cpp:406] Test net output #67: loss2/accuracy18 = 1
I0422 00:23:23.662690 32397 solver.cpp:406] Test net output #68: loss2/accuracy19 = 1
I0422 00:23:23.662701 32397 solver.cpp:406] Test net output #69: loss2/accuracy20 = 1
I0422 00:23:23.662713 32397 solver.cpp:406] Test net output #70: loss2/accuracy21 = 1
I0422 00:23:23.662724 32397 solver.cpp:406] Test net output #71: loss2/accuracy22 = 1
I0422 00:23:23.662735 32397 solver.cpp:406] Test net output #72: loss2/accuracy_incl_empty = 0.964273
I0422 00:23:23.662750 32397 solver.cpp:406] Test net output #73: loss2/accuracy_top3 = 0.927974
I0422 00:23:23.662765 32397 solver.cpp:406] Test net output #74: loss2/cross_entropy_loss = 0.652463 (* 0.3 = 0.195739 loss)
I0422 00:23:23.662780 32397 solver.cpp:406] Test net output #75: loss2/cross_entropy_loss_incl_empty = 0.16904 (* 0.3 = 0.050712 loss)
I0422 00:23:23.662793 32397 solver.cpp:406] Test net output #76: loss2/loss01 = 0.597584 (* 0.0272727 = 0.0162978 loss)
I0422 00:23:23.662807 32397 solver.cpp:406] Test net output #77: loss2/loss02 = 0.753335 (* 0.0272727 = 0.0205455 loss)
I0422 00:23:23.662833 32397 solver.cpp:406] Test net output #78: loss2/loss03 = 1.06594 (* 0.0272727 = 0.029071 loss)
I0422 00:23:23.662845 32397 solver.cpp:406] Test net output #79: loss2/loss04 = 1.29127 (* 0.0272727 = 0.0352166 loss)
I0422 00:23:23.662854 32397 solver.cpp:406] Test net output #80: loss2/loss05 = 1.22788 (* 0.0272727 = 0.0334876 loss)
I0422 00:23:23.662868 32397 solver.cpp:406] Test net output #81: loss2/loss06 = 0.596655 (* 0.0272727 = 0.0162724 loss)
I0422 00:23:23.662883 32397 solver.cpp:406] Test net output #82: loss2/loss07 = 0.237551 (* 0.0272727 = 0.00647865 loss)
I0422 00:23:23.662896 32397 solver.cpp:406] Test net output #83: loss2/loss08 = 0.124985 (* 0.0272727 = 0.00340867 loss)
I0422 00:23:23.662910 32397 solver.cpp:406] Test net output #84: loss2/loss09 = 0.0454722 (* 0.0272727 = 0.00124015 loss)
I0422 00:23:23.662925 32397 solver.cpp:406] Test net output #85: loss2/loss10 = 0.0240544 (* 0.0272727 = 0.00065603 loss)
I0422 00:23:23.662942 32397 solver.cpp:406] Test net output #86: loss2/loss11 = 7.27573e-05 (* 0.0272727 = 1.98429e-06 loss)
I0422 00:23:23.662968 32397 solver.cpp:406] Test net output #87: loss2/loss12 = 7.77097e-05 (* 0.0272727 = 2.11936e-06 loss)
I0422 00:23:23.662992 32397 solver.cpp:406] Test net output #88: loss2/loss13 = 7.70123e-05 (* 0.0272727 = 2.10034e-06 loss)
I0422 00:23:23.663005 32397 solver.cpp:406] Test net output #89: loss2/loss14 = 7.18682e-05 (* 0.0272727 = 1.96004e-06 loss)
I0422 00:23:23.663019 32397 solver.cpp:406] Test net output #90: loss2/loss15 = 7.25284e-05 (* 0.0272727 = 1.97805e-06 loss)
I0422 00:23:23.663034 32397 solver.cpp:406] Test net output #91: loss2/loss16 = 7.42641e-05 (* 0.0272727 = 2.02539e-06 loss)
I0422 00:23:23.663048 32397 solver.cpp:406] Test net output #92: loss2/loss17 = 7.88268e-05 (* 0.0272727 = 2.14982e-06 loss)
I0422 00:23:23.663061 32397 solver.cpp:406] Test net output #93: loss2/loss18 = 7.79796e-05 (* 0.0272727 = 2.12672e-06 loss)
I0422 00:23:23.663075 32397 solver.cpp:406] Test net output #94: loss2/loss19 = 7.27981e-05 (* 0.0272727 = 1.9854e-06 loss)
I0422 00:23:23.663089 32397 solver.cpp:406] Test net output #95: loss2/loss20 = 7.16234e-05 (* 0.0272727 = 1.95336e-06 loss)
I0422 00:23:23.663103 32397 solver.cpp:406] Test net output #96: loss2/loss21 = 6.88436e-05 (* 0.0272727 = 1.87755e-06 loss)
I0422 00:23:23.663116 32397 solver.cpp:406] Test net output #97: loss2/loss22 = 6.99736e-05 (* 0.0272727 = 1.90837e-06 loss)
I0422 00:23:23.663128 32397 solver.cpp:406] Test net output #98: loss3/accuracy = 0.879878
I0422 00:23:23.663141 32397 solver.cpp:406] Test net output #99: loss3/accuracy01 = 0.886
I0422 00:23:23.663152 32397 solver.cpp:406] Test net output #100: loss3/accuracy02 = 0.869
I0422 00:23:23.663163 32397 solver.cpp:406] Test net output #101: loss3/accuracy03 = 0.905
I0422 00:23:23.663174 32397 solver.cpp:406] Test net output #102: loss3/accuracy04 = 0.902
I0422 00:23:23.663185 32397 solver.cpp:406] Test net output #103: loss3/accuracy05 = 0.874
I0422 00:23:23.663197 32397 solver.cpp:406] Test net output #104: loss3/accuracy06 = 0.902
I0422 00:23:23.663208 32397 solver.cpp:406] Test net output #105: loss3/accuracy07 = 0.957
I0422 00:23:23.663219 32397 solver.cpp:406] Test net output #106: loss3/accuracy08 = 0.981
I0422 00:23:23.663230 32397 solver.cpp:406] Test net output #107: loss3/accuracy09 = 0.99
I0422 00:23:23.663241 32397 solver.cpp:406] Test net output #108: loss3/accuracy10 = 0.994
I0422 00:23:23.663255 32397 solver.cpp:406] Test net output #109: loss3/accuracy11 = 1
I0422 00:23:23.663267 32397 solver.cpp:406] Test net output #110: loss3/accuracy12 = 1
I0422 00:23:23.663277 32397 solver.cpp:406] Test net output #111: loss3/accuracy13 = 1
I0422 00:23:23.663288 32397 solver.cpp:406] Test net output #112: loss3/accuracy14 = 1
I0422 00:23:23.663300 32397 solver.cpp:406] Test net output #113: loss3/accuracy15 = 1
I0422 00:23:23.663311 32397 solver.cpp:406] Test net output #114: loss3/accuracy16 = 1
I0422 00:23:23.663332 32397 solver.cpp:406] Test net output #115: loss3/accuracy17 = 1
I0422 00:23:23.663346 32397 solver.cpp:406] Test net output #116: loss3/accuracy18 = 1
I0422 00:23:23.663372 32397 solver.cpp:406] Test net output #117: loss3/accuracy19 = 1
I0422 00:23:23.663383 32397 solver.cpp:406] Test net output #118: loss3/accuracy20 = 1
I0422 00:23:23.663395 32397 solver.cpp:406] Test net output #119: loss3/accuracy21 = 1
I0422 00:23:23.663406 32397 solver.cpp:406] Test net output #120: loss3/accuracy22 = 1
I0422 00:23:23.663417 32397 solver.cpp:406] Test net output #121: loss3/accuracy_incl_empty = 0.970546
I0422 00:23:23.663429 32397 solver.cpp:406] Test net output #122: loss3/accuracy_top3 = 0.934669
I0422 00:23:23.663442 32397 solver.cpp:406] Test net output #123: loss3/cross_entropy_loss = 0.559298 (* 1 = 0.559298 loss)
I0422 00:23:23.663456 32397 solver.cpp:406] Test net output #124: loss3/cross_entropy_loss_incl_empty = 0.142305 (* 1 = 0.142305 loss)
I0422 00:23:23.663470 32397 solver.cpp:406] Test net output #125: loss3/loss01 = 0.57791 (* 0.0909091 = 0.0525372 loss)
I0422 00:23:23.663485 32397 solver.cpp:406] Test net output #126: loss3/loss02 = 0.582758 (* 0.0909091 = 0.052978 loss)
I0422 00:23:23.663498 32397 solver.cpp:406] Test net output #127: loss3/loss03 = 0.510083 (* 0.0909091 = 0.0463712 loss)
I0422 00:23:23.663512 32397 solver.cpp:406] Test net output #128: loss3/loss04 = 0.492367 (* 0.0909091 = 0.0447606 loss)
I0422 00:23:23.663527 32397 solver.cpp:406] Test net output #129: loss3/loss05 = 0.545252 (* 0.0909091 = 0.0495684 loss)
I0422 00:23:23.663539 32397 solver.cpp:406] Test net output #130: loss3/loss06 = 0.413942 (* 0.0909091 = 0.0376311 loss)
I0422 00:23:23.663553 32397 solver.cpp:406] Test net output #131: loss3/loss07 = 0.197399 (* 0.0909091 = 0.0179454 loss)
I0422 00:23:23.663568 32397 solver.cpp:406] Test net output #132: loss3/loss08 = 0.104922 (* 0.0909091 = 0.00953835 loss)
I0422 00:23:23.663581 32397 solver.cpp:406] Test net output #133: loss3/loss09 = 0.0581081 (* 0.0909091 = 0.00528255 loss)
I0422 00:23:23.663595 32397 solver.cpp:406] Test net output #134: loss3/loss10 = 0.0316206 (* 0.0909091 = 0.0028746 loss)
I0422 00:23:23.663609 32397 solver.cpp:406] Test net output #135: loss3/loss11 = 0.000163664 (* 0.0909091 = 1.48786e-05 loss)
I0422 00:23:23.663624 32397 solver.cpp:406] Test net output #136: loss3/loss12 = 0.000158709 (* 0.0909091 = 1.44281e-05 loss)
I0422 00:23:23.663637 32397 solver.cpp:406] Test net output #137: loss3/loss13 = 0.000161953 (* 0.0909091 = 1.4723e-05 loss)
I0422 00:23:23.663651 32397 solver.cpp:406] Test net output #138: loss3/loss14 = 0.000158387 (* 0.0909091 = 1.43988e-05 loss)
I0422 00:23:23.663666 32397 solver.cpp:406] Test net output #139: loss3/loss15 = 0.000166267 (* 0.0909091 = 1.51152e-05 loss)
I0422 00:23:23.663679 32397 solver.cpp:406] Test net output #140: loss3/loss16 = 0.000157585 (* 0.0909091 = 1.43259e-05 loss)
I0422 00:23:23.663693 32397 solver.cpp:406] Test net output #141: loss3/loss17 = 0.000155306 (* 0.0909091 = 1.41187e-05 loss)
I0422 00:23:23.663707 32397 solver.cpp:406] Test net output #142: loss3/loss18 = 0.000155765 (* 0.0909091 = 1.41605e-05 loss)
I0422 00:23:23.663722 32397 solver.cpp:406] Test net output #143: loss3/loss19 = 0.000161345 (* 0.0909091 = 1.46677e-05 loss)
I0422 00:23:23.663734 32397 solver.cpp:406] Test net output #144: loss3/loss20 = 0.000154094 (* 0.0909091 = 1.40085e-05 loss)
I0422 00:23:23.663748 32397 solver.cpp:406] Test net output #145: loss3/loss21 = 0.000150325 (* 0.0909091 = 1.36659e-05 loss)
I0422 00:23:23.663763 32397 solver.cpp:406] Test net output #146: loss3/loss22 = 0.000152441 (* 0.0909091 = 1.38583e-05 loss)
I0422 00:23:23.663774 32397 solver.cpp:406] Test net output #147: total_accuracy = 0.725
I0422 00:23:23.663785 32397 solver.cpp:406] Test net output #148: total_accuracy_not_rec = 0.645
I0422 00:23:23.663800 32397 solver.cpp:406] Test net output #149: total_confidence = 0.702337
I0422 00:23:23.663825 32397 solver.cpp:406] Test net output #150: total_confidence_nor_rec = 0.555165
I0422 00:23:24.054860 32397 solver.cpp:229] Iteration 5000, loss = 2.22471
I0422 00:23:24.054922 32397 solver.cpp:245] Train net output #0: loss1/accuracy = 0.595745
I0422 00:23:24.054951 32397 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75
I0422 00:23:24.054976 32397 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5
I0422 00:23:24.055001 32397 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375
I0422 00:23:24.055024 32397 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.5
I0422 00:23:24.055047 32397 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.5
I0422 00:23:24.055071 32397 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.75
I0422 00:23:24.055095 32397 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.875
I0422 00:23:24.055117 32397 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875
I0422 00:23:24.055140 32397 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1
I0422 00:23:24.055161 32397 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0422 00:23:24.055182 32397 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0422 00:23:24.055204 32397 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0422 00:23:24.055227 32397 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0422 00:23:24.055249 32397 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0422 00:23:24.055271 32397 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0422 00:23:24.055294 32397 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0422 00:23:24.055315 32397 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0422 00:23:24.055337 32397 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0422 00:23:24.055377 32397 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0422 00:23:24.055403 32397 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0422 00:23:24.055425 32397 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0422 00:23:24.055446 32397 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0422 00:23:24.055469 32397 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.875
I0422 00:23:24.055492 32397 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.744681
I0422 00:23:24.055526 32397 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.22924 (* 0.3 = 0.368772 loss)
I0422 00:23:24.055555 32397 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.37805 (* 0.3 = 0.113415 loss)
I0422 00:23:24.055585 32397 solver.cpp:245] Train net output #27: loss1/loss01 = 0.886014 (* 0.0272727 = 0.024164 loss)
I0422 00:23:24.055613 32397 solver.cpp:245] Train net output #28: loss1/loss02 = 1.42927 (* 0.0272727 = 0.03898 loss)
I0422 00:23:24.055640 32397 solver.cpp:245] Train net output #29: loss1/loss03 = 2.07389 (* 0.0272727 = 0.0565607 loss)
I0422 00:23:24.055670 32397 solver.cpp:245] Train net output #30: loss1/loss04 = 1.70263 (* 0.0272727 = 0.0464354 loss)
I0422 00:23:24.055701 32397 solver.cpp:245] Train net output #31: loss1/loss05 = 1.77856 (* 0.0272727 = 0.0485063 loss)
I0422 00:23:24.055729 32397 solver.cpp:245] Train net output #32: loss1/loss06 = 1.49828 (* 0.0272727 = 0.0408621 loss)
I0422 00:23:24.055757 32397 solver.cpp:245] Train net output #33: loss1/loss07 = 0.479368 (* 0.0272727 = 0.0130737 loss)
I0422 00:23:24.055786 32397 solver.cpp:245] Train net output #34: loss1/loss08 = 0.469612 (* 0.0272727 = 0.0128076 loss)
I0422 00:23:24.055814 32397 solver.cpp:245] Train net output #35: loss1/loss09 = 0.182234 (* 0.0272727 = 0.00497003 loss)
I0422 00:23:24.055840 32397 solver.cpp:245] Train net output #36: loss1/loss10 = 0.0539258 (* 0.0272727 = 0.0014707 loss)
I0422 00:23:24.055868 32397 solver.cpp:245] Train net output #37: loss1/loss11 = 0.000305066 (* 0.0272727 = 8.31997e-06 loss)
I0422 00:23:24.055927 32397 solver.cpp:245] Train net output #38: loss1/loss12 = 0.000175747 (* 0.0272727 = 4.79311e-06 loss)
I0422 00:23:24.055961 32397 solver.cpp:245] Train net output #39: loss1/loss13 = 0.000448095 (* 0.0272727 = 1.22208e-05 loss)
I0422 00:23:24.055990 32397 solver.cpp:245] Train net output #40: loss1/loss14 = 0.000204298 (* 0.0272727 = 5.57176e-06 loss)
I0422 00:23:24.056018 32397 solver.cpp:245] Train net output #41: loss1/loss15 = 0.000235944 (* 0.0272727 = 6.43483e-06 loss)
I0422 00:23:24.056046 32397 solver.cpp:245] Train net output #42: loss1/loss16 = 0.000320681 (* 0.0272727 = 8.74585e-06 loss)
I0422 00:23:24.056072 32397 solver.cpp:245] Train net output #43: loss1/loss17 = 0.000240804 (* 0.0272727 = 6.56737e-06 loss)
I0422 00:23:24.056100 32397 solver.cpp:245] Train net output #44: loss1/loss18 = 0.000318783 (* 0.0272727 = 8.69409e-06 loss)
I0422 00:23:24.056128 32397 solver.cpp:245] Train net output #45: loss1/loss19 = 0.000128482 (* 0.0272727 = 3.50404e-06 loss)
I0422 00:23:24.056155 32397 solver.cpp:245] Train net output #46: loss1/loss20 = 0.00049702 (* 0.0272727 = 1.35551e-05 loss)
I0422 00:23:24.056182 32397 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000112652 (* 0.0272727 = 3.07232e-06 loss)
I0422 00:23:24.056210 32397 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000340402 (* 0.0272727 = 9.28368e-06 loss)
I0422 00:23:24.056233 32397 solver.cpp:245] Train net output #49: loss2/accuracy = 0.829787
I0422 00:23:24.056257 32397 solver.cpp:245] Train net output #50: loss2/accuracy01 = 1
I0422 00:23:24.056280 32397 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75
I0422 00:23:24.056303 32397 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.25
I0422 00:23:24.056324 32397 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.375
I0422 00:23:24.056347 32397 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.625
I0422 00:23:24.056368 32397 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.75
I0422 00:23:24.056391 32397 solver.cpp:245] Train net output #56: loss2/accuracy07 = 1
I0422 00:23:24.056411 32397 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875
I0422 00:23:24.056429 32397 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1
I0422 00:23:24.056452 32397 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0422 00:23:24.056473 32397 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0422 00:23:24.056495 32397 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0422 00:23:24.056517 32397 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0422 00:23:24.056538 32397 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0422 00:23:24.056560 32397 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0422 00:23:24.056581 32397 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0422 00:23:24.056602 32397 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0422 00:23:24.056624 32397 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0422 00:23:24.056644 32397 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0422 00:23:24.056666 32397 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0422 00:23:24.056689 32397 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0422 00:23:24.056709 32397 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0422 00:23:24.056730 32397 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.948864
I0422 00:23:24.056756 32397 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.978723
I0422 00:23:24.056783 32397 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.49268 (* 0.3 = 0.147804 loss)
I0422 00:23:24.056809 32397 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.158433 (* 0.3 = 0.0475299 loss)
I0422 00:23:24.056855 32397 solver.cpp:245] Train net output #76: loss2/loss01 = 0.231167 (* 0.0272727 = 0.00630454 loss)
I0422 00:23:24.056888 32397 solver.cpp:245] Train net output #77: loss2/loss02 = 0.580288 (* 0.0272727 = 0.015826 loss)
I0422 00:23:24.056918 32397 solver.cpp:245] Train net output #78: loss2/loss03 = 1.45644 (* 0.0272727 = 0.0397212 loss)
I0422 00:23:24.056946 32397 solver.cpp:245] Train net output #79: loss2/loss04 = 1.50284 (* 0.0272727 = 0.0409867 loss)
I0422 00:23:24.056973 32397 solver.cpp:245] Train net output #80: loss2/loss05 = 1.26897 (* 0.0272727 = 0.0346082 loss)
I0422 00:23:24.057003 32397 solver.cpp:245] Train net output #81: loss2/loss06 = 0.974925 (* 0.0272727 = 0.0265889 loss)
I0422 00:23:24.057034 32397 solver.cpp:245] Train net output #82: loss2/loss07 = 0.215774 (* 0.0272727 = 0.00588474 loss)
I0422 00:23:24.057060 32397 solver.cpp:245] Train net output #83: loss2/loss08 = 0.51036 (* 0.0272727 = 0.0139189 loss)
I0422 00:23:24.057085 32397 solver.cpp:245] Train net output #84: loss2/loss09 = 0.133539 (* 0.0272727 = 0.00364198 loss)
I0422 00:23:24.057113 32397 solver.cpp:245] Train net output #85: loss2/loss10 = 0.0349611 (* 0.0272727 = 0.000953484 loss)
I0422 00:23:24.057140 32397 solver.cpp:245] Train net output #86: loss2/loss11 = 5.49861e-06 (* 0.0272727 = 1.49962e-07 loss)
I0422 00:23:24.057166 32397 solver.cpp:245] Train net output #87: loss2/loss12 = 6.5864e-06 (* 0.0272727 = 1.79629e-07 loss)
I0422 00:23:24.057194 32397 solver.cpp:245] Train net output #88: loss2/loss13 = 3.75514e-06 (* 0.0272727 = 1.02413e-07 loss)
I0422 00:23:24.057220 32397 solver.cpp:245] Train net output #89: loss2/loss14 = 6.2437e-06 (* 0.0272727 = 1.70283e-07 loss)
I0422 00:23:24.057247 32397 solver.cpp:245] Train net output #90: loss2/loss15 = 2.33949e-06 (* 0.0272727 = 6.38043e-08 loss)
I0422 00:23:24.057273 32397 solver.cpp:245] Train net output #91: loss2/loss16 = 5.48371e-06 (* 0.0272727 = 1.49556e-07 loss)
I0422 00:23:24.057299 32397 solver.cpp:245] Train net output #92: loss2/loss17 = 4.94725e-06 (* 0.0272727 = 1.34925e-07 loss)
I0422 00:23:24.057327 32397 solver.cpp:245] Train net output #93: loss2/loss18 = 1.04014e-05 (* 0.0272727 = 2.83673e-07 loss)
I0422 00:23:24.057353 32397 solver.cpp:245] Train net output #94: loss2/loss19 = 6.69078e-06 (* 0.0272727 = 1.82476e-07 loss)
I0422 00:23:24.057380 32397 solver.cpp:245] Train net output #95: loss2/loss20 = 1.16233e-05 (* 0.0272727 = 3.17e-07 loss)
I0422 00:23:24.057407 32397 solver.cpp:245] Train net output #96: loss2/loss21 = 7.86801e-06 (* 0.0272727 = 2.14582e-07 loss)
I0422 00:23:24.057435 32397 solver.cpp:245] Train net output #97: loss2/loss22 = 3.94885e-06 (* 0.0272727 = 1.07696e-07 loss)
I0422 00:23:24.057457 32397 solver.cpp:245] Train net output #98: loss3/accuracy = 0.93617
I0422 00:23:24.057478 32397 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0422 00:23:24.057499 32397 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0422 00:23:24.057521 32397 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.625
I0422 00:23:24.057541 32397 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1
I0422 00:23:24.057562 32397 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.75
I0422 00:23:24.057584 32397 solver.cpp:245] Train net output #104: loss3/accuracy06 = 1
I0422 00:23:24.057605 32397 solver.cpp:245] Train net output #105: loss3/accuracy07 = 1
I0422 00:23:24.057624 32397 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875
I0422 00:23:24.057646 32397 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1
I0422 00:23:24.057665 32397 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0422 00:23:24.057687 32397 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0422 00:23:24.057708 32397 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0422 00:23:24.057728 32397 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0422 00:23:24.057765 32397 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0422 00:23:24.057786 32397 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0422 00:23:24.057812 32397 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0422 00:23:24.057835 32397 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0422 00:23:24.057857 32397 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0422 00:23:24.057878 32397 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0422 00:23:24.057899 32397 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0422 00:23:24.057920 32397 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0422 00:23:24.057941 32397 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0422 00:23:24.057961 32397 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.982955
I0422 00:23:24.057983 32397 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 1
I0422 00:23:24.058009 32397 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.206433 (* 1 = 0.206433 loss)
I0422 00:23:24.058034 32397 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.0577664 (* 1 = 0.0577664 loss)
I0422 00:23:24.058065 32397 solver.cpp:245] Train net output #125: loss3/loss01 = 0.0543045 (* 0.0909091 = 0.00493677 loss)
I0422 00:23:24.058094 32397 solver.cpp:245] Train net output #126: loss3/loss02 = 0.111125 (* 0.0909091 = 0.0101022 loss)
I0422 00:23:24.058120 32397 solver.cpp:245] Train net output #127: loss3/loss03 = 0.514396 (* 0.0909091 = 0.0467632 loss)
I0422 00:23:24.058146 32397 solver.cpp:245] Train net output #128: loss3/loss04 = 0.0827929 (* 0.0909091 = 0.00752663 loss)
I0422 00:23:24.058172 32397 solver.cpp:245] Train net output #129: loss3/loss05 = 0.587239 (* 0.0909091 = 0.0533853 loss)
I0422 00:23:24.058199 32397 solver.cpp:245] Train net output #130: loss3/loss06 = 0.201397 (* 0.0909091 = 0.0183088 loss)
I0422 00:23:24.058224 32397 solver.cpp:245] Train net output #131: loss3/loss07 = 0.0943865 (* 0.0909091 = 0.00858059 loss)
I0422 00:23:24.058251 32397 solver.cpp:245] Train net output #132: loss3/loss08 = 0.427233 (* 0.0909091 = 0.0388393 loss)
I0422 00:23:24.058279 32397 solver.cpp:245] Train net output #133: loss3/loss09 = 0.0158431 (* 0.0909091 = 0.00144028 loss)
I0422 00:23:24.058303 32397 solver.cpp:245] Train net output #134: loss3/loss10 = 0.00197074 (* 0.0909091 = 0.000179158 loss)
I0422 00:23:24.058329 32397 solver.cpp:245] Train net output #135: loss3/loss11 = 1.01328e-06 (* 0.0909091 = 9.21164e-08 loss)
I0422 00:23:24.058357 32397 solver.cpp:245] Train net output #136: loss3/loss12 = 8.19565e-07 (* 0.0909091 = 7.45059e-08 loss)
I0422 00:23:24.058382 32397 solver.cpp:245] Train net output #137: loss3/loss13 = 1.01328e-06 (* 0.0909091 = 9.21165e-08 loss)
I0422 00:23:24.058408 32397 solver.cpp:245] Train net output #138: loss3/loss14 = 8.7917e-07 (* 0.0909091 = 7.99245e-08 loss)
I0422 00:23:24.058435 32397 solver.cpp:245] Train net output #139: loss3/loss15 = 8.04664e-07 (* 0.0909091 = 7.31513e-08 loss)
I0422 00:23:24.058462 32397 solver.cpp:245] Train net output #140: loss3/loss16 = 8.94071e-07 (* 0.0909091 = 8.12792e-08 loss)
I0422 00:23:24.058488 32397 solver.cpp:245] Train net output #141: loss3/loss17 = 7.5996e-07 (* 0.0909091 = 6.90873e-08 loss)
I0422 00:23:24.058516 32397 solver.cpp:245] Train net output #142: loss3/loss18 = 7.30158e-07 (* 0.0909091 = 6.6378e-08 loss)
I0422 00:23:24.058542 32397 solver.cpp:245] Train net output #143: loss3/loss19 = 1.11759e-06 (* 0.0909091 = 1.01599e-07 loss)
I0422 00:23:24.058567 32397 solver.cpp:245] Train net output #144: loss3/loss20 = 7.89763e-07 (* 0.0909091 = 7.17966e-08 loss)
I0422 00:23:24.058593 32397 solver.cpp:245] Train net output #145: loss3/loss21 = 5.66245e-07 (* 0.0909091 = 5.14768e-08 loss)
I0422 00:23:24.058619 32397 solver.cpp:245] Train net output #146: loss3/loss22 = 8.19565e-07 (* 0.0909091 = 7.45059e-08 loss)
I0422 00:23:24.058656 32397 solver.cpp:245] Train net output #147: total_accuracy = 0.75
I0422 00:23:24.058681 32397 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.5
I0422 00:23:24.058702 32397 solver.cpp:245] Train net output #149: total_confidence = 0.575049
I0422 00:23:24.058722 32397 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.520255
I0422 00:23:24.058744 32397 sgd_solver.cpp:106] Iteration 5000, lr = 0.001
I0422 00:29:06.209766 32397 solver.cpp:229] Iteration 5500, loss = 2.30736
I0422 00:29:06.209889 32397 solver.cpp:245] Train net output #0: loss1/accuracy = 0.56
I0422 00:29:06.209908 32397 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75
I0422 00:29:06.209921 32397 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5
I0422 00:29:06.209934 32397 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.25
I0422 00:29:06.209946 32397 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.25
I0422 00:29:06.209960 32397 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.375
I0422 00:29:06.209974 32397 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.625
I0422 00:29:06.209987 32397 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.75
I0422 00:29:06.209998 32397 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875
I0422 00:29:06.210011 32397 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1
I0422 00:29:06.210022 32397 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0422 00:29:06.210034 32397 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0422 00:29:06.210047 32397 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0422 00:29:06.210058 32397 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0422 00:29:06.210070 32397 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0422 00:29:06.210081 32397 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0422 00:29:06.210093 32397 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0422 00:29:06.210105 32397 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0422 00:29:06.210117 32397 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0422 00:29:06.210129 32397 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0422 00:29:06.210140 32397 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0422 00:29:06.210152 32397 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0422 00:29:06.210163 32397 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0422 00:29:06.210175 32397 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.875
I0422 00:29:06.210187 32397 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.82
I0422 00:29:06.210207 32397 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.35964 (* 0.3 = 0.407891 loss)
I0422 00:29:06.210222 32397 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.394146 (* 0.3 = 0.118244 loss)
I0422 00:29:06.210237 32397 solver.cpp:245] Train net output #27: loss1/loss01 = 1.17534 (* 0.0272727 = 0.0320547 loss)
I0422 00:29:06.210252 32397 solver.cpp:245] Train net output #28: loss1/loss02 = 1.57035 (* 0.0272727 = 0.0428277 loss)
I0422 00:29:06.210265 32397 solver.cpp:245] Train net output #29: loss1/loss03 = 1.55559 (* 0.0272727 = 0.0424252 loss)
I0422 00:29:06.210279 32397 solver.cpp:245] Train net output #30: loss1/loss04 = 1.88132 (* 0.0272727 = 0.0513086 loss)
I0422 00:29:06.210294 32397 solver.cpp:245] Train net output #31: loss1/loss05 = 2.95668 (* 0.0272727 = 0.0806367 loss)
I0422 00:29:06.210307 32397 solver.cpp:245] Train net output #32: loss1/loss06 = 1.29603 (* 0.0272727 = 0.0353463 loss)
I0422 00:29:06.210321 32397 solver.cpp:245] Train net output #33: loss1/loss07 = 0.595885 (* 0.0272727 = 0.0162514 loss)
I0422 00:29:06.210335 32397 solver.cpp:245] Train net output #34: loss1/loss08 = 0.453324 (* 0.0272727 = 0.0123634 loss)
I0422 00:29:06.210350 32397 solver.cpp:245] Train net output #35: loss1/loss09 = 0.0127178 (* 0.0272727 = 0.000346849 loss)
I0422 00:29:06.210363 32397 solver.cpp:245] Train net output #36: loss1/loss10 = 0.00142954 (* 0.0272727 = 3.89874e-05 loss)
I0422 00:29:06.210377 32397 solver.cpp:245] Train net output #37: loss1/loss11 = 1.01926e-05 (* 0.0272727 = 2.77979e-07 loss)
I0422 00:29:06.210391 32397 solver.cpp:245] Train net output #38: loss1/loss12 = 1.14593e-05 (* 0.0272727 = 3.12526e-07 loss)
I0422 00:29:06.210405 32397 solver.cpp:245] Train net output #39: loss1/loss13 = 1.24874e-05 (* 0.0272727 = 3.40566e-07 loss)
I0422 00:29:06.210435 32397 solver.cpp:245] Train net output #40: loss1/loss14 = 2.11903e-05 (* 0.0272727 = 5.77917e-07 loss)
I0422 00:29:06.210451 32397 solver.cpp:245] Train net output #41: loss1/loss15 = 1.63172e-05 (* 0.0272727 = 4.45014e-07 loss)
I0422 00:29:06.210465 32397 solver.cpp:245] Train net output #42: loss1/loss16 = 1.2398e-05 (* 0.0272727 = 3.38128e-07 loss)
I0422 00:29:06.210479 32397 solver.cpp:245] Train net output #43: loss1/loss17 = 1.28152e-05 (* 0.0272727 = 3.49506e-07 loss)
I0422 00:29:06.210492 32397 solver.cpp:245] Train net output #44: loss1/loss18 = 1.02969e-05 (* 0.0272727 = 2.80824e-07 loss)
I0422 00:29:06.210506 32397 solver.cpp:245] Train net output #45: loss1/loss19 = 1.00137e-05 (* 0.0272727 = 2.73102e-07 loss)
I0422 00:29:06.210520 32397 solver.cpp:245] Train net output #46: loss1/loss20 = 1.37391e-05 (* 0.0272727 = 3.74704e-07 loss)
I0422 00:29:06.210535 32397 solver.cpp:245] Train net output #47: loss1/loss21 = 2.1816e-05 (* 0.0272727 = 5.94983e-07 loss)
I0422 00:29:06.210547 32397 solver.cpp:245] Train net output #48: loss1/loss22 = 1.84781e-05 (* 0.0272727 = 5.03948e-07 loss)
I0422 00:29:06.210561 32397 solver.cpp:245] Train net output #49: loss2/accuracy = 0.86
I0422 00:29:06.210572 32397 solver.cpp:245] Train net output #50: loss2/accuracy01 = 1
I0422 00:29:06.210583 32397 solver.cpp:245] Train net output #51: loss2/accuracy02 = 1
I0422 00:29:06.210595 32397 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.5
I0422 00:29:06.210607 32397 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.5
I0422 00:29:06.210618 32397 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5
I0422 00:29:06.210630 32397 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.5
I0422 00:29:06.210643 32397 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.875
I0422 00:29:06.210654 32397 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875
I0422 00:29:06.210665 32397 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1
I0422 00:29:06.210676 32397 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0422 00:29:06.210688 32397 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0422 00:29:06.210700 32397 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0422 00:29:06.210711 32397 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0422 00:29:06.210722 32397 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0422 00:29:06.210733 32397 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0422 00:29:06.210744 32397 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0422 00:29:06.210755 32397 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0422 00:29:06.210767 32397 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0422 00:29:06.210778 32397 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0422 00:29:06.210789 32397 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0422 00:29:06.210801 32397 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0422 00:29:06.210813 32397 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0422 00:29:06.210824 32397 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.960227
I0422 00:29:06.210835 32397 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.98
I0422 00:29:06.210850 32397 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.6267 (* 0.3 = 0.18801 loss)
I0422 00:29:06.210862 32397 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.186302 (* 0.3 = 0.0558907 loss)
I0422 00:29:06.210877 32397 solver.cpp:245] Train net output #76: loss2/loss01 = 0.352226 (* 0.0272727 = 0.00960616 loss)
I0422 00:29:06.210891 32397 solver.cpp:245] Train net output #77: loss2/loss02 = 0.357756 (* 0.0272727 = 0.00975698 loss)
I0422 00:29:06.210916 32397 solver.cpp:245] Train net output #78: loss2/loss03 = 1.24551 (* 0.0272727 = 0.0339684 loss)
I0422 00:29:06.210930 32397 solver.cpp:245] Train net output #79: loss2/loss04 = 1.24483 (* 0.0272727 = 0.0339499 loss)
I0422 00:29:06.210944 32397 solver.cpp:245] Train net output #80: loss2/loss05 = 2.02718 (* 0.0272727 = 0.0552869 loss)
I0422 00:29:06.210958 32397 solver.cpp:245] Train net output #81: loss2/loss06 = 1.80931 (* 0.0272727 = 0.0493448 loss)
I0422 00:29:06.210973 32397 solver.cpp:245] Train net output #82: loss2/loss07 = 0.394277 (* 0.0272727 = 0.010753 loss)
I0422 00:29:06.210986 32397 solver.cpp:245] Train net output #83: loss2/loss08 = 0.22255 (* 0.0272727 = 0.00606954 loss)
I0422 00:29:06.211000 32397 solver.cpp:245] Train net output #84: loss2/loss09 = 0.0416525 (* 0.0272727 = 0.00113598 loss)
I0422 00:29:06.211022 32397 solver.cpp:245] Train net output #85: loss2/loss10 = 0.00300267 (* 0.0272727 = 8.1891e-05 loss)
I0422 00:29:06.211057 32397 solver.cpp:245] Train net output #86: loss2/loss11 = 2.16068e-06 (* 0.0272727 = 5.89276e-08 loss)
I0422 00:29:06.211076 32397 solver.cpp:245] Train net output #87: loss2/loss12 = 2.25008e-06 (* 0.0272727 = 6.13659e-08 loss)
I0422 00:29:06.211091 32397 solver.cpp:245] Train net output #88: loss2/loss13 = 1.86265e-06 (* 0.0272727 = 5.07996e-08 loss)
I0422 00:29:06.211104 32397 solver.cpp:245] Train net output #89: loss2/loss14 = 2.14578e-06 (* 0.0272727 = 5.85212e-08 loss)
I0422 00:29:06.211118 32397 solver.cpp:245] Train net output #90: loss2/loss15 = 4.36607e-06 (* 0.0272727 = 1.19075e-07 loss)
I0422 00:29:06.211133 32397 solver.cpp:245] Train net output #91: loss2/loss16 = 4.44059e-06 (* 0.0272727 = 1.21107e-07 loss)
I0422 00:29:06.211146 32397 solver.cpp:245] Train net output #92: loss2/loss17 = 1.49012e-06 (* 0.0272727 = 4.06396e-08 loss)
I0422 00:29:06.211159 32397 solver.cpp:245] Train net output #93: loss2/loss18 = 2.51831e-06 (* 0.0272727 = 6.86811e-08 loss)
I0422 00:29:06.211174 32397 solver.cpp:245] Train net output #94: loss2/loss19 = 2.17558e-06 (* 0.0272727 = 5.93339e-08 loss)
I0422 00:29:06.211187 32397 solver.cpp:245] Train net output #95: loss2/loss20 = 1.207e-06 (* 0.0272727 = 3.29181e-08 loss)
I0422 00:29:06.211201 32397 solver.cpp:245] Train net output #96: loss2/loss21 = 1.68384e-06 (* 0.0272727 = 4.59228e-08 loss)
I0422 00:29:06.211215 32397 solver.cpp:245] Train net output #97: loss2/loss22 = 1.78814e-06 (* 0.0272727 = 4.87676e-08 loss)
I0422 00:29:06.211226 32397 solver.cpp:245] Train net output #98: loss3/accuracy = 0.98
I0422 00:29:06.211238 32397 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0422 00:29:06.211253 32397 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0422 00:29:06.211266 32397 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0422 00:29:06.211277 32397 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1
I0422 00:29:06.211288 32397 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875
I0422 00:29:06.211300 32397 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.75
I0422 00:29:06.211311 32397 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875
I0422 00:29:06.211323 32397 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1
I0422 00:29:06.211334 32397 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1
I0422 00:29:06.211345 32397 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0422 00:29:06.211371 32397 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0422 00:29:06.211383 32397 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0422 00:29:06.211395 32397 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0422 00:29:06.211406 32397 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0422 00:29:06.211416 32397 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0422 00:29:06.211428 32397 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0422 00:29:06.211452 32397 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0422 00:29:06.211464 32397 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0422 00:29:06.211477 32397 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0422 00:29:06.211488 32397 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0422 00:29:06.211498 32397 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0422 00:29:06.211509 32397 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0422 00:29:06.211520 32397 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.994318
I0422 00:29:06.211532 32397 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.98
I0422 00:29:06.211545 32397 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.283576 (* 1 = 0.283576 loss)
I0422 00:29:06.211560 32397 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.0834358 (* 1 = 0.0834358 loss)
I0422 00:29:06.211575 32397 solver.cpp:245] Train net output #125: loss3/loss01 = 0.0185722 (* 0.0909091 = 0.00168838 loss)
I0422 00:29:06.211588 32397 solver.cpp:245] Train net output #126: loss3/loss02 = 0.0903848 (* 0.0909091 = 0.0082168 loss)
I0422 00:29:06.211602 32397 solver.cpp:245] Train net output #127: loss3/loss03 = 0.0441863 (* 0.0909091 = 0.00401693 loss)
I0422 00:29:06.211616 32397 solver.cpp:245] Train net output #128: loss3/loss04 = 0.107475 (* 0.0909091 = 0.00977047 loss)
I0422 00:29:06.211630 32397 solver.cpp:245] Train net output #129: loss3/loss05 = 1.72907 (* 0.0909091 = 0.157188 loss)
I0422 00:29:06.211643 32397 solver.cpp:245] Train net output #130: loss3/loss06 = 0.483307 (* 0.0909091 = 0.043937 loss)
I0422 00:29:06.211658 32397 solver.cpp:245] Train net output #131: loss3/loss07 = 0.205719 (* 0.0909091 = 0.0187017 loss)
I0422 00:29:06.211671 32397 solver.cpp:245] Train net output #132: loss3/loss08 = 0.0584903 (* 0.0909091 = 0.0053173 loss)
I0422 00:29:06.211685 32397 solver.cpp:245] Train net output #133: loss3/loss09 = 0.0275138 (* 0.0909091 = 0.00250125 loss)
I0422 00:29:06.211699 32397 solver.cpp:245] Train net output #134: loss3/loss10 = 0.000700901 (* 0.0909091 = 6.37183e-05 loss)
I0422 00:29:06.211714 32397 solver.cpp:245] Train net output #135: loss3/loss11 = 3.35278e-06 (* 0.0909091 = 3.04799e-07 loss)
I0422 00:29:06.211727 32397 solver.cpp:245] Train net output #136: loss3/loss12 = 2.65242e-06 (* 0.0909091 = 2.41129e-07 loss)
I0422 00:29:06.211741 32397 solver.cpp:245] Train net output #137: loss3/loss13 = 3.42729e-06 (* 0.0909091 = 3.11572e-07 loss)
I0422 00:29:06.211755 32397 solver.cpp:245] Train net output #138: loss3/loss14 = 3.03986e-06 (* 0.0909091 = 2.76351e-07 loss)
I0422 00:29:06.211769 32397 solver.cpp:245] Train net output #139: loss3/loss15 = 2.54811e-06 (* 0.0909091 = 2.31646e-07 loss)
I0422 00:29:06.211783 32397 solver.cpp:245] Train net output #140: loss3/loss16 = 3.5018e-06 (* 0.0909091 = 3.18345e-07 loss)
I0422 00:29:06.211797 32397 solver.cpp:245] Train net output #141: loss3/loss17 = 2.98025e-06 (* 0.0909091 = 2.70932e-07 loss)
I0422 00:29:06.211812 32397 solver.cpp:245] Train net output #142: loss3/loss18 = 3.35279e-06 (* 0.0909091 = 3.04799e-07 loss)
I0422 00:29:06.211825 32397 solver.cpp:245] Train net output #143: loss3/loss19 = 3.77002e-06 (* 0.0909091 = 3.42729e-07 loss)
I0422 00:29:06.211838 32397 solver.cpp:245] Train net output #144: loss3/loss20 = 2.98025e-06 (* 0.0909091 = 2.70932e-07 loss)
I0422 00:29:06.211853 32397 solver.cpp:245] Train net output #145: loss3/loss21 = 2.53321e-06 (* 0.0909091 = 2.30292e-07 loss)
I0422 00:29:06.211866 32397 solver.cpp:245] Train net output #146: loss3/loss22 = 2.98025e-06 (* 0.0909091 = 2.70932e-07 loss)
I0422 00:29:06.211879 32397 solver.cpp:245] Train net output #147: total_accuracy = 0.875
I0422 00:29:06.211890 32397 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.625
I0422 00:29:06.211911 32397 solver.cpp:245] Train net output #149: total_confidence = 0.759875
I0422 00:29:06.211925 32397 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.559533
I0422 00:29:06.211937 32397 sgd_solver.cpp:106] Iteration 5500, lr = 0.001
I0422 00:34:47.842448 32397 solver.cpp:229] Iteration 6000, loss = 2.27945
I0422 00:34:47.842597 32397 solver.cpp:245] Train net output #0: loss1/accuracy = 0.590909
I0422 00:34:47.842618 32397 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.875
I0422 00:34:47.842631 32397 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.25
I0422 00:34:47.842644 32397 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375
I0422 00:34:47.842656 32397 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.25
I0422 00:34:47.842669 32397 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.375
I0422 00:34:47.842680 32397 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.625
I0422 00:34:47.842694 32397 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.75
I0422 00:34:47.842706 32397 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875
I0422 00:34:47.842718 32397 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875
I0422 00:34:47.842730 32397 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875
I0422 00:34:47.842742 32397 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0422 00:34:47.842754 32397 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0422 00:34:47.842767 32397 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0422 00:34:47.842777 32397 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0422 00:34:47.842789 32397 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0422 00:34:47.842809 32397 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0422 00:34:47.842821 32397 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0422 00:34:47.842833 32397 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0422 00:34:47.842844 32397 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0422 00:34:47.842855 32397 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0422 00:34:47.842867 32397 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0422 00:34:47.842878 32397 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0422 00:34:47.842898 32397 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.875
I0422 00:34:47.842911 32397 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.772727
I0422 00:34:47.842926 32397 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.37482 (* 0.3 = 0.412447 loss)
I0422 00:34:47.842941 32397 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.494036 (* 0.3 = 0.148211 loss)
I0422 00:34:47.842955 32397 solver.cpp:245] Train net output #27: loss1/loss01 = 0.901187 (* 0.0272727 = 0.0245778 loss)
I0422 00:34:47.842969 32397 solver.cpp:245] Train net output #28: loss1/loss02 = 2.34228 (* 0.0272727 = 0.0638804 loss)
I0422 00:34:47.842983 32397 solver.cpp:245] Train net output #29: loss1/loss03 = 2.47476 (* 0.0272727 = 0.0674934 loss)
I0422 00:34:47.842998 32397 solver.cpp:245] Train net output #30: loss1/loss04 = 2.21287 (* 0.0272727 = 0.060351 loss)
I0422 00:34:47.843010 32397 solver.cpp:245] Train net output #31: loss1/loss05 = 1.98924 (* 0.0272727 = 0.0542521 loss)
I0422 00:34:47.843029 32397 solver.cpp:245] Train net output #32: loss1/loss06 = 1.10369 (* 0.0272727 = 0.0301006 loss)
I0422 00:34:47.843042 32397 solver.cpp:245] Train net output #33: loss1/loss07 = 0.886123 (* 0.0272727 = 0.024167 loss)
I0422 00:34:47.843056 32397 solver.cpp:245] Train net output #34: loss1/loss08 = 0.445745 (* 0.0272727 = 0.0121567 loss)
I0422 00:34:47.843070 32397 solver.cpp:245] Train net output #35: loss1/loss09 = 0.681615 (* 0.0272727 = 0.0185895 loss)
I0422 00:34:47.843083 32397 solver.cpp:245] Train net output #36: loss1/loss10 = 0.737178 (* 0.0272727 = 0.0201049 loss)
I0422 00:34:47.843098 32397 solver.cpp:245] Train net output #37: loss1/loss11 = 2.7204e-05 (* 0.0272727 = 7.41929e-07 loss)
I0422 00:34:47.843112 32397 solver.cpp:245] Train net output #38: loss1/loss12 = 2.91564e-05 (* 0.0272727 = 7.95175e-07 loss)
I0422 00:34:47.843144 32397 solver.cpp:245] Train net output #39: loss1/loss13 = 3.10049e-05 (* 0.0272727 = 8.45588e-07 loss)
I0422 00:34:47.843160 32397 solver.cpp:245] Train net output #40: loss1/loss14 = 2.56318e-05 (* 0.0272727 = 6.9905e-07 loss)
I0422 00:34:47.843174 32397 solver.cpp:245] Train net output #41: loss1/loss15 = 2.04454e-05 (* 0.0272727 = 5.57601e-07 loss)
I0422 00:34:47.843188 32397 solver.cpp:245] Train net output #42: loss1/loss16 = 1.71965e-05 (* 0.0272727 = 4.68995e-07 loss)
I0422 00:34:47.843201 32397 solver.cpp:245] Train net output #43: loss1/loss17 = 2.26662e-05 (* 0.0272727 = 6.18168e-07 loss)
I0422 00:34:47.843215 32397 solver.cpp:245] Train net output #44: loss1/loss18 = 2.74348e-05 (* 0.0272727 = 7.4822e-07 loss)
I0422 00:34:47.843230 32397 solver.cpp:245] Train net output #45: loss1/loss19 = 2.42899e-05 (* 0.0272727 = 6.62452e-07 loss)
I0422 00:34:47.843243 32397 solver.cpp:245] Train net output #46: loss1/loss20 = 2.02367e-05 (* 0.0272727 = 5.51909e-07 loss)
I0422 00:34:47.843257 32397 solver.cpp:245] Train net output #47: loss1/loss21 = 2.99163e-05 (* 0.0272727 = 8.159e-07 loss)
I0422 00:34:47.843271 32397 solver.cpp:245] Train net output #48: loss1/loss22 = 2.24873e-05 (* 0.0272727 = 6.1329e-07 loss)
I0422 00:34:47.843282 32397 solver.cpp:245] Train net output #49: loss2/accuracy = 0.659091
I0422 00:34:47.843294 32397 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875
I0422 00:34:47.843307 32397 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.5
I0422 00:34:47.843318 32397 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.5
I0422 00:34:47.843329 32397 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.5
I0422 00:34:47.843341 32397 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.625
I0422 00:34:47.843374 32397 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.625
I0422 00:34:47.843389 32397 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.875
I0422 00:34:47.843400 32397 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875
I0422 00:34:47.843412 32397 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875
I0422 00:34:47.843425 32397 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875
I0422 00:34:47.843436 32397 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0422 00:34:47.843448 32397 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0422 00:34:47.843459 32397 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0422 00:34:47.843471 32397 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0422 00:34:47.843482 32397 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0422 00:34:47.843493 32397 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0422 00:34:47.843505 32397 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0422 00:34:47.843516 32397 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0422 00:34:47.843528 32397 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0422 00:34:47.843539 32397 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0422 00:34:47.843550 32397 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0422 00:34:47.843561 32397 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0422 00:34:47.843572 32397 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.897727
I0422 00:34:47.843585 32397 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.840909
I0422 00:34:47.843597 32397 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.07521 (* 0.3 = 0.322564 loss)
I0422 00:34:47.843616 32397 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.31076 (* 0.3 = 0.093228 loss)
I0422 00:34:47.843631 32397 solver.cpp:245] Train net output #76: loss2/loss01 = 0.478379 (* 0.0272727 = 0.0130467 loss)
I0422 00:34:47.843644 32397 solver.cpp:245] Train net output #77: loss2/loss02 = 1.64343 (* 0.0272727 = 0.0448209 loss)
I0422 00:34:47.843672 32397 solver.cpp:245] Train net output #78: loss2/loss03 = 1.81059 (* 0.0272727 = 0.0493798 loss)
I0422 00:34:47.843688 32397 solver.cpp:245] Train net output #79: loss2/loss04 = 1.42148 (* 0.0272727 = 0.0387676 loss)
I0422 00:34:47.843700 32397 solver.cpp:245] Train net output #80: loss2/loss05 = 1.24951 (* 0.0272727 = 0.0340775 loss)
I0422 00:34:47.843714 32397 solver.cpp:245] Train net output #81: loss2/loss06 = 1.20555 (* 0.0272727 = 0.0328787 loss)
I0422 00:34:47.843729 32397 solver.cpp:245] Train net output #82: loss2/loss07 = 0.639004 (* 0.0272727 = 0.0174274 loss)
I0422 00:34:47.843744 32397 solver.cpp:245] Train net output #83: loss2/loss08 = 0.406221 (* 0.0272727 = 0.0110788 loss)
I0422 00:34:47.843756 32397 solver.cpp:245] Train net output #84: loss2/loss09 = 0.611022 (* 0.0272727 = 0.0166642 loss)
I0422 00:34:47.843770 32397 solver.cpp:245] Train net output #85: loss2/loss10 = 0.682947 (* 0.0272727 = 0.0186258 loss)
I0422 00:34:47.843786 32397 solver.cpp:245] Train net output #86: loss2/loss11 = 0.000260053 (* 0.0272727 = 7.09234e-06 loss)
I0422 00:34:47.843799 32397 solver.cpp:245] Train net output #87: loss2/loss12 = 0.000153522 (* 0.0272727 = 4.18696e-06 loss)
I0422 00:34:47.843813 32397 solver.cpp:245] Train net output #88: loss2/loss13 = 0.000544867 (* 0.0272727 = 1.486e-05 loss)
I0422 00:34:47.843827 32397 solver.cpp:245] Train net output #89: loss2/loss14 = 0.000329498 (* 0.0272727 = 8.98632e-06 loss)
I0422 00:34:47.843842 32397 solver.cpp:245] Train net output #90: loss2/loss15 = 0.000348789 (* 0.0272727 = 9.51243e-06 loss)
I0422 00:34:47.843857 32397 solver.cpp:245] Train net output #91: loss2/loss16 = 0.000143351 (* 0.0272727 = 3.90958e-06 loss)
I0422 00:34:47.843870 32397 solver.cpp:245] Train net output #92: loss2/loss17 = 0.000104076 (* 0.0272727 = 2.83845e-06 loss)
I0422 00:34:47.843884 32397 solver.cpp:245] Train net output #93: loss2/loss18 = 7.93762e-05 (* 0.0272727 = 2.16481e-06 loss)
I0422 00:34:47.843899 32397 solver.cpp:245] Train net output #94: loss2/loss19 = 0.000144293 (* 0.0272727 = 3.93526e-06 loss)
I0422 00:34:47.843912 32397 solver.cpp:245] Train net output #95: loss2/loss20 = 0.000430003 (* 0.0272727 = 1.17274e-05 loss)
I0422 00:34:47.843926 32397 solver.cpp:245] Train net output #96: loss2/loss21 = 9.79583e-05 (* 0.0272727 = 2.67159e-06 loss)
I0422 00:34:47.843937 32397 solver.cpp:245] Train net output #97: loss2/loss22 = 0.000162298 (* 0.0272727 = 4.4263e-06 loss)
I0422 00:34:47.843951 32397 solver.cpp:245] Train net output #98: loss3/accuracy = 0.840909
I0422 00:34:47.843964 32397 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875
I0422 00:34:47.843976 32397 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.75
I0422 00:34:47.843987 32397 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.875
I0422 00:34:47.844002 32397 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875
I0422 00:34:47.844012 32397 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.75
I0422 00:34:47.844024 32397 solver.cpp:245] Train net output #104: loss3/accuracy06 = 1
I0422 00:34:47.844035 32397 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875
I0422 00:34:47.844046 32397 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875
I0422 00:34:47.844058 32397 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875
I0422 00:34:47.844079 32397 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875
I0422 00:34:47.844090 32397 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0422 00:34:47.844101 32397 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0422 00:34:47.844112 32397 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0422 00:34:47.844123 32397 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0422 00:34:47.844135 32397 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0422 00:34:47.844156 32397 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0422 00:34:47.844168 32397 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0422 00:34:47.844180 32397 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0422 00:34:47.844192 32397 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0422 00:34:47.844202 32397 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0422 00:34:47.844213 32397 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0422 00:34:47.844224 32397 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0422 00:34:47.844235 32397 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.948864
I0422 00:34:47.844247 32397 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.863636
I0422 00:34:47.844260 32397 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.667374 (* 1 = 0.667374 loss)
I0422 00:34:47.844274 32397 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.223218 (* 1 = 0.223218 loss)
I0422 00:34:47.844287 32397 solver.cpp:245] Train net output #125: loss3/loss01 = 0.66676 (* 0.0909091 = 0.0606145 loss)
I0422 00:34:47.844301 32397 solver.cpp:245] Train net output #126: loss3/loss02 = 0.951639 (* 0.0909091 = 0.0865127 loss)
I0422 00:34:47.844315 32397 solver.cpp:245] Train net output #127: loss3/loss03 = 0.359055 (* 0.0909091 = 0.0326414 loss)
I0422 00:34:47.844328 32397 solver.cpp:245] Train net output #128: loss3/loss04 = 0.711294 (* 0.0909091 = 0.0646631 loss)
I0422 00:34:47.844342 32397 solver.cpp:245] Train net output #129: loss3/loss05 = 0.627391 (* 0.0909091 = 0.0570356 loss)
I0422 00:34:47.844355 32397 solver.cpp:245] Train net output #130: loss3/loss06 = 0.149755 (* 0.0909091 = 0.0136141 loss)
I0422 00:34:47.844369 32397 solver.cpp:245] Train net output #131: loss3/loss07 = 0.422985 (* 0.0909091 = 0.0384532 loss)
I0422 00:34:47.844383 32397 solver.cpp:245] Train net output #132: loss3/loss08 = 0.410559 (* 0.0909091 = 0.0373236 loss)
I0422 00:34:47.844396 32397 solver.cpp:245] Train net output #133: loss3/loss09 = 0.668072 (* 0.0909091 = 0.0607338 loss)
I0422 00:34:47.844410 32397 solver.cpp:245] Train net output #134: loss3/loss10 = 0.635463 (* 0.0909091 = 0.0577693 loss)
I0422 00:34:47.844424 32397 solver.cpp:245] Train net output #135: loss3/loss11 = 1.44843e-05 (* 0.0909091 = 1.31675e-06 loss)
I0422 00:34:47.844437 32397 solver.cpp:245] Train net output #136: loss3/loss12 = 1.53486e-05 (* 0.0909091 = 1.39533e-06 loss)
I0422 00:34:47.844450 32397 solver.cpp:245] Train net output #137: loss3/loss13 = 1.58106e-05 (* 0.0909091 = 1.43733e-06 loss)
I0422 00:34:47.844470 32397 solver.cpp:245] Train net output #138: loss3/loss14 = 1.81354e-05 (* 0.0909091 = 1.64867e-06 loss)
I0422 00:34:47.844482 32397 solver.cpp:245] Train net output #139: loss3/loss15 = 1.86569e-05 (* 0.0909091 = 1.69609e-06 loss)
I0422 00:34:47.844496 32397 solver.cpp:245] Train net output #140: loss3/loss16 = 1.48122e-05 (* 0.0909091 = 1.34656e-06 loss)
I0422 00:34:47.844511 32397 solver.cpp:245] Train net output #141: loss3/loss17 = 1.60788e-05 (* 0.0909091 = 1.46171e-06 loss)
I0422 00:34:47.844524 32397 solver.cpp:245] Train net output #142: loss3/loss18 = 1.73157e-05 (* 0.0909091 = 1.57415e-06 loss)
I0422 00:34:47.844538 32397 solver.cpp:245] Train net output #143: loss3/loss19 = 1.41267e-05 (* 0.0909091 = 1.28424e-06 loss)
I0422 00:34:47.844552 32397 solver.cpp:245] Train net output #144: loss3/loss20 = 1.1191e-05 (* 0.0909091 = 1.01736e-06 loss)
I0422 00:34:47.844565 32397 solver.cpp:245] Train net output #145: loss3/loss21 = 1.3009e-05 (* 0.0909091 = 1.18264e-06 loss)
I0422 00:34:47.844579 32397 solver.cpp:245] Train net output #146: loss3/loss22 = 1.39031e-05 (* 0.0909091 = 1.26392e-06 loss)
I0422 00:34:47.844591 32397 solver.cpp:245] Train net output #147: total_accuracy = 0.75
I0422 00:34:47.844602 32397 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.75
I0422 00:34:47.844625 32397 solver.cpp:245] Train net output #149: total_confidence = 0.539638
I0422 00:34:47.844638 32397 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.469203
I0422 00:34:47.844650 32397 sgd_solver.cpp:106] Iteration 6000, lr = 0.001
I0422 00:40:29.626188 32397 solver.cpp:229] Iteration 6500, loss = 2.22517
I0422 00:40:29.626389 32397 solver.cpp:245] Train net output #0: loss1/accuracy = 0.456522
I0422 00:40:29.626422 32397 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.625
I0422 00:40:29.626451 32397 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.375
I0422 00:40:29.626473 32397 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375
I0422 00:40:29.626497 32397 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.25
I0422 00:40:29.626520 32397 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.625
I0422 00:40:29.626541 32397 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.625
I0422 00:40:29.626565 32397 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.75
I0422 00:40:29.626587 32397 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875
I0422 00:40:29.626611 32397 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875
I0422 00:40:29.626637 32397 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875
I0422 00:40:29.626662 32397 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0422 00:40:29.626685 32397 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0422 00:40:29.626708 32397 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0422 00:40:29.626739 32397 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0422 00:40:29.626760 32397 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0422 00:40:29.626782 32397 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0422 00:40:29.626814 32397 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0422 00:40:29.626837 32397 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0422 00:40:29.626860 32397 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0422 00:40:29.626883 32397 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0422 00:40:29.626904 32397 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0422 00:40:29.626945 32397 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0422 00:40:29.626971 32397 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.840909
I0422 00:40:29.626993 32397 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.782609
I0422 00:40:29.627022 32397 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.65816 (* 0.3 = 0.497448 loss)
I0422 00:40:29.627049 32397 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.492899 (* 0.3 = 0.14787 loss)
I0422 00:40:29.627076 32397 solver.cpp:245] Train net output #27: loss1/loss01 = 0.905366 (* 0.0272727 = 0.0246918 loss)
I0422 00:40:29.627104 32397 solver.cpp:245] Train net output #28: loss1/loss02 = 1.788 (* 0.0272727 = 0.0487635 loss)
I0422 00:40:29.627131 32397 solver.cpp:245] Train net output #29: loss1/loss03 = 2.78775 (* 0.0272727 = 0.0760295 loss)
I0422 00:40:29.627158 32397 solver.cpp:245] Train net output #30: loss1/loss04 = 3.23466 (* 0.0272727 = 0.0882181 loss)
I0422 00:40:29.627185 32397 solver.cpp:245] Train net output #31: loss1/loss05 = 1.10108 (* 0.0272727 = 0.0300294 loss)
I0422 00:40:29.627218 32397 solver.cpp:245] Train net output #32: loss1/loss06 = 1.13587 (* 0.0272727 = 0.0309782 loss)
I0422 00:40:29.627249 32397 solver.cpp:245] Train net output #33: loss1/loss07 = 1.12574 (* 0.0272727 = 0.0307021 loss)
I0422 00:40:29.627279 32397 solver.cpp:245] Train net output #34: loss1/loss08 = 0.290905 (* 0.0272727 = 0.00793376 loss)
I0422 00:40:29.627307 32397 solver.cpp:245] Train net output #35: loss1/loss09 = 0.277569 (* 0.0272727 = 0.00757005 loss)
I0422 00:40:29.627344 32397 solver.cpp:245] Train net output #36: loss1/loss10 = 0.555927 (* 0.0272727 = 0.0151616 loss)
I0422 00:40:29.627396 32397 solver.cpp:245] Train net output #37: loss1/loss11 = 3.88301e-05 (* 0.0272727 = 1.059e-06 loss)
I0422 00:40:29.627426 32397 solver.cpp:245] Train net output #38: loss1/loss12 = 3.02153e-05 (* 0.0272727 = 8.24055e-07 loss)
I0422 00:40:29.627475 32397 solver.cpp:245] Train net output #39: loss1/loss13 = 2.7592e-05 (* 0.0272727 = 7.5251e-07 loss)
I0422 00:40:29.627504 32397 solver.cpp:245] Train net output #40: loss1/loss14 = 6.94054e-05 (* 0.0272727 = 1.89287e-06 loss)
I0422 00:40:29.627532 32397 solver.cpp:245] Train net output #41: loss1/loss15 = 5.65393e-05 (* 0.0272727 = 1.54198e-06 loss)
I0422 00:40:29.627559 32397 solver.cpp:245] Train net output #42: loss1/loss16 = 4.69022e-05 (* 0.0272727 = 1.27915e-06 loss)
I0422 00:40:29.627586 32397 solver.cpp:245] Train net output #43: loss1/loss17 = 2.70407e-05 (* 0.0272727 = 7.37475e-07 loss)
I0422 00:40:29.627612 32397 solver.cpp:245] Train net output #44: loss1/loss18 = 5.70464e-05 (* 0.0272727 = 1.55581e-06 loss)
I0422 00:40:29.627640 32397 solver.cpp:245] Train net output #45: loss1/loss19 = 1.47676e-05 (* 0.0272727 = 4.02754e-07 loss)
I0422 00:40:29.627670 32397 solver.cpp:245] Train net output #46: loss1/loss20 = 4.74085e-05 (* 0.0272727 = 1.29296e-06 loss)
I0422 00:40:29.627696 32397 solver.cpp:245] Train net output #47: loss1/loss21 = 3.43882e-05 (* 0.0272727 = 9.37859e-07 loss)
I0422 00:40:29.627724 32397 solver.cpp:245] Train net output #48: loss1/loss22 = 4.35632e-05 (* 0.0272727 = 1.18809e-06 loss)
I0422 00:40:29.627748 32397 solver.cpp:245] Train net output #49: loss2/accuracy = 0.782609
I0422 00:40:29.627771 32397 solver.cpp:245] Train net output #50: loss2/accuracy01 = 1
I0422 00:40:29.627794 32397 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75
I0422 00:40:29.627815 32397 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.25
I0422 00:40:29.627838 32397 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.25
I0422 00:40:29.627861 32397 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.75
I0422 00:40:29.627883 32397 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.625
I0422 00:40:29.627907 32397 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.75
I0422 00:40:29.627928 32397 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875
I0422 00:40:29.627951 32397 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875
I0422 00:40:29.627974 32397 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875
I0422 00:40:29.628002 32397 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0422 00:40:29.628026 32397 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0422 00:40:29.628051 32397 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0422 00:40:29.628073 32397 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0422 00:40:29.628094 32397 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0422 00:40:29.628115 32397 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0422 00:40:29.628139 32397 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0422 00:40:29.628161 32397 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0422 00:40:29.628182 32397 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0422 00:40:29.628206 32397 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0422 00:40:29.628226 32397 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0422 00:40:29.628247 32397 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0422 00:40:29.628275 32397 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.931818
I0422 00:40:29.628298 32397 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.956522
I0422 00:40:29.628324 32397 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.587125 (* 0.3 = 0.176138 loss)
I0422 00:40:29.628351 32397 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.191747 (* 0.3 = 0.0575241 loss)
I0422 00:40:29.628377 32397 solver.cpp:245] Train net output #76: loss2/loss01 = 0.608669 (* 0.0272727 = 0.0166001 loss)
I0422 00:40:29.628407 32397 solver.cpp:245] Train net output #77: loss2/loss02 = 1.09337 (* 0.0272727 = 0.0298192 loss)
I0422 00:40:29.628449 32397 solver.cpp:245] Train net output #78: loss2/loss03 = 2.27323 (* 0.0272727 = 0.0619971 loss)
I0422 00:40:29.628478 32397 solver.cpp:245] Train net output #79: loss2/loss04 = 2.20065 (* 0.0272727 = 0.0600177 loss)
I0422 00:40:29.628506 32397 solver.cpp:245] Train net output #80: loss2/loss05 = 1.0084 (* 0.0272727 = 0.0275017 loss)
I0422 00:40:29.628532 32397 solver.cpp:245] Train net output #81: loss2/loss06 = 1.20651 (* 0.0272727 = 0.0329049 loss)
I0422 00:40:29.628558 32397 solver.cpp:245] Train net output #82: loss2/loss07 = 0.723347 (* 0.0272727 = 0.0197276 loss)
I0422 00:40:29.628585 32397 solver.cpp:245] Train net output #83: loss2/loss08 = 0.242498 (* 0.0272727 = 0.00661359 loss)
I0422 00:40:29.628612 32397 solver.cpp:245] Train net output #84: loss2/loss09 = 0.256203 (* 0.0272727 = 0.00698737 loss)
I0422 00:40:29.628638 32397 solver.cpp:245] Train net output #85: loss2/loss10 = 0.427334 (* 0.0272727 = 0.0116546 loss)
I0422 00:40:29.628665 32397 solver.cpp:245] Train net output #86: loss2/loss11 = 1.39631e-05 (* 0.0272727 = 3.80813e-07 loss)
I0422 00:40:29.628691 32397 solver.cpp:245] Train net output #87: loss2/loss12 = 1.25176e-05 (* 0.0272727 = 3.41388e-07 loss)
I0422 00:40:29.628717 32397 solver.cpp:245] Train net output #88: loss2/loss13 = 3.7236e-05 (* 0.0272727 = 1.01553e-06 loss)
I0422 00:40:29.628744 32397 solver.cpp:245] Train net output #89: loss2/loss14 = 1.42612e-05 (* 0.0272727 = 3.88941e-07 loss)
I0422 00:40:29.628772 32397 solver.cpp:245] Train net output #90: loss2/loss15 = 1.01034e-05 (* 0.0272727 = 2.75547e-07 loss)
I0422 00:40:29.628798 32397 solver.cpp:245] Train net output #91: loss2/loss16 = 6.12451e-06 (* 0.0272727 = 1.67032e-07 loss)
I0422 00:40:29.628825 32397 solver.cpp:245] Train net output #92: loss2/loss17 = 6.34804e-06 (* 0.0272727 = 1.73128e-07 loss)
I0422 00:40:29.628851 32397 solver.cpp:245] Train net output #93: loss2/loss18 = 1.74951e-05 (* 0.0272727 = 4.7714e-07 loss)
I0422 00:40:29.628880 32397 solver.cpp:245] Train net output #94: loss2/loss19 = 9.90964e-06 (* 0.0272727 = 2.70263e-07 loss)
I0422 00:40:29.628909 32397 solver.cpp:245] Train net output #95: loss2/loss20 = 8.94097e-06 (* 0.0272727 = 2.43845e-07 loss)
I0422 00:40:29.628940 32397 solver.cpp:245] Train net output #96: loss2/loss21 = 6.19902e-06 (* 0.0272727 = 1.69064e-07 loss)
I0422 00:40:29.628970 32397 solver.cpp:245] Train net output #97: loss2/loss22 = 1.69437e-05 (* 0.0272727 = 4.62102e-07 loss)
I0422 00:40:29.628998 32397 solver.cpp:245] Train net output #98: loss3/accuracy = 0.956522
I0422 00:40:29.629021 32397 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0422 00:40:29.629045 32397 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875
I0422 00:40:29.629073 32397 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.75
I0422 00:40:29.629096 32397 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1
I0422 00:40:29.629117 32397 solver.cpp:245] Train net output #103: loss3/accuracy05 = 1
I0422 00:40:29.629139 32397 solver.cpp:245] Train net output #104: loss3/accuracy06 = 1
I0422 00:40:29.629160 32397 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75
I0422 00:40:29.629182 32397 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875
I0422 00:40:29.629204 32397 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875
I0422 00:40:29.629225 32397 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875
I0422 00:40:29.629246 32397 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0422 00:40:29.629268 32397 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0422 00:40:29.629288 32397 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0422 00:40:29.629313 32397 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0422 00:40:29.629335 32397 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0422 00:40:29.629374 32397 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0422 00:40:29.629397 32397 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0422 00:40:29.629417 32397 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0422 00:40:29.629438 32397 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0422 00:40:29.629464 32397 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0422 00:40:29.629487 32397 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0422 00:40:29.629508 32397 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0422 00:40:29.629529 32397 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.982955
I0422 00:40:29.629552 32397 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 1
I0422 00:40:29.629578 32397 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.149715 (* 1 = 0.149715 loss)
I0422 00:40:29.629612 32397 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.0564689 (* 1 = 0.0564689 loss)
I0422 00:40:29.629639 32397 solver.cpp:245] Train net output #125: loss3/loss01 = 0.0381595 (* 0.0909091 = 0.00346904 loss)
I0422 00:40:29.629669 32397 solver.cpp:245] Train net output #126: loss3/loss02 = 0.352523 (* 0.0909091 = 0.0320475 loss)
I0422 00:40:29.629694 32397 solver.cpp:245] Train net output #127: loss3/loss03 = 0.489647 (* 0.0909091 = 0.0445133 loss)
I0422 00:40:29.629721 32397 solver.cpp:245] Train net output #128: loss3/loss04 = 0.0835037 (* 0.0909091 = 0.00759125 loss)
I0422 00:40:29.629747 32397 solver.cpp:245] Train net output #129: loss3/loss05 = 0.139321 (* 0.0909091 = 0.0126655 loss)
I0422 00:40:29.629772 32397 solver.cpp:245] Train net output #130: loss3/loss06 = 0.236231 (* 0.0909091 = 0.0214756 loss)
I0422 00:40:29.629798 32397 solver.cpp:245] Train net output #131: loss3/loss07 = 0.488457 (* 0.0909091 = 0.0444052 loss)
I0422 00:40:29.629824 32397 solver.cpp:245] Train net output #132: loss3/loss08 = 0.399337 (* 0.0909091 = 0.0363034 loss)
I0422 00:40:29.629849 32397 solver.cpp:245] Train net output #133: loss3/loss09 = 0.311317 (* 0.0909091 = 0.0283015 loss)
I0422 00:40:29.629875 32397 solver.cpp:245] Train net output #134: loss3/loss10 = 0.207602 (* 0.0909091 = 0.0188729 loss)
I0422 00:40:29.629911 32397 solver.cpp:245] Train net output #135: loss3/loss11 = 5.66249e-06 (* 0.0909091 = 5.14772e-07 loss)
I0422 00:40:29.629936 32397 solver.cpp:245] Train net output #136: loss3/loss12 = 6.37776e-06 (* 0.0909091 = 5.79797e-07 loss)
I0422 00:40:29.629963 32397 solver.cpp:245] Train net output #137: loss3/loss13 = 4.55979e-06 (* 0.0909091 = 4.14526e-07 loss)
I0422 00:40:29.629992 32397 solver.cpp:245] Train net output #138: loss3/loss14 = 5.51348e-06 (* 0.0909091 = 5.01225e-07 loss)
I0422 00:40:29.630017 32397 solver.cpp:245] Train net output #139: loss3/loss15 = 4.61939e-06 (* 0.0909091 = 4.19945e-07 loss)
I0422 00:40:29.630043 32397 solver.cpp:245] Train net output #140: loss3/loss16 = 4.88762e-06 (* 0.0909091 = 4.44329e-07 loss)
I0422 00:40:29.630070 32397 solver.cpp:245] Train net output #141: loss3/loss17 = 5.26016e-06 (* 0.0909091 = 4.78196e-07 loss)
I0422 00:40:29.630096 32397 solver.cpp:245] Train net output #142: loss3/loss18 = 5.23035e-06 (* 0.0909091 = 4.75487e-07 loss)
I0422 00:40:29.630122 32397 solver.cpp:245] Train net output #143: loss3/loss19 = 7.59969e-06 (* 0.0909091 = 6.90881e-07 loss)
I0422 00:40:29.630149 32397 solver.cpp:245] Train net output #144: loss3/loss20 = 3.78491e-06 (* 0.0909091 = 3.44083e-07 loss)
I0422 00:40:29.630177 32397 solver.cpp:245] Train net output #145: loss3/loss21 = 4.48528e-06 (* 0.0909091 = 4.07753e-07 loss)
I0422 00:40:29.630203 32397 solver.cpp:245] Train net output #146: loss3/loss22 = 4.36607e-06 (* 0.0909091 = 3.96915e-07 loss)
I0422 00:40:29.630226 32397 solver.cpp:245] Train net output #147: total_accuracy = 0.75
I0422 00:40:29.630249 32397 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.5
I0422 00:40:29.630285 32397 solver.cpp:245] Train net output #149: total_confidence = 0.590034
I0422 00:40:29.630308 32397 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.392054
I0422 00:40:29.630331 32397 sgd_solver.cpp:106] Iteration 6500, lr = 0.001
I0422 00:46:11.276458 32397 solver.cpp:229] Iteration 7000, loss = 2.32767
I0422 00:46:11.276553 32397 solver.cpp:245] Train net output #0: loss1/accuracy = 0.617021
I0422 00:46:11.276584 32397 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.625
I0422 00:46:11.276610 32397 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.75
I0422 00:46:11.276633 32397 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.25
I0422 00:46:11.276656 32397 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.25
I0422 00:46:11.276686 32397 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.5
I0422 00:46:11.276711 32397 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.75
I0422 00:46:11.276741 32397 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.875
I0422 00:46:11.276764 32397 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875
I0422 00:46:11.276787 32397 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1
I0422 00:46:11.276809 32397 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875
I0422 00:46:11.276831 32397 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0422 00:46:11.276862 32397 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0422 00:46:11.276885 32397 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0422 00:46:11.276906 32397 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0422 00:46:11.276928 32397 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0422 00:46:11.276954 32397 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0422 00:46:11.276978 32397 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0422 00:46:11.277000 32397 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0422 00:46:11.277022 32397 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0422 00:46:11.277045 32397 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0422 00:46:11.277066 32397 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0422 00:46:11.277089 32397 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0422 00:46:11.277114 32397 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.886364
I0422 00:46:11.277142 32397 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.851064
I0422 00:46:11.277171 32397 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.36529 (* 0.3 = 0.409587 loss)
I0422 00:46:11.277204 32397 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.398783 (* 0.3 = 0.119635 loss)
I0422 00:46:11.277232 32397 solver.cpp:245] Train net output #27: loss1/loss01 = 0.947684 (* 0.0272727 = 0.0258459 loss)
I0422 00:46:11.277266 32397 solver.cpp:245] Train net output #28: loss1/loss02 = 0.992607 (* 0.0272727 = 0.0270711 loss)
I0422 00:46:11.277288 32397 solver.cpp:245] Train net output #29: loss1/loss03 = 2.44587 (* 0.0272727 = 0.0667056 loss)
I0422 00:46:11.277313 32397 solver.cpp:245] Train net output #30: loss1/loss04 = 2.11094 (* 0.0272727 = 0.0575711 loss)
I0422 00:46:11.277341 32397 solver.cpp:245] Train net output #31: loss1/loss05 = 1.49584 (* 0.0272727 = 0.0407955 loss)
I0422 00:46:11.277370 32397 solver.cpp:245] Train net output #32: loss1/loss06 = 1.06248 (* 0.0272727 = 0.0289768 loss)
I0422 00:46:11.277398 32397 solver.cpp:245] Train net output #33: loss1/loss07 = 0.607687 (* 0.0272727 = 0.0165733 loss)
I0422 00:46:11.277426 32397 solver.cpp:245] Train net output #34: loss1/loss08 = 0.376995 (* 0.0272727 = 0.0102817 loss)
I0422 00:46:11.277454 32397 solver.cpp:245] Train net output #35: loss1/loss09 = 0.258988 (* 0.0272727 = 0.0070633 loss)
I0422 00:46:11.277482 32397 solver.cpp:245] Train net output #36: loss1/loss10 = 0.419642 (* 0.0272727 = 0.0114448 loss)
I0422 00:46:11.277510 32397 solver.cpp:245] Train net output #37: loss1/loss11 = 7.31381e-05 (* 0.0272727 = 1.99467e-06 loss)
I0422 00:46:11.277539 32397 solver.cpp:245] Train net output #38: loss1/loss12 = 4.34029e-05 (* 0.0272727 = 1.18371e-06 loss)
I0422 00:46:11.277590 32397 solver.cpp:245] Train net output #39: loss1/loss13 = 4.58325e-05 (* 0.0272727 = 1.24998e-06 loss)
I0422 00:46:11.277621 32397 solver.cpp:245] Train net output #40: loss1/loss14 = 6.752e-05 (* 0.0272727 = 1.84146e-06 loss)
I0422 00:46:11.277648 32397 solver.cpp:245] Train net output #41: loss1/loss15 = 3.41852e-05 (* 0.0272727 = 9.32323e-07 loss)
I0422 00:46:11.277678 32397 solver.cpp:245] Train net output #42: loss1/loss16 = 4.32238e-05 (* 0.0272727 = 1.17883e-06 loss)
I0422 00:46:11.277704 32397 solver.cpp:245] Train net output #43: loss1/loss17 = 7.18276e-05 (* 0.0272727 = 1.95893e-06 loss)
I0422 00:46:11.277737 32397 solver.cpp:245] Train net output #44: loss1/loss18 = 3.36714e-05 (* 0.0272727 = 9.1831e-07 loss)
I0422 00:46:11.277765 32397 solver.cpp:245] Train net output #45: loss1/loss19 = 3.94085e-05 (* 0.0272727 = 1.07478e-06 loss)
I0422 00:46:11.277793 32397 solver.cpp:245] Train net output #46: loss1/loss20 = 3.85814e-05 (* 0.0272727 = 1.05222e-06 loss)
I0422 00:46:11.277820 32397 solver.cpp:245] Train net output #47: loss1/loss21 = 7.25288e-05 (* 0.0272727 = 1.97806e-06 loss)
I0422 00:46:11.277848 32397 solver.cpp:245] Train net output #48: loss1/loss22 = 7.23941e-05 (* 0.0272727 = 1.97438e-06 loss)
I0422 00:46:11.277873 32397 solver.cpp:245] Train net output #49: loss2/accuracy = 0.893617
I0422 00:46:11.277895 32397 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875
I0422 00:46:11.277917 32397 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.625
I0422 00:46:11.277940 32397 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.375
I0422 00:46:11.277961 32397 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.5
I0422 00:46:11.277983 32397 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.75
I0422 00:46:11.278010 32397 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.75
I0422 00:46:11.278033 32397 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.75
I0422 00:46:11.278056 32397 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875
I0422 00:46:11.278079 32397 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1
I0422 00:46:11.278100 32397 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875
I0422 00:46:11.278122 32397 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0422 00:46:11.278144 32397 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0422 00:46:11.278167 32397 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0422 00:46:11.278188 32397 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0422 00:46:11.278210 32397 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0422 00:46:11.278234 32397 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0422 00:46:11.278255 32397 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0422 00:46:11.278278 32397 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0422 00:46:11.278301 32397 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0422 00:46:11.278322 32397 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0422 00:46:11.278347 32397 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0422 00:46:11.278364 32397 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0422 00:46:11.278389 32397 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.971591
I0422 00:46:11.278412 32397 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.957447
I0422 00:46:11.278450 32397 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.606434 (* 0.3 = 0.18193 loss)
I0422 00:46:11.278476 32397 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.17161 (* 0.3 = 0.051483 loss)
I0422 00:46:11.278504 32397 solver.cpp:245] Train net output #76: loss2/loss01 = 0.497691 (* 0.0272727 = 0.0135734 loss)
I0422 00:46:11.278532 32397 solver.cpp:245] Train net output #77: loss2/loss02 = 0.964487 (* 0.0272727 = 0.0263042 loss)
I0422 00:46:11.278578 32397 solver.cpp:245] Train net output #78: loss2/loss03 = 1.72207 (* 0.0272727 = 0.0469656 loss)
I0422 00:46:11.278605 32397 solver.cpp:245] Train net output #79: loss2/loss04 = 1.00459 (* 0.0272727 = 0.0273979 loss)
I0422 00:46:11.278632 32397 solver.cpp:245] Train net output #80: loss2/loss05 = 0.745893 (* 0.0272727 = 0.0203425 loss)
I0422 00:46:11.278661 32397 solver.cpp:245] Train net output #81: loss2/loss06 = 1.12382 (* 0.0272727 = 0.0306496 loss)
I0422 00:46:11.278687 32397 solver.cpp:245] Train net output #82: loss2/loss07 = 0.467993 (* 0.0272727 = 0.0127634 loss)
I0422 00:46:11.278713 32397 solver.cpp:245] Train net output #83: loss2/loss08 = 0.534694 (* 0.0272727 = 0.0145826 loss)
I0422 00:46:11.278739 32397 solver.cpp:245] Train net output #84: loss2/loss09 = 0.173849 (* 0.0272727 = 0.00474134 loss)
I0422 00:46:11.278772 32397 solver.cpp:245] Train net output #85: loss2/loss10 = 0.544869 (* 0.0272727 = 0.0148601 loss)
I0422 00:46:11.278800 32397 solver.cpp:245] Train net output #86: loss2/loss11 = 5.32748e-05 (* 0.0272727 = 1.45295e-06 loss)
I0422 00:46:11.278827 32397 solver.cpp:245] Train net output #87: loss2/loss12 = 3.98288e-05 (* 0.0272727 = 1.08624e-06 loss)
I0422 00:46:11.278856 32397 solver.cpp:245] Train net output #88: loss2/loss13 = 3.44183e-05 (* 0.0272727 = 9.38682e-07 loss)
I0422 00:46:11.278882 32397 solver.cpp:245] Train net output #89: loss2/loss14 = 2.22789e-05 (* 0.0272727 = 6.07607e-07 loss)
I0422 00:46:11.278908 32397 solver.cpp:245] Train net output #90: loss2/loss15 = 3.44032e-05 (* 0.0272727 = 9.3827e-07 loss)
I0422 00:46:11.278935 32397 solver.cpp:245] Train net output #91: loss2/loss16 = 3.4955e-05 (* 0.0272727 = 9.53318e-07 loss)
I0422 00:46:11.278961 32397 solver.cpp:245] Train net output #92: loss2/loss17 = 6.72882e-05 (* 0.0272727 = 1.83513e-06 loss)
I0422 00:46:11.278988 32397 solver.cpp:245] Train net output #93: loss2/loss18 = 7.04789e-05 (* 0.0272727 = 1.92215e-06 loss)
I0422 00:46:11.279014 32397 solver.cpp:245] Train net output #94: loss2/loss19 = 5.8269e-05 (* 0.0272727 = 1.58915e-06 loss)
I0422 00:46:11.279041 32397 solver.cpp:245] Train net output #95: loss2/loss20 = 4.54113e-05 (* 0.0272727 = 1.23849e-06 loss)
I0422 00:46:11.279072 32397 solver.cpp:245] Train net output #96: loss2/loss21 = 4.61412e-05 (* 0.0272727 = 1.2584e-06 loss)
I0422 00:46:11.279098 32397 solver.cpp:245] Train net output #97: loss2/loss22 = 5.12775e-05 (* 0.0272727 = 1.39848e-06 loss)
I0422 00:46:11.279120 32397 solver.cpp:245] Train net output #98: loss3/accuracy = 0.914894
I0422 00:46:11.279141 32397 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0422 00:46:11.279163 32397 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0422 00:46:11.279184 32397 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0422 00:46:11.279206 32397 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875
I0422 00:46:11.279227 32397 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875
I0422 00:46:11.279248 32397 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.875
I0422 00:46:11.279268 32397 solver.cpp:245] Train net output #105: loss3/accuracy07 = 1
I0422 00:46:11.279290 32397 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875
I0422 00:46:11.279312 32397 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1
I0422 00:46:11.279337 32397 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875
I0422 00:46:11.279382 32397 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0422 00:46:11.279407 32397 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0422 00:46:11.279428 32397 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0422 00:46:11.279450 32397 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0422 00:46:11.279471 32397 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0422 00:46:11.279511 32397 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0422 00:46:11.279536 32397 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0422 00:46:11.279557 32397 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0422 00:46:11.279579 32397 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0422 00:46:11.279604 32397 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0422 00:46:11.279624 32397 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0422 00:46:11.279645 32397 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0422 00:46:11.279667 32397 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.977273
I0422 00:46:11.279691 32397 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.978723
I0422 00:46:11.279717 32397 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.268876 (* 1 = 0.268876 loss)
I0422 00:46:11.279744 32397 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.0761636 (* 1 = 0.0761636 loss)
I0422 00:46:11.279772 32397 solver.cpp:245] Train net output #125: loss3/loss01 = 0.0734159 (* 0.0909091 = 0.00667417 loss)
I0422 00:46:11.279798 32397 solver.cpp:245] Train net output #126: loss3/loss02 = 0.188448 (* 0.0909091 = 0.0171316 loss)
I0422 00:46:11.279827 32397 solver.cpp:245] Train net output #127: loss3/loss03 = 0.165207 (* 0.0909091 = 0.0150188 loss)
I0422 00:46:11.279855 32397 solver.cpp:245] Train net output #128: loss3/loss04 = 0.385401 (* 0.0909091 = 0.0350365 loss)
I0422 00:46:11.279881 32397 solver.cpp:245] Train net output #129: loss3/loss05 = 0.411377 (* 0.0909091 = 0.0373979 loss)
I0422 00:46:11.279907 32397 solver.cpp:245] Train net output #130: loss3/loss06 = 0.809095 (* 0.0909091 = 0.0735541 loss)
I0422 00:46:11.279933 32397 solver.cpp:245] Train net output #131: loss3/loss07 = 0.110338 (* 0.0909091 = 0.0100307 loss)
I0422 00:46:11.279958 32397 solver.cpp:245] Train net output #132: loss3/loss08 = 0.434129 (* 0.0909091 = 0.0394662 loss)
I0422 00:46:11.279984 32397 solver.cpp:245] Train net output #133: loss3/loss09 = 0.107221 (* 0.0909091 = 0.00974736 loss)
I0422 00:46:11.280010 32397 solver.cpp:245] Train net output #134: loss3/loss10 = 0.240296 (* 0.0909091 = 0.0218451 loss)
I0422 00:46:11.280036 32397 solver.cpp:245] Train net output #135: loss3/loss11 = 1.21e-05 (* 0.0909091 = 1.1e-06 loss)
I0422 00:46:11.280062 32397 solver.cpp:245] Train net output #136: loss3/loss12 = 1.03267e-05 (* 0.0909091 = 9.38787e-07 loss)
I0422 00:46:11.280088 32397 solver.cpp:245] Train net output #137: loss3/loss13 = 8.73218e-06 (* 0.0909091 = 7.93834e-07 loss)
I0422 00:46:11.280119 32397 solver.cpp:245] Train net output #138: loss3/loss14 = 9.16433e-06 (* 0.0909091 = 8.33121e-07 loss)
I0422 00:46:11.280145 32397 solver.cpp:245] Train net output #139: loss3/loss15 = 1.07141e-05 (* 0.0909091 = 9.74011e-07 loss)
I0422 00:46:11.280172 32397 solver.cpp:245] Train net output #140: loss3/loss16 = 8.25534e-06 (* 0.0909091 = 7.50486e-07 loss)
I0422 00:46:11.280199 32397 solver.cpp:245] Train net output #141: loss3/loss17 = 1.03565e-05 (* 0.0909091 = 9.41498e-07 loss)
I0422 00:46:11.280225 32397 solver.cpp:245] Train net output #142: loss3/loss18 = 8.7918e-06 (* 0.0909091 = 7.99255e-07 loss)
I0422 00:46:11.280251 32397 solver.cpp:245] Train net output #143: loss3/loss19 = 1.13996e-05 (* 0.0909091 = 1.03633e-06 loss)
I0422 00:46:11.280279 32397 solver.cpp:245] Train net output #144: loss3/loss20 = 7.59967e-06 (* 0.0909091 = 6.90879e-07 loss)
I0422 00:46:11.280304 32397 solver.cpp:245] Train net output #145: loss3/loss21 = 8.0318e-06 (* 0.0909091 = 7.30164e-07 loss)
I0422 00:46:11.280330 32397 solver.cpp:245] Train net output #146: loss3/loss22 = 1.03118e-05 (* 0.0909091 = 9.37434e-07 loss)
I0422 00:46:11.280354 32397 solver.cpp:245] Train net output #147: total_accuracy = 0.875
I0422 00:46:11.280375 32397 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.75
I0422 00:46:11.280414 32397 solver.cpp:245] Train net output #149: total_confidence = 0.603606
I0422 00:46:11.280437 32397 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.447677
I0422 00:46:11.280459 32397 sgd_solver.cpp:106] Iteration 7000, lr = 0.001
I0422 00:51:52.903182 32397 solver.cpp:229] Iteration 7500, loss = 2.24749
I0422 00:51:52.903313 32397 solver.cpp:245] Train net output #0: loss1/accuracy = 0.625
I0422 00:51:52.903345 32397 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.375
I0422 00:51:52.903370 32397 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5
I0422 00:51:52.903394 32397 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375
I0422 00:51:52.903419 32397 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.75
I0422 00:51:52.903461 32397 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.625
I0422 00:51:52.903486 32397 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.5
I0422 00:51:52.903511 32397 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.875
I0422 00:51:52.903540 32397 solver.cpp:245] Train net output #8: loss1/accuracy08 = 1
I0422 00:51:52.903563 32397 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875
I0422 00:51:52.903586 32397 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0422 00:51:52.903616 32397 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0422 00:51:52.903637 32397 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0422 00:51:52.903659 32397 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0422 00:51:52.903682 32397 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0422 00:51:52.903703 32397 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0422 00:51:52.903725 32397 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0422 00:51:52.903748 32397 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0422 00:51:52.903771 32397 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0422 00:51:52.903798 32397 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0422 00:51:52.903822 32397 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0422 00:51:52.903846 32397 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0422 00:51:52.903874 32397 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0422 00:51:52.903893 32397 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.880682
I0422 00:51:52.903914 32397 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.791667
I0422 00:51:52.903954 32397 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.36325 (* 0.3 = 0.408976 loss)
I0422 00:51:52.903982 32397 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.415892 (* 0.3 = 0.124768 loss)
I0422 00:51:52.904011 32397 solver.cpp:245] Train net output #27: loss1/loss01 = 2.52099 (* 0.0272727 = 0.0687542 loss)
I0422 00:51:52.904037 32397 solver.cpp:245] Train net output #28: loss1/loss02 = 1.4827 (* 0.0272727 = 0.0404374 loss)
I0422 00:51:52.904067 32397 solver.cpp:245] Train net output #29: loss1/loss03 = 2.18497 (* 0.0272727 = 0.0595901 loss)
I0422 00:51:52.904093 32397 solver.cpp:245] Train net output #30: loss1/loss04 = 1.10325 (* 0.0272727 = 0.0300886 loss)
I0422 00:51:52.904120 32397 solver.cpp:245] Train net output #31: loss1/loss05 = 1.38385 (* 0.0272727 = 0.0377414 loss)
I0422 00:51:52.904148 32397 solver.cpp:245] Train net output #32: loss1/loss06 = 1.59408 (* 0.0272727 = 0.0434748 loss)
I0422 00:51:52.904175 32397 solver.cpp:245] Train net output #33: loss1/loss07 = 0.538006 (* 0.0272727 = 0.0146729 loss)
I0422 00:51:52.904207 32397 solver.cpp:245] Train net output #34: loss1/loss08 = 0.201349 (* 0.0272727 = 0.00549134 loss)
I0422 00:51:52.904237 32397 solver.cpp:245] Train net output #35: loss1/loss09 = 0.431406 (* 0.0272727 = 0.0117656 loss)
I0422 00:51:52.904265 32397 solver.cpp:245] Train net output #36: loss1/loss10 = 0.00819093 (* 0.0272727 = 0.000223389 loss)
I0422 00:51:52.904292 32397 solver.cpp:245] Train net output #37: loss1/loss11 = 0.000460262 (* 0.0272727 = 1.25526e-05 loss)
I0422 00:51:52.904326 32397 solver.cpp:245] Train net output #38: loss1/loss12 = 0.000531514 (* 0.0272727 = 1.44958e-05 loss)
I0422 00:51:52.904386 32397 solver.cpp:245] Train net output #39: loss1/loss13 = 0.00042733 (* 0.0272727 = 1.16544e-05 loss)
I0422 00:51:52.904417 32397 solver.cpp:245] Train net output #40: loss1/loss14 = 0.000460275 (* 0.0272727 = 1.2553e-05 loss)
I0422 00:51:52.904445 32397 solver.cpp:245] Train net output #41: loss1/loss15 = 0.000550834 (* 0.0272727 = 1.50227e-05 loss)
I0422 00:51:52.904474 32397 solver.cpp:245] Train net output #42: loss1/loss16 = 0.000779591 (* 0.0272727 = 2.12616e-05 loss)
I0422 00:51:52.904501 32397 solver.cpp:245] Train net output #43: loss1/loss17 = 0.000347396 (* 0.0272727 = 9.47444e-06 loss)
I0422 00:51:52.904530 32397 solver.cpp:245] Train net output #44: loss1/loss18 = 0.000256783 (* 0.0272727 = 7.00317e-06 loss)
I0422 00:51:52.904557 32397 solver.cpp:245] Train net output #45: loss1/loss19 = 0.000403776 (* 0.0272727 = 1.10121e-05 loss)
I0422 00:51:52.904585 32397 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000362015 (* 0.0272727 = 9.87314e-06 loss)
I0422 00:51:52.904613 32397 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000263511 (* 0.0272727 = 7.18667e-06 loss)
I0422 00:51:52.904640 32397 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000197402 (* 0.0272727 = 5.3837e-06 loss)
I0422 00:51:52.904664 32397 solver.cpp:245] Train net output #49: loss2/accuracy = 0.8125
I0422 00:51:52.904687 32397 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.625
I0422 00:51:52.904711 32397 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.625
I0422 00:51:52.904736 32397 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.5
I0422 00:51:52.904760 32397 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.625
I0422 00:51:52.904783 32397 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.625
I0422 00:51:52.904805 32397 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.625
I0422 00:51:52.904827 32397 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.75
I0422 00:51:52.904850 32397 solver.cpp:245] Train net output #57: loss2/accuracy08 = 1
I0422 00:51:52.904872 32397 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875
I0422 00:51:52.904894 32397 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0422 00:51:52.904917 32397 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0422 00:51:52.904940 32397 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0422 00:51:52.904963 32397 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0422 00:51:52.904985 32397 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0422 00:51:52.905006 32397 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0422 00:51:52.905028 32397 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0422 00:51:52.905051 32397 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0422 00:51:52.905073 32397 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0422 00:51:52.905095 32397 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0422 00:51:52.905117 32397 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0422 00:51:52.905138 32397 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0422 00:51:52.905159 32397 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0422 00:51:52.905181 32397 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.931818
I0422 00:51:52.905203 32397 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.875
I0422 00:51:52.905230 32397 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.88452 (* 0.3 = 0.265356 loss)
I0422 00:51:52.905261 32397 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.294881 (* 0.3 = 0.0884644 loss)
I0422 00:51:52.905288 32397 solver.cpp:245] Train net output #76: loss2/loss01 = 2.3552 (* 0.0272727 = 0.0642326 loss)
I0422 00:51:52.905316 32397 solver.cpp:245] Train net output #77: loss2/loss02 = 1.41833 (* 0.0272727 = 0.0386816 loss)
I0422 00:51:52.905359 32397 solver.cpp:245] Train net output #78: loss2/loss03 = 1.13139 (* 0.0272727 = 0.0308561 loss)
I0422 00:51:52.905393 32397 solver.cpp:245] Train net output #79: loss2/loss04 = 1.41557 (* 0.0272727 = 0.0386064 loss)
I0422 00:51:52.905421 32397 solver.cpp:245] Train net output #80: loss2/loss05 = 0.976509 (* 0.0272727 = 0.0266321 loss)
I0422 00:51:52.905447 32397 solver.cpp:245] Train net output #81: loss2/loss06 = 1.16464 (* 0.0272727 = 0.0317629 loss)
I0422 00:51:52.905474 32397 solver.cpp:245] Train net output #82: loss2/loss07 = 0.605104 (* 0.0272727 = 0.0165028 loss)
I0422 00:51:52.905501 32397 solver.cpp:245] Train net output #83: loss2/loss08 = 0.235664 (* 0.0272727 = 0.00642719 loss)
I0422 00:51:52.905526 32397 solver.cpp:245] Train net output #84: loss2/loss09 = 0.378019 (* 0.0272727 = 0.0103096 loss)
I0422 00:51:52.905553 32397 solver.cpp:245] Train net output #85: loss2/loss10 = 0.0347315 (* 0.0272727 = 0.000947221 loss)
I0422 00:51:52.905581 32397 solver.cpp:245] Train net output #86: loss2/loss11 = 0.000715757 (* 0.0272727 = 1.95207e-05 loss)
I0422 00:51:52.905607 32397 solver.cpp:245] Train net output #87: loss2/loss12 = 0.000217382 (* 0.0272727 = 5.9286e-06 loss)
I0422 00:51:52.905633 32397 solver.cpp:245] Train net output #88: loss2/loss13 = 0.000555305 (* 0.0272727 = 1.51447e-05 loss)
I0422 00:51:52.905660 32397 solver.cpp:245] Train net output #89: loss2/loss14 = 0.000705555 (* 0.0272727 = 1.92424e-05 loss)
I0422 00:51:52.905686 32397 solver.cpp:245] Train net output #90: loss2/loss15 = 0.000335469 (* 0.0272727 = 9.14916e-06 loss)
I0422 00:51:52.905712 32397 solver.cpp:245] Train net output #91: loss2/loss16 = 0.000507996 (* 0.0272727 = 1.38544e-05 loss)
I0422 00:51:52.905740 32397 solver.cpp:245] Train net output #92: loss2/loss17 = 0.000588457 (* 0.0272727 = 1.60488e-05 loss)
I0422 00:51:52.905767 32397 solver.cpp:245] Train net output #93: loss2/loss18 = 0.000418984 (* 0.0272727 = 1.14268e-05 loss)
I0422 00:51:52.905794 32397 solver.cpp:245] Train net output #94: loss2/loss19 = 0.000554899 (* 0.0272727 = 1.51336e-05 loss)
I0422 00:51:52.905822 32397 solver.cpp:245] Train net output #95: loss2/loss20 = 0.00073829 (* 0.0272727 = 2.01352e-05 loss)
I0422 00:51:52.905848 32397 solver.cpp:245] Train net output #96: loss2/loss21 = 0.000926764 (* 0.0272727 = 2.52754e-05 loss)
I0422 00:51:52.905875 32397 solver.cpp:245] Train net output #97: loss2/loss22 = 0.00071123 (* 0.0272727 = 1.93972e-05 loss)
I0422 00:51:52.905899 32397 solver.cpp:245] Train net output #98: loss3/accuracy = 0.708333
I0422 00:51:52.905920 32397 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.625
I0422 00:51:52.905941 32397 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875
I0422 00:51:52.905964 32397 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.75
I0422 00:51:52.905985 32397 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875
I0422 00:51:52.906008 32397 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.75
I0422 00:51:52.906029 32397 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.75
I0422 00:51:52.906052 32397 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75
I0422 00:51:52.906074 32397 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875
I0422 00:51:52.906095 32397 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875
I0422 00:51:52.906117 32397 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0422 00:51:52.906141 32397 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0422 00:51:52.906159 32397 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0422 00:51:52.906180 32397 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0422 00:51:52.906203 32397 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0422 00:51:52.906224 32397 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0422 00:51:52.906260 32397 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0422 00:51:52.906282 32397 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0422 00:51:52.906308 32397 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0422 00:51:52.906330 32397 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0422 00:51:52.906352 32397 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0422 00:51:52.906374 32397 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0422 00:51:52.906395 32397 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0422 00:51:52.906415 32397 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.914773
I0422 00:51:52.906443 32397 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.875
I0422 00:51:52.906472 32397 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.11345 (* 1 = 1.11345 loss)
I0422 00:51:52.906497 32397 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.32302 (* 1 = 0.32302 loss)
I0422 00:51:52.906523 32397 solver.cpp:245] Train net output #125: loss3/loss01 = 1.67015 (* 0.0909091 = 0.151832 loss)
I0422 00:51:52.906556 32397 solver.cpp:245] Train net output #126: loss3/loss02 = 0.794315 (* 0.0909091 = 0.0722105 loss)
I0422 00:51:52.906582 32397 solver.cpp:245] Train net output #127: loss3/loss03 = 1.06007 (* 0.0909091 = 0.0963697 loss)
I0422 00:51:52.906607 32397 solver.cpp:245] Train net output #128: loss3/loss04 = 0.525155 (* 0.0909091 = 0.0477414 loss)
I0422 00:51:52.906635 32397 solver.cpp:245] Train net output #129: loss3/loss05 = 1.4162 (* 0.0909091 = 0.128745 loss)
I0422 00:51:52.906661 32397 solver.cpp:245] Train net output #130: loss3/loss06 = 1.05515 (* 0.0909091 = 0.0959224 loss)
I0422 00:51:52.906693 32397 solver.cpp:245] Train net output #131: loss3/loss07 = 0.829206 (* 0.0909091 = 0.0753824 loss)
I0422 00:51:52.906720 32397 solver.cpp:245] Train net output #132: loss3/loss08 = 0.306267 (* 0.0909091 = 0.0278425 loss)
I0422 00:51:52.906754 32397 solver.cpp:245] Train net output #133: loss3/loss09 = 0.362684 (* 0.0909091 = 0.0329713 loss)
I0422 00:51:52.906780 32397 solver.cpp:245] Train net output #134: loss3/loss10 = 0.00139435 (* 0.0909091 = 0.000126759 loss)
I0422 00:51:52.906808 32397 solver.cpp:245] Train net output #135: loss3/loss11 = 8.67259e-06 (* 0.0909091 = 7.88417e-07 loss)
I0422 00:51:52.906836 32397 solver.cpp:245] Train net output #136: loss3/loss12 = 7.27185e-06 (* 0.0909091 = 6.61077e-07 loss)
I0422 00:51:52.906864 32397 solver.cpp:245] Train net output #137: loss3/loss13 = 7.04833e-06 (* 0.0909091 = 6.40757e-07 loss)
I0422 00:51:52.906893 32397 solver.cpp:245] Train net output #138: loss3/loss14 = 6.39266e-06 (* 0.0909091 = 5.81151e-07 loss)
I0422 00:51:52.906925 32397 solver.cpp:245] Train net output #139: loss3/loss15 = 8.32986e-06 (* 0.0909091 = 7.5726e-07 loss)
I0422 00:51:52.906952 32397 solver.cpp:245] Train net output #140: loss3/loss16 = 5.7966e-06 (* 0.0909091 = 5.26964e-07 loss)
I0422 00:51:52.906980 32397 solver.cpp:245] Train net output #141: loss3/loss17 = 7.51026e-06 (* 0.0909091 = 6.82751e-07 loss)
I0422 00:51:52.907006 32397 solver.cpp:245] Train net output #142: loss3/loss18 = 5.97542e-06 (* 0.0909091 = 5.4322e-07 loss)
I0422 00:51:52.907033 32397 solver.cpp:245] Train net output #143: loss3/loss19 = 5.61778e-06 (* 0.0909091 = 5.10708e-07 loss)
I0422 00:51:52.907059 32397 solver.cpp:245] Train net output #144: loss3/loss20 = 5.66249e-06 (* 0.0909091 = 5.14772e-07 loss)
I0422 00:51:52.907086 32397 solver.cpp:245] Train net output #145: loss3/loss21 = 7.54008e-06 (* 0.0909091 = 6.85462e-07 loss)
I0422 00:51:52.907112 32397 solver.cpp:245] Train net output #146: loss3/loss22 = 6.51188e-06 (* 0.0909091 = 5.91989e-07 loss)
I0422 00:51:52.907135 32397 solver.cpp:245] Train net output #147: total_accuracy = 0.625
I0422 00:51:52.907157 32397 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.625
I0422 00:51:52.907193 32397 solver.cpp:245] Train net output #149: total_confidence = 0.541792
I0422 00:51:52.907218 32397 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.513117
I0422 00:51:52.907243 32397 sgd_solver.cpp:106] Iteration 7500, lr = 0.001
I0422 00:57:34.615586 32397 solver.cpp:229] Iteration 8000, loss = 2.32257
I0422 00:57:34.615727 32397 solver.cpp:245] Train net output #0: loss1/accuracy = 0.4
I0422 00:57:34.615752 32397 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.625
I0422 00:57:34.615778 32397 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5
I0422 00:57:34.615797 32397 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.125
I0422 00:57:34.615809 32397 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.5
I0422 00:57:34.615823 32397 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.375
I0422 00:57:34.615839 32397 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.375
I0422 00:57:34.615850 32397 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.625
I0422 00:57:34.615862 32397 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.5
I0422 00:57:34.615875 32397 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875
I0422 00:57:34.615886 32397 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0422 00:57:34.615906 32397 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0422 00:57:34.615918 32397 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0422 00:57:34.615931 32397 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0422 00:57:34.615942 32397 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0422 00:57:34.615953 32397 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0422 00:57:34.615964 32397 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0422 00:57:34.615977 32397 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0422 00:57:34.615988 32397 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0422 00:57:34.615999 32397 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0422 00:57:34.616011 32397 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0422 00:57:34.616022 32397 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0422 00:57:34.616034 32397 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0422 00:57:34.616045 32397 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.8125
I0422 00:57:34.616057 32397 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.727273
I0422 00:57:34.616073 32397 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.9298 (* 0.3 = 0.57894 loss)
I0422 00:57:34.616088 32397 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.612869 (* 0.3 = 0.183861 loss)
I0422 00:57:34.616102 32397 solver.cpp:245] Train net output #27: loss1/loss01 = 1.30425 (* 0.0272727 = 0.0355705 loss)
I0422 00:57:34.616117 32397 solver.cpp:245] Train net output #28: loss1/loss02 = 2.12565 (* 0.0272727 = 0.0579721 loss)
I0422 00:57:34.616130 32397 solver.cpp:245] Train net output #29: loss1/loss03 = 2.75262 (* 0.0272727 = 0.0750716 loss)
I0422 00:57:34.616144 32397 solver.cpp:245] Train net output #30: loss1/loss04 = 2.27463 (* 0.0272727 = 0.0620354 loss)
I0422 00:57:34.616158 32397 solver.cpp:245] Train net output #31: loss1/loss05 = 2.95146 (* 0.0272727 = 0.0804943 loss)
I0422 00:57:34.616173 32397 solver.cpp:245] Train net output #32: loss1/loss06 = 2.25856 (* 0.0272727 = 0.061597 loss)
I0422 00:57:34.616186 32397 solver.cpp:245] Train net output #33: loss1/loss07 = 1.78881 (* 0.0272727 = 0.0487858 loss)
I0422 00:57:34.616202 32397 solver.cpp:245] Train net output #34: loss1/loss08 = 2.02394 (* 0.0272727 = 0.0551983 loss)
I0422 00:57:34.616217 32397 solver.cpp:245] Train net output #35: loss1/loss09 = 0.532038 (* 0.0272727 = 0.0145101 loss)
I0422 00:57:34.616232 32397 solver.cpp:245] Train net output #36: loss1/loss10 = 0.00301232 (* 0.0272727 = 8.21541e-05 loss)
I0422 00:57:34.616246 32397 solver.cpp:245] Train net output #37: loss1/loss11 = 2.31282e-05 (* 0.0272727 = 6.3077e-07 loss)
I0422 00:57:34.616261 32397 solver.cpp:245] Train net output #38: loss1/loss12 = 2.18909e-05 (* 0.0272727 = 5.97024e-07 loss)
I0422 00:57:34.616276 32397 solver.cpp:245] Train net output #39: loss1/loss13 = 5.37217e-05 (* 0.0272727 = 1.46514e-06 loss)
I0422 00:57:34.616308 32397 solver.cpp:245] Train net output #40: loss1/loss14 = 1.64218e-05 (* 0.0272727 = 4.47867e-07 loss)
I0422 00:57:34.616323 32397 solver.cpp:245] Train net output #41: loss1/loss15 = 1.26067e-05 (* 0.0272727 = 3.4382e-07 loss)
I0422 00:57:34.616338 32397 solver.cpp:245] Train net output #42: loss1/loss16 = 2.12952e-05 (* 0.0272727 = 5.80779e-07 loss)
I0422 00:57:34.616351 32397 solver.cpp:245] Train net output #43: loss1/loss17 = 2.80838e-05 (* 0.0272727 = 7.65922e-07 loss)
I0422 00:57:34.616365 32397 solver.cpp:245] Train net output #44: loss1/loss18 = 2.52073e-05 (* 0.0272727 = 6.87473e-07 loss)
I0422 00:57:34.616379 32397 solver.cpp:245] Train net output #45: loss1/loss19 = 1.59597e-05 (* 0.0272727 = 4.35266e-07 loss)
I0422 00:57:34.616394 32397 solver.cpp:245] Train net output #46: loss1/loss20 = 2.19953e-05 (* 0.0272727 = 5.99873e-07 loss)
I0422 00:57:34.616406 32397 solver.cpp:245] Train net output #47: loss1/loss21 = 3.59675e-05 (* 0.0272727 = 9.80931e-07 loss)
I0422 00:57:34.616420 32397 solver.cpp:245] Train net output #48: loss1/loss22 = 2.33368e-05 (* 0.0272727 = 6.3646e-07 loss)
I0422 00:57:34.616433 32397 solver.cpp:245] Train net output #49: loss2/accuracy = 0.454545
I0422 00:57:34.616446 32397 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.75
I0422 00:57:34.616458 32397 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.625
I0422 00:57:34.616471 32397 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.5
I0422 00:57:34.616482 32397 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.25
I0422 00:57:34.616493 32397 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.25
I0422 00:57:34.616505 32397 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.625
I0422 00:57:34.616518 32397 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.5
I0422 00:57:34.616528 32397 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.5
I0422 00:57:34.616540 32397 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875
I0422 00:57:34.616552 32397 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0422 00:57:34.616564 32397 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0422 00:57:34.616575 32397 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0422 00:57:34.616585 32397 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0422 00:57:34.616596 32397 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0422 00:57:34.616607 32397 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0422 00:57:34.616618 32397 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0422 00:57:34.616629 32397 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0422 00:57:34.616641 32397 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0422 00:57:34.616652 32397 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0422 00:57:34.616663 32397 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0422 00:57:34.616674 32397 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0422 00:57:34.616685 32397 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0422 00:57:34.616696 32397 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.829545
I0422 00:57:34.616708 32397 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.690909
I0422 00:57:34.616721 32397 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.96313 (* 0.3 = 0.588938 loss)
I0422 00:57:34.616739 32397 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.623673 (* 0.3 = 0.187102 loss)
I0422 00:57:34.616753 32397 solver.cpp:245] Train net output #76: loss2/loss01 = 0.586645 (* 0.0272727 = 0.0159994 loss)
I0422 00:57:34.616767 32397 solver.cpp:245] Train net output #77: loss2/loss02 = 2.14116 (* 0.0272727 = 0.0583953 loss)
I0422 00:57:34.616792 32397 solver.cpp:245] Train net output #78: loss2/loss03 = 2.07512 (* 0.0272727 = 0.0565943 loss)
I0422 00:57:34.616808 32397 solver.cpp:245] Train net output #79: loss2/loss04 = 2.02823 (* 0.0272727 = 0.0553155 loss)
I0422 00:57:34.616822 32397 solver.cpp:245] Train net output #80: loss2/loss05 = 3.49586 (* 0.0272727 = 0.0953417 loss)
I0422 00:57:34.616835 32397 solver.cpp:245] Train net output #81: loss2/loss06 = 2.01049 (* 0.0272727 = 0.0548315 loss)
I0422 00:57:34.616849 32397 solver.cpp:245] Train net output #82: loss2/loss07 = 1.64362 (* 0.0272727 = 0.044826 loss)
I0422 00:57:34.616863 32397 solver.cpp:245] Train net output #83: loss2/loss08 = 1.77093 (* 0.0272727 = 0.048298 loss)
I0422 00:57:34.616876 32397 solver.cpp:245] Train net output #84: loss2/loss09 = 0.400385 (* 0.0272727 = 0.0109196 loss)
I0422 00:57:34.616890 32397 solver.cpp:245] Train net output #85: loss2/loss10 = 0.0100829 (* 0.0272727 = 0.000274988 loss)
I0422 00:57:34.616904 32397 solver.cpp:245] Train net output #86: loss2/loss11 = 1.54682e-05 (* 0.0272727 = 4.21861e-07 loss)
I0422 00:57:34.616919 32397 solver.cpp:245] Train net output #87: loss2/loss12 = 1.18171e-05 (* 0.0272727 = 3.22285e-07 loss)
I0422 00:57:34.616932 32397 solver.cpp:245] Train net output #88: loss2/loss13 = 1.21449e-05 (* 0.0272727 = 3.31224e-07 loss)
I0422 00:57:34.616946 32397 solver.cpp:245] Train net output #89: loss2/loss14 = 1.29198e-05 (* 0.0272727 = 3.52358e-07 loss)
I0422 00:57:34.616961 32397 solver.cpp:245] Train net output #90: loss2/loss15 = 2.37172e-05 (* 0.0272727 = 6.46832e-07 loss)
I0422 00:57:34.616974 32397 solver.cpp:245] Train net output #91: loss2/loss16 = 1.31731e-05 (* 0.0272727 = 3.59266e-07 loss)
I0422 00:57:34.616988 32397 solver.cpp:245] Train net output #92: loss2/loss17 = 1.88807e-05 (* 0.0272727 = 5.14928e-07 loss)
I0422 00:57:34.617002 32397 solver.cpp:245] Train net output #93: loss2/loss18 = 1.42907e-05 (* 0.0272727 = 3.89747e-07 loss)
I0422 00:57:34.617017 32397 solver.cpp:245] Train net output #94: loss2/loss19 = 2.64147e-05 (* 0.0272727 = 7.20401e-07 loss)
I0422 00:57:34.617030 32397 solver.cpp:245] Train net output #95: loss2/loss20 = 1.84933e-05 (* 0.0272727 = 5.04364e-07 loss)
I0422 00:57:34.617043 32397 solver.cpp:245] Train net output #96: loss2/loss21 = 1.47528e-05 (* 0.0272727 = 4.0235e-07 loss)
I0422 00:57:34.617058 32397 solver.cpp:245] Train net output #97: loss2/loss22 = 1.72118e-05 (* 0.0272727 = 4.69412e-07 loss)
I0422 00:57:34.617070 32397 solver.cpp:245] Train net output #98: loss3/accuracy = 0.672727
I0422 00:57:34.617082 32397 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0422 00:57:34.617094 32397 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.625
I0422 00:57:34.617105 32397 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.75
I0422 00:57:34.617117 32397 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.625
I0422 00:57:34.617128 32397 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.375
I0422 00:57:34.617141 32397 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.5
I0422 00:57:34.617151 32397 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.625
I0422 00:57:34.617163 32397 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.625
I0422 00:57:34.617174 32397 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875
I0422 00:57:34.617187 32397 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0422 00:57:34.617197 32397 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0422 00:57:34.617209 32397 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0422 00:57:34.617220 32397 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0422 00:57:34.617231 32397 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0422 00:57:34.617243 32397 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0422 00:57:34.617266 32397 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0422 00:57:34.617280 32397 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0422 00:57:34.617291 32397 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0422 00:57:34.617303 32397 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0422 00:57:34.617314 32397 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0422 00:57:34.617326 32397 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0422 00:57:34.617336 32397 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0422 00:57:34.617348 32397 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.897727
I0422 00:57:34.617360 32397 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.890909
I0422 00:57:34.617373 32397 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 1.32675 (* 1 = 1.32675 loss)
I0422 00:57:34.617388 32397 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.423988 (* 1 = 0.423988 loss)
I0422 00:57:34.617403 32397 solver.cpp:245] Train net output #125: loss3/loss01 = 0.175237 (* 0.0909091 = 0.0159306 loss)
I0422 00:57:34.617416 32397 solver.cpp:245] Train net output #126: loss3/loss02 = 1.56498 (* 0.0909091 = 0.142271 loss)
I0422 00:57:34.617429 32397 solver.cpp:245] Train net output #127: loss3/loss03 = 1.31019 (* 0.0909091 = 0.119108 loss)
I0422 00:57:34.617444 32397 solver.cpp:245] Train net output #128: loss3/loss04 = 1.44953 (* 0.0909091 = 0.131776 loss)
I0422 00:57:34.617457 32397 solver.cpp:245] Train net output #129: loss3/loss05 = 2.47732 (* 0.0909091 = 0.225211 loss)
I0422 00:57:34.617471 32397 solver.cpp:245] Train net output #130: loss3/loss06 = 1.53976 (* 0.0909091 = 0.139978 loss)
I0422 00:57:34.617485 32397 solver.cpp:245] Train net output #131: loss3/loss07 = 1.14541 (* 0.0909091 = 0.104128 loss)
I0422 00:57:34.617498 32397 solver.cpp:245] Train net output #132: loss3/loss08 = 1.21439 (* 0.0909091 = 0.1104 loss)
I0422 00:57:34.617512 32397 solver.cpp:245] Train net output #133: loss3/loss09 = 0.308968 (* 0.0909091 = 0.028088 loss)
I0422 00:57:34.617527 32397 solver.cpp:245] Train net output #134: loss3/loss10 = 0.00638557 (* 0.0909091 = 0.000580507 loss)
I0422 00:57:34.617540 32397 solver.cpp:245] Train net output #135: loss3/loss11 = 4.85996e-05 (* 0.0909091 = 4.41814e-06 loss)
I0422 00:57:34.617554 32397 solver.cpp:245] Train net output #136: loss3/loss12 = 4.34049e-05 (* 0.0909091 = 3.9459e-06 loss)
I0422 00:57:34.617568 32397 solver.cpp:245] Train net output #137: loss3/loss13 = 3.99624e-05 (* 0.0909091 = 3.63295e-06 loss)
I0422 00:57:34.617588 32397 solver.cpp:245] Train net output #138: loss3/loss14 = 3.62954e-05 (* 0.0909091 = 3.29958e-06 loss)
I0422 00:57:34.617601 32397 solver.cpp:245] Train net output #139: loss3/loss15 = 3.1988e-05 (* 0.0909091 = 2.908e-06 loss)
I0422 00:57:34.617616 32397 solver.cpp:245] Train net output #140: loss3/loss16 = 3.3091e-05 (* 0.0909091 = 3.00828e-06 loss)
I0422 00:57:34.617630 32397 solver.cpp:245] Train net output #141: loss3/loss17 = 3.44621e-05 (* 0.0909091 = 3.13292e-06 loss)
I0422 00:57:34.617643 32397 solver.cpp:245] Train net output #142: loss3/loss18 = 3.51033e-05 (* 0.0909091 = 3.19121e-06 loss)
I0422 00:57:34.617657 32397 solver.cpp:245] Train net output #143: loss3/loss19 = 3.74429e-05 (* 0.0909091 = 3.4039e-06 loss)
I0422 00:57:34.617676 32397 solver.cpp:245] Train net output #144: loss3/loss20 = 4.2526e-05 (* 0.0909091 = 3.866e-06 loss)
I0422 00:57:34.617691 32397 solver.cpp:245] Train net output #145: loss3/loss21 = 3.49244e-05 (* 0.0909091 = 3.17495e-06 loss)
I0422 00:57:34.617704 32397 solver.cpp:245] Train net output #146: loss3/loss22 = 3.0334e-05 (* 0.0909091 = 2.75763e-06 loss)
I0422 00:57:34.617717 32397 solver.cpp:245] Train net output #147: total_accuracy = 0.375
I0422 00:57:34.617728 32397 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.125
I0422 00:57:34.617749 32397 solver.cpp:245] Train net output #149: total_confidence = 0.469513
I0422 00:57:34.617763 32397 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.415272
I0422 00:57:34.617775 32397 sgd_solver.cpp:106] Iteration 8000, lr = 0.001
I0422 01:03:16.389384 32397 solver.cpp:229] Iteration 8500, loss = 2.30587
I0422 01:03:16.389519 32397 solver.cpp:245] Train net output #0: loss1/accuracy = 0.673469
I0422 01:03:16.389540 32397 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75
I0422 01:03:16.389554 32397 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5
I0422 01:03:16.389565 32397 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.5
I0422 01:03:16.389577 32397 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.5
I0422 01:03:16.389590 32397 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.5
I0422 01:03:16.389601 32397 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.375
I0422 01:03:16.389613 32397 solver.cpp:245] Train net output #7: loss1/accuracy07 = 1
I0422 01:03:16.389626 32397 solver.cpp:245] Train net output #8: loss1/accuracy08 = 1
I0422 01:03:16.389637 32397 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1
I0422 01:03:16.389649 32397 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0422 01:03:16.389660 32397 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0422 01:03:16.389672 32397 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0422 01:03:16.389684 32397 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0422 01:03:16.389695 32397 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0422 01:03:16.389708 32397 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0422 01:03:16.389719 32397 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0422 01:03:16.389730 32397 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0422 01:03:16.389741 32397 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0422 01:03:16.389753 32397 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0422 01:03:16.389765 32397 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0422 01:03:16.389776 32397 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0422 01:03:16.389787 32397 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0422 01:03:16.389799 32397 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.892045
I0422 01:03:16.389811 32397 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.877551
I0422 01:03:16.389827 32397 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 0.989453 (* 0.3 = 0.296836 loss)
I0422 01:03:16.389842 32397 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.318407 (* 0.3 = 0.095522 loss)
I0422 01:03:16.389858 32397 solver.cpp:245] Train net output #27: loss1/loss01 = 0.480829 (* 0.0272727 = 0.0131135 loss)
I0422 01:03:16.389871 32397 solver.cpp:245] Train net output #28: loss1/loss02 = 1.21244 (* 0.0272727 = 0.0330666 loss)
I0422 01:03:16.389885 32397 solver.cpp:245] Train net output #29: loss1/loss03 = 2.02574 (* 0.0272727 = 0.0552474 loss)
I0422 01:03:16.389900 32397 solver.cpp:245] Train net output #30: loss1/loss04 = 2.37375 (* 0.0272727 = 0.0647388 loss)
I0422 01:03:16.389914 32397 solver.cpp:245] Train net output #31: loss1/loss05 = 1.90234 (* 0.0272727 = 0.0518821 loss)
I0422 01:03:16.389928 32397 solver.cpp:245] Train net output #32: loss1/loss06 = 1.5655 (* 0.0272727 = 0.0426953 loss)
I0422 01:03:16.389941 32397 solver.cpp:245] Train net output #33: loss1/loss07 = 0.377493 (* 0.0272727 = 0.0102953 loss)
I0422 01:03:16.389956 32397 solver.cpp:245] Train net output #34: loss1/loss08 = 0.0365446 (* 0.0272727 = 0.00099667 loss)
I0422 01:03:16.389971 32397 solver.cpp:245] Train net output #35: loss1/loss09 = 0.00109948 (* 0.0272727 = 2.99858e-05 loss)
I0422 01:03:16.389984 32397 solver.cpp:245] Train net output #36: loss1/loss10 = 0.000317516 (* 0.0272727 = 8.65954e-06 loss)
I0422 01:03:16.389998 32397 solver.cpp:245] Train net output #37: loss1/loss11 = 0.000145422 (* 0.0272727 = 3.96606e-06 loss)
I0422 01:03:16.390012 32397 solver.cpp:245] Train net output #38: loss1/loss12 = 8.15133e-05 (* 0.0272727 = 2.22309e-06 loss)
I0422 01:03:16.390043 32397 solver.cpp:245] Train net output #39: loss1/loss13 = 4.58293e-05 (* 0.0272727 = 1.24989e-06 loss)
I0422 01:03:16.390059 32397 solver.cpp:245] Train net output #40: loss1/loss14 = 5.11286e-05 (* 0.0272727 = 1.39442e-06 loss)
I0422 01:03:16.390072 32397 solver.cpp:245] Train net output #41: loss1/loss15 = 4.8848e-05 (* 0.0272727 = 1.33222e-06 loss)
I0422 01:03:16.390086 32397 solver.cpp:245] Train net output #42: loss1/loss16 = 4.93845e-05 (* 0.0272727 = 1.34685e-06 loss)
I0422 01:03:16.390100 32397 solver.cpp:245] Train net output #43: loss1/loss17 = 7.51837e-05 (* 0.0272727 = 2.05046e-06 loss)
I0422 01:03:16.390115 32397 solver.cpp:245] Train net output #44: loss1/loss18 = 0.000117692 (* 0.0272727 = 3.20978e-06 loss)
I0422 01:03:16.390128 32397 solver.cpp:245] Train net output #45: loss1/loss19 = 2.68025e-05 (* 0.0272727 = 7.30976e-07 loss)
I0422 01:03:16.390142 32397 solver.cpp:245] Train net output #46: loss1/loss20 = 6.27793e-05 (* 0.0272727 = 1.71216e-06 loss)
I0422 01:03:16.390156 32397 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000111935 (* 0.0272727 = 3.05278e-06 loss)
I0422 01:03:16.390171 32397 solver.cpp:245] Train net output #48: loss1/loss22 = 7.51987e-05 (* 0.0272727 = 2.05087e-06 loss)
I0422 01:03:16.390182 32397 solver.cpp:245] Train net output #49: loss2/accuracy = 0.836735
I0422 01:03:16.390194 32397 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.75
I0422 01:03:16.390209 32397 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.875
I0422 01:03:16.390221 32397 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.75
I0422 01:03:16.390233 32397 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.375
I0422 01:03:16.390245 32397 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.375
I0422 01:03:16.390256 32397 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.5
I0422 01:03:16.390267 32397 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.875
I0422 01:03:16.390280 32397 solver.cpp:245] Train net output #57: loss2/accuracy08 = 1
I0422 01:03:16.390290 32397 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1
I0422 01:03:16.390302 32397 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0422 01:03:16.390313 32397 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0422 01:03:16.390324 32397 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0422 01:03:16.390336 32397 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0422 01:03:16.390347 32397 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0422 01:03:16.390357 32397 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0422 01:03:16.390368 32397 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0422 01:03:16.390379 32397 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0422 01:03:16.390391 32397 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0422 01:03:16.390403 32397 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0422 01:03:16.390413 32397 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0422 01:03:16.390425 32397 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0422 01:03:16.390436 32397 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0422 01:03:16.390447 32397 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.948864
I0422 01:03:16.390460 32397 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 1
I0422 01:03:16.390472 32397 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.476791 (* 0.3 = 0.143037 loss)
I0422 01:03:16.390486 32397 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.165553 (* 0.3 = 0.049666 loss)
I0422 01:03:16.390501 32397 solver.cpp:245] Train net output #76: loss2/loss01 = 0.540297 (* 0.0272727 = 0.0147354 loss)
I0422 01:03:16.390513 32397 solver.cpp:245] Train net output #77: loss2/loss02 = 0.596484 (* 0.0272727 = 0.0162677 loss)
I0422 01:03:16.390542 32397 solver.cpp:245] Train net output #78: loss2/loss03 = 0.873184 (* 0.0272727 = 0.0238141 loss)
I0422 01:03:16.390554 32397 solver.cpp:245] Train net output #79: loss2/loss04 = 1.64074 (* 0.0272727 = 0.0447475 loss)
I0422 01:03:16.390564 32397 solver.cpp:245] Train net output #80: loss2/loss05 = 1.84722 (* 0.0272727 = 0.0503788 loss)
I0422 01:03:16.390578 32397 solver.cpp:245] Train net output #81: loss2/loss06 = 1.03226 (* 0.0272727 = 0.0281527 loss)
I0422 01:03:16.390593 32397 solver.cpp:245] Train net output #82: loss2/loss07 = 0.392469 (* 0.0272727 = 0.0107037 loss)
I0422 01:03:16.390606 32397 solver.cpp:245] Train net output #83: loss2/loss08 = 0.025274 (* 0.0272727 = 0.00068929 loss)
I0422 01:03:16.390620 32397 solver.cpp:245] Train net output #84: loss2/loss09 = 0.00130327 (* 0.0272727 = 3.55437e-05 loss)
I0422 01:03:16.390635 32397 solver.cpp:245] Train net output #85: loss2/loss10 = 0.000223842 (* 0.0272727 = 6.10479e-06 loss)
I0422 01:03:16.390647 32397 solver.cpp:245] Train net output #86: loss2/loss11 = 5.09626e-06 (* 0.0272727 = 1.38989e-07 loss)
I0422 01:03:16.390661 32397 solver.cpp:245] Train net output #87: loss2/loss12 = 6.21392e-06 (* 0.0272727 = 1.6947e-07 loss)
I0422 01:03:16.390676 32397 solver.cpp:245] Train net output #88: loss2/loss13 = 5.21548e-06 (* 0.0272727 = 1.4224e-07 loss)
I0422 01:03:16.390688 32397 solver.cpp:245] Train net output #89: loss2/loss14 = 3.35279e-06 (* 0.0272727 = 9.14398e-08 loss)
I0422 01:03:16.390702 32397 solver.cpp:245] Train net output #90: loss2/loss15 = 4.88766e-06 (* 0.0272727 = 1.333e-07 loss)
I0422 01:03:16.390717 32397 solver.cpp:245] Train net output #91: loss2/loss16 = 3.99355e-06 (* 0.0272727 = 1.08915e-07 loss)
I0422 01:03:16.390729 32397 solver.cpp:245] Train net output #92: loss2/loss17 = 5.14098e-06 (* 0.0272727 = 1.40209e-07 loss)
I0422 01:03:16.390743 32397 solver.cpp:245] Train net output #93: loss2/loss18 = 9.1496e-06 (* 0.0272727 = 2.49534e-07 loss)
I0422 01:03:16.390756 32397 solver.cpp:245] Train net output #94: loss2/loss19 = 2.71203e-06 (* 0.0272727 = 7.39644e-08 loss)
I0422 01:03:16.390770 32397 solver.cpp:245] Train net output #95: loss2/loss20 = 4.29158e-06 (* 0.0272727 = 1.17043e-07 loss)
I0422 01:03:16.390784 32397 solver.cpp:245] Train net output #96: loss2/loss21 = 5.73706e-06 (* 0.0272727 = 1.56465e-07 loss)
I0422 01:03:16.390797 32397 solver.cpp:245] Train net output #97: loss2/loss22 = 5.05156e-06 (* 0.0272727 = 1.3777e-07 loss)
I0422 01:03:16.390808 32397 solver.cpp:245] Train net output #98: loss3/accuracy = 1
I0422 01:03:16.390820 32397 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0422 01:03:16.390831 32397 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0422 01:03:16.390842 32397 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0422 01:03:16.390853 32397 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1
I0422 01:03:16.390863 32397 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875
I0422 01:03:16.390875 32397 solver.cpp:245] Train net output #104: loss3/accuracy06 = 1
I0422 01:03:16.390887 32397 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875
I0422 01:03:16.390897 32397 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1
I0422 01:03:16.390908 32397 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1
I0422 01:03:16.390919 32397 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0422 01:03:16.390930 32397 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0422 01:03:16.390941 32397 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0422 01:03:16.390952 32397 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0422 01:03:16.390964 32397 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0422 01:03:16.390974 32397 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0422 01:03:16.390985 32397 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0422 01:03:16.391006 32397 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0422 01:03:16.391019 32397 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0422 01:03:16.391031 32397 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0422 01:03:16.391041 32397 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0422 01:03:16.391053 32397 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0422 01:03:16.391064 32397 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0422 01:03:16.391075 32397 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 1
I0422 01:03:16.391086 32397 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 1
I0422 01:03:16.391100 32397 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.0680166 (* 1 = 0.0680166 loss)
I0422 01:03:16.391114 32397 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.022965 (* 1 = 0.022965 loss)
I0422 01:03:16.391129 32397 solver.cpp:245] Train net output #125: loss3/loss01 = 0.0568482 (* 0.0909091 = 0.00516802 loss)
I0422 01:03:16.391142 32397 solver.cpp:245] Train net output #126: loss3/loss02 = 0.0668106 (* 0.0909091 = 0.00607369 loss)
I0422 01:03:16.391156 32397 solver.cpp:245] Train net output #127: loss3/loss03 = 0.102033 (* 0.0909091 = 0.00927573 loss)
I0422 01:03:16.391170 32397 solver.cpp:245] Train net output #128: loss3/loss04 = 0.206095 (* 0.0909091 = 0.0187359 loss)
I0422 01:03:16.391185 32397 solver.cpp:245] Train net output #129: loss3/loss05 = 0.491445 (* 0.0909091 = 0.0446768 loss)
I0422 01:03:16.391197 32397 solver.cpp:245] Train net output #130: loss3/loss06 = 0.151243 (* 0.0909091 = 0.0137494 loss)
I0422 01:03:16.391211 32397 solver.cpp:245] Train net output #131: loss3/loss07 = 0.225446 (* 0.0909091 = 0.0204951 loss)
I0422 01:03:16.391224 32397 solver.cpp:245] Train net output #132: loss3/loss08 = 0.0303762 (* 0.0909091 = 0.00276148 loss)
I0422 01:03:16.391238 32397 solver.cpp:245] Train net output #133: loss3/loss09 = 0.000910626 (* 0.0909091 = 8.27842e-05 loss)
I0422 01:03:16.391255 32397 solver.cpp:245] Train net output #134: loss3/loss10 = 8.8374e-05 (* 0.0909091 = 8.034e-06 loss)
I0422 01:03:16.391270 32397 solver.cpp:245] Train net output #135: loss3/loss11 = 1.68384e-06 (* 0.0909091 = 1.53076e-07 loss)
I0422 01:03:16.391284 32397 solver.cpp:245] Train net output #136: loss3/loss12 = 1.2964e-06 (* 0.0909091 = 1.17855e-07 loss)
I0422 01:03:16.391299 32397 solver.cpp:245] Train net output #137: loss3/loss13 = 1.2666e-06 (* 0.0909091 = 1.15146e-07 loss)
I0422 01:03:16.391311 32397 solver.cpp:245] Train net output #138: loss3/loss14 = 1.41561e-06 (* 0.0909091 = 1.28692e-07 loss)
I0422 01:03:16.391325 32397 solver.cpp:245] Train net output #139: loss3/loss15 = 1.59443e-06 (* 0.0909091 = 1.44948e-07 loss)
I0422 01:03:16.391340 32397 solver.cpp:245] Train net output #140: loss3/loss16 = 1.62423e-06 (* 0.0909091 = 1.47657e-07 loss)
I0422 01:03:16.391369 32397 solver.cpp:245] Train net output #141: loss3/loss17 = 1.38581e-06 (* 0.0909091 = 1.25983e-07 loss)
I0422 01:03:16.391386 32397 solver.cpp:245] Train net output #142: loss3/loss18 = 1.86265e-06 (* 0.0909091 = 1.69332e-07 loss)
I0422 01:03:16.391399 32397 solver.cpp:245] Train net output #143: loss3/loss19 = 1.41561e-06 (* 0.0909091 = 1.28692e-07 loss)
I0422 01:03:16.391414 32397 solver.cpp:245] Train net output #144: loss3/loss20 = 1.11759e-06 (* 0.0909091 = 1.01599e-07 loss)
I0422 01:03:16.391428 32397 solver.cpp:245] Train net output #145: loss3/loss21 = 1.1921e-06 (* 0.0909091 = 1.08372e-07 loss)
I0422 01:03:16.391443 32397 solver.cpp:245] Train net output #146: loss3/loss22 = 1.2517e-06 (* 0.0909091 = 1.13791e-07 loss)
I0422 01:03:16.391454 32397 solver.cpp:245] Train net output #147: total_accuracy = 1
I0422 01:03:16.391465 32397 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.75
I0422 01:03:16.391489 32397 solver.cpp:245] Train net output #149: total_confidence = 0.673735
I0422 01:03:16.391501 32397 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.525331
I0422 01:03:16.391515 32397 sgd_solver.cpp:106] Iteration 8500, lr = 0.001
I0422 01:08:58.070878 32397 solver.cpp:229] Iteration 9000, loss = 2.27144
I0422 01:08:58.071013 32397 solver.cpp:245] Train net output #0: loss1/accuracy = 0.36
I0422 01:08:58.071033 32397 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.625
I0422 01:08:58.071045 32397 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5
I0422 01:08:58.071058 32397 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.125
I0422 01:08:58.071069 32397 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.125
I0422 01:08:58.071081 32397 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.25
I0422 01:08:58.071094 32397 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.375
I0422 01:08:58.071105 32397 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.625
I0422 01:08:58.071117 32397 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875
I0422 01:08:58.071128 32397 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1
I0422 01:08:58.071141 32397 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0422 01:08:58.071151 32397 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0422 01:08:58.071163 32397 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0422 01:08:58.071174 32397 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0422 01:08:58.071185 32397 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0422 01:08:58.071197 32397 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0422 01:08:58.071211 32397 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0422 01:08:58.071223 32397 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0422 01:08:58.071234 32397 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0422 01:08:58.071245 32397 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0422 01:08:58.071257 32397 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0422 01:08:58.071269 32397 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0422 01:08:58.071280 32397 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0422 01:08:58.071291 32397 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.8125
I0422 01:08:58.071302 32397 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.58
I0422 01:08:58.071318 32397 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.951 (* 0.3 = 0.585299 loss)
I0422 01:08:58.071333 32397 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.584592 (* 0.3 = 0.175378 loss)
I0422 01:08:58.071358 32397 solver.cpp:245] Train net output #27: loss1/loss01 = 1.76457 (* 0.0272727 = 0.0481246 loss)
I0422 01:08:58.071377 32397 solver.cpp:245] Train net output #28: loss1/loss02 = 1.76488 (* 0.0272727 = 0.0481332 loss)
I0422 01:08:58.071391 32397 solver.cpp:245] Train net output #29: loss1/loss03 = 2.64703 (* 0.0272727 = 0.0721916 loss)
I0422 01:08:58.071405 32397 solver.cpp:245] Train net output #30: loss1/loss04 = 2.0339 (* 0.0272727 = 0.0554701 loss)
I0422 01:08:58.071419 32397 solver.cpp:245] Train net output #31: loss1/loss05 = 2.12673 (* 0.0272727 = 0.0580019 loss)
I0422 01:08:58.071432 32397 solver.cpp:245] Train net output #32: loss1/loss06 = 2.64943 (* 0.0272727 = 0.0722572 loss)
I0422 01:08:58.071446 32397 solver.cpp:245] Train net output #33: loss1/loss07 = 1.15686 (* 0.0272727 = 0.0315507 loss)
I0422 01:08:58.071460 32397 solver.cpp:245] Train net output #34: loss1/loss08 = 0.626423 (* 0.0272727 = 0.0170843 loss)
I0422 01:08:58.071475 32397 solver.cpp:245] Train net output #35: loss1/loss09 = 0.0188079 (* 0.0272727 = 0.000512943 loss)
I0422 01:08:58.071488 32397 solver.cpp:245] Train net output #36: loss1/loss10 = 0.00465072 (* 0.0272727 = 0.000126838 loss)
I0422 01:08:58.071503 32397 solver.cpp:245] Train net output #37: loss1/loss11 = 0.00065765 (* 0.0272727 = 1.79359e-05 loss)
I0422 01:08:58.071517 32397 solver.cpp:245] Train net output #38: loss1/loss12 = 0.000699451 (* 0.0272727 = 1.90759e-05 loss)
I0422 01:08:58.071530 32397 solver.cpp:245] Train net output #39: loss1/loss13 = 0.000677233 (* 0.0272727 = 1.847e-05 loss)
I0422 01:08:58.071563 32397 solver.cpp:245] Train net output #40: loss1/loss14 = 0.000675738 (* 0.0272727 = 1.84292e-05 loss)
I0422 01:08:58.071578 32397 solver.cpp:245] Train net output #41: loss1/loss15 = 0.000410354 (* 0.0272727 = 1.11915e-05 loss)
I0422 01:08:58.071593 32397 solver.cpp:245] Train net output #42: loss1/loss16 = 0.000638166 (* 0.0272727 = 1.74045e-05 loss)
I0422 01:08:58.071606 32397 solver.cpp:245] Train net output #43: loss1/loss17 = 0.000753887 (* 0.0272727 = 2.05606e-05 loss)
I0422 01:08:58.071620 32397 solver.cpp:245] Train net output #44: loss1/loss18 = 0.000547733 (* 0.0272727 = 1.49382e-05 loss)
I0422 01:08:58.071635 32397 solver.cpp:245] Train net output #45: loss1/loss19 = 0.000661998 (* 0.0272727 = 1.80545e-05 loss)
I0422 01:08:58.071648 32397 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000412983 (* 0.0272727 = 1.12632e-05 loss)
I0422 01:08:58.071662 32397 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000441422 (* 0.0272727 = 1.20388e-05 loss)
I0422 01:08:58.071676 32397 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000306724 (* 0.0272727 = 8.36521e-06 loss)
I0422 01:08:58.071687 32397 solver.cpp:245] Train net output #49: loss2/accuracy = 0.64
I0422 01:08:58.071699 32397 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.75
I0422 01:08:58.071712 32397 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75
I0422 01:08:58.071722 32397 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.25
I0422 01:08:58.071733 32397 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.375
I0422 01:08:58.071745 32397 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.125
I0422 01:08:58.071756 32397 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.375
I0422 01:08:58.071768 32397 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.75
I0422 01:08:58.071779 32397 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875
I0422 01:08:58.071790 32397 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1
I0422 01:08:58.071801 32397 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0422 01:08:58.071812 32397 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0422 01:08:58.071823 32397 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0422 01:08:58.071835 32397 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0422 01:08:58.071846 32397 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0422 01:08:58.071856 32397 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0422 01:08:58.071867 32397 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0422 01:08:58.071878 32397 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0422 01:08:58.071889 32397 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0422 01:08:58.071900 32397 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0422 01:08:58.071912 32397 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0422 01:08:58.071923 32397 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0422 01:08:58.071933 32397 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0422 01:08:58.071944 32397 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.892045
I0422 01:08:58.071956 32397 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.92
I0422 01:08:58.071970 32397 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.05247 (* 0.3 = 0.315742 loss)
I0422 01:08:58.071984 32397 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.322311 (* 0.3 = 0.0966933 loss)
I0422 01:08:58.071997 32397 solver.cpp:245] Train net output #76: loss2/loss01 = 0.68029 (* 0.0272727 = 0.0185534 loss)
I0422 01:08:58.072011 32397 solver.cpp:245] Train net output #77: loss2/loss02 = 0.810239 (* 0.0272727 = 0.0220974 loss)
I0422 01:08:58.072039 32397 solver.cpp:245] Train net output #78: loss2/loss03 = 2.28305 (* 0.0272727 = 0.0622649 loss)
I0422 01:08:58.072054 32397 solver.cpp:245] Train net output #79: loss2/loss04 = 1.88693 (* 0.0272727 = 0.0514618 loss)
I0422 01:08:58.072068 32397 solver.cpp:245] Train net output #80: loss2/loss05 = 1.76075 (* 0.0272727 = 0.0480203 loss)
I0422 01:08:58.072082 32397 solver.cpp:245] Train net output #81: loss2/loss06 = 2.24409 (* 0.0272727 = 0.0612024 loss)
I0422 01:08:58.072095 32397 solver.cpp:245] Train net output #82: loss2/loss07 = 0.569346 (* 0.0272727 = 0.0155276 loss)
I0422 01:08:58.072109 32397 solver.cpp:245] Train net output #83: loss2/loss08 = 0.383449 (* 0.0272727 = 0.0104577 loss)
I0422 01:08:58.072124 32397 solver.cpp:245] Train net output #84: loss2/loss09 = 0.0506372 (* 0.0272727 = 0.00138102 loss)
I0422 01:08:58.072136 32397 solver.cpp:245] Train net output #85: loss2/loss10 = 0.00725701 (* 0.0272727 = 0.000197918 loss)
I0422 01:08:58.072150 32397 solver.cpp:245] Train net output #86: loss2/loss11 = 1.83887e-05 (* 0.0272727 = 5.01511e-07 loss)
I0422 01:08:58.072165 32397 solver.cpp:245] Train net output #87: loss2/loss12 = 1.83441e-05 (* 0.0272727 = 5.00293e-07 loss)
I0422 01:08:58.072178 32397 solver.cpp:245] Train net output #88: loss2/loss13 = 1.36051e-05 (* 0.0272727 = 3.71048e-07 loss)
I0422 01:08:58.072192 32397 solver.cpp:245] Train net output #89: loss2/loss14 = 4.08849e-05 (* 0.0272727 = 1.11504e-06 loss)
I0422 01:08:58.072206 32397 solver.cpp:245] Train net output #90: loss2/loss15 = 3.06766e-05 (* 0.0272727 = 8.36634e-07 loss)
I0422 01:08:58.072219 32397 solver.cpp:245] Train net output #91: loss2/loss16 = 1.89848e-05 (* 0.0272727 = 5.17766e-07 loss)
I0422 01:08:58.072233 32397 solver.cpp:245] Train net output #92: loss2/loss17 = 1.20702e-05 (* 0.0272727 = 3.29188e-07 loss)
I0422 01:08:58.072247 32397 solver.cpp:245] Train net output #93: loss2/loss18 = 1.82248e-05 (* 0.0272727 = 4.97039e-07 loss)
I0422 01:08:58.072263 32397 solver.cpp:245] Train net output #94: loss2/loss19 = 1.52443e-05 (* 0.0272727 = 4.15755e-07 loss)
I0422 01:08:58.072276 32397 solver.cpp:245] Train net output #95: loss2/loss20 = 1.87613e-05 (* 0.0272727 = 5.11673e-07 loss)
I0422 01:08:58.072290 32397 solver.cpp:245] Train net output #96: loss2/loss21 = 1.13252e-05 (* 0.0272727 = 3.08868e-07 loss)
I0422 01:08:58.072304 32397 solver.cpp:245] Train net output #97: loss2/loss22 = 1.61533e-05 (* 0.0272727 = 4.40546e-07 loss)
I0422 01:08:58.072316 32397 solver.cpp:245] Train net output #98: loss3/accuracy = 0.76
I0422 01:08:58.072329 32397 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875
I0422 01:08:58.072340 32397 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0422 01:08:58.072350 32397 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.625
I0422 01:08:58.072361 32397 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.75
I0422 01:08:58.072372 32397 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.75
I0422 01:08:58.072383 32397 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.75
I0422 01:08:58.072396 32397 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.625
I0422 01:08:58.072407 32397 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875
I0422 01:08:58.072417 32397 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1
I0422 01:08:58.072428 32397 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0422 01:08:58.072439 32397 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0422 01:08:58.072450 32397 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0422 01:08:58.072461 32397 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0422 01:08:58.072473 32397 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0422 01:08:58.072484 32397 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0422 01:08:58.072505 32397 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0422 01:08:58.072525 32397 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0422 01:08:58.072532 32397 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0422 01:08:58.072543 32397 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0422 01:08:58.072556 32397 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0422 01:08:58.072566 32397 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0422 01:08:58.072576 32397 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0422 01:08:58.072587 32397 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.926136
I0422 01:08:58.072599 32397 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.96
I0422 01:08:58.072613 32397 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.677748 (* 1 = 0.677748 loss)
I0422 01:08:58.072625 32397 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.211377 (* 1 = 0.211377 loss)
I0422 01:08:58.072638 32397 solver.cpp:245] Train net output #125: loss3/loss01 = 0.437243 (* 0.0909091 = 0.0397494 loss)
I0422 01:08:58.072652 32397 solver.cpp:245] Train net output #126: loss3/loss02 = 0.272008 (* 0.0909091 = 0.024728 loss)
I0422 01:08:58.072665 32397 solver.cpp:245] Train net output #127: loss3/loss03 = 1.15244 (* 0.0909091 = 0.104768 loss)
I0422 01:08:58.072679 32397 solver.cpp:245] Train net output #128: loss3/loss04 = 0.72029 (* 0.0909091 = 0.065481 loss)
I0422 01:08:58.072692 32397 solver.cpp:245] Train net output #129: loss3/loss05 = 0.889895 (* 0.0909091 = 0.0808996 loss)
I0422 01:08:58.072705 32397 solver.cpp:245] Train net output #130: loss3/loss06 = 0.950726 (* 0.0909091 = 0.0864297 loss)
I0422 01:08:58.072718 32397 solver.cpp:245] Train net output #131: loss3/loss07 = 0.910915 (* 0.0909091 = 0.0828105 loss)
I0422 01:08:58.072731 32397 solver.cpp:245] Train net output #132: loss3/loss08 = 0.258075 (* 0.0909091 = 0.0234614 loss)
I0422 01:08:58.072746 32397 solver.cpp:245] Train net output #133: loss3/loss09 = 0.0312754 (* 0.0909091 = 0.00284321 loss)
I0422 01:08:58.072759 32397 solver.cpp:245] Train net output #134: loss3/loss10 = 0.00475538 (* 0.0909091 = 0.000432307 loss)
I0422 01:08:58.072772 32397 solver.cpp:245] Train net output #135: loss3/loss11 = 4.75917e-05 (* 0.0909091 = 4.32652e-06 loss)
I0422 01:08:58.072787 32397 solver.cpp:245] Train net output #136: loss3/loss12 = 3.27845e-05 (* 0.0909091 = 2.98041e-06 loss)
I0422 01:08:58.072799 32397 solver.cpp:245] Train net output #137: loss3/loss13 = 3.75013e-05 (* 0.0909091 = 3.40921e-06 loss)
I0422 01:08:58.072813 32397 solver.cpp:245] Train net output #138: loss3/loss14 = 4.56837e-05 (* 0.0909091 = 4.15306e-06 loss)
I0422 01:08:58.072825 32397 solver.cpp:245] Train net output #139: loss3/loss15 = 4.07954e-05 (* 0.0909091 = 3.70867e-06 loss)
I0422 01:08:58.072839 32397 solver.cpp:245] Train net output #140: loss3/loss16 = 3.98264e-05 (* 0.0909091 = 3.62058e-06 loss)
I0422 01:08:58.072852 32397 solver.cpp:245] Train net output #141: loss3/loss17 = 3.60557e-05 (* 0.0909091 = 3.27779e-06 loss)
I0422 01:08:58.072865 32397 solver.cpp:245] Train net output #142: loss3/loss18 = 3.74418e-05 (* 0.0909091 = 3.4038e-06 loss)
I0422 01:08:58.072878 32397 solver.cpp:245] Train net output #143: loss3/loss19 = 3.51391e-05 (* 0.0909091 = 3.19446e-06 loss)
I0422 01:08:58.072892 32397 solver.cpp:245] Train net output #144: loss3/loss20 = 3.52434e-05 (* 0.0909091 = 3.20394e-06 loss)
I0422 01:08:58.072906 32397 solver.cpp:245] Train net output #145: loss3/loss21 = 3.92906e-05 (* 0.0909091 = 3.57187e-06 loss)
I0422 01:08:58.072918 32397 solver.cpp:245] Train net output #146: loss3/loss22 = 3.01914e-05 (* 0.0909091 = 2.74467e-06 loss)
I0422 01:08:58.072929 32397 solver.cpp:245] Train net output #147: total_accuracy = 0.5
I0422 01:08:58.072942 32397 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.375
I0422 01:08:58.072962 32397 solver.cpp:245] Train net output #149: total_confidence = 0.392475
I0422 01:08:58.072975 32397 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.252053
I0422 01:08:58.072988 32397 sgd_solver.cpp:106] Iteration 9000, lr = 0.001
I0422 01:14:39.814487 32397 solver.cpp:229] Iteration 9500, loss = 2.26845
I0422 01:14:39.814625 32397 solver.cpp:245] Train net output #0: loss1/accuracy = 0.641509
I0422 01:14:39.814643 32397 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.5
I0422 01:14:39.814657 32397 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.625
I0422 01:14:39.814671 32397 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.75
I0422 01:14:39.814682 32397 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.125
I0422 01:14:39.814694 32397 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.5
I0422 01:14:39.814707 32397 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.5
I0422 01:14:39.814718 32397 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.625
I0422 01:14:39.814730 32397 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.75
I0422 01:14:39.814743 32397 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875
I0422 01:14:39.814755 32397 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0422 01:14:39.814767 32397 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0422 01:14:39.814779 32397 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0422 01:14:39.814791 32397 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0422 01:14:39.814802 32397 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0422 01:14:39.814815 32397 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0422 01:14:39.814826 32397 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0422 01:14:39.814838 32397 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0422 01:14:39.814849 32397 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0422 01:14:39.814860 32397 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0422 01:14:39.814872 32397 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0422 01:14:39.814884 32397 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0422 01:14:39.814896 32397 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0422 01:14:39.814908 32397 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.892045
I0422 01:14:39.814919 32397 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.811321
I0422 01:14:39.814935 32397 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.38843 (* 0.3 = 0.416529 loss)
I0422 01:14:39.814949 32397 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.431363 (* 0.3 = 0.129409 loss)
I0422 01:14:39.814965 32397 solver.cpp:245] Train net output #27: loss1/loss01 = 2.0481 (* 0.0272727 = 0.0558574 loss)
I0422 01:14:39.814978 32397 solver.cpp:245] Train net output #28: loss1/loss02 = 1.00932 (* 0.0272727 = 0.0275268 loss)
I0422 01:14:39.814992 32397 solver.cpp:245] Train net output #29: loss1/loss03 = 0.945949 (* 0.0272727 = 0.0257986 loss)
I0422 01:14:39.815006 32397 solver.cpp:245] Train net output #30: loss1/loss04 = 2.4761 (* 0.0272727 = 0.0675301 loss)
I0422 01:14:39.815021 32397 solver.cpp:245] Train net output #31: loss1/loss05 = 1.35349 (* 0.0272727 = 0.0369133 loss)
I0422 01:14:39.815034 32397 solver.cpp:245] Train net output #32: loss1/loss06 = 1.22777 (* 0.0272727 = 0.0334847 loss)
I0422 01:14:39.815048 32397 solver.cpp:245] Train net output #33: loss1/loss07 = 1.371 (* 0.0272727 = 0.0373909 loss)
I0422 01:14:39.815063 32397 solver.cpp:245] Train net output #34: loss1/loss08 = 0.666114 (* 0.0272727 = 0.0181668 loss)
I0422 01:14:39.815078 32397 solver.cpp:245] Train net output #35: loss1/loss09 = 0.485809 (* 0.0272727 = 0.0132493 loss)
I0422 01:14:39.815093 32397 solver.cpp:245] Train net output #36: loss1/loss10 = 0.014969 (* 0.0272727 = 0.000408245 loss)
I0422 01:14:39.815106 32397 solver.cpp:245] Train net output #37: loss1/loss11 = 0.00108342 (* 0.0272727 = 2.95479e-05 loss)
I0422 01:14:39.815120 32397 solver.cpp:245] Train net output #38: loss1/loss12 = 0.000495129 (* 0.0272727 = 1.35035e-05 loss)
I0422 01:14:39.815135 32397 solver.cpp:245] Train net output #39: loss1/loss13 = 0.000507121 (* 0.0272727 = 1.38306e-05 loss)
I0422 01:14:39.815167 32397 solver.cpp:245] Train net output #40: loss1/loss14 = 0.000742114 (* 0.0272727 = 2.02395e-05 loss)
I0422 01:14:39.815182 32397 solver.cpp:245] Train net output #41: loss1/loss15 = 0.000401965 (* 0.0272727 = 1.09627e-05 loss)
I0422 01:14:39.815197 32397 solver.cpp:245] Train net output #42: loss1/loss16 = 0.000889489 (* 0.0272727 = 2.42588e-05 loss)
I0422 01:14:39.815214 32397 solver.cpp:245] Train net output #43: loss1/loss17 = 0.00113916 (* 0.0272727 = 3.10681e-05 loss)
I0422 01:14:39.815228 32397 solver.cpp:245] Train net output #44: loss1/loss18 = 0.000539318 (* 0.0272727 = 1.47087e-05 loss)
I0422 01:14:39.815243 32397 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00137938 (* 0.0272727 = 3.76194e-05 loss)
I0422 01:14:39.815256 32397 solver.cpp:245] Train net output #46: loss1/loss20 = 0.00110151 (* 0.0272727 = 3.00412e-05 loss)
I0422 01:14:39.815270 32397 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000885683 (* 0.0272727 = 2.4155e-05 loss)
I0422 01:14:39.815284 32397 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000684505 (* 0.0272727 = 1.86683e-05 loss)
I0422 01:14:39.815297 32397 solver.cpp:245] Train net output #49: loss2/accuracy = 0.830189
I0422 01:14:39.815310 32397 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875
I0422 01:14:39.815322 32397 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75
I0422 01:14:39.815335 32397 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.5
I0422 01:14:39.815346 32397 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.375
I0422 01:14:39.815372 32397 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.625
I0422 01:14:39.815385 32397 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.375
I0422 01:14:39.815397 32397 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.75
I0422 01:14:39.815409 32397 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.75
I0422 01:14:39.815421 32397 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875
I0422 01:14:39.815433 32397 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0422 01:14:39.815444 32397 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0422 01:14:39.815456 32397 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0422 01:14:39.815467 32397 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0422 01:14:39.815479 32397 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0422 01:14:39.815490 32397 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0422 01:14:39.815501 32397 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0422 01:14:39.815512 32397 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0422 01:14:39.815524 32397 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0422 01:14:39.815536 32397 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0422 01:14:39.815547 32397 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0422 01:14:39.815559 32397 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0422 01:14:39.815570 32397 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0422 01:14:39.815582 32397 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.948864
I0422 01:14:39.815593 32397 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.962264
I0422 01:14:39.815608 32397 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.750164 (* 0.3 = 0.225049 loss)
I0422 01:14:39.815621 32397 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.229427 (* 0.3 = 0.0688281 loss)
I0422 01:14:39.815635 32397 solver.cpp:245] Train net output #76: loss2/loss01 = 1.26772 (* 0.0272727 = 0.0345742 loss)
I0422 01:14:39.815652 32397 solver.cpp:245] Train net output #77: loss2/loss02 = 0.594666 (* 0.0272727 = 0.0162182 loss)
I0422 01:14:39.815680 32397 solver.cpp:245] Train net output #78: loss2/loss03 = 0.932029 (* 0.0272727 = 0.025419 loss)
I0422 01:14:39.815696 32397 solver.cpp:245] Train net output #79: loss2/loss04 = 1.49036 (* 0.0272727 = 0.0406461 loss)
I0422 01:14:39.815709 32397 solver.cpp:245] Train net output #80: loss2/loss05 = 1.33662 (* 0.0272727 = 0.0364532 loss)
I0422 01:14:39.815722 32397 solver.cpp:245] Train net output #81: loss2/loss06 = 1.5302 (* 0.0272727 = 0.0417328 loss)
I0422 01:14:39.815737 32397 solver.cpp:245] Train net output #82: loss2/loss07 = 1.04516 (* 0.0272727 = 0.0285044 loss)
I0422 01:14:39.815750 32397 solver.cpp:245] Train net output #83: loss2/loss08 = 0.533335 (* 0.0272727 = 0.0145455 loss)
I0422 01:14:39.815764 32397 solver.cpp:245] Train net output #84: loss2/loss09 = 0.218304 (* 0.0272727 = 0.00595373 loss)
I0422 01:14:39.815778 32397 solver.cpp:245] Train net output #85: loss2/loss10 = 0.0112786 (* 0.0272727 = 0.000307599 loss)
I0422 01:14:39.815793 32397 solver.cpp:245] Train net output #86: loss2/loss11 = 0.000100282 (* 0.0272727 = 2.73496e-06 loss)
I0422 01:14:39.815806 32397 solver.cpp:245] Train net output #87: loss2/loss12 = 0.000274829 (* 0.0272727 = 7.49533e-06 loss)
I0422 01:14:39.815820 32397 solver.cpp:245] Train net output #88: loss2/loss13 = 7.69031e-05 (* 0.0272727 = 2.09736e-06 loss)
I0422 01:14:39.815834 32397 solver.cpp:245] Train net output #89: loss2/loss14 = 0.000184058 (* 0.0272727 = 5.01975e-06 loss)
I0422 01:14:39.815847 32397 solver.cpp:245] Train net output #90: loss2/loss15 = 8.91948e-05 (* 0.0272727 = 2.43258e-06 loss)
I0422 01:14:39.815861 32397 solver.cpp:245] Train net output #91: loss2/loss16 = 8.18697e-05 (* 0.0272727 = 2.23281e-06 loss)
I0422 01:14:39.815874 32397 solver.cpp:245] Train net output #92: loss2/loss17 = 8.82838e-05 (* 0.0272727 = 2.40774e-06 loss)
I0422 01:14:39.815888 32397 solver.cpp:245] Train net output #93: loss2/loss18 = 6.69851e-05 (* 0.0272727 = 1.82687e-06 loss)
I0422 01:14:39.815902 32397 solver.cpp:245] Train net output #94: loss2/loss19 = 0.00012051 (* 0.0272727 = 3.28664e-06 loss)
I0422 01:14:39.815915 32397 solver.cpp:245] Train net output #95: loss2/loss20 = 7.74749e-05 (* 0.0272727 = 2.11295e-06 loss)
I0422 01:14:39.815929 32397 solver.cpp:245] Train net output #96: loss2/loss21 = 0.000168277 (* 0.0272727 = 4.58937e-06 loss)
I0422 01:14:39.815943 32397 solver.cpp:245] Train net output #97: loss2/loss22 = 6.41878e-05 (* 0.0272727 = 1.75058e-06 loss)
I0422 01:14:39.815955 32397 solver.cpp:245] Train net output #98: loss3/accuracy = 0.849057
I0422 01:14:39.815968 32397 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875
I0422 01:14:39.815979 32397 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875
I0422 01:14:39.815990 32397 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0422 01:14:39.816002 32397 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875
I0422 01:14:39.816015 32397 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875
I0422 01:14:39.816025 32397 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.75
I0422 01:14:39.816037 32397 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75
I0422 01:14:39.816050 32397 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.75
I0422 01:14:39.816061 32397 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875
I0422 01:14:39.816072 32397 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0422 01:14:39.816083 32397 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0422 01:14:39.816094 32397 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0422 01:14:39.816107 32397 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0422 01:14:39.816118 32397 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0422 01:14:39.816128 32397 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0422 01:14:39.816150 32397 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0422 01:14:39.816164 32397 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0422 01:14:39.816174 32397 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0422 01:14:39.816185 32397 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0422 01:14:39.816196 32397 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0422 01:14:39.816205 32397 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0422 01:14:39.816216 32397 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0422 01:14:39.816227 32397 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.954545
I0422 01:14:39.816239 32397 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.924528
I0422 01:14:39.816256 32397 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.687877 (* 1 = 0.687877 loss)
I0422 01:14:39.816270 32397 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.208825 (* 1 = 0.208825 loss)
I0422 01:14:39.816284 32397 solver.cpp:245] Train net output #125: loss3/loss01 = 1.61385 (* 0.0909091 = 0.146714 loss)
I0422 01:14:39.816298 32397 solver.cpp:245] Train net output #126: loss3/loss02 = 0.25509 (* 0.0909091 = 0.02319 loss)
I0422 01:14:39.816313 32397 solver.cpp:245] Train net output #127: loss3/loss03 = 0.0427092 (* 0.0909091 = 0.00388265 loss)
I0422 01:14:39.816326 32397 solver.cpp:245] Train net output #128: loss3/loss04 = 0.801062 (* 0.0909091 = 0.0728238 loss)
I0422 01:14:39.816340 32397 solver.cpp:245] Train net output #129: loss3/loss05 = 0.638529 (* 0.0909091 = 0.0580481 loss)
I0422 01:14:39.816354 32397 solver.cpp:245] Train net output #130: loss3/loss06 = 0.588126 (* 0.0909091 = 0.053466 loss)
I0422 01:14:39.816367 32397 solver.cpp:245] Train net output #131: loss3/loss07 = 1.13199 (* 0.0909091 = 0.102908 loss)
I0422 01:14:39.816381 32397 solver.cpp:245] Train net output #132: loss3/loss08 = 0.518479 (* 0.0909091 = 0.0471345 loss)
I0422 01:14:39.816395 32397 solver.cpp:245] Train net output #133: loss3/loss09 = 0.262888 (* 0.0909091 = 0.0238989 loss)
I0422 01:14:39.816409 32397 solver.cpp:245] Train net output #134: loss3/loss10 = 0.00452188 (* 0.0909091 = 0.00041108 loss)
I0422 01:14:39.816423 32397 solver.cpp:245] Train net output #135: loss3/loss11 = 2.20404e-05 (* 0.0909091 = 2.00367e-06 loss)
I0422 01:14:39.816437 32397 solver.cpp:245] Train net output #136: loss3/loss12 = 1.76886e-05 (* 0.0909091 = 1.60806e-06 loss)
I0422 01:14:39.816450 32397 solver.cpp:245] Train net output #137: loss3/loss13 = 1.88511e-05 (* 0.0909091 = 1.71373e-06 loss)
I0422 01:14:39.816464 32397 solver.cpp:245] Train net output #138: loss3/loss14 = 2.00135e-05 (* 0.0909091 = 1.81941e-06 loss)
I0422 01:14:39.816478 32397 solver.cpp:245] Train net output #139: loss3/loss15 = 2.37691e-05 (* 0.0909091 = 2.16083e-06 loss)
I0422 01:14:39.816493 32397 solver.cpp:245] Train net output #140: loss3/loss16 = 2.18913e-05 (* 0.0909091 = 1.99012e-06 loss)
I0422 01:14:39.816505 32397 solver.cpp:245] Train net output #141: loss3/loss17 = 1.81804e-05 (* 0.0909091 = 1.65277e-06 loss)
I0422 01:14:39.816519 32397 solver.cpp:245] Train net output #142: loss3/loss18 = 1.87765e-05 (* 0.0909091 = 1.70696e-06 loss)
I0422 01:14:39.816534 32397 solver.cpp:245] Train net output #143: loss3/loss19 = 1.7167e-05 (* 0.0909091 = 1.56063e-06 loss)
I0422 01:14:39.816547 32397 solver.cpp:245] Train net output #144: loss3/loss20 = 2.13995e-05 (* 0.0909091 = 1.94541e-06 loss)
I0422 01:14:39.816561 32397 solver.cpp:245] Train net output #145: loss3/loss21 = 1.54532e-05 (* 0.0909091 = 1.40484e-06 loss)
I0422 01:14:39.816575 32397 solver.cpp:245] Train net output #146: loss3/loss22 = 1.76141e-05 (* 0.0909091 = 1.60128e-06 loss)
I0422 01:14:39.816586 32397 solver.cpp:245] Train net output #147: total_accuracy = 0.625
I0422 01:14:39.816598 32397 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.5
I0422 01:14:39.816620 32397 solver.cpp:245] Train net output #149: total_confidence = 0.534353
I0422 01:14:39.816633 32397 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.388318
I0422 01:14:39.816651 32397 sgd_solver.cpp:106] Iteration 9500, lr = 0.001
I0422 01:20:21.174515 32397 solver.cpp:456] Snapshotting to binary proto file /mnt/snapshots/mixed_lstm10_bn_iter_10000.caffemodel
I0422 01:20:22.602919 32397 sgd_solver.cpp:273] Snapshotting solver state to binary proto file /mnt/snapshots/mixed_lstm10_bn_iter_10000.solverstate
I0422 01:20:22.901881 32397 solver.cpp:338] Iteration 10000, Testing net (#0)
I0422 01:21:14.448289 32397 solver.cpp:393] Test loss: 1.99264
I0422 01:21:14.448406 32397 solver.cpp:406] Test net output #0: loss1/accuracy = 0.74765
I0422 01:21:14.448427 32397 solver.cpp:406] Test net output #1: loss1/accuracy01 = 0.771
I0422 01:21:14.448441 32397 solver.cpp:406] Test net output #2: loss1/accuracy02 = 0.63
I0422 01:21:14.448454 32397 solver.cpp:406] Test net output #3: loss1/accuracy03 = 0.54
I0422 01:21:14.448467 32397 solver.cpp:406] Test net output #4: loss1/accuracy04 = 0.436
I0422 01:21:14.448479 32397 solver.cpp:406] Test net output #5: loss1/accuracy05 = 0.485
I0422 01:21:14.448493 32397 solver.cpp:406] Test net output #6: loss1/accuracy06 = 0.789
I0422 01:21:14.448504 32397 solver.cpp:406] Test net output #7: loss1/accuracy07 = 0.92
I0422 01:21:14.448516 32397 solver.cpp:406] Test net output #8: loss1/accuracy08 = 0.971
I0422 01:21:14.448529 32397 solver.cpp:406] Test net output #9: loss1/accuracy09 = 0.995
I0422 01:21:14.448542 32397 solver.cpp:406] Test net output #10: loss1/accuracy10 = 0.998
I0422 01:21:14.448555 32397 solver.cpp:406] Test net output #11: loss1/accuracy11 = 1
I0422 01:21:14.448567 32397 solver.cpp:406] Test net output #12: loss1/accuracy12 = 1
I0422 01:21:14.448580 32397 solver.cpp:406] Test net output #13: loss1/accuracy13 = 1
I0422 01:21:14.448591 32397 solver.cpp:406] Test net output #14: loss1/accuracy14 = 1
I0422 01:21:14.448603 32397 solver.cpp:406] Test net output #15: loss1/accuracy15 = 1
I0422 01:21:14.448616 32397 solver.cpp:406] Test net output #16: loss1/accuracy16 = 1
I0422 01:21:14.448627 32397 solver.cpp:406] Test net output #17: loss1/accuracy17 = 1
I0422 01:21:14.448639 32397 solver.cpp:406] Test net output #18: loss1/accuracy18 = 1
I0422 01:21:14.448650 32397 solver.cpp:406] Test net output #19: loss1/accuracy19 = 1
I0422 01:21:14.448662 32397 solver.cpp:406] Test net output #20: loss1/accuracy20 = 1
I0422 01:21:14.448673 32397 solver.cpp:406] Test net output #21: loss1/accuracy21 = 1
I0422 01:21:14.448685 32397 solver.cpp:406] Test net output #22: loss1/accuracy22 = 1
I0422 01:21:14.448696 32397 solver.cpp:406] Test net output #23: loss1/accuracy_incl_empty = 0.933819
I0422 01:21:14.448709 32397 solver.cpp:406] Test net output #24: loss1/accuracy_top3 = 0.901142
I0422 01:21:14.448724 32397 solver.cpp:406] Test net output #25: loss1/cross_entropy_loss = 0.950326 (* 0.3 = 0.285098 loss)
I0422 01:21:14.448740 32397 solver.cpp:406] Test net output #26: loss1/cross_entropy_loss_incl_empty = 0.253986 (* 0.3 = 0.0761959 loss)
I0422 01:21:14.448753 32397 solver.cpp:406] Test net output #27: loss1/loss01 = 0.887646 (* 0.0272727 = 0.0242085 loss)
I0422 01:21:14.448768 32397 solver.cpp:406] Test net output #28: loss1/loss02 = 1.31928 (* 0.0272727 = 0.0359805 loss)
I0422 01:21:14.448782 32397 solver.cpp:406] Test net output #29: loss1/loss03 = 1.51466 (* 0.0272727 = 0.0413088 loss)
I0422 01:21:14.448796 32397 solver.cpp:406] Test net output #30: loss1/loss04 = 1.70283 (* 0.0272727 = 0.0464409 loss)
I0422 01:21:14.448812 32397 solver.cpp:406] Test net output #31: loss1/loss05 = 1.54005 (* 0.0272727 = 0.0420013 loss)
I0422 01:21:14.448825 32397 solver.cpp:406] Test net output #32: loss1/loss06 = 0.738356 (* 0.0272727 = 0.020137 loss)
I0422 01:21:14.448840 32397 solver.cpp:406] Test net output #33: loss1/loss07 = 0.289946 (* 0.0272727 = 0.00790762 loss)
I0422 01:21:14.448854 32397 solver.cpp:406] Test net output #34: loss1/loss08 = 0.159043 (* 0.0272727 = 0.00433755 loss)
I0422 01:21:14.448868 32397 solver.cpp:406] Test net output #35: loss1/loss09 = 0.0510087 (* 0.0272727 = 0.00139115 loss)
I0422 01:21:14.448884 32397 solver.cpp:406] Test net output #36: loss1/loss10 = 0.0257369 (* 0.0272727 = 0.000701915 loss)
I0422 01:21:14.448897 32397 solver.cpp:406] Test net output #37: loss1/loss11 = 0.000171801 (* 0.0272727 = 4.68549e-06 loss)
I0422 01:21:14.448911 32397 solver.cpp:406] Test net output #38: loss1/loss12 = 0.000195443 (* 0.0272727 = 5.33027e-06 loss)
I0422 01:21:14.448925 32397 solver.cpp:406] Test net output #39: loss1/loss13 = 0.000204017 (* 0.0272727 = 5.5641e-06 loss)
I0422 01:21:14.448971 32397 solver.cpp:406] Test net output #40: loss1/loss14 = 0.000192393 (* 0.0272727 = 5.24709e-06 loss)
I0422 01:21:14.448987 32397 solver.cpp:406] Test net output #41: loss1/loss15 = 0.000180798 (* 0.0272727 = 4.93084e-06 loss)
I0422 01:21:14.449002 32397 solver.cpp:406] Test net output #42: loss1/loss16 = 0.000180814 (* 0.0272727 = 4.9313e-06 loss)
I0422 01:21:14.449025 32397 solver.cpp:406] Test net output #43: loss1/loss17 = 0.000176185 (* 0.0272727 = 4.80506e-06 loss)
I0422 01:21:14.449039 32397 solver.cpp:406] Test net output #44: loss1/loss18 = 0.000185392 (* 0.0272727 = 5.05615e-06 loss)
I0422 01:21:14.449054 32397 solver.cpp:406] Test net output #45: loss1/loss19 = 0.000173754 (* 0.0272727 = 4.73875e-06 loss)
I0422 01:21:14.449069 32397 solver.cpp:406] Test net output #46: loss1/loss20 = 0.000186748 (* 0.0272727 = 5.09313e-06 loss)
I0422 01:21:14.449082 32397 solver.cpp:406] Test net output #47: loss1/loss21 = 0.000174706 (* 0.0272727 = 4.76471e-06 loss)
I0422 01:21:14.449097 32397 solver.cpp:406] Test net output #48: loss1/loss22 = 0.00016969 (* 0.0272727 = 4.6279e-06 loss)
I0422 01:21:14.449110 32397 solver.cpp:406] Test net output #49: loss2/accuracy = 0.857889
I0422 01:21:14.449122 32397 solver.cpp:406] Test net output #50: loss2/accuracy01 = 0.882
I0422 01:21:14.449134 32397 solver.cpp:406] Test net output #51: loss2/accuracy02 = 0.831
I0422 01:21:14.449146 32397 solver.cpp:406] Test net output #52: loss2/accuracy03 = 0.696
I0422 01:21:14.449157 32397 solver.cpp:406] Test net output #53: loss2/accuracy04 = 0.533
I0422 01:21:14.449169 32397 solver.cpp:406] Test net output #54: loss2/accuracy05 = 0.563
I0422 01:21:14.449182 32397 solver.cpp:406] Test net output #55: loss2/accuracy06 = 0.842
I0422 01:21:14.449193 32397 solver.cpp:406] Test net output #56: loss2/accuracy07 = 0.94
I0422 01:21:14.449208 32397 solver.cpp:406] Test net output #57: loss2/accuracy08 = 0.974
I0422 01:21:14.449220 32397 solver.cpp:406] Test net output #58: loss2/accuracy09 = 0.995
I0422 01:21:14.449232 32397 solver.cpp:406] Test net output #59: loss2/accuracy10 = 0.998
I0422 01:21:14.449244 32397 solver.cpp:406] Test net output #60: loss2/accuracy11 = 1
I0422 01:21:14.449255 32397 solver.cpp:406] Test net output #61: loss2/accuracy12 = 1
I0422 01:21:14.449267 32397 solver.cpp:406] Test net output #62: loss2/accuracy13 = 1
I0422 01:21:14.449278 32397 solver.cpp:406] Test net output #63: loss2/accuracy14 = 1
I0422 01:21:14.449290 32397 solver.cpp:406] Test net output #64: loss2/accuracy15 = 1
I0422 01:21:14.449301 32397 solver.cpp:406] Test net output #65: loss2/accuracy16 = 1
I0422 01:21:14.449312 32397 solver.cpp:406] Test net output #66: loss2/accuracy17 = 1
I0422 01:21:14.449323 32397 solver.cpp:406] Test net output #67: loss2/accuracy18 = 1
I0422 01:21:14.449334 32397 solver.cpp:406] Test net output #68: loss2/accuracy19 = 1
I0422 01:21:14.449347 32397 solver.cpp:406] Test net output #69: loss2/accuracy20 = 1
I0422 01:21:14.449357 32397 solver.cpp:406] Test net output #70: loss2/accuracy21 = 1
I0422 01:21:14.449368 32397 solver.cpp:406] Test net output #71: loss2/accuracy22 = 1
I0422 01:21:14.449380 32397 solver.cpp:406] Test net output #72: loss2/accuracy_incl_empty = 0.965955
I0422 01:21:14.449393 32397 solver.cpp:406] Test net output #73: loss2/accuracy_top3 = 0.929273
I0422 01:21:14.449405 32397 solver.cpp:406] Test net output #74: loss2/cross_entropy_loss = 0.643979 (* 0.3 = 0.193194 loss)
I0422 01:21:14.449422 32397 solver.cpp:406] Test net output #75: loss2/cross_entropy_loss_incl_empty = 0.165204 (* 0.3 = 0.0495612 loss)
I0422 01:21:14.449437 32397 solver.cpp:406] Test net output #76: loss2/loss01 = 0.572319 (* 0.0272727 = 0.0156087 loss)
I0422 01:21:14.449457 32397 solver.cpp:406] Test net output #77: loss2/loss02 = 0.747353 (* 0.0272727 = 0.0203824 loss)
I0422 01:21:14.449482 32397 solver.cpp:406] Test net output #78: loss2/loss03 = 1.06539 (* 0.0272727 = 0.0290561 loss)
I0422 01:21:14.449497 32397 solver.cpp:406] Test net output #79: loss2/loss04 = 1.27877 (* 0.0272727 = 0.0348757 loss)
I0422 01:21:14.449512 32397 solver.cpp:406] Test net output #80: loss2/loss05 = 1.23276 (* 0.0272727 = 0.0336207 loss)
I0422 01:21:14.449525 32397 solver.cpp:406] Test net output #81: loss2/loss06 = 0.565603 (* 0.0272727 = 0.0154255 loss)
I0422 01:21:14.449540 32397 solver.cpp:406] Test net output #82: loss2/loss07 = 0.215872 (* 0.0272727 = 0.00588743 loss)
I0422 01:21:14.449554 32397 solver.cpp:406] Test net output #83: loss2/loss08 = 0.116142 (* 0.0272727 = 0.00316751 loss)
I0422 01:21:14.449568 32397 solver.cpp:406] Test net output #84: loss2/loss09 = 0.04483 (* 0.0272727 = 0.00122264 loss)
I0422 01:21:14.449582 32397 solver.cpp:406] Test net output #85: loss2/loss10 = 0.0240124 (* 0.0272727 = 0.000654884 loss)
I0422 01:21:14.449596 32397 solver.cpp:406] Test net output #86: loss2/loss11 = 6.86246e-05 (* 0.0272727 = 1.87158e-06 loss)
I0422 01:21:14.449611 32397 solver.cpp:406] Test net output #87: loss2/loss12 = 7.369e-05 (* 0.0272727 = 2.00973e-06 loss)
I0422 01:21:14.449625 32397 solver.cpp:406] Test net output #88: loss2/loss13 = 7.21599e-05 (* 0.0272727 = 1.968e-06 loss)
I0422 01:21:14.449640 32397 solver.cpp:406] Test net output #89: loss2/loss14 = 6.5457e-05 (* 0.0272727 = 1.78519e-06 loss)
I0422 01:21:14.449653 32397 solver.cpp:406] Test net output #90: loss2/loss15 = 6.58718e-05 (* 0.0272727 = 1.7965e-06 loss)
I0422 01:21:14.449667 32397 solver.cpp:406] Test net output #91: loss2/loss16 = 6.82243e-05 (* 0.0272727 = 1.86066e-06 loss)
I0422 01:21:14.449681 32397 solver.cpp:406] Test net output #92: loss2/loss17 = 7.30523e-05 (* 0.0272727 = 1.99234e-06 loss)
I0422 01:21:14.449695 32397 solver.cpp:406] Test net output #93: loss2/loss18 = 7.02786e-05 (* 0.0272727 = 1.91669e-06 loss)
I0422 01:21:14.449709 32397 solver.cpp:406] Test net output #94: loss2/loss19 = 6.66573e-05 (* 0.0272727 = 1.81793e-06 loss)
I0422 01:21:14.449723 32397 solver.cpp:406] Test net output #95: loss2/loss20 = 6.56222e-05 (* 0.0272727 = 1.7897e-06 loss)
I0422 01:21:14.449738 32397 solver.cpp:406] Test net output #96: loss2/loss21 = 6.23299e-05 (* 0.0272727 = 1.69991e-06 loss)
I0422 01:21:14.449751 32397 solver.cpp:406] Test net output #97: loss2/loss22 = 6.28949e-05 (* 0.0272727 = 1.71532e-06 loss)
I0422 01:21:14.449764 32397 solver.cpp:406] Test net output #98: loss3/accuracy = 0.884563
I0422 01:21:14.449775 32397 solver.cpp:406] Test net output #99: loss3/accuracy01 = 0.894
I0422 01:21:14.449787 32397 solver.cpp:406] Test net output #100: loss3/accuracy02 = 0.87
I0422 01:21:14.449800 32397 solver.cpp:406] Test net output #101: loss3/accuracy03 = 0.904
I0422 01:21:14.449811 32397 solver.cpp:406] Test net output #102: loss3/accuracy04 = 0.896
I0422 01:21:14.449823 32397 solver.cpp:406] Test net output #103: loss3/accuracy05 = 0.882
I0422 01:21:14.449836 32397 solver.cpp:406] Test net output #104: loss3/accuracy06 = 0.918
I0422 01:21:14.449846 32397 solver.cpp:406] Test net output #105: loss3/accuracy07 = 0.958
I0422 01:21:14.449858 32397 solver.cpp:406] Test net output #106: loss3/accuracy08 = 0.982
I0422 01:21:14.449869 32397 solver.cpp:406] Test net output #107: loss3/accuracy09 = 0.99
I0422 01:21:14.449882 32397 solver.cpp:406] Test net output #108: loss3/accuracy10 = 0.994
I0422 01:21:14.449892 32397 solver.cpp:406] Test net output #109: loss3/accuracy11 = 1
I0422 01:21:14.449904 32397 solver.cpp:406] Test net output #110: loss3/accuracy12 = 1
I0422 01:21:14.449915 32397 solver.cpp:406] Test net output #111: loss3/accuracy13 = 1
I0422 01:21:14.449926 32397 solver.cpp:406] Test net output #112: loss3/accuracy14 = 1
I0422 01:21:14.449939 32397 solver.cpp:406] Test net output #113: loss3/accuracy15 = 1
I0422 01:21:14.449949 32397 solver.cpp:406] Test net output #114: loss3/accuracy16 = 1
I0422 01:21:14.449970 32397 solver.cpp:406] Test net output #115: loss3/accuracy17 = 1
I0422 01:21:14.449982 32397 solver.cpp:406] Test net output #116: loss3/accuracy18 = 1
I0422 01:21:14.449995 32397 solver.cpp:406] Test net output #117: loss3/accuracy19 = 1
I0422 01:21:14.450006 32397 solver.cpp:406] Test net output #118: loss3/accuracy20 = 1
I0422 01:21:14.450016 32397 solver.cpp:406] Test net output #119: loss3/accuracy21 = 1
I0422 01:21:14.450027 32397 solver.cpp:406] Test net output #120: loss3/accuracy22 = 1
I0422 01:21:14.450038 32397 solver.cpp:406] Test net output #121: loss3/accuracy_incl_empty = 0.972091
I0422 01:21:14.450050 32397 solver.cpp:406] Test net output #122: loss3/accuracy_top3 = 0.934712
I0422 01:21:14.450064 32397 solver.cpp:406] Test net output #123: loss3/cross_entropy_loss = 0.551288 (* 1 = 0.551288 loss)
I0422 01:21:14.450078 32397 solver.cpp:406] Test net output #124: loss3/cross_entropy_loss_incl_empty = 0.139832 (* 1 = 0.139832 loss)
I0422 01:21:14.450091 32397 solver.cpp:406] Test net output #125: loss3/loss01 = 0.546651 (* 0.0909091 = 0.0496956 loss)
I0422 01:21:14.450105 32397 solver.cpp:406] Test net output #126: loss3/loss02 = 0.588335 (* 0.0909091 = 0.053485 loss)
I0422 01:21:14.450119 32397 solver.cpp:406] Test net output #127: loss3/loss03 = 0.511431 (* 0.0909091 = 0.0464937 loss)
I0422 01:21:14.450134 32397 solver.cpp:406] Test net output #128: loss3/loss04 = 0.493258 (* 0.0909091 = 0.0448417 loss)
I0422 01:21:14.450147 32397 solver.cpp:406] Test net output #129: loss3/loss05 = 0.545142 (* 0.0909091 = 0.0495583 loss)
I0422 01:21:14.450161 32397 solver.cpp:406] Test net output #130: loss3/loss06 = 0.379096 (* 0.0909091 = 0.0344633 loss)
I0422 01:21:14.450176 32397 solver.cpp:406] Test net output #131: loss3/loss07 = 0.189799 (* 0.0909091 = 0.0172545 loss)
I0422 01:21:14.450189 32397 solver.cpp:406] Test net output #132: loss3/loss08 = 0.0998435 (* 0.0909091 = 0.00907668 loss)
I0422 01:21:14.450203 32397 solver.cpp:406] Test net output #133: loss3/loss09 = 0.0575367 (* 0.0909091 = 0.00523061 loss)
I0422 01:21:14.450217 32397 solver.cpp:406] Test net output #134: loss3/loss10 = 0.0303007 (* 0.0909091 = 0.00275461 loss)
I0422 01:21:14.450232 32397 solver.cpp:406] Test net output #135: loss3/loss11 = 0.000209798 (* 0.0909091 = 1.90725e-05 loss)
I0422 01:21:14.450247 32397 solver.cpp:406] Test net output #136: loss3/loss12 = 0.000200573 (* 0.0909091 = 1.82339e-05 loss)
I0422 01:21:14.450263 32397 solver.cpp:406] Test net output #137: loss3/loss13 = 0.000207125 (* 0.0909091 = 1.88295e-05 loss)
I0422 01:21:14.450278 32397 solver.cpp:406] Test net output #138: loss3/loss14 = 0.000202759 (* 0.0909091 = 1.84326e-05 loss)
I0422 01:21:14.450291 32397 solver.cpp:406] Test net output #139: loss3/loss15 = 0.00020952 (* 0.0909091 = 1.90472e-05 loss)
I0422 01:21:14.450305 32397 solver.cpp:406] Test net output #140: loss3/loss16 = 0.000198858 (* 0.0909091 = 1.8078e-05 loss)
I0422 01:21:14.450320 32397 solver.cpp:406] Test net output #141: loss3/loss17 = 0.000197933 (* 0.0909091 = 1.79939e-05 loss)
I0422 01:21:14.450333 32397 solver.cpp:406] Test net output #142: loss3/loss18 = 0.000196423 (* 0.0909091 = 1.78566e-05 loss)
I0422 01:21:14.450347 32397 solver.cpp:406] Test net output #143: loss3/loss19 = 0.000203332 (* 0.0909091 = 1.84848e-05 loss)
I0422 01:21:14.450361 32397 solver.cpp:406] Test net output #144: loss3/loss20 = 0.000193626 (* 0.0909091 = 1.76023e-05 loss)
I0422 01:21:14.450376 32397 solver.cpp:406] Test net output #145: loss3/loss21 = 0.000195004 (* 0.0909091 = 1.77276e-05 loss)
I0422 01:21:14.450389 32397 solver.cpp:406] Test net output #146: loss3/loss22 = 0.000198146 (* 0.0909091 = 1.80133e-05 loss)
I0422 01:21:14.450398 32397 solver.cpp:406] Test net output #147: total_accuracy = 0.739
I0422 01:21:14.450405 32397 solver.cpp:406] Test net output #148: total_accuracy_not_rec = 0.663
I0422 01:21:14.450413 32397 solver.cpp:406] Test net output #149: total_confidence = 0.700885
I0422 01:21:14.450434 32397 solver.cpp:406] Test net output #150: total_confidence_nor_rec = 0.575354
I0422 01:21:14.842156 32397 solver.cpp:229] Iteration 10000, loss = 2.31238
I0422 01:21:14.842208 32397 solver.cpp:245] Train net output #0: loss1/accuracy = 0.630435
I0422 01:21:14.842226 32397 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.875
I0422 01:21:14.842238 32397 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5
I0422 01:21:14.842252 32397 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375
I0422 01:21:14.842264 32397 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375
I0422 01:21:14.842278 32397 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.625
I0422 01:21:14.842290 32397 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.625
I0422 01:21:14.842303 32397 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.625
I0422 01:21:14.842315 32397 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875
I0422 01:21:14.842329 32397 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1
I0422 01:21:14.842341 32397 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0422 01:21:14.842355 32397 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0422 01:21:14.842366 32397 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0422 01:21:14.842378 32397 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0422 01:21:14.842391 32397 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0422 01:21:14.842402 32397 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0422 01:21:14.842414 32397 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0422 01:21:14.842427 32397 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0422 01:21:14.842438 32397 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0422 01:21:14.842450 32397 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0422 01:21:14.842463 32397 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0422 01:21:14.842474 32397 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0422 01:21:14.842486 32397 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0422 01:21:14.842497 32397 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.886364
I0422 01:21:14.842510 32397 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.869565
I0422 01:21:14.842525 32397 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.16406 (* 0.3 = 0.349217 loss)
I0422 01:21:14.842540 32397 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.337751 (* 0.3 = 0.101325 loss)
I0422 01:21:14.842555 32397 solver.cpp:245] Train net output #27: loss1/loss01 = 0.640725 (* 0.0272727 = 0.0174743 loss)
I0422 01:21:14.842569 32397 solver.cpp:245] Train net output #28: loss1/loss02 = 1.90196 (* 0.0272727 = 0.0518717 loss)
I0422 01:21:14.842584 32397 solver.cpp:245] Train net output #29: loss1/loss03 = 1.43321 (* 0.0272727 = 0.0390877 loss)
I0422 01:21:14.842598 32397 solver.cpp:245] Train net output #30: loss1/loss04 = 1.66301 (* 0.0272727 = 0.0453549 loss)
I0422 01:21:14.842612 32397 solver.cpp:245] Train net output #31: loss1/loss05 = 1.43695 (* 0.0272727 = 0.0391895 loss)
I0422 01:21:14.842625 32397 solver.cpp:245] Train net output #32: loss1/loss06 = 1.3645 (* 0.0272727 = 0.0372137 loss)
I0422 01:21:14.842639 32397 solver.cpp:245] Train net output #33: loss1/loss07 = 0.602137 (* 0.0272727 = 0.0164219 loss)
I0422 01:21:14.842654 32397 solver.cpp:245] Train net output #34: loss1/loss08 = 0.399589 (* 0.0272727 = 0.0108979 loss)
I0422 01:21:14.842669 32397 solver.cpp:245] Train net output #35: loss1/loss09 = 0.0051279 (* 0.0272727 = 0.000139852 loss)
I0422 01:21:14.842684 32397 solver.cpp:245] Train net output #36: loss1/loss10 = 0.00131886 (* 0.0272727 = 3.59689e-05 loss)
I0422 01:21:14.842699 32397 solver.cpp:245] Train net output #37: loss1/loss11 = 1.16083e-05 (* 0.0272727 = 3.16591e-07 loss)
I0422 01:21:14.842737 32397 solver.cpp:245] Train net output #38: loss1/loss12 = 1.65111e-05 (* 0.0272727 = 4.50304e-07 loss)
I0422 01:21:14.842753 32397 solver.cpp:245] Train net output #39: loss1/loss13 = 1.33965e-05 (* 0.0272727 = 3.65359e-07 loss)
I0422 01:21:14.842767 32397 solver.cpp:245] Train net output #40: loss1/loss14 = 1.56916e-05 (* 0.0272727 = 4.27952e-07 loss)
I0422 01:21:14.842782 32397 solver.cpp:245] Train net output #41: loss1/loss15 = 2.12502e-05 (* 0.0272727 = 5.79552e-07 loss)
I0422 01:21:14.842795 32397 solver.cpp:245] Train net output #42: loss1/loss16 = 2.35157e-05 (* 0.0272727 = 6.41337e-07 loss)
I0422 01:21:14.842809 32397 solver.cpp:245] Train net output #43: loss1/loss17 = 1.37542e-05 (* 0.0272727 = 3.75113e-07 loss)
I0422 01:21:14.842823 32397 solver.cpp:245] Train net output #44: loss1/loss18 = 1.75095e-05 (* 0.0272727 = 4.77533e-07 loss)
I0422 01:21:14.842838 32397 solver.cpp:245] Train net output #45: loss1/loss19 = 2.3881e-05 (* 0.0272727 = 6.513e-07 loss)
I0422 01:21:14.842852 32397 solver.cpp:245] Train net output #46: loss1/loss20 = 1.36647e-05 (* 0.0272727 = 3.72673e-07 loss)
I0422 01:21:14.842866 32397 solver.cpp:245] Train net output #47: loss1/loss21 = 2.78e-05 (* 0.0272727 = 7.58183e-07 loss)
I0422 01:21:14.842880 32397 solver.cpp:245] Train net output #48: loss1/loss22 = 1.80611e-05 (* 0.0272727 = 4.92576e-07 loss)
I0422 01:21:14.842893 32397 solver.cpp:245] Train net output #49: loss2/accuracy = 0.869565
I0422 01:21:14.842905 32397 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.75
I0422 01:21:14.842917 32397 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.625
I0422 01:21:14.842929 32397 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.5
I0422 01:21:14.842941 32397 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.5
I0422 01:21:14.842952 32397 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5
I0422 01:21:14.842964 32397 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.375
I0422 01:21:14.842977 32397 solver.cpp:245] Train net output #56: loss2/accuracy07 = 1
I0422 01:21:14.842993 32397 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875
I0422 01:21:14.843005 32397 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1
I0422 01:21:14.843017 32397 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0422 01:21:14.843029 32397 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0422 01:21:14.843040 32397 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0422 01:21:14.843051 32397 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0422 01:21:14.843063 32397 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0422 01:21:14.843075 32397 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0422 01:21:14.843086 32397 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0422 01:21:14.843097 32397 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0422 01:21:14.843108 32397 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0422 01:21:14.843121 32397 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0422 01:21:14.843132 32397 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0422 01:21:14.843142 32397 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0422 01:21:14.843153 32397 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0422 01:21:14.843165 32397 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.965909
I0422 01:21:14.843176 32397 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.978261
I0422 01:21:14.843190 32397 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.523807 (* 0.3 = 0.157142 loss)
I0422 01:21:14.843204 32397 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.147379 (* 0.3 = 0.0442137 loss)
I0422 01:21:14.843230 32397 solver.cpp:245] Train net output #76: loss2/loss01 = 0.593063 (* 0.0272727 = 0.0161744 loss)
I0422 01:21:14.843245 32397 solver.cpp:245] Train net output #77: loss2/loss02 = 1.48261 (* 0.0272727 = 0.0404348 loss)
I0422 01:21:14.843258 32397 solver.cpp:245] Train net output #78: loss2/loss03 = 1.02802 (* 0.0272727 = 0.028037 loss)
I0422 01:21:14.843272 32397 solver.cpp:245] Train net output #79: loss2/loss04 = 1.49204 (* 0.0272727 = 0.0406919 loss)
I0422 01:21:14.843286 32397 solver.cpp:245] Train net output #80: loss2/loss05 = 1.37344 (* 0.0272727 = 0.0374575 loss)
I0422 01:21:14.843300 32397 solver.cpp:245] Train net output #81: loss2/loss06 = 1.12459 (* 0.0272727 = 0.0306706 loss)
I0422 01:21:14.843314 32397 solver.cpp:245] Train net output #82: loss2/loss07 = 0.189566 (* 0.0272727 = 0.00516998 loss)
I0422 01:21:14.843328 32397 solver.cpp:245] Train net output #83: loss2/loss08 = 0.195582 (* 0.0272727 = 0.00533406 loss)
I0422 01:21:14.843343 32397 solver.cpp:245] Train net output #84: loss2/loss09 = 0.0132058 (* 0.0272727 = 0.000360159 loss)
I0422 01:21:14.843372 32397 solver.cpp:245] Train net output #85: loss2/loss10 = 0.00179518 (* 0.0272727 = 4.89594e-05 loss)
I0422 01:21:14.843389 32397 solver.cpp:245] Train net output #86: loss2/loss11 = 1.68388e-05 (* 0.0272727 = 4.59241e-07 loss)
I0422 01:21:14.843402 32397 solver.cpp:245] Train net output #87: loss2/loss12 = 2.00727e-05 (* 0.0272727 = 5.47437e-07 loss)
I0422 01:21:14.843417 32397 solver.cpp:245] Train net output #88: loss2/loss13 = 1.95064e-05 (* 0.0272727 = 5.31993e-07 loss)
I0422 01:21:14.843431 32397 solver.cpp:245] Train net output #89: loss2/loss14 = 1.23981e-05 (* 0.0272727 = 3.38129e-07 loss)
I0422 01:21:14.843446 32397 solver.cpp:245] Train net output #90: loss2/loss15 = 5.26017e-06 (* 0.0272727 = 1.43459e-07 loss)
I0422 01:21:14.843459 32397 solver.cpp:245] Train net output #91: loss2/loss16 = 1.50358e-05 (* 0.0272727 = 4.10068e-07 loss)
I0422 01:21:14.843473 32397 solver.cpp:245] Train net output #92: loss2/loss17 = 1.90742e-05 (* 0.0272727 = 5.20205e-07 loss)
I0422 01:21:14.843487 32397 solver.cpp:245] Train net output #93: loss2/loss18 = 1.19808e-05 (* 0.0272727 = 3.26749e-07 loss)
I0422 01:21:14.843502 32397 solver.cpp:245] Train net output #94: loss2/loss19 = 2.1265e-05 (* 0.0272727 = 5.79953e-07 loss)
I0422 01:21:14.843516 32397 solver.cpp:245] Train net output #95: loss2/loss20 = 1.43505e-05 (* 0.0272727 = 3.91377e-07 loss)
I0422 01:21:14.843530 32397 solver.cpp:245] Train net output #96: loss2/loss21 = 7.5997e-06 (* 0.0272727 = 2.07265e-07 loss)
I0422 01:21:14.843544 32397 solver.cpp:245] Train net output #97: loss2/loss22 = 1.78523e-05 (* 0.0272727 = 4.8688e-07 loss)
I0422 01:21:14.843556 32397 solver.cpp:245] Train net output #98: loss3/accuracy = 0.934783
I0422 01:21:14.843569 32397 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0422 01:21:14.843580 32397 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.75
I0422 01:21:14.843593 32397 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0422 01:21:14.843605 32397 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1
I0422 01:21:14.843616 32397 solver.cpp:245] Train net output #103: loss3/accuracy05 = 1
I0422 01:21:14.843628 32397 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.875
I0422 01:21:14.843641 32397 solver.cpp:245] Train net output #105: loss3/accuracy07 = 1
I0422 01:21:14.843652 32397 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875
I0422 01:21:14.843663 32397 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1
I0422 01:21:14.843675 32397 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0422 01:21:14.843686 32397 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0422 01:21:14.843703 32397 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0422 01:21:14.843714 32397 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0422 01:21:14.843737 32397 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0422 01:21:14.843750 32397 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0422 01:21:14.843761 32397 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0422 01:21:14.843777 32397 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0422 01:21:14.843789 32397 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0422 01:21:14.843801 32397 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0422 01:21:14.843811 32397 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0422 01:21:14.843822 32397 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0422 01:21:14.843840 32397 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0422 01:21:14.843852 32397 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.982955
I0422 01:21:14.843864 32397 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.978261
I0422 01:21:14.843878 32397 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.236216 (* 1 = 0.236216 loss)
I0422 01:21:14.843891 32397 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.0647256 (* 1 = 0.0647256 loss)
I0422 01:21:14.843905 32397 solver.cpp:245] Train net output #125: loss3/loss01 = 0.110381 (* 0.0909091 = 0.0100346 loss)
I0422 01:21:14.843919 32397 solver.cpp:245] Train net output #126: loss3/loss02 = 0.643326 (* 0.0909091 = 0.0584842 loss)
I0422 01:21:14.843933 32397 solver.cpp:245] Train net output #127: loss3/loss03 = 0.0742846 (* 0.0909091 = 0.00675314 loss)
I0422 01:21:14.843947 32397 solver.cpp:245] Train net output #128: loss3/loss04 = 0.199016 (* 0.0909091 = 0.0180924 loss)
I0422 01:21:14.843961 32397 solver.cpp:245] Train net output #129: loss3/loss05 = 0.183266 (* 0.0909091 = 0.0166605 loss)
I0422 01:21:14.843976 32397 solver.cpp:245] Train net output #130: loss3/loss06 = 0.311078 (* 0.0909091 = 0.0282798 loss)
I0422 01:21:14.843989 32397 solver.cpp:245] Train net output #131: loss3/loss07 = 0.137507 (* 0.0909091 = 0.0125007 loss)
I0422 01:21:14.844003 32397 solver.cpp:245] Train net output #132: loss3/loss08 = 0.279131 (* 0.0909091 = 0.0253755 loss)
I0422 01:21:14.844017 32397 solver.cpp:245] Train net output #133: loss3/loss09 = 0.00382592 (* 0.0909091 = 0.00034781 loss)
I0422 01:21:14.844032 32397 solver.cpp:245] Train net output #134: loss3/loss10 = 0.000788989 (* 0.0909091 = 7.17263e-05 loss)
I0422 01:21:14.844049 32397 solver.cpp:245] Train net output #135: loss3/loss11 = 2.99514e-06 (* 0.0909091 = 2.72286e-07 loss)
I0422 01:21:14.844063 32397 solver.cpp:245] Train net output #136: loss3/loss12 = 3.11436e-06 (* 0.0909091 = 2.83123e-07 loss)
I0422 01:21:14.844077 32397 solver.cpp:245] Train net output #137: loss3/loss13 = 2.63752e-06 (* 0.0909091 = 2.39774e-07 loss)
I0422 01:21:14.844091 32397 solver.cpp:245] Train net output #138: loss3/loss14 = 2.59281e-06 (* 0.0909091 = 2.3571e-07 loss)
I0422 01:21:14.844105 32397 solver.cpp:245] Train net output #139: loss3/loss15 = 3.11436e-06 (* 0.0909091 = 2.83123e-07 loss)
I0422 01:21:14.844118 32397 solver.cpp:245] Train net output #140: loss3/loss16 = 2.90574e-06 (* 0.0909091 = 2.64158e-07 loss)
I0422 01:21:14.844132 32397 solver.cpp:245] Train net output #141: loss3/loss17 = 3.15906e-06 (* 0.0909091 = 2.87187e-07 loss)
I0422 01:21:14.844146 32397 solver.cpp:245] Train net output #142: loss3/loss18 = 3.42729e-06 (* 0.0909091 = 3.11571e-07 loss)
I0422 01:21:14.844159 32397 solver.cpp:245] Train net output #143: loss3/loss19 = 3.29317e-06 (* 0.0909091 = 2.99379e-07 loss)
I0422 01:21:14.844173 32397 solver.cpp:245] Train net output #144: loss3/loss20 = 2.29479e-06 (* 0.0909091 = 2.08617e-07 loss)
I0422 01:21:14.844187 32397 solver.cpp:245] Train net output #145: loss3/loss21 = 2.22028e-06 (* 0.0909091 = 2.01844e-07 loss)
I0422 01:21:14.844202 32397 solver.cpp:245] Train net output #146: loss3/loss22 = 2.54811e-06 (* 0.0909091 = 2.31646e-07 loss)
I0422 01:21:14.844223 32397 solver.cpp:245] Train net output #147: total_accuracy = 0.75
I0422 01:21:14.844236 32397 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.625
I0422 01:21:14.844247 32397 solver.cpp:245] Train net output #149: total_confidence = 0.543239
I0422 01:21:14.844259 32397 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.399258
I0422 01:21:14.844272 32397 sgd_solver.cpp:106] Iteration 10000, lr = 0.001
I0422 01:26:56.680071 32397 solver.cpp:229] Iteration 10500, loss = 2.23766
I0422 01:26:56.680203 32397 solver.cpp:245] Train net output #0: loss1/accuracy = 0.625
I0422 01:26:56.680224 32397 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.875
I0422 01:26:56.680238 32397 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.625
I0422 01:26:56.680251 32397 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.5
I0422 01:26:56.680263 32397 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.625
I0422 01:26:56.680276 32397 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.25
I0422 01:26:56.680289 32397 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.375
I0422 01:26:56.680302 32397 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.75
I0422 01:26:56.680315 32397 solver.cpp:245] Train net output #8: loss1/accuracy08 = 1
I0422 01:26:56.680327 32397 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1
I0422 01:26:56.680340 32397 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0422 01:26:56.680351 32397 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0422 01:26:56.680363 32397 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0422 01:26:56.680376 32397 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0422 01:26:56.680387 32397 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0422 01:26:56.680399 32397 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0422 01:26:56.680411 32397 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0422 01:26:56.680423 32397 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0422 01:26:56.680435 32397 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0422 01:26:56.680447 32397 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0422 01:26:56.680459 32397 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0422 01:26:56.680480 32397 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0422 01:26:56.680490 32397 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0422 01:26:56.680502 32397 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.875
I0422 01:26:56.680515 32397 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.895833
I0422 01:26:56.680539 32397 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.24931 (* 0.3 = 0.374792 loss)
I0422 01:26:56.680554 32397 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.403783 (* 0.3 = 0.121135 loss)
I0422 01:26:56.680569 32397 solver.cpp:245] Train net output #27: loss1/loss01 = 0.600778 (* 0.0272727 = 0.0163848 loss)
I0422 01:26:56.680583 32397 solver.cpp:245] Train net output #28: loss1/loss02 = 1.15731 (* 0.0272727 = 0.0315629 loss)
I0422 01:26:56.680598 32397 solver.cpp:245] Train net output #29: loss1/loss03 = 1.55749 (* 0.0272727 = 0.042477 loss)
I0422 01:26:56.680611 32397 solver.cpp:245] Train net output #30: loss1/loss04 = 1.64005 (* 0.0272727 = 0.0447287 loss)
I0422 01:26:56.680626 32397 solver.cpp:245] Train net output #31: loss1/loss05 = 2.21909 (* 0.0272727 = 0.0605206 loss)
I0422 01:26:56.680640 32397 solver.cpp:245] Train net output #32: loss1/loss06 = 1.78901 (* 0.0272727 = 0.0487912 loss)
I0422 01:26:56.680655 32397 solver.cpp:245] Train net output #33: loss1/loss07 = 0.468456 (* 0.0272727 = 0.0127761 loss)
I0422 01:26:56.680670 32397 solver.cpp:245] Train net output #34: loss1/loss08 = 0.163348 (* 0.0272727 = 0.00445495 loss)
I0422 01:26:56.680683 32397 solver.cpp:245] Train net output #35: loss1/loss09 = 0.0184451 (* 0.0272727 = 0.000503048 loss)
I0422 01:26:56.680698 32397 solver.cpp:245] Train net output #36: loss1/loss10 = 0.00275465 (* 0.0272727 = 7.51268e-05 loss)
I0422 01:26:56.680734 32397 solver.cpp:245] Train net output #37: loss1/loss11 = 3.60583e-05 (* 0.0272727 = 9.83408e-07 loss)
I0422 01:26:56.680752 32397 solver.cpp:245] Train net output #38: loss1/loss12 = 4.87956e-05 (* 0.0272727 = 1.33079e-06 loss)
I0422 01:26:56.680766 32397 solver.cpp:245] Train net output #39: loss1/loss13 = 5.35429e-05 (* 0.0272727 = 1.46026e-06 loss)
I0422 01:26:56.680795 32397 solver.cpp:245] Train net output #40: loss1/loss14 = 4.17147e-05 (* 0.0272727 = 1.13767e-06 loss)
I0422 01:26:56.680811 32397 solver.cpp:245] Train net output #41: loss1/loss15 = 3.09009e-05 (* 0.0272727 = 8.42752e-07 loss)
I0422 01:26:56.680825 32397 solver.cpp:245] Train net output #42: loss1/loss16 = 4.82735e-05 (* 0.0272727 = 1.31655e-06 loss)
I0422 01:26:56.680840 32397 solver.cpp:245] Train net output #43: loss1/loss17 = 4.71548e-05 (* 0.0272727 = 1.28604e-06 loss)
I0422 01:26:56.680853 32397 solver.cpp:245] Train net output #44: loss1/loss18 = 2.75028e-05 (* 0.0272727 = 7.50078e-07 loss)
I0422 01:26:56.680867 32397 solver.cpp:245] Train net output #45: loss1/loss19 = 4.4726e-05 (* 0.0272727 = 1.2198e-06 loss)
I0422 01:26:56.680882 32397 solver.cpp:245] Train net output #46: loss1/loss20 = 7.43485e-05 (* 0.0272727 = 2.02769e-06 loss)
I0422 01:26:56.680896 32397 solver.cpp:245] Train net output #47: loss1/loss21 = 2.88292e-05 (* 0.0272727 = 7.86251e-07 loss)
I0422 01:26:56.680910 32397 solver.cpp:245] Train net output #48: loss1/loss22 = 2.1802e-05 (* 0.0272727 = 5.94599e-07 loss)
I0422 01:26:56.680923 32397 solver.cpp:245] Train net output #49: loss2/accuracy = 0.791667
I0422 01:26:56.680935 32397 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.75
I0422 01:26:56.680948 32397 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75
I0422 01:26:56.680958 32397 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.875
I0422 01:26:56.680970 32397 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.625
I0422 01:26:56.680985 32397 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5
I0422 01:26:56.680997 32397 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.75
I0422 01:26:56.681010 32397 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.625
I0422 01:26:56.681020 32397 solver.cpp:245] Train net output #57: loss2/accuracy08 = 1
I0422 01:26:56.681032 32397 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1
I0422 01:26:56.681044 32397 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0422 01:26:56.681056 32397 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0422 01:26:56.681067 32397 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0422 01:26:56.681078 32397 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0422 01:26:56.681089 32397 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0422 01:26:56.681102 32397 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0422 01:26:56.681113 32397 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0422 01:26:56.681125 32397 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0422 01:26:56.681138 32397 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0422 01:26:56.681149 32397 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0422 01:26:56.681160 32397 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0422 01:26:56.681172 32397 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0422 01:26:56.681183 32397 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0422 01:26:56.681195 32397 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.9375
I0422 01:26:56.681207 32397 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.916667
I0422 01:26:56.681221 32397 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.670071 (* 0.3 = 0.201021 loss)
I0422 01:26:56.681236 32397 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.207662 (* 0.3 = 0.0622987 loss)
I0422 01:26:56.681251 32397 solver.cpp:245] Train net output #76: loss2/loss01 = 0.373942 (* 0.0272727 = 0.0101984 loss)
I0422 01:26:56.681264 32397 solver.cpp:245] Train net output #77: loss2/loss02 = 0.883652 (* 0.0272727 = 0.0240996 loss)
I0422 01:26:56.681289 32397 solver.cpp:245] Train net output #78: loss2/loss03 = 0.589433 (* 0.0272727 = 0.0160754 loss)
I0422 01:26:56.681305 32397 solver.cpp:245] Train net output #79: loss2/loss04 = 1.62921 (* 0.0272727 = 0.0444329 loss)
I0422 01:26:56.681319 32397 solver.cpp:245] Train net output #80: loss2/loss05 = 1.96408 (* 0.0272727 = 0.0535659 loss)
I0422 01:26:56.681334 32397 solver.cpp:245] Train net output #81: loss2/loss06 = 1.20648 (* 0.0272727 = 0.0329039 loss)
I0422 01:26:56.681346 32397 solver.cpp:245] Train net output #82: loss2/loss07 = 0.561451 (* 0.0272727 = 0.0153123 loss)
I0422 01:26:56.681361 32397 solver.cpp:245] Train net output #83: loss2/loss08 = 0.0906909 (* 0.0272727 = 0.00247339 loss)
I0422 01:26:56.681375 32397 solver.cpp:245] Train net output #84: loss2/loss09 = 0.00314573 (* 0.0272727 = 8.57927e-05 loss)
I0422 01:26:56.681390 32397 solver.cpp:245] Train net output #85: loss2/loss10 = 0.000612262 (* 0.0272727 = 1.66981e-05 loss)
I0422 01:26:56.681403 32397 solver.cpp:245] Train net output #86: loss2/loss11 = 2.08632e-05 (* 0.0272727 = 5.68996e-07 loss)
I0422 01:26:56.681417 32397 solver.cpp:245] Train net output #87: loss2/loss12 = 1.26367e-05 (* 0.0272727 = 3.44637e-07 loss)
I0422 01:26:56.681432 32397 solver.cpp:245] Train net output #88: loss2/loss13 = 2.89038e-05 (* 0.0272727 = 7.88286e-07 loss)
I0422 01:26:56.681445 32397 solver.cpp:245] Train net output #89: loss2/loss14 = 3.65204e-05 (* 0.0272727 = 9.9601e-07 loss)
I0422 01:26:56.681459 32397 solver.cpp:245] Train net output #90: loss2/loss15 = 0.00010318 (* 0.0272727 = 2.81401e-06 loss)
I0422 01:26:56.681473 32397 solver.cpp:245] Train net output #91: loss2/loss16 = 4.7946e-05 (* 0.0272727 = 1.30762e-06 loss)
I0422 01:26:56.681488 32397 solver.cpp:245] Train net output #92: loss2/loss17 = 4.65595e-05 (* 0.0272727 = 1.26981e-06 loss)
I0422 01:26:56.681500 32397 solver.cpp:245] Train net output #93: loss2/loss18 = 4.45318e-05 (* 0.0272727 = 1.2145e-06 loss)
I0422 01:26:56.681515 32397 solver.cpp:245] Train net output #94: loss2/loss19 = 2.88891e-05 (* 0.0272727 = 7.87884e-07 loss)
I0422 01:26:56.681529 32397 solver.cpp:245] Train net output #95: loss2/loss20 = 4.24004e-05 (* 0.0272727 = 1.15637e-06 loss)
I0422 01:26:56.681542 32397 solver.cpp:245] Train net output #96: loss2/loss21 = 8.05727e-05 (* 0.0272727 = 2.19744e-06 loss)
I0422 01:26:56.681556 32397 solver.cpp:245] Train net output #97: loss2/loss22 = 3.13035e-05 (* 0.0272727 = 8.53731e-07 loss)
I0422 01:26:56.681569 32397 solver.cpp:245] Train net output #98: loss3/accuracy = 0.875
I0422 01:26:56.681581 32397 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0422 01:26:56.681593 32397 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875
I0422 01:26:56.681605 32397 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0422 01:26:56.681617 32397 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875
I0422 01:26:56.681628 32397 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.75
I0422 01:26:56.681640 32397 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.75
I0422 01:26:56.681651 32397 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875
I0422 01:26:56.681663 32397 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1
I0422 01:26:56.681674 32397 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1
I0422 01:26:56.681686 32397 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0422 01:26:56.681697 32397 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0422 01:26:56.681710 32397 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0422 01:26:56.681721 32397 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0422 01:26:56.681732 32397 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0422 01:26:56.681743 32397 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0422 01:26:56.681768 32397 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0422 01:26:56.681782 32397 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0422 01:26:56.681793 32397 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0422 01:26:56.681805 32397 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0422 01:26:56.681816 32397 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0422 01:26:56.681828 32397 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0422 01:26:56.681839 32397 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0422 01:26:56.681850 32397 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.960227
I0422 01:26:56.681862 32397 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.958333
I0422 01:26:56.681876 32397 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.345169 (* 1 = 0.345169 loss)
I0422 01:26:56.681890 32397 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.117829 (* 1 = 0.117829 loss)
I0422 01:26:56.681903 32397 solver.cpp:245] Train net output #125: loss3/loss01 = 0.127274 (* 0.0909091 = 0.0115704 loss)
I0422 01:26:56.681917 32397 solver.cpp:245] Train net output #126: loss3/loss02 = 0.432214 (* 0.0909091 = 0.0392921 loss)
I0422 01:26:56.681934 32397 solver.cpp:245] Train net output #127: loss3/loss03 = 0.19857 (* 0.0909091 = 0.0180519 loss)
I0422 01:26:56.681963 32397 solver.cpp:245] Train net output #128: loss3/loss04 = 0.305608 (* 0.0909091 = 0.0277825 loss)
I0422 01:26:56.681983 32397 solver.cpp:245] Train net output #129: loss3/loss05 = 0.739392 (* 0.0909091 = 0.0672175 loss)
I0422 01:26:56.681998 32397 solver.cpp:245] Train net output #130: loss3/loss06 = 0.893054 (* 0.0909091 = 0.0811867 loss)
I0422 01:26:56.682011 32397 solver.cpp:245] Train net output #131: loss3/loss07 = 0.289628 (* 0.0909091 = 0.0263298 loss)
I0422 01:26:56.682025 32397 solver.cpp:245] Train net output #132: loss3/loss08 = 0.0502209 (* 0.0909091 = 0.00456554 loss)
I0422 01:26:56.682042 32397 solver.cpp:245] Train net output #133: loss3/loss09 = 0.00557274 (* 0.0909091 = 0.000506613 loss)
I0422 01:26:56.682056 32397 solver.cpp:245] Train net output #134: loss3/loss10 = 0.000743215 (* 0.0909091 = 6.7565e-05 loss)
I0422 01:26:56.682070 32397 solver.cpp:245] Train net output #135: loss3/loss11 = 2.94702e-05 (* 0.0909091 = 2.67911e-06 loss)
I0422 01:26:56.682085 32397 solver.cpp:245] Train net output #136: loss3/loss12 = 2.31657e-05 (* 0.0909091 = 2.10598e-06 loss)
I0422 01:26:56.682098 32397 solver.cpp:245] Train net output #137: loss3/loss13 = 2.06247e-05 (* 0.0909091 = 1.87497e-06 loss)
I0422 01:26:56.682112 32397 solver.cpp:245] Train net output #138: loss3/loss14 = 2.22044e-05 (* 0.0909091 = 2.01858e-06 loss)
I0422 01:26:56.682126 32397 solver.cpp:245] Train net output #139: loss3/loss15 = 1.98944e-05 (* 0.0909091 = 1.80858e-06 loss)
I0422 01:26:56.682139 32397 solver.cpp:245] Train net output #140: loss3/loss16 = 2.40152e-05 (* 0.0909091 = 2.1832e-06 loss)
I0422 01:26:56.682153 32397 solver.cpp:245] Train net output #141: loss3/loss17 = 2.51181e-05 (* 0.0909091 = 2.28347e-06 loss)
I0422 01:26:56.682166 32397 solver.cpp:245] Train net output #142: loss3/loss18 = 1.99094e-05 (* 0.0909091 = 1.80994e-06 loss)
I0422 01:26:56.682180 32397 solver.cpp:245] Train net output #143: loss3/loss19 = 1.70926e-05 (* 0.0909091 = 1.55388e-06 loss)
I0422 01:26:56.682194 32397 solver.cpp:245] Train net output #144: loss3/loss20 = 2.16828e-05 (* 0.0909091 = 1.97117e-06 loss)
I0422 01:26:56.682209 32397 solver.cpp:245] Train net output #145: loss3/loss21 = 2.00584e-05 (* 0.0909091 = 1.82349e-06 loss)
I0422 01:26:56.682221 32397 solver.cpp:245] Train net output #146: loss3/loss22 = 2.31658e-05 (* 0.0909091 = 2.10598e-06 loss)
I0422 01:26:56.682235 32397 solver.cpp:245] Train net output #147: total_accuracy = 0.5
I0422 01:26:56.682246 32397 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.625
I0422 01:26:56.682270 32397 solver.cpp:245] Train net output #149: total_confidence = 0.481776
I0422 01:26:56.682283 32397 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.374193
I0422 01:26:56.682296 32397 sgd_solver.cpp:106] Iteration 10500, lr = 0.001
I0422 01:32:38.549528 32397 solver.cpp:229] Iteration 11000, loss = 2.22314
I0422 01:32:38.549656 32397 solver.cpp:245] Train net output #0: loss1/accuracy = 0.566038
I0422 01:32:38.549677 32397 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75
I0422 01:32:38.549691 32397 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5
I0422 01:32:38.549705 32397 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.5
I0422 01:32:38.549717 32397 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.625
I0422 01:32:38.549731 32397 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.25
I0422 01:32:38.549743 32397 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.375
I0422 01:32:38.549757 32397 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.75
I0422 01:32:38.549769 32397 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.75
I0422 01:32:38.549782 32397 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875
I0422 01:32:38.549794 32397 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875
I0422 01:32:38.549808 32397 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0422 01:32:38.549820 32397 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0422 01:32:38.549832 32397 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0422 01:32:38.549844 32397 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0422 01:32:38.549856 32397 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0422 01:32:38.549870 32397 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0422 01:32:38.549881 32397 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0422 01:32:38.549893 32397 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0422 01:32:38.549906 32397 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0422 01:32:38.549917 32397 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0422 01:32:38.549929 32397 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0422 01:32:38.549942 32397 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0422 01:32:38.549953 32397 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.869318
I0422 01:32:38.549965 32397 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.735849
I0422 01:32:38.549983 32397 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.6061 (* 0.3 = 0.481831 loss)
I0422 01:32:38.549998 32397 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.492574 (* 0.3 = 0.147772 loss)
I0422 01:32:38.550014 32397 solver.cpp:245] Train net output #27: loss1/loss01 = 0.903175 (* 0.0272727 = 0.024632 loss)
I0422 01:32:38.550027 32397 solver.cpp:245] Train net output #28: loss1/loss02 = 1.48731 (* 0.0272727 = 0.040563 loss)
I0422 01:32:38.550041 32397 solver.cpp:245] Train net output #29: loss1/loss03 = 1.62796 (* 0.0272727 = 0.0443988 loss)
I0422 01:32:38.550055 32397 solver.cpp:245] Train net output #30: loss1/loss04 = 1.72917 (* 0.0272727 = 0.0471592 loss)
I0422 01:32:38.550070 32397 solver.cpp:245] Train net output #31: loss1/loss05 = 2.37639 (* 0.0272727 = 0.0648106 loss)
I0422 01:32:38.550083 32397 solver.cpp:245] Train net output #32: loss1/loss06 = 1.62268 (* 0.0272727 = 0.044255 loss)
I0422 01:32:38.550097 32397 solver.cpp:245] Train net output #33: loss1/loss07 = 1.02027 (* 0.0272727 = 0.0278257 loss)
I0422 01:32:38.550112 32397 solver.cpp:245] Train net output #34: loss1/loss08 = 0.732371 (* 0.0272727 = 0.0199738 loss)
I0422 01:32:38.550127 32397 solver.cpp:245] Train net output #35: loss1/loss09 = 0.410388 (* 0.0272727 = 0.0111924 loss)
I0422 01:32:38.550140 32397 solver.cpp:245] Train net output #36: loss1/loss10 = 1.1019 (* 0.0272727 = 0.0300519 loss)
I0422 01:32:38.550155 32397 solver.cpp:245] Train net output #37: loss1/loss11 = 1.88507e-05 (* 0.0272727 = 5.14109e-07 loss)
I0422 01:32:38.550170 32397 solver.cpp:245] Train net output #38: loss1/loss12 = 9.92436e-06 (* 0.0272727 = 2.70664e-07 loss)
I0422 01:32:38.550184 32397 solver.cpp:245] Train net output #39: loss1/loss13 = 2.13846e-05 (* 0.0272727 = 5.83215e-07 loss)
I0422 01:32:38.550220 32397 solver.cpp:245] Train net output #40: loss1/loss14 = 1.50955e-05 (* 0.0272727 = 4.11695e-07 loss)
I0422 01:32:38.550237 32397 solver.cpp:245] Train net output #41: loss1/loss15 = 3.24504e-05 (* 0.0272727 = 8.85012e-07 loss)
I0422 01:32:38.550252 32397 solver.cpp:245] Train net output #42: loss1/loss16 = 1.47677e-05 (* 0.0272727 = 4.02754e-07 loss)
I0422 01:32:38.550266 32397 solver.cpp:245] Train net output #43: loss1/loss17 = 1.2547e-05 (* 0.0272727 = 3.4219e-07 loss)
I0422 01:32:38.550282 32397 solver.cpp:245] Train net output #44: loss1/loss18 = 1.13102e-05 (* 0.0272727 = 3.0846e-07 loss)
I0422 01:32:38.550295 32397 solver.cpp:245] Train net output #45: loss1/loss19 = 6.86952e-06 (* 0.0272727 = 1.8735e-07 loss)
I0422 01:32:38.550309 32397 solver.cpp:245] Train net output #46: loss1/loss20 = 2.04455e-05 (* 0.0272727 = 5.57604e-07 loss)
I0422 01:32:38.550324 32397 solver.cpp:245] Train net output #47: loss1/loss21 = 1.73456e-05 (* 0.0272727 = 4.73062e-07 loss)
I0422 01:32:38.550338 32397 solver.cpp:245] Train net output #48: loss1/loss22 = 8.53849e-06 (* 0.0272727 = 2.32868e-07 loss)
I0422 01:32:38.550350 32397 solver.cpp:245] Train net output #49: loss2/accuracy = 0.716981
I0422 01:32:38.550364 32397 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.75
I0422 01:32:38.550375 32397 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.625
I0422 01:32:38.550387 32397 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.625
I0422 01:32:38.550400 32397 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.75
I0422 01:32:38.550411 32397 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5
I0422 01:32:38.550423 32397 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.75
I0422 01:32:38.550434 32397 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.75
I0422 01:32:38.550446 32397 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.75
I0422 01:32:38.550458 32397 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875
I0422 01:32:38.550470 32397 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875
I0422 01:32:38.550482 32397 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0422 01:32:38.550493 32397 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0422 01:32:38.550505 32397 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0422 01:32:38.550516 32397 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0422 01:32:38.550529 32397 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0422 01:32:38.550539 32397 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0422 01:32:38.550550 32397 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0422 01:32:38.550562 32397 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0422 01:32:38.550573 32397 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0422 01:32:38.550585 32397 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0422 01:32:38.550596 32397 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0422 01:32:38.550607 32397 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0422 01:32:38.550618 32397 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.914773
I0422 01:32:38.550631 32397 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.830189
I0422 01:32:38.550644 32397 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.23765 (* 0.3 = 0.371294 loss)
I0422 01:32:38.550658 32397 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.380306 (* 0.3 = 0.114092 loss)
I0422 01:32:38.550675 32397 solver.cpp:245] Train net output #76: loss2/loss01 = 1.34794 (* 0.0272727 = 0.0367619 loss)
I0422 01:32:38.550690 32397 solver.cpp:245] Train net output #77: loss2/loss02 = 1.86817 (* 0.0272727 = 0.05095 loss)
I0422 01:32:38.550716 32397 solver.cpp:245] Train net output #78: loss2/loss03 = 1.58293 (* 0.0272727 = 0.043171 loss)
I0422 01:32:38.550731 32397 solver.cpp:245] Train net output #79: loss2/loss04 = 1.7687 (* 0.0272727 = 0.0482373 loss)
I0422 01:32:38.550746 32397 solver.cpp:245] Train net output #80: loss2/loss05 = 1.80435 (* 0.0272727 = 0.0492096 loss)
I0422 01:32:38.550761 32397 solver.cpp:245] Train net output #81: loss2/loss06 = 1.01185 (* 0.0272727 = 0.0275958 loss)
I0422 01:32:38.550776 32397 solver.cpp:245] Train net output #82: loss2/loss07 = 1.10585 (* 0.0272727 = 0.0301595 loss)
I0422 01:32:38.550789 32397 solver.cpp:245] Train net output #83: loss2/loss08 = 1.19558 (* 0.0272727 = 0.0326067 loss)
I0422 01:32:38.550803 32397 solver.cpp:245] Train net output #84: loss2/loss09 = 0.384952 (* 0.0272727 = 0.0104987 loss)
I0422 01:32:38.550817 32397 solver.cpp:245] Train net output #85: loss2/loss10 = 0.984456 (* 0.0272727 = 0.0268488 loss)
I0422 01:32:38.550832 32397 solver.cpp:245] Train net output #86: loss2/loss11 = 1.39779e-05 (* 0.0272727 = 3.81217e-07 loss)
I0422 01:32:38.550845 32397 solver.cpp:245] Train net output #87: loss2/loss12 = 7.55502e-06 (* 0.0272727 = 2.06046e-07 loss)
I0422 01:32:38.550858 32397 solver.cpp:245] Train net output #88: loss2/loss13 = 1.02821e-05 (* 0.0272727 = 2.8042e-07 loss)
I0422 01:32:38.550873 32397 solver.cpp:245] Train net output #89: loss2/loss14 = 1.4112e-05 (* 0.0272727 = 3.84873e-07 loss)
I0422 01:32:38.550886 32397 solver.cpp:245] Train net output #90: loss2/loss15 = 7.39112e-06 (* 0.0272727 = 2.01576e-07 loss)
I0422 01:32:38.550909 32397 solver.cpp:245] Train net output #91: loss2/loss16 = 2.11759e-05 (* 0.0272727 = 5.77525e-07 loss)
I0422 01:32:38.550923 32397 solver.cpp:245] Train net output #92: loss2/loss17 = 2.27407e-05 (* 0.0272727 = 6.20201e-07 loss)
I0422 01:32:38.550937 32397 solver.cpp:245] Train net output #93: loss2/loss18 = 7.01861e-06 (* 0.0272727 = 1.91417e-07 loss)
I0422 01:32:38.550951 32397 solver.cpp:245] Train net output #94: loss2/loss19 = 2.14295e-05 (* 0.0272727 = 5.84441e-07 loss)
I0422 01:32:38.550967 32397 solver.cpp:245] Train net output #95: loss2/loss20 = 9.17931e-06 (* 0.0272727 = 2.50345e-07 loss)
I0422 01:32:38.550981 32397 solver.cpp:245] Train net output #96: loss2/loss21 = 1.56023e-05 (* 0.0272727 = 4.25517e-07 loss)
I0422 01:32:38.550994 32397 solver.cpp:245] Train net output #97: loss2/loss22 = 7.07819e-06 (* 0.0272727 = 1.93041e-07 loss)
I0422 01:32:38.551007 32397 solver.cpp:245] Train net output #98: loss3/accuracy = 0.811321
I0422 01:32:38.551019 32397 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0422 01:32:38.551031 32397 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.75
I0422 01:32:38.551043 32397 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.875
I0422 01:32:38.551054 32397 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875
I0422 01:32:38.551066 32397 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.625
I0422 01:32:38.551079 32397 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.625
I0422 01:32:38.551090 32397 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75
I0422 01:32:38.551102 32397 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.75
I0422 01:32:38.551115 32397 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1
I0422 01:32:38.551126 32397 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875
I0422 01:32:38.551137 32397 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0422 01:32:38.551148 32397 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0422 01:32:38.551159 32397 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0422 01:32:38.551172 32397 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0422 01:32:38.551182 32397 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0422 01:32:38.551203 32397 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0422 01:32:38.551216 32397 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0422 01:32:38.551229 32397 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0422 01:32:38.551240 32397 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0422 01:32:38.551264 32397 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0422 01:32:38.551271 32397 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0422 01:32:38.551280 32397 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0422 01:32:38.551290 32397 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.943182
I0422 01:32:38.551302 32397 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.943396
I0422 01:32:38.551321 32397 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.663832 (* 1 = 0.663832 loss)
I0422 01:32:38.551334 32397 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.207637 (* 1 = 0.207637 loss)
I0422 01:32:38.551360 32397 solver.cpp:245] Train net output #125: loss3/loss01 = 0.414871 (* 0.0909091 = 0.0377155 loss)
I0422 01:32:38.551378 32397 solver.cpp:245] Train net output #126: loss3/loss02 = 0.928711 (* 0.0909091 = 0.0844283 loss)
I0422 01:32:38.551393 32397 solver.cpp:245] Train net output #127: loss3/loss03 = 0.398332 (* 0.0909091 = 0.036212 loss)
I0422 01:32:38.551408 32397 solver.cpp:245] Train net output #128: loss3/loss04 = 0.737848 (* 0.0909091 = 0.0670771 loss)
I0422 01:32:38.551421 32397 solver.cpp:245] Train net output #129: loss3/loss05 = 2.0238 (* 0.0909091 = 0.183982 loss)
I0422 01:32:38.551435 32397 solver.cpp:245] Train net output #130: loss3/loss06 = 1.09498 (* 0.0909091 = 0.0995441 loss)
I0422 01:32:38.551448 32397 solver.cpp:245] Train net output #131: loss3/loss07 = 1.25361 (* 0.0909091 = 0.113965 loss)
I0422 01:32:38.551462 32397 solver.cpp:245] Train net output #132: loss3/loss08 = 1.13989 (* 0.0909091 = 0.103626 loss)
I0422 01:32:38.551476 32397 solver.cpp:245] Train net output #133: loss3/loss09 = 0.202935 (* 0.0909091 = 0.0184486 loss)
I0422 01:32:38.551491 32397 solver.cpp:245] Train net output #134: loss3/loss10 = 0.620311 (* 0.0909091 = 0.0563919 loss)
I0422 01:32:38.551504 32397 solver.cpp:245] Train net output #135: loss3/loss11 = 2.48265e-05 (* 0.0909091 = 2.25696e-06 loss)
I0422 01:32:38.551518 32397 solver.cpp:245] Train net output #136: loss3/loss12 = 2.53928e-05 (* 0.0909091 = 2.30844e-06 loss)
I0422 01:32:38.551532 32397 solver.cpp:245] Train net output #137: loss3/loss13 = 2.91483e-05 (* 0.0909091 = 2.64985e-06 loss)
I0422 01:32:38.551547 32397 solver.cpp:245] Train net output #138: loss3/loss14 = 2.66596e-05 (* 0.0909091 = 2.4236e-06 loss)
I0422 01:32:38.551560 32397 solver.cpp:245] Train net output #139: loss3/loss15 = 2.5363e-05 (* 0.0909091 = 2.30573e-06 loss)
I0422 01:32:38.551573 32397 solver.cpp:245] Train net output #140: loss3/loss16 = 3.10708e-05 (* 0.0909091 = 2.82462e-06 loss)
I0422 01:32:38.551587 32397 solver.cpp:245] Train net output #141: loss3/loss17 = 2.91334e-05 (* 0.0909091 = 2.64849e-06 loss)
I0422 01:32:38.551601 32397 solver.cpp:245] Train net output #142: loss3/loss18 = 2.67192e-05 (* 0.0909091 = 2.42902e-06 loss)
I0422 01:32:38.551615 32397 solver.cpp:245] Train net output #143: loss3/loss19 = 2.6287e-05 (* 0.0909091 = 2.38973e-06 loss)
I0422 01:32:38.551628 32397 solver.cpp:245] Train net output #144: loss3/loss20 = 2.5676e-05 (* 0.0909091 = 2.33418e-06 loss)
I0422 01:32:38.551642 32397 solver.cpp:245] Train net output #145: loss3/loss21 = 2.68235e-05 (* 0.0909091 = 2.4385e-06 loss)
I0422 01:32:38.551656 32397 solver.cpp:245] Train net output #146: loss3/loss22 = 2.45583e-05 (* 0.0909091 = 2.23258e-06 loss)
I0422 01:32:38.551668 32397 solver.cpp:245] Train net output #147: total_accuracy = 0.5
I0422 01:32:38.551681 32397 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.375
I0422 01:32:38.551704 32397 solver.cpp:245] Train net output #149: total_confidence = 0.553586
I0422 01:32:38.551717 32397 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.338437
I0422 01:32:38.551734 32397 sgd_solver.cpp:106] Iteration 11000, lr = 0.001
I0422 01:38:20.400257 32397 solver.cpp:229] Iteration 11500, loss = 2.28536
I0422 01:38:20.400399 32397 solver.cpp:245] Train net output #0: loss1/accuracy = 0.659091
I0422 01:38:20.400420 32397 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.625
I0422 01:38:20.400434 32397 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5
I0422 01:38:20.400455 32397 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.625
I0422 01:38:20.400468 32397 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.625
I0422 01:38:20.400480 32397 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.75
I0422 01:38:20.400493 32397 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.5
I0422 01:38:20.400506 32397 solver.cpp:245] Train net output #7: loss1/accuracy07 = 1
I0422 01:38:20.400526 32397 solver.cpp:245] Train net output #8: loss1/accuracy08 = 1
I0422 01:38:20.400538 32397 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1
I0422 01:38:20.400552 32397 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0422 01:38:20.400563 32397 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0422 01:38:20.400575 32397 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0422 01:38:20.400588 32397 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0422 01:38:20.400599 32397 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0422 01:38:20.400611 32397 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0422 01:38:20.400624 32397 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0422 01:38:20.400637 32397 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0422 01:38:20.400650 32397 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0422 01:38:20.400660 32397 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0422 01:38:20.400672 32397 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0422 01:38:20.400683 32397 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0422 01:38:20.400696 32397 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0422 01:38:20.400707 32397 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.909091
I0422 01:38:20.400719 32397 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.954545
I0422 01:38:20.400738 32397 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 0.918245 (* 0.3 = 0.275474 loss)
I0422 01:38:20.400753 32397 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.260436 (* 0.3 = 0.0781309 loss)
I0422 01:38:20.400768 32397 solver.cpp:245] Train net output #27: loss1/loss01 = 1.10778 (* 0.0272727 = 0.0302122 loss)
I0422 01:38:20.400781 32397 solver.cpp:245] Train net output #28: loss1/loss02 = 1.3855 (* 0.0272727 = 0.0377864 loss)
I0422 01:38:20.400796 32397 solver.cpp:245] Train net output #29: loss1/loss03 = 1.12281 (* 0.0272727 = 0.0306221 loss)
I0422 01:38:20.400810 32397 solver.cpp:245] Train net output #30: loss1/loss04 = 1.38988 (* 0.0272727 = 0.0379059 loss)
I0422 01:38:20.400823 32397 solver.cpp:245] Train net output #31: loss1/loss05 = 1.17268 (* 0.0272727 = 0.0319823 loss)
I0422 01:38:20.400838 32397 solver.cpp:245] Train net output #32: loss1/loss06 = 1.35745 (* 0.0272727 = 0.0370213 loss)
I0422 01:38:20.400852 32397 solver.cpp:245] Train net output #33: loss1/loss07 = 0.0626383 (* 0.0272727 = 0.00170832 loss)
I0422 01:38:20.400867 32397 solver.cpp:245] Train net output #34: loss1/loss08 = 0.00733704 (* 0.0272727 = 0.000200101 loss)
I0422 01:38:20.400882 32397 solver.cpp:245] Train net output #35: loss1/loss09 = 0.000454917 (* 0.0272727 = 1.24068e-05 loss)
I0422 01:38:20.400897 32397 solver.cpp:245] Train net output #36: loss1/loss10 = 0.000141558 (* 0.0272727 = 3.86066e-06 loss)
I0422 01:38:20.400909 32397 solver.cpp:245] Train net output #37: loss1/loss11 = 4.8429e-06 (* 0.0272727 = 1.32079e-07 loss)
I0422 01:38:20.400924 32397 solver.cpp:245] Train net output #38: loss1/loss12 = 2.62261e-06 (* 0.0272727 = 7.15258e-08 loss)
I0422 01:38:20.400956 32397 solver.cpp:245] Train net output #39: loss1/loss13 = 3.15905e-06 (* 0.0272727 = 8.6156e-08 loss)
I0422 01:38:20.400971 32397 solver.cpp:245] Train net output #40: loss1/loss14 = 4.39587e-06 (* 0.0272727 = 1.19887e-07 loss)
I0422 01:38:20.400985 32397 solver.cpp:245] Train net output #41: loss1/loss15 = 5.9456e-06 (* 0.0272727 = 1.62153e-07 loss)
I0422 01:38:20.401000 32397 solver.cpp:245] Train net output #42: loss1/loss16 = 5.05152e-06 (* 0.0272727 = 1.37769e-07 loss)
I0422 01:38:20.401013 32397 solver.cpp:245] Train net output #43: loss1/loss17 = 4.60448e-06 (* 0.0272727 = 1.25577e-07 loss)
I0422 01:38:20.401027 32397 solver.cpp:245] Train net output #44: loss1/loss18 = 3.621e-06 (* 0.0272727 = 9.87546e-08 loss)
I0422 01:38:20.401042 32397 solver.cpp:245] Train net output #45: loss1/loss19 = 2.11597e-06 (* 0.0272727 = 5.77083e-08 loss)
I0422 01:38:20.401057 32397 solver.cpp:245] Train net output #46: loss1/loss20 = 4.44057e-06 (* 0.0272727 = 1.21106e-07 loss)
I0422 01:38:20.401069 32397 solver.cpp:245] Train net output #47: loss1/loss21 = 2.42889e-06 (* 0.0272727 = 6.62426e-08 loss)
I0422 01:38:20.401083 32397 solver.cpp:245] Train net output #48: loss1/loss22 = 4.00843e-06 (* 0.0272727 = 1.09321e-07 loss)
I0422 01:38:20.401096 32397 solver.cpp:245] Train net output #49: loss2/accuracy = 0.886364
I0422 01:38:20.401109 32397 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875
I0422 01:38:20.401121 32397 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75
I0422 01:38:20.401134 32397 solver.cpp:245] Train net output #52: loss2/accuracy03 = 1
I0422 01:38:20.401144 32397 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.625
I0422 01:38:20.401156 32397 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.625
I0422 01:38:20.401168 32397 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.875
I0422 01:38:20.401180 32397 solver.cpp:245] Train net output #56: loss2/accuracy07 = 1
I0422 01:38:20.401191 32397 solver.cpp:245] Train net output #57: loss2/accuracy08 = 1
I0422 01:38:20.401206 32397 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1
I0422 01:38:20.401218 32397 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0422 01:38:20.401229 32397 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0422 01:38:20.401242 32397 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0422 01:38:20.401252 32397 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0422 01:38:20.401263 32397 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0422 01:38:20.401274 32397 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0422 01:38:20.401286 32397 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0422 01:38:20.401298 32397 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0422 01:38:20.401309 32397 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0422 01:38:20.401320 32397 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0422 01:38:20.401331 32397 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0422 01:38:20.401343 32397 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0422 01:38:20.401355 32397 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0422 01:38:20.401365 32397 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.965909
I0422 01:38:20.401377 32397 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.977273
I0422 01:38:20.401391 32397 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.375222 (* 0.3 = 0.112567 loss)
I0422 01:38:20.401406 32397 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.111533 (* 0.3 = 0.0334599 loss)
I0422 01:38:20.401423 32397 solver.cpp:245] Train net output #76: loss2/loss01 = 0.787025 (* 0.0272727 = 0.0214643 loss)
I0422 01:38:20.401437 32397 solver.cpp:245] Train net output #77: loss2/loss02 = 1.05839 (* 0.0272727 = 0.0288653 loss)
I0422 01:38:20.401463 32397 solver.cpp:245] Train net output #78: loss2/loss03 = 0.433093 (* 0.0272727 = 0.0118116 loss)
I0422 01:38:20.401479 32397 solver.cpp:245] Train net output #79: loss2/loss04 = 0.92307 (* 0.0272727 = 0.0251746 loss)
I0422 01:38:20.401492 32397 solver.cpp:245] Train net output #80: loss2/loss05 = 0.900247 (* 0.0272727 = 0.0245522 loss)
I0422 01:38:20.401507 32397 solver.cpp:245] Train net output #81: loss2/loss06 = 0.653045 (* 0.0272727 = 0.0178103 loss)
I0422 01:38:20.401521 32397 solver.cpp:245] Train net output #82: loss2/loss07 = 0.161625 (* 0.0272727 = 0.00440795 loss)
I0422 01:38:20.401535 32397 solver.cpp:245] Train net output #83: loss2/loss08 = 0.0662737 (* 0.0272727 = 0.00180747 loss)
I0422 01:38:20.401549 32397 solver.cpp:245] Train net output #84: loss2/loss09 = 0.00970754 (* 0.0272727 = 0.000264751 loss)
I0422 01:38:20.401563 32397 solver.cpp:245] Train net output #85: loss2/loss10 = 0.00261168 (* 0.0272727 = 7.12276e-05 loss)
I0422 01:38:20.401578 32397 solver.cpp:245] Train net output #86: loss2/loss11 = 1.69874e-06 (* 0.0272727 = 4.63292e-08 loss)
I0422 01:38:20.401592 32397 solver.cpp:245] Train net output #87: loss2/loss12 = 2.65242e-06 (* 0.0272727 = 7.23388e-08 loss)
I0422 01:38:20.401607 32397 solver.cpp:245] Train net output #88: loss2/loss13 = 2.13087e-06 (* 0.0272727 = 5.81147e-08 loss)
I0422 01:38:20.401620 32397 solver.cpp:245] Train net output #89: loss2/loss14 = 1.87755e-06 (* 0.0272727 = 5.1206e-08 loss)
I0422 01:38:20.401634 32397 solver.cpp:245] Train net output #90: loss2/loss15 = 2.98025e-06 (* 0.0272727 = 8.12795e-08 loss)
I0422 01:38:20.401648 32397 solver.cpp:245] Train net output #91: loss2/loss16 = 1.96696e-06 (* 0.0272727 = 5.36443e-08 loss)
I0422 01:38:20.401662 32397 solver.cpp:245] Train net output #92: loss2/loss17 = 2.4736e-06 (* 0.0272727 = 6.74618e-08 loss)
I0422 01:38:20.401676 32397 solver.cpp:245] Train net output #93: loss2/loss18 = 2.01166e-06 (* 0.0272727 = 5.48635e-08 loss)
I0422 01:38:20.401690 32397 solver.cpp:245] Train net output #94: loss2/loss19 = 1.74344e-06 (* 0.0272727 = 4.75484e-08 loss)
I0422 01:38:20.401705 32397 solver.cpp:245] Train net output #95: loss2/loss20 = 2.86104e-06 (* 0.0272727 = 7.80284e-08 loss)
I0422 01:38:20.401718 32397 solver.cpp:245] Train net output #96: loss2/loss21 = 2.17558e-06 (* 0.0272727 = 5.93339e-08 loss)
I0422 01:38:20.401731 32397 solver.cpp:245] Train net output #97: loss2/loss22 = 1.56463e-06 (* 0.0272727 = 4.26716e-08 loss)
I0422 01:38:20.401743 32397 solver.cpp:245] Train net output #98: loss3/accuracy = 0.977273
I0422 01:38:20.401756 32397 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0422 01:38:20.401767 32397 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0422 01:38:20.401778 32397 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0422 01:38:20.401790 32397 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1
I0422 01:38:20.401803 32397 solver.cpp:245] Train net output #103: loss3/accuracy05 = 1
I0422 01:38:20.401813 32397 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.875
I0422 01:38:20.401824 32397 solver.cpp:245] Train net output #105: loss3/accuracy07 = 1
I0422 01:38:20.401836 32397 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1
I0422 01:38:20.401847 32397 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1
I0422 01:38:20.401859 32397 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0422 01:38:20.401870 32397 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0422 01:38:20.401880 32397 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0422 01:38:20.401891 32397 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0422 01:38:20.401902 32397 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0422 01:38:20.401914 32397 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0422 01:38:20.401935 32397 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0422 01:38:20.401948 32397 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0422 01:38:20.401960 32397 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0422 01:38:20.401968 32397 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0422 01:38:20.401975 32397 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0422 01:38:20.401988 32397 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0422 01:38:20.401998 32397 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0422 01:38:20.402010 32397 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.988636
I0422 01:38:20.402021 32397 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 1
I0422 01:38:20.402035 32397 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.0822016 (* 1 = 0.0822016 loss)
I0422 01:38:20.402050 32397 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.0299485 (* 1 = 0.0299485 loss)
I0422 01:38:20.402062 32397 solver.cpp:245] Train net output #125: loss3/loss01 = 0.160263 (* 0.0909091 = 0.0145693 loss)
I0422 01:38:20.402076 32397 solver.cpp:245] Train net output #126: loss3/loss02 = 0.180205 (* 0.0909091 = 0.0163823 loss)
I0422 01:38:20.402091 32397 solver.cpp:245] Train net output #127: loss3/loss03 = 0.0473711 (* 0.0909091 = 0.00430646 loss)
I0422 01:38:20.402103 32397 solver.cpp:245] Train net output #128: loss3/loss04 = 0.140598 (* 0.0909091 = 0.0127816 loss)
I0422 01:38:20.402117 32397 solver.cpp:245] Train net output #129: loss3/loss05 = 0.145073 (* 0.0909091 = 0.0131885 loss)
I0422 01:38:20.402132 32397 solver.cpp:245] Train net output #130: loss3/loss06 = 0.267217 (* 0.0909091 = 0.0242925 loss)
I0422 01:38:20.402145 32397 solver.cpp:245] Train net output #131: loss3/loss07 = 0.0847874 (* 0.0909091 = 0.00770794 loss)
I0422 01:38:20.402158 32397 solver.cpp:245] Train net output #132: loss3/loss08 = 0.000663525 (* 0.0909091 = 6.03205e-05 loss)
I0422 01:38:20.402173 32397 solver.cpp:245] Train net output #133: loss3/loss09 = 0.00014275 (* 0.0909091 = 1.29773e-05 loss)
I0422 01:38:20.402186 32397 solver.cpp:245] Train net output #134: loss3/loss10 = 4.53175e-05 (* 0.0909091 = 4.11977e-06 loss)
I0422 01:38:20.402199 32397 solver.cpp:245] Train net output #135: loss3/loss11 = 1.29646e-05 (* 0.0909091 = 1.1786e-06 loss)
I0422 01:38:20.402214 32397 solver.cpp:245] Train net output #136: loss3/loss12 = 1.26218e-05 (* 0.0909091 = 1.14744e-06 loss)
I0422 01:38:20.402227 32397 solver.cpp:245] Train net output #137: loss3/loss13 = 1.37693e-05 (* 0.0909091 = 1.25176e-06 loss)
I0422 01:38:20.402240 32397 solver.cpp:245] Train net output #138: loss3/loss14 = 1.1981e-05 (* 0.0909091 = 1.08918e-06 loss)
I0422 01:38:20.402257 32397 solver.cpp:245] Train net output #139: loss3/loss15 = 1.27858e-05 (* 0.0909091 = 1.16234e-06 loss)
I0422 01:38:20.402271 32397 solver.cpp:245] Train net output #140: loss3/loss16 = 1.36203e-05 (* 0.0909091 = 1.23821e-06 loss)
I0422 01:38:20.402284 32397 solver.cpp:245] Train net output #141: loss3/loss17 = 1.4276e-05 (* 0.0909091 = 1.29782e-06 loss)
I0422 01:38:20.402298 32397 solver.cpp:245] Train net output #142: loss3/loss18 = 1.34117e-05 (* 0.0909091 = 1.21924e-06 loss)
I0422 01:38:20.402312 32397 solver.cpp:245] Train net output #143: loss3/loss19 = 1.17724e-05 (* 0.0909091 = 1.07022e-06 loss)
I0422 01:38:20.402326 32397 solver.cpp:245] Train net output #144: loss3/loss20 = 9.93941e-06 (* 0.0909091 = 9.03583e-07 loss)
I0422 01:38:20.402339 32397 solver.cpp:245] Train net output #145: loss3/loss21 = 1.24132e-05 (* 0.0909091 = 1.12847e-06 loss)
I0422 01:38:20.402354 32397 solver.cpp:245] Train net output #146: loss3/loss22 = 1.21003e-05 (* 0.0909091 = 1.10002e-06 loss)
I0422 01:38:20.402365 32397 solver.cpp:245] Train net output #147: total_accuracy = 0.75
I0422 01:38:20.402377 32397 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.875
I0422 01:38:20.402398 32397 solver.cpp:245] Train net output #149: total_confidence = 0.621974
I0422 01:38:20.402411 32397 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.447935
I0422 01:38:20.402423 32397 sgd_solver.cpp:106] Iteration 11500, lr = 0.001
I0422 01:44:02.096132 32397 solver.cpp:229] Iteration 12000, loss = 2.23417
I0422 01:44:02.096251 32397 solver.cpp:245] Train net output #0: loss1/accuracy = 0.756098
I0422 01:44:02.096271 32397 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75
I0422 01:44:02.096285 32397 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.875
I0422 01:44:02.096298 32397 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.625
I0422 01:44:02.096310 32397 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.125
I0422 01:44:02.096323 32397 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.5
I0422 01:44:02.096344 32397 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.75
I0422 01:44:02.096356 32397 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.75
I0422 01:44:02.096369 32397 solver.cpp:245] Train net output #8: loss1/accuracy08 = 1
I0422 01:44:02.096381 32397 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1
I0422 01:44:02.096401 32397 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0422 01:44:02.096413 32397 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0422 01:44:02.096426 32397 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0422 01:44:02.096437 32397 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0422 01:44:02.096449 32397 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0422 01:44:02.096462 32397 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0422 01:44:02.096473 32397 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0422 01:44:02.096487 32397 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0422 01:44:02.096498 32397 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0422 01:44:02.096511 32397 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0422 01:44:02.096524 32397 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0422 01:44:02.096535 32397 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0422 01:44:02.096546 32397 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0422 01:44:02.096559 32397 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.926136
I0422 01:44:02.096570 32397 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.951219
I0422 01:44:02.096587 32397 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 0.769821 (* 0.3 = 0.230946 loss)
I0422 01:44:02.096601 32397 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.246314 (* 0.3 = 0.0738941 loss)
I0422 01:44:02.096619 32397 solver.cpp:245] Train net output #27: loss1/loss01 = 0.853886 (* 0.0272727 = 0.0232878 loss)
I0422 01:44:02.096633 32397 solver.cpp:245] Train net output #28: loss1/loss02 = 0.410966 (* 0.0272727 = 0.0112082 loss)
I0422 01:44:02.096648 32397 solver.cpp:245] Train net output #29: loss1/loss03 = 1.36122 (* 0.0272727 = 0.0371242 loss)
I0422 01:44:02.096662 32397 solver.cpp:245] Train net output #30: loss1/loss04 = 2.09836 (* 0.0272727 = 0.057228 loss)
I0422 01:44:02.096683 32397 solver.cpp:245] Train net output #31: loss1/loss05 = 1.42354 (* 0.0272727 = 0.0388239 loss)
I0422 01:44:02.096696 32397 solver.cpp:245] Train net output #32: loss1/loss06 = 0.898967 (* 0.0272727 = 0.0245173 loss)
I0422 01:44:02.096710 32397 solver.cpp:245] Train net output #33: loss1/loss07 = 0.602556 (* 0.0272727 = 0.0164333 loss)
I0422 01:44:02.096725 32397 solver.cpp:245] Train net output #34: loss1/loss08 = 0.21355 (* 0.0272727 = 0.00582408 loss)
I0422 01:44:02.096740 32397 solver.cpp:245] Train net output #35: loss1/loss09 = 0.0466541 (* 0.0272727 = 0.00127239 loss)
I0422 01:44:02.096755 32397 solver.cpp:245] Train net output #36: loss1/loss10 = 0.00510296 (* 0.0272727 = 0.000139172 loss)
I0422 01:44:02.096768 32397 solver.cpp:245] Train net output #37: loss1/loss11 = 1.47971e-05 (* 0.0272727 = 4.03556e-07 loss)
I0422 01:44:02.096782 32397 solver.cpp:245] Train net output #38: loss1/loss12 = 1.66598e-05 (* 0.0272727 = 4.54358e-07 loss)
I0422 01:44:02.096815 32397 solver.cpp:245] Train net output #39: loss1/loss13 = 1.11015e-05 (* 0.0272727 = 3.02768e-07 loss)
I0422 01:44:02.096830 32397 solver.cpp:245] Train net output #40: loss1/loss14 = 2.2412e-05 (* 0.0272727 = 6.11236e-07 loss)
I0422 01:44:02.096845 32397 solver.cpp:245] Train net output #41: loss1/loss15 = 1.59595e-05 (* 0.0272727 = 4.35259e-07 loss)
I0422 01:44:02.096859 32397 solver.cpp:245] Train net output #42: loss1/loss16 = 8.89607e-06 (* 0.0272727 = 2.4262e-07 loss)
I0422 01:44:02.096874 32397 solver.cpp:245] Train net output #43: loss1/loss17 = 1.74945e-05 (* 0.0272727 = 4.77123e-07 loss)
I0422 01:44:02.096889 32397 solver.cpp:245] Train net output #44: loss1/loss18 = 2.13837e-05 (* 0.0272727 = 5.83193e-07 loss)
I0422 01:44:02.096902 32397 solver.cpp:245] Train net output #45: loss1/loss19 = 1.03415e-05 (* 0.0272727 = 2.82041e-07 loss)
I0422 01:44:02.096916 32397 solver.cpp:245] Train net output #46: loss1/loss20 = 8.32983e-06 (* 0.0272727 = 2.27177e-07 loss)
I0422 01:44:02.096930 32397 solver.cpp:245] Train net output #47: loss1/loss21 = 1.44245e-05 (* 0.0272727 = 3.93396e-07 loss)
I0422 01:44:02.096946 32397 solver.cpp:245] Train net output #48: loss1/loss22 = 1.29941e-05 (* 0.0272727 = 3.54384e-07 loss)
I0422 01:44:02.096958 32397 solver.cpp:245] Train net output #49: loss2/accuracy = 0.902439
I0422 01:44:02.096971 32397 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875
I0422 01:44:02.096982 32397 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.875
I0422 01:44:02.096994 32397 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.625
I0422 01:44:02.097007 32397 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.625
I0422 01:44:02.097021 32397 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.625
I0422 01:44:02.097034 32397 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.625
I0422 01:44:02.097046 32397 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.75
I0422 01:44:02.097057 32397 solver.cpp:245] Train net output #57: loss2/accuracy08 = 1
I0422 01:44:02.097069 32397 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1
I0422 01:44:02.097081 32397 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0422 01:44:02.097092 32397 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0422 01:44:02.097105 32397 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0422 01:44:02.097115 32397 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0422 01:44:02.097127 32397 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0422 01:44:02.097139 32397 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0422 01:44:02.097151 32397 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0422 01:44:02.097162 32397 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0422 01:44:02.097174 32397 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0422 01:44:02.097185 32397 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0422 01:44:02.097198 32397 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0422 01:44:02.097208 32397 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0422 01:44:02.097223 32397 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0422 01:44:02.097234 32397 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.960227
I0422 01:44:02.097246 32397 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.97561
I0422 01:44:02.097261 32397 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.375372 (* 0.3 = 0.112612 loss)
I0422 01:44:02.097275 32397 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.145924 (* 0.3 = 0.0437772 loss)
I0422 01:44:02.097290 32397 solver.cpp:245] Train net output #76: loss2/loss01 = 0.354678 (* 0.0272727 = 0.00967305 loss)
I0422 01:44:02.097303 32397 solver.cpp:245] Train net output #77: loss2/loss02 = 0.376055 (* 0.0272727 = 0.010256 loss)
I0422 01:44:02.097329 32397 solver.cpp:245] Train net output #78: loss2/loss03 = 1.11394 (* 0.0272727 = 0.0303803 loss)
I0422 01:44:02.097345 32397 solver.cpp:245] Train net output #79: loss2/loss04 = 1.56181 (* 0.0272727 = 0.0425949 loss)
I0422 01:44:02.097359 32397 solver.cpp:245] Train net output #80: loss2/loss05 = 0.973264 (* 0.0272727 = 0.0265436 loss)
I0422 01:44:02.097373 32397 solver.cpp:245] Train net output #81: loss2/loss06 = 0.865518 (* 0.0272727 = 0.023605 loss)
I0422 01:44:02.097388 32397 solver.cpp:245] Train net output #82: loss2/loss07 = 0.55291 (* 0.0272727 = 0.0150794 loss)
I0422 01:44:02.097401 32397 solver.cpp:245] Train net output #83: loss2/loss08 = 0.137943 (* 0.0272727 = 0.00376209 loss)
I0422 01:44:02.097415 32397 solver.cpp:245] Train net output #84: loss2/loss09 = 0.0219833 (* 0.0272727 = 0.000599543 loss)
I0422 01:44:02.097429 32397 solver.cpp:245] Train net output #85: loss2/loss10 = 0.00223866 (* 0.0272727 = 6.10543e-05 loss)
I0422 01:44:02.097443 32397 solver.cpp:245] Train net output #86: loss2/loss11 = 3.47166e-05 (* 0.0272727 = 9.46816e-07 loss)
I0422 01:44:02.097457 32397 solver.cpp:245] Train net output #87: loss2/loss12 = 1.47678e-05 (* 0.0272727 = 4.02758e-07 loss)
I0422 01:44:02.097471 32397 solver.cpp:245] Train net output #88: loss2/loss13 = 2.01478e-05 (* 0.0272727 = 5.49486e-07 loss)
I0422 01:44:02.097484 32397 solver.cpp:245] Train net output #89: loss2/loss14 = 2.95895e-05 (* 0.0272727 = 8.06986e-07 loss)
I0422 01:44:02.097498 32397 solver.cpp:245] Train net output #90: loss2/loss15 = 1.95963e-05 (* 0.0272727 = 5.34445e-07 loss)
I0422 01:44:02.097512 32397 solver.cpp:245] Train net output #91: loss2/loss16 = 3.92921e-05 (* 0.0272727 = 1.0716e-06 loss)
I0422 01:44:02.097527 32397 solver.cpp:245] Train net output #92: loss2/loss17 = 3.61625e-05 (* 0.0272727 = 9.86251e-07 loss)
I0422 01:44:02.097540 32397 solver.cpp:245] Train net output #93: loss2/loss18 = 1.35308e-05 (* 0.0272727 = 3.69023e-07 loss)
I0422 01:44:02.097554 32397 solver.cpp:245] Train net output #94: loss2/loss19 = 4.96677e-05 (* 0.0272727 = 1.35457e-06 loss)
I0422 01:44:02.097568 32397 solver.cpp:245] Train net output #95: loss2/loss20 = 1.09825e-05 (* 0.0272727 = 2.99523e-07 loss)
I0422 01:44:02.097584 32397 solver.cpp:245] Train net output #96: loss2/loss21 = 1.09826e-05 (* 0.0272727 = 2.99525e-07 loss)
I0422 01:44:02.097596 32397 solver.cpp:245] Train net output #97: loss2/loss22 = 1.88364e-05 (* 0.0272727 = 5.13719e-07 loss)
I0422 01:44:02.097609 32397 solver.cpp:245] Train net output #98: loss3/accuracy = 0.926829
I0422 01:44:02.097621 32397 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875
I0422 01:44:02.097633 32397 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0422 01:44:02.097645 32397 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0422 01:44:02.097656 32397 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1
I0422 01:44:02.097668 32397 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875
I0422 01:44:02.097679 32397 solver.cpp:245] Train net output #104: loss3/accuracy06 = 1
I0422 01:44:02.097692 32397 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875
I0422 01:44:02.097703 32397 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1
I0422 01:44:02.097715 32397 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1
I0422 01:44:02.097726 32397 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0422 01:44:02.097738 32397 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0422 01:44:02.097749 32397 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0422 01:44:02.097760 32397 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0422 01:44:02.097771 32397 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0422 01:44:02.097782 32397 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0422 01:44:02.097803 32397 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0422 01:44:02.097816 32397 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0422 01:44:02.097828 32397 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0422 01:44:02.097839 32397 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0422 01:44:02.097851 32397 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0422 01:44:02.097862 32397 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0422 01:44:02.097873 32397 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0422 01:44:02.097884 32397 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.977273
I0422 01:44:02.097897 32397 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.97561
I0422 01:44:02.097910 32397 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.210894 (* 1 = 0.210894 loss)
I0422 01:44:02.097924 32397 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.0798799 (* 1 = 0.0798799 loss)
I0422 01:44:02.097937 32397 solver.cpp:245] Train net output #125: loss3/loss01 = 0.403563 (* 0.0909091 = 0.0366876 loss)
I0422 01:44:02.097951 32397 solver.cpp:245] Train net output #126: loss3/loss02 = 0.0393503 (* 0.0909091 = 0.0035773 loss)
I0422 01:44:02.097965 32397 solver.cpp:245] Train net output #127: loss3/loss03 = 0.144837 (* 0.0909091 = 0.013167 loss)
I0422 01:44:02.097980 32397 solver.cpp:245] Train net output #128: loss3/loss04 = 0.0824721 (* 0.0909091 = 0.00749746 loss)
I0422 01:44:02.097993 32397 solver.cpp:245] Train net output #129: loss3/loss05 = 0.227557 (* 0.0909091 = 0.020687 loss)
I0422 01:44:02.098007 32397 solver.cpp:245] Train net output #130: loss3/loss06 = 0.173416 (* 0.0909091 = 0.0157651 loss)
I0422 01:44:02.098021 32397 solver.cpp:245] Train net output #131: loss3/loss07 = 0.253881 (* 0.0909091 = 0.0230801 loss)
I0422 01:44:02.098036 32397 solver.cpp:245] Train net output #132: loss3/loss08 = 0.0352411 (* 0.0909091 = 0.00320374 loss)
I0422 01:44:02.098049 32397 solver.cpp:245] Train net output #133: loss3/loss09 = 0.00349391 (* 0.0909091 = 0.000317629 loss)
I0422 01:44:02.098063 32397 solver.cpp:245] Train net output #134: loss3/loss10 = 0.000443835 (* 0.0909091 = 4.03487e-05 loss)
I0422 01:44:02.098080 32397 solver.cpp:245] Train net output #135: loss3/loss11 = 2.47378e-05 (* 0.0909091 = 2.24889e-06 loss)
I0422 01:44:02.098095 32397 solver.cpp:245] Train net output #136: loss3/loss12 = 2.56545e-05 (* 0.0909091 = 2.33223e-06 loss)
I0422 01:44:02.098109 32397 solver.cpp:245] Train net output #137: loss3/loss13 = 2.60269e-05 (* 0.0909091 = 2.36608e-06 loss)
I0422 01:44:02.098122 32397 solver.cpp:245] Train net output #138: loss3/loss14 = 2.76812e-05 (* 0.0909091 = 2.51647e-06 loss)
I0422 01:44:02.098136 32397 solver.cpp:245] Train net output #139: loss3/loss15 = 2.48198e-05 (* 0.0909091 = 2.25635e-06 loss)
I0422 01:44:02.098150 32397 solver.cpp:245] Train net output #140: loss3/loss16 = 2.62654e-05 (* 0.0909091 = 2.38776e-06 loss)
I0422 01:44:02.098165 32397 solver.cpp:245] Train net output #141: loss3/loss17 = 2.7115e-05 (* 0.0909091 = 2.465e-06 loss)
I0422 01:44:02.098178 32397 solver.cpp:245] Train net output #142: loss3/loss18 = 2.44099e-05 (* 0.0909091 = 2.21909e-06 loss)
I0422 01:44:02.098191 32397 solver.cpp:245] Train net output #143: loss3/loss19 = 3.26743e-05 (* 0.0909091 = 2.97039e-06 loss)
I0422 01:44:02.098206 32397 solver.cpp:245] Train net output #144: loss3/loss20 = 2.45367e-05 (* 0.0909091 = 2.23061e-06 loss)
I0422 01:44:02.098219 32397 solver.cpp:245] Train net output #145: loss3/loss21 = 2.2085e-05 (* 0.0909091 = 2.00773e-06 loss)
I0422 01:44:02.098234 32397 solver.cpp:245] Train net output #146: loss3/loss22 = 2.05351e-05 (* 0.0909091 = 1.86683e-06 loss)
I0422 01:44:02.098247 32397 solver.cpp:245] Train net output #147: total_accuracy = 0.75
I0422 01:44:02.098258 32397 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.75
I0422 01:44:02.098284 32397 solver.cpp:245] Train net output #149: total_confidence = 0.666811
I0422 01:44:02.098296 32397 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.637349
I0422 01:44:02.098309 32397 sgd_solver.cpp:106] Iteration 12000, lr = 0.001
I0422 01:49:43.904655 32397 solver.cpp:229] Iteration 12500, loss = 2.27332
I0422 01:49:43.904781 32397 solver.cpp:245] Train net output #0: loss1/accuracy = 0.6
I0422 01:49:43.904801 32397 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.625
I0422 01:49:43.904814 32397 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5
I0422 01:49:43.904829 32397 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.5
I0422 01:49:43.904840 32397 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375
I0422 01:49:43.904853 32397 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.125
I0422 01:49:43.904865 32397 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.625
I0422 01:49:43.904878 32397 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.75
I0422 01:49:43.904891 32397 solver.cpp:245] Train net output #8: loss1/accuracy08 = 1
I0422 01:49:43.904903 32397 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1
I0422 01:49:43.904916 32397 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0422 01:49:43.904927 32397 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0422 01:49:43.904939 32397 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0422 01:49:43.904952 32397 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0422 01:49:43.904963 32397 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0422 01:49:43.904975 32397 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0422 01:49:43.904988 32397 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0422 01:49:43.904999 32397 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0422 01:49:43.905011 32397 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0422 01:49:43.905025 32397 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0422 01:49:43.905036 32397 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0422 01:49:43.905048 32397 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0422 01:49:43.905060 32397 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0422 01:49:43.905071 32397 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.863636
I0422 01:49:43.905083 32397 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.866667
I0422 01:49:43.905099 32397 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.29585 (* 0.3 = 0.388756 loss)
I0422 01:49:43.905114 32397 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.438698 (* 0.3 = 0.131609 loss)
I0422 01:49:43.905128 32397 solver.cpp:245] Train net output #27: loss1/loss01 = 1.13725 (* 0.0272727 = 0.0310159 loss)
I0422 01:49:43.905143 32397 solver.cpp:245] Train net output #28: loss1/loss02 = 2.30658 (* 0.0272727 = 0.0629068 loss)
I0422 01:49:43.905158 32397 solver.cpp:245] Train net output #29: loss1/loss03 = 2.27318 (* 0.0272727 = 0.0619959 loss)
I0422 01:49:43.905171 32397 solver.cpp:245] Train net output #30: loss1/loss04 = 1.90187 (* 0.0272727 = 0.0518693 loss)
I0422 01:49:43.905185 32397 solver.cpp:245] Train net output #31: loss1/loss05 = 2.19201 (* 0.0272727 = 0.059782 loss)
I0422 01:49:43.905202 32397 solver.cpp:245] Train net output #32: loss1/loss06 = 0.983124 (* 0.0272727 = 0.0268125 loss)
I0422 01:49:43.905217 32397 solver.cpp:245] Train net output #33: loss1/loss07 = 0.876885 (* 0.0272727 = 0.0239151 loss)
I0422 01:49:43.905232 32397 solver.cpp:245] Train net output #34: loss1/loss08 = 0.152381 (* 0.0272727 = 0.00415585 loss)
I0422 01:49:43.905246 32397 solver.cpp:245] Train net output #35: loss1/loss09 = 0.0468101 (* 0.0272727 = 0.00127664 loss)
I0422 01:49:43.905267 32397 solver.cpp:245] Train net output #36: loss1/loss10 = 0.00933459 (* 0.0272727 = 0.00025458 loss)
I0422 01:49:43.905280 32397 solver.cpp:245] Train net output #37: loss1/loss11 = 0.000328564 (* 0.0272727 = 8.96083e-06 loss)
I0422 01:49:43.905295 32397 solver.cpp:245] Train net output #38: loss1/loss12 = 0.000144683 (* 0.0272727 = 3.94589e-06 loss)
I0422 01:49:43.905309 32397 solver.cpp:245] Train net output #39: loss1/loss13 = 0.000180804 (* 0.0272727 = 4.93102e-06 loss)
I0422 01:49:43.905349 32397 solver.cpp:245] Train net output #40: loss1/loss14 = 0.000208713 (* 0.0272727 = 5.69217e-06 loss)
I0422 01:49:43.905365 32397 solver.cpp:245] Train net output #41: loss1/loss15 = 8.63064e-05 (* 0.0272727 = 2.35381e-06 loss)
I0422 01:49:43.905380 32397 solver.cpp:245] Train net output #42: loss1/loss16 = 0.000118676 (* 0.0272727 = 3.23661e-06 loss)
I0422 01:49:43.905393 32397 solver.cpp:245] Train net output #43: loss1/loss17 = 0.000102524 (* 0.0272727 = 2.7961e-06 loss)
I0422 01:49:43.905408 32397 solver.cpp:245] Train net output #44: loss1/loss18 = 8.21677e-05 (* 0.0272727 = 2.24094e-06 loss)
I0422 01:49:43.905422 32397 solver.cpp:245] Train net output #45: loss1/loss19 = 9.61096e-05 (* 0.0272727 = 2.62117e-06 loss)
I0422 01:49:43.905436 32397 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000131645 (* 0.0272727 = 3.59032e-06 loss)
I0422 01:49:43.905450 32397 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000115879 (* 0.0272727 = 3.16033e-06 loss)
I0422 01:49:43.905464 32397 solver.cpp:245] Train net output #48: loss1/loss22 = 8.66556e-05 (* 0.0272727 = 2.36333e-06 loss)
I0422 01:49:43.905478 32397 solver.cpp:245] Train net output #49: loss2/accuracy = 0.777778
I0422 01:49:43.905489 32397 solver.cpp:245] Train net output #50: loss2/accuracy01 = 1
I0422 01:49:43.905500 32397 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75
I0422 01:49:43.905513 32397 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.625
I0422 01:49:43.905524 32397 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.5
I0422 01:49:43.905536 32397 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.75
I0422 01:49:43.905547 32397 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.875
I0422 01:49:43.905560 32397 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.75
I0422 01:49:43.905570 32397 solver.cpp:245] Train net output #57: loss2/accuracy08 = 1
I0422 01:49:43.905581 32397 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1
I0422 01:49:43.905593 32397 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0422 01:49:43.905604 32397 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0422 01:49:43.905616 32397 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0422 01:49:43.905627 32397 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0422 01:49:43.905638 32397 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0422 01:49:43.905649 32397 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0422 01:49:43.905661 32397 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0422 01:49:43.905673 32397 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0422 01:49:43.905684 32397 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0422 01:49:43.905696 32397 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0422 01:49:43.905707 32397 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0422 01:49:43.905719 32397 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0422 01:49:43.905730 32397 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0422 01:49:43.905741 32397 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.914773
I0422 01:49:43.905752 32397 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.933333
I0422 01:49:43.905766 32397 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.757185 (* 0.3 = 0.227156 loss)
I0422 01:49:43.905781 32397 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.253016 (* 0.3 = 0.0759048 loss)
I0422 01:49:43.905798 32397 solver.cpp:245] Train net output #76: loss2/loss01 = 0.18739 (* 0.0272727 = 0.00511063 loss)
I0422 01:49:43.905814 32397 solver.cpp:245] Train net output #77: loss2/loss02 = 1.28595 (* 0.0272727 = 0.0350715 loss)
I0422 01:49:43.905839 32397 solver.cpp:245] Train net output #78: loss2/loss03 = 1.20493 (* 0.0272727 = 0.0328618 loss)
I0422 01:49:43.905854 32397 solver.cpp:245] Train net output #79: loss2/loss04 = 1.73284 (* 0.0272727 = 0.0472594 loss)
I0422 01:49:43.905869 32397 solver.cpp:245] Train net output #80: loss2/loss05 = 1.81902 (* 0.0272727 = 0.0496097 loss)
I0422 01:49:43.905882 32397 solver.cpp:245] Train net output #81: loss2/loss06 = 0.66713 (* 0.0272727 = 0.0181945 loss)
I0422 01:49:43.905896 32397 solver.cpp:245] Train net output #82: loss2/loss07 = 0.471543 (* 0.0272727 = 0.0128603 loss)
I0422 01:49:43.905910 32397 solver.cpp:245] Train net output #83: loss2/loss08 = 0.161372 (* 0.0272727 = 0.00440104 loss)
I0422 01:49:43.905925 32397 solver.cpp:245] Train net output #84: loss2/loss09 = 0.00628203 (* 0.0272727 = 0.000171328 loss)
I0422 01:49:43.905938 32397 solver.cpp:245] Train net output #85: loss2/loss10 = 0.00191545 (* 0.0272727 = 5.22395e-05 loss)
I0422 01:49:43.905952 32397 solver.cpp:245] Train net output #86: loss2/loss11 = 3.62101e-06 (* 0.0272727 = 9.87547e-08 loss)
I0422 01:49:43.905966 32397 solver.cpp:245] Train net output #87: loss2/loss12 = 4.20216e-06 (* 0.0272727 = 1.14604e-07 loss)
I0422 01:49:43.905980 32397 solver.cpp:245] Train net output #88: loss2/loss13 = 3.85943e-06 (* 0.0272727 = 1.05257e-07 loss)
I0422 01:49:43.905994 32397 solver.cpp:245] Train net output #89: loss2/loss14 = 2.75673e-06 (* 0.0272727 = 7.51835e-08 loss)
I0422 01:49:43.906008 32397 solver.cpp:245] Train net output #90: loss2/loss15 = 2.4438e-06 (* 0.0272727 = 6.66491e-08 loss)
I0422 01:49:43.906021 32397 solver.cpp:245] Train net output #91: loss2/loss16 = 3.53161e-06 (* 0.0272727 = 9.63166e-08 loss)
I0422 01:49:43.906035 32397 solver.cpp:245] Train net output #92: loss2/loss17 = 3.5465e-06 (* 0.0272727 = 9.67228e-08 loss)
I0422 01:49:43.906049 32397 solver.cpp:245] Train net output #93: loss2/loss18 = 2.57791e-06 (* 0.0272727 = 7.03068e-08 loss)
I0422 01:49:43.906064 32397 solver.cpp:245] Train net output #94: loss2/loss19 = 2.3544e-06 (* 0.0272727 = 6.42108e-08 loss)
I0422 01:49:43.906077 32397 solver.cpp:245] Train net output #95: loss2/loss20 = 6.37777e-06 (* 0.0272727 = 1.73939e-07 loss)
I0422 01:49:43.906091 32397 solver.cpp:245] Train net output #96: loss2/loss21 = 2.77163e-06 (* 0.0272727 = 7.55899e-08 loss)
I0422 01:49:43.906105 32397 solver.cpp:245] Train net output #97: loss2/loss22 = 3.23357e-06 (* 0.0272727 = 8.81883e-08 loss)
I0422 01:49:43.906116 32397 solver.cpp:245] Train net output #98: loss3/accuracy = 0.933333
I0422 01:49:43.906129 32397 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0422 01:49:43.906141 32397 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875
I0422 01:49:43.906152 32397 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0422 01:49:43.906163 32397 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.75
I0422 01:49:43.906175 32397 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875
I0422 01:49:43.906188 32397 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.875
I0422 01:49:43.906198 32397 solver.cpp:245] Train net output #105: loss3/accuracy07 = 1
I0422 01:49:43.906210 32397 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1
I0422 01:49:43.906221 32397 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1
I0422 01:49:43.906232 32397 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0422 01:49:43.906244 32397 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0422 01:49:43.906257 32397 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0422 01:49:43.906270 32397 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0422 01:49:43.906280 32397 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0422 01:49:43.906291 32397 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0422 01:49:43.906312 32397 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0422 01:49:43.906325 32397 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0422 01:49:43.906337 32397 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0422 01:49:43.906348 32397 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0422 01:49:43.906359 32397 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0422 01:49:43.906370 32397 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0422 01:49:43.906381 32397 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0422 01:49:43.906393 32397 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.971591
I0422 01:49:43.906404 32397 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.977778
I0422 01:49:43.906419 32397 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.326153 (* 1 = 0.326153 loss)
I0422 01:49:43.906432 32397 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.128343 (* 1 = 0.128343 loss)
I0422 01:49:43.906446 32397 solver.cpp:245] Train net output #125: loss3/loss01 = 0.118127 (* 0.0909091 = 0.0107388 loss)
I0422 01:49:43.906460 32397 solver.cpp:245] Train net output #126: loss3/loss02 = 0.698261 (* 0.0909091 = 0.0634783 loss)
I0422 01:49:43.906473 32397 solver.cpp:245] Train net output #127: loss3/loss03 = 0.0717962 (* 0.0909091 = 0.00652693 loss)
I0422 01:49:43.906488 32397 solver.cpp:245] Train net output #128: loss3/loss04 = 0.943104 (* 0.0909091 = 0.0857368 loss)
I0422 01:49:43.906502 32397 solver.cpp:245] Train net output #129: loss3/loss05 = 0.730561 (* 0.0909091 = 0.0664146 loss)
I0422 01:49:43.906515 32397 solver.cpp:245] Train net output #130: loss3/loss06 = 0.414442 (* 0.0909091 = 0.0376765 loss)
I0422 01:49:43.906529 32397 solver.cpp:245] Train net output #131: loss3/loss07 = 0.226601 (* 0.0909091 = 0.0206001 loss)
I0422 01:49:43.906543 32397 solver.cpp:245] Train net output #132: loss3/loss08 = 0.0756892 (* 0.0909091 = 0.00688083 loss)
I0422 01:49:43.906556 32397 solver.cpp:245] Train net output #133: loss3/loss09 = 0.00372031 (* 0.0909091 = 0.00033821 loss)
I0422 01:49:43.906570 32397 solver.cpp:245] Train net output #134: loss3/loss10 = 0.000468107 (* 0.0909091 = 4.25552e-05 loss)
I0422 01:49:43.906586 32397 solver.cpp:245] Train net output #135: loss3/loss11 = 2.17123e-05 (* 0.0909091 = 1.97385e-06 loss)
I0422 01:49:43.906600 32397 solver.cpp:245] Train net output #136: loss3/loss12 = 1.90596e-05 (* 0.0909091 = 1.73269e-06 loss)
I0422 01:49:43.906615 32397 solver.cpp:245] Train net output #137: loss3/loss13 = 1.43205e-05 (* 0.0909091 = 1.30187e-06 loss)
I0422 01:49:43.906628 32397 solver.cpp:245] Train net output #138: loss3/loss14 = 2.11014e-05 (* 0.0909091 = 1.91831e-06 loss)
I0422 01:49:43.906642 32397 solver.cpp:245] Train net output #139: loss3/loss15 = 1.56319e-05 (* 0.0909091 = 1.42109e-06 loss)
I0422 01:49:43.906656 32397 solver.cpp:245] Train net output #140: loss3/loss16 = 1.95663e-05 (* 0.0909091 = 1.77875e-06 loss)
I0422 01:49:43.906671 32397 solver.cpp:245] Train net output #141: loss3/loss17 = 1.87466e-05 (* 0.0909091 = 1.70424e-06 loss)
I0422 01:49:43.906683 32397 solver.cpp:245] Train net output #142: loss3/loss18 = 1.74202e-05 (* 0.0909091 = 1.58366e-06 loss)
I0422 01:49:43.906697 32397 solver.cpp:245] Train net output #143: loss3/loss19 = 1.67348e-05 (* 0.0909091 = 1.52134e-06 loss)
I0422 01:49:43.906710 32397 solver.cpp:245] Train net output #144: loss3/loss20 = 1.6541e-05 (* 0.0909091 = 1.50373e-06 loss)
I0422 01:49:43.906725 32397 solver.cpp:245] Train net output #145: loss3/loss21 = 1.45143e-05 (* 0.0909091 = 1.31948e-06 loss)
I0422 01:49:43.906738 32397 solver.cpp:245] Train net output #146: loss3/loss22 = 1.31731e-05 (* 0.0909091 = 1.19755e-06 loss)
I0422 01:49:43.906750 32397 solver.cpp:245] Train net output #147: total_accuracy = 0.75
I0422 01:49:43.906762 32397 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.625
I0422 01:49:43.906783 32397 solver.cpp:245] Train net output #149: total_confidence = 0.591971
I0422 01:49:43.906796 32397 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.388563
I0422 01:49:43.906810 32397 sgd_solver.cpp:106] Iteration 12500, lr = 0.001
I0422 01:55:25.584514 32397 solver.cpp:229] Iteration 13000, loss = 2.25555
I0422 01:55:25.584607 32397 solver.cpp:245] Train net output #0: loss1/accuracy = 0.411765
I0422 01:55:25.584626 32397 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.625
I0422 01:55:25.584641 32397 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5
I0422 01:55:25.584653 32397 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375
I0422 01:55:25.584666 32397 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.25
I0422 01:55:25.584679 32397 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.375
I0422 01:55:25.584692 32397 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.5
I0422 01:55:25.584704 32397 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.625
I0422 01:55:25.584717 32397 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.625
I0422 01:55:25.584729 32397 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1
I0422 01:55:25.584743 32397 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0422 01:55:25.584754 32397 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0422 01:55:25.584767 32397 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0422 01:55:25.584779 32397 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0422 01:55:25.584791 32397 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0422 01:55:25.584803 32397 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0422 01:55:25.584815 32397 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0422 01:55:25.584827 32397 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0422 01:55:25.584839 32397 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0422 01:55:25.584851 32397 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0422 01:55:25.584863 32397 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0422 01:55:25.584874 32397 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0422 01:55:25.584887 32397 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0422 01:55:25.584899 32397 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.818182
I0422 01:55:25.584911 32397 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.666667
I0422 01:55:25.584928 32397 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.93281 (* 0.3 = 0.579844 loss)
I0422 01:55:25.584942 32397 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.590307 (* 0.3 = 0.177092 loss)
I0422 01:55:25.584957 32397 solver.cpp:245] Train net output #27: loss1/loss01 = 1.4741 (* 0.0272727 = 0.0402027 loss)
I0422 01:55:25.584971 32397 solver.cpp:245] Train net output #28: loss1/loss02 = 2.16 (* 0.0272727 = 0.0589091 loss)
I0422 01:55:25.584985 32397 solver.cpp:245] Train net output #29: loss1/loss03 = 2.51155 (* 0.0272727 = 0.0684967 loss)
I0422 01:55:25.585003 32397 solver.cpp:245] Train net output #30: loss1/loss04 = 1.65316 (* 0.0272727 = 0.0450862 loss)
I0422 01:55:25.585018 32397 solver.cpp:245] Train net output #31: loss1/loss05 = 3.22461 (* 0.0272727 = 0.087944 loss)
I0422 01:55:25.585032 32397 solver.cpp:245] Train net output #32: loss1/loss06 = 2.37072 (* 0.0272727 = 0.064656 loss)
I0422 01:55:25.585053 32397 solver.cpp:245] Train net output #33: loss1/loss07 = 1.11045 (* 0.0272727 = 0.0302849 loss)
I0422 01:55:25.585067 32397 solver.cpp:245] Train net output #34: loss1/loss08 = 1.46313 (* 0.0272727 = 0.0399035 loss)
I0422 01:55:25.585081 32397 solver.cpp:245] Train net output #35: loss1/loss09 = 0.0372716 (* 0.0272727 = 0.0010165 loss)
I0422 01:55:25.585096 32397 solver.cpp:245] Train net output #36: loss1/loss10 = 0.00804824 (* 0.0272727 = 0.000219497 loss)
I0422 01:55:25.585119 32397 solver.cpp:245] Train net output #37: loss1/loss11 = 0.000266929 (* 0.0272727 = 7.27989e-06 loss)
I0422 01:55:25.585134 32397 solver.cpp:245] Train net output #38: loss1/loss12 = 0.000148107 (* 0.0272727 = 4.03929e-06 loss)
I0422 01:55:25.585147 32397 solver.cpp:245] Train net output #39: loss1/loss13 = 0.000121055 (* 0.0272727 = 3.30149e-06 loss)
I0422 01:55:25.585180 32397 solver.cpp:245] Train net output #40: loss1/loss14 = 0.000277999 (* 0.0272727 = 7.58179e-06 loss)
I0422 01:55:25.585196 32397 solver.cpp:245] Train net output #41: loss1/loss15 = 0.000185925 (* 0.0272727 = 5.0707e-06 loss)
I0422 01:55:25.585211 32397 solver.cpp:245] Train net output #42: loss1/loss16 = 0.000317138 (* 0.0272727 = 8.64922e-06 loss)
I0422 01:55:25.585224 32397 solver.cpp:245] Train net output #43: loss1/loss17 = 0.000150966 (* 0.0272727 = 4.11725e-06 loss)
I0422 01:55:25.585239 32397 solver.cpp:245] Train net output #44: loss1/loss18 = 0.000412232 (* 0.0272727 = 1.12427e-05 loss)
I0422 01:55:25.585253 32397 solver.cpp:245] Train net output #45: loss1/loss19 = 0.000257551 (* 0.0272727 = 7.02411e-06 loss)
I0422 01:55:25.585268 32397 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000328544 (* 0.0272727 = 8.96028e-06 loss)
I0422 01:55:25.585281 32397 solver.cpp:245] Train net output #47: loss1/loss21 = 0.00030673 (* 0.0272727 = 8.36537e-06 loss)
I0422 01:55:25.585295 32397 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000143895 (* 0.0272727 = 3.92441e-06 loss)
I0422 01:55:25.585307 32397 solver.cpp:245] Train net output #49: loss2/accuracy = 0.666667
I0422 01:55:25.585319 32397 solver.cpp:245] Train net output #50: loss2/accuracy01 = 1
I0422 01:55:25.585331 32397 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.5
I0422 01:55:25.585343 32397 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.25
I0422 01:55:25.585355 32397 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.625
I0422 01:55:25.585366 32397 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.625
I0422 01:55:25.585378 32397 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.5
I0422 01:55:25.585391 32397 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.75
I0422 01:55:25.585402 32397 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.625
I0422 01:55:25.585413 32397 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1
I0422 01:55:25.585425 32397 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0422 01:55:25.585436 32397 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0422 01:55:25.585448 32397 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0422 01:55:25.585459 32397 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0422 01:55:25.585470 32397 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0422 01:55:25.585481 32397 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0422 01:55:25.585494 32397 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0422 01:55:25.585505 32397 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0422 01:55:25.585516 32397 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0422 01:55:25.585527 32397 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0422 01:55:25.585539 32397 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0422 01:55:25.585551 32397 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0422 01:55:25.585561 32397 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0422 01:55:25.585572 32397 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.897727
I0422 01:55:25.585584 32397 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.823529
I0422 01:55:25.585598 32397 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.31922 (* 0.3 = 0.395767 loss)
I0422 01:55:25.585611 32397 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.395445 (* 0.3 = 0.118633 loss)
I0422 01:55:25.585625 32397 solver.cpp:245] Train net output #76: loss2/loss01 = 0.664331 (* 0.0272727 = 0.0181181 loss)
I0422 01:55:25.585639 32397 solver.cpp:245] Train net output #77: loss2/loss02 = 1.62055 (* 0.0272727 = 0.0441969 loss)
I0422 01:55:25.585664 32397 solver.cpp:245] Train net output #78: loss2/loss03 = 3.22878 (* 0.0272727 = 0.0880577 loss)
I0422 01:55:25.585680 32397 solver.cpp:245] Train net output #79: loss2/loss04 = 1.24079 (* 0.0272727 = 0.0338399 loss)
I0422 01:55:25.585695 32397 solver.cpp:245] Train net output #80: loss2/loss05 = 2.26802 (* 0.0272727 = 0.061855 loss)
I0422 01:55:25.585708 32397 solver.cpp:245] Train net output #81: loss2/loss06 = 2.13609 (* 0.0272727 = 0.0582571 loss)
I0422 01:55:25.585722 32397 solver.cpp:245] Train net output #82: loss2/loss07 = 0.946701 (* 0.0272727 = 0.0258191 loss)
I0422 01:55:25.585736 32397 solver.cpp:245] Train net output #83: loss2/loss08 = 1.69857 (* 0.0272727 = 0.0463246 loss)
I0422 01:55:25.585750 32397 solver.cpp:245] Train net output #84: loss2/loss09 = 0.0285763 (* 0.0272727 = 0.000779352 loss)
I0422 01:55:25.585765 32397 solver.cpp:245] Train net output #85: loss2/loss10 = 0.00557289 (* 0.0272727 = 0.000151988 loss)
I0422 01:55:25.585779 32397 solver.cpp:245] Train net output #86: loss2/loss11 = 8.01151e-05 (* 0.0272727 = 2.18496e-06 loss)
I0422 01:55:25.585793 32397 solver.cpp:245] Train net output #87: loss2/loss12 = 3.95453e-05 (* 0.0272727 = 1.07851e-06 loss)
I0422 01:55:25.585808 32397 solver.cpp:245] Train net output #88: loss2/loss13 = 0.000137573 (* 0.0272727 = 3.75198e-06 loss)
I0422 01:55:25.585821 32397 solver.cpp:245] Train net output #89: loss2/loss14 = 8.45e-05 (* 0.0272727 = 2.30454e-06 loss)
I0422 01:55:25.585835 32397 solver.cpp:245] Train net output #90: loss2/loss15 = 6.929e-05 (* 0.0272727 = 1.88973e-06 loss)
I0422 01:55:25.585850 32397 solver.cpp:245] Train net output #91: loss2/loss16 = 5.77306e-05 (* 0.0272727 = 1.57447e-06 loss)
I0422 01:55:25.585863 32397 solver.cpp:245] Train net output #92: loss2/loss17 = 8.85561e-05 (* 0.0272727 = 2.41517e-06 loss)
I0422 01:55:25.585878 32397 solver.cpp:245] Train net output #93: loss2/loss18 = 7.60802e-05 (* 0.0272727 = 2.07492e-06 loss)
I0422 01:55:25.585892 32397 solver.cpp:245] Train net output #94: loss2/loss19 = 5.90028e-05 (* 0.0272727 = 1.60917e-06 loss)
I0422 01:55:25.585906 32397 solver.cpp:245] Train net output #95: loss2/loss20 = 7.55199e-05 (* 0.0272727 = 2.05963e-06 loss)
I0422 01:55:25.585919 32397 solver.cpp:245] Train net output #96: loss2/loss21 = 0.000153046 (* 0.0272727 = 4.17398e-06 loss)
I0422 01:55:25.585933 32397 solver.cpp:245] Train net output #97: loss2/loss22 = 5.93905e-05 (* 0.0272727 = 1.61974e-06 loss)
I0422 01:55:25.585945 32397 solver.cpp:245] Train net output #98: loss3/accuracy = 0.803922
I0422 01:55:25.585958 32397 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875
I0422 01:55:25.585969 32397 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.75
I0422 01:55:25.585981 32397 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.75
I0422 01:55:25.585993 32397 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875
I0422 01:55:25.586004 32397 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.75
I0422 01:55:25.586015 32397 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.5
I0422 01:55:25.586027 32397 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875
I0422 01:55:25.586042 32397 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.625
I0422 01:55:25.586055 32397 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1
I0422 01:55:25.586067 32397 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0422 01:55:25.586078 32397 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0422 01:55:25.586089 32397 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0422 01:55:25.586102 32397 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0422 01:55:25.586112 32397 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0422 01:55:25.586123 32397 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0422 01:55:25.586145 32397 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0422 01:55:25.586158 32397 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0422 01:55:25.586170 32397 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0422 01:55:25.586181 32397 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0422 01:55:25.586192 32397 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0422 01:55:25.586204 32397 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0422 01:55:25.586215 32397 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0422 01:55:25.586225 32397 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.9375
I0422 01:55:25.586237 32397 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.862745
I0422 01:55:25.586251 32397 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.828544 (* 1 = 0.828544 loss)
I0422 01:55:25.586264 32397 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.268701 (* 1 = 0.268701 loss)
I0422 01:55:25.586278 32397 solver.cpp:245] Train net output #125: loss3/loss01 = 0.361866 (* 0.0909091 = 0.0328969 loss)
I0422 01:55:25.586292 32397 solver.cpp:245] Train net output #126: loss3/loss02 = 0.562952 (* 0.0909091 = 0.0511774 loss)
I0422 01:55:25.586305 32397 solver.cpp:245] Train net output #127: loss3/loss03 = 0.776872 (* 0.0909091 = 0.0706247 loss)
I0422 01:55:25.586319 32397 solver.cpp:245] Train net output #128: loss3/loss04 = 0.314206 (* 0.0909091 = 0.0285642 loss)
I0422 01:55:25.586333 32397 solver.cpp:245] Train net output #129: loss3/loss05 = 1.05455 (* 0.0909091 = 0.0958685 loss)
I0422 01:55:25.586346 32397 solver.cpp:245] Train net output #130: loss3/loss06 = 1.32227 (* 0.0909091 = 0.120206 loss)
I0422 01:55:25.586359 32397 solver.cpp:245] Train net output #131: loss3/loss07 = 0.656963 (* 0.0909091 = 0.0597239 loss)
I0422 01:55:25.586374 32397 solver.cpp:245] Train net output #132: loss3/loss08 = 1.42134 (* 0.0909091 = 0.129212 loss)
I0422 01:55:25.586387 32397 solver.cpp:245] Train net output #133: loss3/loss09 = 0.0999796 (* 0.0909091 = 0.00908905 loss)
I0422 01:55:25.586400 32397 solver.cpp:245] Train net output #134: loss3/loss10 = 0.0166546 (* 0.0909091 = 0.00151405 loss)
I0422 01:55:25.586415 32397 solver.cpp:245] Train net output #135: loss3/loss11 = 4.47315e-05 (* 0.0909091 = 4.0665e-06 loss)
I0422 01:55:25.586428 32397 solver.cpp:245] Train net output #136: loss3/loss12 = 4.44114e-05 (* 0.0909091 = 4.0374e-06 loss)
I0422 01:55:25.586442 32397 solver.cpp:245] Train net output #137: loss3/loss13 = 3.91869e-05 (* 0.0909091 = 3.56244e-06 loss)
I0422 01:55:25.586455 32397 solver.cpp:245] Train net output #138: loss3/loss14 = 4.08114e-05 (* 0.0909091 = 3.71013e-06 loss)
I0422 01:55:25.586470 32397 solver.cpp:245] Train net output #139: loss3/loss15 = 3.30315e-05 (* 0.0909091 = 3.00287e-06 loss)
I0422 01:55:25.586483 32397 solver.cpp:245] Train net output #140: loss3/loss16 = 3.24652e-05 (* 0.0909091 = 2.95138e-06 loss)
I0422 01:55:25.586499 32397 solver.cpp:245] Train net output #141: loss3/loss17 = 3.1854e-05 (* 0.0909091 = 2.89582e-06 loss)
I0422 01:55:25.586513 32397 solver.cpp:245] Train net output #142: loss3/loss18 = 3.87995e-05 (* 0.0909091 = 3.52722e-06 loss)
I0422 01:55:25.586527 32397 solver.cpp:245] Train net output #143: loss3/loss19 = 2.82474e-05 (* 0.0909091 = 2.56795e-06 loss)
I0422 01:55:25.586540 32397 solver.cpp:245] Train net output #144: loss3/loss20 = 2.8627e-05 (* 0.0909091 = 2.60245e-06 loss)
I0422 01:55:25.586555 32397 solver.cpp:245] Train net output #145: loss3/loss21 = 3.68764e-05 (* 0.0909091 = 3.3524e-06 loss)
I0422 01:55:25.586568 32397 solver.cpp:245] Train net output #146: loss3/loss22 = 4.08566e-05 (* 0.0909091 = 3.71424e-06 loss)
I0422 01:55:25.586580 32397 solver.cpp:245] Train net output #147: total_accuracy = 0.375
I0422 01:55:25.586591 32397 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.25
I0422 01:55:25.586613 32397 solver.cpp:245] Train net output #149: total_confidence = 0.418172
I0422 01:55:25.586627 32397 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.267417
I0422 01:55:25.586639 32397 sgd_solver.cpp:106] Iteration 13000, lr = 0.001
I0422 02:01:07.394985 32397 solver.cpp:229] Iteration 13500, loss = 2.23322
I0422 02:01:07.395139 32397 solver.cpp:245] Train net output #0: loss1/accuracy = 0.571429
I0422 02:01:07.395164 32397 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.625
I0422 02:01:07.395179 32397 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.375
I0422 02:01:07.395191 32397 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.25
I0422 02:01:07.395206 32397 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.125
I0422 02:01:07.395220 32397 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.5
I0422 02:01:07.395232 32397 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.75
I0422 02:01:07.395246 32397 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.875
I0422 02:01:07.395258 32397 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875
I0422 02:01:07.395272 32397 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1
I0422 02:01:07.395283 32397 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0422 02:01:07.395297 32397 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0422 02:01:07.395308 32397 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0422 02:01:07.395320 32397 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0422 02:01:07.395333 32397 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0422 02:01:07.395344 32397 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0422 02:01:07.395375 32397 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0422 02:01:07.395390 32397 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0422 02:01:07.395401 32397 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0422 02:01:07.395412 32397 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0422 02:01:07.395424 32397 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0422 02:01:07.395437 32397 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0422 02:01:07.395448 32397 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0422 02:01:07.395459 32397 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.880682
I0422 02:01:07.395473 32397 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.785714
I0422 02:01:07.395488 32397 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.44495 (* 0.3 = 0.433485 loss)
I0422 02:01:07.395503 32397 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.415248 (* 0.3 = 0.124574 loss)
I0422 02:01:07.395519 32397 solver.cpp:245] Train net output #27: loss1/loss01 = 2.06704 (* 0.0272727 = 0.0563737 loss)
I0422 02:01:07.395534 32397 solver.cpp:245] Train net output #28: loss1/loss02 = 1.64474 (* 0.0272727 = 0.0448566 loss)
I0422 02:01:07.395547 32397 solver.cpp:245] Train net output #29: loss1/loss03 = 2.46264 (* 0.0272727 = 0.0671629 loss)
I0422 02:01:07.395561 32397 solver.cpp:245] Train net output #30: loss1/loss04 = 2.48446 (* 0.0272727 = 0.0677579 loss)
I0422 02:01:07.395575 32397 solver.cpp:245] Train net output #31: loss1/loss05 = 1.8167 (* 0.0272727 = 0.0495465 loss)
I0422 02:01:07.395588 32397 solver.cpp:245] Train net output #32: loss1/loss06 = 0.819118 (* 0.0272727 = 0.0223396 loss)
I0422 02:01:07.395603 32397 solver.cpp:245] Train net output #33: loss1/loss07 = 0.449514 (* 0.0272727 = 0.0122595 loss)
I0422 02:01:07.395617 32397 solver.cpp:245] Train net output #34: loss1/loss08 = 0.342018 (* 0.0272727 = 0.00932775 loss)
I0422 02:01:07.395632 32397 solver.cpp:245] Train net output #35: loss1/loss09 = 0.00929159 (* 0.0272727 = 0.000253407 loss)
I0422 02:01:07.395647 32397 solver.cpp:245] Train net output #36: loss1/loss10 = 0.00262492 (* 0.0272727 = 7.15888e-05 loss)
I0422 02:01:07.395661 32397 solver.cpp:245] Train net output #37: loss1/loss11 = 1.25619e-05 (* 0.0272727 = 3.42596e-07 loss)
I0422 02:01:07.395675 32397 solver.cpp:245] Train net output #38: loss1/loss12 = 2.4469e-05 (* 0.0272727 = 6.67337e-07 loss)
I0422 02:01:07.395712 32397 solver.cpp:245] Train net output #39: loss1/loss13 = 2.03704e-05 (* 0.0272727 = 5.55556e-07 loss)
I0422 02:01:07.395728 32397 solver.cpp:245] Train net output #40: loss1/loss14 = 1.03862e-05 (* 0.0272727 = 2.8326e-07 loss)
I0422 02:01:07.395742 32397 solver.cpp:245] Train net output #41: loss1/loss15 = 1.31728e-05 (* 0.0272727 = 3.59258e-07 loss)
I0422 02:01:07.395757 32397 solver.cpp:245] Train net output #42: loss1/loss16 = 1.24277e-05 (* 0.0272727 = 3.38937e-07 loss)
I0422 02:01:07.395771 32397 solver.cpp:245] Train net output #43: loss1/loss17 = 1.38285e-05 (* 0.0272727 = 3.7714e-07 loss)
I0422 02:01:07.395786 32397 solver.cpp:245] Train net output #44: loss1/loss18 = 1.18317e-05 (* 0.0272727 = 3.22682e-07 loss)
I0422 02:01:07.395799 32397 solver.cpp:245] Train net output #45: loss1/loss19 = 1.50802e-05 (* 0.0272727 = 4.11279e-07 loss)
I0422 02:01:07.395819 32397 solver.cpp:245] Train net output #46: loss1/loss20 = 1.45438e-05 (* 0.0272727 = 3.9665e-07 loss)
I0422 02:01:07.395833 32397 solver.cpp:245] Train net output #47: loss1/loss21 = 1.16677e-05 (* 0.0272727 = 3.18211e-07 loss)
I0422 02:01:07.395846 32397 solver.cpp:245] Train net output #48: loss1/loss22 = 1.58104e-05 (* 0.0272727 = 4.31193e-07 loss)
I0422 02:01:07.395859 32397 solver.cpp:245] Train net output #49: loss2/accuracy = 0.833333
I0422 02:01:07.395880 32397 solver.cpp:245] Train net output #50: loss2/accuracy01 = 1
I0422 02:01:07.395892 32397 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.875
I0422 02:01:07.395905 32397 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.375
I0422 02:01:07.395915 32397 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.375
I0422 02:01:07.395927 32397 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.375
I0422 02:01:07.395939 32397 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.625
I0422 02:01:07.395951 32397 solver.cpp:245] Train net output #56: loss2/accuracy07 = 1
I0422 02:01:07.395963 32397 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875
I0422 02:01:07.395974 32397 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1
I0422 02:01:07.395987 32397 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0422 02:01:07.395999 32397 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0422 02:01:07.396010 32397 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0422 02:01:07.396023 32397 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0422 02:01:07.396034 32397 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0422 02:01:07.396045 32397 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0422 02:01:07.396056 32397 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0422 02:01:07.396069 32397 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0422 02:01:07.396080 32397 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0422 02:01:07.396090 32397 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0422 02:01:07.396101 32397 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0422 02:01:07.396113 32397 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0422 02:01:07.396124 32397 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0422 02:01:07.396136 32397 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.954545
I0422 02:01:07.396147 32397 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.97619
I0422 02:01:07.396167 32397 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.592918 (* 0.3 = 0.177875 loss)
I0422 02:01:07.396180 32397 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.178255 (* 0.3 = 0.0534766 loss)
I0422 02:01:07.396194 32397 solver.cpp:245] Train net output #76: loss2/loss01 = 0.422946 (* 0.0272727 = 0.0115349 loss)
I0422 02:01:07.396209 32397 solver.cpp:245] Train net output #77: loss2/loss02 = 0.840371 (* 0.0272727 = 0.0229192 loss)
I0422 02:01:07.396234 32397 solver.cpp:245] Train net output #78: loss2/loss03 = 1.47088 (* 0.0272727 = 0.040115 loss)
I0422 02:01:07.396252 32397 solver.cpp:245] Train net output #79: loss2/loss04 = 1.77543 (* 0.0272727 = 0.0484209 loss)
I0422 02:01:07.396267 32397 solver.cpp:245] Train net output #80: loss2/loss05 = 1.59994 (* 0.0272727 = 0.0436348 loss)
I0422 02:01:07.396281 32397 solver.cpp:245] Train net output #81: loss2/loss06 = 0.730986 (* 0.0272727 = 0.019936 loss)
I0422 02:01:07.396296 32397 solver.cpp:245] Train net output #82: loss2/loss07 = 0.297335 (* 0.0272727 = 0.00810914 loss)
I0422 02:01:07.396311 32397 solver.cpp:245] Train net output #83: loss2/loss08 = 0.305615 (* 0.0272727 = 0.00833494 loss)
I0422 02:01:07.396324 32397 solver.cpp:245] Train net output #84: loss2/loss09 = 0.00575986 (* 0.0272727 = 0.000157087 loss)
I0422 02:01:07.396338 32397 solver.cpp:245] Train net output #85: loss2/loss10 = 0.00152248 (* 0.0272727 = 4.15221e-05 loss)
I0422 02:01:07.396353 32397 solver.cpp:245] Train net output #86: loss2/loss11 = 5.91585e-06 (* 0.0272727 = 1.61341e-07 loss)
I0422 02:01:07.396368 32397 solver.cpp:245] Train net output #87: loss2/loss12 = 1.53482e-06 (* 0.0272727 = 4.18588e-08 loss)
I0422 02:01:07.396381 32397 solver.cpp:245] Train net output #88: loss2/loss13 = 2.53321e-06 (* 0.0272727 = 6.90876e-08 loss)
I0422 02:01:07.396395 32397 solver.cpp:245] Train net output #89: loss2/loss14 = 1.53482e-06 (* 0.0272727 = 4.18588e-08 loss)
I0422 02:01:07.396409 32397 solver.cpp:245] Train net output #90: loss2/loss15 = 3.5018e-06 (* 0.0272727 = 9.55037e-08 loss)
I0422 02:01:07.396423 32397 solver.cpp:245] Train net output #91: loss2/loss16 = 2.29479e-06 (* 0.0272727 = 6.25852e-08 loss)
I0422 02:01:07.396437 32397 solver.cpp:245] Train net output #92: loss2/loss17 = 4.02335e-06 (* 0.0272727 = 1.09728e-07 loss)
I0422 02:01:07.396451 32397 solver.cpp:245] Train net output #93: loss2/loss18 = 3.44219e-06 (* 0.0272727 = 9.3878e-08 loss)
I0422 02:01:07.396466 32397 solver.cpp:245] Train net output #94: loss2/loss19 = 1.63913e-06 (* 0.0272727 = 4.47036e-08 loss)
I0422 02:01:07.396479 32397 solver.cpp:245] Train net output #95: loss2/loss20 = 5.34959e-06 (* 0.0272727 = 1.45898e-07 loss)
I0422 02:01:07.396492 32397 solver.cpp:245] Train net output #96: loss2/loss21 = 6.39274e-06 (* 0.0272727 = 1.74347e-07 loss)
I0422 02:01:07.396507 32397 solver.cpp:245] Train net output #97: loss2/loss22 = 3.60611e-06 (* 0.0272727 = 9.83486e-08 loss)
I0422 02:01:07.396519 32397 solver.cpp:245] Train net output #98: loss3/accuracy = 0.952381
I0422 02:01:07.396531 32397 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0422 02:01:07.396543 32397 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0422 02:01:07.396554 32397 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.875
I0422 02:01:07.396566 32397 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875
I0422 02:01:07.396579 32397 solver.cpp:245] Train net output #103: loss3/accuracy05 = 1
I0422 02:01:07.396589 32397 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.75
I0422 02:01:07.396601 32397 solver.cpp:245] Train net output #105: loss3/accuracy07 = 1
I0422 02:01:07.396612 32397 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875
I0422 02:01:07.396625 32397 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1
I0422 02:01:07.396636 32397 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0422 02:01:07.396646 32397 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0422 02:01:07.396657 32397 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0422 02:01:07.396668 32397 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0422 02:01:07.396680 32397 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0422 02:01:07.396692 32397 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0422 02:01:07.396713 32397 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0422 02:01:07.396726 32397 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0422 02:01:07.396738 32397 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0422 02:01:07.396749 32397 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0422 02:01:07.396760 32397 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0422 02:01:07.396771 32397 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0422 02:01:07.396783 32397 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0422 02:01:07.396795 32397 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.988636
I0422 02:01:07.396806 32397 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 1
I0422 02:01:07.396821 32397 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.228728 (* 1 = 0.228728 loss)
I0422 02:01:07.396834 32397 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.0599277 (* 1 = 0.0599277 loss)
I0422 02:01:07.396848 32397 solver.cpp:245] Train net output #125: loss3/loss01 = 0.111737 (* 0.0909091 = 0.0101579 loss)
I0422 02:01:07.396862 32397 solver.cpp:245] Train net output #126: loss3/loss02 = 0.0621806 (* 0.0909091 = 0.00565279 loss)
I0422 02:01:07.396875 32397 solver.cpp:245] Train net output #127: loss3/loss03 = 0.446606 (* 0.0909091 = 0.0406005 loss)
I0422 02:01:07.396891 32397 solver.cpp:245] Train net output #128: loss3/loss04 = 0.612758 (* 0.0909091 = 0.0557052 loss)
I0422 02:01:07.396905 32397 solver.cpp:245] Train net output #129: loss3/loss05 = 0.183565 (* 0.0909091 = 0.0166878 loss)
I0422 02:01:07.396919 32397 solver.cpp:245] Train net output #130: loss3/loss06 = 0.631188 (* 0.0909091 = 0.0573807 loss)
I0422 02:01:07.396932 32397 solver.cpp:245] Train net output #131: loss3/loss07 = 0.106869 (* 0.0909091 = 0.00971535 loss)
I0422 02:01:07.396946 32397 solver.cpp:245] Train net output #132: loss3/loss08 = 0.141572 (* 0.0909091 = 0.0128702 loss)
I0422 02:01:07.396960 32397 solver.cpp:245] Train net output #133: loss3/loss09 = 0.026149 (* 0.0909091 = 0.00237719 loss)
I0422 02:01:07.396975 32397 solver.cpp:245] Train net output #134: loss3/loss10 = 0.00335523 (* 0.0909091 = 0.000305021 loss)
I0422 02:01:07.396988 32397 solver.cpp:245] Train net output #135: loss3/loss11 = 1.51399e-05 (* 0.0909091 = 1.37635e-06 loss)
I0422 02:01:07.397001 32397 solver.cpp:245] Train net output #136: loss3/loss12 = 1.64215e-05 (* 0.0909091 = 1.49286e-06 loss)
I0422 02:01:07.397016 32397 solver.cpp:245] Train net output #137: loss3/loss13 = 1.56614e-05 (* 0.0909091 = 1.42377e-06 loss)
I0422 02:01:07.397029 32397 solver.cpp:245] Train net output #138: loss3/loss14 = 1.6496e-05 (* 0.0909091 = 1.49964e-06 loss)
I0422 02:01:07.397043 32397 solver.cpp:245] Train net output #139: loss3/loss15 = 1.20254e-05 (* 0.0909091 = 1.09322e-06 loss)
I0422 02:01:07.397056 32397 solver.cpp:245] Train net output #140: loss3/loss16 = 1.49313e-05 (* 0.0909091 = 1.35739e-06 loss)
I0422 02:01:07.397070 32397 solver.cpp:245] Train net output #141: loss3/loss17 = 1.27407e-05 (* 0.0909091 = 1.15825e-06 loss)
I0422 02:01:07.397083 32397 solver.cpp:245] Train net output #142: loss3/loss18 = 1.22043e-05 (* 0.0909091 = 1.10948e-06 loss)
I0422 02:01:07.397097 32397 solver.cpp:245] Train net output #143: loss3/loss19 = 1.49164e-05 (* 0.0909091 = 1.35603e-06 loss)
I0422 02:01:07.397111 32397 solver.cpp:245] Train net output #144: loss3/loss20 = 1.3605e-05 (* 0.0909091 = 1.23682e-06 loss)
I0422 02:01:07.397125 32397 solver.cpp:245] Train net output #145: loss3/loss21 = 1.43501e-05 (* 0.0909091 = 1.30456e-06 loss)
I0422 02:01:07.397140 32397 solver.cpp:245] Train net output #146: loss3/loss22 = 1.1027e-05 (* 0.0909091 = 1.00246e-06 loss)
I0422 02:01:07.397151 32397 solver.cpp:245] Train net output #147: total_accuracy = 0.875
I0422 02:01:07.397162 32397 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.75
I0422 02:01:07.397184 32397 solver.cpp:245] Train net output #149: total_confidence = 0.618472
I0422 02:01:07.397197 32397 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.436084
I0422 02:01:07.397214 32397 sgd_solver.cpp:106] Iteration 13500, lr = 0.001
I0422 02:06:49.088791 32397 solver.cpp:229] Iteration 14000, loss = 2.25991
I0422 02:06:49.088912 32397 solver.cpp:245] Train net output #0: loss1/accuracy = 0.372093
I0422 02:06:49.088933 32397 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.625
I0422 02:06:49.088948 32397 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5
I0422 02:06:49.088961 32397 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.125
I0422 02:06:49.088974 32397 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.25
I0422 02:06:49.088987 32397 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.625
I0422 02:06:49.089000 32397 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.625
I0422 02:06:49.089012 32397 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.875
I0422 02:06:49.089025 32397 solver.cpp:245] Train net output #8: loss1/accuracy08 = 1
I0422 02:06:49.089038 32397 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1
I0422 02:06:49.089051 32397 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0422 02:06:49.089062 32397 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0422 02:06:49.089074 32397 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0422 02:06:49.089087 32397 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0422 02:06:49.089099 32397 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0422 02:06:49.089112 32397 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0422 02:06:49.089124 32397 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0422 02:06:49.089136 32397 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0422 02:06:49.089149 32397 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0422 02:06:49.089161 32397 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0422 02:06:49.089172 32397 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0422 02:06:49.089184 32397 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0422 02:06:49.089196 32397 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0422 02:06:49.089211 32397 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.829545
I0422 02:06:49.089223 32397 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.627907
I0422 02:06:49.089241 32397 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 2.10596 (* 0.3 = 0.631788 loss)
I0422 02:06:49.089256 32397 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.571549 (* 0.3 = 0.171465 loss)
I0422 02:06:49.089270 32397 solver.cpp:245] Train net output #27: loss1/loss01 = 1.3594 (* 0.0272727 = 0.0370745 loss)
I0422 02:06:49.089284 32397 solver.cpp:245] Train net output #28: loss1/loss02 = 1.83117 (* 0.0272727 = 0.049941 loss)
I0422 02:06:49.089299 32397 solver.cpp:245] Train net output #29: loss1/loss03 = 2.47438 (* 0.0272727 = 0.0674831 loss)
I0422 02:06:49.089314 32397 solver.cpp:245] Train net output #30: loss1/loss04 = 2.66964 (* 0.0272727 = 0.0728084 loss)
I0422 02:06:49.089329 32397 solver.cpp:245] Train net output #31: loss1/loss05 = 1.50807 (* 0.0272727 = 0.0411291 loss)
I0422 02:06:49.089342 32397 solver.cpp:245] Train net output #32: loss1/loss06 = 1.40571 (* 0.0272727 = 0.0383376 loss)
I0422 02:06:49.089357 32397 solver.cpp:245] Train net output #33: loss1/loss07 = 0.345055 (* 0.0272727 = 0.0094106 loss)
I0422 02:06:49.089372 32397 solver.cpp:245] Train net output #34: loss1/loss08 = 0.0593254 (* 0.0272727 = 0.00161797 loss)
I0422 02:06:49.089386 32397 solver.cpp:245] Train net output #35: loss1/loss09 = 0.00464728 (* 0.0272727 = 0.000126744 loss)
I0422 02:06:49.089401 32397 solver.cpp:245] Train net output #36: loss1/loss10 = 0.00101179 (* 0.0272727 = 2.75944e-05 loss)
I0422 02:06:49.089416 32397 solver.cpp:245] Train net output #37: loss1/loss11 = 1.20852e-05 (* 0.0272727 = 3.29595e-07 loss)
I0422 02:06:49.089431 32397 solver.cpp:245] Train net output #38: loss1/loss12 = 1.94915e-05 (* 0.0272727 = 5.31588e-07 loss)
I0422 02:06:49.089462 32397 solver.cpp:245] Train net output #39: loss1/loss13 = 1.5602e-05 (* 0.0272727 = 4.25509e-07 loss)
I0422 02:06:49.089478 32397 solver.cpp:245] Train net output #40: loss1/loss14 = 1.26067e-05 (* 0.0272727 = 3.4382e-07 loss)
I0422 02:06:49.089493 32397 solver.cpp:245] Train net output #41: loss1/loss15 = 1.18616e-05 (* 0.0272727 = 3.23497e-07 loss)
I0422 02:06:49.089506 32397 solver.cpp:245] Train net output #42: loss1/loss16 = 8.88125e-06 (* 0.0272727 = 2.42216e-07 loss)
I0422 02:06:49.089520 32397 solver.cpp:245] Train net output #43: loss1/loss17 = 7.18244e-06 (* 0.0272727 = 1.95885e-07 loss)
I0422 02:06:49.089534 32397 solver.cpp:245] Train net output #44: loss1/loss18 = 1.82844e-05 (* 0.0272727 = 4.98666e-07 loss)
I0422 02:06:49.089550 32397 solver.cpp:245] Train net output #45: loss1/loss19 = 2.9112e-05 (* 0.0272727 = 7.93964e-07 loss)
I0422 02:06:49.089563 32397 solver.cpp:245] Train net output #46: loss1/loss20 = 2.04905e-05 (* 0.0272727 = 5.58831e-07 loss)
I0422 02:06:49.089577 32397 solver.cpp:245] Train net output #47: loss1/loss21 = 9.16434e-06 (* 0.0272727 = 2.49937e-07 loss)
I0422 02:06:49.089591 32397 solver.cpp:245] Train net output #48: loss1/loss22 = 9.79018e-06 (* 0.0272727 = 2.67005e-07 loss)
I0422 02:06:49.089603 32397 solver.cpp:245] Train net output #49: loss2/accuracy = 0.72093
I0422 02:06:49.089617 32397 solver.cpp:245] Train net output #50: loss2/accuracy01 = 1
I0422 02:06:49.089627 32397 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75
I0422 02:06:49.089639 32397 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.5
I0422 02:06:49.089651 32397 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.5
I0422 02:06:49.089663 32397 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.625
I0422 02:06:49.089675 32397 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.75
I0422 02:06:49.089686 32397 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.875
I0422 02:06:49.089699 32397 solver.cpp:245] Train net output #57: loss2/accuracy08 = 1
I0422 02:06:49.089710 32397 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1
I0422 02:06:49.089721 32397 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0422 02:06:49.089732 32397 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0422 02:06:49.089745 32397 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0422 02:06:49.089756 32397 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0422 02:06:49.089766 32397 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0422 02:06:49.089778 32397 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0422 02:06:49.089789 32397 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0422 02:06:49.089802 32397 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0422 02:06:49.089812 32397 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0422 02:06:49.089824 32397 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0422 02:06:49.089836 32397 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0422 02:06:49.089848 32397 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0422 02:06:49.089859 32397 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0422 02:06:49.089870 32397 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.926136
I0422 02:06:49.089882 32397 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.883721
I0422 02:06:49.089896 32397 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.867819 (* 0.3 = 0.260346 loss)
I0422 02:06:49.089910 32397 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.229349 (* 0.3 = 0.0688046 loss)
I0422 02:06:49.089926 32397 solver.cpp:245] Train net output #76: loss2/loss01 = 0.154133 (* 0.0272727 = 0.00420364 loss)
I0422 02:06:49.089942 32397 solver.cpp:245] Train net output #77: loss2/loss02 = 0.967887 (* 0.0272727 = 0.0263969 loss)
I0422 02:06:49.089967 32397 solver.cpp:245] Train net output #78: loss2/loss03 = 1.67706 (* 0.0272727 = 0.0457381 loss)
I0422 02:06:49.089983 32397 solver.cpp:245] Train net output #79: loss2/loss04 = 1.56577 (* 0.0272727 = 0.0427029 loss)
I0422 02:06:49.089996 32397 solver.cpp:245] Train net output #80: loss2/loss05 = 1.30351 (* 0.0272727 = 0.0355502 loss)
I0422 02:06:49.090010 32397 solver.cpp:245] Train net output #81: loss2/loss06 = 0.991707 (* 0.0272727 = 0.0270466 loss)
I0422 02:06:49.090025 32397 solver.cpp:245] Train net output #82: loss2/loss07 = 0.414511 (* 0.0272727 = 0.0113049 loss)
I0422 02:06:49.090039 32397 solver.cpp:245] Train net output #83: loss2/loss08 = 0.00557347 (* 0.0272727 = 0.000152004 loss)
I0422 02:06:49.090054 32397 solver.cpp:245] Train net output #84: loss2/loss09 = 0.000792977 (* 0.0272727 = 2.16266e-05 loss)
I0422 02:06:49.090067 32397 solver.cpp:245] Train net output #85: loss2/loss10 = 0.000153318 (* 0.0272727 = 4.18141e-06 loss)
I0422 02:06:49.090081 32397 solver.cpp:245] Train net output #86: loss2/loss11 = 2.54812e-06 (* 0.0272727 = 6.94941e-08 loss)
I0422 02:06:49.090095 32397 solver.cpp:245] Train net output #87: loss2/loss12 = 3.11436e-06 (* 0.0272727 = 8.49371e-08 loss)
I0422 02:06:49.090109 32397 solver.cpp:245] Train net output #88: loss2/loss13 = 8.77704e-06 (* 0.0272727 = 2.39374e-07 loss)
I0422 02:06:49.090123 32397 solver.cpp:245] Train net output #89: loss2/loss14 = 4.29158e-06 (* 0.0272727 = 1.17043e-07 loss)
I0422 02:06:49.090137 32397 solver.cpp:245] Train net output #90: loss2/loss15 = 3.5614e-06 (* 0.0272727 = 9.71291e-08 loss)
I0422 02:06:49.090152 32397 solver.cpp:245] Train net output #91: loss2/loss16 = 5.52842e-06 (* 0.0272727 = 1.50775e-07 loss)
I0422 02:06:49.090164 32397 solver.cpp:245] Train net output #92: loss2/loss17 = 5.82644e-06 (* 0.0272727 = 1.58903e-07 loss)
I0422 02:06:49.090178 32397 solver.cpp:245] Train net output #93: loss2/loss18 = 1.11465e-05 (* 0.0272727 = 3.03995e-07 loss)
I0422 02:06:49.090193 32397 solver.cpp:245] Train net output #94: loss2/loss19 = 6.42254e-06 (* 0.0272727 = 1.7516e-07 loss)
I0422 02:06:49.090207 32397 solver.cpp:245] Train net output #95: loss2/loss20 = 2.83124e-06 (* 0.0272727 = 7.72156e-08 loss)
I0422 02:06:49.090221 32397 solver.cpp:245] Train net output #96: loss2/loss21 = 3.79983e-06 (* 0.0272727 = 1.03632e-07 loss)
I0422 02:06:49.090235 32397 solver.cpp:245] Train net output #97: loss2/loss22 = 3.03986e-06 (* 0.0272727 = 8.29052e-08 loss)
I0422 02:06:49.090248 32397 solver.cpp:245] Train net output #98: loss3/accuracy = 0.813953
I0422 02:06:49.090263 32397 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0422 02:06:49.090276 32397 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875
I0422 02:06:49.090287 32397 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.875
I0422 02:06:49.090299 32397 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1
I0422 02:06:49.090312 32397 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875
I0422 02:06:49.090323 32397 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.875
I0422 02:06:49.090334 32397 solver.cpp:245] Train net output #105: loss3/accuracy07 = 1
I0422 02:06:49.090347 32397 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1
I0422 02:06:49.090358 32397 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1
I0422 02:06:49.090369 32397 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0422 02:06:49.090380 32397 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0422 02:06:49.090392 32397 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0422 02:06:49.090404 32397 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0422 02:06:49.090415 32397 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0422 02:06:49.090425 32397 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0422 02:06:49.090447 32397 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0422 02:06:49.090461 32397 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0422 02:06:49.090472 32397 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0422 02:06:49.090483 32397 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0422 02:06:49.090495 32397 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0422 02:06:49.090507 32397 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0422 02:06:49.090517 32397 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0422 02:06:49.090529 32397 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.954545
I0422 02:06:49.090541 32397 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.883721
I0422 02:06:49.090554 32397 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.700757 (* 1 = 0.700757 loss)
I0422 02:06:49.090569 32397 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.177503 (* 1 = 0.177503 loss)
I0422 02:06:49.090582 32397 solver.cpp:245] Train net output #125: loss3/loss01 = 0.104107 (* 0.0909091 = 0.00946432 loss)
I0422 02:06:49.090596 32397 solver.cpp:245] Train net output #126: loss3/loss02 = 0.682246 (* 0.0909091 = 0.0620224 loss)
I0422 02:06:49.090610 32397 solver.cpp:245] Train net output #127: loss3/loss03 = 0.637901 (* 0.0909091 = 0.057991 loss)
I0422 02:06:49.090625 32397 solver.cpp:245] Train net output #128: loss3/loss04 = 0.230894 (* 0.0909091 = 0.0209903 loss)
I0422 02:06:49.090638 32397 solver.cpp:245] Train net output #129: loss3/loss05 = 0.618746 (* 0.0909091 = 0.0562497 loss)
I0422 02:06:49.090652 32397 solver.cpp:245] Train net output #130: loss3/loss06 = 1.12203 (* 0.0909091 = 0.102003 loss)
I0422 02:06:49.090667 32397 solver.cpp:245] Train net output #131: loss3/loss07 = 0.078635 (* 0.0909091 = 0.00714864 loss)
I0422 02:06:49.090680 32397 solver.cpp:245] Train net output #132: loss3/loss08 = 0.0153213 (* 0.0909091 = 0.00139284 loss)
I0422 02:06:49.090694 32397 solver.cpp:245] Train net output #133: loss3/loss09 = 0.00108393 (* 0.0909091 = 9.85387e-05 loss)
I0422 02:06:49.090708 32397 solver.cpp:245] Train net output #134: loss3/loss10 = 0.000104181 (* 0.0909091 = 9.47098e-06 loss)
I0422 02:06:49.090723 32397 solver.cpp:245] Train net output #135: loss3/loss11 = 2.49907e-05 (* 0.0909091 = 2.27188e-06 loss)
I0422 02:06:49.090736 32397 solver.cpp:245] Train net output #136: loss3/loss12 = 1.75393e-05 (* 0.0909091 = 1.59449e-06 loss)
I0422 02:06:49.090749 32397 solver.cpp:245] Train net output #137: loss3/loss13 = 2.83963e-05 (* 0.0909091 = 2.58148e-06 loss)
I0422 02:06:49.090764 32397 solver.cpp:245] Train net output #138: loss3/loss14 = 2.29193e-05 (* 0.0909091 = 2.08357e-06 loss)
I0422 02:06:49.090778 32397 solver.cpp:245] Train net output #139: loss3/loss15 = 4.13039e-05 (* 0.0909091 = 3.7549e-06 loss)
I0422 02:06:49.090795 32397 solver.cpp:245] Train net output #140: loss3/loss16 = 2.81279e-05 (* 0.0909091 = 2.55708e-06 loss)
I0422 02:06:49.090804 32397 solver.cpp:245] Train net output #141: loss3/loss17 = 2.70104e-05 (* 0.0909091 = 2.45549e-06 loss)
I0422 02:06:49.090818 32397 solver.cpp:245] Train net output #142: loss3/loss18 = 2.20699e-05 (* 0.0909091 = 2.00635e-06 loss)
I0422 02:06:49.090832 32397 solver.cpp:245] Train net output #143: loss3/loss19 = 2.55722e-05 (* 0.0909091 = 2.32474e-06 loss)
I0422 02:06:49.090847 32397 solver.cpp:245] Train net output #144: loss3/loss20 = 2.09372e-05 (* 0.0909091 = 1.90338e-06 loss)
I0422 02:06:49.090860 32397 solver.cpp:245] Train net output #145: loss3/loss21 = 2.41713e-05 (* 0.0909091 = 2.19739e-06 loss)
I0422 02:06:49.090874 32397 solver.cpp:245] Train net output #146: loss3/loss22 = 2.51548e-05 (* 0.0909091 = 2.2868e-06 loss)
I0422 02:06:49.090886 32397 solver.cpp:245] Train net output #147: total_accuracy = 0.375
I0422 02:06:49.090898 32397 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.625
I0422 02:06:49.090919 32397 solver.cpp:245] Train net output #149: total_confidence = 0.475468
I0422 02:06:49.090934 32397 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.346788
I0422 02:06:49.090945 32397 sgd_solver.cpp:106] Iteration 14000, lr = 0.001
I0422 02:12:30.733206 32397 solver.cpp:229] Iteration 14500, loss = 2.30966
I0422 02:12:30.733300 32397 solver.cpp:245] Train net output #0: loss1/accuracy = 0.744681
I0422 02:12:30.733319 32397 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.875
I0422 02:12:30.733333 32397 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5
I0422 02:12:30.733345 32397 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.625
I0422 02:12:30.733358 32397 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.625
I0422 02:12:30.733371 32397 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.625
I0422 02:12:30.733383 32397 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.625
I0422 02:12:30.733397 32397 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.75
I0422 02:12:30.733408 32397 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875
I0422 02:12:30.733420 32397 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1
I0422 02:12:30.733433 32397 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0422 02:12:30.733445 32397 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0422 02:12:30.733458 32397 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0422 02:12:30.733469 32397 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0422 02:12:30.733481 32397 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0422 02:12:30.733494 32397 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0422 02:12:30.733505 32397 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0422 02:12:30.733517 32397 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0422 02:12:30.733530 32397 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0422 02:12:30.733541 32397 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0422 02:12:30.733552 32397 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0422 02:12:30.733563 32397 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0422 02:12:30.733575 32397 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0422 02:12:30.733587 32397 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.903409
I0422 02:12:30.733598 32397 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.87234
I0422 02:12:30.733614 32397 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.05904 (* 0.3 = 0.317713 loss)
I0422 02:12:30.733629 32397 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.347441 (* 0.3 = 0.104232 loss)
I0422 02:12:30.733644 32397 solver.cpp:245] Train net output #27: loss1/loss01 = 0.755558 (* 0.0272727 = 0.0206061 loss)
I0422 02:12:30.733659 32397 solver.cpp:245] Train net output #28: loss1/loss02 = 1.75829 (* 0.0272727 = 0.0479534 loss)
I0422 02:12:30.733672 32397 solver.cpp:245] Train net output #29: loss1/loss03 = 1.65896 (* 0.0272727 = 0.0452443 loss)
I0422 02:12:30.733686 32397 solver.cpp:245] Train net output #30: loss1/loss04 = 1.58326 (* 0.0272727 = 0.0431797 loss)
I0422 02:12:30.733700 32397 solver.cpp:245] Train net output #31: loss1/loss05 = 1.19885 (* 0.0272727 = 0.0326958 loss)
I0422 02:12:30.733714 32397 solver.cpp:245] Train net output #32: loss1/loss06 = 0.955599 (* 0.0272727 = 0.0260618 loss)
I0422 02:12:30.733728 32397 solver.cpp:245] Train net output #33: loss1/loss07 = 0.71089 (* 0.0272727 = 0.0193879 loss)
I0422 02:12:30.733742 32397 solver.cpp:245] Train net output #34: loss1/loss08 = 0.57821 (* 0.0272727 = 0.0157694 loss)
I0422 02:12:30.733757 32397 solver.cpp:245] Train net output #35: loss1/loss09 = 0.00523361 (* 0.0272727 = 0.000142735 loss)
I0422 02:12:30.733770 32397 solver.cpp:245] Train net output #36: loss1/loss10 = 0.000887671 (* 0.0272727 = 2.42092e-05 loss)
I0422 02:12:30.733785 32397 solver.cpp:245] Train net output #37: loss1/loss11 = 4.04393e-05 (* 0.0272727 = 1.10289e-06 loss)
I0422 02:12:30.733799 32397 solver.cpp:245] Train net output #38: loss1/loss12 = 4.74525e-05 (* 0.0272727 = 1.29416e-06 loss)
I0422 02:12:30.733830 32397 solver.cpp:245] Train net output #39: loss1/loss13 = 5.47793e-05 (* 0.0272727 = 1.49398e-06 loss)
I0422 02:12:30.733845 32397 solver.cpp:245] Train net output #40: loss1/loss14 = 1.84485e-05 (* 0.0272727 = 5.03141e-07 loss)
I0422 02:12:30.733860 32397 solver.cpp:245] Train net output #41: loss1/loss15 = 9.17927e-06 (* 0.0272727 = 2.50344e-07 loss)
I0422 02:12:30.733873 32397 solver.cpp:245] Train net output #42: loss1/loss16 = 3.59238e-05 (* 0.0272727 = 9.7974e-07 loss)
I0422 02:12:30.733887 32397 solver.cpp:245] Train net output #43: loss1/loss17 = 2.68915e-05 (* 0.0272727 = 7.33404e-07 loss)
I0422 02:12:30.733901 32397 solver.cpp:245] Train net output #44: loss1/loss18 = 2.20552e-05 (* 0.0272727 = 6.01505e-07 loss)
I0422 02:12:30.733916 32397 solver.cpp:245] Train net output #45: loss1/loss19 = 3.23465e-05 (* 0.0272727 = 8.82177e-07 loss)
I0422 02:12:30.733929 32397 solver.cpp:245] Train net output #46: loss1/loss20 = 2.82179e-05 (* 0.0272727 = 7.69579e-07 loss)
I0422 02:12:30.733943 32397 solver.cpp:245] Train net output #47: loss1/loss21 = 1.9909e-05 (* 0.0272727 = 5.42972e-07 loss)
I0422 02:12:30.733958 32397 solver.cpp:245] Train net output #48: loss1/loss22 = 1.18169e-05 (* 0.0272727 = 3.22279e-07 loss)
I0422 02:12:30.733968 32397 solver.cpp:245] Train net output #49: loss2/accuracy = 0.914894
I0422 02:12:30.733981 32397 solver.cpp:245] Train net output #50: loss2/accuracy01 = 1
I0422 02:12:30.733992 32397 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.875
I0422 02:12:30.734004 32397 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.75
I0422 02:12:30.734019 32397 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.875
I0422 02:12:30.734031 32397 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.75
I0422 02:12:30.734042 32397 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.75
I0422 02:12:30.734055 32397 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.875
I0422 02:12:30.734066 32397 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875
I0422 02:12:30.734077 32397 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1
I0422 02:12:30.734089 32397 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0422 02:12:30.734100 32397 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0422 02:12:30.734112 32397 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0422 02:12:30.734123 32397 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0422 02:12:30.734134 32397 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0422 02:12:30.734145 32397 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0422 02:12:30.734156 32397 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0422 02:12:30.734169 32397 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0422 02:12:30.734179 32397 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0422 02:12:30.734191 32397 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0422 02:12:30.734202 32397 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0422 02:12:30.734213 32397 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0422 02:12:30.734225 32397 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0422 02:12:30.734236 32397 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.960227
I0422 02:12:30.734251 32397 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 1
I0422 02:12:30.734264 32397 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.367102 (* 0.3 = 0.11013 loss)
I0422 02:12:30.734278 32397 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.143725 (* 0.3 = 0.0431176 loss)
I0422 02:12:30.734293 32397 solver.cpp:245] Train net output #76: loss2/loss01 = 0.257701 (* 0.0272727 = 0.0070282 loss)
I0422 02:12:30.734308 32397 solver.cpp:245] Train net output #77: loss2/loss02 = 0.565763 (* 0.0272727 = 0.0154299 loss)
I0422 02:12:30.734333 32397 solver.cpp:245] Train net output #78: loss2/loss03 = 0.799871 (* 0.0272727 = 0.0218147 loss)
I0422 02:12:30.734349 32397 solver.cpp:245] Train net output #79: loss2/loss04 = 1.05102 (* 0.0272727 = 0.0286642 loss)
I0422 02:12:30.734362 32397 solver.cpp:245] Train net output #80: loss2/loss05 = 0.888057 (* 0.0272727 = 0.0242197 loss)
I0422 02:12:30.734376 32397 solver.cpp:245] Train net output #81: loss2/loss06 = 0.756323 (* 0.0272727 = 0.020627 loss)
I0422 02:12:30.734390 32397 solver.cpp:245] Train net output #82: loss2/loss07 = 0.440903 (* 0.0272727 = 0.0120246 loss)
I0422 02:12:30.734405 32397 solver.cpp:245] Train net output #83: loss2/loss08 = 0.339347 (* 0.0272727 = 0.00925492 loss)
I0422 02:12:30.734418 32397 solver.cpp:245] Train net output #84: loss2/loss09 = 0.0201124 (* 0.0272727 = 0.000548521 loss)
I0422 02:12:30.734433 32397 solver.cpp:245] Train net output #85: loss2/loss10 = 0.00576412 (* 0.0272727 = 0.000157203 loss)
I0422 02:12:30.734447 32397 solver.cpp:245] Train net output #86: loss2/loss11 = 0.000110622 (* 0.0272727 = 3.01697e-06 loss)
I0422 02:12:30.734462 32397 solver.cpp:245] Train net output #87: loss2/loss12 = 5.81872e-05 (* 0.0272727 = 1.58692e-06 loss)
I0422 02:12:30.734474 32397 solver.cpp:245] Train net output #88: loss2/loss13 = 3.68334e-05 (* 0.0272727 = 1.00455e-06 loss)
I0422 02:12:30.734488 32397 solver.cpp:245] Train net output #89: loss2/loss14 = 7.36029e-05 (* 0.0272727 = 2.00735e-06 loss)
I0422 02:12:30.734503 32397 solver.cpp:245] Train net output #90: loss2/loss15 = 6.80192e-05 (* 0.0272727 = 1.85507e-06 loss)
I0422 02:12:30.734516 32397 solver.cpp:245] Train net output #91: loss2/loss16 = 9.13152e-05 (* 0.0272727 = 2.49042e-06 loss)
I0422 02:12:30.734530 32397 solver.cpp:245] Train net output #92: loss2/loss17 = 0.000106051 (* 0.0272727 = 2.89231e-06 loss)
I0422 02:12:30.734544 32397 solver.cpp:245] Train net output #93: loss2/loss18 = 4.97789e-05 (* 0.0272727 = 1.35761e-06 loss)
I0422 02:12:30.734558 32397 solver.cpp:245] Train net output #94: loss2/loss19 = 5.32154e-05 (* 0.0272727 = 1.45133e-06 loss)
I0422 02:12:30.734571 32397 solver.cpp:245] Train net output #95: loss2/loss20 = 2.29125e-05 (* 0.0272727 = 6.24888e-07 loss)
I0422 02:12:30.734586 32397 solver.cpp:245] Train net output #96: loss2/loss21 = 0.000112933 (* 0.0272727 = 3.08e-06 loss)
I0422 02:12:30.734599 32397 solver.cpp:245] Train net output #97: loss2/loss22 = 4.50838e-05 (* 0.0272727 = 1.22956e-06 loss)
I0422 02:12:30.734611 32397 solver.cpp:245] Train net output #98: loss3/accuracy = 1
I0422 02:12:30.734623 32397 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0422 02:12:30.734635 32397 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0422 02:12:30.734647 32397 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0422 02:12:30.734658 32397 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1
I0422 02:12:30.734668 32397 solver.cpp:245] Train net output #103: loss3/accuracy05 = 1
I0422 02:12:30.734679 32397 solver.cpp:245] Train net output #104: loss3/accuracy06 = 1
I0422 02:12:30.734690 32397 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75
I0422 02:12:30.734702 32397 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1
I0422 02:12:30.734714 32397 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1
I0422 02:12:30.734724 32397 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0422 02:12:30.734735 32397 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0422 02:12:30.734746 32397 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0422 02:12:30.734757 32397 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0422 02:12:30.734768 32397 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0422 02:12:30.734781 32397 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0422 02:12:30.734791 32397 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0422 02:12:30.734812 32397 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0422 02:12:30.734825 32397 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0422 02:12:30.734836 32397 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0422 02:12:30.734848 32397 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0422 02:12:30.734858 32397 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0422 02:12:30.734869 32397 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0422 02:12:30.734880 32397 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 1
I0422 02:12:30.734892 32397 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 1
I0422 02:12:30.734905 32397 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.0965804 (* 1 = 0.0965804 loss)
I0422 02:12:30.734920 32397 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.0335065 (* 1 = 0.0335065 loss)
I0422 02:12:30.734930 32397 solver.cpp:245] Train net output #125: loss3/loss01 = 0.0771547 (* 0.0909091 = 0.00701406 loss)
I0422 02:12:30.734941 32397 solver.cpp:245] Train net output #126: loss3/loss02 = 0.0431139 (* 0.0909091 = 0.00391944 loss)
I0422 02:12:30.734954 32397 solver.cpp:245] Train net output #127: loss3/loss03 = 0.172785 (* 0.0909091 = 0.0157077 loss)
I0422 02:12:30.734968 32397 solver.cpp:245] Train net output #128: loss3/loss04 = 0.231163 (* 0.0909091 = 0.0210148 loss)
I0422 02:12:30.734982 32397 solver.cpp:245] Train net output #129: loss3/loss05 = 0.121055 (* 0.0909091 = 0.011005 loss)
I0422 02:12:30.734997 32397 solver.cpp:245] Train net output #130: loss3/loss06 = 0.195186 (* 0.0909091 = 0.0177441 loss)
I0422 02:12:30.735009 32397 solver.cpp:245] Train net output #131: loss3/loss07 = 0.722073 (* 0.0909091 = 0.065643 loss)
I0422 02:12:30.735023 32397 solver.cpp:245] Train net output #132: loss3/loss08 = 0.100011 (* 0.0909091 = 0.00909195 loss)
I0422 02:12:30.735036 32397 solver.cpp:245] Train net output #133: loss3/loss09 = 0.00306781 (* 0.0909091 = 0.000278892 loss)
I0422 02:12:30.735050 32397 solver.cpp:245] Train net output #134: loss3/loss10 = 0.000524696 (* 0.0909091 = 4.76996e-05 loss)
I0422 02:12:30.735066 32397 solver.cpp:245] Train net output #135: loss3/loss11 = 1.40969e-05 (* 0.0909091 = 1.28154e-06 loss)
I0422 02:12:30.735080 32397 solver.cpp:245] Train net output #136: loss3/loss12 = 1.17424e-05 (* 0.0909091 = 1.06749e-06 loss)
I0422 02:12:30.735095 32397 solver.cpp:245] Train net output #137: loss3/loss13 = 9.87964e-06 (* 0.0909091 = 8.98149e-07 loss)
I0422 02:12:30.735108 32397 solver.cpp:245] Train net output #138: loss3/loss14 = 1.03416e-05 (* 0.0909091 = 9.40144e-07 loss)
I0422 02:12:30.735122 32397 solver.cpp:245] Train net output #139: loss3/loss15 = 9.84982e-06 (* 0.0909091 = 8.95439e-07 loss)
I0422 02:12:30.735136 32397 solver.cpp:245] Train net output #140: loss3/loss16 = 1.29346e-05 (* 0.0909091 = 1.17587e-06 loss)
I0422 02:12:30.735148 32397 solver.cpp:245] Train net output #141: loss3/loss17 = 1.3009e-05 (* 0.0909091 = 1.18264e-06 loss)
I0422 02:12:30.735162 32397 solver.cpp:245] Train net output #142: loss3/loss18 = 1.03416e-05 (* 0.0909091 = 9.40146e-07 loss)
I0422 02:12:30.735175 32397 solver.cpp:245] Train net output #143: loss3/loss19 = 1.28898e-05 (* 0.0909091 = 1.1718e-06 loss)
I0422 02:12:30.735189 32397 solver.cpp:245] Train net output #144: loss3/loss20 = 1.07291e-05 (* 0.0909091 = 9.75372e-07 loss)
I0422 02:12:30.735203 32397 solver.cpp:245] Train net output #145: loss3/loss21 = 1.04459e-05 (* 0.0909091 = 9.4963e-07 loss)
I0422 02:12:30.735216 32397 solver.cpp:245] Train net output #146: loss3/loss22 = 1.0431e-05 (* 0.0909091 = 9.48276e-07 loss)
I0422 02:12:30.735229 32397 solver.cpp:245] Train net output #147: total_accuracy = 1
I0422 02:12:30.735240 32397 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.75
I0422 02:12:30.735261 32397 solver.cpp:245] Train net output #149: total_confidence = 0.58159
I0422 02:12:30.735275 32397 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.479859
I0422 02:12:30.735286 32397 sgd_solver.cpp:106] Iteration 14500, lr = 0.001
I0422 02:18:12.063959 32397 solver.cpp:338] Iteration 15000, Testing net (#0)
I0422 02:19:03.547086 32397 solver.cpp:393] Test loss: 1.99018
I0422 02:19:03.547193 32397 solver.cpp:406] Test net output #0: loss1/accuracy = 0.749515
I0422 02:19:03.547214 32397 solver.cpp:406] Test net output #1: loss1/accuracy01 = 0.776
I0422 02:19:03.547230 32397 solver.cpp:406] Test net output #2: loss1/accuracy02 = 0.626
I0422 02:19:03.547242 32397 solver.cpp:406] Test net output #3: loss1/accuracy03 = 0.524
I0422 02:19:03.547255 32397 solver.cpp:406] Test net output #4: loss1/accuracy04 = 0.428
I0422 02:19:03.547267 32397 solver.cpp:406] Test net output #5: loss1/accuracy05 = 0.496
I0422 02:19:03.547279 32397 solver.cpp:406] Test net output #6: loss1/accuracy06 = 0.769
I0422 02:19:03.547292 32397 solver.cpp:406] Test net output #7: loss1/accuracy07 = 0.911
I0422 02:19:03.547304 32397 solver.cpp:406] Test net output #8: loss1/accuracy08 = 0.97
I0422 02:19:03.547317 32397 solver.cpp:406] Test net output #9: loss1/accuracy09 = 0.995
I0422 02:19:03.547330 32397 solver.cpp:406] Test net output #10: loss1/accuracy10 = 0.998
I0422 02:19:03.547343 32397 solver.cpp:406] Test net output #11: loss1/accuracy11 = 1
I0422 02:19:03.547369 32397 solver.cpp:406] Test net output #12: loss1/accuracy12 = 1
I0422 02:19:03.547382 32397 solver.cpp:406] Test net output #13: loss1/accuracy13 = 1
I0422 02:19:03.547395 32397 solver.cpp:406] Test net output #14: loss1/accuracy14 = 1
I0422 02:19:03.547406 32397 solver.cpp:406] Test net output #15: loss1/accuracy15 = 1
I0422 02:19:03.547418 32397 solver.cpp:406] Test net output #16: loss1/accuracy16 = 1
I0422 02:19:03.547430 32397 solver.cpp:406] Test net output #17: loss1/accuracy17 = 1
I0422 02:19:03.547442 32397 solver.cpp:406] Test net output #18: loss1/accuracy18 = 1
I0422 02:19:03.547453 32397 solver.cpp:406] Test net output #19: loss1/accuracy19 = 1
I0422 02:19:03.547466 32397 solver.cpp:406] Test net output #20: loss1/accuracy20 = 1
I0422 02:19:03.547477 32397 solver.cpp:406] Test net output #21: loss1/accuracy21 = 1
I0422 02:19:03.547488 32397 solver.cpp:406] Test net output #22: loss1/accuracy22 = 1
I0422 02:19:03.547499 32397 solver.cpp:406] Test net output #23: loss1/accuracy_incl_empty = 0.934274
I0422 02:19:03.547511 32397 solver.cpp:406] Test net output #24: loss1/accuracy_top3 = 0.902046
I0422 02:19:03.547526 32397 solver.cpp:406] Test net output #25: loss1/cross_entropy_loss = 0.939114 (* 0.3 = 0.281734 loss)
I0422 02:19:03.547543 32397 solver.cpp:406] Test net output #26: loss1/cross_entropy_loss_incl_empty = 0.252221 (* 0.3 = 0.0756664 loss)
I0422 02:19:03.547556 32397 solver.cpp:406] Test net output #27: loss1/loss01 = 0.856998 (* 0.0272727 = 0.0233727 loss)
I0422 02:19:03.547570 32397 solver.cpp:406] Test net output #28: loss1/loss02 = 1.31115 (* 0.0272727 = 0.0357586 loss)
I0422 02:19:03.547585 32397 solver.cpp:406] Test net output #29: loss1/loss03 = 1.52301 (* 0.0272727 = 0.0415367 loss)
I0422 02:19:03.547598 32397 solver.cpp:406] Test net output #30: loss1/loss04 = 1.72705 (* 0.0272727 = 0.0471014 loss)
I0422 02:19:03.547612 32397 solver.cpp:406] Test net output #31: loss1/loss05 = 1.54569 (* 0.0272727 = 0.0421552 loss)
I0422 02:19:03.547626 32397 solver.cpp:406] Test net output #32: loss1/loss06 = 0.765515 (* 0.0272727 = 0.0208777 loss)
I0422 02:19:03.547641 32397 solver.cpp:406] Test net output #33: loss1/loss07 = 0.304806 (* 0.0272727 = 0.00831289 loss)
I0422 02:19:03.547654 32397 solver.cpp:406] Test net output #34: loss1/loss08 = 0.156465 (* 0.0272727 = 0.00426722 loss)
I0422 02:19:03.547668 32397 solver.cpp:406] Test net output #35: loss1/loss09 = 0.0492466 (* 0.0272727 = 0.00134309 loss)
I0422 02:19:03.547683 32397 solver.cpp:406] Test net output #36: loss1/loss10 = 0.0248444 (* 0.0272727 = 0.000677574 loss)
I0422 02:19:03.547698 32397 solver.cpp:406] Test net output #37: loss1/loss11 = 0.000200405 (* 0.0272727 = 5.46558e-06 loss)
I0422 02:19:03.547711 32397 solver.cpp:406] Test net output #38: loss1/loss12 = 0.000233931 (* 0.0272727 = 6.37992e-06 loss)
I0422 02:19:03.547725 32397 solver.cpp:406] Test net output #39: loss1/loss13 = 0.000237048 (* 0.0272727 = 6.46493e-06 loss)
I0422 02:19:03.547761 32397 solver.cpp:406] Test net output #40: loss1/loss14 = 0.000217623 (* 0.0272727 = 5.93517e-06 loss)
I0422 02:19:03.547777 32397 solver.cpp:406] Test net output #41: loss1/loss15 = 0.000212164 (* 0.0272727 = 5.78628e-06 loss)
I0422 02:19:03.547791 32397 solver.cpp:406] Test net output #42: loss1/loss16 = 0.000216073 (* 0.0272727 = 5.89289e-06 loss)
I0422 02:19:03.547806 32397 solver.cpp:406] Test net output #43: loss1/loss17 = 0.000216034 (* 0.0272727 = 5.89184e-06 loss)
I0422 02:19:03.547821 32397 solver.cpp:406] Test net output #44: loss1/loss18 = 0.000227209 (* 0.0272727 = 6.19661e-06 loss)
I0422 02:19:03.547833 32397 solver.cpp:406] Test net output #45: loss1/loss19 = 0.000206688 (* 0.0272727 = 5.63695e-06 loss)
I0422 02:19:03.547848 32397 solver.cpp:406] Test net output #46: loss1/loss20 = 0.000220298 (* 0.0272727 = 6.00812e-06 loss)
I0422 02:19:03.547863 32397 solver.cpp:406] Test net output #47: loss1/loss21 = 0.000212492 (* 0.0272727 = 5.79524e-06 loss)
I0422 02:19:03.547875 32397 solver.cpp:406] Test net output #48: loss1/loss22 = 0.000197468 (* 0.0272727 = 5.38549e-06 loss)
I0422 02:19:03.547888 32397 solver.cpp:406] Test net output #49: loss2/accuracy = 0.858106
I0422 02:19:03.547900 32397 solver.cpp:406] Test net output #50: loss2/accuracy01 = 0.876
I0422 02:19:03.547911 32397 solver.cpp:406] Test net output #51: loss2/accuracy02 = 0.83
I0422 02:19:03.547924 32397 solver.cpp:406] Test net output #52: loss2/accuracy03 = 0.699
I0422 02:19:03.547935 32397 solver.cpp:406] Test net output #53: loss2/accuracy04 = 0.533
I0422 02:19:03.547946 32397 solver.cpp:406] Test net output #54: loss2/accuracy05 = 0.565
I0422 02:19:03.547958 32397 solver.cpp:406] Test net output #55: loss2/accuracy06 = 0.83
I0422 02:19:03.547971 32397 solver.cpp:406] Test net output #56: loss2/accuracy07 = 0.945
I0422 02:19:03.547982 32397 solver.cpp:406] Test net output #57: loss2/accuracy08 = 0.974
I0422 02:19:03.547993 32397 solver.cpp:406] Test net output #58: loss2/accuracy09 = 0.995
I0422 02:19:03.548005 32397 solver.cpp:406] Test net output #59: loss2/accuracy10 = 0.998
I0422 02:19:03.548020 32397 solver.cpp:406] Test net output #60: loss2/accuracy11 = 1
I0422 02:19:03.548033 32397 solver.cpp:406] Test net output #61: loss2/accuracy12 = 1
I0422 02:19:03.548045 32397 solver.cpp:406] Test net output #62: loss2/accuracy13 = 1
I0422 02:19:03.548056 32397 solver.cpp:406] Test net output #63: loss2/accuracy14 = 1
I0422 02:19:03.548068 32397 solver.cpp:406] Test net output #64: loss2/accuracy15 = 1
I0422 02:19:03.548079 32397 solver.cpp:406] Test net output #65: loss2/accuracy16 = 1
I0422 02:19:03.548089 32397 solver.cpp:406] Test net output #66: loss2/accuracy17 = 1
I0422 02:19:03.548100 32397 solver.cpp:406] Test net output #67: loss2/accuracy18 = 1
I0422 02:19:03.548112 32397 solver.cpp:406] Test net output #68: loss2/accuracy19 = 1
I0422 02:19:03.548123 32397 solver.cpp:406] Test net output #69: loss2/accuracy20 = 1
I0422 02:19:03.548135 32397 solver.cpp:406] Test net output #70: loss2/accuracy21 = 1
I0422 02:19:03.548146 32397 solver.cpp:406] Test net output #71: loss2/accuracy22 = 1
I0422 02:19:03.548156 32397 solver.cpp:406] Test net output #72: loss2/accuracy_incl_empty = 0.965319
I0422 02:19:03.548167 32397 solver.cpp:406] Test net output #73: loss2/accuracy_top3 = 0.930732
I0422 02:19:03.548182 32397 solver.cpp:406] Test net output #74: loss2/cross_entropy_loss = 0.641013 (* 0.3 = 0.192304 loss)
I0422 02:19:03.548194 32397 solver.cpp:406] Test net output #75: loss2/cross_entropy_loss_incl_empty = 0.166083 (* 0.3 = 0.0498248 loss)
I0422 02:19:03.548209 32397 solver.cpp:406] Test net output #76: loss2/loss01 = 0.583244 (* 0.0272727 = 0.0159067 loss)
I0422 02:19:03.548223 32397 solver.cpp:406] Test net output #77: loss2/loss02 = 0.73807 (* 0.0272727 = 0.0201292 loss)
I0422 02:19:03.548249 32397 solver.cpp:406] Test net output #78: loss2/loss03 = 1.06746 (* 0.0272727 = 0.0291124 loss)
I0422 02:19:03.548266 32397 solver.cpp:406] Test net output #79: loss2/loss04 = 1.29215 (* 0.0272727 = 0.0352403 loss)
I0422 02:19:03.548280 32397 solver.cpp:406] Test net output #80: loss2/loss05 = 1.21997 (* 0.0272727 = 0.0332718 loss)
I0422 02:19:03.548295 32397 solver.cpp:406] Test net output #81: loss2/loss06 = 0.596856 (* 0.0272727 = 0.0162779 loss)
I0422 02:19:03.548308 32397 solver.cpp:406] Test net output #82: loss2/loss07 = 0.228597 (* 0.0272727 = 0.00623448 loss)
I0422 02:19:03.548322 32397 solver.cpp:406] Test net output #83: loss2/loss08 = 0.124126 (* 0.0272727 = 0.00338526 loss)
I0422 02:19:03.548336 32397 solver.cpp:406] Test net output #84: loss2/loss09 = 0.045511 (* 0.0272727 = 0.00124121 loss)
I0422 02:19:03.548352 32397 solver.cpp:406] Test net output #85: loss2/loss10 = 0.0246082 (* 0.0272727 = 0.000671133 loss)
I0422 02:19:03.548365 32397 solver.cpp:406] Test net output #86: loss2/loss11 = 9.14418e-05 (* 0.0272727 = 2.49387e-06 loss)
I0422 02:19:03.548379 32397 solver.cpp:406] Test net output #87: loss2/loss12 = 0.000100388 (* 0.0272727 = 2.73787e-06 loss)
I0422 02:19:03.548393 32397 solver.cpp:406] Test net output #88: loss2/loss13 = 9.91216e-05 (* 0.0272727 = 2.70332e-06 loss)
I0422 02:19:03.548408 32397 solver.cpp:406] Test net output #89: loss2/loss14 = 9.21047e-05 (* 0.0272727 = 2.51195e-06 loss)
I0422 02:19:03.548421 32397 solver.cpp:406] Test net output #90: loss2/loss15 = 9.23433e-05 (* 0.0272727 = 2.51845e-06 loss)
I0422 02:19:03.548435 32397 solver.cpp:406] Test net output #91: loss2/loss16 = 9.42888e-05 (* 0.0272727 = 2.57151e-06 loss)
I0422 02:19:03.548449 32397 solver.cpp:406] Test net output #92: loss2/loss17 = 9.80176e-05 (* 0.0272727 = 2.67321e-06 loss)
I0422 02:19:03.548463 32397 solver.cpp:406] Test net output #93: loss2/loss18 = 9.51404e-05 (* 0.0272727 = 2.59474e-06 loss)
I0422 02:19:03.548477 32397 solver.cpp:406] Test net output #94: loss2/loss19 = 9.34931e-05 (* 0.0272727 = 2.54981e-06 loss)
I0422 02:19:03.548491 32397 solver.cpp:406] Test net output #95: loss2/loss20 = 9.4557e-05 (* 0.0272727 = 2.57883e-06 loss)
I0422 02:19:03.548506 32397 solver.cpp:406] Test net output #96: loss2/loss21 = 8.69631e-05 (* 0.0272727 = 2.37172e-06 loss)
I0422 02:19:03.548519 32397 solver.cpp:406] Test net output #97: loss2/loss22 = 8.90405e-05 (* 0.0272727 = 2.42838e-06 loss)
I0422 02:19:03.548532 32397 solver.cpp:406] Test net output #98: loss3/accuracy = 0.881785
I0422 02:19:03.548543 32397 solver.cpp:406] Test net output #99: loss3/accuracy01 = 0.887
I0422 02:19:03.548555 32397 solver.cpp:406] Test net output #100: loss3/accuracy02 = 0.869
I0422 02:19:03.548568 32397 solver.cpp:406] Test net output #101: loss3/accuracy03 = 0.9
I0422 02:19:03.548578 32397 solver.cpp:406] Test net output #102: loss3/accuracy04 = 0.897
I0422 02:19:03.548590 32397 solver.cpp:406] Test net output #103: loss3/accuracy05 = 0.884
I0422 02:19:03.548601 32397 solver.cpp:406] Test net output #104: loss3/accuracy06 = 0.898
I0422 02:19:03.548614 32397 solver.cpp:406] Test net output #105: loss3/accuracy07 = 0.959
I0422 02:19:03.548625 32397 solver.cpp:406] Test net output #106: loss3/accuracy08 = 0.98
I0422 02:19:03.548636 32397 solver.cpp:406] Test net output #107: loss3/accuracy09 = 0.99
I0422 02:19:03.548648 32397 solver.cpp:406] Test net output #108: loss3/accuracy10 = 0.994
I0422 02:19:03.548660 32397 solver.cpp:406] Test net output #109: loss3/accuracy11 = 1
I0422 02:19:03.548671 32397 solver.cpp:406] Test net output #110: loss3/accuracy12 = 1
I0422 02:19:03.548682 32397 solver.cpp:406] Test net output #111: loss3/accuracy13 = 1
I0422 02:19:03.548693 32397 solver.cpp:406] Test net output #112: loss3/accuracy14 = 1
I0422 02:19:03.548704 32397 solver.cpp:406] Test net output #113: loss3/accuracy15 = 1
I0422 02:19:03.548715 32397 solver.cpp:406] Test net output #114: loss3/accuracy16 = 1
I0422 02:19:03.548737 32397 solver.cpp:406] Test net output #115: loss3/accuracy17 = 1
I0422 02:19:03.548749 32397 solver.cpp:406] Test net output #116: loss3/accuracy18 = 1
I0422 02:19:03.548761 32397 solver.cpp:406] Test net output #117: loss3/accuracy19 = 1
I0422 02:19:03.548773 32397 solver.cpp:406] Test net output #118: loss3/accuracy20 = 1
I0422 02:19:03.548784 32397 solver.cpp:406] Test net output #119: loss3/accuracy21 = 1
I0422 02:19:03.548794 32397 solver.cpp:406] Test net output #120: loss3/accuracy22 = 1
I0422 02:19:03.548805 32397 solver.cpp:406] Test net output #121: loss3/accuracy_incl_empty = 0.971046
I0422 02:19:03.548817 32397 solver.cpp:406] Test net output #122: loss3/accuracy_top3 = 0.933
I0422 02:19:03.548831 32397 solver.cpp:406] Test net output #123: loss3/cross_entropy_loss = 0.546477 (* 1 = 0.546477 loss)
I0422 02:19:03.548846 32397 solver.cpp:406] Test net output #124: loss3/cross_entropy_loss_incl_empty = 0.141026 (* 1 = 0.141026 loss)
I0422 02:19:03.548859 32397 solver.cpp:406] Test net output #125: loss3/loss01 = 0.570081 (* 0.0909091 = 0.0518256 loss)
I0422 02:19:03.548873 32397 solver.cpp:406] Test net output #126: loss3/loss02 = 0.57259 (* 0.0909091 = 0.0520536 loss)
I0422 02:19:03.548887 32397 solver.cpp:406] Test net output #127: loss3/loss03 = 0.512996 (* 0.0909091 = 0.046636 loss)
I0422 02:19:03.548902 32397 solver.cpp:406] Test net output #128: loss3/loss04 = 0.501155 (* 0.0909091 = 0.0455596 loss)
I0422 02:19:03.548915 32397 solver.cpp:406] Test net output #129: loss3/loss05 = 0.535791 (* 0.0909091 = 0.0487083 loss)
I0422 02:19:03.548928 32397 solver.cpp:406] Test net output #130: loss3/loss06 = 0.398564 (* 0.0909091 = 0.0362331 loss)
I0422 02:19:03.548943 32397 solver.cpp:406] Test net output #131: loss3/loss07 = 0.187875 (* 0.0909091 = 0.0170796 loss)
I0422 02:19:03.548956 32397 solver.cpp:406] Test net output #132: loss3/loss08 = 0.106132 (* 0.0909091 = 0.00964833 loss)
I0422 02:19:03.548970 32397 solver.cpp:406] Test net output #133: loss3/loss09 = 0.0587227 (* 0.0909091 = 0.00533843 loss)
I0422 02:19:03.548985 32397 solver.cpp:406] Test net output #134: loss3/loss10 = 0.032188 (* 0.0909091 = 0.00292619 loss)
I0422 02:19:03.548998 32397 solver.cpp:406] Test net output #135: loss3/loss11 = 0.00015905 (* 0.0909091 = 1.44591e-05 loss)
I0422 02:19:03.549012 32397 solver.cpp:406] Test net output #136: loss3/loss12 = 0.000153147 (* 0.0909091 = 1.39225e-05 loss)
I0422 02:19:03.549022 32397 solver.cpp:406] Test net output #137: loss3/loss13 = 0.000159774 (* 0.0909091 = 1.45249e-05 loss)
I0422 02:19:03.549032 32397 solver.cpp:406] Test net output #138: loss3/loss14 = 0.000151945 (* 0.0909091 = 1.38132e-05 loss)
I0422 02:19:03.549042 32397 solver.cpp:406] Test net output #139: loss3/loss15 = 0.000157388 (* 0.0909091 = 1.4308e-05 loss)
I0422 02:19:03.549057 32397 solver.cpp:406] Test net output #140: loss3/loss16 = 0.000149673 (* 0.0909091 = 1.36067e-05 loss)
I0422 02:19:03.549074 32397 solver.cpp:406] Test net output #141: loss3/loss17 = 0.000150183 (* 0.0909091 = 1.3653e-05 loss)
I0422 02:19:03.549088 32397 solver.cpp:406] Test net output #142: loss3/loss18 = 0.000147865 (* 0.0909091 = 1.34423e-05 loss)
I0422 02:19:03.549103 32397 solver.cpp:406] Test net output #143: loss3/loss19 = 0.000152232 (* 0.0909091 = 1.38392e-05 loss)
I0422 02:19:03.549118 32397 solver.cpp:406] Test net output #144: loss3/loss20 = 0.000147582 (* 0.0909091 = 1.34166e-05 loss)
I0422 02:19:03.549130 32397 solver.cpp:406] Test net output #145: loss3/loss21 = 0.000146826 (* 0.0909091 = 1.33478e-05 loss)
I0422 02:19:03.549144 32397 solver.cpp:406] Test net output #146: loss3/loss22 = 0.000148475 (* 0.0909091 = 1.34977e-05 loss)
I0422 02:19:03.549156 32397 solver.cpp:406] Test net output #147: total_accuracy = 0.728
I0422 02:19:03.549168 32397 solver.cpp:406] Test net output #148: total_accuracy_not_rec = 0.647
I0422 02:19:03.549180 32397 solver.cpp:406] Test net output #149: total_confidence = 0.696984
I0422 02:19:03.549201 32397 solver.cpp:406] Test net output #150: total_confidence_nor_rec = 0.559786
I0422 02:19:03.939733 32397 solver.cpp:229] Iteration 15000, loss = 2.25589
I0422 02:19:03.939780 32397 solver.cpp:245] Train net output #0: loss1/accuracy = 0.756098
I0422 02:19:03.939800 32397 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75
I0422 02:19:03.939812 32397 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5
I0422 02:19:03.939824 32397 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.75
I0422 02:19:03.939837 32397 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.625
I0422 02:19:03.939849 32397 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.375
I0422 02:19:03.939862 32397 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.75
I0422 02:19:03.939873 32397 solver.cpp:245] Train net output #7: loss1/accuracy07 = 1
I0422 02:19:03.939885 32397 solver.cpp:245] Train net output #8: loss1/accuracy08 = 1
I0422 02:19:03.939898 32397 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1
I0422 02:19:03.939909 32397 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0422 02:19:03.939921 32397 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0422 02:19:03.939935 32397 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0422 02:19:03.939949 32397 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0422 02:19:03.939960 32397 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0422 02:19:03.939971 32397 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0422 02:19:03.939982 32397 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0422 02:19:03.939995 32397 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0422 02:19:03.940006 32397 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0422 02:19:03.940018 32397 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0422 02:19:03.940029 32397 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0422 02:19:03.940042 32397 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0422 02:19:03.940053 32397 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0422 02:19:03.940064 32397 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.914773
I0422 02:19:03.940076 32397 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.878049
I0422 02:19:03.940091 32397 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 0.850049 (* 0.3 = 0.255015 loss)
I0422 02:19:03.940105 32397 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.260814 (* 0.3 = 0.0782442 loss)
I0422 02:19:03.940120 32397 solver.cpp:245] Train net output #27: loss1/loss01 = 0.700927 (* 0.0272727 = 0.0191162 loss)
I0422 02:19:03.940134 32397 solver.cpp:245] Train net output #28: loss1/loss02 = 1.50714 (* 0.0272727 = 0.0411038 loss)
I0422 02:19:03.940147 32397 solver.cpp:245] Train net output #29: loss1/loss03 = 1.31984 (* 0.0272727 = 0.0359957 loss)
I0422 02:19:03.940162 32397 solver.cpp:245] Train net output #30: loss1/loss04 = 1.20417 (* 0.0272727 = 0.0328411 loss)
I0422 02:19:03.940176 32397 solver.cpp:245] Train net output #31: loss1/loss05 = 1.17194 (* 0.0272727 = 0.0319619 loss)
I0422 02:19:03.940192 32397 solver.cpp:245] Train net output #32: loss1/loss06 = 0.655566 (* 0.0272727 = 0.0178791 loss)
I0422 02:19:03.940219 32397 solver.cpp:245] Train net output #33: loss1/loss07 = 0.222704 (* 0.0272727 = 0.00607374 loss)
I0422 02:19:03.940251 32397 solver.cpp:245] Train net output #34: loss1/loss08 = 0.0207398 (* 0.0272727 = 0.000565631 loss)
I0422 02:19:03.940268 32397 solver.cpp:245] Train net output #35: loss1/loss09 = 0.00312515 (* 0.0272727 = 8.52313e-05 loss)
I0422 02:19:03.940284 32397 solver.cpp:245] Train net output #36: loss1/loss10 = 0.00114647 (* 0.0272727 = 3.12675e-05 loss)
I0422 02:19:03.940318 32397 solver.cpp:245] Train net output #37: loss1/loss11 = 0.000122495 (* 0.0272727 = 3.34078e-06 loss)
I0422 02:19:03.940335 32397 solver.cpp:245] Train net output #38: loss1/loss12 = 5.42341e-05 (* 0.0272727 = 1.47911e-06 loss)
I0422 02:19:03.940348 32397 solver.cpp:245] Train net output #39: loss1/loss13 = 0.000166683 (* 0.0272727 = 4.54589e-06 loss)
I0422 02:19:03.940362 32397 solver.cpp:245] Train net output #40: loss1/loss14 = 4.91207e-05 (* 0.0272727 = 1.33965e-06 loss)
I0422 02:19:03.940376 32397 solver.cpp:245] Train net output #41: loss1/loss15 = 0.000179677 (* 0.0272727 = 4.90028e-06 loss)
I0422 02:19:03.940389 32397 solver.cpp:245] Train net output #42: loss1/loss16 = 8.43175e-05 (* 0.0272727 = 2.29957e-06 loss)
I0422 02:19:03.940403 32397 solver.cpp:245] Train net output #43: loss1/loss17 = 0.000151777 (* 0.0272727 = 4.13938e-06 loss)
I0422 02:19:03.940418 32397 solver.cpp:245] Train net output #44: loss1/loss18 = 7.16907e-05 (* 0.0272727 = 1.9552e-06 loss)
I0422 02:19:03.940431 32397 solver.cpp:245] Train net output #45: loss1/loss19 = 0.00017901 (* 0.0272727 = 4.88209e-06 loss)
I0422 02:19:03.940445 32397 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000126307 (* 0.0272727 = 3.44473e-06 loss)
I0422 02:19:03.940459 32397 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000107917 (* 0.0272727 = 2.94319e-06 loss)
I0422 02:19:03.940474 32397 solver.cpp:245] Train net output #48: loss1/loss22 = 8.56541e-05 (* 0.0272727 = 2.33602e-06 loss)
I0422 02:19:03.940485 32397 solver.cpp:245] Train net output #49: loss2/accuracy = 0.902439
I0422 02:19:03.940497 32397 solver.cpp:245] Train net output #50: loss2/accuracy01 = 1
I0422 02:19:03.940508 32397 solver.cpp:245] Train net output #51: loss2/accuracy02 = 1
I0422 02:19:03.940520 32397 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.875
I0422 02:19:03.940531 32397 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.5
I0422 02:19:03.940543 32397 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5
I0422 02:19:03.940554 32397 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.875
I0422 02:19:03.940565 32397 solver.cpp:245] Train net output #56: loss2/accuracy07 = 1
I0422 02:19:03.940577 32397 solver.cpp:245] Train net output #57: loss2/accuracy08 = 1
I0422 02:19:03.940588 32397 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1
I0422 02:19:03.940599 32397 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0422 02:19:03.940611 32397 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0422 02:19:03.940623 32397 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0422 02:19:03.940634 32397 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0422 02:19:03.940644 32397 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0422 02:19:03.940655 32397 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0422 02:19:03.940666 32397 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0422 02:19:03.940677 32397 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0422 02:19:03.940688 32397 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0422 02:19:03.940701 32397 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0422 02:19:03.940711 32397 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0422 02:19:03.940722 32397 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0422 02:19:03.940733 32397 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0422 02:19:03.940744 32397 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.971591
I0422 02:19:03.940757 32397 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.97561
I0422 02:19:03.940770 32397 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.3126 (* 0.3 = 0.0937799 loss)
I0422 02:19:03.940784 32397 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.0904563 (* 0.3 = 0.0271369 loss)
I0422 02:19:03.940809 32397 solver.cpp:245] Train net output #76: loss2/loss01 = 0.0975423 (* 0.0272727 = 0.00266024 loss)
I0422 02:19:03.940825 32397 solver.cpp:245] Train net output #77: loss2/loss02 = 0.209053 (* 0.0272727 = 0.00570144 loss)
I0422 02:19:03.940840 32397 solver.cpp:245] Train net output #78: loss2/loss03 = 1.28365 (* 0.0272727 = 0.0350087 loss)
I0422 02:19:03.940853 32397 solver.cpp:245] Train net output #79: loss2/loss04 = 1.31477 (* 0.0272727 = 0.0358572 loss)
I0422 02:19:03.940867 32397 solver.cpp:245] Train net output #80: loss2/loss05 = 1.29688 (* 0.0272727 = 0.0353694 loss)
I0422 02:19:03.940881 32397 solver.cpp:245] Train net output #81: loss2/loss06 = 0.383004 (* 0.0272727 = 0.0104456 loss)
I0422 02:19:03.940894 32397 solver.cpp:245] Train net output #82: loss2/loss07 = 0.216551 (* 0.0272727 = 0.00590594 loss)
I0422 02:19:03.940908 32397 solver.cpp:245] Train net output #83: loss2/loss08 = 0.00296198 (* 0.0272727 = 8.07812e-05 loss)
I0422 02:19:03.940923 32397 solver.cpp:245] Train net output #84: loss2/loss09 = 0.000513232 (* 0.0272727 = 1.39972e-05 loss)
I0422 02:19:03.940937 32397 solver.cpp:245] Train net output #85: loss2/loss10 = 0.00020793 (* 0.0272727 = 5.67082e-06 loss)
I0422 02:19:03.940950 32397 solver.cpp:245] Train net output #86: loss2/loss11 = 1.01182e-05 (* 0.0272727 = 2.75951e-07 loss)
I0422 02:19:03.940964 32397 solver.cpp:245] Train net output #87: loss2/loss12 = 5.2602e-06 (* 0.0272727 = 1.4346e-07 loss)
I0422 02:19:03.940979 32397 solver.cpp:245] Train net output #88: loss2/loss13 = 1.72716e-05 (* 0.0272727 = 4.71043e-07 loss)
I0422 02:19:03.940996 32397 solver.cpp:245] Train net output #89: loss2/loss14 = 6.67588e-06 (* 0.0272727 = 1.82069e-07 loss)
I0422 02:19:03.941010 32397 solver.cpp:245] Train net output #90: loss2/loss15 = 7.97232e-06 (* 0.0272727 = 2.17427e-07 loss)
I0422 02:19:03.941025 32397 solver.cpp:245] Train net output #91: loss2/loss16 = 3.13334e-05 (* 0.0272727 = 8.54549e-07 loss)
I0422 02:19:03.941038 32397 solver.cpp:245] Train net output #92: loss2/loss17 = 1.25324e-05 (* 0.0272727 = 3.41792e-07 loss)
I0422 02:19:03.941051 32397 solver.cpp:245] Train net output #93: loss2/loss18 = 1.60644e-05 (* 0.0272727 = 4.38121e-07 loss)
I0422 02:19:03.941066 32397 solver.cpp:245] Train net output #94: loss2/loss19 = 1.40674e-05 (* 0.0272727 = 3.83656e-07 loss)
I0422 02:19:03.941079 32397 solver.cpp:245] Train net output #95: loss2/loss20 = 1.72715e-05 (* 0.0272727 = 4.71042e-07 loss)
I0422 02:19:03.941092 32397 solver.cpp:245] Train net output #96: loss2/loss21 = 9.74569e-06 (* 0.0272727 = 2.65791e-07 loss)
I0422 02:19:03.941107 32397 solver.cpp:245] Train net output #97: loss2/loss22 = 7.97235e-06 (* 0.0272727 = 2.17428e-07 loss)
I0422 02:19:03.941118 32397 solver.cpp:245] Train net output #98: loss3/accuracy = 0.97561
I0422 02:19:03.941130 32397 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0422 02:19:03.941141 32397 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0422 02:19:03.941153 32397 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0422 02:19:03.941164 32397 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1
I0422 02:19:03.941180 32397 solver.cpp:245] Train net output #103: loss3/accuracy05 = 1
I0422 02:19:03.941191 32397 solver.cpp:245] Train net output #104: loss3/accuracy06 = 1
I0422 02:19:03.941202 32397 solver.cpp:245] Train net output #105: loss3/accuracy07 = 1
I0422 02:19:03.941213 32397 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1
I0422 02:19:03.941225 32397 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1
I0422 02:19:03.941236 32397 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0422 02:19:03.941246 32397 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0422 02:19:03.941257 32397 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0422 02:19:03.941268 32397 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0422 02:19:03.941293 32397 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0422 02:19:03.941306 32397 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0422 02:19:03.941318 32397 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0422 02:19:03.941329 32397 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0422 02:19:03.941340 32397 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0422 02:19:03.941352 32397 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0422 02:19:03.941364 32397 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0422 02:19:03.941375 32397 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0422 02:19:03.941385 32397 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0422 02:19:03.941397 32397 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.994318
I0422 02:19:03.941408 32397 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 1
I0422 02:19:03.941431 32397 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.0702059 (* 1 = 0.0702059 loss)
I0422 02:19:03.941444 32397 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.0177172 (* 1 = 0.0177172 loss)
I0422 02:19:03.941457 32397 solver.cpp:245] Train net output #125: loss3/loss01 = 0.0787312 (* 0.0909091 = 0.00715738 loss)
I0422 02:19:03.941471 32397 solver.cpp:245] Train net output #126: loss3/loss02 = 0.018223 (* 0.0909091 = 0.00165663 loss)
I0422 02:19:03.941493 32397 solver.cpp:245] Train net output #127: loss3/loss03 = 0.153283 (* 0.0909091 = 0.0139348 loss)
I0422 02:19:03.941506 32397 solver.cpp:245] Train net output #128: loss3/loss04 = 0.0925317 (* 0.0909091 = 0.00841197 loss)
I0422 02:19:03.941520 32397 solver.cpp:245] Train net output #129: loss3/loss05 = 0.170444 (* 0.0909091 = 0.0154949 loss)
I0422 02:19:03.941534 32397 solver.cpp:245] Train net output #130: loss3/loss06 = 0.072674 (* 0.0909091 = 0.00660673 loss)
I0422 02:19:03.941548 32397 solver.cpp:245] Train net output #131: loss3/loss07 = 0.007395 (* 0.0909091 = 0.000672273 loss)
I0422 02:19:03.941562 32397 solver.cpp:245] Train net output #132: loss3/loss08 = 0.000281574 (* 0.0909091 = 2.55977e-05 loss)
I0422 02:19:03.941576 32397 solver.cpp:245] Train net output #133: loss3/loss09 = 5.9903e-06 (* 0.0909091 = 5.44573e-07 loss)
I0422 02:19:03.941589 32397 solver.cpp:245] Train net output #134: loss3/loss10 = 3.53158e-06 (* 0.0909091 = 3.21053e-07 loss)
I0422 02:19:03.941602 32397 solver.cpp:245] Train net output #135: loss3/loss11 = 1.51992e-06 (* 0.0909091 = 1.38175e-07 loss)
I0422 02:19:03.941617 32397 solver.cpp:245] Train net output #136: loss3/loss12 = 1.56462e-06 (* 0.0909091 = 1.42239e-07 loss)
I0422 02:19:03.941629 32397 solver.cpp:245] Train net output #137: loss3/loss13 = 2.08617e-06 (* 0.0909091 = 1.89652e-07 loss)
I0422 02:19:03.941653 32397 solver.cpp:245] Train net output #138: loss3/loss14 = 1.77324e-06 (* 0.0909091 = 1.61204e-07 loss)
I0422 02:19:03.941665 32397 solver.cpp:245] Train net output #139: loss3/loss15 = 1.60933e-06 (* 0.0909091 = 1.46303e-07 loss)
I0422 02:19:03.941679 32397 solver.cpp:245] Train net output #140: loss3/loss16 = 1.86265e-06 (* 0.0909091 = 1.69332e-07 loss)
I0422 02:19:03.941692 32397 solver.cpp:245] Train net output #141: loss3/loss17 = 2.19048e-06 (* 0.0909091 = 1.99134e-07 loss)
I0422 02:19:03.941706 32397 solver.cpp:245] Train net output #142: loss3/loss18 = 2.02656e-06 (* 0.0909091 = 1.84233e-07 loss)
I0422 02:19:03.941720 32397 solver.cpp:245] Train net output #143: loss3/loss19 = 1.63913e-06 (* 0.0909091 = 1.49012e-07 loss)
I0422 02:19:03.941733 32397 solver.cpp:245] Train net output #144: loss3/loss20 = 1.44542e-06 (* 0.0909091 = 1.31401e-07 loss)
I0422 02:19:03.941746 32397 solver.cpp:245] Train net output #145: loss3/loss21 = 1.66893e-06 (* 0.0909091 = 1.51721e-07 loss)
I0422 02:19:03.941761 32397 solver.cpp:245] Train net output #146: loss3/loss22 = 1.41561e-06 (* 0.0909091 = 1.28692e-07 loss)
I0422 02:19:03.941782 32397 solver.cpp:245] Train net output #147: total_accuracy = 0.875
I0422 02:19:03.941795 32397 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 1
I0422 02:19:03.941807 32397 solver.cpp:245] Train net output #149: total_confidence = 0.755764
I0422 02:19:03.941819 32397 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.649329
I0422 02:19:03.941831 32397 sgd_solver.cpp:106] Iteration 15000, lr = 0.001
I0422 02:24:45.634138 32397 solver.cpp:229] Iteration 15500, loss = 2.24607
I0422 02:24:45.634306 32397 solver.cpp:245] Train net output #0: loss1/accuracy = 0.632653
I0422 02:24:45.634335 32397 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75
I0422 02:24:45.634349 32397 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5
I0422 02:24:45.634362 32397 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.625
I0422 02:24:45.634374 32397 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.5
I0422 02:24:45.634387 32397 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.25
I0422 02:24:45.634399 32397 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.75
I0422 02:24:45.634413 32397 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.875
I0422 02:24:45.634424 32397 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875
I0422 02:24:45.634438 32397 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1
I0422 02:24:45.634449 32397 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0422 02:24:45.634461 32397 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0422 02:24:45.634474 32397 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0422 02:24:45.634486 32397 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0422 02:24:45.634498 32397 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0422 02:24:45.634510 32397 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0422 02:24:45.634523 32397 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0422 02:24:45.634534 32397 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0422 02:24:45.634547 32397 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0422 02:24:45.634558 32397 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0422 02:24:45.634570 32397 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0422 02:24:45.634582 32397 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0422 02:24:45.634594 32397 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0422 02:24:45.634605 32397 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.897727
I0422 02:24:45.634618 32397 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.918367
I0422 02:24:45.634634 32397 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 0.993491 (* 0.3 = 0.298047 loss)
I0422 02:24:45.634649 32397 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.287223 (* 0.3 = 0.0861669 loss)
I0422 02:24:45.634662 32397 solver.cpp:245] Train net output #27: loss1/loss01 = 0.668036 (* 0.0272727 = 0.0182192 loss)
I0422 02:24:45.634677 32397 solver.cpp:245] Train net output #28: loss1/loss02 = 1.3101 (* 0.0272727 = 0.0357299 loss)
I0422 02:24:45.634691 32397 solver.cpp:245] Train net output #29: loss1/loss03 = 1.44757 (* 0.0272727 = 0.0394792 loss)
I0422 02:24:45.634706 32397 solver.cpp:245] Train net output #30: loss1/loss04 = 1.65811 (* 0.0272727 = 0.0452211 loss)
I0422 02:24:45.634719 32397 solver.cpp:245] Train net output #31: loss1/loss05 = 2.51304 (* 0.0272727 = 0.0685375 loss)
I0422 02:24:45.634733 32397 solver.cpp:245] Train net output #32: loss1/loss06 = 0.704167 (* 0.0272727 = 0.0192046 loss)
I0422 02:24:45.634747 32397 solver.cpp:245] Train net output #33: loss1/loss07 = 0.436092 (* 0.0272727 = 0.0118934 loss)
I0422 02:24:45.634769 32397 solver.cpp:245] Train net output #34: loss1/loss08 = 0.288286 (* 0.0272727 = 0.00786236 loss)
I0422 02:24:45.634784 32397 solver.cpp:245] Train net output #35: loss1/loss09 = 0.0380894 (* 0.0272727 = 0.0010388 loss)
I0422 02:24:45.634799 32397 solver.cpp:245] Train net output #36: loss1/loss10 = 0.00164615 (* 0.0272727 = 4.4895e-05 loss)
I0422 02:24:45.634835 32397 solver.cpp:245] Train net output #37: loss1/loss11 = 2.63996e-05 (* 0.0272727 = 7.19988e-07 loss)
I0422 02:24:45.634855 32397 solver.cpp:245] Train net output #38: loss1/loss12 = 2.35452e-05 (* 0.0272727 = 6.42143e-07 loss)
I0422 02:24:45.634883 32397 solver.cpp:245] Train net output #39: loss1/loss13 = 3.28383e-05 (* 0.0272727 = 8.9559e-07 loss)
I0422 02:24:45.634899 32397 solver.cpp:245] Train net output #40: loss1/loss14 = 6.94946e-05 (* 0.0272727 = 1.89531e-06 loss)
I0422 02:24:45.634913 32397 solver.cpp:245] Train net output #41: loss1/loss15 = 1.3948e-05 (* 0.0272727 = 3.80399e-07 loss)
I0422 02:24:45.634927 32397 solver.cpp:245] Train net output #42: loss1/loss16 = 3.19439e-05 (* 0.0272727 = 8.71198e-07 loss)
I0422 02:24:45.634941 32397 solver.cpp:245] Train net output #43: loss1/loss17 = 3.18846e-05 (* 0.0272727 = 8.69581e-07 loss)
I0422 02:24:45.634955 32397 solver.cpp:245] Train net output #44: loss1/loss18 = 2.53414e-05 (* 0.0272727 = 6.9113e-07 loss)
I0422 02:24:45.634970 32397 solver.cpp:245] Train net output #45: loss1/loss19 = 5.36617e-05 (* 0.0272727 = 1.4635e-06 loss)
I0422 02:24:45.634984 32397 solver.cpp:245] Train net output #46: loss1/loss20 = 1.92682e-05 (* 0.0272727 = 5.25496e-07 loss)
I0422 02:24:45.634999 32397 solver.cpp:245] Train net output #47: loss1/loss21 = 2.97381e-05 (* 0.0272727 = 8.11038e-07 loss)
I0422 02:24:45.635013 32397 solver.cpp:245] Train net output #48: loss1/loss22 = 1.34263e-05 (* 0.0272727 = 3.66173e-07 loss)
I0422 02:24:45.635025 32397 solver.cpp:245] Train net output #49: loss2/accuracy = 0.938776
I0422 02:24:45.635037 32397 solver.cpp:245] Train net output #50: loss2/accuracy01 = 1
I0422 02:24:45.635049 32397 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.875
I0422 02:24:45.635061 32397 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.75
I0422 02:24:45.635074 32397 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.625
I0422 02:24:45.635087 32397 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.25
I0422 02:24:45.635097 32397 solver.cpp:245] Train net output #55: loss2/accuracy06 = 1
I0422 02:24:45.635109 32397 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.875
I0422 02:24:45.635121 32397 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875
I0422 02:24:45.635133 32397 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1
I0422 02:24:45.635144 32397 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0422 02:24:45.635155 32397 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0422 02:24:45.635166 32397 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0422 02:24:45.635179 32397 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0422 02:24:45.635190 32397 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0422 02:24:45.635205 32397 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0422 02:24:45.635216 32397 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0422 02:24:45.635228 32397 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0422 02:24:45.635239 32397 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0422 02:24:45.635251 32397 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0422 02:24:45.635262 32397 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0422 02:24:45.635273 32397 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0422 02:24:45.635284 32397 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0422 02:24:45.635296 32397 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.965909
I0422 02:24:45.635308 32397 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.979592
I0422 02:24:45.635339 32397 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.355982 (* 0.3 = 0.106795 loss)
I0422 02:24:45.635355 32397 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.124695 (* 0.3 = 0.0374085 loss)
I0422 02:24:45.635370 32397 solver.cpp:245] Train net output #76: loss2/loss01 = 0.119517 (* 0.0272727 = 0.00325954 loss)
I0422 02:24:45.635385 32397 solver.cpp:245] Train net output #77: loss2/loss02 = 0.59093 (* 0.0272727 = 0.0161163 loss)
I0422 02:24:45.635411 32397 solver.cpp:245] Train net output #78: loss2/loss03 = 0.703542 (* 0.0272727 = 0.0191875 loss)
I0422 02:24:45.635427 32397 solver.cpp:245] Train net output #79: loss2/loss04 = 1.20327 (* 0.0272727 = 0.0328165 loss)
I0422 02:24:45.635442 32397 solver.cpp:245] Train net output #80: loss2/loss05 = 1.5452 (* 0.0272727 = 0.0421418 loss)
I0422 02:24:45.635454 32397 solver.cpp:245] Train net output #81: loss2/loss06 = 0.379177 (* 0.0272727 = 0.0103412 loss)
I0422 02:24:45.635469 32397 solver.cpp:245] Train net output #82: loss2/loss07 = 0.265793 (* 0.0272727 = 0.0072489 loss)
I0422 02:24:45.635483 32397 solver.cpp:245] Train net output #83: loss2/loss08 = 0.186385 (* 0.0272727 = 0.00508323 loss)
I0422 02:24:45.635498 32397 solver.cpp:245] Train net output #84: loss2/loss09 = 0.00505358 (* 0.0272727 = 0.000137825 loss)
I0422 02:24:45.635511 32397 solver.cpp:245] Train net output #85: loss2/loss10 = 0.000352484 (* 0.0272727 = 9.61319e-06 loss)
I0422 02:24:45.635525 32397 solver.cpp:245] Train net output #86: loss2/loss11 = 9.5966e-06 (* 0.0272727 = 2.61725e-07 loss)
I0422 02:24:45.635540 32397 solver.cpp:245] Train net output #87: loss2/loss12 = 5.72211e-06 (* 0.0272727 = 1.56058e-07 loss)
I0422 02:24:45.635553 32397 solver.cpp:245] Train net output #88: loss2/loss13 = 3.29318e-06 (* 0.0272727 = 8.98139e-08 loss)
I0422 02:24:45.635567 32397 solver.cpp:245] Train net output #89: loss2/loss14 = 4.39588e-06 (* 0.0272727 = 1.19888e-07 loss)
I0422 02:24:45.635581 32397 solver.cpp:245] Train net output #90: loss2/loss15 = 4.14256e-06 (* 0.0272727 = 1.12979e-07 loss)
I0422 02:24:45.635596 32397 solver.cpp:245] Train net output #91: loss2/loss16 = 3.472e-06 (* 0.0272727 = 9.46908e-08 loss)
I0422 02:24:45.635609 32397 solver.cpp:245] Train net output #92: loss2/loss17 = 1.14295e-05 (* 0.0272727 = 3.11714e-07 loss)
I0422 02:24:45.635623 32397 solver.cpp:245] Train net output #93: loss2/loss18 = 2.75673e-06 (* 0.0272727 = 7.51835e-08 loss)
I0422 02:24:45.635637 32397 solver.cpp:245] Train net output #94: loss2/loss19 = 4.05315e-06 (* 0.0272727 = 1.1054e-07 loss)
I0422 02:24:45.635651 32397 solver.cpp:245] Train net output #95: loss2/loss20 = 5.30486e-06 (* 0.0272727 = 1.44678e-07 loss)
I0422 02:24:45.635665 32397 solver.cpp:245] Train net output #96: loss2/loss21 = 3.91903e-06 (* 0.0272727 = 1.06883e-07 loss)
I0422 02:24:45.635679 32397 solver.cpp:245] Train net output #97: loss2/loss22 = 6.07975e-06 (* 0.0272727 = 1.65811e-07 loss)
I0422 02:24:45.635691 32397 solver.cpp:245] Train net output #98: loss3/accuracy = 1
I0422 02:24:45.635704 32397 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0422 02:24:45.635715 32397 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0422 02:24:45.635725 32397 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0422 02:24:45.635737 32397 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1
I0422 02:24:45.635748 32397 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.75
I0422 02:24:45.635761 32397 solver.cpp:245] Train net output #104: loss3/accuracy06 = 1
I0422 02:24:45.635771 32397 solver.cpp:245] Train net output #105: loss3/accuracy07 = 1
I0422 02:24:45.635784 32397 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875
I0422 02:24:45.635795 32397 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1
I0422 02:24:45.635807 32397 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0422 02:24:45.635818 32397 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0422 02:24:45.635829 32397 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0422 02:24:45.635840 32397 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0422 02:24:45.635853 32397 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0422 02:24:45.635864 32397 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0422 02:24:45.635874 32397 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0422 02:24:45.635896 32397 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0422 02:24:45.635910 32397 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0422 02:24:45.635921 32397 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0422 02:24:45.635931 32397 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0422 02:24:45.635943 32397 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0422 02:24:45.635954 32397 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0422 02:24:45.635965 32397 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 1
I0422 02:24:45.635977 32397 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 1
I0422 02:24:45.635990 32397 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.0645136 (* 1 = 0.0645136 loss)
I0422 02:24:45.636004 32397 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.0194305 (* 1 = 0.0194305 loss)
I0422 02:24:45.636018 32397 solver.cpp:245] Train net output #125: loss3/loss01 = 0.0349213 (* 0.0909091 = 0.00317467 loss)
I0422 02:24:45.636032 32397 solver.cpp:245] Train net output #126: loss3/loss02 = 0.0696036 (* 0.0909091 = 0.0063276 loss)
I0422 02:24:45.636046 32397 solver.cpp:245] Train net output #127: loss3/loss03 = 0.0477044 (* 0.0909091 = 0.00433676 loss)
I0422 02:24:45.636060 32397 solver.cpp:245] Train net output #128: loss3/loss04 = 0.171376 (* 0.0909091 = 0.0155796 loss)
I0422 02:24:45.636075 32397 solver.cpp:245] Train net output #129: loss3/loss05 = 0.42565 (* 0.0909091 = 0.0386954 loss)
I0422 02:24:45.636088 32397 solver.cpp:245] Train net output #130: loss3/loss06 = 0.0892243 (* 0.0909091 = 0.0081113 loss)
I0422 02:24:45.636102 32397 solver.cpp:245] Train net output #131: loss3/loss07 = 0.171052 (* 0.0909091 = 0.0155502 loss)
I0422 02:24:45.636116 32397 solver.cpp:245] Train net output #132: loss3/loss08 = 0.147341 (* 0.0909091 = 0.0133946 loss)
I0422 02:24:45.636132 32397 solver.cpp:245] Train net output #133: loss3/loss09 = 0.0016932 (* 0.0909091 = 0.000153928 loss)
I0422 02:24:45.636145 32397 solver.cpp:245] Train net output #134: loss3/loss10 = 0.000193313 (* 0.0909091 = 1.75739e-05 loss)
I0422 02:24:45.636158 32397 solver.cpp:245] Train net output #135: loss3/loss11 = 2.07127e-06 (* 0.0909091 = 1.88297e-07 loss)
I0422 02:24:45.636173 32397 solver.cpp:245] Train net output #136: loss3/loss12 = 1.81795e-06 (* 0.0909091 = 1.65268e-07 loss)
I0422 02:24:45.636186 32397 solver.cpp:245] Train net output #137: loss3/loss13 = 1.47522e-06 (* 0.0909091 = 1.34111e-07 loss)
I0422 02:24:45.636200 32397 solver.cpp:245] Train net output #138: loss3/loss14 = 1.81795e-06 (* 0.0909091 = 1.65268e-07 loss)
I0422 02:24:45.636214 32397 solver.cpp:245] Train net output #139: loss3/loss15 = 1.92226e-06 (* 0.0909091 = 1.74751e-07 loss)
I0422 02:24:45.636229 32397 solver.cpp:245] Train net output #140: loss3/loss16 = 1.96696e-06 (* 0.0909091 = 1.78814e-07 loss)
I0422 02:24:45.636242 32397 solver.cpp:245] Train net output #141: loss3/loss17 = 1.62423e-06 (* 0.0909091 = 1.47657e-07 loss)
I0422 02:24:45.636260 32397 solver.cpp:245] Train net output #142: loss3/loss18 = 1.51992e-06 (* 0.0909091 = 1.38175e-07 loss)
I0422 02:24:45.636273 32397 solver.cpp:245] Train net output #143: loss3/loss19 = 1.95206e-06 (* 0.0909091 = 1.7746e-07 loss)
I0422 02:24:45.636287 32397 solver.cpp:245] Train net output #144: loss3/loss20 = 2.13087e-06 (* 0.0909091 = 1.93716e-07 loss)
I0422 02:24:45.636302 32397 solver.cpp:245] Train net output #145: loss3/loss21 = 1.50502e-06 (* 0.0909091 = 1.3682e-07 loss)
I0422 02:24:45.636317 32397 solver.cpp:245] Train net output #146: loss3/loss22 = 2.01166e-06 (* 0.0909091 = 1.82878e-07 loss)
I0422 02:24:45.636328 32397 solver.cpp:245] Train net output #147: total_accuracy = 1
I0422 02:24:45.636337 32397 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.75
I0422 02:24:45.636358 32397 solver.cpp:245] Train net output #149: total_confidence = 0.684153
I0422 02:24:45.636374 32397 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.495282
I0422 02:24:45.636387 32397 sgd_solver.cpp:106] Iteration 15500, lr = 0.001
I0422 02:30:27.312501 32397 solver.cpp:229] Iteration 16000, loss = 2.30169
I0422 02:30:27.312657 32397 solver.cpp:245] Train net output #0: loss1/accuracy = 0.804348
I0422 02:30:27.312679 32397 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.875
I0422 02:30:27.312692 32397 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5
I0422 02:30:27.312706 32397 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.625
I0422 02:30:27.312718 32397 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.75
I0422 02:30:27.312731 32397 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.625
I0422 02:30:27.312743 32397 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.375
I0422 02:30:27.312757 32397 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.75
I0422 02:30:27.312770 32397 solver.cpp:245] Train net output #8: loss1/accuracy08 = 1
I0422 02:30:27.312783 32397 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1
I0422 02:30:27.312795 32397 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0422 02:30:27.312808 32397 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0422 02:30:27.312820 32397 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0422 02:30:27.312834 32397 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0422 02:30:27.312845 32397 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0422 02:30:27.312858 32397 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0422 02:30:27.312870 32397 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0422 02:30:27.312882 32397 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0422 02:30:27.312894 32397 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0422 02:30:27.312907 32397 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0422 02:30:27.312918 32397 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0422 02:30:27.312932 32397 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0422 02:30:27.312943 32397 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0422 02:30:27.312955 32397 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.9375
I0422 02:30:27.312968 32397 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.934783
I0422 02:30:27.312984 32397 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 0.782773 (* 0.3 = 0.234832 loss)
I0422 02:30:27.312999 32397 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.233315 (* 0.3 = 0.0699944 loss)
I0422 02:30:27.313014 32397 solver.cpp:245] Train net output #27: loss1/loss01 = 0.305787 (* 0.0272727 = 0.00833965 loss)
I0422 02:30:27.313030 32397 solver.cpp:245] Train net output #28: loss1/loss02 = 1.34322 (* 0.0272727 = 0.0366334 loss)
I0422 02:30:27.313043 32397 solver.cpp:245] Train net output #29: loss1/loss03 = 1.57468 (* 0.0272727 = 0.0429457 loss)
I0422 02:30:27.313057 32397 solver.cpp:245] Train net output #30: loss1/loss04 = 1.42401 (* 0.0272727 = 0.0388365 loss)
I0422 02:30:27.313071 32397 solver.cpp:245] Train net output #31: loss1/loss05 = 1.26865 (* 0.0272727 = 0.0345995 loss)
I0422 02:30:27.313086 32397 solver.cpp:245] Train net output #32: loss1/loss06 = 1.16223 (* 0.0272727 = 0.0316972 loss)
I0422 02:30:27.313099 32397 solver.cpp:245] Train net output #33: loss1/loss07 = 0.767004 (* 0.0272727 = 0.0209183 loss)
I0422 02:30:27.313114 32397 solver.cpp:245] Train net output #34: loss1/loss08 = 0.125967 (* 0.0272727 = 0.00343547 loss)
I0422 02:30:27.313128 32397 solver.cpp:245] Train net output #35: loss1/loss09 = 0.0547987 (* 0.0272727 = 0.00149451 loss)
I0422 02:30:27.313143 32397 solver.cpp:245] Train net output #36: loss1/loss10 = 0.0188769 (* 0.0272727 = 0.000514825 loss)
I0422 02:30:27.313158 32397 solver.cpp:245] Train net output #37: loss1/loss11 = 3.61525e-05 (* 0.0272727 = 9.85976e-07 loss)
I0422 02:30:27.313172 32397 solver.cpp:245] Train net output #38: loss1/loss12 = 3.49536e-05 (* 0.0272727 = 9.53281e-07 loss)
I0422 02:30:27.313207 32397 solver.cpp:245] Train net output #39: loss1/loss13 = 3.69959e-05 (* 0.0272727 = 1.00898e-06 loss)
I0422 02:30:27.313225 32397 solver.cpp:245] Train net output #40: loss1/loss14 = 3.41189e-05 (* 0.0272727 = 9.30515e-07 loss)
I0422 02:30:27.313238 32397 solver.cpp:245] Train net output #41: loss1/loss15 = 5.1862e-05 (* 0.0272727 = 1.41442e-06 loss)
I0422 02:30:27.313252 32397 solver.cpp:245] Train net output #42: loss1/loss16 = 2.49907e-05 (* 0.0272727 = 6.81565e-07 loss)
I0422 02:30:27.313267 32397 solver.cpp:245] Train net output #43: loss1/loss17 = 5.49185e-05 (* 0.0272727 = 1.49778e-06 loss)
I0422 02:30:27.313282 32397 solver.cpp:245] Train net output #44: loss1/loss18 = 2.30978e-05 (* 0.0272727 = 6.2994e-07 loss)
I0422 02:30:27.313297 32397 solver.cpp:245] Train net output #45: loss1/loss19 = 4.82764e-05 (* 0.0272727 = 1.31663e-06 loss)
I0422 02:30:27.313310 32397 solver.cpp:245] Train net output #46: loss1/loss20 = 3.78363e-05 (* 0.0272727 = 1.0319e-06 loss)
I0422 02:30:27.313324 32397 solver.cpp:245] Train net output #47: loss1/loss21 = 2.26657e-05 (* 0.0272727 = 6.18155e-07 loss)
I0422 02:30:27.313338 32397 solver.cpp:245] Train net output #48: loss1/loss22 = 3.1935e-05 (* 0.0272727 = 8.70955e-07 loss)
I0422 02:30:27.313350 32397 solver.cpp:245] Train net output #49: loss2/accuracy = 0.869565
I0422 02:30:27.313364 32397 solver.cpp:245] Train net output #50: loss2/accuracy01 = 1
I0422 02:30:27.313375 32397 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.875
I0422 02:30:27.313387 32397 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.625
I0422 02:30:27.313400 32397 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.5
I0422 02:30:27.313411 32397 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.875
I0422 02:30:27.313423 32397 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.875
I0422 02:30:27.313436 32397 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.875
I0422 02:30:27.313447 32397 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875
I0422 02:30:27.313459 32397 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1
I0422 02:30:27.313470 32397 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0422 02:30:27.313482 32397 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0422 02:30:27.313493 32397 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0422 02:30:27.313505 32397 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0422 02:30:27.313518 32397 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0422 02:30:27.313529 32397 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0422 02:30:27.313540 32397 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0422 02:30:27.313551 32397 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0422 02:30:27.313563 32397 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0422 02:30:27.313575 32397 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0422 02:30:27.313586 32397 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0422 02:30:27.313597 32397 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0422 02:30:27.313608 32397 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0422 02:30:27.313621 32397 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.960227
I0422 02:30:27.313632 32397 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 1
I0422 02:30:27.313645 32397 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.33877 (* 0.3 = 0.101631 loss)
I0422 02:30:27.313660 32397 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.101859 (* 0.3 = 0.0305576 loss)
I0422 02:30:27.313678 32397 solver.cpp:245] Train net output #76: loss2/loss01 = 0.0902592 (* 0.0272727 = 0.00246161 loss)
I0422 02:30:27.313694 32397 solver.cpp:245] Train net output #77: loss2/loss02 = 0.487675 (* 0.0272727 = 0.0133002 loss)
I0422 02:30:27.313719 32397 solver.cpp:245] Train net output #78: loss2/loss03 = 0.628771 (* 0.0272727 = 0.0171483 loss)
I0422 02:30:27.313735 32397 solver.cpp:245] Train net output #79: loss2/loss04 = 1.26324 (* 0.0272727 = 0.034452 loss)
I0422 02:30:27.313750 32397 solver.cpp:245] Train net output #80: loss2/loss05 = 0.767435 (* 0.0272727 = 0.02093 loss)
I0422 02:30:27.313762 32397 solver.cpp:245] Train net output #81: loss2/loss06 = 0.702444 (* 0.0272727 = 0.0191576 loss)
I0422 02:30:27.313776 32397 solver.cpp:245] Train net output #82: loss2/loss07 = 0.633146 (* 0.0272727 = 0.0172676 loss)
I0422 02:30:27.313791 32397 solver.cpp:245] Train net output #83: loss2/loss08 = 0.383736 (* 0.0272727 = 0.0104655 loss)
I0422 02:30:27.313805 32397 solver.cpp:245] Train net output #84: loss2/loss09 = 0.0771817 (* 0.0272727 = 0.00210496 loss)
I0422 02:30:27.313819 32397 solver.cpp:245] Train net output #85: loss2/loss10 = 0.0220243 (* 0.0272727 = 0.000600663 loss)
I0422 02:30:27.313833 32397 solver.cpp:245] Train net output #86: loss2/loss11 = 7.89763e-07 (* 0.0272727 = 2.1539e-08 loss)
I0422 02:30:27.313848 32397 solver.cpp:245] Train net output #87: loss2/loss12 = 1.11759e-06 (* 0.0272727 = 3.04797e-08 loss)
I0422 02:30:27.313861 32397 solver.cpp:245] Train net output #88: loss2/loss13 = 7.30158e-07 (* 0.0272727 = 1.99134e-08 loss)
I0422 02:30:27.313876 32397 solver.cpp:245] Train net output #89: loss2/loss14 = 1.37091e-06 (* 0.0272727 = 3.73885e-08 loss)
I0422 02:30:27.313890 32397 solver.cpp:245] Train net output #90: loss2/loss15 = 2.5332e-07 (* 0.0272727 = 6.90872e-09 loss)
I0422 02:30:27.313904 32397 solver.cpp:245] Train net output #91: loss2/loss16 = 6.2585e-07 (* 0.0272727 = 1.70686e-08 loss)
I0422 02:30:27.313917 32397 solver.cpp:245] Train net output #92: loss2/loss17 = 2.23518e-06 (* 0.0272727 = 6.09596e-08 loss)
I0422 02:30:27.313931 32397 solver.cpp:245] Train net output #93: loss2/loss18 = 8.7917e-07 (* 0.0272727 = 2.39774e-08 loss)
I0422 02:30:27.313946 32397 solver.cpp:245] Train net output #94: loss2/loss19 = 2.25009e-06 (* 0.0272727 = 6.13661e-08 loss)
I0422 02:30:27.313959 32397 solver.cpp:245] Train net output #95: loss2/loss20 = 1.10269e-06 (* 0.0272727 = 3.00733e-08 loss)
I0422 02:30:27.313973 32397 solver.cpp:245] Train net output #96: loss2/loss21 = 8.49368e-07 (* 0.0272727 = 2.31646e-08 loss)
I0422 02:30:27.313987 32397 solver.cpp:245] Train net output #97: loss2/loss22 = 6.55652e-07 (* 0.0272727 = 1.78814e-08 loss)
I0422 02:30:27.314000 32397 solver.cpp:245] Train net output #98: loss3/accuracy = 0.978261
I0422 02:30:27.314013 32397 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0422 02:30:27.314024 32397 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0422 02:30:27.314036 32397 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0422 02:30:27.314049 32397 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875
I0422 02:30:27.314059 32397 solver.cpp:245] Train net output #103: loss3/accuracy05 = 1
I0422 02:30:27.314071 32397 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.875
I0422 02:30:27.314084 32397 solver.cpp:245] Train net output #105: loss3/accuracy07 = 1
I0422 02:30:27.314095 32397 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1
I0422 02:30:27.314106 32397 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1
I0422 02:30:27.314118 32397 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0422 02:30:27.314129 32397 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0422 02:30:27.314141 32397 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0422 02:30:27.314152 32397 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0422 02:30:27.314163 32397 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0422 02:30:27.314175 32397 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0422 02:30:27.314187 32397 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0422 02:30:27.314208 32397 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0422 02:30:27.314221 32397 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0422 02:30:27.314232 32397 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0422 02:30:27.314244 32397 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0422 02:30:27.314259 32397 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0422 02:30:27.314270 32397 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0422 02:30:27.314282 32397 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.994318
I0422 02:30:27.314294 32397 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.978261
I0422 02:30:27.314308 32397 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.156447 (* 1 = 0.156447 loss)
I0422 02:30:27.314322 32397 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.0465884 (* 1 = 0.0465884 loss)
I0422 02:30:27.314337 32397 solver.cpp:245] Train net output #125: loss3/loss01 = 0.0108876 (* 0.0909091 = 0.000989779 loss)
I0422 02:30:27.314350 32397 solver.cpp:245] Train net output #126: loss3/loss02 = 0.0371999 (* 0.0909091 = 0.00338181 loss)
I0422 02:30:27.314364 32397 solver.cpp:245] Train net output #127: loss3/loss03 = 0.0583426 (* 0.0909091 = 0.00530387 loss)
I0422 02:30:27.314378 32397 solver.cpp:245] Train net output #128: loss3/loss04 = 0.2692 (* 0.0909091 = 0.0244727 loss)
I0422 02:30:27.314393 32397 solver.cpp:245] Train net output #129: loss3/loss05 = 0.0990206 (* 0.0909091 = 0.00900187 loss)
I0422 02:30:27.314406 32397 solver.cpp:245] Train net output #130: loss3/loss06 = 0.357906 (* 0.0909091 = 0.0325369 loss)
I0422 02:30:27.314420 32397 solver.cpp:245] Train net output #131: loss3/loss07 = 0.227987 (* 0.0909091 = 0.0207261 loss)
I0422 02:30:27.314434 32397 solver.cpp:245] Train net output #132: loss3/loss08 = 0.11137 (* 0.0909091 = 0.0101245 loss)
I0422 02:30:27.314447 32397 solver.cpp:245] Train net output #133: loss3/loss09 = 0.011655 (* 0.0909091 = 0.00105954 loss)
I0422 02:30:27.314461 32397 solver.cpp:245] Train net output #134: loss3/loss10 = 0.00180524 (* 0.0909091 = 0.000164113 loss)
I0422 02:30:27.314476 32397 solver.cpp:245] Train net output #135: loss3/loss11 = 5.57311e-06 (* 0.0909091 = 5.06646e-07 loss)
I0422 02:30:27.314489 32397 solver.cpp:245] Train net output #136: loss3/loss12 = 4.33629e-06 (* 0.0909091 = 3.94208e-07 loss)
I0422 02:30:27.314503 32397 solver.cpp:245] Train net output #137: loss3/loss13 = 6.94408e-06 (* 0.0909091 = 6.3128e-07 loss)
I0422 02:30:27.314517 32397 solver.cpp:245] Train net output #138: loss3/loss14 = 4.99196e-06 (* 0.0909091 = 4.53814e-07 loss)
I0422 02:30:27.314532 32397 solver.cpp:245] Train net output #139: loss3/loss15 = 5.69233e-06 (* 0.0909091 = 5.17485e-07 loss)
I0422 02:30:27.314544 32397 solver.cpp:245] Train net output #140: loss3/loss16 = 7.97232e-06 (* 0.0909091 = 7.24756e-07 loss)
I0422 02:30:27.314558 32397 solver.cpp:245] Train net output #141: loss3/loss17 = 9.06017e-06 (* 0.0909091 = 8.23652e-07 loss)
I0422 02:30:27.314573 32397 solver.cpp:245] Train net output #142: loss3/loss18 = 4.14256e-06 (* 0.0909091 = 3.76597e-07 loss)
I0422 02:30:27.314586 32397 solver.cpp:245] Train net output #143: loss3/loss19 = 4.06805e-06 (* 0.0909091 = 3.69823e-07 loss)
I0422 02:30:27.314599 32397 solver.cpp:245] Train net output #144: loss3/loss20 = 5.27509e-06 (* 0.0909091 = 4.79553e-07 loss)
I0422 02:30:27.314613 32397 solver.cpp:245] Train net output #145: loss3/loss21 = 5.18568e-06 (* 0.0909091 = 4.71426e-07 loss)
I0422 02:30:27.314627 32397 solver.cpp:245] Train net output #146: loss3/loss22 = 6.94408e-06 (* 0.0909091 = 6.3128e-07 loss)
I0422 02:30:27.314640 32397 solver.cpp:245] Train net output #147: total_accuracy = 0.875
I0422 02:30:27.314651 32397 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.75
I0422 02:30:27.314673 32397 solver.cpp:245] Train net output #149: total_confidence = 0.770575
I0422 02:30:27.314687 32397 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.618252
I0422 02:30:27.314699 32397 sgd_solver.cpp:106] Iteration 16000, lr = 0.001
I0422 02:36:08.979195 32397 solver.cpp:229] Iteration 16500, loss = 2.23974
I0422 02:36:08.979307 32397 solver.cpp:245] Train net output #0: loss1/accuracy = 0.627907
I0422 02:36:08.979328 32397 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.5
I0422 02:36:08.979342 32397 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.625
I0422 02:36:08.979367 32397 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375
I0422 02:36:08.979383 32397 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375
I0422 02:36:08.979396 32397 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.625
I0422 02:36:08.979409 32397 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.875
I0422 02:36:08.979423 32397 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.875
I0422 02:36:08.979434 32397 solver.cpp:245] Train net output #8: loss1/accuracy08 = 1
I0422 02:36:08.979447 32397 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1
I0422 02:36:08.979460 32397 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0422 02:36:08.979472 32397 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0422 02:36:08.979485 32397 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0422 02:36:08.979497 32397 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0422 02:36:08.979509 32397 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0422 02:36:08.979521 32397 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0422 02:36:08.979534 32397 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0422 02:36:08.979547 32397 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0422 02:36:08.979558 32397 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0422 02:36:08.979570 32397 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0422 02:36:08.979581 32397 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0422 02:36:08.979593 32397 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0422 02:36:08.979605 32397 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0422 02:36:08.979617 32397 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.886364
I0422 02:36:08.979629 32397 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.906977
I0422 02:36:08.979647 32397 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.26069 (* 0.3 = 0.378208 loss)
I0422 02:36:08.979663 32397 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.383384 (* 0.3 = 0.115015 loss)
I0422 02:36:08.979677 32397 solver.cpp:245] Train net output #27: loss1/loss01 = 2.01265 (* 0.0272727 = 0.0548906 loss)
I0422 02:36:08.979701 32397 solver.cpp:245] Train net output #28: loss1/loss02 = 1.5505 (* 0.0272727 = 0.0422864 loss)
I0422 02:36:08.979715 32397 solver.cpp:245] Train net output #29: loss1/loss03 = 1.67698 (* 0.0272727 = 0.0457358 loss)
I0422 02:36:08.979729 32397 solver.cpp:245] Train net output #30: loss1/loss04 = 2.42181 (* 0.0272727 = 0.0660493 loss)
I0422 02:36:08.979744 32397 solver.cpp:245] Train net output #31: loss1/loss05 = 0.883645 (* 0.0272727 = 0.0240994 loss)
I0422 02:36:08.979758 32397 solver.cpp:245] Train net output #32: loss1/loss06 = 0.560962 (* 0.0272727 = 0.015299 loss)
I0422 02:36:08.979773 32397 solver.cpp:245] Train net output #33: loss1/loss07 = 0.310691 (* 0.0272727 = 0.00847339 loss)
I0422 02:36:08.979787 32397 solver.cpp:245] Train net output #34: loss1/loss08 = 0.0643629 (* 0.0272727 = 0.00175535 loss)
I0422 02:36:08.979801 32397 solver.cpp:245] Train net output #35: loss1/loss09 = 0.0113107 (* 0.0272727 = 0.000308473 loss)
I0422 02:36:08.979816 32397 solver.cpp:245] Train net output #36: loss1/loss10 = 0.00150677 (* 0.0272727 = 4.10936e-05 loss)
I0422 02:36:08.979830 32397 solver.cpp:245] Train net output #37: loss1/loss11 = 1.16678e-05 (* 0.0272727 = 3.18213e-07 loss)
I0422 02:36:08.979846 32397 solver.cpp:245] Train net output #38: loss1/loss12 = 1.54827e-05 (* 0.0272727 = 4.22256e-07 loss)
I0422 02:36:08.979881 32397 solver.cpp:245] Train net output #39: loss1/loss13 = 9.55176e-06 (* 0.0272727 = 2.60502e-07 loss)
I0422 02:36:08.979897 32397 solver.cpp:245] Train net output #40: loss1/loss14 = 1.35903e-05 (* 0.0272727 = 3.70643e-07 loss)
I0422 02:36:08.979912 32397 solver.cpp:245] Train net output #41: loss1/loss15 = 7.89772e-06 (* 0.0272727 = 2.15392e-07 loss)
I0422 02:36:08.979925 32397 solver.cpp:245] Train net output #42: loss1/loss16 = 1.57212e-05 (* 0.0272727 = 4.28761e-07 loss)
I0422 02:36:08.979939 32397 solver.cpp:245] Train net output #43: loss1/loss17 = 1.1027e-05 (* 0.0272727 = 3.00738e-07 loss)
I0422 02:36:08.979954 32397 solver.cpp:245] Train net output #44: loss1/loss18 = 7.24204e-06 (* 0.0272727 = 1.9751e-07 loss)
I0422 02:36:08.979970 32397 solver.cpp:245] Train net output #45: loss1/loss19 = 1.04906e-05 (* 0.0272727 = 2.86108e-07 loss)
I0422 02:36:08.979985 32397 solver.cpp:245] Train net output #46: loss1/loss20 = 7.34636e-06 (* 0.0272727 = 2.00355e-07 loss)
I0422 02:36:08.980000 32397 solver.cpp:245] Train net output #47: loss1/loss21 = 1.34411e-05 (* 0.0272727 = 3.66577e-07 loss)
I0422 02:36:08.980015 32397 solver.cpp:245] Train net output #48: loss1/loss22 = 8.7173e-06 (* 0.0272727 = 2.37744e-07 loss)
I0422 02:36:08.980026 32397 solver.cpp:245] Train net output #49: loss2/accuracy = 0.883721
I0422 02:36:08.980039 32397 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.75
I0422 02:36:08.980051 32397 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75
I0422 02:36:08.980063 32397 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.625
I0422 02:36:08.980075 32397 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.5
I0422 02:36:08.980088 32397 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.75
I0422 02:36:08.980103 32397 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.875
I0422 02:36:08.980114 32397 solver.cpp:245] Train net output #56: loss2/accuracy07 = 1
I0422 02:36:08.980125 32397 solver.cpp:245] Train net output #57: loss2/accuracy08 = 1
I0422 02:36:08.980137 32397 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1
I0422 02:36:08.980149 32397 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0422 02:36:08.980165 32397 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0422 02:36:08.980177 32397 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0422 02:36:08.980190 32397 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0422 02:36:08.980201 32397 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0422 02:36:08.980212 32397 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0422 02:36:08.980224 32397 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0422 02:36:08.980237 32397 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0422 02:36:08.980247 32397 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0422 02:36:08.980259 32397 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0422 02:36:08.980271 32397 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0422 02:36:08.980283 32397 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0422 02:36:08.980294 32397 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0422 02:36:08.980306 32397 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.960227
I0422 02:36:08.980319 32397 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.976744
I0422 02:36:08.980332 32397 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.413123 (* 0.3 = 0.123937 loss)
I0422 02:36:08.980347 32397 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.117048 (* 0.3 = 0.0351144 loss)
I0422 02:36:08.980361 32397 solver.cpp:245] Train net output #76: loss2/loss01 = 0.888725 (* 0.0272727 = 0.024238 loss)
I0422 02:36:08.980376 32397 solver.cpp:245] Train net output #77: loss2/loss02 = 0.750913 (* 0.0272727 = 0.0204794 loss)
I0422 02:36:08.980401 32397 solver.cpp:245] Train net output #78: loss2/loss03 = 1.67583 (* 0.0272727 = 0.0457044 loss)
I0422 02:36:08.980417 32397 solver.cpp:245] Train net output #79: loss2/loss04 = 1.36497 (* 0.0272727 = 0.0372265 loss)
I0422 02:36:08.980432 32397 solver.cpp:245] Train net output #80: loss2/loss05 = 0.622611 (* 0.0272727 = 0.0169803 loss)
I0422 02:36:08.980446 32397 solver.cpp:245] Train net output #81: loss2/loss06 = 0.307228 (* 0.0272727 = 0.00837895 loss)
I0422 02:36:08.980460 32397 solver.cpp:245] Train net output #82: loss2/loss07 = 0.127354 (* 0.0272727 = 0.00347328 loss)
I0422 02:36:08.980474 32397 solver.cpp:245] Train net output #83: loss2/loss08 = 0.00596857 (* 0.0272727 = 0.000162779 loss)
I0422 02:36:08.980489 32397 solver.cpp:245] Train net output #84: loss2/loss09 = 0.00120531 (* 0.0272727 = 3.28721e-05 loss)
I0422 02:36:08.980504 32397 solver.cpp:245] Train net output #85: loss2/loss10 = 0.000382897 (* 0.0272727 = 1.04426e-05 loss)
I0422 02:36:08.980517 32397 solver.cpp:245] Train net output #86: loss2/loss11 = 9.53676e-07 (* 0.0272727 = 2.60094e-08 loss)
I0422 02:36:08.980531 32397 solver.cpp:245] Train net output #87: loss2/loss12 = 1.49012e-06 (* 0.0272727 = 4.06397e-08 loss)
I0422 02:36:08.980545 32397 solver.cpp:245] Train net output #88: loss2/loss13 = 1.68384e-06 (* 0.0272727 = 4.59229e-08 loss)
I0422 02:36:08.980559 32397 solver.cpp:245] Train net output #89: loss2/loss14 = 2.72693e-06 (* 0.0272727 = 7.43708e-08 loss)
I0422 02:36:08.980573 32397 solver.cpp:245] Train net output #90: loss2/loss15 = 1.2368e-06 (* 0.0272727 = 3.37309e-08 loss)
I0422 02:36:08.980587 32397 solver.cpp:245] Train net output #91: loss2/loss16 = 1.31131e-06 (* 0.0272727 = 3.57629e-08 loss)
I0422 02:36:08.980602 32397 solver.cpp:245] Train net output #92: loss2/loss17 = 1.02818e-06 (* 0.0272727 = 2.80413e-08 loss)
I0422 02:36:08.980617 32397 solver.cpp:245] Train net output #93: loss2/loss18 = 2.11598e-06 (* 0.0272727 = 5.77086e-08 loss)
I0422 02:36:08.980630 32397 solver.cpp:245] Train net output #94: loss2/loss19 = 1.2517e-06 (* 0.0272727 = 3.41373e-08 loss)
I0422 02:36:08.980644 32397 solver.cpp:245] Train net output #95: loss2/loss20 = 1.11759e-06 (* 0.0272727 = 3.04797e-08 loss)
I0422 02:36:08.980657 32397 solver.cpp:245] Train net output #96: loss2/loss21 = 1.51993e-06 (* 0.0272727 = 4.14525e-08 loss)
I0422 02:36:08.980671 32397 solver.cpp:245] Train net output #97: loss2/loss22 = 9.98381e-07 (* 0.0272727 = 2.72286e-08 loss)
I0422 02:36:08.980684 32397 solver.cpp:245] Train net output #98: loss3/accuracy = 0.953488
I0422 02:36:08.980696 32397 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875
I0422 02:36:08.980708 32397 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0422 02:36:08.980720 32397 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0422 02:36:08.980732 32397 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875
I0422 02:36:08.980744 32397 solver.cpp:245] Train net output #103: loss3/accuracy05 = 1
I0422 02:36:08.980761 32397 solver.cpp:245] Train net output #104: loss3/accuracy06 = 1
I0422 02:36:08.980772 32397 solver.cpp:245] Train net output #105: loss3/accuracy07 = 1
I0422 02:36:08.980784 32397 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1
I0422 02:36:08.980797 32397 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1
I0422 02:36:08.980808 32397 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0422 02:36:08.980820 32397 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0422 02:36:08.980831 32397 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0422 02:36:08.980844 32397 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0422 02:36:08.980855 32397 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0422 02:36:08.980867 32397 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0422 02:36:08.980890 32397 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0422 02:36:08.980903 32397 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0422 02:36:08.980916 32397 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0422 02:36:08.980926 32397 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0422 02:36:08.980938 32397 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0422 02:36:08.980950 32397 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0422 02:36:08.980962 32397 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0422 02:36:08.980973 32397 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.988636
I0422 02:36:08.980985 32397 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 1
I0422 02:36:08.980999 32397 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.2138 (* 1 = 0.2138 loss)
I0422 02:36:08.981014 32397 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.0546398 (* 1 = 0.0546398 loss)
I0422 02:36:08.981031 32397 solver.cpp:245] Train net output #125: loss3/loss01 = 0.754392 (* 0.0909091 = 0.0685811 loss)
I0422 02:36:08.981046 32397 solver.cpp:245] Train net output #126: loss3/loss02 = 0.0498408 (* 0.0909091 = 0.00453098 loss)
I0422 02:36:08.981060 32397 solver.cpp:245] Train net output #127: loss3/loss03 = 0.146657 (* 0.0909091 = 0.0133325 loss)
I0422 02:36:08.981076 32397 solver.cpp:245] Train net output #128: loss3/loss04 = 0.322007 (* 0.0909091 = 0.0292734 loss)
I0422 02:36:08.981089 32397 solver.cpp:245] Train net output #129: loss3/loss05 = 0.0611458 (* 0.0909091 = 0.00555871 loss)
I0422 02:36:08.981104 32397 solver.cpp:245] Train net output #130: loss3/loss06 = 0.127063 (* 0.0909091 = 0.0115512 loss)
I0422 02:36:08.981118 32397 solver.cpp:245] Train net output #131: loss3/loss07 = 0.0787379 (* 0.0909091 = 0.00715799 loss)
I0422 02:36:08.981132 32397 solver.cpp:245] Train net output #132: loss3/loss08 = 0.000481377 (* 0.0909091 = 4.37616e-05 loss)
I0422 02:36:08.981148 32397 solver.cpp:245] Train net output #133: loss3/loss09 = 3.43633e-05 (* 0.0909091 = 3.12393e-06 loss)
I0422 02:36:08.981163 32397 solver.cpp:245] Train net output #134: loss3/loss10 = 2.35743e-05 (* 0.0909091 = 2.14311e-06 loss)
I0422 02:36:08.981178 32397 solver.cpp:245] Train net output #135: loss3/loss11 = 1.05353e-05 (* 0.0909091 = 9.57757e-07 loss)
I0422 02:36:08.981191 32397 solver.cpp:245] Train net output #136: loss3/loss12 = 6.34796e-06 (* 0.0909091 = 5.77087e-07 loss)
I0422 02:36:08.981206 32397 solver.cpp:245] Train net output #137: loss3/loss13 = 1.04012e-05 (* 0.0909091 = 9.45565e-07 loss)
I0422 02:36:08.981220 32397 solver.cpp:245] Train net output #138: loss3/loss14 = 1.07141e-05 (* 0.0909091 = 9.74014e-07 loss)
I0422 02:36:08.981235 32397 solver.cpp:245] Train net output #139: loss3/loss15 = 1.04608e-05 (* 0.0909091 = 9.50983e-07 loss)
I0422 02:36:08.981248 32397 solver.cpp:245] Train net output #140: loss3/loss16 = 1.10867e-05 (* 0.0909091 = 1.00788e-06 loss)
I0422 02:36:08.981263 32397 solver.cpp:245] Train net output #141: loss3/loss17 = 1.06396e-05 (* 0.0909091 = 9.67241e-07 loss)
I0422 02:36:08.981277 32397 solver.cpp:245] Train net output #142: loss3/loss18 = 6.97383e-06 (* 0.0909091 = 6.33985e-07 loss)
I0422 02:36:08.981292 32397 solver.cpp:245] Train net output #143: loss3/loss19 = 1.04608e-05 (* 0.0909091 = 9.50984e-07 loss)
I0422 02:36:08.981305 32397 solver.cpp:245] Train net output #144: loss3/loss20 = 9.19418e-06 (* 0.0909091 = 8.35834e-07 loss)
I0422 02:36:08.981319 32397 solver.cpp:245] Train net output #145: loss3/loss21 = 9.83495e-06 (* 0.0909091 = 8.94086e-07 loss)
I0422 02:36:08.981333 32397 solver.cpp:245] Train net output #146: loss3/loss22 = 6.80992e-06 (* 0.0909091 = 6.19083e-07 loss)
I0422 02:36:08.981345 32397 solver.cpp:245] Train net output #147: total_accuracy = 0.75
I0422 02:36:08.981358 32397 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.75
I0422 02:36:08.981379 32397 solver.cpp:245] Train net output #149: total_confidence = 0.726532
I0422 02:36:08.981392 32397 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.498258
I0422 02:36:08.981406 32397 sgd_solver.cpp:106] Iteration 16500, lr = 0.001
I0422 02:41:50.582641 32397 solver.cpp:229] Iteration 17000, loss = 2.17599
I0422 02:41:50.582770 32397 solver.cpp:245] Train net output #0: loss1/accuracy = 0.744681
I0422 02:41:50.582792 32397 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.625
I0422 02:41:50.582804 32397 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.375
I0422 02:41:50.582818 32397 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.625
I0422 02:41:50.582831 32397 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375
I0422 02:41:50.582844 32397 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.75
I0422 02:41:50.582857 32397 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.75
I0422 02:41:50.582870 32397 solver.cpp:245] Train net output #7: loss1/accuracy07 = 1
I0422 02:41:50.582881 32397 solver.cpp:245] Train net output #8: loss1/accuracy08 = 1
I0422 02:41:50.582895 32397 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1
I0422 02:41:50.582906 32397 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0422 02:41:50.582918 32397 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0422 02:41:50.582931 32397 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0422 02:41:50.582943 32397 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0422 02:41:50.582955 32397 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0422 02:41:50.582968 32397 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0422 02:41:50.582980 32397 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0422 02:41:50.582993 32397 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0422 02:41:50.583004 32397 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0422 02:41:50.583016 32397 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0422 02:41:50.583029 32397 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0422 02:41:50.583039 32397 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0422 02:41:50.583051 32397 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0422 02:41:50.583062 32397 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.914773
I0422 02:41:50.583075 32397 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.851064
I0422 02:41:50.583091 32397 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.06115 (* 0.3 = 0.318346 loss)
I0422 02:41:50.583106 32397 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.333831 (* 0.3 = 0.100149 loss)
I0422 02:41:50.583119 32397 solver.cpp:245] Train net output #27: loss1/loss01 = 1.56699 (* 0.0272727 = 0.0427362 loss)
I0422 02:41:50.583133 32397 solver.cpp:245] Train net output #28: loss1/loss02 = 1.75955 (* 0.0272727 = 0.0479876 loss)
I0422 02:41:50.583148 32397 solver.cpp:245] Train net output #29: loss1/loss03 = 1.3974 (* 0.0272727 = 0.0381108 loss)
I0422 02:41:50.583163 32397 solver.cpp:245] Train net output #30: loss1/loss04 = 2.25747 (* 0.0272727 = 0.0615673 loss)
I0422 02:41:50.583176 32397 solver.cpp:245] Train net output #31: loss1/loss05 = 0.818893 (* 0.0272727 = 0.0223334 loss)
I0422 02:41:50.583190 32397 solver.cpp:245] Train net output #32: loss1/loss06 = 1.0146 (* 0.0272727 = 0.027671 loss)
I0422 02:41:50.583209 32397 solver.cpp:245] Train net output #33: loss1/loss07 = 0.346926 (* 0.0272727 = 0.00946162 loss)
I0422 02:41:50.583222 32397 solver.cpp:245] Train net output #34: loss1/loss08 = 0.0731991 (* 0.0272727 = 0.00199634 loss)
I0422 02:41:50.583237 32397 solver.cpp:245] Train net output #35: loss1/loss09 = 0.0323161 (* 0.0272727 = 0.000881348 loss)
I0422 02:41:50.583251 32397 solver.cpp:245] Train net output #36: loss1/loss10 = 0.00534056 (* 0.0272727 = 0.000145652 loss)
I0422 02:41:50.583266 32397 solver.cpp:245] Train net output #37: loss1/loss11 = 1.28602e-05 (* 0.0272727 = 3.50733e-07 loss)
I0422 02:41:50.583281 32397 solver.cpp:245] Train net output #38: loss1/loss12 = 1.36053e-05 (* 0.0272727 = 3.71054e-07 loss)
I0422 02:41:50.583312 32397 solver.cpp:245] Train net output #39: loss1/loss13 = 2.42239e-05 (* 0.0272727 = 6.60651e-07 loss)
I0422 02:41:50.583328 32397 solver.cpp:245] Train net output #40: loss1/loss14 = 9.5072e-06 (* 0.0272727 = 2.59287e-07 loss)
I0422 02:41:50.583343 32397 solver.cpp:245] Train net output #41: loss1/loss15 = 8.18091e-06 (* 0.0272727 = 2.23116e-07 loss)
I0422 02:41:50.583371 32397 solver.cpp:245] Train net output #42: loss1/loss16 = 8.59816e-06 (* 0.0272727 = 2.34495e-07 loss)
I0422 02:41:50.583387 32397 solver.cpp:245] Train net output #43: loss1/loss17 = 9.37311e-06 (* 0.0272727 = 2.5563e-07 loss)
I0422 02:41:50.583401 32397 solver.cpp:245] Train net output #44: loss1/loss18 = 1.34712e-05 (* 0.0272727 = 3.67397e-07 loss)
I0422 02:41:50.583416 32397 solver.cpp:245] Train net output #45: loss1/loss19 = 1.32774e-05 (* 0.0272727 = 3.62111e-07 loss)
I0422 02:41:50.583431 32397 solver.cpp:245] Train net output #46: loss1/loss20 = 1.17127e-05 (* 0.0272727 = 3.19438e-07 loss)
I0422 02:41:50.583446 32397 solver.cpp:245] Train net output #47: loss1/loss21 = 1.28751e-05 (* 0.0272727 = 3.51138e-07 loss)
I0422 02:41:50.583467 32397 solver.cpp:245] Train net output #48: loss1/loss22 = 6.76523e-06 (* 0.0272727 = 1.84506e-07 loss)
I0422 02:41:50.583493 32397 solver.cpp:245] Train net output #49: loss2/accuracy = 0.808511
I0422 02:41:50.583521 32397 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875
I0422 02:41:50.583546 32397 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75
I0422 02:41:50.583573 32397 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.625
I0422 02:41:50.583596 32397 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.375
I0422 02:41:50.583611 32397 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.75
I0422 02:41:50.583623 32397 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.875
I0422 02:41:50.583636 32397 solver.cpp:245] Train net output #56: loss2/accuracy07 = 1
I0422 02:41:50.583647 32397 solver.cpp:245] Train net output #57: loss2/accuracy08 = 1
I0422 02:41:50.583659 32397 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1
I0422 02:41:50.583670 32397 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0422 02:41:50.583683 32397 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0422 02:41:50.583693 32397 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0422 02:41:50.583704 32397 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0422 02:41:50.583715 32397 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0422 02:41:50.583727 32397 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0422 02:41:50.583739 32397 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0422 02:41:50.583750 32397 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0422 02:41:50.583762 32397 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0422 02:41:50.583773 32397 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0422 02:41:50.583788 32397 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0422 02:41:50.583801 32397 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0422 02:41:50.583811 32397 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0422 02:41:50.583823 32397 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.931818
I0422 02:41:50.583835 32397 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.957447
I0422 02:41:50.583849 32397 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.661847 (* 0.3 = 0.198554 loss)
I0422 02:41:50.583864 32397 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.220716 (* 0.3 = 0.0662148 loss)
I0422 02:41:50.583878 32397 solver.cpp:245] Train net output #76: loss2/loss01 = 0.785813 (* 0.0272727 = 0.0214313 loss)
I0422 02:41:50.583892 32397 solver.cpp:245] Train net output #77: loss2/loss02 = 0.798947 (* 0.0272727 = 0.0217895 loss)
I0422 02:41:50.583921 32397 solver.cpp:245] Train net output #78: loss2/loss03 = 1.34044 (* 0.0272727 = 0.0365575 loss)
I0422 02:41:50.583937 32397 solver.cpp:245] Train net output #79: loss2/loss04 = 1.8859 (* 0.0272727 = 0.0514337 loss)
I0422 02:41:50.583950 32397 solver.cpp:245] Train net output #80: loss2/loss05 = 0.823619 (* 0.0272727 = 0.0224623 loss)
I0422 02:41:50.583964 32397 solver.cpp:245] Train net output #81: loss2/loss06 = 0.593454 (* 0.0272727 = 0.0161851 loss)
I0422 02:41:50.583978 32397 solver.cpp:245] Train net output #82: loss2/loss07 = 0.230566 (* 0.0272727 = 0.00628817 loss)
I0422 02:41:50.583992 32397 solver.cpp:245] Train net output #83: loss2/loss08 = 0.107406 (* 0.0272727 = 0.00292926 loss)
I0422 02:41:50.584007 32397 solver.cpp:245] Train net output #84: loss2/loss09 = 0.0206399 (* 0.0272727 = 0.000562905 loss)
I0422 02:41:50.584022 32397 solver.cpp:245] Train net output #85: loss2/loss10 = 0.00273214 (* 0.0272727 = 7.45129e-05 loss)
I0422 02:41:50.584035 32397 solver.cpp:245] Train net output #86: loss2/loss11 = 1.68384e-06 (* 0.0272727 = 4.59228e-08 loss)
I0422 02:41:50.584049 32397 solver.cpp:245] Train net output #87: loss2/loss12 = 3.11436e-06 (* 0.0272727 = 8.49371e-08 loss)
I0422 02:41:50.584062 32397 solver.cpp:245] Train net output #88: loss2/loss13 = 2.33949e-06 (* 0.0272727 = 6.38044e-08 loss)
I0422 02:41:50.584076 32397 solver.cpp:245] Train net output #89: loss2/loss14 = 1.86265e-06 (* 0.0272727 = 5.07996e-08 loss)
I0422 02:41:50.584090 32397 solver.cpp:245] Train net output #90: loss2/loss15 = 1.2964e-06 (* 0.0272727 = 3.53565e-08 loss)
I0422 02:41:50.584105 32397 solver.cpp:245] Train net output #91: loss2/loss16 = 1.34111e-06 (* 0.0272727 = 3.65757e-08 loss)
I0422 02:41:50.584118 32397 solver.cpp:245] Train net output #92: loss2/loss17 = 1.72854e-06 (* 0.0272727 = 4.71419e-08 loss)
I0422 02:41:50.584132 32397 solver.cpp:245] Train net output #93: loss2/loss18 = 2.50341e-06 (* 0.0272727 = 6.82748e-08 loss)
I0422 02:41:50.584146 32397 solver.cpp:245] Train net output #94: loss2/loss19 = 1.13249e-06 (* 0.0272727 = 3.08861e-08 loss)
I0422 02:41:50.584159 32397 solver.cpp:245] Train net output #95: loss2/loss20 = 1.51992e-06 (* 0.0272727 = 4.14524e-08 loss)
I0422 02:41:50.584173 32397 solver.cpp:245] Train net output #96: loss2/loss21 = 1.87755e-06 (* 0.0272727 = 5.12059e-08 loss)
I0422 02:41:50.584187 32397 solver.cpp:245] Train net output #97: loss2/loss22 = 1.32621e-06 (* 0.0272727 = 3.61692e-08 loss)
I0422 02:41:50.584199 32397 solver.cpp:245] Train net output #98: loss3/accuracy = 0.957447
I0422 02:41:50.584211 32397 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875
I0422 02:41:50.584223 32397 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0422 02:41:50.584234 32397 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0422 02:41:50.584246 32397 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.75
I0422 02:41:50.584261 32397 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875
I0422 02:41:50.584275 32397 solver.cpp:245] Train net output #104: loss3/accuracy06 = 1
I0422 02:41:50.584285 32397 solver.cpp:245] Train net output #105: loss3/accuracy07 = 1
I0422 02:41:50.584296 32397 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1
I0422 02:41:50.584307 32397 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1
I0422 02:41:50.584319 32397 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0422 02:41:50.584331 32397 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0422 02:41:50.584342 32397 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0422 02:41:50.584353 32397 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0422 02:41:50.584364 32397 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0422 02:41:50.584375 32397 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0422 02:41:50.584398 32397 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0422 02:41:50.584410 32397 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0422 02:41:50.584422 32397 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0422 02:41:50.584434 32397 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0422 02:41:50.584445 32397 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0422 02:41:50.584456 32397 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0422 02:41:50.584467 32397 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0422 02:41:50.584478 32397 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.982955
I0422 02:41:50.584491 32397 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.957447
I0422 02:41:50.584504 32397 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.259709 (* 1 = 0.259709 loss)
I0422 02:41:50.584517 32397 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.0756766 (* 1 = 0.0756766 loss)
I0422 02:41:50.584532 32397 solver.cpp:245] Train net output #125: loss3/loss01 = 0.615587 (* 0.0909091 = 0.0559625 loss)
I0422 02:41:50.584545 32397 solver.cpp:245] Train net output #126: loss3/loss02 = 0.0879765 (* 0.0909091 = 0.00799786 loss)
I0422 02:41:50.584559 32397 solver.cpp:245] Train net output #127: loss3/loss03 = 0.0871322 (* 0.0909091 = 0.00792111 loss)
I0422 02:41:50.584573 32397 solver.cpp:245] Train net output #128: loss3/loss04 = 0.959482 (* 0.0909091 = 0.0872256 loss)
I0422 02:41:50.584588 32397 solver.cpp:245] Train net output #129: loss3/loss05 = 0.289775 (* 0.0909091 = 0.0263432 loss)
I0422 02:41:50.584602 32397 solver.cpp:245] Train net output #130: loss3/loss06 = 0.199723 (* 0.0909091 = 0.0181566 loss)
I0422 02:41:50.584611 32397 solver.cpp:245] Train net output #131: loss3/loss07 = 0.134571 (* 0.0909091 = 0.0122337 loss)
I0422 02:41:50.584626 32397 solver.cpp:245] Train net output #132: loss3/loss08 = 0.011153 (* 0.0909091 = 0.00101391 loss)
I0422 02:41:50.584640 32397 solver.cpp:245] Train net output #133: loss3/loss09 = 0.000743787 (* 0.0909091 = 6.7617e-05 loss)
I0422 02:41:50.584655 32397 solver.cpp:245] Train net output #134: loss3/loss10 = 0.000159236 (* 0.0909091 = 1.4476e-05 loss)
I0422 02:41:50.584668 32397 solver.cpp:245] Train net output #135: loss3/loss11 = 2.05637e-06 (* 0.0909091 = 1.86943e-07 loss)
I0422 02:41:50.584682 32397 solver.cpp:245] Train net output #136: loss3/loss12 = 2.56301e-06 (* 0.0909091 = 2.33001e-07 loss)
I0422 02:41:50.584697 32397 solver.cpp:245] Train net output #137: loss3/loss13 = 2.22029e-06 (* 0.0909091 = 2.01844e-07 loss)
I0422 02:41:50.584710 32397 solver.cpp:245] Train net output #138: loss3/loss14 = 1.50502e-06 (* 0.0909091 = 1.3682e-07 loss)
I0422 02:41:50.584724 32397 solver.cpp:245] Train net output #139: loss3/loss15 = 2.08617e-06 (* 0.0909091 = 1.89652e-07 loss)
I0422 02:41:50.584738 32397 solver.cpp:245] Train net output #140: loss3/loss16 = 1.93716e-06 (* 0.0909091 = 1.76105e-07 loss)
I0422 02:41:50.584753 32397 solver.cpp:245] Train net output #141: loss3/loss17 = 1.66894e-06 (* 0.0909091 = 1.51721e-07 loss)
I0422 02:41:50.584765 32397 solver.cpp:245] Train net output #142: loss3/loss18 = 1.69874e-06 (* 0.0909091 = 1.54431e-07 loss)
I0422 02:41:50.584779 32397 solver.cpp:245] Train net output #143: loss3/loss19 = 1.93716e-06 (* 0.0909091 = 1.76105e-07 loss)
I0422 02:41:50.584794 32397 solver.cpp:245] Train net output #144: loss3/loss20 = 1.38581e-06 (* 0.0909091 = 1.25983e-07 loss)
I0422 02:41:50.584807 32397 solver.cpp:245] Train net output #145: loss3/loss21 = 1.66893e-06 (* 0.0909091 = 1.51721e-07 loss)
I0422 02:41:50.584820 32397 solver.cpp:245] Train net output #146: loss3/loss22 = 1.95206e-06 (* 0.0909091 = 1.7746e-07 loss)
I0422 02:41:50.584836 32397 solver.cpp:245] Train net output #147: total_accuracy = 0.75
I0422 02:41:50.584848 32397 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.625
I0422 02:41:50.584870 32397 solver.cpp:245] Train net output #149: total_confidence = 0.633206
I0422 02:41:50.584884 32397 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.40401
I0422 02:41:50.584897 32397 sgd_solver.cpp:106] Iteration 17000, lr = 0.001
I0422 02:47:32.795555 32397 solver.cpp:229] Iteration 17500, loss = 2.29953
I0422 02:47:32.795646 32397 solver.cpp:245] Train net output #0: loss1/accuracy = 0.722222
I0422 02:47:32.795665 32397 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75
I0422 02:47:32.795680 32397 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.875
I0422 02:47:32.795692 32397 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375
I0422 02:47:32.795706 32397 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375
I0422 02:47:32.795717 32397 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.625
I0422 02:47:32.795730 32397 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.875
I0422 02:47:32.795742 32397 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.875
I0422 02:47:32.795755 32397 solver.cpp:245] Train net output #8: loss1/accuracy08 = 1
I0422 02:47:32.795768 32397 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1
I0422 02:47:32.795781 32397 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0422 02:47:32.795794 32397 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0422 02:47:32.795806 32397 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0422 02:47:32.795819 32397 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0422 02:47:32.795830 32397 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0422 02:47:32.795842 32397 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0422 02:47:32.795855 32397 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0422 02:47:32.795867 32397 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0422 02:47:32.795879 32397 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0422 02:47:32.795892 32397 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0422 02:47:32.795907 32397 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0422 02:47:32.795920 32397 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0422 02:47:32.795933 32397 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0422 02:47:32.795944 32397 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.914773
I0422 02:47:32.795956 32397 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.916667
I0422 02:47:32.795972 32397 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 0.944539 (* 0.3 = 0.283362 loss)
I0422 02:47:32.795987 32397 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.312723 (* 0.3 = 0.093817 loss)
I0422 02:47:32.796002 32397 solver.cpp:245] Train net output #27: loss1/loss01 = 1.31165 (* 0.0272727 = 0.0357723 loss)
I0422 02:47:32.796016 32397 solver.cpp:245] Train net output #28: loss1/loss02 = 0.769462 (* 0.0272727 = 0.0209853 loss)
I0422 02:47:32.796031 32397 solver.cpp:245] Train net output #29: loss1/loss03 = 1.81033 (* 0.0272727 = 0.0493726 loss)
I0422 02:47:32.796046 32397 solver.cpp:245] Train net output #30: loss1/loss04 = 2.46136 (* 0.0272727 = 0.0671281 loss)
I0422 02:47:32.796059 32397 solver.cpp:245] Train net output #31: loss1/loss05 = 1.35871 (* 0.0272727 = 0.0370558 loss)
I0422 02:47:32.796073 32397 solver.cpp:245] Train net output #32: loss1/loss06 = 0.718243 (* 0.0272727 = 0.0195885 loss)
I0422 02:47:32.796087 32397 solver.cpp:245] Train net output #33: loss1/loss07 = 0.4276 (* 0.0272727 = 0.0116618 loss)
I0422 02:47:32.796102 32397 solver.cpp:245] Train net output #34: loss1/loss08 = 0.0173927 (* 0.0272727 = 0.000474346 loss)
I0422 02:47:32.796116 32397 solver.cpp:245] Train net output #35: loss1/loss09 = 0.00144904 (* 0.0272727 = 3.95194e-05 loss)
I0422 02:47:32.796130 32397 solver.cpp:245] Train net output #36: loss1/loss10 = 0.000288573 (* 0.0272727 = 7.87017e-06 loss)
I0422 02:47:32.796144 32397 solver.cpp:245] Train net output #37: loss1/loss11 = 1.53487e-05 (* 0.0272727 = 4.18601e-07 loss)
I0422 02:47:32.796159 32397 solver.cpp:245] Train net output #38: loss1/loss12 = 1.61534e-05 (* 0.0272727 = 4.40547e-07 loss)
I0422 02:47:32.796190 32397 solver.cpp:245] Train net output #39: loss1/loss13 = 1.38137e-05 (* 0.0272727 = 3.76738e-07 loss)
I0422 02:47:32.796206 32397 solver.cpp:245] Train net output #40: loss1/loss14 = 1.67942e-05 (* 0.0272727 = 4.58023e-07 loss)
I0422 02:47:32.796221 32397 solver.cpp:245] Train net output #41: loss1/loss15 = 1.85377e-05 (* 0.0272727 = 5.05574e-07 loss)
I0422 02:47:32.796236 32397 solver.cpp:245] Train net output #42: loss1/loss16 = 2.58848e-05 (* 0.0272727 = 7.05949e-07 loss)
I0422 02:47:32.796249 32397 solver.cpp:245] Train net output #43: loss1/loss17 = 1.51698e-05 (* 0.0272727 = 4.13722e-07 loss)
I0422 02:47:32.796263 32397 solver.cpp:245] Train net output #44: loss1/loss18 = 1.56914e-05 (* 0.0272727 = 4.27947e-07 loss)
I0422 02:47:32.796277 32397 solver.cpp:245] Train net output #45: loss1/loss19 = 2.22634e-05 (* 0.0272727 = 6.07183e-07 loss)
I0422 02:47:32.796291 32397 solver.cpp:245] Train net output #46: loss1/loss20 = 1.09228e-05 (* 0.0272727 = 2.97895e-07 loss)
I0422 02:47:32.796305 32397 solver.cpp:245] Train net output #47: loss1/loss21 = 1.53637e-05 (* 0.0272727 = 4.19011e-07 loss)
I0422 02:47:32.796319 32397 solver.cpp:245] Train net output #48: loss1/loss22 = 1.46333e-05 (* 0.0272727 = 3.99091e-07 loss)
I0422 02:47:32.796331 32397 solver.cpp:245] Train net output #49: loss2/accuracy = 0.833333
I0422 02:47:32.796344 32397 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875
I0422 02:47:32.796355 32397 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.625
I0422 02:47:32.796367 32397 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.5
I0422 02:47:32.796380 32397 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.75
I0422 02:47:32.796391 32397 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.75
I0422 02:47:32.796402 32397 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.875
I0422 02:47:32.796414 32397 solver.cpp:245] Train net output #56: loss2/accuracy07 = 1
I0422 02:47:32.796425 32397 solver.cpp:245] Train net output #57: loss2/accuracy08 = 1
I0422 02:47:32.796437 32397 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1
I0422 02:47:32.796448 32397 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0422 02:47:32.796460 32397 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0422 02:47:32.796471 32397 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0422 02:47:32.796483 32397 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0422 02:47:32.796494 32397 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0422 02:47:32.796506 32397 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0422 02:47:32.796517 32397 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0422 02:47:32.796528 32397 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0422 02:47:32.796540 32397 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0422 02:47:32.796551 32397 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0422 02:47:32.796563 32397 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0422 02:47:32.796574 32397 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0422 02:47:32.796586 32397 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0422 02:47:32.796597 32397 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.954545
I0422 02:47:32.796608 32397 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.916667
I0422 02:47:32.796622 32397 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.589225 (* 0.3 = 0.176767 loss)
I0422 02:47:32.796636 32397 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.182115 (* 0.3 = 0.0546344 loss)
I0422 02:47:32.796650 32397 solver.cpp:245] Train net output #76: loss2/loss01 = 0.854769 (* 0.0272727 = 0.0233119 loss)
I0422 02:47:32.796665 32397 solver.cpp:245] Train net output #77: loss2/loss02 = 0.851997 (* 0.0272727 = 0.0232363 loss)
I0422 02:47:32.796690 32397 solver.cpp:245] Train net output #78: loss2/loss03 = 1.50538 (* 0.0272727 = 0.0410558 loss)
I0422 02:47:32.796705 32397 solver.cpp:245] Train net output #79: loss2/loss04 = 1.24802 (* 0.0272727 = 0.0340368 loss)
I0422 02:47:32.796720 32397 solver.cpp:245] Train net output #80: loss2/loss05 = 0.795378 (* 0.0272727 = 0.0216921 loss)
I0422 02:47:32.796735 32397 solver.cpp:245] Train net output #81: loss2/loss06 = 0.222918 (* 0.0272727 = 0.00607958 loss)
I0422 02:47:32.796749 32397 solver.cpp:245] Train net output #82: loss2/loss07 = 0.127067 (* 0.0272727 = 0.00346545 loss)
I0422 02:47:32.796763 32397 solver.cpp:245] Train net output #83: loss2/loss08 = 0.0320344 (* 0.0272727 = 0.000873666 loss)
I0422 02:47:32.796777 32397 solver.cpp:245] Train net output #84: loss2/loss09 = 0.00908192 (* 0.0272727 = 0.000247689 loss)
I0422 02:47:32.796792 32397 solver.cpp:245] Train net output #85: loss2/loss10 = 0.00538596 (* 0.0272727 = 0.00014689 loss)
I0422 02:47:32.796807 32397 solver.cpp:245] Train net output #86: loss2/loss11 = 0.000130983 (* 0.0272727 = 3.57226e-06 loss)
I0422 02:47:32.796820 32397 solver.cpp:245] Train net output #87: loss2/loss12 = 0.000131384 (* 0.0272727 = 3.5832e-06 loss)
I0422 02:47:32.796834 32397 solver.cpp:245] Train net output #88: loss2/loss13 = 0.000201911 (* 0.0272727 = 5.50665e-06 loss)
I0422 02:47:32.796849 32397 solver.cpp:245] Train net output #89: loss2/loss14 = 6.67729e-05 (* 0.0272727 = 1.82108e-06 loss)
I0422 02:47:32.796862 32397 solver.cpp:245] Train net output #90: loss2/loss15 = 0.000121079 (* 0.0272727 = 3.30216e-06 loss)
I0422 02:47:32.796876 32397 solver.cpp:245] Train net output #91: loss2/loss16 = 0.000200039 (* 0.0272727 = 5.4556e-06 loss)
I0422 02:47:32.796890 32397 solver.cpp:245] Train net output #92: loss2/loss17 = 0.000254353 (* 0.0272727 = 6.93691e-06 loss)
I0422 02:47:32.796905 32397 solver.cpp:245] Train net output #93: loss2/loss18 = 0.000163656 (* 0.0272727 = 4.46334e-06 loss)
I0422 02:47:32.796918 32397 solver.cpp:245] Train net output #94: loss2/loss19 = 0.000273342 (* 0.0272727 = 7.45479e-06 loss)
I0422 02:47:32.796932 32397 solver.cpp:245] Train net output #95: loss2/loss20 = 0.000224778 (* 0.0272727 = 6.13032e-06 loss)
I0422 02:47:32.796947 32397 solver.cpp:245] Train net output #96: loss2/loss21 = 0.00025682 (* 0.0272727 = 7.00418e-06 loss)
I0422 02:47:32.796964 32397 solver.cpp:245] Train net output #97: loss2/loss22 = 0.000179518 (* 0.0272727 = 4.89594e-06 loss)
I0422 02:47:32.796977 32397 solver.cpp:245] Train net output #98: loss3/accuracy = 0.916667
I0422 02:47:32.796989 32397 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875
I0422 02:47:32.797001 32397 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.75
I0422 02:47:32.797013 32397 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.75
I0422 02:47:32.797025 32397 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1
I0422 02:47:32.797037 32397 solver.cpp:245] Train net output #103: loss3/accuracy05 = 1
I0422 02:47:32.797049 32397 solver.cpp:245] Train net output #104: loss3/accuracy06 = 1
I0422 02:47:32.797060 32397 solver.cpp:245] Train net output #105: loss3/accuracy07 = 1
I0422 02:47:32.797071 32397 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1
I0422 02:47:32.797083 32397 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1
I0422 02:47:32.797094 32397 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0422 02:47:32.797106 32397 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0422 02:47:32.797116 32397 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0422 02:47:32.797127 32397 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0422 02:47:32.797139 32397 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0422 02:47:32.797150 32397 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0422 02:47:32.797173 32397 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0422 02:47:32.797185 32397 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0422 02:47:32.797197 32397 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0422 02:47:32.797209 32397 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0422 02:47:32.797220 32397 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0422 02:47:32.797231 32397 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0422 02:47:32.797242 32397 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0422 02:47:32.797253 32397 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.977273
I0422 02:47:32.797266 32397 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.972222
I0422 02:47:32.797279 32397 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.283586 (* 1 = 0.283586 loss)
I0422 02:47:32.797292 32397 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.0737448 (* 1 = 0.0737448 loss)
I0422 02:47:32.797307 32397 solver.cpp:245] Train net output #125: loss3/loss01 = 0.317533 (* 0.0909091 = 0.0288666 loss)
I0422 02:47:32.797320 32397 solver.cpp:245] Train net output #126: loss3/loss02 = 0.800385 (* 0.0909091 = 0.0727623 loss)
I0422 02:47:32.797334 32397 solver.cpp:245] Train net output #127: loss3/loss03 = 0.755061 (* 0.0909091 = 0.0686419 loss)
I0422 02:47:32.797348 32397 solver.cpp:245] Train net output #128: loss3/loss04 = 0.0848338 (* 0.0909091 = 0.00771216 loss)
I0422 02:47:32.797363 32397 solver.cpp:245] Train net output #129: loss3/loss05 = 0.0382071 (* 0.0909091 = 0.00347337 loss)
I0422 02:47:32.797376 32397 solver.cpp:245] Train net output #130: loss3/loss06 = 0.033886 (* 0.0909091 = 0.00308055 loss)
I0422 02:47:32.797390 32397 solver.cpp:245] Train net output #131: loss3/loss07 = 0.00113239 (* 0.0909091 = 0.000102945 loss)
I0422 02:47:32.797405 32397 solver.cpp:245] Train net output #132: loss3/loss08 = 0.000167958 (* 0.0909091 = 1.52689e-05 loss)
I0422 02:47:32.797415 32397 solver.cpp:245] Train net output #133: loss3/loss09 = 0.000127659 (* 0.0909091 = 1.16053e-05 loss)
I0422 02:47:32.797425 32397 solver.cpp:245] Train net output #134: loss3/loss10 = 6.91469e-05 (* 0.0909091 = 6.28608e-06 loss)
I0422 02:47:32.797440 32397 solver.cpp:245] Train net output #135: loss3/loss11 = 0.00011539 (* 0.0909091 = 1.049e-05 loss)
I0422 02:47:32.797453 32397 solver.cpp:245] Train net output #136: loss3/loss12 = 0.000109663 (* 0.0909091 = 9.9694e-06 loss)
I0422 02:47:32.797467 32397 solver.cpp:245] Train net output #137: loss3/loss13 = 0.00012416 (* 0.0909091 = 1.12873e-05 loss)
I0422 02:47:32.797482 32397 solver.cpp:245] Train net output #138: loss3/loss14 = 0.000125779 (* 0.0909091 = 1.14345e-05 loss)
I0422 02:47:32.797495 32397 solver.cpp:245] Train net output #139: loss3/loss15 = 0.00011688 (* 0.0909091 = 1.06255e-05 loss)
I0422 02:47:32.797508 32397 solver.cpp:245] Train net output #140: loss3/loss16 = 0.000121317 (* 0.0909091 = 1.10288e-05 loss)
I0422 02:47:32.797523 32397 solver.cpp:245] Train net output #141: loss3/loss17 = 0.000127678 (* 0.0909091 = 1.16071e-05 loss)
I0422 02:47:32.797535 32397 solver.cpp:245] Train net output #142: loss3/loss18 = 0.000103421 (* 0.0909091 = 9.40188e-06 loss)
I0422 02:47:32.797549 32397 solver.cpp:245] Train net output #143: loss3/loss19 = 0.000110357 (* 0.0909091 = 1.00325e-05 loss)
I0422 02:47:32.797564 32397 solver.cpp:245] Train net output #144: loss3/loss20 = 0.000110239 (* 0.0909091 = 1.00217e-05 loss)
I0422 02:47:32.797576 32397 solver.cpp:245] Train net output #145: loss3/loss21 = 0.000100141 (* 0.0909091 = 9.10375e-06 loss)
I0422 02:47:32.797590 32397 solver.cpp:245] Train net output #146: loss3/loss22 = 0.000108758 (* 0.0909091 = 9.88705e-06 loss)
I0422 02:47:32.797601 32397 solver.cpp:245] Train net output #147: total_accuracy = 0.75
I0422 02:47:32.797613 32397 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.75
I0422 02:47:32.797634 32397 solver.cpp:245] Train net output #149: total_confidence = 0.680346
I0422 02:47:32.797648 32397 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.648131
I0422 02:47:32.797662 32397 sgd_solver.cpp:106] Iteration 17500, lr = 0.001
I0422 02:53:14.586863 32397 solver.cpp:229] Iteration 18000, loss = 2.28365
I0422 02:53:14.586989 32397 solver.cpp:245] Train net output #0: loss1/accuracy = 0.644444
I0422 02:53:14.587010 32397 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.875
I0422 02:53:14.587024 32397 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.75
I0422 02:53:14.587038 32397 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375
I0422 02:53:14.587049 32397 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375
I0422 02:53:14.587064 32397 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.625
I0422 02:53:14.587075 32397 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.375
I0422 02:53:14.587090 32397 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.875
I0422 02:53:14.587101 32397 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875
I0422 02:53:14.587115 32397 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1
I0422 02:53:14.587127 32397 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0422 02:53:14.587139 32397 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0422 02:53:14.587152 32397 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0422 02:53:14.587163 32397 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0422 02:53:14.587177 32397 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0422 02:53:14.587188 32397 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0422 02:53:14.587203 32397 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0422 02:53:14.587216 32397 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0422 02:53:14.587229 32397 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0422 02:53:14.587240 32397 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0422 02:53:14.587252 32397 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0422 02:53:14.587265 32397 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0422 02:53:14.587275 32397 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0422 02:53:14.587288 32397 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.886364
I0422 02:53:14.587301 32397 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.911111
I0422 02:53:14.587316 32397 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.04708 (* 0.3 = 0.314123 loss)
I0422 02:53:14.587332 32397 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.314307 (* 0.3 = 0.094292 loss)
I0422 02:53:14.587347 32397 solver.cpp:245] Train net output #27: loss1/loss01 = 0.40322 (* 0.0272727 = 0.0109969 loss)
I0422 02:53:14.587376 32397 solver.cpp:245] Train net output #28: loss1/loss02 = 0.999286 (* 0.0272727 = 0.0272533 loss)
I0422 02:53:14.587391 32397 solver.cpp:245] Train net output #29: loss1/loss03 = 1.70664 (* 0.0272727 = 0.0465446 loss)
I0422 02:53:14.587406 32397 solver.cpp:245] Train net output #30: loss1/loss04 = 2.05844 (* 0.0272727 = 0.0561394 loss)
I0422 02:53:14.587420 32397 solver.cpp:245] Train net output #31: loss1/loss05 = 1.1412 (* 0.0272727 = 0.0311236 loss)
I0422 02:53:14.587435 32397 solver.cpp:245] Train net output #32: loss1/loss06 = 1.06228 (* 0.0272727 = 0.0289712 loss)
I0422 02:53:14.587450 32397 solver.cpp:245] Train net output #33: loss1/loss07 = 0.54971 (* 0.0272727 = 0.0149921 loss)
I0422 02:53:14.587463 32397 solver.cpp:245] Train net output #34: loss1/loss08 = 0.19845 (* 0.0272727 = 0.00541228 loss)
I0422 02:53:14.587478 32397 solver.cpp:245] Train net output #35: loss1/loss09 = 0.0488735 (* 0.0272727 = 0.00133291 loss)
I0422 02:53:14.587492 32397 solver.cpp:245] Train net output #36: loss1/loss10 = 0.00693544 (* 0.0272727 = 0.000189148 loss)
I0422 02:53:14.587507 32397 solver.cpp:245] Train net output #37: loss1/loss11 = 1.22938e-05 (* 0.0272727 = 3.35285e-07 loss)
I0422 02:53:14.587522 32397 solver.cpp:245] Train net output #38: loss1/loss12 = 8.34473e-06 (* 0.0272727 = 2.27584e-07 loss)
I0422 02:53:14.587554 32397 solver.cpp:245] Train net output #39: loss1/loss13 = 1.06396e-05 (* 0.0272727 = 2.90171e-07 loss)
I0422 02:53:14.587570 32397 solver.cpp:245] Train net output #40: loss1/loss14 = 8.88119e-06 (* 0.0272727 = 2.42214e-07 loss)
I0422 02:53:14.587585 32397 solver.cpp:245] Train net output #41: loss1/loss15 = 7.61457e-06 (* 0.0272727 = 2.0767e-07 loss)
I0422 02:53:14.587599 32397 solver.cpp:245] Train net output #42: loss1/loss16 = 3.84452e-06 (* 0.0272727 = 1.0485e-07 loss)
I0422 02:53:14.587613 32397 solver.cpp:245] Train net output #43: loss1/loss17 = 6.49696e-06 (* 0.0272727 = 1.7719e-07 loss)
I0422 02:53:14.587627 32397 solver.cpp:245] Train net output #44: loss1/loss18 = 7.70403e-06 (* 0.0272727 = 2.1011e-07 loss)
I0422 02:53:14.587641 32397 solver.cpp:245] Train net output #45: loss1/loss19 = 8.82161e-06 (* 0.0272727 = 2.40589e-07 loss)
I0422 02:53:14.587656 32397 solver.cpp:245] Train net output #46: loss1/loss20 = 7.30166e-06 (* 0.0272727 = 1.99136e-07 loss)
I0422 02:53:14.587671 32397 solver.cpp:245] Train net output #47: loss1/loss21 = 8.4789e-06 (* 0.0272727 = 2.31243e-07 loss)
I0422 02:53:14.587684 32397 solver.cpp:245] Train net output #48: loss1/loss22 = 1.11762e-05 (* 0.0272727 = 3.04804e-07 loss)
I0422 02:53:14.587697 32397 solver.cpp:245] Train net output #49: loss2/accuracy = 0.911111
I0422 02:53:14.587709 32397 solver.cpp:245] Train net output #50: loss2/accuracy01 = 1
I0422 02:53:14.587721 32397 solver.cpp:245] Train net output #51: loss2/accuracy02 = 1
I0422 02:53:14.587734 32397 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.75
I0422 02:53:14.587745 32397 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.5
I0422 02:53:14.587757 32397 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5
I0422 02:53:14.587770 32397 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.5
I0422 02:53:14.587782 32397 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.625
I0422 02:53:14.587793 32397 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875
I0422 02:53:14.587805 32397 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1
I0422 02:53:14.587816 32397 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0422 02:53:14.587828 32397 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0422 02:53:14.587839 32397 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0422 02:53:14.587851 32397 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0422 02:53:14.587862 32397 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0422 02:53:14.587873 32397 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0422 02:53:14.587885 32397 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0422 02:53:14.587896 32397 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0422 02:53:14.587908 32397 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0422 02:53:14.587919 32397 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0422 02:53:14.587931 32397 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0422 02:53:14.587942 32397 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0422 02:53:14.587954 32397 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0422 02:53:14.587965 32397 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.977273
I0422 02:53:14.587976 32397 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.977778
I0422 02:53:14.587990 32397 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.437483 (* 0.3 = 0.131245 loss)
I0422 02:53:14.588007 32397 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.115042 (* 0.3 = 0.0345126 loss)
I0422 02:53:14.588022 32397 solver.cpp:245] Train net output #76: loss2/loss01 = 0.148378 (* 0.0272727 = 0.00404668 loss)
I0422 02:53:14.588037 32397 solver.cpp:245] Train net output #77: loss2/loss02 = 0.331884 (* 0.0272727 = 0.00905139 loss)
I0422 02:53:14.588063 32397 solver.cpp:245] Train net output #78: loss2/loss03 = 1.17683 (* 0.0272727 = 0.0320954 loss)
I0422 02:53:14.588079 32397 solver.cpp:245] Train net output #79: loss2/loss04 = 1.14449 (* 0.0272727 = 0.0312134 loss)
I0422 02:53:14.588093 32397 solver.cpp:245] Train net output #80: loss2/loss05 = 1.25049 (* 0.0272727 = 0.0341041 loss)
I0422 02:53:14.588106 32397 solver.cpp:245] Train net output #81: loss2/loss06 = 0.786668 (* 0.0272727 = 0.0214546 loss)
I0422 02:53:14.588120 32397 solver.cpp:245] Train net output #82: loss2/loss07 = 0.829986 (* 0.0272727 = 0.022636 loss)
I0422 02:53:14.588135 32397 solver.cpp:245] Train net output #83: loss2/loss08 = 0.15659 (* 0.0272727 = 0.00427063 loss)
I0422 02:53:14.588148 32397 solver.cpp:245] Train net output #84: loss2/loss09 = 0.00344297 (* 0.0272727 = 9.38992e-05 loss)
I0422 02:53:14.588162 32397 solver.cpp:245] Train net output #85: loss2/loss10 = 0.000609593 (* 0.0272727 = 1.66253e-05 loss)
I0422 02:53:14.588176 32397 solver.cpp:245] Train net output #86: loss2/loss11 = 2.33949e-06 (* 0.0272727 = 6.38044e-08 loss)
I0422 02:53:14.588191 32397 solver.cpp:245] Train net output #87: loss2/loss12 = 4.17235e-06 (* 0.0272727 = 1.13791e-07 loss)
I0422 02:53:14.588206 32397 solver.cpp:245] Train net output #88: loss2/loss13 = 4.97705e-06 (* 0.0272727 = 1.35738e-07 loss)
I0422 02:53:14.588218 32397 solver.cpp:245] Train net output #89: loss2/loss14 = 4.7088e-06 (* 0.0272727 = 1.28422e-07 loss)
I0422 02:53:14.588232 32397 solver.cpp:245] Train net output #90: loss2/loss15 = 2.51831e-06 (* 0.0272727 = 6.86811e-08 loss)
I0422 02:53:14.588246 32397 solver.cpp:245] Train net output #91: loss2/loss16 = 2.20538e-06 (* 0.0272727 = 6.01468e-08 loss)
I0422 02:53:14.588263 32397 solver.cpp:245] Train net output #92: loss2/loss17 = 9.34327e-06 (* 0.0272727 = 2.54816e-07 loss)
I0422 02:53:14.588279 32397 solver.cpp:245] Train net output #93: loss2/loss18 = 2.414e-06 (* 0.0272727 = 6.58363e-08 loss)
I0422 02:53:14.588291 32397 solver.cpp:245] Train net output #94: loss2/loss19 = 5.6774e-06 (* 0.0272727 = 1.54838e-07 loss)
I0422 02:53:14.588305 32397 solver.cpp:245] Train net output #95: loss2/loss20 = 5.15584e-06 (* 0.0272727 = 1.40614e-07 loss)
I0422 02:53:14.588320 32397 solver.cpp:245] Train net output #96: loss2/loss21 = 3.97865e-06 (* 0.0272727 = 1.08509e-07 loss)
I0422 02:53:14.588333 32397 solver.cpp:245] Train net output #97: loss2/loss22 = 2.20538e-06 (* 0.0272727 = 6.01467e-08 loss)
I0422 02:53:14.588346 32397 solver.cpp:245] Train net output #98: loss3/accuracy = 0.977778
I0422 02:53:14.588358 32397 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0422 02:53:14.588371 32397 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0422 02:53:14.588382 32397 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0422 02:53:14.588393 32397 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1
I0422 02:53:14.588404 32397 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875
I0422 02:53:14.588416 32397 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.875
I0422 02:53:14.588428 32397 solver.cpp:245] Train net output #105: loss3/accuracy07 = 1
I0422 02:53:14.588439 32397 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875
I0422 02:53:14.588451 32397 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1
I0422 02:53:14.588464 32397 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0422 02:53:14.588474 32397 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0422 02:53:14.588486 32397 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0422 02:53:14.588497 32397 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0422 02:53:14.588510 32397 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0422 02:53:14.588521 32397 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0422 02:53:14.588542 32397 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0422 02:53:14.588556 32397 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0422 02:53:14.588567 32397 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0422 02:53:14.588579 32397 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0422 02:53:14.588590 32397 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0422 02:53:14.588603 32397 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0422 02:53:14.588613 32397 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0422 02:53:14.588624 32397 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.994318
I0422 02:53:14.588636 32397 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 1
I0422 02:53:14.588650 32397 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.127602 (* 1 = 0.127602 loss)
I0422 02:53:14.588665 32397 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.0356885 (* 1 = 0.0356885 loss)
I0422 02:53:14.588678 32397 solver.cpp:245] Train net output #125: loss3/loss01 = 0.0269535 (* 0.0909091 = 0.00245032 loss)
I0422 02:53:14.588692 32397 solver.cpp:245] Train net output #126: loss3/loss02 = 0.0382154 (* 0.0909091 = 0.00347413 loss)
I0422 02:53:14.588706 32397 solver.cpp:245] Train net output #127: loss3/loss03 = 0.0841135 (* 0.0909091 = 0.00764668 loss)
I0422 02:53:14.588721 32397 solver.cpp:245] Train net output #128: loss3/loss04 = 0.0555277 (* 0.0909091 = 0.00504797 loss)
I0422 02:53:14.588734 32397 solver.cpp:245] Train net output #129: loss3/loss05 = 0.879825 (* 0.0909091 = 0.0799841 loss)
I0422 02:53:14.588748 32397 solver.cpp:245] Train net output #130: loss3/loss06 = 0.433604 (* 0.0909091 = 0.0394185 loss)
I0422 02:53:14.588762 32397 solver.cpp:245] Train net output #131: loss3/loss07 = 0.10109 (* 0.0909091 = 0.00919002 loss)
I0422 02:53:14.588776 32397 solver.cpp:245] Train net output #132: loss3/loss08 = 0.180397 (* 0.0909091 = 0.0163997 loss)
I0422 02:53:14.588790 32397 solver.cpp:245] Train net output #133: loss3/loss09 = 0.0269637 (* 0.0909091 = 0.00245124 loss)
I0422 02:53:14.588804 32397 solver.cpp:245] Train net output #134: loss3/loss10 = 0.00129883 (* 0.0909091 = 0.000118075 loss)
I0422 02:53:14.588819 32397 solver.cpp:245] Train net output #135: loss3/loss11 = 1.43652e-05 (* 0.0909091 = 1.30593e-06 loss)
I0422 02:53:14.588832 32397 solver.cpp:245] Train net output #136: loss3/loss12 = 1.38138e-05 (* 0.0909091 = 1.2558e-06 loss)
I0422 02:53:14.588846 32397 solver.cpp:245] Train net output #137: loss3/loss13 = 1.9417e-05 (* 0.0909091 = 1.76518e-06 loss)
I0422 02:53:14.588860 32397 solver.cpp:245] Train net output #138: loss3/loss14 = 1.28601e-05 (* 0.0909091 = 1.1691e-06 loss)
I0422 02:53:14.588873 32397 solver.cpp:245] Train net output #139: loss3/loss15 = 1.58852e-05 (* 0.0909091 = 1.44411e-06 loss)
I0422 02:53:14.588887 32397 solver.cpp:245] Train net output #140: loss3/loss16 = 1.76585e-05 (* 0.0909091 = 1.60532e-06 loss)
I0422 02:53:14.588901 32397 solver.cpp:245] Train net output #141: loss3/loss17 = 1.90148e-05 (* 0.0909091 = 1.72862e-06 loss)
I0422 02:53:14.588914 32397 solver.cpp:245] Train net output #142: loss3/loss18 = 1.17722e-05 (* 0.0909091 = 1.0702e-06 loss)
I0422 02:53:14.588928 32397 solver.cpp:245] Train net output #143: loss3/loss19 = 1.35605e-05 (* 0.0909091 = 1.23277e-06 loss)
I0422 02:53:14.588943 32397 solver.cpp:245] Train net output #144: loss3/loss20 = 1.55127e-05 (* 0.0909091 = 1.41025e-06 loss)
I0422 02:53:14.588956 32397 solver.cpp:245] Train net output #145: loss3/loss21 = 1.56616e-05 (* 0.0909091 = 1.42379e-06 loss)
I0422 02:53:14.588970 32397 solver.cpp:245] Train net output #146: loss3/loss22 = 1.36797e-05 (* 0.0909091 = 1.24361e-06 loss)
I0422 02:53:14.588982 32397 solver.cpp:245] Train net output #147: total_accuracy = 0.875
I0422 02:53:14.588994 32397 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.625
I0422 02:53:14.589015 32397 solver.cpp:245] Train net output #149: total_confidence = 0.81559
I0422 02:53:14.589028 32397 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.510343
I0422 02:53:14.589041 32397 sgd_solver.cpp:106] Iteration 18000, lr = 0.001
I0422 02:58:56.309120 32397 solver.cpp:229] Iteration 18500, loss = 2.18493
I0422 02:58:56.309245 32397 solver.cpp:245] Train net output #0: loss1/accuracy = 0.777778
I0422 02:58:56.309265 32397 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.875
I0422 02:58:56.309279 32397 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5
I0422 02:58:56.309293 32397 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.25
I0422 02:58:56.309305 32397 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375
I0422 02:58:56.309317 32397 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.375
I0422 02:58:56.309329 32397 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.5
I0422 02:58:56.309342 32397 solver.cpp:245] Train net output #7: loss1/accuracy07 = 1
I0422 02:58:56.309355 32397 solver.cpp:245] Train net output #8: loss1/accuracy08 = 1
I0422 02:58:56.309367 32397 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1
I0422 02:58:56.309379 32397 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0422 02:58:56.309391 32397 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0422 02:58:56.309402 32397 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0422 02:58:56.309415 32397 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0422 02:58:56.309427 32397 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0422 02:58:56.309439 32397 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0422 02:58:56.309451 32397 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0422 02:58:56.309463 32397 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0422 02:58:56.309475 32397 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0422 02:58:56.309487 32397 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0422 02:58:56.309499 32397 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0422 02:58:56.309511 32397 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0422 02:58:56.309523 32397 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0422 02:58:56.309535 32397 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.926136
I0422 02:58:56.309547 32397 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.977778
I0422 02:58:56.309562 32397 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 0.825868 (* 0.3 = 0.24776 loss)
I0422 02:58:56.309578 32397 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.28223 (* 0.3 = 0.0846689 loss)
I0422 02:58:56.309592 32397 solver.cpp:245] Train net output #27: loss1/loss01 = 0.569244 (* 0.0272727 = 0.0155248 loss)
I0422 02:58:56.309607 32397 solver.cpp:245] Train net output #28: loss1/loss02 = 1.97508 (* 0.0272727 = 0.0538657 loss)
I0422 02:58:56.309622 32397 solver.cpp:245] Train net output #29: loss1/loss03 = 2.17674 (* 0.0272727 = 0.0593656 loss)
I0422 02:58:56.309636 32397 solver.cpp:245] Train net output #30: loss1/loss04 = 1.67701 (* 0.0272727 = 0.0457368 loss)
I0422 02:58:56.309650 32397 solver.cpp:245] Train net output #31: loss1/loss05 = 1.66373 (* 0.0272727 = 0.0453745 loss)
I0422 02:58:56.309664 32397 solver.cpp:245] Train net output #32: loss1/loss06 = 1.09777 (* 0.0272727 = 0.0299391 loss)
I0422 02:58:56.309679 32397 solver.cpp:245] Train net output #33: loss1/loss07 = 0.316354 (* 0.0272727 = 0.00862782 loss)
I0422 02:58:56.309692 32397 solver.cpp:245] Train net output #34: loss1/loss08 = 0.0640547 (* 0.0272727 = 0.00174695 loss)
I0422 02:58:56.309707 32397 solver.cpp:245] Train net output #35: loss1/loss09 = 0.0139797 (* 0.0272727 = 0.000381265 loss)
I0422 02:58:56.309722 32397 solver.cpp:245] Train net output #36: loss1/loss10 = 0.00249577 (* 0.0272727 = 6.80666e-05 loss)
I0422 02:58:56.309736 32397 solver.cpp:245] Train net output #37: loss1/loss11 = 1.61685e-05 (* 0.0272727 = 4.40958e-07 loss)
I0422 02:58:56.309751 32397 solver.cpp:245] Train net output #38: loss1/loss12 = 1.24875e-05 (* 0.0272727 = 3.40567e-07 loss)
I0422 02:58:56.309783 32397 solver.cpp:245] Train net output #39: loss1/loss13 = 8.22552e-06 (* 0.0272727 = 2.24332e-07 loss)
I0422 02:58:56.309799 32397 solver.cpp:245] Train net output #40: loss1/loss14 = 7.39105e-06 (* 0.0272727 = 2.01574e-07 loss)
I0422 02:58:56.309814 32397 solver.cpp:245] Train net output #41: loss1/loss15 = 8.61301e-06 (* 0.0272727 = 2.349e-07 loss)
I0422 02:58:56.309828 32397 solver.cpp:245] Train net output #42: loss1/loss16 = 1.24874e-05 (* 0.0272727 = 3.40566e-07 loss)
I0422 02:58:56.309842 32397 solver.cpp:245] Train net output #43: loss1/loss17 = 6.72048e-06 (* 0.0272727 = 1.83286e-07 loss)
I0422 02:58:56.309857 32397 solver.cpp:245] Train net output #44: loss1/loss18 = 1.24278e-05 (* 0.0272727 = 3.38941e-07 loss)
I0422 02:58:56.309871 32397 solver.cpp:245] Train net output #45: loss1/loss19 = 1.3486e-05 (* 0.0272727 = 3.67799e-07 loss)
I0422 02:58:56.309885 32397 solver.cpp:245] Train net output #46: loss1/loss20 = 6.18403e-06 (* 0.0272727 = 1.68655e-07 loss)
I0422 02:58:56.309900 32397 solver.cpp:245] Train net output #47: loss1/loss21 = 8.21065e-06 (* 0.0272727 = 2.23927e-07 loss)
I0422 02:58:56.309914 32397 solver.cpp:245] Train net output #48: loss1/loss22 = 7.92753e-06 (* 0.0272727 = 2.16205e-07 loss)
I0422 02:58:56.309926 32397 solver.cpp:245] Train net output #49: loss2/accuracy = 0.8
I0422 02:58:56.309938 32397 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875
I0422 02:58:56.309950 32397 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.875
I0422 02:58:56.309962 32397 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.25
I0422 02:58:56.309974 32397 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.5
I0422 02:58:56.309986 32397 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5
I0422 02:58:56.309998 32397 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.75
I0422 02:58:56.310009 32397 solver.cpp:245] Train net output #56: loss2/accuracy07 = 1
I0422 02:58:56.310021 32397 solver.cpp:245] Train net output #57: loss2/accuracy08 = 1
I0422 02:58:56.310032 32397 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1
I0422 02:58:56.310044 32397 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0422 02:58:56.310055 32397 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0422 02:58:56.310066 32397 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0422 02:58:56.310077 32397 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0422 02:58:56.310089 32397 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0422 02:58:56.310101 32397 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0422 02:58:56.310111 32397 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0422 02:58:56.310123 32397 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0422 02:58:56.310134 32397 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0422 02:58:56.310145 32397 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0422 02:58:56.310156 32397 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0422 02:58:56.310168 32397 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0422 02:58:56.310179 32397 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0422 02:58:56.310190 32397 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.948864
I0422 02:58:56.310205 32397 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.955556
I0422 02:58:56.310220 32397 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.607119 (* 0.3 = 0.182136 loss)
I0422 02:58:56.310235 32397 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.168231 (* 0.3 = 0.0504692 loss)
I0422 02:58:56.310248 32397 solver.cpp:245] Train net output #76: loss2/loss01 = 0.579954 (* 0.0272727 = 0.0158169 loss)
I0422 02:58:56.310266 32397 solver.cpp:245] Train net output #77: loss2/loss02 = 0.741062 (* 0.0272727 = 0.0202108 loss)
I0422 02:58:56.310292 32397 solver.cpp:245] Train net output #78: loss2/loss03 = 1.87472 (* 0.0272727 = 0.0511286 loss)
I0422 02:58:56.310308 32397 solver.cpp:245] Train net output #79: loss2/loss04 = 1.6017 (* 0.0272727 = 0.0436826 loss)
I0422 02:58:56.310322 32397 solver.cpp:245] Train net output #80: loss2/loss05 = 1.82063 (* 0.0272727 = 0.0496537 loss)
I0422 02:58:56.310335 32397 solver.cpp:245] Train net output #81: loss2/loss06 = 0.882316 (* 0.0272727 = 0.0240632 loss)
I0422 02:58:56.310350 32397 solver.cpp:245] Train net output #82: loss2/loss07 = 0.164548 (* 0.0272727 = 0.00448769 loss)
I0422 02:58:56.310364 32397 solver.cpp:245] Train net output #83: loss2/loss08 = 0.00643699 (* 0.0272727 = 0.000175554 loss)
I0422 02:58:56.310379 32397 solver.cpp:245] Train net output #84: loss2/loss09 = 0.00112244 (* 0.0272727 = 3.06121e-05 loss)
I0422 02:58:56.310394 32397 solver.cpp:245] Train net output #85: loss2/loss10 = 8.50247e-05 (* 0.0272727 = 2.31886e-06 loss)
I0422 02:58:56.310407 32397 solver.cpp:245] Train net output #86: loss2/loss11 = 9.98402e-06 (* 0.0272727 = 2.72291e-07 loss)
I0422 02:58:56.310421 32397 solver.cpp:245] Train net output #87: loss2/loss12 = 5.73703e-06 (* 0.0272727 = 1.56464e-07 loss)
I0422 02:58:56.310436 32397 solver.cpp:245] Train net output #88: loss2/loss13 = 4.03825e-06 (* 0.0272727 = 1.10134e-07 loss)
I0422 02:58:56.310449 32397 solver.cpp:245] Train net output #89: loss2/loss14 = 5.81154e-06 (* 0.0272727 = 1.58497e-07 loss)
I0422 02:58:56.310463 32397 solver.cpp:245] Train net output #90: loss2/loss15 = 1.80016e-05 (* 0.0272727 = 4.90952e-07 loss)
I0422 02:58:56.310477 32397 solver.cpp:245] Train net output #91: loss2/loss16 = 7.98716e-06 (* 0.0272727 = 2.17832e-07 loss)
I0422 02:58:56.310492 32397 solver.cpp:245] Train net output #92: loss2/loss17 = 1.27111e-05 (* 0.0272727 = 3.46666e-07 loss)
I0422 02:58:56.310505 32397 solver.cpp:245] Train net output #93: loss2/loss18 = 1.3024e-05 (* 0.0272727 = 3.55201e-07 loss)
I0422 02:58:56.310519 32397 solver.cpp:245] Train net output #94: loss2/loss19 = 5.99037e-06 (* 0.0272727 = 1.63374e-07 loss)
I0422 02:58:56.310534 32397 solver.cpp:245] Train net output #95: loss2/loss20 = 4.44058e-06 (* 0.0272727 = 1.21107e-07 loss)
I0422 02:58:56.310547 32397 solver.cpp:245] Train net output #96: loss2/loss21 = 8.21075e-06 (* 0.0272727 = 2.23929e-07 loss)
I0422 02:58:56.310561 32397 solver.cpp:245] Train net output #97: loss2/loss22 = 9.4029e-06 (* 0.0272727 = 2.56443e-07 loss)
I0422 02:58:56.310573 32397 solver.cpp:245] Train net output #98: loss3/accuracy = 0.977778
I0422 02:58:56.310586 32397 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875
I0422 02:58:56.310598 32397 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0422 02:58:56.310611 32397 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0422 02:58:56.310621 32397 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1
I0422 02:58:56.310633 32397 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.625
I0422 02:58:56.310645 32397 solver.cpp:245] Train net output #104: loss3/accuracy06 = 1
I0422 02:58:56.310657 32397 solver.cpp:245] Train net output #105: loss3/accuracy07 = 1
I0422 02:58:56.310668 32397 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1
I0422 02:58:56.310679 32397 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1
I0422 02:58:56.310691 32397 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0422 02:58:56.310703 32397 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0422 02:58:56.310714 32397 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0422 02:58:56.310725 32397 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0422 02:58:56.310736 32397 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0422 02:58:56.310748 32397 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0422 02:58:56.310770 32397 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0422 02:58:56.310782 32397 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0422 02:58:56.310794 32397 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0422 02:58:56.310806 32397 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0422 02:58:56.310817 32397 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0422 02:58:56.310828 32397 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0422 02:58:56.310840 32397 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0422 02:58:56.310853 32397 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.994318
I0422 02:58:56.310863 32397 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.977778
I0422 02:58:56.310878 32397 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.169267 (* 1 = 0.169267 loss)
I0422 02:58:56.310891 32397 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.0462868 (* 1 = 0.0462868 loss)
I0422 02:58:56.310905 32397 solver.cpp:245] Train net output #125: loss3/loss01 = 0.48486 (* 0.0909091 = 0.0440782 loss)
I0422 02:58:56.310920 32397 solver.cpp:245] Train net output #126: loss3/loss02 = 0.213991 (* 0.0909091 = 0.0194537 loss)
I0422 02:58:56.310933 32397 solver.cpp:245] Train net output #127: loss3/loss03 = 0.0902588 (* 0.0909091 = 0.00820535 loss)
I0422 02:58:56.310947 32397 solver.cpp:245] Train net output #128: loss3/loss04 = 0.0937596 (* 0.0909091 = 0.0085236 loss)
I0422 02:58:56.310961 32397 solver.cpp:245] Train net output #129: loss3/loss05 = 0.719297 (* 0.0909091 = 0.0653906 loss)
I0422 02:58:56.310974 32397 solver.cpp:245] Train net output #130: loss3/loss06 = 0.17383 (* 0.0909091 = 0.0158027 loss)
I0422 02:58:56.310988 32397 solver.cpp:245] Train net output #131: loss3/loss07 = 0.0100492 (* 0.0909091 = 0.00091356 loss)
I0422 02:58:56.311002 32397 solver.cpp:245] Train net output #132: loss3/loss08 = 0.000668955 (* 0.0909091 = 6.08141e-05 loss)
I0422 02:58:56.311017 32397 solver.cpp:245] Train net output #133: loss3/loss09 = 0.000122084 (* 0.0909091 = 1.10985e-05 loss)
I0422 02:58:56.311030 32397 solver.cpp:245] Train net output #134: loss3/loss10 = 4.35085e-05 (* 0.0909091 = 3.95532e-06 loss)
I0422 02:58:56.311044 32397 solver.cpp:245] Train net output #135: loss3/loss11 = 7.49547e-06 (* 0.0909091 = 6.81406e-07 loss)
I0422 02:58:56.311058 32397 solver.cpp:245] Train net output #136: loss3/loss12 = 7.70409e-06 (* 0.0909091 = 7.00372e-07 loss)
I0422 02:58:56.311071 32397 solver.cpp:245] Train net output #137: loss3/loss13 = 7.39114e-06 (* 0.0909091 = 6.71922e-07 loss)
I0422 02:58:56.311085 32397 solver.cpp:245] Train net output #138: loss3/loss14 = 6.07979e-06 (* 0.0909091 = 5.52709e-07 loss)
I0422 02:58:56.311100 32397 solver.cpp:245] Train net output #139: loss3/loss15 = 9.61155e-06 (* 0.0909091 = 8.73777e-07 loss)
I0422 02:58:56.311113 32397 solver.cpp:245] Train net output #140: loss3/loss16 = 7.7339e-06 (* 0.0909091 = 7.03081e-07 loss)
I0422 02:58:56.311127 32397 solver.cpp:245] Train net output #141: loss3/loss17 = 8.37467e-06 (* 0.0909091 = 7.61334e-07 loss)
I0422 02:58:56.311141 32397 solver.cpp:245] Train net output #142: loss3/loss18 = 7.24213e-06 (* 0.0909091 = 6.58375e-07 loss)
I0422 02:58:56.311156 32397 solver.cpp:245] Train net output #143: loss3/loss19 = 8.92606e-06 (* 0.0909091 = 8.1146e-07 loss)
I0422 02:58:56.311169 32397 solver.cpp:245] Train net output #144: loss3/loss20 = 7.21232e-06 (* 0.0909091 = 6.55666e-07 loss)
I0422 02:58:56.311182 32397 solver.cpp:245] Train net output #145: loss3/loss21 = 7.54018e-06 (* 0.0909091 = 6.85471e-07 loss)
I0422 02:58:56.311197 32397 solver.cpp:245] Train net output #146: loss3/loss22 = 7.7488e-06 (* 0.0909091 = 7.04437e-07 loss)
I0422 02:58:56.311208 32397 solver.cpp:245] Train net output #147: total_accuracy = 0.875
I0422 02:58:56.311220 32397 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.625
I0422 02:58:56.311241 32397 solver.cpp:245] Train net output #149: total_confidence = 0.758605
I0422 02:58:56.311257 32397 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.568134
I0422 02:58:56.311270 32397 sgd_solver.cpp:106] Iteration 18500, lr = 0.001
I0422 03:04:38.403234 32397 solver.cpp:229] Iteration 19000, loss = 2.27602
I0422 03:04:38.403372 32397 solver.cpp:245] Train net output #0: loss1/accuracy = 0.666667
I0422 03:04:38.403404 32397 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.875
I0422 03:04:38.403430 32397 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5
I0422 03:04:38.403455 32397 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.25
I0422 03:04:38.403478 32397 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375
I0422 03:04:38.403498 32397 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.5
I0422 03:04:38.403522 32397 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.75
I0422 03:04:38.403547 32397 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.625
I0422 03:04:38.403569 32397 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875
I0422 03:04:38.403594 32397 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1
I0422 03:04:38.403615 32397 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0422 03:04:38.403638 32397 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0422 03:04:38.403662 32397 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0422 03:04:38.403687 32397 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0422 03:04:38.403718 32397 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0422 03:04:38.403741 32397 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0422 03:04:38.403764 32397 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0422 03:04:38.403794 32397 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0422 03:04:38.403816 32397 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0422 03:04:38.403839 32397 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0422 03:04:38.403861 32397 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0422 03:04:38.403885 32397 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0422 03:04:38.403909 32397 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0422 03:04:38.403933 32397 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.892045
I0422 03:04:38.403955 32397 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.895833
I0422 03:04:38.403985 32397 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.04001 (* 0.3 = 0.312003 loss)
I0422 03:04:38.404014 32397 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.326725 (* 0.3 = 0.0980175 loss)
I0422 03:04:38.404042 32397 solver.cpp:245] Train net output #27: loss1/loss01 = 0.550773 (* 0.0272727 = 0.0150211 loss)
I0422 03:04:38.404069 32397 solver.cpp:245] Train net output #28: loss1/loss02 = 1.44121 (* 0.0272727 = 0.0393057 loss)
I0422 03:04:38.404098 32397 solver.cpp:245] Train net output #29: loss1/loss03 = 1.80896 (* 0.0272727 = 0.0493354 loss)
I0422 03:04:38.404126 32397 solver.cpp:245] Train net output #30: loss1/loss04 = 2.12806 (* 0.0272727 = 0.058038 loss)
I0422 03:04:38.404155 32397 solver.cpp:245] Train net output #31: loss1/loss05 = 1.70549 (* 0.0272727 = 0.0465135 loss)
I0422 03:04:38.404182 32397 solver.cpp:245] Train net output #32: loss1/loss06 = 0.860922 (* 0.0272727 = 0.0234797 loss)
I0422 03:04:38.404214 32397 solver.cpp:245] Train net output #33: loss1/loss07 = 1.22258 (* 0.0272727 = 0.0333431 loss)
I0422 03:04:38.404242 32397 solver.cpp:245] Train net output #34: loss1/loss08 = 0.694445 (* 0.0272727 = 0.0189394 loss)
I0422 03:04:38.404270 32397 solver.cpp:245] Train net output #35: loss1/loss09 = 0.0401536 (* 0.0272727 = 0.0010951 loss)
I0422 03:04:38.404299 32397 solver.cpp:245] Train net output #36: loss1/loss10 = 0.00745842 (* 0.0272727 = 0.000203411 loss)
I0422 03:04:38.404323 32397 solver.cpp:245] Train net output #37: loss1/loss11 = 0.000114128 (* 0.0272727 = 3.11258e-06 loss)
I0422 03:04:38.404348 32397 solver.cpp:245] Train net output #38: loss1/loss12 = 0.000115361 (* 0.0272727 = 3.1462e-06 loss)
I0422 03:04:38.404402 32397 solver.cpp:245] Train net output #39: loss1/loss13 = 0.000212527 (* 0.0272727 = 5.79618e-06 loss)
I0422 03:04:38.404430 32397 solver.cpp:245] Train net output #40: loss1/loss14 = 0.000101527 (* 0.0272727 = 2.76893e-06 loss)
I0422 03:04:38.404458 32397 solver.cpp:245] Train net output #41: loss1/loss15 = 0.000124423 (* 0.0272727 = 3.39334e-06 loss)
I0422 03:04:38.404484 32397 solver.cpp:245] Train net output #42: loss1/loss16 = 0.000108694 (* 0.0272727 = 2.96438e-06 loss)
I0422 03:04:38.404510 32397 solver.cpp:245] Train net output #43: loss1/loss17 = 0.000179583 (* 0.0272727 = 4.89773e-06 loss)
I0422 03:04:38.404539 32397 solver.cpp:245] Train net output #44: loss1/loss18 = 0.000121402 (* 0.0272727 = 3.31097e-06 loss)
I0422 03:04:38.404568 32397 solver.cpp:245] Train net output #45: loss1/loss19 = 6.65029e-05 (* 0.0272727 = 1.81372e-06 loss)
I0422 03:04:38.404595 32397 solver.cpp:245] Train net output #46: loss1/loss20 = 9.45625e-05 (* 0.0272727 = 2.57898e-06 loss)
I0422 03:04:38.404623 32397 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000111743 (* 0.0272727 = 3.04755e-06 loss)
I0422 03:04:38.404649 32397 solver.cpp:245] Train net output #48: loss1/loss22 = 8.99274e-05 (* 0.0272727 = 2.45256e-06 loss)
I0422 03:04:38.404671 32397 solver.cpp:245] Train net output #49: loss2/accuracy = 0.854167
I0422 03:04:38.404695 32397 solver.cpp:245] Train net output #50: loss2/accuracy01 = 1
I0422 03:04:38.404717 32397 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.625
I0422 03:04:38.404739 32397 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.75
I0422 03:04:38.404762 32397 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.375
I0422 03:04:38.404783 32397 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5
I0422 03:04:38.404805 32397 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.75
I0422 03:04:38.404826 32397 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.625
I0422 03:04:38.404849 32397 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.75
I0422 03:04:38.404870 32397 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1
I0422 03:04:38.404892 32397 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0422 03:04:38.404913 32397 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0422 03:04:38.404934 32397 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0422 03:04:38.404956 32397 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0422 03:04:38.404976 32397 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0422 03:04:38.404997 32397 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0422 03:04:38.405019 32397 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0422 03:04:38.405040 32397 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0422 03:04:38.405061 32397 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0422 03:04:38.405083 32397 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0422 03:04:38.405107 32397 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0422 03:04:38.405128 32397 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0422 03:04:38.405148 32397 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0422 03:04:38.405170 32397 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.960227
I0422 03:04:38.405192 32397 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.958333
I0422 03:04:38.405218 32397 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.470684 (* 0.3 = 0.141205 loss)
I0422 03:04:38.405246 32397 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.142083 (* 0.3 = 0.0426249 loss)
I0422 03:04:38.405277 32397 solver.cpp:245] Train net output #76: loss2/loss01 = 0.225931 (* 0.0272727 = 0.00616175 loss)
I0422 03:04:38.405303 32397 solver.cpp:245] Train net output #77: loss2/loss02 = 0.675176 (* 0.0272727 = 0.0184139 loss)
I0422 03:04:38.405345 32397 solver.cpp:245] Train net output #78: loss2/loss03 = 0.727484 (* 0.0272727 = 0.0198405 loss)
I0422 03:04:38.405375 32397 solver.cpp:245] Train net output #79: loss2/loss04 = 1.86488 (* 0.0272727 = 0.0508605 loss)
I0422 03:04:38.405402 32397 solver.cpp:245] Train net output #80: loss2/loss05 = 1.40278 (* 0.0272727 = 0.0382576 loss)
I0422 03:04:38.405436 32397 solver.cpp:245] Train net output #81: loss2/loss06 = 0.951896 (* 0.0272727 = 0.0259608 loss)
I0422 03:04:38.405463 32397 solver.cpp:245] Train net output #82: loss2/loss07 = 1.11056 (* 0.0272727 = 0.030288 loss)
I0422 03:04:38.405493 32397 solver.cpp:245] Train net output #83: loss2/loss08 = 0.548317 (* 0.0272727 = 0.0149541 loss)
I0422 03:04:38.405520 32397 solver.cpp:245] Train net output #84: loss2/loss09 = 0.0570699 (* 0.0272727 = 0.00155645 loss)
I0422 03:04:38.405549 32397 solver.cpp:245] Train net output #85: loss2/loss10 = 0.016052 (* 0.0272727 = 0.000437782 loss)
I0422 03:04:38.405575 32397 solver.cpp:245] Train net output #86: loss2/loss11 = 7.38719e-05 (* 0.0272727 = 2.01469e-06 loss)
I0422 03:04:38.405602 32397 solver.cpp:245] Train net output #87: loss2/loss12 = 8.84398e-05 (* 0.0272727 = 2.41199e-06 loss)
I0422 03:04:38.405629 32397 solver.cpp:245] Train net output #88: loss2/loss13 = 0.000102525 (* 0.0272727 = 2.79612e-06 loss)
I0422 03:04:38.405657 32397 solver.cpp:245] Train net output #89: loss2/loss14 = 6.51723e-05 (* 0.0272727 = 1.77743e-06 loss)
I0422 03:04:38.405683 32397 solver.cpp:245] Train net output #90: loss2/loss15 = 5.89777e-05 (* 0.0272727 = 1.60848e-06 loss)
I0422 03:04:38.405709 32397 solver.cpp:245] Train net output #91: loss2/loss16 = 0.000105425 (* 0.0272727 = 2.87524e-06 loss)
I0422 03:04:38.405736 32397 solver.cpp:245] Train net output #92: loss2/loss17 = 0.000126582 (* 0.0272727 = 3.45224e-06 loss)
I0422 03:04:38.405763 32397 solver.cpp:245] Train net output #93: loss2/loss18 = 9.44046e-05 (* 0.0272727 = 2.57467e-06 loss)
I0422 03:04:38.405791 32397 solver.cpp:245] Train net output #94: loss2/loss19 = 0.000180949 (* 0.0272727 = 4.93497e-06 loss)
I0422 03:04:38.405817 32397 solver.cpp:245] Train net output #95: loss2/loss20 = 0.000120549 (* 0.0272727 = 3.28769e-06 loss)
I0422 03:04:38.405845 32397 solver.cpp:245] Train net output #96: loss2/loss21 = 0.000196999 (* 0.0272727 = 5.3727e-06 loss)
I0422 03:04:38.405871 32397 solver.cpp:245] Train net output #97: loss2/loss22 = 4.00458e-05 (* 0.0272727 = 1.09216e-06 loss)
I0422 03:04:38.405894 32397 solver.cpp:245] Train net output #98: loss3/accuracy = 0.979167
I0422 03:04:38.405916 32397 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0422 03:04:38.405938 32397 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0422 03:04:38.405961 32397 solver.cpp:245] Train net output #101: loss3/accuracy03 = 0.875
I0422 03:04:38.405985 32397 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1
I0422 03:04:38.406008 32397 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875
I0422 03:04:38.406029 32397 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.5
I0422 03:04:38.406051 32397 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875
I0422 03:04:38.406074 32397 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1
I0422 03:04:38.406095 32397 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1
I0422 03:04:38.406118 32397 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0422 03:04:38.406139 32397 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0422 03:04:38.406167 32397 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0422 03:04:38.406188 32397 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0422 03:04:38.406208 32397 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0422 03:04:38.406229 32397 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0422 03:04:38.406265 32397 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0422 03:04:38.406287 32397 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0422 03:04:38.406312 32397 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0422 03:04:38.406334 32397 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0422 03:04:38.406355 32397 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0422 03:04:38.406376 32397 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0422 03:04:38.406397 32397 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0422 03:04:38.406419 32397 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.994318
I0422 03:04:38.406440 32397 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 1
I0422 03:04:38.406466 32397 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.117523 (* 1 = 0.117523 loss)
I0422 03:04:38.406497 32397 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.0416349 (* 1 = 0.0416349 loss)
I0422 03:04:38.406524 32397 solver.cpp:245] Train net output #125: loss3/loss01 = 0.0151947 (* 0.0909091 = 0.00138134 loss)
I0422 03:04:38.406550 32397 solver.cpp:245] Train net output #126: loss3/loss02 = 0.0291634 (* 0.0909091 = 0.00265121 loss)
I0422 03:04:38.406577 32397 solver.cpp:245] Train net output #127: loss3/loss03 = 0.236994 (* 0.0909091 = 0.0215449 loss)
I0422 03:04:38.406604 32397 solver.cpp:245] Train net output #128: loss3/loss04 = 0.085588 (* 0.0909091 = 0.00778073 loss)
I0422 03:04:38.406630 32397 solver.cpp:245] Train net output #129: loss3/loss05 = 0.390477 (* 0.0909091 = 0.0354979 loss)
I0422 03:04:38.406656 32397 solver.cpp:245] Train net output #130: loss3/loss06 = 1.11489 (* 0.0909091 = 0.101353 loss)
I0422 03:04:38.406680 32397 solver.cpp:245] Train net output #131: loss3/loss07 = 0.383158 (* 0.0909091 = 0.0348325 loss)
I0422 03:04:38.406708 32397 solver.cpp:245] Train net output #132: loss3/loss08 = 0.169713 (* 0.0909091 = 0.0154285 loss)
I0422 03:04:38.406733 32397 solver.cpp:245] Train net output #133: loss3/loss09 = 0.0144464 (* 0.0909091 = 0.00131331 loss)
I0422 03:04:38.406759 32397 solver.cpp:245] Train net output #134: loss3/loss10 = 0.00430301 (* 0.0909091 = 0.000391183 loss)
I0422 03:04:38.406785 32397 solver.cpp:245] Train net output #135: loss3/loss11 = 8.34466e-07 (* 0.0909091 = 7.58605e-08 loss)
I0422 03:04:38.406810 32397 solver.cpp:245] Train net output #136: loss3/loss12 = 7.15256e-07 (* 0.0909091 = 6.50233e-08 loss)
I0422 03:04:38.406836 32397 solver.cpp:245] Train net output #137: loss3/loss13 = 8.64268e-07 (* 0.0909091 = 7.85698e-08 loss)
I0422 03:04:38.406862 32397 solver.cpp:245] Train net output #138: loss3/loss14 = 7.15256e-07 (* 0.0909091 = 6.50233e-08 loss)
I0422 03:04:38.406888 32397 solver.cpp:245] Train net output #139: loss3/loss15 = 7.15256e-07 (* 0.0909091 = 6.50233e-08 loss)
I0422 03:04:38.406913 32397 solver.cpp:245] Train net output #140: loss3/loss16 = 8.49367e-07 (* 0.0909091 = 7.72152e-08 loss)
I0422 03:04:38.406939 32397 solver.cpp:245] Train net output #141: loss3/loss17 = 6.55652e-07 (* 0.0909091 = 5.96047e-08 loss)
I0422 03:04:38.406965 32397 solver.cpp:245] Train net output #142: loss3/loss18 = 5.96047e-07 (* 0.0909091 = 5.41861e-08 loss)
I0422 03:04:38.406991 32397 solver.cpp:245] Train net output #143: loss3/loss19 = 6.4075e-07 (* 0.0909091 = 5.825e-08 loss)
I0422 03:04:38.407016 32397 solver.cpp:245] Train net output #144: loss3/loss20 = 6.85454e-07 (* 0.0909091 = 6.2314e-08 loss)
I0422 03:04:38.407042 32397 solver.cpp:245] Train net output #145: loss3/loss21 = 5.51343e-07 (* 0.0909091 = 5.01221e-08 loss)
I0422 03:04:38.407068 32397 solver.cpp:245] Train net output #146: loss3/loss22 = 5.81146e-07 (* 0.0909091 = 5.28314e-08 loss)
I0422 03:04:38.407091 32397 solver.cpp:245] Train net output #147: total_accuracy = 0.875
I0422 03:04:38.407114 32397 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.5
I0422 03:04:38.407150 32397 solver.cpp:245] Train net output #149: total_confidence = 0.622797
I0422 03:04:38.407169 32397 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.548204
I0422 03:04:38.407192 32397 sgd_solver.cpp:106] Iteration 19000, lr = 0.001
I0422 03:10:20.396458 32397 solver.cpp:229] Iteration 19500, loss = 2.26098
I0422 03:10:20.396600 32397 solver.cpp:245] Train net output #0: loss1/accuracy = 0.545455
I0422 03:10:20.396621 32397 solver.cpp:245] Train net output #1: loss1/accuracy01 = 1
I0422 03:10:20.396636 32397 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.625
I0422 03:10:20.396648 32397 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.75
I0422 03:10:20.396661 32397 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.625
I0422 03:10:20.396674 32397 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.375
I0422 03:10:20.396687 32397 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.875
I0422 03:10:20.396700 32397 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.875
I0422 03:10:20.396713 32397 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875
I0422 03:10:20.396725 32397 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1
I0422 03:10:20.396739 32397 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0422 03:10:20.396750 32397 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0422 03:10:20.396762 32397 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0422 03:10:20.396775 32397 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0422 03:10:20.396787 32397 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0422 03:10:20.396800 32397 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0422 03:10:20.396811 32397 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0422 03:10:20.396823 32397 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0422 03:10:20.396836 32397 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0422 03:10:20.396848 32397 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0422 03:10:20.396860 32397 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0422 03:10:20.396872 32397 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0422 03:10:20.396883 32397 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0422 03:10:20.396896 32397 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.869318
I0422 03:10:20.396909 32397 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.863636
I0422 03:10:20.396932 32397 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.18774 (* 0.3 = 0.356323 loss)
I0422 03:10:20.396947 32397 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.341963 (* 0.3 = 0.102589 loss)
I0422 03:10:20.396962 32397 solver.cpp:245] Train net output #27: loss1/loss01 = 0.305498 (* 0.0272727 = 0.00833177 loss)
I0422 03:10:20.396976 32397 solver.cpp:245] Train net output #28: loss1/loss02 = 1.42187 (* 0.0272727 = 0.0387783 loss)
I0422 03:10:20.396994 32397 solver.cpp:245] Train net output #29: loss1/loss03 = 1.57875 (* 0.0272727 = 0.0430569 loss)
I0422 03:10:20.397008 32397 solver.cpp:245] Train net output #30: loss1/loss04 = 1.21931 (* 0.0272727 = 0.033254 loss)
I0422 03:10:20.397022 32397 solver.cpp:245] Train net output #31: loss1/loss05 = 2.43003 (* 0.0272727 = 0.0662737 loss)
I0422 03:10:20.397037 32397 solver.cpp:245] Train net output #32: loss1/loss06 = 0.698865 (* 0.0272727 = 0.01906 loss)
I0422 03:10:20.397050 32397 solver.cpp:245] Train net output #33: loss1/loss07 = 0.428413 (* 0.0272727 = 0.011684 loss)
I0422 03:10:20.397065 32397 solver.cpp:245] Train net output #34: loss1/loss08 = 0.260929 (* 0.0272727 = 0.00711624 loss)
I0422 03:10:20.397079 32397 solver.cpp:245] Train net output #35: loss1/loss09 = 0.00899469 (* 0.0272727 = 0.00024531 loss)
I0422 03:10:20.397094 32397 solver.cpp:245] Train net output #36: loss1/loss10 = 0.00166603 (* 0.0272727 = 4.54372e-05 loss)
I0422 03:10:20.397109 32397 solver.cpp:245] Train net output #37: loss1/loss11 = 9.90936e-06 (* 0.0272727 = 2.70255e-07 loss)
I0422 03:10:20.397124 32397 solver.cpp:245] Train net output #38: loss1/loss12 = 9.0153e-06 (* 0.0272727 = 2.45872e-07 loss)
I0422 03:10:20.397156 32397 solver.cpp:245] Train net output #39: loss1/loss13 = 8.52354e-06 (* 0.0272727 = 2.3246e-07 loss)
I0422 03:10:20.397172 32397 solver.cpp:245] Train net output #40: loss1/loss14 = 7.19733e-06 (* 0.0272727 = 1.96291e-07 loss)
I0422 03:10:20.397186 32397 solver.cpp:245] Train net output #41: loss1/loss15 = 8.88119e-06 (* 0.0272727 = 2.42214e-07 loss)
I0422 03:10:20.397203 32397 solver.cpp:245] Train net output #42: loss1/loss16 = 6.40755e-06 (* 0.0272727 = 1.74751e-07 loss)
I0422 03:10:20.397218 32397 solver.cpp:245] Train net output #43: loss1/loss17 = 6.63107e-06 (* 0.0272727 = 1.80847e-07 loss)
I0422 03:10:20.397233 32397 solver.cpp:245] Train net output #44: loss1/loss18 = 7.98709e-06 (* 0.0272727 = 2.1783e-07 loss)
I0422 03:10:20.397248 32397 solver.cpp:245] Train net output #45: loss1/loss19 = 6.30323e-06 (* 0.0272727 = 1.71906e-07 loss)
I0422 03:10:20.397263 32397 solver.cpp:245] Train net output #46: loss1/loss20 = 6.22873e-06 (* 0.0272727 = 1.69874e-07 loss)
I0422 03:10:20.397276 32397 solver.cpp:245] Train net output #47: loss1/loss21 = 6.49695e-06 (* 0.0272727 = 1.7719e-07 loss)
I0422 03:10:20.397290 32397 solver.cpp:245] Train net output #48: loss1/loss22 = 6.64596e-06 (* 0.0272727 = 1.81253e-07 loss)
I0422 03:10:20.397302 32397 solver.cpp:245] Train net output #49: loss2/accuracy = 0.863636
I0422 03:10:20.397315 32397 solver.cpp:245] Train net output #50: loss2/accuracy01 = 1
I0422 03:10:20.397326 32397 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75
I0422 03:10:20.397338 32397 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.5
I0422 03:10:20.397351 32397 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.875
I0422 03:10:20.397362 32397 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5
I0422 03:10:20.397374 32397 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.625
I0422 03:10:20.397387 32397 solver.cpp:245] Train net output #56: loss2/accuracy07 = 1
I0422 03:10:20.397398 32397 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875
I0422 03:10:20.397409 32397 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1
I0422 03:10:20.397421 32397 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0422 03:10:20.397433 32397 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0422 03:10:20.397444 32397 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0422 03:10:20.397455 32397 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0422 03:10:20.397467 32397 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0422 03:10:20.397478 32397 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0422 03:10:20.397490 32397 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0422 03:10:20.397501 32397 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0422 03:10:20.397513 32397 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0422 03:10:20.397524 32397 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0422 03:10:20.397536 32397 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0422 03:10:20.397547 32397 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0422 03:10:20.397558 32397 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0422 03:10:20.397570 32397 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.965909
I0422 03:10:20.397583 32397 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.977273
I0422 03:10:20.397596 32397 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.42413 (* 0.3 = 0.127239 loss)
I0422 03:10:20.397614 32397 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.117859 (* 0.3 = 0.0353576 loss)
I0422 03:10:20.397629 32397 solver.cpp:245] Train net output #76: loss2/loss01 = 0.078622 (* 0.0272727 = 0.00214424 loss)
I0422 03:10:20.397642 32397 solver.cpp:245] Train net output #77: loss2/loss02 = 0.894194 (* 0.0272727 = 0.0243871 loss)
I0422 03:10:20.397670 32397 solver.cpp:245] Train net output #78: loss2/loss03 = 1.28225 (* 0.0272727 = 0.0349705 loss)
I0422 03:10:20.397686 32397 solver.cpp:245] Train net output #79: loss2/loss04 = 0.67026 (* 0.0272727 = 0.0182798 loss)
I0422 03:10:20.397699 32397 solver.cpp:245] Train net output #80: loss2/loss05 = 1.7313 (* 0.0272727 = 0.0472173 loss)
I0422 03:10:20.397713 32397 solver.cpp:245] Train net output #81: loss2/loss06 = 1.0335 (* 0.0272727 = 0.0281863 loss)
I0422 03:10:20.397727 32397 solver.cpp:245] Train net output #82: loss2/loss07 = 0.161829 (* 0.0272727 = 0.00441351 loss)
I0422 03:10:20.397742 32397 solver.cpp:245] Train net output #83: loss2/loss08 = 0.470684 (* 0.0272727 = 0.0128368 loss)
I0422 03:10:20.397755 32397 solver.cpp:245] Train net output #84: loss2/loss09 = 0.0103634 (* 0.0272727 = 0.000282638 loss)
I0422 03:10:20.397770 32397 solver.cpp:245] Train net output #85: loss2/loss10 = 0.00224496 (* 0.0272727 = 6.12261e-05 loss)
I0422 03:10:20.397784 32397 solver.cpp:245] Train net output #86: loss2/loss11 = 9.68578e-07 (* 0.0272727 = 2.64158e-08 loss)
I0422 03:10:20.397799 32397 solver.cpp:245] Train net output #87: loss2/loss12 = 5.96047e-07 (* 0.0272727 = 1.62558e-08 loss)
I0422 03:10:20.397812 32397 solver.cpp:245] Train net output #88: loss2/loss13 = 1.40071e-06 (* 0.0272727 = 3.82013e-08 loss)
I0422 03:10:20.397826 32397 solver.cpp:245] Train net output #89: loss2/loss14 = 4.61936e-07 (* 0.0272727 = 1.25983e-08 loss)
I0422 03:10:20.397840 32397 solver.cpp:245] Train net output #90: loss2/loss15 = 7.59961e-07 (* 0.0272727 = 2.07262e-08 loss)
I0422 03:10:20.397853 32397 solver.cpp:245] Train net output #91: loss2/loss16 = 4.47035e-07 (* 0.0272727 = 1.21919e-08 loss)
I0422 03:10:20.397867 32397 solver.cpp:245] Train net output #92: loss2/loss17 = 1.1772e-06 (* 0.0272727 = 3.21053e-08 loss)
I0422 03:10:20.397881 32397 solver.cpp:245] Train net output #93: loss2/loss18 = 5.36442e-07 (* 0.0272727 = 1.46302e-08 loss)
I0422 03:10:20.397896 32397 solver.cpp:245] Train net output #94: loss2/loss19 = 1.11759e-06 (* 0.0272727 = 3.04797e-08 loss)
I0422 03:10:20.397909 32397 solver.cpp:245] Train net output #95: loss2/loss20 = 9.38775e-07 (* 0.0272727 = 2.56029e-08 loss)
I0422 03:10:20.397923 32397 solver.cpp:245] Train net output #96: loss2/loss21 = 5.96047e-07 (* 0.0272727 = 1.62558e-08 loss)
I0422 03:10:20.397938 32397 solver.cpp:245] Train net output #97: loss2/loss22 = 4.61936e-07 (* 0.0272727 = 1.25983e-08 loss)
I0422 03:10:20.397949 32397 solver.cpp:245] Train net output #98: loss3/accuracy = 1
I0422 03:10:20.397961 32397 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0422 03:10:20.397972 32397 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875
I0422 03:10:20.397984 32397 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0422 03:10:20.397996 32397 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1
I0422 03:10:20.398007 32397 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.75
I0422 03:10:20.398020 32397 solver.cpp:245] Train net output #104: loss3/accuracy06 = 1
I0422 03:10:20.398030 32397 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875
I0422 03:10:20.398042 32397 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1
I0422 03:10:20.398053 32397 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1
I0422 03:10:20.398064 32397 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0422 03:10:20.398075 32397 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0422 03:10:20.398092 32397 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0422 03:10:20.398102 32397 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0422 03:10:20.398114 32397 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0422 03:10:20.398125 32397 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0422 03:10:20.398136 32397 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0422 03:10:20.398167 32397 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0422 03:10:20.398180 32397 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0422 03:10:20.398191 32397 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0422 03:10:20.398202 32397 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0422 03:10:20.398213 32397 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0422 03:10:20.398226 32397 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0422 03:10:20.398236 32397 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 1
I0422 03:10:20.398248 32397 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 1
I0422 03:10:20.398265 32397 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.0509926 (* 1 = 0.0509926 loss)
I0422 03:10:20.398279 32397 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.0139676 (* 1 = 0.0139676 loss)
I0422 03:10:20.398293 32397 solver.cpp:245] Train net output #125: loss3/loss01 = 0.0223372 (* 0.0909091 = 0.00203065 loss)
I0422 03:10:20.398308 32397 solver.cpp:245] Train net output #126: loss3/loss02 = 0.210855 (* 0.0909091 = 0.0191686 loss)
I0422 03:10:20.398321 32397 solver.cpp:245] Train net output #127: loss3/loss03 = 0.0964996 (* 0.0909091 = 0.00877269 loss)
I0422 03:10:20.398335 32397 solver.cpp:245] Train net output #128: loss3/loss04 = 0.0699986 (* 0.0909091 = 0.00636351 loss)
I0422 03:10:20.398350 32397 solver.cpp:245] Train net output #129: loss3/loss05 = 0.585137 (* 0.0909091 = 0.0531943 loss)
I0422 03:10:20.398363 32397 solver.cpp:245] Train net output #130: loss3/loss06 = 0.123949 (* 0.0909091 = 0.0112681 loss)
I0422 03:10:20.398377 32397 solver.cpp:245] Train net output #131: loss3/loss07 = 0.375746 (* 0.0909091 = 0.0341587 loss)
I0422 03:10:20.398391 32397 solver.cpp:245] Train net output #132: loss3/loss08 = 0.124163 (* 0.0909091 = 0.0112875 loss)
I0422 03:10:20.398406 32397 solver.cpp:245] Train net output #133: loss3/loss09 = 0.00181182 (* 0.0909091 = 0.000164711 loss)
I0422 03:10:20.398419 32397 solver.cpp:245] Train net output #134: loss3/loss10 = 0.000410147 (* 0.0909091 = 3.72861e-05 loss)
I0422 03:10:20.398433 32397 solver.cpp:245] Train net output #135: loss3/loss11 = 5.4986e-06 (* 0.0909091 = 4.99873e-07 loss)
I0422 03:10:20.398447 32397 solver.cpp:245] Train net output #136: loss3/loss12 = 4.09785e-06 (* 0.0909091 = 3.72532e-07 loss)
I0422 03:10:20.398461 32397 solver.cpp:245] Train net output #137: loss3/loss13 = 4.87273e-06 (* 0.0909091 = 4.42976e-07 loss)
I0422 03:10:20.398475 32397 solver.cpp:245] Train net output #138: loss3/loss14 = 5.28997e-06 (* 0.0909091 = 4.80907e-07 loss)
I0422 03:10:20.398489 32397 solver.cpp:245] Train net output #139: loss3/loss15 = 5.78173e-06 (* 0.0909091 = 5.25612e-07 loss)
I0422 03:10:20.398504 32397 solver.cpp:245] Train net output #140: loss3/loss16 = 6.27348e-06 (* 0.0909091 = 5.70316e-07 loss)
I0422 03:10:20.398517 32397 solver.cpp:245] Train net output #141: loss3/loss17 = 4.5598e-06 (* 0.0909091 = 4.14527e-07 loss)
I0422 03:10:20.398530 32397 solver.cpp:245] Train net output #142: loss3/loss18 = 3.71042e-06 (* 0.0909091 = 3.3731e-07 loss)
I0422 03:10:20.398545 32397 solver.cpp:245] Train net output #143: loss3/loss19 = 5.75193e-06 (* 0.0909091 = 5.22903e-07 loss)
I0422 03:10:20.398558 32397 solver.cpp:245] Train net output #144: loss3/loss20 = 4.27668e-06 (* 0.0909091 = 3.88789e-07 loss)
I0422 03:10:20.398571 32397 solver.cpp:245] Train net output #145: loss3/loss21 = 4.99195e-06 (* 0.0909091 = 4.53814e-07 loss)
I0422 03:10:20.398586 32397 solver.cpp:245] Train net output #146: loss3/loss22 = 4.39588e-06 (* 0.0909091 = 3.99626e-07 loss)
I0422 03:10:20.398597 32397 solver.cpp:245] Train net output #147: total_accuracy = 1
I0422 03:10:20.398608 32397 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.625
I0422 03:10:20.398630 32397 solver.cpp:245] Train net output #149: total_confidence = 0.771681
I0422 03:10:20.398643 32397 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.530363
I0422 03:10:20.398656 32397 sgd_solver.cpp:106] Iteration 19500, lr = 0.001
I0422 03:16:01.784957 32397 solver.cpp:456] Snapshotting to binary proto file /mnt/snapshots/mixed_lstm10_bn_iter_20000.caffemodel
I0422 03:16:02.616492 32397 sgd_solver.cpp:273] Snapshotting solver state to binary proto file /mnt/snapshots/mixed_lstm10_bn_iter_20000.solverstate
I0422 03:16:02.920852 32397 solver.cpp:338] Iteration 20000, Testing net (#0)
I0422 03:16:54.356025 32397 solver.cpp:393] Test loss: 2.00581
I0422 03:16:54.356145 32397 solver.cpp:406] Test net output #0: loss1/accuracy = 0.740475
I0422 03:16:54.356165 32397 solver.cpp:406] Test net output #1: loss1/accuracy01 = 0.75
I0422 03:16:54.356178 32397 solver.cpp:406] Test net output #2: loss1/accuracy02 = 0.632
I0422 03:16:54.356191 32397 solver.cpp:406] Test net output #3: loss1/accuracy03 = 0.544
I0422 03:16:54.356206 32397 solver.cpp:406] Test net output #4: loss1/accuracy04 = 0.434
I0422 03:16:54.356220 32397 solver.cpp:406] Test net output #5: loss1/accuracy05 = 0.487
I0422 03:16:54.356232 32397 solver.cpp:406] Test net output #6: loss1/accuracy06 = 0.788
I0422 03:16:54.356245 32397 solver.cpp:406] Test net output #7: loss1/accuracy07 = 0.91
I0422 03:16:54.356257 32397 solver.cpp:406] Test net output #8: loss1/accuracy08 = 0.969
I0422 03:16:54.356269 32397 solver.cpp:406] Test net output #9: loss1/accuracy09 = 0.995
I0422 03:16:54.356281 32397 solver.cpp:406] Test net output #10: loss1/accuracy10 = 0.998
I0422 03:16:54.356293 32397 solver.cpp:406] Test net output #11: loss1/accuracy11 = 1
I0422 03:16:54.356305 32397 solver.cpp:406] Test net output #12: loss1/accuracy12 = 1
I0422 03:16:54.356317 32397 solver.cpp:406] Test net output #13: loss1/accuracy13 = 1
I0422 03:16:54.356329 32397 solver.cpp:406] Test net output #14: loss1/accuracy14 = 1
I0422 03:16:54.356341 32397 solver.cpp:406] Test net output #15: loss1/accuracy15 = 1
I0422 03:16:54.356353 32397 solver.cpp:406] Test net output #16: loss1/accuracy16 = 1
I0422 03:16:54.356365 32397 solver.cpp:406] Test net output #17: loss1/accuracy17 = 1
I0422 03:16:54.356377 32397 solver.cpp:406] Test net output #18: loss1/accuracy18 = 1
I0422 03:16:54.356389 32397 solver.cpp:406] Test net output #19: loss1/accuracy19 = 1
I0422 03:16:54.356400 32397 solver.cpp:406] Test net output #20: loss1/accuracy20 = 1
I0422 03:16:54.356412 32397 solver.cpp:406] Test net output #21: loss1/accuracy21 = 1
I0422 03:16:54.356423 32397 solver.cpp:406] Test net output #22: loss1/accuracy22 = 1
I0422 03:16:54.356436 32397 solver.cpp:406] Test net output #23: loss1/accuracy_incl_empty = 0.933273
I0422 03:16:54.356447 32397 solver.cpp:406] Test net output #24: loss1/accuracy_top3 = 0.893689
I0422 03:16:54.356463 32397 solver.cpp:406] Test net output #25: loss1/cross_entropy_loss = 0.981594 (* 0.3 = 0.294478 loss)
I0422 03:16:54.356477 32397 solver.cpp:406] Test net output #26: loss1/cross_entropy_loss_incl_empty = 0.26047 (* 0.3 = 0.0781409 loss)
I0422 03:16:54.356492 32397 solver.cpp:406] Test net output #27: loss1/loss01 = 0.962364 (* 0.0272727 = 0.0262463 loss)
I0422 03:16:54.356506 32397 solver.cpp:406] Test net output #28: loss1/loss02 = 1.3338 (* 0.0272727 = 0.0363763 loss)
I0422 03:16:54.356521 32397 solver.cpp:406] Test net output #29: loss1/loss03 = 1.53398 (* 0.0272727 = 0.0418359 loss)
I0422 03:16:54.356535 32397 solver.cpp:406] Test net output #30: loss1/loss04 = 1.72926 (* 0.0272727 = 0.0471617 loss)
I0422 03:16:54.356549 32397 solver.cpp:406] Test net output #31: loss1/loss05 = 1.55869 (* 0.0272727 = 0.0425097 loss)
I0422 03:16:54.356564 32397 solver.cpp:406] Test net output #32: loss1/loss06 = 0.746348 (* 0.0272727 = 0.020355 loss)
I0422 03:16:54.356577 32397 solver.cpp:406] Test net output #33: loss1/loss07 = 0.311178 (* 0.0272727 = 0.00848667 loss)
I0422 03:16:54.356591 32397 solver.cpp:406] Test net output #34: loss1/loss08 = 0.153349 (* 0.0272727 = 0.00418225 loss)
I0422 03:16:54.356606 32397 solver.cpp:406] Test net output #35: loss1/loss09 = 0.0498865 (* 0.0272727 = 0.00136054 loss)
I0422 03:16:54.356621 32397 solver.cpp:406] Test net output #36: loss1/loss10 = 0.025677 (* 0.0272727 = 0.000700281 loss)
I0422 03:16:54.356636 32397 solver.cpp:406] Test net output #37: loss1/loss11 = 0.000211565 (* 0.0272727 = 5.76995e-06 loss)
I0422 03:16:54.356650 32397 solver.cpp:406] Test net output #38: loss1/loss12 = 0.000238703 (* 0.0272727 = 6.51008e-06 loss)
I0422 03:16:54.356664 32397 solver.cpp:406] Test net output #39: loss1/loss13 = 0.000252774 (* 0.0272727 = 6.89384e-06 loss)
I0422 03:16:54.356703 32397 solver.cpp:406] Test net output #40: loss1/loss14 = 0.000229893 (* 0.0272727 = 6.26981e-06 loss)
I0422 03:16:54.356719 32397 solver.cpp:406] Test net output #41: loss1/loss15 = 0.000219421 (* 0.0272727 = 5.98422e-06 loss)
I0422 03:16:54.356732 32397 solver.cpp:406] Test net output #42: loss1/loss16 = 0.000229343 (* 0.0272727 = 6.25482e-06 loss)
I0422 03:16:54.356746 32397 solver.cpp:406] Test net output #43: loss1/loss17 = 0.00021558 (* 0.0272727 = 5.87946e-06 loss)
I0422 03:16:54.356760 32397 solver.cpp:406] Test net output #44: loss1/loss18 = 0.000237146 (* 0.0272727 = 6.46763e-06 loss)
I0422 03:16:54.356775 32397 solver.cpp:406] Test net output #45: loss1/loss19 = 0.000211987 (* 0.0272727 = 5.78146e-06 loss)
I0422 03:16:54.356788 32397 solver.cpp:406] Test net output #46: loss1/loss20 = 0.000231003 (* 0.0272727 = 6.30008e-06 loss)
I0422 03:16:54.356802 32397 solver.cpp:406] Test net output #47: loss1/loss21 = 0.000219335 (* 0.0272727 = 5.98187e-06 loss)
I0422 03:16:54.356817 32397 solver.cpp:406] Test net output #48: loss1/loss22 = 0.000213381 (* 0.0272727 = 5.81947e-06 loss)
I0422 03:16:54.356828 32397 solver.cpp:406] Test net output #49: loss2/accuracy = 0.858093
I0422 03:16:54.356842 32397 solver.cpp:406] Test net output #50: loss2/accuracy01 = 0.874
I0422 03:16:54.356853 32397 solver.cpp:406] Test net output #51: loss2/accuracy02 = 0.83
I0422 03:16:54.356865 32397 solver.cpp:406] Test net output #52: loss2/accuracy03 = 0.695
I0422 03:16:54.356876 32397 solver.cpp:406] Test net output #53: loss2/accuracy04 = 0.544
I0422 03:16:54.356889 32397 solver.cpp:406] Test net output #54: loss2/accuracy05 = 0.562
I0422 03:16:54.356899 32397 solver.cpp:406] Test net output #55: loss2/accuracy06 = 0.841
I0422 03:16:54.356911 32397 solver.cpp:406] Test net output #56: loss2/accuracy07 = 0.937
I0422 03:16:54.356922 32397 solver.cpp:406] Test net output #57: loss2/accuracy08 = 0.971
I0422 03:16:54.356935 32397 solver.cpp:406] Test net output #58: loss2/accuracy09 = 0.995
I0422 03:16:54.356946 32397 solver.cpp:406] Test net output #59: loss2/accuracy10 = 0.998
I0422 03:16:54.356958 32397 solver.cpp:406] Test net output #60: loss2/accuracy11 = 1
I0422 03:16:54.356969 32397 solver.cpp:406] Test net output #61: loss2/accuracy12 = 1
I0422 03:16:54.356981 32397 solver.cpp:406] Test net output #62: loss2/accuracy13 = 1
I0422 03:16:54.356992 32397 solver.cpp:406] Test net output #63: loss2/accuracy14 = 1
I0422 03:16:54.357003 32397 solver.cpp:406] Test net output #64: loss2/accuracy15 = 1
I0422 03:16:54.357014 32397 solver.cpp:406] Test net output #65: loss2/accuracy16 = 1
I0422 03:16:54.357025 32397 solver.cpp:406] Test net output #66: loss2/accuracy17 = 1
I0422 03:16:54.357036 32397 solver.cpp:406] Test net output #67: loss2/accuracy18 = 1
I0422 03:16:54.357048 32397 solver.cpp:406] Test net output #68: loss2/accuracy19 = 1
I0422 03:16:54.357059 32397 solver.cpp:406] Test net output #69: loss2/accuracy20 = 1
I0422 03:16:54.357070 32397 solver.cpp:406] Test net output #70: loss2/accuracy21 = 1
I0422 03:16:54.357081 32397 solver.cpp:406] Test net output #71: loss2/accuracy22 = 1
I0422 03:16:54.357092 32397 solver.cpp:406] Test net output #72: loss2/accuracy_incl_empty = 0.965227
I0422 03:16:54.357103 32397 solver.cpp:406] Test net output #73: loss2/accuracy_top3 = 0.928521
I0422 03:16:54.357118 32397 solver.cpp:406] Test net output #74: loss2/cross_entropy_loss = 0.64396 (* 0.3 = 0.193188 loss)
I0422 03:16:54.357131 32397 solver.cpp:406] Test net output #75: loss2/cross_entropy_loss_incl_empty = 0.166487 (* 0.3 = 0.049946 loss)
I0422 03:16:54.357146 32397 solver.cpp:406] Test net output #76: loss2/loss01 = 0.584345 (* 0.0272727 = 0.0159367 loss)
I0422 03:16:54.357164 32397 solver.cpp:406] Test net output #77: loss2/loss02 = 0.751967 (* 0.0272727 = 0.0205082 loss)
I0422 03:16:54.357189 32397 solver.cpp:406] Test net output #78: loss2/loss03 = 1.07057 (* 0.0272727 = 0.0291973 loss)
I0422 03:16:54.357204 32397 solver.cpp:406] Test net output #79: loss2/loss04 = 1.27994 (* 0.0272727 = 0.0349075 loss)
I0422 03:16:54.357218 32397 solver.cpp:406] Test net output #80: loss2/loss05 = 1.22264 (* 0.0272727 = 0.0333446 loss)
I0422 03:16:54.357233 32397 solver.cpp:406] Test net output #81: loss2/loss06 = 0.597604 (* 0.0272727 = 0.0162983 loss)
I0422 03:16:54.357246 32397 solver.cpp:406] Test net output #82: loss2/loss07 = 0.236764 (* 0.0272727 = 0.00645721 loss)
I0422 03:16:54.357264 32397 solver.cpp:406] Test net output #83: loss2/loss08 = 0.123394 (* 0.0272727 = 0.0033653 loss)
I0422 03:16:54.357277 32397 solver.cpp:406] Test net output #84: loss2/loss09 = 0.0447975 (* 0.0272727 = 0.00122175 loss)
I0422 03:16:54.357292 32397 solver.cpp:406] Test net output #85: loss2/loss10 = 0.0237292 (* 0.0272727 = 0.000647159 loss)
I0422 03:16:54.357306 32397 solver.cpp:406] Test net output #86: loss2/loss11 = 9.01361e-05 (* 0.0272727 = 2.45826e-06 loss)
I0422 03:16:54.357321 32397 solver.cpp:406] Test net output #87: loss2/loss12 = 9.97046e-05 (* 0.0272727 = 2.71922e-06 loss)
I0422 03:16:54.357336 32397 solver.cpp:406] Test net output #88: loss2/loss13 = 9.95384e-05 (* 0.0272727 = 2.71468e-06 loss)
I0422 03:16:54.357349 32397 solver.cpp:406] Test net output #89: loss2/loss14 = 9.30162e-05 (* 0.0272727 = 2.5368e-06 loss)
I0422 03:16:54.357363 32397 solver.cpp:406] Test net output #90: loss2/loss15 = 9.38361e-05 (* 0.0272727 = 2.55917e-06 loss)
I0422 03:16:54.357378 32397 solver.cpp:406] Test net output #91: loss2/loss16 = 9.30963e-05 (* 0.0272727 = 2.53899e-06 loss)
I0422 03:16:54.357391 32397 solver.cpp:406] Test net output #92: loss2/loss17 = 9.98045e-05 (* 0.0272727 = 2.72194e-06 loss)
I0422 03:16:54.357405 32397 solver.cpp:406] Test net output #93: loss2/loss18 = 9.66368e-05 (* 0.0272727 = 2.63555e-06 loss)
I0422 03:16:54.357419 32397 solver.cpp:406] Test net output #94: loss2/loss19 = 9.48747e-05 (* 0.0272727 = 2.58749e-06 loss)
I0422 03:16:54.357434 32397 solver.cpp:406] Test net output #95: loss2/loss20 = 9.37253e-05 (* 0.0272727 = 2.55614e-06 loss)
I0422 03:16:54.357447 32397 solver.cpp:406] Test net output #96: loss2/loss21 = 8.61832e-05 (* 0.0272727 = 2.35045e-06 loss)
I0422 03:16:54.357460 32397 solver.cpp:406] Test net output #97: loss2/loss22 = 8.74167e-05 (* 0.0272727 = 2.38409e-06 loss)
I0422 03:16:54.357472 32397 solver.cpp:406] Test net output #98: loss3/accuracy = 0.881154
I0422 03:16:54.357484 32397 solver.cpp:406] Test net output #99: loss3/accuracy01 = 0.877
I0422 03:16:54.357496 32397 solver.cpp:406] Test net output #100: loss3/accuracy02 = 0.871
I0422 03:16:54.357508 32397 solver.cpp:406] Test net output #101: loss3/accuracy03 = 0.901
I0422 03:16:54.357520 32397 solver.cpp:406] Test net output #102: loss3/accuracy04 = 0.896
I0422 03:16:54.357532 32397 solver.cpp:406] Test net output #103: loss3/accuracy05 = 0.876
I0422 03:16:54.357543 32397 solver.cpp:406] Test net output #104: loss3/accuracy06 = 0.905
I0422 03:16:54.357555 32397 solver.cpp:406] Test net output #105: loss3/accuracy07 = 0.961
I0422 03:16:54.357568 32397 solver.cpp:406] Test net output #106: loss3/accuracy08 = 0.982
I0422 03:16:54.357578 32397 solver.cpp:406] Test net output #107: loss3/accuracy09 = 0.99
I0422 03:16:54.357590 32397 solver.cpp:406] Test net output #108: loss3/accuracy10 = 0.994
I0422 03:16:54.357604 32397 solver.cpp:406] Test net output #109: loss3/accuracy11 = 1
I0422 03:16:54.357614 32397 solver.cpp:406] Test net output #110: loss3/accuracy12 = 1
I0422 03:16:54.357626 32397 solver.cpp:406] Test net output #111: loss3/accuracy13 = 1
I0422 03:16:54.357637 32397 solver.cpp:406] Test net output #112: loss3/accuracy14 = 1
I0422 03:16:54.357648 32397 solver.cpp:406] Test net output #113: loss3/accuracy15 = 1
I0422 03:16:54.357659 32397 solver.cpp:406] Test net output #114: loss3/accuracy16 = 1
I0422 03:16:54.357681 32397 solver.cpp:406] Test net output #115: loss3/accuracy17 = 1
I0422 03:16:54.357693 32397 solver.cpp:406] Test net output #116: loss3/accuracy18 = 1
I0422 03:16:54.357705 32397 solver.cpp:406] Test net output #117: loss3/accuracy19 = 1
I0422 03:16:54.357717 32397 solver.cpp:406] Test net output #118: loss3/accuracy20 = 1
I0422 03:16:54.357728 32397 solver.cpp:406] Test net output #119: loss3/accuracy21 = 1
I0422 03:16:54.357738 32397 solver.cpp:406] Test net output #120: loss3/accuracy22 = 1
I0422 03:16:54.357749 32397 solver.cpp:406] Test net output #121: loss3/accuracy_incl_empty = 0.971
I0422 03:16:54.357761 32397 solver.cpp:406] Test net output #122: loss3/accuracy_top3 = 0.935393
I0422 03:16:54.357774 32397 solver.cpp:406] Test net output #123: loss3/cross_entropy_loss = 0.544263 (* 1 = 0.544263 loss)
I0422 03:16:54.357789 32397 solver.cpp:406] Test net output #124: loss3/cross_entropy_loss_incl_empty = 0.140965 (* 1 = 0.140965 loss)
I0422 03:16:54.357802 32397 solver.cpp:406] Test net output #125: loss3/loss01 = 0.562602 (* 0.0909091 = 0.0511457 loss)
I0422 03:16:54.357816 32397 solver.cpp:406] Test net output #126: loss3/loss02 = 0.559228 (* 0.0909091 = 0.0508389 loss)
I0422 03:16:54.357831 32397 solver.cpp:406] Test net output #127: loss3/loss03 = 0.509502 (* 0.0909091 = 0.0463184 loss)
I0422 03:16:54.357844 32397 solver.cpp:406] Test net output #128: loss3/loss04 = 0.490084 (* 0.0909091 = 0.0445531 loss)
I0422 03:16:54.357859 32397 solver.cpp:406] Test net output #129: loss3/loss05 = 0.548402 (* 0.0909091 = 0.0498547 loss)
I0422 03:16:54.357873 32397 solver.cpp:406] Test net output #130: loss3/loss06 = 0.387363 (* 0.0909091 = 0.0352149 loss)
I0422 03:16:54.357887 32397 solver.cpp:406] Test net output #131: loss3/loss07 = 0.195473 (* 0.0909091 = 0.0177703 loss)
I0422 03:16:54.357902 32397 solver.cpp:406] Test net output #132: loss3/loss08 = 0.10236 (* 0.0909091 = 0.00930547 loss)
I0422 03:16:54.357915 32397 solver.cpp:406] Test net output #133: loss3/loss09 = 0.0592413 (* 0.0909091 = 0.00538557 loss)
I0422 03:16:54.357929 32397 solver.cpp:406] Test net output #134: loss3/loss10 = 0.0327317 (* 0.0909091 = 0.00297561 loss)
I0422 03:16:54.357944 32397 solver.cpp:406] Test net output #135: loss3/loss11 = 0.000246214 (* 0.0909091 = 2.23831e-05 loss)
I0422 03:16:54.357957 32397 solver.cpp:406] Test net output #136: loss3/loss12 = 0.000237796 (* 0.0909091 = 2.16178e-05 loss)
I0422 03:16:54.357971 32397 solver.cpp:406] Test net output #137: loss3/loss13 = 0.000249979 (* 0.0909091 = 2.27254e-05 loss)
I0422 03:16:54.357985 32397 solver.cpp:406] Test net output #138: loss3/loss14 = 0.0002384 (* 0.0909091 = 2.16727e-05 loss)
I0422 03:16:54.358000 32397 solver.cpp:406] Test net output #139: loss3/loss15 = 0.000246107 (* 0.0909091 = 2.23734e-05 loss)
I0422 03:16:54.358013 32397 solver.cpp:406] Test net output #140: loss3/loss16 = 0.000234406 (* 0.0909091 = 2.13096e-05 loss)
I0422 03:16:54.358027 32397 solver.cpp:406] Test net output #141: loss3/loss17 = 0.000236345 (* 0.0909091 = 2.14859e-05 loss)
I0422 03:16:54.358047 32397 solver.cpp:406] Test net output #142: loss3/loss18 = 0.000227647 (* 0.0909091 = 2.06952e-05 loss)
I0422 03:16:54.358075 32397 solver.cpp:406] Test net output #143: loss3/loss19 = 0.000238161 (* 0.0909091 = 2.1651e-05 loss)
I0422 03:16:54.358095 32397 solver.cpp:406] Test net output #144: loss3/loss20 = 0.000231049 (* 0.0909091 = 2.10044e-05 loss)
I0422 03:16:54.358109 32397 solver.cpp:406] Test net output #145: loss3/loss21 = 0.000232792 (* 0.0909091 = 2.11629e-05 loss)
I0422 03:16:54.358124 32397 solver.cpp:406] Test net output #146: loss3/loss22 = 0.000235426 (* 0.0909091 = 2.14023e-05 loss)
I0422 03:16:54.358136 32397 solver.cpp:406] Test net output #147: total_accuracy = 0.732
I0422 03:16:54.358149 32397 solver.cpp:406] Test net output #148: total_accuracy_not_rec = 0.648
I0422 03:16:54.358160 32397 solver.cpp:406] Test net output #149: total_confidence = 0.691404
I0422 03:16:54.358186 32397 solver.cpp:406] Test net output #150: total_confidence_nor_rec = 0.554095
I0422 03:16:54.749186 32397 solver.cpp:229] Iteration 20000, loss = 2.31718
I0422 03:16:54.749264 32397 solver.cpp:245] Train net output #0: loss1/accuracy = 0.518519
I0422 03:16:54.749284 32397 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75
I0422 03:16:54.749297 32397 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.75
I0422 03:16:54.749310 32397 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375
I0422 03:16:54.749323 32397 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375
I0422 03:16:54.749336 32397 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.5
I0422 03:16:54.749348 32397 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.25
I0422 03:16:54.749361 32397 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.75
I0422 03:16:54.749374 32397 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.75
I0422 03:16:54.749387 32397 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875
I0422 03:16:54.749399 32397 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875
I0422 03:16:54.749413 32397 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0422 03:16:54.749424 32397 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0422 03:16:54.749436 32397 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0422 03:16:54.749449 32397 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0422 03:16:54.749460 32397 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0422 03:16:54.749474 32397 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0422 03:16:54.749485 32397 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0422 03:16:54.749497 32397 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0422 03:16:54.749510 32397 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0422 03:16:54.749521 32397 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0422 03:16:54.749533 32397 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0422 03:16:54.749546 32397 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0422 03:16:54.749557 32397 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.846591
I0422 03:16:54.749569 32397 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.759259
I0422 03:16:54.749586 32397 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.45251 (* 0.3 = 0.435752 loss)
I0422 03:16:54.749601 32397 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.468744 (* 0.3 = 0.140623 loss)
I0422 03:16:54.749617 32397 solver.cpp:245] Train net output #27: loss1/loss01 = 0.592121 (* 0.0272727 = 0.0161488 loss)
I0422 03:16:54.749631 32397 solver.cpp:245] Train net output #28: loss1/loss02 = 1.04964 (* 0.0272727 = 0.0286266 loss)
I0422 03:16:54.749645 32397 solver.cpp:245] Train net output #29: loss1/loss03 = 2.00651 (* 0.0272727 = 0.0547231 loss)
I0422 03:16:54.749660 32397 solver.cpp:245] Train net output #30: loss1/loss04 = 1.56941 (* 0.0272727 = 0.042802 loss)
I0422 03:16:54.749673 32397 solver.cpp:245] Train net output #31: loss1/loss05 = 2.47972 (* 0.0272727 = 0.0676288 loss)
I0422 03:16:54.749687 32397 solver.cpp:245] Train net output #32: loss1/loss06 = 1.70464 (* 0.0272727 = 0.0464903 loss)
I0422 03:16:54.749701 32397 solver.cpp:245] Train net output #33: loss1/loss07 = 1.08426 (* 0.0272727 = 0.0295706 loss)
I0422 03:16:54.749716 32397 solver.cpp:245] Train net output #34: loss1/loss08 = 1.00716 (* 0.0272727 = 0.027468 loss)
I0422 03:16:54.749729 32397 solver.cpp:245] Train net output #35: loss1/loss09 = 0.386029 (* 0.0272727 = 0.0105281 loss)
I0422 03:16:54.749743 32397 solver.cpp:245] Train net output #36: loss1/loss10 = 0.401273 (* 0.0272727 = 0.0109438 loss)
I0422 03:16:54.749758 32397 solver.cpp:245] Train net output #37: loss1/loss11 = 0.000304139 (* 0.0272727 = 8.29471e-06 loss)
I0422 03:16:54.749807 32397 solver.cpp:245] Train net output #38: loss1/loss12 = 0.000353631 (* 0.0272727 = 9.64448e-06 loss)
I0422 03:16:54.749824 32397 solver.cpp:245] Train net output #39: loss1/loss13 = 0.000351097 (* 0.0272727 = 9.57538e-06 loss)
I0422 03:16:54.749838 32397 solver.cpp:245] Train net output #40: loss1/loss14 = 0.000180825 (* 0.0272727 = 4.9316e-06 loss)
I0422 03:16:54.749852 32397 solver.cpp:245] Train net output #41: loss1/loss15 = 0.000504925 (* 0.0272727 = 1.37707e-05 loss)
I0422 03:16:54.749866 32397 solver.cpp:245] Train net output #42: loss1/loss16 = 0.000160057 (* 0.0272727 = 4.36518e-06 loss)
I0422 03:16:54.749881 32397 solver.cpp:245] Train net output #43: loss1/loss17 = 0.000267567 (* 0.0272727 = 7.29728e-06 loss)
I0422 03:16:54.749896 32397 solver.cpp:245] Train net output #44: loss1/loss18 = 0.000379342 (* 0.0272727 = 1.03457e-05 loss)
I0422 03:16:54.749909 32397 solver.cpp:245] Train net output #45: loss1/loss19 = 0.000177125 (* 0.0272727 = 4.83068e-06 loss)
I0422 03:16:54.749923 32397 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000367874 (* 0.0272727 = 1.00329e-05 loss)
I0422 03:16:54.749938 32397 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000284719 (* 0.0272727 = 7.76507e-06 loss)
I0422 03:16:54.749953 32397 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000289786 (* 0.0272727 = 7.90326e-06 loss)
I0422 03:16:54.749965 32397 solver.cpp:245] Train net output #49: loss2/accuracy = 0.685185
I0422 03:16:54.749981 32397 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875
I0422 03:16:54.749994 32397 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75
I0422 03:16:54.750006 32397 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.625
I0422 03:16:54.750018 32397 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.75
I0422 03:16:54.750030 32397 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.375
I0422 03:16:54.750042 32397 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.5
I0422 03:16:54.750056 32397 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.75
I0422 03:16:54.750067 32397 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.75
I0422 03:16:54.750079 32397 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875
I0422 03:16:54.750092 32397 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875
I0422 03:16:54.750103 32397 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0422 03:16:54.750115 32397 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0422 03:16:54.750128 32397 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0422 03:16:54.750138 32397 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0422 03:16:54.750150 32397 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0422 03:16:54.750161 32397 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0422 03:16:54.750174 32397 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0422 03:16:54.750185 32397 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0422 03:16:54.750196 32397 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0422 03:16:54.750208 32397 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0422 03:16:54.750219 32397 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0422 03:16:54.750231 32397 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0422 03:16:54.750243 32397 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.897727
I0422 03:16:54.750255 32397 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.907407
I0422 03:16:54.750272 32397 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.897847 (* 0.3 = 0.269354 loss)
I0422 03:16:54.750288 32397 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.291957 (* 0.3 = 0.087587 loss)
I0422 03:16:54.750314 32397 solver.cpp:245] Train net output #76: loss2/loss01 = 0.585641 (* 0.0272727 = 0.015972 loss)
I0422 03:16:54.750329 32397 solver.cpp:245] Train net output #77: loss2/loss02 = 1.17246 (* 0.0272727 = 0.0319761 loss)
I0422 03:16:54.750344 32397 solver.cpp:245] Train net output #78: loss2/loss03 = 1.79517 (* 0.0272727 = 0.0489592 loss)
I0422 03:16:54.750357 32397 solver.cpp:245] Train net output #79: loss2/loss04 = 1.08654 (* 0.0272727 = 0.029633 loss)
I0422 03:16:54.750371 32397 solver.cpp:245] Train net output #80: loss2/loss05 = 1.4025 (* 0.0272727 = 0.03825 loss)
I0422 03:16:54.750385 32397 solver.cpp:245] Train net output #81: loss2/loss06 = 1.67643 (* 0.0272727 = 0.0457208 loss)
I0422 03:16:54.750399 32397 solver.cpp:245] Train net output #82: loss2/loss07 = 0.922747 (* 0.0272727 = 0.0251658 loss)
I0422 03:16:54.750413 32397 solver.cpp:245] Train net output #83: loss2/loss08 = 0.935729 (* 0.0272727 = 0.0255199 loss)
I0422 03:16:54.750428 32397 solver.cpp:245] Train net output #84: loss2/loss09 = 0.323113 (* 0.0272727 = 0.00881217 loss)
I0422 03:16:54.750443 32397 solver.cpp:245] Train net output #85: loss2/loss10 = 0.566499 (* 0.0272727 = 0.01545 loss)
I0422 03:16:54.750458 32397 solver.cpp:245] Train net output #86: loss2/loss11 = 7.3971e-05 (* 0.0272727 = 2.01739e-06 loss)
I0422 03:16:54.750471 32397 solver.cpp:245] Train net output #87: loss2/loss12 = 6.25586e-05 (* 0.0272727 = 1.70614e-06 loss)
I0422 03:16:54.750485 32397 solver.cpp:245] Train net output #88: loss2/loss13 = 7.01027e-05 (* 0.0272727 = 1.91189e-06 loss)
I0422 03:16:54.750500 32397 solver.cpp:245] Train net output #89: loss2/loss14 = 8.67952e-05 (* 0.0272727 = 2.36714e-06 loss)
I0422 03:16:54.750514 32397 solver.cpp:245] Train net output #90: loss2/loss15 = 9.01349e-05 (* 0.0272727 = 2.45823e-06 loss)
I0422 03:16:54.750529 32397 solver.cpp:245] Train net output #91: loss2/loss16 = 4.04889e-05 (* 0.0272727 = 1.10424e-06 loss)
I0422 03:16:54.750542 32397 solver.cpp:245] Train net output #92: loss2/loss17 = 6.25873e-05 (* 0.0272727 = 1.70693e-06 loss)
I0422 03:16:54.750557 32397 solver.cpp:245] Train net output #93: loss2/loss18 = 3.62203e-05 (* 0.0272727 = 9.87827e-07 loss)
I0422 03:16:54.750571 32397 solver.cpp:245] Train net output #94: loss2/loss19 = 6.52751e-05 (* 0.0272727 = 1.78023e-06 loss)
I0422 03:16:54.750586 32397 solver.cpp:245] Train net output #95: loss2/loss20 = 0.000106138 (* 0.0272727 = 2.89467e-06 loss)
I0422 03:16:54.750599 32397 solver.cpp:245] Train net output #96: loss2/loss21 = 4.51622e-05 (* 0.0272727 = 1.2317e-06 loss)
I0422 03:16:54.750613 32397 solver.cpp:245] Train net output #97: loss2/loss22 = 7.02131e-05 (* 0.0272727 = 1.9149e-06 loss)
I0422 03:16:54.750627 32397 solver.cpp:245] Train net output #98: loss3/accuracy = 0.944444
I0422 03:16:54.750638 32397 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0422 03:16:54.750650 32397 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0422 03:16:54.750663 32397 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0422 03:16:54.750674 32397 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1
I0422 03:16:54.750686 32397 solver.cpp:245] Train net output #103: loss3/accuracy05 = 1
I0422 03:16:54.750697 32397 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.625
I0422 03:16:54.750710 32397 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75
I0422 03:16:54.750721 32397 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.75
I0422 03:16:54.750733 32397 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1
I0422 03:16:54.750746 32397 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875
I0422 03:16:54.750757 32397 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0422 03:16:54.750768 32397 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0422 03:16:54.750780 32397 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0422 03:16:54.750802 32397 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0422 03:16:54.750815 32397 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0422 03:16:54.750828 32397 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0422 03:16:54.750839 32397 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0422 03:16:54.750851 32397 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0422 03:16:54.750864 32397 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0422 03:16:54.750875 32397 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0422 03:16:54.750886 32397 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0422 03:16:54.750898 32397 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0422 03:16:54.750910 32397 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.977273
I0422 03:16:54.750921 32397 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.962963
I0422 03:16:54.750936 32397 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.340381 (* 1 = 0.340381 loss)
I0422 03:16:54.750949 32397 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.118524 (* 1 = 0.118524 loss)
I0422 03:16:54.750964 32397 solver.cpp:245] Train net output #125: loss3/loss01 = 0.0504333 (* 0.0909091 = 0.00458484 loss)
I0422 03:16:54.750978 32397 solver.cpp:245] Train net output #126: loss3/loss02 = 0.0199732 (* 0.0909091 = 0.00181575 loss)
I0422 03:16:54.750993 32397 solver.cpp:245] Train net output #127: loss3/loss03 = 0.101467 (* 0.0909091 = 0.00922427 loss)
I0422 03:16:54.751008 32397 solver.cpp:245] Train net output #128: loss3/loss04 = 0.0638381 (* 0.0909091 = 0.00580346 loss)
I0422 03:16:54.751021 32397 solver.cpp:245] Train net output #129: loss3/loss05 = 0.140634 (* 0.0909091 = 0.0127849 loss)
I0422 03:16:54.751039 32397 solver.cpp:245] Train net output #130: loss3/loss06 = 1.3035 (* 0.0909091 = 0.1185 loss)
I0422 03:16:54.751055 32397 solver.cpp:245] Train net output #131: loss3/loss07 = 0.64012 (* 0.0909091 = 0.0581928 loss)
I0422 03:16:54.751068 32397 solver.cpp:245] Train net output #132: loss3/loss08 = 1.06301 (* 0.0909091 = 0.096637 loss)
I0422 03:16:54.751082 32397 solver.cpp:245] Train net output #133: loss3/loss09 = 0.223606 (* 0.0909091 = 0.0203278 loss)
I0422 03:16:54.751096 32397 solver.cpp:245] Train net output #134: loss3/loss10 = 0.359029 (* 0.0909091 = 0.032639 loss)
I0422 03:16:54.751111 32397 solver.cpp:245] Train net output #135: loss3/loss11 = 7.58483e-06 (* 0.0909091 = 6.8953e-07 loss)
I0422 03:16:54.751127 32397 solver.cpp:245] Train net output #136: loss3/loss12 = 6.02015e-06 (* 0.0909091 = 5.47287e-07 loss)
I0422 03:16:54.751137 32397 solver.cpp:245] Train net output #137: loss3/loss13 = 5.40919e-06 (* 0.0909091 = 4.91744e-07 loss)
I0422 03:16:54.751147 32397 solver.cpp:245] Train net output #138: loss3/loss14 = 8.06168e-06 (* 0.0909091 = 7.3288e-07 loss)
I0422 03:16:54.751157 32397 solver.cpp:245] Train net output #139: loss3/loss15 = 5.48369e-06 (* 0.0909091 = 4.98518e-07 loss)
I0422 03:16:54.751171 32397 solver.cpp:245] Train net output #140: loss3/loss16 = 6.69073e-06 (* 0.0909091 = 6.08248e-07 loss)
I0422 03:16:54.751185 32397 solver.cpp:245] Train net output #141: loss3/loss17 = 4.63431e-06 (* 0.0909091 = 4.21301e-07 loss)
I0422 03:16:54.751199 32397 solver.cpp:245] Train net output #142: loss3/loss18 = 5.6029e-06 (* 0.0909091 = 5.09355e-07 loss)
I0422 03:16:54.751214 32397 solver.cpp:245] Train net output #143: loss3/loss19 = 8.56837e-06 (* 0.0909091 = 7.78943e-07 loss)
I0422 03:16:54.751227 32397 solver.cpp:245] Train net output #144: loss3/loss20 = 5.43899e-06 (* 0.0909091 = 4.94453e-07 loss)
I0422 03:16:54.751240 32397 solver.cpp:245] Train net output #145: loss3/loss21 = 6.57151e-06 (* 0.0909091 = 5.9741e-07 loss)
I0422 03:16:54.751255 32397 solver.cpp:245] Train net output #146: loss3/loss22 = 4.5896e-06 (* 0.0909091 = 4.17236e-07 loss)
I0422 03:16:54.751276 32397 solver.cpp:245] Train net output #147: total_accuracy = 0.625
I0422 03:16:54.751291 32397 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.625
I0422 03:16:54.751302 32397 solver.cpp:245] Train net output #149: total_confidence = 0.486359
I0422 03:16:54.751314 32397 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.406261
I0422 03:16:54.751343 32397 sgd_solver.cpp:106] Iteration 20000, lr = 0.001
I0422 03:22:36.584729 32397 solver.cpp:229] Iteration 20500, loss = 2.2203
I0422 03:22:36.584837 32397 solver.cpp:245] Train net output #0: loss1/accuracy = 0.6
I0422 03:22:36.584861 32397 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.625
I0422 03:22:36.584874 32397 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.625
I0422 03:22:36.584887 32397 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.25
I0422 03:22:36.584902 32397 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375
I0422 03:22:36.584915 32397 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.375
I0422 03:22:36.584930 32397 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.375
I0422 03:22:36.584944 32397 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.75
I0422 03:22:36.584955 32397 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875
I0422 03:22:36.584969 32397 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1
I0422 03:22:36.584981 32397 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0422 03:22:36.584993 32397 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0422 03:22:36.585005 32397 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0422 03:22:36.585017 32397 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0422 03:22:36.585029 32397 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0422 03:22:36.585041 32397 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0422 03:22:36.585054 32397 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0422 03:22:36.585067 32397 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0422 03:22:36.585078 32397 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0422 03:22:36.585090 32397 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0422 03:22:36.585103 32397 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0422 03:22:36.585114 32397 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0422 03:22:36.585126 32397 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0422 03:22:36.585139 32397 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.880682
I0422 03:22:36.585151 32397 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.84
I0422 03:22:36.585168 32397 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.35597 (* 0.3 = 0.406792 loss)
I0422 03:22:36.585183 32397 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.40037 (* 0.3 = 0.120111 loss)
I0422 03:22:36.585197 32397 solver.cpp:245] Train net output #27: loss1/loss01 = 1.28908 (* 0.0272727 = 0.0351568 loss)
I0422 03:22:36.585211 32397 solver.cpp:245] Train net output #28: loss1/loss02 = 1.0278 (* 0.0272727 = 0.0280309 loss)
I0422 03:22:36.585227 32397 solver.cpp:245] Train net output #29: loss1/loss03 = 2.33104 (* 0.0272727 = 0.0635738 loss)
I0422 03:22:36.585240 32397 solver.cpp:245] Train net output #30: loss1/loss04 = 1.8577 (* 0.0272727 = 0.0506644 loss)
I0422 03:22:36.585254 32397 solver.cpp:245] Train net output #31: loss1/loss05 = 2.44865 (* 0.0272727 = 0.0667814 loss)
I0422 03:22:36.585268 32397 solver.cpp:245] Train net output #32: loss1/loss06 = 2.57396 (* 0.0272727 = 0.0701988 loss)
I0422 03:22:36.585283 32397 solver.cpp:245] Train net output #33: loss1/loss07 = 1.20626 (* 0.0272727 = 0.0328981 loss)
I0422 03:22:36.585297 32397 solver.cpp:245] Train net output #34: loss1/loss08 = 0.28966 (* 0.0272727 = 0.00789983 loss)
I0422 03:22:36.585314 32397 solver.cpp:245] Train net output #35: loss1/loss09 = 0.0266959 (* 0.0272727 = 0.00072807 loss)
I0422 03:22:36.585330 32397 solver.cpp:245] Train net output #36: loss1/loss10 = 0.00528173 (* 0.0272727 = 0.000144047 loss)
I0422 03:22:36.585345 32397 solver.cpp:245] Train net output #37: loss1/loss11 = 2.67194e-05 (* 0.0272727 = 7.2871e-07 loss)
I0422 03:22:36.585358 32397 solver.cpp:245] Train net output #38: loss1/loss12 = 3.70696e-05 (* 0.0272727 = 1.01099e-06 loss)
I0422 03:22:36.585372 32397 solver.cpp:245] Train net output #39: loss1/loss13 = 2.80608e-05 (* 0.0272727 = 7.65294e-07 loss)
I0422 03:22:36.585404 32397 solver.cpp:245] Train net output #40: loss1/loss14 = 2.23678e-05 (* 0.0272727 = 6.1003e-07 loss)
I0422 03:22:36.585420 32397 solver.cpp:245] Train net output #41: loss1/loss15 = 3.93349e-05 (* 0.0272727 = 1.07277e-06 loss)
I0422 03:22:36.585435 32397 solver.cpp:245] Train net output #42: loss1/loss16 = 2.79561e-05 (* 0.0272727 = 7.62438e-07 loss)
I0422 03:22:36.585449 32397 solver.cpp:245] Train net output #43: loss1/loss17 = 4.49098e-05 (* 0.0272727 = 1.22481e-06 loss)
I0422 03:22:36.585464 32397 solver.cpp:245] Train net output #44: loss1/loss18 = 5.33688e-05 (* 0.0272727 = 1.45551e-06 loss)
I0422 03:22:36.585477 32397 solver.cpp:245] Train net output #45: loss1/loss19 = 2.57803e-05 (* 0.0272727 = 7.03099e-07 loss)
I0422 03:22:36.585492 32397 solver.cpp:245] Train net output #46: loss1/loss20 = 3.90225e-05 (* 0.0272727 = 1.06425e-06 loss)
I0422 03:22:36.585506 32397 solver.cpp:245] Train net output #47: loss1/loss21 = 2.45285e-05 (* 0.0272727 = 6.68959e-07 loss)
I0422 03:22:36.585520 32397 solver.cpp:245] Train net output #48: loss1/loss22 = 2.51397e-05 (* 0.0272727 = 6.85628e-07 loss)
I0422 03:22:36.585533 32397 solver.cpp:245] Train net output #49: loss2/accuracy = 0.84
I0422 03:22:36.585546 32397 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.75
I0422 03:22:36.585557 32397 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.75
I0422 03:22:36.585569 32397 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.375
I0422 03:22:36.585582 32397 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.75
I0422 03:22:36.585593 32397 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.375
I0422 03:22:36.585605 32397 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.5
I0422 03:22:36.585618 32397 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.75
I0422 03:22:36.585629 32397 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875
I0422 03:22:36.585641 32397 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1
I0422 03:22:36.585654 32397 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0422 03:22:36.585664 32397 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0422 03:22:36.585675 32397 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0422 03:22:36.585687 32397 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0422 03:22:36.585698 32397 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0422 03:22:36.585710 32397 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0422 03:22:36.585721 32397 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0422 03:22:36.585733 32397 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0422 03:22:36.585744 32397 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0422 03:22:36.585755 32397 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0422 03:22:36.585767 32397 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0422 03:22:36.585778 32397 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0422 03:22:36.585789 32397 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0422 03:22:36.585801 32397 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.943182
I0422 03:22:36.585813 32397 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.94
I0422 03:22:36.585827 32397 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.694508 (* 0.3 = 0.208352 loss)
I0422 03:22:36.585841 32397 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.234276 (* 0.3 = 0.0702829 loss)
I0422 03:22:36.585855 32397 solver.cpp:245] Train net output #76: loss2/loss01 = 0.892156 (* 0.0272727 = 0.0243315 loss)
I0422 03:22:36.585868 32397 solver.cpp:245] Train net output #77: loss2/loss02 = 0.960534 (* 0.0272727 = 0.0261964 loss)
I0422 03:22:36.585893 32397 solver.cpp:245] Train net output #78: loss2/loss03 = 1.88901 (* 0.0272727 = 0.0515185 loss)
I0422 03:22:36.585909 32397 solver.cpp:245] Train net output #79: loss2/loss04 = 1.37942 (* 0.0272727 = 0.0376205 loss)
I0422 03:22:36.585923 32397 solver.cpp:245] Train net output #80: loss2/loss05 = 1.54091 (* 0.0272727 = 0.0420249 loss)
I0422 03:22:36.585937 32397 solver.cpp:245] Train net output #81: loss2/loss06 = 1.22919 (* 0.0272727 = 0.0335234 loss)
I0422 03:22:36.585952 32397 solver.cpp:245] Train net output #82: loss2/loss07 = 0.827895 (* 0.0272727 = 0.022579 loss)
I0422 03:22:36.585964 32397 solver.cpp:245] Train net output #83: loss2/loss08 = 0.465736 (* 0.0272727 = 0.0127019 loss)
I0422 03:22:36.585983 32397 solver.cpp:245] Train net output #84: loss2/loss09 = 0.0303599 (* 0.0272727 = 0.000827998 loss)
I0422 03:22:36.585997 32397 solver.cpp:245] Train net output #85: loss2/loss10 = 0.00371536 (* 0.0272727 = 0.000101328 loss)
I0422 03:22:36.586011 32397 solver.cpp:245] Train net output #86: loss2/loss11 = 0.00019379 (* 0.0272727 = 5.28518e-06 loss)
I0422 03:22:36.586025 32397 solver.cpp:245] Train net output #87: loss2/loss12 = 2.78757e-05 (* 0.0272727 = 7.60245e-07 loss)
I0422 03:22:36.586040 32397 solver.cpp:245] Train net output #88: loss2/loss13 = 0.000307736 (* 0.0272727 = 8.39279e-06 loss)
I0422 03:22:36.586055 32397 solver.cpp:245] Train net output #89: loss2/loss14 = 0.000101361 (* 0.0272727 = 2.7644e-06 loss)
I0422 03:22:36.586068 32397 solver.cpp:245] Train net output #90: loss2/loss15 = 4.56504e-05 (* 0.0272727 = 1.24501e-06 loss)
I0422 03:22:36.586082 32397 solver.cpp:245] Train net output #91: loss2/loss16 = 7.39909e-05 (* 0.0272727 = 2.01793e-06 loss)
I0422 03:22:36.586096 32397 solver.cpp:245] Train net output #92: loss2/loss17 = 0.000131952 (* 0.0272727 = 3.59869e-06 loss)
I0422 03:22:36.586109 32397 solver.cpp:245] Train net output #93: loss2/loss18 = 0.000129841 (* 0.0272727 = 3.54112e-06 loss)
I0422 03:22:36.586123 32397 solver.cpp:245] Train net output #94: loss2/loss19 = 0.000104888 (* 0.0272727 = 2.86059e-06 loss)
I0422 03:22:36.586138 32397 solver.cpp:245] Train net output #95: loss2/loss20 = 0.000112248 (* 0.0272727 = 3.06132e-06 loss)
I0422 03:22:36.586150 32397 solver.cpp:245] Train net output #96: loss2/loss21 = 5.06515e-05 (* 0.0272727 = 1.38141e-06 loss)
I0422 03:22:36.586164 32397 solver.cpp:245] Train net output #97: loss2/loss22 = 0.000156455 (* 0.0272727 = 4.26696e-06 loss)
I0422 03:22:36.586176 32397 solver.cpp:245] Train net output #98: loss3/accuracy = 0.94
I0422 03:22:36.586189 32397 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875
I0422 03:22:36.586201 32397 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0422 03:22:36.586212 32397 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0422 03:22:36.586225 32397 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1
I0422 03:22:36.586236 32397 solver.cpp:245] Train net output #103: loss3/accuracy05 = 1
I0422 03:22:36.586247 32397 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.75
I0422 03:22:36.586259 32397 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75
I0422 03:22:36.586272 32397 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875
I0422 03:22:36.586283 32397 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1
I0422 03:22:36.586294 32397 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0422 03:22:36.586307 32397 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0422 03:22:36.586318 32397 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0422 03:22:36.586328 32397 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0422 03:22:36.586339 32397 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0422 03:22:36.586351 32397 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0422 03:22:36.586365 32397 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0422 03:22:36.586387 32397 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0422 03:22:36.586401 32397 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0422 03:22:36.586413 32397 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0422 03:22:36.586421 32397 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0422 03:22:36.586428 32397 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0422 03:22:36.586441 32397 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0422 03:22:36.586452 32397 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.982955
I0422 03:22:36.586464 32397 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 1
I0422 03:22:36.586477 32397 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.164678 (* 1 = 0.164678 loss)
I0422 03:22:36.586491 32397 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.0492288 (* 1 = 0.0492288 loss)
I0422 03:22:36.586505 32397 solver.cpp:245] Train net output #125: loss3/loss01 = 0.387566 (* 0.0909091 = 0.0352333 loss)
I0422 03:22:36.586519 32397 solver.cpp:245] Train net output #126: loss3/loss02 = 0.0807363 (* 0.0909091 = 0.00733966 loss)
I0422 03:22:36.586534 32397 solver.cpp:245] Train net output #127: loss3/loss03 = 0.0675096 (* 0.0909091 = 0.00613723 loss)
I0422 03:22:36.586546 32397 solver.cpp:245] Train net output #128: loss3/loss04 = 0.0671068 (* 0.0909091 = 0.00610062 loss)
I0422 03:22:36.586560 32397 solver.cpp:245] Train net output #129: loss3/loss05 = 0.403428 (* 0.0909091 = 0.0366753 loss)
I0422 03:22:36.586575 32397 solver.cpp:245] Train net output #130: loss3/loss06 = 0.669867 (* 0.0909091 = 0.060897 loss)
I0422 03:22:36.586588 32397 solver.cpp:245] Train net output #131: loss3/loss07 = 0.392597 (* 0.0909091 = 0.0356906 loss)
I0422 03:22:36.586601 32397 solver.cpp:245] Train net output #132: loss3/loss08 = 0.322353 (* 0.0909091 = 0.0293048 loss)
I0422 03:22:36.586616 32397 solver.cpp:245] Train net output #133: loss3/loss09 = 0.00847376 (* 0.0909091 = 0.000770342 loss)
I0422 03:22:36.586629 32397 solver.cpp:245] Train net output #134: loss3/loss10 = 0.00129866 (* 0.0909091 = 0.00011806 loss)
I0422 03:22:36.586643 32397 solver.cpp:245] Train net output #135: loss3/loss11 = 1.71364e-06 (* 0.0909091 = 1.55785e-07 loss)
I0422 03:22:36.586658 32397 solver.cpp:245] Train net output #136: loss3/loss12 = 1.56462e-06 (* 0.0909091 = 1.42239e-07 loss)
I0422 03:22:36.586671 32397 solver.cpp:245] Train net output #137: loss3/loss13 = 1.44541e-06 (* 0.0909091 = 1.31401e-07 loss)
I0422 03:22:36.586684 32397 solver.cpp:245] Train net output #138: loss3/loss14 = 1.44541e-06 (* 0.0909091 = 1.31401e-07 loss)
I0422 03:22:36.586699 32397 solver.cpp:245] Train net output #139: loss3/loss15 = 1.37091e-06 (* 0.0909091 = 1.24628e-07 loss)
I0422 03:22:36.586711 32397 solver.cpp:245] Train net output #140: loss3/loss16 = 1.95206e-06 (* 0.0909091 = 1.7746e-07 loss)
I0422 03:22:36.586725 32397 solver.cpp:245] Train net output #141: loss3/loss17 = 1.44541e-06 (* 0.0909091 = 1.31401e-07 loss)
I0422 03:22:36.586738 32397 solver.cpp:245] Train net output #142: loss3/loss18 = 1.50502e-06 (* 0.0909091 = 1.3682e-07 loss)
I0422 03:22:36.586752 32397 solver.cpp:245] Train net output #143: loss3/loss19 = 1.57953e-06 (* 0.0909091 = 1.43593e-07 loss)
I0422 03:22:36.586766 32397 solver.cpp:245] Train net output #144: loss3/loss20 = 1.54972e-06 (* 0.0909091 = 1.40884e-07 loss)
I0422 03:22:36.586779 32397 solver.cpp:245] Train net output #145: loss3/loss21 = 1.3113e-06 (* 0.0909091 = 1.19209e-07 loss)
I0422 03:22:36.586793 32397 solver.cpp:245] Train net output #146: loss3/loss22 = 1.38581e-06 (* 0.0909091 = 1.25983e-07 loss)
I0422 03:22:36.586805 32397 solver.cpp:245] Train net output #147: total_accuracy = 0.875
I0422 03:22:36.586817 32397 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.625
I0422 03:22:36.586838 32397 solver.cpp:245] Train net output #149: total_confidence = 0.630394
I0422 03:22:36.586851 32397 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.345847
I0422 03:22:36.586864 32397 sgd_solver.cpp:106] Iteration 20500, lr = 0.001
I0422 03:28:18.528571 32397 solver.cpp:229] Iteration 21000, loss = 2.29272
I0422 03:28:18.528698 32397 solver.cpp:245] Train net output #0: loss1/accuracy = 0.666667
I0422 03:28:18.528719 32397 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.875
I0422 03:28:18.528733 32397 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.5
I0422 03:28:18.528746 32397 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.625
I0422 03:28:18.528759 32397 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375
I0422 03:28:18.528771 32397 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.25
I0422 03:28:18.528784 32397 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.625
I0422 03:28:18.528796 32397 solver.cpp:245] Train net output #7: loss1/accuracy07 = 1
I0422 03:28:18.528808 32397 solver.cpp:245] Train net output #8: loss1/accuracy08 = 1
I0422 03:28:18.528821 32397 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875
I0422 03:28:18.528833 32397 solver.cpp:245] Train net output #10: loss1/accuracy10 = 0.875
I0422 03:28:18.528846 32397 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0422 03:28:18.528858 32397 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0422 03:28:18.528870 32397 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0422 03:28:18.528882 32397 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0422 03:28:18.528894 32397 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0422 03:28:18.528906 32397 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0422 03:28:18.528918 32397 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0422 03:28:18.528930 32397 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0422 03:28:18.528944 32397 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0422 03:28:18.528955 32397 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0422 03:28:18.528967 32397 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0422 03:28:18.528978 32397 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0422 03:28:18.528990 32397 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.909091
I0422 03:28:18.529002 32397 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.875
I0422 03:28:18.529018 32397 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.34192 (* 0.3 = 0.402576 loss)
I0422 03:28:18.529033 32397 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.379505 (* 0.3 = 0.113851 loss)
I0422 03:28:18.529048 32397 solver.cpp:245] Train net output #27: loss1/loss01 = 0.52521 (* 0.0272727 = 0.0143239 loss)
I0422 03:28:18.529062 32397 solver.cpp:245] Train net output #28: loss1/loss02 = 1.95293 (* 0.0272727 = 0.0532617 loss)
I0422 03:28:18.529077 32397 solver.cpp:245] Train net output #29: loss1/loss03 = 1.2955 (* 0.0272727 = 0.0353317 loss)
I0422 03:28:18.529091 32397 solver.cpp:245] Train net output #30: loss1/loss04 = 2.20821 (* 0.0272727 = 0.060224 loss)
I0422 03:28:18.529105 32397 solver.cpp:245] Train net output #31: loss1/loss05 = 1.65952 (* 0.0272727 = 0.0452595 loss)
I0422 03:28:18.529119 32397 solver.cpp:245] Train net output #32: loss1/loss06 = 1.44585 (* 0.0272727 = 0.0394323 loss)
I0422 03:28:18.529134 32397 solver.cpp:245] Train net output #33: loss1/loss07 = 0.210413 (* 0.0272727 = 0.00573853 loss)
I0422 03:28:18.529150 32397 solver.cpp:245] Train net output #34: loss1/loss08 = 0.135465 (* 0.0272727 = 0.0036945 loss)
I0422 03:28:18.529163 32397 solver.cpp:245] Train net output #35: loss1/loss09 = 0.577767 (* 0.0272727 = 0.0157573 loss)
I0422 03:28:18.529177 32397 solver.cpp:245] Train net output #36: loss1/loss10 = 0.287049 (* 0.0272727 = 0.0078286 loss)
I0422 03:28:18.529192 32397 solver.cpp:245] Train net output #37: loss1/loss11 = 0.000198123 (* 0.0272727 = 5.40335e-06 loss)
I0422 03:28:18.529211 32397 solver.cpp:245] Train net output #38: loss1/loss12 = 8.00395e-05 (* 0.0272727 = 2.1829e-06 loss)
I0422 03:28:18.529225 32397 solver.cpp:245] Train net output #39: loss1/loss13 = 0.000333962 (* 0.0272727 = 9.10805e-06 loss)
I0422 03:28:18.529258 32397 solver.cpp:245] Train net output #40: loss1/loss14 = 0.000199065 (* 0.0272727 = 5.42904e-06 loss)
I0422 03:28:18.529273 32397 solver.cpp:245] Train net output #41: loss1/loss15 = 0.000209425 (* 0.0272727 = 5.71159e-06 loss)
I0422 03:28:18.529287 32397 solver.cpp:245] Train net output #42: loss1/loss16 = 0.000148724 (* 0.0272727 = 4.0561e-06 loss)
I0422 03:28:18.529301 32397 solver.cpp:245] Train net output #43: loss1/loss17 = 0.000227897 (* 0.0272727 = 6.21538e-06 loss)
I0422 03:28:18.529315 32397 solver.cpp:245] Train net output #44: loss1/loss18 = 0.0001318 (* 0.0272727 = 3.59456e-06 loss)
I0422 03:28:18.529330 32397 solver.cpp:245] Train net output #45: loss1/loss19 = 0.000154984 (* 0.0272727 = 4.22683e-06 loss)
I0422 03:28:18.529345 32397 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000129264 (* 0.0272727 = 3.52537e-06 loss)
I0422 03:28:18.529358 32397 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000139464 (* 0.0272727 = 3.80356e-06 loss)
I0422 03:28:18.529372 32397 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000185851 (* 0.0272727 = 5.06866e-06 loss)
I0422 03:28:18.529386 32397 solver.cpp:245] Train net output #49: loss2/accuracy = 0.8125
I0422 03:28:18.529397 32397 solver.cpp:245] Train net output #50: loss2/accuracy01 = 1
I0422 03:28:18.529409 32397 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.625
I0422 03:28:18.529422 32397 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.625
I0422 03:28:18.529433 32397 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.375
I0422 03:28:18.529445 32397 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5
I0422 03:28:18.529456 32397 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.625
I0422 03:28:18.529469 32397 solver.cpp:245] Train net output #56: loss2/accuracy07 = 1
I0422 03:28:18.529480 32397 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875
I0422 03:28:18.529492 32397 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875
I0422 03:28:18.529505 32397 solver.cpp:245] Train net output #59: loss2/accuracy10 = 0.875
I0422 03:28:18.529516 32397 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0422 03:28:18.529528 32397 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0422 03:28:18.529539 32397 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0422 03:28:18.529551 32397 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0422 03:28:18.529562 32397 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0422 03:28:18.529573 32397 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0422 03:28:18.529585 32397 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0422 03:28:18.529597 32397 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0422 03:28:18.529608 32397 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0422 03:28:18.529620 32397 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0422 03:28:18.529633 32397 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0422 03:28:18.529644 32397 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0422 03:28:18.529655 32397 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.948864
I0422 03:28:18.529667 32397 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.895833
I0422 03:28:18.529681 32397 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.838278 (* 0.3 = 0.251483 loss)
I0422 03:28:18.529695 32397 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.235221 (* 0.3 = 0.0705663 loss)
I0422 03:28:18.529712 32397 solver.cpp:245] Train net output #76: loss2/loss01 = 0.136524 (* 0.0272727 = 0.0037234 loss)
I0422 03:28:18.529727 32397 solver.cpp:245] Train net output #77: loss2/loss02 = 1.32613 (* 0.0272727 = 0.0361671 loss)
I0422 03:28:18.529753 32397 solver.cpp:245] Train net output #78: loss2/loss03 = 1.25996 (* 0.0272727 = 0.0343626 loss)
I0422 03:28:18.529768 32397 solver.cpp:245] Train net output #79: loss2/loss04 = 1.64525 (* 0.0272727 = 0.0448705 loss)
I0422 03:28:18.529783 32397 solver.cpp:245] Train net output #80: loss2/loss05 = 1.24415 (* 0.0272727 = 0.0339314 loss)
I0422 03:28:18.529796 32397 solver.cpp:245] Train net output #81: loss2/loss06 = 0.910647 (* 0.0272727 = 0.0248358 loss)
I0422 03:28:18.529811 32397 solver.cpp:245] Train net output #82: loss2/loss07 = 0.313933 (* 0.0272727 = 0.0085618 loss)
I0422 03:28:18.529824 32397 solver.cpp:245] Train net output #83: loss2/loss08 = 0.320975 (* 0.0272727 = 0.00875387 loss)
I0422 03:28:18.529839 32397 solver.cpp:245] Train net output #84: loss2/loss09 = 0.443774 (* 0.0272727 = 0.0121029 loss)
I0422 03:28:18.529853 32397 solver.cpp:245] Train net output #85: loss2/loss10 = 0.480077 (* 0.0272727 = 0.013093 loss)
I0422 03:28:18.529868 32397 solver.cpp:245] Train net output #86: loss2/loss11 = 0.000337683 (* 0.0272727 = 9.20954e-06 loss)
I0422 03:28:18.529881 32397 solver.cpp:245] Train net output #87: loss2/loss12 = 0.000302216 (* 0.0272727 = 8.24226e-06 loss)
I0422 03:28:18.529896 32397 solver.cpp:245] Train net output #88: loss2/loss13 = 0.000128588 (* 0.0272727 = 3.50695e-06 loss)
I0422 03:28:18.529909 32397 solver.cpp:245] Train net output #89: loss2/loss14 = 0.000281448 (* 0.0272727 = 7.67587e-06 loss)
I0422 03:28:18.529923 32397 solver.cpp:245] Train net output #90: loss2/loss15 = 0.000339005 (* 0.0272727 = 9.24558e-06 loss)
I0422 03:28:18.529937 32397 solver.cpp:245] Train net output #91: loss2/loss16 = 0.000449726 (* 0.0272727 = 1.22652e-05 loss)
I0422 03:28:18.529952 32397 solver.cpp:245] Train net output #92: loss2/loss17 = 0.000233614 (* 0.0272727 = 6.3713e-06 loss)
I0422 03:28:18.529966 32397 solver.cpp:245] Train net output #93: loss2/loss18 = 0.000969086 (* 0.0272727 = 2.64296e-05 loss)
I0422 03:28:18.529980 32397 solver.cpp:245] Train net output #94: loss2/loss19 = 0.000188133 (* 0.0272727 = 5.1309e-06 loss)
I0422 03:28:18.529994 32397 solver.cpp:245] Train net output #95: loss2/loss20 = 0.000184605 (* 0.0272727 = 5.03468e-06 loss)
I0422 03:28:18.530009 32397 solver.cpp:245] Train net output #96: loss2/loss21 = 0.000195057 (* 0.0272727 = 5.31974e-06 loss)
I0422 03:28:18.530022 32397 solver.cpp:245] Train net output #97: loss2/loss22 = 0.000290207 (* 0.0272727 = 7.91473e-06 loss)
I0422 03:28:18.530035 32397 solver.cpp:245] Train net output #98: loss3/accuracy = 0.9375
I0422 03:28:18.530047 32397 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0422 03:28:18.530060 32397 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.75
I0422 03:28:18.530071 32397 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0422 03:28:18.530082 32397 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875
I0422 03:28:18.530094 32397 solver.cpp:245] Train net output #103: loss3/accuracy05 = 1
I0422 03:28:18.530105 32397 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.625
I0422 03:28:18.530117 32397 solver.cpp:245] Train net output #105: loss3/accuracy07 = 1
I0422 03:28:18.530128 32397 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1
I0422 03:28:18.530140 32397 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875
I0422 03:28:18.530153 32397 solver.cpp:245] Train net output #108: loss3/accuracy10 = 0.875
I0422 03:28:18.530164 32397 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0422 03:28:18.530175 32397 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0422 03:28:18.530187 32397 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0422 03:28:18.530199 32397 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0422 03:28:18.530210 32397 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0422 03:28:18.530231 32397 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0422 03:28:18.530244 32397 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0422 03:28:18.530258 32397 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0422 03:28:18.530272 32397 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0422 03:28:18.530282 32397 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0422 03:28:18.530293 32397 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0422 03:28:18.530305 32397 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0422 03:28:18.530316 32397 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.977273
I0422 03:28:18.530328 32397 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.958333
I0422 03:28:18.530342 32397 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.313821 (* 1 = 0.313821 loss)
I0422 03:28:18.530356 32397 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.0997078 (* 1 = 0.0997078 loss)
I0422 03:28:18.530370 32397 solver.cpp:245] Train net output #125: loss3/loss01 = 0.0455513 (* 0.0909091 = 0.00414103 loss)
I0422 03:28:18.530385 32397 solver.cpp:245] Train net output #126: loss3/loss02 = 0.737016 (* 0.0909091 = 0.0670015 loss)
I0422 03:28:18.530398 32397 solver.cpp:245] Train net output #127: loss3/loss03 = 0.102144 (* 0.0909091 = 0.00928579 loss)
I0422 03:28:18.530412 32397 solver.cpp:245] Train net output #128: loss3/loss04 = 0.288422 (* 0.0909091 = 0.0262202 loss)
I0422 03:28:18.530426 32397 solver.cpp:245] Train net output #129: loss3/loss05 = 0.391003 (* 0.0909091 = 0.0355457 loss)
I0422 03:28:18.530441 32397 solver.cpp:245] Train net output #130: loss3/loss06 = 0.761003 (* 0.0909091 = 0.0691821 loss)
I0422 03:28:18.530454 32397 solver.cpp:245] Train net output #131: loss3/loss07 = 0.133697 (* 0.0909091 = 0.0121543 loss)
I0422 03:28:18.530468 32397 solver.cpp:245] Train net output #132: loss3/loss08 = 0.0925727 (* 0.0909091 = 0.0084157 loss)
I0422 03:28:18.530483 32397 solver.cpp:245] Train net output #133: loss3/loss09 = 0.31726 (* 0.0909091 = 0.0288418 loss)
I0422 03:28:18.530496 32397 solver.cpp:245] Train net output #134: loss3/loss10 = 0.439999 (* 0.0909091 = 0.0399999 loss)
I0422 03:28:18.530510 32397 solver.cpp:245] Train net output #135: loss3/loss11 = 2.46411e-05 (* 0.0909091 = 2.2401e-06 loss)
I0422 03:28:18.530529 32397 solver.cpp:245] Train net output #136: loss3/loss12 = 2.76815e-05 (* 0.0909091 = 2.5165e-06 loss)
I0422 03:28:18.530544 32397 solver.cpp:245] Train net output #137: loss3/loss13 = 2.22938e-05 (* 0.0909091 = 2.02671e-06 loss)
I0422 03:28:18.530557 32397 solver.cpp:245] Train net output #138: loss3/loss14 = 2.99916e-05 (* 0.0909091 = 2.72651e-06 loss)
I0422 03:28:18.530571 32397 solver.cpp:245] Train net output #139: loss3/loss15 = 3.18398e-05 (* 0.0909091 = 2.89453e-06 loss)
I0422 03:28:18.530594 32397 solver.cpp:245] Train net output #140: loss3/loss16 = 2.5878e-05 (* 0.0909091 = 2.35254e-06 loss)
I0422 03:28:18.530604 32397 solver.cpp:245] Train net output #141: loss3/loss17 = 2.54309e-05 (* 0.0909091 = 2.3119e-06 loss)
I0422 03:28:18.530614 32397 solver.cpp:245] Train net output #142: loss3/loss18 = 2.16827e-05 (* 0.0909091 = 1.97115e-06 loss)
I0422 03:28:18.530628 32397 solver.cpp:245] Train net output #143: loss3/loss19 = 2.13995e-05 (* 0.0909091 = 1.94541e-06 loss)
I0422 03:28:18.530642 32397 solver.cpp:245] Train net output #144: loss3/loss20 = 2.56695e-05 (* 0.0909091 = 2.33359e-06 loss)
I0422 03:28:18.530655 32397 solver.cpp:245] Train net output #145: loss3/loss21 = 2.23981e-05 (* 0.0909091 = 2.03619e-06 loss)
I0422 03:28:18.530669 32397 solver.cpp:245] Train net output #146: loss3/loss22 = 2.26514e-05 (* 0.0909091 = 2.05922e-06 loss)
I0422 03:28:18.530680 32397 solver.cpp:245] Train net output #147: total_accuracy = 0.625
I0422 03:28:18.530692 32397 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.5
I0422 03:28:18.530714 32397 solver.cpp:245] Train net output #149: total_confidence = 0.512343
I0422 03:28:18.530727 32397 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.363673
I0422 03:28:18.530740 32397 sgd_solver.cpp:106] Iteration 21000, lr = 0.001
I0422 03:34:00.278054 32397 solver.cpp:229] Iteration 21500, loss = 2.27086
I0422 03:34:00.278179 32397 solver.cpp:245] Train net output #0: loss1/accuracy = 0.461538
I0422 03:34:00.278210 32397 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.25
I0422 03:34:00.278236 32397 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.25
I0422 03:34:00.278260 32397 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.25
I0422 03:34:00.278285 32397 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.25
I0422 03:34:00.278306 32397 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.25
I0422 03:34:00.278329 32397 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.5
I0422 03:34:00.278355 32397 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.625
I0422 03:34:00.278378 32397 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.75
I0422 03:34:00.278401 32397 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875
I0422 03:34:00.278424 32397 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0422 03:34:00.278447 32397 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0422 03:34:00.278470 32397 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0422 03:34:00.278496 32397 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0422 03:34:00.278518 32397 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0422 03:34:00.278542 32397 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0422 03:34:00.278563 32397 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0422 03:34:00.278586 32397 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0422 03:34:00.278609 32397 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0422 03:34:00.278630 32397 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0422 03:34:00.278658 32397 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0422 03:34:00.278683 32397 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0422 03:34:00.278707 32397 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0422 03:34:00.278729 32397 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.840909
I0422 03:34:00.278753 32397 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.75
I0422 03:34:00.278781 32397 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.82838 (* 0.3 = 0.548515 loss)
I0422 03:34:00.278810 32397 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.556908 (* 0.3 = 0.167072 loss)
I0422 03:34:00.278836 32397 solver.cpp:245] Train net output #27: loss1/loss01 = 2.14293 (* 0.0272727 = 0.0584434 loss)
I0422 03:34:00.278864 32397 solver.cpp:245] Train net output #28: loss1/loss02 = 2.4877 (* 0.0272727 = 0.0678463 loss)
I0422 03:34:00.278892 32397 solver.cpp:245] Train net output #29: loss1/loss03 = 2.42919 (* 0.0272727 = 0.0662507 loss)
I0422 03:34:00.278921 32397 solver.cpp:245] Train net output #30: loss1/loss04 = 2.41275 (* 0.0272727 = 0.0658024 loss)
I0422 03:34:00.278949 32397 solver.cpp:245] Train net output #31: loss1/loss05 = 1.96997 (* 0.0272727 = 0.0537265 loss)
I0422 03:34:00.278977 32397 solver.cpp:245] Train net output #32: loss1/loss06 = 1.43794 (* 0.0272727 = 0.0392167 loss)
I0422 03:34:00.279005 32397 solver.cpp:245] Train net output #33: loss1/loss07 = 2.04799 (* 0.0272727 = 0.0558542 loss)
I0422 03:34:00.279036 32397 solver.cpp:245] Train net output #34: loss1/loss08 = 0.846206 (* 0.0272727 = 0.0230783 loss)
I0422 03:34:00.279063 32397 solver.cpp:245] Train net output #35: loss1/loss09 = 0.244921 (* 0.0272727 = 0.00667966 loss)
I0422 03:34:00.279090 32397 solver.cpp:245] Train net output #36: loss1/loss10 = 0.0751382 (* 0.0272727 = 0.00204922 loss)
I0422 03:34:00.279119 32397 solver.cpp:245] Train net output #37: loss1/loss11 = 0.000315992 (* 0.0272727 = 8.61797e-06 loss)
I0422 03:34:00.279145 32397 solver.cpp:245] Train net output #38: loss1/loss12 = 0.000409938 (* 0.0272727 = 1.11801e-05 loss)
I0422 03:34:00.279171 32397 solver.cpp:245] Train net output #39: loss1/loss13 = 0.00021706 (* 0.0272727 = 5.91981e-06 loss)
I0422 03:34:00.279223 32397 solver.cpp:245] Train net output #40: loss1/loss14 = 0.00032604 (* 0.0272727 = 8.892e-06 loss)
I0422 03:34:00.279254 32397 solver.cpp:245] Train net output #41: loss1/loss15 = 0.000213736 (* 0.0272727 = 5.82916e-06 loss)
I0422 03:34:00.279281 32397 solver.cpp:245] Train net output #42: loss1/loss16 = 0.000275844 (* 0.0272727 = 7.52303e-06 loss)
I0422 03:34:00.279309 32397 solver.cpp:245] Train net output #43: loss1/loss17 = 0.000173379 (* 0.0272727 = 4.72852e-06 loss)
I0422 03:34:00.279335 32397 solver.cpp:245] Train net output #44: loss1/loss18 = 0.000231546 (* 0.0272727 = 6.31488e-06 loss)
I0422 03:34:00.279386 32397 solver.cpp:245] Train net output #45: loss1/loss19 = 0.000237945 (* 0.0272727 = 6.48941e-06 loss)
I0422 03:34:00.279415 32397 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000574054 (* 0.0272727 = 1.5656e-05 loss)
I0422 03:34:00.279443 32397 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000262692 (* 0.0272727 = 7.16431e-06 loss)
I0422 03:34:00.279469 32397 solver.cpp:245] Train net output #48: loss1/loss22 = 7.87956e-05 (* 0.0272727 = 2.14897e-06 loss)
I0422 03:34:00.279492 32397 solver.cpp:245] Train net output #49: loss2/accuracy = 0.653846
I0422 03:34:00.279515 32397 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.375
I0422 03:34:00.279537 32397 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.375
I0422 03:34:00.279559 32397 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.625
I0422 03:34:00.279580 32397 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.25
I0422 03:34:00.279603 32397 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.375
I0422 03:34:00.279623 32397 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.5
I0422 03:34:00.279645 32397 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.625
I0422 03:34:00.279669 32397 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875
I0422 03:34:00.279696 32397 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875
I0422 03:34:00.279719 32397 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0422 03:34:00.279742 32397 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0422 03:34:00.279762 32397 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0422 03:34:00.279783 32397 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0422 03:34:00.279804 32397 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0422 03:34:00.279824 32397 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0422 03:34:00.279846 32397 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0422 03:34:00.279867 32397 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0422 03:34:00.279889 32397 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0422 03:34:00.279911 32397 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0422 03:34:00.279932 32397 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0422 03:34:00.279952 32397 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0422 03:34:00.279973 32397 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0422 03:34:00.279994 32397 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.892045
I0422 03:34:00.280015 32397 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.961538
I0422 03:34:00.280041 32397 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.19771 (* 0.3 = 0.359312 loss)
I0422 03:34:00.280068 32397 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.366695 (* 0.3 = 0.110008 loss)
I0422 03:34:00.280099 32397 solver.cpp:245] Train net output #76: loss2/loss01 = 1.21456 (* 0.0272727 = 0.0331245 loss)
I0422 03:34:00.280127 32397 solver.cpp:245] Train net output #77: loss2/loss02 = 2.5409 (* 0.0272727 = 0.0692972 loss)
I0422 03:34:00.280170 32397 solver.cpp:245] Train net output #78: loss2/loss03 = 1.30449 (* 0.0272727 = 0.0355771 loss)
I0422 03:34:00.280200 32397 solver.cpp:245] Train net output #79: loss2/loss04 = 2.36584 (* 0.0272727 = 0.064523 loss)
I0422 03:34:00.280228 32397 solver.cpp:245] Train net output #80: loss2/loss05 = 1.19586 (* 0.0272727 = 0.0326143 loss)
I0422 03:34:00.280257 32397 solver.cpp:245] Train net output #81: loss2/loss06 = 1.07017 (* 0.0272727 = 0.0291865 loss)
I0422 03:34:00.280285 32397 solver.cpp:245] Train net output #82: loss2/loss07 = 3.29374 (* 0.0272727 = 0.0898292 loss)
I0422 03:34:00.280313 32397 solver.cpp:245] Train net output #83: loss2/loss08 = 0.390797 (* 0.0272727 = 0.0106581 loss)
I0422 03:34:00.280339 32397 solver.cpp:245] Train net output #84: loss2/loss09 = 0.169054 (* 0.0272727 = 0.00461056 loss)
I0422 03:34:00.280367 32397 solver.cpp:245] Train net output #85: loss2/loss10 = 0.0228491 (* 0.0272727 = 0.000623158 loss)
I0422 03:34:00.280395 32397 solver.cpp:245] Train net output #86: loss2/loss11 = 0.000201574 (* 0.0272727 = 5.49746e-06 loss)
I0422 03:34:00.280421 32397 solver.cpp:245] Train net output #87: loss2/loss12 = 0.000223642 (* 0.0272727 = 6.09934e-06 loss)
I0422 03:34:00.280448 32397 solver.cpp:245] Train net output #88: loss2/loss13 = 7.72862e-05 (* 0.0272727 = 2.10781e-06 loss)
I0422 03:34:00.280477 32397 solver.cpp:245] Train net output #89: loss2/loss14 = 0.00027714 (* 0.0272727 = 7.55837e-06 loss)
I0422 03:34:00.280503 32397 solver.cpp:245] Train net output #90: loss2/loss15 = 0.000351871 (* 0.0272727 = 9.59647e-06 loss)
I0422 03:34:00.280530 32397 solver.cpp:245] Train net output #91: loss2/loss16 = 0.000150547 (* 0.0272727 = 4.10584e-06 loss)
I0422 03:34:00.280557 32397 solver.cpp:245] Train net output #92: loss2/loss17 = 0.000326209 (* 0.0272727 = 8.8966e-06 loss)
I0422 03:34:00.280586 32397 solver.cpp:245] Train net output #93: loss2/loss18 = 0.000290432 (* 0.0272727 = 7.92087e-06 loss)
I0422 03:34:00.280611 32397 solver.cpp:245] Train net output #94: loss2/loss19 = 0.000160991 (* 0.0272727 = 4.39067e-06 loss)
I0422 03:34:00.280638 32397 solver.cpp:245] Train net output #95: loss2/loss20 = 0.00012113 (* 0.0272727 = 3.30356e-06 loss)
I0422 03:34:00.280664 32397 solver.cpp:245] Train net output #96: loss2/loss21 = 0.000145214 (* 0.0272727 = 3.96038e-06 loss)
I0422 03:34:00.280692 32397 solver.cpp:245] Train net output #97: loss2/loss22 = 0.000341007 (* 0.0272727 = 9.3002e-06 loss)
I0422 03:34:00.280715 32397 solver.cpp:245] Train net output #98: loss3/accuracy = 0.980769
I0422 03:34:00.280742 32397 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0422 03:34:00.280766 32397 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875
I0422 03:34:00.280787 32397 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0422 03:34:00.280808 32397 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1
I0422 03:34:00.280828 32397 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.75
I0422 03:34:00.280850 32397 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.75
I0422 03:34:00.280871 32397 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75
I0422 03:34:00.280894 32397 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1
I0422 03:34:00.280915 32397 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1
I0422 03:34:00.280936 32397 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0422 03:34:00.280956 32397 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0422 03:34:00.280979 32397 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0422 03:34:00.281002 32397 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0422 03:34:00.281023 32397 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0422 03:34:00.281044 32397 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0422 03:34:00.281064 32397 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0422 03:34:00.281101 32397 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0422 03:34:00.281126 32397 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0422 03:34:00.281149 32397 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0422 03:34:00.281172 32397 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0422 03:34:00.281193 32397 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0422 03:34:00.281213 32397 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0422 03:34:00.281234 32397 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.994318
I0422 03:34:00.281255 32397 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.980769
I0422 03:34:00.281280 32397 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.259692 (* 1 = 0.259692 loss)
I0422 03:34:00.281306 32397 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.079203 (* 1 = 0.079203 loss)
I0422 03:34:00.281332 32397 solver.cpp:245] Train net output #125: loss3/loss01 = 0.128804 (* 0.0909091 = 0.0117095 loss)
I0422 03:34:00.281358 32397 solver.cpp:245] Train net output #126: loss3/loss02 = 0.287571 (* 0.0909091 = 0.0261428 loss)
I0422 03:34:00.281383 32397 solver.cpp:245] Train net output #127: loss3/loss03 = 0.171948 (* 0.0909091 = 0.0156316 loss)
I0422 03:34:00.281409 32397 solver.cpp:245] Train net output #128: loss3/loss04 = 0.146345 (* 0.0909091 = 0.0133041 loss)
I0422 03:34:00.281435 32397 solver.cpp:245] Train net output #129: loss3/loss05 = 0.399778 (* 0.0909091 = 0.0363435 loss)
I0422 03:34:00.281461 32397 solver.cpp:245] Train net output #130: loss3/loss06 = 0.545814 (* 0.0909091 = 0.0496194 loss)
I0422 03:34:00.281486 32397 solver.cpp:245] Train net output #131: loss3/loss07 = 1.99889 (* 0.0909091 = 0.181718 loss)
I0422 03:34:00.281512 32397 solver.cpp:245] Train net output #132: loss3/loss08 = 0.0880083 (* 0.0909091 = 0.00800076 loss)
I0422 03:34:00.281538 32397 solver.cpp:245] Train net output #133: loss3/loss09 = 0.0719311 (* 0.0909091 = 0.00653919 loss)
I0422 03:34:00.281564 32397 solver.cpp:245] Train net output #134: loss3/loss10 = 0.0285331 (* 0.0909091 = 0.00259392 loss)
I0422 03:34:00.281589 32397 solver.cpp:245] Train net output #135: loss3/loss11 = 8.44906e-06 (* 0.0909091 = 7.68097e-07 loss)
I0422 03:34:00.281615 32397 solver.cpp:245] Train net output #136: loss3/loss12 = 9.26864e-06 (* 0.0909091 = 8.42603e-07 loss)
I0422 03:34:00.281641 32397 solver.cpp:245] Train net output #137: loss3/loss13 = 9.52197e-06 (* 0.0909091 = 8.65633e-07 loss)
I0422 03:34:00.281669 32397 solver.cpp:245] Train net output #138: loss3/loss14 = 8.85141e-06 (* 0.0909091 = 8.04673e-07 loss)
I0422 03:34:00.281697 32397 solver.cpp:245] Train net output #139: loss3/loss15 = 8.28515e-06 (* 0.0909091 = 7.53195e-07 loss)
I0422 03:34:00.281723 32397 solver.cpp:245] Train net output #140: loss3/loss16 = 9.16436e-06 (* 0.0909091 = 8.33124e-07 loss)
I0422 03:34:00.281749 32397 solver.cpp:245] Train net output #141: loss3/loss17 = 8.6726e-06 (* 0.0909091 = 7.88418e-07 loss)
I0422 03:34:00.281775 32397 solver.cpp:245] Train net output #142: loss3/loss18 = 7.68909e-06 (* 0.0909091 = 6.99008e-07 loss)
I0422 03:34:00.281807 32397 solver.cpp:245] Train net output #143: loss3/loss19 = 9.22394e-06 (* 0.0909091 = 8.3854e-07 loss)
I0422 03:34:00.281831 32397 solver.cpp:245] Train net output #144: loss3/loss20 = 6.34796e-06 (* 0.0909091 = 5.77087e-07 loss)
I0422 03:34:00.281857 32397 solver.cpp:245] Train net output #145: loss3/loss21 = 1.00734e-05 (* 0.0909091 = 9.15762e-07 loss)
I0422 03:34:00.281883 32397 solver.cpp:245] Train net output #146: loss3/loss22 = 8.59808e-06 (* 0.0909091 = 7.81644e-07 loss)
I0422 03:34:00.281905 32397 solver.cpp:245] Train net output #147: total_accuracy = 0.875
I0422 03:34:00.281929 32397 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.25
I0422 03:34:00.281965 32397 solver.cpp:245] Train net output #149: total_confidence = 0.585678
I0422 03:34:00.281990 32397 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.328711
I0422 03:34:00.282016 32397 sgd_solver.cpp:106] Iteration 21500, lr = 0.001
I0422 03:39:42.207139 32397 solver.cpp:229] Iteration 22000, loss = 2.28732
I0422 03:39:42.207286 32397 solver.cpp:245] Train net output #0: loss1/accuracy = 0.553191
I0422 03:39:42.207319 32397 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.5
I0422 03:39:42.207345 32397 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.75
I0422 03:39:42.207401 32397 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.5
I0422 03:39:42.207424 32397 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.25
I0422 03:39:42.207458 32397 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.375
I0422 03:39:42.207485 32397 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.875
I0422 03:39:42.207509 32397 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.625
I0422 03:39:42.207532 32397 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875
I0422 03:39:42.207556 32397 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1
I0422 03:39:42.207581 32397 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0422 03:39:42.207605 32397 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0422 03:39:42.207628 32397 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0422 03:39:42.207651 32397 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0422 03:39:42.207674 32397 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0422 03:39:42.207695 32397 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0422 03:39:42.207718 32397 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0422 03:39:42.207742 32397 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0422 03:39:42.207767 32397 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0422 03:39:42.207790 32397 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0422 03:39:42.207813 32397 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0422 03:39:42.207834 32397 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0422 03:39:42.207857 32397 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0422 03:39:42.207880 32397 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.869318
I0422 03:39:42.207902 32397 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.744681
I0422 03:39:42.207931 32397 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.33636 (* 0.3 = 0.400907 loss)
I0422 03:39:42.207962 32397 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.397616 (* 0.3 = 0.119285 loss)
I0422 03:39:42.207990 32397 solver.cpp:245] Train net output #27: loss1/loss01 = 1.21351 (* 0.0272727 = 0.0330957 loss)
I0422 03:39:42.208019 32397 solver.cpp:245] Train net output #28: loss1/loss02 = 1.35894 (* 0.0272727 = 0.0370619 loss)
I0422 03:39:42.208046 32397 solver.cpp:245] Train net output #29: loss1/loss03 = 1.86446 (* 0.0272727 = 0.050849 loss)
I0422 03:39:42.208073 32397 solver.cpp:245] Train net output #30: loss1/loss04 = 2.0566 (* 0.0272727 = 0.0560891 loss)
I0422 03:39:42.208101 32397 solver.cpp:245] Train net output #31: loss1/loss05 = 2.04333 (* 0.0272727 = 0.0557271 loss)
I0422 03:39:42.208127 32397 solver.cpp:245] Train net output #32: loss1/loss06 = 1.14244 (* 0.0272727 = 0.0311573 loss)
I0422 03:39:42.208153 32397 solver.cpp:245] Train net output #33: loss1/loss07 = 2.04305 (* 0.0272727 = 0.0557197 loss)
I0422 03:39:42.208179 32397 solver.cpp:245] Train net output #34: loss1/loss08 = 0.841188 (* 0.0272727 = 0.0229415 loss)
I0422 03:39:42.208211 32397 solver.cpp:245] Train net output #35: loss1/loss09 = 0.0376672 (* 0.0272727 = 0.00102729 loss)
I0422 03:39:42.208240 32397 solver.cpp:245] Train net output #36: loss1/loss10 = 0.0126059 (* 0.0272727 = 0.000343798 loss)
I0422 03:39:42.208268 32397 solver.cpp:245] Train net output #37: loss1/loss11 = 0.000265832 (* 0.0272727 = 7.24996e-06 loss)
I0422 03:39:42.208294 32397 solver.cpp:245] Train net output #38: loss1/loss12 = 0.00015935 (* 0.0272727 = 4.34591e-06 loss)
I0422 03:39:42.208349 32397 solver.cpp:245] Train net output #39: loss1/loss13 = 0.000171531 (* 0.0272727 = 4.67811e-06 loss)
I0422 03:39:42.208377 32397 solver.cpp:245] Train net output #40: loss1/loss14 = 0.000243111 (* 0.0272727 = 6.63031e-06 loss)
I0422 03:39:42.208405 32397 solver.cpp:245] Train net output #41: loss1/loss15 = 0.000161895 (* 0.0272727 = 4.41532e-06 loss)
I0422 03:39:42.208431 32397 solver.cpp:245] Train net output #42: loss1/loss16 = 0.00043851 (* 0.0272727 = 1.19594e-05 loss)
I0422 03:39:42.208458 32397 solver.cpp:245] Train net output #43: loss1/loss17 = 0.000218838 (* 0.0272727 = 5.96832e-06 loss)
I0422 03:39:42.208484 32397 solver.cpp:245] Train net output #44: loss1/loss18 = 0.000178995 (* 0.0272727 = 4.88167e-06 loss)
I0422 03:39:42.208511 32397 solver.cpp:245] Train net output #45: loss1/loss19 = 0.000253112 (* 0.0272727 = 6.90307e-06 loss)
I0422 03:39:42.208537 32397 solver.cpp:245] Train net output #46: loss1/loss20 = 0.000263488 (* 0.0272727 = 7.18603e-06 loss)
I0422 03:39:42.208564 32397 solver.cpp:245] Train net output #47: loss1/loss21 = 0.000296454 (* 0.0272727 = 8.0851e-06 loss)
I0422 03:39:42.208590 32397 solver.cpp:245] Train net output #48: loss1/loss22 = 0.000261313 (* 0.0272727 = 7.12672e-06 loss)
I0422 03:39:42.208616 32397 solver.cpp:245] Train net output #49: loss2/accuracy = 0.702128
I0422 03:39:42.208639 32397 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875
I0422 03:39:42.208660 32397 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.625
I0422 03:39:42.208683 32397 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.625
I0422 03:39:42.208703 32397 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.375
I0422 03:39:42.208725 32397 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.5
I0422 03:39:42.208747 32397 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.875
I0422 03:39:42.208768 32397 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.625
I0422 03:39:42.208788 32397 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875
I0422 03:39:42.208811 32397 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1
I0422 03:39:42.208832 32397 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0422 03:39:42.208853 32397 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0422 03:39:42.208873 32397 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0422 03:39:42.208894 32397 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0422 03:39:42.208915 32397 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0422 03:39:42.208935 32397 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0422 03:39:42.208957 32397 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0422 03:39:42.208978 32397 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0422 03:39:42.208999 32397 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0422 03:39:42.209019 32397 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0422 03:39:42.209043 32397 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0422 03:39:42.209064 32397 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0422 03:39:42.209086 32397 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0422 03:39:42.209108 32397 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.920455
I0422 03:39:42.209131 32397 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.829787
I0422 03:39:42.209156 32397 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 1.03828 (* 0.3 = 0.311485 loss)
I0422 03:39:42.209182 32397 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.299476 (* 0.3 = 0.0898428 loss)
I0422 03:39:42.209209 32397 solver.cpp:245] Train net output #76: loss2/loss01 = 0.51342 (* 0.0272727 = 0.0140024 loss)
I0422 03:39:42.209236 32397 solver.cpp:245] Train net output #77: loss2/loss02 = 1.30387 (* 0.0272727 = 0.0355601 loss)
I0422 03:39:42.209283 32397 solver.cpp:245] Train net output #78: loss2/loss03 = 1.52809 (* 0.0272727 = 0.0416751 loss)
I0422 03:39:42.209311 32397 solver.cpp:245] Train net output #79: loss2/loss04 = 2.18579 (* 0.0272727 = 0.0596126 loss)
I0422 03:39:42.209338 32397 solver.cpp:245] Train net output #80: loss2/loss05 = 1.54517 (* 0.0272727 = 0.0421409 loss)
I0422 03:39:42.209370 32397 solver.cpp:245] Train net output #81: loss2/loss06 = 0.650521 (* 0.0272727 = 0.0177415 loss)
I0422 03:39:42.209403 32397 solver.cpp:245] Train net output #82: loss2/loss07 = 1.7663 (* 0.0272727 = 0.0481719 loss)
I0422 03:39:42.209429 32397 solver.cpp:245] Train net output #83: loss2/loss08 = 0.644443 (* 0.0272727 = 0.0175757 loss)
I0422 03:39:42.209456 32397 solver.cpp:245] Train net output #84: loss2/loss09 = 0.195659 (* 0.0272727 = 0.00533614 loss)
I0422 03:39:42.209484 32397 solver.cpp:245] Train net output #85: loss2/loss10 = 0.0783638 (* 0.0272727 = 0.0021372 loss)
I0422 03:39:42.209511 32397 solver.cpp:245] Train net output #86: loss2/loss11 = 0.00666475 (* 0.0272727 = 0.000181766 loss)
I0422 03:39:42.209538 32397 solver.cpp:245] Train net output #87: loss2/loss12 = 0.00334336 (* 0.0272727 = 9.11826e-05 loss)
I0422 03:39:42.209565 32397 solver.cpp:245] Train net output #88: loss2/loss13 = 0.0052874 (* 0.0272727 = 0.000144202 loss)
I0422 03:39:42.209592 32397 solver.cpp:245] Train net output #89: loss2/loss14 = 0.00177309 (* 0.0272727 = 4.83569e-05 loss)
I0422 03:39:42.209619 32397 solver.cpp:245] Train net output #90: loss2/loss15 = 0.00419063 (* 0.0272727 = 0.00011429 loss)
I0422 03:39:42.209645 32397 solver.cpp:245] Train net output #91: loss2/loss16 = 0.00537763 (* 0.0272727 = 0.000146663 loss)
I0422 03:39:42.209676 32397 solver.cpp:245] Train net output #92: loss2/loss17 = 0.0065282 (* 0.0272727 = 0.000178042 loss)
I0422 03:39:42.209703 32397 solver.cpp:245] Train net output #93: loss2/loss18 = 0.00555117 (* 0.0272727 = 0.000151396 loss)
I0422 03:39:42.209730 32397 solver.cpp:245] Train net output #94: loss2/loss19 = 0.00340416 (* 0.0272727 = 9.28406e-05 loss)
I0422 03:39:42.209758 32397 solver.cpp:245] Train net output #95: loss2/loss20 = 0.00416593 (* 0.0272727 = 0.000113616 loss)
I0422 03:39:42.209784 32397 solver.cpp:245] Train net output #96: loss2/loss21 = 0.00744585 (* 0.0272727 = 0.000203069 loss)
I0422 03:39:42.209811 32397 solver.cpp:245] Train net output #97: loss2/loss22 = 0.00593211 (* 0.0272727 = 0.000161785 loss)
I0422 03:39:42.209835 32397 solver.cpp:245] Train net output #98: loss3/accuracy = 0.914894
I0422 03:39:42.209856 32397 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875
I0422 03:39:42.209878 32397 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875
I0422 03:39:42.209899 32397 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0422 03:39:42.209921 32397 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.75
I0422 03:39:42.209942 32397 solver.cpp:245] Train net output #103: loss3/accuracy05 = 1
I0422 03:39:42.209964 32397 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.875
I0422 03:39:42.209985 32397 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75
I0422 03:39:42.210006 32397 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875
I0422 03:39:42.210028 32397 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1
I0422 03:39:42.210049 32397 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0422 03:39:42.210070 32397 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0422 03:39:42.210093 32397 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0422 03:39:42.210113 32397 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0422 03:39:42.210134 32397 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0422 03:39:42.210155 32397 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0422 03:39:42.210191 32397 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0422 03:39:42.210216 32397 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0422 03:39:42.210237 32397 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0422 03:39:42.210258 32397 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0422 03:39:42.210278 32397 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0422 03:39:42.210299 32397 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0422 03:39:42.210325 32397 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0422 03:39:42.210345 32397 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.977273
I0422 03:39:42.210367 32397 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.978723
I0422 03:39:42.210393 32397 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.270541 (* 1 = 0.270541 loss)
I0422 03:39:42.210424 32397 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.0799856 (* 1 = 0.0799856 loss)
I0422 03:39:42.210453 32397 solver.cpp:245] Train net output #125: loss3/loss01 = 0.243519 (* 0.0909091 = 0.0221381 loss)
I0422 03:39:42.210482 32397 solver.cpp:245] Train net output #126: loss3/loss02 = 0.48672 (* 0.0909091 = 0.0442473 loss)
I0422 03:39:42.210508 32397 solver.cpp:245] Train net output #127: loss3/loss03 = 0.324018 (* 0.0909091 = 0.0294562 loss)
I0422 03:39:42.210536 32397 solver.cpp:245] Train net output #128: loss3/loss04 = 0.724296 (* 0.0909091 = 0.0658451 loss)
I0422 03:39:42.210562 32397 solver.cpp:245] Train net output #129: loss3/loss05 = 0.371137 (* 0.0909091 = 0.0337398 loss)
I0422 03:39:42.210588 32397 solver.cpp:245] Train net output #130: loss3/loss06 = 0.33941 (* 0.0909091 = 0.0308555 loss)
I0422 03:39:42.210615 32397 solver.cpp:245] Train net output #131: loss3/loss07 = 1.09084 (* 0.0909091 = 0.099167 loss)
I0422 03:39:42.210641 32397 solver.cpp:245] Train net output #132: loss3/loss08 = 0.551186 (* 0.0909091 = 0.0501078 loss)
I0422 03:39:42.210669 32397 solver.cpp:245] Train net output #133: loss3/loss09 = 0.0301673 (* 0.0909091 = 0.00274248 loss)
I0422 03:39:42.210695 32397 solver.cpp:245] Train net output #134: loss3/loss10 = 0.00952875 (* 0.0909091 = 0.00086625 loss)
I0422 03:39:42.210721 32397 solver.cpp:245] Train net output #135: loss3/loss11 = 5.40915e-06 (* 0.0909091 = 4.91741e-07 loss)
I0422 03:39:42.210747 32397 solver.cpp:245] Train net output #136: loss3/loss12 = 3.93392e-06 (* 0.0909091 = 3.57629e-07 loss)
I0422 03:39:42.210774 32397 solver.cpp:245] Train net output #137: loss3/loss13 = 3.18886e-06 (* 0.0909091 = 2.89896e-07 loss)
I0422 03:39:42.210801 32397 solver.cpp:245] Train net output #138: loss3/loss14 = 3.26336e-06 (* 0.0909091 = 2.96669e-07 loss)
I0422 03:39:42.210829 32397 solver.cpp:245] Train net output #139: loss3/loss15 = 4.00843e-06 (* 0.0909091 = 3.64403e-07 loss)
I0422 03:39:42.210856 32397 solver.cpp:245] Train net output #140: loss3/loss16 = 3.84452e-06 (* 0.0909091 = 3.49501e-07 loss)
I0422 03:39:42.210882 32397 solver.cpp:245] Train net output #141: loss3/loss17 = 3.79981e-06 (* 0.0909091 = 3.45437e-07 loss)
I0422 03:39:42.210909 32397 solver.cpp:245] Train net output #142: loss3/loss18 = 5.42406e-06 (* 0.0909091 = 4.93096e-07 loss)
I0422 03:39:42.210937 32397 solver.cpp:245] Train net output #143: loss3/loss19 = 4.00843e-06 (* 0.0909091 = 3.64403e-07 loss)
I0422 03:39:42.210963 32397 solver.cpp:245] Train net output #144: loss3/loss20 = 2.87593e-06 (* 0.0909091 = 2.61448e-07 loss)
I0422 03:39:42.210989 32397 solver.cpp:245] Train net output #145: loss3/loss21 = 3.90412e-06 (* 0.0909091 = 3.5492e-07 loss)
I0422 03:39:42.211016 32397 solver.cpp:245] Train net output #146: loss3/loss22 = 3.45708e-06 (* 0.0909091 = 3.1428e-07 loss)
I0422 03:39:42.211040 32397 solver.cpp:245] Train net output #147: total_accuracy = 0.625
I0422 03:39:42.211061 32397 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.5
I0422 03:39:42.211099 32397 solver.cpp:245] Train net output #149: total_confidence = 0.526758
I0422 03:39:42.211123 32397 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.347327
I0422 03:39:42.211145 32397 sgd_solver.cpp:106] Iteration 22000, lr = 0.001
I0422 03:45:24.225999 32397 solver.cpp:229] Iteration 22500, loss = 2.23206
I0422 03:45:24.226158 32397 solver.cpp:245] Train net output #0: loss1/accuracy = 0.434783
I0422 03:45:24.226181 32397 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.5
I0422 03:45:24.226194 32397 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.25
I0422 03:45:24.226210 32397 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375
I0422 03:45:24.226223 32397 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375
I0422 03:45:24.226238 32397 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.625
I0422 03:45:24.226250 32397 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.625
I0422 03:45:24.226263 32397 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.625
I0422 03:45:24.226275 32397 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875
I0422 03:45:24.226287 32397 solver.cpp:245] Train net output #9: loss1/accuracy09 = 0.875
I0422 03:45:24.226300 32397 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0422 03:45:24.226313 32397 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0422 03:45:24.226325 32397 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0422 03:45:24.226337 32397 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0422 03:45:24.226349 32397 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0422 03:45:24.226362 32397 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0422 03:45:24.226374 32397 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0422 03:45:24.226387 32397 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0422 03:45:24.226398 32397 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0422 03:45:24.226410 32397 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0422 03:45:24.226423 32397 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0422 03:45:24.226434 32397 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0422 03:45:24.226445 32397 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0422 03:45:24.226457 32397 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.840909
I0422 03:45:24.226470 32397 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.826087
I0422 03:45:24.226486 32397 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 1.4586 (* 0.3 = 0.437579 loss)
I0422 03:45:24.226501 32397 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.44691 (* 0.3 = 0.134073 loss)
I0422 03:45:24.226516 32397 solver.cpp:245] Train net output #27: loss1/loss01 = 1.09826 (* 0.0272727 = 0.0299527 loss)
I0422 03:45:24.226531 32397 solver.cpp:245] Train net output #28: loss1/loss02 = 2.08027 (* 0.0272727 = 0.0567345 loss)
I0422 03:45:24.226544 32397 solver.cpp:245] Train net output #29: loss1/loss03 = 2.13865 (* 0.0272727 = 0.0583267 loss)
I0422 03:45:24.226558 32397 solver.cpp:245] Train net output #30: loss1/loss04 = 1.60359 (* 0.0272727 = 0.0437341 loss)
I0422 03:45:24.226572 32397 solver.cpp:245] Train net output #31: loss1/loss05 = 0.983346 (* 0.0272727 = 0.0268185 loss)
I0422 03:45:24.226586 32397 solver.cpp:245] Train net output #32: loss1/loss06 = 1.24123 (* 0.0272727 = 0.0338518 loss)
I0422 03:45:24.226600 32397 solver.cpp:245] Train net output #33: loss1/loss07 = 1.07467 (* 0.0272727 = 0.0293092 loss)
I0422 03:45:24.226614 32397 solver.cpp:245] Train net output #34: loss1/loss08 = 0.593386 (* 0.0272727 = 0.0161833 loss)
I0422 03:45:24.226629 32397 solver.cpp:245] Train net output #35: loss1/loss09 = 0.461195 (* 0.0272727 = 0.012578 loss)
I0422 03:45:24.226642 32397 solver.cpp:245] Train net output #36: loss1/loss10 = 0.0916305 (* 0.0272727 = 0.00249901 loss)
I0422 03:45:24.226657 32397 solver.cpp:245] Train net output #37: loss1/loss11 = 2.51698e-05 (* 0.0272727 = 6.86449e-07 loss)
I0422 03:45:24.226671 32397 solver.cpp:245] Train net output #38: loss1/loss12 = 3.02295e-05 (* 0.0272727 = 8.24441e-07 loss)
I0422 03:45:24.226706 32397 solver.cpp:245] Train net output #39: loss1/loss13 = 1.76141e-05 (* 0.0272727 = 4.80384e-07 loss)
I0422 03:45:24.226722 32397 solver.cpp:245] Train net output #40: loss1/loss14 = 2.10568e-05 (* 0.0272727 = 5.74276e-07 loss)
I0422 03:45:24.226735 32397 solver.cpp:245] Train net output #41: loss1/loss15 = 2.29343e-05 (* 0.0272727 = 6.25481e-07 loss)
I0422 03:45:24.226749 32397 solver.cpp:245] Train net output #42: loss1/loss16 = 3.0185e-05 (* 0.0272727 = 8.23228e-07 loss)
I0422 03:45:24.226763 32397 solver.cpp:245] Train net output #43: loss1/loss17 = 3.09456e-05 (* 0.0272727 = 8.43971e-07 loss)
I0422 03:45:24.226778 32397 solver.cpp:245] Train net output #44: loss1/loss18 = 1.67495e-05 (* 0.0272727 = 4.56806e-07 loss)
I0422 03:45:24.226791 32397 solver.cpp:245] Train net output #45: loss1/loss19 = 3.20783e-05 (* 0.0272727 = 8.74864e-07 loss)
I0422 03:45:24.226806 32397 solver.cpp:245] Train net output #46: loss1/loss20 = 1.23982e-05 (* 0.0272727 = 3.38132e-07 loss)
I0422 03:45:24.226820 32397 solver.cpp:245] Train net output #47: loss1/loss21 = 3.18848e-05 (* 0.0272727 = 8.69584e-07 loss)
I0422 03:45:24.226835 32397 solver.cpp:245] Train net output #48: loss1/loss22 = 3.20486e-05 (* 0.0272727 = 8.74052e-07 loss)
I0422 03:45:24.226846 32397 solver.cpp:245] Train net output #49: loss2/accuracy = 0.826087
I0422 03:45:24.226858 32397 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.75
I0422 03:45:24.226871 32397 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.875
I0422 03:45:24.226882 32397 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.625
I0422 03:45:24.226894 32397 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.875
I0422 03:45:24.226907 32397 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.625
I0422 03:45:24.226918 32397 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.875
I0422 03:45:24.226930 32397 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.625
I0422 03:45:24.226941 32397 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.75
I0422 03:45:24.226953 32397 solver.cpp:245] Train net output #58: loss2/accuracy09 = 0.875
I0422 03:45:24.226965 32397 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0422 03:45:24.226977 32397 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0422 03:45:24.226989 32397 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0422 03:45:24.227000 32397 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0422 03:45:24.227011 32397 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0422 03:45:24.227022 32397 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0422 03:45:24.227035 32397 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0422 03:45:24.227046 32397 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0422 03:45:24.227058 32397 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0422 03:45:24.227069 32397 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0422 03:45:24.227082 32397 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0422 03:45:24.227092 32397 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0422 03:45:24.227104 32397 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0422 03:45:24.227116 32397 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.943182
I0422 03:45:24.227128 32397 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.891304
I0422 03:45:24.227143 32397 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.790725 (* 0.3 = 0.237218 loss)
I0422 03:45:24.227156 32397 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.24028 (* 0.3 = 0.072084 loss)
I0422 03:45:24.227174 32397 solver.cpp:245] Train net output #76: loss2/loss01 = 0.725639 (* 0.0272727 = 0.0197901 loss)
I0422 03:45:24.227188 32397 solver.cpp:245] Train net output #77: loss2/loss02 = 0.492494 (* 0.0272727 = 0.0134316 loss)
I0422 03:45:24.227215 32397 solver.cpp:245] Train net output #78: loss2/loss03 = 1.26097 (* 0.0272727 = 0.0343902 loss)
I0422 03:45:24.227231 32397 solver.cpp:245] Train net output #79: loss2/loss04 = 0.841124 (* 0.0272727 = 0.0229398 loss)
I0422 03:45:24.227244 32397 solver.cpp:245] Train net output #80: loss2/loss05 = 1.42897 (* 0.0272727 = 0.0389718 loss)
I0422 03:45:24.227262 32397 solver.cpp:245] Train net output #81: loss2/loss06 = 0.899479 (* 0.0272727 = 0.0245313 loss)
I0422 03:45:24.227275 32397 solver.cpp:245] Train net output #82: loss2/loss07 = 1.2682 (* 0.0272727 = 0.0345873 loss)
I0422 03:45:24.227289 32397 solver.cpp:245] Train net output #83: loss2/loss08 = 0.645242 (* 0.0272727 = 0.0175975 loss)
I0422 03:45:24.227303 32397 solver.cpp:245] Train net output #84: loss2/loss09 = 0.296197 (* 0.0272727 = 0.00807809 loss)
I0422 03:45:24.227319 32397 solver.cpp:245] Train net output #85: loss2/loss10 = 0.0754104 (* 0.0272727 = 0.00205665 loss)
I0422 03:45:24.227334 32397 solver.cpp:245] Train net output #86: loss2/loss11 = 1.66158e-05 (* 0.0272727 = 4.53159e-07 loss)
I0422 03:45:24.227347 32397 solver.cpp:245] Train net output #87: loss2/loss12 = 7.30174e-06 (* 0.0272727 = 1.99138e-07 loss)
I0422 03:45:24.227377 32397 solver.cpp:245] Train net output #88: loss2/loss13 = 2.81633e-06 (* 0.0272727 = 7.68091e-08 loss)
I0422 03:45:24.227392 32397 solver.cpp:245] Train net output #89: loss2/loss14 = 1.07144e-05 (* 0.0272727 = 2.9221e-07 loss)
I0422 03:45:24.227406 32397 solver.cpp:245] Train net output #90: loss2/loss15 = 6.55666e-06 (* 0.0272727 = 1.78818e-07 loss)
I0422 03:45:24.227421 32397 solver.cpp:245] Train net output #91: loss2/loss16 = 7.56998e-06 (* 0.0272727 = 2.06454e-07 loss)
I0422 03:45:24.227434 32397 solver.cpp:245] Train net output #92: loss2/loss17 = 1.36352e-05 (* 0.0272727 = 3.7187e-07 loss)
I0422 03:45:24.227448 32397 solver.cpp:245] Train net output #93: loss2/loss18 = 4.81313e-06 (* 0.0272727 = 1.31267e-07 loss)
I0422 03:45:24.227463 32397 solver.cpp:245] Train net output #94: loss2/loss19 = 7.71899e-06 (* 0.0272727 = 2.10518e-07 loss)
I0422 03:45:24.227476 32397 solver.cpp:245] Train net output #95: loss2/loss20 = 1.47232e-05 (* 0.0272727 = 4.01541e-07 loss)
I0422 03:45:24.227490 32397 solver.cpp:245] Train net output #96: loss2/loss21 = 5.54332e-06 (* 0.0272727 = 1.51182e-07 loss)
I0422 03:45:24.227504 32397 solver.cpp:245] Train net output #97: loss2/loss22 = 7.09313e-06 (* 0.0272727 = 1.93449e-07 loss)
I0422 03:45:24.227516 32397 solver.cpp:245] Train net output #98: loss3/accuracy = 0.913043
I0422 03:45:24.227529 32397 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.75
I0422 03:45:24.227541 32397 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0422 03:45:24.227553 32397 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0422 03:45:24.227566 32397 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1
I0422 03:45:24.227576 32397 solver.cpp:245] Train net output #103: loss3/accuracy05 = 1
I0422 03:45:24.227588 32397 solver.cpp:245] Train net output #104: loss3/accuracy06 = 1
I0422 03:45:24.227599 32397 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.75
I0422 03:45:24.227612 32397 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1
I0422 03:45:24.227623 32397 solver.cpp:245] Train net output #107: loss3/accuracy09 = 0.875
I0422 03:45:24.227635 32397 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0422 03:45:24.227646 32397 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0422 03:45:24.227660 32397 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0422 03:45:24.227671 32397 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0422 03:45:24.227684 32397 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0422 03:45:24.227694 32397 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0422 03:45:24.227723 32397 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0422 03:45:24.227736 32397 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0422 03:45:24.227748 32397 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0422 03:45:24.227761 32397 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0422 03:45:24.227771 32397 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0422 03:45:24.227783 32397 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0422 03:45:24.227794 32397 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0422 03:45:24.227805 32397 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.977273
I0422 03:45:24.227818 32397 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.978261
I0422 03:45:24.227831 32397 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.307834 (* 1 = 0.307834 loss)
I0422 03:45:24.227845 32397 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.102632 (* 1 = 0.102632 loss)
I0422 03:45:24.227860 32397 solver.cpp:245] Train net output #125: loss3/loss01 = 0.449231 (* 0.0909091 = 0.0408392 loss)
I0422 03:45:24.227874 32397 solver.cpp:245] Train net output #126: loss3/loss02 = 0.371502 (* 0.0909091 = 0.0337729 loss)
I0422 03:45:24.227887 32397 solver.cpp:245] Train net output #127: loss3/loss03 = 0.216089 (* 0.0909091 = 0.0196445 loss)
I0422 03:45:24.227901 32397 solver.cpp:245] Train net output #128: loss3/loss04 = 0.114772 (* 0.0909091 = 0.0104339 loss)
I0422 03:45:24.227916 32397 solver.cpp:245] Train net output #129: loss3/loss05 = 0.214756 (* 0.0909091 = 0.0195233 loss)
I0422 03:45:24.227929 32397 solver.cpp:245] Train net output #130: loss3/loss06 = 0.367634 (* 0.0909091 = 0.0334212 loss)
I0422 03:45:24.227942 32397 solver.cpp:245] Train net output #131: loss3/loss07 = 0.797891 (* 0.0909091 = 0.0725356 loss)
I0422 03:45:24.227957 32397 solver.cpp:245] Train net output #132: loss3/loss08 = 0.148865 (* 0.0909091 = 0.0135331 loss)
I0422 03:45:24.227970 32397 solver.cpp:245] Train net output #133: loss3/loss09 = 0.31484 (* 0.0909091 = 0.0286218 loss)
I0422 03:45:24.227984 32397 solver.cpp:245] Train net output #134: loss3/loss10 = 0.0691794 (* 0.0909091 = 0.00628903 loss)
I0422 03:45:24.227998 32397 solver.cpp:245] Train net output #135: loss3/loss11 = 0.000110968 (* 0.0909091 = 1.0088e-05 loss)
I0422 03:45:24.228013 32397 solver.cpp:245] Train net output #136: loss3/loss12 = 0.000118143 (* 0.0909091 = 1.07403e-05 loss)
I0422 03:45:24.228026 32397 solver.cpp:245] Train net output #137: loss3/loss13 = 0.000106368 (* 0.0909091 = 9.66978e-06 loss)
I0422 03:45:24.228040 32397 solver.cpp:245] Train net output #138: loss3/loss14 = 0.000116584 (* 0.0909091 = 1.05986e-05 loss)
I0422 03:45:24.228055 32397 solver.cpp:245] Train net output #139: loss3/loss15 = 0.000106443 (* 0.0909091 = 9.6766e-06 loss)
I0422 03:45:24.228068 32397 solver.cpp:245] Train net output #140: loss3/loss16 = 0.000100947 (* 0.0909091 = 9.17698e-06 loss)
I0422 03:45:24.228082 32397 solver.cpp:245] Train net output #141: loss3/loss17 = 0.000135639 (* 0.0909091 = 1.23308e-05 loss)
I0422 03:45:24.228096 32397 solver.cpp:245] Train net output #142: loss3/loss18 = 9.7913e-05 (* 0.0909091 = 8.90118e-06 loss)
I0422 03:45:24.228111 32397 solver.cpp:245] Train net output #143: loss3/loss19 = 0.000125204 (* 0.0909091 = 1.13822e-05 loss)
I0422 03:45:24.228124 32397 solver.cpp:245] Train net output #144: loss3/loss20 = 8.18311e-05 (* 0.0909091 = 7.43919e-06 loss)
I0422 03:45:24.228135 32397 solver.cpp:245] Train net output #145: loss3/loss21 = 0.000134148 (* 0.0909091 = 1.21953e-05 loss)
I0422 03:45:24.228152 32397 solver.cpp:245] Train net output #146: loss3/loss22 = 0.000118874 (* 0.0909091 = 1.08067e-05 loss)
I0422 03:45:24.228165 32397 solver.cpp:245] Train net output #147: total_accuracy = 0.625
I0422 03:45:24.228176 32397 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.5
I0422 03:45:24.228198 32397 solver.cpp:245] Train net output #149: total_confidence = 0.535055
I0422 03:45:24.228214 32397 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.275995
I0422 03:45:24.228227 32397 sgd_solver.cpp:106] Iteration 22500, lr = 0.001
I0422 03:51:05.864567 32397 solver.cpp:229] Iteration 23000, loss = 2.28234
I0422 03:51:05.864655 32397 solver.cpp:245] Train net output #0: loss1/accuracy = 0.693878
I0422 03:51:05.864673 32397 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.875
I0422 03:51:05.864686 32397 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.625
I0422 03:51:05.864699 32397 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375
I0422 03:51:05.864712 32397 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.375
I0422 03:51:05.864725 32397 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.5
I0422 03:51:05.864737 32397 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.5
I0422 03:51:05.864749 32397 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.875
I0422 03:51:05.864763 32397 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.75
I0422 03:51:05.864774 32397 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1
I0422 03:51:05.864789 32397 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0422 03:51:05.864800 32397 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0422 03:51:05.864812 32397 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0422 03:51:05.864825 32397 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0422 03:51:05.864836 32397 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0422 03:51:05.864848 32397 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0422 03:51:05.864863 32397 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0422 03:51:05.864876 32397 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0422 03:51:05.864888 32397 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0422 03:51:05.864900 32397 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0422 03:51:05.864912 32397 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0422 03:51:05.864925 32397 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0422 03:51:05.864940 32397 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0422 03:51:05.864953 32397 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.892045
I0422 03:51:05.864964 32397 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.918367
I0422 03:51:05.864980 32397 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 0.961064 (* 0.3 = 0.288319 loss)
I0422 03:51:05.864995 32397 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.347228 (* 0.3 = 0.104168 loss)
I0422 03:51:05.865010 32397 solver.cpp:245] Train net output #27: loss1/loss01 = 0.523556 (* 0.0272727 = 0.0142788 loss)
I0422 03:51:05.865025 32397 solver.cpp:245] Train net output #28: loss1/loss02 = 0.94128 (* 0.0272727 = 0.0256713 loss)
I0422 03:51:05.865038 32397 solver.cpp:245] Train net output #29: loss1/loss03 = 1.78645 (* 0.0272727 = 0.0487215 loss)
I0422 03:51:05.865052 32397 solver.cpp:245] Train net output #30: loss1/loss04 = 1.75776 (* 0.0272727 = 0.047939 loss)
I0422 03:51:05.865066 32397 solver.cpp:245] Train net output #31: loss1/loss05 = 1.45735 (* 0.0272727 = 0.0397459 loss)
I0422 03:51:05.865079 32397 solver.cpp:245] Train net output #32: loss1/loss06 = 1.29244 (* 0.0272727 = 0.0352483 loss)
I0422 03:51:05.865094 32397 solver.cpp:245] Train net output #33: loss1/loss07 = 0.506948 (* 0.0272727 = 0.0138259 loss)
I0422 03:51:05.865108 32397 solver.cpp:245] Train net output #34: loss1/loss08 = 0.921056 (* 0.0272727 = 0.0251197 loss)
I0422 03:51:05.865123 32397 solver.cpp:245] Train net output #35: loss1/loss09 = 0.0600178 (* 0.0272727 = 0.00163685 loss)
I0422 03:51:05.865137 32397 solver.cpp:245] Train net output #36: loss1/loss10 = 0.0157486 (* 0.0272727 = 0.000429507 loss)
I0422 03:51:05.865151 32397 solver.cpp:245] Train net output #37: loss1/loss11 = 2.85154e-05 (* 0.0272727 = 7.77693e-07 loss)
I0422 03:51:05.865166 32397 solver.cpp:245] Train net output #38: loss1/loss12 = 3.94243e-05 (* 0.0272727 = 1.07521e-06 loss)
I0422 03:51:05.865197 32397 solver.cpp:245] Train net output #39: loss1/loss13 = 3.18011e-05 (* 0.0272727 = 8.67304e-07 loss)
I0422 03:51:05.865213 32397 solver.cpp:245] Train net output #40: loss1/loss14 = 2.88649e-05 (* 0.0272727 = 7.87224e-07 loss)
I0422 03:51:05.865227 32397 solver.cpp:245] Train net output #41: loss1/loss15 = 3.83879e-05 (* 0.0272727 = 1.04694e-06 loss)
I0422 03:51:05.865242 32397 solver.cpp:245] Train net output #42: loss1/loss16 = 4.07365e-05 (* 0.0272727 = 1.111e-06 loss)
I0422 03:51:05.865255 32397 solver.cpp:245] Train net output #43: loss1/loss17 = 3.79855e-05 (* 0.0272727 = 1.03597e-06 loss)
I0422 03:51:05.865270 32397 solver.cpp:245] Train net output #44: loss1/loss18 = 3.82018e-05 (* 0.0272727 = 1.04187e-06 loss)
I0422 03:51:05.865284 32397 solver.cpp:245] Train net output #45: loss1/loss19 = 2.63464e-05 (* 0.0272727 = 7.18537e-07 loss)
I0422 03:51:05.865298 32397 solver.cpp:245] Train net output #46: loss1/loss20 = 4.83057e-05 (* 0.0272727 = 1.31743e-06 loss)
I0422 03:51:05.865312 32397 solver.cpp:245] Train net output #47: loss1/loss21 = 6.44652e-05 (* 0.0272727 = 1.75814e-06 loss)
I0422 03:51:05.865325 32397 solver.cpp:245] Train net output #48: loss1/loss22 = 6.16407e-05 (* 0.0272727 = 1.68111e-06 loss)
I0422 03:51:05.865337 32397 solver.cpp:245] Train net output #49: loss2/accuracy = 0.857143
I0422 03:51:05.865350 32397 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875
I0422 03:51:05.865362 32397 solver.cpp:245] Train net output #51: loss2/accuracy02 = 1
I0422 03:51:05.865375 32397 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.375
I0422 03:51:05.865386 32397 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.5
I0422 03:51:05.865397 32397 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.625
I0422 03:51:05.865409 32397 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.75
I0422 03:51:05.865420 32397 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.625
I0422 03:51:05.865432 32397 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.75
I0422 03:51:05.865444 32397 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1
I0422 03:51:05.865456 32397 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0422 03:51:05.865468 32397 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0422 03:51:05.865479 32397 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0422 03:51:05.865490 32397 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0422 03:51:05.865501 32397 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0422 03:51:05.865512 32397 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0422 03:51:05.865525 32397 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0422 03:51:05.865535 32397 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0422 03:51:05.865546 32397 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0422 03:51:05.865557 32397 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0422 03:51:05.865568 32397 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0422 03:51:05.865581 32397 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0422 03:51:05.865592 32397 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0422 03:51:05.865602 32397 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.954545
I0422 03:51:05.865614 32397 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.959184
I0422 03:51:05.865628 32397 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.539788 (* 0.3 = 0.161936 loss)
I0422 03:51:05.865641 32397 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.160358 (* 0.3 = 0.0481073 loss)
I0422 03:51:05.865655 32397 solver.cpp:245] Train net output #76: loss2/loss01 = 0.386857 (* 0.0272727 = 0.0105506 loss)
I0422 03:51:05.865669 32397 solver.cpp:245] Train net output #77: loss2/loss02 = 0.527851 (* 0.0272727 = 0.0143959 loss)
I0422 03:51:05.865694 32397 solver.cpp:245] Train net output #78: loss2/loss03 = 1.39462 (* 0.0272727 = 0.0380352 loss)
I0422 03:51:05.865710 32397 solver.cpp:245] Train net output #79: loss2/loss04 = 1.77322 (* 0.0272727 = 0.0483605 loss)
I0422 03:51:05.865725 32397 solver.cpp:245] Train net output #80: loss2/loss05 = 1.10355 (* 0.0272727 = 0.0300969 loss)
I0422 03:51:05.865739 32397 solver.cpp:245] Train net output #81: loss2/loss06 = 0.676918 (* 0.0272727 = 0.0184614 loss)
I0422 03:51:05.865753 32397 solver.cpp:245] Train net output #82: loss2/loss07 = 0.940755 (* 0.0272727 = 0.025657 loss)
I0422 03:51:05.865767 32397 solver.cpp:245] Train net output #83: loss2/loss08 = 0.50199 (* 0.0272727 = 0.0136906 loss)
I0422 03:51:05.865782 32397 solver.cpp:245] Train net output #84: loss2/loss09 = 0.0143133 (* 0.0272727 = 0.000390363 loss)
I0422 03:51:05.865795 32397 solver.cpp:245] Train net output #85: loss2/loss10 = 0.00175602 (* 0.0272727 = 4.78915e-05 loss)
I0422 03:51:05.865809 32397 solver.cpp:245] Train net output #86: loss2/loss11 = 0.000396858 (* 0.0272727 = 1.08234e-05 loss)
I0422 03:51:05.865824 32397 solver.cpp:245] Train net output #87: loss2/loss12 = 0.000108309 (* 0.0272727 = 2.95389e-06 loss)
I0422 03:51:05.865839 32397 solver.cpp:245] Train net output #88: loss2/loss13 = 0.000146725 (* 0.0272727 = 4.00158e-06 loss)
I0422 03:51:05.865852 32397 solver.cpp:245] Train net output #89: loss2/loss14 = 0.00019276 (* 0.0272727 = 5.25709e-06 loss)
I0422 03:51:05.865866 32397 solver.cpp:245] Train net output #90: loss2/loss15 = 0.000164796 (* 0.0272727 = 4.49443e-06 loss)
I0422 03:51:05.865880 32397 solver.cpp:245] Train net output #91: loss2/loss16 = 0.000188024 (* 0.0272727 = 5.12793e-06 loss)
I0422 03:51:05.865893 32397 solver.cpp:245] Train net output #92: loss2/loss17 = 9.84985e-05 (* 0.0272727 = 2.68632e-06 loss)
I0422 03:51:05.865909 32397 solver.cpp:245] Train net output #93: loss2/loss18 = 0.000105569 (* 0.0272727 = 2.87915e-06 loss)
I0422 03:51:05.865926 32397 solver.cpp:245] Train net output #94: loss2/loss19 = 0.000291748 (* 0.0272727 = 7.95677e-06 loss)
I0422 03:51:05.865939 32397 solver.cpp:245] Train net output #95: loss2/loss20 = 0.000133821 (* 0.0272727 = 3.64966e-06 loss)
I0422 03:51:05.865952 32397 solver.cpp:245] Train net output #96: loss2/loss21 = 0.000153054 (* 0.0272727 = 4.17419e-06 loss)
I0422 03:51:05.865967 32397 solver.cpp:245] Train net output #97: loss2/loss22 = 0.000211931 (* 0.0272727 = 5.77993e-06 loss)
I0422 03:51:05.865978 32397 solver.cpp:245] Train net output #98: loss3/accuracy = 0.938776
I0422 03:51:05.865993 32397 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0422 03:51:05.866005 32397 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0422 03:51:05.866017 32397 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0422 03:51:05.866029 32397 solver.cpp:245] Train net output #102: loss3/accuracy04 = 0.875
I0422 03:51:05.866040 32397 solver.cpp:245] Train net output #103: loss3/accuracy05 = 1
I0422 03:51:05.866051 32397 solver.cpp:245] Train net output #104: loss3/accuracy06 = 1
I0422 03:51:05.866063 32397 solver.cpp:245] Train net output #105: loss3/accuracy07 = 0.875
I0422 03:51:05.866075 32397 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875
I0422 03:51:05.866086 32397 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1
I0422 03:51:05.866097 32397 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0422 03:51:05.866108 32397 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0422 03:51:05.866120 32397 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0422 03:51:05.866132 32397 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0422 03:51:05.866143 32397 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0422 03:51:05.866154 32397 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0422 03:51:05.866175 32397 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0422 03:51:05.866189 32397 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0422 03:51:05.866200 32397 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0422 03:51:05.866211 32397 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0422 03:51:05.866222 32397 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0422 03:51:05.866235 32397 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0422 03:51:05.866242 32397 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0422 03:51:05.866250 32397 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.982955
I0422 03:51:05.866262 32397 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 0.959184
I0422 03:51:05.866277 32397 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.35634 (* 1 = 0.35634 loss)
I0422 03:51:05.866291 32397 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.104191 (* 1 = 0.104191 loss)
I0422 03:51:05.866305 32397 solver.cpp:245] Train net output #125: loss3/loss01 = 0.0363894 (* 0.0909091 = 0.00330813 loss)
I0422 03:51:05.866319 32397 solver.cpp:245] Train net output #126: loss3/loss02 = 0.0365292 (* 0.0909091 = 0.00332083 loss)
I0422 03:51:05.866333 32397 solver.cpp:245] Train net output #127: loss3/loss03 = 0.0820277 (* 0.0909091 = 0.00745707 loss)
I0422 03:51:05.866348 32397 solver.cpp:245] Train net output #128: loss3/loss04 = 0.871502 (* 0.0909091 = 0.0792275 loss)
I0422 03:51:05.866361 32397 solver.cpp:245] Train net output #129: loss3/loss05 = 0.153155 (* 0.0909091 = 0.0139232 loss)
I0422 03:51:05.866375 32397 solver.cpp:245] Train net output #130: loss3/loss06 = 0.142066 (* 0.0909091 = 0.0129151 loss)
I0422 03:51:05.866389 32397 solver.cpp:245] Train net output #131: loss3/loss07 = 0.328283 (* 0.0909091 = 0.0298439 loss)
I0422 03:51:05.866403 32397 solver.cpp:245] Train net output #132: loss3/loss08 = 0.951339 (* 0.0909091 = 0.0864853 loss)
I0422 03:51:05.866417 32397 solver.cpp:245] Train net output #133: loss3/loss09 = 0.0178408 (* 0.0909091 = 0.00162189 loss)
I0422 03:51:05.866431 32397 solver.cpp:245] Train net output #134: loss3/loss10 = 0.00336435 (* 0.0909091 = 0.00030585 loss)
I0422 03:51:05.866446 32397 solver.cpp:245] Train net output #135: loss3/loss11 = 1.66893e-06 (* 0.0909091 = 1.51721e-07 loss)
I0422 03:51:05.866459 32397 solver.cpp:245] Train net output #136: loss3/loss12 = 1.16229e-06 (* 0.0909091 = 1.05663e-07 loss)
I0422 03:51:05.866473 32397 solver.cpp:245] Train net output #137: loss3/loss13 = 1.57953e-06 (* 0.0909091 = 1.43593e-07 loss)
I0422 03:51:05.866487 32397 solver.cpp:245] Train net output #138: loss3/loss14 = 1.44542e-06 (* 0.0909091 = 1.31401e-07 loss)
I0422 03:51:05.866502 32397 solver.cpp:245] Train net output #139: loss3/loss15 = 1.34111e-06 (* 0.0909091 = 1.21919e-07 loss)
I0422 03:51:05.866515 32397 solver.cpp:245] Train net output #140: loss3/loss16 = 1.46032e-06 (* 0.0909091 = 1.32756e-07 loss)
I0422 03:51:05.866529 32397 solver.cpp:245] Train net output #141: loss3/loss17 = 1.47522e-06 (* 0.0909091 = 1.34111e-07 loss)
I0422 03:51:05.866542 32397 solver.cpp:245] Train net output #142: loss3/loss18 = 1.3113e-06 (* 0.0909091 = 1.19209e-07 loss)
I0422 03:51:05.866556 32397 solver.cpp:245] Train net output #143: loss3/loss19 = 1.44541e-06 (* 0.0909091 = 1.31401e-07 loss)
I0422 03:51:05.866570 32397 solver.cpp:245] Train net output #144: loss3/loss20 = 1.46032e-06 (* 0.0909091 = 1.32756e-07 loss)
I0422 03:51:05.866585 32397 solver.cpp:245] Train net output #145: loss3/loss21 = 1.11759e-06 (* 0.0909091 = 1.01599e-07 loss)
I0422 03:51:05.866597 32397 solver.cpp:245] Train net output #146: loss3/loss22 = 1.41561e-06 (* 0.0909091 = 1.28692e-07 loss)
I0422 03:51:05.866610 32397 solver.cpp:245] Train net output #147: total_accuracy = 0.75
I0422 03:51:05.866621 32397 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.75
I0422 03:51:05.866642 32397 solver.cpp:245] Train net output #149: total_confidence = 0.658892
I0422 03:51:05.866655 32397 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.518966
I0422 03:51:05.866668 32397 sgd_solver.cpp:106] Iteration 23000, lr = 0.001
I0422 03:56:47.263773 32397 solver.cpp:229] Iteration 23500, loss = 2.13781
I0422 03:56:47.263907 32397 solver.cpp:245] Train net output #0: loss1/accuracy = 0.809524
I0422 03:56:47.263929 32397 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75
I0422 03:56:47.263942 32397 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.75
I0422 03:56:47.263957 32397 solver.cpp:245] Train net output #3: loss1/accuracy03 = 1
I0422 03:56:47.263969 32397 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.5
I0422 03:56:47.263981 32397 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.5
I0422 03:56:47.263994 32397 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.5
I0422 03:56:47.264008 32397 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.875
I0422 03:56:47.264019 32397 solver.cpp:245] Train net output #8: loss1/accuracy08 = 1
I0422 03:56:47.264034 32397 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1
I0422 03:56:47.264047 32397 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0422 03:56:47.264060 32397 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0422 03:56:47.264071 32397 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0422 03:56:47.264083 32397 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0422 03:56:47.264096 32397 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0422 03:56:47.264107 32397 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0422 03:56:47.264119 32397 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0422 03:56:47.264132 32397 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0422 03:56:47.264143 32397 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0422 03:56:47.264155 32397 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0422 03:56:47.264168 32397 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0422 03:56:47.264179 32397 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0422 03:56:47.264190 32397 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0422 03:56:47.264202 32397 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.943182
I0422 03:56:47.264214 32397 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.928571
I0422 03:56:47.264230 32397 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 0.722275 (* 0.3 = 0.216683 loss)
I0422 03:56:47.264245 32397 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.228646 (* 0.3 = 0.0685937 loss)
I0422 03:56:47.264259 32397 solver.cpp:245] Train net output #27: loss1/loss01 = 0.702756 (* 0.0272727 = 0.0191661 loss)
I0422 03:56:47.264274 32397 solver.cpp:245] Train net output #28: loss1/loss02 = 0.788297 (* 0.0272727 = 0.021499 loss)
I0422 03:56:47.264288 32397 solver.cpp:245] Train net output #29: loss1/loss03 = 0.759206 (* 0.0272727 = 0.0207056 loss)
I0422 03:56:47.264302 32397 solver.cpp:245] Train net output #30: loss1/loss04 = 1.42575 (* 0.0272727 = 0.0388842 loss)
I0422 03:56:47.264317 32397 solver.cpp:245] Train net output #31: loss1/loss05 = 1.75085 (* 0.0272727 = 0.0477505 loss)
I0422 03:56:47.264330 32397 solver.cpp:245] Train net output #32: loss1/loss06 = 1.17206 (* 0.0272727 = 0.0319653 loss)
I0422 03:56:47.264344 32397 solver.cpp:245] Train net output #33: loss1/loss07 = 0.555606 (* 0.0272727 = 0.0151529 loss)
I0422 03:56:47.264358 32397 solver.cpp:245] Train net output #34: loss1/loss08 = 0.0505446 (* 0.0272727 = 0.00137849 loss)
I0422 03:56:47.264374 32397 solver.cpp:245] Train net output #35: loss1/loss09 = 0.00351233 (* 0.0272727 = 9.57908e-05 loss)
I0422 03:56:47.264389 32397 solver.cpp:245] Train net output #36: loss1/loss10 = 0.000393106 (* 0.0272727 = 1.07211e-05 loss)
I0422 03:56:47.264402 32397 solver.cpp:245] Train net output #37: loss1/loss11 = 1.18466e-05 (* 0.0272727 = 3.23089e-07 loss)
I0422 03:56:47.264416 32397 solver.cpp:245] Train net output #38: loss1/loss12 = 7.98707e-06 (* 0.0272727 = 2.17829e-07 loss)
I0422 03:56:47.264448 32397 solver.cpp:245] Train net output #39: loss1/loss13 = 1.32325e-05 (* 0.0272727 = 3.60887e-07 loss)
I0422 03:56:47.264464 32397 solver.cpp:245] Train net output #40: loss1/loss14 = 1.06545e-05 (* 0.0272727 = 2.90577e-07 loss)
I0422 03:56:47.264478 32397 solver.cpp:245] Train net output #41: loss1/loss15 = 1.04905e-05 (* 0.0272727 = 2.86106e-07 loss)
I0422 03:56:47.264492 32397 solver.cpp:245] Train net output #42: loss1/loss16 = 2.1369e-05 (* 0.0272727 = 5.8279e-07 loss)
I0422 03:56:47.264506 32397 solver.cpp:245] Train net output #43: loss1/loss17 = 9.0451e-06 (* 0.0272727 = 2.46685e-07 loss)
I0422 03:56:47.264520 32397 solver.cpp:245] Train net output #44: loss1/loss18 = 6.73537e-06 (* 0.0272727 = 1.83692e-07 loss)
I0422 03:56:47.264534 32397 solver.cpp:245] Train net output #45: loss1/loss19 = 6.86948e-06 (* 0.0272727 = 1.87349e-07 loss)
I0422 03:56:47.264549 32397 solver.cpp:245] Train net output #46: loss1/loss20 = 1.47524e-05 (* 0.0272727 = 4.02338e-07 loss)
I0422 03:56:47.264561 32397 solver.cpp:245] Train net output #47: loss1/loss21 = 8.53846e-06 (* 0.0272727 = 2.32867e-07 loss)
I0422 03:56:47.264576 32397 solver.cpp:245] Train net output #48: loss1/loss22 = 9.25374e-06 (* 0.0272727 = 2.52375e-07 loss)
I0422 03:56:47.264588 32397 solver.cpp:245] Train net output #49: loss2/accuracy = 0.97619
I0422 03:56:47.264601 32397 solver.cpp:245] Train net output #50: loss2/accuracy01 = 1
I0422 03:56:47.264613 32397 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.625
I0422 03:56:47.264626 32397 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.875
I0422 03:56:47.264637 32397 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.5
I0422 03:56:47.264649 32397 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.625
I0422 03:56:47.264660 32397 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.75
I0422 03:56:47.264672 32397 solver.cpp:245] Train net output #56: loss2/accuracy07 = 1
I0422 03:56:47.264684 32397 solver.cpp:245] Train net output #57: loss2/accuracy08 = 1
I0422 03:56:47.264695 32397 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1
I0422 03:56:47.264708 32397 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0422 03:56:47.264719 32397 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0422 03:56:47.264730 32397 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0422 03:56:47.264741 32397 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0422 03:56:47.264753 32397 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0422 03:56:47.264765 32397 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0422 03:56:47.264776 32397 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0422 03:56:47.264787 32397 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0422 03:56:47.264799 32397 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0422 03:56:47.264811 32397 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0422 03:56:47.264822 32397 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0422 03:56:47.264833 32397 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0422 03:56:47.264844 32397 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0422 03:56:47.264855 32397 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.971591
I0422 03:56:47.264871 32397 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 1
I0422 03:56:47.264899 32397 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.180043 (* 0.3 = 0.0540129 loss)
I0422 03:56:47.264922 32397 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.117713 (* 0.3 = 0.0353139 loss)
I0422 03:56:47.264937 32397 solver.cpp:245] Train net output #76: loss2/loss01 = 0.117401 (* 0.0272727 = 0.00320184 loss)
I0422 03:56:47.264955 32397 solver.cpp:245] Train net output #77: loss2/loss02 = 1.16408 (* 0.0272727 = 0.0317478 loss)
I0422 03:56:47.264981 32397 solver.cpp:245] Train net output #78: loss2/loss03 = 0.469855 (* 0.0272727 = 0.0128142 loss)
I0422 03:56:47.264997 32397 solver.cpp:245] Train net output #79: loss2/loss04 = 1.04444 (* 0.0272727 = 0.0284847 loss)
I0422 03:56:47.265012 32397 solver.cpp:245] Train net output #80: loss2/loss05 = 0.6846 (* 0.0272727 = 0.0186709 loss)
I0422 03:56:47.265025 32397 solver.cpp:245] Train net output #81: loss2/loss06 = 0.624581 (* 0.0272727 = 0.017034 loss)
I0422 03:56:47.265040 32397 solver.cpp:245] Train net output #82: loss2/loss07 = 0.311948 (* 0.0272727 = 0.00850766 loss)
I0422 03:56:47.265054 32397 solver.cpp:245] Train net output #83: loss2/loss08 = 0.0597428 (* 0.0272727 = 0.00162935 loss)
I0422 03:56:47.265069 32397 solver.cpp:245] Train net output #84: loss2/loss09 = 0.00449782 (* 0.0272727 = 0.000122668 loss)
I0422 03:56:47.265085 32397 solver.cpp:245] Train net output #85: loss2/loss10 = 0.000829794 (* 0.0272727 = 2.26307e-05 loss)
I0422 03:56:47.265100 32397 solver.cpp:245] Train net output #86: loss2/loss11 = 1.2964e-06 (* 0.0272727 = 3.53565e-08 loss)
I0422 03:56:47.265115 32397 solver.cpp:245] Train net output #87: loss2/loss12 = 1.69874e-06 (* 0.0272727 = 4.63292e-08 loss)
I0422 03:56:47.265130 32397 solver.cpp:245] Train net output #88: loss2/loss13 = 5.14098e-06 (* 0.0272727 = 1.40208e-07 loss)
I0422 03:56:47.265143 32397 solver.cpp:245] Train net output #89: loss2/loss14 = 3.54651e-06 (* 0.0272727 = 9.6723e-08 loss)
I0422 03:56:47.265157 32397 solver.cpp:245] Train net output #90: loss2/loss15 = 2.66732e-06 (* 0.0272727 = 7.27451e-08 loss)
I0422 03:56:47.265172 32397 solver.cpp:245] Train net output #91: loss2/loss16 = 4.29159e-06 (* 0.0272727 = 1.17043e-07 loss)
I0422 03:56:47.265185 32397 solver.cpp:245] Train net output #92: loss2/loss17 = 2.45871e-06 (* 0.0272727 = 6.70557e-08 loss)
I0422 03:56:47.265199 32397 solver.cpp:245] Train net output #93: loss2/loss18 = 1.77325e-06 (* 0.0272727 = 4.83613e-08 loss)
I0422 03:56:47.265213 32397 solver.cpp:245] Train net output #94: loss2/loss19 = 2.17558e-06 (* 0.0272727 = 5.9334e-08 loss)
I0422 03:56:47.265228 32397 solver.cpp:245] Train net output #95: loss2/loss20 = 3.18888e-06 (* 0.0272727 = 8.69694e-08 loss)
I0422 03:56:47.265240 32397 solver.cpp:245] Train net output #96: loss2/loss21 = 4.5002e-06 (* 0.0272727 = 1.22733e-07 loss)
I0422 03:56:47.265254 32397 solver.cpp:245] Train net output #97: loss2/loss22 = 1.31131e-06 (* 0.0272727 = 3.57629e-08 loss)
I0422 03:56:47.265266 32397 solver.cpp:245] Train net output #98: loss3/accuracy = 0.97619
I0422 03:56:47.265278 32397 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0422 03:56:47.265290 32397 solver.cpp:245] Train net output #100: loss3/accuracy02 = 0.875
I0422 03:56:47.265301 32397 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0422 03:56:47.265313 32397 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1
I0422 03:56:47.265324 32397 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875
I0422 03:56:47.265336 32397 solver.cpp:245] Train net output #104: loss3/accuracy06 = 1
I0422 03:56:47.265347 32397 solver.cpp:245] Train net output #105: loss3/accuracy07 = 1
I0422 03:56:47.265358 32397 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1
I0422 03:56:47.265370 32397 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1
I0422 03:56:47.265382 32397 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0422 03:56:47.265393 32397 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0422 03:56:47.265404 32397 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0422 03:56:47.265415 32397 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0422 03:56:47.265426 32397 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0422 03:56:47.265437 32397 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0422 03:56:47.265449 32397 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0422 03:56:47.265470 32397 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0422 03:56:47.265483 32397 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0422 03:56:47.265496 32397 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0422 03:56:47.265506 32397 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0422 03:56:47.265517 32397 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0422 03:56:47.265528 32397 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0422 03:56:47.265539 32397 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.988636
I0422 03:56:47.265552 32397 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 1
I0422 03:56:47.265565 32397 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.0752949 (* 1 = 0.0752949 loss)
I0422 03:56:47.265579 32397 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.0587923 (* 1 = 0.0587923 loss)
I0422 03:56:47.265594 32397 solver.cpp:245] Train net output #125: loss3/loss01 = 0.180109 (* 0.0909091 = 0.0163736 loss)
I0422 03:56:47.265607 32397 solver.cpp:245] Train net output #126: loss3/loss02 = 0.281089 (* 0.0909091 = 0.0255535 loss)
I0422 03:56:47.265620 32397 solver.cpp:245] Train net output #127: loss3/loss03 = 0.0681135 (* 0.0909091 = 0.00619214 loss)
I0422 03:56:47.265635 32397 solver.cpp:245] Train net output #128: loss3/loss04 = 0.0569374 (* 0.0909091 = 0.00517613 loss)
I0422 03:56:47.265648 32397 solver.cpp:245] Train net output #129: loss3/loss05 = 0.510245 (* 0.0909091 = 0.0463859 loss)
I0422 03:56:47.265662 32397 solver.cpp:245] Train net output #130: loss3/loss06 = 0.0748257 (* 0.0909091 = 0.00680234 loss)
I0422 03:56:47.265676 32397 solver.cpp:245] Train net output #131: loss3/loss07 = 0.0989891 (* 0.0909091 = 0.00899901 loss)
I0422 03:56:47.265691 32397 solver.cpp:245] Train net output #132: loss3/loss08 = 0.0171543 (* 0.0909091 = 0.00155948 loss)
I0422 03:56:47.265704 32397 solver.cpp:245] Train net output #133: loss3/loss09 = 0.00428127 (* 0.0909091 = 0.000389206 loss)
I0422 03:56:47.265718 32397 solver.cpp:245] Train net output #134: loss3/loss10 = 0.000216486 (* 0.0909091 = 1.96805e-05 loss)
I0422 03:56:47.265732 32397 solver.cpp:245] Train net output #135: loss3/loss11 = 1.903e-05 (* 0.0909091 = 1.73e-06 loss)
I0422 03:56:47.265745 32397 solver.cpp:245] Train net output #136: loss3/loss12 = 2.16827e-05 (* 0.0909091 = 1.97116e-06 loss)
I0422 03:56:47.265759 32397 solver.cpp:245] Train net output #137: loss3/loss13 = 2.13698e-05 (* 0.0909091 = 1.94271e-06 loss)
I0422 03:56:47.265774 32397 solver.cpp:245] Train net output #138: loss3/loss14 = 1.58109e-05 (* 0.0909091 = 1.43736e-06 loss)
I0422 03:56:47.265786 32397 solver.cpp:245] Train net output #139: loss3/loss15 = 1.6109e-05 (* 0.0909091 = 1.46445e-06 loss)
I0422 03:56:47.265800 32397 solver.cpp:245] Train net output #140: loss3/loss16 = 1.49317e-05 (* 0.0909091 = 1.35743e-06 loss)
I0422 03:56:47.265815 32397 solver.cpp:245] Train net output #141: loss3/loss17 = 1.95367e-05 (* 0.0909091 = 1.77607e-06 loss)
I0422 03:56:47.265827 32397 solver.cpp:245] Train net output #142: loss3/loss18 = 1.92238e-05 (* 0.0909091 = 1.74761e-06 loss)
I0422 03:56:47.265841 32397 solver.cpp:245] Train net output #143: loss3/loss19 = 1.59749e-05 (* 0.0909091 = 1.45226e-06 loss)
I0422 03:56:47.265854 32397 solver.cpp:245] Train net output #144: loss3/loss20 = 1.9343e-05 (* 0.0909091 = 1.75846e-06 loss)
I0422 03:56:47.265868 32397 solver.cpp:245] Train net output #145: loss3/loss21 = 2.23535e-05 (* 0.0909091 = 2.03214e-06 loss)
I0422 03:56:47.265882 32397 solver.cpp:245] Train net output #146: loss3/loss22 = 1.77334e-05 (* 0.0909091 = 1.61213e-06 loss)
I0422 03:56:47.265893 32397 solver.cpp:245] Train net output #147: total_accuracy = 0.75
I0422 03:56:47.265905 32397 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.75
I0422 03:56:47.265926 32397 solver.cpp:245] Train net output #149: total_confidence = 0.664058
I0422 03:56:47.265939 32397 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.448387
I0422 03:56:47.265951 32397 sgd_solver.cpp:106] Iteration 23500, lr = 0.001
I0422 04:02:28.917769 32397 solver.cpp:229] Iteration 24000, loss = 2.27801
I0422 04:02:28.917980 32397 solver.cpp:245] Train net output #0: loss1/accuracy = 0.704545
I0422 04:02:28.918004 32397 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.625
I0422 04:02:28.918017 32397 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.75
I0422 04:02:28.918030 32397 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.375
I0422 04:02:28.918042 32397 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.5
I0422 04:02:28.918056 32397 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.75
I0422 04:02:28.918068 32397 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.625
I0422 04:02:28.918081 32397 solver.cpp:245] Train net output #7: loss1/accuracy07 = 1
I0422 04:02:28.918094 32397 solver.cpp:245] Train net output #8: loss1/accuracy08 = 1
I0422 04:02:28.918107 32397 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1
I0422 04:02:28.918119 32397 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0422 04:02:28.918131 32397 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0422 04:02:28.918144 32397 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0422 04:02:28.918157 32397 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0422 04:02:28.918169 32397 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0422 04:02:28.918181 32397 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0422 04:02:28.918193 32397 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0422 04:02:28.918208 32397 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0422 04:02:28.918221 32397 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0422 04:02:28.918234 32397 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0422 04:02:28.918246 32397 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0422 04:02:28.918258 32397 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0422 04:02:28.918270 32397 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0422 04:02:28.918282 32397 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.914773
I0422 04:02:28.918294 32397 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.954545
I0422 04:02:28.918311 32397 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 0.829779 (* 0.3 = 0.248934 loss)
I0422 04:02:28.918328 32397 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.251361 (* 0.3 = 0.0754082 loss)
I0422 04:02:28.918341 32397 solver.cpp:245] Train net output #27: loss1/loss01 = 0.601802 (* 0.0272727 = 0.0164128 loss)
I0422 04:02:28.918356 32397 solver.cpp:245] Train net output #28: loss1/loss02 = 0.884817 (* 0.0272727 = 0.0241314 loss)
I0422 04:02:28.918370 32397 solver.cpp:245] Train net output #29: loss1/loss03 = 1.40152 (* 0.0272727 = 0.0382232 loss)
I0422 04:02:28.918385 32397 solver.cpp:245] Train net output #30: loss1/loss04 = 1.26254 (* 0.0272727 = 0.0344328 loss)
I0422 04:02:28.918400 32397 solver.cpp:245] Train net output #31: loss1/loss05 = 1.14088 (* 0.0272727 = 0.0311148 loss)
I0422 04:02:28.918413 32397 solver.cpp:245] Train net output #32: loss1/loss06 = 1.40402 (* 0.0272727 = 0.0382913 loss)
I0422 04:02:28.918428 32397 solver.cpp:245] Train net output #33: loss1/loss07 = 0.256702 (* 0.0272727 = 0.00700096 loss)
I0422 04:02:28.918442 32397 solver.cpp:245] Train net output #34: loss1/loss08 = 0.0535549 (* 0.0272727 = 0.00146059 loss)
I0422 04:02:28.918457 32397 solver.cpp:245] Train net output #35: loss1/loss09 = 0.00674666 (* 0.0272727 = 0.000184 loss)
I0422 04:02:28.918473 32397 solver.cpp:245] Train net output #36: loss1/loss10 = 0.000882225 (* 0.0272727 = 2.40607e-05 loss)
I0422 04:02:28.918488 32397 solver.cpp:245] Train net output #37: loss1/loss11 = 2.19048e-06 (* 0.0272727 = 5.97403e-08 loss)
I0422 04:02:28.918501 32397 solver.cpp:245] Train net output #38: loss1/loss12 = 3.62101e-06 (* 0.0272727 = 9.87548e-08 loss)
I0422 04:02:28.918531 32397 solver.cpp:245] Train net output #39: loss1/loss13 = 3.94883e-06 (* 0.0272727 = 1.07695e-07 loss)
I0422 04:02:28.918547 32397 solver.cpp:245] Train net output #40: loss1/loss14 = 3.42729e-06 (* 0.0272727 = 9.34714e-08 loss)
I0422 04:02:28.918561 32397 solver.cpp:245] Train net output #41: loss1/loss15 = 2.80143e-06 (* 0.0272727 = 7.64026e-08 loss)
I0422 04:02:28.918576 32397 solver.cpp:245] Train net output #42: loss1/loss16 = 9.47737e-06 (* 0.0272727 = 2.58474e-07 loss)
I0422 04:02:28.918591 32397 solver.cpp:245] Train net output #43: loss1/loss17 = 2.35439e-06 (* 0.0272727 = 6.42107e-08 loss)
I0422 04:02:28.918606 32397 solver.cpp:245] Train net output #44: loss1/loss18 = 3.5465e-06 (* 0.0272727 = 9.67227e-08 loss)
I0422 04:02:28.918619 32397 solver.cpp:245] Train net output #45: loss1/loss19 = 3.6061e-06 (* 0.0272727 = 9.83481e-08 loss)
I0422 04:02:28.918633 32397 solver.cpp:245] Train net output #46: loss1/loss20 = 3.15906e-06 (* 0.0272727 = 8.61562e-08 loss)
I0422 04:02:28.918648 32397 solver.cpp:245] Train net output #47: loss1/loss21 = 3.88923e-06 (* 0.0272727 = 1.0607e-07 loss)
I0422 04:02:28.918663 32397 solver.cpp:245] Train net output #48: loss1/loss22 = 5.51348e-06 (* 0.0272727 = 1.50368e-07 loss)
I0422 04:02:28.918675 32397 solver.cpp:245] Train net output #49: loss2/accuracy = 0.909091
I0422 04:02:28.918689 32397 solver.cpp:245] Train net output #50: loss2/accuracy01 = 1
I0422 04:02:28.918700 32397 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.625
I0422 04:02:28.918712 32397 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.875
I0422 04:02:28.918740 32397 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.375
I0422 04:02:28.918753 32397 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.875
I0422 04:02:28.918766 32397 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.875
I0422 04:02:28.918778 32397 solver.cpp:245] Train net output #56: loss2/accuracy07 = 1
I0422 04:02:28.918790 32397 solver.cpp:245] Train net output #57: loss2/accuracy08 = 1
I0422 04:02:28.918802 32397 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1
I0422 04:02:28.918813 32397 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0422 04:02:28.918825 32397 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0422 04:02:28.918838 32397 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0422 04:02:28.918848 32397 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0422 04:02:28.918860 32397 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0422 04:02:28.918871 32397 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0422 04:02:28.918884 32397 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0422 04:02:28.918895 32397 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0422 04:02:28.918906 32397 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0422 04:02:28.918918 32397 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0422 04:02:28.918931 32397 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0422 04:02:28.918942 32397 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0422 04:02:28.918953 32397 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0422 04:02:28.918965 32397 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.977273
I0422 04:02:28.918982 32397 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 1
I0422 04:02:28.918997 32397 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.295182 (* 0.3 = 0.0885547 loss)
I0422 04:02:28.919010 32397 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.0826292 (* 0.3 = 0.0247888 loss)
I0422 04:02:28.919025 32397 solver.cpp:245] Train net output #76: loss2/loss01 = 0.0467008 (* 0.0272727 = 0.00127366 loss)
I0422 04:02:28.919039 32397 solver.cpp:245] Train net output #77: loss2/loss02 = 0.624805 (* 0.0272727 = 0.0170401 loss)
I0422 04:02:28.919066 32397 solver.cpp:245] Train net output #78: loss2/loss03 = 0.670761 (* 0.0272727 = 0.0182935 loss)
I0422 04:02:28.919081 32397 solver.cpp:245] Train net output #79: loss2/loss04 = 1.32481 (* 0.0272727 = 0.0361311 loss)
I0422 04:02:28.919096 32397 solver.cpp:245] Train net output #80: loss2/loss05 = 0.686303 (* 0.0272727 = 0.0187174 loss)
I0422 04:02:28.919111 32397 solver.cpp:245] Train net output #81: loss2/loss06 = 0.484857 (* 0.0272727 = 0.0132234 loss)
I0422 04:02:28.919124 32397 solver.cpp:245] Train net output #82: loss2/loss07 = 0.0747565 (* 0.0272727 = 0.00203881 loss)
I0422 04:02:28.919138 32397 solver.cpp:245] Train net output #83: loss2/loss08 = 0.00125645 (* 0.0272727 = 3.42668e-05 loss)
I0422 04:02:28.919153 32397 solver.cpp:245] Train net output #84: loss2/loss09 = 0.000398114 (* 0.0272727 = 1.08577e-05 loss)
I0422 04:02:28.919167 32397 solver.cpp:245] Train net output #85: loss2/loss10 = 0.000110204 (* 0.0272727 = 3.00557e-06 loss)
I0422 04:02:28.919181 32397 solver.cpp:245] Train net output #86: loss2/loss11 = 1.11759e-06 (* 0.0272727 = 3.04797e-08 loss)
I0422 04:02:28.919196 32397 solver.cpp:245] Train net output #87: loss2/loss12 = 4.61936e-07 (* 0.0272727 = 1.25983e-08 loss)
I0422 04:02:28.919210 32397 solver.cpp:245] Train net output #88: loss2/loss13 = 7.30158e-07 (* 0.0272727 = 1.99134e-08 loss)
I0422 04:02:28.919224 32397 solver.cpp:245] Train net output #89: loss2/loss14 = 7.5996e-07 (* 0.0272727 = 2.07262e-08 loss)
I0422 04:02:28.919239 32397 solver.cpp:245] Train net output #90: loss2/loss15 = 1.11759e-06 (* 0.0272727 = 3.04797e-08 loss)
I0422 04:02:28.919255 32397 solver.cpp:245] Train net output #91: loss2/loss16 = 5.36442e-07 (* 0.0272727 = 1.46302e-08 loss)
I0422 04:02:28.919270 32397 solver.cpp:245] Train net output #92: loss2/loss17 = 4.17233e-07 (* 0.0272727 = 1.13791e-08 loss)
I0422 04:02:28.919284 32397 solver.cpp:245] Train net output #93: loss2/loss18 = 1.17719e-06 (* 0.0272727 = 3.21053e-08 loss)
I0422 04:02:28.919298 32397 solver.cpp:245] Train net output #94: loss2/loss19 = 8.64268e-07 (* 0.0272727 = 2.3571e-08 loss)
I0422 04:02:28.919312 32397 solver.cpp:245] Train net output #95: loss2/loss20 = 7.15257e-07 (* 0.0272727 = 1.9507e-08 loss)
I0422 04:02:28.919327 32397 solver.cpp:245] Train net output #96: loss2/loss21 = 7.15257e-07 (* 0.0272727 = 1.9507e-08 loss)
I0422 04:02:28.919340 32397 solver.cpp:245] Train net output #97: loss2/loss22 = 1.01328e-06 (* 0.0272727 = 2.7635e-08 loss)
I0422 04:02:28.919366 32397 solver.cpp:245] Train net output #98: loss3/accuracy = 1
I0422 04:02:28.919380 32397 solver.cpp:245] Train net output #99: loss3/accuracy01 = 1
I0422 04:02:28.919392 32397 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0422 04:02:28.919404 32397 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0422 04:02:28.919417 32397 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1
I0422 04:02:28.919428 32397 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875
I0422 04:02:28.919440 32397 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.875
I0422 04:02:28.919453 32397 solver.cpp:245] Train net output #105: loss3/accuracy07 = 1
I0422 04:02:28.919466 32397 solver.cpp:245] Train net output #106: loss3/accuracy08 = 1
I0422 04:02:28.919477 32397 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1
I0422 04:02:28.919489 32397 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0422 04:02:28.919502 32397 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0422 04:02:28.919512 32397 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0422 04:02:28.919524 32397 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0422 04:02:28.919536 32397 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0422 04:02:28.919548 32397 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0422 04:02:28.919571 32397 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0422 04:02:28.919585 32397 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0422 04:02:28.919597 32397 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0422 04:02:28.919608 32397 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0422 04:02:28.919620 32397 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0422 04:02:28.919631 32397 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0422 04:02:28.919643 32397 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0422 04:02:28.919654 32397 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 1
I0422 04:02:28.919667 32397 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 1
I0422 04:02:28.919680 32397 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.0345705 (* 1 = 0.0345705 loss)
I0422 04:02:28.919694 32397 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.0102226 (* 1 = 0.0102226 loss)
I0422 04:02:28.919709 32397 solver.cpp:245] Train net output #125: loss3/loss01 = 0.0250205 (* 0.0909091 = 0.00227459 loss)
I0422 04:02:28.919723 32397 solver.cpp:245] Train net output #126: loss3/loss02 = 0.0494076 (* 0.0909091 = 0.0044916 loss)
I0422 04:02:28.919739 32397 solver.cpp:245] Train net output #127: loss3/loss03 = 0.0416999 (* 0.0909091 = 0.0037909 loss)
I0422 04:02:28.919752 32397 solver.cpp:245] Train net output #128: loss3/loss04 = 0.0245689 (* 0.0909091 = 0.00223354 loss)
I0422 04:02:28.919766 32397 solver.cpp:245] Train net output #129: loss3/loss05 = 0.249553 (* 0.0909091 = 0.0226867 loss)
I0422 04:02:28.919780 32397 solver.cpp:245] Train net output #130: loss3/loss06 = 0.342375 (* 0.0909091 = 0.031125 loss)
I0422 04:02:28.919795 32397 solver.cpp:245] Train net output #131: loss3/loss07 = 0.0061287 (* 0.0909091 = 0.000557155 loss)
I0422 04:02:28.919806 32397 solver.cpp:245] Train net output #132: loss3/loss08 = 0.00336178 (* 0.0909091 = 0.000305617 loss)
I0422 04:02:28.919816 32397 solver.cpp:245] Train net output #133: loss3/loss09 = 0.00011476 (* 0.0909091 = 1.04328e-05 loss)
I0422 04:02:28.919831 32397 solver.cpp:245] Train net output #134: loss3/loss10 = 2.56906e-05 (* 0.0909091 = 2.33551e-06 loss)
I0422 04:02:28.919844 32397 solver.cpp:245] Train net output #135: loss3/loss11 = 2.63751e-06 (* 0.0909091 = 2.39774e-07 loss)
I0422 04:02:28.919858 32397 solver.cpp:245] Train net output #136: loss3/loss12 = 4.00844e-06 (* 0.0909091 = 3.64404e-07 loss)
I0422 04:02:28.919872 32397 solver.cpp:245] Train net output #137: loss3/loss13 = 2.4736e-06 (* 0.0909091 = 2.24873e-07 loss)
I0422 04:02:28.919886 32397 solver.cpp:245] Train net output #138: loss3/loss14 = 3.50179e-06 (* 0.0909091 = 3.18345e-07 loss)
I0422 04:02:28.919900 32397 solver.cpp:245] Train net output #139: loss3/loss15 = 2.75673e-06 (* 0.0909091 = 2.50612e-07 loss)
I0422 04:02:28.919914 32397 solver.cpp:245] Train net output #140: loss3/loss16 = 3.47199e-06 (* 0.0909091 = 3.15635e-07 loss)
I0422 04:02:28.919929 32397 solver.cpp:245] Train net output #141: loss3/loss17 = 3.03985e-06 (* 0.0909091 = 2.7635e-07 loss)
I0422 04:02:28.919942 32397 solver.cpp:245] Train net output #142: loss3/loss18 = 2.59281e-06 (* 0.0909091 = 2.3571e-07 loss)
I0422 04:02:28.919955 32397 solver.cpp:245] Train net output #143: loss3/loss19 = 3.91903e-06 (* 0.0909091 = 3.56276e-07 loss)
I0422 04:02:28.919970 32397 solver.cpp:245] Train net output #144: loss3/loss20 = 2.72692e-06 (* 0.0909091 = 2.47902e-07 loss)
I0422 04:02:28.919983 32397 solver.cpp:245] Train net output #145: loss3/loss21 = 2.65242e-06 (* 0.0909091 = 2.41129e-07 loss)
I0422 04:02:28.919997 32397 solver.cpp:245] Train net output #146: loss3/loss22 = 2.54811e-06 (* 0.0909091 = 2.31646e-07 loss)
I0422 04:02:28.920009 32397 solver.cpp:245] Train net output #147: total_accuracy = 1
I0422 04:02:28.920020 32397 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.75
I0422 04:02:28.920047 32397 solver.cpp:245] Train net output #149: total_confidence = 0.809848
I0422 04:02:28.920060 32397 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.562669
I0422 04:02:28.920073 32397 sgd_solver.cpp:106] Iteration 24000, lr = 0.001
I0422 04:08:10.696321 32397 solver.cpp:229] Iteration 24500, loss = 2.35105
I0422 04:08:10.696475 32397 solver.cpp:245] Train net output #0: loss1/accuracy = 0.75
I0422 04:08:10.696496 32397 solver.cpp:245] Train net output #1: loss1/accuracy01 = 0.75
I0422 04:08:10.696509 32397 solver.cpp:245] Train net output #2: loss1/accuracy02 = 0.875
I0422 04:08:10.696523 32397 solver.cpp:245] Train net output #3: loss1/accuracy03 = 0.125
I0422 04:08:10.696535 32397 solver.cpp:245] Train net output #4: loss1/accuracy04 = 0.5
I0422 04:08:10.696548 32397 solver.cpp:245] Train net output #5: loss1/accuracy05 = 0.125
I0422 04:08:10.696562 32397 solver.cpp:245] Train net output #6: loss1/accuracy06 = 0.75
I0422 04:08:10.696573 32397 solver.cpp:245] Train net output #7: loss1/accuracy07 = 0.875
I0422 04:08:10.696586 32397 solver.cpp:245] Train net output #8: loss1/accuracy08 = 0.875
I0422 04:08:10.696599 32397 solver.cpp:245] Train net output #9: loss1/accuracy09 = 1
I0422 04:08:10.696612 32397 solver.cpp:245] Train net output #10: loss1/accuracy10 = 1
I0422 04:08:10.696624 32397 solver.cpp:245] Train net output #11: loss1/accuracy11 = 1
I0422 04:08:10.696636 32397 solver.cpp:245] Train net output #12: loss1/accuracy12 = 1
I0422 04:08:10.696650 32397 solver.cpp:245] Train net output #13: loss1/accuracy13 = 1
I0422 04:08:10.696661 32397 solver.cpp:245] Train net output #14: loss1/accuracy14 = 1
I0422 04:08:10.696673 32397 solver.cpp:245] Train net output #15: loss1/accuracy15 = 1
I0422 04:08:10.696686 32397 solver.cpp:245] Train net output #16: loss1/accuracy16 = 1
I0422 04:08:10.696697 32397 solver.cpp:245] Train net output #17: loss1/accuracy17 = 1
I0422 04:08:10.696710 32397 solver.cpp:245] Train net output #18: loss1/accuracy18 = 1
I0422 04:08:10.696722 32397 solver.cpp:245] Train net output #19: loss1/accuracy19 = 1
I0422 04:08:10.696734 32397 solver.cpp:245] Train net output #20: loss1/accuracy20 = 1
I0422 04:08:10.696746 32397 solver.cpp:245] Train net output #21: loss1/accuracy21 = 1
I0422 04:08:10.696758 32397 solver.cpp:245] Train net output #22: loss1/accuracy22 = 1
I0422 04:08:10.696770 32397 solver.cpp:245] Train net output #23: loss1/accuracy_incl_empty = 0.926136
I0422 04:08:10.696782 32397 solver.cpp:245] Train net output #24: loss1/accuracy_top3 = 0.895833
I0422 04:08:10.696799 32397 solver.cpp:245] Train net output #25: loss1/cross_entropy_loss = 0.821072 (* 0.3 = 0.246322 loss)
I0422 04:08:10.696815 32397 solver.cpp:245] Train net output #26: loss1/cross_entropy_loss_incl_empty = 0.258 (* 0.3 = 0.0774001 loss)
I0422 04:08:10.696830 32397 solver.cpp:245] Train net output #27: loss1/loss01 = 0.981332 (* 0.0272727 = 0.0267636 loss)
I0422 04:08:10.696843 32397 solver.cpp:245] Train net output #28: loss1/loss02 = 0.753285 (* 0.0272727 = 0.0205441 loss)
I0422 04:08:10.696857 32397 solver.cpp:245] Train net output #29: loss1/loss03 = 2.61832 (* 0.0272727 = 0.0714087 loss)
I0422 04:08:10.696871 32397 solver.cpp:245] Train net output #30: loss1/loss04 = 1.319 (* 0.0272727 = 0.0359728 loss)
I0422 04:08:10.696885 32397 solver.cpp:245] Train net output #31: loss1/loss05 = 2.37669 (* 0.0272727 = 0.0648189 loss)
I0422 04:08:10.696899 32397 solver.cpp:245] Train net output #32: loss1/loss06 = 1.23693 (* 0.0272727 = 0.0337345 loss)
I0422 04:08:10.696913 32397 solver.cpp:245] Train net output #33: loss1/loss07 = 0.403746 (* 0.0272727 = 0.0110113 loss)
I0422 04:08:10.696928 32397 solver.cpp:245] Train net output #34: loss1/loss08 = 0.286034 (* 0.0272727 = 0.00780092 loss)
I0422 04:08:10.696943 32397 solver.cpp:245] Train net output #35: loss1/loss09 = 0.00707855 (* 0.0272727 = 0.000193051 loss)
I0422 04:08:10.696956 32397 solver.cpp:245] Train net output #36: loss1/loss10 = 0.0011391 (* 0.0272727 = 3.10664e-05 loss)
I0422 04:08:10.696971 32397 solver.cpp:245] Train net output #37: loss1/loss11 = 1.31132e-05 (* 0.0272727 = 3.57633e-07 loss)
I0422 04:08:10.696985 32397 solver.cpp:245] Train net output #38: loss1/loss12 = 1.0118e-05 (* 0.0272727 = 2.75946e-07 loss)
I0422 04:08:10.697019 32397 solver.cpp:245] Train net output #39: loss1/loss13 = 1.15635e-05 (* 0.0272727 = 3.15368e-07 loss)
I0422 04:08:10.697036 32397 solver.cpp:245] Train net output #40: loss1/loss14 = 9.04512e-06 (* 0.0272727 = 2.46685e-07 loss)
I0422 04:08:10.697049 32397 solver.cpp:245] Train net output #41: loss1/loss15 = 1.01329e-05 (* 0.0272727 = 2.76353e-07 loss)
I0422 04:08:10.697064 32397 solver.cpp:245] Train net output #42: loss1/loss16 = 1.33367e-05 (* 0.0272727 = 3.63729e-07 loss)
I0422 04:08:10.697078 32397 solver.cpp:245] Train net output #43: loss1/loss17 = 8.47886e-06 (* 0.0272727 = 2.31242e-07 loss)
I0422 04:08:10.697093 32397 solver.cpp:245] Train net output #44: loss1/loss18 = 2.11907e-05 (* 0.0272727 = 5.77927e-07 loss)
I0422 04:08:10.697106 32397 solver.cpp:245] Train net output #45: loss1/loss19 = 1.15485e-05 (* 0.0272727 = 3.1496e-07 loss)
I0422 04:08:10.697120 32397 solver.cpp:245] Train net output #46: loss1/loss20 = 1.18913e-05 (* 0.0272727 = 3.24309e-07 loss)
I0422 04:08:10.697134 32397 solver.cpp:245] Train net output #47: loss1/loss21 = 1.23086e-05 (* 0.0272727 = 3.3569e-07 loss)
I0422 04:08:10.697149 32397 solver.cpp:245] Train net output #48: loss1/loss22 = 7.04831e-06 (* 0.0272727 = 1.92227e-07 loss)
I0422 04:08:10.697160 32397 solver.cpp:245] Train net output #49: loss2/accuracy = 0.895833
I0422 04:08:10.697172 32397 solver.cpp:245] Train net output #50: loss2/accuracy01 = 0.875
I0422 04:08:10.697185 32397 solver.cpp:245] Train net output #51: loss2/accuracy02 = 0.875
I0422 04:08:10.697196 32397 solver.cpp:245] Train net output #52: loss2/accuracy03 = 0.25
I0422 04:08:10.697211 32397 solver.cpp:245] Train net output #53: loss2/accuracy04 = 0.375
I0422 04:08:10.697224 32397 solver.cpp:245] Train net output #54: loss2/accuracy05 = 0.125
I0422 04:08:10.697237 32397 solver.cpp:245] Train net output #55: loss2/accuracy06 = 0.875
I0422 04:08:10.697247 32397 solver.cpp:245] Train net output #56: loss2/accuracy07 = 0.875
I0422 04:08:10.697259 32397 solver.cpp:245] Train net output #57: loss2/accuracy08 = 0.875
I0422 04:08:10.697271 32397 solver.cpp:245] Train net output #58: loss2/accuracy09 = 1
I0422 04:08:10.697283 32397 solver.cpp:245] Train net output #59: loss2/accuracy10 = 1
I0422 04:08:10.697295 32397 solver.cpp:245] Train net output #60: loss2/accuracy11 = 1
I0422 04:08:10.697306 32397 solver.cpp:245] Train net output #61: loss2/accuracy12 = 1
I0422 04:08:10.697319 32397 solver.cpp:245] Train net output #62: loss2/accuracy13 = 1
I0422 04:08:10.697329 32397 solver.cpp:245] Train net output #63: loss2/accuracy14 = 1
I0422 04:08:10.697340 32397 solver.cpp:245] Train net output #64: loss2/accuracy15 = 1
I0422 04:08:10.697352 32397 solver.cpp:245] Train net output #65: loss2/accuracy16 = 1
I0422 04:08:10.697365 32397 solver.cpp:245] Train net output #66: loss2/accuracy17 = 1
I0422 04:08:10.697376 32397 solver.cpp:245] Train net output #67: loss2/accuracy18 = 1
I0422 04:08:10.697386 32397 solver.cpp:245] Train net output #68: loss2/accuracy19 = 1
I0422 04:08:10.697398 32397 solver.cpp:245] Train net output #69: loss2/accuracy20 = 1
I0422 04:08:10.697417 32397 solver.cpp:245] Train net output #70: loss2/accuracy21 = 1
I0422 04:08:10.697427 32397 solver.cpp:245] Train net output #71: loss2/accuracy22 = 1
I0422 04:08:10.697438 32397 solver.cpp:245] Train net output #72: loss2/accuracy_incl_empty = 0.965909
I0422 04:08:10.697450 32397 solver.cpp:245] Train net output #73: loss2/accuracy_top3 = 0.979167
I0422 04:08:10.697464 32397 solver.cpp:245] Train net output #74: loss2/cross_entropy_loss = 0.462797 (* 0.3 = 0.138839 loss)
I0422 04:08:10.697479 32397 solver.cpp:245] Train net output #75: loss2/cross_entropy_loss_incl_empty = 0.15875 (* 0.3 = 0.047625 loss)
I0422 04:08:10.697495 32397 solver.cpp:245] Train net output #76: loss2/loss01 = 0.615993 (* 0.0272727 = 0.0167998 loss)
I0422 04:08:10.697510 32397 solver.cpp:245] Train net output #77: loss2/loss02 = 0.482364 (* 0.0272727 = 0.0131554 loss)
I0422 04:08:10.697541 32397 solver.cpp:245] Train net output #78: loss2/loss03 = 1.91209 (* 0.0272727 = 0.0521479 loss)
I0422 04:08:10.697556 32397 solver.cpp:245] Train net output #79: loss2/loss04 = 1.35189 (* 0.0272727 = 0.0368698 loss)
I0422 04:08:10.697571 32397 solver.cpp:245] Train net output #80: loss2/loss05 = 1.6348 (* 0.0272727 = 0.0445854 loss)
I0422 04:08:10.697584 32397 solver.cpp:245] Train net output #81: loss2/loss06 = 0.894097 (* 0.0272727 = 0.0243845 loss)
I0422 04:08:10.697598 32397 solver.cpp:245] Train net output #82: loss2/loss07 = 0.279909 (* 0.0272727 = 0.00763388 loss)
I0422 04:08:10.697613 32397 solver.cpp:245] Train net output #83: loss2/loss08 = 0.230714 (* 0.0272727 = 0.00629219 loss)
I0422 04:08:10.697626 32397 solver.cpp:245] Train net output #84: loss2/loss09 = 0.0162417 (* 0.0272727 = 0.000442956 loss)
I0422 04:08:10.697641 32397 solver.cpp:245] Train net output #85: loss2/loss10 = 0.00109805 (* 0.0272727 = 2.99469e-05 loss)
I0422 04:08:10.697655 32397 solver.cpp:245] Train net output #86: loss2/loss11 = 5.27508e-06 (* 0.0272727 = 1.43866e-07 loss)
I0422 04:08:10.697669 32397 solver.cpp:245] Train net output #87: loss2/loss12 = 2.51831e-06 (* 0.0272727 = 6.86811e-08 loss)
I0422 04:08:10.697684 32397 solver.cpp:245] Train net output #88: loss2/loss13 = 3.08457e-06 (* 0.0272727 = 8.41247e-08 loss)
I0422 04:08:10.697697 32397 solver.cpp:245] Train net output #89: loss2/loss14 = 4.03825e-06 (* 0.0272727 = 1.10134e-07 loss)
I0422 04:08:10.697711 32397 solver.cpp:245] Train net output #90: loss2/loss15 = 4.50021e-06 (* 0.0272727 = 1.22733e-07 loss)
I0422 04:08:10.697726 32397 solver.cpp:245] Train net output #91: loss2/loss16 = 5.48373e-06 (* 0.0272727 = 1.49556e-07 loss)
I0422 04:08:10.697739 32397 solver.cpp:245] Train net output #92: loss2/loss17 = 7.95743e-06 (* 0.0272727 = 2.17021e-07 loss)
I0422 04:08:10.697753 32397 solver.cpp:245] Train net output #93: loss2/loss18 = 9.46254e-06 (* 0.0272727 = 2.58069e-07 loss)
I0422 04:08:10.697767 32397 solver.cpp:245] Train net output #94: loss2/loss19 = 4.32138e-06 (* 0.0272727 = 1.17856e-07 loss)
I0422 04:08:10.697782 32397 solver.cpp:245] Train net output #95: loss2/loss20 = 3.60612e-06 (* 0.0272727 = 9.83486e-08 loss)
I0422 04:08:10.697795 32397 solver.cpp:245] Train net output #96: loss2/loss21 = 1.74344e-06 (* 0.0272727 = 4.75485e-08 loss)
I0422 04:08:10.697809 32397 solver.cpp:245] Train net output #97: loss2/loss22 = 3.84455e-06 (* 0.0272727 = 1.04851e-07 loss)
I0422 04:08:10.697821 32397 solver.cpp:245] Train net output #98: loss3/accuracy = 0.958333
I0422 04:08:10.697834 32397 solver.cpp:245] Train net output #99: loss3/accuracy01 = 0.875
I0422 04:08:10.697845 32397 solver.cpp:245] Train net output #100: loss3/accuracy02 = 1
I0422 04:08:10.697857 32397 solver.cpp:245] Train net output #101: loss3/accuracy03 = 1
I0422 04:08:10.697868 32397 solver.cpp:245] Train net output #102: loss3/accuracy04 = 1
I0422 04:08:10.697880 32397 solver.cpp:245] Train net output #103: loss3/accuracy05 = 0.875
I0422 04:08:10.697892 32397 solver.cpp:245] Train net output #104: loss3/accuracy06 = 0.75
I0422 04:08:10.697904 32397 solver.cpp:245] Train net output #105: loss3/accuracy07 = 1
I0422 04:08:10.697916 32397 solver.cpp:245] Train net output #106: loss3/accuracy08 = 0.875
I0422 04:08:10.697928 32397 solver.cpp:245] Train net output #107: loss3/accuracy09 = 1
I0422 04:08:10.697939 32397 solver.cpp:245] Train net output #108: loss3/accuracy10 = 1
I0422 04:08:10.697952 32397 solver.cpp:245] Train net output #109: loss3/accuracy11 = 1
I0422 04:08:10.697962 32397 solver.cpp:245] Train net output #110: loss3/accuracy12 = 1
I0422 04:08:10.697973 32397 solver.cpp:245] Train net output #111: loss3/accuracy13 = 1
I0422 04:08:10.697985 32397 solver.cpp:245] Train net output #112: loss3/accuracy14 = 1
I0422 04:08:10.697996 32397 solver.cpp:245] Train net output #113: loss3/accuracy15 = 1
I0422 04:08:10.698017 32397 solver.cpp:245] Train net output #114: loss3/accuracy16 = 1
I0422 04:08:10.698030 32397 solver.cpp:245] Train net output #115: loss3/accuracy17 = 1
I0422 04:08:10.698042 32397 solver.cpp:245] Train net output #116: loss3/accuracy18 = 1
I0422 04:08:10.698055 32397 solver.cpp:245] Train net output #117: loss3/accuracy19 = 1
I0422 04:08:10.698065 32397 solver.cpp:245] Train net output #118: loss3/accuracy20 = 1
I0422 04:08:10.698076 32397 solver.cpp:245] Train net output #119: loss3/accuracy21 = 1
I0422 04:08:10.698088 32397 solver.cpp:245] Train net output #120: loss3/accuracy22 = 1
I0422 04:08:10.698099 32397 solver.cpp:245] Train net output #121: loss3/accuracy_incl_empty = 0.982955
I0422 04:08:10.698112 32397 solver.cpp:245] Train net output #122: loss3/accuracy_top3 = 1
I0422 04:08:10.698125 32397 solver.cpp:245] Train net output #123: loss3/cross_entropy_loss = 0.188251 (* 1 = 0.188251 loss)
I0422 04:08:10.698139 32397 solver.cpp:245] Train net output #124: loss3/cross_entropy_loss_incl_empty = 0.0630936 (* 1 = 0.0630936 loss)
I0422 04:08:10.698154 32397 solver.cpp:245] Train net output #125: loss3/loss01 = 0.34099 (* 0.0909091 = 0.0309991 loss)
I0422 04:08:10.698168 32397 solver.cpp:245] Train net output #126: loss3/loss02 = 0.117195 (* 0.0909091 = 0.0106541 loss)
I0422 04:08:10.698184 32397 solver.cpp:245] Train net output #127: loss3/loss03 = 0.101486 (* 0.0909091 = 0.00922604 loss)
I0422 04:08:10.698197 32397 solver.cpp:245] Train net output #128: loss3/loss04 = 0.0552507 (* 0.0909091 = 0.0050228 loss)
I0422 04:08:10.698210 32397 solver.cpp:245] Train net output #129: loss3/loss05 = 0.424882 (* 0.0909091 = 0.0386256 loss)
I0422 04:08:10.698225 32397 solver.cpp:245] Train net output #130: loss3/loss06 = 0.806323 (* 0.0909091 = 0.0733021 loss)
I0422 04:08:10.698238 32397 solver.cpp:245] Train net output #131: loss3/loss07 = 0.069893 (* 0.0909091 = 0.00635391 loss)
I0422 04:08:10.698256 32397 solver.cpp:245] Train net output #132: loss3/loss08 = 0.25984 (* 0.0909091 = 0.0236219 loss)
I0422 04:08:10.698271 32397 solver.cpp:245] Train net output #133: loss3/loss09 = 0.00586202 (* 0.0909091 = 0.000532911 loss)
I0422 04:08:10.698284 32397 solver.cpp:245] Train net output #134: loss3/loss10 = 0.000623214 (* 0.0909091 = 5.66558e-05 loss)
I0422 04:08:10.698297 32397 solver.cpp:245] Train net output #135: loss3/loss11 = 4.73861e-06 (* 0.0909091 = 4.30782e-07 loss)
I0422 04:08:10.698312 32397 solver.cpp:245] Train net output #136: loss3/loss12 = 4.50019e-06 (* 0.0909091 = 4.09108e-07 loss)
I0422 04:08:10.698325 32397 solver.cpp:245] Train net output #137: loss3/loss13 = 3.77002e-06 (* 0.0909091 = 3.42729e-07 loss)
I0422 04:08:10.698339 32397 solver.cpp:245] Train net output #138: loss3/loss14 = 3.88923e-06 (* 0.0909091 = 3.53566e-07 loss)
I0422 04:08:10.698353 32397 solver.cpp:245] Train net output #139: loss3/loss15 = 4.6045e-06 (* 0.0909091 = 4.18591e-07 loss)
I0422 04:08:10.698366 32397 solver.cpp:245] Train net output #140: loss3/loss16 = 4.21706e-06 (* 0.0909091 = 3.83369e-07 loss)
I0422 04:08:10.698380 32397 solver.cpp:245] Train net output #141: loss3/loss17 = 3.39748e-06 (* 0.0909091 = 3.08862e-07 loss)
I0422 04:08:10.698395 32397 solver.cpp:245] Train net output #142: loss3/loss18 = 4.7535e-06 (* 0.0909091 = 4.32137e-07 loss)
I0422 04:08:10.698408 32397 solver.cpp:245] Train net output #143: loss3/loss19 = 4.05314e-06 (* 0.0909091 = 3.68467e-07 loss)
I0422 04:08:10.698422 32397 solver.cpp:245] Train net output #144: loss3/loss20 = 4.41078e-06 (* 0.0909091 = 4.0098e-07 loss)
I0422 04:08:10.698436 32397 solver.cpp:245] Train net output #145: loss3/loss21 = 4.41078e-06 (* 0.0909091 = 4.0098e-07 loss)
I0422 04:08:10.698449 32397 solver.cpp:245] Train net output #146: loss3/loss22 = 4.50019e-06 (* 0.0909091 = 4.09108e-07 loss)
I0422 04:08:10.698462 32397 solver.cpp:245] Train net output #147: total_accuracy = 0.625
I0422 04:08:10.698473 32397 solver.cpp:245] Train net output #148: total_accuracy_not_rec = 0.375
I0422 04:08:10.698494 32397 solver.cpp:245] Train net output #149: total_confidence = 0.623261
I0422 04:08:10.698508 32397 solver.cpp:245] Train net output #150: total_confidence_nor_rec = 0.396158
I0422 04:08:10.698520 32397 sgd_solver.cpp:106] Iteration 24500, lr = 0.001
I0422 04:13:52.178752 32397 solver.cpp:338] Iteration 25000, Testing net (#0)
I0422 04:14:43.751782 32397 solver.cpp:393] Test loss: 2.01369
I0422 04:14:43.751891 32397 solver.cpp:406] Test net output #0: loss1/accuracy = 0.729231
I0422 04:14:43.751911 32397 solver.cpp:406] Test net output #1: loss1/accuracy01 = 0.752
I0422 04:14:43.751926 32397 solver.cpp:406] Test net output #2: loss1/accuracy02 = 0.631
I0422 04:14:43.751940 32397 solver.cpp:406] Test net output #3: loss1/accuracy03 = 0.547
I0422 04:14:43.751953 32397 solver.cpp:406] Test net output #4: loss1/accuracy04 = 0.428
I0422 04:14:43.751966 32397 solver.cpp:406] Test net output #5: loss1/accuracy05 = 0.466
I0422 04:14:43.751978 32397 solver.cpp:406] Test net output #6: loss1/accuracy06 = 0.775
I0422 04:14:43.751991 32397 solver.cpp:406] Test net output #7: loss1/accuracy07 = 0.908
I0422 04:14:43.752003 32397 solver.cpp:406] Test net output #8: loss1/accuracy08 = 0.972
I0422 04:14:43.752015 32397 solver.cpp:406] Test net output #9: loss1/accuracy09 = 0.995
I0422 04:14:43.752027 32397 solver.cpp:406] Test net output #10: loss1/accuracy10 = 0.998
I0422 04:14:43.752040 32397 solver.cpp:406] Test net output #11: loss1/accuracy11 = 1
I0422 04:14:43.752053 32397 solver.cpp:406] Test net output #12: loss1/accuracy12 = 1
I0422 04:14:43.752064 32397 solver.cpp:406] Test net output #13: loss1/accuracy13 = 1
I0422 04:14:43.752076 32397 solver.cpp:406] Test net output #14: loss1/accuracy14 = 1
I0422 04:14:43.752089 32397 solver.cpp:406] Test net output #15: loss1/accuracy15 = 1
I0422 04:14:43.752099 32397 solver.cpp:406] Test net output #16: loss1/accuracy16 = 1
I0422 04:14:43.752112 32397 solver.cpp:406] Test net output #17: loss1/accuracy17 = 1
I0422 04:14:43.752123 32397 solver.cpp:406] Test net output #18: loss1/accuracy18 = 1
I0422 04:14:43.752135 32397 solver.cpp:406] Test net output #19: loss1/accuracy19 = 1
I0422 04:14:43.752147 32397 solver.cpp:406] Test net output #20: loss1/accuracy20 = 1
I0422 04:14:43.752159 32397 solver.cpp:406] Test net output #21: loss1/accuracy21 = 1
I0422 04:14:43.752171 32397 solver.cpp:406] Test net output #22: loss1/accuracy22 = 1
I0422 04:14:43.752182 32397 solver.cpp:406] Test net output #23: loss1/accuracy_incl_empty = 0.932274
I0422 04:14:43.752193 32397 solver.cpp:406] Test net output #24: loss1/accuracy_top3 = 0.896059
I0422 04:14:43.752213 32397 solver.cpp:406] Test net output #25: loss1/cross_entropy_loss = 1.00173 (* 0.3 = 0.30052 loss)
I0422 04:14:43.752228 32397 solver.cpp:406] Test net output #26: loss1/cross_entropy_loss_incl_empty = 0.260124 (* 0.3 = 0.0780373 loss)
I0422 04:14:43.752243 32397 solver.cpp:406] Test net output #27: loss1/loss01 = 0.977959 (* 0.0272727 = 0.0266716 loss)
I0422 04:14:43.752257 32397 solver.cpp:406] Test net output #28: loss1/loss02 = 1.32304 (* 0.0272727 = 0.0360828 loss)
I0422 04:14:43.752271 32397 solver.cpp:406] Test net output #29: loss1/loss03 = 1.51408 (* 0.0272727 = 0.041293 loss)
I0422 04:14:43.752286 32397 solver.cpp:406] Test net output #30: loss1/loss04 = 1.71929 (* 0.0272727 = 0.0468898 loss)
I0422 04:14:43.752300 32397 solver.cpp:406] Test net output #31: loss1/loss05 = 1.55145 (* 0.0272727 = 0.0423123 loss)
I0422 04:14:43.752313 32397 solver.cpp:406] Test net output #32: loss1/loss06 = 0.749655 (* 0.0272727 = 0.0204451 loss)
I0422 04:14:43.752328 32397 solver.cpp:406] Test net output #33: loss1/loss07 = 0.302552 (* 0.0272727 = 0.00825142 loss)
I0422 04:14:43.752342 32397 solver.cpp:406] Test net output #34: loss1/loss08 = 0.142039 (* 0.0272727 = 0.00387378 loss)
I0422 04:14:43.752357 32397 solver.cpp:406] Test net output #35: loss1/loss09 = 0.0480353 (* 0.0272727 = 0.00131005 loss)
I0422 04:14:43.752372 32397 solver.cpp:406] Test net output #36: loss1/loss10 = 0.0242022 (* 0.0272727 = 0.00066006 loss)
I0422 04:14:43.752387 32397 solver.cpp:406] Test net output #37: loss1/loss11 = 0.000157123 (* 0.0272727 = 4.28517e-06 loss)
I0422 04:14:43.752401 32397 solver.cpp:406] Test net output #38: loss1/loss12 = 0.000177449 (* 0.0272727 = 4.83952e-06 loss)
I0422 04:14:43.752415 32397 solver.cpp:406] Test net output #39: loss1/loss13 = 0.000193439 (* 0.0272727 = 5.27562e-06 loss)
I0422 04:14:43.752452 32397 solver.cpp:406] Test net output #40: loss1/loss14 = 0.000166829 (* 0.0272727 = 4.54989e-06 loss)
I0422 04:14:43.752468 32397 solver.cpp:406] Test net output #41: loss1/loss15 = 0.00017174 (* 0.0272727 = 4.68381e-06 loss)
I0422 04:14:43.752482 32397 solver.cpp:406] Test net output #42: loss1/loss16 = 0.000168307 (* 0.0272727 = 4.59019e-06 loss)
I0422 04:14:43.752496 32397 solver.cpp:406] Test net output #43: loss1/loss17 = 0.00016531 (* 0.0272727 = 4.50846e-06 loss)
I0422 04:14:43.752511 32397 solver.cpp:406] Test net output #44: loss1/loss18 = 0.0001745 (* 0.0272727 = 4.7591e-06 loss)
I0422 04:14:43.752526 32397 solver.cpp:406] Test net output #45: loss1/loss19 = 0.000159166 (* 0.0272727 = 4.3409e-06 loss)
I0422 04:14:43.752539 32397 solver.cpp:406] Test net output #46: loss1/loss20 = 0.000174135 (* 0.0272727 = 4.74914e-06 loss)
I0422 04:14:43.752553 32397 solver.cpp:406] Test net output #47: loss1/loss21 = 0.000156723 (* 0.0272727 = 4.27426e-06 loss)
I0422 04:14:43.752568 32397 solver.cpp:406] Test net output #48: loss1/loss22 = 0.000156627 (* 0.0272727 = 4.27164e-06 loss)
I0422 04:14:43.752579 32397 solver.cpp:406] Test net output #49: loss2/accuracy = 0.854044
I0422 04:14:43.752591 32397 solver.cpp:406] Test net output #50: loss2/accuracy01 = 0.865
I0422 04:14:43.752604 32397 solver.cpp:406] Test net output #51: loss2/accuracy02 = 0.828
I0422 04:14:43.752616 32397 solver.cpp:406] Test net output #52: loss2/accuracy03 = 0.689
I0422 04:14:43.752627 32397 solver.cpp:406] Test net output #53: loss2/accuracy04 = 0.546
I0422 04:14:43.752640 32397 solver.cpp:406] Test net output #54: loss2/accuracy05 = 0.569
I0422 04:14:43.752651 32397 solver.cpp:406] Test net output #55: loss2/accuracy06 = 0.834
I0422 04:14:43.752662 32397 solver.cpp:406] Test net output #56: loss2/accuracy07 = 0.934
I0422 04:14:43.752674 32397 solver.cpp:406] Test net output #57: loss2/accuracy08 = 0.972
I0422 04:14:43.752686 32397 solver.cpp:406] Test net output #58: loss2/accuracy09 = 0.995
I0422 04:14:43.752697 32397 solver.cpp:406] Test net output #59: loss2/accuracy10 = 0.998
I0422 04:14:43.752709 32397 solver.cpp:406] Test net output #60: loss2/accuracy11 = 1
I0422 04:14:43.752722 32397 solver.cpp:406] Test net output #61: loss2/accuracy12 = 1
I0422 04:14:43.752733 32397 solver.cpp:406] Test net output #62: loss2/accuracy13 = 1
I0422 04:14:43.752744 32397 solver.cpp:406] Test net output #63: loss2/accuracy14 = 1
I0422 04:14:43.752755 32397 solver.cpp:406] Test net output #64: loss2/accuracy15 = 1
I0422 04:14:43.752768 32397 solver.cpp:406] Test net output #65: loss2/accuracy16 = 1
I0422 04:14:43.752779 32397 solver.cpp:406] Test net output #66: loss2/accuracy17 = 1
I0422 04:14:43.752789 32397 solver.cpp:406] Test net output #67: loss2/accuracy18 = 1
I0422 04:14:43.752801 32397 solver.cpp:406] Test net output #68: loss2/accuracy19 = 1
I0422 04:14:43.752812 32397 solver.cpp:406] Test net output #69: loss2/accuracy20 = 1
I0422 04:14:43.752823 32397 solver.cpp:406] Test net output #70: loss2/accuracy21 = 1
I0422 04:14:43.752835 32397 solver.cpp:406] Test net output #71: loss2/accuracy22 = 1
I0422 04:14:43.752846 32397 solver.cpp:406] Test net output #72: loss2/accuracy_incl_empty = 0.964955
I0422 04:14:43.752858 32397 solver.cpp:406] Test net output #73: loss2/accuracy_top3 = 0.930844
I0422 04:14:43.752871 32397 solver.cpp:406] Test net output #74: loss2/cross_entropy_loss = 0.652502 (* 0.3 = 0.195751 loss)
I0422 04:14:43.752885 32397 solver.cpp:406] Test net output #75: loss2/cross_entropy_loss_incl_empty = 0.165612 (* 0.3 = 0.0496836 loss)
I0422 04:14:43.752900 32397 solver.cpp:406] Test net output #76: loss2/loss01 = 0.600369 (* 0.0272727 = 0.0163737 loss)
I0422 04:14:43.752918 32397 solver.cpp:406] Test net output #77: loss2/loss02 = 0.750886 (* 0.0272727 = 0.0204787 loss)
I0422 04:14:43.752944 32397 solver.cpp:406] Test net output #78: loss2/loss03 = 1.0577 (* 0.0272727 = 0.0288463 loss)
I0422 04:14:43.752959 32397 solver.cpp:406] Test net output #79: loss2/loss04 = 1.27122 (* 0.0272727 = 0.0346697 loss)
I0422 04:14:43.752974 32397 solver.cpp:406] Test net output #80: loss2/loss05 = 1.20642 (* 0.0272727 = 0.0329023 loss)
I0422 04:14:43.752987 32397 solver.cpp:406] Test net output #81: loss2/loss06 = 0.577365 (* 0.0272727 = 0.0157463 loss)
I0422 04:14:43.753001 32397 solver.cpp:406] Test net output #82: loss2/loss07 = 0.230424 (* 0.0272727 = 0.00628429 loss)
I0422 04:14:43.753015 32397 solver.cpp:406] Test net output #83: loss2/loss08 = 0.116959 (* 0.0272727 = 0.00318978 loss)
I0422 04:14:43.753029 32397 solver.cpp:406] Test net output #84: loss2/loss09 = 0.0433476 (* 0.0272727 = 0.00118221 loss)
I0422 04:14:43.753044 32397 solver.cpp:406] Test net output #85: loss2/loss10 = 0.0236142 (* 0.0272727 = 0.000644025 loss)
I0422 04:14:43.753058 32397 solver.cpp:406] Test net output #86: loss2/loss11 = 5.31554e-05 (* 0.0272727 = 1.44969e-06 loss)
I0422 04:14:43.753072 32397 solver.cpp:406] Test net output #87: loss2/loss12 = 5.6487e-05 (* 0.0272727 = 1.54055e-06 loss)
I0422 04:14:43.753087 32397 solver.cpp:406] Test net output #88: loss2/loss13 = 5.5483e-05 (* 0.0272727 = 1.51317e-06 loss)
I0422 04:14:43.753100 32397 solver.cpp:406] Test net output #89: loss2/loss14 = 5.11884e-05 (* 0.0272727 = 1.39605e-06 loss)
I0422 04:14:43.753114 32397 solver.cpp:406] Test net output #90: loss2/loss15 = 5.01089e-05 (* 0.0272727 = 1.36661e-06 loss)
I0422 04:14:43.753129 32397 solver.cpp:406] Test net output #91: loss2/loss16 = 5.20633e-05 (* 0.0272727 = 1.41991e-06 loss)
I0422 04:14:43.753144 32397 solver.cpp:406] Test net output #92: loss2/loss17 = 5.46906e-05 (* 0.0272727 = 1.49156e-06 loss)
I0422 04:14:43.753157 32397 solver.cpp:406] Test net output #93: loss2/loss18 = 5.41421e-05 (* 0.0272727 = 1.4766e-06 loss)
I0422 04:14:43.753170 32397 solver.cpp:406] Test net output #94: loss2/loss19 = 4.98143e-05 (* 0.0272727 = 1.35857e-06 loss)
I0422 04:14:43.753185 32397 solver.cpp:406] Test net output #95: loss2/loss20 = 5.1737e-05 (* 0.0272727 = 1.41101e-06 loss)
I0422 04:14:43.753198 32397 solver.cpp:406] Test net output #96: loss2/loss21 = 4.78192e-05 (* 0.0272727 = 1.30416e-06 loss)
I0422 04:14:43.753212 32397 solver.cpp:406] Test net output #97: loss2/loss22 = 4.91985e-05 (* 0.0272727 = 1.34178e-06 loss)
I0422 04:14:43.753224 32397 solver.cpp:406] Test net output #98: loss3/accuracy = 0.880728
I0422 04:14:43.753237 32397 solver.cpp:406] Test net output #99: loss3/accuracy01 = 0.877
I0422 04:14:43.753248 32397 solver.cpp:406] Test net output #100: loss3/accuracy02 = 0.871
I0422 04:14:43.753263 32397 solver.cpp:406] Test net output #101: loss3/accuracy03 = 0.903
I0422 04:14:43.753274 32397 solver.cpp:406] Test net output #102: loss3/accuracy04 = 0.905
I0422 04:14:43.753286 32397 solver.cpp:406] Test net output #103: loss3/accuracy05 = 0.879
I0422 04:14:43.753298 32397 solver.cpp:406] Test net output #104: loss3/accuracy06 = 0.907
I0422 04:14:43.753309 32397 solver.cpp:406] Test net output #105: loss3/accuracy07 = 0.961
I0422 04:14:43.753321 32397 solver.cpp:406] Test net output #106: loss3/accuracy08 = 0.98
I0422 04:14:43.753334 32397 solver.cpp:406] Test net output #107: loss3/accuracy09 = 0.99
I0422 04:14:43.753345 32397 solver.cpp:406] Test net output #108: loss3/accuracy10 = 0.995
I0422 04:14:43.753356 32397 solver.cpp:406] Test net output #109: loss3/accuracy11 = 1
I0422 04:14:43.753367 32397 solver.cpp:406] Test net output #110: loss3/accuracy12 = 1
I0422 04:14:43.753378 32397 solver.cpp:406] Test net output #111: loss3/accuracy13 = 1
I0422 04:14:43.753391 32397 solver.cpp:406] Test net output #112: loss3/accuracy14 = 1
I0422 04:14:43.753401 32397 solver.cpp:406] Test net output #113: loss3/accuracy15 = 1
I0422 04:14:43.753412 32397 solver.cpp:406] Test net output #114: loss3/accuracy16 = 1
I0422 04:14:43.753434 32397 solver.cpp:406] Test net output #115: loss3/accuracy17 = 1
I0422 04:14:43.753448 32397 solver.cpp:406] Test net output #116: loss3/accuracy18 = 1
I0422 04:14:43.753458 32397 solver.cpp:406] Test net output #117: loss3/accuracy19 = 1
I0422 04:14:43.753470 32397 solver.cpp:406] Test net output #118: loss3/accuracy20 = 1
I0422 04:14:43.753481 32397 solver.cpp:406] Test net output #119: loss3/accuracy21 = 1
I0422 04:14:43.753492 32397 solver.cpp:406] Test net output #120: loss3/accuracy22 = 1
I0422 04:14:43.753504 32397 solver.cpp:406] Test net output #121: loss3/accuracy_incl_empty = 0.972091
I0422 04:14:43.753516 32397 solver.cpp:406] Test net output #122: loss3/accuracy_top3 = 0.932766
I0422 04:14:43.753530 32397 solver.cpp:406] Test net output #123: loss3/cross_entropy_loss = 0.553743 (* 1 = 0.553743 loss)
I0422 04:14:43.753545 32397 solver.cpp:406] Test net output #124: loss3/cross_entropy_loss_incl_empty = 0.138234 (* 1 = 0.138234 loss)
I0422 04:14:43.753558 32397 solver.cpp:406] Test net output #125: loss3/loss01 = 0.566976 (* 0.0909091 = 0.0515433 loss)
I0422 04:14:43.753572 32397 solver.cpp:406] Test net output #126: loss3/loss02 = 0.584452 (* 0.0909091 = 0.053132 loss)
I0422 04:14:43
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment