-
-
Save stas-sl/cdf3a2d80a5040e4decd to your computer and use it in GitHub Desktop.
This file has been truncated, but you can view the full file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
I0327 12:46:12.071159 21344 solver.cpp:280] Solving mixed_lstm | |
I0327 12:46:12.071171 21344 solver.cpp:281] Learning Rate Policy: fixed | |
I0327 12:46:12.088115 21344 solver.cpp:338] Iteration 0, Testing net (#0) | |
I0327 12:46:43.353196 21344 solver.cpp:393] Test loss: 256.606 | |
I0327 12:46:43.353467 21344 solver.cpp:406] Test net output #0: loss1/accuracy01 = 0.002 | |
I0327 12:46:43.353493 21344 solver.cpp:406] Test net output #1: loss1/accuracy02 = 0.008 | |
I0327 12:46:43.353507 21344 solver.cpp:406] Test net output #2: loss1/accuracy03 = 0.018 | |
I0327 12:46:43.353519 21344 solver.cpp:406] Test net output #3: loss1/accuracy04 = 0.037 | |
I0327 12:46:43.353531 21344 solver.cpp:406] Test net output #4: loss1/accuracy05 = 0.049 | |
I0327 12:46:43.353559 21344 solver.cpp:406] Test net output #5: loss1/accuracy06 = 0.136 | |
I0327 12:46:43.353574 21344 solver.cpp:406] Test net output #6: loss1/accuracy07 = 0.302 | |
I0327 12:46:43.353585 21344 solver.cpp:406] Test net output #7: loss1/accuracy08 = 0.34 | |
I0327 12:46:43.353597 21344 solver.cpp:406] Test net output #8: loss1/accuracy09 = 0.357 | |
I0327 12:46:43.353610 21344 solver.cpp:406] Test net output #9: loss1/accuracy10 = 0.356 | |
I0327 12:46:43.353621 21344 solver.cpp:406] Test net output #10: loss1/accuracy11 = 0.357 | |
I0327 12:46:43.353632 21344 solver.cpp:406] Test net output #11: loss1/accuracy12 = 0.357 | |
I0327 12:46:43.353644 21344 solver.cpp:406] Test net output #12: loss1/accuracy13 = 0.357 | |
I0327 12:46:43.353655 21344 solver.cpp:406] Test net output #13: loss1/accuracy14 = 0.593 | |
I0327 12:46:43.353667 21344 solver.cpp:406] Test net output #14: loss1/accuracy15 = 0.358 | |
I0327 12:46:43.353678 21344 solver.cpp:406] Test net output #15: loss1/accuracy16 = 0.356 | |
I0327 12:46:43.353689 21344 solver.cpp:406] Test net output #16: loss1/accuracy17 = 0.357 | |
I0327 12:46:43.353701 21344 solver.cpp:406] Test net output #17: loss1/accuracy18 = 0.59 | |
I0327 12:46:43.353713 21344 solver.cpp:406] Test net output #18: loss1/accuracy19 = 0.409 | |
I0327 12:46:43.353724 21344 solver.cpp:406] Test net output #19: loss1/accuracy20 = 0.357 | |
I0327 12:46:43.353736 21344 solver.cpp:406] Test net output #20: loss1/accuracy21 = 0.357 | |
I0327 12:46:43.353747 21344 solver.cpp:406] Test net output #21: loss1/accuracy22 = 0.357 | |
I0327 12:46:43.353763 21344 solver.cpp:406] Test net output #22: loss1/loss01 = 59.4289 (* 0.0272727 = 1.62079 loss) | |
I0327 12:46:43.353778 21344 solver.cpp:406] Test net output #23: loss1/loss02 = 59.1669 (* 0.0272727 = 1.61364 loss) | |
I0327 12:46:43.353792 21344 solver.cpp:406] Test net output #24: loss1/loss03 = 58.9049 (* 0.0272727 = 1.6065 loss) | |
I0327 12:46:43.353807 21344 solver.cpp:406] Test net output #25: loss1/loss04 = 58.2935 (* 0.0272727 = 1.58982 loss) | |
I0327 12:46:43.353821 21344 solver.cpp:406] Test net output #26: loss1/loss05 = 59.4289 (* 0.0272727 = 1.62079 loss) | |
I0327 12:46:43.353834 21344 solver.cpp:406] Test net output #27: loss1/loss06 = 59.5162 (* 0.0272727 = 1.62317 loss) | |
I0327 12:46:43.353848 21344 solver.cpp:406] Test net output #28: loss1/loss07 = 59.4289 (* 0.0272727 = 1.62079 loss) | |
I0327 12:46:43.353863 21344 solver.cpp:406] Test net output #29: loss1/loss08 = 59.6036 (* 0.0272727 = 1.62555 loss) | |
I0327 12:46:43.353876 21344 solver.cpp:406] Test net output #30: loss1/loss09 = 59.6036 (* 0.0272727 = 1.62555 loss) | |
I0327 12:46:43.353899 21344 solver.cpp:406] Test net output #31: loss1/loss10 = 59.6036 (* 0.0272727 = 1.62555 loss) | |
I0327 12:46:43.353916 21344 solver.cpp:406] Test net output #32: loss1/loss11 = 59.6036 (* 0.0272727 = 1.62555 loss) | |
I0327 12:46:43.353930 21344 solver.cpp:406] Test net output #33: loss1/loss12 = 59.6036 (* 0.0272727 = 1.62555 loss) | |
I0327 12:46:43.353943 21344 solver.cpp:406] Test net output #34: loss1/loss13 = 59.6036 (* 0.0272727 = 1.62555 loss) | |
I0327 12:46:43.353957 21344 solver.cpp:406] Test net output #35: loss1/loss14 = 38.9049 (* 0.0272727 = 1.06104 loss) | |
I0327 12:46:43.353971 21344 solver.cpp:406] Test net output #36: loss1/loss15 = 59.6036 (* 0.0272727 = 1.62555 loss) | |
I0327 12:46:43.353986 21344 solver.cpp:406] Test net output #37: loss1/loss16 = 59.6036 (* 0.0272727 = 1.62555 loss) | |
I0327 12:46:43.354002 21344 solver.cpp:406] Test net output #38: loss1/loss17 = 59.6036 (* 0.0272727 = 1.62555 loss) | |
I0327 12:46:43.354032 21344 solver.cpp:406] Test net output #39: loss1/loss18 = 39.3416 (* 0.0272727 = 1.07295 loss) | |
I0327 12:46:43.354046 21344 solver.cpp:406] Test net output #40: loss1/loss19 = 55.0621 (* 0.0272727 = 1.50169 loss) | |
I0327 12:46:43.354060 21344 solver.cpp:406] Test net output #41: loss1/loss20 = 59.6036 (* 0.0272727 = 1.62555 loss) | |
I0327 12:46:43.354074 21344 solver.cpp:406] Test net output #42: loss1/loss21 = 59.6036 (* 0.0272727 = 1.62555 loss) | |
I0327 12:46:43.354089 21344 solver.cpp:406] Test net output #43: loss1/loss22 = 59.6036 (* 0.0272727 = 1.62555 loss) | |
I0327 12:46:43.354100 21344 solver.cpp:406] Test net output #44: loss2/accuracy01 = 0 | |
I0327 12:46:43.354112 21344 solver.cpp:406] Test net output #45: loss2/accuracy02 = 0.004 | |
I0327 12:46:43.354125 21344 solver.cpp:406] Test net output #46: loss2/accuracy03 = 0.02 | |
I0327 12:46:43.354135 21344 solver.cpp:406] Test net output #47: loss2/accuracy04 = 0.009 | |
I0327 12:46:43.354147 21344 solver.cpp:406] Test net output #48: loss2/accuracy05 = 0.012 | |
I0327 12:46:43.354158 21344 solver.cpp:406] Test net output #49: loss2/accuracy06 = 0.045 | |
I0327 12:46:43.354171 21344 solver.cpp:406] Test net output #50: loss2/accuracy07 = 0.088 | |
I0327 12:46:43.354182 21344 solver.cpp:406] Test net output #51: loss2/accuracy08 = 0.1 | |
I0327 12:46:43.354193 21344 solver.cpp:406] Test net output #52: loss2/accuracy09 = 0.102 | |
I0327 12:46:43.354207 21344 solver.cpp:406] Test net output #53: loss2/accuracy10 = 0.102 | |
I0327 12:46:43.354218 21344 solver.cpp:406] Test net output #54: loss2/accuracy11 = 0.099 | |
I0327 12:46:43.354229 21344 solver.cpp:406] Test net output #55: loss2/accuracy12 = 0.097 | |
I0327 12:46:43.354241 21344 solver.cpp:406] Test net output #56: loss2/accuracy13 = 0.117 | |
I0327 12:46:43.354252 21344 solver.cpp:406] Test net output #57: loss2/accuracy14 = 0.103 | |
I0327 12:46:43.354264 21344 solver.cpp:406] Test net output #58: loss2/accuracy15 = 0.146 | |
I0327 12:46:43.354275 21344 solver.cpp:406] Test net output #59: loss2/accuracy16 = 0.103 | |
I0327 12:46:43.354287 21344 solver.cpp:406] Test net output #60: loss2/accuracy17 = 0.101 | |
I0327 12:46:43.354298 21344 solver.cpp:406] Test net output #61: loss2/accuracy18 = 0.103 | |
I0327 12:46:43.354310 21344 solver.cpp:406] Test net output #62: loss2/accuracy19 = 0.104 | |
I0327 12:46:43.354321 21344 solver.cpp:406] Test net output #63: loss2/accuracy20 = 0.278 | |
I0327 12:46:43.354332 21344 solver.cpp:406] Test net output #64: loss2/accuracy21 = 0.101 | |
I0327 12:46:43.354344 21344 solver.cpp:406] Test net output #65: loss2/accuracy22 = 0.182 | |
I0327 12:46:43.354357 21344 solver.cpp:406] Test net output #66: loss2/loss01 = 80.9427 (* 0.0272727 = 2.20753 loss) | |
I0327 12:46:43.354372 21344 solver.cpp:406] Test net output #67: loss2/loss02 = 80.5933 (* 0.0272727 = 2.198 loss) | |
I0327 12:46:43.354387 21344 solver.cpp:406] Test net output #68: loss2/loss03 = 79.3706 (* 0.0272727 = 2.16465 loss) | |
I0327 12:46:43.354399 21344 solver.cpp:406] Test net output #69: loss2/loss04 = 80.6806 (* 0.0272727 = 2.20038 loss) | |
I0327 12:46:43.354413 21344 solver.cpp:406] Test net output #70: loss2/loss05 = 80.8553 (* 0.0272727 = 2.20515 loss) | |
I0327 12:46:43.354428 21344 solver.cpp:406] Test net output #71: loss2/loss06 = 79.8073 (* 0.0272727 = 2.17656 loss) | |
I0327 12:46:43.354441 21344 solver.cpp:406] Test net output #72: loss2/loss07 = 80.6806 (* 0.0272727 = 2.20038 loss) | |
I0327 12:46:43.354454 21344 solver.cpp:406] Test net output #73: loss2/loss08 = 80.8553 (* 0.0272727 = 2.20515 loss) | |
I0327 12:46:43.354468 21344 solver.cpp:406] Test net output #74: loss2/loss09 = 80.8553 (* 0.0272727 = 2.20515 loss) | |
I0327 12:46:43.354485 21344 solver.cpp:406] Test net output #75: loss2/loss10 = 80.8553 (* 0.0272727 = 2.20515 loss) | |
I0327 12:46:43.354501 21344 solver.cpp:406] Test net output #76: loss2/loss11 = 80.9427 (* 0.0272727 = 2.20753 loss) | |
I0327 12:46:43.354514 21344 solver.cpp:406] Test net output #77: loss2/loss12 = 80.9427 (* 0.0272727 = 2.20753 loss) | |
I0327 12:46:43.354539 21344 solver.cpp:406] Test net output #78: loss2/loss13 = 79.72 (* 0.0272727 = 2.17418 loss) | |
I0327 12:46:43.354554 21344 solver.cpp:406] Test net output #79: loss2/loss14 = 80.9427 (* 0.0272727 = 2.20753 loss) | |
I0327 12:46:43.354568 21344 solver.cpp:406] Test net output #80: loss2/loss15 = 76.8379 (* 0.0272727 = 2.09558 loss) | |
I0327 12:46:43.354583 21344 solver.cpp:406] Test net output #81: loss2/loss16 = 80.9427 (* 0.0272727 = 2.20753 loss) | |
I0327 12:46:43.354598 21344 solver.cpp:406] Test net output #82: loss2/loss17 = 80.9427 (* 0.0272727 = 2.20753 loss) | |
I0327 12:46:43.354611 21344 solver.cpp:406] Test net output #83: loss2/loss18 = 80.9427 (* 0.0272727 = 2.20753 loss) | |
I0327 12:46:43.354624 21344 solver.cpp:406] Test net output #84: loss2/loss19 = 80.8553 (* 0.0272727 = 2.20515 loss) | |
I0327 12:46:43.354638 21344 solver.cpp:406] Test net output #85: loss2/loss20 = 65.4842 (* 0.0272727 = 1.78593 loss) | |
I0327 12:46:43.354652 21344 solver.cpp:406] Test net output #86: loss2/loss21 = 80.9427 (* 0.0272727 = 2.20753 loss) | |
I0327 12:46:43.354666 21344 solver.cpp:406] Test net output #87: loss2/loss22 = 73.6938 (* 0.0272727 = 2.00983 loss) | |
I0327 12:46:43.354678 21344 solver.cpp:406] Test net output #88: loss3/accuracy01 = 0 | |
I0327 12:46:43.354691 21344 solver.cpp:406] Test net output #89: loss3/accuracy02 = 0.01 | |
I0327 12:46:43.354701 21344 solver.cpp:406] Test net output #90: loss3/accuracy03 = 0.043 | |
I0327 12:46:43.354713 21344 solver.cpp:406] Test net output #91: loss3/accuracy04 = 0.09 | |
I0327 12:46:43.354724 21344 solver.cpp:406] Test net output #92: loss3/accuracy05 = 0.212 | |
I0327 12:46:43.354735 21344 solver.cpp:406] Test net output #93: loss3/accuracy06 = 0.5 | |
I0327 12:46:43.354748 21344 solver.cpp:406] Test net output #94: loss3/accuracy07 = 0.888 | |
I0327 12:46:43.354758 21344 solver.cpp:406] Test net output #95: loss3/accuracy08 = 0.963 | |
I0327 12:46:43.354769 21344 solver.cpp:406] Test net output #96: loss3/accuracy09 = 0.991 | |
I0327 12:46:43.354780 21344 solver.cpp:406] Test net output #97: loss3/accuracy10 = 0.994 | |
I0327 12:46:43.354792 21344 solver.cpp:406] Test net output #98: loss3/accuracy11 = 0.995 | |
I0327 12:46:43.354804 21344 solver.cpp:406] Test net output #99: loss3/accuracy12 = 0.996 | |
I0327 12:46:43.354815 21344 solver.cpp:406] Test net output #100: loss3/accuracy13 = 0.999 | |
I0327 12:46:43.354826 21344 solver.cpp:406] Test net output #101: loss3/accuracy14 = 0.995 | |
I0327 12:46:43.354837 21344 solver.cpp:406] Test net output #102: loss3/accuracy15 = 0.996 | |
I0327 12:46:43.354848 21344 solver.cpp:406] Test net output #103: loss3/accuracy16 = 0.996 | |
I0327 12:46:43.354859 21344 solver.cpp:406] Test net output #104: loss3/accuracy17 = 0.995 | |
I0327 12:46:43.354871 21344 solver.cpp:406] Test net output #105: loss3/accuracy18 = 0.996 | |
I0327 12:46:43.354882 21344 solver.cpp:406] Test net output #106: loss3/accuracy19 = 0.995 | |
I0327 12:46:43.354893 21344 solver.cpp:406] Test net output #107: loss3/accuracy20 = 0.996 | |
I0327 12:46:43.354904 21344 solver.cpp:406] Test net output #108: loss3/accuracy21 = 0.995 | |
I0327 12:46:43.354915 21344 solver.cpp:406] Test net output #109: loss3/accuracy22 = 0.995 | |
I0327 12:46:43.354929 21344 solver.cpp:406] Test net output #110: loss3/loss01 = 87.253 (* 0.0909091 = 7.9321 loss) | |
I0327 12:46:43.354943 21344 solver.cpp:406] Test net output #111: loss3/loss02 = 87.253 (* 0.0909091 = 7.9321 loss) | |
I0327 12:46:43.354957 21344 solver.cpp:406] Test net output #112: loss3/loss03 = 87.253 (* 0.0909091 = 7.9321 loss) | |
I0327 12:46:43.354971 21344 solver.cpp:406] Test net output #113: loss3/loss04 = 87.253 (* 0.0909091 = 7.9321 loss) | |
I0327 12:46:43.354985 21344 solver.cpp:406] Test net output #114: loss3/loss05 = 87.253 (* 0.0909091 = 7.9321 loss) | |
I0327 12:46:43.355000 21344 solver.cpp:406] Test net output #115: loss3/loss06 = 87.253 (* 0.0909091 = 7.9321 loss) | |
I0327 12:46:43.355012 21344 solver.cpp:406] Test net output #116: loss3/loss07 = 87.253 (* 0.0909091 = 7.9321 loss) | |
I0327 12:46:43.355036 21344 solver.cpp:406] Test net output #117: loss3/loss08 = 87.253 (* 0.0909091 = 7.9321 loss) | |
I0327 12:46:43.355054 21344 solver.cpp:406] Test net output #118: loss3/loss09 = 87.253 (* 0.0909091 = 7.9321 loss) | |
I0327 12:46:43.355068 21344 solver.cpp:406] Test net output #119: loss3/loss10 = 87.253 (* 0.0909091 = 7.9321 loss) | |
I0327 12:46:43.355082 21344 solver.cpp:406] Test net output #120: loss3/loss11 = 87.253 (* 0.0909091 = 7.9321 loss) | |
I0327 12:46:43.355096 21344 solver.cpp:406] Test net output #121: loss3/loss12 = 87.253 (* 0.0909091 = 7.9321 loss) | |
I0327 12:46:43.355110 21344 solver.cpp:406] Test net output #122: loss3/loss13 = 86.9037 (* 0.0909091 = 7.90034 loss) | |
I0327 12:46:43.355124 21344 solver.cpp:406] Test net output #123: loss3/loss14 = 87.253 (* 0.0909091 = 7.9321 loss) | |
I0327 12:46:43.355139 21344 solver.cpp:406] Test net output #124: loss3/loss15 = 87.253 (* 0.0909091 = 7.9321 loss) | |
I0327 12:46:43.355151 21344 solver.cpp:406] Test net output #125: loss3/loss16 = 87.253 (* 0.0909091 = 7.9321 loss) | |
I0327 12:46:43.355165 21344 solver.cpp:406] Test net output #126: loss3/loss17 = 87.253 (* 0.0909091 = 7.9321 loss) | |
I0327 12:46:43.355180 21344 solver.cpp:406] Test net output #127: loss3/loss18 = 87.253 (* 0.0909091 = 7.9321 loss) | |
I0327 12:46:43.355193 21344 solver.cpp:406] Test net output #128: loss3/loss19 = 87.253 (* 0.0909091 = 7.9321 loss) | |
I0327 12:46:43.355206 21344 solver.cpp:406] Test net output #129: loss3/loss20 = 87.253 (* 0.0909091 = 7.9321 loss) | |
I0327 12:46:43.355221 21344 solver.cpp:406] Test net output #130: loss3/loss21 = 87.253 (* 0.0909091 = 7.9321 loss) | |
I0327 12:46:43.355234 21344 solver.cpp:406] Test net output #131: loss3/loss22 = 87.253 (* 0.0909091 = 7.9321 loss) | |
I0327 12:46:43.355245 21344 solver.cpp:406] Test net output #132: total_accuracy = 0 | |
I0327 12:46:43.355257 21344 solver.cpp:406] Test net output #133: total_confidence = nan | |
I0327 12:46:43.627306 21344 solver.cpp:229] Iteration 0, loss = 15.0301 | |
I0327 12:46:43.627372 21344 solver.cpp:245] Train net output #0: loss1/accuracy01 = 0 | |
I0327 12:46:43.627388 21344 solver.cpp:245] Train net output #1: loss1/accuracy02 = 0 | |
I0327 12:46:43.627401 21344 solver.cpp:245] Train net output #2: loss1/accuracy03 = 0 | |
I0327 12:46:43.627413 21344 solver.cpp:245] Train net output #3: loss1/accuracy04 = 0 | |
I0327 12:46:43.627424 21344 solver.cpp:245] Train net output #4: loss1/accuracy05 = 0 | |
I0327 12:46:43.627436 21344 solver.cpp:245] Train net output #5: loss1/accuracy06 = 0 | |
I0327 12:46:43.627447 21344 solver.cpp:245] Train net output #6: loss1/accuracy07 = 0 | |
I0327 12:46:43.627460 21344 solver.cpp:245] Train net output #7: loss1/accuracy08 = 0 | |
I0327 12:46:43.627470 21344 solver.cpp:245] Train net output #8: loss1/accuracy09 = 0 | |
I0327 12:46:43.627482 21344 solver.cpp:245] Train net output #9: loss1/accuracy10 = 0 | |
I0327 12:46:43.627493 21344 solver.cpp:245] Train net output #10: loss1/accuracy11 = 0 | |
I0327 12:46:43.627506 21344 solver.cpp:245] Train net output #11: loss1/accuracy12 = 0 | |
I0327 12:46:43.627516 21344 solver.cpp:245] Train net output #12: loss1/accuracy13 = 0 | |
I0327 12:46:43.627528 21344 solver.cpp:245] Train net output #13: loss1/accuracy14 = 0 | |
I0327 12:46:43.627540 21344 solver.cpp:245] Train net output #14: loss1/accuracy15 = 0 | |
I0327 12:46:43.627552 21344 solver.cpp:245] Train net output #15: loss1/accuracy16 = 0 | |
I0327 12:46:43.627564 21344 solver.cpp:245] Train net output #16: loss1/accuracy17 = 0 | |
I0327 12:46:43.627575 21344 solver.cpp:245] Train net output #17: loss1/accuracy18 = 0 | |
I0327 12:46:43.627588 21344 solver.cpp:245] Train net output #18: loss1/accuracy19 = 0 | |
I0327 12:46:43.627599 21344 solver.cpp:245] Train net output #19: loss1/accuracy20 = 0 | |
I0327 12:46:43.627611 21344 solver.cpp:245] Train net output #20: loss1/accuracy21 = 0 | |
I0327 12:46:43.627622 21344 solver.cpp:245] Train net output #21: loss1/accuracy22 = 0 | |
I0327 12:46:43.627670 21344 solver.cpp:245] Train net output #22: loss1/loss01 = 5.68464 (* 0.0272727 = 0.155036 loss) | |
I0327 12:46:43.627686 21344 solver.cpp:245] Train net output #23: loss1/loss02 = 5.1454 (* 0.0272727 = 0.140329 loss) | |
I0327 12:46:43.627701 21344 solver.cpp:245] Train net output #24: loss1/loss03 = 4.55451 (* 0.0272727 = 0.124214 loss) | |
I0327 12:46:43.627714 21344 solver.cpp:245] Train net output #25: loss1/loss04 = 5.74952 (* 0.0272727 = 0.156805 loss) | |
I0327 12:46:43.627728 21344 solver.cpp:245] Train net output #26: loss1/loss05 = 5.16768 (* 0.0272727 = 0.140937 loss) | |
I0327 12:46:43.627743 21344 solver.cpp:245] Train net output #27: loss1/loss06 = 5.41278 (* 0.0272727 = 0.147621 loss) | |
I0327 12:46:43.627756 21344 solver.cpp:245] Train net output #28: loss1/loss07 = 5.6255 (* 0.0272727 = 0.153423 loss) | |
I0327 12:46:43.627769 21344 solver.cpp:245] Train net output #29: loss1/loss08 = 5.76147 (* 0.0272727 = 0.157131 loss) | |
I0327 12:46:43.627784 21344 solver.cpp:245] Train net output #30: loss1/loss09 = 4.91994 (* 0.0272727 = 0.13418 loss) | |
I0327 12:46:43.627797 21344 solver.cpp:245] Train net output #31: loss1/loss10 = 5.3027 (* 0.0272727 = 0.144619 loss) | |
I0327 12:46:43.627811 21344 solver.cpp:245] Train net output #32: loss1/loss11 = 5.22684 (* 0.0272727 = 0.14255 loss) | |
I0327 12:46:43.627825 21344 solver.cpp:245] Train net output #33: loss1/loss12 = 6.47574 (* 0.0272727 = 0.176611 loss) | |
I0327 12:46:43.627838 21344 solver.cpp:245] Train net output #34: loss1/loss13 = 4.98783 (* 0.0272727 = 0.136032 loss) | |
I0327 12:46:43.627852 21344 solver.cpp:245] Train net output #35: loss1/loss14 = 4.8267 (* 0.0272727 = 0.131637 loss) | |
I0327 12:46:43.627866 21344 solver.cpp:245] Train net output #36: loss1/loss15 = 6.01012 (* 0.0272727 = 0.163912 loss) | |
I0327 12:46:43.627879 21344 solver.cpp:245] Train net output #37: loss1/loss16 = 6.17248 (* 0.0272727 = 0.16834 loss) | |
I0327 12:46:43.627893 21344 solver.cpp:245] Train net output #38: loss1/loss17 = 4.96322 (* 0.0272727 = 0.135361 loss) | |
I0327 12:46:43.627907 21344 solver.cpp:245] Train net output #39: loss1/loss18 = 4.12554 (* 0.0272727 = 0.112515 loss) | |
I0327 12:46:43.627921 21344 solver.cpp:245] Train net output #40: loss1/loss19 = 4.01114 (* 0.0272727 = 0.109395 loss) | |
I0327 12:46:43.627935 21344 solver.cpp:245] Train net output #41: loss1/loss20 = 4.68914 (* 0.0272727 = 0.127886 loss) | |
I0327 12:46:43.627948 21344 solver.cpp:245] Train net output #42: loss1/loss21 = 5.68715 (* 0.0272727 = 0.155104 loss) | |
I0327 12:46:43.627962 21344 solver.cpp:245] Train net output #43: loss1/loss22 = 5.71582 (* 0.0272727 = 0.155886 loss) | |
I0327 12:46:43.627974 21344 solver.cpp:245] Train net output #44: loss2/accuracy01 = 0 | |
I0327 12:46:43.627986 21344 solver.cpp:245] Train net output #45: loss2/accuracy02 = 0 | |
I0327 12:46:43.627998 21344 solver.cpp:245] Train net output #46: loss2/accuracy03 = 0 | |
I0327 12:46:43.628010 21344 solver.cpp:245] Train net output #47: loss2/accuracy04 = 0 | |
I0327 12:46:43.628021 21344 solver.cpp:245] Train net output #48: loss2/accuracy05 = 0 | |
I0327 12:46:43.628033 21344 solver.cpp:245] Train net output #49: loss2/accuracy06 = 0.125 | |
I0327 12:46:43.628046 21344 solver.cpp:245] Train net output #50: loss2/accuracy07 = 0 | |
I0327 12:46:43.628057 21344 solver.cpp:245] Train net output #51: loss2/accuracy08 = 0 | |
I0327 12:46:43.628068 21344 solver.cpp:245] Train net output #52: loss2/accuracy09 = 0 | |
I0327 12:46:43.628079 21344 solver.cpp:245] Train net output #53: loss2/accuracy10 = 0 | |
I0327 12:46:43.628090 21344 solver.cpp:245] Train net output #54: loss2/accuracy11 = 0 | |
I0327 12:46:43.628103 21344 solver.cpp:245] Train net output #55: loss2/accuracy12 = 0 | |
I0327 12:46:43.628113 21344 solver.cpp:245] Train net output #56: loss2/accuracy13 = 0 | |
I0327 12:46:43.628125 21344 solver.cpp:245] Train net output #57: loss2/accuracy14 = 0 | |
I0327 12:46:43.628140 21344 solver.cpp:245] Train net output #58: loss2/accuracy15 = 0.125 | |
I0327 12:46:43.628152 21344 solver.cpp:245] Train net output #59: loss2/accuracy16 = 0 | |
I0327 12:46:43.628175 21344 solver.cpp:245] Train net output #60: loss2/accuracy17 = 0 | |
I0327 12:46:43.628188 21344 solver.cpp:245] Train net output #61: loss2/accuracy18 = 0 | |
I0327 12:46:43.628199 21344 solver.cpp:245] Train net output #62: loss2/accuracy19 = 0 | |
I0327 12:46:43.628211 21344 solver.cpp:245] Train net output #63: loss2/accuracy20 = 0 | |
I0327 12:46:43.628222 21344 solver.cpp:245] Train net output #64: loss2/accuracy21 = 0 | |
I0327 12:46:43.628233 21344 solver.cpp:245] Train net output #65: loss2/accuracy22 = 0 | |
I0327 12:46:43.628247 21344 solver.cpp:245] Train net output #66: loss2/loss01 = 4.21906 (* 0.0272727 = 0.115065 loss) | |
I0327 12:46:43.628262 21344 solver.cpp:245] Train net output #67: loss2/loss02 = 4.78986 (* 0.0272727 = 0.130632 loss) | |
I0327 12:46:43.628275 21344 solver.cpp:245] Train net output #68: loss2/loss03 = 4.35242 (* 0.0272727 = 0.118702 loss) | |
I0327 12:46:43.628289 21344 solver.cpp:245] Train net output #69: loss2/loss04 = 5.43624 (* 0.0272727 = 0.148261 loss) | |
I0327 12:46:43.628304 21344 solver.cpp:245] Train net output #70: loss2/loss05 = 5.53578 (* 0.0272727 = 0.150976 loss) | |
I0327 12:46:43.628319 21344 solver.cpp:245] Train net output #71: loss2/loss06 = 4.61398 (* 0.0272727 = 0.125836 loss) | |
I0327 12:46:43.628334 21344 solver.cpp:245] Train net output #72: loss2/loss07 = 5.11739 (* 0.0272727 = 0.139565 loss) | |
I0327 12:46:43.628348 21344 solver.cpp:245] Train net output #73: loss2/loss08 = 5.0158 (* 0.0272727 = 0.136794 loss) | |
I0327 12:46:43.628361 21344 solver.cpp:245] Train net output #74: loss2/loss09 = 5.48356 (* 0.0272727 = 0.149552 loss) | |
I0327 12:46:43.628376 21344 solver.cpp:245] Train net output #75: loss2/loss10 = 5.10073 (* 0.0272727 = 0.139111 loss) | |
I0327 12:46:43.628389 21344 solver.cpp:245] Train net output #76: loss2/loss11 = 6.06451 (* 0.0272727 = 0.165396 loss) | |
I0327 12:46:43.628403 21344 solver.cpp:245] Train net output #77: loss2/loss12 = 5.07872 (* 0.0272727 = 0.13851 loss) | |
I0327 12:46:43.628417 21344 solver.cpp:245] Train net output #78: loss2/loss13 = 4.66932 (* 0.0272727 = 0.127345 loss) | |
I0327 12:46:43.628430 21344 solver.cpp:245] Train net output #79: loss2/loss14 = 5.25376 (* 0.0272727 = 0.143284 loss) | |
I0327 12:46:43.628444 21344 solver.cpp:245] Train net output #80: loss2/loss15 = 4.00221 (* 0.0272727 = 0.109151 loss) | |
I0327 12:46:43.628458 21344 solver.cpp:245] Train net output #81: loss2/loss16 = 4.52516 (* 0.0272727 = 0.123413 loss) | |
I0327 12:46:43.628473 21344 solver.cpp:245] Train net output #82: loss2/loss17 = 5.95518 (* 0.0272727 = 0.162414 loss) | |
I0327 12:46:43.628486 21344 solver.cpp:245] Train net output #83: loss2/loss18 = 5.16423 (* 0.0272727 = 0.140843 loss) | |
I0327 12:46:43.628499 21344 solver.cpp:245] Train net output #84: loss2/loss19 = 5.56261 (* 0.0272727 = 0.151707 loss) | |
I0327 12:46:43.628514 21344 solver.cpp:245] Train net output #85: loss2/loss20 = 4.43949 (* 0.0272727 = 0.121077 loss) | |
I0327 12:46:43.628526 21344 solver.cpp:245] Train net output #86: loss2/loss21 = 5.61986 (* 0.0272727 = 0.153269 loss) | |
I0327 12:46:43.628540 21344 solver.cpp:245] Train net output #87: loss2/loss22 = 4.01051 (* 0.0272727 = 0.109377 loss) | |
I0327 12:46:43.628552 21344 solver.cpp:245] Train net output #88: loss3/accuracy01 = 0.125 | |
I0327 12:46:43.628564 21344 solver.cpp:245] Train net output #89: loss3/accuracy02 = 0 | |
I0327 12:46:43.628576 21344 solver.cpp:245] Train net output #90: loss3/accuracy03 = 0 | |
I0327 12:46:43.628587 21344 solver.cpp:245] Train net output #91: loss3/accuracy04 = 0.125 | |
I0327 12:46:43.628599 21344 solver.cpp:245] Train net output #92: loss3/accuracy05 = 0 | |
I0327 12:46:43.628610 21344 solver.cpp:245] Train net output #93: loss3/accuracy06 = 0 | |
I0327 12:46:43.628623 21344 solver.cpp:245] Train net output #94: loss3/accuracy07 = 0 | |
I0327 12:46:43.628633 21344 solver.cpp:245] Train net output #95: loss3/accuracy08 = 0 | |
I0327 12:46:43.628645 21344 solver.cpp:245] Train net output #96: loss3/accuracy09 = 0 | |
I0327 12:46:43.628669 21344 solver.cpp:245] Train net output #97: loss3/accuracy10 = 0 | |
I0327 12:46:43.628680 21344 solver.cpp:245] Train net output #98: loss3/accuracy11 = 0 | |
I0327 12:46:43.628692 21344 solver.cpp:245] Train net output #99: loss3/accuracy12 = 0 | |
I0327 12:46:43.628705 21344 solver.cpp:245] Train net output #100: loss3/accuracy13 = 0 | |
I0327 12:46:43.628715 21344 solver.cpp:245] Train net output #101: loss3/accuracy14 = 0 | |
I0327 12:46:43.628726 21344 solver.cpp:245] Train net output #102: loss3/accuracy15 = 0 | |
I0327 12:46:43.628738 21344 solver.cpp:245] Train net output #103: loss3/accuracy16 = 0 | |
I0327 12:46:43.628749 21344 solver.cpp:245] Train net output #104: loss3/accuracy17 = 0 | |
I0327 12:46:43.628761 21344 solver.cpp:245] Train net output #105: loss3/accuracy18 = 0 | |
I0327 12:46:43.628772 21344 solver.cpp:245] Train net output #106: loss3/accuracy19 = 0 | |
I0327 12:46:43.628783 21344 solver.cpp:245] Train net output #107: loss3/accuracy20 = 0 | |
I0327 12:46:43.628794 21344 solver.cpp:245] Train net output #108: loss3/accuracy21 = 0 | |
I0327 12:46:43.628805 21344 solver.cpp:245] Train net output #109: loss3/accuracy22 = 0 | |
I0327 12:46:43.628819 21344 solver.cpp:245] Train net output #110: loss3/loss01 = 4.45217 (* 0.0909091 = 0.404743 loss) | |
I0327 12:46:43.628834 21344 solver.cpp:245] Train net output #111: loss3/loss02 = 4.53398 (* 0.0909091 = 0.41218 loss) | |
I0327 12:46:43.628847 21344 solver.cpp:245] Train net output #112: loss3/loss03 = 4.90274 (* 0.0909091 = 0.445704 loss) | |
I0327 12:46:43.628861 21344 solver.cpp:245] Train net output #113: loss3/loss04 = 4.06555 (* 0.0909091 = 0.369595 loss) | |
I0327 12:46:43.628875 21344 solver.cpp:245] Train net output #114: loss3/loss05 = 4.36368 (* 0.0909091 = 0.396698 loss) | |
I0327 12:46:43.628890 21344 solver.cpp:245] Train net output #115: loss3/loss06 = 4.51967 (* 0.0909091 = 0.410879 loss) | |
I0327 12:46:43.628903 21344 solver.cpp:245] Train net output #116: loss3/loss07 = 4.14595 (* 0.0909091 = 0.376904 loss) | |
I0327 12:46:43.628917 21344 solver.cpp:245] Train net output #117: loss3/loss08 = 4.13856 (* 0.0909091 = 0.376233 loss) | |
I0327 12:46:43.628931 21344 solver.cpp:245] Train net output #118: loss3/loss09 = 4.48967 (* 0.0909091 = 0.408151 loss) | |
I0327 12:46:43.628944 21344 solver.cpp:245] Train net output #119: loss3/loss10 = 4.79787 (* 0.0909091 = 0.43617 loss) | |
I0327 12:46:43.628958 21344 solver.cpp:245] Train net output #120: loss3/loss11 = 4.61206 (* 0.0909091 = 0.419278 loss) | |
I0327 12:46:43.628973 21344 solver.cpp:245] Train net output #121: loss3/loss12 = 4.2766 (* 0.0909091 = 0.388782 loss) | |
I0327 12:46:43.628985 21344 solver.cpp:245] Train net output #122: loss3/loss13 = 4.15767 (* 0.0909091 = 0.37797 loss) | |
I0327 12:46:43.628999 21344 solver.cpp:245] Train net output #123: loss3/loss14 = 4.27407 (* 0.0909091 = 0.388552 loss) | |
I0327 12:46:43.629014 21344 solver.cpp:245] Train net output #124: loss3/loss15 = 4.90893 (* 0.0909091 = 0.446267 loss) | |
I0327 12:46:43.629027 21344 solver.cpp:245] Train net output #125: loss3/loss16 = 4.83672 (* 0.0909091 = 0.439702 loss) | |
I0327 12:46:43.629041 21344 solver.cpp:245] Train net output #126: loss3/loss17 = 4.58095 (* 0.0909091 = 0.41645 loss) | |
I0327 12:46:43.629055 21344 solver.cpp:245] Train net output #127: loss3/loss18 = 4.07921 (* 0.0909091 = 0.370837 loss) | |
I0327 12:46:43.629068 21344 solver.cpp:245] Train net output #128: loss3/loss19 = 4.34711 (* 0.0909091 = 0.395192 loss) | |
I0327 12:46:43.629082 21344 solver.cpp:245] Train net output #129: loss3/loss20 = 4.67036 (* 0.0909091 = 0.424578 loss) | |
I0327 12:46:43.629096 21344 solver.cpp:245] Train net output #130: loss3/loss21 = 3.93824 (* 0.0909091 = 0.358022 loss) | |
I0327 12:46:43.629111 21344 solver.cpp:245] Train net output #131: loss3/loss22 = 4.37128 (* 0.0909091 = 0.397389 loss) | |
I0327 12:46:43.629122 21344 solver.cpp:245] Train net output #132: total_accuracy = 0 | |
I0327 12:46:43.629134 21344 solver.cpp:245] Train net output #133: total_confidence = 1.76147e-27 | |
I0327 12:46:43.629163 21344 sgd_solver.cpp:106] Iteration 0, lr = 0.01 | |
I0327 12:48:31.543236 21344 solver.cpp:229] Iteration 500, loss = 3.90858 | |
I0327 12:48:31.543367 21344 solver.cpp:245] Train net output #0: loss1/accuracy01 = 0 | |
I0327 12:48:31.543386 21344 solver.cpp:245] Train net output #1: loss1/accuracy02 = 0 | |
I0327 12:48:31.543400 21344 solver.cpp:245] Train net output #2: loss1/accuracy03 = 0 | |
I0327 12:48:31.543411 21344 solver.cpp:245] Train net output #3: loss1/accuracy04 = 0 | |
I0327 12:48:31.543422 21344 solver.cpp:245] Train net output #4: loss1/accuracy05 = 0 | |
I0327 12:48:31.543434 21344 solver.cpp:245] Train net output #5: loss1/accuracy06 = 0.125 | |
I0327 12:48:31.543447 21344 solver.cpp:245] Train net output #6: loss1/accuracy07 = 0.25 | |
I0327 12:48:31.543459 21344 solver.cpp:245] Train net output #7: loss1/accuracy08 = 0.75 | |
I0327 12:48:31.543470 21344 solver.cpp:245] Train net output #8: loss1/accuracy09 = 1 | |
I0327 12:48:31.543483 21344 solver.cpp:245] Train net output #9: loss1/accuracy10 = 1 | |
I0327 12:48:31.543493 21344 solver.cpp:245] Train net output #10: loss1/accuracy11 = 1 | |
I0327 12:48:31.543505 21344 solver.cpp:245] Train net output #11: loss1/accuracy12 = 1 | |
I0327 12:48:31.543516 21344 solver.cpp:245] Train net output #12: loss1/accuracy13 = 1 | |
I0327 12:48:31.543529 21344 solver.cpp:245] Train net output #13: loss1/accuracy14 = 1 | |
I0327 12:48:31.543540 21344 solver.cpp:245] Train net output #14: loss1/accuracy15 = 1 | |
I0327 12:48:31.543551 21344 solver.cpp:245] Train net output #15: loss1/accuracy16 = 1 | |
I0327 12:48:31.543562 21344 solver.cpp:245] Train net output #16: loss1/accuracy17 = 1 | |
I0327 12:48:31.543575 21344 solver.cpp:245] Train net output #17: loss1/accuracy18 = 1 | |
I0327 12:48:31.543586 21344 solver.cpp:245] Train net output #18: loss1/accuracy19 = 1 | |
I0327 12:48:31.543597 21344 solver.cpp:245] Train net output #19: loss1/accuracy20 = 1 | |
I0327 12:48:31.543609 21344 solver.cpp:245] Train net output #20: loss1/accuracy21 = 1 | |
I0327 12:48:31.543620 21344 solver.cpp:245] Train net output #21: loss1/accuracy22 = 1 | |
I0327 12:48:31.543637 21344 solver.cpp:245] Train net output #22: loss1/loss01 = 4.47394 (* 0.0272727 = 0.122016 loss) | |
I0327 12:48:31.543651 21344 solver.cpp:245] Train net output #23: loss1/loss02 = 4.5008 (* 0.0272727 = 0.122749 loss) | |
I0327 12:48:31.543666 21344 solver.cpp:245] Train net output #24: loss1/loss03 = 4.69894 (* 0.0272727 = 0.128153 loss) | |
I0327 12:48:31.543680 21344 solver.cpp:245] Train net output #25: loss1/loss04 = 4.93062 (* 0.0272727 = 0.134471 loss) | |
I0327 12:48:31.543694 21344 solver.cpp:245] Train net output #26: loss1/loss05 = 5.29747 (* 0.0272727 = 0.144476 loss) | |
I0327 12:48:31.543709 21344 solver.cpp:245] Train net output #27: loss1/loss06 = 4.19861 (* 0.0272727 = 0.114508 loss) | |
I0327 12:48:31.543721 21344 solver.cpp:245] Train net output #28: loss1/loss07 = 3.63418 (* 0.0272727 = 0.0991139 loss) | |
I0327 12:48:31.543735 21344 solver.cpp:245] Train net output #29: loss1/loss08 = 2.21025 (* 0.0272727 = 0.0602795 loss) | |
I0327 12:48:31.543750 21344 solver.cpp:245] Train net output #30: loss1/loss09 = 0.0367138 (* 0.0272727 = 0.00100129 loss) | |
I0327 12:48:31.543763 21344 solver.cpp:245] Train net output #31: loss1/loss10 = 0.0107152 (* 0.0272727 = 0.000292232 loss) | |
I0327 12:48:31.543778 21344 solver.cpp:245] Train net output #32: loss1/loss11 = 0.00212181 (* 0.0272727 = 5.78677e-05 loss) | |
I0327 12:48:31.543792 21344 solver.cpp:245] Train net output #33: loss1/loss12 = 0.00190636 (* 0.0272727 = 5.19917e-05 loss) | |
I0327 12:48:31.543807 21344 solver.cpp:245] Train net output #34: loss1/loss13 = 0.00215329 (* 0.0272727 = 5.87261e-05 loss) | |
I0327 12:48:31.543822 21344 solver.cpp:245] Train net output #35: loss1/loss14 = 0.00224281 (* 0.0272727 = 6.11675e-05 loss) | |
I0327 12:48:31.543835 21344 solver.cpp:245] Train net output #36: loss1/loss15 = 0.00291212 (* 0.0272727 = 7.94214e-05 loss) | |
I0327 12:48:31.543849 21344 solver.cpp:245] Train net output #37: loss1/loss16 = 0.00294394 (* 0.0272727 = 8.02892e-05 loss) | |
I0327 12:48:31.543862 21344 solver.cpp:245] Train net output #38: loss1/loss17 = 0.00360372 (* 0.0272727 = 9.82834e-05 loss) | |
I0327 12:48:31.543895 21344 solver.cpp:245] Train net output #39: loss1/loss18 = 0.00289147 (* 0.0272727 = 7.88583e-05 loss) | |
I0327 12:48:31.543910 21344 solver.cpp:245] Train net output #40: loss1/loss19 = 0.00232657 (* 0.0272727 = 6.34518e-05 loss) | |
I0327 12:48:31.543925 21344 solver.cpp:245] Train net output #41: loss1/loss20 = 0.00171768 (* 0.0272727 = 4.68458e-05 loss) | |
I0327 12:48:31.543938 21344 solver.cpp:245] Train net output #42: loss1/loss21 = 0.00345615 (* 0.0272727 = 9.42586e-05 loss) | |
I0327 12:48:31.543952 21344 solver.cpp:245] Train net output #43: loss1/loss22 = 0.00484534 (* 0.0272727 = 0.000132146 loss) | |
I0327 12:48:31.543964 21344 solver.cpp:245] Train net output #44: loss2/accuracy01 = 0.125 | |
I0327 12:48:31.543977 21344 solver.cpp:245] Train net output #45: loss2/accuracy02 = 0 | |
I0327 12:48:31.543988 21344 solver.cpp:245] Train net output #46: loss2/accuracy03 = 0 | |
I0327 12:48:31.544000 21344 solver.cpp:245] Train net output #47: loss2/accuracy04 = 0.125 | |
I0327 12:48:31.544011 21344 solver.cpp:245] Train net output #48: loss2/accuracy05 = 0.125 | |
I0327 12:48:31.544023 21344 solver.cpp:245] Train net output #49: loss2/accuracy06 = 0.125 | |
I0327 12:48:31.544035 21344 solver.cpp:245] Train net output #50: loss2/accuracy07 = 0.5 | |
I0327 12:48:31.544047 21344 solver.cpp:245] Train net output #51: loss2/accuracy08 = 0.75 | |
I0327 12:48:31.544062 21344 solver.cpp:245] Train net output #52: loss2/accuracy09 = 1 | |
I0327 12:48:31.544075 21344 solver.cpp:245] Train net output #53: loss2/accuracy10 = 1 | |
I0327 12:48:31.544085 21344 solver.cpp:245] Train net output #54: loss2/accuracy11 = 1 | |
I0327 12:48:31.544096 21344 solver.cpp:245] Train net output #55: loss2/accuracy12 = 1 | |
I0327 12:48:31.544108 21344 solver.cpp:245] Train net output #56: loss2/accuracy13 = 1 | |
I0327 12:48:31.544119 21344 solver.cpp:245] Train net output #57: loss2/accuracy14 = 1 | |
I0327 12:48:31.544131 21344 solver.cpp:245] Train net output #58: loss2/accuracy15 = 1 | |
I0327 12:48:31.544142 21344 solver.cpp:245] Train net output #59: loss2/accuracy16 = 1 | |
I0327 12:48:31.544153 21344 solver.cpp:245] Train net output #60: loss2/accuracy17 = 1 | |
I0327 12:48:31.544165 21344 solver.cpp:245] Train net output #61: loss2/accuracy18 = 1 | |
I0327 12:48:31.544176 21344 solver.cpp:245] Train net output #62: loss2/accuracy19 = 1 | |
I0327 12:48:31.544188 21344 solver.cpp:245] Train net output #63: loss2/accuracy20 = 1 | |
I0327 12:48:31.544198 21344 solver.cpp:245] Train net output #64: loss2/accuracy21 = 1 | |
I0327 12:48:31.544210 21344 solver.cpp:245] Train net output #65: loss2/accuracy22 = 1 | |
I0327 12:48:31.544224 21344 solver.cpp:245] Train net output #66: loss2/loss01 = 3.944 (* 0.0272727 = 0.107564 loss) | |
I0327 12:48:31.544239 21344 solver.cpp:245] Train net output #67: loss2/loss02 = 5.23305 (* 0.0272727 = 0.14272 loss) | |
I0327 12:48:31.544252 21344 solver.cpp:245] Train net output #68: loss2/loss03 = 4.44548 (* 0.0272727 = 0.12124 loss) | |
I0327 12:48:31.544262 21344 solver.cpp:245] Train net output #69: loss2/loss04 = 3.82866 (* 0.0272727 = 0.104418 loss) | |
I0327 12:48:31.544277 21344 solver.cpp:245] Train net output #70: loss2/loss05 = 4.39554 (* 0.0272727 = 0.119878 loss) | |
I0327 12:48:31.544291 21344 solver.cpp:245] Train net output #71: loss2/loss06 = 4.23636 (* 0.0272727 = 0.115537 loss) | |
I0327 12:48:31.544306 21344 solver.cpp:245] Train net output #72: loss2/loss07 = 3.37183 (* 0.0272727 = 0.0919589 loss) | |
I0327 12:48:31.544319 21344 solver.cpp:245] Train net output #73: loss2/loss08 = 2.09208 (* 0.0272727 = 0.0570566 loss) | |
I0327 12:48:31.544333 21344 solver.cpp:245] Train net output #74: loss2/loss09 = 0.0456227 (* 0.0272727 = 0.00124425 loss) | |
I0327 12:48:31.544348 21344 solver.cpp:245] Train net output #75: loss2/loss10 = 0.0188958 (* 0.0272727 = 0.000515339 loss) | |
I0327 12:48:31.544361 21344 solver.cpp:245] Train net output #76: loss2/loss11 = 0.00233449 (* 0.0272727 = 6.3668e-05 loss) | |
I0327 12:48:31.544379 21344 solver.cpp:245] Train net output #77: loss2/loss12 = 0.00220827 (* 0.0272727 = 6.02256e-05 loss) | |
I0327 12:48:31.544405 21344 solver.cpp:245] Train net output #78: loss2/loss13 = 0.00528225 (* 0.0272727 = 0.000144061 loss) | |
I0327 12:48:31.544420 21344 solver.cpp:245] Train net output #79: loss2/loss14 = 0.00371456 (* 0.0272727 = 0.000101306 loss) | |
I0327 12:48:31.544435 21344 solver.cpp:245] Train net output #80: loss2/loss15 = 0.00222608 (* 0.0272727 = 6.07113e-05 loss) | |
I0327 12:48:31.544450 21344 solver.cpp:245] Train net output #81: loss2/loss16 = 0.00241781 (* 0.0272727 = 6.59403e-05 loss) | |
I0327 12:48:31.544463 21344 solver.cpp:245] Train net output #82: loss2/loss17 = 0.00112357 (* 0.0272727 = 3.06428e-05 loss) | |
I0327 12:48:31.544477 21344 solver.cpp:245] Train net output #83: loss2/loss18 = 0.00168255 (* 0.0272727 = 4.58876e-05 loss) | |
I0327 12:48:31.544492 21344 solver.cpp:245] Train net output #84: loss2/loss19 = 0.00241282 (* 0.0272727 = 6.58041e-05 loss) | |
I0327 12:48:31.544505 21344 solver.cpp:245] Train net output #85: loss2/loss20 = 0.00182452 (* 0.0272727 = 4.97596e-05 loss) | |
I0327 12:48:31.544519 21344 solver.cpp:245] Train net output #86: loss2/loss21 = 0.00155533 (* 0.0272727 = 4.24181e-05 loss) | |
I0327 12:48:31.544533 21344 solver.cpp:245] Train net output #87: loss2/loss22 = 0.00330143 (* 0.0272727 = 9.0039e-05 loss) | |
I0327 12:48:31.544545 21344 solver.cpp:245] Train net output #88: loss3/accuracy01 = 0 | |
I0327 12:48:31.544558 21344 solver.cpp:245] Train net output #89: loss3/accuracy02 = 0.125 | |
I0327 12:48:31.544569 21344 solver.cpp:245] Train net output #90: loss3/accuracy03 = 0.125 | |
I0327 12:48:31.544581 21344 solver.cpp:245] Train net output #91: loss3/accuracy04 = 0 | |
I0327 12:48:31.544592 21344 solver.cpp:245] Train net output #92: loss3/accuracy05 = 0.125 | |
I0327 12:48:31.544605 21344 solver.cpp:245] Train net output #93: loss3/accuracy06 = 0.125 | |
I0327 12:48:31.544615 21344 solver.cpp:245] Train net output #94: loss3/accuracy07 = 0.375 | |
I0327 12:48:31.544627 21344 solver.cpp:245] Train net output #95: loss3/accuracy08 = 0.75 | |
I0327 12:48:31.544639 21344 solver.cpp:245] Train net output #96: loss3/accuracy09 = 1 | |
I0327 12:48:31.544651 21344 solver.cpp:245] Train net output #97: loss3/accuracy10 = 1 | |
I0327 12:48:31.544662 21344 solver.cpp:245] Train net output #98: loss3/accuracy11 = 1 | |
I0327 12:48:31.544673 21344 solver.cpp:245] Train net output #99: loss3/accuracy12 = 1 | |
I0327 12:48:31.544684 21344 solver.cpp:245] Train net output #100: loss3/accuracy13 = 1 | |
I0327 12:48:31.544697 21344 solver.cpp:245] Train net output #101: loss3/accuracy14 = 1 | |
I0327 12:48:31.544708 21344 solver.cpp:245] Train net output #102: loss3/accuracy15 = 1 | |
I0327 12:48:31.544718 21344 solver.cpp:245] Train net output #103: loss3/accuracy16 = 1 | |
I0327 12:48:31.544730 21344 solver.cpp:245] Train net output #104: loss3/accuracy17 = 1 | |
I0327 12:48:31.544741 21344 solver.cpp:245] Train net output #105: loss3/accuracy18 = 1 | |
I0327 12:48:31.544752 21344 solver.cpp:245] Train net output #106: loss3/accuracy19 = 1 | |
I0327 12:48:31.544764 21344 solver.cpp:245] Train net output #107: loss3/accuracy20 = 1 | |
I0327 12:48:31.544775 21344 solver.cpp:245] Train net output #108: loss3/accuracy21 = 1 | |
I0327 12:48:31.544786 21344 solver.cpp:245] Train net output #109: loss3/accuracy22 = 1 | |
I0327 12:48:31.544800 21344 solver.cpp:245] Train net output #110: loss3/loss01 = 3.76921 (* 0.0909091 = 0.342656 loss) | |
I0327 12:48:31.544813 21344 solver.cpp:245] Train net output #111: loss3/loss02 = 3.7835 (* 0.0909091 = 0.343955 loss) | |
I0327 12:48:31.544827 21344 solver.cpp:245] Train net output #112: loss3/loss03 = 3.59673 (* 0.0909091 = 0.326976 loss) | |
I0327 12:48:31.544842 21344 solver.cpp:245] Train net output #113: loss3/loss04 = 3.80982 (* 0.0909091 = 0.346348 loss) | |
I0327 12:48:31.544855 21344 solver.cpp:245] Train net output #114: loss3/loss05 = 3.6592 (* 0.0909091 = 0.332655 loss) | |
I0327 12:48:31.544869 21344 solver.cpp:245] Train net output #115: loss3/loss06 = 3.53691 (* 0.0909091 = 0.321537 loss) | |
I0327 12:48:31.544893 21344 solver.cpp:245] Train net output #116: loss3/loss07 = 3.24749 (* 0.0909091 = 0.295227 loss) | |
I0327 12:48:31.544909 21344 solver.cpp:245] Train net output #117: loss3/loss08 = 1.67399 (* 0.0909091 = 0.152181 loss) | |
I0327 12:48:31.544922 21344 solver.cpp:245] Train net output #118: loss3/loss09 = 0.023946 (* 0.0909091 = 0.0021769 loss) | |
I0327 12:48:31.544936 21344 solver.cpp:245] Train net output #119: loss3/loss10 = 0.0113547 (* 0.0909091 = 0.00103224 loss) | |
I0327 12:48:31.544951 21344 solver.cpp:245] Train net output #120: loss3/loss11 = 0.000469777 (* 0.0909091 = 4.2707e-05 loss) | |
I0327 12:48:31.544965 21344 solver.cpp:245] Train net output #121: loss3/loss12 = 0.000338399 (* 0.0909091 = 3.07635e-05 loss) | |
I0327 12:48:31.544980 21344 solver.cpp:245] Train net output #122: loss3/loss13 = 0.000529401 (* 0.0909091 = 4.81273e-05 loss) | |
I0327 12:48:31.544994 21344 solver.cpp:245] Train net output #123: loss3/loss14 = 0.00033494 (* 0.0909091 = 3.04491e-05 loss) | |
I0327 12:48:31.545008 21344 solver.cpp:245] Train net output #124: loss3/loss15 = 0.00035398 (* 0.0909091 = 3.218e-05 loss) | |
I0327 12:48:31.545022 21344 solver.cpp:245] Train net output #125: loss3/loss16 = 0.000445541 (* 0.0909091 = 4.05038e-05 loss) | |
I0327 12:48:31.545037 21344 solver.cpp:245] Train net output #126: loss3/loss17 = 0.000374069 (* 0.0909091 = 3.40062e-05 loss) | |
I0327 12:48:31.545052 21344 solver.cpp:245] Train net output #127: loss3/loss18 = 0.000473763 (* 0.0909091 = 4.30693e-05 loss) | |
I0327 12:48:31.545065 21344 solver.cpp:245] Train net output #128: loss3/loss19 = 0.000370532 (* 0.0909091 = 3.36847e-05 loss) | |
I0327 12:48:31.545079 21344 solver.cpp:245] Train net output #129: loss3/loss20 = 0.000392133 (* 0.0909091 = 3.56485e-05 loss) | |
I0327 12:48:31.545094 21344 solver.cpp:245] Train net output #130: loss3/loss21 = 0.000425709 (* 0.0909091 = 3.87009e-05 loss) | |
I0327 12:48:31.545110 21344 solver.cpp:245] Train net output #131: loss3/loss22 = 0.000293673 (* 0.0909091 = 2.66975e-05 loss) | |
I0327 12:48:31.545123 21344 solver.cpp:245] Train net output #132: total_accuracy = 0 | |
I0327 12:48:31.545135 21344 solver.cpp:245] Train net output #133: total_confidence = 2.0007e-05 | |
I0327 12:48:31.545147 21344 sgd_solver.cpp:106] Iteration 500, lr = 0.01 | |
I0327 12:50:19.381640 21344 solver.cpp:229] Iteration 1000, loss = 3.50695 | |
I0327 12:50:19.381791 21344 solver.cpp:245] Train net output #0: loss1/accuracy01 = 0 | |
I0327 12:50:19.381810 21344 solver.cpp:245] Train net output #1: loss1/accuracy02 = 0.25 | |
I0327 12:50:19.381824 21344 solver.cpp:245] Train net output #2: loss1/accuracy03 = 0 | |
I0327 12:50:19.381835 21344 solver.cpp:245] Train net output #3: loss1/accuracy04 = 0 | |
I0327 12:50:19.381847 21344 solver.cpp:245] Train net output #4: loss1/accuracy05 = 0 | |
I0327 12:50:19.381858 21344 solver.cpp:245] Train net output #5: loss1/accuracy06 = 0.375 | |
I0327 12:50:19.381871 21344 solver.cpp:245] Train net output #6: loss1/accuracy07 = 0.5 | |
I0327 12:50:19.381883 21344 solver.cpp:245] Train net output #7: loss1/accuracy08 = 1 | |
I0327 12:50:19.381894 21344 solver.cpp:245] Train net output #8: loss1/accuracy09 = 1 | |
I0327 12:50:19.381906 21344 solver.cpp:245] Train net output #9: loss1/accuracy10 = 1 | |
I0327 12:50:19.381917 21344 solver.cpp:245] Train net output #10: loss1/accuracy11 = 1 | |
I0327 12:50:19.381929 21344 solver.cpp:245] Train net output #11: loss1/accuracy12 = 1 | |
I0327 12:50:19.381940 21344 solver.cpp:245] Train net output #12: loss1/accuracy13 = 1 | |
I0327 12:50:19.381953 21344 solver.cpp:245] Train net output #13: loss1/accuracy14 = 1 | |
I0327 12:50:19.381963 21344 solver.cpp:245] Train net output #14: loss1/accuracy15 = 1 | |
I0327 12:50:19.381975 21344 solver.cpp:245] Train net output #15: loss1/accuracy16 = 1 | |
I0327 12:50:19.381986 21344 solver.cpp:245] Train net output #16: loss1/accuracy17 = 1 | |
I0327 12:50:19.382001 21344 solver.cpp:245] Train net output #17: loss1/accuracy18 = 1 | |
I0327 12:50:19.382012 21344 solver.cpp:245] Train net output #18: loss1/accuracy19 = 1 | |
I0327 12:50:19.382025 21344 solver.cpp:245] Train net output #19: loss1/accuracy20 = 1 | |
I0327 12:50:19.382035 21344 solver.cpp:245] Train net output #20: loss1/accuracy21 = 1 | |
I0327 12:50:19.382047 21344 solver.cpp:245] Train net output #21: loss1/accuracy22 = 1 | |
I0327 12:50:19.382064 21344 solver.cpp:245] Train net output #22: loss1/loss01 = 4.25361 (* 0.0272727 = 0.116007 loss) | |
I0327 12:50:19.382079 21344 solver.cpp:245] Train net output #23: loss1/loss02 = 3.02768 (* 0.0272727 = 0.0825731 loss) | |
I0327 12:50:19.382094 21344 solver.cpp:245] Train net output #24: loss1/loss03 = 3.58902 (* 0.0272727 = 0.0978823 loss) | |
I0327 12:50:19.382107 21344 solver.cpp:245] Train net output #25: loss1/loss04 = 3.56867 (* 0.0272727 = 0.0973274 loss) | |
I0327 12:50:19.382122 21344 solver.cpp:245] Train net output #26: loss1/loss05 = 4.24477 (* 0.0272727 = 0.115767 loss) | |
I0327 12:50:19.382135 21344 solver.cpp:245] Train net output #27: loss1/loss06 = 2.64072 (* 0.0272727 = 0.0720196 loss) | |
I0327 12:50:19.382149 21344 solver.cpp:245] Train net output #28: loss1/loss07 = 2.38793 (* 0.0272727 = 0.0651253 loss) | |
I0327 12:50:19.382164 21344 solver.cpp:245] Train net output #29: loss1/loss08 = 0.210826 (* 0.0272727 = 0.0057498 loss) | |
I0327 12:50:19.382179 21344 solver.cpp:245] Train net output #30: loss1/loss09 = 0.0520047 (* 0.0272727 = 0.00141831 loss) | |
I0327 12:50:19.382192 21344 solver.cpp:245] Train net output #31: loss1/loss10 = 0.0328391 (* 0.0272727 = 0.000895611 loss) | |
I0327 12:50:19.382206 21344 solver.cpp:245] Train net output #32: loss1/loss11 = 0.00657769 (* 0.0272727 = 0.000179391 loss) | |
I0327 12:50:19.382220 21344 solver.cpp:245] Train net output #33: loss1/loss12 = 0.00254217 (* 0.0272727 = 6.93319e-05 loss) | |
I0327 12:50:19.382235 21344 solver.cpp:245] Train net output #34: loss1/loss13 = 0.00558509 (* 0.0272727 = 0.000152321 loss) | |
I0327 12:50:19.382248 21344 solver.cpp:245] Train net output #35: loss1/loss14 = 0.00597209 (* 0.0272727 = 0.000162875 loss) | |
I0327 12:50:19.382262 21344 solver.cpp:245] Train net output #36: loss1/loss15 = 0.00279138 (* 0.0272727 = 7.61285e-05 loss) | |
I0327 12:50:19.382277 21344 solver.cpp:245] Train net output #37: loss1/loss16 = 0.00398152 (* 0.0272727 = 0.000108587 loss) | |
I0327 12:50:19.382290 21344 solver.cpp:245] Train net output #38: loss1/loss17 = 0.00755032 (* 0.0272727 = 0.000205918 loss) | |
I0327 12:50:19.382318 21344 solver.cpp:245] Train net output #39: loss1/loss18 = 0.0172695 (* 0.0272727 = 0.000470986 loss) | |
I0327 12:50:19.382334 21344 solver.cpp:245] Train net output #40: loss1/loss19 = 0.00337795 (* 0.0272727 = 9.21258e-05 loss) | |
I0327 12:50:19.382362 21344 solver.cpp:245] Train net output #41: loss1/loss20 = 0.00217044 (* 0.0272727 = 5.91937e-05 loss) | |
I0327 12:50:19.382380 21344 solver.cpp:245] Train net output #42: loss1/loss21 = 0.00836068 (* 0.0272727 = 0.000228019 loss) | |
I0327 12:50:19.382395 21344 solver.cpp:245] Train net output #43: loss1/loss22 = 0.00448312 (* 0.0272727 = 0.000122267 loss) | |
I0327 12:50:19.382407 21344 solver.cpp:245] Train net output #44: loss2/accuracy01 = 0.25 | |
I0327 12:50:19.382419 21344 solver.cpp:245] Train net output #45: loss2/accuracy02 = 0 | |
I0327 12:50:19.382431 21344 solver.cpp:245] Train net output #46: loss2/accuracy03 = 0 | |
I0327 12:50:19.382441 21344 solver.cpp:245] Train net output #47: loss2/accuracy04 = 0 | |
I0327 12:50:19.382452 21344 solver.cpp:245] Train net output #48: loss2/accuracy05 = 0 | |
I0327 12:50:19.382464 21344 solver.cpp:245] Train net output #49: loss2/accuracy06 = 0.375 | |
I0327 12:50:19.382475 21344 solver.cpp:245] Train net output #50: loss2/accuracy07 = 0.5 | |
I0327 12:50:19.382488 21344 solver.cpp:245] Train net output #51: loss2/accuracy08 = 1 | |
I0327 12:50:19.382499 21344 solver.cpp:245] Train net output #52: loss2/accuracy09 = 1 | |
I0327 12:50:19.382510 21344 solver.cpp:245] Train net output #53: loss2/accuracy10 = 1 | |
I0327 12:50:19.382521 21344 solver.cpp:245] Train net output #54: loss2/accuracy11 = 1 | |
I0327 12:50:19.382532 21344 solver.cpp:245] Train net output #55: loss2/accuracy12 = 1 | |
I0327 12:50:19.382544 21344 solver.cpp:245] Train net output #56: loss2/accuracy13 = 1 | |
I0327 12:50:19.382555 21344 solver.cpp:245] Train net output #57: loss2/accuracy14 = 1 | |
I0327 12:50:19.382566 21344 solver.cpp:245] Train net output #58: loss2/accuracy15 = 1 | |
I0327 12:50:19.382577 21344 solver.cpp:245] Train net output #59: loss2/accuracy16 = 1 | |
I0327 12:50:19.382588 21344 solver.cpp:245] Train net output #60: loss2/accuracy17 = 1 | |
I0327 12:50:19.382599 21344 solver.cpp:245] Train net output #61: loss2/accuracy18 = 1 | |
I0327 12:50:19.382611 21344 solver.cpp:245] Train net output #62: loss2/accuracy19 = 1 | |
I0327 12:50:19.382623 21344 solver.cpp:245] Train net output #63: loss2/accuracy20 = 1 | |
I0327 12:50:19.382632 21344 solver.cpp:245] Train net output #64: loss2/accuracy21 = 1 | |
I0327 12:50:19.382638 21344 solver.cpp:245] Train net output #65: loss2/accuracy22 = 1 | |
I0327 12:50:19.382652 21344 solver.cpp:245] Train net output #66: loss2/loss01 = 2.69376 (* 0.0272727 = 0.0734662 loss) | |
I0327 12:50:19.382666 21344 solver.cpp:245] Train net output #67: loss2/loss02 = 3.47722 (* 0.0272727 = 0.0948334 loss) | |
I0327 12:50:19.382680 21344 solver.cpp:245] Train net output #68: loss2/loss03 = 4.08788 (* 0.0272727 = 0.111488 loss) | |
I0327 12:50:19.382694 21344 solver.cpp:245] Train net output #69: loss2/loss04 = 4.27301 (* 0.0272727 = 0.116537 loss) | |
I0327 12:50:19.382709 21344 solver.cpp:245] Train net output #70: loss2/loss05 = 3.81694 (* 0.0272727 = 0.104098 loss) | |
I0327 12:50:19.382722 21344 solver.cpp:245] Train net output #71: loss2/loss06 = 2.98108 (* 0.0272727 = 0.0813021 loss) | |
I0327 12:50:19.382736 21344 solver.cpp:245] Train net output #72: loss2/loss07 = 3.07572 (* 0.0272727 = 0.0838832 loss) | |
I0327 12:50:19.382750 21344 solver.cpp:245] Train net output #73: loss2/loss08 = 0.0809223 (* 0.0272727 = 0.00220697 loss) | |
I0327 12:50:19.382764 21344 solver.cpp:245] Train net output #74: loss2/loss09 = 0.065965 (* 0.0272727 = 0.00179905 loss) | |
I0327 12:50:19.382778 21344 solver.cpp:245] Train net output #75: loss2/loss10 = 0.0126344 (* 0.0272727 = 0.000344574 loss) | |
I0327 12:50:19.382792 21344 solver.cpp:245] Train net output #76: loss2/loss11 = 0.00116792 (* 0.0272727 = 3.18523e-05 loss) | |
I0327 12:50:19.382810 21344 solver.cpp:245] Train net output #77: loss2/loss12 = 0.00259976 (* 0.0272727 = 7.09026e-05 loss) | |
I0327 12:50:19.382838 21344 solver.cpp:245] Train net output #78: loss2/loss13 = 0.00463104 (* 0.0272727 = 0.000126301 loss) | |
I0327 12:50:19.382853 21344 solver.cpp:245] Train net output #79: loss2/loss14 = 0.00107162 (* 0.0272727 = 2.92259e-05 loss) | |
I0327 12:50:19.382868 21344 solver.cpp:245] Train net output #80: loss2/loss15 = 0.00217358 (* 0.0272727 = 5.92795e-05 loss) | |
I0327 12:50:19.382881 21344 solver.cpp:245] Train net output #81: loss2/loss16 = 0.00263626 (* 0.0272727 = 7.18981e-05 loss) | |
I0327 12:50:19.382895 21344 solver.cpp:245] Train net output #82: loss2/loss17 = 0.000595484 (* 0.0272727 = 1.62405e-05 loss) | |
I0327 12:50:19.382910 21344 solver.cpp:245] Train net output #83: loss2/loss18 = 0.00174797 (* 0.0272727 = 4.76718e-05 loss) | |
I0327 12:50:19.382923 21344 solver.cpp:245] Train net output #84: loss2/loss19 = 0.00231636 (* 0.0272727 = 6.31733e-05 loss) | |
I0327 12:50:19.382937 21344 solver.cpp:245] Train net output #85: loss2/loss20 = 0.00658956 (* 0.0272727 = 0.000179715 loss) | |
I0327 12:50:19.382951 21344 solver.cpp:245] Train net output #86: loss2/loss21 = 0.00130017 (* 0.0272727 = 3.54593e-05 loss) | |
I0327 12:50:19.382966 21344 solver.cpp:245] Train net output #87: loss2/loss22 = 0.00132161 (* 0.0272727 = 3.60438e-05 loss) | |
I0327 12:50:19.382977 21344 solver.cpp:245] Train net output #88: loss3/accuracy01 = 0 | |
I0327 12:50:19.382988 21344 solver.cpp:245] Train net output #89: loss3/accuracy02 = 0.375 | |
I0327 12:50:19.383000 21344 solver.cpp:245] Train net output #90: loss3/accuracy03 = 0 | |
I0327 12:50:19.383013 21344 solver.cpp:245] Train net output #91: loss3/accuracy04 = 0 | |
I0327 12:50:19.383023 21344 solver.cpp:245] Train net output #92: loss3/accuracy05 = 0 | |
I0327 12:50:19.383034 21344 solver.cpp:245] Train net output #93: loss3/accuracy06 = 0.5 | |
I0327 12:50:19.383049 21344 solver.cpp:245] Train net output #94: loss3/accuracy07 = 0.5 | |
I0327 12:50:19.383061 21344 solver.cpp:245] Train net output #95: loss3/accuracy08 = 1 | |
I0327 12:50:19.383072 21344 solver.cpp:245] Train net output #96: loss3/accuracy09 = 1 | |
I0327 12:50:19.383085 21344 solver.cpp:245] Train net output #97: loss3/accuracy10 = 1 | |
I0327 12:50:19.383095 21344 solver.cpp:245] Train net output #98: loss3/accuracy11 = 1 | |
I0327 12:50:19.383106 21344 solver.cpp:245] Train net output #99: loss3/accuracy12 = 1 | |
I0327 12:50:19.383117 21344 solver.cpp:245] Train net output #100: loss3/accuracy13 = 1 | |
I0327 12:50:19.383128 21344 solver.cpp:245] Train net output #101: loss3/accuracy14 = 1 | |
I0327 12:50:19.383141 21344 solver.cpp:245] Train net output #102: loss3/accuracy15 = 1 | |
I0327 12:50:19.383152 21344 solver.cpp:245] Train net output #103: loss3/accuracy16 = 1 | |
I0327 12:50:19.383162 21344 solver.cpp:245] Train net output #104: loss3/accuracy17 = 1 | |
I0327 12:50:19.383174 21344 solver.cpp:245] Train net output #105: loss3/accuracy18 = 1 | |
I0327 12:50:19.383185 21344 solver.cpp:245] Train net output #106: loss3/accuracy19 = 1 | |
I0327 12:50:19.383196 21344 solver.cpp:245] Train net output #107: loss3/accuracy20 = 1 | |
I0327 12:50:19.383208 21344 solver.cpp:245] Train net output #108: loss3/accuracy21 = 1 | |
I0327 12:50:19.383219 21344 solver.cpp:245] Train net output #109: loss3/accuracy22 = 1 | |
I0327 12:50:19.383239 21344 solver.cpp:245] Train net output #110: loss3/loss01 = 3.0248 (* 0.0909091 = 0.274982 loss) | |
I0327 12:50:19.383261 21344 solver.cpp:245] Train net output #111: loss3/loss02 = 3.06841 (* 0.0909091 = 0.278946 loss) | |
I0327 12:50:19.383276 21344 solver.cpp:245] Train net output #112: loss3/loss03 = 3.40723 (* 0.0909091 = 0.309748 loss) | |
I0327 12:50:19.383291 21344 solver.cpp:245] Train net output #113: loss3/loss04 = 3.43294 (* 0.0909091 = 0.312086 loss) | |
I0327 12:50:19.383304 21344 solver.cpp:245] Train net output #114: loss3/loss05 = 3.90354 (* 0.0909091 = 0.354868 loss) | |
I0327 12:50:19.383317 21344 solver.cpp:245] Train net output #115: loss3/loss06 = 2.37401 (* 0.0909091 = 0.215819 loss) | |
I0327 12:50:19.383343 21344 solver.cpp:245] Train net output #116: loss3/loss07 = 2.57219 (* 0.0909091 = 0.233835 loss) | |
I0327 12:50:19.383358 21344 solver.cpp:245] Train net output #117: loss3/loss08 = 0.206626 (* 0.0909091 = 0.0187842 loss) | |
I0327 12:50:19.383373 21344 solver.cpp:245] Train net output #118: loss3/loss09 = 0.0542129 (* 0.0909091 = 0.00492845 loss) | |
I0327 12:50:19.383386 21344 solver.cpp:245] Train net output #119: loss3/loss10 = 0.0169058 (* 0.0909091 = 0.00153689 loss) | |
I0327 12:50:19.383400 21344 solver.cpp:245] Train net output #120: loss3/loss11 = 0.000245261 (* 0.0909091 = 2.22964e-05 loss) | |
I0327 12:50:19.383414 21344 solver.cpp:245] Train net output #121: loss3/loss12 = 0.000325769 (* 0.0909091 = 2.96154e-05 loss) | |
I0327 12:50:19.383429 21344 solver.cpp:245] Train net output #122: loss3/loss13 = 0.0003626 (* 0.0909091 = 3.29636e-05 loss) | |
I0327 12:50:19.383442 21344 solver.cpp:245] Train net output #123: loss3/loss14 = 0.000479851 (* 0.0909091 = 4.36228e-05 loss) | |
I0327 12:50:19.383456 21344 solver.cpp:245] Train net output #124: loss3/loss15 = 0.000260266 (* 0.0909091 = 2.36606e-05 loss) | |
I0327 12:50:19.383471 21344 solver.cpp:245] Train net output #125: loss3/loss16 = 0.000236507 (* 0.0909091 = 2.15006e-05 loss) | |
I0327 12:50:19.383486 21344 solver.cpp:245] Train net output #126: loss3/loss17 = 0.000258127 (* 0.0909091 = 2.34661e-05 loss) | |
I0327 12:50:19.383499 21344 solver.cpp:245] Train net output #127: loss3/loss18 = 0.000615899 (* 0.0909091 = 5.59908e-05 loss) | |
I0327 12:50:19.383513 21344 solver.cpp:245] Train net output #128: loss3/loss19 = 0.000495585 (* 0.0909091 = 4.50532e-05 loss) | |
I0327 12:50:19.383527 21344 solver.cpp:245] Train net output #129: loss3/loss20 = 0.000328216 (* 0.0909091 = 2.98378e-05 loss) | |
I0327 12:50:19.383541 21344 solver.cpp:245] Train net output #130: loss3/loss21 = 0.000291243 (* 0.0909091 = 2.64767e-05 loss) | |
I0327 12:50:19.383555 21344 solver.cpp:245] Train net output #131: loss3/loss22 = 0.000307237 (* 0.0909091 = 2.79306e-05 loss) | |
I0327 12:50:19.383568 21344 solver.cpp:245] Train net output #132: total_accuracy = 0 | |
I0327 12:50:19.383579 21344 solver.cpp:245] Train net output #133: total_confidence = 5.13961e-05 | |
I0327 12:50:19.383590 21344 sgd_solver.cpp:106] Iteration 1000, lr = 0.01 | |
I0327 12:52:07.232967 21344 solver.cpp:229] Iteration 1500, loss = 3.37241 | |
I0327 12:52:07.233185 21344 solver.cpp:245] Train net output #0: loss1/accuracy01 = 0 | |
I0327 12:52:07.233212 21344 solver.cpp:245] Train net output #1: loss1/accuracy02 = 0.125 | |
I0327 12:52:07.233227 21344 solver.cpp:245] Train net output #2: loss1/accuracy03 = 0.125 | |
I0327 12:52:07.233239 21344 solver.cpp:245] Train net output #3: loss1/accuracy04 = 0 | |
I0327 12:52:07.233253 21344 solver.cpp:245] Train net output #4: loss1/accuracy05 = 0 | |
I0327 12:52:07.233264 21344 solver.cpp:245] Train net output #5: loss1/accuracy06 = 0.5 | |
I0327 12:52:07.233276 21344 solver.cpp:245] Train net output #6: loss1/accuracy07 = 0.75 | |
I0327 12:52:07.233289 21344 solver.cpp:245] Train net output #7: loss1/accuracy08 = 0.875 | |
I0327 12:52:07.233302 21344 solver.cpp:245] Train net output #8: loss1/accuracy09 = 1 | |
I0327 12:52:07.233314 21344 solver.cpp:245] Train net output #9: loss1/accuracy10 = 1 | |
I0327 12:52:07.233326 21344 solver.cpp:245] Train net output #10: loss1/accuracy11 = 1 | |
I0327 12:52:07.233340 21344 solver.cpp:245] Train net output #11: loss1/accuracy12 = 1 | |
I0327 12:52:07.233352 21344 solver.cpp:245] Train net output #12: loss1/accuracy13 = 1 | |
I0327 12:52:07.233364 21344 solver.cpp:245] Train net output #13: loss1/accuracy14 = 1 | |
I0327 12:52:07.233376 21344 solver.cpp:245] Train net output #14: loss1/accuracy15 = 1 | |
I0327 12:52:07.233388 21344 solver.cpp:245] Train net output #15: loss1/accuracy16 = 1 | |
I0327 12:52:07.233400 21344 solver.cpp:245] Train net output #16: loss1/accuracy17 = 1 | |
I0327 12:52:07.233412 21344 solver.cpp:245] Train net output #17: loss1/accuracy18 = 1 | |
I0327 12:52:07.233424 21344 solver.cpp:245] Train net output #18: loss1/accuracy19 = 1 | |
I0327 12:52:07.233436 21344 solver.cpp:245] Train net output #19: loss1/accuracy20 = 1 | |
I0327 12:52:07.233448 21344 solver.cpp:245] Train net output #20: loss1/accuracy21 = 1 | |
I0327 12:52:07.233460 21344 solver.cpp:245] Train net output #21: loss1/accuracy22 = 1 | |
I0327 12:52:07.233479 21344 solver.cpp:245] Train net output #22: loss1/loss01 = 4.45789 (* 0.0272727 = 0.121579 loss) | |
I0327 12:52:07.233494 21344 solver.cpp:245] Train net output #23: loss1/loss02 = 3.9518 (* 0.0272727 = 0.107776 loss) | |
I0327 12:52:07.233510 21344 solver.cpp:245] Train net output #24: loss1/loss03 = 4.64912 (* 0.0272727 = 0.126794 loss) | |
I0327 12:52:07.233523 21344 solver.cpp:245] Train net output #25: loss1/loss04 = 5.29387 (* 0.0272727 = 0.144378 loss) | |
I0327 12:52:07.233551 21344 solver.cpp:245] Train net output #26: loss1/loss05 = 5.03537 (* 0.0272727 = 0.137328 loss) | |
I0327 12:52:07.233568 21344 solver.cpp:245] Train net output #27: loss1/loss06 = 2.2156 (* 0.0272727 = 0.0604254 loss) | |
I0327 12:52:07.233583 21344 solver.cpp:245] Train net output #28: loss1/loss07 = 1.34738 (* 0.0272727 = 0.0367467 loss) | |
I0327 12:52:07.233597 21344 solver.cpp:245] Train net output #29: loss1/loss08 = 0.435965 (* 0.0272727 = 0.01189 loss) | |
I0327 12:52:07.233613 21344 solver.cpp:245] Train net output #30: loss1/loss09 = 0.0332361 (* 0.0272727 = 0.000906438 loss) | |
I0327 12:52:07.233628 21344 solver.cpp:245] Train net output #31: loss1/loss10 = 0.00626612 (* 0.0272727 = 0.000170894 loss) | |
I0327 12:52:07.233642 21344 solver.cpp:245] Train net output #32: loss1/loss11 = 0.000574337 (* 0.0272727 = 1.56637e-05 loss) | |
I0327 12:52:07.233657 21344 solver.cpp:245] Train net output #33: loss1/loss12 = 0.000285592 (* 0.0272727 = 7.78887e-06 loss) | |
I0327 12:52:07.233672 21344 solver.cpp:245] Train net output #34: loss1/loss13 = 0.000966135 (* 0.0272727 = 2.63491e-05 loss) | |
I0327 12:52:07.233686 21344 solver.cpp:245] Train net output #35: loss1/loss14 = 0.000873922 (* 0.0272727 = 2.38342e-05 loss) | |
I0327 12:52:07.233701 21344 solver.cpp:245] Train net output #36: loss1/loss15 = 0.000523732 (* 0.0272727 = 1.42836e-05 loss) | |
I0327 12:52:07.233716 21344 solver.cpp:245] Train net output #37: loss1/loss16 = 0.00177308 (* 0.0272727 = 4.83568e-05 loss) | |
I0327 12:52:07.233731 21344 solver.cpp:245] Train net output #38: loss1/loss17 = 0.000368851 (* 0.0272727 = 1.00596e-05 loss) | |
I0327 12:52:07.233765 21344 solver.cpp:245] Train net output #39: loss1/loss18 = 0.000740837 (* 0.0272727 = 2.02047e-05 loss) | |
I0327 12:52:07.233782 21344 solver.cpp:245] Train net output #40: loss1/loss19 = 0.000768718 (* 0.0272727 = 2.0965e-05 loss) | |
I0327 12:52:07.233795 21344 solver.cpp:245] Train net output #41: loss1/loss20 = 0.000583582 (* 0.0272727 = 1.59159e-05 loss) | |
I0327 12:52:07.233810 21344 solver.cpp:245] Train net output #42: loss1/loss21 = 0.000505741 (* 0.0272727 = 1.37929e-05 loss) | |
I0327 12:52:07.233824 21344 solver.cpp:245] Train net output #43: loss1/loss22 = 0.00421253 (* 0.0272727 = 0.000114887 loss) | |
I0327 12:52:07.233837 21344 solver.cpp:245] Train net output #44: loss2/accuracy01 = 0 | |
I0327 12:52:07.233850 21344 solver.cpp:245] Train net output #45: loss2/accuracy02 = 0.125 | |
I0327 12:52:07.233862 21344 solver.cpp:245] Train net output #46: loss2/accuracy03 = 0 | |
I0327 12:52:07.233875 21344 solver.cpp:245] Train net output #47: loss2/accuracy04 = 0.125 | |
I0327 12:52:07.233886 21344 solver.cpp:245] Train net output #48: loss2/accuracy05 = 0 | |
I0327 12:52:07.233898 21344 solver.cpp:245] Train net output #49: loss2/accuracy06 = 0.375 | |
I0327 12:52:07.233911 21344 solver.cpp:245] Train net output #50: loss2/accuracy07 = 0.75 | |
I0327 12:52:07.233922 21344 solver.cpp:245] Train net output #51: loss2/accuracy08 = 0.875 | |
I0327 12:52:07.233934 21344 solver.cpp:245] Train net output #52: loss2/accuracy09 = 1 | |
I0327 12:52:07.233947 21344 solver.cpp:245] Train net output #53: loss2/accuracy10 = 1 | |
I0327 12:52:07.233958 21344 solver.cpp:245] Train net output #54: loss2/accuracy11 = 1 | |
I0327 12:52:07.233970 21344 solver.cpp:245] Train net output #55: loss2/accuracy12 = 1 | |
I0327 12:52:07.233981 21344 solver.cpp:245] Train net output #56: loss2/accuracy13 = 1 | |
I0327 12:52:07.233996 21344 solver.cpp:245] Train net output #57: loss2/accuracy14 = 1 | |
I0327 12:52:07.234009 21344 solver.cpp:245] Train net output #58: loss2/accuracy15 = 1 | |
I0327 12:52:07.234020 21344 solver.cpp:245] Train net output #59: loss2/accuracy16 = 1 | |
I0327 12:52:07.234032 21344 solver.cpp:245] Train net output #60: loss2/accuracy17 = 1 | |
I0327 12:52:07.234043 21344 solver.cpp:245] Train net output #61: loss2/accuracy18 = 1 | |
I0327 12:52:07.234055 21344 solver.cpp:245] Train net output #62: loss2/accuracy19 = 1 | |
I0327 12:52:07.234067 21344 solver.cpp:245] Train net output #63: loss2/accuracy20 = 1 | |
I0327 12:52:07.234079 21344 solver.cpp:245] Train net output #64: loss2/accuracy21 = 1 | |
I0327 12:52:07.234091 21344 solver.cpp:245] Train net output #65: loss2/accuracy22 = 1 | |
I0327 12:52:07.234104 21344 solver.cpp:245] Train net output #66: loss2/loss01 = 5.54598 (* 0.0272727 = 0.151254 loss) | |
I0327 12:52:07.234119 21344 solver.cpp:245] Train net output #67: loss2/loss02 = 4.33609 (* 0.0272727 = 0.118257 loss) | |
I0327 12:52:07.234133 21344 solver.cpp:245] Train net output #68: loss2/loss03 = 4.64431 (* 0.0272727 = 0.126663 loss) | |
I0327 12:52:07.234148 21344 solver.cpp:245] Train net output #69: loss2/loss04 = 5.03972 (* 0.0272727 = 0.137447 loss) | |
I0327 12:52:07.234163 21344 solver.cpp:245] Train net output #70: loss2/loss05 = 4.55441 (* 0.0272727 = 0.124211 loss) | |
I0327 12:52:07.234176 21344 solver.cpp:245] Train net output #71: loss2/loss06 = 2.42615 (* 0.0272727 = 0.0661676 loss) | |
I0327 12:52:07.234194 21344 solver.cpp:245] Train net output #72: loss2/loss07 = 0.72244 (* 0.0272727 = 0.0197029 loss) | |
I0327 12:52:07.234208 21344 solver.cpp:245] Train net output #73: loss2/loss08 = 0.680219 (* 0.0272727 = 0.0185514 loss) | |
I0327 12:52:07.234223 21344 solver.cpp:245] Train net output #74: loss2/loss09 = 0.0666117 (* 0.0272727 = 0.00181668 loss) | |
I0327 12:52:07.234238 21344 solver.cpp:245] Train net output #75: loss2/loss10 = 0.0288703 (* 0.0272727 = 0.000787371 loss) | |
I0327 12:52:07.234252 21344 solver.cpp:245] Train net output #76: loss2/loss11 = 0.0032752 (* 0.0272727 = 8.93238e-05 loss) | |
I0327 12:52:07.234278 21344 solver.cpp:245] Train net output #77: loss2/loss12 = 0.00939663 (* 0.0272727 = 0.000256272 loss) | |
I0327 12:52:07.234293 21344 solver.cpp:245] Train net output #78: loss2/loss13 = 0.00989826 (* 0.0272727 = 0.000269953 loss) | |
I0327 12:52:07.234308 21344 solver.cpp:245] Train net output #79: loss2/loss14 = 0.00327559 (* 0.0272727 = 8.93343e-05 loss) | |
I0327 12:52:07.234323 21344 solver.cpp:245] Train net output #80: loss2/loss15 = 0.0076352 (* 0.0272727 = 0.000208233 loss) | |
I0327 12:52:07.234338 21344 solver.cpp:245] Train net output #81: loss2/loss16 = 0.00489671 (* 0.0272727 = 0.000133547 loss) | |
I0327 12:52:07.234352 21344 solver.cpp:245] Train net output #82: loss2/loss17 = 0.00328957 (* 0.0272727 = 8.97156e-05 loss) | |
I0327 12:52:07.234366 21344 solver.cpp:245] Train net output #83: loss2/loss18 = 0.0056836 (* 0.0272727 = 0.000155007 loss) | |
I0327 12:52:07.234381 21344 solver.cpp:245] Train net output #84: loss2/loss19 = 0.0092391 (* 0.0272727 = 0.000251975 loss) | |
I0327 12:52:07.234396 21344 solver.cpp:245] Train net output #85: loss2/loss20 = 0.00527483 (* 0.0272727 = 0.000143859 loss) | |
I0327 12:52:07.234411 21344 solver.cpp:245] Train net output #86: loss2/loss21 = 0.0120252 (* 0.0272727 = 0.000327959 loss) | |
I0327 12:52:07.234426 21344 solver.cpp:245] Train net output #87: loss2/loss22 = 0.00355952 (* 0.0272727 = 9.70779e-05 loss) | |
I0327 12:52:07.234438 21344 solver.cpp:245] Train net output #88: loss3/accuracy01 = 0 | |
I0327 12:52:07.234452 21344 solver.cpp:245] Train net output #89: loss3/accuracy02 = 0 | |
I0327 12:52:07.234463 21344 solver.cpp:245] Train net output #90: loss3/accuracy03 = 0 | |
I0327 12:52:07.234475 21344 solver.cpp:245] Train net output #91: loss3/accuracy04 = 0.125 | |
I0327 12:52:07.234488 21344 solver.cpp:245] Train net output #92: loss3/accuracy05 = 0 | |
I0327 12:52:07.234499 21344 solver.cpp:245] Train net output #93: loss3/accuracy06 = 0.375 | |
I0327 12:52:07.234511 21344 solver.cpp:245] Train net output #94: loss3/accuracy07 = 0.75 | |
I0327 12:52:07.234524 21344 solver.cpp:245] Train net output #95: loss3/accuracy08 = 0.875 | |
I0327 12:52:07.234535 21344 solver.cpp:245] Train net output #96: loss3/accuracy09 = 1 | |
I0327 12:52:07.234547 21344 solver.cpp:245] Train net output #97: loss3/accuracy10 = 1 | |
I0327 12:52:07.234560 21344 solver.cpp:245] Train net output #98: loss3/accuracy11 = 1 | |
I0327 12:52:07.234570 21344 solver.cpp:245] Train net output #99: loss3/accuracy12 = 1 | |
I0327 12:52:07.234582 21344 solver.cpp:245] Train net output #100: loss3/accuracy13 = 1 | |
I0327 12:52:07.234594 21344 solver.cpp:245] Train net output #101: loss3/accuracy14 = 1 | |
I0327 12:52:07.234606 21344 solver.cpp:245] Train net output #102: loss3/accuracy15 = 1 | |
I0327 12:52:07.234617 21344 solver.cpp:245] Train net output #103: loss3/accuracy16 = 1 | |
I0327 12:52:07.234629 21344 solver.cpp:245] Train net output #104: loss3/accuracy17 = 1 | |
I0327 12:52:07.234642 21344 solver.cpp:245] Train net output #105: loss3/accuracy18 = 1 | |
I0327 12:52:07.234653 21344 solver.cpp:245] Train net output #106: loss3/accuracy19 = 1 | |
I0327 12:52:07.234665 21344 solver.cpp:245] Train net output #107: loss3/accuracy20 = 1 | |
I0327 12:52:07.234678 21344 solver.cpp:245] Train net output #108: loss3/accuracy21 = 1 | |
I0327 12:52:07.234688 21344 solver.cpp:245] Train net output #109: loss3/accuracy22 = 1 | |
I0327 12:52:07.234704 21344 solver.cpp:245] Train net output #110: loss3/loss01 = 4.62053 (* 0.0909091 = 0.420048 loss) | |
I0327 12:52:07.234717 21344 solver.cpp:245] Train net output #111: loss3/loss02 = 3.83703 (* 0.0909091 = 0.348821 loss) | |
I0327 12:52:07.234731 21344 solver.cpp:245] Train net output #112: loss3/loss03 = 4.57988 (* 0.0909091 = 0.416353 loss) | |
I0327 12:52:07.234746 21344 solver.cpp:245] Train net output #113: loss3/loss04 = 4.18939 (* 0.0909091 = 0.380854 loss) | |
I0327 12:52:07.234760 21344 solver.cpp:245] Train net output #114: loss3/loss05 = 4.45138 (* 0.0909091 = 0.404671 loss) | |
I0327 12:52:07.234774 21344 solver.cpp:245] Train net output #115: loss3/loss06 = 2.44494 (* 0.0909091 = 0.222267 loss) | |
I0327 12:52:07.234798 21344 solver.cpp:245] Train net output #116: loss3/loss07 = 1.11218 (* 0.0909091 = 0.101108 loss) | |
I0327 12:52:07.234813 21344 solver.cpp:245] Train net output #117: loss3/loss08 = 0.651304 (* 0.0909091 = 0.0592094 loss) | |
I0327 12:52:07.234828 21344 solver.cpp:245] Train net output #118: loss3/loss09 = 0.0236113 (* 0.0909091 = 0.00214648 loss) | |
I0327 12:52:07.234843 21344 solver.cpp:245] Train net output #119: loss3/loss10 = 0.00736285 (* 0.0909091 = 0.00066935 loss) | |
I0327 12:52:07.234858 21344 solver.cpp:245] Train net output #120: loss3/loss11 = 0.000191173 (* 0.0909091 = 1.73794e-05 loss) | |
I0327 12:52:07.234872 21344 solver.cpp:245] Train net output #121: loss3/loss12 = 0.000258755 (* 0.0909091 = 2.35231e-05 loss) | |
I0327 12:52:07.234887 21344 solver.cpp:245] Train net output #122: loss3/loss13 = 0.000339354 (* 0.0909091 = 3.08504e-05 loss) | |
I0327 12:52:07.234902 21344 solver.cpp:245] Train net output #123: loss3/loss14 = 0.000292898 (* 0.0909091 = 2.66271e-05 loss) | |
I0327 12:52:07.234913 21344 solver.cpp:245] Train net output #124: loss3/loss15 = 0.000350322 (* 0.0909091 = 3.18474e-05 loss) | |
I0327 12:52:07.234931 21344 solver.cpp:245] Train net output #125: loss3/loss16 = 0.000279621 (* 0.0909091 = 2.54201e-05 loss) | |
I0327 12:52:07.234946 21344 solver.cpp:245] Train net output #126: loss3/loss17 = 0.000222202 (* 0.0909091 = 2.02002e-05 loss) | |
I0327 12:52:07.234961 21344 solver.cpp:245] Train net output #127: loss3/loss18 = 0.00026447 (* 0.0909091 = 2.40428e-05 loss) | |
I0327 12:52:07.234974 21344 solver.cpp:245] Train net output #128: loss3/loss19 = 0.000299953 (* 0.0909091 = 2.72684e-05 loss) | |
I0327 12:52:07.234989 21344 solver.cpp:245] Train net output #129: loss3/loss20 = 0.000207913 (* 0.0909091 = 1.89012e-05 loss) | |
I0327 12:52:07.235003 21344 solver.cpp:245] Train net output #130: loss3/loss21 = 0.000326543 (* 0.0909091 = 2.96857e-05 loss) | |
I0327 12:52:07.235018 21344 solver.cpp:245] Train net output #131: loss3/loss22 = 0.000302666 (* 0.0909091 = 2.75151e-05 loss) | |
I0327 12:52:07.235030 21344 solver.cpp:245] Train net output #132: total_accuracy = 0 | |
I0327 12:52:07.235044 21344 solver.cpp:245] Train net output #133: total_confidence = 0.000330197 | |
I0327 12:52:07.235059 21344 sgd_solver.cpp:106] Iteration 1500, lr = 0.01 | |
I0327 12:53:55.091136 21344 solver.cpp:229] Iteration 2000, loss = 3.32151 | |
I0327 12:53:55.091253 21344 solver.cpp:245] Train net output #0: loss1/accuracy01 = 0 | |
I0327 12:53:55.091272 21344 solver.cpp:245] Train net output #1: loss1/accuracy02 = 0.125 | |
I0327 12:53:55.091286 21344 solver.cpp:245] Train net output #2: loss1/accuracy03 = 0 | |
I0327 12:53:55.091298 21344 solver.cpp:245] Train net output #3: loss1/accuracy04 = 0 | |
I0327 12:53:55.091310 21344 solver.cpp:245] Train net output #4: loss1/accuracy05 = 0 | |
I0327 12:53:55.091322 21344 solver.cpp:245] Train net output #5: loss1/accuracy06 = 0.375 | |
I0327 12:53:55.091336 21344 solver.cpp:245] Train net output #6: loss1/accuracy07 = 0.625 | |
I0327 12:53:55.091348 21344 solver.cpp:245] Train net output #7: loss1/accuracy08 = 0.875 | |
I0327 12:53:55.091361 21344 solver.cpp:245] Train net output #8: loss1/accuracy09 = 1 | |
I0327 12:53:55.091372 21344 solver.cpp:245] Train net output #9: loss1/accuracy10 = 1 | |
I0327 12:53:55.091383 21344 solver.cpp:245] Train net output #10: loss1/accuracy11 = 1 | |
I0327 12:53:55.091395 21344 solver.cpp:245] Train net output #11: loss1/accuracy12 = 1 | |
I0327 12:53:55.091408 21344 solver.cpp:245] Train net output #12: loss1/accuracy13 = 1 | |
I0327 12:53:55.091418 21344 solver.cpp:245] Train net output #13: loss1/accuracy14 = 1 | |
I0327 12:53:55.091430 21344 solver.cpp:245] Train net output #14: loss1/accuracy15 = 1 | |
I0327 12:53:55.091442 21344 solver.cpp:245] Train net output #15: loss1/accuracy16 = 1 | |
I0327 12:53:55.091454 21344 solver.cpp:245] Train net output #16: loss1/accuracy17 = 1 | |
I0327 12:53:55.091465 21344 solver.cpp:245] Train net output #17: loss1/accuracy18 = 1 | |
I0327 12:53:55.091477 21344 solver.cpp:245] Train net output #18: loss1/accuracy19 = 1 | |
I0327 12:53:55.091490 21344 solver.cpp:245] Train net output #19: loss1/accuracy20 = 1 | |
I0327 12:53:55.091500 21344 solver.cpp:245] Train net output #20: loss1/accuracy21 = 1 | |
I0327 12:53:55.091512 21344 solver.cpp:245] Train net output #21: loss1/accuracy22 = 1 | |
I0327 12:53:55.091528 21344 solver.cpp:245] Train net output #22: loss1/loss01 = 3.57693 (* 0.0272727 = 0.0975528 loss) | |
I0327 12:53:55.091543 21344 solver.cpp:245] Train net output #23: loss1/loss02 = 3.75483 (* 0.0272727 = 0.102404 loss) | |
I0327 12:53:55.091558 21344 solver.cpp:245] Train net output #24: loss1/loss03 = 4.10737 (* 0.0272727 = 0.112019 loss) | |
I0327 12:53:55.091572 21344 solver.cpp:245] Train net output #25: loss1/loss04 = 4.18606 (* 0.0272727 = 0.114165 loss) | |
I0327 12:53:55.091586 21344 solver.cpp:245] Train net output #26: loss1/loss05 = 3.95109 (* 0.0272727 = 0.107757 loss) | |
I0327 12:53:55.091600 21344 solver.cpp:245] Train net output #27: loss1/loss06 = 3.68607 (* 0.0272727 = 0.100529 loss) | |
I0327 12:53:55.091614 21344 solver.cpp:245] Train net output #28: loss1/loss07 = 1.77178 (* 0.0272727 = 0.0483213 loss) | |
I0327 12:53:55.091627 21344 solver.cpp:245] Train net output #29: loss1/loss08 = 0.506239 (* 0.0272727 = 0.0138065 loss) | |
I0327 12:53:55.091642 21344 solver.cpp:245] Train net output #30: loss1/loss09 = 0.0752232 (* 0.0272727 = 0.00205154 loss) | |
I0327 12:53:55.091656 21344 solver.cpp:245] Train net output #31: loss1/loss10 = 0.0478075 (* 0.0272727 = 0.00130384 loss) | |
I0327 12:53:55.091671 21344 solver.cpp:245] Train net output #32: loss1/loss11 = 0.00634946 (* 0.0272727 = 0.000173167 loss) | |
I0327 12:53:55.091684 21344 solver.cpp:245] Train net output #33: loss1/loss12 = 0.00481317 (* 0.0272727 = 0.000131268 loss) | |
I0327 12:53:55.091698 21344 solver.cpp:245] Train net output #34: loss1/loss13 = 0.00239557 (* 0.0272727 = 6.53338e-05 loss) | |
I0327 12:53:55.091712 21344 solver.cpp:245] Train net output #35: loss1/loss14 = 0.00407622 (* 0.0272727 = 0.00011117 loss) | |
I0327 12:53:55.091727 21344 solver.cpp:245] Train net output #36: loss1/loss15 = 0.00568437 (* 0.0272727 = 0.000155028 loss) | |
I0327 12:53:55.091742 21344 solver.cpp:245] Train net output #37: loss1/loss16 = 0.00641085 (* 0.0272727 = 0.000174841 loss) | |
I0327 12:53:55.091755 21344 solver.cpp:245] Train net output #38: loss1/loss17 = 0.00783443 (* 0.0272727 = 0.000213666 loss) | |
I0327 12:53:55.091787 21344 solver.cpp:245] Train net output #39: loss1/loss18 = 0.0203663 (* 0.0272727 = 0.000555443 loss) | |
I0327 12:53:55.091804 21344 solver.cpp:245] Train net output #40: loss1/loss19 = 0.0030008 (* 0.0272727 = 8.184e-05 loss) | |
I0327 12:53:55.091819 21344 solver.cpp:245] Train net output #41: loss1/loss20 = 0.0082354 (* 0.0272727 = 0.000224602 loss) | |
I0327 12:53:55.091832 21344 solver.cpp:245] Train net output #42: loss1/loss21 = 0.00632207 (* 0.0272727 = 0.00017242 loss) | |
I0327 12:53:55.091846 21344 solver.cpp:245] Train net output #43: loss1/loss22 = 0.00696639 (* 0.0272727 = 0.000189993 loss) | |
I0327 12:53:55.091858 21344 solver.cpp:245] Train net output #44: loss2/accuracy01 = 0 | |
I0327 12:53:55.091871 21344 solver.cpp:245] Train net output #45: loss2/accuracy02 = 0.125 | |
I0327 12:53:55.091883 21344 solver.cpp:245] Train net output #46: loss2/accuracy03 = 0 | |
I0327 12:53:55.091894 21344 solver.cpp:245] Train net output #47: loss2/accuracy04 = 0 | |
I0327 12:53:55.091907 21344 solver.cpp:245] Train net output #48: loss2/accuracy05 = 0 | |
I0327 12:53:55.091917 21344 solver.cpp:245] Train net output #49: loss2/accuracy06 = 0.125 | |
I0327 12:53:55.091929 21344 solver.cpp:245] Train net output #50: loss2/accuracy07 = 0.625 | |
I0327 12:53:55.091941 21344 solver.cpp:245] Train net output #51: loss2/accuracy08 = 0.875 | |
I0327 12:53:55.091953 21344 solver.cpp:245] Train net output #52: loss2/accuracy09 = 1 | |
I0327 12:53:55.091964 21344 solver.cpp:245] Train net output #53: loss2/accuracy10 = 1 | |
I0327 12:53:55.091976 21344 solver.cpp:245] Train net output #54: loss2/accuracy11 = 1 | |
I0327 12:53:55.091987 21344 solver.cpp:245] Train net output #55: loss2/accuracy12 = 1 | |
I0327 12:53:55.092002 21344 solver.cpp:245] Train net output #56: loss2/accuracy13 = 1 | |
I0327 12:53:55.092015 21344 solver.cpp:245] Train net output #57: loss2/accuracy14 = 1 | |
I0327 12:53:55.092026 21344 solver.cpp:245] Train net output #58: loss2/accuracy15 = 1 | |
I0327 12:53:55.092037 21344 solver.cpp:245] Train net output #59: loss2/accuracy16 = 1 | |
I0327 12:53:55.092048 21344 solver.cpp:245] Train net output #60: loss2/accuracy17 = 1 | |
I0327 12:53:55.092061 21344 solver.cpp:245] Train net output #61: loss2/accuracy18 = 1 | |
I0327 12:53:55.092072 21344 solver.cpp:245] Train net output #62: loss2/accuracy19 = 1 | |
I0327 12:53:55.092082 21344 solver.cpp:245] Train net output #63: loss2/accuracy20 = 1 | |
I0327 12:53:55.092094 21344 solver.cpp:245] Train net output #64: loss2/accuracy21 = 1 | |
I0327 12:53:55.092103 21344 solver.cpp:245] Train net output #65: loss2/accuracy22 = 1 | |
I0327 12:53:55.092111 21344 solver.cpp:245] Train net output #66: loss2/loss01 = 3.62051 (* 0.0272727 = 0.0987413 loss) | |
I0327 12:53:55.092121 21344 solver.cpp:245] Train net output #67: loss2/loss02 = 3.54421 (* 0.0272727 = 0.0966603 loss) | |
I0327 12:53:55.092135 21344 solver.cpp:245] Train net output #68: loss2/loss03 = 4.28893 (* 0.0272727 = 0.116971 loss) | |
I0327 12:53:55.092149 21344 solver.cpp:245] Train net output #69: loss2/loss04 = 3.87374 (* 0.0272727 = 0.105647 loss) | |
I0327 12:53:55.092164 21344 solver.cpp:245] Train net output #70: loss2/loss05 = 3.89525 (* 0.0272727 = 0.106234 loss) | |
I0327 12:53:55.092177 21344 solver.cpp:245] Train net output #71: loss2/loss06 = 3.67744 (* 0.0272727 = 0.100294 loss) | |
I0327 12:53:55.092191 21344 solver.cpp:245] Train net output #72: loss2/loss07 = 1.98291 (* 0.0272727 = 0.0540792 loss) | |
I0327 12:53:55.092206 21344 solver.cpp:245] Train net output #73: loss2/loss08 = 0.797843 (* 0.0272727 = 0.0217593 loss) | |
I0327 12:53:55.092221 21344 solver.cpp:245] Train net output #74: loss2/loss09 = 0.0219833 (* 0.0272727 = 0.000599544 loss) | |
I0327 12:53:55.092234 21344 solver.cpp:245] Train net output #75: loss2/loss10 = 0.00816226 (* 0.0272727 = 0.000222607 loss) | |
I0327 12:53:55.092248 21344 solver.cpp:245] Train net output #76: loss2/loss11 = 0.00185897 (* 0.0272727 = 5.06991e-05 loss) | |
I0327 12:53:55.092262 21344 solver.cpp:245] Train net output #77: loss2/loss12 = 0.00208361 (* 0.0272727 = 5.68258e-05 loss) | |
I0327 12:53:55.092291 21344 solver.cpp:245] Train net output #78: loss2/loss13 = 0.00446882 (* 0.0272727 = 0.000121877 loss) | |
I0327 12:53:55.092308 21344 solver.cpp:245] Train net output #79: loss2/loss14 = 0.00221752 (* 0.0272727 = 6.04777e-05 loss) | |
I0327 12:53:55.092321 21344 solver.cpp:245] Train net output #80: loss2/loss15 = 0.00775633 (* 0.0272727 = 0.000211536 loss) | |
I0327 12:53:55.092335 21344 solver.cpp:245] Train net output #81: loss2/loss16 = 0.00431648 (* 0.0272727 = 0.000117722 loss) | |
I0327 12:53:55.092350 21344 solver.cpp:245] Train net output #82: loss2/loss17 = 0.000851279 (* 0.0272727 = 2.32167e-05 loss) | |
I0327 12:53:55.092363 21344 solver.cpp:245] Train net output #83: loss2/loss18 = 0.00156717 (* 0.0272727 = 4.27411e-05 loss) | |
I0327 12:53:55.092378 21344 solver.cpp:245] Train net output #84: loss2/loss19 = 0.0036172 (* 0.0272727 = 9.8651e-05 loss) | |
I0327 12:53:55.092392 21344 solver.cpp:245] Train net output #85: loss2/loss20 = 0.000851591 (* 0.0272727 = 2.32252e-05 loss) | |
I0327 12:53:55.092406 21344 solver.cpp:245] Train net output #86: loss2/loss21 = 0.000883576 (* 0.0272727 = 2.40975e-05 loss) | |
I0327 12:53:55.092420 21344 solver.cpp:245] Train net output #87: loss2/loss22 = 0.0030298 (* 0.0272727 = 8.26308e-05 loss) | |
I0327 12:53:55.092433 21344 solver.cpp:245] Train net output #88: loss3/accuracy01 = 0.125 | |
I0327 12:53:55.092445 21344 solver.cpp:245] Train net output #89: loss3/accuracy02 = 0.125 | |
I0327 12:53:55.092458 21344 solver.cpp:245] Train net output #90: loss3/accuracy03 = 0 | |
I0327 12:53:55.092469 21344 solver.cpp:245] Train net output #91: loss3/accuracy04 = 0 | |
I0327 12:53:55.092481 21344 solver.cpp:245] Train net output #92: loss3/accuracy05 = 0.125 | |
I0327 12:53:55.092494 21344 solver.cpp:245] Train net output #93: loss3/accuracy06 = 0.25 | |
I0327 12:53:55.092504 21344 solver.cpp:245] Train net output #94: loss3/accuracy07 = 0.625 | |
I0327 12:53:55.092516 21344 solver.cpp:245] Train net output #95: loss3/accuracy08 = 0.875 | |
I0327 12:53:55.092531 21344 solver.cpp:245] Train net output #96: loss3/accuracy09 = 1 | |
I0327 12:53:55.092553 21344 solver.cpp:245] Train net output #97: loss3/accuracy10 = 1 | |
I0327 12:53:55.092573 21344 solver.cpp:245] Train net output #98: loss3/accuracy11 = 1 | |
I0327 12:53:55.092586 21344 solver.cpp:245] Train net output #99: loss3/accuracy12 = 1 | |
I0327 12:53:55.092598 21344 solver.cpp:245] Train net output #100: loss3/accuracy13 = 1 | |
I0327 12:53:55.092609 21344 solver.cpp:245] Train net output #101: loss3/accuracy14 = 1 | |
I0327 12:53:55.092622 21344 solver.cpp:245] Train net output #102: loss3/accuracy15 = 1 | |
I0327 12:53:55.092633 21344 solver.cpp:245] Train net output #103: loss3/accuracy16 = 1 | |
I0327 12:53:55.092644 21344 solver.cpp:245] Train net output #104: loss3/accuracy17 = 1 | |
I0327 12:53:55.092655 21344 solver.cpp:245] Train net output #105: loss3/accuracy18 = 1 | |
I0327 12:53:55.092667 21344 solver.cpp:245] Train net output #106: loss3/accuracy19 = 1 | |
I0327 12:53:55.092679 21344 solver.cpp:245] Train net output #107: loss3/accuracy20 = 1 | |
I0327 12:53:55.092690 21344 solver.cpp:245] Train net output #108: loss3/accuracy21 = 1 | |
I0327 12:53:55.092701 21344 solver.cpp:245] Train net output #109: loss3/accuracy22 = 1 | |
I0327 12:53:55.092715 21344 solver.cpp:245] Train net output #110: loss3/loss01 = 3.34428 (* 0.0909091 = 0.304025 loss) | |
I0327 12:53:55.092730 21344 solver.cpp:245] Train net output #111: loss3/loss02 = 3.29341 (* 0.0909091 = 0.299401 loss) | |
I0327 12:53:55.092743 21344 solver.cpp:245] Train net output #112: loss3/loss03 = 3.59695 (* 0.0909091 = 0.326996 loss) | |
I0327 12:53:55.092757 21344 solver.cpp:245] Train net output #113: loss3/loss04 = 3.75138 (* 0.0909091 = 0.341034 loss) | |
I0327 12:53:55.092772 21344 solver.cpp:245] Train net output #114: loss3/loss05 = 3.20627 (* 0.0909091 = 0.291479 loss) | |
I0327 12:53:55.092784 21344 solver.cpp:245] Train net output #115: loss3/loss06 = 3.14938 (* 0.0909091 = 0.286307 loss) | |
I0327 12:53:55.092810 21344 solver.cpp:245] Train net output #116: loss3/loss07 = 1.46882 (* 0.0909091 = 0.133529 loss) | |
I0327 12:53:55.092825 21344 solver.cpp:245] Train net output #117: loss3/loss08 = 0.704465 (* 0.0909091 = 0.0640423 loss) | |
I0327 12:53:55.092839 21344 solver.cpp:245] Train net output #118: loss3/loss09 = 0.051237 (* 0.0909091 = 0.00465791 loss) | |
I0327 12:53:55.092854 21344 solver.cpp:245] Train net output #119: loss3/loss10 = 0.0230871 (* 0.0909091 = 0.00209883 loss) | |
I0327 12:53:55.092867 21344 solver.cpp:245] Train net output #120: loss3/loss11 = 0.0022422 (* 0.0909091 = 0.000203837 loss) | |
I0327 12:53:55.092882 21344 solver.cpp:245] Train net output #121: loss3/loss12 = 0.00239424 (* 0.0909091 = 0.000217658 loss) | |
I0327 12:53:55.092896 21344 solver.cpp:245] Train net output #122: loss3/loss13 = 0.00354162 (* 0.0909091 = 0.000321965 loss) | |
I0327 12:53:55.092911 21344 solver.cpp:245] Train net output #123: loss3/loss14 = 0.00166194 (* 0.0909091 = 0.000151086 loss) | |
I0327 12:53:55.092924 21344 solver.cpp:245] Train net output #124: loss3/loss15 = 0.00176161 (* 0.0909091 = 0.000160146 loss) | |
I0327 12:53:55.092938 21344 solver.cpp:245] Train net output #125: loss3/loss16 = 0.00215574 (* 0.0909091 = 0.000195977 loss) | |
I0327 12:53:55.092952 21344 solver.cpp:245] Train net output #126: loss3/loss17 = 0.00295385 (* 0.0909091 = 0.000268532 loss) | |
I0327 12:53:55.092967 21344 solver.cpp:245] Train net output #127: loss3/loss18 = 0.00207206 (* 0.0909091 = 0.000188369 loss) | |
I0327 12:53:55.092980 21344 solver.cpp:245] Train net output #128: loss3/loss19 = 0.00273071 (* 0.0909091 = 0.000248247 loss) | |
I0327 12:53:55.092994 21344 solver.cpp:245] Train net output #129: loss3/loss20 = 0.0023072 (* 0.0909091 = 0.000209746 loss) | |
I0327 12:53:55.093008 21344 solver.cpp:245] Train net output #130: loss3/loss21 = 0.00166511 (* 0.0909091 = 0.000151374 loss) | |
I0327 12:53:55.093021 21344 solver.cpp:245] Train net output #131: loss3/loss22 = 0.00218901 (* 0.0909091 = 0.000199001 loss) | |
I0327 12:53:55.093034 21344 solver.cpp:245] Train net output #132: total_accuracy = 0 | |
I0327 12:53:55.093049 21344 solver.cpp:245] Train net output #133: total_confidence = 1.35545e-05 | |
I0327 12:53:55.093061 21344 sgd_solver.cpp:106] Iteration 2000, lr = 0.01 | |
I0327 12:55:42.896509 21344 solver.cpp:229] Iteration 2500, loss = 3.29051 | |
I0327 12:55:42.896662 21344 solver.cpp:245] Train net output #0: loss1/accuracy01 = 0 | |
I0327 12:55:42.896682 21344 solver.cpp:245] Train net output #1: loss1/accuracy02 = 0 | |
I0327 12:55:42.896695 21344 solver.cpp:245] Train net output #2: loss1/accuracy03 = 0 | |
I0327 12:55:42.896708 21344 solver.cpp:245] Train net output #3: loss1/accuracy04 = 0.125 | |
I0327 12:55:42.896719 21344 solver.cpp:245] Train net output #4: loss1/accuracy05 = 0.125 | |
I0327 12:55:42.896731 21344 solver.cpp:245] Train net output #5: loss1/accuracy06 = 0.25 | |
I0327 12:55:42.896744 21344 solver.cpp:245] Train net output #6: loss1/accuracy07 = 0.625 | |
I0327 12:55:42.896756 21344 solver.cpp:245] Train net output #7: loss1/accuracy08 = 0.75 | |
I0327 12:55:42.896769 21344 solver.cpp:245] Train net output #8: loss1/accuracy09 = 1 | |
I0327 12:55:42.896780 21344 solver.cpp:245] Train net output #9: loss1/accuracy10 = 1 | |
I0327 12:55:42.896792 21344 solver.cpp:245] Train net output #10: loss1/accuracy11 = 1 | |
I0327 12:55:42.896805 21344 solver.cpp:245] Train net output #11: loss1/accuracy12 = 1 | |
I0327 12:55:42.896816 21344 solver.cpp:245] Train net output #12: loss1/accuracy13 = 1 | |
I0327 12:55:42.896827 21344 solver.cpp:245] Train net output #13: loss1/accuracy14 = 1 | |
I0327 12:55:42.896839 21344 solver.cpp:245] Train net output #14: loss1/accuracy15 = 1 | |
I0327 12:55:42.896850 21344 solver.cpp:245] Train net output #15: loss1/accuracy16 = 1 | |
I0327 12:55:42.896862 21344 solver.cpp:245] Train net output #16: loss1/accuracy17 = 1 | |
I0327 12:55:42.896874 21344 solver.cpp:245] Train net output #17: loss1/accuracy18 = 1 | |
I0327 12:55:42.896886 21344 solver.cpp:245] Train net output #18: loss1/accuracy19 = 1 | |
I0327 12:55:42.896898 21344 solver.cpp:245] Train net output #19: loss1/accuracy20 = 1 | |
I0327 12:55:42.896910 21344 solver.cpp:245] Train net output #20: loss1/accuracy21 = 1 | |
I0327 12:55:42.896921 21344 solver.cpp:245] Train net output #21: loss1/accuracy22 = 1 | |
I0327 12:55:42.896939 21344 solver.cpp:245] Train net output #22: loss1/loss01 = 3.97465 (* 0.0272727 = 0.1084 loss) | |
I0327 12:55:42.896953 21344 solver.cpp:245] Train net output #23: loss1/loss02 = 4.79516 (* 0.0272727 = 0.130777 loss) | |
I0327 12:55:42.896968 21344 solver.cpp:245] Train net output #24: loss1/loss03 = 4.47242 (* 0.0272727 = 0.121975 loss) | |
I0327 12:55:42.896982 21344 solver.cpp:245] Train net output #25: loss1/loss04 = 3.91597 (* 0.0272727 = 0.106799 loss) | |
I0327 12:55:42.896999 21344 solver.cpp:245] Train net output #26: loss1/loss05 = 4.05815 (* 0.0272727 = 0.110677 loss) | |
I0327 12:55:42.897014 21344 solver.cpp:245] Train net output #27: loss1/loss06 = 3.59534 (* 0.0272727 = 0.0980548 loss) | |
I0327 12:55:42.897028 21344 solver.cpp:245] Train net output #28: loss1/loss07 = 2.40886 (* 0.0272727 = 0.0656961 loss) | |
I0327 12:55:42.897042 21344 solver.cpp:245] Train net output #29: loss1/loss08 = 1.51853 (* 0.0272727 = 0.0414146 loss) | |
I0327 12:55:42.897058 21344 solver.cpp:245] Train net output #30: loss1/loss09 = 0.0665093 (* 0.0272727 = 0.00181389 loss) | |
I0327 12:55:42.897071 21344 solver.cpp:245] Train net output #31: loss1/loss10 = 0.0299062 (* 0.0272727 = 0.000815623 loss) | |
I0327 12:55:42.897086 21344 solver.cpp:245] Train net output #32: loss1/loss11 = 0.00312483 (* 0.0272727 = 8.52226e-05 loss) | |
I0327 12:55:42.897101 21344 solver.cpp:245] Train net output #33: loss1/loss12 = 0.00497226 (* 0.0272727 = 0.000135607 loss) | |
I0327 12:55:42.897115 21344 solver.cpp:245] Train net output #34: loss1/loss13 = 0.00463851 (* 0.0272727 = 0.000126505 loss) | |
I0327 12:55:42.897130 21344 solver.cpp:245] Train net output #35: loss1/loss14 = 0.00274441 (* 0.0272727 = 7.48475e-05 loss) | |
I0327 12:55:42.897145 21344 solver.cpp:245] Train net output #36: loss1/loss15 = 0.00791398 (* 0.0272727 = 0.000215836 loss) | |
I0327 12:55:42.897158 21344 solver.cpp:245] Train net output #37: loss1/loss16 = 0.0036065 (* 0.0272727 = 9.83591e-05 loss) | |
I0327 12:55:42.897173 21344 solver.cpp:245] Train net output #38: loss1/loss17 = 0.00269869 (* 0.0272727 = 7.36006e-05 loss) | |
I0327 12:55:42.897200 21344 solver.cpp:245] Train net output #39: loss1/loss18 = 0.00177227 (* 0.0272727 = 4.83346e-05 loss) | |
I0327 12:55:42.897217 21344 solver.cpp:245] Train net output #40: loss1/loss19 = 0.00579979 (* 0.0272727 = 0.000158176 loss) | |
I0327 12:55:42.897231 21344 solver.cpp:245] Train net output #41: loss1/loss20 = 0.00334803 (* 0.0272727 = 9.131e-05 loss) | |
I0327 12:55:42.897245 21344 solver.cpp:245] Train net output #42: loss1/loss21 = 0.00239803 (* 0.0272727 = 6.54007e-05 loss) | |
I0327 12:55:42.897259 21344 solver.cpp:245] Train net output #43: loss1/loss22 = 0.00524121 (* 0.0272727 = 0.000142942 loss) | |
I0327 12:55:42.897272 21344 solver.cpp:245] Train net output #44: loss2/accuracy01 = 0.125 | |
I0327 12:55:42.897284 21344 solver.cpp:245] Train net output #45: loss2/accuracy02 = 0.125 | |
I0327 12:55:42.897296 21344 solver.cpp:245] Train net output #46: loss2/accuracy03 = 0 | |
I0327 12:55:42.897308 21344 solver.cpp:245] Train net output #47: loss2/accuracy04 = 0.125 | |
I0327 12:55:42.897320 21344 solver.cpp:245] Train net output #48: loss2/accuracy05 = 0.125 | |
I0327 12:55:42.897332 21344 solver.cpp:245] Train net output #49: loss2/accuracy06 = 0.25 | |
I0327 12:55:42.897344 21344 solver.cpp:245] Train net output #50: loss2/accuracy07 = 0.625 | |
I0327 12:55:42.897356 21344 solver.cpp:245] Train net output #51: loss2/accuracy08 = 0.75 | |
I0327 12:55:42.897368 21344 solver.cpp:245] Train net output #52: loss2/accuracy09 = 1 | |
I0327 12:55:42.897380 21344 solver.cpp:245] Train net output #53: loss2/accuracy10 = 1 | |
I0327 12:55:42.897392 21344 solver.cpp:245] Train net output #54: loss2/accuracy11 = 1 | |
I0327 12:55:42.897403 21344 solver.cpp:245] Train net output #55: loss2/accuracy12 = 1 | |
I0327 12:55:42.897414 21344 solver.cpp:245] Train net output #56: loss2/accuracy13 = 1 | |
I0327 12:55:42.897426 21344 solver.cpp:245] Train net output #57: loss2/accuracy14 = 1 | |
I0327 12:55:42.897439 21344 solver.cpp:245] Train net output #58: loss2/accuracy15 = 1 | |
I0327 12:55:42.897449 21344 solver.cpp:245] Train net output #59: loss2/accuracy16 = 1 | |
I0327 12:55:42.897460 21344 solver.cpp:245] Train net output #60: loss2/accuracy17 = 1 | |
I0327 12:55:42.897472 21344 solver.cpp:245] Train net output #61: loss2/accuracy18 = 1 | |
I0327 12:55:42.897485 21344 solver.cpp:245] Train net output #62: loss2/accuracy19 = 1 | |
I0327 12:55:42.897495 21344 solver.cpp:245] Train net output #63: loss2/accuracy20 = 1 | |
I0327 12:55:42.897507 21344 solver.cpp:245] Train net output #64: loss2/accuracy21 = 1 | |
I0327 12:55:42.897518 21344 solver.cpp:245] Train net output #65: loss2/accuracy22 = 1 | |
I0327 12:55:42.897532 21344 solver.cpp:245] Train net output #66: loss2/loss01 = 3.74358 (* 0.0272727 = 0.102098 loss) | |
I0327 12:55:42.897562 21344 solver.cpp:245] Train net output #67: loss2/loss02 = 4.35127 (* 0.0272727 = 0.118671 loss) | |
I0327 12:55:42.897578 21344 solver.cpp:245] Train net output #68: loss2/loss03 = 4.0213 (* 0.0272727 = 0.109672 loss) | |
I0327 12:55:42.897593 21344 solver.cpp:245] Train net output #69: loss2/loss04 = 3.63756 (* 0.0272727 = 0.0992062 loss) | |
I0327 12:55:42.897608 21344 solver.cpp:245] Train net output #70: loss2/loss05 = 3.50989 (* 0.0272727 = 0.0957243 loss) | |
I0327 12:55:42.897621 21344 solver.cpp:245] Train net output #71: loss2/loss06 = 3.3349 (* 0.0272727 = 0.0909519 loss) | |
I0327 12:55:42.897635 21344 solver.cpp:245] Train net output #72: loss2/loss07 = 1.8162 (* 0.0272727 = 0.0495326 loss) | |
I0327 12:55:42.897650 21344 solver.cpp:245] Train net output #73: loss2/loss08 = 1.37353 (* 0.0272727 = 0.0374598 loss) | |
I0327 12:55:42.897663 21344 solver.cpp:245] Train net output #74: loss2/loss09 = 0.0730229 (* 0.0272727 = 0.00199153 loss) | |
I0327 12:55:42.897680 21344 solver.cpp:245] Train net output #75: loss2/loss10 = 0.036075 (* 0.0272727 = 0.000983863 loss) | |
I0327 12:55:42.897696 21344 solver.cpp:245] Train net output #76: loss2/loss11 = 0.00511213 (* 0.0272727 = 0.000139422 loss) | |
I0327 12:55:42.897711 21344 solver.cpp:245] Train net output #77: loss2/loss12 = 0.00173149 (* 0.0272727 = 4.72225e-05 loss) | |
I0327 12:55:42.897737 21344 solver.cpp:245] Train net output #78: loss2/loss13 = 0.00333363 (* 0.0272727 = 9.09172e-05 loss) | |
I0327 12:55:42.897753 21344 solver.cpp:245] Train net output #79: loss2/loss14 = 0.00790719 (* 0.0272727 = 0.000215651 loss) | |
I0327 12:55:42.897766 21344 solver.cpp:245] Train net output #80: loss2/loss15 = 0.00583085 (* 0.0272727 = 0.000159023 loss) | |
I0327 12:55:42.897780 21344 solver.cpp:245] Train net output #81: loss2/loss16 = 0.00257564 (* 0.0272727 = 7.02448e-05 loss) | |
I0327 12:55:42.897794 21344 solver.cpp:245] Train net output #82: loss2/loss17 = 0.00451892 (* 0.0272727 = 0.000123243 loss) | |
I0327 12:55:42.897809 21344 solver.cpp:245] Train net output #83: loss2/loss18 = 0.0045582 (* 0.0272727 = 0.000124314 loss) | |
I0327 12:55:42.897824 21344 solver.cpp:245] Train net output #84: loss2/loss19 = 0.00556453 (* 0.0272727 = 0.00015176 loss) | |
I0327 12:55:42.897837 21344 solver.cpp:245] Train net output #85: loss2/loss20 = 0.010843 (* 0.0272727 = 0.000295718 loss) | |
I0327 12:55:42.897851 21344 solver.cpp:245] Train net output #86: loss2/loss21 = 0.00538728 (* 0.0272727 = 0.000146926 loss) | |
I0327 12:55:42.897866 21344 solver.cpp:245] Train net output #87: loss2/loss22 = 0.00369391 (* 0.0272727 = 0.000100743 loss) | |
I0327 12:55:42.897878 21344 solver.cpp:245] Train net output #88: loss3/accuracy01 = 0 | |
I0327 12:55:42.897891 21344 solver.cpp:245] Train net output #89: loss3/accuracy02 = 0 | |
I0327 12:55:42.897902 21344 solver.cpp:245] Train net output #90: loss3/accuracy03 = 0 | |
I0327 12:55:42.897913 21344 solver.cpp:245] Train net output #91: loss3/accuracy04 = 0.125 | |
I0327 12:55:42.897927 21344 solver.cpp:245] Train net output #92: loss3/accuracy05 = 0.25 | |
I0327 12:55:42.897938 21344 solver.cpp:245] Train net output #93: loss3/accuracy06 = 0.25 | |
I0327 12:55:42.897950 21344 solver.cpp:245] Train net output #94: loss3/accuracy07 = 0.625 | |
I0327 12:55:42.897961 21344 solver.cpp:245] Train net output #95: loss3/accuracy08 = 0.75 | |
I0327 12:55:42.897974 21344 solver.cpp:245] Train net output #96: loss3/accuracy09 = 1 | |
I0327 12:55:42.897984 21344 solver.cpp:245] Train net output #97: loss3/accuracy10 = 1 | |
I0327 12:55:42.897996 21344 solver.cpp:245] Train net output #98: loss3/accuracy11 = 1 | |
I0327 12:55:42.898007 21344 solver.cpp:245] Train net output #99: loss3/accuracy12 = 1 | |
I0327 12:55:42.898020 21344 solver.cpp:245] Train net output #100: loss3/accuracy13 = 1 | |
I0327 12:55:42.898030 21344 solver.cpp:245] Train net output #101: loss3/accuracy14 = 1 | |
I0327 12:55:42.898044 21344 solver.cpp:245] Train net output #102: loss3/accuracy15 = 1 | |
I0327 12:55:42.898056 21344 solver.cpp:245] Train net output #103: loss3/accuracy16 = 1 | |
I0327 12:55:42.898068 21344 solver.cpp:245] Train net output #104: loss3/accuracy17 = 1 | |
I0327 12:55:42.898080 21344 solver.cpp:245] Train net output #105: loss3/accuracy18 = 1 | |
I0327 12:55:42.898092 21344 solver.cpp:245] Train net output #106: loss3/accuracy19 = 1 | |
I0327 12:55:42.898102 21344 solver.cpp:245] Train net output #107: loss3/accuracy20 = 1 | |
I0327 12:55:42.898114 21344 solver.cpp:245] Train net output #108: loss3/accuracy21 = 1 | |
I0327 12:55:42.898125 21344 solver.cpp:245] Train net output #109: loss3/accuracy22 = 1 | |
I0327 12:55:42.898139 21344 solver.cpp:245] Train net output #110: loss3/loss01 = 3.91079 (* 0.0909091 = 0.355526 loss) | |
I0327 12:55:42.898154 21344 solver.cpp:245] Train net output #111: loss3/loss02 = 4.49466 (* 0.0909091 = 0.408606 loss) | |
I0327 12:55:42.898169 21344 solver.cpp:245] Train net output #112: loss3/loss03 = 3.79945 (* 0.0909091 = 0.345404 loss) | |
I0327 12:55:42.898182 21344 solver.cpp:245] Train net output #113: loss3/loss04 = 3.14691 (* 0.0909091 = 0.286083 loss) | |
I0327 12:55:42.898196 21344 solver.cpp:245] Train net output #114: loss3/loss05 = 3.20925 (* 0.0909091 = 0.29175 loss) | |
I0327 12:55:42.898211 21344 solver.cpp:245] Train net output #115: loss3/loss06 = 2.88504 (* 0.0909091 = 0.262276 loss) | |
I0327 12:55:42.898236 21344 solver.cpp:245] Train net output #116: loss3/loss07 = 2.15065 (* 0.0909091 = 0.195514 loss) | |
I0327 12:55:42.898250 21344 solver.cpp:245] Train net output #117: loss3/loss08 = 1.35258 (* 0.0909091 = 0.122962 loss) | |
I0327 12:55:42.898264 21344 solver.cpp:245] Train net output #118: loss3/loss09 = 0.0319761 (* 0.0909091 = 0.00290692 loss) | |
I0327 12:55:42.898278 21344 solver.cpp:245] Train net output #119: loss3/loss10 = 0.022118 (* 0.0909091 = 0.00201073 loss) | |
I0327 12:55:42.898293 21344 solver.cpp:245] Train net output #120: loss3/loss11 = 0.000392085 (* 0.0909091 = 3.56441e-05 loss) | |
I0327 12:55:42.898308 21344 solver.cpp:245] Train net output #121: loss3/loss12 = 0.000334552 (* 0.0909091 = 3.04138e-05 loss) | |
I0327 12:55:42.898322 21344 solver.cpp:245] Train net output #122: loss3/loss13 = 0.000384189 (* 0.0909091 = 3.49263e-05 loss) | |
I0327 12:55:42.898336 21344 solver.cpp:245] Train net output #123: loss3/loss14 = 0.000432266 (* 0.0909091 = 3.92969e-05 loss) | |
I0327 12:55:42.898350 21344 solver.cpp:245] Train net output #124: loss3/loss15 = 0.000306437 (* 0.0909091 = 2.78579e-05 loss) | |
I0327 12:55:42.898365 21344 solver.cpp:245] Train net output #125: loss3/loss16 = 0.000437646 (* 0.0909091 = 3.9786e-05 loss) | |
I0327 12:55:42.898378 21344 solver.cpp:245] Train net output #126: loss3/loss17 = 0.000443729 (* 0.0909091 = 4.0339e-05 loss) | |
I0327 12:55:42.898392 21344 solver.cpp:245] Train net output #127: loss3/loss18 = 0.000291632 (* 0.0909091 = 2.6512e-05 loss) | |
I0327 12:55:42.898406 21344 solver.cpp:245] Train net output #128: loss3/loss19 = 0.000388532 (* 0.0909091 = 3.53211e-05 loss) | |
I0327 12:55:42.898422 21344 solver.cpp:245] Train net output #129: loss3/loss20 = 0.000409222 (* 0.0909091 = 3.7202e-05 loss) | |
I0327 12:55:42.898435 21344 solver.cpp:245] Train net output #130: loss3/loss21 = 0.000356961 (* 0.0909091 = 3.2451e-05 loss) | |
I0327 12:55:42.898448 21344 solver.cpp:245] Train net output #131: loss3/loss22 = 0.000410942 (* 0.0909091 = 3.73583e-05 loss) | |
I0327 12:55:42.898461 21344 solver.cpp:245] Train net output #132: total_accuracy = 0 | |
I0327 12:55:42.898473 21344 solver.cpp:245] Train net output #133: total_confidence = 2.79369e-05 | |
I0327 12:55:42.898484 21344 sgd_solver.cpp:106] Iteration 2500, lr = 0.01 | |
I0327 12:57:30.778131 21344 solver.cpp:229] Iteration 3000, loss = 3.22583 | |
I0327 12:57:30.778247 21344 solver.cpp:245] Train net output #0: loss1/accuracy01 = 0.5 | |
I0327 12:57:30.778267 21344 solver.cpp:245] Train net output #1: loss1/accuracy02 = 0.25 | |
I0327 12:57:30.778280 21344 solver.cpp:245] Train net output #2: loss1/accuracy03 = 0 | |
I0327 12:57:30.778292 21344 solver.cpp:245] Train net output #3: loss1/accuracy04 = 0.125 | |
I0327 12:57:30.778304 21344 solver.cpp:245] Train net output #4: loss1/accuracy05 = 0 | |
I0327 12:57:30.778316 21344 solver.cpp:245] Train net output #5: loss1/accuracy06 = 0.25 | |
I0327 12:57:30.778327 21344 solver.cpp:245] Train net output #6: loss1/accuracy07 = 0.75 | |
I0327 12:57:30.778339 21344 solver.cpp:245] Train net output #7: loss1/accuracy08 = 1 | |
I0327 12:57:30.778350 21344 solver.cpp:245] Train net output #8: loss1/accuracy09 = 1 | |
I0327 12:57:30.778362 21344 solver.cpp:245] Train net output #9: loss1/accuracy10 = 1 | |
I0327 12:57:30.778374 21344 solver.cpp:245] Train net output #10: loss1/accuracy11 = 1 | |
I0327 12:57:30.778385 21344 solver.cpp:245] Train net output #11: loss1/accuracy12 = 1 | |
I0327 12:57:30.778396 21344 solver.cpp:245] Train net output #12: loss1/accuracy13 = 1 | |
I0327 12:57:30.778409 21344 solver.cpp:245] Train net output #13: loss1/accuracy14 = 1 | |
I0327 12:57:30.778419 21344 solver.cpp:245] Train net output #14: loss1/accuracy15 = 1 | |
I0327 12:57:30.778431 21344 solver.cpp:245] Train net output #15: loss1/accuracy16 = 1 | |
I0327 12:57:30.778444 21344 solver.cpp:245] Train net output #16: loss1/accuracy17 = 1 | |
I0327 12:57:30.778455 21344 solver.cpp:245] Train net output #17: loss1/accuracy18 = 1 | |
I0327 12:57:30.778466 21344 solver.cpp:245] Train net output #18: loss1/accuracy19 = 1 | |
I0327 12:57:30.778477 21344 solver.cpp:245] Train net output #19: loss1/accuracy20 = 1 | |
I0327 12:57:30.778488 21344 solver.cpp:245] Train net output #20: loss1/accuracy21 = 1 | |
I0327 12:57:30.778501 21344 solver.cpp:245] Train net output #21: loss1/accuracy22 = 1 | |
I0327 12:57:30.778517 21344 solver.cpp:245] Train net output #22: loss1/loss01 = 2.61433 (* 0.0272727 = 0.0712998 loss) | |
I0327 12:57:30.778530 21344 solver.cpp:245] Train net output #23: loss1/loss02 = 2.85047 (* 0.0272727 = 0.0777401 loss) | |
I0327 12:57:30.778545 21344 solver.cpp:245] Train net output #24: loss1/loss03 = 3.68742 (* 0.0272727 = 0.100566 loss) | |
I0327 12:57:30.778559 21344 solver.cpp:245] Train net output #25: loss1/loss04 = 3.3718 (* 0.0272727 = 0.0919581 loss) | |
I0327 12:57:30.778573 21344 solver.cpp:245] Train net output #26: loss1/loss05 = 3.54902 (* 0.0272727 = 0.0967915 loss) | |
I0327 12:57:30.778587 21344 solver.cpp:245] Train net output #27: loss1/loss06 = 3.17546 (* 0.0272727 = 0.0866036 loss) | |
I0327 12:57:30.778601 21344 solver.cpp:245] Train net output #28: loss1/loss07 = 1.83201 (* 0.0272727 = 0.0499639 loss) | |
I0327 12:57:30.778615 21344 solver.cpp:245] Train net output #29: loss1/loss08 = 0.116938 (* 0.0272727 = 0.00318921 loss) | |
I0327 12:57:30.778630 21344 solver.cpp:245] Train net output #30: loss1/loss09 = 0.031104 (* 0.0272727 = 0.00084829 loss) | |
I0327 12:57:30.778643 21344 solver.cpp:245] Train net output #31: loss1/loss10 = 0.00483645 (* 0.0272727 = 0.000131903 loss) | |
I0327 12:57:30.778658 21344 solver.cpp:245] Train net output #32: loss1/loss11 = 0.00170768 (* 0.0272727 = 4.65732e-05 loss) | |
I0327 12:57:30.778672 21344 solver.cpp:245] Train net output #33: loss1/loss12 = 0.00148811 (* 0.0272727 = 4.05849e-05 loss) | |
I0327 12:57:30.778687 21344 solver.cpp:245] Train net output #34: loss1/loss13 = 0.00212895 (* 0.0272727 = 5.80623e-05 loss) | |
I0327 12:57:30.778700 21344 solver.cpp:245] Train net output #35: loss1/loss14 = 0.00589777 (* 0.0272727 = 0.000160848 loss) | |
I0327 12:57:30.778714 21344 solver.cpp:245] Train net output #36: loss1/loss15 = 0.000599694 (* 0.0272727 = 1.63553e-05 loss) | |
I0327 12:57:30.778728 21344 solver.cpp:245] Train net output #37: loss1/loss16 = 0.00246247 (* 0.0272727 = 6.71582e-05 loss) | |
I0327 12:57:30.778743 21344 solver.cpp:245] Train net output #38: loss1/loss17 = 0.00117762 (* 0.0272727 = 3.2117e-05 loss) | |
I0327 12:57:30.778774 21344 solver.cpp:245] Train net output #39: loss1/loss18 = 0.00101436 (* 0.0272727 = 2.76644e-05 loss) | |
I0327 12:57:30.778789 21344 solver.cpp:245] Train net output #40: loss1/loss19 = 0.00470485 (* 0.0272727 = 0.000128314 loss) | |
I0327 12:57:30.778802 21344 solver.cpp:245] Train net output #41: loss1/loss20 = 0.000469087 (* 0.0272727 = 1.27933e-05 loss) | |
I0327 12:57:30.778817 21344 solver.cpp:245] Train net output #42: loss1/loss21 = 0.000846789 (* 0.0272727 = 2.30942e-05 loss) | |
I0327 12:57:30.778831 21344 solver.cpp:245] Train net output #43: loss1/loss22 = 0.00342603 (* 0.0272727 = 9.34373e-05 loss) | |
I0327 12:57:30.778843 21344 solver.cpp:245] Train net output #44: loss2/accuracy01 = 0.625 | |
I0327 12:57:30.778856 21344 solver.cpp:245] Train net output #45: loss2/accuracy02 = 0.25 | |
I0327 12:57:30.778867 21344 solver.cpp:245] Train net output #46: loss2/accuracy03 = 0 | |
I0327 12:57:30.778878 21344 solver.cpp:245] Train net output #47: loss2/accuracy04 = 0 | |
I0327 12:57:30.778889 21344 solver.cpp:245] Train net output #48: loss2/accuracy05 = 0.125 | |
I0327 12:57:30.778901 21344 solver.cpp:245] Train net output #49: loss2/accuracy06 = 0.25 | |
I0327 12:57:30.778913 21344 solver.cpp:245] Train net output #50: loss2/accuracy07 = 0.75 | |
I0327 12:57:30.778924 21344 solver.cpp:245] Train net output #51: loss2/accuracy08 = 1 | |
I0327 12:57:30.778936 21344 solver.cpp:245] Train net output #52: loss2/accuracy09 = 1 | |
I0327 12:57:30.778947 21344 solver.cpp:245] Train net output #53: loss2/accuracy10 = 1 | |
I0327 12:57:30.778959 21344 solver.cpp:245] Train net output #54: loss2/accuracy11 = 1 | |
I0327 12:57:30.778970 21344 solver.cpp:245] Train net output #55: loss2/accuracy12 = 1 | |
I0327 12:57:30.778981 21344 solver.cpp:245] Train net output #56: loss2/accuracy13 = 1 | |
I0327 12:57:30.778995 21344 solver.cpp:245] Train net output #57: loss2/accuracy14 = 1 | |
I0327 12:57:30.779007 21344 solver.cpp:245] Train net output #58: loss2/accuracy15 = 1 | |
I0327 12:57:30.779018 21344 solver.cpp:245] Train net output #59: loss2/accuracy16 = 1 | |
I0327 12:57:30.779031 21344 solver.cpp:245] Train net output #60: loss2/accuracy17 = 1 | |
I0327 12:57:30.779042 21344 solver.cpp:245] Train net output #61: loss2/accuracy18 = 1 | |
I0327 12:57:30.779052 21344 solver.cpp:245] Train net output #62: loss2/accuracy19 = 1 | |
I0327 12:57:30.779063 21344 solver.cpp:245] Train net output #63: loss2/accuracy20 = 1 | |
I0327 12:57:30.779075 21344 solver.cpp:245] Train net output #64: loss2/accuracy21 = 1 | |
I0327 12:57:30.779086 21344 solver.cpp:245] Train net output #65: loss2/accuracy22 = 1 | |
I0327 12:57:30.779100 21344 solver.cpp:245] Train net output #66: loss2/loss01 = 2.14774 (* 0.0272727 = 0.0585748 loss) | |
I0327 12:57:30.779114 21344 solver.cpp:245] Train net output #67: loss2/loss02 = 3.06754 (* 0.0272727 = 0.0836602 loss) | |
I0327 12:57:30.779127 21344 solver.cpp:245] Train net output #68: loss2/loss03 = 3.62706 (* 0.0272727 = 0.0989197 loss) | |
I0327 12:57:30.779141 21344 solver.cpp:245] Train net output #69: loss2/loss04 = 3.57548 (* 0.0272727 = 0.097513 loss) | |
I0327 12:57:30.779155 21344 solver.cpp:245] Train net output #70: loss2/loss05 = 3.99508 (* 0.0272727 = 0.108957 loss) | |
I0327 12:57:30.779170 21344 solver.cpp:245] Train net output #71: loss2/loss06 = 2.82497 (* 0.0272727 = 0.0770447 loss) | |
I0327 12:57:30.779182 21344 solver.cpp:245] Train net output #72: loss2/loss07 = 1.13128 (* 0.0272727 = 0.0308531 loss) | |
I0327 12:57:30.779196 21344 solver.cpp:245] Train net output #73: loss2/loss08 = 0.0596861 (* 0.0272727 = 0.0016278 loss) | |
I0327 12:57:30.779211 21344 solver.cpp:245] Train net output #74: loss2/loss09 = 0.0219689 (* 0.0272727 = 0.000599151 loss) | |
I0327 12:57:30.779224 21344 solver.cpp:245] Train net output #75: loss2/loss10 = 0.0130723 (* 0.0272727 = 0.000356518 loss) | |
I0327 12:57:30.779238 21344 solver.cpp:245] Train net output #76: loss2/loss11 = 0.00185313 (* 0.0272727 = 5.05398e-05 loss) | |
I0327 12:57:30.779266 21344 solver.cpp:245] Train net output #77: loss2/loss12 = 0.000924628 (* 0.0272727 = 2.52171e-05 loss) | |
I0327 12:57:30.779284 21344 solver.cpp:245] Train net output #78: loss2/loss13 = 0.00143317 (* 0.0272727 = 3.90866e-05 loss) | |
I0327 12:57:30.779294 21344 solver.cpp:245] Train net output #79: loss2/loss14 = 0.0013278 (* 0.0272727 = 3.62126e-05 loss) | |
I0327 12:57:30.779304 21344 solver.cpp:245] Train net output #80: loss2/loss15 = 0.00111997 (* 0.0272727 = 3.05446e-05 loss) | |
I0327 12:57:30.779317 21344 solver.cpp:245] Train net output #81: loss2/loss16 = 0.00183482 (* 0.0272727 = 5.00406e-05 loss) | |
I0327 12:57:30.779331 21344 solver.cpp:245] Train net output #82: loss2/loss17 = 0.00219387 (* 0.0272727 = 5.98329e-05 loss) | |
I0327 12:57:30.779345 21344 solver.cpp:245] Train net output #83: loss2/loss18 = 0.00171946 (* 0.0272727 = 4.68944e-05 loss) | |
I0327 12:57:30.779359 21344 solver.cpp:245] Train net output #84: loss2/loss19 = 0.00108373 (* 0.0272727 = 2.95562e-05 loss) | |
I0327 12:57:30.779373 21344 solver.cpp:245] Train net output #85: loss2/loss20 = 0.000575418 (* 0.0272727 = 1.56932e-05 loss) | |
I0327 12:57:30.779387 21344 solver.cpp:245] Train net output #86: loss2/loss21 = 0.00150868 (* 0.0272727 = 4.11457e-05 loss) | |
I0327 12:57:30.779400 21344 solver.cpp:245] Train net output #87: loss2/loss22 = 0.00138148 (* 0.0272727 = 3.76767e-05 loss) | |
I0327 12:57:30.779412 21344 solver.cpp:245] Train net output #88: loss3/accuracy01 = 0.25 | |
I0327 12:57:30.779425 21344 solver.cpp:245] Train net output #89: loss3/accuracy02 = 0 | |
I0327 12:57:30.779436 21344 solver.cpp:245] Train net output #90: loss3/accuracy03 = 0 | |
I0327 12:57:30.779448 21344 solver.cpp:245] Train net output #91: loss3/accuracy04 = 0.125 | |
I0327 12:57:30.779459 21344 solver.cpp:245] Train net output #92: loss3/accuracy05 = 0 | |
I0327 12:57:30.779470 21344 solver.cpp:245] Train net output #93: loss3/accuracy06 = 0.25 | |
I0327 12:57:30.779481 21344 solver.cpp:245] Train net output #94: loss3/accuracy07 = 0.75 | |
I0327 12:57:30.779492 21344 solver.cpp:245] Train net output #95: loss3/accuracy08 = 1 | |
I0327 12:57:30.779505 21344 solver.cpp:245] Train net output #96: loss3/accuracy09 = 1 | |
I0327 12:57:30.779515 21344 solver.cpp:245] Train net output #97: loss3/accuracy10 = 1 | |
I0327 12:57:30.779527 21344 solver.cpp:245] Train net output #98: loss3/accuracy11 = 1 | |
I0327 12:57:30.779538 21344 solver.cpp:245] Train net output #99: loss3/accuracy12 = 1 | |
I0327 12:57:30.779549 21344 solver.cpp:245] Train net output #100: loss3/accuracy13 = 1 | |
I0327 12:57:30.779561 21344 solver.cpp:245] Train net output #101: loss3/accuracy14 = 1 | |
I0327 12:57:30.779572 21344 solver.cpp:245] Train net output #102: loss3/accuracy15 = 1 | |
I0327 12:57:30.779582 21344 solver.cpp:245] Train net output #103: loss3/accuracy16 = 1 | |
I0327 12:57:30.779593 21344 solver.cpp:245] Train net output #104: loss3/accuracy17 = 1 | |
I0327 12:57:30.779604 21344 solver.cpp:245] Train net output #105: loss3/accuracy18 = 1 | |
I0327 12:57:30.779615 21344 solver.cpp:245] Train net output #106: loss3/accuracy19 = 1 | |
I0327 12:57:30.779626 21344 solver.cpp:245] Train net output #107: loss3/accuracy20 = 1 | |
I0327 12:57:30.779638 21344 solver.cpp:245] Train net output #108: loss3/accuracy21 = 1 | |
I0327 12:57:30.779649 21344 solver.cpp:245] Train net output #109: loss3/accuracy22 = 1 | |
I0327 12:57:30.779662 21344 solver.cpp:245] Train net output #110: loss3/loss01 = 2.28349 (* 0.0909091 = 0.20759 loss) | |
I0327 12:57:30.779675 21344 solver.cpp:245] Train net output #111: loss3/loss02 = 2.93501 (* 0.0909091 = 0.266819 loss) | |
I0327 12:57:30.779690 21344 solver.cpp:245] Train net output #112: loss3/loss03 = 3.26092 (* 0.0909091 = 0.296447 loss) | |
I0327 12:57:30.779703 21344 solver.cpp:245] Train net output #113: loss3/loss04 = 3.38097 (* 0.0909091 = 0.307361 loss) | |
I0327 12:57:30.779716 21344 solver.cpp:245] Train net output #114: loss3/loss05 = 3.51769 (* 0.0909091 = 0.31979 loss) | |
I0327 12:57:30.779731 21344 solver.cpp:245] Train net output #115: loss3/loss06 = 2.55042 (* 0.0909091 = 0.231856 loss) | |
I0327 12:57:30.779754 21344 solver.cpp:245] Train net output #116: loss3/loss07 = 0.997974 (* 0.0909091 = 0.0907249 loss) | |
I0327 12:57:30.779769 21344 solver.cpp:245] Train net output #117: loss3/loss08 = 0.0770064 (* 0.0909091 = 0.00700058 loss) | |
I0327 12:57:30.779783 21344 solver.cpp:245] Train net output #118: loss3/loss09 = 0.0130896 (* 0.0909091 = 0.00118996 loss) | |
I0327 12:57:30.779798 21344 solver.cpp:245] Train net output #119: loss3/loss10 = 0.00604396 (* 0.0909091 = 0.000549451 loss) | |
I0327 12:57:30.779811 21344 solver.cpp:245] Train net output #120: loss3/loss11 = 0.000121159 (* 0.0909091 = 1.10145e-05 loss) | |
I0327 12:57:30.779825 21344 solver.cpp:245] Train net output #121: loss3/loss12 = 9.44589e-05 (* 0.0909091 = 8.58718e-06 loss) | |
I0327 12:57:30.779839 21344 solver.cpp:245] Train net output #122: loss3/loss13 = 0.00014887 (* 0.0909091 = 1.35336e-05 loss) | |
I0327 12:57:30.779853 21344 solver.cpp:245] Train net output #123: loss3/loss14 = 0.000144262 (* 0.0909091 = 1.31148e-05 loss) | |
I0327 12:57:30.779867 21344 solver.cpp:245] Train net output #124: loss3/loss15 = 0.000119763 (* 0.0909091 = 1.08875e-05 loss) | |
I0327 12:57:30.779881 21344 solver.cpp:245] Train net output #125: loss3/loss16 = 0.000110414 (* 0.0909091 = 1.00376e-05 loss) | |
I0327 12:57:30.779896 21344 solver.cpp:245] Train net output #126: loss3/loss17 = 0.000160058 (* 0.0909091 = 1.45507e-05 loss) | |
I0327 12:57:30.779909 21344 solver.cpp:245] Train net output #127: loss3/loss18 = 0.000114922 (* 0.0909091 = 1.04474e-05 loss) | |
I0327 12:57:30.779923 21344 solver.cpp:245] Train net output #128: loss3/loss19 = 0.000133485 (* 0.0909091 = 1.2135e-05 loss) | |
I0327 12:57:30.779937 21344 solver.cpp:245] Train net output #129: loss3/loss20 = 9.76705e-05 (* 0.0909091 = 8.87913e-06 loss) | |
I0327 12:57:30.779950 21344 solver.cpp:245] Train net output #130: loss3/loss21 = 0.000129819 (* 0.0909091 = 1.18017e-05 loss) | |
I0327 12:57:30.779964 21344 solver.cpp:245] Train net output #131: loss3/loss22 = 0.000136572 (* 0.0909091 = 1.24157e-05 loss) | |
I0327 12:57:30.779976 21344 solver.cpp:245] Train net output #132: total_accuracy = 0 | |
I0327 12:57:30.779988 21344 solver.cpp:245] Train net output #133: total_confidence = 0.000139215 | |
I0327 12:57:30.779999 21344 sgd_solver.cpp:106] Iteration 3000, lr = 0.01 | |
I0327 12:59:18.539057 21344 solver.cpp:229] Iteration 3500, loss = 3.19249 | |
I0327 12:59:18.539204 21344 solver.cpp:245] Train net output #0: loss1/accuracy01 = 0.125 | |
I0327 12:59:18.539224 21344 solver.cpp:245] Train net output #1: loss1/accuracy02 = 0.125 | |
I0327 12:59:18.539237 21344 solver.cpp:245] Train net output #2: loss1/accuracy03 = 0 | |
I0327 12:59:18.539249 21344 solver.cpp:245] Train net output #3: loss1/accuracy04 = 0.125 | |
I0327 12:59:18.539261 21344 solver.cpp:245] Train net output #4: loss1/accuracy05 = 0.25 | |
I0327 12:59:18.539273 21344 solver.cpp:245] Train net output #5: loss1/accuracy06 = 0.25 | |
I0327 12:59:18.539285 21344 solver.cpp:245] Train net output #6: loss1/accuracy07 = 0.625 | |
I0327 12:59:18.539299 21344 solver.cpp:245] Train net output #7: loss1/accuracy08 = 0.75 | |
I0327 12:59:18.539310 21344 solver.cpp:245] Train net output #8: loss1/accuracy09 = 0.875 | |
I0327 12:59:18.539322 21344 solver.cpp:245] Train net output #9: loss1/accuracy10 = 1 | |
I0327 12:59:18.539335 21344 solver.cpp:245] Train net output #10: loss1/accuracy11 = 1 | |
I0327 12:59:18.539346 21344 solver.cpp:245] Train net output #11: loss1/accuracy12 = 1 | |
I0327 12:59:18.539357 21344 solver.cpp:245] Train net output #12: loss1/accuracy13 = 1 | |
I0327 12:59:18.539369 21344 solver.cpp:245] Train net output #13: loss1/accuracy14 = 1 | |
I0327 12:59:18.539381 21344 solver.cpp:245] Train net output #14: loss1/accuracy15 = 1 | |
I0327 12:59:18.539392 21344 solver.cpp:245] Train net output #15: loss1/accuracy16 = 1 | |
I0327 12:59:18.539403 21344 solver.cpp:245] Train net output #16: loss1/accuracy17 = 1 | |
I0327 12:59:18.539415 21344 solver.cpp:245] Train net output #17: loss1/accuracy18 = 1 | |
I0327 12:59:18.539427 21344 solver.cpp:245] Train net output #18: loss1/accuracy19 = 1 | |
I0327 12:59:18.539439 21344 solver.cpp:245] Train net output #19: loss1/accuracy20 = 1 | |
I0327 12:59:18.539450 21344 solver.cpp:245] Train net output #20: loss1/accuracy21 = 1 | |
I0327 12:59:18.539463 21344 solver.cpp:245] Train net output #21: loss1/accuracy22 = 1 | |
I0327 12:59:18.539479 21344 solver.cpp:245] Train net output #22: loss1/loss01 = 3.44346 (* 0.0272727 = 0.0939125 loss) | |
I0327 12:59:18.539494 21344 solver.cpp:245] Train net output #23: loss1/loss02 = 4.21077 (* 0.0272727 = 0.114839 loss) | |
I0327 12:59:18.539508 21344 solver.cpp:245] Train net output #24: loss1/loss03 = 3.90873 (* 0.0272727 = 0.106602 loss) | |
I0327 12:59:18.539522 21344 solver.cpp:245] Train net output #25: loss1/loss04 = 3.3698 (* 0.0272727 = 0.0919036 loss) | |
I0327 12:59:18.539536 21344 solver.cpp:245] Train net output #26: loss1/loss05 = 3.48623 (* 0.0272727 = 0.095079 loss) | |
I0327 12:59:18.539551 21344 solver.cpp:245] Train net output #27: loss1/loss06 = 3.43546 (* 0.0272727 = 0.0936944 loss) | |
I0327 12:59:18.539563 21344 solver.cpp:245] Train net output #28: loss1/loss07 = 2.25221 (* 0.0272727 = 0.061424 loss) | |
I0327 12:59:18.539577 21344 solver.cpp:245] Train net output #29: loss1/loss08 = 1.39291 (* 0.0272727 = 0.0379884 loss) | |
I0327 12:59:18.539592 21344 solver.cpp:245] Train net output #30: loss1/loss09 = 0.946875 (* 0.0272727 = 0.0258239 loss) | |
I0327 12:59:18.539607 21344 solver.cpp:245] Train net output #31: loss1/loss10 = 0.0197835 (* 0.0272727 = 0.00053955 loss) | |
I0327 12:59:18.539621 21344 solver.cpp:245] Train net output #32: loss1/loss11 = 0.00313709 (* 0.0272727 = 8.55571e-05 loss) | |
I0327 12:59:18.539635 21344 solver.cpp:245] Train net output #33: loss1/loss12 = 0.00234501 (* 0.0272727 = 6.39549e-05 loss) | |
I0327 12:59:18.539650 21344 solver.cpp:245] Train net output #34: loss1/loss13 = 0.00151599 (* 0.0272727 = 4.13451e-05 loss) | |
I0327 12:59:18.539664 21344 solver.cpp:245] Train net output #35: loss1/loss14 = 0.00313386 (* 0.0272727 = 8.54688e-05 loss) | |
I0327 12:59:18.539680 21344 solver.cpp:245] Train net output #36: loss1/loss15 = 0.00216669 (* 0.0272727 = 5.90917e-05 loss) | |
I0327 12:59:18.539693 21344 solver.cpp:245] Train net output #37: loss1/loss16 = 0.00298166 (* 0.0272727 = 8.13179e-05 loss) | |
I0327 12:59:18.539708 21344 solver.cpp:245] Train net output #38: loss1/loss17 = 0.00241059 (* 0.0272727 = 6.57435e-05 loss) | |
I0327 12:59:18.539736 21344 solver.cpp:245] Train net output #39: loss1/loss18 = 0.00369566 (* 0.0272727 = 0.000100791 loss) | |
I0327 12:59:18.539752 21344 solver.cpp:245] Train net output #40: loss1/loss19 = 0.00272263 (* 0.0272727 = 7.42535e-05 loss) | |
I0327 12:59:18.539765 21344 solver.cpp:245] Train net output #41: loss1/loss20 = 0.0015205 (* 0.0272727 = 4.14683e-05 loss) | |
I0327 12:59:18.539779 21344 solver.cpp:245] Train net output #42: loss1/loss21 = 0.00288363 (* 0.0272727 = 7.86443e-05 loss) | |
I0327 12:59:18.539793 21344 solver.cpp:245] Train net output #43: loss1/loss22 = 0.00305627 (* 0.0272727 = 8.33529e-05 loss) | |
I0327 12:59:18.539806 21344 solver.cpp:245] Train net output #44: loss2/accuracy01 = 0 | |
I0327 12:59:18.539819 21344 solver.cpp:245] Train net output #45: loss2/accuracy02 = 0 | |
I0327 12:59:18.539830 21344 solver.cpp:245] Train net output #46: loss2/accuracy03 = 0 | |
I0327 12:59:18.539841 21344 solver.cpp:245] Train net output #47: loss2/accuracy04 = 0 | |
I0327 12:59:18.539852 21344 solver.cpp:245] Train net output #48: loss2/accuracy05 = 0.125 | |
I0327 12:59:18.539865 21344 solver.cpp:245] Train net output #49: loss2/accuracy06 = 0.25 | |
I0327 12:59:18.539876 21344 solver.cpp:245] Train net output #50: loss2/accuracy07 = 0.625 | |
I0327 12:59:18.539888 21344 solver.cpp:245] Train net output #51: loss2/accuracy08 = 0.75 | |
I0327 12:59:18.539901 21344 solver.cpp:245] Train net output #52: loss2/accuracy09 = 0.875 | |
I0327 12:59:18.539912 21344 solver.cpp:245] Train net output #53: loss2/accuracy10 = 1 | |
I0327 12:59:18.539923 21344 solver.cpp:245] Train net output #54: loss2/accuracy11 = 1 | |
I0327 12:59:18.539935 21344 solver.cpp:245] Train net output #55: loss2/accuracy12 = 1 | |
I0327 12:59:18.539947 21344 solver.cpp:245] Train net output #56: loss2/accuracy13 = 1 | |
I0327 12:59:18.539958 21344 solver.cpp:245] Train net output #57: loss2/accuracy14 = 1 | |
I0327 12:59:18.539969 21344 solver.cpp:245] Train net output #58: loss2/accuracy15 = 1 | |
I0327 12:59:18.539981 21344 solver.cpp:245] Train net output #59: loss2/accuracy16 = 1 | |
I0327 12:59:18.539995 21344 solver.cpp:245] Train net output #60: loss2/accuracy17 = 1 | |
I0327 12:59:18.540007 21344 solver.cpp:245] Train net output #61: loss2/accuracy18 = 1 | |
I0327 12:59:18.540019 21344 solver.cpp:245] Train net output #62: loss2/accuracy19 = 1 | |
I0327 12:59:18.540030 21344 solver.cpp:245] Train net output #63: loss2/accuracy20 = 1 | |
I0327 12:59:18.540042 21344 solver.cpp:245] Train net output #64: loss2/accuracy21 = 1 | |
I0327 12:59:18.540053 21344 solver.cpp:245] Train net output #65: loss2/accuracy22 = 1 | |
I0327 12:59:18.540067 21344 solver.cpp:245] Train net output #66: loss2/loss01 = 3.35703 (* 0.0272727 = 0.0915554 loss) | |
I0327 12:59:18.540081 21344 solver.cpp:245] Train net output #67: loss2/loss02 = 4.2103 (* 0.0272727 = 0.114826 loss) | |
I0327 12:59:18.540096 21344 solver.cpp:245] Train net output #68: loss2/loss03 = 3.51561 (* 0.0272727 = 0.0958802 loss) | |
I0327 12:59:18.540109 21344 solver.cpp:245] Train net output #69: loss2/loss04 = 4.15499 (* 0.0272727 = 0.113318 loss) | |
I0327 12:59:18.540123 21344 solver.cpp:245] Train net output #70: loss2/loss05 = 4.07386 (* 0.0272727 = 0.111105 loss) | |
I0327 12:59:18.540138 21344 solver.cpp:245] Train net output #71: loss2/loss06 = 3.48354 (* 0.0272727 = 0.0950057 loss) | |
I0327 12:59:18.540151 21344 solver.cpp:245] Train net output #72: loss2/loss07 = 2.18294 (* 0.0272727 = 0.0595348 loss) | |
I0327 12:59:18.540165 21344 solver.cpp:245] Train net output #73: loss2/loss08 = 1.67775 (* 0.0272727 = 0.0457568 loss) | |
I0327 12:59:18.540179 21344 solver.cpp:245] Train net output #74: loss2/loss09 = 0.735149 (* 0.0272727 = 0.0200495 loss) | |
I0327 12:59:18.540194 21344 solver.cpp:245] Train net output #75: loss2/loss10 = 0.0435813 (* 0.0272727 = 0.00118858 loss) | |
I0327 12:59:18.540207 21344 solver.cpp:245] Train net output #76: loss2/loss11 = 0.0025736 (* 0.0272727 = 7.01891e-05 loss) | |
I0327 12:59:18.540236 21344 solver.cpp:245] Train net output #77: loss2/loss12 = 0.00243438 (* 0.0272727 = 6.63922e-05 loss) | |
I0327 12:59:18.540251 21344 solver.cpp:245] Train net output #78: loss2/loss13 = 0.00332756 (* 0.0272727 = 9.07517e-05 loss) | |
I0327 12:59:18.540266 21344 solver.cpp:245] Train net output #79: loss2/loss14 = 0.0211711 (* 0.0272727 = 0.000577394 loss) | |
I0327 12:59:18.540280 21344 solver.cpp:245] Train net output #80: loss2/loss15 = 0.00442567 (* 0.0272727 = 0.0001207 loss) | |
I0327 12:59:18.540295 21344 solver.cpp:245] Train net output #81: loss2/loss16 = 0.00666279 (* 0.0272727 = 0.000181712 loss) | |
I0327 12:59:18.540309 21344 solver.cpp:245] Train net output #82: loss2/loss17 = 0.00384771 (* 0.0272727 = 0.000104937 loss) | |
I0327 12:59:18.540323 21344 solver.cpp:245] Train net output #83: loss2/loss18 = 0.00250164 (* 0.0272727 = 6.82267e-05 loss) | |
I0327 12:59:18.540338 21344 solver.cpp:245] Train net output #84: loss2/loss19 = 0.00210083 (* 0.0272727 = 5.72955e-05 loss) | |
I0327 12:59:18.540352 21344 solver.cpp:245] Train net output #85: loss2/loss20 = 0.00289664 (* 0.0272727 = 7.89994e-05 loss) | |
I0327 12:59:18.540367 21344 solver.cpp:245] Train net output #86: loss2/loss21 = 0.00570008 (* 0.0272727 = 0.000155457 loss) | |
I0327 12:59:18.540381 21344 solver.cpp:245] Train net output #87: loss2/loss22 = 0.002236 (* 0.0272727 = 6.09819e-05 loss) | |
I0327 12:59:18.540393 21344 solver.cpp:245] Train net output #88: loss3/accuracy01 = 0.25 | |
I0327 12:59:18.540405 21344 solver.cpp:245] Train net output #89: loss3/accuracy02 = 0 | |
I0327 12:59:18.540416 21344 solver.cpp:245] Train net output #90: loss3/accuracy03 = 0 | |
I0327 12:59:18.540427 21344 solver.cpp:245] Train net output #91: loss3/accuracy04 = 0.25 | |
I0327 12:59:18.540439 21344 solver.cpp:245] Train net output #92: loss3/accuracy05 = 0.25 | |
I0327 12:59:18.540452 21344 solver.cpp:245] Train net output #93: loss3/accuracy06 = 0.375 | |
I0327 12:59:18.540462 21344 solver.cpp:245] Train net output #94: loss3/accuracy07 = 0.625 | |
I0327 12:59:18.540474 21344 solver.cpp:245] Train net output #95: loss3/accuracy08 = 0.75 | |
I0327 12:59:18.540487 21344 solver.cpp:245] Train net output #96: loss3/accuracy09 = 0.875 | |
I0327 12:59:18.540498 21344 solver.cpp:245] Train net output #97: loss3/accuracy10 = 1 | |
I0327 12:59:18.540509 21344 solver.cpp:245] Train net output #98: loss3/accuracy11 = 1 | |
I0327 12:59:18.540520 21344 solver.cpp:245] Train net output #99: loss3/accuracy12 = 1 | |
I0327 12:59:18.540532 21344 solver.cpp:245] Train net output #100: loss3/accuracy13 = 1 | |
I0327 12:59:18.540544 21344 solver.cpp:245] Train net output #101: loss3/accuracy14 = 1 | |
I0327 12:59:18.540555 21344 solver.cpp:245] Train net output #102: loss3/accuracy15 = 1 | |
I0327 12:59:18.540566 21344 solver.cpp:245] Train net output #103: loss3/accuracy16 = 1 | |
I0327 12:59:18.540577 21344 solver.cpp:245] Train net output #104: loss3/accuracy17 = 1 | |
I0327 12:59:18.540590 21344 solver.cpp:245] Train net output #105: loss3/accuracy18 = 1 | |
I0327 12:59:18.540601 21344 solver.cpp:245] Train net output #106: loss3/accuracy19 = 1 | |
I0327 12:59:18.540611 21344 solver.cpp:245] Train net output #107: loss3/accuracy20 = 1 | |
I0327 12:59:18.540623 21344 solver.cpp:245] Train net output #108: loss3/accuracy21 = 1 | |
I0327 12:59:18.540634 21344 solver.cpp:245] Train net output #109: loss3/accuracy22 = 1 | |
I0327 12:59:18.540648 21344 solver.cpp:245] Train net output #110: loss3/loss01 = 3.06061 (* 0.0909091 = 0.278237 loss) | |
I0327 12:59:18.540663 21344 solver.cpp:245] Train net output #111: loss3/loss02 = 3.94749 (* 0.0909091 = 0.358863 loss) | |
I0327 12:59:18.540676 21344 solver.cpp:245] Train net output #112: loss3/loss03 = 3.4969 (* 0.0909091 = 0.3179 loss) | |
I0327 12:59:18.540691 21344 solver.cpp:245] Train net output #113: loss3/loss04 = 3.2387 (* 0.0909091 = 0.294427 loss) | |
I0327 12:59:18.540704 21344 solver.cpp:245] Train net output #114: loss3/loss05 = 3.25296 (* 0.0909091 = 0.295723 loss) | |
I0327 12:59:18.540715 21344 solver.cpp:245] Train net output #115: loss3/loss06 = 3.10186 (* 0.0909091 = 0.281987 loss) | |
I0327 12:59:18.540740 21344 solver.cpp:245] Train net output #116: loss3/loss07 = 1.86168 (* 0.0909091 = 0.169244 loss) | |
I0327 12:59:18.540755 21344 solver.cpp:245] Train net output #117: loss3/loss08 = 1.31596 (* 0.0909091 = 0.119633 loss) | |
I0327 12:59:18.540768 21344 solver.cpp:245] Train net output #118: loss3/loss09 = 0.557776 (* 0.0909091 = 0.0507069 loss) | |
I0327 12:59:18.540782 21344 solver.cpp:245] Train net output #119: loss3/loss10 = 0.0172299 (* 0.0909091 = 0.00156636 loss) | |
I0327 12:59:18.540796 21344 solver.cpp:245] Train net output #120: loss3/loss11 = 0.000342146 (* 0.0909091 = 3.11042e-05 loss) | |
I0327 12:59:18.540810 21344 solver.cpp:245] Train net output #121: loss3/loss12 = 0.000213655 (* 0.0909091 = 1.94232e-05 loss) | |
I0327 12:59:18.540824 21344 solver.cpp:245] Train net output #122: loss3/loss13 = 0.0002215 (* 0.0909091 = 2.01364e-05 loss) | |
I0327 12:59:18.540839 21344 solver.cpp:245] Train net output #123: loss3/loss14 = 0.000316614 (* 0.0909091 = 2.87831e-05 loss) | |
I0327 12:59:18.540853 21344 solver.cpp:245] Train net output #124: loss3/loss15 = 0.000228703 (* 0.0909091 = 2.07912e-05 loss) | |
I0327 12:59:18.540868 21344 solver.cpp:245] Train net output #125: loss3/loss16 = 0.000248547 (* 0.0909091 = 2.25952e-05 loss) | |
I0327 12:59:18.540881 21344 solver.cpp:245] Train net output #126: loss3/loss17 = 0.000293918 (* 0.0909091 = 2.67198e-05 loss) | |
I0327 12:59:18.540895 21344 solver.cpp:245] Train net output #127: loss3/loss18 = 0.000278086 (* 0.0909091 = 2.52806e-05 loss) | |
I0327 12:59:18.540910 21344 solver.cpp:245] Train net output #128: loss3/loss19 = 0.000262831 (* 0.0909091 = 2.38938e-05 loss) | |
I0327 12:59:18.540923 21344 solver.cpp:245] Train net output #129: loss3/loss20 = 0.000244087 (* 0.0909091 = 2.21897e-05 loss) | |
I0327 12:59:18.540937 21344 solver.cpp:245] Train net output #130: loss3/loss21 = 0.000248362 (* 0.0909091 = 2.25783e-05 loss) | |
I0327 12:59:18.540951 21344 solver.cpp:245] Train net output #131: loss3/loss22 = 0.000339208 (* 0.0909091 = 3.08371e-05 loss) | |
I0327 12:59:18.540963 21344 solver.cpp:245] Train net output #132: total_accuracy = 0 | |
I0327 12:59:18.540976 21344 solver.cpp:245] Train net output #133: total_confidence = 8.10943e-05 | |
I0327 12:59:18.540987 21344 sgd_solver.cpp:106] Iteration 3500, lr = 0.01 | |
I0327 13:01:06.256872 21344 solver.cpp:229] Iteration 4000, loss = 3.17806 | |
I0327 13:01:06.257026 21344 solver.cpp:245] Train net output #0: loss1/accuracy01 = 0.125 | |
I0327 13:01:06.257046 21344 solver.cpp:245] Train net output #1: loss1/accuracy02 = 0 | |
I0327 13:01:06.257060 21344 solver.cpp:245] Train net output #2: loss1/accuracy03 = 0.125 | |
I0327 13:01:06.257071 21344 solver.cpp:245] Train net output #3: loss1/accuracy04 = 0.125 | |
I0327 13:01:06.257083 21344 solver.cpp:245] Train net output #4: loss1/accuracy05 = 0.25 | |
I0327 13:01:06.257096 21344 solver.cpp:245] Train net output #5: loss1/accuracy06 = 0.25 | |
I0327 13:01:06.257107 21344 solver.cpp:245] Train net output #6: loss1/accuracy07 = 0.875 | |
I0327 13:01:06.257119 21344 solver.cpp:245] Train net output #7: loss1/accuracy08 = 1 | |
I0327 13:01:06.257131 21344 solver.cpp:245] Train net output #8: loss1/accuracy09 = 1 | |
I0327 13:01:06.257143 21344 solver.cpp:245] Train net output #9: loss1/accuracy10 = 1 | |
I0327 13:01:06.257155 21344 solver.cpp:245] Train net output #10: loss1/accuracy11 = 1 | |
I0327 13:01:06.257167 21344 solver.cpp:245] Train net output #11: loss1/accuracy12 = 1 | |
I0327 13:01:06.257179 21344 solver.cpp:245] Train net output #12: loss1/accuracy13 = 1 | |
I0327 13:01:06.257191 21344 solver.cpp:245] Train net output #13: loss1/accuracy14 = 1 | |
I0327 13:01:06.257203 21344 solver.cpp:245] Train net output #14: loss1/accuracy15 = 1 | |
I0327 13:01:06.257215 21344 solver.cpp:245] Train net output #15: loss1/accuracy16 = 1 | |
I0327 13:01:06.257226 21344 solver.cpp:245] Train net output #16: loss1/accuracy17 = 1 | |
I0327 13:01:06.257238 21344 solver.cpp:245] Train net output #17: loss1/accuracy18 = 1 | |
I0327 13:01:06.257249 21344 solver.cpp:245] Train net output #18: loss1/accuracy19 = 1 | |
I0327 13:01:06.257261 21344 solver.cpp:245] Train net output #19: loss1/accuracy20 = 1 | |
I0327 13:01:06.257272 21344 solver.cpp:245] Train net output #20: loss1/accuracy21 = 1 | |
I0327 13:01:06.257284 21344 solver.cpp:245] Train net output #21: loss1/accuracy22 = 1 | |
I0327 13:01:06.257299 21344 solver.cpp:245] Train net output #22: loss1/loss01 = 3.28474 (* 0.0272727 = 0.0895839 loss) | |
I0327 13:01:06.257315 21344 solver.cpp:245] Train net output #23: loss1/loss02 = 3.25629 (* 0.0272727 = 0.088808 loss) | |
I0327 13:01:06.257329 21344 solver.cpp:245] Train net output #24: loss1/loss03 = 3.36395 (* 0.0272727 = 0.0917441 loss) | |
I0327 13:01:06.257344 21344 solver.cpp:245] Train net output #25: loss1/loss04 = 3.75742 (* 0.0272727 = 0.102475 loss) | |
I0327 13:01:06.257357 21344 solver.cpp:245] Train net output #26: loss1/loss05 = 3.4328 (* 0.0272727 = 0.0936218 loss) | |
I0327 13:01:06.257371 21344 solver.cpp:245] Train net output #27: loss1/loss06 = 2.86212 (* 0.0272727 = 0.0780577 loss) | |
I0327 13:01:06.257385 21344 solver.cpp:245] Train net output #28: loss1/loss07 = 0.659287 (* 0.0272727 = 0.0179806 loss) | |
I0327 13:01:06.257400 21344 solver.cpp:245] Train net output #29: loss1/loss08 = 0.183669 (* 0.0272727 = 0.00500915 loss) | |
I0327 13:01:06.257414 21344 solver.cpp:245] Train net output #30: loss1/loss09 = 0.0418214 (* 0.0272727 = 0.00114058 loss) | |
I0327 13:01:06.257428 21344 solver.cpp:245] Train net output #31: loss1/loss10 = 0.00631121 (* 0.0272727 = 0.000172124 loss) | |
I0327 13:01:06.257444 21344 solver.cpp:245] Train net output #32: loss1/loss11 = 0.00101837 (* 0.0272727 = 2.77738e-05 loss) | |
I0327 13:01:06.257459 21344 solver.cpp:245] Train net output #33: loss1/loss12 = 0.00069322 (* 0.0272727 = 1.8906e-05 loss) | |
I0327 13:01:06.257473 21344 solver.cpp:245] Train net output #34: loss1/loss13 = 0.000597837 (* 0.0272727 = 1.63046e-05 loss) | |
I0327 13:01:06.257488 21344 solver.cpp:245] Train net output #35: loss1/loss14 = 0.000761527 (* 0.0272727 = 2.07689e-05 loss) | |
I0327 13:01:06.257503 21344 solver.cpp:245] Train net output #36: loss1/loss15 = 0.0011476 (* 0.0272727 = 3.1298e-05 loss) | |
I0327 13:01:06.257518 21344 solver.cpp:245] Train net output #37: loss1/loss16 = 0.00118123 (* 0.0272727 = 3.22154e-05 loss) | |
I0327 13:01:06.257531 21344 solver.cpp:245] Train net output #38: loss1/loss17 = 0.000467921 (* 0.0272727 = 1.27615e-05 loss) | |
I0327 13:01:06.257577 21344 solver.cpp:245] Train net output #39: loss1/loss18 = 0.000528544 (* 0.0272727 = 1.44148e-05 loss) | |
I0327 13:01:06.257593 21344 solver.cpp:245] Train net output #40: loss1/loss19 = 0.00167223 (* 0.0272727 = 4.56061e-05 loss) | |
I0327 13:01:06.257608 21344 solver.cpp:245] Train net output #41: loss1/loss20 = 0.000405327 (* 0.0272727 = 1.10544e-05 loss) | |
I0327 13:01:06.257622 21344 solver.cpp:245] Train net output #42: loss1/loss21 = 0.00034185 (* 0.0272727 = 9.32318e-06 loss) | |
I0327 13:01:06.257637 21344 solver.cpp:245] Train net output #43: loss1/loss22 = 0.00113411 (* 0.0272727 = 3.09304e-05 loss) | |
I0327 13:01:06.257649 21344 solver.cpp:245] Train net output #44: loss2/accuracy01 = 0.125 | |
I0327 13:01:06.257661 21344 solver.cpp:245] Train net output #45: loss2/accuracy02 = 0 | |
I0327 13:01:06.257673 21344 solver.cpp:245] Train net output #46: loss2/accuracy03 = 0.125 | |
I0327 13:01:06.257685 21344 solver.cpp:245] Train net output #47: loss2/accuracy04 = 0 | |
I0327 13:01:06.257697 21344 solver.cpp:245] Train net output #48: loss2/accuracy05 = 0 | |
I0327 13:01:06.257709 21344 solver.cpp:245] Train net output #49: loss2/accuracy06 = 0.25 | |
I0327 13:01:06.257720 21344 solver.cpp:245] Train net output #50: loss2/accuracy07 = 0.875 | |
I0327 13:01:06.257732 21344 solver.cpp:245] Train net output #51: loss2/accuracy08 = 1 | |
I0327 13:01:06.257745 21344 solver.cpp:245] Train net output #52: loss2/accuracy09 = 1 | |
I0327 13:01:06.257756 21344 solver.cpp:245] Train net output #53: loss2/accuracy10 = 1 | |
I0327 13:01:06.257767 21344 solver.cpp:245] Train net output #54: loss2/accuracy11 = 1 | |
I0327 13:01:06.257779 21344 solver.cpp:245] Train net output #55: loss2/accuracy12 = 1 | |
I0327 13:01:06.257791 21344 solver.cpp:245] Train net output #56: loss2/accuracy13 = 1 | |
I0327 13:01:06.257802 21344 solver.cpp:245] Train net output #57: loss2/accuracy14 = 1 | |
I0327 13:01:06.257813 21344 solver.cpp:245] Train net output #58: loss2/accuracy15 = 1 | |
I0327 13:01:06.257825 21344 solver.cpp:245] Train net output #59: loss2/accuracy16 = 1 | |
I0327 13:01:06.257836 21344 solver.cpp:245] Train net output #60: loss2/accuracy17 = 1 | |
I0327 13:01:06.257848 21344 solver.cpp:245] Train net output #61: loss2/accuracy18 = 1 | |
I0327 13:01:06.257859 21344 solver.cpp:245] Train net output #62: loss2/accuracy19 = 1 | |
I0327 13:01:06.257870 21344 solver.cpp:245] Train net output #63: loss2/accuracy20 = 1 | |
I0327 13:01:06.257882 21344 solver.cpp:245] Train net output #64: loss2/accuracy21 = 1 | |
I0327 13:01:06.257894 21344 solver.cpp:245] Train net output #65: loss2/accuracy22 = 1 | |
I0327 13:01:06.257907 21344 solver.cpp:245] Train net output #66: loss2/loss01 = 3.42762 (* 0.0272727 = 0.0934806 loss) | |
I0327 13:01:06.257921 21344 solver.cpp:245] Train net output #67: loss2/loss02 = 3.2827 (* 0.0272727 = 0.0895283 loss) | |
I0327 13:01:06.257936 21344 solver.cpp:245] Train net output #68: loss2/loss03 = 3.2154 (* 0.0272727 = 0.0876928 loss) | |
I0327 13:01:06.257949 21344 solver.cpp:245] Train net output #69: loss2/loss04 = 3.5537 (* 0.0272727 = 0.0969192 loss) | |
I0327 13:01:06.257963 21344 solver.cpp:245] Train net output #70: loss2/loss05 = 3.52966 (* 0.0272727 = 0.0962635 loss) | |
I0327 13:01:06.257977 21344 solver.cpp:245] Train net output #71: loss2/loss06 = 3.48831 (* 0.0272727 = 0.0951356 loss) | |
I0327 13:01:06.257994 21344 solver.cpp:245] Train net output #72: loss2/loss07 = 0.723619 (* 0.0272727 = 0.0197351 loss) | |
I0327 13:01:06.258009 21344 solver.cpp:245] Train net output #73: loss2/loss08 = 0.196107 (* 0.0272727 = 0.00534839 loss) | |
I0327 13:01:06.258023 21344 solver.cpp:245] Train net output #74: loss2/loss09 = 0.0404525 (* 0.0272727 = 0.00110325 loss) | |
I0327 13:01:06.258038 21344 solver.cpp:245] Train net output #75: loss2/loss10 = 0.0143688 (* 0.0272727 = 0.000391876 loss) | |
I0327 13:01:06.258052 21344 solver.cpp:245] Train net output #76: loss2/loss11 = 0.00283041 (* 0.0272727 = 7.7193e-05 loss) | |
I0327 13:01:06.258079 21344 solver.cpp:245] Train net output #77: loss2/loss12 = 0.00506621 (* 0.0272727 = 0.000138169 loss) | |
I0327 13:01:06.258093 21344 solver.cpp:245] Train net output #78: loss2/loss13 = 0.00514416 (* 0.0272727 = 0.000140295 loss) | |
I0327 13:01:06.258107 21344 solver.cpp:245] Train net output #79: loss2/loss14 = 0.00510222 (* 0.0272727 = 0.000139151 loss) | |
I0327 13:01:06.258121 21344 solver.cpp:245] Train net output #80: loss2/loss15 = 0.00767948 (* 0.0272727 = 0.00020944 loss) | |
I0327 13:01:06.258136 21344 solver.cpp:245] Train net output #81: loss2/loss16 = 0.00659715 (* 0.0272727 = 0.000179922 loss) | |
I0327 13:01:06.258150 21344 solver.cpp:245] Train net output #82: loss2/loss17 = 0.00108874 (* 0.0272727 = 2.9693e-05 loss) | |
I0327 13:01:06.258164 21344 solver.cpp:245] Train net output #83: loss2/loss18 = 0.00055951 (* 0.0272727 = 1.52594e-05 loss) | |
I0327 13:01:06.258178 21344 solver.cpp:245] Train net output #84: loss2/loss19 = 0.0054204 (* 0.0272727 = 0.000147829 loss) | |
I0327 13:01:06.258193 21344 solver.cpp:245] Train net output #85: loss2/loss20 = 0.0015281 (* 0.0272727 = 4.16754e-05 loss) | |
I0327 13:01:06.258208 21344 solver.cpp:245] Train net output #86: loss2/loss21 = 0.00278975 (* 0.0272727 = 7.60841e-05 loss) | |
I0327 13:01:06.258221 21344 solver.cpp:245] Train net output #87: loss2/loss22 = 0.00204279 (* 0.0272727 = 5.57124e-05 loss) | |
I0327 13:01:06.258234 21344 solver.cpp:245] Train net output #88: loss3/accuracy01 = 0 | |
I0327 13:01:06.258245 21344 solver.cpp:245] Train net output #89: loss3/accuracy02 = 0 | |
I0327 13:01:06.258257 21344 solver.cpp:245] Train net output #90: loss3/accuracy03 = 0 | |
I0327 13:01:06.258270 21344 solver.cpp:245] Train net output #91: loss3/accuracy04 = 0 | |
I0327 13:01:06.258280 21344 solver.cpp:245] Train net output #92: loss3/accuracy05 = 0.125 | |
I0327 13:01:06.258292 21344 solver.cpp:245] Train net output #93: loss3/accuracy06 = 0.25 | |
I0327 13:01:06.258303 21344 solver.cpp:245] Train net output #94: loss3/accuracy07 = 0.875 | |
I0327 13:01:06.258316 21344 solver.cpp:245] Train net output #95: loss3/accuracy08 = 1 | |
I0327 13:01:06.258327 21344 solver.cpp:245] Train net output #96: loss3/accuracy09 = 1 | |
I0327 13:01:06.258338 21344 solver.cpp:245] Train net output #97: loss3/accuracy10 = 1 | |
I0327 13:01:06.258349 21344 solver.cpp:245] Train net output #98: loss3/accuracy11 = 1 | |
I0327 13:01:06.258360 21344 solver.cpp:245] Train net output #99: loss3/accuracy12 = 1 | |
I0327 13:01:06.258373 21344 solver.cpp:245] Train net output #100: loss3/accuracy13 = 1 | |
I0327 13:01:06.258383 21344 solver.cpp:245] Train net output #101: loss3/accuracy14 = 1 | |
I0327 13:01:06.258395 21344 solver.cpp:245] Train net output #102: loss3/accuracy15 = 1 | |
I0327 13:01:06.258406 21344 solver.cpp:245] Train net output #103: loss3/accuracy16 = 1 | |
I0327 13:01:06.258415 21344 solver.cpp:245] Train net output #104: loss3/accuracy17 = 1 | |
I0327 13:01:06.258422 21344 solver.cpp:245] Train net output #105: loss3/accuracy18 = 1 | |
I0327 13:01:06.258435 21344 solver.cpp:245] Train net output #106: loss3/accuracy19 = 1 | |
I0327 13:01:06.258446 21344 solver.cpp:245] Train net output #107: loss3/accuracy20 = 1 | |
I0327 13:01:06.258458 21344 solver.cpp:245] Train net output #108: loss3/accuracy21 = 1 | |
I0327 13:01:06.258469 21344 solver.cpp:245] Train net output #109: loss3/accuracy22 = 1 | |
I0327 13:01:06.258483 21344 solver.cpp:245] Train net output #110: loss3/loss01 = 2.93912 (* 0.0909091 = 0.267193 loss) | |
I0327 13:01:06.258497 21344 solver.cpp:245] Train net output #111: loss3/loss02 = 3.28377 (* 0.0909091 = 0.298524 loss) | |
I0327 13:01:06.258512 21344 solver.cpp:245] Train net output #112: loss3/loss03 = 3.17025 (* 0.0909091 = 0.288204 loss) | |
I0327 13:01:06.258525 21344 solver.cpp:245] Train net output #113: loss3/loss04 = 3.70214 (* 0.0909091 = 0.336559 loss) | |
I0327 13:01:06.258539 21344 solver.cpp:245] Train net output #114: loss3/loss05 = 3.09944 (* 0.0909091 = 0.281767 loss) | |
I0327 13:01:06.258553 21344 solver.cpp:245] Train net output #115: loss3/loss06 = 2.8181 (* 0.0909091 = 0.256191 loss) | |
I0327 13:01:06.258576 21344 solver.cpp:245] Train net output #116: loss3/loss07 = 0.662376 (* 0.0909091 = 0.060216 loss) | |
I0327 13:01:06.258591 21344 solver.cpp:245] Train net output #117: loss3/loss08 = 0.131959 (* 0.0909091 = 0.0119963 loss) | |
I0327 13:01:06.258605 21344 solver.cpp:245] Train net output #118: loss3/loss09 = 0.0476544 (* 0.0909091 = 0.00433222 loss) | |
I0327 13:01:06.258620 21344 solver.cpp:245] Train net output #119: loss3/loss10 = 0.00991928 (* 0.0909091 = 0.000901753 loss) | |
I0327 13:01:06.258635 21344 solver.cpp:245] Train net output #120: loss3/loss11 = 0.000187534 (* 0.0909091 = 1.70485e-05 loss) | |
I0327 13:01:06.258648 21344 solver.cpp:245] Train net output #121: loss3/loss12 = 0.000286789 (* 0.0909091 = 2.60717e-05 loss) | |
I0327 13:01:06.258662 21344 solver.cpp:245] Train net output #122: loss3/loss13 = 0.000221351 (* 0.0909091 = 2.01228e-05 loss) | |
I0327 13:01:06.258677 21344 solver.cpp:245] Train net output #123: loss3/loss14 = 0.000267045 (* 0.0909091 = 2.42768e-05 loss) | |
I0327 13:01:06.258690 21344 solver.cpp:245] Train net output #124: loss3/loss15 = 0.000255288 (* 0.0909091 = 2.3208e-05 loss) | |
I0327 13:01:06.258704 21344 solver.cpp:245] Train net output #125: loss3/loss16 = 0.000240423 (* 0.0909091 = 2.18566e-05 loss) | |
I0327 13:01:06.258718 21344 solver.cpp:245] Train net output #126: loss3/loss17 = 0.000233174 (* 0.0909091 = 2.11977e-05 loss) | |
I0327 13:01:06.258733 21344 solver.cpp:245] Train net output #127: loss3/loss18 = 0.000266159 (* 0.0909091 = 2.41963e-05 loss) | |
I0327 13:01:06.258746 21344 solver.cpp:245] Train net output #128: loss3/loss19 = 0.00019046 (* 0.0909091 = 1.73146e-05 loss) | |
I0327 13:01:06.258760 21344 solver.cpp:245] Train net output #129: loss3/loss20 = 0.000311318 (* 0.0909091 = 2.83016e-05 loss) | |
I0327 13:01:06.258774 21344 solver.cpp:245] Train net output #130: loss3/loss21 = 0.000349096 (* 0.0909091 = 3.1736e-05 loss) | |
I0327 13:01:06.258788 21344 solver.cpp:245] Train net output #131: loss3/loss22 = 0.000211367 (* 0.0909091 = 1.92151e-05 loss) | |
I0327 13:01:06.258800 21344 solver.cpp:245] Train net output #132: total_accuracy = 0 | |
I0327 13:01:06.258811 21344 solver.cpp:245] Train net output #133: total_confidence = 1.50617e-05 | |
I0327 13:01:06.258823 21344 sgd_solver.cpp:106] Iteration 4000, lr = 0.01 | |
I0327 13:02:54.166479 21344 solver.cpp:229] Iteration 4500, loss = 3.13741 | |
I0327 13:02:54.166606 21344 solver.cpp:245] Train net output #0: loss1/accuracy01 = 0 | |
I0327 13:02:54.166625 21344 solver.cpp:245] Train net output #1: loss1/accuracy02 = 0.125 | |
I0327 13:02:54.166638 21344 solver.cpp:245] Train net output #2: loss1/accuracy03 = 0 | |
I0327 13:02:54.166651 21344 solver.cpp:245] Train net output #3: loss1/accuracy04 = 0 | |
I0327 13:02:54.166662 21344 solver.cpp:245] Train net output #4: loss1/accuracy05 = 0 | |
I0327 13:02:54.166673 21344 solver.cpp:245] Train net output #5: loss1/accuracy06 = 0.375 | |
I0327 13:02:54.166685 21344 solver.cpp:245] Train net output #6: loss1/accuracy07 = 0.5 | |
I0327 13:02:54.166697 21344 solver.cpp:245] Train net output #7: loss1/accuracy08 = 0.875 | |
I0327 13:02:54.166709 21344 solver.cpp:245] Train net output #8: loss1/accuracy09 = 0.875 | |
I0327 13:02:54.166721 21344 solver.cpp:245] Train net output #9: loss1/accuracy10 = 0.875 | |
I0327 13:02:54.166733 21344 solver.cpp:245] Train net output #10: loss1/accuracy11 = 1 | |
I0327 13:02:54.166744 21344 solver.cpp:245] Train net output #11: loss1/accuracy12 = 1 | |
I0327 13:02:54.166756 21344 solver.cpp:245] Train net output #12: loss1/accuracy13 = 1 | |
I0327 13:02:54.166769 21344 solver.cpp:245] Train net output #13: loss1/accuracy14 = 1 | |
I0327 13:02:54.166779 21344 solver.cpp:245] Train net output #14: loss1/accuracy15 = 1 | |
I0327 13:02:54.166791 21344 solver.cpp:245] Train net output #15: loss1/accuracy16 = 1 | |
I0327 13:02:54.166802 21344 solver.cpp:245] Train net output #16: loss1/accuracy17 = 1 | |
I0327 13:02:54.166815 21344 solver.cpp:245] Train net output #17: loss1/accuracy18 = 1 | |
I0327 13:02:54.166826 21344 solver.cpp:245] Train net output #18: loss1/accuracy19 = 1 | |
I0327 13:02:54.166837 21344 solver.cpp:245] Train net output #19: loss1/accuracy20 = 1 | |
I0327 13:02:54.166848 21344 solver.cpp:245] Train net output #20: loss1/accuracy21 = 1 | |
I0327 13:02:54.166860 21344 solver.cpp:245] Train net output #21: loss1/accuracy22 = 1 | |
I0327 13:02:54.166877 21344 solver.cpp:245] Train net output #22: loss1/loss01 = 4.28472 (* 0.0272727 = 0.116856 loss) | |
I0327 13:02:54.166892 21344 solver.cpp:245] Train net output #23: loss1/loss02 = 3.50254 (* 0.0272727 = 0.0955237 loss) | |
I0327 13:02:54.166906 21344 solver.cpp:245] Train net output #24: loss1/loss03 = 4.16483 (* 0.0272727 = 0.113586 loss) | |
I0327 13:02:54.166920 21344 solver.cpp:245] Train net output #25: loss1/loss04 = 3.97911 (* 0.0272727 = 0.108521 loss) | |
I0327 13:02:54.166934 21344 solver.cpp:245] Train net output #26: loss1/loss05 = 3.95279 (* 0.0272727 = 0.107803 loss) | |
I0327 13:02:54.166949 21344 solver.cpp:245] Train net output #27: loss1/loss06 = 2.61208 (* 0.0272727 = 0.0712384 loss) | |
I0327 13:02:54.166962 21344 solver.cpp:245] Train net output #28: loss1/loss07 = 2.00106 (* 0.0272727 = 0.0545744 loss) | |
I0327 13:02:54.166975 21344 solver.cpp:245] Train net output #29: loss1/loss08 = 0.779984 (* 0.0272727 = 0.0212723 loss) | |
I0327 13:02:54.166992 21344 solver.cpp:245] Train net output #30: loss1/loss09 = 0.721881 (* 0.0272727 = 0.0196877 loss) | |
I0327 13:02:54.167007 21344 solver.cpp:245] Train net output #31: loss1/loss10 = 0.935556 (* 0.0272727 = 0.0255152 loss) | |
I0327 13:02:54.167022 21344 solver.cpp:245] Train net output #32: loss1/loss11 = 0.00156067 (* 0.0272727 = 4.25638e-05 loss) | |
I0327 13:02:54.167037 21344 solver.cpp:245] Train net output #33: loss1/loss12 = 0.00206065 (* 0.0272727 = 5.61995e-05 loss) | |
I0327 13:02:54.167052 21344 solver.cpp:245] Train net output #34: loss1/loss13 = 0.00163659 (* 0.0272727 = 4.46342e-05 loss) | |
I0327 13:02:54.167065 21344 solver.cpp:245] Train net output #35: loss1/loss14 = 0.00286204 (* 0.0272727 = 7.80557e-05 loss) | |
I0327 13:02:54.167079 21344 solver.cpp:245] Train net output #36: loss1/loss15 = 0.00107944 (* 0.0272727 = 2.94393e-05 loss) | |
I0327 13:02:54.167094 21344 solver.cpp:245] Train net output #37: loss1/loss16 = 0.00168267 (* 0.0272727 = 4.58909e-05 loss) | |
I0327 13:02:54.167107 21344 solver.cpp:245] Train net output #38: loss1/loss17 = 0.00201364 (* 0.0272727 = 5.49175e-05 loss) | |
I0327 13:02:54.167140 21344 solver.cpp:245] Train net output #39: loss1/loss18 = 0.00114744 (* 0.0272727 = 3.12938e-05 loss) | |
I0327 13:02:54.167155 21344 solver.cpp:245] Train net output #40: loss1/loss19 = 0.00199259 (* 0.0272727 = 5.43434e-05 loss) | |
I0327 13:02:54.167170 21344 solver.cpp:245] Train net output #41: loss1/loss20 = 0.00158845 (* 0.0272727 = 4.33214e-05 loss) | |
I0327 13:02:54.167183 21344 solver.cpp:245] Train net output #42: loss1/loss21 = 0.00209256 (* 0.0272727 = 5.70697e-05 loss) | |
I0327 13:02:54.167197 21344 solver.cpp:245] Train net output #43: loss1/loss22 = 0.00182692 (* 0.0272727 = 4.9825e-05 loss) | |
I0327 13:02:54.167209 21344 solver.cpp:245] Train net output #44: loss2/accuracy01 = 0.125 | |
I0327 13:02:54.167222 21344 solver.cpp:245] Train net output #45: loss2/accuracy02 = 0.375 | |
I0327 13:02:54.167234 21344 solver.cpp:245] Train net output #46: loss2/accuracy03 = 0 | |
I0327 13:02:54.167245 21344 solver.cpp:245] Train net output #47: loss2/accuracy04 = 0 | |
I0327 13:02:54.167256 21344 solver.cpp:245] Train net output #48: loss2/accuracy05 = 0 | |
I0327 13:02:54.167268 21344 solver.cpp:245] Train net output #49: loss2/accuracy06 = 0.375 | |
I0327 13:02:54.167280 21344 solver.cpp:245] Train net output #50: loss2/accuracy07 = 0.5 | |
I0327 13:02:54.167291 21344 solver.cpp:245] Train net output #51: loss2/accuracy08 = 0.875 | |
I0327 13:02:54.167304 21344 solver.cpp:245] Train net output #52: loss2/accuracy09 = 0.875 | |
I0327 13:02:54.167315 21344 solver.cpp:245] Train net output #53: loss2/accuracy10 = 0.875 | |
I0327 13:02:54.167327 21344 solver.cpp:245] Train net output #54: loss2/accuracy11 = 1 | |
I0327 13:02:54.167338 21344 solver.cpp:245] Train net output #55: loss2/accuracy12 = 1 | |
I0327 13:02:54.167351 21344 solver.cpp:245] Train net output #56: loss2/accuracy13 = 1 | |
I0327 13:02:54.167361 21344 solver.cpp:245] Train net output #57: loss2/accuracy14 = 1 | |
I0327 13:02:54.167372 21344 solver.cpp:245] Train net output #58: loss2/accuracy15 = 1 | |
I0327 13:02:54.167384 21344 solver.cpp:245] Train net output #59: loss2/accuracy16 = 1 | |
I0327 13:02:54.167395 21344 solver.cpp:245] Train net output #60: loss2/accuracy17 = 1 | |
I0327 13:02:54.167407 21344 solver.cpp:245] Train net output #61: loss2/accuracy18 = 1 | |
I0327 13:02:54.167418 21344 solver.cpp:245] Train net output #62: loss2/accuracy19 = 1 | |
I0327 13:02:54.167429 21344 solver.cpp:245] Train net output #63: loss2/accuracy20 = 1 | |
I0327 13:02:54.167440 21344 solver.cpp:245] Train net output #64: loss2/accuracy21 = 1 | |
I0327 13:02:54.167453 21344 solver.cpp:245] Train net output #65: loss2/accuracy22 = 1 | |
I0327 13:02:54.167465 21344 solver.cpp:245] Train net output #66: loss2/loss01 = 4.21481 (* 0.0272727 = 0.114949 loss) | |
I0327 13:02:54.167479 21344 solver.cpp:245] Train net output #67: loss2/loss02 = 2.72392 (* 0.0272727 = 0.0742886 loss) | |
I0327 13:02:54.167493 21344 solver.cpp:245] Train net output #68: loss2/loss03 = 4.10057 (* 0.0272727 = 0.111834 loss) | |
I0327 13:02:54.167507 21344 solver.cpp:245] Train net output #69: loss2/loss04 = 3.73271 (* 0.0272727 = 0.101801 loss) | |
I0327 13:02:54.167522 21344 solver.cpp:245] Train net output #70: loss2/loss05 = 4.28115 (* 0.0272727 = 0.116759 loss) | |
I0327 13:02:54.167536 21344 solver.cpp:245] Train net output #71: loss2/loss06 = 3.15684 (* 0.0272727 = 0.0860955 loss) | |
I0327 13:02:54.167549 21344 solver.cpp:245] Train net output #72: loss2/loss07 = 1.94902 (* 0.0272727 = 0.0531552 loss) | |
I0327 13:02:54.167563 21344 solver.cpp:245] Train net output #73: loss2/loss08 = 1.02206 (* 0.0272727 = 0.0278744 loss) | |
I0327 13:02:54.167577 21344 solver.cpp:245] Train net output #74: loss2/loss09 = 1.26518 (* 0.0272727 = 0.034505 loss) | |
I0327 13:02:54.167592 21344 solver.cpp:245] Train net output #75: loss2/loss10 = 1.11318 (* 0.0272727 = 0.0303593 loss) | |
I0327 13:02:54.167605 21344 solver.cpp:245] Train net output #76: loss2/loss11 = 0.000884742 (* 0.0272727 = 2.41293e-05 loss) | |
I0327 13:02:54.167634 21344 solver.cpp:245] Train net output #77: loss2/loss12 = 0.00224629 (* 0.0272727 = 6.12625e-05 loss) | |
I0327 13:02:54.167649 21344 solver.cpp:245] Train net output #78: loss2/loss13 = 0.00304856 (* 0.0272727 = 8.31425e-05 loss) | |
I0327 13:02:54.167665 21344 solver.cpp:245] Train net output #79: loss2/loss14 = 0.000791842 (* 0.0272727 = 2.15957e-05 loss) | |
I0327 13:02:54.167678 21344 solver.cpp:245] Train net output #80: loss2/loss15 = 0.00175599 (* 0.0272727 = 4.78906e-05 loss) | |
I0327 13:02:54.167692 21344 solver.cpp:245] Train net output #81: loss2/loss16 = 0.000738919 (* 0.0272727 = 2.01523e-05 loss) | |
I0327 13:02:54.167706 21344 solver.cpp:245] Train net output #82: loss2/loss17 = 0.00125974 (* 0.0272727 = 3.43564e-05 loss) | |
I0327 13:02:54.167721 21344 solver.cpp:245] Train net output #83: loss2/loss18 = 0.000929393 (* 0.0272727 = 2.53471e-05 loss) | |
I0327 13:02:54.167734 21344 solver.cpp:245] Train net output #84: loss2/loss19 = 0.00159745 (* 0.0272727 = 4.35668e-05 loss) | |
I0327 13:02:54.167748 21344 solver.cpp:245] Train net output #85: loss2/loss20 = 0.000984168 (* 0.0272727 = 2.68409e-05 loss) | |
I0327 13:02:54.167762 21344 solver.cpp:245] Train net output #86: loss2/loss21 = 0.000876157 (* 0.0272727 = 2.38952e-05 loss) | |
I0327 13:02:54.167776 21344 solver.cpp:245] Train net output #87: loss2/loss22 = 0.002499 (* 0.0272727 = 6.81546e-05 loss) | |
I0327 13:02:54.167789 21344 solver.cpp:245] Train net output #88: loss3/accuracy01 = 0 | |
I0327 13:02:54.167801 21344 solver.cpp:245] Train net output #89: loss3/accuracy02 = 0.25 | |
I0327 13:02:54.167814 21344 solver.cpp:245] Train net output #90: loss3/accuracy03 = 0 | |
I0327 13:02:54.167824 21344 solver.cpp:245] Train net output #91: loss3/accuracy04 = 0 | |
I0327 13:02:54.167835 21344 solver.cpp:245] Train net output #92: loss3/accuracy05 = 0 | |
I0327 13:02:54.167846 21344 solver.cpp:245] Train net output #93: loss3/accuracy06 = 0.5 | |
I0327 13:02:54.167858 21344 solver.cpp:245] Train net output #94: loss3/accuracy07 = 0.5 | |
I0327 13:02:54.167870 21344 solver.cpp:245] Train net output #95: loss3/accuracy08 = 0.875 | |
I0327 13:02:54.167881 21344 solver.cpp:245] Train net output #96: loss3/accuracy09 = 0.875 | |
I0327 13:02:54.167892 21344 solver.cpp:245] Train net output #97: loss3/accuracy10 = 0.875 | |
I0327 13:02:54.167904 21344 solver.cpp:245] Train net output #98: loss3/accuracy11 = 1 | |
I0327 13:02:54.167915 21344 solver.cpp:245] Train net output #99: loss3/accuracy12 = 1 | |
I0327 13:02:54.167927 21344 solver.cpp:245] Train net output #100: loss3/accuracy13 = 1 | |
I0327 13:02:54.167938 21344 solver.cpp:245] Train net output #101: loss3/accuracy14 = 1 | |
I0327 13:02:54.167949 21344 solver.cpp:245] Train net output #102: loss3/accuracy15 = 1 | |
I0327 13:02:54.167961 21344 solver.cpp:245] Train net output #103: loss3/accuracy16 = 1 | |
I0327 13:02:54.167973 21344 solver.cpp:245] Train net output #104: loss3/accuracy17 = 1 | |
I0327 13:02:54.167984 21344 solver.cpp:245] Train net output #105: loss3/accuracy18 = 1 | |
I0327 13:02:54.167995 21344 solver.cpp:245] Train net output #106: loss3/accuracy19 = 1 | |
I0327 13:02:54.168006 21344 solver.cpp:245] Train net output #107: loss3/accuracy20 = 1 | |
I0327 13:02:54.168018 21344 solver.cpp:245] Train net output #108: loss3/accuracy21 = 1 | |
I0327 13:02:54.168030 21344 solver.cpp:245] Train net output #109: loss3/accuracy22 = 1 | |
I0327 13:02:54.168045 21344 solver.cpp:245] Train net output #110: loss3/loss01 = 3.97898 (* 0.0909091 = 0.361726 loss) | |
I0327 13:02:54.168061 21344 solver.cpp:245] Train net output #111: loss3/loss02 = 3.14984 (* 0.0909091 = 0.286349 loss) | |
I0327 13:02:54.168074 21344 solver.cpp:245] Train net output #112: loss3/loss03 = 4.15962 (* 0.0909091 = 0.378147 loss) | |
I0327 13:02:54.168088 21344 solver.cpp:245] Train net output #113: loss3/loss04 = 3.46982 (* 0.0909091 = 0.315438 loss) | |
I0327 13:02:54.168102 21344 solver.cpp:245] Train net output #114: loss3/loss05 = 3.97484 (* 0.0909091 = 0.361349 loss) | |
I0327 13:02:54.168112 21344 solver.cpp:245] Train net output #115: loss3/loss06 = 2.79873 (* 0.0909091 = 0.25443 loss) | |
I0327 13:02:54.168136 21344 solver.cpp:245] Train net output #116: loss3/loss07 = 1.86303 (* 0.0909091 = 0.169366 loss) | |
I0327 13:02:54.168151 21344 solver.cpp:245] Train net output #117: loss3/loss08 = 1.01324 (* 0.0909091 = 0.0921123 loss) | |
I0327 13:02:54.168165 21344 solver.cpp:245] Train net output #118: loss3/loss09 = 1.01621 (* 0.0909091 = 0.0923825 loss) | |
I0327 13:02:54.168179 21344 solver.cpp:245] Train net output #119: loss3/loss10 = 1.15502 (* 0.0909091 = 0.105002 loss) | |
I0327 13:02:54.168193 21344 solver.cpp:245] Train net output #120: loss3/loss11 = 0.000188548 (* 0.0909091 = 1.71407e-05 loss) | |
I0327 13:02:54.168208 21344 solver.cpp:245] Train net output #121: loss3/loss12 = 0.000237969 (* 0.0909091 = 2.16336e-05 loss) | |
I0327 13:02:54.168221 21344 solver.cpp:245] Train net output #122: loss3/loss13 = 0.00023976 (* 0.0909091 = 2.17964e-05 loss) | |
I0327 13:02:54.168236 21344 solver.cpp:245] Train net output #123: loss3/loss14 = 0.000334238 (* 0.0909091 = 3.03853e-05 loss) | |
I0327 13:02:54.168251 21344 solver.cpp:245] Train net output #124: loss3/loss15 = 0.000182365 (* 0.0909091 = 1.65786e-05 loss) | |
I0327 13:02:54.168264 21344 solver.cpp:245] Train net output #125: loss3/loss16 = 0.000261214 (* 0.0909091 = 2.37467e-05 loss) | |
I0327 13:02:54.168278 21344 solver.cpp:245] Train net output #126: loss3/loss17 = 0.000250526 (* 0.0909091 = 2.27751e-05 loss) | |
I0327 13:02:54.168292 21344 solver.cpp:245] Train net output #127: loss3/loss18 = 0.000251275 (* 0.0909091 = 2.28432e-05 loss) | |
I0327 13:02:54.168305 21344 solver.cpp:245] Train net output #128: loss3/loss19 = 0.000210464 (* 0.0909091 = 1.91331e-05 loss) | |
I0327 13:02:54.168319 21344 solver.cpp:245] Train net output #129: loss3/loss20 = 0.000234857 (* 0.0909091 = 2.13506e-05 loss) | |
I0327 13:02:54.168334 21344 solver.cpp:245] Train net output #130: loss3/loss21 = 0.000329229 (* 0.0909091 = 2.99299e-05 loss) | |
I0327 13:02:54.168347 21344 solver.cpp:245] Train net output #131: loss3/loss22 = 0.000280349 (* 0.0909091 = 2.54862e-05 loss) | |
I0327 13:02:54.168359 21344 solver.cpp:245] Train net output #132: total_accuracy = 0 | |
I0327 13:02:54.168370 21344 solver.cpp:245] Train net output #133: total_confidence = 8.66659e-06 | |
I0327 13:02:54.168383 21344 sgd_solver.cpp:106] Iteration 4500, lr = 0.01 | |
I0327 13:04:41.803457 21344 solver.cpp:338] Iteration 5000, Testing net (#0) | |
I0327 13:05:12.803906 21344 solver.cpp:393] Test loss: 2.51615 | |
I0327 13:05:12.804019 21344 solver.cpp:406] Test net output #0: loss1/accuracy01 = 0.298 | |
I0327 13:05:12.804040 21344 solver.cpp:406] Test net output #1: loss1/accuracy02 = 0.095 | |
I0327 13:05:12.804054 21344 solver.cpp:406] Test net output #2: loss1/accuracy03 = 0.101 | |
I0327 13:05:12.804065 21344 solver.cpp:406] Test net output #3: loss1/accuracy04 = 0.129 | |
I0327 13:05:12.804077 21344 solver.cpp:406] Test net output #4: loss1/accuracy05 = 0.243 | |
I0327 13:05:12.804090 21344 solver.cpp:406] Test net output #5: loss1/accuracy06 = 0.513 | |
I0327 13:05:12.804100 21344 solver.cpp:406] Test net output #6: loss1/accuracy07 = 0.896 | |
I0327 13:05:12.804112 21344 solver.cpp:406] Test net output #7: loss1/accuracy08 = 0.972 | |
I0327 13:05:12.804123 21344 solver.cpp:406] Test net output #8: loss1/accuracy09 = 0.995 | |
I0327 13:05:12.804136 21344 solver.cpp:406] Test net output #9: loss1/accuracy10 = 0.998 | |
I0327 13:05:12.804147 21344 solver.cpp:406] Test net output #10: loss1/accuracy11 = 1 | |
I0327 13:05:12.804159 21344 solver.cpp:406] Test net output #11: loss1/accuracy12 = 1 | |
I0327 13:05:12.804170 21344 solver.cpp:406] Test net output #12: loss1/accuracy13 = 1 | |
I0327 13:05:12.804182 21344 solver.cpp:406] Test net output #13: loss1/accuracy14 = 1 | |
I0327 13:05:12.804193 21344 solver.cpp:406] Test net output #14: loss1/accuracy15 = 1 | |
I0327 13:05:12.804210 21344 solver.cpp:406] Test net output #15: loss1/accuracy16 = 1 | |
I0327 13:05:12.804224 21344 solver.cpp:406] Test net output #16: loss1/accuracy17 = 1 | |
I0327 13:05:12.804235 21344 solver.cpp:406] Test net output #17: loss1/accuracy18 = 1 | |
I0327 13:05:12.804246 21344 solver.cpp:406] Test net output #18: loss1/accuracy19 = 1 | |
I0327 13:05:12.804257 21344 solver.cpp:406] Test net output #19: loss1/accuracy20 = 1 | |
I0327 13:05:12.804270 21344 solver.cpp:406] Test net output #20: loss1/accuracy21 = 1 | |
I0327 13:05:12.804280 21344 solver.cpp:406] Test net output #21: loss1/accuracy22 = 1 | |
I0327 13:05:12.804296 21344 solver.cpp:406] Test net output #22: loss1/loss01 = 2.729 (* 0.0272727 = 0.0744274 loss) | |
I0327 13:05:12.804309 21344 solver.cpp:406] Test net output #23: loss1/loss02 = 3.08709 (* 0.0272727 = 0.0841933 loss) | |
I0327 13:05:12.804323 21344 solver.cpp:406] Test net output #24: loss1/loss03 = 3.17215 (* 0.0272727 = 0.0865131 loss) | |
I0327 13:05:12.804337 21344 solver.cpp:406] Test net output #25: loss1/loss04 = 3.0672 (* 0.0272727 = 0.0836509 loss) | |
I0327 13:05:12.804352 21344 solver.cpp:406] Test net output #26: loss1/loss05 = 2.90011 (* 0.0272727 = 0.079094 loss) | |
I0327 13:05:12.804364 21344 solver.cpp:406] Test net output #27: loss1/loss06 = 1.97549 (* 0.0272727 = 0.0538771 loss) | |
I0327 13:05:12.804378 21344 solver.cpp:406] Test net output #28: loss1/loss07 = 0.725995 (* 0.0272727 = 0.0197999 loss) | |
I0327 13:05:12.804393 21344 solver.cpp:406] Test net output #29: loss1/loss08 = 0.223549 (* 0.0272727 = 0.0060968 loss) | |
I0327 13:05:12.804406 21344 solver.cpp:406] Test net output #30: loss1/loss09 = 0.0441595 (* 0.0272727 = 0.00120435 loss) | |
I0327 13:05:12.804421 21344 solver.cpp:406] Test net output #31: loss1/loss10 = 0.0212288 (* 0.0272727 = 0.000578967 loss) | |
I0327 13:05:12.804435 21344 solver.cpp:406] Test net output #32: loss1/loss11 = 0.00112421 (* 0.0272727 = 3.06603e-05 loss) | |
I0327 13:05:12.804450 21344 solver.cpp:406] Test net output #33: loss1/loss12 = 0.00106746 (* 0.0272727 = 2.91125e-05 loss) | |
I0327 13:05:12.804471 21344 solver.cpp:406] Test net output #34: loss1/loss13 = 0.00123596 (* 0.0272727 = 3.3708e-05 loss) | |
I0327 13:05:12.804484 21344 solver.cpp:406] Test net output #35: loss1/loss14 = 0.00112117 (* 0.0272727 = 3.05774e-05 loss) | |
I0327 13:05:12.804499 21344 solver.cpp:406] Test net output #36: loss1/loss15 = 0.00109958 (* 0.0272727 = 2.99884e-05 loss) | |
I0327 13:05:12.804513 21344 solver.cpp:406] Test net output #37: loss1/loss16 = 0.00132226 (* 0.0272727 = 3.60615e-05 loss) | |
I0327 13:05:12.804527 21344 solver.cpp:406] Test net output #38: loss1/loss17 = 0.0012943 (* 0.0272727 = 3.52992e-05 loss) | |
I0327 13:05:12.804560 21344 solver.cpp:406] Test net output #39: loss1/loss18 = 0.00118417 (* 0.0272727 = 3.22956e-05 loss) | |
I0327 13:05:12.804575 21344 solver.cpp:406] Test net output #40: loss1/loss19 = 0.00100196 (* 0.0272727 = 2.73261e-05 loss) | |
I0327 13:05:12.804589 21344 solver.cpp:406] Test net output #41: loss1/loss20 = 0.00108686 (* 0.0272727 = 2.96416e-05 loss) | |
I0327 13:05:12.804603 21344 solver.cpp:406] Test net output #42: loss1/loss21 = 0.000990167 (* 0.0272727 = 2.70045e-05 loss) | |
I0327 13:05:12.804617 21344 solver.cpp:406] Test net output #43: loss1/loss22 = 0.00103686 (* 0.0272727 = 2.82781e-05 loss) | |
I0327 13:05:12.804630 21344 solver.cpp:406] Test net output #44: loss2/accuracy01 = 0.278 | |
I0327 13:05:12.804641 21344 solver.cpp:406] Test net output #45: loss2/accuracy02 = 0.108 | |
I0327 13:05:12.804653 21344 solver.cpp:406] Test net output #46: loss2/accuracy03 = 0.091 | |
I0327 13:05:12.804664 21344 solver.cpp:406] Test net output #47: loss2/accuracy04 = 0.14 | |
I0327 13:05:12.804677 21344 solver.cpp:406] Test net output #48: loss2/accuracy05 = 0.246 | |
I0327 13:05:12.804687 21344 solver.cpp:406] Test net output #49: loss2/accuracy06 = 0.516 | |
I0327 13:05:12.804699 21344 solver.cpp:406] Test net output #50: loss2/accuracy07 = 0.897 | |
I0327 13:05:12.804711 21344 solver.cpp:406] Test net output #51: loss2/accuracy08 = 0.972 | |
I0327 13:05:12.804723 21344 solver.cpp:406] Test net output #52: loss2/accuracy09 = 0.995 | |
I0327 13:05:12.804734 21344 solver.cpp:406] Test net output #53: loss2/accuracy10 = 0.998 | |
I0327 13:05:12.804745 21344 solver.cpp:406] Test net output #54: loss2/accuracy11 = 1 | |
I0327 13:05:12.804756 21344 solver.cpp:406] Test net output #55: loss2/accuracy12 = 1 | |
I0327 13:05:12.804767 21344 solver.cpp:406] Test net output #56: loss2/accuracy13 = 1 | |
I0327 13:05:12.804780 21344 solver.cpp:406] Test net output #57: loss2/accuracy14 = 1 | |
I0327 13:05:12.804790 21344 solver.cpp:406] Test net output #58: loss2/accuracy15 = 1 | |
I0327 13:05:12.804801 21344 solver.cpp:406] Test net output #59: loss2/accuracy16 = 1 | |
I0327 13:05:12.804812 21344 solver.cpp:406] Test net output #60: loss2/accuracy17 = 1 | |
I0327 13:05:12.804823 21344 solver.cpp:406] Test net output #61: loss2/accuracy18 = 1 | |
I0327 13:05:12.804834 21344 solver.cpp:406] Test net output #62: loss2/accuracy19 = 1 | |
I0327 13:05:12.804846 21344 solver.cpp:406] Test net output #63: loss2/accuracy20 = 1 | |
I0327 13:05:12.804857 21344 solver.cpp:406] Test net output #64: loss2/accuracy21 = 1 | |
I0327 13:05:12.804868 21344 solver.cpp:406] Test net output #65: loss2/accuracy22 = 1 | |
I0327 13:05:12.804882 21344 solver.cpp:406] Test net output #66: loss2/loss01 = 2.51069 (* 0.0272727 = 0.0684735 loss) | |
I0327 13:05:12.804894 21344 solver.cpp:406] Test net output #67: loss2/loss02 = 2.91008 (* 0.0272727 = 0.0793658 loss) | |
I0327 13:05:12.804908 21344 solver.cpp:406] Test net output #68: loss2/loss03 = 3.04399 (* 0.0272727 = 0.083018 loss) | |
I0327 13:05:12.804922 21344 solver.cpp:406] Test net output #69: loss2/loss04 = 2.92304 (* 0.0272727 = 0.0797194 loss) | |
I0327 13:05:12.804935 21344 solver.cpp:406] Test net output #70: loss2/loss05 = 2.79087 (* 0.0272727 = 0.0761147 loss) | |
I0327 13:05:12.804949 21344 solver.cpp:406] Test net output #71: loss2/loss06 = 1.88467 (* 0.0272727 = 0.0514002 loss) | |
I0327 13:05:12.804962 21344 solver.cpp:406] Test net output #72: loss2/loss07 = 0.670684 (* 0.0272727 = 0.0182914 loss) | |
I0327 13:05:12.804976 21344 solver.cpp:406] Test net output #73: loss2/loss08 = 0.215558 (* 0.0272727 = 0.00587886 loss) | |
I0327 13:05:12.804994 21344 solver.cpp:406] Test net output #74: loss2/loss09 = 0.0403959 (* 0.0272727 = 0.00110171 loss) | |
I0327 13:05:12.805009 21344 solver.cpp:406] Test net output #75: loss2/loss10 = 0.0198054 (* 0.0272727 = 0.000540149 loss) | |
I0327 13:05:12.805023 21344 solver.cpp:406] Test net output #76: loss2/loss11 = 0.000731224 (* 0.0272727 = 1.99425e-05 loss) | |
I0327 13:05:12.805037 21344 solver.cpp:406] Test net output #77: loss2/loss12 = 0.00078926 (* 0.0272727 = 2.15253e-05 loss) | |
I0327 13:05:12.805061 21344 solver.cpp:406] Test net output #78: loss2/loss13 = 0.000659056 (* 0.0272727 = 1.79743e-05 loss) | |
I0327 13:05:12.805076 21344 solver.cpp:406] Test net output #79: loss2/loss14 = 0.000707006 (* 0.0272727 = 1.9282e-05 loss) | |
I0327 13:05:12.805090 21344 solver.cpp:406] Test net output #80: loss2/loss15 = 0.000670353 (* 0.0272727 = 1.82824e-05 loss) | |
I0327 13:05:12.805104 21344 solver.cpp:406] Test net output #81: loss2/loss16 = 0.000686329 (* 0.0272727 = 1.87181e-05 loss) | |
I0327 13:05:12.805119 21344 solver.cpp:406] Test net output #82: loss2/loss17 = 0.000793617 (* 0.0272727 = 2.16441e-05 loss) | |
I0327 13:05:12.805131 21344 solver.cpp:406] Test net output #83: loss2/loss18 = 0.000734819 (* 0.0272727 = 2.00405e-05 loss) | |
I0327 13:05:12.805145 21344 solver.cpp:406] Test net output #84: loss2/loss19 = 0.000795111 (* 0.0272727 = 2.16848e-05 loss) | |
I0327 13:05:12.805160 21344 solver.cpp:406] Test net output #85: loss2/loss20 = 0.000706819 (* 0.0272727 = 1.92769e-05 loss) | |
I0327 13:05:12.805172 21344 solver.cpp:406] Test net output #86: loss2/loss21 = 0.00091741 (* 0.0272727 = 2.50203e-05 loss) | |
I0327 13:05:12.805186 21344 solver.cpp:406] Test net output #87: loss2/loss22 = 0.000742784 (* 0.0272727 = 2.02577e-05 loss) | |
I0327 13:05:12.805198 21344 solver.cpp:406] Test net output #88: loss3/accuracy01 = 0.23 | |
I0327 13:05:12.805210 21344 solver.cpp:406] Test net output #89: loss3/accuracy02 = 0.085 | |
I0327 13:05:12.805222 21344 solver.cpp:406] Test net output #90: loss3/accuracy03 = 0.092 | |
I0327 13:05:12.805233 21344 solver.cpp:406] Test net output #91: loss3/accuracy04 = 0.111 | |
I0327 13:05:12.805244 21344 solver.cpp:406] Test net output #92: loss3/accuracy05 = 0.227 | |
I0327 13:05:12.805256 21344 solver.cpp:406] Test net output #93: loss3/accuracy06 = 0.502 | |
I0327 13:05:12.805268 21344 solver.cpp:406] Test net output #94: loss3/accuracy07 = 0.896 | |
I0327 13:05:12.805279 21344 solver.cpp:406] Test net output #95: loss3/accuracy08 = 0.972 | |
I0327 13:05:12.805286 21344 solver.cpp:406] Test net output #96: loss3/accuracy09 = 0.995 | |
I0327 13:05:12.805294 21344 solver.cpp:406] Test net output #97: loss3/accuracy10 = 0.998 | |
I0327 13:05:12.805306 21344 solver.cpp:406] Test net output #98: loss3/accuracy11 = 1 | |
I0327 13:05:12.805317 21344 solver.cpp:406] Test net output #99: loss3/accuracy12 = 1 | |
I0327 13:05:12.805330 21344 solver.cpp:406] Test net output #100: loss3/accuracy13 = 1 | |
I0327 13:05:12.805341 21344 solver.cpp:406] Test net output #101: loss3/accuracy14 = 1 | |
I0327 13:05:12.805358 21344 solver.cpp:406] Test net output #102: loss3/accuracy15 = 1 | |
I0327 13:05:12.805371 21344 solver.cpp:406] Test net output #103: loss3/accuracy16 = 1 | |
I0327 13:05:12.805382 21344 solver.cpp:406] Test net output #104: loss3/accuracy17 = 1 | |
I0327 13:05:12.805393 21344 solver.cpp:406] Test net output #105: loss3/accuracy18 = 1 | |
I0327 13:05:12.805404 21344 solver.cpp:406] Test net output #106: loss3/accuracy19 = 1 | |
I0327 13:05:12.805415 21344 solver.cpp:406] Test net output #107: loss3/accuracy20 = 1 | |
I0327 13:05:12.805426 21344 solver.cpp:406] Test net output #108: loss3/accuracy21 = 1 | |
I0327 13:05:12.805436 21344 solver.cpp:406] Test net output #109: loss3/accuracy22 = 1 | |
I0327 13:05:12.805450 21344 solver.cpp:406] Test net output #110: loss3/loss01 = 2.43294 (* 0.0909091 = 0.221176 loss) | |
I0327 13:05:12.805464 21344 solver.cpp:406] Test net output #111: loss3/loss02 = 2.93513 (* 0.0909091 = 0.26683 loss) | |
I0327 13:05:12.805477 21344 solver.cpp:406] Test net output #112: loss3/loss03 = 3.0786 (* 0.0909091 = 0.279873 loss) | |
I0327 13:05:12.805490 21344 solver.cpp:406] Test net output #113: loss3/loss04 = 3.03647 (* 0.0909091 = 0.276042 loss) | |
I0327 13:05:12.805505 21344 solver.cpp:406] Test net output #114: loss3/loss05 = 2.83567 (* 0.0909091 = 0.257788 loss) | |
I0327 13:05:12.805517 21344 solver.cpp:406] Test net output #115: loss3/loss06 = 1.87512 (* 0.0909091 = 0.170465 loss) | |
I0327 13:05:12.805553 21344 solver.cpp:406] Test net output #116: loss3/loss07 = 0.695374 (* 0.0909091 = 0.0632158 loss) | |
I0327 13:05:12.805570 21344 solver.cpp:406] Test net output #117: loss3/loss08 = 0.224267 (* 0.0909091 = 0.0203879 loss) | |
I0327 13:05:12.805584 21344 solver.cpp:406] Test net output #118: loss3/loss09 = 0.0459848 (* 0.0909091 = 0.00418043 loss) | |
I0327 13:05:12.805598 21344 solver.cpp:406] Test net output #119: loss3/loss10 = 0.0237412 (* 0.0909091 = 0.00215829 loss) | |
I0327 13:05:12.805611 21344 solver.cpp:406] Test net output #120: loss3/loss11 = 7.53839e-05 (* 0.0909091 = 6.85308e-06 loss) | |
I0327 13:05:12.805625 21344 solver.cpp:406] Test net output #121: loss3/loss12 = 7.26766e-05 (* 0.0909091 = 6.60697e-06 loss) | |
I0327 13:05:12.805639 21344 solver.cpp:406] Test net output #122: loss3/loss13 = 8.26042e-05 (* 0.0909091 = 7.50947e-06 loss) | |
I0327 13:05:12.805652 21344 solver.cpp:406] Test net output #123: loss3/loss14 = 8.09331e-05 (* 0.0909091 = 7.35755e-06 loss) | |
I0327 13:05:12.805666 21344 solver.cpp:406] Test net output #124: loss3/loss15 = 7.17971e-05 (* 0.0909091 = 6.52701e-06 loss) | |
I0327 13:05:12.805680 21344 solver.cpp:406] Test net output #125: loss3/loss16 = 7.73646e-05 (* 0.0909091 = 7.03314e-06 loss) | |
I0327 13:05:12.805693 21344 solver.cpp:406] Test net output #126: loss3/loss17 = 7.81954e-05 (* 0.0909091 = 7.10867e-06 loss) | |
I0327 13:05:12.805706 21344 solver.cpp:406] Test net output #127: loss3/loss18 = 7.23958e-05 (* 0.0909091 = 6.58143e-06 loss) | |
I0327 13:05:12.805721 21344 solver.cpp:406] Test net output #128: loss3/loss19 = 7.25853e-05 (* 0.0909091 = 6.59867e-06 loss) | |
I0327 13:05:12.805733 21344 solver.cpp:406] Test net output #129: loss3/loss20 = 8.68589e-05 (* 0.0909091 = 7.89627e-06 loss) | |
I0327 13:05:12.805747 21344 solver.cpp:406] Test net output #130: loss3/loss21 = 7.6509e-05 (* 0.0909091 = 6.95536e-06 loss) | |
I0327 13:05:12.805760 21344 solver.cpp:406] Test net output #131: loss3/loss22 = 7.42517e-05 (* 0.0909091 = 6.75015e-06 loss) | |
I0327 13:05:12.805773 21344 solver.cpp:406] Test net output #132: total_accuracy = 0 | |
I0327 13:05:12.805783 21344 solver.cpp:406] Test net output #133: total_confidence = 0.000429127 | |
I0327 13:05:12.917351 21344 solver.cpp:229] Iteration 5000, loss = 3.09521 | |
I0327 13:05:12.917402 21344 solver.cpp:245] Train net output #0: loss1/accuracy01 = 0.125 | |
I0327 13:05:12.917419 21344 solver.cpp:245] Train net output #1: loss1/accuracy02 = 0.25 | |
I0327 13:05:12.917433 21344 solver.cpp:245] Train net output #2: loss1/accuracy03 = 0 | |
I0327 13:05:12.917444 21344 solver.cpp:245] Train net output #3: loss1/accuracy04 = 0.125 | |
I0327 13:05:12.917456 21344 solver.cpp:245] Train net output #4: loss1/accuracy05 = 0.125 | |
I0327 13:05:12.917469 21344 solver.cpp:245] Train net output #5: loss1/accuracy06 = 0.375 | |
I0327 13:05:12.917481 21344 solver.cpp:245] Train net output #6: loss1/accuracy07 = 0.75 | |
I0327 13:05:12.917493 21344 solver.cpp:245] Train net output #7: loss1/accuracy08 = 1 | |
I0327 13:05:12.917505 21344 solver.cpp:245] Train net output #8: loss1/accuracy09 = 1 | |
I0327 13:05:12.917517 21344 solver.cpp:245] Train net output #9: loss1/accuracy10 = 1 | |
I0327 13:05:12.917528 21344 solver.cpp:245] Train net output #10: loss1/accuracy11 = 1 | |
I0327 13:05:12.917554 21344 solver.cpp:245] Train net output #11: loss1/accuracy12 = 1 | |
I0327 13:05:12.917569 21344 solver.cpp:245] Train net output #12: loss1/accuracy13 = 1 | |
I0327 13:05:12.917582 21344 solver.cpp:245] Train net output #13: loss1/accuracy14 = 1 | |
I0327 13:05:12.917593 21344 solver.cpp:245] Train net output #14: loss1/accuracy15 = 1 | |
I0327 13:05:12.917604 21344 solver.cpp:245] Train net output #15: loss1/accuracy16 = 1 | |
I0327 13:05:12.917616 21344 solver.cpp:245] Train net output #16: loss1/accuracy17 = 1 | |
I0327 13:05:12.917628 21344 solver.cpp:245] Train net output #17: loss1/accuracy18 = 1 | |
I0327 13:05:12.917639 21344 solver.cpp:245] Train net output #18: loss1/accuracy19 = 1 | |
I0327 13:05:12.917672 21344 solver.cpp:245] Train net output #19: loss1/accuracy20 = 1 | |
I0327 13:05:12.917686 21344 solver.cpp:245] Train net output #20: loss1/accuracy21 = 1 | |
I0327 13:05:12.917698 21344 solver.cpp:245] Train net output #21: loss1/accuracy22 = 1 | |
I0327 13:05:12.917714 21344 solver.cpp:245] Train net output #22: loss1/loss01 = 2.75415 (* 0.0272727 = 0.0751131 loss) | |
I0327 13:05:12.917729 21344 solver.cpp:245] Train net output #23: loss1/loss02 = 3.13999 (* 0.0272727 = 0.085636 loss) | |
I0327 13:05:12.917743 21344 solver.cpp:245] Train net output #24: loss1/loss03 = 3.69952 (* 0.0272727 = 0.100896 loss) | |
I0327 13:05:12.917757 21344 solver.cpp:245] Train net output #25: loss1/loss04 = 2.84494 (* 0.0272727 = 0.0775893 loss) | |
I0327 13:05:12.917771 21344 solver.cpp:245] Train net output #26: loss1/loss05 = 3.54967 (* 0.0272727 = 0.0968091 loss) | |
I0327 13:05:12.917785 21344 solver.cpp:245] Train net output #27: loss1/loss06 = 2.64299 (* 0.0272727 = 0.0720816 loss) | |
I0327 13:05:12.917799 21344 solver.cpp:245] Train net output #28: loss1/loss07 = 1.3522 (* 0.0272727 = 0.0368781 loss) | |
I0327 13:05:12.917814 21344 solver.cpp:245] Train net output #29: loss1/loss08 = 0.0750345 (* 0.0272727 = 0.00204639 loss) | |
I0327 13:05:12.917827 21344 solver.cpp:245] Train net output #30: loss1/loss09 = 0.028068 (* 0.0272727 = 0.00076549 loss) | |
I0327 13:05:12.917841 21344 solver.cpp:245] Train net output #31: loss1/loss10 = 0.00780955 (* 0.0272727 = 0.000212988 loss) | |
I0327 13:05:12.917855 21344 solver.cpp:245] Train net output #32: loss1/loss11 = 0.00128865 (* 0.0272727 = 3.51449e-05 loss) | |
I0327 13:05:12.917870 21344 solver.cpp:245] Train net output #33: loss1/loss12 = 0.0100744 (* 0.0272727 = 0.000274755 loss) | |
I0327 13:05:12.917883 21344 solver.cpp:245] Train net output #34: loss1/loss13 = 0.0059974 (* 0.0272727 = 0.000163566 loss) | |
I0327 13:05:12.917897 21344 solver.cpp:245] Train net output #35: loss1/loss14 = 0.00241921 (* 0.0272727 = 6.59783e-05 loss) | |
I0327 13:05:12.917912 21344 solver.cpp:245] Train net output #36: loss1/loss15 = 0.00338069 (* 0.0272727 = 9.22006e-05 loss) | |
I0327 13:05:12.917927 21344 solver.cpp:245] Train net output #37: loss1/loss16 = 0.0035085 (* 0.0272727 = 9.56863e-05 loss) | |
I0327 13:05:12.917940 21344 solver.cpp:245] Train net output #38: loss1/loss17 = 0.00619252 (* 0.0272727 = 0.000168887 loss) | |
I0327 13:05:12.917954 21344 solver.cpp:245] Train net output #39: loss1/loss18 = 0.0171592 (* 0.0272727 = 0.000467979 loss) | |
I0327 13:05:12.917968 21344 solver.cpp:245] Train net output #40: loss1/loss19 = 0.0040919 (* 0.0272727 = 0.000111597 loss) | |
I0327 13:05:12.917982 21344 solver.cpp:245] Train net output #41: loss1/loss20 = 0.00132275 (* 0.0272727 = 3.60751e-05 loss) | |
I0327 13:05:12.917996 21344 solver.cpp:245] Train net output #42: loss1/loss21 = 0.00166654 (* 0.0272727 = 4.5451e-05 loss) | |
I0327 13:05:12.918010 21344 solver.cpp:245] Train net output #43: loss1/loss22 = 0.00255575 (* 0.0272727 = 6.97022e-05 loss) | |
I0327 13:05:12.918022 21344 solver.cpp:245] Train net output #44: loss2/accuracy01 = 0.25 | |
I0327 13:05:12.918035 21344 solver.cpp:245] Train net output #45: loss2/accuracy02 = 0.25 | |
I0327 13:05:12.918046 21344 solver.cpp:245] Train net output #46: loss2/accuracy03 = 0 | |
I0327 13:05:12.918057 21344 solver.cpp:245] Train net output #47: loss2/accuracy04 = 0 | |
I0327 13:05:12.918069 21344 solver.cpp:245] Train net output #48: loss2/accuracy05 = 0.125 | |
I0327 13:05:12.918081 21344 solver.cpp:245] Train net output #49: loss2/accuracy06 = 0.25 | |
I0327 13:05:12.918095 21344 solver.cpp:245] Train net output #50: loss2/accuracy07 = 0.75 | |
I0327 13:05:12.918107 21344 solver.cpp:245] Train net output #51: loss2/accuracy08 = 1 | |
I0327 13:05:12.918119 21344 solver.cpp:245] Train net output #52: loss2/accuracy09 = 1 | |
I0327 13:05:12.918131 21344 solver.cpp:245] Train net output #53: loss2/accuracy10 = 1 | |
I0327 13:05:12.918143 21344 solver.cpp:245] Train net output #54: loss2/accuracy11 = 1 | |
I0327 13:05:12.918164 21344 solver.cpp:245] Train net output #55: loss2/accuracy12 = 1 | |
I0327 13:05:12.918177 21344 solver.cpp:245] Train net output #56: loss2/accuracy13 = 1 | |
I0327 13:05:12.918189 21344 solver.cpp:245] Train net output #57: loss2/accuracy14 = 1 | |
I0327 13:05:12.918200 21344 solver.cpp:245] Train net output #58: loss2/accuracy15 = 1 | |
I0327 13:05:12.918210 21344 solver.cpp:245] Train net output #59: loss2/accuracy16 = 1 | |
I0327 13:05:12.918222 21344 solver.cpp:245] Train net output #60: loss2/accuracy17 = 1 | |
I0327 13:05:12.918233 21344 solver.cpp:245] Train net output #61: loss2/accuracy18 = 1 | |
I0327 13:05:12.918246 21344 solver.cpp:245] Train net output #62: loss2/accuracy19 = 1 | |
I0327 13:05:12.918256 21344 solver.cpp:245] Train net output #63: loss2/accuracy20 = 1 | |
I0327 13:05:12.918267 21344 solver.cpp:245] Train net output #64: loss2/accuracy21 = 1 | |
I0327 13:05:12.918279 21344 solver.cpp:245] Train net output #65: loss2/accuracy22 = 1 | |
I0327 13:05:12.918293 21344 solver.cpp:245] Train net output #66: loss2/loss01 = 2.3262 (* 0.0272727 = 0.0634418 loss) | |
I0327 13:05:12.918306 21344 solver.cpp:245] Train net output #67: loss2/loss02 = 3.07777 (* 0.0272727 = 0.0839392 loss) | |
I0327 13:05:12.918320 21344 solver.cpp:245] Train net output #68: loss2/loss03 = 3.36746 (* 0.0272727 = 0.0918398 loss) | |
I0327 13:05:12.918334 21344 solver.cpp:245] Train net output #69: loss2/loss04 = 3.4115 (* 0.0272727 = 0.093041 loss) | |
I0327 13:05:12.918349 21344 solver.cpp:245] Train net output #70: loss2/loss05 = 2.96867 (* 0.0272727 = 0.0809638 loss) | |
I0327 13:05:12.918361 21344 solver.cpp:245] Train net output #71: loss2/loss06 = 3.22081 (* 0.0272727 = 0.0878404 loss) | |
I0327 13:05:12.918375 21344 solver.cpp:245] Train net output #72: loss2/loss07 = 1.44793 (* 0.0272727 = 0.039489 loss) | |
I0327 13:05:12.918390 21344 solver.cpp:245] Train net output #73: loss2/loss08 = 0.080962 (* 0.0272727 = 0.00220806 loss) | |
I0327 13:05:12.918407 21344 solver.cpp:245] Train net output #74: loss2/loss09 = 0.0277874 (* 0.0272727 = 0.000757838 loss) | |
I0327 13:05:12.918426 21344 solver.cpp:245] Train net output #75: loss2/loss10 = 0.0255014 (* 0.0272727 = 0.000695492 loss) | |
I0327 13:05:12.918439 21344 solver.cpp:245] Train net output #76: loss2/loss11 = 0.0130408 (* 0.0272727 = 0.000355657 loss) | |
I0327 13:05:12.918453 21344 solver.cpp:245] Train net output #77: loss2/loss12 = 0.00497221 (* 0.0272727 = 0.000135606 loss) | |
I0327 13:05:12.918467 21344 solver.cpp:245] Train net output #78: loss2/loss13 = 0.00931755 (* 0.0272727 = 0.000254115 loss) | |
I0327 13:05:12.918481 21344 solver.cpp:245] Train net output #79: loss2/loss14 = 0.0151466 (* 0.0272727 = 0.000413088 loss) | |
I0327 13:05:12.918495 21344 solver.cpp:245] Train net output #80: loss2/loss15 = 0.00726855 (* 0.0272727 = 0.000198233 loss) | |
I0327 13:05:12.918509 21344 solver.cpp:245] Train net output #81: loss2/loss16 = 0.00418462 (* 0.0272727 = 0.000114126 loss) | |
I0327 13:05:12.918522 21344 solver.cpp:245] Train net output #82: loss2/loss17 = 0.00399719 (* 0.0272727 = 0.000109014 loss) | |
I0327 13:05:12.918536 21344 solver.cpp:245] Train net output #83: loss2/loss18 = 0.0107493 (* 0.0272727 = 0.000293163 loss) | |
I0327 13:05:12.918550 21344 solver.cpp:245] Train net output #84: loss2/loss19 = 0.00724869 (* 0.0272727 = 0.000197691 loss) | |
I0327 13:05:12.918563 21344 solver.cpp:245] Train net output #85: loss2/loss20 = 0.00727746 (* 0.0272727 = 0.000198476 loss) | |
I0327 13:05:12.918577 21344 solver.cpp:245] Train net output #86: loss2/loss21 = 0.0102211 (* 0.0272727 = 0.000278759 loss) | |
I0327 13:05:12.918591 21344 solver.cpp:245] Train net output #87: loss2/loss22 = 0.0143728 (* 0.0272727 = 0.000391985 loss) | |
I0327 13:05:12.918603 21344 solver.cpp:245] Train net output #88: loss3/accuracy01 = 0 | |
I0327 13:05:12.918615 21344 solver.cpp:245] Train net output #89: loss3/accuracy02 = 0.125 | |
I0327 13:05:12.918627 21344 solver.cpp:245] Train net output #90: loss3/accuracy03 = 0 | |
I0327 13:05:12.918637 21344 solver.cpp:245] Train net output #91: loss3/accuracy04 = 0.125 | |
I0327 13:05:12.918660 21344 solver.cpp:245] Train net output #92: loss3/accuracy05 = 0.125 | |
I0327 13:05:12.918673 21344 solver.cpp:245] Train net output #93: loss3/accuracy06 = 0.25 | |
I0327 13:05:12.918685 21344 solver.cpp:245] Train net output #94: loss3/accuracy07 = 0.625 | |
I0327 13:05:12.918697 21344 solver.cpp:245] Train net output #95: loss3/accuracy08 = 1 | |
I0327 13:05:12.918709 21344 solver.cpp:245] Train net output #96: loss3/accuracy09 = 1 | |
I0327 13:05:12.918720 21344 solver.cpp:245] Train net output #97: loss3/accuracy10 = 1 | |
I0327 13:05:12.918731 21344 solver.cpp:245] Train net output #98: loss3/accuracy11 = 1 | |
I0327 13:05:12.918742 21344 solver.cpp:245] Train net output #99: loss3/accuracy12 = 1 | |
I0327 13:05:12.918753 21344 solver.cpp:245] Train net output #100: loss3/accuracy13 = 1 | |
I0327 13:05:12.918764 21344 solver.cpp:245] Train net output #101: loss3/accuracy14 = 1 | |
I0327 13:05:12.918776 21344 solver.cpp:245] Train net output #102: loss3/accuracy15 = 1 | |
I0327 13:05:12.918787 21344 solver.cpp:245] Train net output #103: loss3/accuracy16 = 1 | |
I0327 13:05:12.918798 21344 solver.cpp:245] Train net output #104: loss3/accuracy17 = 1 | |
I0327 13:05:12.918809 21344 solver.cpp:245] Train net output #105: loss3/accuracy18 = 1 | |
I0327 13:05:12.918820 21344 solver.cpp:245] Train net output #106: loss3/accuracy19 = 1 | |
I0327 13:05:12.918831 21344 solver.cpp:245] Train net output #107: loss3/accuracy20 = 1 | |
I0327 13:05:12.918843 21344 solver.cpp:245] Train net output #108: loss3/accuracy21 = 1 | |
I0327 13:05:12.918853 21344 solver.cpp:245] Train net output #109: loss3/accuracy22 = 1 | |
I0327 13:05:12.918866 21344 solver.cpp:245] Train net output #110: loss3/loss01 = 2.7397 (* 0.0909091 = 0.249064 loss) | |
I0327 13:05:12.918880 21344 solver.cpp:245] Train net output #111: loss3/loss02 = 3.16405 (* 0.0909091 = 0.287641 loss) | |
I0327 13:05:12.918895 21344 solver.cpp:245] Train net output #112: loss3/loss03 = 3.43568 (* 0.0909091 = 0.312335 loss) | |
I0327 13:05:12.918907 21344 solver.cpp:245] Train net output #113: loss3/loss04 = 2.59804 (* 0.0909091 = 0.236186 loss) | |
I0327 13:05:12.918921 21344 solver.cpp:245] Train net output #114: loss3/loss05 = 3.00717 (* 0.0909091 = 0.273379 loss) | |
I0327 13:05:12.918934 21344 solver.cpp:245] Train net output #115: loss3/loss06 = 2.46736 (* 0.0909091 = 0.224306 loss) | |
I0327 13:05:12.918948 21344 solver.cpp:245] Train net output #116: loss3/loss07 = 1.44588 (* 0.0909091 = 0.131444 loss) | |
I0327 13:05:12.918962 21344 solver.cpp:245] Train net output #117: loss3/loss08 = 0.0510157 (* 0.0909091 = 0.00463779 loss) | |
I0327 13:05:12.918977 21344 solver.cpp:245] Train net output #118: loss3/loss09 = 0.0148611 (* 0.0909091 = 0.001351 loss) | |
I0327 13:05:12.918992 21344 solver.cpp:245] Train net output #119: loss3/loss10 = 0.00472478 (* 0.0909091 = 0.000429526 loss) | |
I0327 13:05:12.919005 21344 solver.cpp:245] Train net output #120: loss3/loss11 = 0.000442419 (* 0.0909091 = 4.02199e-05 loss) | |
I0327 13:05:12.919019 21344 solver.cpp:245] Train net output #121: loss3/loss12 = 0.000359011 (* 0.0909091 = 3.26374e-05 loss) | |
I0327 13:05:12.919034 21344 solver.cpp:245] Train net output #122: loss3/loss13 = 0.000608432 (* 0.0909091 = 5.5312e-05 loss) | |
I0327 13:05:12.919046 21344 solver.cpp:245] Train net output #123: loss3/loss14 = 0.000415166 (* 0.0909091 = 3.77424e-05 loss) | |
I0327 13:05:12.919060 21344 solver.cpp:245] Train net output #124: loss3/loss15 = 0.000523225 (* 0.0909091 = 4.7566e-05 loss) | |
I0327 13:05:12.919075 21344 solver.cpp:245] Train net output #125: loss3/loss16 = 0.000742401 (* 0.0909091 = 6.7491e-05 loss) | |
I0327 13:05:12.919087 21344 solver.cpp:245] Train net output #126: loss3/loss17 = 0.00032491 (* 0.0909091 = 2.95372e-05 loss) | |
I0327 13:05:12.919101 21344 solver.cpp:245] Train net output #127: loss3/loss18 = 0.000501668 (* 0.0909091 = 4.56062e-05 loss) | |
I0327 13:05:12.919116 21344 solver.cpp:245] Train net output #128: loss3/loss19 = 0.000722887 (* 0.0909091 = 6.5717e-05 loss) | |
I0327 13:05:12.919142 21344 solver.cpp:245] Train net output #129: loss3/loss20 = 0.00132116 (* 0.0909091 = 0.000120106 loss) | |
I0327 13:05:12.919157 21344 solver.cpp:245] Train net output #130: loss3/loss21 = 0.000593058 (* 0.0909091 = 5.39144e-05 loss) | |
I0327 13:05:12.919172 21344 solver.cpp:245] Train net output #131: loss3/loss22 = 0.000479452 (* 0.0909091 = 4.35865e-05 loss) | |
I0327 13:05:12.919183 21344 solver.cpp:245] Train net output #132: total_accuracy = 0 | |
I0327 13:05:12.919195 21344 solver.cpp:245] Train net output #133: total_confidence = 0.000758416 | |
I0327 13:05:12.919209 21344 sgd_solver.cpp:106] Iteration 5000, lr = 0.01 | |
I0327 13:07:00.742449 21344 solver.cpp:229] Iteration 5500, loss = 3.0881 | |
I0327 13:07:00.742583 21344 solver.cpp:245] Train net output #0: loss1/accuracy01 = 0.125 | |
I0327 13:07:00.742602 21344 solver.cpp:245] Train net output #1: loss1/accuracy02 = 0.25 | |
I0327 13:07:00.742615 21344 solver.cpp:245] Train net output #2: loss1/accuracy03 = 0.125 | |
I0327 13:07:00.742627 21344 solver.cpp:245] Train net output #3: loss1/accuracy04 = 0 | |
I0327 13:07:00.742640 21344 solver.cpp:245] Train net output #4: loss1/accuracy05 = 0.375 | |
I0327 13:07:00.742651 21344 solver.cpp:245] Train net output #5: loss1/accuracy06 = 0.5 | |
I0327 13:07:00.742663 21344 solver.cpp:245] Train net output #6: loss1/accuracy07 = 0.625 | |
I0327 13:07:00.742676 21344 solver.cpp:245] Train net output #7: loss1/accuracy08 = 0.75 | |
I0327 13:07:00.742687 21344 solver.cpp:245] Train net output #8: loss1/accuracy09 = 0.75 | |
I0327 13:07:00.742699 21344 solver.cpp:245] Train net output #9: loss1/accuracy10 = 0.875 | |
I0327 13:07:00.742712 21344 solver.cpp:245] Train net output #10: loss1/accuracy11 = 1 | |
I0327 13:07:00.742723 21344 solver.cpp:245] Train net output #11: loss1/accuracy12 = 1 | |
I0327 13:07:00.742735 21344 solver.cpp:245] Train net output #12: loss1/accuracy13 = 1 | |
I0327 13:07:00.742748 21344 solver.cpp:245] Train net output #13: loss1/accuracy14 = 1 | |
I0327 13:07:00.742759 21344 solver.cpp:245] Train net output #14: loss1/accuracy15 = 1 | |
I0327 13:07:00.742771 21344 solver.cpp:245] Train net output #15: loss1/accuracy16 = 1 | |
I0327 13:07:00.742784 21344 solver.cpp:245] Train net output #16: loss1/accuracy17 = 1 | |
I0327 13:07:00.742794 21344 solver.cpp:245] Train net output #17: loss1/accuracy18 = 1 | |
I0327 13:07:00.742806 21344 solver.cpp:245] Train net output #18: loss1/accuracy19 = 1 | |
I0327 13:07:00.742817 21344 solver.cpp:245] Train net output #19: loss1/accuracy20 = 1 | |
I0327 13:07:00.742830 21344 solver.cpp:245] Train net output #20: loss1/accuracy21 = 1 | |
I0327 13:07:00.742841 21344 solver.cpp:245] Train net output #21: loss1/accuracy22 = 1 | |
I0327 13:07:00.742857 21344 solver.cpp:245] Train net output #22: loss1/loss01 = 3.2261 (* 0.0272727 = 0.0879847 loss) | |
I0327 13:07:00.742872 21344 solver.cpp:245] Train net output #23: loss1/loss02 = 3.27836 (* 0.0272727 = 0.0894098 loss) | |
I0327 13:07:00.742887 21344 solver.cpp:245] Train net output #24: loss1/loss03 = 3.47468 (* 0.0272727 = 0.0947639 loss) | |
I0327 13:07:00.742902 21344 solver.cpp:245] Train net output #25: loss1/loss04 = 3.23653 (* 0.0272727 = 0.088269 loss) | |
I0327 13:07:00.742915 21344 solver.cpp:245] Train net output #26: loss1/loss05 = 2.95648 (* 0.0272727 = 0.0806313 loss) | |
I0327 13:07:00.742929 21344 solver.cpp:245] Train net output #27: loss1/loss06 = 2.09267 (* 0.0272727 = 0.0570727 loss) | |
I0327 13:07:00.742944 21344 solver.cpp:245] Train net output #28: loss1/loss07 = 1.86417 (* 0.0272727 = 0.050841 loss) | |
I0327 13:07:00.742957 21344 solver.cpp:245] Train net output #29: loss1/loss08 = 1.09727 (* 0.0272727 = 0.0299255 loss) | |
I0327 13:07:00.742971 21344 solver.cpp:245] Train net output #30: loss1/loss09 = 1.69952 (* 0.0272727 = 0.0463507 loss) | |
I0327 13:07:00.742985 21344 solver.cpp:245] Train net output #31: loss1/loss10 = 1.13399 (* 0.0272727 = 0.030927 loss) | |
I0327 13:07:00.743003 21344 solver.cpp:245] Train net output #32: loss1/loss11 = 0.00125639 (* 0.0272727 = 3.42651e-05 loss) | |
I0327 13:07:00.743018 21344 solver.cpp:245] Train net output #33: loss1/loss12 = 0.00365768 (* 0.0272727 = 9.97549e-05 loss) | |
I0327 13:07:00.743032 21344 solver.cpp:245] Train net output #34: loss1/loss13 = 0.00201492 (* 0.0272727 = 5.49524e-05 loss) | |
I0327 13:07:00.743047 21344 solver.cpp:245] Train net output #35: loss1/loss14 = 0.00199506 (* 0.0272727 = 5.44108e-05 loss) | |
I0327 13:07:00.743062 21344 solver.cpp:245] Train net output #36: loss1/loss15 = 0.0015919 (* 0.0272727 = 4.34155e-05 loss) | |
I0327 13:07:00.743077 21344 solver.cpp:245] Train net output #37: loss1/loss16 = 0.00127471 (* 0.0272727 = 3.47649e-05 loss) | |
I0327 13:07:00.743090 21344 solver.cpp:245] Train net output #38: loss1/loss17 = 0.00335833 (* 0.0272727 = 9.15909e-05 loss) | |
I0327 13:07:00.743122 21344 solver.cpp:245] Train net output #39: loss1/loss18 = 0.00132302 (* 0.0272727 = 3.60825e-05 loss) | |
I0327 13:07:00.743139 21344 solver.cpp:245] Train net output #40: loss1/loss19 = 0.00162319 (* 0.0272727 = 4.42687e-05 loss) | |
I0327 13:07:00.743152 21344 solver.cpp:245] Train net output #41: loss1/loss20 = 0.00209445 (* 0.0272727 = 5.71213e-05 loss) | |
I0327 13:07:00.743166 21344 solver.cpp:245] Train net output #42: loss1/loss21 = 0.00169647 (* 0.0272727 = 4.62675e-05 loss) | |
I0327 13:07:00.743180 21344 solver.cpp:245] Train net output #43: loss1/loss22 = 0.0020288 (* 0.0272727 = 5.5331e-05 loss) | |
I0327 13:07:00.743193 21344 solver.cpp:245] Train net output #44: loss2/accuracy01 = 0.125 | |
I0327 13:07:00.743206 21344 solver.cpp:245] Train net output #45: loss2/accuracy02 = 0.25 | |
I0327 13:07:00.743218 21344 solver.cpp:245] Train net output #46: loss2/accuracy03 = 0.125 | |
I0327 13:07:00.743229 21344 solver.cpp:245] Train net output #47: loss2/accuracy04 = 0.125 | |
I0327 13:07:00.743242 21344 solver.cpp:245] Train net output #48: loss2/accuracy05 = 0.375 | |
I0327 13:07:00.743253 21344 solver.cpp:245] Train net output #49: loss2/accuracy06 = 0.625 | |
I0327 13:07:00.743265 21344 solver.cpp:245] Train net output #50: loss2/accuracy07 = 0.625 | |
I0327 13:07:00.743278 21344 solver.cpp:245] Train net output #51: loss2/accuracy08 = 0.75 | |
I0327 13:07:00.743289 21344 solver.cpp:245] Train net output #52: loss2/accuracy09 = 0.75 | |
I0327 13:07:00.743301 21344 solver.cpp:245] Train net output #53: loss2/accuracy10 = 0.875 | |
I0327 13:07:00.743312 21344 solver.cpp:245] Train net output #54: loss2/accuracy11 = 1 | |
I0327 13:07:00.743324 21344 solver.cpp:245] Train net output #55: loss2/accuracy12 = 1 | |
I0327 13:07:00.743335 21344 solver.cpp:245] Train net output #56: loss2/accuracy13 = 1 | |
I0327 13:07:00.743346 21344 solver.cpp:245] Train net output #57: loss2/accuracy14 = 1 | |
I0327 13:07:00.743358 21344 solver.cpp:245] Train net output #58: loss2/accuracy15 = 1 | |
I0327 13:07:00.743369 21344 solver.cpp:245] Train net output #59: loss2/accuracy16 = 1 | |
I0327 13:07:00.743381 21344 solver.cpp:245] Train net output #60: loss2/accuracy17 = 1 | |
I0327 13:07:00.743392 21344 solver.cpp:245] Train net output #61: loss2/accuracy18 = 1 | |
I0327 13:07:00.743403 21344 solver.cpp:245] Train net output #62: loss2/accuracy19 = 1 | |
I0327 13:07:00.743414 21344 solver.cpp:245] Train net output #63: loss2/accuracy20 = 1 | |
I0327 13:07:00.743427 21344 solver.cpp:245] Train net output #64: loss2/accuracy21 = 1 | |
I0327 13:07:00.743438 21344 solver.cpp:245] Train net output #65: loss2/accuracy22 = 1 | |
I0327 13:07:00.743451 21344 solver.cpp:245] Train net output #66: loss2/loss01 = 3.70901 (* 0.0272727 = 0.101155 loss) | |
I0327 13:07:00.743465 21344 solver.cpp:245] Train net output #67: loss2/loss02 = 3.01743 (* 0.0272727 = 0.0822935 loss) | |
I0327 13:07:00.743479 21344 solver.cpp:245] Train net output #68: loss2/loss03 = 3.51745 (* 0.0272727 = 0.0959305 loss) | |
I0327 13:07:00.743494 21344 solver.cpp:245] Train net output #69: loss2/loss04 = 3.16417 (* 0.0272727 = 0.0862956 loss) | |
I0327 13:07:00.743507 21344 solver.cpp:245] Train net output #70: loss2/loss05 = 2.68792 (* 0.0272727 = 0.0733069 loss) | |
I0327 13:07:00.743521 21344 solver.cpp:245] Train net output #71: loss2/loss06 = 1.67158 (* 0.0272727 = 0.0455886 loss) | |
I0327 13:07:00.743535 21344 solver.cpp:245] Train net output #72: loss2/loss07 = 1.89017 (* 0.0272727 = 0.05155 loss) | |
I0327 13:07:00.743549 21344 solver.cpp:245] Train net output #73: loss2/loss08 = 1.14182 (* 0.0272727 = 0.0311406 loss) | |
I0327 13:07:00.743563 21344 solver.cpp:245] Train net output #74: loss2/loss09 = 1.03128 (* 0.0272727 = 0.0281258 loss) | |
I0327 13:07:00.743577 21344 solver.cpp:245] Train net output #75: loss2/loss10 = 0.670143 (* 0.0272727 = 0.0182766 loss) | |
I0327 13:07:00.743595 21344 solver.cpp:245] Train net output #76: loss2/loss11 = 0.00563942 (* 0.0272727 = 0.000153802 loss) | |
I0327 13:07:00.743621 21344 solver.cpp:245] Train net output #77: loss2/loss12 = 0.00692125 (* 0.0272727 = 0.000188761 loss) | |
I0327 13:07:00.743636 21344 solver.cpp:245] Train net output #78: loss2/loss13 = 0.0057187 (* 0.0272727 = 0.000155964 loss) | |
I0327 13:07:00.743651 21344 solver.cpp:245] Train net output #79: loss2/loss14 = 0.00419535 (* 0.0272727 = 0.000114419 loss) | |
I0327 13:07:00.743665 21344 solver.cpp:245] Train net output #80: loss2/loss15 = 0.00167207 (* 0.0272727 = 4.5602e-05 loss) | |
I0327 13:07:00.743680 21344 solver.cpp:245] Train net output #81: loss2/loss16 = 0.00428177 (* 0.0272727 = 0.000116776 loss) | |
I0327 13:07:00.743695 21344 solver.cpp:245] Train net output #82: loss2/loss17 = 0.00320703 (* 0.0272727 = 8.74644e-05 loss) | |
I0327 13:07:00.743708 21344 solver.cpp:245] Train net output #83: loss2/loss18 = 0.00455327 (* 0.0272727 = 0.00012418 loss) | |
I0327 13:07:00.743722 21344 solver.cpp:245] Train net output #84: loss2/loss19 = 0.00304843 (* 0.0272727 = 8.3139e-05 loss) | |
I0327 13:07:00.743736 21344 solver.cpp:245] Train net output #85: loss2/loss20 = 0.00745543 (* 0.0272727 = 0.00020333 loss) | |
I0327 13:07:00.743751 21344 solver.cpp:245] Train net output #86: loss2/loss21 = 0.00619711 (* 0.0272727 = 0.000169012 loss) | |
I0327 13:07:00.743764 21344 solver.cpp:245] Train net output #87: loss2/loss22 = 0.0127351 (* 0.0272727 = 0.00034732 loss) | |
I0327 13:07:00.743777 21344 solver.cpp:245] Train net output #88: loss3/accuracy01 = 0.25 | |
I0327 13:07:00.743789 21344 solver.cpp:245] Train net output #89: loss3/accuracy02 = 0.125 | |
I0327 13:07:00.743801 21344 solver.cpp:245] Train net output #90: loss3/accuracy03 = 0 | |
I0327 13:07:00.743813 21344 solver.cpp:245] Train net output #91: loss3/accuracy04 = 0.125 | |
I0327 13:07:00.743824 21344 solver.cpp:245] Train net output #92: loss3/accuracy05 = 0.5 | |
I0327 13:07:00.743835 21344 solver.cpp:245] Train net output #93: loss3/accuracy06 = 0.5 | |
I0327 13:07:00.743847 21344 solver.cpp:245] Train net output #94: loss3/accuracy07 = 0.625 | |
I0327 13:07:00.743859 21344 solver.cpp:245] Train net output #95: loss3/accuracy08 = 0.75 | |
I0327 13:07:00.743870 21344 solver.cpp:245] Train net output #96: loss3/accuracy09 = 0.75 | |
I0327 13:07:00.743882 21344 solver.cpp:245] Train net output #97: loss3/accuracy10 = 0.875 | |
I0327 13:07:00.743893 21344 solver.cpp:245] Train net output #98: loss3/accuracy11 = 1 | |
I0327 13:07:00.743906 21344 solver.cpp:245] Train net output #99: loss3/accuracy12 = 1 | |
I0327 13:07:00.743916 21344 solver.cpp:245] Train net output #100: loss3/accuracy13 = 1 | |
I0327 13:07:00.743928 21344 solver.cpp:245] Train net output #101: loss3/accuracy14 = 1 | |
I0327 13:07:00.743939 21344 solver.cpp:245] Train net output #102: loss3/accuracy15 = 1 | |
I0327 13:07:00.743952 21344 solver.cpp:245] Train net output #103: loss3/accuracy16 = 1 | |
I0327 13:07:00.743963 21344 solver.cpp:245] Train net output #104: loss3/accuracy17 = 1 | |
I0327 13:07:00.743974 21344 solver.cpp:245] Train net output #105: loss3/accuracy18 = 1 | |
I0327 13:07:00.743985 21344 solver.cpp:245] Train net output #106: loss3/accuracy19 = 1 | |
I0327 13:07:00.743996 21344 solver.cpp:245] Train net output #107: loss3/accuracy20 = 1 | |
I0327 13:07:00.744009 21344 solver.cpp:245] Train net output #108: loss3/accuracy21 = 1 | |
I0327 13:07:00.744019 21344 solver.cpp:245] Train net output #109: loss3/accuracy22 = 1 | |
I0327 13:07:00.744034 21344 solver.cpp:245] Train net output #110: loss3/loss01 = 3.14315 (* 0.0909091 = 0.285741 loss) | |
I0327 13:07:00.744050 21344 solver.cpp:245] Train net output #111: loss3/loss02 = 3.27299 (* 0.0909091 = 0.297545 loss) | |
I0327 13:07:00.744065 21344 solver.cpp:245] Train net output #112: loss3/loss03 = 3.43902 (* 0.0909091 = 0.312638 loss) | |
I0327 13:07:00.744079 21344 solver.cpp:245] Train net output #113: loss3/loss04 = 3.37157 (* 0.0909091 = 0.306506 loss) | |
I0327 13:07:00.744093 21344 solver.cpp:245] Train net output #114: loss3/loss05 = 2.36635 (* 0.0909091 = 0.215123 loss) | |
I0327 13:07:00.744107 21344 solver.cpp:245] Train net output #115: loss3/loss06 = 1.85195 (* 0.0909091 = 0.168359 loss) | |
I0327 13:07:00.744132 21344 solver.cpp:245] Train net output #116: loss3/loss07 = 1.56683 (* 0.0909091 = 0.142439 loss) | |
I0327 13:07:00.744146 21344 solver.cpp:245] Train net output #117: loss3/loss08 = 1.03733 (* 0.0909091 = 0.0943031 loss) | |
I0327 13:07:00.744160 21344 solver.cpp:245] Train net output #118: loss3/loss09 = 1.35519 (* 0.0909091 = 0.123199 loss) | |
I0327 13:07:00.744175 21344 solver.cpp:245] Train net output #119: loss3/loss10 = 1.06628 (* 0.0909091 = 0.0969342 loss) | |
I0327 13:07:00.744189 21344 solver.cpp:245] Train net output #120: loss3/loss11 = 0.00089503 (* 0.0909091 = 8.13664e-05 loss) | |
I0327 13:07:00.744204 21344 solver.cpp:245] Train net output #121: loss3/loss12 = 0.000751017 (* 0.0909091 = 6.82743e-05 loss) | |
I0327 13:07:00.744218 21344 solver.cpp:245] Train net output #122: loss3/loss13 = 0.000645006 (* 0.0909091 = 5.86369e-05 loss) | |
I0327 13:07:00.744232 21344 solver.cpp:245] Train net output #123: loss3/loss14 = 0.000893801 (* 0.0909091 = 8.12546e-05 loss) | |
I0327 13:07:00.744247 21344 solver.cpp:245] Train net output #124: loss3/loss15 = 0.000604852 (* 0.0909091 = 5.49865e-05 loss) | |
I0327 13:07:00.744261 21344 solver.cpp:245] Train net output #125: loss3/loss16 = 0.000938738 (* 0.0909091 = 8.53398e-05 loss) | |
I0327 13:07:00.744276 21344 solver.cpp:245] Train net output #126: loss3/loss17 = 0.000958319 (* 0.0909091 = 8.71199e-05 loss) | |
I0327 13:07:00.744290 21344 solver.cpp:245] Train net output #127: loss3/loss18 = 0.000690401 (* 0.0909091 = 6.27637e-05 loss) | |
I0327 13:07:00.744304 21344 solver.cpp:245] Train net output #128: loss3/loss19 = 0.000679419 (* 0.0909091 = 6.17653e-05 loss) | |
I0327 13:07:00.744318 21344 solver.cpp:245] Train net output #129: loss3/loss20 = 0.000824553 (* 0.0909091 = 7.49594e-05 loss) | |
I0327 13:07:00.744333 21344 solver.cpp:245] Train net output #130: loss3/loss21 = 0.000922682 (* 0.0909091 = 8.38802e-05 loss) | |
I0327 13:07:00.744348 21344 solver.cpp:245] Train net output #131: loss3/loss22 = 0.000563234 (* 0.0909091 = 5.1203e-05 loss) | |
I0327 13:07:00.744359 21344 solver.cpp:245] Train net output #132: total_accuracy = 0 | |
I0327 13:07:00.744370 21344 solver.cpp:245] Train net output #133: total_confidence = 0.000112848 | |
I0327 13:07:00.744384 21344 sgd_solver.cpp:106] Iteration 5500, lr = 0.01 | |
I0327 13:08:48.473244 21344 solver.cpp:229] Iteration 6000, loss = 3.063 | |
I0327 13:08:48.473388 21344 solver.cpp:245] Train net output #0: loss1/accuracy01 = 0.125 | |
I0327 13:08:48.473408 21344 solver.cpp:245] Train net output #1: loss1/accuracy02 = 0 | |
I0327 13:08:48.473422 21344 solver.cpp:245] Train net output #2: loss1/accuracy03 = 0 | |
I0327 13:08:48.473433 21344 solver.cpp:245] Train net output #3: loss1/accuracy04 = 0.125 | |
I0327 13:08:48.473445 21344 solver.cpp:245] Train net output #4: loss1/accuracy05 = 0.125 | |
I0327 13:08:48.473458 21344 solver.cpp:245] Train net output #5: loss1/accuracy06 = 0.25 | |
I0327 13:08:48.473469 21344 solver.cpp:245] Train net output #6: loss1/accuracy07 = 0.5 | |
I0327 13:08:48.473481 21344 solver.cpp:245] Train net output #7: loss1/accuracy08 = 0.875 | |
I0327 13:08:48.473498 21344 solver.cpp:245] Train net output #8: loss1/accuracy09 = 0.875 | |
I0327 13:08:48.473520 21344 solver.cpp:245] Train net output #9: loss1/accuracy10 = 0.875 | |
I0327 13:08:48.473532 21344 solver.cpp:245] Train net output #10: loss1/accuracy11 = 1 | |
I0327 13:08:48.473559 21344 solver.cpp:245] Train net output #11: loss1/accuracy12 = 1 | |
I0327 13:08:48.473572 21344 solver.cpp:245] Train net output #12: loss1/accuracy13 = 1 | |
I0327 13:08:48.473584 21344 solver.cpp:245] Train net output #13: loss1/accuracy14 = 1 | |
I0327 13:08:48.473597 21344 solver.cpp:245] Train net output #14: loss1/accuracy15 = 1 | |
I0327 13:08:48.473608 21344 solver.cpp:245] Train net output #15: loss1/accuracy16 = 1 | |
I0327 13:08:48.473619 21344 solver.cpp:245] Train net output #16: loss1/accuracy17 = 1 | |
I0327 13:08:48.473631 21344 solver.cpp:245] Train net output #17: loss1/accuracy18 = 1 | |
I0327 13:08:48.473642 21344 solver.cpp:245] Train net output #18: loss1/accuracy19 = 1 | |
I0327 13:08:48.473654 21344 solver.cpp:245] Train net output #19: loss1/accuracy20 = 1 | |
I0327 13:08:48.473666 21344 solver.cpp:245] Train net output #20: loss1/accuracy21 = 1 | |
I0327 13:08:48.473677 21344 solver.cpp:245] Train net output #21: loss1/accuracy22 = 1 | |
I0327 13:08:48.473693 21344 solver.cpp:245] Train net output #22: loss1/loss01 = 4.01938 (* 0.0272727 = 0.109619 loss) | |
I0327 13:08:48.473708 21344 solver.cpp:245] Train net output #23: loss1/loss02 = 3.72006 (* 0.0272727 = 0.101456 loss) | |
I0327 13:08:48.473722 21344 solver.cpp:245] Train net output #24: loss1/loss03 = 3.57936 (* 0.0272727 = 0.0976189 loss) | |
I0327 13:08:48.473737 21344 solver.cpp:245] Train net output #25: loss1/loss04 = 3.47027 (* 0.0272727 = 0.0946437 loss) | |
I0327 13:08:48.473752 21344 solver.cpp:245] Train net output #26: loss1/loss05 = 2.96256 (* 0.0272727 = 0.0807971 loss) | |
I0327 13:08:48.473765 21344 solver.cpp:245] Train net output #27: loss1/loss06 = 2.52306 (* 0.0272727 = 0.0688107 loss) | |
I0327 13:08:48.473780 21344 solver.cpp:245] Train net output #28: loss1/loss07 = 2.37519 (* 0.0272727 = 0.0647778 loss) | |
I0327 13:08:48.473794 21344 solver.cpp:245] Train net output #29: loss1/loss08 = 0.430209 (* 0.0272727 = 0.011733 loss) | |
I0327 13:08:48.473809 21344 solver.cpp:245] Train net output #30: loss1/loss09 = 0.502491 (* 0.0272727 = 0.0137043 loss) | |
I0327 13:08:48.473822 21344 solver.cpp:245] Train net output #31: loss1/loss10 = 0.642286 (* 0.0272727 = 0.0175169 loss) | |
I0327 13:08:48.473837 21344 solver.cpp:245] Train net output #32: loss1/loss11 = 0.00203833 (* 0.0272727 = 5.55909e-05 loss) | |
I0327 13:08:48.473852 21344 solver.cpp:245] Train net output #33: loss1/loss12 = 0.000903128 (* 0.0272727 = 2.46308e-05 loss) | |
I0327 13:08:48.473866 21344 solver.cpp:245] Train net output #34: loss1/loss13 = 0.0009226 (* 0.0272727 = 2.51618e-05 loss) | |
I0327 13:08:48.473881 21344 solver.cpp:245] Train net output #35: loss1/loss14 = 0.003203 (* 0.0272727 = 8.73545e-05 loss) | |
I0327 13:08:48.473896 21344 solver.cpp:245] Train net output #36: loss1/loss15 = 0.000530272 (* 0.0272727 = 1.4462e-05 loss) | |
I0327 13:08:48.473911 21344 solver.cpp:245] Train net output #37: loss1/loss16 = 0.00225299 (* 0.0272727 = 6.14452e-05 loss) | |
I0327 13:08:48.473924 21344 solver.cpp:245] Train net output #38: loss1/loss17 = 0.000632389 (* 0.0272727 = 1.7247e-05 loss) | |
I0327 13:08:48.473958 21344 solver.cpp:245] Train net output #39: loss1/loss18 = 0.000369458 (* 0.0272727 = 1.00761e-05 loss) | |
I0327 13:08:48.473973 21344 solver.cpp:245] Train net output #40: loss1/loss19 = 0.00153433 (* 0.0272727 = 4.18454e-05 loss) | |
I0327 13:08:48.473987 21344 solver.cpp:245] Train net output #41: loss1/loss20 = 0.00124537 (* 0.0272727 = 3.39647e-05 loss) | |
I0327 13:08:48.474005 21344 solver.cpp:245] Train net output #42: loss1/loss21 = 0.000581473 (* 0.0272727 = 1.58584e-05 loss) | |
I0327 13:08:48.474020 21344 solver.cpp:245] Train net output #43: loss1/loss22 = 0.000946274 (* 0.0272727 = 2.58075e-05 loss) | |
I0327 13:08:48.474032 21344 solver.cpp:245] Train net output #44: loss2/accuracy01 = 0.125 | |
I0327 13:08:48.474045 21344 solver.cpp:245] Train net output #45: loss2/accuracy02 = 0.125 | |
I0327 13:08:48.474056 21344 solver.cpp:245] Train net output #46: loss2/accuracy03 = 0 | |
I0327 13:08:48.474068 21344 solver.cpp:245] Train net output #47: loss2/accuracy04 = 0.125 | |
I0327 13:08:48.474081 21344 solver.cpp:245] Train net output #48: loss2/accuracy05 = 0.25 | |
I0327 13:08:48.474092 21344 solver.cpp:245] Train net output #49: loss2/accuracy06 = 0.25 | |
I0327 13:08:48.474103 21344 solver.cpp:245] Train net output #50: loss2/accuracy07 = 0.5 | |
I0327 13:08:48.474115 21344 solver.cpp:245] Train net output #51: loss2/accuracy08 = 0.875 | |
I0327 13:08:48.474128 21344 solver.cpp:245] Train net output #52: loss2/accuracy09 = 0.875 | |
I0327 13:08:48.474139 21344 solver.cpp:245] Train net output #53: loss2/accuracy10 = 0.875 | |
I0327 13:08:48.474151 21344 solver.cpp:245] Train net output #54: loss2/accuracy11 = 1 | |
I0327 13:08:48.474164 21344 solver.cpp:245] Train net output #55: loss2/accuracy12 = 1 | |
I0327 13:08:48.474174 21344 solver.cpp:245] Train net output #56: loss2/accuracy13 = 1 | |
I0327 13:08:48.474186 21344 solver.cpp:245] Train net output #57: loss2/accuracy14 = 1 | |
I0327 13:08:48.474197 21344 solver.cpp:245] Train net output #58: loss2/accuracy15 = 1 | |
I0327 13:08:48.474210 21344 solver.cpp:245] Train net output #59: loss2/accuracy16 = 1 | |
I0327 13:08:48.474220 21344 solver.cpp:245] Train net output #60: loss2/accuracy17 = 1 | |
I0327 13:08:48.474232 21344 solver.cpp:245] Train net output #61: loss2/accuracy18 = 1 | |
I0327 13:08:48.474243 21344 solver.cpp:245] Train net output #62: loss2/accuracy19 = 1 | |
I0327 13:08:48.474254 21344 solver.cpp:245] Train net output #63: loss2/accuracy20 = 1 | |
I0327 13:08:48.474267 21344 solver.cpp:245] Train net output #64: loss2/accuracy21 = 1 | |
I0327 13:08:48.474278 21344 solver.cpp:245] Train net output #65: loss2/accuracy22 = 1 | |
I0327 13:08:48.474292 21344 solver.cpp:245] Train net output #66: loss2/loss01 = 3.68019 (* 0.0272727 = 0.100369 loss) | |
I0327 13:08:48.474305 21344 solver.cpp:245] Train net output #67: loss2/loss02 = 3.15157 (* 0.0272727 = 0.0859519 loss) | |
I0327 13:08:48.474320 21344 solver.cpp:245] Train net output #68: loss2/loss03 = 3.64301 (* 0.0272727 = 0.0993548 loss) | |
I0327 13:08:48.474334 21344 solver.cpp:245] Train net output #69: loss2/loss04 = 3.08569 (* 0.0272727 = 0.0841552 loss) | |
I0327 13:08:48.474349 21344 solver.cpp:245] Train net output #70: loss2/loss05 = 2.66611 (* 0.0272727 = 0.072712 loss) | |
I0327 13:08:48.474362 21344 solver.cpp:245] Train net output #71: loss2/loss06 = 3.04469 (* 0.0272727 = 0.083037 loss) | |
I0327 13:08:48.474376 21344 solver.cpp:245] Train net output #72: loss2/loss07 = 2.65807 (* 0.0272727 = 0.0724929 loss) | |
I0327 13:08:48.474390 21344 solver.cpp:245] Train net output #73: loss2/loss08 = 0.762923 (* 0.0272727 = 0.020807 loss) | |
I0327 13:08:48.474407 21344 solver.cpp:245] Train net output #74: loss2/loss09 = 0.685946 (* 0.0272727 = 0.0187076 loss) | |
I0327 13:08:48.474422 21344 solver.cpp:245] Train net output #75: loss2/loss10 = 0.800649 (* 0.0272727 = 0.0218359 loss) | |
I0327 13:08:48.474437 21344 solver.cpp:245] Train net output #76: loss2/loss11 = 0.000137806 (* 0.0272727 = 3.75836e-06 loss) | |
I0327 13:08:48.474463 21344 solver.cpp:245] Train net output #77: loss2/loss12 = 0.000386497 (* 0.0272727 = 1.05408e-05 loss) | |
I0327 13:08:48.474478 21344 solver.cpp:245] Train net output #78: loss2/loss13 = 0.00018425 (* 0.0272727 = 5.025e-06 loss) | |
I0327 13:08:48.474493 21344 solver.cpp:245] Train net output #79: loss2/loss14 = 0.000148259 (* 0.0272727 = 4.04342e-06 loss) | |
I0327 13:08:48.474509 21344 solver.cpp:245] Train net output #80: loss2/loss15 = 0.000253345 (* 0.0272727 = 6.90941e-06 loss) | |
I0327 13:08:48.474525 21344 solver.cpp:245] Train net output #81: loss2/loss16 = 0.00032074 (* 0.0272727 = 8.74746e-06 loss) | |
I0327 13:08:48.474539 21344 solver.cpp:245] Train net output #82: loss2/loss17 = 0.000276342 (* 0.0272727 = 7.53659e-06 loss) | |
I0327 13:08:48.474553 21344 solver.cpp:245] Train net output #83: loss2/loss18 = 0.000369035 (* 0.0272727 = 1.00646e-05 loss) | |
I0327 13:08:48.474568 21344 solver.cpp:245] Train net output #84: loss2/loss19 = 0.000318075 (* 0.0272727 = 8.67477e-06 loss) | |
I0327 13:08:48.474581 21344 solver.cpp:245] Train net output #85: loss2/loss20 = 0.000303884 (* 0.0272727 = 8.28775e-06 loss) | |
I0327 13:08:48.474596 21344 solver.cpp:245] Train net output #86: loss2/loss21 = 0.000304629 (* 0.0272727 = 8.30805e-06 loss) | |
I0327 13:08:48.474611 21344 solver.cpp:245] Train net output #87: loss2/loss22 = 0.000365797 (* 0.0272727 = 9.97627e-06 loss) | |
I0327 13:08:48.474622 21344 solver.cpp:245] Train net output #88: loss3/accuracy01 = 0.25 | |
I0327 13:08:48.474635 21344 solver.cpp:245] Train net output #89: loss3/accuracy02 = 0.125 | |
I0327 13:08:48.474647 21344 solver.cpp:245] Train net output #90: loss3/accuracy03 = 0 | |
I0327 13:08:48.474658 21344 solver.cpp:245] Train net output #91: loss3/accuracy04 = 0.25 | |
I0327 13:08:48.474670 21344 solver.cpp:245] Train net output #92: loss3/accuracy05 = 0.375 | |
I0327 13:08:48.474683 21344 solver.cpp:245] Train net output #93: loss3/accuracy06 = 0.375 | |
I0327 13:08:48.474694 21344 solver.cpp:245] Train net output #94: loss3/accuracy07 = 0.5 | |
I0327 13:08:48.474705 21344 solver.cpp:245] Train net output #95: loss3/accuracy08 = 0.875 | |
I0327 13:08:48.474717 21344 solver.cpp:245] Train net output #96: loss3/accuracy09 = 0.875 | |
I0327 13:08:48.474728 21344 solver.cpp:245] Train net output #97: loss3/accuracy10 = 0.875 | |
I0327 13:08:48.474740 21344 solver.cpp:245] Train net output #98: loss3/accuracy11 = 1 | |
I0327 13:08:48.474752 21344 solver.cpp:245] Train net output #99: loss3/accuracy12 = 1 | |
I0327 13:08:48.474763 21344 solver.cpp:245] Train net output #100: loss3/accuracy13 = 1 | |
I0327 13:08:48.474776 21344 solver.cpp:245] Train net output #101: loss3/accuracy14 = 1 | |
I0327 13:08:48.474786 21344 solver.cpp:245] Train net output #102: loss3/accuracy15 = 1 | |
I0327 13:08:48.474797 21344 solver.cpp:245] Train net output #103: loss3/accuracy16 = 1 | |
I0327 13:08:48.474808 21344 solver.cpp:245] Train net output #104: loss3/accuracy17 = 1 | |
I0327 13:08:48.474820 21344 solver.cpp:245] Train net output #105: loss3/accuracy18 = 1 | |
I0327 13:08:48.474831 21344 solver.cpp:245] Train net output #106: loss3/accuracy19 = 1 | |
I0327 13:08:48.474843 21344 solver.cpp:245] Train net output #107: loss3/accuracy20 = 1 | |
I0327 13:08:48.474853 21344 solver.cpp:245] Train net output #108: loss3/accuracy21 = 1 | |
I0327 13:08:48.474865 21344 solver.cpp:245] Train net output #109: loss3/accuracy22 = 1 | |
I0327 13:08:48.474879 21344 solver.cpp:245] Train net output #110: loss3/loss01 = 3.3646 (* 0.0909091 = 0.305873 loss) | |
I0327 13:08:48.474892 21344 solver.cpp:245] Train net output #111: loss3/loss02 = 3.21971 (* 0.0909091 = 0.292701 loss) | |
I0327 13:08:48.474906 21344 solver.cpp:245] Train net output #112: loss3/loss03 = 3.35423 (* 0.0909091 = 0.30493 loss) | |
I0327 13:08:48.474920 21344 solver.cpp:245] Train net output #113: loss3/loss04 = 2.77194 (* 0.0909091 = 0.251994 loss) | |
I0327 13:08:48.474933 21344 solver.cpp:245] Train net output #114: loss3/loss05 = 2.47002 (* 0.0909091 = 0.224547 loss) | |
I0327 13:08:48.474957 21344 solver.cpp:245] Train net output #115: loss3/loss06 = 2.51409 (* 0.0909091 = 0.228554 loss) | |
I0327 13:08:48.474973 21344 solver.cpp:245] Train net output #116: loss3/loss07 = 2.59355 (* 0.0909091 = 0.235777 loss) | |
I0327 13:08:48.474987 21344 solver.cpp:245] Train net output #117: loss3/loss08 = 0.567758 (* 0.0909091 = 0.0516144 loss) | |
I0327 13:08:48.475002 21344 solver.cpp:245] Train net output #118: loss3/loss09 = 0.551475 (* 0.0909091 = 0.0501341 loss) | |
I0327 13:08:48.475015 21344 solver.cpp:245] Train net output #119: loss3/loss10 = 0.605856 (* 0.0909091 = 0.0550778 loss) | |
I0327 13:08:48.475029 21344 solver.cpp:245] Train net output #120: loss3/loss11 = 0.00030316 (* 0.0909091 = 2.756e-05 loss) | |
I0327 13:08:48.475046 21344 solver.cpp:245] Train net output #121: loss3/loss12 = 0.000289126 (* 0.0909091 = 2.62842e-05 loss) | |
I0327 13:08:48.475061 21344 solver.cpp:245] Train net output #122: loss3/loss13 = 0.000342874 (* 0.0909091 = 3.11703e-05 loss) | |
I0327 13:08:48.475076 21344 solver.cpp:245] Train net output #123: loss3/loss14 = 0.000278778 (* 0.0909091 = 2.53435e-05 loss) | |
I0327 13:08:48.475090 21344 solver.cpp:245] Train net output #124: loss3/loss15 = 0.000235474 (* 0.0909091 = 2.14068e-05 loss) | |
I0327 13:08:48.475105 21344 solver.cpp:245] Train net output #125: loss3/loss16 = 0.00023434 (* 0.0909091 = 2.13036e-05 loss) | |
I0327 13:08:48.475118 21344 solver.cpp:245] Train net output #126: loss3/loss17 = 0.000289694 (* 0.0909091 = 2.63358e-05 loss) | |
I0327 13:08:48.475132 21344 solver.cpp:245] Train net output #127: loss3/loss18 = 0.000218793 (* 0.0909091 = 1.98903e-05 loss) | |
I0327 13:08:48.475147 21344 solver.cpp:245] Train net output #128: loss3/loss19 = 0.000339621 (* 0.0909091 = 3.08747e-05 loss) | |
I0327 13:08:48.475162 21344 solver.cpp:245] Train net output #129: loss3/loss20 = 0.000169042 (* 0.0909091 = 1.53674e-05 loss) | |
I0327 13:08:48.475175 21344 solver.cpp:245] Train net output #130: loss3/loss21 = 0.000230261 (* 0.0909091 = 2.09328e-05 loss) | |
I0327 13:08:48.475189 21344 solver.cpp:245] Train net output #131: loss3/loss22 = 0.000369406 (* 0.0909091 = 3.35823e-05 loss) | |
I0327 13:08:48.475201 21344 solver.cpp:245] Train net output #132: total_accuracy = 0 | |
I0327 13:08:48.475214 21344 solver.cpp:245] Train net output #133: total_confidence = 0.000143455 | |
I0327 13:08:48.475225 21344 sgd_solver.cpp:106] Iteration 6000, lr = 0.01 | |
I0327 13:10:36.168670 21344 solver.cpp:229] Iteration 6500, loss = 3.04813 | |
I0327 13:10:36.168792 21344 solver.cpp:245] Train net output #0: loss1/accuracy01 = 0 | |
I0327 13:10:36.168810 21344 solver.cpp:245] Train net output #1: loss1/accuracy02 = 0.125 | |
I0327 13:10:36.168823 21344 solver.cpp:245] Train net output #2: loss1/accuracy03 = 0 | |
I0327 13:10:36.168835 21344 solver.cpp:245] Train net output #3: loss1/accuracy04 = 0.125 | |
I0327 13:10:36.168848 21344 solver.cpp:245] Train net output #4: loss1/accuracy05 = 0 | |
I0327 13:10:36.168860 21344 solver.cpp:245] Train net output #5: loss1/accuracy06 = 0.375 | |
I0327 13:10:36.168872 21344 solver.cpp:245] Train net output #6: loss1/accuracy07 = 0.625 | |
I0327 13:10:36.168884 21344 solver.cpp:245] Train net output #7: loss1/accuracy08 = 0.75 | |
I0327 13:10:36.168897 21344 solver.cpp:245] Train net output #8: loss1/accuracy09 = 0.75 | |
I0327 13:10:36.168910 21344 solver.cpp:245] Train net output #9: loss1/accuracy10 = 0.75 | |
I0327 13:10:36.168921 21344 solver.cpp:245] Train net output #10: loss1/accuracy11 = 1 | |
I0327 13:10:36.168933 21344 solver.cpp:245] Train net output #11: loss1/accuracy12 = 1 | |
I0327 13:10:36.168944 21344 solver.cpp:245] Train net output #12: loss1/accuracy13 = 1 | |
I0327 13:10:36.168956 21344 solver.cpp:245] Train net output #13: loss1/accuracy14 = 1 | |
I0327 13:10:36.168967 21344 solver.cpp:245] Train net output #14: loss1/accuracy15 = 1 | |
I0327 13:10:36.168979 21344 solver.cpp:245] Train net output #15: loss1/accuracy16 = 1 | |
I0327 13:10:36.168993 21344 solver.cpp:245] Train net output #16: loss1/accuracy17 = 1 | |
I0327 13:10:36.169006 21344 solver.cpp:245] Train net output #17: loss1/accuracy18 = 1 | |
I0327 13:10:36.169018 21344 solver.cpp:245] Train net output #18: loss1/accuracy19 = 1 | |
I0327 13:10:36.169029 21344 solver.cpp:245] Train net output #19: loss1/accuracy20 = 1 | |
I0327 13:10:36.169041 21344 solver.cpp:245] Train net output #20: loss1/accuracy21 = 1 | |
I0327 13:10:36.169054 21344 solver.cpp:245] Train net output #21: loss1/accuracy22 = 1 | |
I0327 13:10:36.169071 21344 solver.cpp:245] Train net output #22: loss1/loss01 = 3.6067 (* 0.0272727 = 0.0983644 loss) | |
I0327 13:10:36.169086 21344 solver.cpp:245] Train net output #23: loss1/loss02 = 3.38563 (* 0.0272727 = 0.0923353 loss) | |
I0327 13:10:36.169100 21344 solver.cpp:245] Train net output #24: loss1/loss03 = 3.88722 (* 0.0272727 = 0.106015 loss) | |
I0327 13:10:36.169114 21344 solver.cpp:245] Train net output #25: loss1/loss04 = 3.09187 (* 0.0272727 = 0.0843238 loss) | |
I0327 13:10:36.169127 21344 solver.cpp:245] Train net output #26: loss1/loss05 = 3.81447 (* 0.0272727 = 0.104031 loss) | |
I0327 13:10:36.169142 21344 solver.cpp:245] Train net output #27: loss1/loss06 = 2.66312 (* 0.0272727 = 0.0726306 loss) | |
I0327 13:10:36.169155 21344 solver.cpp:245] Train net output #28: loss1/loss07 = 2.05422 (* 0.0272727 = 0.0560242 loss) | |
I0327 13:10:36.169168 21344 solver.cpp:245] Train net output #29: loss1/loss08 = 1.53578 (* 0.0272727 = 0.0418849 loss) | |
I0327 13:10:36.169183 21344 solver.cpp:245] Train net output #30: loss1/loss09 = 1.70743 (* 0.0272727 = 0.0465662 loss) | |
I0327 13:10:36.169196 21344 solver.cpp:245] Train net output #31: loss1/loss10 = 1.85986 (* 0.0272727 = 0.0507235 loss) | |
I0327 13:10:36.169211 21344 solver.cpp:245] Train net output #32: loss1/loss11 = 0.00346304 (* 0.0272727 = 9.44467e-05 loss) | |
I0327 13:10:36.169226 21344 solver.cpp:245] Train net output #33: loss1/loss12 = 0.00341401 (* 0.0272727 = 9.31095e-05 loss) | |
I0327 13:10:36.169240 21344 solver.cpp:245] Train net output #34: loss1/loss13 = 0.00225299 (* 0.0272727 = 6.14451e-05 loss) | |
I0327 13:10:36.169255 21344 solver.cpp:245] Train net output #35: loss1/loss14 = 0.00128854 (* 0.0272727 = 3.51421e-05 loss) | |
I0327 13:10:36.169270 21344 solver.cpp:245] Train net output #36: loss1/loss15 = 0.00222043 (* 0.0272727 = 6.05572e-05 loss) | |
I0327 13:10:36.169283 21344 solver.cpp:245] Train net output #37: loss1/loss16 = 0.00402971 (* 0.0272727 = 0.000109901 loss) | |
I0327 13:10:36.169297 21344 solver.cpp:245] Train net output #38: loss1/loss17 = 0.00328077 (* 0.0272727 = 8.94754e-05 loss) | |
I0327 13:10:36.169328 21344 solver.cpp:245] Train net output #39: loss1/loss18 = 0.00136917 (* 0.0272727 = 3.7341e-05 loss) | |
I0327 13:10:36.169344 21344 solver.cpp:245] Train net output #40: loss1/loss19 = 0.0028367 (* 0.0272727 = 7.73645e-05 loss) | |
I0327 13:10:36.169359 21344 solver.cpp:245] Train net output #41: loss1/loss20 = 0.00104865 (* 0.0272727 = 2.85995e-05 loss) | |
I0327 13:10:36.169373 21344 solver.cpp:245] Train net output #42: loss1/loss21 = 0.00410549 (* 0.0272727 = 0.000111968 loss) | |
I0327 13:10:36.169387 21344 solver.cpp:245] Train net output #43: loss1/loss22 = 0.00233586 (* 0.0272727 = 6.37054e-05 loss) | |
I0327 13:10:36.169399 21344 solver.cpp:245] Train net output #44: loss2/accuracy01 = 0.125 | |
I0327 13:10:36.169412 21344 solver.cpp:245] Train net output #45: loss2/accuracy02 = 0.125 | |
I0327 13:10:36.169425 21344 solver.cpp:245] Train net output #46: loss2/accuracy03 = 0 | |
I0327 13:10:36.169435 21344 solver.cpp:245] Train net output #47: loss2/accuracy04 = 0.125 | |
I0327 13:10:36.169447 21344 solver.cpp:245] Train net output #48: loss2/accuracy05 = 0 | |
I0327 13:10:36.169459 21344 solver.cpp:245] Train net output #49: loss2/accuracy06 = 0.25 | |
I0327 13:10:36.169471 21344 solver.cpp:245] Train net output #50: loss2/accuracy07 = 0.625 | |
I0327 13:10:36.169483 21344 solver.cpp:245] Train net output #51: loss2/accuracy08 = 0.75 | |
I0327 13:10:36.169495 21344 solver.cpp:245] Train net output #52: loss2/accuracy09 = 0.75 | |
I0327 13:10:36.169507 21344 solver.cpp:245] Train net output #53: loss2/accuracy10 = 0.75 | |
I0327 13:10:36.169518 21344 solver.cpp:245] Train net output #54: loss2/accuracy11 = 1 | |
I0327 13:10:36.169530 21344 solver.cpp:245] Train net output #55: loss2/accuracy12 = 1 | |
I0327 13:10:36.169554 21344 solver.cpp:245] Train net output #56: loss2/accuracy13 = 1 | |
I0327 13:10:36.169569 21344 solver.cpp:245] Train net output #57: loss2/accuracy14 = 1 | |
I0327 13:10:36.169581 21344 solver.cpp:245] Train net output #58: loss2/accuracy15 = 1 | |
I0327 13:10:36.169592 21344 solver.cpp:245] Train net output #59: loss2/accuracy16 = 1 | |
I0327 13:10:36.169605 21344 solver.cpp:245] Train net output #60: loss2/accuracy17 = 1 | |
I0327 13:10:36.169616 21344 solver.cpp:245] Train net output #61: loss2/accuracy18 = 1 | |
I0327 13:10:36.169630 21344 solver.cpp:245] Train net output #62: loss2/accuracy19 = 1 | |
I0327 13:10:36.169637 21344 solver.cpp:245] Train net output #63: loss2/accuracy20 = 1 | |
I0327 13:10:36.169649 21344 solver.cpp:245] Train net output #64: loss2/accuracy21 = 1 | |
I0327 13:10:36.169661 21344 solver.cpp:245] Train net output #65: loss2/accuracy22 = 1 | |
I0327 13:10:36.169675 21344 solver.cpp:245] Train net output #66: loss2/loss01 = 3.0503 (* 0.0272727 = 0.0831899 loss) | |
I0327 13:10:36.169689 21344 solver.cpp:245] Train net output #67: loss2/loss02 = 3.37306 (* 0.0272727 = 0.0919925 loss) | |
I0327 13:10:36.169703 21344 solver.cpp:245] Train net output #68: loss2/loss03 = 3.85721 (* 0.0272727 = 0.105197 loss) | |
I0327 13:10:36.169718 21344 solver.cpp:245] Train net output #69: loss2/loss04 = 3.68829 (* 0.0272727 = 0.10059 loss) | |
I0327 13:10:36.169731 21344 solver.cpp:245] Train net output #70: loss2/loss05 = 4.04024 (* 0.0272727 = 0.110188 loss) | |
I0327 13:10:36.169744 21344 solver.cpp:245] Train net output #71: loss2/loss06 = 2.89582 (* 0.0272727 = 0.078977 loss) | |
I0327 13:10:36.169759 21344 solver.cpp:245] Train net output #72: loss2/loss07 = 1.78107 (* 0.0272727 = 0.0485747 loss) | |
I0327 13:10:36.169772 21344 solver.cpp:245] Train net output #73: loss2/loss08 = 1.69198 (* 0.0272727 = 0.0461448 loss) | |
I0327 13:10:36.169786 21344 solver.cpp:245] Train net output #74: loss2/loss09 = 2.06529 (* 0.0272727 = 0.056326 loss) | |
I0327 13:10:36.169800 21344 solver.cpp:245] Train net output #75: loss2/loss10 = 2.31628 (* 0.0272727 = 0.0631712 loss) | |
I0327 13:10:36.169817 21344 solver.cpp:245] Train net output #76: loss2/loss11 = 0.00259832 (* 0.0272727 = 7.08632e-05 loss) | |
I0327 13:10:36.169832 21344 solver.cpp:245] Train net output #77: loss2/loss12 = 0.00420847 (* 0.0272727 = 0.000114777 loss) | |
I0327 13:10:36.169859 21344 solver.cpp:245] Train net output #78: loss2/loss13 = 0.00313324 (* 0.0272727 = 8.5452e-05 loss) | |
I0327 13:10:36.169875 21344 solver.cpp:245] Train net output #79: loss2/loss14 = 0.0022289 (* 0.0272727 = 6.07883e-05 loss) | |
I0327 13:10:36.169889 21344 solver.cpp:245] Train net output #80: loss2/loss15 = 0.00220098 (* 0.0272727 = 6.00268e-05 loss) | |
I0327 13:10:36.169903 21344 solver.cpp:245] Train net output #81: loss2/loss16 = 0.00325064 (* 0.0272727 = 8.86537e-05 loss) | |
I0327 13:10:36.169917 21344 solver.cpp:245] Train net output #82: loss2/loss17 = 0.00594015 (* 0.0272727 = 0.000162004 loss) | |
I0327 13:10:36.169931 21344 solver.cpp:245] Train net output #83: loss2/loss18 = 0.00268149 (* 0.0272727 = 7.31314e-05 loss) | |
I0327 13:10:36.169945 21344 solver.cpp:245] Train net output #84: loss2/loss19 = 0.00141249 (* 0.0272727 = 3.85224e-05 loss) | |
I0327 13:10:36.169960 21344 solver.cpp:245] Train net output #85: loss2/loss20 = 0.00194988 (* 0.0272727 = 5.31787e-05 loss) | |
I0327 13:10:36.169975 21344 solver.cpp:245] Train net output #86: loss2/loss21 = 0.0105378 (* 0.0272727 = 0.000287394 loss) | |
I0327 13:10:36.169988 21344 solver.cpp:245] Train net output #87: loss2/loss22 = 0.00326486 (* 0.0272727 = 8.90416e-05 loss) | |
I0327 13:10:36.170001 21344 solver.cpp:245] Train net output #88: loss3/accuracy01 = 0.125 | |
I0327 13:10:36.170013 21344 solver.cpp:245] Train net output #89: loss3/accuracy02 = 0.125 | |
I0327 13:10:36.170025 21344 solver.cpp:245] Train net output #90: loss3/accuracy03 = 0 | |
I0327 13:10:36.170037 21344 solver.cpp:245] Train net output #91: loss3/accuracy04 = 0 | |
I0327 13:10:36.170052 21344 solver.cpp:245] Train net output #92: loss3/accuracy05 = 0 | |
I0327 13:10:36.170063 21344 solver.cpp:245] Train net output #93: loss3/accuracy06 = 0.375 | |
I0327 13:10:36.170075 21344 solver.cpp:245] Train net output #94: loss3/accuracy07 = 0.625 | |
I0327 13:10:36.170086 21344 solver.cpp:245] Train net output #95: loss3/accuracy08 = 0.75 | |
I0327 13:10:36.170099 21344 solver.cpp:245] Train net output #96: loss3/accuracy09 = 0.75 | |
I0327 13:10:36.170110 21344 solver.cpp:245] Train net output #97: loss3/accuracy10 = 0.75 | |
I0327 13:10:36.170121 21344 solver.cpp:245] Train net output #98: loss3/accuracy11 = 1 | |
I0327 13:10:36.170132 21344 solver.cpp:245] Train net output #99: loss3/accuracy12 = 1 | |
I0327 13:10:36.170145 21344 solver.cpp:245] Train net output #100: loss3/accuracy13 = 1 | |
I0327 13:10:36.170156 21344 solver.cpp:245] Train net output #101: loss3/accuracy14 = 1 | |
I0327 13:10:36.170167 21344 solver.cpp:245] Train net output #102: loss3/accuracy15 = 1 | |
I0327 13:10:36.170178 21344 solver.cpp:245] Train net output #103: loss3/accuracy16 = 1 | |
I0327 13:10:36.170191 21344 solver.cpp:245] Train net output #104: loss3/accuracy17 = 1 | |
I0327 13:10:36.170202 21344 solver.cpp:245] Train net output #105: loss3/accuracy18 = 1 | |
I0327 13:10:36.170213 21344 solver.cpp:245] Train net output #106: loss3/accuracy19 = 1 | |
I0327 13:10:36.170224 21344 solver.cpp:245] Train net output #107: loss3/accuracy20 = 1 | |
I0327 13:10:36.170236 21344 solver.cpp:245] Train net output #108: loss3/accuracy21 = 1 | |
I0327 13:10:36.170248 21344 solver.cpp:245] Train net output #109: loss3/accuracy22 = 1 | |
I0327 13:10:36.170261 21344 solver.cpp:245] Train net output #110: loss3/loss01 = 3.28137 (* 0.0909091 = 0.298306 loss) | |
I0327 13:10:36.170275 21344 solver.cpp:245] Train net output #111: loss3/loss02 = 3.15632 (* 0.0909091 = 0.286938 loss) | |
I0327 13:10:36.170289 21344 solver.cpp:245] Train net output #112: loss3/loss03 = 3.78735 (* 0.0909091 = 0.344304 loss) | |
I0327 13:10:36.170303 21344 solver.cpp:245] Train net output #113: loss3/loss04 = 3.2675 (* 0.0909091 = 0.297045 loss) | |
I0327 13:10:36.170316 21344 solver.cpp:245] Train net output #114: loss3/loss05 = 4.0553 (* 0.0909091 = 0.368664 loss) | |
I0327 13:10:36.170331 21344 solver.cpp:245] Train net output #115: loss3/loss06 = 2.46554 (* 0.0909091 = 0.22414 loss) | |
I0327 13:10:36.170354 21344 solver.cpp:245] Train net output #116: loss3/loss07 = 1.65923 (* 0.0909091 = 0.150839 loss) | |
I0327 13:10:36.170369 21344 solver.cpp:245] Train net output #117: loss3/loss08 = 1.43484 (* 0.0909091 = 0.13044 loss) | |
I0327 13:10:36.170384 21344 solver.cpp:245] Train net output #118: loss3/loss09 = 1.71599 (* 0.0909091 = 0.155999 loss) | |
I0327 13:10:36.170397 21344 solver.cpp:245] Train net output #119: loss3/loss10 = 1.79845 (* 0.0909091 = 0.163495 loss) | |
I0327 13:10:36.170413 21344 solver.cpp:245] Train net output #120: loss3/loss11 = 0.00210287 (* 0.0909091 = 0.00019117 loss) | |
I0327 13:10:36.170426 21344 solver.cpp:245] Train net output #121: loss3/loss12 = 0.00320716 (* 0.0909091 = 0.00029156 loss) | |
I0327 13:10:36.170440 21344 solver.cpp:245] Train net output #122: loss3/loss13 = 0.00155128 (* 0.0909091 = 0.000141026 loss) | |
I0327 13:10:36.170454 21344 solver.cpp:245] Train net output #123: loss3/loss14 = 0.00157423 (* 0.0909091 = 0.000143112 loss) | |
I0327 13:10:36.170469 21344 solver.cpp:245] Train net output #124: loss3/loss15 = 0.00304313 (* 0.0909091 = 0.000276648 loss) | |
I0327 13:10:36.170482 21344 solver.cpp:245] Train net output #125: loss3/loss16 = 0.00211179 (* 0.0909091 = 0.000191981 loss) | |
I0327 13:10:36.170496 21344 solver.cpp:245] Train net output #126: loss3/loss17 = 0.00190656 (* 0.0909091 = 0.000173324 loss) | |
I0327 13:10:36.170511 21344 solver.cpp:245] Train net output #127: loss3/loss18 = 0.00243389 (* 0.0909091 = 0.000221263 loss) | |
I0327 13:10:36.170524 21344 solver.cpp:245] Train net output #128: loss3/loss19 = 0.00262903 (* 0.0909091 = 0.000239002 loss) | |
I0327 13:10:36.170539 21344 solver.cpp:245] Train net output #129: loss3/loss20 = 0.00209001 (* 0.0909091 = 0.000190001 loss) | |
I0327 13:10:36.170553 21344 solver.cpp:245] Train net output #130: loss3/loss21 = 0.00151194 (* 0.0909091 = 0.000137449 loss) | |
I0327 13:10:36.170567 21344 solver.cpp:245] Train net output #131: loss3/loss22 = 0.0018381 (* 0.0909091 = 0.0001671 loss) | |
I0327 13:10:36.170579 21344 solver.cpp:245] Train net output #132: total_accuracy = 0 | |
I0327 13:10:36.170591 21344 solver.cpp:245] Train net output #133: total_confidence = 5.28329e-05 | |
I0327 13:10:36.170604 21344 sgd_solver.cpp:106] Iteration 6500, lr = 0.01 | |
I0327 13:12:24.016520 21344 solver.cpp:229] Iteration 7000, loss = 3.00803 | |
I0327 13:12:24.016669 21344 solver.cpp:245] Train net output #0: loss1/accuracy01 = 0 | |
I0327 13:12:24.016688 21344 solver.cpp:245] Train net output #1: loss1/accuracy02 = 0 | |
I0327 13:12:24.016701 21344 solver.cpp:245] Train net output #2: loss1/accuracy03 = 0 | |
I0327 13:12:24.016712 21344 solver.cpp:245] Train net output #3: loss1/accuracy04 = 0 | |
I0327 13:12:24.016724 21344 solver.cpp:245] Train net output #4: loss1/accuracy05 = 0 | |
I0327 13:12:24.016736 21344 solver.cpp:245] Train net output #5: loss1/accuracy06 = 0 | |
I0327 13:12:24.016747 21344 solver.cpp:245] Train net output #6: loss1/accuracy07 = 0.625 | |
I0327 13:12:24.016760 21344 solver.cpp:245] Train net output #7: loss1/accuracy08 = 0.875 | |
I0327 13:12:24.016772 21344 solver.cpp:245] Train net output #8: loss1/accuracy09 = 1 | |
I0327 13:12:24.016784 21344 solver.cpp:245] Train net output #9: loss1/accuracy10 = 1 | |
I0327 13:12:24.016795 21344 solver.cpp:245] Train net output #10: loss1/accuracy11 = 1 | |
I0327 13:12:24.016808 21344 solver.cpp:245] Train net output #11: loss1/accuracy12 = 1 | |
I0327 13:12:24.016819 21344 solver.cpp:245] Train net output #12: loss1/accuracy13 = 1 | |
I0327 13:12:24.016830 21344 solver.cpp:245] Train net output #13: loss1/accuracy14 = 1 | |
I0327 13:12:24.016842 21344 solver.cpp:245] Train net output #14: loss1/accuracy15 = 1 | |
I0327 13:12:24.016855 21344 solver.cpp:245] Train net output #15: loss1/accuracy16 = 1 | |
I0327 13:12:24.016866 21344 solver.cpp:245] Train net output #16: loss1/accuracy17 = 1 | |
I0327 13:12:24.016886 21344 solver.cpp:245] Train net output #17: loss1/accuracy18 = 1 | |
I0327 13:12:24.016899 21344 solver.cpp:245] Train net output #18: loss1/accuracy19 = 1 | |
I0327 13:12:24.016921 21344 solver.cpp:245] Train net output #19: loss1/accuracy20 = 1 | |
I0327 13:12:24.016935 21344 solver.cpp:245] Train net output #20: loss1/accuracy21 = 1 | |
I0327 13:12:24.016947 21344 solver.cpp:245] Train net output #21: loss1/accuracy22 = 1 | |
I0327 13:12:24.016964 21344 solver.cpp:245] Train net output #22: loss1/loss01 = 3.45788 (* 0.0272727 = 0.0943059 loss) | |
I0327 13:12:24.016978 21344 solver.cpp:245] Train net output #23: loss1/loss02 = 4.45406 (* 0.0272727 = 0.121474 loss) | |
I0327 13:12:24.016995 21344 solver.cpp:245] Train net output #24: loss1/loss03 = 3.70666 (* 0.0272727 = 0.101091 loss) | |
I0327 13:12:24.017010 21344 solver.cpp:245] Train net output #25: loss1/loss04 = 3.85476 (* 0.0272727 = 0.10513 loss) | |
I0327 13:12:24.017024 21344 solver.cpp:245] Train net output #26: loss1/loss05 = 3.82772 (* 0.0272727 = 0.104392 loss) | |
I0327 13:12:24.017037 21344 solver.cpp:245] Train net output #27: loss1/loss06 = 4.15642 (* 0.0272727 = 0.113357 loss) | |
I0327 13:12:24.017051 21344 solver.cpp:245] Train net output #28: loss1/loss07 = 2.30851 (* 0.0272727 = 0.0629593 loss) | |
I0327 13:12:24.017066 21344 solver.cpp:245] Train net output #29: loss1/loss08 = 0.939984 (* 0.0272727 = 0.0256359 loss) | |
I0327 13:12:24.017079 21344 solver.cpp:245] Train net output #30: loss1/loss09 = 0.0723675 (* 0.0272727 = 0.00197366 loss) | |
I0327 13:12:24.017094 21344 solver.cpp:245] Train net output #31: loss1/loss10 = 0.02945 (* 0.0272727 = 0.000803181 loss) | |
I0327 13:12:24.017109 21344 solver.cpp:245] Train net output #32: loss1/loss11 = 0.00325826 (* 0.0272727 = 8.88616e-05 loss) | |
I0327 13:12:24.017123 21344 solver.cpp:245] Train net output #33: loss1/loss12 = 0.00529479 (* 0.0272727 = 0.000144403 loss) | |
I0327 13:12:24.017138 21344 solver.cpp:245] Train net output #34: loss1/loss13 = 0.00623187 (* 0.0272727 = 0.00016996 loss) | |
I0327 13:12:24.017151 21344 solver.cpp:245] Train net output #35: loss1/loss14 = 0.00313057 (* 0.0272727 = 8.53793e-05 loss) | |
I0327 13:12:24.017173 21344 solver.cpp:245] Train net output #36: loss1/loss15 = 0.00331047 (* 0.0272727 = 9.02856e-05 loss) | |
I0327 13:12:24.017186 21344 solver.cpp:245] Train net output #37: loss1/loss16 = 0.00411925 (* 0.0272727 = 0.000112343 loss) | |
I0327 13:12:24.017200 21344 solver.cpp:245] Train net output #38: loss1/loss17 = 0.00546875 (* 0.0272727 = 0.000149148 loss) | |
I0327 13:12:24.017227 21344 solver.cpp:245] Train net output #39: loss1/loss18 = 0.00735585 (* 0.0272727 = 0.000200614 loss) | |
I0327 13:12:24.017243 21344 solver.cpp:245] Train net output #40: loss1/loss19 = 0.0036461 (* 0.0272727 = 9.94391e-05 loss) | |
I0327 13:12:24.017258 21344 solver.cpp:245] Train net output #41: loss1/loss20 = 0.00394529 (* 0.0272727 = 0.000107599 loss) | |
I0327 13:12:24.017276 21344 solver.cpp:245] Train net output #42: loss1/loss21 = 0.00607605 (* 0.0272727 = 0.00016571 loss) | |
I0327 13:12:24.017290 21344 solver.cpp:245] Train net output #43: loss1/loss22 = 0.00748746 (* 0.0272727 = 0.000204203 loss) | |
I0327 13:12:24.017303 21344 solver.cpp:245] Train net output #44: loss2/accuracy01 = 0 | |
I0327 13:12:24.017315 21344 solver.cpp:245] Train net output #45: loss2/accuracy02 = 0 | |
I0327 13:12:24.017326 21344 solver.cpp:245] Train net output #46: loss2/accuracy03 = 0 | |
I0327 13:12:24.017338 21344 solver.cpp:245] Train net output #47: loss2/accuracy04 = 0 | |
I0327 13:12:24.017349 21344 solver.cpp:245] Train net output #48: loss2/accuracy05 = 0 | |
I0327 13:12:24.017361 21344 solver.cpp:245] Train net output #49: loss2/accuracy06 = 0 | |
I0327 13:12:24.017372 21344 solver.cpp:245] Train net output #50: loss2/accuracy07 = 0.625 | |
I0327 13:12:24.017385 21344 solver.cpp:245] Train net output #51: loss2/accuracy08 = 0.875 | |
I0327 13:12:24.017396 21344 solver.cpp:245] Train net output #52: loss2/accuracy09 = 1 | |
I0327 13:12:24.017408 21344 solver.cpp:245] Train net output #53: loss2/accuracy10 = 1 | |
I0327 13:12:24.017419 21344 solver.cpp:245] Train net output #54: loss2/accuracy11 = 1 | |
I0327 13:12:24.017431 21344 solver.cpp:245] Train net output #55: loss2/accuracy12 = 1 | |
I0327 13:12:24.017442 21344 solver.cpp:245] Train net output #56: loss2/accuracy13 = 1 | |
I0327 13:12:24.017453 21344 solver.cpp:245] Train net output #57: loss2/accuracy14 = 1 | |
I0327 13:12:24.017465 21344 solver.cpp:245] Train net output #58: loss2/accuracy15 = 1 | |
I0327 13:12:24.017477 21344 solver.cpp:245] Train net output #59: loss2/accuracy16 = 1 | |
I0327 13:12:24.017488 21344 solver.cpp:245] Train net output #60: loss2/accuracy17 = 1 | |
I0327 13:12:24.017499 21344 solver.cpp:245] Train net output #61: loss2/accuracy18 = 1 | |
I0327 13:12:24.017510 21344 solver.cpp:245] Train net output #62: loss2/accuracy19 = 1 | |
I0327 13:12:24.017523 21344 solver.cpp:245] Train net output #63: loss2/accuracy20 = 1 | |
I0327 13:12:24.017534 21344 solver.cpp:245] Train net output #64: loss2/accuracy21 = 1 | |
I0327 13:12:24.017559 21344 solver.cpp:245] Train net output #65: loss2/accuracy22 = 1 | |
I0327 13:12:24.017575 21344 solver.cpp:245] Train net output #66: loss2/loss01 = 3.76808 (* 0.0272727 = 0.102766 loss) | |
I0327 13:12:24.017588 21344 solver.cpp:245] Train net output #67: loss2/loss02 = 4.02197 (* 0.0272727 = 0.10969 loss) | |
I0327 13:12:24.017602 21344 solver.cpp:245] Train net output #68: loss2/loss03 = 3.66382 (* 0.0272727 = 0.0999225 loss) | |
I0327 13:12:24.017616 21344 solver.cpp:245] Train net output #69: loss2/loss04 = 3.71673 (* 0.0272727 = 0.101365 loss) | |
I0327 13:12:24.017629 21344 solver.cpp:245] Train net output #70: loss2/loss05 = 4.31764 (* 0.0272727 = 0.117754 loss) | |
I0327 13:12:24.017643 21344 solver.cpp:245] Train net output #71: loss2/loss06 = 4.47896 (* 0.0272727 = 0.122153 loss) | |
I0327 13:12:24.017657 21344 solver.cpp:245] Train net output #72: loss2/loss07 = 2.15737 (* 0.0272727 = 0.0588373 loss) | |
I0327 13:12:24.017673 21344 solver.cpp:245] Train net output #73: loss2/loss08 = 0.782407 (* 0.0272727 = 0.0213384 loss) | |
I0327 13:12:24.017689 21344 solver.cpp:245] Train net output #74: loss2/loss09 = 0.0750128 (* 0.0272727 = 0.0020458 loss) | |
I0327 13:12:24.017704 21344 solver.cpp:245] Train net output #75: loss2/loss10 = 0.013571 (* 0.0272727 = 0.00037012 loss) | |
I0327 13:12:24.017719 21344 solver.cpp:245] Train net output #76: loss2/loss11 = 0.00157051 (* 0.0272727 = 4.2832e-05 loss) | |
I0327 13:12:24.017734 21344 solver.cpp:245] Train net output #77: loss2/loss12 = 0.00198264 (* 0.0272727 = 5.4072e-05 loss) | |
I0327 13:12:24.017760 21344 solver.cpp:245] Train net output #78: loss2/loss13 = 0.000756469 (* 0.0272727 = 2.0631e-05 loss) | |
I0327 13:12:24.017774 21344 solver.cpp:245] Train net output #79: loss2/loss14 = 0.000706914 (* 0.0272727 = 1.92795e-05 loss) | |
I0327 13:12:24.017789 21344 solver.cpp:245] Train net output #80: loss2/loss15 = 0.00185238 (* 0.0272727 = 5.05195e-05 loss) | |
I0327 13:12:24.017803 21344 solver.cpp:245] Train net output #81: loss2/loss16 = 0.000589573 (* 0.0272727 = 1.60793e-05 loss) | |
I0327 13:12:24.017817 21344 solver.cpp:245] Train net output #82: loss2/loss17 = 0.000855751 (* 0.0272727 = 2.33387e-05 loss) | |
I0327 13:12:24.017832 21344 solver.cpp:245] Train net output #83: loss2/loss18 = 0.00262217 (* 0.0272727 = 7.15137e-05 loss) | |
I0327 13:12:24.017845 21344 solver.cpp:245] Train net output #84: loss2/loss19 = 0.000548968 (* 0.0272727 = 1.49718e-05 loss) | |
I0327 13:12:24.017859 21344 solver.cpp:245] Train net output #85: loss2/loss20 = 0.000701692 (* 0.0272727 = 1.9137e-05 loss) | |
I0327 13:12:24.017874 21344 solver.cpp:245] Train net output #86: loss2/loss21 = 0.00136509 (* 0.0272727 = 3.72297e-05 loss) | |
I0327 13:12:24.017887 21344 solver.cpp:245] Train net output #87: loss2/loss22 = 0.000599953 (* 0.0272727 = 1.63623e-05 loss) | |
I0327 13:12:24.017899 21344 solver.cpp:245] Train net output #88: loss3/accuracy01 = 0.125 | |
I0327 13:12:24.017911 21344 solver.cpp:245] Train net output #89: loss3/accuracy02 = 0 | |
I0327 13:12:24.017923 21344 solver.cpp:245] Train net output #90: loss3/accuracy03 = 0 | |
I0327 13:12:24.017935 21344 solver.cpp:245] Train net output #91: loss3/accuracy04 = 0 | |
I0327 13:12:24.017946 21344 solver.cpp:245] Train net output #92: loss3/accuracy05 = 0 | |
I0327 13:12:24.017957 21344 solver.cpp:245] Train net output #93: loss3/accuracy06 = 0 | |
I0327 13:12:24.017968 21344 solver.cpp:245] Train net output #94: loss3/accuracy07 = 0.625 | |
I0327 13:12:24.017981 21344 solver.cpp:245] Train net output #95: loss3/accuracy08 = 0.875 | |
I0327 13:12:24.017992 21344 solver.cpp:245] Train net output #96: loss3/accuracy09 = 1 | |
I0327 13:12:24.018003 21344 solver.cpp:245] Train net output #97: loss3/accuracy10 = 1 | |
I0327 13:12:24.018014 21344 solver.cpp:245] Train net output #98: loss3/accuracy11 = 1 | |
I0327 13:12:24.018026 21344 solver.cpp:245] Train net output #99: loss3/accuracy12 = 1 | |
I0327 13:12:24.018038 21344 solver.cpp:245] Train net output #100: loss3/accuracy13 = 1 | |
I0327 13:12:24.018052 21344 solver.cpp:245] Train net output #101: loss3/accuracy14 = 1 | |
I0327 13:12:24.018064 21344 solver.cpp:245] Train net output #102: loss3/accuracy15 = 1 | |
I0327 13:12:24.018075 21344 solver.cpp:245] Train net output #103: loss3/accuracy16 = 1 | |
I0327 13:12:24.018087 21344 solver.cpp:245] Train net output #104: loss3/accuracy17 = 1 | |
I0327 13:12:24.018100 21344 solver.cpp:245] Train net output #105: loss3/accuracy18 = 1 | |
I0327 13:12:24.018107 21344 solver.cpp:245] Train net output #106: loss3/accuracy19 = 1 | |
I0327 13:12:24.018115 21344 solver.cpp:245] Train net output #107: loss3/accuracy20 = 1 | |
I0327 13:12:24.018129 21344 solver.cpp:245] Train net output #108: loss3/accuracy21 = 1 | |
I0327 13:12:24.018141 21344 solver.cpp:245] Train net output #109: loss3/accuracy22 = 1 | |
I0327 13:12:24.018154 21344 solver.cpp:245] Train net output #110: loss3/loss01 = 3.35183 (* 0.0909091 = 0.304712 loss) | |
I0327 13:12:24.018173 21344 solver.cpp:245] Train net output #111: loss3/loss02 = 4.03868 (* 0.0909091 = 0.367153 loss) | |
I0327 13:12:24.018188 21344 solver.cpp:245] Train net output #112: loss3/loss03 = 3.3733 (* 0.0909091 = 0.306664 loss) | |
I0327 13:12:24.018206 21344 solver.cpp:245] Train net output #113: loss3/loss04 = 3.77781 (* 0.0909091 = 0.343437 loss) | |
I0327 13:12:24.018221 21344 solver.cpp:245] Train net output #114: loss3/loss05 = 3.80868 (* 0.0909091 = 0.346244 loss) | |
I0327 13:12:24.018234 21344 solver.cpp:245] Train net output #115: loss3/loss06 = 3.99559 (* 0.0909091 = 0.363236 loss) | |
I0327 13:12:24.018260 21344 solver.cpp:245] Train net output #116: loss3/loss07 = 2.09251 (* 0.0909091 = 0.190228 loss) | |
I0327 13:12:24.018275 21344 solver.cpp:245] Train net output #117: loss3/loss08 = 0.50075 (* 0.0909091 = 0.0455227 loss) | |
I0327 13:12:24.018288 21344 solver.cpp:245] Train net output #118: loss3/loss09 = 0.184272 (* 0.0909091 = 0.016752 loss) | |
I0327 13:12:24.018302 21344 solver.cpp:245] Train net output #119: loss3/loss10 = 0.075354 (* 0.0909091 = 0.00685037 loss) | |
I0327 13:12:24.018316 21344 solver.cpp:245] Train net output #120: loss3/loss11 = 0.00215649 (* 0.0909091 = 0.000196045 loss) | |
I0327 13:12:24.018331 21344 solver.cpp:245] Train net output #121: loss3/loss12 = 0.00159895 (* 0.0909091 = 0.000145359 loss) | |
I0327 13:12:24.018344 21344 solver.cpp:245] Train net output #122: loss3/loss13 = 0.00175194 (* 0.0909091 = 0.000159267 loss) | |
I0327 13:12:24.018358 21344 solver.cpp:245] Train net output #123: loss3/loss14 = 0.00224756 (* 0.0909091 = 0.000204324 loss) | |
I0327 13:12:24.018373 21344 solver.cpp:245] Train net output #124: loss3/loss15 = 0.00223686 (* 0.0909091 = 0.000203351 loss) | |
I0327 13:12:24.018386 21344 solver.cpp:245] Train net output #125: loss3/loss16 = 0.00194066 (* 0.0909091 = 0.000176424 loss) | |
I0327 13:12:24.018400 21344 solver.cpp:245] Train net output #126: loss3/loss17 = 0.00223643 (* 0.0909091 = 0.000203312 loss) | |
I0327 13:12:24.018414 21344 solver.cpp:245] Train net output #127: loss3/loss18 = 0.00163592 (* 0.0909091 = 0.00014872 loss) | |
I0327 13:12:24.018427 21344 solver.cpp:245] Train net output #128: loss3/loss19 = 0.00196637 (* 0.0909091 = 0.000178761 loss) | |
I0327 13:12:24.018441 21344 solver.cpp:245] Train net output #129: loss3/loss20 = 0.00190727 (* 0.0909091 = 0.000173388 loss) | |
I0327 13:12:24.018455 21344 solver.cpp:245] Train net output #130: loss3/loss21 = 0.00228345 (* 0.0909091 = 0.000207586 loss) | |
I0327 13:12:24.018470 21344 solver.cpp:245] Train net output #131: loss3/loss22 = 0.00196137 (* 0.0909091 = 0.000178307 loss) | |
I0327 13:12:24.018481 21344 solver.cpp:245] Train net output #132: total_accuracy = 0 | |
I0327 13:12:24.018492 21344 solver.cpp:245] Train net output #133: total_confidence = 7.88918e-06 | |
I0327 13:12:24.018504 21344 sgd_solver.cpp:106] Iteration 7000, lr = 0.01 | |
I0327 13:14:11.798400 21344 solver.cpp:229] Iteration 7500, loss = 3.00917 | |
I0327 13:14:11.798564 21344 solver.cpp:245] Train net output #0: loss1/accuracy01 = 0 | |
I0327 13:14:11.798586 21344 solver.cpp:245] Train net output #1: loss1/accuracy02 = 0 | |
I0327 13:14:11.798599 21344 solver.cpp:245] Train net output #2: loss1/accuracy03 = 0 | |
I0327 13:14:11.798611 21344 solver.cpp:245] Train net output #3: loss1/accuracy04 = 0.125 | |
I0327 13:14:11.798624 21344 solver.cpp:245] Train net output #4: loss1/accuracy05 = 0.125 | |
I0327 13:14:11.798636 21344 solver.cpp:245] Train net output #5: loss1/accuracy06 = 0.25 | |
I0327 13:14:11.798650 21344 solver.cpp:245] Train net output #6: loss1/accuracy07 = 0.5 | |
I0327 13:14:11.798661 21344 solver.cpp:245] Train net output #7: loss1/accuracy08 = 1 | |
I0327 13:14:11.798673 21344 solver.cpp:245] Train net output #8: loss1/accuracy09 = 1 | |
I0327 13:14:11.798688 21344 solver.cpp:245] Train net output #9: loss1/accuracy10 = 1 | |
I0327 13:14:11.798702 21344 solver.cpp:245] Train net output #10: loss1/accuracy11 = 1 | |
I0327 13:14:11.798713 21344 solver.cpp:245] Train net output #11: loss1/accuracy12 = 1 | |
I0327 13:14:11.798725 21344 solver.cpp:245] Train net output #12: loss1/accuracy13 = 1 | |
I0327 13:14:11.798738 21344 solver.cpp:245] Train net output #13: loss1/accuracy14 = 1 | |
I0327 13:14:11.798749 21344 solver.cpp:245] Train net output #14: loss1/accuracy15 = 1 | |
I0327 13:14:11.798761 21344 solver.cpp:245] Train net output #15: loss1/accuracy16 = 1 | |
I0327 13:14:11.798774 21344 solver.cpp:245] Train net output #16: loss1/accuracy17 = 1 | |
I0327 13:14:11.798785 21344 solver.cpp:245] Train net output #17: loss1/accuracy18 = 1 | |
I0327 13:14:11.798797 21344 solver.cpp:245] Train net output #18: loss1/accuracy19 = 1 | |
I0327 13:14:11.798810 21344 solver.cpp:245] Train net output #19: loss1/accuracy20 = 1 | |
I0327 13:14:11.798821 21344 solver.cpp:245] Train net output #20: loss1/accuracy21 = 1 | |
I0327 13:14:11.798832 21344 solver.cpp:245] Train net output #21: loss1/accuracy22 = 1 | |
I0327 13:14:11.798849 21344 solver.cpp:245] Train net output #22: loss1/loss01 = 3.36983 (* 0.0272727 = 0.0919045 loss) | |
I0327 13:14:11.798864 21344 solver.cpp:245] Train net output #23: loss1/loss02 = 3.05949 (* 0.0272727 = 0.0834407 loss) | |
I0327 13:14:11.798879 21344 solver.cpp:245] Train net output #24: loss1/loss03 = 4.17254 (* 0.0272727 = 0.113797 loss) | |
I0327 13:14:11.798893 21344 solver.cpp:245] Train net output #25: loss1/loss04 = 2.82812 (* 0.0272727 = 0.0771306 loss) | |
I0327 13:14:11.798907 21344 solver.cpp:245] Train net output #26: loss1/loss05 = 3.27627 (* 0.0272727 = 0.0893529 loss) | |
I0327 13:14:11.798921 21344 solver.cpp:245] Train net output #27: loss1/loss06 = 2.9864 (* 0.0272727 = 0.0814473 loss) | |
I0327 13:14:11.798935 21344 solver.cpp:245] Train net output #28: loss1/loss07 = 2.45322 (* 0.0272727 = 0.0669059 loss) | |
I0327 13:14:11.798950 21344 solver.cpp:245] Train net output #29: loss1/loss08 = 0.101707 (* 0.0272727 = 0.00277383 loss) | |
I0327 13:14:11.798965 21344 solver.cpp:245] Train net output #30: loss1/loss09 = 0.0124621 (* 0.0272727 = 0.000339875 loss) | |
I0327 13:14:11.798979 21344 solver.cpp:245] Train net output #31: loss1/loss10 = 0.00702104 (* 0.0272727 = 0.000191483 loss) | |
I0327 13:14:11.798995 21344 solver.cpp:245] Train net output #32: loss1/loss11 = 0.00035588 (* 0.0272727 = 9.70581e-06 loss) | |
I0327 13:14:11.799008 21344 solver.cpp:245] Train net output #33: loss1/loss12 = 0.000502227 (* 0.0272727 = 1.36971e-05 loss) | |
I0327 13:14:11.799023 21344 solver.cpp:245] Train net output #34: loss1/loss13 = 0.000596347 (* 0.0272727 = 1.6264e-05 loss) | |
I0327 13:14:11.799037 21344 solver.cpp:245] Train net output #35: loss1/loss14 = 0.00039775 (* 0.0272727 = 1.08477e-05 loss) | |
I0327 13:14:11.799052 21344 solver.cpp:245] Train net output #36: loss1/loss15 = 0.00033497 (* 0.0272727 = 9.13555e-06 loss) | |
I0327 13:14:11.799067 21344 solver.cpp:245] Train net output #37: loss1/loss16 = 0.000628751 (* 0.0272727 = 1.71477e-05 loss) | |
I0327 13:14:11.799080 21344 solver.cpp:245] Train net output #38: loss1/loss17 = 0.000466541 (* 0.0272727 = 1.27239e-05 loss) | |
I0327 13:14:11.799115 21344 solver.cpp:245] Train net output #39: loss1/loss18 = 0.000421859 (* 0.0272727 = 1.15052e-05 loss) | |
I0327 13:14:11.799134 21344 solver.cpp:245] Train net output #40: loss1/loss19 = 0.000841586 (* 0.0272727 = 2.29523e-05 loss) | |
I0327 13:14:11.799147 21344 solver.cpp:245] Train net output #41: loss1/loss20 = 0.000540103 (* 0.0272727 = 1.47301e-05 loss) | |
I0327 13:14:11.799161 21344 solver.cpp:245] Train net output #42: loss1/loss21 = 0.00067345 (* 0.0272727 = 1.83668e-05 loss) | |
I0327 13:14:11.799175 21344 solver.cpp:245] Train net output #43: loss1/loss22 = 0.00061269 (* 0.0272727 = 1.67097e-05 loss) | |
I0327 13:14:11.799188 21344 solver.cpp:245] Train net output #44: loss2/accuracy01 = 0.125 | |
I0327 13:14:11.799201 21344 solver.cpp:245] Train net output #45: loss2/accuracy02 = 0.25 | |
I0327 13:14:11.799212 21344 solver.cpp:245] Train net output #46: loss2/accuracy03 = 0 | |
I0327 13:14:11.799223 21344 solver.cpp:245] Train net output #47: loss2/accuracy04 = 0 | |
I0327 13:14:11.799234 21344 solver.cpp:245] Train net output #48: loss2/accuracy05 = 0.125 | |
I0327 13:14:11.799247 21344 solver.cpp:245] Train net output #49: loss2/accuracy06 = 0.25 | |
I0327 13:14:11.799258 21344 solver.cpp:245] Train net output #50: loss2/accuracy07 = 0.5 | |
I0327 13:14:11.799270 21344 solver.cpp:245] Train net output #51: loss2/accuracy08 = 1 | |
I0327 13:14:11.799283 21344 solver.cpp:245] Train net output #52: loss2/accuracy09 = 1 | |
I0327 13:14:11.799293 21344 solver.cpp:245] Train net output #53: loss2/accuracy10 = 1 | |
I0327 13:14:11.799305 21344 solver.cpp:245] Train net output #54: loss2/accuracy11 = 1 | |
I0327 13:14:11.799316 21344 solver.cpp:245] Train net output #55: loss2/accuracy12 = 1 | |
I0327 13:14:11.799329 21344 solver.cpp:245] Train net output #56: loss2/accuracy13 = 1 | |
I0327 13:14:11.799340 21344 solver.cpp:245] Train net output #57: loss2/accuracy14 = 1 | |
I0327 13:14:11.799350 21344 solver.cpp:245] Train net output #58: loss2/accuracy15 = 1 | |
I0327 13:14:11.799362 21344 solver.cpp:245] Train net output #59: loss2/accuracy16 = 1 | |
I0327 13:14:11.799373 21344 solver.cpp:245] Train net output #60: loss2/accuracy17 = 1 | |
I0327 13:14:11.799384 21344 solver.cpp:245] Train net output #61: loss2/accuracy18 = 1 | |
I0327 13:14:11.799396 21344 solver.cpp:245] Train net output #62: loss2/accuracy19 = 1 | |
I0327 13:14:11.799407 21344 solver.cpp:245] Train net output #63: loss2/accuracy20 = 1 | |
I0327 13:14:11.799418 21344 solver.cpp:245] Train net output #64: loss2/accuracy21 = 1 | |
I0327 13:14:11.799430 21344 solver.cpp:245] Train net output #65: loss2/accuracy22 = 1 | |
I0327 13:14:11.799443 21344 solver.cpp:245] Train net output #66: loss2/loss01 = 3.91576 (* 0.0272727 = 0.106793 loss) | |
I0327 13:14:11.799458 21344 solver.cpp:245] Train net output #67: loss2/loss02 = 3.00101 (* 0.0272727 = 0.0818457 loss) | |
I0327 13:14:11.799473 21344 solver.cpp:245] Train net output #68: loss2/loss03 = 3.92244 (* 0.0272727 = 0.106976 loss) | |
I0327 13:14:11.799485 21344 solver.cpp:245] Train net output #69: loss2/loss04 = 3.14628 (* 0.0272727 = 0.0858077 loss) | |
I0327 13:14:11.799499 21344 solver.cpp:245] Train net output #70: loss2/loss05 = 3.37862 (* 0.0272727 = 0.0921442 loss) | |
I0327 13:14:11.799513 21344 solver.cpp:245] Train net output #71: loss2/loss06 = 2.41995 (* 0.0272727 = 0.0659987 loss) | |
I0327 13:14:11.799527 21344 solver.cpp:245] Train net output #72: loss2/loss07 = 2.39629 (* 0.0272727 = 0.0653535 loss) | |
I0327 13:14:11.799542 21344 solver.cpp:245] Train net output #73: loss2/loss08 = 0.087695 (* 0.0272727 = 0.00239168 loss) | |
I0327 13:14:11.799556 21344 solver.cpp:245] Train net output #74: loss2/loss09 = 0.0178261 (* 0.0272727 = 0.000486168 loss) | |
I0327 13:14:11.799571 21344 solver.cpp:245] Train net output #75: loss2/loss10 = 0.0058005 (* 0.0272727 = 0.000158196 loss) | |
I0327 13:14:11.799584 21344 solver.cpp:245] Train net output #76: loss2/loss11 = 0.000681343 (* 0.0272727 = 1.85821e-05 loss) | |
I0327 13:14:11.799610 21344 solver.cpp:245] Train net output #77: loss2/loss12 = 0.00306652 (* 0.0272727 = 8.36324e-05 loss) | |
I0327 13:14:11.799625 21344 solver.cpp:245] Train net output #78: loss2/loss13 = 0.00152871 (* 0.0272727 = 4.16921e-05 loss) | |
I0327 13:14:11.799639 21344 solver.cpp:245] Train net output #79: loss2/loss14 = 0.000828348 (* 0.0272727 = 2.25913e-05 loss) | |
I0327 13:14:11.799654 21344 solver.cpp:245] Train net output #80: loss2/loss15 = 0.00156974 (* 0.0272727 = 4.2811e-05 loss) | |
I0327 13:14:11.799669 21344 solver.cpp:245] Train net output #81: loss2/loss16 = 0.00210575 (* 0.0272727 = 5.74294e-05 loss) | |
I0327 13:14:11.799682 21344 solver.cpp:245] Train net output #82: loss2/loss17 = 0.000865708 (* 0.0272727 = 2.36102e-05 loss) | |
I0327 13:14:11.799696 21344 solver.cpp:245] Train net output #83: loss2/loss18 = 0.000934833 (* 0.0272727 = 2.54954e-05 loss) | |
I0327 13:14:11.799710 21344 solver.cpp:245] Train net output #84: loss2/loss19 = 0.000582904 (* 0.0272727 = 1.58974e-05 loss) | |
I0327 13:14:11.799724 21344 solver.cpp:245] Train net output #85: loss2/loss20 = 0.00448833 (* 0.0272727 = 0.000122409 loss) | |
I0327 13:14:11.799742 21344 solver.cpp:245] Train net output #86: loss2/loss21 = 0.000983311 (* 0.0272727 = 2.68176e-05 loss) | |
I0327 13:14:11.799757 21344 solver.cpp:245] Train net output #87: loss2/loss22 = 0.00140544 (* 0.0272727 = 3.83302e-05 loss) | |
I0327 13:14:11.799769 21344 solver.cpp:245] Train net output #88: loss3/accuracy01 = 0 | |
I0327 13:14:11.799782 21344 solver.cpp:245] Train net output #89: loss3/accuracy02 = 0.125 | |
I0327 13:14:11.799793 21344 solver.cpp:245] Train net output #90: loss3/accuracy03 = 0.125 | |
I0327 13:14:11.799805 21344 solver.cpp:245] Train net output #91: loss3/accuracy04 = 0 | |
I0327 13:14:11.799816 21344 solver.cpp:245] Train net output #92: loss3/accuracy05 = 0.125 | |
I0327 13:14:11.799829 21344 solver.cpp:245] Train net output #93: loss3/accuracy06 = 0.25 | |
I0327 13:14:11.799839 21344 solver.cpp:245] Train net output #94: loss3/accuracy07 = 0.5 | |
I0327 13:14:11.799851 21344 solver.cpp:245] Train net output #95: loss3/accuracy08 = 1 | |
I0327 13:14:11.799862 21344 solver.cpp:245] Train net output #96: loss3/accuracy09 = 1 | |
I0327 13:14:11.799873 21344 solver.cpp:245] Train net output #97: loss3/accuracy10 = 1 | |
I0327 13:14:11.799885 21344 solver.cpp:245] Train net output #98: loss3/accuracy11 = 1 | |
I0327 13:14:11.799896 21344 solver.cpp:245] Train net output #99: loss3/accuracy12 = 1 | |
I0327 13:14:11.799908 21344 solver.cpp:245] Train net output #100: loss3/accuracy13 = 1 | |
I0327 13:14:11.799919 21344 solver.cpp:245] Train net output #101: loss3/accuracy14 = 1 | |
I0327 13:14:11.799931 21344 solver.cpp:245] Train net output #102: loss3/accuracy15 = 1 | |
I0327 13:14:11.799942 21344 solver.cpp:245] Train net output #103: loss3/accuracy16 = 1 | |
I0327 13:14:11.799953 21344 solver.cpp:245] Train net output #104: loss3/accuracy17 = 1 | |
I0327 13:14:11.799965 21344 solver.cpp:245] Train net output #105: loss3/accuracy18 = 1 | |
I0327 13:14:11.799976 21344 solver.cpp:245] Train net output #106: loss3/accuracy19 = 1 | |
I0327 13:14:11.799988 21344 solver.cpp:245] Train net output #107: loss3/accuracy20 = 1 | |
I0327 13:14:11.799999 21344 solver.cpp:245] Train net output #108: loss3/accuracy21 = 1 | |
I0327 13:14:11.800010 21344 solver.cpp:245] Train net output #109: loss3/accuracy22 = 1 | |
I0327 13:14:11.800024 21344 solver.cpp:245] Train net output #110: loss3/loss01 = 3.6974 (* 0.0909091 = 0.336127 loss) | |
I0327 13:14:11.800037 21344 solver.cpp:245] Train net output #111: loss3/loss02 = 3.25519 (* 0.0909091 = 0.295926 loss) | |
I0327 13:14:11.800051 21344 solver.cpp:245] Train net output #112: loss3/loss03 = 3.65048 (* 0.0909091 = 0.331862 loss) | |
I0327 13:14:11.800065 21344 solver.cpp:245] Train net output #113: loss3/loss04 = 2.90651 (* 0.0909091 = 0.264228 loss) | |
I0327 13:14:11.800079 21344 solver.cpp:245] Train net output #114: loss3/loss05 = 3.40272 (* 0.0909091 = 0.309339 loss) | |
I0327 13:14:11.800092 21344 solver.cpp:245] Train net output #115: loss3/loss06 = 2.90681 (* 0.0909091 = 0.264256 loss) | |
I0327 13:14:11.800117 21344 solver.cpp:245] Train net output #116: loss3/loss07 = 2.48192 (* 0.0909091 = 0.225629 loss) | |
I0327 13:14:11.800133 21344 solver.cpp:245] Train net output #117: loss3/loss08 = 0.0355646 (* 0.0909091 = 0.00323315 loss) | |
I0327 13:14:11.800149 21344 solver.cpp:245] Train net output #118: loss3/loss09 = 0.00943913 (* 0.0909091 = 0.000858102 loss) | |
I0327 13:14:11.800165 21344 solver.cpp:245] Train net output #119: loss3/loss10 = 0.00447221 (* 0.0909091 = 0.000406565 loss) | |
I0327 13:14:11.800179 21344 solver.cpp:245] Train net output #120: loss3/loss11 = 0.000264679 (* 0.0909091 = 2.40617e-05 loss) | |
I0327 13:14:11.800194 21344 solver.cpp:245] Train net output #121: loss3/loss12 = 0.000382367 (* 0.0909091 = 3.47606e-05 loss) | |
I0327 13:14:11.800209 21344 solver.cpp:245] Train net output #122: loss3/loss13 = 0.000368802 (* 0.0909091 = 3.35275e-05 loss) | |
I0327 13:14:11.800222 21344 solver.cpp:245] Train net output #123: loss3/loss14 = 0.000432904 (* 0.0909091 = 3.93549e-05 loss) | |
I0327 13:14:11.800236 21344 solver.cpp:245] Train net output #124: loss3/loss15 = 0.000280475 (* 0.0909091 = 2.54977e-05 loss) | |
I0327 13:14:11.800251 21344 solver.cpp:245] Train net output #125: loss3/loss16 = 0.000300025 (* 0.0909091 = 2.7275e-05 loss) | |
I0327 13:14:11.800264 21344 solver.cpp:245] Train net output #126: loss3/loss17 = 0.000320006 (* 0.0909091 = 2.90914e-05 loss) | |
I0327 13:14:11.800278 21344 solver.cpp:245] Train net output #127: loss3/loss18 = 0.000301852 (* 0.0909091 = 2.74411e-05 loss) | |
I0327 13:14:11.800292 21344 solver.cpp:245] Train net output #128: loss3/loss19 = 0.000306895 (* 0.0909091 = 2.78995e-05 loss) | |
I0327 13:14:11.800303 21344 solver.cpp:245] Train net output #129: loss3/loss20 = 0.000286319 (* 0.0909091 = 2.6029e-05 loss) | |
I0327 13:14:11.800312 21344 solver.cpp:245] Train net output #130: loss3/loss21 = 0.00026479 (* 0.0909091 = 2.40718e-05 loss) | |
I0327 13:14:11.800326 21344 solver.cpp:245] Train net output #131: loss3/loss22 = 0.000298358 (* 0.0909091 = 2.71234e-05 loss) | |
I0327 13:14:11.800339 21344 solver.cpp:245] Train net output #132: total_accuracy = 0 | |
I0327 13:14:11.800350 21344 solver.cpp:245] Train net output #133: total_confidence = 1.2738e-05 | |
I0327 13:14:11.800364 21344 sgd_solver.cpp:106] Iteration 7500, lr = 0.01 | |
I0327 13:15:59.501698 21344 solver.cpp:229] Iteration 8000, loss = 2.9626 | |
I0327 13:15:59.501824 21344 solver.cpp:245] Train net output #0: loss1/accuracy01 = 0 | |
I0327 13:15:59.501844 21344 solver.cpp:245] Train net output #1: loss1/accuracy02 = 0 | |
I0327 13:15:59.501857 21344 solver.cpp:245] Train net output #2: loss1/accuracy03 = 0 | |
I0327 13:15:59.501868 21344 solver.cpp:245] Train net output #3: loss1/accuracy04 = 0.25 | |
I0327 13:15:59.501880 21344 solver.cpp:245] Train net output #4: loss1/accuracy05 = 0.5 | |
I0327 13:15:59.501893 21344 solver.cpp:245] Train net output #5: loss1/accuracy06 = 0.375 | |
I0327 13:15:59.501905 21344 solver.cpp:245] Train net output #6: loss1/accuracy07 = 0.625 | |
I0327 13:15:59.501917 21344 solver.cpp:245] Train net output #7: loss1/accuracy08 = 0.625 | |
I0327 13:15:59.501929 21344 solver.cpp:245] Train net output #8: loss1/accuracy09 = 1 | |
I0327 13:15:59.501941 21344 solver.cpp:245] Train net output #9: loss1/accuracy10 = 1 | |
I0327 13:15:59.501952 21344 solver.cpp:245] Train net output #10: loss1/accuracy11 = 1 | |
I0327 13:15:59.501965 21344 solver.cpp:245] Train net output #11: loss1/accuracy12 = 1 | |
I0327 13:15:59.501976 21344 solver.cpp:245] Train net output #12: loss1/accuracy13 = 1 | |
I0327 13:15:59.501987 21344 solver.cpp:245] Train net output #13: loss1/accuracy14 = 1 | |
I0327 13:15:59.502002 21344 solver.cpp:245] Train net output #14: loss1/accuracy15 = 1 | |
I0327 13:15:59.502013 21344 solver.cpp:245] Train net output #15: loss1/accuracy16 = 1 | |
I0327 13:15:59.502025 21344 solver.cpp:245] Train net output #16: loss1/accuracy17 = 1 | |
I0327 13:15:59.502037 21344 solver.cpp:245] Train net output #17: loss1/accuracy18 = 1 | |
I0327 13:15:59.502048 21344 solver.cpp:245] Train net output #18: loss1/accuracy19 = 1 | |
I0327 13:15:59.502059 21344 solver.cpp:245] Train net output #19: loss1/accuracy20 = 1 | |
I0327 13:15:59.502071 21344 solver.cpp:245] Train net output #20: loss1/accuracy21 = 1 | |
I0327 13:15:59.502082 21344 solver.cpp:245] Train net output #21: loss1/accuracy22 = 1 | |
I0327 13:15:59.502099 21344 solver.cpp:245] Train net output #22: loss1/loss01 = 3.2 (* 0.0272727 = 0.0872727 loss) | |
I0327 13:15:59.502115 21344 solver.cpp:245] Train net output #23: loss1/loss02 = 3.40688 (* 0.0272727 = 0.092915 loss) | |
I0327 13:15:59.502128 21344 solver.cpp:245] Train net output #24: loss1/loss03 = 3.3142 (* 0.0272727 = 0.0903872 loss) | |
I0327 13:15:59.502142 21344 solver.cpp:245] Train net output #25: loss1/loss04 = 2.98707 (* 0.0272727 = 0.0814655 loss) | |
I0327 13:15:59.502156 21344 solver.cpp:245] Train net output #26: loss1/loss05 = 2.5296 (* 0.0272727 = 0.068989 loss) | |
I0327 13:15:59.502171 21344 solver.cpp:245] Train net output #27: loss1/loss06 = 2.55308 (* 0.0272727 = 0.0696295 loss) | |
I0327 13:15:59.502184 21344 solver.cpp:245] Train net output #28: loss1/loss07 = 1.0702 (* 0.0272727 = 0.0291872 loss) | |
I0327 13:15:59.502198 21344 solver.cpp:245] Train net output #29: loss1/loss08 = 1.31716 (* 0.0272727 = 0.0359226 loss) | |
I0327 13:15:59.502213 21344 solver.cpp:245] Train net output #30: loss1/loss09 = 0.0580067 (* 0.0272727 = 0.001582 loss) | |
I0327 13:15:59.502226 21344 solver.cpp:245] Train net output #31: loss1/loss10 = 0.010492 (* 0.0272727 = 0.000286144 loss) | |
I0327 13:15:59.502241 21344 solver.cpp:245] Train net output #32: loss1/loss11 = 0.00060395 (* 0.0272727 = 1.64714e-05 loss) | |
I0327 13:15:59.502255 21344 solver.cpp:245] Train net output #33: loss1/loss12 = 0.000335345 (* 0.0272727 = 9.14577e-06 loss) | |
I0327 13:15:59.502269 21344 solver.cpp:245] Train net output #34: loss1/loss13 = 0.00104325 (* 0.0272727 = 2.84522e-05 loss) | |
I0327 13:15:59.502284 21344 solver.cpp:245] Train net output #35: loss1/loss14 = 0.00041991 (* 0.0272727 = 1.14521e-05 loss) | |
I0327 13:15:59.502298 21344 solver.cpp:245] Train net output #36: loss1/loss15 = 0.000163857 (* 0.0272727 = 4.46882e-06 loss) | |
I0327 13:15:59.502312 21344 solver.cpp:245] Train net output #37: loss1/loss16 = 0.000839414 (* 0.0272727 = 2.28931e-05 loss) | |
I0327 13:15:59.502326 21344 solver.cpp:245] Train net output #38: loss1/loss17 = 0.00103025 (* 0.0272727 = 2.80977e-05 loss) | |
I0327 13:15:59.502357 21344 solver.cpp:245] Train net output #39: loss1/loss18 = 0.00055113 (* 0.0272727 = 1.50308e-05 loss) | |
I0327 13:15:59.502373 21344 solver.cpp:245] Train net output #40: loss1/loss19 = 0.000508672 (* 0.0272727 = 1.38729e-05 loss) | |
I0327 13:15:59.502388 21344 solver.cpp:245] Train net output #41: loss1/loss20 = 0.00019016 (* 0.0272727 = 5.18619e-06 loss) | |
I0327 13:15:59.502401 21344 solver.cpp:245] Train net output #42: loss1/loss21 = 0.000437609 (* 0.0272727 = 1.19348e-05 loss) | |
I0327 13:15:59.502415 21344 solver.cpp:245] Train net output #43: loss1/loss22 = 0.000400364 (* 0.0272727 = 1.0919e-05 loss) | |
I0327 13:15:59.502429 21344 solver.cpp:245] Train net output #44: loss2/accuracy01 = 0.375 | |
I0327 13:15:59.502440 21344 solver.cpp:245] Train net output #45: loss2/accuracy02 = 0.125 | |
I0327 13:15:59.502452 21344 solver.cpp:245] Train net output #46: loss2/accuracy03 = 0 | |
I0327 13:15:59.502465 21344 solver.cpp:245] Train net output #47: loss2/accuracy04 = 0.125 | |
I0327 13:15:59.502475 21344 solver.cpp:245] Train net output #48: loss2/accuracy05 = 0.375 | |
I0327 13:15:59.502487 21344 solver.cpp:245] Train net output #49: loss2/accuracy06 = 0.375 | |
I0327 13:15:59.502499 21344 solver.cpp:245] Train net output #50: loss2/accuracy07 = 0.625 | |
I0327 13:15:59.502511 21344 solver.cpp:245] Train net output #51: loss2/accuracy08 = 0.625 | |
I0327 13:15:59.502523 21344 solver.cpp:245] Train net output #52: loss2/accuracy09 = 1 | |
I0327 13:15:59.502534 21344 solver.cpp:245] Train net output #53: loss2/accuracy10 = 1 | |
I0327 13:15:59.502545 21344 solver.cpp:245] Train net output #54: loss2/accuracy11 = 1 | |
I0327 13:15:59.502557 21344 solver.cpp:245] Train net output #55: loss2/accuracy12 = 1 | |
I0327 13:15:59.502568 21344 solver.cpp:245] Train net output #56: loss2/accuracy13 = 1 | |
I0327 13:15:59.502580 21344 solver.cpp:245] Train net output #57: loss2/accuracy14 = 1 | |
I0327 13:15:59.502591 21344 solver.cpp:245] Train net output #58: loss2/accuracy15 = 1 | |
I0327 13:15:59.502602 21344 solver.cpp:245] Train net output #59: loss2/accuracy16 = 1 | |
I0327 13:15:59.502614 21344 solver.cpp:245] Train net output #60: loss2/accuracy17 = 1 | |
I0327 13:15:59.502625 21344 solver.cpp:245] Train net output #61: loss2/accuracy18 = 1 | |
I0327 13:15:59.502636 21344 solver.cpp:245] Train net output #62: loss2/accuracy19 = 1 | |
I0327 13:15:59.502648 21344 solver.cpp:245] Train net output #63: loss2/accuracy20 = 1 | |
I0327 13:15:59.502660 21344 solver.cpp:245] Train net output #64: loss2/accuracy21 = 1 | |
I0327 13:15:59.502672 21344 solver.cpp:245] Train net output #65: loss2/accuracy22 = 1 | |
I0327 13:15:59.502682 21344 solver.cpp:245] Train net output #66: loss2/loss01 = 2.62645 (* 0.0272727 = 0.0716303 loss) | |
I0327 13:15:59.502697 21344 solver.cpp:245] Train net output #67: loss2/loss02 = 3.29527 (* 0.0272727 = 0.0898709 loss) | |
I0327 13:15:59.502712 21344 solver.cpp:245] Train net output #68: loss2/loss03 = 3.57205 (* 0.0272727 = 0.0974196 loss) | |
I0327 13:15:59.502725 21344 solver.cpp:245] Train net output #69: loss2/loss04 = 2.97141 (* 0.0272727 = 0.0810384 loss) | |
I0327 13:15:59.502739 21344 solver.cpp:245] Train net output #70: loss2/loss05 = 2.99819 (* 0.0272727 = 0.0817688 loss) | |
I0327 13:15:59.502753 21344 solver.cpp:245] Train net output #71: loss2/loss06 = 2.03614 (* 0.0272727 = 0.0555312 loss) | |
I0327 13:15:59.502768 21344 solver.cpp:245] Train net output #72: loss2/loss07 = 1.12381 (* 0.0272727 = 0.0306495 loss) | |
I0327 13:15:59.502781 21344 solver.cpp:245] Train net output #73: loss2/loss08 = 1.50142 (* 0.0272727 = 0.0409478 loss) | |
I0327 13:15:59.502795 21344 solver.cpp:245] Train net output #74: loss2/loss09 = 0.0984372 (* 0.0272727 = 0.00268465 loss) | |
I0327 13:15:59.502810 21344 solver.cpp:245] Train net output #75: loss2/loss10 = 0.021894 (* 0.0272727 = 0.000597109 loss) | |
I0327 13:15:59.502823 21344 solver.cpp:245] Train net output #76: loss2/loss11 = 0.00681194 (* 0.0272727 = 0.00018578 loss) | |
I0327 13:15:59.502852 21344 solver.cpp:245] Train net output #77: loss2/loss12 = 0.00220393 (* 0.0272727 = 6.01072e-05 loss) | |
I0327 13:15:59.502868 21344 solver.cpp:245] Train net output #78: loss2/loss13 = 0.00175545 (* 0.0272727 = 4.78759e-05 loss) | |
I0327 13:15:59.502882 21344 solver.cpp:245] Train net output #79: loss2/loss14 = 0.00171909 (* 0.0272727 = 4.68844e-05 loss) | |
I0327 13:15:59.502897 21344 solver.cpp:245] Train net output #80: loss2/loss15 = 0.00216933 (* 0.0272727 = 5.91634e-05 loss) | |
I0327 13:15:59.502910 21344 solver.cpp:245] Train net output #81: loss2/loss16 = 0.00171785 (* 0.0272727 = 4.68506e-05 loss) | |
I0327 13:15:59.502924 21344 solver.cpp:245] Train net output #82: loss2/loss17 = 0.00634818 (* 0.0272727 = 0.000173132 loss) | |
I0327 13:15:59.502938 21344 solver.cpp:245] Train net output #83: loss2/loss18 = 0.0042154 (* 0.0272727 = 0.000114966 loss) | |
I0327 13:15:59.502953 21344 solver.cpp:245] Train net output #84: loss2/loss19 = 0.00506086 (* 0.0272727 = 0.000138023 loss) | |
I0327 13:15:59.502966 21344 solver.cpp:245] Train net output #85: loss2/loss20 = 0.00600878 (* 0.0272727 = 0.000163876 loss) | |
I0327 13:15:59.502980 21344 solver.cpp:245] Train net output #86: loss2/loss21 = 0.00400268 (* 0.0272727 = 0.000109164 loss) | |
I0327 13:15:59.502995 21344 solver.cpp:245] Train net output #87: loss2/loss22 = 0.00287317 (* 0.0272727 = 7.83591e-05 loss) | |
I0327 13:15:59.503006 21344 solver.cpp:245] Train net output #88: loss3/accuracy01 = 0.375 | |
I0327 13:15:59.503018 21344 solver.cpp:245] Train net output #89: loss3/accuracy02 = 0 | |
I0327 13:15:59.503031 21344 solver.cpp:245] Train net output #90: loss3/accuracy03 = 0 | |
I0327 13:15:59.503043 21344 solver.cpp:245] Train net output #91: loss3/accuracy04 = 0.125 | |
I0327 13:15:59.503057 21344 solver.cpp:245] Train net output #92: loss3/accuracy05 = 0.375 | |
I0327 13:15:59.503068 21344 solver.cpp:245] Train net output #93: loss3/accuracy06 = 0.375 | |
I0327 13:15:59.503079 21344 solver.cpp:245] Train net output #94: loss3/accuracy07 = 0.625 | |
I0327 13:15:59.503092 21344 solver.cpp:245] Train net output #95: loss3/accuracy08 = 0.625 | |
I0327 13:15:59.503103 21344 solver.cpp:245] Train net output #96: loss3/accuracy09 = 1 | |
I0327 13:15:59.503113 21344 solver.cpp:245] Train net output #97: loss3/accuracy10 = 1 | |
I0327 13:15:59.503125 21344 solver.cpp:245] Train net output #98: loss3/accuracy11 = 1 | |
I0327 13:15:59.503136 21344 solver.cpp:245] Train net output #99: loss3/accuracy12 = 1 | |
I0327 13:15:59.503147 21344 solver.cpp:245] Train net output #100: loss3/accuracy13 = 1 | |
I0327 13:15:59.503159 21344 solver.cpp:245] Train net output #101: loss3/accuracy14 = 1 | |
I0327 13:15:59.503170 21344 solver.cpp:245] Train net output #102: loss3/accuracy15 = 1 | |
I0327 13:15:59.503181 21344 solver.cpp:245] Train net output #103: loss3/accuracy16 = 1 | |
I0327 13:15:59.503193 21344 solver.cpp:245] Train net output #104: loss3/accuracy17 = 1 | |
I0327 13:15:59.503204 21344 solver.cpp:245] Train net output #105: loss3/accuracy18 = 1 | |
I0327 13:15:59.503216 21344 solver.cpp:245] Train net output #106: loss3/accuracy19 = 1 | |
I0327 13:15:59.503227 21344 solver.cpp:245] Train net output #107: loss3/accuracy20 = 1 | |
I0327 13:15:59.503239 21344 solver.cpp:245] Train net output #108: loss3/accuracy21 = 1 | |
I0327 13:15:59.503250 21344 solver.cpp:245] Train net output #109: loss3/accuracy22 = 1 | |
I0327 13:15:59.503264 21344 solver.cpp:245] Train net output #110: loss3/loss01 = 2.40537 (* 0.0909091 = 0.21867 loss) | |
I0327 13:15:59.503278 21344 solver.cpp:245] Train net output #111: loss3/loss02 = 3.07477 (* 0.0909091 = 0.279525 loss) | |
I0327 13:15:59.503293 21344 solver.cpp:245] Train net output #112: loss3/loss03 = 3.08952 (* 0.0909091 = 0.280866 loss) | |
I0327 13:15:59.503306 21344 solver.cpp:245] Train net output #113: loss3/loss04 = 2.76849 (* 0.0909091 = 0.251681 loss) | |
I0327 13:15:59.503320 21344 solver.cpp:245] Train net output #114: loss3/loss05 = 2.66367 (* 0.0909091 = 0.242152 loss) | |
I0327 13:15:59.503334 21344 solver.cpp:245] Train net output #115: loss3/loss06 = 2.39076 (* 0.0909091 = 0.217342 loss) | |
I0327 13:15:59.503358 21344 solver.cpp:245] Train net output #116: loss3/loss07 = 1.45448 (* 0.0909091 = 0.132225 loss) | |
I0327 13:15:59.503373 21344 solver.cpp:245] Train net output #117: loss3/loss08 = 1.4333 (* 0.0909091 = 0.1303 loss) | |
I0327 13:15:59.503387 21344 solver.cpp:245] Train net output #118: loss3/loss09 = 0.0782209 (* 0.0909091 = 0.00711099 loss) | |
I0327 13:15:59.503401 21344 solver.cpp:245] Train net output #119: loss3/loss10 = 0.0184846 (* 0.0909091 = 0.00168042 loss) | |
I0327 13:15:59.503415 21344 solver.cpp:245] Train net output #120: loss3/loss11 = 0.000256597 (* 0.0909091 = 2.3327e-05 loss) | |
I0327 13:15:59.503430 21344 solver.cpp:245] Train net output #121: loss3/loss12 = 0.000260605 (* 0.0909091 = 2.36914e-05 loss) | |
I0327 13:15:59.503445 21344 solver.cpp:245] Train net output #122: loss3/loss13 = 0.000226915 (* 0.0909091 = 2.06286e-05 loss) | |
I0327 13:15:59.503459 21344 solver.cpp:245] Train net output #123: loss3/loss14 = 0.000330862 (* 0.0909091 = 3.00784e-05 loss) | |
I0327 13:15:59.503473 21344 solver.cpp:245] Train net output #124: loss3/loss15 = 0.000314136 (* 0.0909091 = 2.85578e-05 loss) | |
I0327 13:15:59.503487 21344 solver.cpp:245] Train net output #125: loss3/loss16 = 0.000258559 (* 0.0909091 = 2.35053e-05 loss) | |
I0327 13:15:59.503501 21344 solver.cpp:245] Train net output #126: loss3/loss17 = 0.000239655 (* 0.0909091 = 2.17868e-05 loss) | |
I0327 13:15:59.503515 21344 solver.cpp:245] Train net output #127: loss3/loss18 = 0.000260576 (* 0.0909091 = 2.36887e-05 loss) | |
I0327 13:15:59.503530 21344 solver.cpp:245] Train net output #128: loss3/loss19 = 0.000276715 (* 0.0909091 = 2.51559e-05 loss) | |
I0327 13:15:59.503545 21344 solver.cpp:245] Train net output #129: loss3/loss20 = 0.000201839 (* 0.0909091 = 1.8349e-05 loss) | |
I0327 13:15:59.503558 21344 solver.cpp:245] Train net output #130: loss3/loss21 = 0.000235932 (* 0.0909091 = 2.14484e-05 loss) | |
I0327 13:15:59.503572 21344 solver.cpp:245] Train net output #131: loss3/loss22 = 0.000267115 (* 0.0909091 = 2.42832e-05 loss) | |
I0327 13:15:59.503585 21344 solver.cpp:245] Train net output #132: total_accuracy = 0 | |
I0327 13:15:59.503597 21344 solver.cpp:245] Train net output #133: total_confidence = 0.000555632 | |
I0327 13:15:59.503609 21344 sgd_solver.cpp:106] Iteration 8000, lr = 0.01 | |
I0327 13:17:47.988759 21344 solver.cpp:229] Iteration 8500, loss = 2.96114 | |
I0327 13:17:47.988929 21344 solver.cpp:245] Train net output #0: loss1/accuracy01 = 0.125 | |
I0327 13:17:47.988950 21344 solver.cpp:245] Train net output #1: loss1/accuracy02 = 0.125 | |
I0327 13:17:47.988963 21344 solver.cpp:245] Train net output #2: loss1/accuracy03 = 0.125 | |
I0327 13:17:47.988976 21344 solver.cpp:245] Train net output #3: loss1/accuracy04 = 0 | |
I0327 13:17:47.988987 21344 solver.cpp:245] Train net output #4: loss1/accuracy05 = 0 | |
I0327 13:17:47.989002 21344 solver.cpp:245] Train net output #5: loss1/accuracy06 = 0.25 | |
I0327 13:17:47.989014 21344 solver.cpp:245] Train net output #6: loss1/accuracy07 = 0.875 | |
I0327 13:17:47.989027 21344 solver.cpp:245] Train net output #7: loss1/accuracy08 = 0.875 | |
I0327 13:17:47.989039 21344 solver.cpp:245] Train net output #8: loss1/accuracy09 = 0.875 | |
I0327 13:17:47.989053 21344 solver.cpp:245] Train net output #9: loss1/accuracy10 = 1 | |
I0327 13:17:47.989063 21344 solver.cpp:245] Train net output #10: loss1/accuracy11 = 1 | |
I0327 13:17:47.989075 21344 solver.cpp:245] Train net output #11: loss1/accuracy12 = 1 | |
I0327 13:17:47.989086 21344 solver.cpp:245] Train net output #12: loss1/accuracy13 = 1 | |
I0327 13:17:47.989099 21344 solver.cpp:245] Train net output #13: loss1/accuracy14 = 1 | |
I0327 13:17:47.989110 21344 solver.cpp:245] Train net output #14: loss1/accuracy15 = 1 | |
I0327 13:17:47.989121 21344 solver.cpp:245] Train net output #15: loss1/accuracy16 = 1 | |
I0327 13:17:47.989133 21344 solver.cpp:245] Train net output #16: loss1/accuracy17 = 1 | |
I0327 13:17:47.989145 21344 solver.cpp:245] Train net output #17: loss1/accuracy18 = 1 | |
I0327 13:17:47.989156 21344 solver.cpp:245] Train net output #18: loss1/accuracy19 = 1 | |
I0327 13:17:47.989168 21344 solver.cpp:245] Train net output #19: loss1/accuracy20 = 1 | |
I0327 13:17:47.989179 21344 solver.cpp:245] Train net output #20: loss1/accuracy21 = 1 | |
I0327 13:17:47.989192 21344 solver.cpp:245] Train net output #21: loss1/accuracy22 = 1 | |
I0327 13:17:47.989207 21344 solver.cpp:245] Train net output #22: loss1/loss01 = 3.28561 (* 0.0272727 = 0.0896075 loss) | |
I0327 13:17:47.989223 21344 solver.cpp:245] Train net output #23: loss1/loss02 = 3.77646 (* 0.0272727 = 0.102994 loss) | |
I0327 13:17:47.989236 21344 solver.cpp:245] Train net output #24: loss1/loss03 = 3.65026 (* 0.0272727 = 0.0995524 loss) | |
I0327 13:17:47.989250 21344 solver.cpp:245] Train net output #25: loss1/loss04 = 3.75427 (* 0.0272727 = 0.102389 loss) | |
I0327 13:17:47.989264 21344 solver.cpp:245] Train net output #26: loss1/loss05 = 4.20232 (* 0.0272727 = 0.114609 loss) | |
I0327 13:17:47.989279 21344 solver.cpp:245] Train net output #27: loss1/loss06 = 2.64007 (* 0.0272727 = 0.0720018 loss) | |
I0327 13:17:47.989292 21344 solver.cpp:245] Train net output #28: loss1/loss07 = 0.446614 (* 0.0272727 = 0.0121804 loss) | |
I0327 13:17:47.989306 21344 solver.cpp:245] Train net output #29: loss1/loss08 = 0.658225 (* 0.0272727 = 0.0179516 loss) | |
I0327 13:17:47.989320 21344 solver.cpp:245] Train net output #30: loss1/loss09 = 0.614895 (* 0.0272727 = 0.0167699 loss) | |
I0327 13:17:47.989336 21344 solver.cpp:245] Train net output #31: loss1/loss10 = 0.0719653 (* 0.0272727 = 0.00196269 loss) | |
I0327 13:17:47.989351 21344 solver.cpp:245] Train net output #32: loss1/loss11 = 0.00293431 (* 0.0272727 = 8.00266e-05 loss) | |
I0327 13:17:47.989365 21344 solver.cpp:245] Train net output #33: loss1/loss12 = 0.000894456 (* 0.0272727 = 2.43943e-05 loss) | |
I0327 13:17:47.989379 21344 solver.cpp:245] Train net output #34: loss1/loss13 = 0.00139224 (* 0.0272727 = 3.79702e-05 loss) | |
I0327 13:17:47.989394 21344 solver.cpp:245] Train net output #35: loss1/loss14 = 0.0014869 (* 0.0272727 = 4.05517e-05 loss) | |
I0327 13:17:47.989408 21344 solver.cpp:245] Train net output #36: loss1/loss15 = 0.00184582 (* 0.0272727 = 5.03406e-05 loss) | |
I0327 13:17:47.989423 21344 solver.cpp:245] Train net output #37: loss1/loss16 = 0.00266303 (* 0.0272727 = 7.2628e-05 loss) | |
I0327 13:17:47.989436 21344 solver.cpp:245] Train net output #38: loss1/loss17 = 0.00172552 (* 0.0272727 = 4.70597e-05 loss) | |
I0327 13:17:47.989464 21344 solver.cpp:245] Train net output #39: loss1/loss18 = 0.000739587 (* 0.0272727 = 2.01706e-05 loss) | |
I0327 13:17:47.989480 21344 solver.cpp:245] Train net output #40: loss1/loss19 = 0.00146764 (* 0.0272727 = 4.00267e-05 loss) | |
I0327 13:17:47.989498 21344 solver.cpp:245] Train net output #41: loss1/loss20 = 0.00278096 (* 0.0272727 = 7.58444e-05 loss) | |
I0327 13:17:47.989513 21344 solver.cpp:245] Train net output #42: loss1/loss21 = 0.00219936 (* 0.0272727 = 5.99826e-05 loss) | |
I0327 13:17:47.989527 21344 solver.cpp:245] Train net output #43: loss1/loss22 = 0.00144267 (* 0.0272727 = 3.93455e-05 loss) | |
I0327 13:17:47.989552 21344 solver.cpp:245] Train net output #44: loss2/accuracy01 = 0.125 | |
I0327 13:17:47.989567 21344 solver.cpp:245] Train net output #45: loss2/accuracy02 = 0 | |
I0327 13:17:47.989579 21344 solver.cpp:245] Train net output #46: loss2/accuracy03 = 0 | |
I0327 13:17:47.989590 21344 solver.cpp:245] Train net output #47: loss2/accuracy04 = 0.125 | |
I0327 13:17:47.989603 21344 solver.cpp:245] Train net output #48: loss2/accuracy05 = 0 | |
I0327 13:17:47.989614 21344 solver.cpp:245] Train net output #49: loss2/accuracy06 = 0.25 | |
I0327 13:17:47.989625 21344 solver.cpp:245] Train net output #50: loss2/accuracy07 = 0.875 | |
I0327 13:17:47.989637 21344 solver.cpp:245] Train net output #51: loss2/accuracy08 = 0.875 | |
I0327 13:17:47.989650 21344 solver.cpp:245] Train net output #52: loss2/accuracy09 = 0.875 | |
I0327 13:17:47.989661 21344 solver.cpp:245] Train net output #53: loss2/accuracy10 = 1 | |
I0327 13:17:47.989673 21344 solver.cpp:245] Train net output #54: loss2/accuracy11 = 1 | |
I0327 13:17:47.989684 21344 solver.cpp:245] Train net output #55: loss2/accuracy12 = 1 | |
I0327 13:17:47.989696 21344 solver.cpp:245] Train net output #56: loss2/accuracy13 = 1 | |
I0327 13:17:47.989707 21344 solver.cpp:245] Train net output #57: loss2/accuracy14 = 1 | |
I0327 13:17:47.989718 21344 solver.cpp:245] Train net output #58: loss2/accuracy15 = 1 | |
I0327 13:17:47.989729 21344 solver.cpp:245] Train net output #59: loss2/accuracy16 = 1 | |
I0327 13:17:47.989742 21344 solver.cpp:245] Train net output #60: loss2/accuracy17 = 1 | |
I0327 13:17:47.989753 21344 solver.cpp:245] Train net output #61: loss2/accuracy18 = 1 | |
I0327 13:17:47.989763 21344 solver.cpp:245] Train net output #62: loss2/accuracy19 = 1 | |
I0327 13:17:47.989775 21344 solver.cpp:245] Train net output #63: loss2/accuracy20 = 1 | |
I0327 13:17:47.989786 21344 solver.cpp:245] Train net output #64: loss2/accuracy21 = 1 | |
I0327 13:17:47.989799 21344 solver.cpp:245] Train net output #65: loss2/accuracy22 = 1 | |
I0327 13:17:47.989811 21344 solver.cpp:245] Train net output #66: loss2/loss01 = 3.49715 (* 0.0272727 = 0.0953768 loss) | |
I0327 13:17:47.989825 21344 solver.cpp:245] Train net output #67: loss2/loss02 = 3.68211 (* 0.0272727 = 0.100421 loss) | |
I0327 13:17:47.989840 21344 solver.cpp:245] Train net output #68: loss2/loss03 = 3.73273 (* 0.0272727 = 0.101802 loss) | |
I0327 13:17:47.989855 21344 solver.cpp:245] Train net output #69: loss2/loss04 = 3.97417 (* 0.0272727 = 0.108386 loss) | |
I0327 13:17:47.989868 21344 solver.cpp:245] Train net output #70: loss2/loss05 = 4.46979 (* 0.0272727 = 0.121903 loss) | |
I0327 13:17:47.989881 21344 solver.cpp:245] Train net output #71: loss2/loss06 = 3.17338 (* 0.0272727 = 0.0865466 loss) | |
I0327 13:17:47.989895 21344 solver.cpp:245] Train net output #72: loss2/loss07 = 0.661313 (* 0.0272727 = 0.0180358 loss) | |
I0327 13:17:47.989909 21344 solver.cpp:245] Train net output #73: loss2/loss08 = 0.576491 (* 0.0272727 = 0.0157225 loss) | |
I0327 13:17:47.989923 21344 solver.cpp:245] Train net output #74: loss2/loss09 = 0.639776 (* 0.0272727 = 0.0174484 loss) | |
I0327 13:17:47.989943 21344 solver.cpp:245] Train net output #75: loss2/loss10 = 0.0152686 (* 0.0272727 = 0.000416416 loss) | |
I0327 13:17:47.989956 21344 solver.cpp:245] Train net output #76: loss2/loss11 = 0.000524852 (* 0.0272727 = 1.43141e-05 loss) | |
I0327 13:17:47.989984 21344 solver.cpp:245] Train net output #77: loss2/loss12 = 0.000361857 (* 0.0272727 = 9.86882e-06 loss) | |
I0327 13:17:47.989998 21344 solver.cpp:245] Train net output #78: loss2/loss13 = 0.000459113 (* 0.0272727 = 1.25213e-05 loss) | |
I0327 13:17:47.990012 21344 solver.cpp:245] Train net output #79: loss2/loss14 = 0.000526396 (* 0.0272727 = 1.43563e-05 loss) | |
I0327 13:17:47.990026 21344 solver.cpp:245] Train net output #80: loss2/loss15 = 0.000540065 (* 0.0272727 = 1.4729e-05 loss) | |
I0327 13:17:47.990043 21344 solver.cpp:245] Train net output #81: loss2/loss16 = 0.000403885 (* 0.0272727 = 1.1015e-05 loss) | |
I0327 13:17:47.990058 21344 solver.cpp:245] Train net output #82: loss2/loss17 = 0.000418817 (* 0.0272727 = 1.14223e-05 loss) | |
I0327 13:17:47.990073 21344 solver.cpp:245] Train net output #83: loss2/loss18 = 0.000279494 (* 0.0272727 = 7.62256e-06 loss) | |
I0327 13:17:47.990087 21344 solver.cpp:245] Train net output #84: loss2/loss19 = 0.000704126 (* 0.0272727 = 1.92034e-05 loss) | |
I0327 13:17:47.990103 21344 solver.cpp:245] Train net output #85: loss2/loss20 = 0.000472449 (* 0.0272727 = 1.2885e-05 loss) | |
I0327 13:17:47.990116 21344 solver.cpp:245] Train net output #86: loss2/loss21 = 0.000318359 (* 0.0272727 = 8.68252e-06 loss) | |
I0327 13:17:47.990130 21344 solver.cpp:245] Train net output #87: loss2/loss22 = 0.000445853 (* 0.0272727 = 1.21596e-05 loss) | |
I0327 13:17:47.990142 21344 solver.cpp:245] Train net output #88: loss3/accuracy01 = 0.125 | |
I0327 13:17:47.990154 21344 solver.cpp:245] Train net output #89: loss3/accuracy02 = 0.125 | |
I0327 13:17:47.990166 21344 solver.cpp:245] Train net output #90: loss3/accuracy03 = 0.125 | |
I0327 13:17:47.990178 21344 solver.cpp:245] Train net output #91: loss3/accuracy04 = 0.125 | |
I0327 13:17:47.990190 21344 solver.cpp:245] Train net output #92: loss3/accuracy05 = 0 | |
I0327 13:17:47.990201 21344 solver.cpp:245] Train net output #93: loss3/accuracy06 = 0.25 | |
I0327 13:17:47.990213 21344 solver.cpp:245] Train net output #94: loss3/accuracy07 = 0.875 | |
I0327 13:17:47.990224 21344 solver.cpp:245] Train net output #95: loss3/accuracy08 = 0.875 | |
I0327 13:17:47.990236 21344 solver.cpp:245] Train net output #96: loss3/accuracy09 = 0.875 | |
I0327 13:17:47.990247 21344 solver.cpp:245] Train net output #97: loss3/accuracy10 = 1 | |
I0327 13:17:47.990259 21344 solver.cpp:245] Train net output #98: loss3/accuracy11 = 1 | |
I0327 13:17:47.990270 21344 solver.cpp:245] Train net output #99: loss3/accuracy12 = 1 | |
I0327 13:17:47.990278 21344 solver.cpp:245] Train net output #100: loss3/accuracy13 = 1 | |
I0327 13:17:47.990286 21344 solver.cpp:245] Train net output #101: loss3/accuracy14 = 1 | |
I0327 13:17:47.990298 21344 solver.cpp:245] Train net output #102: loss3/accuracy15 = 1 | |
I0327 13:17:47.990309 21344 solver.cpp:245] Train net output #103: loss3/accuracy16 = 1 | |
I0327 13:17:47.990321 21344 solver.cpp:245] Train net output #104: loss3/accuracy17 = 1 | |
I0327 13:17:47.990334 21344 solver.cpp:245] Train net output #105: loss3/accuracy18 = 1 | |
I0327 13:17:47.990345 21344 solver.cpp:245] Train net output #106: loss3/accuracy19 = 1 | |
I0327 13:17:47.990355 21344 solver.cpp:245] Train net output #107: loss3/accuracy20 = 1 | |
I0327 13:17:47.990367 21344 solver.cpp:245] Train net output #108: loss3/accuracy21 = 1 | |
I0327 13:17:47.990378 21344 solver.cpp:245] Train net output #109: loss3/accuracy22 = 1 | |
I0327 13:17:47.990391 21344 solver.cpp:245] Train net output #110: loss3/loss01 = 3.2581 (* 0.0909091 = 0.296191 loss) | |
I0327 13:17:47.990406 21344 solver.cpp:245] Train net output #111: loss3/loss02 = 3.44537 (* 0.0909091 = 0.313215 loss) | |
I0327 13:17:47.990419 21344 solver.cpp:245] Train net output #112: loss3/loss03 = 3.435 (* 0.0909091 = 0.312273 loss) | |
I0327 13:17:47.990433 21344 solver.cpp:245] Train net output #113: loss3/loss04 = 3.4147 (* 0.0909091 = 0.310427 loss) | |
I0327 13:17:47.990447 21344 solver.cpp:245] Train net output #114: loss3/loss05 = 3.81033 (* 0.0909091 = 0.346394 loss) | |
I0327 13:17:47.990471 21344 solver.cpp:245] Train net output #115: loss3/loss06 = 2.94949 (* 0.0909091 = 0.268136 loss) | |
I0327 13:17:47.990486 21344 solver.cpp:245] Train net output #116: loss3/loss07 = 0.539927 (* 0.0909091 = 0.0490843 loss) | |
I0327 13:17:47.990500 21344 solver.cpp:245] Train net output #117: loss3/loss08 = 0.503212 (* 0.0909091 = 0.0457465 loss) | |
I0327 13:17:47.990514 21344 solver.cpp:245] Train net output #118: loss3/loss09 = 0.59311 (* 0.0909091 = 0.0539191 loss) | |
I0327 13:17:47.990528 21344 solver.cpp:245] Train net output #119: loss3/loss10 = 0.0168417 (* 0.0909091 = 0.00153106 loss) | |
I0327 13:17:47.990542 21344 solver.cpp:245] Train net output #120: loss3/loss11 = 0.000228999 (* 0.0909091 = 2.08181e-05 loss) | |
I0327 13:17:47.990556 21344 solver.cpp:245] Train net output #121: loss3/loss12 = 0.000192343 (* 0.0909091 = 1.74857e-05 loss) | |
I0327 13:17:47.990571 21344 solver.cpp:245] Train net output #122: loss3/loss13 = 0.00016544 (* 0.0909091 = 1.504e-05 loss) | |
I0327 13:17:47.990584 21344 solver.cpp:245] Train net output #123: loss3/loss14 = 0.000178803 (* 0.0909091 = 1.62548e-05 loss) | |
I0327 13:17:47.990599 21344 solver.cpp:245] Train net output #124: loss3/loss15 = 0.000203818 (* 0.0909091 = 1.85289e-05 loss) | |
I0327 13:17:47.990613 21344 solver.cpp:245] Train net output #125: loss3/loss16 = 0.00020999 (* 0.0909091 = 1.909e-05 loss) | |
I0327 13:17:47.990628 21344 solver.cpp:245] Train net output #126: loss3/loss17 = 0.000238154 (* 0.0909091 = 2.16504e-05 loss) | |
I0327 13:17:47.990641 21344 solver.cpp:245] Train net output #127: loss3/loss18 = 0.000184664 (* 0.0909091 = 1.67876e-05 loss) | |
I0327 13:17:47.990655 21344 solver.cpp:245] Train net output #128: loss3/loss19 = 0.000214799 (* 0.0909091 = 1.95272e-05 loss) | |
I0327 13:17:47.990669 21344 solver.cpp:245] Train net output #129: loss3/loss20 = 0.000188584 (* 0.0909091 = 1.7144e-05 loss) | |
I0327 13:17:47.990682 21344 solver.cpp:245] Train net output #130: loss3/loss21 = 0.000203595 (* 0.0909091 = 1.85087e-05 loss) | |
I0327 13:17:47.990696 21344 solver.cpp:245] Train net output #131: loss3/loss22 = 0.000230441 (* 0.0909091 = 2.09492e-05 loss) | |
I0327 13:17:47.990708 21344 solver.cpp:245] Train net output #132: total_accuracy = 0 | |
I0327 13:17:47.990720 21344 solver.cpp:245] Train net output #133: total_confidence = 4.80088e-05 | |
I0327 13:17:47.990733 21344 sgd_solver.cpp:106] Iteration 8500, lr = 0.01 | |
I0327 13:19:36.285869 21344 solver.cpp:229] Iteration 9000, loss = 2.89351 | |
I0327 13:19:36.285996 21344 solver.cpp:245] Train net output #0: loss1/accuracy01 = 0.25 | |
I0327 13:19:36.286015 21344 solver.cpp:245] Train net output #1: loss1/accuracy02 = 0 | |
I0327 13:19:36.286028 21344 solver.cpp:245] Train net output #2: loss1/accuracy03 = 0.25 | |
I0327 13:19:36.286041 21344 solver.cpp:245] Train net output #3: loss1/accuracy04 = 0 | |
I0327 13:19:36.286052 21344 solver.cpp:245] Train net output #4: loss1/accuracy05 = 0.375 | |
I0327 13:19:36.286064 21344 solver.cpp:245] Train net output #5: loss1/accuracy06 = 0.75 | |
I0327 13:19:36.286077 21344 solver.cpp:245] Train net output #6: loss1/accuracy07 = 0.875 | |
I0327 13:19:36.286088 21344 solver.cpp:245] Train net output #7: loss1/accuracy08 = 0.875 | |
I0327 13:19:36.286100 21344 solver.cpp:245] Train net output #8: loss1/accuracy09 = 0.875 | |
I0327 13:19:36.286113 21344 solver.cpp:245] Train net output #9: loss1/accuracy10 = 0.875 | |
I0327 13:19:36.286124 21344 solver.cpp:245] Train net output #10: loss1/accuracy11 = 1 | |
I0327 13:19:36.286136 21344 solver.cpp:245] Train net output #11: loss1/accuracy12 = 1 | |
I0327 13:19:36.286149 21344 solver.cpp:245] Train net output #12: loss1/accuracy13 = 1 | |
I0327 13:19:36.286159 21344 solver.cpp:245] Train net output #13: loss1/accuracy14 = 1 | |
I0327 13:19:36.286171 21344 solver.cpp:245] Train net output #14: loss1/accuracy15 = 1 | |
I0327 13:19:36.286183 21344 solver.cpp:245] Train net output #15: loss1/accuracy16 = 1 | |
I0327 13:19:36.286195 21344 solver.cpp:245] Train net output #16: loss1/accuracy17 = 1 | |
I0327 13:19:36.286206 21344 solver.cpp:245] Train net output #17: loss1/accuracy18 = 1 | |
I0327 13:19:36.286218 21344 solver.cpp:245] Train net output #18: loss1/accuracy19 = 1 | |
I0327 13:19:36.286229 21344 solver.cpp:245] Train net output #19: loss1/accuracy20 = 1 | |
I0327 13:19:36.286242 21344 solver.cpp:245] Train net output #20: loss1/accuracy21 = 1 | |
I0327 13:19:36.286253 21344 solver.cpp:245] Train net output #21: loss1/accuracy22 = 1 | |
I0327 13:19:36.286269 21344 solver.cpp:245] Train net output #22: loss1/loss01 = 3.49084 (* 0.0272727 = 0.0952047 loss) | |
I0327 13:19:36.286284 21344 solver.cpp:245] Train net output #23: loss1/loss02 = 2.85424 (* 0.0272727 = 0.0778429 loss) | |
I0327 13:19:36.286298 21344 solver.cpp:245] Train net output #24: loss1/loss03 = 3.38289 (* 0.0272727 = 0.0922606 loss) | |
I0327 13:19:36.286312 21344 solver.cpp:245] Train net output #25: loss1/loss04 = 3.77343 (* 0.0272727 = 0.102912 loss) | |
I0327 13:19:36.286326 21344 solver.cpp:245] Train net output #26: loss1/loss05 = 2.77399 (* 0.0272727 = 0.0756542 loss) | |
I0327 13:19:36.286340 21344 solver.cpp:245] Train net output #27: loss1/loss06 = 1.46531 (* 0.0272727 = 0.0399629 loss) | |
I0327 13:19:36.286353 21344 solver.cpp:245] Train net output #28: loss1/loss07 = 0.870973 (* 0.0272727 = 0.0237538 loss) | |
I0327 13:19:36.286368 21344 solver.cpp:245] Train net output #29: loss1/loss08 = 0.643987 (* 0.0272727 = 0.0175633 loss) | |
I0327 13:19:36.286382 21344 solver.cpp:245] Train net output #30: loss1/loss09 = 0.624721 (* 0.0272727 = 0.0170378 loss) | |
I0327 13:19:36.286396 21344 solver.cpp:245] Train net output #31: loss1/loss10 = 0.817046 (* 0.0272727 = 0.0222831 loss) | |
I0327 13:19:36.286412 21344 solver.cpp:245] Train net output #32: loss1/loss11 = 0.000528744 (* 0.0272727 = 1.44203e-05 loss) | |
I0327 13:19:36.286427 21344 solver.cpp:245] Train net output #33: loss1/loss12 = 0.000875596 (* 0.0272727 = 2.38799e-05 loss) | |
I0327 13:19:36.286440 21344 solver.cpp:245] Train net output #34: loss1/loss13 = 0.000372054 (* 0.0272727 = 1.01469e-05 loss) | |
I0327 13:19:36.286454 21344 solver.cpp:245] Train net output #35: loss1/loss14 = 0.000733252 (* 0.0272727 = 1.99978e-05 loss) | |
I0327 13:19:36.286469 21344 solver.cpp:245] Train net output #36: loss1/loss15 = 0.000272746 (* 0.0272727 = 7.43853e-06 loss) | |
I0327 13:19:36.286484 21344 solver.cpp:245] Train net output #37: loss1/loss16 = 0.00155906 (* 0.0272727 = 4.25198e-05 loss) | |
I0327 13:19:36.286497 21344 solver.cpp:245] Train net output #38: loss1/loss17 = 0.000640227 (* 0.0272727 = 1.74607e-05 loss) | |
I0327 13:19:36.286528 21344 solver.cpp:245] Train net output #39: loss1/loss18 = 0.000784664 (* 0.0272727 = 2.13999e-05 loss) | |
I0327 13:19:36.286545 21344 solver.cpp:245] Train net output #40: loss1/loss19 = 0.000889735 (* 0.0272727 = 2.42655e-05 loss) | |
I0327 13:19:36.286558 21344 solver.cpp:245] Train net output #41: loss1/loss20 = 0.000979171 (* 0.0272727 = 2.67047e-05 loss) | |
I0327 13:19:36.286572 21344 solver.cpp:245] Train net output #42: loss1/loss21 = 0.000966434 (* 0.0272727 = 2.63573e-05 loss) | |
I0327 13:19:36.286586 21344 solver.cpp:245] Train net output #43: loss1/loss22 = 0.00123464 (* 0.0272727 = 3.3672e-05 loss) | |
I0327 13:19:36.286598 21344 solver.cpp:245] Train net output #44: loss2/accuracy01 = 0 | |
I0327 13:19:36.286612 21344 solver.cpp:245] Train net output #45: loss2/accuracy02 = 0 | |
I0327 13:19:36.286623 21344 solver.cpp:245] Train net output #46: loss2/accuracy03 = 0.125 | |
I0327 13:19:36.286634 21344 solver.cpp:245] Train net output #47: loss2/accuracy04 = 0 | |
I0327 13:19:36.286646 21344 solver.cpp:245] Train net output #48: loss2/accuracy05 = 0.25 | |
I0327 13:19:36.286659 21344 solver.cpp:245] Train net output #49: loss2/accuracy06 = 0.75 | |
I0327 13:19:36.286669 21344 solver.cpp:245] Train net output #50: loss2/accuracy07 = 0.875 | |
I0327 13:19:36.286681 21344 solver.cpp:245] Train net output #51: loss2/accuracy08 = 0.875 | |
I0327 13:19:36.286694 21344 solver.cpp:245] Train net output #52: loss2/accuracy09 = 0.875 | |
I0327 13:19:36.286705 21344 solver.cpp:245] Train net output #53: loss2/accuracy10 = 0.875 | |
I0327 13:19:36.286717 21344 solver.cpp:245] Train net output #54: loss2/accuracy11 = 1 | |
I0327 13:19:36.286728 21344 solver.cpp:245] Train net output #55: loss2/accuracy12 = 1 | |
I0327 13:19:36.286741 21344 solver.cpp:245] Train net output #56: loss2/accuracy13 = 1 | |
I0327 13:19:36.286751 21344 solver.cpp:245] Train net output #57: loss2/accuracy14 = 1 | |
I0327 13:19:36.286763 21344 solver.cpp:245] Train net output #58: loss2/accuracy15 = 1 | |
I0327 13:19:36.286774 21344 solver.cpp:245] Train net output #59: loss2/accuracy16 = 1 | |
I0327 13:19:36.286787 21344 solver.cpp:245] Train net output #60: loss2/accuracy17 = 1 | |
I0327 13:19:36.286798 21344 solver.cpp:245] Train net output #61: loss2/accuracy18 = 1 | |
I0327 13:19:36.286808 21344 solver.cpp:245] Train net output #62: loss2/accuracy19 = 1 | |
I0327 13:19:36.286820 21344 solver.cpp:245] Train net output #63: loss2/accuracy20 = 1 | |
I0327 13:19:36.286831 21344 solver.cpp:245] Train net output #64: loss2/accuracy21 = 1 | |
I0327 13:19:36.286844 21344 solver.cpp:245] Train net output #65: loss2/accuracy22 = 1 | |
I0327 13:19:36.286857 21344 solver.cpp:245] Train net output #66: loss2/loss01 = 3.19319 (* 0.0272727 = 0.087087 loss) | |
I0327 13:19:36.286871 21344 solver.cpp:245] Train net output #67: loss2/loss02 = 3.09949 (* 0.0272727 = 0.0845316 loss) | |
I0327 13:19:36.286885 21344 solver.cpp:245] Train net output #68: loss2/loss03 = 3.21067 (* 0.0272727 = 0.0875637 loss) | |
I0327 13:19:36.286900 21344 solver.cpp:245] Train net output #69: loss2/loss04 = 3.51676 (* 0.0272727 = 0.0959117 loss) | |
I0327 13:19:36.286913 21344 solver.cpp:245] Train net output #70: loss2/loss05 = 3.01192 (* 0.0272727 = 0.0821432 loss) | |
I0327 13:19:36.286927 21344 solver.cpp:245] Train net output #71: loss2/loss06 = 1.42339 (* 0.0272727 = 0.0388198 loss) | |
I0327 13:19:36.286942 21344 solver.cpp:245] Train net output #72: loss2/loss07 = 1.10204 (* 0.0272727 = 0.0300558 loss) | |
I0327 13:19:36.286957 21344 solver.cpp:245] Train net output #73: loss2/loss08 = 0.334343 (* 0.0272727 = 0.00911846 loss) | |
I0327 13:19:36.286972 21344 solver.cpp:245] Train net output #74: loss2/loss09 = 0.720372 (* 0.0272727 = 0.0196465 loss) | |
I0327 13:19:36.286985 21344 solver.cpp:245] Train net output #75: loss2/loss10 = 0.649215 (* 0.0272727 = 0.0177059 loss) | |
I0327 13:19:36.287004 21344 solver.cpp:245] Train net output #76: loss2/loss11 = 0.000845895 (* 0.0272727 = 2.30699e-05 loss) | |
I0327 13:19:36.287030 21344 solver.cpp:245] Train net output #77: loss2/loss12 = 0.00104665 (* 0.0272727 = 2.85451e-05 loss) | |
I0327 13:19:36.287045 21344 solver.cpp:245] Train net output #78: loss2/loss13 = 0.000997937 (* 0.0272727 = 2.72165e-05 loss) | |
I0327 13:19:36.287060 21344 solver.cpp:245] Train net output #79: loss2/loss14 = 0.00073422 (* 0.0272727 = 2.00242e-05 loss) | |
I0327 13:19:36.287075 21344 solver.cpp:245] Train net output #80: loss2/loss15 = 0.00108267 (* 0.0272727 = 2.95274e-05 loss) | |
I0327 13:19:36.287088 21344 solver.cpp:245] Train net output #81: loss2/loss16 = 0.000359518 (* 0.0272727 = 9.80504e-06 loss) | |
I0327 13:19:36.287102 21344 solver.cpp:245] Train net output #82: loss2/loss17 = 0.00153578 (* 0.0272727 = 4.18848e-05 loss) | |
I0327 13:19:36.287117 21344 solver.cpp:245] Train net output #83: loss2/loss18 = 0.0011214 (* 0.0272727 = 3.05836e-05 loss) | |
I0327 13:19:36.287132 21344 solver.cpp:245] Train net output #84: loss2/loss19 = 0.000396209 (* 0.0272727 = 1.08057e-05 loss) | |
I0327 13:19:36.287145 21344 solver.cpp:245] Train net output #85: loss2/loss20 = 0.000814289 (* 0.0272727 = 2.22079e-05 loss) | |
I0327 13:19:36.287159 21344 solver.cpp:245] Train net output #86: loss2/loss21 = 0.00117654 (* 0.0272727 = 3.20875e-05 loss) | |
I0327 13:19:36.287173 21344 solver.cpp:245] Train net output #87: loss2/loss22 = 0.00136973 (* 0.0272727 = 3.73562e-05 loss) | |
I0327 13:19:36.287185 21344 solver.cpp:245] Train net output #88: loss3/accuracy01 = 0 | |
I0327 13:19:36.287199 21344 solver.cpp:245] Train net output #89: loss3/accuracy02 = 0.125 | |
I0327 13:19:36.287210 21344 solver.cpp:245] Train net output #90: loss3/accuracy03 = 0.125 | |
I0327 13:19:36.287219 21344 solver.cpp:245] Train net output #91: loss3/accuracy04 = 0.125 | |
I0327 13:19:36.287226 21344 solver.cpp:245] Train net output #92: loss3/accuracy05 = 0.125 | |
I0327 13:19:36.287238 21344 solver.cpp:245] Train net output #93: loss3/accuracy06 = 0.75 | |
I0327 13:19:36.287250 21344 solver.cpp:245] Train net output #94: loss3/accuracy07 = 0.875 | |
I0327 13:19:36.287262 21344 solver.cpp:245] Train net output #95: loss3/accuracy08 = 0.875 | |
I0327 13:19:36.287273 21344 solver.cpp:245] Train net output #96: loss3/accuracy09 = 0.875 | |
I0327 13:19:36.287286 21344 solver.cpp:245] Train net output #97: loss3/accuracy10 = 0.875 | |
I0327 13:19:36.287297 21344 solver.cpp:245] Train net output #98: loss3/accuracy11 = 1 | |
I0327 13:19:36.287308 21344 solver.cpp:245] Train net output #99: loss3/accuracy12 = 1 | |
I0327 13:19:36.287320 21344 solver.cpp:245] Train net output #100: loss3/accuracy13 = 1 | |
I0327 13:19:36.287333 21344 solver.cpp:245] Train net output #101: loss3/accuracy14 = 1 | |
I0327 13:19:36.287343 21344 solver.cpp:245] Train net output #102: loss3/accuracy15 = 1 | |
I0327 13:19:36.287354 21344 solver.cpp:245] Train net output #103: loss3/accuracy16 = 1 | |
I0327 13:19:36.287366 21344 solver.cpp:245] Train net output #104: loss3/accuracy17 = 1 | |
I0327 13:19:36.287377 21344 solver.cpp:245] Train net output #105: loss3/accuracy18 = 1 | |
I0327 13:19:36.287389 21344 solver.cpp:245] Train net output #106: loss3/accuracy19 = 1 | |
I0327 13:19:36.287400 21344 solver.cpp:245] Train net output #107: loss3/accuracy20 = 1 | |
I0327 13:19:36.287411 21344 solver.cpp:245] Train net output #108: loss3/accuracy21 = 1 | |
I0327 13:19:36.287422 21344 solver.cpp:245] Train net output #109: loss3/accuracy22 = 1 | |
I0327 13:19:36.287436 21344 solver.cpp:245] Train net output #110: loss3/loss01 = 2.9748 (* 0.0909091 = 0.270437 loss) | |
I0327 13:19:36.287451 21344 solver.cpp:245] Train net output #111: loss3/loss02 = 3.07171 (* 0.0909091 = 0.279246 loss) | |
I0327 13:19:36.287463 21344 solver.cpp:245] Train net output #112: loss3/loss03 = 3.06843 (* 0.0909091 = 0.278948 loss) | |
I0327 13:19:36.287477 21344 solver.cpp:245] Train net output #113: loss3/loss04 = 3.59028 (* 0.0909091 = 0.326389 loss) | |
I0327 13:19:36.287492 21344 solver.cpp:245] Train net output #114: loss3/loss05 = 2.80586 (* 0.0909091 = 0.255078 loss) | |
I0327 13:19:36.287515 21344 solver.cpp:245] Train net output #115: loss3/loss06 = 1.32811 (* 0.0909091 = 0.120737 loss) | |
I0327 13:19:36.287530 21344 solver.cpp:245] Train net output #116: loss3/loss07 = 0.691466 (* 0.0909091 = 0.0628605 loss) | |
I0327 13:19:36.287544 21344 solver.cpp:245] Train net output #117: loss3/loss08 = 0.384465 (* 0.0909091 = 0.0349514 loss) | |
I0327 13:19:36.287559 21344 solver.cpp:245] Train net output #118: loss3/loss09 = 0.558781 (* 0.0909091 = 0.0507983 loss) | |
I0327 13:19:36.287572 21344 solver.cpp:245] Train net output #119: loss3/loss10 = 0.485003 (* 0.0909091 = 0.0440912 loss) | |
I0327 13:19:36.287587 21344 solver.cpp:245] Train net output #120: loss3/loss11 = 0.000153237 (* 0.0909091 = 1.39306e-05 loss) | |
I0327 13:19:36.287601 21344 solver.cpp:245] Train net output #121: loss3/loss12 = 0.000188188 (* 0.0909091 = 1.7108e-05 loss) | |
I0327 13:19:36.287616 21344 solver.cpp:245] Train net output #122: loss3/loss13 = 0.000238959 (* 0.0909091 = 2.17236e-05 loss) | |
I0327 13:19:36.287629 21344 solver.cpp:245] Train net output #123: loss3/loss14 = 0.000195046 (* 0.0909091 = 1.77315e-05 loss) | |
I0327 13:19:36.287643 21344 solver.cpp:245] Train net output #124: loss3/loss15 = 0.000207521 (* 0.0909091 = 1.88655e-05 loss) | |
I0327 13:19:36.287657 21344 solver.cpp:245] Train net output #125: loss3/loss16 = 0.000159005 (* 0.0909091 = 1.4455e-05 loss) | |
I0327 13:19:36.287672 21344 solver.cpp:245] Train net output #126: loss3/loss17 = 0.000213286 (* 0.0909091 = 1.93896e-05 loss) | |
I0327 13:19:36.287685 21344 solver.cpp:245] Train net output #127: loss3/loss18 = 0.000213135 (* 0.0909091 = 1.93759e-05 loss) | |
I0327 13:19:36.287699 21344 solver.cpp:245] Train net output #128: loss3/loss19 = 0.000178471 (* 0.0909091 = 1.62246e-05 loss) | |
I0327 13:19:36.287714 21344 solver.cpp:245] Train net output #129: loss3/loss20 = 0.000195229 (* 0.0909091 = 1.77481e-05 loss) | |
I0327 13:19:36.287727 21344 solver.cpp:245] Train net output #130: loss3/loss21 = 0.000180051 (* 0.0909091 = 1.63683e-05 loss) | |
I0327 13:19:36.287741 21344 solver.cpp:245] Train net output #131: loss3/loss22 = 0.000201351 (* 0.0909091 = 1.83046e-05 loss) | |
I0327 13:19:36.287753 21344 solver.cpp:245] Train net output #132: total_accuracy = 0 | |
I0327 13:19:36.287765 21344 solver.cpp:245] Train net output #133: total_confidence = 0.00055763 | |
I0327 13:19:36.287777 21344 sgd_solver.cpp:106] Iteration 9000, lr = 0.01 | |
I0327 13:21:24.122683 21344 solver.cpp:229] Iteration 9500, loss = 2.89062 | |
I0327 13:21:24.122922 21344 solver.cpp:245] Train net output #0: loss1/accuracy01 = 0.25 | |
I0327 13:21:24.122947 21344 solver.cpp:245] Train net output #1: loss1/accuracy02 = 0.125 | |
I0327 13:21:24.122961 21344 solver.cpp:245] Train net output #2: loss1/accuracy03 = 0.125 | |
I0327 13:21:24.122973 21344 solver.cpp:245] Train net output #3: loss1/accuracy04 = 0.125 | |
I0327 13:21:24.122992 21344 solver.cpp:245] Train net output #4: loss1/accuracy05 = 0.125 | |
I0327 13:21:24.123005 21344 solver.cpp:245] Train net output #5: loss1/accuracy06 = 0.375 | |
I0327 13:21:24.123018 21344 solver.cpp:245] Train net output #6: loss1/accuracy07 = 0.5 | |
I0327 13:21:24.123030 21344 solver.cpp:245] Train net output #7: loss1/accuracy08 = 0.875 | |
I0327 13:21:24.123044 21344 solver.cpp:245] Train net output #8: loss1/accuracy09 = 1 | |
I0327 13:21:24.123055 21344 solver.cpp:245] Train net output #9: loss1/accuracy10 = 1 | |
I0327 13:21:24.123067 21344 solver.cpp:245] Train net output #10: loss1/accuracy11 = 1 | |
I0327 13:21:24.123080 21344 solver.cpp:245] Train net output #11: loss1/accuracy12 = 1 | |
I0327 13:21:24.123091 21344 solver.cpp:245] Train net output #12: loss1/accuracy13 = 1 | |
I0327 13:21:24.123103 21344 solver.cpp:245] Train net output #13: loss1/accuracy14 = 1 | |
I0327 13:21:24.123116 21344 solver.cpp:245] Train net output #14: loss1/accuracy15 = 1 | |
I0327 13:21:24.123127 21344 solver.cpp:245] Train net output #15: loss1/accuracy16 = 1 | |
I0327 13:21:24.123139 21344 solver.cpp:245] Train net output #16: loss1/accuracy17 = 1 | |
I0327 13:21:24.123152 21344 solver.cpp:245] Train net output #17: loss1/accuracy18 = 1 | |
I0327 13:21:24.123163 21344 solver.cpp:245] Train net output #18: loss1/accuracy19 = 1 | |
I0327 13:21:24.123177 21344 solver.cpp:245] Train net output #19: loss1/accuracy20 = 1 | |
I0327 13:21:24.123188 21344 solver.cpp:245] Train net output #20: loss1/accuracy21 = 1 | |
I0327 13:21:24.123200 21344 solver.cpp:245] Train net output #21: loss1/accuracy22 = 1 | |
I0327 13:21:24.123217 21344 solver.cpp:245] Train net output #22: loss1/loss01 = 2.54662 (* 0.0272727 = 0.0694534 loss) | |
I0327 13:21:24.123234 21344 solver.cpp:245] Train net output #23: loss1/loss02 = 3.00914 (* 0.0272727 = 0.0820675 loss) | |
I0327 13:21:24.123247 21344 solver.cpp:245] Train net output #24: loss1/loss03 = 3.08197 (* 0.0272727 = 0.0840539 loss) | |
I0327 13:21:24.123262 21344 solver.cpp:245] Train net output #25: loss1/loss04 = 3.25324 (* 0.0272727 = 0.0887248 loss) | |
I0327 13:21:24.123276 21344 solver.cpp:245] Train net output #26: loss1/loss05 = 3.00667 (* 0.0272727 = 0.082 loss) | |
I0327 13:21:24.123291 21344 solver.cpp:245] Train net output #27: loss1/loss06 = 2.67622 (* 0.0272727 = 0.0729879 loss) | |
I0327 13:21:24.123304 21344 solver.cpp:245] Train net output #28: loss1/loss07 = 2.14978 (* 0.0272727 = 0.0586304 loss) | |
I0327 13:21:24.123318 21344 solver.cpp:245] Train net output #29: loss1/loss08 = 0.660333 (* 0.0272727 = 0.0180091 loss) | |
I0327 13:21:24.123342 21344 solver.cpp:245] Train net output #30: loss1/loss09 = 0.0386639 (* 0.0272727 = 0.00105447 loss) | |
I0327 13:21:24.123358 21344 solver.cpp:245] Train net output #31: loss1/loss10 = 0.0068292 (* 0.0272727 = 0.000186251 loss) | |
I0327 13:21:24.123373 21344 solver.cpp:245] Train net output #32: loss1/loss11 = 0.00209744 (* 0.0272727 = 5.72029e-05 loss) | |
I0327 13:21:24.123389 21344 solver.cpp:245] Train net output #33: loss1/loss12 = 0.000952943 (* 0.0272727 = 2.59894e-05 loss) | |
I0327 13:21:24.123402 21344 solver.cpp:245] Train net output #34: loss1/loss13 = 0.000791841 (* 0.0272727 = 2.15957e-05 loss) | |
I0327 13:21:24.123416 21344 solver.cpp:245] Train net output #35: loss1/loss14 = 0.000730998 (* 0.0272727 = 1.99363e-05 loss) | |
I0327 13:21:24.123431 21344 solver.cpp:245] Train net output #36: loss1/loss15 = 0.00116255 (* 0.0272727 = 3.17058e-05 loss) | |
I0327 13:21:24.123445 21344 solver.cpp:245] Train net output #37: loss1/loss16 = 0.00108261 (* 0.0272727 = 2.95258e-05 loss) | |
I0327 13:21:24.123461 21344 solver.cpp:245] Train net output #38: loss1/loss17 = 0.00284669 (* 0.0272727 = 7.76369e-05 loss) | |
I0327 13:21:24.123492 21344 solver.cpp:245] Train net output #39: loss1/loss18 = 0.00318524 (* 0.0272727 = 8.68701e-05 loss) | |
I0327 13:21:24.123507 21344 solver.cpp:245] Train net output #40: loss1/loss19 = 0.000899941 (* 0.0272727 = 2.45439e-05 loss) | |
I0327 13:21:24.123522 21344 solver.cpp:245] Train net output #41: loss1/loss20 = 0.00168223 (* 0.0272727 = 4.58789e-05 loss) | |
I0327 13:21:24.123535 21344 solver.cpp:245] Train net output #42: loss1/loss21 = 0.00502717 (* 0.0272727 = 0.000137105 loss) | |
I0327 13:21:24.123550 21344 solver.cpp:245] Train net output #43: loss1/loss22 = 0.00225216 (* 0.0272727 = 6.14226e-05 loss) | |
I0327 13:21:24.123563 21344 solver.cpp:245] Train net output #44: loss2/accuracy01 = 0.5 | |
I0327 13:21:24.123576 21344 solver.cpp:245] Train net output #45: loss2/accuracy02 = 0 | |
I0327 13:21:24.123589 21344 solver.cpp:245] Train net output #46: loss2/accuracy03 = 0.125 | |
I0327 13:21:24.123600 21344 solver.cpp:245] Train net output #47: loss2/accuracy04 = 0 | |
I0327 13:21:24.123611 21344 solver.cpp:245] Train net output #48: loss2/accuracy05 = 0.25 | |
I0327 13:21:24.123625 21344 solver.cpp:245] Train net output #49: loss2/accuracy06 = 0.375 | |
I0327 13:21:24.123636 21344 solver.cpp:245] Train net output #50: loss2/accuracy07 = 0.5 | |
I0327 13:21:24.123648 21344 solver.cpp:245] Train net output #51: loss2/accuracy08 = 0.875 | |
I0327 13:21:24.123661 21344 solver.cpp:245] Train net output #52: loss2/accuracy09 = 1 | |
I0327 13:21:24.123672 21344 solver.cpp:245] Train net output #53: loss2/accuracy10 = 1 | |
I0327 13:21:24.123684 21344 solver.cpp:245] Train net output #54: loss2/accuracy11 = 1 | |
I0327 13:21:24.123697 21344 solver.cpp:245] Train net output #55: loss2/accuracy12 = 1 | |
I0327 13:21:24.123708 21344 solver.cpp:245] Train net output #56: loss2/accuracy13 = 1 | |
I0327 13:21:24.123720 21344 solver.cpp:245] Train net output #57: loss2/accuracy14 = 1 | |
I0327 13:21:24.123733 21344 solver.cpp:245] Train net output #58: loss2/accuracy15 = 1 | |
I0327 13:21:24.123744 21344 solver.cpp:245] Train net output #59: loss2/accuracy16 = 1 | |
I0327 13:21:24.123755 21344 solver.cpp:245] Train net output #60: loss2/accuracy17 = 1 | |
I0327 13:21:24.123766 21344 solver.cpp:245] Train net output #61: loss2/accuracy18 = 1 | |
I0327 13:21:24.123778 21344 solver.cpp:245] Train net output #62: loss2/accuracy19 = 1 | |
I0327 13:21:24.123790 21344 solver.cpp:245] Train net output #63: loss2/accuracy20 = 1 | |
I0327 13:21:24.123802 21344 solver.cpp:245] Train net output #64: loss2/accuracy21 = 1 | |
I0327 13:21:24.123813 21344 solver.cpp:245] Train net output #65: loss2/accuracy22 = 1 | |
I0327 13:21:24.123827 21344 solver.cpp:245] Train net output #66: loss2/loss01 = 1.88821 (* 0.0272727 = 0.0514966 loss) | |
I0327 13:21:24.123842 21344 solver.cpp:245] Train net output #67: loss2/loss02 = 3.23858 (* 0.0272727 = 0.0883248 loss) | |
I0327 13:21:24.123855 21344 solver.cpp:245] Train net output #68: loss2/loss03 = 3.10356 (* 0.0272727 = 0.0846424 loss) | |
I0327 13:21:24.123870 21344 solver.cpp:245] Train net output #69: loss2/loss04 = 3.31874 (* 0.0272727 = 0.0905111 loss) | |
I0327 13:21:24.123884 21344 solver.cpp:245] Train net output #70: loss2/loss05 = 2.81234 (* 0.0272727 = 0.0767003 loss) | |
I0327 13:21:24.123898 21344 solver.cpp:245] Train net output #71: loss2/loss06 = 2.81881 (* 0.0272727 = 0.0768766 loss) | |
I0327 13:21:24.123914 21344 solver.cpp:245] Train net output #72: loss2/loss07 = 2.31155 (* 0.0272727 = 0.0630423 loss) | |
I0327 13:21:24.123934 21344 solver.cpp:245] Train net output #73: loss2/loss08 = 0.522069 (* 0.0272727 = 0.0142382 loss) | |
I0327 13:21:24.123949 21344 solver.cpp:245] Train net output #74: loss2/loss09 = 0.0721382 (* 0.0272727 = 0.00196741 loss) | |
I0327 13:21:24.123958 21344 solver.cpp:245] Train net output #75: loss2/loss10 = 0.00916865 (* 0.0272727 = 0.000250054 loss) | |
I0327 13:21:24.123968 21344 solver.cpp:245] Train net output #76: loss2/loss11 = 0.000318202 (* 0.0272727 = 8.67824e-06 loss) | |
I0327 13:21:24.123996 21344 solver.cpp:245] Train net output #77: loss2/loss12 = 0.000296426 (* 0.0272727 = 8.08433e-06 loss) | |
I0327 13:21:24.124011 21344 solver.cpp:245] Train net output #78: loss2/loss13 = 0.000419269 (* 0.0272727 = 1.14346e-05 loss) | |
I0327 13:21:24.124025 21344 solver.cpp:245] Train net output #79: loss2/loss14 = 0.000393319 (* 0.0272727 = 1.07269e-05 loss) | |
I0327 13:21:24.124042 21344 solver.cpp:245] Train net output #80: loss2/loss15 = 0.000457847 (* 0.0272727 = 1.24867e-05 loss) | |
I0327 13:21:24.124058 21344 solver.cpp:245] Train net output #81: loss2/loss16 = 0.00032479 (* 0.0272727 = 8.8579e-06 loss) | |
I0327 13:21:24.124073 21344 solver.cpp:245] Train net output #82: loss2/loss17 = 0.000359603 (* 0.0272727 = 9.80736e-06 loss) | |
I0327 13:21:24.124088 21344 solver.cpp:245] Train net output #83: loss2/loss18 = 0.000348609 (* 0.0272727 = 9.50753e-06 loss) | |
I0327 13:21:24.124101 21344 solver.cpp:245] Train net output #84: loss2/loss19 = 0.000292437 (* 0.0272727 = 7.97556e-06 loss) | |
I0327 13:21:24.124116 21344 solver.cpp:245] Train net output #85: loss2/loss20 = 0.000302323 (* 0.0272727 = 8.24517e-06 loss) | |
I0327 13:21:24.124136 21344 solver.cpp:245] Train net output #86: loss2/loss21 = 0.000185112 (* 0.0272727 = 5.0485e-06 loss) | |
I0327 13:21:24.124152 21344 solver.cpp:245] Train net output #87: loss2/loss22 = 0.000464405 (* 0.0272727 = 1.26656e-05 loss) | |
I0327 13:21:24.124166 21344 solver.cpp:245] Train net output #88: loss3/accuracy01 = 0.25 | |
I0327 13:21:24.124177 21344 solver.cpp:245] Train net output #89: loss3/accuracy02 = 0.25 | |
I0327 13:21:24.124191 21344 solver.cpp:245] Train net output #90: loss3/accuracy03 = 0 | |
I0327 13:21:24.124202 21344 solver.cpp:245] Train net output #91: loss3/accuracy04 = 0.125 | |
I0327 13:21:24.124214 21344 solver.cpp:245] Train net output #92: loss3/accuracy05 = 0.25 | |
I0327 13:21:24.124227 21344 solver.cpp:245] Train net output #93: loss3/accuracy06 = 0.375 | |
I0327 13:21:24.124238 21344 solver.cpp:245] Train net output #94: loss3/accuracy07 = 0.5 | |
I0327 13:21:24.124249 21344 solver.cpp:245] Train net output #95: loss3/accuracy08 = 0.875 | |
I0327 13:21:24.124261 21344 solver.cpp:245] Train net output #96: loss3/accuracy09 = 1 | |
I0327 13:21:24.124274 21344 solver.cpp:245] Train net output #97: loss3/accuracy10 = 1 | |
I0327 13:21:24.124285 21344 solver.cpp:245] Train net output #98: loss3/accuracy11 = 1 | |
I0327 13:21:24.124296 21344 solver.cpp:245] Train net output #99: loss3/accuracy12 = 1 | |
I0327 13:21:24.124308 21344 solver.cpp:245] Train net output #100: loss3/accuracy13 = 1 | |
I0327 13:21:24.124320 21344 solver.cpp:245] Train net output #101: loss3/accuracy14 = 1 | |
I0327 13:21:24.124331 21344 solver.cpp:245] Train net output #102: loss3/accuracy15 = 1 | |
I0327 13:21:24.124343 21344 solver.cpp:245] Train net output #103: loss3/accuracy16 = 1 | |
I0327 13:21:24.124356 21344 solver.cpp:245] Train net output #104: loss3/accuracy17 = 1 | |
I0327 13:21:24.124367 21344 solver.cpp:245] Train net output #105: loss3/accuracy18 = 1 | |
I0327 13:21:24.124379 21344 solver.cpp:245] Train net output #106: loss3/accuracy19 = 1 | |
I0327 13:21:24.124392 21344 solver.cpp:245] Train net output #107: loss3/accuracy20 = 1 | |
I0327 13:21:24.124402 21344 solver.cpp:245] Train net output #108: loss3/accuracy21 = 1 | |
I0327 13:21:24.124414 21344 solver.cpp:245] Train net output #109: loss3/accuracy22 = 1 | |
I0327 13:21:24.124428 21344 solver.cpp:245] Train net output #110: loss3/loss01 = 2.06386 (* 0.0909091 = 0.187623 loss) | |
I0327 13:21:24.124441 21344 solver.cpp:245] Train net output #111: loss3/loss02 = 2.7417 (* 0.0909091 = 0.249246 loss) | |
I0327 13:21:24.124455 21344 solver.cpp:245] Train net output #112: loss3/loss03 = 3.01654 (* 0.0909091 = 0.274231 loss) | |
I0327 13:21:24.124469 21344 solver.cpp:245] Train net output #113: loss3/loss04 = 3.24496 (* 0.0909091 = 0.294996 loss) | |
I0327 13:21:24.124485 21344 solver.cpp:245] Train net output #114: loss3/loss05 = 2.56613 (* 0.0909091 = 0.233285 loss) | |
I0327 13:21:24.124510 21344 solver.cpp:245] Train net output #115: loss3/loss06 = 2.55473 (* 0.0909091 = 0.232248 loss) | |
I0327 13:21:24.124526 21344 solver.cpp:245] Train net output #116: loss3/loss07 = 2.44523 (* 0.0909091 = 0.222294 loss) | |
I0327 13:21:24.124539 21344 solver.cpp:245] Train net output #117: loss3/loss08 = 0.443019 (* 0.0909091 = 0.0402744 loss) | |
I0327 13:21:24.124553 21344 solver.cpp:245] Train net output #118: loss3/loss09 = 0.0328916 (* 0.0909091 = 0.00299015 loss) | |
I0327 13:21:24.124567 21344 solver.cpp:245] Train net output #119: loss3/loss10 = 0.00959882 (* 0.0909091 = 0.00087262 loss) | |
I0327 13:21:24.124583 21344 solver.cpp:245] Train net output #120: loss3/loss11 = 0.000113984 (* 0.0909091 = 1.03622e-05 loss) | |
I0327 13:21:24.124598 21344 solver.cpp:245] Train net output #121: loss3/loss12 = 0.000137302 (* 0.0909091 = 1.2482e-05 loss) | |
I0327 13:21:24.124611 21344 solver.cpp:245] Train net output #122: loss3/loss13 = 0.000134424 (* 0.0909091 = 1.22204e-05 loss) | |
I0327 13:21:24.124625 21344 solver.cpp:245] Train net output #123: loss3/loss14 = 0.000140246 (* 0.0909091 = 1.27496e-05 loss) | |
I0327 13:21:24.124640 21344 solver.cpp:245] Train net output #124: loss3/loss15 = 0.000126839 (* 0.0909091 = 1.15308e-05 loss) | |
I0327 13:21:24.124655 21344 solver.cpp:245] Train net output #125: loss3/loss16 = 0.000143645 (* 0.0909091 = 1.30587e-05 loss) | |
I0327 13:21:24.124670 21344 solver.cpp:245] Train net output #126: loss3/loss17 = 0.000129165 (* 0.0909091 = 1.17423e-05 loss) | |
I0327 13:21:24.124683 21344 solver.cpp:245] Train net output #127: loss3/loss18 = 0.00015182 (* 0.0909091 = 1.38018e-05 loss) | |
I0327 13:21:24.124698 21344 solver.cpp:245] Train net output #128: loss3/loss19 = 0.00015227 (* 0.0909091 = 1.38427e-05 loss) | |
I0327 13:21:24.124713 21344 solver.cpp:245] Train net output #129: loss3/loss20 = 0.000136476 (* 0.0909091 = 1.24069e-05 loss) | |
I0327 13:21:24.124727 21344 solver.cpp:245] Train net output #130: loss3/loss21 = 0.000191585 (* 0.0909091 = 1.74169e-05 loss) | |
I0327 13:21:24.124742 21344 solver.cpp:245] Train net output #131: loss3/loss22 = 0.000147659 (* 0.0909091 = 1.34235e-05 loss) | |
I0327 13:21:24.124753 21344 solver.cpp:245] Train net output #132: total_accuracy = 0 | |
I0327 13:21:24.124765 21344 solver.cpp:245] Train net output #133: total_confidence = 8.67072e-05 | |
I0327 13:21:24.124779 21344 sgd_solver.cpp:106] Iteration 9500, lr = 0.01 | |
I0327 13:23:11.878332 21344 solver.cpp:338] Iteration 10000, Testing net (#0) | |
I0327 13:23:42.874440 21344 solver.cpp:393] Test loss: 2.38051 | |
I0327 13:23:42.874547 21344 solver.cpp:406] Test net output #0: loss1/accuracy01 = 0.312 | |
I0327 13:23:42.874565 21344 solver.cpp:406] Test net output #1: loss1/accuracy02 = 0.131 | |
I0327 13:23:42.874578 21344 solver.cpp:406] Test net output #2: loss1/accuracy03 = 0.113 | |
I0327 13:23:42.874590 21344 solver.cpp:406] Test net output #3: loss1/accuracy04 = 0.141 | |
I0327 13:23:42.874603 21344 solver.cpp:406] Test net output #4: loss1/accuracy05 = 0.234 | |
I0327 13:23:42.874615 21344 solver.cpp:406] Test net output #5: loss1/accuracy06 = 0.501 | |
I0327 13:23:42.874629 21344 solver.cpp:406] Test net output #6: loss1/accuracy07 = 0.892 | |
I0327 13:23:42.874640 21344 solver.cpp:406] Test net output #7: loss1/accuracy08 = 0.97 | |
I0327 13:23:42.874652 21344 solver.cpp:406] Test net output #8: loss1/accuracy09 = 0.995 | |
I0327 13:23:42.874665 21344 solver.cpp:406] Test net output #9: loss1/accuracy10 = 0.998 | |
I0327 13:23:42.874676 21344 solver.cpp:406] Test net output #10: loss1/accuracy11 = 1 | |
I0327 13:23:42.874688 21344 solver.cpp:406] Test net output #11: loss1/accuracy12 = 1 | |
I0327 13:23:42.874701 21344 solver.cpp:406] Test net output #12: loss1/accuracy13 = 1 | |
I0327 13:23:42.874711 21344 solver.cpp:406] Test net output #13: loss1/accuracy14 = 1 | |
I0327 13:23:42.874723 21344 solver.cpp:406] Test net output #14: loss1/accuracy15 = 1 | |
I0327 13:23:42.874734 21344 solver.cpp:406] Test net output #15: loss1/accuracy16 = 1 | |
I0327 13:23:42.874745 21344 solver.cpp:406] Test net output #16: loss1/accuracy17 = 1 | |
I0327 13:23:42.874758 21344 solver.cpp:406] Test net output #17: loss1/accuracy18 = 1 | |
I0327 13:23:42.874768 21344 solver.cpp:406] Test net output #18: loss1/accuracy19 = 1 | |
I0327 13:23:42.874780 21344 solver.cpp:406] Test net output #19: loss1/accuracy20 = 1 | |
I0327 13:23:42.874791 21344 solver.cpp:406] Test net output #20: loss1/accuracy21 = 1 | |
I0327 13:23:42.874804 21344 solver.cpp:406] Test net output #21: loss1/accuracy22 = 1 | |
I0327 13:23:42.874819 21344 solver.cpp:406] Test net output #22: loss1/loss01 = 2.45021 (* 0.0272727 = 0.0668239 loss) | |
I0327 13:23:42.874833 21344 solver.cpp:406] Test net output #23: loss1/loss02 = 2.80035 (* 0.0272727 = 0.0763731 loss) | |
I0327 13:23:42.874848 21344 solver.cpp:406] Test net output #24: loss1/loss03 = 2.94484 (* 0.0272727 = 0.0803138 loss) | |
I0327 13:23:42.874862 21344 solver.cpp:406] Test net output #25: loss1/loss04 = 2.8809 (* 0.0272727 = 0.07857 loss) | |
I0327 13:23:42.874876 21344 solver.cpp:406] Test net output #26: loss1/loss05 = 2.7647 (* 0.0272727 = 0.0754009 loss) | |
I0327 13:23:42.874891 21344 solver.cpp:406] Test net output #27: loss1/loss06 = 1.87586 (* 0.0272727 = 0.0511597 loss) | |
I0327 13:23:42.874904 21344 solver.cpp:406] Test net output #28: loss1/loss07 = 0.597768 (* 0.0272727 = 0.0163028 loss) | |
I0327 13:23:42.874918 21344 solver.cpp:406] Test net output #29: loss1/loss08 = 0.226958 (* 0.0272727 = 0.00618975 loss) | |
I0327 13:23:42.874933 21344 solver.cpp:406] Test net output #30: loss1/loss09 = 0.038961 (* 0.0272727 = 0.00106257 loss) | |
I0327 13:23:42.874948 21344 solver.cpp:406] Test net output #31: loss1/loss10 = 0.0176988 (* 0.0272727 = 0.000482695 loss) | |
I0327 13:23:42.874961 21344 solver.cpp:406] Test net output #32: loss1/loss11 = 0.00114515 (* 0.0272727 = 3.12314e-05 loss) | |
I0327 13:23:42.874975 21344 solver.cpp:406] Test net output #33: loss1/loss12 = 0.00119706 (* 0.0272727 = 3.26471e-05 loss) | |
I0327 13:23:42.874992 21344 solver.cpp:406] Test net output #34: loss1/loss13 = 0.00115281 (* 0.0272727 = 3.14404e-05 loss) | |
I0327 13:23:42.875007 21344 solver.cpp:406] Test net output #35: loss1/loss14 = 0.00104622 (* 0.0272727 = 2.85332e-05 loss) | |
I0327 13:23:42.875021 21344 solver.cpp:406] Test net output #36: loss1/loss15 = 0.000985538 (* 0.0272727 = 2.68783e-05 loss) | |
I0327 13:23:42.875036 21344 solver.cpp:406] Test net output #37: loss1/loss16 = 0.00115722 (* 0.0272727 = 3.15605e-05 loss) | |
I0327 13:23:42.875049 21344 solver.cpp:406] Test net output #38: loss1/loss17 = 0.00118904 (* 0.0272727 = 3.24283e-05 loss) | |
I0327 13:23:42.875082 21344 solver.cpp:406] Test net output #39: loss1/loss18 = 0.0011583 (* 0.0272727 = 3.15901e-05 loss) | |
I0327 13:23:42.875097 21344 solver.cpp:406] Test net output #40: loss1/loss19 = 0.000904245 (* 0.0272727 = 2.46612e-05 loss) | |
I0327 13:23:42.875111 21344 solver.cpp:406] Test net output #41: loss1/loss20 = 0.00101908 (* 0.0272727 = 2.7793e-05 loss) | |
I0327 13:23:42.875125 21344 solver.cpp:406] Test net output #42: loss1/loss21 = 0.000864371 (* 0.0272727 = 2.35738e-05 loss) | |
I0327 13:23:42.875139 21344 solver.cpp:406] Test net output #43: loss1/loss22 = 0.000980583 (* 0.0272727 = 2.67432e-05 loss) | |
I0327 13:23:42.875151 21344 solver.cpp:406] Test net output #44: loss2/accuracy01 = 0.31 | |
I0327 13:23:42.875164 21344 solver.cpp:406] Test net output #45: loss2/accuracy02 = 0.127 | |
I0327 13:23:42.875175 21344 solver.cpp:406] Test net output #46: loss2/accuracy03 = 0.109 | |
I0327 13:23:42.875187 21344 solver.cpp:406] Test net output #47: loss2/accuracy04 = 0.148 | |
I0327 13:23:42.875200 21344 solver.cpp:406] Test net output #48: loss2/accuracy05 = 0.237 | |
I0327 13:23:42.875211 21344 solver.cpp:406] Test net output #49: loss2/accuracy06 = 0.504 | |
I0327 13:23:42.875222 21344 solver.cpp:406] Test net output #50: loss2/accuracy07 = 0.892 | |
I0327 13:23:42.875234 21344 solver.cpp:406] Test net output #51: loss2/accuracy08 = 0.97 | |
I0327 13:23:42.875246 21344 solver.cpp:406] Test net output #52: loss2/accuracy09 = 0.995 | |
I0327 13:23:42.875257 21344 solver.cpp:406] Test net output #53: loss2/accuracy10 = 0.998 | |
I0327 13:23:42.875268 21344 solver.cpp:406] Test net output #54: loss2/accuracy11 = 1 | |
I0327 13:23:42.875280 21344 solver.cpp:406] Test net output #55: loss2/accuracy12 = 1 | |
I0327 13:23:42.875291 21344 solver.cpp:406] Test net output #56: loss2/accuracy13 = 1 | |
I0327 13:23:42.875303 21344 solver.cpp:406] Test net output #57: loss2/accuracy14 = 1 | |
I0327 13:23:42.875313 21344 solver.cpp:406] Test net output #58: loss2/accuracy15 = 1 | |
I0327 13:23:42.875325 21344 solver.cpp:406] Test net output #59: loss2/accuracy16 = 1 | |
I0327 13:23:42.875336 21344 solver.cpp:406] Test net output #60: loss2/accuracy17 = 1 | |
I0327 13:23:42.875347 21344 solver.cpp:406] Test net output #61: loss2/accuracy18 = 1 | |
I0327 13:23:42.875358 21344 solver.cpp:406] Test net output #62: loss2/accuracy19 = 1 | |
I0327 13:23:42.875370 21344 solver.cpp:406] Test net output #63: loss2/accuracy20 = 1 | |
I0327 13:23:42.875381 21344 solver.cpp:406] Test net output #64: loss2/accuracy21 = 1 | |
I0327 13:23:42.875392 21344 solver.cpp:406] Test net output #65: loss2/accuracy22 = 1 | |
I0327 13:23:42.875406 21344 solver.cpp:406] Test net output #66: loss2/loss01 = 2.47543 (* 0.0272727 = 0.0675118 loss) | |
I0327 13:23:42.875419 21344 solver.cpp:406] Test net output #67: loss2/loss02 = 2.78996 (* 0.0272727 = 0.0760897 loss) | |
I0327 13:23:42.875433 21344 solver.cpp:406] Test net output #68: loss2/loss03 = 2.94036 (* 0.0272727 = 0.0801916 loss) | |
I0327 13:23:42.875447 21344 solver.cpp:406] Test net output #69: loss2/loss04 = 2.89017 (* 0.0272727 = 0.0788227 loss) | |
I0327 13:23:42.875463 21344 solver.cpp:406] Test net output #70: loss2/loss05 = 2.75133 (* 0.0272727 = 0.0750363 loss) | |
I0327 13:23:42.875473 21344 solver.cpp:406] Test net output #71: loss2/loss06 = 1.87092 (* 0.0272727 = 0.0510251 loss) | |
I0327 13:23:42.875486 21344 solver.cpp:406] Test net output #72: loss2/loss07 = 0.615003 (* 0.0272727 = 0.0167728 loss) | |
I0327 13:23:42.875500 21344 solver.cpp:406] Test net output #73: loss2/loss08 = 0.223184 (* 0.0272727 = 0.00608685 loss) | |
I0327 13:23:42.875514 21344 solver.cpp:406] Test net output #74: loss2/loss09 = 0.0387181 (* 0.0272727 = 0.00105595 loss) | |
I0327 13:23:42.875529 21344 solver.cpp:406] Test net output #75: loss2/loss10 = 0.0182172 (* 0.0272727 = 0.000496833 loss) | |
I0327 13:23:42.875542 21344 solver.cpp:406] Test net output #76: loss2/loss11 = 0.000490839 (* 0.0272727 = 1.33865e-05 loss) | |
I0327 13:23:42.875556 21344 solver.cpp:406] Test net output #77: loss2/loss12 = 0.000374084 (* 0.0272727 = 1.02023e-05 loss) | |
I0327 13:23:42.875584 21344 solver.cpp:406] Test net output #78: loss2/loss13 = 0.00040518 (* 0.0272727 = 1.10504e-05 loss) | |
I0327 13:23:42.875600 21344 solver.cpp:406] Test net output #79: loss2/loss14 = 0.000322892 (* 0.0272727 = 8.80614e-06 loss) | |
I0327 13:23:42.875613 21344 solver.cpp:406] Test net output #80: loss2/loss15 = 0.000410175 (* 0.0272727 = 1.11866e-05 loss) | |
I0327 13:23:42.875627 21344 solver.cpp:406] Test net output #81: loss2/loss16 = 0.000354986 (* 0.0272727 = 9.68144e-06 loss) | |
I0327 13:23:42.875641 21344 solver.cpp:406] Test net output #82: loss2/loss17 = 0.000429287 (* 0.0272727 = 1.17078e-05 loss) | |
I0327 13:23:42.875654 21344 solver.cpp:406] Test net output #83: loss2/loss18 = 0.000388088 (* 0.0272727 = 1.05842e-05 loss) | |
I0327 13:23:42.875669 21344 solver.cpp:406] Test net output #84: loss2/loss19 = 0.000366389 (* 0.0272727 = 9.99244e-06 loss) | |
I0327 13:23:42.875682 21344 solver.cpp:406] Test net output #85: loss2/loss20 = 0.000395202 (* 0.0272727 = 1.07782e-05 loss) | |
I0327 13:23:42.875696 21344 solver.cpp:406] Test net output #86: loss2/loss21 = 0.000445298 (* 0.0272727 = 1.21445e-05 loss) | |
I0327 13:23:42.875710 21344 solver.cpp:406] Test net output #87: loss2/loss22 = 0.000426076 (* 0.0272727 = 1.16202e-05 loss) | |
I0327 13:23:42.875721 21344 solver.cpp:406] Test net output #88: loss3/accuracy01 = 0.232 | |
I0327 13:23:42.875735 21344 solver.cpp:406] Test net output #89: loss3/accuracy02 = 0.122 | |
I0327 13:23:42.875746 21344 solver.cpp:406] Test net output #90: loss3/accuracy03 = 0.095 | |
I0327 13:23:42.875757 21344 solver.cpp:406] Test net output #91: loss3/accuracy04 = 0.114 | |
I0327 13:23:42.875769 21344 solver.cpp:406] Test net output #92: loss3/accuracy05 = 0.213 | |
I0327 13:23:42.875780 21344 solver.cpp:406] Test net output #93: loss3/accuracy06 = 0.509 | |
I0327 13:23:42.875792 21344 solver.cpp:406] Test net output #94: loss3/accuracy07 = 0.892 | |
I0327 13:23:42.875803 21344 solver.cpp:406] Test net output #95: loss3/accuracy08 = 0.97 | |
I0327 13:23:42.875815 21344 solver.cpp:406] Test net output #96: loss3/accuracy09 = 0.995 | |
I0327 13:23:42.875826 21344 solver.cpp:406] Test net output #97: loss3/accuracy10 = 0.998 | |
I0327 13:23:42.875838 21344 solver.cpp:406] Test net output #98: loss3/accuracy11 = 1 | |
I0327 13:23:42.875849 21344 solver.cpp:406] Test net output #99: loss3/accuracy12 = 1 | |
I0327 13:23:42.875859 21344 solver.cpp:406] Test net output #100: loss3/accuracy13 = 1 | |
I0327 13:23:42.875870 21344 solver.cpp:406] Test net output #101: loss3/accuracy14 = 1 | |
I0327 13:23:42.875881 21344 solver.cpp:406] Test net output #102: loss3/accuracy15 = 1 | |
I0327 13:23:42.875892 21344 solver.cpp:406] Test net output #103: loss3/accuracy16 = 1 | |
I0327 13:23:42.875903 21344 solver.cpp:406] Test net output #104: loss3/accuracy17 = 1 | |
I0327 13:23:42.875915 21344 solver.cpp:406] Test net output #105: loss3/accuracy18 = 1 | |
I0327 13:23:42.875926 21344 solver.cpp:406] Test net output #106: loss3/accuracy19 = 1 | |
I0327 13:23:42.875936 21344 solver.cpp:406] Test net output #107: loss3/accuracy20 = 1 | |
I0327 13:23:42.875947 21344 solver.cpp:406] Test net output #108: loss3/accuracy21 = 1 | |
I0327 13:23:42.875958 21344 solver.cpp:406] Test net output #109: loss3/accuracy22 = 1 | |
I0327 13:23:42.875972 21344 solver.cpp:406] Test net output #110: loss3/loss01 = 2.26668 (* 0.0909091 = 0.206062 loss) | |
I0327 13:23:42.875987 21344 solver.cpp:406] Test net output #111: loss3/loss02 = 2.69376 (* 0.0909091 = 0.244887 loss) | |
I0327 13:23:42.875999 21344 solver.cpp:406] Test net output #112: loss3/loss03 = 2.92596 (* 0.0909091 = 0.265996 loss) | |
I0327 13:23:42.876013 21344 solver.cpp:406] Test net output #113: loss3/loss04 = 2.89635 (* 0.0909091 = 0.263304 loss) | |
I0327 13:23:42.876026 21344 solver.cpp:406] Test net output #114: loss3/loss05 = 2.74007 (* 0.0909091 = 0.249097 loss) | |
I0327 13:23:42.876040 21344 solver.cpp:406] Test net output #115: loss3/loss06 = 1.81578 (* 0.0909091 = 0.165071 loss) | |
I0327 13:23:42.876066 21344 solver.cpp:406] Test net output #116: loss3/loss07 = 0.600843 (* 0.0909091 = 0.0546221 loss) | |
I0327 13:23:42.876081 21344 solver.cpp:406] Test net output #117: loss3/loss08 = 0.213541 (* 0.0909091 = 0.0194128 loss) | |
I0327 13:23:42.876096 21344 solver.cpp:406] Test net output #118: loss3/loss09 = 0.0405805 (* 0.0909091 = 0.00368913 loss) | |
I0327 13:23:42.876109 21344 solver.cpp:406] Test net output #119: loss3/loss10 = 0.0216361 (* 0.0909091 = 0.00196692 loss) | |
I0327 13:23:42.876123 21344 solver.cpp:406] Test net output #120: loss3/loss11 = 0.000123227 (* 0.0909091 = 1.12025e-05 loss) | |
I0327 13:23:42.876137 21344 solver.cpp:406] Test net output #121: loss3/loss12 = 0.000154343 (* 0.0909091 = 1.40312e-05 loss) | |
I0327 13:23:42.876152 21344 solver.cpp:406] Test net output #122: loss3/loss13 = 0.000129556 (* 0.0909091 = 1.17778e-05 loss) | |
I0327 13:23:42.876165 21344 solver.cpp:406] Test net output #123: loss3/loss14 = 0.0001461 (* 0.0909091 = 1.32818e-05 loss) | |
I0327 13:23:42.876179 21344 solver.cpp:406] Test net output #124: loss3/loss15 = 0.000154306 (* 0.0909091 = 1.40278e-05 loss) | |
I0327 13:23:42.876194 21344 solver.cpp:406] Test net output #125: loss3/loss16 = 0.000152023 (* 0.0909091 = 1.38203e-05 loss) | |
I0327 13:23:42.876207 21344 solver.cpp:406] Test net output #126: loss3/loss17 = 0.00012316 (* 0.0909091 = 1.11963e-05 loss) | |
I0327 13:23:42.876220 21344 solver.cpp:406] Test net output #127: loss3/loss18 = 0.000133358 (* 0.0909091 = 1.21235e-05 loss) | |
I0327 13:23:42.876235 21344 solver.cpp:406] Test net output #128: loss3/loss19 = 0.000112536 (* 0.0909091 = 1.02305e-05 loss) | |
I0327 13:23:42.876248 21344 solver.cpp:406] Test net output #129: loss3/loss20 = 0.000146073 (* 0.0909091 = 1.32793e-05 loss) | |
I0327 13:23:42.876262 21344 solver.cpp:406] Test net output #130: loss3/loss21 = 0.000148882 (* 0.0909091 = 1.35348e-05 loss) | |
I0327 13:23:42.876276 21344 solver.cpp:406] Test net output #131: loss3/loss22 = 0.000152907 (* 0.0909091 = 1.39006e-05 loss) | |
I0327 13:23:42.876288 21344 solver.cpp:406] Test net output #132: total_accuracy = 0 | |
I0327 13:23:42.876299 21344 solver.cpp:406] Test net output #133: total_confidence = 0.000686382 | |
I0327 13:23:42.987792 21344 solver.cpp:229] Iteration 10000, loss = 2.87619 | |
I0327 13:23:42.987833 21344 solver.cpp:245] Train net output #0: loss1/accuracy01 = 0.125 | |
I0327 13:23:42.987849 21344 solver.cpp:245] Train net output #1: loss1/accuracy02 = 0.25 | |
I0327 13:23:42.987862 21344 solver.cpp:245] Train net output #2: loss1/accuracy03 = 0.125 | |
I0327 13:23:42.987875 21344 solver.cpp:245] Train net output #3: loss1/accuracy04 = 0.125 | |
I0327 13:23:42.987887 21344 solver.cpp:245] Train net output #4: loss1/accuracy05 = 0.125 | |
I0327 13:23:42.987900 21344 solver.cpp:245] Train net output #5: loss1/accuracy06 = 0.25 | |
I0327 13:23:42.987913 21344 solver.cpp:245] Train net output #6: loss1/accuracy07 = 0.625 | |
I0327 13:23:42.987926 21344 solver.cpp:245] Train net output #7: loss1/accuracy08 = 0.875 | |
I0327 13:23:42.987937 21344 solver.cpp:245] Train net output #8: loss1/accuracy09 = 0.875 | |
I0327 13:23:42.987949 21344 solver.cpp:245] Train net output #9: loss1/accuracy10 = 1 | |
I0327 13:23:42.987962 21344 solver.cpp:245] Train net output #10: loss1/accuracy11 = 1 | |
I0327 13:23:42.987973 21344 solver.cpp:245] Train net output #11: loss1/accuracy12 = 1 | |
I0327 13:23:42.987984 21344 solver.cpp:245] Train net output #12: loss1/accuracy13 = 1 | |
I0327 13:23:42.987996 21344 solver.cpp:245] Train net output #13: loss1/accuracy14 = 1 | |
I0327 13:23:42.988008 21344 solver.cpp:245] Train net output #14: loss1/accuracy15 = 1 | |
I0327 13:23:42.988020 21344 solver.cpp:245] Train net output #15: loss1/accuracy16 = 1 | |
I0327 13:23:42.988034 21344 solver.cpp:245] Train net output #16: loss1/accuracy17 = 1 | |
I0327 13:23:42.988047 21344 solver.cpp:245] Train net output #17: loss1/accuracy18 = 1 | |
I0327 13:23:42.988059 21344 solver.cpp:245] Train net output #18: loss1/accuracy19 = 1 | |
I0327 13:23:42.988091 21344 solver.cpp:245] Train net output #19: loss1/accuracy20 = 1 | |
I0327 13:23:42.988106 21344 solver.cpp:245] Train net output #20: loss1/accuracy21 = 1 | |
I0327 13:23:42.988117 21344 solver.cpp:245] Train net output #21: loss1/accuracy22 = 1 | |
I0327 13:23:42.988137 21344 solver.cpp:245] Train net output #22: loss1/loss01 = 3.2019 (* 0.0272727 = 0.0873244 loss) | |
I0327 13:23:42.988152 21344 solver.cpp:245] Train net output #23: loss1/loss02 = 3.10446 (* 0.0272727 = 0.0846672 loss) | |
I0327 13:23:42.988167 21344 solver.cpp:245] Train net output #24: loss1/loss03 = 2.94562 (* 0.0272727 = 0.080335 loss) | |
I0327 13:23:42.988180 21344 solver.cpp:245] Train net output #25: loss1/loss04 = 3.25635 (* 0.0272727 = 0.0888097 loss) | |
I0327 13:23:42.988193 21344 solver.cpp:245] Train net output #26: loss1/loss05 = 2.72015 (* 0.0272727 = 0.0741858 loss) | |
I0327 13:23:42.988207 21344 solver.cpp:245] Train net output #27: loss1/loss06 = 3.07569 (* 0.0272727 = 0.0838825 loss) | |
I0327 13:23:42.988221 21344 solver.cpp:245] Train net output #28: loss1/loss07 = 1.30783 (* 0.0272727 = 0.0356682 loss) | |
I0327 13:23:42.988235 21344 solver.cpp:245] Train net output #29: loss1/loss08 = 0.581875 (* 0.0272727 = 0.0158693 loss) | |
I0327 13:23:42.988250 21344 solver.cpp:245] Train net output #30: loss1/loss09 = 0.442101 (* 0.0272727 = 0.0120573 loss) | |
I0327 13:23:42.988265 21344 solver.cpp:245] Train net output #31: loss1/loss10 = 0.0717134 (* 0.0272727 = 0.00195582 loss) | |
I0327 13:23:42.988278 21344 solver.cpp:245] Train net output #32: loss1/loss11 = 0.00261423 (* 0.0272727 = 7.12971e-05 loss) | |
I0327 13:23:42.988292 21344 solver.cpp:245] Train net output #33: loss1/loss12 = 0.00136481 (* 0.0272727 = 3.72222e-05 loss) | |
I0327 13:23:42.988307 21344 solver.cpp:245] Train net output #34: loss1/loss13 = 0.00231753 (* 0.0272727 = 6.32053e-05 loss) | |
I0327 13:23:42.988322 21344 solver.cpp:245] Train net output #35: loss1/loss14 = 0.00185755 (* 0.0272727 = 5.06606e-05 loss) | |
I0327 13:23:42.988335 21344 solver.cpp:245] Train net output #36: loss1/loss15 = 0.00408382 (* 0.0272727 = 0.000111377 loss) | |
I0327 13:23:42.988349 21344 solver.cpp:245] Train net output #37: loss1/loss16 = 0.00118472 (* 0.0272727 = 3.23105e-05 loss) | |
I0327 13:23:42.988363 21344 solver.cpp:245] Train net output #38: loss1/loss17 = 0.00192768 (* 0.0272727 = 5.25732e-05 loss) | |
I0327 13:23:42.988378 21344 solver.cpp:245] Train net output #39: loss1/loss18 = 0.00137796 (* 0.0272727 = 3.75808e-05 loss) | |
I0327 13:23:42.988391 21344 solver.cpp:245] Train net output #40: loss1/loss19 = 0.00172397 (* 0.0272727 = 4.70175e-05 loss) | |
I0327 13:23:42.988405 21344 solver.cpp:245] Train net output #41: loss1/loss20 = 0.00213949 (* 0.0272727 = 5.83496e-05 loss) | |
I0327 13:23:42.988420 21344 solver.cpp:245] Train net output #42: loss1/loss21 = 0.000979596 (* 0.0272727 = 2.67163e-05 loss) | |
I0327 13:23:42.988433 21344 solver.cpp:245] Train net output #43: loss1/loss22 = 0.00138128 (* 0.0272727 = 3.76712e-05 loss) | |
I0327 13:23:42.988445 21344 solver.cpp:245] Train net output #44: loss2/accuracy01 = 0.375 | |
I0327 13:23:42.988457 21344 solver.cpp:245] Train net output #45: loss2/accuracy02 = 0 | |
I0327 13:23:42.988469 21344 solver.cpp:245] Train net output #46: loss2/accuracy03 = 0 | |
I0327 13:23:42.988481 21344 solver.cpp:245] Train net output #47: loss2/accuracy04 = 0.125 | |
I0327 13:23:42.988493 21344 solver.cpp:245] Train net output #48: loss2/accuracy05 = 0 | |
I0327 13:23:42.988505 21344 solver.cpp:245] Train net output #49: loss2/accuracy06 = 0.125 | |
I0327 13:23:42.988517 21344 solver.cpp:245] Train net output #50: loss2/accuracy07 = 0.625 | |
I0327 13:23:42.988528 21344 solver.cpp:245] Train net output #51: loss2/accuracy08 = 0.875 | |
I0327 13:23:42.988540 21344 solver.cpp:245] Train net output #52: loss2/accuracy09 = 0.875 | |
I0327 13:23:42.988553 21344 solver.cpp:245] Train net output #53: loss2/accuracy10 = 1 | |
I0327 13:23:42.988564 21344 solver.cpp:245] Train net output #54: loss2/accuracy11 = 1 | |
I0327 13:23:42.988586 21344 solver.cpp:245] Train net output #55: loss2/accuracy12 = 1 | |
I0327 13:23:42.988600 21344 solver.cpp:245] Train net output #56: loss2/accuracy13 = 1 | |
I0327 13:23:42.988611 21344 solver.cpp:245] Train net output #57: loss2/accuracy14 = 1 | |
I0327 13:23:42.988622 21344 solver.cpp:245] Train net output #58: loss2/accuracy15 = 1 | |
I0327 13:23:42.988634 21344 solver.cpp:245] Train net output #59: loss2/accuracy16 = 1 | |
I0327 13:23:42.988646 21344 solver.cpp:245] Train net output #60: loss2/accuracy17 = 1 | |
I0327 13:23:42.988657 21344 solver.cpp:245] Train net output #61: loss2/accuracy18 = 1 | |
I0327 13:23:42.988668 21344 solver.cpp:245] Train net output #62: loss2/accuracy19 = 1 | |
I0327 13:23:42.988679 21344 solver.cpp:245] Train net output #63: loss2/accuracy20 = 1 | |
I0327 13:23:42.988692 21344 solver.cpp:245] Train net output #64: loss2/accuracy21 = 1 | |
I0327 13:23:42.988703 21344 solver.cpp:245] Train net output #65: loss2/accuracy22 = 1 | |
I0327 13:23:42.988718 21344 solver.cpp:245] Train net output #66: loss2/loss01 = 2.62476 (* 0.0272727 = 0.0715843 loss) | |
I0327 13:23:42.988731 21344 solver.cpp:245] Train net output #67: loss2/loss02 = 3.30951 (* 0.0272727 = 0.0902594 loss) | |
I0327 13:23:42.988745 21344 solver.cpp:245] Train net output #68: loss2/loss03 = 3.3336 (* 0.0272727 = 0.0909164 loss) | |
I0327 13:23:42.988759 21344 solver.cpp:245] Train net output #69: loss2/loss04 = 3.24099 (* 0.0272727 = 0.0883907 loss) | |
I0327 13:23:42.988773 21344 solver.cpp:245] Train net output #70: loss2/loss05 = 3.18065 (* 0.0272727 = 0.0867451 loss) | |
I0327 13:23:42.988787 21344 solver.cpp:245] Train net output #71: loss2/loss06 = 3.48893 (* 0.0272727 = 0.0951527 loss) | |
I0327 13:23:42.988801 21344 solver.cpp:245] Train net output #72: loss2/loss07 = 1.61842 (* 0.0272727 = 0.0441388 loss) | |
I0327 13:23:42.988816 21344 solver.cpp:245] Train net output #73: loss2/loss08 = 0.594845 (* 0.0272727 = 0.0162231 loss) | |
I0327 13:23:42.988829 21344 solver.cpp:245] Train net output #74: loss2/loss09 = 0.54751 (* 0.0272727 = 0.0149321 loss) | |
I0327 13:23:42.988843 21344 solver.cpp:245] Train net output #75: loss2/loss10 = 0.0349853 (* 0.0272727 = 0.000954144 loss) | |
I0327 13:23:42.988857 21344 solver.cpp:245] Train net output #76: loss2/loss11 = 0.000438208 (* 0.0272727 = 1.19511e-05 loss) | |
I0327 13:23:42.988872 21344 solver.cpp:245] Train net output #77: loss2/loss12 = 0.000301931 (* 0.0272727 = 8.23447e-06 loss) | |
I0327 13:23:42.988885 21344 solver.cpp:245] Train net output #78: loss2/loss13 = 0.00093302 (* 0.0272727 = 2.5446e-05 loss) | |
I0327 13:23:42.988899 21344 solver.cpp:245] Train net output #79: loss2/loss14 = 0.000891441 (* 0.0272727 = 2.4312e-05 loss) | |
I0327 13:23:42.988914 21344 solver.cpp:245] Train net output #80: loss2/loss15 = 0.000363443 (* 0.0272727 = 9.91208e-06 loss) | |
I0327 13:23:42.988927 21344 solver.cpp:245] Train net output #81: loss2/loss16 = 0.000355446 (* 0.0272727 = 9.69399e-06 loss) | |
I0327 13:23:42.988941 21344 solver.cpp:245] Train net output #82: loss2/loss17 = 0.00108456 (* 0.0272727 = 2.9579e-05 loss) | |
I0327 13:23:42.988955 21344 solver.cpp:245] Train net output #83: loss2/loss18 = 0.000300582 (* 0.0272727 = 8.19769e-06 loss) | |
I0327 13:23:42.988970 21344 solver.cpp:245] Train net output #84: loss2/loss19 = 0.00165616 (* 0.0272727 = 4.5168e-05 loss) | |
I0327 13:23:42.988983 21344 solver.cpp:245] Train net output #85: loss2/loss20 = 0.00180001 (* 0.0272727 = 4.90911e-05 loss) | |
I0327 13:23:42.988997 21344 solver.cpp:245] Train net output #86: loss2/loss21 = 0.00106156 (* 0.0272727 = 2.89516e-05 loss) | |
I0327 13:23:42.989012 21344 solver.cpp:245] Train net output #87: loss2/loss22 = 0.00026233 (* 0.0272727 = 7.15444e-06 loss) | |
I0327 13:23:42.989024 21344 solver.cpp:245] Train net output #88: loss3/accuracy01 = 0.375 | |
I0327 13:23:42.989037 21344 solver.cpp:245] Train net output #89: loss3/accuracy02 = 0.125 | |
I0327 13:23:42.989048 21344 solver.cpp:245] Train net output #90: loss3/accuracy03 = 0.125 | |
I0327 13:23:42.989070 21344 solver.cpp:245] Train net output #91: loss3/accuracy04 = 0.5 | |
I0327 13:23:42.989086 21344 solver.cpp:245] Train net output #92: loss3/accuracy05 = 0.25 | |
I0327 13:23:42.989099 21344 solver.cpp:245] Train net output #93: loss3/accuracy06 = 0.25 | |
I0327 13:23:42.989111 21344 solver.cpp:245] Train net output #94: loss3/accuracy07 = 0.625 | |
I0327 13:23:42.989122 21344 solver.cpp:245] Train net output #95: loss3/accuracy08 = 0.875 | |
I0327 13:23:42.989135 21344 solver.cpp:245] Train net output #96: loss3/accuracy09 = 0.875 | |
I0327 13:23:42.989146 21344 solver.cpp:245] Train net output #97: loss3/accuracy10 = 1 | |
I0327 13:23:42.989158 21344 solver.cpp:245] Train net output #98: loss3/accuracy11 = 1 | |
I0327 13:23:42.989169 21344 solver.cpp:245] Train net output #99: loss3/accuracy12 = 1 | |
I0327 13:23:42.989184 21344 solver.cpp:245] Train net output #100: loss3/accuracy13 = 1 | |
I0327 13:23:42.989195 21344 solver.cpp:245] Train net output #101: loss3/accuracy14 = 1 | |
I0327 13:23:42.989207 21344 solver.cpp:245] Train net output #102: loss3/accuracy15 = 1 | |
I0327 13:23:42.989218 21344 solver.cpp:245] Train net output #103: loss3/accuracy16 = 1 | |
I0327 13:23:42.989230 21344 solver.cpp:245] Train net output #104: loss3/accuracy17 = 1 | |
I0327 13:23:42.989241 21344 solver.cpp:245] Train net output #105: loss3/accuracy18 = 1 | |
I0327 13:23:42.989253 21344 solver.cpp:245] Train net output #106: loss3/accuracy19 = 1 | |
I0327 13:23:42.989264 21344 solver.cpp:245] Train net output #107: loss3/accuracy20 = 1 | |
I0327 13:23:42.989275 21344 solver.cpp:245] Train net output #108: loss3/accuracy21 = 1 | |
I0327 13:23:42.989287 21344 solver.cpp:245] Train net output #109: loss3/accuracy22 = 1 | |
I0327 13:23:42.989301 21344 solver.cpp:245] Train net output #110: loss3/loss01 = 2.40435 (* 0.0909091 = 0.218577 loss) | |
I0327 13:23:42.989315 21344 solver.cpp:245] Train net output #111: loss3/loss02 = 3.19962 (* 0.0909091 = 0.290875 loss) | |
I0327 13:23:42.989328 21344 solver.cpp:245] Train net output #112: loss3/loss03 = 2.96414 (* 0.0909091 = 0.269468 loss) | |
I0327 13:23:42.989342 21344 solver.cpp:245] Train net output #113: loss3/loss04 = 2.55514 (* 0.0909091 = 0.232286 loss) | |
I0327 13:23:42.989356 21344 solver.cpp:245] Train net output #114: loss3/loss05 = 2.62225 (* 0.0909091 = 0.238387 loss) | |
I0327 13:23:42.989369 21344 solver.cpp:245] Train net output #115: loss3/loss06 = 2.908 (* 0.0909091 = 0.264363 loss) | |
I0327 13:23:42.989383 21344 solver.cpp:245] Train net output #116: loss3/loss07 = 1.18822 (* 0.0909091 = 0.10802 loss) | |
I0327 13:23:42.989398 21344 solver.cpp:245] Train net output #117: loss3/loss08 = 0.535699 (* 0.0909091 = 0.0486999 loss) | |
I0327 13:23:42.989410 21344 solver.cpp:245] Train net output #118: loss3/loss09 = 0.499041 (* 0.0909091 = 0.0453673 loss) | |
I0327 13:23:42.989425 21344 solver.cpp:245] Train net output #119: loss3/loss10 = 0.021399 (* 0.0909091 = 0.00194536 loss) | |
I0327 13:23:42.989439 21344 solver.cpp:245] Train net output #120: loss3/loss11 = 0.000200776 (* 0.0909091 = 1.82524e-05 loss) | |
I0327 13:23:42.989454 21344 solver.cpp:245] Train net output #121: loss3/loss12 = 0.000184551 (* 0.0909091 = 1.67774e-05 loss) | |
I0327 13:23:42.989466 21344 solver.cpp:245] Train net output #122: loss3/loss13 = 0.000124854 (* 0.0909091 = 1.13504e-05 loss) | |
I0327 13:23:42.989480 21344 solver.cpp:245] Train net output #123: loss3/loss14 = 0.000134771 (* 0.0909091 = 1.22519e-05 loss) | |
I0327 13:23:42.989495 21344 solver.cpp:245] Train net output #124: loss3/loss15 = 0.000165613 (* 0.0909091 = 1.50557e-05 loss) | |
I0327 13:23:42.989508 21344 solver.cpp:245] Train net output #125: loss3/loss16 = 0.000183897 (* 0.0909091 = 1.67179e-05 loss) | |
I0327 13:23:42.989521 21344 solver.cpp:245] Train net output #126: loss3/loss17 = 0.000133901 (* 0.0909091 = 1.21728e-05 loss) | |
I0327 13:23:42.989536 21344 solver.cpp:245] Train net output #127: loss3/loss18 = 0.000169149 (* 0.0909091 = 1.53772e-05 loss) | |
I0327 13:23:42.989565 21344 solver.cpp:245] Train net output #128: loss3/loss19 = 0.00014759 (* 0.0909091 = 1.34173e-05 loss) | |
I0327 13:23:42.989593 21344 solver.cpp:245] Train net output #129: loss3/loss20 = 0.000180341 (* 0.0909091 = 1.63946e-05 loss) | |
I0327 13:23:42.989608 21344 solver.cpp:245] Train net output #130: loss3/loss21 = 0.000221273 (* 0.0909091 = 2.01157e-05 loss) | |
I0327 13:23:42.989621 21344 solver.cpp:245] Train net output #131: loss3/loss22 = 0.000121006 (* 0.0909091 = 1.10006e-05 loss) | |
I0327 13:23:42.989634 21344 solver.cpp:245] Train net output #132: total_accuracy = 0 | |
I0327 13:23:42.989645 21344 solver.cpp:245] Train net output #133: total_confidence = 0.000112937 | |
I0327 13:23:42.989658 21344 sgd_solver.cpp:106] Iteration 10000, lr = 0.01 | |
I0327 13:25:30.729514 21344 solver.cpp:229] Iteration 10500, loss = 2.9033 | |
I0327 13:25:30.729701 21344 solver.cpp:245] Train net output #0: loss1/accuracy01 = 0.125 | |
I0327 13:25:30.729722 21344 solver.cpp:245] Train net output #1: loss1/accuracy02 = 0.25 | |
I0327 13:25:30.729735 21344 solver.cpp:245] Train net output #2: loss1/accuracy03 = 0.25 | |
I0327 13:25:30.729748 21344 solver.cpp:245] Train net output #3: loss1/accuracy04 = 0 | |
I0327 13:25:30.729759 21344 solver.cpp:245] Train net output #4: loss1/accuracy05 = 0 | |
I0327 13:25:30.729771 21344 solver.cpp:245] Train net output #5: loss1/accuracy06 = 0.125 | |
I0327 13:25:30.729784 21344 solver.cpp:245] Train net output #6: loss1/accuracy07 = 0.5 | |
I0327 13:25:30.729795 21344 solver.cpp:245] Train net output #7: loss1/accuracy08 = 0.625 | |
I0327 13:25:30.729809 21344 solver.cpp:245] Train net output #8: loss1/accuracy09 = 0.875 | |
I0327 13:25:30.729820 21344 solver.cpp:245] Train net output #9: loss1/accuracy10 = 0.875 | |
I0327 13:25:30.729832 21344 solver.cpp:245] Train net output #10: loss1/accuracy11 = 1 | |
I0327 13:25:30.729845 21344 solver.cpp:245] Train net output #11: loss1/accuracy12 = 1 | |
I0327 13:25:30.729856 21344 solver.cpp:245] Train net output #12: loss1/accuracy13 = 1 | |
I0327 13:25:30.729867 21344 solver.cpp:245] Train net output #13: loss1/accuracy14 = 1 | |
I0327 13:25:30.729879 21344 solver.cpp:245] Train net output #14: loss1/accuracy15 = 1 | |
I0327 13:25:30.729892 21344 solver.cpp:245] Train net output #15: loss1/accuracy16 = 1 | |
I0327 13:25:30.729903 21344 solver.cpp:245] Train net output #16: loss1/accuracy17 = 1 | |
I0327 13:25:30.729914 21344 solver.cpp:245] Train net output #17: loss1/accuracy18 = 1 | |
I0327 13:25:30.729926 21344 solver.cpp:245] Train net output #18: loss1/accuracy19 = 1 | |
I0327 13:25:30.729938 21344 solver.cpp:245] Train net output #19: loss1/accuracy20 = 1 | |
I0327 13:25:30.729950 21344 solver.cpp:245] Train net output #20: loss1/accuracy21 = 1 | |
I0327 13:25:30.729962 21344 solver.cpp:245] Train net output #21: loss1/accuracy22 = 1 | |
I0327 13:25:30.729989 21344 solver.cpp:245] Train net output #22: loss1/loss01 = 2.87003 (* 0.0272727 = 0.0782736 loss) | |
I0327 13:25:30.730006 21344 solver.cpp:245] Train net output #23: loss1/loss02 = 3.40508 (* 0.0272727 = 0.0928658 loss) | |
I0327 13:25:30.730021 21344 solver.cpp:245] Train net output #24: loss1/loss03 = 2.94408 (* 0.0272727 = 0.0802931 loss) | |
I0327 13:25:30.730036 21344 solver.cpp:245] Train net output #25: loss1/loss04 = 4.15453 (* 0.0272727 = 0.113305 loss) | |
I0327 13:25:30.730049 21344 solver.cpp:245] Train net output #26: loss1/loss05 = 3.77976 (* 0.0272727 = 0.103084 loss) | |
I0327 13:25:30.730063 21344 solver.cpp:245] Train net output #27: loss1/loss06 = 4.21557 (* 0.0272727 = 0.11497 loss) | |
I0327 13:25:30.730077 21344 solver.cpp:245] Train net output #28: loss1/loss07 = 2.15592 (* 0.0272727 = 0.0587978 loss) | |
I0327 13:25:30.730093 21344 solver.cpp:245] Train net output #29: loss1/loss08 = 1.90883 (* 0.0272727 = 0.052059 loss) | |
I0327 13:25:30.730105 21344 solver.cpp:245] Train net output #30: loss1/loss09 = 0.556744 (* 0.0272727 = 0.0151839 loss) | |
I0327 13:25:30.730119 21344 solver.cpp:245] Train net output #31: loss1/loss10 = 0.563802 (* 0.0272727 = 0.0153764 loss) | |
I0327 13:25:30.730135 21344 solver.cpp:245] Train net output #32: loss1/loss11 = 0.00129485 (* 0.0272727 = 3.53142e-05 loss) | |
I0327 13:25:30.730149 21344 solver.cpp:245] Train net output #33: loss1/loss12 = 0.00145952 (* 0.0272727 = 3.98051e-05 loss) | |
I0327 13:25:30.730165 21344 solver.cpp:245] Train net output #34: loss1/loss13 = 0.00232076 (* 0.0272727 = 6.32934e-05 loss) | |
I0327 13:25:30.730178 21344 solver.cpp:245] Train net output #35: loss1/loss14 = 0.00218394 (* 0.0272727 = 5.95621e-05 loss) | |
I0327 13:25:30.730193 21344 solver.cpp:245] Train net output #36: loss1/loss15 = 0.00260049 (* 0.0272727 = 7.09226e-05 loss) | |
I0327 13:25:30.730207 21344 solver.cpp:245] Train net output #37: loss1/loss16 = 0.00283218 (* 0.0272727 = 7.72414e-05 loss) | |
I0327 13:25:30.730221 21344 solver.cpp:245] Train net output #38: loss1/loss17 = 0.00209276 (* 0.0272727 = 5.70753e-05 loss) | |
I0327 13:25:30.730257 21344 solver.cpp:245] Train net output #39: loss1/loss18 = 0.00110053 (* 0.0272727 = 3.00145e-05 loss) | |
I0327 13:25:30.730273 21344 solver.cpp:245] Train net output #40: loss1/loss19 = 0.00301761 (* 0.0272727 = 8.22984e-05 loss) | |
I0327 13:25:30.730286 21344 solver.cpp:245] Train net output #41: loss1/loss20 = 0.00319151 (* 0.0272727 = 8.70411e-05 loss) | |
I0327 13:25:30.730300 21344 solver.cpp:245] Train net output #42: loss1/loss21 = 0.00218958 (* 0.0272727 = 5.97159e-05 loss) | |
I0327 13:25:30.730314 21344 solver.cpp:245] Train net output #43: loss1/loss22 = 0.00238752 (* 0.0272727 = 6.51142e-05 loss) | |
I0327 13:25:30.730327 21344 solver.cpp:245] Train net output #44: loss2/accuracy01 = 0.25 | |
I0327 13:25:30.730340 21344 solver.cpp:245] Train net output #45: loss2/accuracy02 = 0 | |
I0327 13:25:30.730351 21344 solver.cpp:245] Train net output #46: loss2/accuracy03 = 0.125 | |
I0327 13:25:30.730363 21344 solver.cpp:245] Train net output #47: loss2/accuracy04 = 0 | |
I0327 13:25:30.730376 21344 solver.cpp:245] Train net output #48: loss2/accuracy05 = 0 | |
I0327 13:25:30.730386 21344 solver.cpp:245] Train net output #49: loss2/accuracy06 = 0.125 | |
I0327 13:25:30.730398 21344 solver.cpp:245] Train net output #50: loss2/accuracy07 = 0.5 | |
I0327 13:25:30.730412 21344 solver.cpp:245] Train net output #51: loss2/accuracy08 = 0.625 | |
I0327 13:25:30.730423 21344 solver.cpp:245] Train net output #52: loss2/accuracy09 = 0.875 | |
I0327 13:25:30.730432 21344 solver.cpp:245] Train net output #53: loss2/accuracy10 = 0.875 | |
I0327 13:25:30.730439 21344 solver.cpp:245] Train net output #54: loss2/accuracy11 = 1 | |
I0327 13:25:30.730451 21344 solver.cpp:245] Train net output #55: loss2/accuracy12 = 1 | |
I0327 13:25:30.730463 21344 solver.cpp:245] Train net output #56: loss2/accuracy13 = 1 | |
I0327 13:25:30.730475 21344 solver.cpp:245] Train net output #57: loss2/accuracy14 = 1 | |
I0327 13:25:30.730486 21344 solver.cpp:245] Train net output #58: loss2/accuracy15 = 1 | |
I0327 13:25:30.730505 21344 solver.cpp:245] Train net output #59: loss2/accuracy16 = 1 | |
I0327 13:25:30.730517 21344 solver.cpp:245] Train net output #60: loss2/accuracy17 = 1 | |
I0327 13:25:30.730530 21344 solver.cpp:245] Train net output #61: loss2/accuracy18 = 1 | |
I0327 13:25:30.730541 21344 solver.cpp:245] Train net output #62: loss2/accuracy19 = 1 | |
I0327 13:25:30.730552 21344 solver.cpp:245] Train net output #63: loss2/accuracy20 = 1 | |
I0327 13:25:30.730564 21344 solver.cpp:245] Train net output #64: loss2/accuracy21 = 1 | |
I0327 13:25:30.730576 21344 solver.cpp:245] Train net output #65: loss2/accuracy22 = 1 | |
I0327 13:25:30.730589 21344 solver.cpp:245] Train net output #66: loss2/loss01 = 2.7681 (* 0.0272727 = 0.0754935 loss) | |
I0327 13:25:30.730603 21344 solver.cpp:245] Train net output #67: loss2/loss02 = 4.04725 (* 0.0272727 = 0.11038 loss) | |
I0327 13:25:30.730618 21344 solver.cpp:245] Train net output #68: loss2/loss03 = 2.93704 (* 0.0272727 = 0.0801011 loss) | |
I0327 13:25:30.730631 21344 solver.cpp:245] Train net output #69: loss2/loss04 = 3.81414 (* 0.0272727 = 0.104022 loss) | |
I0327 13:25:30.730645 21344 solver.cpp:245] Train net output #70: loss2/loss05 = 3.85206 (* 0.0272727 = 0.105056 loss) | |
I0327 13:25:30.730659 21344 solver.cpp:245] Train net output #71: loss2/loss06 = 3.70407 (* 0.0272727 = 0.10102 loss) | |
I0327 13:25:30.730674 21344 solver.cpp:245] Train net output #72: loss2/loss07 = 1.94569 (* 0.0272727 = 0.0530644 loss) | |
I0327 13:25:30.730686 21344 solver.cpp:245] Train net output #73: loss2/loss08 = 1.75076 (* 0.0272727 = 0.0477479 loss) | |
I0327 13:25:30.730700 21344 solver.cpp:245] Train net output #74: loss2/loss09 = 0.421663 (* 0.0272727 = 0.0114999 loss) | |
I0327 13:25:30.730717 21344 solver.cpp:245] Train net output #75: loss2/loss10 = 0.72574 (* 0.0272727 = 0.0197929 loss) | |
I0327 13:25:30.730733 21344 solver.cpp:245] Train net output #76: loss2/loss11 = 0.00178083 (* 0.0272727 = 4.85681e-05 loss) | |
I0327 13:25:30.730759 21344 solver.cpp:245] Train net output #77: loss2/loss12 = 0.00137393 (* 0.0272727 = 3.74708e-05 loss) | |
I0327 13:25:30.730774 21344 solver.cpp:245] Train net output #78: loss2/loss13 = 0.00124257 (* 0.0272727 = 3.38884e-05 loss) | |
I0327 13:25:30.730788 21344 solver.cpp:245] Train net output #79: loss2/loss14 = 0.00187566 (* 0.0272727 = 5.11543e-05 loss) | |
I0327 13:25:30.730803 21344 solver.cpp:245] Train net output #80: loss2/loss15 = 0.00109513 (* 0.0272727 = 2.98671e-05 loss) | |
I0327 13:25:30.730818 21344 solver.cpp:245] Train net output #81: loss2/loss16 = 0.00241178 (* 0.0272727 = 6.57757e-05 loss) | |
I0327 13:25:30.730831 21344 solver.cpp:245] Train net output #82: loss2/loss17 = 0.00135395 (* 0.0272727 = 3.69259e-05 loss) | |
I0327 13:25:30.730845 21344 solver.cpp:245] Train net output #83: loss2/loss18 = 0.00179703 (* 0.0272727 = 4.90099e-05 loss) | |
I0327 13:25:30.730860 21344 solver.cpp:245] Train net output #84: loss2/loss19 = 0.00111922 (* 0.0272727 = 3.05242e-05 loss) | |
I0327 13:25:30.730875 21344 solver.cpp:245] Train net output #85: loss2/loss20 = 0.00275745 (* 0.0272727 = 7.52032e-05 loss) | |
I0327 13:25:30.730888 21344 solver.cpp:245] Train net output #86: loss2/loss21 = 0.00126222 (* 0.0272727 = 3.44242e-05 loss) | |
I0327 13:25:30.730902 21344 solver.cpp:245] Train net output #87: loss2/loss22 = 0.0017824 (* 0.0272727 = 4.8611e-05 loss) | |
I0327 13:25:30.730916 21344 solver.cpp:245] Train net output #88: loss3/accuracy01 = 0.125 | |
I0327 13:25:30.730929 21344 solver.cpp:245] Train net output #89: loss3/accuracy02 = 0.125 | |
I0327 13:25:30.730952 21344 solver.cpp:245] Train net output #90: loss3/accuracy03 = 0.375 | |
I0327 13:25:30.730967 21344 solver.cpp:245] Train net output #91: loss3/accuracy04 = 0 | |
I0327 13:25:30.730980 21344 solver.cpp:245] Train net output #92: loss3/accuracy05 = 0 | |
I0327 13:25:30.730993 21344 solver.cpp:245] Train net output #93: loss3/accuracy06 = 0.125 | |
I0327 13:25:30.731005 21344 solver.cpp:245] Train net output #94: loss3/accuracy07 = 0.5 | |
I0327 13:25:30.731017 21344 solver.cpp:245] Train net output #95: loss3/accuracy08 = 0.625 | |
I0327 13:25:30.731029 21344 solver.cpp:245] Train net output #96: loss3/accuracy09 = 0.875 | |
I0327 13:25:30.731043 21344 solver.cpp:245] Train net output #97: loss3/accuracy10 = 0.875 | |
I0327 13:25:30.731055 21344 solver.cpp:245] Train net output #98: loss3/accuracy11 = 1 | |
I0327 13:25:30.731067 21344 solver.cpp:245] Train net output #99: loss3/accuracy12 = 1 | |
I0327 13:25:30.731079 21344 solver.cpp:245] Train net output #100: loss3/accuracy13 = 1 | |
I0327 13:25:30.731091 21344 solver.cpp:245] Train net output #101: loss3/accuracy14 = 1 | |
I0327 13:25:30.731103 21344 solver.cpp:245] Train net output #102: loss3/accuracy15 = 1 | |
I0327 13:25:30.731114 21344 solver.cpp:245] Train net output #103: loss3/accuracy16 = 1 | |
I0327 13:25:30.731127 21344 solver.cpp:245] Train net output #104: loss3/accuracy17 = 1 | |
I0327 13:25:30.731138 21344 solver.cpp:245] Train net output #105: loss3/accuracy18 = 1 | |
I0327 13:25:30.731149 21344 solver.cpp:245] Train net output #106: loss3/accuracy19 = 1 | |
I0327 13:25:30.731161 21344 solver.cpp:245] Train net output #107: loss3/accuracy20 = 1 | |
I0327 13:25:30.731173 21344 solver.cpp:245] Train net output #108: loss3/accuracy21 = 1 | |
I0327 13:25:30.731185 21344 solver.cpp:245] Train net output #109: loss3/accuracy22 = 1 | |
I0327 13:25:30.731199 21344 solver.cpp:245] Train net output #110: loss3/loss01 = 2.87417 (* 0.0909091 = 0.261288 loss) | |
I0327 13:25:30.731214 21344 solver.cpp:245] Train net output #111: loss3/loss02 = 3.8605 (* 0.0909091 = 0.350955 loss) | |
I0327 13:25:30.731227 21344 solver.cpp:245] Train net output #112: loss3/loss03 = 2.77931 (* 0.0909091 = 0.252665 loss) | |
I0327 13:25:30.731241 21344 solver.cpp:245] Train net output #113: loss3/loss04 = 4.15157 (* 0.0909091 = 0.377416 loss) | |
I0327 13:25:30.731256 21344 solver.cpp:245] Train net output #114: loss3/loss05 = 3.58251 (* 0.0909091 = 0.325683 loss) | |
I0327 13:25:30.731269 21344 solver.cpp:245] Train net output #115: loss3/loss06 = 3.89607 (* 0.0909091 = 0.354188 loss) | |
I0327 13:25:30.731294 21344 solver.cpp:245] Train net output #116: loss3/loss07 = 2.29148 (* 0.0909091 = 0.208316 loss) | |
I0327 13:25:30.731310 21344 solver.cpp:245] Train net output #117: loss3/loss08 = 1.99525 (* 0.0909091 = 0.181387 loss) | |
I0327 13:25:30.731324 21344 solver.cpp:245] Train net output #118: loss3/loss09 = 0.419408 (* 0.0909091 = 0.038128 loss) | |
I0327 13:25:30.731338 21344 solver.cpp:245] Train net output #119: loss3/loss10 = 0.646621 (* 0.0909091 = 0.0587838 loss) | |
I0327 13:25:30.731353 21344 solver.cpp:245] Train net output #120: loss3/loss11 = 0.000380915 (* 0.0909091 = 3.46287e-05 loss) | |
I0327 13:25:30.731367 21344 solver.cpp:245] Train net output #121: loss3/loss12 = 0.000434001 (* 0.0909091 = 3.94546e-05 loss) | |
I0327 13:25:30.731381 21344 solver.cpp:245] Train net output #122: loss3/loss13 = 0.000370655 (* 0.0909091 = 3.36959e-05 loss) | |
I0327 13:25:30.731395 21344 solver.cpp:245] Train net output #123: loss3/loss14 = 0.000360448 (* 0.0909091 = 3.2768e-05 loss) | |
I0327 13:25:30.731410 21344 solver.cpp:245] Train net output #124: loss3/loss15 = 0.000375264 (* 0.0909091 = 3.41149e-05 loss) | |
I0327 13:25:30.731425 21344 solver.cpp:245] Train net output #125: loss3/loss16 = 0.000380289 (* 0.0909091 = 3.45718e-05 loss) | |
I0327 13:25:30.731438 21344 solver.cpp:245] Train net output #126: loss3/loss17 = 0.000325311 (* 0.0909091 = 2.95737e-05 loss) | |
I0327 13:25:30.731452 21344 solver.cpp:245] Train net output #127: loss3/loss18 = 0.000392693 (* 0.0909091 = 3.56994e-05 loss) | |
I0327 13:25:30.731467 21344 solver.cpp:245] Train net output #128: loss3/loss19 = 0.000391371 (* 0.0909091 = 3.55792e-05 loss) | |
I0327 13:25:30.731482 21344 solver.cpp:245] Train net output #129: loss3/loss20 = 0.000319389 (* 0.0909091 = 2.90354e-05 loss) | |
I0327 13:25:30.731495 21344 solver.cpp:245] Train net output #130: loss3/loss21 = 0.000457426 (* 0.0909091 = 4.15841e-05 loss) | |
I0327 13:25:30.731509 21344 solver.cpp:245] Train net output #131: loss3/loss22 = 0.000300643 (* 0.0909091 = 2.73312e-05 loss) | |
I0327 13:25:30.731521 21344 solver.cpp:245] Train net output #132: total_accuracy = 0 | |
I0327 13:25:30.731534 21344 solver.cpp:245] Train net output #133: total_confidence = 1.65649e-05 | |
I0327 13:25:30.731545 21344 sgd_solver.cpp:106] Iteration 10500, lr = 0.01 | |
I0327 13:27:18.538147 21344 solver.cpp:229] Iteration 11000, loss = 2.87102 | |
I0327 13:27:18.538331 21344 solver.cpp:245] Train net output #0: loss1/accuracy01 = 0 | |
I0327 13:27:18.538352 21344 solver.cpp:245] Train net output #1: loss1/accuracy02 = 0 | |
I0327 13:27:18.538365 21344 solver.cpp:245] Train net output #2: loss1/accuracy03 = 0.125 | |
I0327 13:27:18.538378 21344 solver.cpp:245] Train net output #3: loss1/accuracy04 = 0 | |
I0327 13:27:18.538390 21344 solver.cpp:245] Train net output #4: loss1/accuracy05 = 0.125 | |
I0327 13:27:18.538403 21344 solver.cpp:245] Train net output #5: loss1/accuracy06 = 0.375 | |
I0327 13:27:18.538414 21344 solver.cpp:245] Train net output #6: loss1/accuracy07 = 0.875 | |
I0327 13:27:18.538426 21344 solver.cpp:245] Train net output #7: loss1/accuracy08 = 1 | |
I0327 13:27:18.538439 21344 solver.cpp:245] Train net output #8: loss1/accuracy09 = 1 | |
I0327 13:27:18.538450 21344 solver.cpp:245] Train net output #9: loss1/accuracy10 = 1 | |
I0327 13:27:18.538461 21344 solver.cpp:245] Train net output #10: loss1/accuracy11 = 1 | |
I0327 13:27:18.538473 21344 solver.cpp:245] Train net output #11: loss1/accuracy12 = 1 | |
I0327 13:27:18.538486 21344 solver.cpp:245] Train net output #12: loss1/accuracy13 = 1 | |
I0327 13:27:18.538496 21344 solver.cpp:245] Train net output #13: loss1/accuracy14 = 1 | |
I0327 13:27:18.538508 21344 solver.cpp:245] Train net output #14: loss1/accuracy15 = 1 | |
I0327 13:27:18.538521 21344 solver.cpp:245] Train net output #15: loss1/accuracy16 = 1 | |
I0327 13:27:18.538532 21344 solver.cpp:245] Train net output #16: loss1/accuracy17 = 1 | |
I0327 13:27:18.538544 21344 solver.cpp:245] Train net output #17: loss1/accuracy18 = 1 | |
I0327 13:27:18.538555 21344 solver.cpp:245] Train net output #18: loss1/accuracy19 = 1 | |
I0327 13:27:18.538568 21344 solver.cpp:245] Train net output #19: loss1/accuracy20 = 1 | |
I0327 13:27:18.538579 21344 solver.cpp:245] Train net output #20: loss1/accuracy21 = 1 | |
I0327 13:27:18.538591 21344 solver.cpp:245] Train net output #21: loss1/accuracy22 = 1 | |
I0327 13:27:18.538609 21344 solver.cpp:245] Train net output #22: loss1/loss01 = 2.9702 (* 0.0272727 = 0.0810056 loss) | |
I0327 13:27:18.538624 21344 solver.cpp:245] Train net output #23: loss1/loss02 = 3.69979 (* 0.0272727 = 0.100903 loss) | |
I0327 13:27:18.538638 21344 solver.cpp:245] Train net output #24: loss1/loss03 = 3.52361 (* 0.0272727 = 0.0960984 loss) | |
I0327 13:27:18.538652 21344 solver.cpp:245] Train net output #25: loss1/loss04 = 4.00476 (* 0.0272727 = 0.109221 loss) | |
I0327 13:27:18.538666 21344 solver.cpp:245] Train net output #26: loss1/loss05 = 3.1269 (* 0.0272727 = 0.0852791 loss) | |
I0327 13:27:18.538681 21344 solver.cpp:245] Train net output #27: loss1/loss06 = 2.88557 (* 0.0272727 = 0.0786975 loss) | |
I0327 13:27:18.538694 21344 solver.cpp:245] Train net output #28: loss1/loss07 = 0.646133 (* 0.0272727 = 0.0176218 loss) | |
I0327 13:27:18.538709 21344 solver.cpp:245] Train net output #29: loss1/loss08 = 0.0846533 (* 0.0272727 = 0.00230873 loss) | |
I0327 13:27:18.538723 21344 solver.cpp:245] Train net output #30: loss1/loss09 = 0.0269619 (* 0.0272727 = 0.000735325 loss) | |
I0327 13:27:18.538738 21344 solver.cpp:245] Train net output #31: loss1/loss10 = 0.0118837 (* 0.0272727 = 0.0003241 loss) | |
I0327 13:27:18.538753 21344 solver.cpp:245] Train net output #32: loss1/loss11 = 0.000835556 (* 0.0272727 = 2.27879e-05 loss) | |
I0327 13:27:18.538768 21344 solver.cpp:245] Train net output #33: loss1/loss12 = 0.00202398 (* 0.0272727 = 5.51995e-05 loss) | |
I0327 13:27:18.538781 21344 solver.cpp:245] Train net output #34: loss1/loss13 = 0.000388585 (* 0.0272727 = 1.05978e-05 loss) | |
I0327 13:27:18.538796 21344 solver.cpp:245] Train net output #35: loss1/loss14 = 0.00143819 (* 0.0272727 = 3.92233e-05 loss) | |
I0327 13:27:18.538810 21344 solver.cpp:245] Train net output #36: loss1/loss15 = 0.000827279 (* 0.0272727 = 2.25622e-05 loss) | |
I0327 13:27:18.538825 21344 solver.cpp:245] Train net output #37: loss1/loss16 = 0.000640009 (* 0.0272727 = 1.74548e-05 loss) | |
I0327 13:27:18.538838 21344 solver.cpp:245] Train net output #38: loss1/loss17 = 0.000707748 (* 0.0272727 = 1.93022e-05 loss) | |
I0327 13:27:18.538866 21344 solver.cpp:245] Train net output #39: loss1/loss18 = 0.000768568 (* 0.0272727 = 2.0961e-05 loss) | |
I0327 13:27:18.538882 21344 solver.cpp:245] Train net output #40: loss1/loss19 = 0.00127282 (* 0.0272727 = 3.47134e-05 loss) | |
I0327 13:27:18.538897 21344 solver.cpp:245] Train net output #41: loss1/loss20 = 0.000706808 (* 0.0272727 = 1.92766e-05 loss) | |
I0327 13:27:18.538911 21344 solver.cpp:245] Train net output #42: loss1/loss21 = 0.000651616 (* 0.0272727 = 1.77713e-05 loss) | |
I0327 13:27:18.538925 21344 solver.cpp:245] Train net output #43: loss1/loss22 = 0.00153138 (* 0.0272727 = 4.1765e-05 loss) | |
I0327 13:27:18.538938 21344 solver.cpp:245] Train net output #44: loss2/accuracy01 = 0.125 | |
I0327 13:27:18.538951 21344 solver.cpp:245] Train net output #45: loss2/accuracy02 = 0 | |
I0327 13:27:18.538964 21344 solver.cpp:245] Train net output #46: loss2/accuracy03 = 0.25 | |
I0327 13:27:18.538975 21344 solver.cpp:245] Train net output #47: loss2/accuracy04 = 0 | |
I0327 13:27:18.538987 21344 solver.cpp:245] Train net output #48: loss2/accuracy05 = 0.125 | |
I0327 13:27:18.539002 21344 solver.cpp:245] Train net output #49: loss2/accuracy06 = 0.375 | |
I0327 13:27:18.539016 21344 solver.cpp:245] Train net output #50: loss2/accuracy07 = 0.875 | |
I0327 13:27:18.539027 21344 solver.cpp:245] Train net output #51: loss2/accuracy08 = 1 | |
I0327 13:27:18.539039 21344 solver.cpp:245] Train net output #52: loss2/accuracy09 = 1 | |
I0327 13:27:18.539052 21344 solver.cpp:245] Train net output #53: loss2/accuracy10 = 1 | |
I0327 13:27:18.539063 21344 solver.cpp:245] Train net output #54: loss2/accuracy11 = 1 | |
I0327 13:27:18.539075 21344 solver.cpp:245] Train net output #55: loss2/accuracy12 = 1 | |
I0327 13:27:18.539088 21344 solver.cpp:245] Train net output #56: loss2/accuracy13 = 1 | |
I0327 13:27:18.539099 21344 solver.cpp:245] Train net output #57: loss2/accuracy14 = 1 | |
I0327 13:27:18.539110 21344 solver.cpp:245] Train net output #58: loss2/accuracy15 = 1 | |
I0327 13:27:18.539122 21344 solver.cpp:245] Train net output #59: loss2/accuracy16 = 1 | |
I0327 13:27:18.539134 21344 solver.cpp:245] Train net output #60: loss2/accuracy17 = 1 | |
I0327 13:27:18.539145 21344 solver.cpp:245] Train net output #61: loss2/accuracy18 = 1 | |
I0327 13:27:18.539157 21344 solver.cpp:245] Train net output #62: loss2/accuracy19 = 1 | |
I0327 13:27:18.539168 21344 solver.cpp:245] Train net output #63: loss2/accuracy20 = 1 | |
I0327 13:27:18.539180 21344 solver.cpp:245] Train net output #64: loss2/accuracy21 = 1 | |
I0327 13:27:18.539192 21344 solver.cpp:245] Train net output #65: loss2/accuracy22 = 1 | |
I0327 13:27:18.539206 21344 solver.cpp:245] Train net output #66: loss2/loss01 = 2.65055 (* 0.0272727 = 0.0722878 loss) | |
I0327 13:27:18.539221 21344 solver.cpp:245] Train net output #67: loss2/loss02 = 3.70946 (* 0.0272727 = 0.101167 loss) | |
I0327 13:27:18.539237 21344 solver.cpp:245] Train net output #68: loss2/loss03 = 3.32033 (* 0.0272727 = 0.0905543 loss) | |
I0327 13:27:18.539252 21344 solver.cpp:245] Train net output #69: loss2/loss04 = 3.54035 (* 0.0272727 = 0.096555 loss) | |
I0327 13:27:18.539266 21344 solver.cpp:245] Train net output #70: loss2/loss05 = 2.82001 (* 0.0272727 = 0.0769094 loss) | |
I0327 13:27:18.539280 21344 solver.cpp:245] Train net output #71: loss2/loss06 = 2.49854 (* 0.0272727 = 0.068142 loss) | |
I0327 13:27:18.539295 21344 solver.cpp:245] Train net output #72: loss2/loss07 = 0.697841 (* 0.0272727 = 0.019032 loss) | |
I0327 13:27:18.539309 21344 solver.cpp:245] Train net output #73: loss2/loss08 = 0.147193 (* 0.0272727 = 0.00401435 loss) | |
I0327 13:27:18.539324 21344 solver.cpp:245] Train net output #74: loss2/loss09 = 0.0293281 (* 0.0272727 = 0.000799858 loss) | |
I0327 13:27:18.539338 21344 solver.cpp:245] Train net output #75: loss2/loss10 = 0.0235881 (* 0.0272727 = 0.000643311 loss) | |
I0327 13:27:18.539357 21344 solver.cpp:245] Train net output #76: loss2/loss11 = 0.000154952 (* 0.0272727 = 4.22597e-06 loss) | |
I0327 13:27:18.539384 21344 solver.cpp:245] Train net output #77: loss2/loss12 = 0.000254386 (* 0.0272727 = 6.93779e-06 loss) | |
I0327 13:27:18.539399 21344 solver.cpp:245] Train net output #78: loss2/loss13 = 0.000282134 (* 0.0272727 = 7.69456e-06 loss) | |
I0327 13:27:18.539414 21344 solver.cpp:245] Train net output #79: loss2/loss14 = 0.000414658 (* 0.0272727 = 1.13089e-05 loss) | |
I0327 13:27:18.539428 21344 solver.cpp:245] Train net output #80: loss2/loss15 = 0.000159828 (* 0.0272727 = 4.35894e-06 loss) | |
I0327 13:27:18.539443 21344 solver.cpp:245] Train net output #81: loss2/loss16 = 0.000161728 (* 0.0272727 = 4.41078e-06 loss) | |
I0327 13:27:18.539458 21344 solver.cpp:245] Train net output #82: loss2/loss17 = 0.000403488 (* 0.0272727 = 1.10042e-05 loss) | |
I0327 13:27:18.539471 21344 solver.cpp:245] Train net output #83: loss2/loss18 = 0.00036341 (* 0.0272727 = 9.91117e-06 loss) | |
I0327 13:27:18.539485 21344 solver.cpp:245] Train net output #84: loss2/loss19 = 0.000222088 (* 0.0272727 = 6.05695e-06 loss) | |
I0327 13:27:18.539500 21344 solver.cpp:245] Train net output #85: loss2/loss20 = 0.000186395 (* 0.0272727 = 5.08349e-06 loss) | |
I0327 13:27:18.539515 21344 solver.cpp:245] Train net output #86: loss2/loss21 = 0.00031361 (* 0.0272727 = 8.55299e-06 loss) | |
I0327 13:27:18.539528 21344 solver.cpp:245] Train net output #87: loss2/loss22 = 0.000177207 (* 0.0272727 = 4.83291e-06 loss) | |
I0327 13:27:18.539541 21344 solver.cpp:245] Train net output #88: loss3/accuracy01 = 0.125 | |
I0327 13:27:18.539554 21344 solver.cpp:245] Train net output #89: loss3/accuracy02 = 0.125 | |
I0327 13:27:18.539566 21344 solver.cpp:245] Train net output #90: loss3/accuracy03 = 0.125 | |
I0327 13:27:18.539578 21344 solver.cpp:245] Train net output #91: loss3/accuracy04 = 0 | |
I0327 13:27:18.539589 21344 solver.cpp:245] Train net output #92: loss3/accuracy05 = 0.125 | |
I0327 13:27:18.539602 21344 solver.cpp:245] Train net output #93: loss3/accuracy06 = 0.375 | |
I0327 13:27:18.539613 21344 solver.cpp:245] Train net output #94: loss3/accuracy07 = 0.875 | |
I0327 13:27:18.539625 21344 solver.cpp:245] Train net output #95: loss3/accuracy08 = 1 | |
I0327 13:27:18.539638 21344 solver.cpp:245] Train net output #96: loss3/accuracy09 = 1 | |
I0327 13:27:18.539649 21344 solver.cpp:245] Train net output #97: loss3/accuracy10 = 1 | |
I0327 13:27:18.539660 21344 solver.cpp:245] Train net output #98: loss3/accuracy11 = 1 | |
I0327 13:27:18.539671 21344 solver.cpp:245] Train net output #99: loss3/accuracy12 = 1 | |
I0327 13:27:18.539683 21344 solver.cpp:245] Train net output #100: loss3/accuracy13 = 1 | |
I0327 13:27:18.539695 21344 solver.cpp:245] Train net output #101: loss3/accuracy14 = 1 | |
I0327 13:27:18.539707 21344 solver.cpp:245] Train net output #102: loss3/accuracy15 = 1 | |
I0327 13:27:18.539718 21344 solver.cpp:245] Train net output #103: loss3/accuracy16 = 1 | |
I0327 13:27:18.539731 21344 solver.cpp:245] Train net output #104: loss3/accuracy17 = 1 | |
I0327 13:27:18.539742 21344 solver.cpp:245] Train net output #105: loss3/accuracy18 = 1 | |
I0327 13:27:18.539753 21344 solver.cpp:245] Train net output #106: loss3/accuracy19 = 1 | |
I0327 13:27:18.539765 21344 solver.cpp:245] Train net output #107: loss3/accuracy20 = 1 | |
I0327 13:27:18.539777 21344 solver.cpp:245] Train net output #108: loss3/accuracy21 = 1 | |
I0327 13:27:18.539788 21344 solver.cpp:245] Train net output #109: loss3/accuracy22 = 1 | |
I0327 13:27:18.539803 21344 solver.cpp:245] Train net output #110: loss3/loss01 = 2.3807 (* 0.0909091 = 0.216428 loss) | |
I0327 13:27:18.539816 21344 solver.cpp:245] Train net output #111: loss3/loss02 = 3.6252 (* 0.0909091 = 0.329564 loss) | |
I0327 13:27:18.539831 21344 solver.cpp:245] Train net output #112: loss3/loss03 = 3.0645 (* 0.0909091 = 0.278591 loss) | |
I0327 13:27:18.539845 21344 solver.cpp:245] Train net output #113: loss3/loss04 = 3.59534 (* 0.0909091 = 0.326849 loss) | |
I0327 13:27:18.539860 21344 solver.cpp:245] Train net output #114: loss3/loss05 = 2.54041 (* 0.0909091 = 0.230947 loss) | |
I0327 13:27:18.539875 21344 solver.cpp:245] Train net output #115: loss3/loss06 = 2.21816 (* 0.0909091 = 0.201651 loss) | |
I0327 13:27:18.539901 21344 solver.cpp:245] Train net output #116: loss3/loss07 = 0.668619 (* 0.0909091 = 0.0607836 loss) | |
I0327 13:27:18.539916 21344 solver.cpp:245] Train net output #117: loss3/loss08 = 0.117688 (* 0.0909091 = 0.0106989 loss) | |
I0327 13:27:18.539930 21344 solver.cpp:245] Train net output #118: loss3/loss09 = 0.0297075 (* 0.0909091 = 0.00270068 loss) | |
I0327 13:27:18.539944 21344 solver.cpp:245] Train net output #119: loss3/loss10 = 0.0126466 (* 0.0909091 = 0.00114969 loss) | |
I0327 13:27:18.539959 21344 solver.cpp:245] Train net output #120: loss3/loss11 = 0.000435949 (* 0.0909091 = 3.96317e-05 loss) | |
I0327 13:27:18.539973 21344 solver.cpp:245] Train net output #121: loss3/loss12 = 0.000448359 (* 0.0909091 = 4.07599e-05 loss) | |
I0327 13:27:18.539988 21344 solver.cpp:245] Train net output #122: loss3/loss13 = 0.000570761 (* 0.0909091 = 5.18874e-05 loss) | |
I0327 13:27:18.540002 21344 solver.cpp:245] Train net output #123: loss3/loss14 = 0.000416587 (* 0.0909091 = 3.78715e-05 loss) | |
I0327 13:27:18.540016 21344 solver.cpp:245] Train net output #124: loss3/loss15 = 0.000440906 (* 0.0909091 = 4.00824e-05 loss) | |
I0327 13:27:18.540031 21344 solver.cpp:245] Train net output #125: loss3/loss16 = 0.000423236 (* 0.0909091 = 3.8476e-05 loss) | |
I0327 13:27:18.540048 21344 solver.cpp:245] Train net output #126: loss3/loss17 = 0.000410653 (* 0.0909091 = 3.73321e-05 loss) | |
I0327 13:27:18.540065 21344 solver.cpp:245] Train net output #127: loss3/loss18 = 0.000390604 (* 0.0909091 = 3.55095e-05 loss) | |
I0327 13:27:18.540078 21344 solver.cpp:245] Train net output #128: loss3/loss19 = 0.000494193 (* 0.0909091 = 4.49267e-05 loss) | |
I0327 13:27:18.540093 21344 solver.cpp:245] Train net output #129: loss3/loss20 = 0.00042771 (* 0.0909091 = 3.88827e-05 loss) | |
I0327 13:27:18.540107 21344 solver.cpp:245] Train net output #130: loss3/loss21 = 0.000417389 (* 0.0909091 = 3.79444e-05 loss) | |
I0327 13:27:18.540122 21344 solver.cpp:245] Train net output #131: loss3/loss22 = 0.000392633 (* 0.0909091 = 3.56939e-05 loss) | |
I0327 13:27:18.540134 21344 solver.cpp:245] Train net output #132: total_accuracy = 0 | |
I0327 13:27:18.540146 21344 solver.cpp:245] Train net output #133: total_confidence = 6.93416e-05 | |
I0327 13:27:18.540159 21344 sgd_solver.cpp:106] Iteration 11000, lr = 0.01 | |
I0327 13:29:06.410200 21344 solver.cpp:229] Iteration 11500, loss = 2.87181 | |
I0327 13:29:06.410327 21344 solver.cpp:245] Train net output #0: loss1/accuracy01 = 0.25 | |
I0327 13:29:06.410347 21344 solver.cpp:245] Train net output #1: loss1/accuracy02 = 0 | |
I0327 13:29:06.410359 21344 solver.cpp:245] Train net output #2: loss1/accuracy03 = 0 | |
I0327 13:29:06.410372 21344 solver.cpp:245] Train net output #3: loss1/accuracy04 = 0.25 | |
I0327 13:29:06.410383 21344 solver.cpp:245] Train net output #4: loss1/accuracy05 = 0.25 | |
I0327 13:29:06.410395 21344 solver.cpp:245] Train net output #5: loss1/accuracy06 = 0.25 | |
I0327 13:29:06.410408 21344 solver.cpp:245] Train net output #6: loss1/accuracy07 = 0.875 | |
I0327 13:29:06.410419 21344 solver.cpp:245] Train net output #7: loss1/accuracy08 = 1 | |
I0327 13:29:06.410431 21344 solver.cpp:245] Train net output #8: loss1/accuracy09 = 1 | |
I0327 13:29:06.410442 21344 solver.cpp:245] Train net output #9: loss1/accuracy10 = 1 | |
I0327 13:29:06.410454 21344 solver.cpp:245] Train net output #10: loss1/accuracy11 = 1 | |
I0327 13:29:06.410465 21344 solver.cpp:245] Train net output #11: loss1/accuracy12 = 1 | |
I0327 13:29:06.410476 21344 solver.cpp:245] Train net output #12: loss1/accuracy13 = 1 | |
I0327 13:29:06.410488 21344 solver.cpp:245] Train net output #13: loss1/accuracy14 = 1 | |
I0327 13:29:06.410500 21344 solver.cpp:245] Train net output #14: loss1/accuracy15 = 1 | |
I0327 13:29:06.410511 21344 solver.cpp:245] Train net output #15: loss1/accuracy16 = 1 | |
I0327 13:29:06.410522 21344 solver.cpp:245] Train net output #16: loss1/accuracy17 = 1 | |
I0327 13:29:06.410534 21344 solver.cpp:245] Train net output #17: loss1/accuracy18 = 1 | |
I0327 13:29:06.410545 21344 solver.cpp:245] Train net output #18: loss1/accuracy19 = 1 | |
I0327 13:29:06.410557 21344 solver.cpp:245] Train net output #19: loss1/accuracy20 = 1 | |
I0327 13:29:06.410568 21344 solver.cpp:245] Train net output #20: loss1/accuracy21 = 1 | |
I0327 13:29:06.410580 21344 solver.cpp:245] Train net output #21: loss1/accuracy22 = 1 | |
I0327 13:29:06.410596 21344 solver.cpp:245] Train net output #22: loss1/loss01 = 2.49305 (* 0.0272727 = 0.0679923 loss) | |
I0327 13:29:06.410611 21344 solver.cpp:245] Train net output #23: loss1/loss02 = 3.66807 (* 0.0272727 = 0.100038 loss) | |
I0327 13:29:06.410625 21344 solver.cpp:245] Train net output #24: loss1/loss03 = 3.28933 (* 0.0272727 = 0.0897089 loss) | |
I0327 13:29:06.410640 21344 solver.cpp:245] Train net output #25: loss1/loss04 = 2.7062 (* 0.0272727 = 0.0738056 loss) | |
I0327 13:29:06.410655 21344 solver.cpp:245] Train net output #26: loss1/loss05 = 2.52258 (* 0.0272727 = 0.0687976 loss) | |
I0327 13:29:06.410667 21344 solver.cpp:245] Train net output #27: loss1/loss06 = 2.89315 (* 0.0272727 = 0.078904 loss) | |
I0327 13:29:06.410681 21344 solver.cpp:245] Train net output #28: loss1/loss07 = 0.65597 (* 0.0272727 = 0.0178901 loss) | |
I0327 13:29:06.410696 21344 solver.cpp:245] Train net output #29: loss1/loss08 = 0.148765 (* 0.0272727 = 0.00405724 loss) | |
I0327 13:29:06.410711 21344 solver.cpp:245] Train net output #30: loss1/loss09 = 0.0133974 (* 0.0272727 = 0.000365382 loss) | |
I0327 13:29:06.410725 21344 solver.cpp:245] Train net output #31: loss1/loss10 = 0.00785946 (* 0.0272727 = 0.000214349 loss) | |
I0327 13:29:06.410740 21344 solver.cpp:245] Train net output #32: loss1/loss11 = 0.000351267 (* 0.0272727 = 9.58e-06 loss) | |
I0327 13:29:06.410755 21344 solver.cpp:245] Train net output #33: loss1/loss12 = 0.000205296 (* 0.0272727 = 5.59899e-06 loss) | |
I0327 13:29:06.410769 21344 solver.cpp:245] Train net output #34: loss1/loss13 = 0.000233095 (* 0.0272727 = 6.35714e-06 loss) | |
I0327 13:29:06.410784 21344 solver.cpp:245] Train net output #35: loss1/loss14 = 0.000217898 (* 0.0272727 = 5.94266e-06 loss) | |
I0327 13:29:06.410797 21344 solver.cpp:245] Train net output #36: loss1/loss15 = 0.000201262 (* 0.0272727 = 5.48896e-06 loss) | |
I0327 13:29:06.410811 21344 solver.cpp:245] Train net output #37: loss1/loss16 = 0.000233455 (* 0.0272727 = 6.36696e-06 loss) | |
I0327 13:29:06.410825 21344 solver.cpp:245] Train net output #38: loss1/loss17 = 0.000430799 (* 0.0272727 = 1.17491e-05 loss) | |
I0327 13:29:06.410856 21344 solver.cpp:245] Train net output #39: loss1/loss18 = 0.000337291 (* 0.0272727 = 9.19886e-06 loss) | |
I0327 13:29:06.410872 21344 solver.cpp:245] Train net output #40: loss1/loss19 = 0.000247087 (* 0.0272727 = 6.73873e-06 loss) | |
I0327 13:29:06.410887 21344 solver.cpp:245] Train net output #41: loss1/loss20 = 0.000132198 (* 0.0272727 = 3.60539e-06 loss) | |
I0327 13:29:06.410900 21344 solver.cpp:245] Train net output #42: loss1/loss21 = 0.000362362 (* 0.0272727 = 9.8826e-06 loss) | |
I0327 13:29:06.410914 21344 solver.cpp:245] Train net output #43: loss1/loss22 = 0.000323588 (* 0.0272727 = 8.82514e-06 loss) | |
I0327 13:29:06.410926 21344 solver.cpp:245] Train net output #44: loss2/accuracy01 = 0.25 | |
I0327 13:29:06.410939 21344 solver.cpp:245] Train net output #45: loss2/accuracy02 = 0 | |
I0327 13:29:06.410950 21344 solver.cpp:245] Train net output #46: loss2/accuracy03 = 0 | |
I0327 13:29:06.410962 21344 solver.cpp:245] Train net output #47: loss2/accuracy04 = 0.25 | |
I0327 13:29:06.410974 21344 solver.cpp:245] Train net output #48: loss2/accuracy05 = 0.25 | |
I0327 13:29:06.410986 21344 solver.cpp:245] Train net output #49: loss2/accuracy06 = 0.375 | |
I0327 13:29:06.411000 21344 solver.cpp:245] Train net output #50: loss2/accuracy07 = 0.875 | |
I0327 13:29:06.411013 21344 solver.cpp:245] Train net output #51: loss2/accuracy08 = 1 | |
I0327 13:29:06.411025 21344 solver.cpp:245] Train net output #52: loss2/accuracy09 = 1 | |
I0327 13:29:06.411036 21344 solver.cpp:245] Train net output #53: loss2/accuracy10 = 1 | |
I0327 13:29:06.411047 21344 solver.cpp:245] Train net output #54: loss2/accuracy11 = 1 | |
I0327 13:29:06.411058 21344 solver.cpp:245] Train net output #55: loss2/accuracy12 = 1 | |
I0327 13:29:06.411070 21344 solver.cpp:245] Train net output #56: loss2/accuracy13 = 1 | |
I0327 13:29:06.411082 21344 solver.cpp:245] Train net output #57: loss2/accuracy14 = 1 | |
I0327 13:29:06.411092 21344 solver.cpp:245] Train net output #58: loss2/accuracy15 = 1 | |
I0327 13:29:06.411104 21344 solver.cpp:245] Train net output #59: loss2/accuracy16 = 1 | |
I0327 13:29:06.411115 21344 solver.cpp:245] Train net output #60: loss2/accuracy17 = 1 | |
I0327 13:29:06.411126 21344 solver.cpp:245] Train net output #61: loss2/accuracy18 = 1 | |
I0327 13:29:06.411137 21344 solver.cpp:245] Train net output #62: loss2/accuracy19 = 1 | |
I0327 13:29:06.411149 21344 solver.cpp:245] Train net output #63: loss2/accuracy20 = 1 | |
I0327 13:29:06.411160 21344 solver.cpp:245] Train net output #64: loss2/accuracy21 = 1 | |
I0327 13:29:06.411171 21344 solver.cpp:245] Train net output #65: loss2/accuracy22 = 1 | |
I0327 13:29:06.411185 21344 solver.cpp:245] Train net output #66: loss2/loss01 = 2.0245 (* 0.0272727 = 0.0552137 loss) | |
I0327 13:29:06.411200 21344 solver.cpp:245] Train net output #67: loss2/loss02 = 3.48136 (* 0.0272727 = 0.0949461 loss) | |
I0327 13:29:06.411213 21344 solver.cpp:245] Train net output #68: loss2/loss03 = 3.19312 (* 0.0272727 = 0.087085 loss) | |
I0327 13:29:06.411226 21344 solver.cpp:245] Train net output #69: loss2/loss04 = 2.98432 (* 0.0272727 = 0.0813907 loss) | |
I0327 13:29:06.411242 21344 solver.cpp:245] Train net output #70: loss2/loss05 = 2.28514 (* 0.0272727 = 0.0623219 loss) | |
I0327 13:29:06.411254 21344 solver.cpp:245] Train net output #71: loss2/loss06 = 2.25246 (* 0.0272727 = 0.0614307 loss) | |
I0327 13:29:06.411268 21344 solver.cpp:245] Train net output #72: loss2/loss07 = 0.609194 (* 0.0272727 = 0.0166144 loss) | |
I0327 13:29:06.411283 21344 solver.cpp:245] Train net output #73: loss2/loss08 = 0.062196 (* 0.0272727 = 0.00169626 loss) | |
I0327 13:29:06.411298 21344 solver.cpp:245] Train net output #74: loss2/loss09 = 0.0157656 (* 0.0272727 = 0.000429971 loss) | |
I0327 13:29:06.411311 21344 solver.cpp:245] Train net output #75: loss2/loss10 = 0.00699484 (* 0.0272727 = 0.000190768 loss) | |
I0327 13:29:06.411325 21344 solver.cpp:245] Train net output #76: loss2/loss11 = 0.000188791 (* 0.0272727 = 5.14885e-06 loss) | |
I0327 13:29:06.411355 21344 solver.cpp:245] Train net output #77: loss2/loss12 = 0.000167446 (* 0.0272727 = 4.56671e-06 loss) | |
I0327 13:29:06.411370 21344 solver.cpp:245] Train net output #78: loss2/loss13 = 0.000231915 (* 0.0272727 = 6.32495e-06 loss) | |
I0327 13:29:06.411386 21344 solver.cpp:245] Train net output #79: loss2/loss14 = 0.000126343 (* 0.0272727 = 3.44573e-06 loss) | |
I0327 13:29:06.411399 21344 solver.cpp:245] Train net output #80: loss2/loss15 = 0.000148745 (* 0.0272727 = 4.05669e-06 loss) | |
I0327 13:29:06.411413 21344 solver.cpp:245] Train net output #81: loss2/loss16 = 0.000134986 (* 0.0272727 = 3.68144e-06 loss) | |
I0327 13:29:06.411427 21344 solver.cpp:245] Train net output #82: loss2/loss17 = 0.000103496 (* 0.0272727 = 2.82262e-06 loss) | |
I0327 13:29:06.411442 21344 solver.cpp:245] Train net output #83: loss2/loss18 = 0.000240977 (* 0.0272727 = 6.57211e-06 loss) | |
I0327 13:29:06.411455 21344 solver.cpp:245] Train net output #84: loss2/loss19 = 0.000272599 (* 0.0272727 = 7.43453e-06 loss) | |
I0327 13:29:06.411468 21344 solver.cpp:245] Train net output #85: loss2/loss20 = 8.69886e-05 (* 0.0272727 = 2.37242e-06 loss) | |
I0327 13:29:06.411484 21344 solver.cpp:245] Train net output #86: loss2/loss21 = 0.000123937 (* 0.0272727 = 3.38011e-06 loss) | |
I0327 13:29:06.411497 21344 solver.cpp:245] Train net output #87: loss2/loss22 = 0.000210352 (* 0.0272727 = 5.73687e-06 loss) | |
I0327 13:29:06.411506 21344 solver.cpp:245] Train net output #88: loss3/accuracy01 = 0.5 | |
I0327 13:29:06.411520 21344 solver.cpp:245] Train net output #89: loss3/accuracy02 = 0 | |
I0327 13:29:06.411531 21344 solver.cpp:245] Train net output #90: loss3/accuracy03 = 0 | |
I0327 13:29:06.411542 21344 solver.cpp:245] Train net output #91: loss3/accuracy04 = 0.25 | |
I0327 13:29:06.411555 21344 solver.cpp:245] Train net output #92: loss3/accuracy05 = 0.25 | |
I0327 13:29:06.411566 21344 solver.cpp:245] Train net output #93: loss3/accuracy06 = 0.25 | |
I0327 13:29:06.411577 21344 solver.cpp:245] Train net output #94: loss3/accuracy07 = 0.75 | |
I0327 13:29:06.411588 21344 solver.cpp:245] Train net output #95: loss3/accuracy08 = 1 | |
I0327 13:29:06.411600 21344 solver.cpp:245] Train net output #96: loss3/accuracy09 = 1 | |
I0327 13:29:06.411612 21344 solver.cpp:245] Train net output #97: loss3/accuracy10 = 1 | |
I0327 13:29:06.411623 21344 solver.cpp:245] Train net output #98: loss3/accuracy11 = 1 | |
I0327 13:29:06.411634 21344 solver.cpp:245] Train net output #99: loss3/accuracy12 = 1 | |
I0327 13:29:06.411645 21344 solver.cpp:245] Train net output #100: loss3/accuracy13 = 1 | |
I0327 13:29:06.411658 21344 solver.cpp:245] Train net output #101: loss3/accuracy14 = 1 | |
I0327 13:29:06.411669 21344 solver.cpp:245] Train net output #102: loss3/accuracy15 = 1 | |
I0327 13:29:06.411679 21344 solver.cpp:245] Train net output #103: loss3/accuracy16 = 1 | |
I0327 13:29:06.411691 21344 solver.cpp:245] Train net output #104: loss3/accuracy17 = 1 | |
I0327 13:29:06.411702 21344 solver.cpp:245] Train net output #105: loss3/accuracy18 = 1 | |
I0327 13:29:06.411713 21344 solver.cpp:245] Train net output #106: loss3/accuracy19 = 1 | |
I0327 13:29:06.411725 21344 solver.cpp:245] Train net output #107: loss3/accuracy20 = 1 | |
I0327 13:29:06.411736 21344 solver.cpp:245] Train net output #108: loss3/accuracy21 = 1 | |
I0327 13:29:06.411747 21344 solver.cpp:245] Train net output #109: loss3/accuracy22 = 1 | |
I0327 13:29:06.411761 21344 solver.cpp:245] Train net output #110: loss3/loss01 = 1.68443 (* 0.0909091 = 0.15313 loss) | |
I0327 13:29:06.411774 21344 solver.cpp:245] Train net output #111: loss3/loss02 = 3.37616 (* 0.0909091 = 0.306924 loss) | |
I0327 13:29:06.411788 21344 solver.cpp:245] Train net output #112: loss3/loss03 = 3.19383 (* 0.0909091 = 0.290348 loss) | |
I0327 13:29:06.411803 21344 solver.cpp:245] Train net output #113: loss3/loss04 = 2.85158 (* 0.0909091 = 0.259235 loss) | |
I0327 13:29:06.411816 21344 solver.cpp:245] Train net output #114: loss3/loss05 = 2.22893 (* 0.0909091 = 0.20263 loss) | |
I0327 13:29:06.411830 21344 solver.cpp:245] Train net output #115: loss3/loss06 = 2.39358 (* 0.0909091 = 0.217598 loss) | |
I0327 13:29:06.411854 21344 solver.cpp:245] Train net output #116: loss3/loss07 = 0.734856 (* 0.0909091 = 0.0668051 loss) | |
I0327 13:29:06.411870 21344 solver.cpp:245] Train net output #117: loss3/loss08 = 0.131668 (* 0.0909091 = 0.0119698 loss) | |
I0327 13:29:06.411883 21344 solver.cpp:245] Train net output #118: loss3/loss09 = 0.015655 (* 0.0909091 = 0.00142318 loss) | |
I0327 13:29:06.411897 21344 solver.cpp:245] Train net output #119: loss3/loss10 = 0.00443159 (* 0.0909091 = 0.000402872 loss) | |
I0327 13:29:06.411911 21344 solver.cpp:245] Train net output #120: loss3/loss11 = 7.70368e-05 (* 0.0909091 = 7.00335e-06 loss) | |
I0327 13:29:06.411926 21344 solver.cpp:245] Train net output #121: loss3/loss12 = 8.75355e-05 (* 0.0909091 = 7.95777e-06 loss) | |
I0327 13:29:06.411941 21344 solver.cpp:245] Train net output #122: loss3/loss13 = 0.000107195 (* 0.0909091 = 9.74501e-06 loss) | |
I0327 13:29:06.411953 21344 solver.cpp:245] Train net output #123: loss3/loss14 = 9.59562e-05 (* 0.0909091 = 8.72329e-06 loss) | |
I0327 13:29:06.411967 21344 solver.cpp:245] Train net output #124: loss3/loss15 = 6.8072e-05 (* 0.0909091 = 6.18837e-06 loss) | |
I0327 13:29:06.411981 21344 solver.cpp:245] Train net output #125: loss3/loss16 = 7.14178e-05 (* 0.0909091 = 6.49253e-06 loss) | |
I0327 13:29:06.411995 21344 solver.cpp:245] Train net output #126: loss3/loss17 = 7.10754e-05 (* 0.0909091 = 6.4614e-06 loss) | |
I0327 13:29:06.412009 21344 solver.cpp:245] Train net output #127: loss3/loss18 = 7.4823e-05 (* 0.0909091 = 6.80209e-06 loss) | |
I0327 13:29:06.412024 21344 solver.cpp:245] Train net output #128: loss3/loss19 = 9.3475e-05 (* 0.0909091 = 8.49773e-06 loss) | |
I0327 13:29:06.412037 21344 solver.cpp:245] Train net output #129: loss3/loss20 = 7.48602e-05 (* 0.0909091 = 6.80547e-06 loss) | |
I0327 13:29:06.412055 21344 solver.cpp:245] Train net output #130: loss3/loss21 = 9.32581e-05 (* 0.0909091 = 8.47801e-06 loss) | |
I0327 13:29:06.412070 21344 solver.cpp:245] Train net output #131: loss3/loss22 = 0.000105189 (* 0.0909091 = 9.5626e-06 loss) | |
I0327 13:29:06.412081 21344 solver.cpp:245] Train net output #132: total_accuracy = 0 | |
I0327 13:29:06.412093 21344 solver.cpp:245] Train net output #133: total_confidence = 0.000530846 | |
I0327 13:29:06.412106 21344 sgd_solver.cpp:106] Iteration 11500, lr = 0.01 | |
I0327 13:30:54.346276 21344 solver.cpp:229] Iteration 12000, loss = 2.81083 | |
I0327 13:30:54.346443 21344 solver.cpp:245] Train net output #0: loss1/accuracy01 = 0.25 | |
I0327 13:30:54.346465 21344 solver.cpp:245] Train net output #1: loss1/accuracy02 = 0 | |
I0327 13:30:54.346478 21344 solver.cpp:245] Train net output #2: loss1/accuracy03 = 0.25 | |
I0327 13:30:54.346490 21344 solver.cpp:245] Train net output #3: loss1/accuracy04 = 0.5 | |
I0327 13:30:54.346503 21344 solver.cpp:245] Train net output #4: loss1/accuracy05 = 0.25 | |
I0327 13:30:54.346515 21344 solver.cpp:245] Train net output #5: loss1/accuracy06 = 0.5 | |
I0327 13:30:54.346526 21344 solver.cpp:245] Train net output #6: loss1/accuracy07 = 0.5 | |
I0327 13:30:54.346539 21344 solver.cpp:245] Train net output #7: loss1/accuracy08 = 0.625 | |
I0327 13:30:54.346552 21344 solver.cpp:245] Train net output #8: loss1/accuracy09 = 0.875 | |
I0327 13:30:54.346565 21344 solver.cpp:245] Train net output #9: loss1/accuracy10 = 1 | |
I0327 13:30:54.346576 21344 solver.cpp:245] Train net output #10: loss1/accuracy11 = 1 | |
I0327 13:30:54.346587 21344 solver.cpp:245] Train net output #11: loss1/accuracy12 = 1 | |
I0327 13:30:54.346599 21344 solver.cpp:245] Train net output #12: loss1/accuracy13 = 1 | |
I0327 13:30:54.346611 21344 solver.cpp:245] Train net output #13: loss1/accuracy14 = 1 | |
I0327 13:30:54.346622 21344 solver.cpp:245] Train net output #14: loss1/accuracy15 = 1 | |
I0327 13:30:54.346634 21344 solver.cpp:245] Train net output #15: loss1/accuracy16 = 1 | |
I0327 13:30:54.346647 21344 solver.cpp:245] Train net output #16: loss1/accuracy17 = 1 | |
I0327 13:30:54.346658 21344 solver.cpp:245] Train net output #17: loss1/accuracy18 = 1 | |
I0327 13:30:54.346669 21344 solver.cpp:245] Train net output #18: loss1/accuracy19 = 1 | |
I0327 13:30:54.346681 21344 solver.cpp:245] Train net output #19: loss1/accuracy20 = 1 | |
I0327 13:30:54.346693 21344 solver.cpp:245] Train net output #20: loss1/accuracy21 = 1 | |
I0327 13:30:54.346704 21344 solver.cpp:245] Train net output #21: loss1/accuracy22 = 1 | |
I0327 13:30:54.346720 21344 solver.cpp:245] Train net output #22: loss1/loss01 = 3.11842 (* 0.0272727 = 0.0850477 loss) | |
I0327 13:30:54.346735 21344 solver.cpp:245] Train net output #23: loss1/loss02 = 3.4064 (* 0.0272727 = 0.0929018 loss) | |
I0327 13:30:54.346750 21344 solver.cpp:245] Train net output #24: loss1/loss03 = 2.70501 (* 0.0272727 = 0.0737731 loss) | |
I0327 13:30:54.346763 21344 solver.cpp:245] Train net output #25: loss1/loss04 = 2.84577 (* 0.0272727 = 0.077612 loss) | |
I0327 13:30:54.346777 21344 solver.cpp:245] Train net output #26: loss1/loss05 = 3.08163 (* 0.0272727 = 0.0840445 loss) | |
I0327 13:30:54.346791 21344 solver.cpp:245] Train net output #27: loss1/loss06 = 2.03238 (* 0.0272727 = 0.0554286 loss) | |
I0327 13:30:54.346806 21344 solver.cpp:245] Train net output #28: loss1/loss07 = 2.82323 (* 0.0272727 = 0.0769971 loss) | |
I0327 13:30:54.346819 21344 solver.cpp:245] Train net output #29: loss1/loss08 = 1.98292 (* 0.0272727 = 0.0540796 loss) | |
I0327 13:30:54.346833 21344 solver.cpp:245] Train net output #30: loss1/loss09 = 0.530591 (* 0.0272727 = 0.0144707 loss) | |
I0327 13:30:54.346848 21344 solver.cpp:245] Train net output #31: loss1/loss10 = 0.0117894 (* 0.0272727 = 0.000321529 loss) | |
I0327 13:30:54.346863 21344 solver.cpp:245] Train net output #32: loss1/loss11 = 0.000488114 (* 0.0272727 = 1.33122e-05 loss) | |
I0327 13:30:54.346878 21344 solver.cpp:245] Train net output #33: loss1/loss12 = 0.000364166 (* 0.0272727 = 9.93181e-06 loss) | |
I0327 13:30:54.346891 21344 solver.cpp:245] Train net output #34: loss1/loss13 = 0.000228615 (* 0.0272727 = 6.23497e-06 loss) | |
I0327 13:30:54.346905 21344 solver.cpp:245] Train net output #35: loss1/loss14 = 0.000243511 (* 0.0272727 = 6.6412e-06 loss) | |
I0327 13:30:54.346920 21344 solver.cpp:245] Train net output #36: loss1/loss15 = 0.000217852 (* 0.0272727 = 5.94142e-06 loss) | |
I0327 13:30:54.346935 21344 solver.cpp:245] Train net output #37: loss1/loss16 = 0.000385495 (* 0.0272727 = 1.05135e-05 loss) | |
I0327 13:30:54.346948 21344 solver.cpp:245] Train net output #38: loss1/loss17 = 0.000416944 (* 0.0272727 = 1.13712e-05 loss) | |
I0327 13:30:54.346977 21344 solver.cpp:245] Train net output #39: loss1/loss18 = 0.000183999 (* 0.0272727 = 5.01816e-06 loss) | |
I0327 13:30:54.346992 21344 solver.cpp:245] Train net output #40: loss1/loss19 = 0.000400178 (* 0.0272727 = 1.09139e-05 loss) | |
I0327 13:30:54.347007 21344 solver.cpp:245] Train net output #41: loss1/loss20 = 0.000283489 (* 0.0272727 = 7.73152e-06 loss) | |
I0327 13:30:54.347020 21344 solver.cpp:245] Train net output #42: loss1/loss21 = 0.000207645 (* 0.0272727 = 5.66305e-06 loss) | |
I0327 13:30:54.347034 21344 solver.cpp:245] Train net output #43: loss1/loss22 = 0.000218723 (* 0.0272727 = 5.96516e-06 loss) | |
I0327 13:30:54.347046 21344 solver.cpp:245] Train net output #44: loss2/accuracy01 = 0.125 | |
I0327 13:30:54.347059 21344 solver.cpp:245] Train net output #45: loss2/accuracy02 = 0 | |
I0327 13:30:54.347071 21344 solver.cpp:245] Train net output #46: loss2/accuracy03 = 0.125 | |
I0327 13:30:54.347082 21344 solver.cpp:245] Train net output #47: loss2/accuracy04 = 0.5 | |
I0327 13:30:54.347097 21344 solver.cpp:245] Train net output #48: loss2/accuracy05 = 0.25 | |
I0327 13:30:54.347110 21344 solver.cpp:245] Train net output #49: loss2/accuracy06 = 0.375 | |
I0327 13:30:54.347122 21344 solver.cpp:245] Train net output #50: loss2/accuracy07 = 0.5 | |
I0327 13:30:54.347134 21344 solver.cpp:245] Train net output #51: loss2/accuracy08 = 0.625 | |
I0327 13:30:54.347146 21344 solver.cpp:245] Train net output #52: loss2/accuracy09 = 0.875 | |
I0327 13:30:54.347158 21344 solver.cpp:245] Train net output #53: loss2/accuracy10 = 1 | |
I0327 13:30:54.347169 21344 solver.cpp:245] Train net output #54: loss2/accuracy11 = 1 | |
I0327 13:30:54.347180 21344 solver.cpp:245] Train net output #55: loss2/accuracy12 = 1 | |
I0327 13:30:54.347193 21344 solver.cpp:245] Train net output #56: loss2/accuracy13 = 1 | |
I0327 13:30:54.347208 21344 solver.cpp:245] Train net output #57: loss2/accuracy14 = 1 | |
I0327 13:30:54.347219 21344 solver.cpp:245] Train net output #58: loss2/accuracy15 = 1 | |
I0327 13:30:54.347231 21344 solver.cpp:245] Train net output #59: loss2/accuracy16 = 1 | |
I0327 13:30:54.347242 21344 solver.cpp:245] Train net output #60: loss2/accuracy17 = 1 | |
I0327 13:30:54.347254 21344 solver.cpp:245] Train net output #61: loss2/accuracy18 = 1 | |
I0327 13:30:54.347265 21344 solver.cpp:245] Train net output #62: loss2/accuracy19 = 1 | |
I0327 13:30:54.347277 21344 solver.cpp:245] Train net output #63: loss2/accuracy20 = 1 | |
I0327 13:30:54.347288 21344 solver.cpp:245] Train net output #64: loss2/accuracy21 = 1 | |
I0327 13:30:54.347300 21344 solver.cpp:245] Train net output #65: loss2/accuracy22 = 1 | |
I0327 13:30:54.347313 21344 solver.cpp:245] Train net output #66: loss2/loss01 = 2.78492 (* 0.0272727 = 0.0759523 loss) | |
I0327 13:30:54.347327 21344 solver.cpp:245] Train net output #67: loss2/loss02 = 3.3438 (* 0.0272727 = 0.0911946 loss) | |
I0327 13:30:54.347342 21344 solver.cpp:245] Train net output #68: loss2/loss03 = 3.10866 (* 0.0272727 = 0.0847817 loss) | |
I0327 13:30:54.347355 21344 solver.cpp:245] Train net output #69: loss2/loss04 = 2.48661 (* 0.0272727 = 0.0678166 loss) | |
I0327 13:30:54.347369 21344 solver.cpp:245] Train net output #70: loss2/loss05 = 2.73508 (* 0.0272727 = 0.074593 loss) | |
I0327 13:30:54.347383 21344 solver.cpp:245] Train net output #71: loss2/loss06 = 2.22533 (* 0.0272727 = 0.0606908 loss) | |
I0327 13:30:54.347396 21344 solver.cpp:245] Train net output #72: loss2/loss07 = 3.15387 (* 0.0272727 = 0.0860147 loss) | |
I0327 13:30:54.347410 21344 solver.cpp:245] Train net output #73: loss2/loss08 = 2.24075 (* 0.0272727 = 0.0611114 loss) | |
I0327 13:30:54.347424 21344 solver.cpp:245] Train net output #74: loss2/loss09 = 0.705329 (* 0.0272727 = 0.0192363 loss) | |
I0327 13:30:54.347437 21344 solver.cpp:245] Train net output #75: loss2/loss10 = 0.00707691 (* 0.0272727 = 0.000193007 loss) | |
I0327 13:30:54.347451 21344 solver.cpp:245] Train net output #76: loss2/loss11 = 0.000716744 (* 0.0272727 = 1.95476e-05 loss) | |
I0327 13:30:54.347476 21344 solver.cpp:245] Train net output #77: loss2/loss12 = 0.000393637 (* 0.0272727 = 1.07356e-05 loss) | |
I0327 13:30:54.347492 21344 solver.cpp:245] Train net output #78: loss2/loss13 = 0.000136423 (* 0.0272727 = 3.72064e-06 loss) | |
I0327 13:30:54.347512 21344 solver.cpp:245] Train net output #79: loss2/loss14 = 0.000413985 (* 0.0272727 = 1.12905e-05 loss) | |
I0327 13:30:54.347540 21344 solver.cpp:245] Train net output #80: loss2/loss15 = 0.000369237 (* 0.0272727 = 1.00701e-05 loss) | |
I0327 13:30:54.347566 21344 solver.cpp:245] Train net output #81: loss2/loss16 = 0.000122564 (* 0.0272727 = 3.34266e-06 loss) | |
I0327 13:30:54.347582 21344 solver.cpp:245] Train net output #82: loss2/loss17 = 0.000189822 (* 0.0272727 = 5.17697e-06 loss) | |
I0327 13:30:54.347596 21344 solver.cpp:245] Train net output #83: loss2/loss18 = 0.00022228 (* 0.0272727 = 6.06218e-06 loss) | |
I0327 13:30:54.347610 21344 solver.cpp:245] Train net output #84: loss2/loss19 = 0.000391387 (* 0.0272727 = 1.06742e-05 loss) | |
I0327 13:30:54.347625 21344 solver.cpp:245] Train net output #85: loss2/loss20 = 0.000223701 (* 0.0272727 = 6.10094e-06 loss) | |
I0327 13:30:54.347640 21344 solver.cpp:245] Train net output #86: loss2/loss21 = 0.000278658 (* 0.0272727 = 7.59977e-06 loss) | |
I0327 13:30:54.347653 21344 solver.cpp:245] Train net output #87: loss2/loss22 = 0.000288672 (* 0.0272727 = 7.87288e-06 loss) | |
I0327 13:30:54.347666 21344 solver.cpp:245] Train net output #88: loss3/accuracy01 = 0.375 | |
I0327 13:30:54.347677 21344 solver.cpp:245] Train net output #89: loss3/accuracy02 = 0.125 | |
I0327 13:30:54.347689 21344 solver.cpp:245] Train net output #90: loss3/accuracy03 = 0.125 | |
I0327 13:30:54.347702 21344 solver.cpp:245] Train net output #91: loss3/accuracy04 = 0.375 | |
I0327 13:30:54.347710 21344 solver.cpp:245] Train net output #92: loss3/accuracy05 = 0.25 | |
I0327 13:30:54.347718 21344 solver.cpp:245] Train net output #93: loss3/accuracy06 = 0.375 | |
I0327 13:30:54.347730 21344 solver.cpp:245] Train net output #94: loss3/accuracy07 = 0.5 | |
I0327 13:30:54.347743 21344 solver.cpp:245] Train net output #95: loss3/accuracy08 = 0.625 | |
I0327 13:30:54.347754 21344 solver.cpp:245] Train net output #96: loss3/accuracy09 = 0.875 | |
I0327 13:30:54.347765 21344 solver.cpp:245] Train net output #97: loss3/accuracy10 = 1 | |
I0327 13:30:54.347776 21344 solver.cpp:245] Train net output #98: loss3/accuracy11 = 1 | |
I0327 13:30:54.347789 21344 solver.cpp:245] Train net output #99: loss3/accuracy12 = 1 | |
I0327 13:30:54.347800 21344 solver.cpp:245] Train net output #100: loss3/accuracy13 = 1 | |
I0327 13:30:54.347811 21344 solver.cpp:245] Train net output #101: loss3/accuracy14 = 1 | |
I0327 13:30:54.347822 21344 solver.cpp:245] Train net output #102: loss3/accuracy15 = 1 | |
I0327 13:30:54.347834 21344 solver.cpp:245] Train net output #103: loss3/accuracy16 = 1 | |
I0327 13:30:54.347846 21344 solver.cpp:245] Train net output #104: loss3/accuracy17 = 1 | |
I0327 13:30:54.347857 21344 solver.cpp:245] Train net output #105: loss3/accuracy18 = 1 | |
I0327 13:30:54.347868 21344 solver.cpp:245] Train net output #106: loss3/accuracy19 = 1 | |
I0327 13:30:54.347879 21344 solver.cpp:245] Train net output #107: loss3/accuracy20 = 1 | |
I0327 13:30:54.347890 21344 solver.cpp:245] Train net output #108: loss3/accuracy21 = 1 | |
I0327 13:30:54.347903 21344 solver.cpp:245] Train net output #109: loss3/accuracy22 = 1 | |
I0327 13:30:54.347919 21344 solver.cpp:245] Train net output #110: loss3/loss01 = 2.72808 (* 0.0909091 = 0.248008 loss) | |
I0327 13:30:54.347934 21344 solver.cpp:245] Train net output #111: loss3/loss02 = 2.96059 (* 0.0909091 = 0.269145 loss) | |
I0327 13:30:54.347947 21344 solver.cpp:245] Train net output #112: loss3/loss03 = 2.83438 (* 0.0909091 = 0.257671 loss) | |
I0327 13:30:54.347961 21344 solver.cpp:245] Train net output #113: loss3/loss04 = 2.76709 (* 0.0909091 = 0.251553 loss) | |
I0327 13:30:54.347975 21344 solver.cpp:245] Train net output #114: loss3/loss05 = 2.85401 (* 0.0909091 = 0.259455 loss) | |
I0327 13:30:54.348000 21344 solver.cpp:245] Train net output #115: loss3/loss06 = 2.24875 (* 0.0909091 = 0.204432 loss) | |
I0327 13:30:54.348014 21344 solver.cpp:245] Train net output #116: loss3/loss07 = 2.69432 (* 0.0909091 = 0.244938 loss) | |
I0327 13:30:54.348028 21344 solver.cpp:245] Train net output #117: loss3/loss08 = 2.40658 (* 0.0909091 = 0.21878 loss) | |
I0327 13:30:54.348042 21344 solver.cpp:245] Train net output #118: loss3/loss09 = 0.923821 (* 0.0909091 = 0.0839837 loss) | |
I0327 13:30:54.348057 21344 solver.cpp:245] Train net output #119: loss3/loss10 = 0.00357683 (* 0.0909091 = 0.000325166 loss) | |
I0327 13:30:54.348070 21344 solver.cpp:245] Train net output #120: loss3/loss11 = 0.000218967 (* 0.0909091 = 1.9906e-05 loss) | |
I0327 13:30:54.348084 21344 solver.cpp:245] Train net output #121: loss3/loss12 = 0.000185488 (* 0.0909091 = 1.68626e-05 loss) | |
I0327 13:30:54.348098 21344 solver.cpp:245] Train net output #122: loss3/loss13 = 0.000224967 (* 0.0909091 = 2.04515e-05 loss) | |
I0327 13:30:54.348112 21344 solver.cpp:245] Train net output #123: loss3/loss14 = 0.000179587 (* 0.0909091 = 1.63261e-05 loss) | |
I0327 13:30:54.348126 21344 solver.cpp:245] Train net output #124: loss3/loss15 = 0.000192797 (* 0.0909091 = 1.7527e-05 loss) | |
I0327 13:30:54.348140 21344 solver.cpp:245] Train net output #125: loss3/loss16 = 0.000184794 (* 0.0909091 = 1.67995e-05 loss) | |
I0327 13:30:54.348156 21344 solver.cpp:245] Train net output #126: loss3/loss17 = 0.000172475 (* 0.0909091 = 1.56796e-05 loss) | |
I0327 13:30:54.348171 21344 solver.cpp:245] Train net output #127: loss3/loss18 = 0.000204357 (* 0.0909091 = 1.85779e-05 loss) | |
I0327 13:30:54.348186 21344 solver.cpp:245] Train net output #128: loss3/loss19 = 0.000200007 (* 0.0909091 = 1.81825e-05 loss) | |
I0327 13:30:54.348199 21344 solver.cpp:245] Train net output #129: loss3/loss20 = 0.000177115 (* 0.0909091 = 1.61014e-05 loss) | |
I0327 13:30:54.348212 21344 solver.cpp:245] Train net output #130: loss3/loss21 = 0.000201828 (* 0.0909091 = 1.8348e-05 loss) | |
I0327 13:30:54.348227 21344 solver.cpp:245] Train net output #131: loss3/loss22 = 0.000227253 (* 0.0909091 = 2.06593e-05 loss) | |
I0327 13:30:54.348239 21344 solver.cpp:245] Train net output #132: total_accuracy = 0.125 | |
I0327 13:30:54.348250 21344 solver.cpp:245] Train net output #133: total_confidence = 0.000636635 | |
I0327 13:30:54.348268 21344 sgd_solver.cpp:106] Iteration 12000, lr = 0.01 | |
I0327 13:32:42.128144 21344 solver.cpp:229] Iteration 12500, loss = 2.80798 | |
I0327 13:32:42.128255 21344 solver.cpp:245] Train net output #0: loss1/accuracy01 = 0.5 | |
I0327 13:32:42.128274 21344 solver.cpp:245] Train net output #1: loss1/accuracy02 = 0.125 | |
I0327 13:32:42.128288 21344 solver.cpp:245] Train net output #2: loss1/accuracy03 = 0 | |
I0327 13:32:42.128299 21344 solver.cpp:245] Train net output #3: loss1/accuracy04 = 0.25 | |
I0327 13:32:42.128311 21344 solver.cpp:245] Train net output #4: loss1/accuracy05 = 0.125 | |
I0327 13:32:42.128324 21344 solver.cpp:245] Train net output #5: loss1/accuracy06 = 0.625 | |
I0327 13:32:42.128336 21344 solver.cpp:245] Train net output #6: loss1/accuracy07 = 0.875 | |
I0327 13:32:42.128347 21344 solver.cpp:245] Train net output #7: loss1/accuracy08 = 1 | |
I0327 13:32:42.128360 21344 solver.cpp:245] Train net output #8: loss1/accuracy09 = 1 | |
I0327 13:32:42.128372 21344 solver.cpp:245] Train net output #9: loss1/accuracy10 = 1 | |
I0327 13:32:42.128383 21344 solver.cpp:245] Train net output #10: loss1/accuracy11 = 1 | |
I0327 13:32:42.128396 21344 solver.cpp:245] Train net output #11: loss1/accuracy12 = 1 | |
I0327 13:32:42.128407 21344 solver.cpp:245] Train net output #12: loss1/accuracy13 = 1 | |
I0327 13:32:42.128418 21344 solver.cpp:245] Train net output #13: loss1/accuracy14 = 1 | |
I0327 13:32:42.128429 21344 solver.cpp:245] Train net output #14: loss1/accuracy15 = 1 | |
I0327 13:32:42.128442 21344 solver.cpp:245] Train net output #15: loss1/accuracy16 = 1 | |
I0327 13:32:42.128453 21344 solver.cpp:245] Train net output #16: loss1/accuracy17 = 1 | |
I0327 13:32:42.128464 21344 solver.cpp:245] Train net output #17: loss1/accuracy18 = 1 | |
I0327 13:32:42.128475 21344 solver.cpp:245] Train net output #18: loss1/accuracy19 = 1 | |
I0327 13:32:42.128487 21344 solver.cpp:245] Train net output #19: loss1/accuracy20 = 1 | |
I0327 13:32:42.128499 21344 solver.cpp:245] Train net output #20: loss1/accuracy21 = 1 | |
I0327 13:32:42.128510 21344 solver.cpp:245] Train net output #21: loss1/accuracy22 = 1 | |
I0327 13:32:42.128526 21344 solver.cpp:245] Train net output #22: loss1/loss01 = 2.05751 (* 0.0272727 = 0.056114 loss) | |
I0327 13:32:42.128540 21344 solver.cpp:245] Train net output #23: loss1/loss02 = 3.72028 (* 0.0272727 = 0.101462 loss) | |
I0327 13:32:42.128554 21344 solver.cpp:245] Train net output #24: loss1/loss03 = 3.30847 (* 0.0272727 = 0.0902309 loss) | |
I0327 13:32:42.128568 21344 solver.cpp:245] Train net output #25: loss1/loss04 = 2.96206 (* 0.0272727 = 0.0807835 loss) | |
I0327 13:32:42.128582 21344 solver.cpp:245] Train net output #26: loss1/loss05 = 3.25989 (* 0.0272727 = 0.088906 loss) | |
I0327 13:32:42.128597 21344 solver.cpp:245] Train net output #27: loss1/loss06 = 1.74766 (* 0.0272727 = 0.0476634 loss) | |
I0327 13:32:42.128610 21344 solver.cpp:245] Train net output #28: loss1/loss07 = 0.454014 (* 0.0272727 = 0.0123822 loss) | |
I0327 13:32:42.128624 21344 solver.cpp:245] Train net output #29: loss1/loss08 = 0.0187629 (* 0.0272727 = 0.000511714 loss) | |
I0327 13:32:42.128638 21344 solver.cpp:245] Train net output #30: loss1/loss09 = 0.00399972 (* 0.0272727 = 0.000109083 loss) | |
I0327 13:32:42.128653 21344 solver.cpp:245] Train net output #31: loss1/loss10 = 0.00127791 (* 0.0272727 = 3.4852e-05 loss) | |
I0327 13:32:42.128666 21344 solver.cpp:245] Train net output #32: loss1/loss11 = 0.00017528 (* 0.0272727 = 4.78035e-06 loss) | |
I0327 13:32:42.128681 21344 solver.cpp:245] Train net output #33: loss1/loss12 = 0.000294916 (* 0.0272727 = 8.04318e-06 loss) | |
I0327 13:32:42.128695 21344 solver.cpp:245] Train net output #34: loss1/loss13 = 0.000234748 (* 0.0272727 = 6.40222e-06 loss) | |
I0327 13:32:42.128710 21344 solver.cpp:245] Train net output #35: loss1/loss14 = 0.000313296 (* 0.0272727 = 8.54445e-06 loss) | |
I0327 13:32:42.128723 21344 solver.cpp:245] Train net output #36: loss1/loss15 = 0.000322803 (* 0.0272727 = 8.80372e-06 loss) | |
I0327 13:32:42.128737 21344 solver.cpp:245] Train net output #37: loss1/loss16 = 0.000571877 (* 0.0272727 = 1.55966e-05 loss) | |
I0327 13:32:42.128751 21344 solver.cpp:245] Train net output #38: loss1/loss17 = 9.52742e-05 (* 0.0272727 = 2.59839e-06 loss) | |
I0327 13:32:42.128782 21344 solver.cpp:245] Train net output #39: loss1/loss18 = 0.00018385 (* 0.0272727 = 5.0141e-06 loss) | |
I0327 13:32:42.128798 21344 solver.cpp:245] Train net output #40: loss1/loss19 = 0.000168447 (* 0.0272727 = 4.594e-06 loss) | |
I0327 13:32:42.128811 21344 solver.cpp:245] Train net output #41: loss1/loss20 = 0.000132825 (* 0.0272727 = 3.62249e-06 loss) | |
I0327 13:32:42.128825 21344 solver.cpp:245] Train net output #42: loss1/loss21 = 9.85579e-05 (* 0.0272727 = 2.68794e-06 loss) | |
I0327 13:32:42.128839 21344 solver.cpp:245] Train net output #43: loss1/loss22 = 0.000152619 (* 0.0272727 = 4.16234e-06 loss) | |
I0327 13:32:42.128851 21344 solver.cpp:245] Train net output #44: loss2/accuracy01 = 0.5 | |
I0327 13:32:42.128865 21344 solver.cpp:245] Train net output #45: loss2/accuracy02 = 0.125 | |
I0327 13:32:42.128876 21344 solver.cpp:245] Train net output #46: loss2/accuracy03 = 0 | |
I0327 13:32:42.128888 21344 solver.cpp:245] Train net output #47: loss2/accuracy04 = 0.25 | |
I0327 13:32:42.128901 21344 solver.cpp:245] Train net output #48: loss2/accuracy05 = 0.25 | |
I0327 13:32:42.128912 21344 solver.cpp:245] Train net output #49: loss2/accuracy06 = 0.5 | |
I0327 13:32:42.128924 21344 solver.cpp:245] Train net output #50: loss2/accuracy07 = 1 | |
I0327 13:32:42.128936 21344 solver.cpp:245] Train net output #51: loss2/accuracy08 = 1 | |
I0327 13:32:42.128947 21344 solver.cpp:245] Train net output #52: loss2/accuracy09 = 1 | |
I0327 13:32:42.128959 21344 solver.cpp:245] Train net output #53: loss2/accuracy10 = 1 | |
I0327 13:32:42.128970 21344 solver.cpp:245] Train net output #54: loss2/accuracy11 = 1 | |
I0327 13:32:42.128981 21344 solver.cpp:245] Train net output #55: loss2/accuracy12 = 1 | |
I0327 13:32:42.128996 21344 solver.cpp:245] Train net output #56: loss2/accuracy13 = 1 | |
I0327 13:32:42.129007 21344 solver.cpp:245] Train net output #57: loss2/accuracy14 = 1 | |
I0327 13:32:42.129019 21344 solver.cpp:245] Train net output #58: loss2/accuracy15 = 1 | |
I0327 13:32:42.129030 21344 solver.cpp:245] Train net output #59: loss2/accuracy16 = 1 | |
I0327 13:32:42.129041 21344 solver.cpp:245] Train net output #60: loss2/accuracy17 = 1 | |
I0327 13:32:42.129052 21344 solver.cpp:245] Train net output #61: loss2/accuracy18 = 1 | |
I0327 13:32:42.129065 21344 solver.cpp:245] Train net output #62: loss2/accuracy19 = 1 | |
I0327 13:32:42.129076 21344 solver.cpp:245] Train net output #63: loss2/accuracy20 = 1 | |
I0327 13:32:42.129087 21344 solver.cpp:245] Train net output #64: loss2/accuracy21 = 1 | |
I0327 13:32:42.129096 21344 solver.cpp:245] Train net output #65: loss2/accuracy22 = 1 | |
I0327 13:32:42.129104 21344 solver.cpp:245] Train net output #66: loss2/loss01 = 2.03579 (* 0.0272727 = 0.0555215 loss) | |
I0327 13:32:42.129119 21344 solver.cpp:245] Train net output #67: loss2/loss02 = 3.48389 (* 0.0272727 = 0.0950153 loss) | |
I0327 13:32:42.129133 21344 solver.cpp:245] Train net output #68: loss2/loss03 = 3.15412 (* 0.0272727 = 0.0860215 loss) | |
I0327 13:32:42.129148 21344 solver.cpp:245] Train net output #69: loss2/loss04 = 3.10769 (* 0.0272727 = 0.084755 loss) | |
I0327 13:32:42.129161 21344 solver.cpp:245] Train net output #70: loss2/loss05 = 3.49079 (* 0.0272727 = 0.0952033 loss) | |
I0327 13:32:42.129175 21344 solver.cpp:245] Train net output #71: loss2/loss06 = 2.12209 (* 0.0272727 = 0.0578753 loss) | |
I0327 13:32:42.129189 21344 solver.cpp:245] Train net output #72: loss2/loss07 = 0.422786 (* 0.0272727 = 0.0115305 loss) | |
I0327 13:32:42.129204 21344 solver.cpp:245] Train net output #73: loss2/loss08 = 0.0462438 (* 0.0272727 = 0.00126119 loss) | |
I0327 13:32:42.129217 21344 solver.cpp:245] Train net output #74: loss2/loss09 = 0.0107296 (* 0.0272727 = 0.000292625 loss) | |
I0327 13:32:42.129231 21344 solver.cpp:245] Train net output #75: loss2/loss10 = 0.00263322 (* 0.0272727 = 7.18151e-05 loss) | |
I0327 13:32:42.129245 21344 solver.cpp:245] Train net output #76: loss2/loss11 = 0.000175752 (* 0.0272727 = 4.79322e-06 loss) | |
I0327 13:32:42.129273 21344 solver.cpp:245] Train net output #77: loss2/loss12 = 0.000271391 (* 0.0272727 = 7.40157e-06 loss) | |
I0327 13:32:42.129289 21344 solver.cpp:245] Train net output #78: loss2/loss13 = 0.00043999 (* 0.0272727 = 1.19997e-05 loss) | |
I0327 13:32:42.129303 21344 solver.cpp:245] Train net output #79: loss2/loss14 = 0.0010474 (* 0.0272727 = 2.85654e-05 loss) | |
I0327 13:32:42.129317 21344 solver.cpp:245] Train net output #80: loss2/loss15 = 0.0004189 (* 0.0272727 = 1.14246e-05 loss) | |
I0327 13:32:42.129331 21344 solver.cpp:245] Train net output #81: loss2/loss16 = 0.000250745 (* 0.0272727 = 6.83851e-06 loss) | |
I0327 13:32:42.129345 21344 solver.cpp:245] Train net output #82: loss2/loss17 = 0.000159398 (* 0.0272727 = 4.34721e-06 loss) | |
I0327 13:32:42.129359 21344 solver.cpp:245] Train net output #83: loss2/loss18 = 0.000347259 (* 0.0272727 = 9.47069e-06 loss) | |
I0327 13:32:42.129374 21344 solver.cpp:245] Train net output #84: loss2/loss19 = 0.000114098 (* 0.0272727 = 3.11176e-06 loss) | |
I0327 13:32:42.129387 21344 solver.cpp:245] Train net output #85: loss2/loss20 = 0.000322125 (* 0.0272727 = 8.78523e-06 loss) | |
I0327 13:32:42.129401 21344 solver.cpp:245] Train net output #86: loss2/loss21 = 0.000221993 (* 0.0272727 = 6.05435e-06 loss) | |
I0327 13:32:42.129415 21344 solver.cpp:245] Train net output #87: loss2/loss22 = 0.000228431 (* 0.0272727 = 6.22994e-06 loss) | |
I0327 13:32:42.129427 21344 solver.cpp:245] Train net output #88: loss3/accuracy01 = 0.625 | |
I0327 13:32:42.129439 21344 solver.cpp:245] Train net output #89: loss3/accuracy02 = 0.125 | |
I0327 13:32:42.129451 21344 solver.cpp:245] Train net output #90: loss3/accuracy03 = 0.375 | |
I0327 13:32:42.129463 21344 solver.cpp:245] Train net output #91: loss3/accuracy04 = 0.25 | |
I0327 13:32:42.129475 21344 solver.cpp:245] Train net output #92: loss3/accuracy05 = 0.25 | |
I0327 13:32:42.129487 21344 solver.cpp:245] Train net output #93: loss3/accuracy06 = 0.625 | |
I0327 13:32:42.129498 21344 solver.cpp:245] Train net output #94: loss3/accuracy07 = 0.875 | |
I0327 13:32:42.129510 21344 solver.cpp:245] Train net output #95: loss3/accuracy08 = 1 | |
I0327 13:32:42.129521 21344 solver.cpp:245] Train net output #96: loss3/accuracy09 = 1 | |
I0327 13:32:42.129533 21344 solver.cpp:245] Train net output #97: loss3/accuracy10 = 1 | |
I0327 13:32:42.129559 21344 solver.cpp:245] Train net output #98: loss3/accuracy11 = 1 | |
I0327 13:32:42.129573 21344 solver.cpp:245] Train net output #99: loss3/accuracy12 = 1 | |
I0327 13:32:42.129585 21344 solver.cpp:245] Train net output #100: loss3/accuracy13 = 1 | |
I0327 13:32:42.129596 21344 solver.cpp:245] Train net output #101: loss3/accuracy14 = 1 | |
I0327 13:32:42.129608 21344 solver.cpp:245] Train net output #102: loss3/accuracy15 = 1 | |
I0327 13:32:42.129619 21344 solver.cpp:245] Train net output #103: loss3/accuracy16 = 1 | |
I0327 13:32:42.129631 21344 solver.cpp:245] Train net output #104: loss3/accuracy17 = 1 | |
I0327 13:32:42.129642 21344 solver.cpp:245] Train net output #105: loss3/accuracy18 = 1 | |
I0327 13:32:42.129653 21344 solver.cpp:245] Train net output #106: loss3/accuracy19 = 1 | |
I0327 13:32:42.129664 21344 solver.cpp:245] Train net output #107: loss3/accuracy20 = 1 | |
I0327 13:32:42.129676 21344 solver.cpp:245] Train net output #108: loss3/accuracy21 = 1 | |
I0327 13:32:42.129688 21344 solver.cpp:245] Train net output #109: loss3/accuracy22 = 1 | |
I0327 13:32:42.129701 21344 solver.cpp:245] Train net output #110: loss3/loss01 = 1.30891 (* 0.0909091 = 0.118992 loss) | |
I0327 13:32:42.129714 21344 solver.cpp:245] Train net output #111: loss3/loss02 = 3.0933 (* 0.0909091 = 0.281209 loss) | |
I0327 13:32:42.129729 21344 solver.cpp:245] Train net output #112: loss3/loss03 = 2.83759 (* 0.0909091 = 0.257963 loss) | |
I0327 13:32:42.129742 21344 solver.cpp:245] Train net output #113: loss3/loss04 = 2.91162 (* 0.0909091 = 0.264693 loss) | |
I0327 13:32:42.129756 21344 solver.cpp:245] Train net output #114: loss3/loss05 = 3.33724 (* 0.0909091 = 0.303385 loss) | |
I0327 13:32:42.129781 21344 solver.cpp:245] Train net output #115: loss3/loss06 = 1.4241 (* 0.0909091 = 0.129463 loss) | |
I0327 13:32:42.129796 21344 solver.cpp:245] Train net output #116: loss3/loss07 = 0.551226 (* 0.0909091 = 0.0501114 loss) | |
I0327 13:32:42.129811 21344 solver.cpp:245] Train net output #117: loss3/loss08 = 0.0299592 (* 0.0909091 = 0.00272356 loss) | |
I0327 13:32:42.129824 21344 solver.cpp:245] Train net output #118: loss3/loss09 = 0.00882906 (* 0.0909091 = 0.000802642 loss) | |
I0327 13:32:42.129838 21344 solver.cpp:245] Train net output #119: loss3/loss10 = 0.00473137 (* 0.0909091 = 0.000430124 loss) | |
I0327 13:32:42.129853 21344 solver.cpp:245] Train net output #120: loss3/loss11 = 7.87213e-05 (* 0.0909091 = 7.15648e-06 loss) | |
I0327 13:32:42.129866 21344 solver.cpp:245] Train net output #121: loss3/loss12 = 8.14036e-05 (* 0.0909091 = 7.40033e-06 loss) | |
I0327 13:32:42.129881 21344 solver.cpp:245] Train net output #122: loss3/loss13 = 8.95564e-05 (* 0.0909091 = 8.14149e-06 loss) | |
I0327 13:32:42.129895 21344 solver.cpp:245] Train net output #123: loss3/loss14 = 9.46971e-05 (* 0.0909091 = 8.60883e-06 loss) | |
I0327 13:32:42.129909 21344 solver.cpp:245] Train net output #124: loss3/loss15 = 8.56059e-05 (* 0.0909091 = 7.78236e-06 loss) | |
I0327 13:32:42.129923 21344 solver.cpp:245] Train net output #125: loss3/loss16 = 8.28418e-05 (* 0.0909091 = 7.53107e-06 loss) | |
I0327 13:32:42.129937 21344 solver.cpp:245] Train net output #126: loss3/loss17 = 8.03159e-05 (* 0.0909091 = 7.30145e-06 loss) | |
I0327 13:32:42.129951 21344 solver.cpp:245] Train net output #127: loss3/loss18 = 7.14336e-05 (* 0.0909091 = 6.49396e-06 loss) | |
I0327 13:32:42.129966 21344 solver.cpp:245] Train net output #128: loss3/loss19 = 8.1419e-05 (* 0.0909091 = 7.40173e-06 loss) | |
I0327 13:32:42.129979 21344 solver.cpp:245] Train net output #129: loss3/loss20 = 8.28346e-05 (* 0.0909091 = 7.53042e-06 loss) | |
I0327 13:32:42.129994 21344 solver.cpp:245] Train net output #130: loss3/loss21 = 8.82376e-05 (* 0.0909091 = 8.0216e-06 loss) | |
I0327 13:32:42.130008 21344 solver.cpp:245] Train net output #131: loss3/loss22 = 8.75515e-05 (* 0.0909091 = 7.95923e-06 loss) | |
I0327 13:32:42.130020 21344 solver.cpp:245] Train net output #132: total_accuracy = 0 | |
I0327 13:32:42.130031 21344 solver.cpp:245] Train net output #133: total_confidence = 9.04926e-05 | |
I0327 13:32:42.130048 21344 sgd_solver.cpp:106] Iteration 12500, lr = 0.01 | |
I0327 13:34:29.860158 21344 solver.cpp:229] Iteration 13000, loss = 2.80828 | |
I0327 13:34:29.860309 21344 solver.cpp:245] Train net output #0: loss1/accuracy01 = 0.25 | |
I0327 13:34:29.860330 21344 solver.cpp:245] Train net output #1: loss1/accuracy02 = 0.125 | |
I0327 13:34:29.860343 21344 solver.cpp:245] Train net output #2: loss1/accuracy03 = 0.125 | |
I0327 13:34:29.860355 21344 solver.cpp:245] Train net output #3: loss1/accuracy04 = 0.375 | |
I0327 13:34:29.860368 21344 solver.cpp:245] Train net output #4: loss1/accuracy05 = 0.5 | |
I0327 13:34:29.860379 21344 solver.cpp:245] Train net output #5: loss1/accuracy06 = 0.5 | |
I0327 13:34:29.860391 21344 solver.cpp:245] Train net output #6: loss1/accuracy07 = 0.5 | |
I0327 13:34:29.860404 21344 solver.cpp:245] Train net output #7: loss1/accuracy08 = 0.875 | |
I0327 13:34:29.860415 21344 solver.cpp:245] Train net output #8: loss1/accuracy09 = 1 | |
I0327 13:34:29.860427 21344 solver.cpp:245] Train net output #9: loss1/accuracy10 = 1 | |
I0327 13:34:29.860440 21344 solver.cpp:245] Train net output #10: loss1/accuracy11 = 1 | |
I0327 13:34:29.860450 21344 solver.cpp:245] Train net output #11: loss1/accuracy12 = 1 | |
I0327 13:34:29.860462 21344 solver.cpp:245] Train net output #12: loss1/accuracy13 = 1 | |
I0327 13:34:29.860474 21344 solver.cpp:245] Train net output #13: loss1/accuracy14 = 1 | |
I0327 13:34:29.860486 21344 solver.cpp:245] Train net output #14: loss1/accuracy15 = 1 | |
I0327 13:34:29.860497 21344 solver.cpp:245] Train net output #15: loss1/accuracy16 = 1 | |
I0327 13:34:29.860508 21344 solver.cpp:245] Train net output #16: loss1/accuracy17 = 1 | |
I0327 13:34:29.860520 21344 solver.cpp:245] Train net output #17: loss1/accuracy18 = 1 | |
I0327 13:34:29.860532 21344 solver.cpp:245] Train net output #18: loss1/accuracy19 = 1 | |
I0327 13:34:29.860543 21344 solver.cpp:245] Train net output #19: loss1/accuracy20 = 1 | |
I0327 13:34:29.860555 21344 solver.cpp:245] Train net output #20: loss1/accuracy21 = 1 | |
I0327 13:34:29.860566 21344 solver.cpp:245] Train net output #21: loss1/accuracy22 = 1 | |
I0327 13:34:29.860582 21344 solver.cpp:245] Train net output #22: loss1/loss01 = 2.38971 (* 0.0272727 = 0.0651738 loss) | |
I0327 13:34:29.860597 21344 solver.cpp:245] Train net output #23: loss1/loss02 = 3.26878 (* 0.0272727 = 0.0891486 loss) | |
I0327 13:34:29.860611 21344 solver.cpp:245] Train net output #24: loss1/loss03 = 2.62291 (* 0.0272727 = 0.071534 loss) | |
I0327 13:34:29.860625 21344 solver.cpp:245] Train net output #25: loss1/loss04 = 2.73491 (* 0.0272727 = 0.0745884 loss) | |
I0327 13:34:29.860640 21344 solver.cpp:245] Train net output #26: loss1/loss05 = 1.82241 (* 0.0272727 = 0.0497021 loss) | |
I0327 13:34:29.860653 21344 solver.cpp:245] Train net output #27: loss1/loss06 = 1.96279 (* 0.0272727 = 0.0535306 loss) | |
I0327 13:34:29.860667 21344 solver.cpp:245] Train net output #28: loss1/loss07 = 2.15458 (* 0.0272727 = 0.0587612 loss) | |
I0327 13:34:29.860682 21344 solver.cpp:245] Train net output #29: loss1/loss08 = 0.364512 (* 0.0272727 = 0.00994125 loss) | |
I0327 13:34:29.860697 21344 solver.cpp:245] Train net output #30: loss1/loss09 = 0.0136941 (* 0.0272727 = 0.000373476 loss) | |
I0327 13:34:29.860710 21344 solver.cpp:245] Train net output #31: loss1/loss10 = 0.00614214 (* 0.0272727 = 0.000167513 loss) | |
I0327 13:34:29.860725 21344 solver.cpp:245] Train net output #32: loss1/loss11 = 0.000122899 (* 0.0272727 = 3.35179e-06 loss) | |
I0327 13:34:29.860739 21344 solver.cpp:245] Train net output #33: loss1/loss12 = 0.000203331 (* 0.0272727 = 5.54538e-06 loss) | |
I0327 13:34:29.860754 21344 solver.cpp:245] Train net output #34: loss1/loss13 = 0.00019237 (* 0.0272727 = 5.24645e-06 loss) | |
I0327 13:34:29.860767 21344 solver.cpp:245] Train net output #35: loss1/loss14 = 0.00015768 (* 0.0272727 = 4.30036e-06 loss) | |
I0327 13:34:29.860781 21344 solver.cpp:245] Train net output #36: loss1/loss15 = 0.000204989 (* 0.0272727 = 5.5906e-06 loss) | |
I0327 13:34:29.860795 21344 solver.cpp:245] Train net output #37: loss1/loss16 = 0.000156965 (* 0.0272727 = 4.28087e-06 loss) | |
I0327 13:34:29.860810 21344 solver.cpp:245] Train net output #38: loss1/loss17 = 0.000133347 (* 0.0272727 = 3.63672e-06 loss) | |
I0327 13:34:29.860837 21344 solver.cpp:245] Train net output #39: loss1/loss18 = 0.000157809 (* 0.0272727 = 4.30388e-06 loss) | |
I0327 13:34:29.860853 21344 solver.cpp:245] Train net output #40: loss1/loss19 = 0.000243953 (* 0.0272727 = 6.65328e-06 loss) | |
I0327 13:34:29.860885 21344 solver.cpp:245] Train net output #41: loss1/loss20 = 0.000168064 (* 0.0272727 = 4.58357e-06 loss) | |
I0327 13:34:29.860901 21344 solver.cpp:245] Train net output #42: loss1/loss21 = 0.000415257 (* 0.0272727 = 1.13252e-05 loss) | |
I0327 13:34:29.860915 21344 solver.cpp:245] Train net output #43: loss1/loss22 = 0.000347464 (* 0.0272727 = 9.4763e-06 loss) | |
I0327 13:34:29.860927 21344 solver.cpp:245] Train net output #44: loss2/accuracy01 = 0.25 | |
I0327 13:34:29.860939 21344 solver.cpp:245] Train net output #45: loss2/accuracy02 = 0 | |
I0327 13:34:29.860951 21344 solver.cpp:245] Train net output #46: loss2/accuracy03 = 0.375 | |
I0327 13:34:29.860963 21344 solver.cpp:245] Train net output #47: loss2/accuracy04 = 0.125 | |
I0327 13:34:29.860975 21344 solver.cpp:245] Train net output #48: loss2/accuracy05 = 0.25 | |
I0327 13:34:29.860987 21344 solver.cpp:245] Train net output #49: loss2/accuracy06 = 0.375 | |
I0327 13:34:29.861001 21344 solver.cpp:245] Train net output #50: loss2/accuracy07 = 0.5 | |
I0327 13:34:29.861013 21344 solver.cpp:245] Train net output #51: loss2/accuracy08 = 0.875 | |
I0327 13:34:29.861026 21344 solver.cpp:245] Train net output #52: loss2/accuracy09 = 1 | |
I0327 13:34:29.861037 21344 solver.cpp:245] Train net output #53: loss2/accuracy10 = 1 | |
I0327 13:34:29.861048 21344 solver.cpp:245] Train net output #54: loss2/accuracy11 = 1 | |
I0327 13:34:29.861059 21344 solver.cpp:245] Train net output #55: loss2/accuracy12 = 1 | |
I0327 13:34:29.861071 21344 solver.cpp:245] Train net output #56: loss2/accuracy13 = 1 | |
I0327 13:34:29.861083 21344 solver.cpp:245] Train net output #57: loss2/accuracy14 = 1 | |
I0327 13:34:29.861093 21344 solver.cpp:245] Train net output #58: loss2/accuracy15 = 1 | |
I0327 13:34:29.861105 21344 solver.cpp:245] Train net output #59: loss2/accuracy16 = 1 | |
I0327 13:34:29.861116 21344 solver.cpp:245] Train net output #60: loss2/accuracy17 = 1 | |
I0327 13:34:29.861127 21344 solver.cpp:245] Train net output #61: loss2/accuracy18 = 1 | |
I0327 13:34:29.861138 21344 solver.cpp:245] Train net output #62: loss2/accuracy19 = 1 | |
I0327 13:34:29.861150 21344 solver.cpp:245] Train net output #63: loss2/accuracy20 = 1 | |
I0327 13:34:29.861161 21344 solver.cpp:245] Train net output #64: loss2/accuracy21 = 1 | |
I0327 13:34:29.861173 21344 solver.cpp:245] Train net output #65: loss2/accuracy22 = 1 | |
I0327 13:34:29.861186 21344 solver.cpp:245] Train net output #66: loss2/loss01 = 2.15049 (* 0.0272727 = 0.0586497 loss) | |
I0327 13:34:29.861201 21344 solver.cpp:245] Train net output #67: loss2/loss02 = 3.31932 (* 0.0272727 = 0.090527 loss) | |
I0327 13:34:29.861214 21344 solver.cpp:245] Train net output #68: loss2/loss03 = 2.37389 (* 0.0272727 = 0.0647425 loss) | |
I0327 13:34:29.861227 21344 solver.cpp:245] Train net output #69: loss2/loss04 = 2.84611 (* 0.0272727 = 0.0776211 loss) | |
I0327 13:34:29.861241 21344 solver.cpp:245] Train net output #70: loss2/loss05 = 2.24949 (* 0.0272727 = 0.0613498 loss) | |
I0327 13:34:29.861255 21344 solver.cpp:245] Train net output #71: loss2/loss06 = 2.12252 (* 0.0272727 = 0.0578869 loss) | |
I0327 13:34:29.861268 21344 solver.cpp:245] Train net output #72: loss2/loss07 = 2.44894 (* 0.0272727 = 0.0667894 loss) | |
I0327 13:34:29.861282 21344 solver.cpp:245] Train net output #73: loss2/loss08 = 0.528778 (* 0.0272727 = 0.0144212 loss) | |
I0327 13:34:29.861296 21344 solver.cpp:245] Train net output #74: loss2/loss09 = 0.00869116 (* 0.0272727 = 0.000237032 loss) | |
I0327 13:34:29.861310 21344 solver.cpp:245] Train net output #75: loss2/loss10 = 0.00263392 (* 0.0272727 = 7.18341e-05 loss) | |
I0327 13:34:29.861327 21344 solver.cpp:245] Train net output #76: loss2/loss11 = 6.58613e-05 (* 0.0272727 = 1.79622e-06 loss) | |
I0327 13:34:29.861353 21344 solver.cpp:245] Train net output #77: loss2/loss12 = 0.000177835 (* 0.0272727 = 4.85005e-06 loss) | |
I0327 13:34:29.861369 21344 solver.cpp:245] Train net output #78: loss2/loss13 = 0.000286185 (* 0.0272727 = 7.80504e-06 loss) | |
I0327 13:34:29.861383 21344 solver.cpp:245] Train net output #79: loss2/loss14 = 0.000282914 (* 0.0272727 = 7.71582e-06 loss) | |
I0327 13:34:29.861397 21344 solver.cpp:245] Train net output #80: loss2/loss15 = 0.000119643 (* 0.0272727 = 3.26298e-06 loss) | |
I0327 13:34:29.861412 21344 solver.cpp:245] Train net output #81: loss2/loss16 = 4.63829e-05 (* 0.0272727 = 1.26499e-06 loss) | |
I0327 13:34:29.861428 21344 solver.cpp:245] Train net output #82: loss2/loss17 = 0.000106346 (* 0.0272727 = 2.90035e-06 loss) | |
I0327 13:34:29.861443 21344 solver.cpp:245] Train net output #83: loss2/loss18 = 0.000168512 (* 0.0272727 = 4.59578e-06 loss) | |
I0327 13:34:29.861457 21344 solver.cpp:245] Train net output #84: loss2/loss19 = 7.4793e-05 (* 0.0272727 = 2.03981e-06 loss) | |
I0327 13:34:29.861471 21344 solver.cpp:245] Train net output #85: loss2/loss20 = 0.000110982 (* 0.0272727 = 3.02679e-06 loss) | |
I0327 13:34:29.861485 21344 solver.cpp:245] Train net output #86: loss2/loss21 = 6.92596e-05 (* 0.0272727 = 1.8889e-06 loss) | |
I0327 13:34:29.861500 21344 solver.cpp:245] Train net output #87: loss2/loss22 = 0.000154772 (* 0.0272727 = 4.22105e-06 loss) | |
I0327 13:34:29.861511 21344 solver.cpp:245] Train net output #88: loss3/accuracy01 = 0.375 | |
I0327 13:34:29.861523 21344 solver.cpp:245] Train net output #89: loss3/accuracy02 = 0 | |
I0327 13:34:29.861536 21344 solver.cpp:245] Train net output #90: loss3/accuracy03 = 0.375 | |
I0327 13:34:29.861562 21344 solver.cpp:245] Train net output #91: loss3/accuracy04 = 0.375 | |
I0327 13:34:29.861574 21344 solver.cpp:245] Train net output #92: loss3/accuracy05 = 0.25 | |
I0327 13:34:29.861587 21344 solver.cpp:245] Train net output #93: loss3/accuracy06 = 0.375 | |
I0327 13:34:29.861598 21344 solver.cpp:245] Train net output #94: loss3/accuracy07 = 0.5 | |
I0327 13:34:29.861609 21344 solver.cpp:245] Train net output #95: loss3/accuracy08 = 0.875 | |
I0327 13:34:29.861621 21344 solver.cpp:245] Train net output #96: loss3/accuracy09 = 1 | |
I0327 13:34:29.861632 21344 solver.cpp:245] Train net output #97: loss3/accuracy10 = 1 | |
I0327 13:34:29.861644 21344 solver.cpp:245] Train net output #98: loss3/accuracy11 = 1 | |
I0327 13:34:29.861654 21344 solver.cpp:245] Train net output #99: loss3/accuracy12 = 1 | |
I0327 13:34:29.861666 21344 solver.cpp:245] Train net output #100: loss3/accuracy13 = 1 | |
I0327 13:34:29.861677 21344 solver.cpp:245] Train net output #101: loss3/accuracy14 = 1 | |
I0327 13:34:29.861688 21344 solver.cpp:245] Train net output #102: loss3/accuracy15 = 1 | |
I0327 13:34:29.861701 21344 solver.cpp:245] Train net output #103: loss3/accuracy16 = 1 | |
I0327 13:34:29.861711 21344 solver.cpp:245] Train net output #104: loss3/accuracy17 = 1 | |
I0327 13:34:29.861722 21344 solver.cpp:245] Train net output #105: loss3/accuracy18 = 1 | |
I0327 13:34:29.861733 21344 solver.cpp:245] Train net output #106: loss3/accuracy19 = 1 | |
I0327 13:34:29.861745 21344 solver.cpp:245] Train net output #107: loss3/accuracy20 = 1 | |
I0327 13:34:29.861757 21344 solver.cpp:245] Train net output #108: loss3/accuracy21 = 1 | |
I0327 13:34:29.861768 21344 solver.cpp:245] Train net output #109: loss3/accuracy22 = 1 | |
I0327 13:34:29.861781 21344 solver.cpp:245] Train net output #110: loss3/loss01 = 1.53908 (* 0.0909091 = 0.139917 loss) | |
I0327 13:34:29.861794 21344 solver.cpp:245] Train net output #111: loss3/loss02 = 3.20929 (* 0.0909091 = 0.291754 loss) | |
I0327 13:34:29.861809 21344 solver.cpp:245] Train net output #112: loss3/loss03 = 2.29936 (* 0.0909091 = 0.209033 loss) | |
I0327 13:34:29.861822 21344 solver.cpp:245] Train net output #113: loss3/loss04 = 2.53982 (* 0.0909091 = 0.230893 loss) | |
I0327 13:34:29.861835 21344 solver.cpp:245] Train net output #114: loss3/loss05 = 2.26611 (* 0.0909091 = 0.20601 loss) | |
I0327 13:34:29.861860 21344 solver.cpp:245] Train net output #115: loss3/loss06 = 2.06029 (* 0.0909091 = 0.187299 loss) | |
I0327 13:34:29.861876 21344 solver.cpp:245] Train net output #116: loss3/loss07 = 2.35443 (* 0.0909091 = 0.214039 loss) | |
I0327 13:34:29.861889 21344 solver.cpp:245] Train net output #117: loss3/loss08 = 0.511495 (* 0.0909091 = 0.0464996 loss) | |
I0327 13:34:29.861903 21344 solver.cpp:245] Train net output #118: loss3/loss09 = 0.00625295 (* 0.0909091 = 0.00056845 loss) | |
I0327 13:34:29.861917 21344 solver.cpp:245] Train net output #119: loss3/loss10 = 0.00295558 (* 0.0909091 = 0.000268689 loss) | |
I0327 13:34:29.861932 21344 solver.cpp:245] Train net output #120: loss3/loss11 = 6.2946e-05 (* 0.0909091 = 5.72236e-06 loss) | |
I0327 13:34:29.861945 21344 solver.cpp:245] Train net output #121: loss3/loss12 = 0.000105368 (* 0.0909091 = 9.5789e-06 loss) | |
I0327 13:34:29.861959 21344 solver.cpp:245] Train net output #122: loss3/loss13 = 9.10761e-05 (* 0.0909091 = 8.27964e-06 loss) | |
I0327 13:34:29.861974 21344 solver.cpp:245] Train net output #123: loss3/loss14 = 0.000111688 (* 0.0909091 = 1.01535e-05 loss) | |
I0327 13:34:29.861987 21344 solver.cpp:245] Train net output #124: loss3/loss15 = 9.7461e-05 (* 0.0909091 = 8.8601e-06 loss) | |
I0327 13:34:29.862002 21344 solver.cpp:245] Train net output #125: loss3/loss16 = 9.84016e-05 (* 0.0909091 = 8.9456e-06 loss) | |
I0327 13:34:29.862016 21344 solver.cpp:245] Train net output #126: loss3/loss17 = 8.18659e-05 (* 0.0909091 = 7.44235e-06 loss) | |
I0327 13:34:29.862030 21344 solver.cpp:245] Train net output #127: loss3/loss18 = 8.01065e-05 (* 0.0909091 = 7.28241e-06 loss) | |
I0327 13:34:29.862047 21344 solver.cpp:245] Train net output #128: loss3/loss19 = 8.96824e-05 (* 0.0909091 = 8.15294e-06 loss) | |
I0327 13:34:29.862061 21344 solver.cpp:245] Train net output #129: loss3/loss20 = 9.13661e-05 (* 0.0909091 = 8.30601e-06 loss) | |
I0327 13:34:29.862076 21344 solver.cpp:245] Train net output #130: loss3/loss21 = 0.000120928 (* 0.0909091 = 1.09934e-05 loss) | |
I0327 13:34:29.862089 21344 solver.cpp:245] Train net output #131: loss3/loss22 = 9.95402e-05 (* 0.0909091 = 9.04911e-06 loss) | |
I0327 13:34:29.862102 21344 solver.cpp:245] Train net output #132: total_accuracy = 0 | |
I0327 13:34:29.862113 21344 solver.cpp:245] Train net output #133: total_confidence = 0.00256634 | |
I0327 13:34:29.862125 21344 sgd_solver.cpp:106] Iteration 13000, lr = 0.01 | |
I0327 13:36:17.617172 21344 solver.cpp:229] Iteration 13500, loss = 2.78226 | |
I0327 13:36:17.617321 21344 solver.cpp:245] Train net output #0: loss1/accuracy01 = 0.375 | |
I0327 13:36:17.617341 21344 solver.cpp:245] Train net output #1: loss1/accuracy02 = 0 | |
I0327 13:36:17.617353 21344 solver.cpp:245] Train net output #2: loss1/accuracy03 = 0 | |
I0327 13:36:17.617365 21344 solver.cpp:245] Train net output #3: loss1/accuracy04 = 0.375 | |
I0327 13:36:17.617377 21344 solver.cpp:245] Train net output #4: loss1/accuracy05 = 0.5 | |
I0327 13:36:17.617389 21344 solver.cpp:245] Train net output #5: loss1/accuracy06 = 0.25 | |
I0327 13:36:17.617400 21344 solver.cpp:245] Train net output #6: loss1/accuracy07 = 0.625 | |
I0327 13:36:17.617413 21344 solver.cpp:245] Train net output #7: loss1/accuracy08 = 0.875 | |
I0327 13:36:17.617425 21344 solver.cpp:245] Train net output #8: loss1/accuracy09 = 1 | |
I0327 13:36:17.617437 21344 solver.cpp:245] Train net output #9: loss1/accuracy10 = 1 | |
I0327 13:36:17.617449 21344 solver.cpp:245] Train net output #10: loss1/accuracy11 = 1 | |
I0327 13:36:17.617460 21344 solver.cpp:245] Train net output #11: loss1/accuracy12 = 1 | |
I0327 13:36:17.617471 21344 solver.cpp:245] Train net output #12: loss1/accuracy13 = 1 | |
I0327 13:36:17.617483 21344 solver.cpp:245] Train net output #13: loss1/accuracy14 = 1 | |
I0327 13:36:17.617496 21344 solver.cpp:245] Train net output #14: loss1/accuracy15 = 1 | |
I0327 13:36:17.617506 21344 solver.cpp:245] Train net output #15: loss1/accuracy16 = 1 | |
I0327 13:36:17.617518 21344 solver.cpp:245] Train net output #16: loss1/accuracy17 = 1 | |
I0327 13:36:17.617530 21344 solver.cpp:245] Train net output #17: loss1/accuracy18 = 1 | |
I0327 13:36:17.617554 21344 solver.cpp:245] Train net output #18: loss1/accuracy19 = 1 | |
I0327 13:36:17.617568 21344 solver.cpp:245] Train net output #19: loss1/accuracy20 = 1 | |
I0327 13:36:17.617580 21344 solver.cpp:245] Train net output #20: loss1/accuracy21 = 1 | |
I0327 13:36:17.617591 21344 solver.cpp:245] Train net output #21: loss1/accuracy22 = 1 | |
I0327 13:36:17.617609 21344 solver.cpp:245] Train net output #22: loss1/loss01 = 2.29567 (* 0.0272727 = 0.0626091 loss) | |
I0327 13:36:17.617622 21344 solver.cpp:245] Train net output #23: loss1/loss02 = 3.09413 (* 0.0272727 = 0.0843852 loss) | |
I0327 13:36:17.617637 21344 solver.cpp:245] Train net output #24: loss1/loss03 = 3.51151 (* 0.0272727 = 0.0957684 loss) | |
I0327 13:36:17.617651 21344 solver.cpp:245] Train net output #25: loss1/loss04 = 2.75979 (* 0.0272727 = 0.075267 loss) | |
I0327 13:36:17.617666 21344 solver.cpp:245] Train net output #26: loss1/loss05 = 2.36382 (* 0.0272727 = 0.0644677 loss) | |
I0327 13:36:17.617679 21344 solver.cpp:245] Train net output #27: loss1/loss06 = 2.81879 (* 0.0272727 = 0.0768762 loss) | |
I0327 13:36:17.617693 21344 solver.cpp:245] Train net output #28: loss1/loss07 = 1.71203 (* 0.0272727 = 0.0466918 loss) | |
I0327 13:36:17.617707 21344 solver.cpp:245] Train net output #29: loss1/loss08 = 0.523539 (* 0.0272727 = 0.0142783 loss) | |
I0327 13:36:17.617722 21344 solver.cpp:245] Train net output #30: loss1/loss09 = 0.121186 (* 0.0272727 = 0.00330507 loss) | |
I0327 13:36:17.617736 21344 solver.cpp:245] Train net output #31: loss1/loss10 = 0.0690465 (* 0.0272727 = 0.00188309 loss) | |
I0327 13:36:17.617750 21344 solver.cpp:245] Train net output #32: loss1/loss11 = 0.000371176 (* 0.0272727 = 1.0123e-05 loss) | |
I0327 13:36:17.617765 21344 solver.cpp:245] Train net output #33: loss1/loss12 = 0.00047469 (* 0.0272727 = 1.29461e-05 loss) | |
I0327 13:36:17.617779 21344 solver.cpp:245] Train net output #34: loss1/loss13 = 0.000699747 (* 0.0272727 = 1.9084e-05 loss) | |
I0327 13:36:17.617794 21344 solver.cpp:245] Train net output #35: loss1/loss14 = 0.000550624 (* 0.0272727 = 1.5017e-05 loss) | |
I0327 13:36:17.617808 21344 solver.cpp:245] Train net output #36: loss1/loss15 = 0.000350128 (* 0.0272727 = 9.54894e-06 loss) | |
I0327 13:36:17.617823 21344 solver.cpp:245] Train net output #37: loss1/loss16 = 0.000538459 (* 0.0272727 = 1.46852e-05 loss) | |
I0327 13:36:17.617837 21344 solver.cpp:245] Train net output #38: loss1/loss17 = 0.000730471 (* 0.0272727 = 1.99219e-05 loss) | |
I0327 13:36:17.617866 21344 solver.cpp:245] Train net output #39: loss1/loss18 = 0.00021315 (* 0.0272727 = 5.81318e-06 loss) | |
I0327 13:36:17.617882 21344 solver.cpp:245] Train net output #40: loss1/loss19 = 0.000355611 (* 0.0272727 = 9.69847e-06 loss) | |
I0327 13:36:17.617895 21344 solver.cpp:245] Train net output #41: loss1/loss20 = 0.000623389 (* 0.0272727 = 1.70015e-05 loss) | |
I0327 13:36:17.617909 21344 solver.cpp:245] Train net output #42: loss1/loss21 = 0.000123044 (* 0.0272727 = 3.35574e-06 loss) | |
I0327 13:36:17.617928 21344 solver.cpp:245] Train net output #43: loss1/loss22 = 0.000538055 (* 0.0272727 = 1.46742e-05 loss) | |
I0327 13:36:17.617941 21344 solver.cpp:245] Train net output #44: loss2/accuracy01 = 0.5 | |
I0327 13:36:17.617954 21344 solver.cpp:245] Train net output #45: loss2/accuracy02 = 0.25 | |
I0327 13:36:17.617966 21344 solver.cpp:245] Train net output #46: loss2/accuracy03 = 0.125 | |
I0327 13:36:17.617979 21344 solver.cpp:245] Train net output #47: loss2/accuracy04 = 0.25 | |
I0327 13:36:17.617992 21344 solver.cpp:245] Train net output #48: loss2/accuracy05 = 0.375 | |
I0327 13:36:17.618005 21344 solver.cpp:245] Train net output #49: loss2/accuracy06 = 0.375 | |
I0327 13:36:17.618016 21344 solver.cpp:245] Train net output #50: loss2/accuracy07 = 0.625 | |
I0327 13:36:17.618029 21344 solver.cpp:245] Train net output #51: loss2/accuracy08 = 0.875 | |
I0327 13:36:17.618041 21344 solver.cpp:245] Train net output #52: loss2/accuracy09 = 1 | |
I0327 13:36:17.618052 21344 solver.cpp:245] Train net output #53: loss2/accuracy10 = 1 | |
I0327 13:36:17.618064 21344 solver.cpp:245] Train net output #54: loss2/accuracy11 = 1 | |
I0327 13:36:17.618075 21344 solver.cpp:245] Train net output #55: loss2/accuracy12 = 1 | |
I0327 13:36:17.618086 21344 solver.cpp:245] Train net output #56: loss2/accuracy13 = 1 | |
I0327 13:36:17.618098 21344 solver.cpp:245] Train net output #57: loss2/accuracy14 = 1 | |
I0327 13:36:17.618109 21344 solver.cpp:245] Train net output #58: loss2/accuracy15 = 1 | |
I0327 13:36:17.618120 21344 solver.cpp:245] Train net output #59: loss2/accuracy16 = 1 | |
I0327 13:36:17.618132 21344 solver.cpp:245] Train net output #60: loss2/accuracy17 = 1 | |
I0327 13:36:17.618144 21344 solver.cpp:245] Train net output #61: loss2/accuracy18 = 1 | |
I0327 13:36:17.618155 21344 solver.cpp:245] Train net output #62: loss2/accuracy19 = 1 | |
I0327 13:36:17.618166 21344 solver.cpp:245] Train net output #63: loss2/accuracy20 = 1 | |
I0327 13:36:17.618177 21344 solver.cpp:245] Train net output #64: loss2/accuracy21 = 1 | |
I0327 13:36:17.618188 21344 solver.cpp:245] Train net output #65: loss2/accuracy22 = 1 | |
I0327 13:36:17.618202 21344 solver.cpp:245] Train net output #66: loss2/loss01 = 1.97853 (* 0.0272727 = 0.05396 loss) | |
I0327 13:36:17.618216 21344 solver.cpp:245] Train net output #67: loss2/loss02 = 2.99794 (* 0.0272727 = 0.0817621 loss) | |
I0327 13:36:17.618230 21344 solver.cpp:245] Train net output #68: loss2/loss03 = 3.20416 (* 0.0272727 = 0.0873863 loss) | |
I0327 13:36:17.618245 21344 solver.cpp:245] Train net output #69: loss2/loss04 = 2.8095 (* 0.0272727 = 0.0766228 loss) | |
I0327 13:36:17.618259 21344 solver.cpp:245] Train net output #70: loss2/loss05 = 2.52723 (* 0.0272727 = 0.0689245 loss) | |
I0327 13:36:17.618273 21344 solver.cpp:245] Train net output #71: loss2/loss06 = 2.56923 (* 0.0272727 = 0.0700698 loss) | |
I0327 13:36:17.618288 21344 solver.cpp:245] Train net output #72: loss2/loss07 = 1.47709 (* 0.0272727 = 0.0402844 loss) | |
I0327 13:36:17.618301 21344 solver.cpp:245] Train net output #73: loss2/loss08 = 0.53005 (* 0.0272727 = 0.0144559 loss) | |
I0327 13:36:17.618315 21344 solver.cpp:245] Train net output #74: loss2/loss09 = 0.123081 (* 0.0272727 = 0.00335677 loss) | |
I0327 13:36:17.618330 21344 solver.cpp:245] Train net output #75: loss2/loss10 = 0.0340428 (* 0.0272727 = 0.000928439 loss) | |
I0327 13:36:17.618350 21344 solver.cpp:245] Train net output #76: loss2/loss11 = 0.00126824 (* 0.0272727 = 3.45885e-05 loss) | |
I0327 13:36:17.618376 21344 solver.cpp:245] Train net output #77: loss2/loss12 = 0.000447884 (* 0.0272727 = 1.2215e-05 loss) | |
I0327 13:36:17.618391 21344 solver.cpp:245] Train net output #78: loss2/loss13 = 0.000861739 (* 0.0272727 = 2.3502e-05 loss) | |
I0327 13:36:17.618405 21344 solver.cpp:245] Train net output #79: loss2/loss14 = 0.000411572 (* 0.0272727 = 1.12247e-05 loss) | |
I0327 13:36:17.618419 21344 solver.cpp:245] Train net output #80: loss2/loss15 = 0.000358447 (* 0.0272727 = 9.77583e-06 loss) | |
I0327 13:36:17.618433 21344 solver.cpp:245] Train net output #81: loss2/loss16 = 0.000496685 (* 0.0272727 = 1.3546e-05 loss) | |
I0327 13:36:17.618443 21344 solver.cpp:245] Train net output #82: loss2/loss17 = 0.000402863 (* 0.0272727 = 1.09872e-05 loss) | |
I0327 13:36:17.618458 21344 solver.cpp:245] Train net output #83: loss2/loss18 = 0.0012818 (* 0.0272727 = 3.49583e-05 loss) | |
I0327 13:36:17.618474 21344 solver.cpp:245] Train net output #84: loss2/loss19 = 0.000422827 (* 0.0272727 = 1.15317e-05 loss) | |
I0327 13:36:17.618487 21344 solver.cpp:245] Train net output #85: loss2/loss20 = 0.000500004 (* 0.0272727 = 1.36365e-05 loss) | |
I0327 13:36:17.618501 21344 solver.cpp:245] Train net output #86: loss2/loss21 = 0.00024724 (* 0.0272727 = 6.74292e-06 loss) | |
I0327 13:36:17.618515 21344 solver.cpp:245] Train net output #87: loss2/loss22 = 0.000998298 (* 0.0272727 = 2.72263e-05 loss) | |
I0327 13:36:17.618527 21344 solver.cpp:245] Train net output #88: loss3/accuracy01 = 0.5 | |
I0327 13:36:17.618541 21344 solver.cpp:245] Train net output #89: loss3/accuracy02 = 0.125 | |
I0327 13:36:17.618552 21344 solver.cpp:245] Train net output #90: loss3/accuracy03 = 0 | |
I0327 13:36:17.618564 21344 solver.cpp:245] Train net output #91: loss3/accuracy04 = 0.125 | |
I0327 13:36:17.618577 21344 solver.cpp:245] Train net output #92: loss3/accuracy05 = 0.5 | |
I0327 13:36:17.618587 21344 solver.cpp:245] Train net output #93: loss3/accuracy06 = 0.375 | |
I0327 13:36:17.618599 21344 solver.cpp:245] Train net output #94: loss3/accuracy07 = 0.625 | |
I0327 13:36:17.618612 21344 solver.cpp:245] Train net output #95: loss3/accuracy08 = 0.875 | |
I0327 13:36:17.618623 21344 solver.cpp:245] Train net output #96: loss3/accuracy09 = 1 | |
I0327 13:36:17.618634 21344 solver.cpp:245] Train net output #97: loss3/accuracy10 = 1 | |
I0327 13:36:17.618646 21344 solver.cpp:245] Train net output #98: loss3/accuracy11 = 1 | |
I0327 13:36:17.618657 21344 solver.cpp:245] Train net output #99: loss3/accuracy12 = 1 | |
I0327 13:36:17.618669 21344 solver.cpp:245] Train net output #100: loss3/accuracy13 = 1 | |
I0327 13:36:17.618680 21344 solver.cpp:245] Train net output #101: loss3/accuracy14 = 1 | |
I0327 13:36:17.618691 21344 solver.cpp:245] Train net output #102: loss3/accuracy15 = 1 | |
I0327 13:36:17.618702 21344 solver.cpp:245] Train net output #103: loss3/accuracy16 = 1 | |
I0327 13:36:17.618715 21344 solver.cpp:245] Train net output #104: loss3/accuracy17 = 1 | |
I0327 13:36:17.618726 21344 solver.cpp:245] Train net output #105: loss3/accuracy18 = 1 | |
I0327 13:36:17.618736 21344 solver.cpp:245] Train net output #106: loss3/accuracy19 = 1 | |
I0327 13:36:17.618747 21344 solver.cpp:245] Train net output #107: loss3/accuracy20 = 1 | |
I0327 13:36:17.618759 21344 solver.cpp:245] Train net output #108: loss3/accuracy21 = 1 | |
I0327 13:36:17.618770 21344 solver.cpp:245] Train net output #109: loss3/accuracy22 = 1 | |
I0327 13:36:17.618784 21344 solver.cpp:245] Train net output #110: loss3/loss01 = 1.72012 (* 0.0909091 = 0.156375 loss) | |
I0327 13:36:17.618798 21344 solver.cpp:245] Train net output #111: loss3/loss02 = 2.96707 (* 0.0909091 = 0.269734 loss) | |
I0327 13:36:17.618811 21344 solver.cpp:245] Train net output #112: loss3/loss03 = 3.74261 (* 0.0909091 = 0.340237 loss) | |
I0327 13:36:17.618825 21344 solver.cpp:245] Train net output #113: loss3/loss04 = 2.97033 (* 0.0909091 = 0.27003 loss) | |
I0327 13:36:17.618839 21344 solver.cpp:245] Train net output #114: loss3/loss05 = 2.47896 (* 0.0909091 = 0.22536 loss) | |
I0327 13:36:17.618863 21344 solver.cpp:245] Train net output #115: loss3/loss06 = 2.65156 (* 0.0909091 = 0.241051 loss) | |
I0327 13:36:17.618878 21344 solver.cpp:245] Train net output #116: loss3/loss07 = 1.53351 (* 0.0909091 = 0.13941 loss) | |
I0327 13:36:17.618891 21344 solver.cpp:245] Train net output #117: loss3/loss08 = 0.514992 (* 0.0909091 = 0.0468175 loss) | |
I0327 13:36:17.618906 21344 solver.cpp:245] Train net output #118: loss3/loss09 = 0.120035 (* 0.0909091 = 0.0109123 loss) | |
I0327 13:36:17.618921 21344 solver.cpp:245] Train net output #119: loss3/loss10 = 0.0376088 (* 0.0909091 = 0.00341899 loss) | |
I0327 13:36:17.618934 21344 solver.cpp:245] Train net output #120: loss3/loss11 = 0.000359199 (* 0.0909091 = 3.26545e-05 loss) | |
I0327 13:36:17.618948 21344 solver.cpp:245] Train net output #121: loss3/loss12 = 0.000188884 (* 0.0909091 = 1.71712e-05 loss) | |
I0327 13:36:17.618963 21344 solver.cpp:245] Train net output #122: loss3/loss13 = 0.000325675 (* 0.0909091 = 2.96069e-05 loss) | |
I0327 13:36:17.618976 21344 solver.cpp:245] Train net output #123: loss3/loss14 = 0.000341068 (* 0.0909091 = 3.10061e-05 loss) | |
I0327 13:36:17.618990 21344 solver.cpp:245] Train net output #124: loss3/loss15 = 0.000242033 (* 0.0909091 = 2.2003e-05 loss) | |
I0327 13:36:17.619004 21344 solver.cpp:245] Train net output #125: loss3/loss16 = 0.000226336 (* 0.0909091 = 2.0576e-05 loss) | |
I0327 13:36:17.619019 21344 solver.cpp:245] Train net output #126: loss3/loss17 = 0.000215208 (* 0.0909091 = 1.95643e-05 loss) | |
I0327 13:36:17.619032 21344 solver.cpp:245] Train net output #127: loss3/loss18 = 0.000359127 (* 0.0909091 = 3.26479e-05 loss) | |
I0327 13:36:17.619050 21344 solver.cpp:245] Train net output #128: loss3/loss19 = 0.000355424 (* 0.0909091 = 3.23113e-05 loss) | |
I0327 13:36:17.619065 21344 solver.cpp:245] Train net output #129: loss3/loss20 = 0.000232779 (* 0.0909091 = 2.11617e-05 loss) | |
I0327 13:36:17.619078 21344 solver.cpp:245] Train net output #130: loss3/loss21 = 0.000233226 (* 0.0909091 = 2.12024e-05 loss) | |
I0327 13:36:17.619092 21344 solver.cpp:245] Train net output #131: loss3/loss22 = 0.00026633 (* 0.0909091 = 2.42118e-05 loss) | |
I0327 13:36:17.619104 21344 solver.cpp:245] Train net output #132: total_accuracy = 0 | |
I0327 13:36:17.619115 21344 solver.cpp:245] Train net output #133: total_confidence = 0.000570221 | |
I0327 13:36:17.619128 21344 sgd_solver.cpp:106] Iteration 13500, lr = 0.01 | |
I0327 13:38:05.403362 21344 solver.cpp:229] Iteration 14000, loss = 2.78852 | |
I0327 13:38:05.403502 21344 solver.cpp:245] Train net output #0: loss1/accuracy01 = 0.125 | |
I0327 13:38:05.403524 21344 solver.cpp:245] Train net output #1: loss1/accuracy02 = 0.125 | |
I0327 13:38:05.403537 21344 solver.cpp:245] Train net output #2: loss1/accuracy03 = 0 | |
I0327 13:38:05.403549 21344 solver.cpp:245] Train net output #3: loss1/accuracy04 = 0.125 | |
I0327 13:38:05.403561 21344 solver.cpp:245] Train net output #4: loss1/accuracy05 = 0.25 | |
I0327 13:38:05.403573 21344 solver.cpp:245] Train net output #5: loss1/accuracy06 = 0.375 | |
I0327 13:38:05.403586 21344 solver.cpp:245] Train net output #6: loss1/accuracy07 = 0.625 | |
I0327 13:38:05.403599 21344 solver.cpp:245] Train net output #7: loss1/accuracy08 = 0.875 | |
I0327 13:38:05.403610 21344 solver.cpp:245] Train net output #8: loss1/accuracy09 = 1 | |
I0327 13:38:05.403623 21344 solver.cpp:245] Train net output #9: loss1/accuracy10 = 1 | |
I0327 13:38:05.403635 21344 solver.cpp:245] Train net output #10: loss1/accuracy11 = 1 | |
I0327 13:38:05.403646 21344 solver.cpp:245] Train net output #11: loss1/accuracy12 = 1 | |
I0327 13:38:05.403658 21344 solver.cpp:245] Train net output #12: loss1/accuracy13 = 1 | |
I0327 13:38:05.403671 21344 solver.cpp:245] Train net output #13: loss1/accuracy14 = 1 | |
I0327 13:38:05.403682 21344 solver.cpp:245] Train net output #14: loss1/accuracy15 = 1 | |
I0327 13:38:05.403695 21344 solver.cpp:245] Train net output #15: loss1/accuracy16 = 1 | |
I0327 13:38:05.403707 21344 solver.cpp:245] Train net output #16: loss1/accuracy17 = 1 | |
I0327 13:38:05.403719 21344 solver.cpp:245] Train net output #17: loss1/accuracy18 = 1 | |
I0327 13:38:05.403730 21344 solver.cpp:245] Train net output #18: loss1/accuracy19 = 1 | |
I0327 13:38:05.403743 21344 solver.cpp:245] Train net output #19: loss1/accuracy20 = 1 | |
I0327 13:38:05.403754 21344 solver.cpp:245] Train net output #20: loss1/accuracy21 = 1 | |
I0327 13:38:05.403765 21344 solver.cpp:245] Train net output #21: loss1/accuracy22 = 1 | |
I0327 13:38:05.403782 21344 solver.cpp:245] Train net output #22: loss1/loss01 = 3.47887 (* 0.0272727 = 0.0948782 loss) | |
I0327 13:38:05.403797 21344 solver.cpp:245] Train net output #23: loss1/loss02 = 2.8506 (* 0.0272727 = 0.0777436 loss) | |
I0327 13:38:05.403812 21344 solver.cpp:245] Train net output #24: loss1/loss03 = 3.30889 (* 0.0272727 = 0.0902424 loss) | |
I0327 13:38:05.403826 21344 solver.cpp:245] Train net output #25: loss1/loss04 = 3.74392 (* 0.0272727 = 0.102107 loss) | |
I0327 13:38:05.403841 21344 solver.cpp:245] Train net output #26: loss1/loss05 = 2.62918 (* 0.0272727 = 0.0717048 loss) | |
I0327 13:38:05.403854 21344 solver.cpp:245] Train net output #27: loss1/loss06 = 1.97178 (* 0.0272727 = 0.0537758 loss) | |
I0327 13:38:05.403869 21344 solver.cpp:245] Train net output #28: loss1/loss07 = 1.55942 (* 0.0272727 = 0.0425296 loss) | |
I0327 13:38:05.403883 21344 solver.cpp:245] Train net output #29: loss1/loss08 = 0.891726 (* 0.0272727 = 0.0243198 loss) | |
I0327 13:38:05.403898 21344 solver.cpp:245] Train net output #30: loss1/loss09 = 0.0280083 (* 0.0272727 = 0.000763863 loss) | |
I0327 13:38:05.403913 21344 solver.cpp:245] Train net output #31: loss1/loss10 = 0.0075163 (* 0.0272727 = 0.00020499 loss) | |
I0327 13:38:05.403928 21344 solver.cpp:245] Train net output #32: loss1/loss11 = 0.000298411 (* 0.0272727 = 8.13848e-06 loss) | |
I0327 13:38:05.403942 21344 solver.cpp:245] Train net output #33: loss1/loss12 = 0.000234952 (* 0.0272727 = 6.40778e-06 loss) | |
I0327 13:38:05.403956 21344 solver.cpp:245] Train net output #34: loss1/loss13 = 0.00035221 (* 0.0272727 = 9.60573e-06 loss) | |
I0327 13:38:05.403971 21344 solver.cpp:245] Train net output #35: loss1/loss14 = 0.000373395 (* 0.0272727 = 1.01835e-05 loss) | |
I0327 13:38:05.403986 21344 solver.cpp:245] Train net output #36: loss1/loss15 = 0.00051902 (* 0.0272727 = 1.41551e-05 loss) | |
I0327 13:38:05.404005 21344 solver.cpp:245] Train net output #37: loss1/loss16 = 0.000442875 (* 0.0272727 = 1.20784e-05 loss) | |
I0327 13:38:05.404019 21344 solver.cpp:245] Train net output #38: loss1/loss17 = 0.000191633 (* 0.0272727 = 5.22637e-06 loss) | |
I0327 13:38:05.404050 21344 solver.cpp:245] Train net output #39: loss1/loss18 = 0.000213148 (* 0.0272727 = 5.81313e-06 loss) | |
I0327 13:38:05.404067 21344 solver.cpp:245] Train net output #40: loss1/loss19 = 0.000226425 (* 0.0272727 = 6.17523e-06 loss) | |
I0327 13:38:05.404080 21344 solver.cpp:245] Train net output #41: loss1/loss20 = 0.000408371 (* 0.0272727 = 1.11374e-05 loss) | |
I0327 13:38:05.404094 21344 solver.cpp:245] Train net output #42: loss1/loss21 = 0.000249477 (* 0.0272727 = 6.80392e-06 loss) | |
I0327 13:38:05.404109 21344 solver.cpp:245] Train net output #43: loss1/loss22 = 0.000429737 (* 0.0272727 = 1.17201e-05 loss) | |
I0327 13:38:05.404121 21344 solver.cpp:245] Train net output #44: loss2/accuracy01 = 0 | |
I0327 13:38:05.404134 21344 solver.cpp:245] Train net output #45: loss2/accuracy02 = 0 | |
I0327 13:38:05.404145 21344 solver.cpp:245] Train net output #46: loss2/accuracy03 = 0 | |
I0327 13:38:05.404157 21344 solver.cpp:245] Train net output #47: loss2/accuracy04 = 0 | |
I0327 13:38:05.404168 21344 solver.cpp:245] Train net output #48: loss2/accuracy05 = 0.5 | |
I0327 13:38:05.404181 21344 solver.cpp:245] Train net output #49: loss2/accuracy06 = 0.375 | |
I0327 13:38:05.404193 21344 solver.cpp:245] Train net output #50: loss2/accuracy07 = 0.625 | |
I0327 13:38:05.404206 21344 solver.cpp:245] Train net output #51: loss2/accuracy08 = 0.875 | |
I0327 13:38:05.404217 21344 solver.cpp:245] Train net output #52: loss2/accuracy09 = 1 | |
I0327 13:38:05.404228 21344 solver.cpp:245] Train net output #53: loss2/accuracy10 = 1 | |
I0327 13:38:05.404240 21344 solver.cpp:245] Train net output #54: loss2/accuracy11 = 1 | |
I0327 13:38:05.404253 21344 solver.cpp:245] Train net output #55: loss2/accuracy12 = 1 | |
I0327 13:38:05.404264 21344 solver.cpp:245] Train net output #56: loss2/accuracy13 = 1 | |
I0327 13:38:05.404275 21344 solver.cpp:245] Train net output #57: loss2/accuracy14 = 1 | |
I0327 13:38:05.404287 21344 solver.cpp:245] Train net output #58: loss2/accuracy15 = 1 | |
I0327 13:38:05.404299 21344 solver.cpp:245] Train net output #59: loss2/accuracy16 = 1 | |
I0327 13:38:05.404310 21344 solver.cpp:245] Train net output #60: loss2/accuracy17 = 1 | |
I0327 13:38:05.404321 21344 solver.cpp:245] Train net output #61: loss2/accuracy18 = 1 | |
I0327 13:38:05.404333 21344 solver.cpp:245] Train net output #62: loss2/accuracy19 = 1 | |
I0327 13:38:05.404345 21344 solver.cpp:245] Train net output #63: loss2/accuracy20 = 1 | |
I0327 13:38:05.404356 21344 solver.cpp:245] Train net output #64: loss2/accuracy21 = 1 | |
I0327 13:38:05.404368 21344 solver.cpp:245] Train net output #65: loss2/accuracy22 = 1 | |
I0327 13:38:05.404382 21344 solver.cpp:245] Train net output #66: loss2/loss01 = 3.68017 (* 0.0272727 = 0.100368 loss) | |
I0327 13:38:05.404397 21344 solver.cpp:245] Train net output #67: loss2/loss02 = 2.88689 (* 0.0272727 = 0.0787333 loss) | |
I0327 13:38:05.404410 21344 solver.cpp:245] Train net output #68: loss2/loss03 = 3.03293 (* 0.0272727 = 0.0827162 loss) | |
I0327 13:38:05.404424 21344 solver.cpp:245] Train net output #69: loss2/loss04 = 3.55949 (* 0.0272727 = 0.097077 loss) | |
I0327 13:38:05.404438 21344 solver.cpp:245] Train net output #70: loss2/loss05 = 2.2783 (* 0.0272727 = 0.0621354 loss) | |
I0327 13:38:05.404451 21344 solver.cpp:245] Train net output #71: loss2/loss06 = 2.11678 (* 0.0272727 = 0.0577305 loss) | |
I0327 13:38:05.404466 21344 solver.cpp:245] Train net output #72: loss2/loss07 = 1.24048 (* 0.0272727 = 0.0338313 loss) | |
I0327 13:38:05.404480 21344 solver.cpp:245] Train net output #73: loss2/loss08 = 0.745608 (* 0.0272727 = 0.0203348 loss) | |
I0327 13:38:05.404495 21344 solver.cpp:245] Train net output #74: loss2/loss09 = 0.0541043 (* 0.0272727 = 0.00147557 loss) | |
I0327 13:38:05.404508 21344 solver.cpp:245] Train net output #75: loss2/loss10 = 0.0136536 (* 0.0272727 = 0.000372372 loss) | |
I0327 13:38:05.404526 21344 solver.cpp:245] Train net output #76: loss2/loss11 = 0.000959546 (* 0.0272727 = 2.61694e-05 loss) | |
I0327 13:38:05.404551 21344 solver.cpp:245] Train net output #77: loss2/loss12 = 0.00058299 (* 0.0272727 = 1.58997e-05 loss) | |
I0327 13:38:05.404567 21344 solver.cpp:245] Train net output #78: loss2/loss13 = 0.000531162 (* 0.0272727 = 1.44862e-05 loss) | |
I0327 13:38:05.404582 21344 solver.cpp:245] Train net output #79: loss2/loss14 = 0.000643033 (* 0.0272727 = 1.75373e-05 loss) | |
I0327 13:38:05.404595 21344 solver.cpp:245] Train net output #80: loss2/loss15 = 0.000838522 (* 0.0272727 = 2.28688e-05 loss) | |
I0327 13:38:05.404610 21344 solver.cpp:245] Train net output #81: loss2/loss16 = 0.000688392 (* 0.0272727 = 1.87743e-05 loss) | |
I0327 13:38:05.404624 21344 solver.cpp:245] Train net output #82: loss2/loss17 = 0.000380382 (* 0.0272727 = 1.0374e-05 loss) | |
I0327 13:38:05.404639 21344 solver.cpp:245] Train net output #83: loss2/loss18 = 0.000443804 (* 0.0272727 = 1.21037e-05 loss) | |
I0327 13:38:05.404652 21344 solver.cpp:245] Train net output #84: loss2/loss19 = 0.000674941 (* 0.0272727 = 1.84075e-05 loss) | |
I0327 13:38:05.404666 21344 solver.cpp:245] Train net output #85: loss2/loss20 = 0.000795223 (* 0.0272727 = 2.16879e-05 loss) | |
I0327 13:38:05.404681 21344 solver.cpp:245] Train net output #86: loss2/loss21 = 0.00068025 (* 0.0272727 = 1.85523e-05 loss) | |
I0327 13:38:05.404695 21344 solver.cpp:245] Train net output #87: loss2/loss22 = 0.000520615 (* 0.0272727 = 1.41986e-05 loss) | |
I0327 13:38:05.404707 21344 solver.cpp:245] Train net output #88: loss3/accuracy01 = 0.125 | |
I0327 13:38:05.404719 21344 solver.cpp:245] Train net output #89: loss3/accuracy02 = 0 | |
I0327 13:38:05.404731 21344 solver.cpp:245] Train net output #90: loss3/accuracy03 = 0.125 | |
I0327 13:38:05.404743 21344 solver.cpp:245] Train net output #91: loss3/accuracy04 = 0 | |
I0327 13:38:05.404754 21344 solver.cpp:245] Train net output #92: loss3/accuracy05 = 0.5 | |
I0327 13:38:05.404767 21344 solver.cpp:245] Train net output #93: loss3/accuracy06 = 0.375 | |
I0327 13:38:05.404778 21344 solver.cpp:245] Train net output #94: loss3/accuracy07 = 0.625 | |
I0327 13:38:05.404789 21344 solver.cpp:245] Train net output #95: loss3/accuracy08 = 0.875 | |
I0327 13:38:05.404800 21344 solver.cpp:245] Train net output #96: loss3/accuracy09 = 1 | |
I0327 13:38:05.404813 21344 solver.cpp:245] Train net output #97: loss3/accuracy10 = 1 | |
I0327 13:38:05.404824 21344 solver.cpp:245] Train net output #98: loss3/accuracy11 = 1 | |
I0327 13:38:05.404834 21344 solver.cpp:245] Train net output #99: loss3/accuracy12 = 1 | |
I0327 13:38:05.404846 21344 solver.cpp:245] Train net output #100: loss3/accuracy13 = 1 | |
I0327 13:38:05.404857 21344 solver.cpp:245] Train net output #101: loss3/accuracy14 = 1 | |
I0327 13:38:05.404868 21344 solver.cpp:245] Train net output #102: loss3/accuracy15 = 1 | |
I0327 13:38:05.404881 21344 solver.cpp:245] Train net output #103: loss3/accuracy16 = 1 | |
I0327 13:38:05.404891 21344 solver.cpp:245] Train net output #104: loss3/accuracy17 = 1 | |
I0327 13:38:05.404903 21344 solver.cpp:245] Train net output #105: loss3/accuracy18 = 1 | |
I0327 13:38:05.404914 21344 solver.cpp:245] Train net output #106: loss3/accuracy19 = 1 | |
I0327 13:38:05.404925 21344 solver.cpp:245] Train net output #107: loss3/accuracy20 = 1 | |
I0327 13:38:05.404937 21344 solver.cpp:245] Train net output #108: loss3/accuracy21 = 1 | |
I0327 13:38:05.404948 21344 solver.cpp:245] Train net output #109: loss3/accuracy22 = 1 | |
I0327 13:38:05.404963 21344 solver.cpp:245] Train net output #110: loss3/loss01 = 2.95326 (* 0.0909091 = 0.268478 loss) | |
I0327 13:38:05.404976 21344 solver.cpp:245] Train net output #111: loss3/loss02 = 2.91414 (* 0.0909091 = 0.264922 loss) | |
I0327 13:38:05.404990 21344 solver.cpp:245] Train net output #112: loss3/loss03 = 3.07709 (* 0.0909091 = 0.279735 loss) | |
I0327 13:38:05.405004 21344 solver.cpp:245] Train net output #113: loss3/loss04 = 3.61057 (* 0.0909091 = 0.328234 loss) | |
I0327 13:38:05.405019 21344 solver.cpp:245] Train net output #114: loss3/loss05 = 2.15239 (* 0.0909091 = 0.195672 loss) | |
I0327 13:38:05.405037 21344 solver.cpp:245] Train net output #115: loss3/loss06 = 2.06928 (* 0.0909091 = 0.188117 loss) | |
I0327 13:38:05.405055 21344 solver.cpp:245] Train net output #116: loss3/loss07 = 1.22502 (* 0.0909091 = 0.111365 loss) | |
I0327 13:38:05.405069 21344 solver.cpp:245] Train net output #117: loss3/loss08 = 0.654805 (* 0.0909091 = 0.0595277 loss) | |
I0327 13:38:05.405083 21344 solver.cpp:245] Train net output #118: loss3/loss09 = 0.0913219 (* 0.0909091 = 0.00830199 loss) | |
I0327 13:38:05.405097 21344 solver.cpp:245] Train net output #119: loss3/loss10 = 0.0257534 (* 0.0909091 = 0.00234122 loss) | |
I0327 13:38:05.405112 21344 solver.cpp:245] Train net output #120: loss3/loss11 = 0.000537183 (* 0.0909091 = 4.88348e-05 loss) | |
I0327 13:38:05.405125 21344 solver.cpp:245] Train net output #121: loss3/loss12 = 0.000592985 (* 0.0909091 = 5.39078e-05 loss) | |
I0327 13:38:05.405139 21344 solver.cpp:245] Train net output #122: loss3/loss13 = 0.000543524 (* 0.0909091 = 4.94112e-05 loss) | |
I0327 13:38:05.405153 21344 solver.cpp:245] Train net output #123: loss3/loss14 = 0.000498671 (* 0.0909091 = 4.53338e-05 loss) | |
I0327 13:38:05.405167 21344 solver.cpp:245] Train net output #124: loss3/loss15 = 0.000533478 (* 0.0909091 = 4.8498e-05 loss) | |
I0327 13:38:05.405181 21344 solver.cpp:245] Train net output #125: loss3/loss16 = 0.000483904 (* 0.0909091 = 4.39913e-05 loss) | |
I0327 13:38:05.405195 21344 solver.cpp:245] Train net output #126: loss3/loss17 = 0.000726191 (* 0.0909091 = 6.60173e-05 loss) | |
I0327 13:38:05.405210 21344 solver.cpp:245] Train net output #127: loss3/loss18 = 0.000510721 (* 0.0909091 = 4.64292e-05 loss) | |
I0327 13:38:05.405223 21344 solver.cpp:245] Train net output #128: loss3/loss19 = 0.000524034 (* 0.0909091 = 4.76395e-05 loss) | |
I0327 13:38:05.405237 21344 solver.cpp:245] Train net output #129: loss3/loss20 = 0.00052241 (* 0.0909091 = 4.74918e-05 loss) | |
I0327 13:38:05.405252 21344 solver.cpp:245] Train net output #130: loss3/loss21 = 0.000459526 (* 0.0909091 = 4.17751e-05 loss) | |
I0327 13:38:05.405267 21344 solver.cpp:245] Train net output #131: loss3/loss22 = 0.000581329 (* 0.0909091 = 5.28481e-05 loss) | |
I0327 13:38:05.405278 21344 solver.cpp:245] Train net output #132: total_accuracy = 0 | |
I0327 13:38:05.405289 21344 solver.cpp:245] Train net output #133: total_confidence = 0.000248387 | |
I0327 13:38:05.405303 21344 sgd_solver.cpp:106] Iteration 14000, lr = 0.01 | |
I0327 13:39:53.324316 21344 solver.cpp:229] Iteration 14500, loss = 2.76681 | |
I0327 13:39:53.324458 21344 solver.cpp:245] Train net output #0: loss1/accuracy01 = 0.625 | |
I0327 13:39:53.324481 21344 solver.cpp:245] Train net output #1: loss1/accuracy02 = 0 | |
I0327 13:39:53.324493 21344 solver.cpp:245] Train net output #2: loss1/accuracy03 = 0 | |
I0327 13:39:53.324506 21344 solver.cpp:245] Train net output #3: loss1/accuracy04 = 0.25 | |
I0327 13:39:53.324517 21344 solver.cpp:245] Train net output #4: loss1/accuracy05 = 0.25 | |
I0327 13:39:53.324529 21344 solver.cpp:245] Train net output #5: loss1/accuracy06 = 0.25 | |
I0327 13:39:53.324542 21344 solver.cpp:245] Train net output #6: loss1/accuracy07 = 0.625 | |
I0327 13:39:53.324553 21344 solver.cpp:245] Train net output #7: loss1/accuracy08 = 0.875 | |
I0327 13:39:53.324565 21344 solver.cpp:245] Train net output #8: loss1/accuracy09 = 0.875 | |
I0327 13:39:53.324578 21344 solver.cpp:245] Train net output #9: loss1/accuracy10 = 0.875 | |
I0327 13:39:53.324589 21344 solver.cpp:245] Train net output #10: loss1/accuracy11 = 1 | |
I0327 13:39:53.324601 21344 solver.cpp:245] Train net output #11: loss1/accuracy12 = 1 | |
I0327 13:39:53.324612 21344 solver.cpp:245] Train net output #12: loss1/accuracy13 = 1 | |
I0327 13:39:53.324625 21344 solver.cpp:245] Train net output #13: loss1/accuracy14 = 1 | |
I0327 13:39:53.324635 21344 solver.cpp:245] Train net output #14: loss1/accuracy15 = 1 | |
I0327 13:39:53.324647 21344 solver.cpp:245] Train net output #15: loss1/accuracy16 = 1 | |
I0327 13:39:53.324659 21344 solver.cpp:245] Train net output #16: loss1/accuracy17 = 1 | |
I0327 13:39:53.324671 21344 solver.cpp:245] Train net output #17: loss1/accuracy18 = 1 | |
I0327 13:39:53.324682 21344 solver.cpp:245] Train net output #18: loss1/accuracy19 = 1 | |
I0327 13:39:53.324694 21344 solver.cpp:245] Train net output #19: loss1/accuracy20 = 1 | |
I0327 13:39:53.324705 21344 solver.cpp:245] Train net output #20: loss1/accuracy21 = 1 | |
I0327 13:39:53.324717 21344 solver.cpp:245] Train net output #21: loss1/accuracy22 = 1 | |
I0327 13:39:53.324733 21344 solver.cpp:245] Train net output #22: loss1/loss01 = 1.98267 (* 0.0272727 = 0.0540727 loss) | |
I0327 13:39:53.324748 21344 solver.cpp:245] Train net output #23: loss1/loss02 = 3.18887 (* 0.0272727 = 0.0869692 loss) | |
I0327 13:39:53.324762 21344 solver.cpp:245] Train net output #24: loss1/loss03 = 3.65277 (* 0.0272727 = 0.0996209 loss) | |
I0327 13:39:53.324776 21344 solver.cpp:245] Train net output #25: loss1/loss04 = 3.1325 (* 0.0272727 = 0.0854317 loss) | |
I0327 13:39:53.324790 21344 solver.cpp:245] Train net output #26: loss1/loss05 = 3.29635 (* 0.0272727 = 0.0899004 loss) | |
I0327 13:39:53.324805 21344 solver.cpp:245] Train net output #27: loss1/loss06 = 3.00352 (* 0.0272727 = 0.0819143 loss) | |
I0327 13:39:53.324817 21344 solver.cpp:245] Train net output #28: loss1/loss07 = 1.52122 (* 0.0272727 = 0.0414877 loss) | |
I0327 13:39:53.324831 21344 solver.cpp:245] Train net output #29: loss1/loss08 = 0.483624 (* 0.0272727 = 0.0131897 loss) | |
I0327 13:39:53.324846 21344 solver.cpp:245] Train net output #30: loss1/loss09 = 0.440637 (* 0.0272727 = 0.0120174 loss) | |
I0327 13:39:53.324861 21344 solver.cpp:245] Train net output #31: loss1/loss10 = 0.533713 (* 0.0272727 = 0.0145558 loss) | |
I0327 13:39:53.324874 21344 solver.cpp:245] Train net output #32: loss1/loss11 = 0.00101095 (* 0.0272727 = 2.75713e-05 loss) | |
I0327 13:39:53.324889 21344 solver.cpp:245] Train net output #33: loss1/loss12 = 0.00187141 (* 0.0272727 = 5.10386e-05 loss) | |
I0327 13:39:53.324903 21344 solver.cpp:245] Train net output #34: loss1/loss13 = 0.0068516 (* 0.0272727 = 0.000186862 loss) | |
I0327 13:39:53.324918 21344 solver.cpp:245] Train net output #35: loss1/loss14 = 0.00260003 (* 0.0272727 = 7.091e-05 loss) | |
I0327 13:39:53.324933 21344 solver.cpp:245] Train net output #36: loss1/loss15 = 0.00210263 (* 0.0272727 = 5.73446e-05 loss) | |
I0327 13:39:53.324946 21344 solver.cpp:245] Train net output #37: loss1/loss16 = 0.00307438 (* 0.0272727 = 8.38468e-05 loss) | |
I0327 13:39:53.324961 21344 solver.cpp:245] Train net output #38: loss1/loss17 = 0.00299423 (* 0.0272727 = 8.16607e-05 loss) | |
I0327 13:39:53.324988 21344 solver.cpp:245] Train net output #39: loss1/loss18 = 0.00116149 (* 0.0272727 = 3.16769e-05 loss) | |
I0327 13:39:53.325007 21344 solver.cpp:245] Train net output #40: loss1/loss19 = 0.00215325 (* 0.0272727 = 5.87251e-05 loss) | |
I0327 13:39:53.325021 21344 solver.cpp:245] Train net output #41: loss1/loss20 = 0.00150531 (* 0.0272727 = 4.10538e-05 loss) | |
I0327 13:39:53.325036 21344 solver.cpp:245] Train net output #42: loss1/loss21 = 0.00230907 (* 0.0272727 = 6.29748e-05 loss) | |
I0327 13:39:53.325049 21344 solver.cpp:245] Train net output #43: loss1/loss22 = 0.00351501 (* 0.0272727 = 9.58638e-05 loss) | |
I0327 13:39:53.325062 21344 solver.cpp:245] Train net output #44: loss2/accuracy01 = 0.625 | |
I0327 13:39:53.325074 21344 solver.cpp:245] Train net output #45: loss2/accuracy02 = 0 | |
I0327 13:39:53.325085 21344 solver.cpp:245] Train net output #46: loss2/accuracy03 = 0.125 | |
I0327 13:39:53.325098 21344 solver.cpp:245] Train net output #47: loss2/accuracy04 = 0 | |
I0327 13:39:53.325109 21344 solver.cpp:245] Train net output #48: loss2/accuracy05 = 0.375 | |
I0327 13:39:53.325121 21344 solver.cpp:245] Train net output #49: loss2/accuracy06 = 0.25 | |
I0327 13:39:53.325132 21344 solver.cpp:245] Train net output #50: loss2/accuracy07 = 0.625 | |
I0327 13:39:53.325145 21344 solver.cpp:245] Train net output #51: loss2/accuracy08 = 0.875 | |
I0327 13:39:53.325156 21344 solver.cpp:245] Train net output #52: loss2/accuracy09 = 0.875 | |
I0327 13:39:53.325168 21344 solver.cpp:245] Train net output #53: loss2/accuracy10 = 0.875 | |
I0327 13:39:53.325179 21344 solver.cpp:245] Train net output #54: loss2/accuracy11 = 1 | |
I0327 13:39:53.325191 21344 solver.cpp:245] Train net output #55: loss2/accuracy12 = 1 | |
I0327 13:39:53.325202 21344 solver.cpp:245] Train net output #56: loss2/accuracy13 = 1 | |
I0327 13:39:53.325213 21344 solver.cpp:245] Train net output #57: loss2/accuracy14 = 1 | |
I0327 13:39:53.325224 21344 solver.cpp:245] Train net output #58: loss2/accuracy15 = 1 | |
I0327 13:39:53.325237 21344 solver.cpp:245] Train net output #59: loss2/accuracy16 = 1 | |
I0327 13:39:53.325248 21344 solver.cpp:245] Train net output #60: loss2/accuracy17 = 1 | |
I0327 13:39:53.325258 21344 solver.cpp:245] Train net output #61: loss2/accuracy18 = 1 | |
I0327 13:39:53.325269 21344 solver.cpp:245] Train net output #62: loss2/accuracy19 = 1 | |
I0327 13:39:53.325280 21344 solver.cpp:245] Train net output #63: loss2/accuracy20 = 1 | |
I0327 13:39:53.325291 21344 solver.cpp:245] Train net output #64: loss2/accuracy21 = 1 | |
I0327 13:39:53.325304 21344 solver.cpp:245] Train net output #65: loss2/accuracy22 = 1 | |
I0327 13:39:53.325314 21344 solver.cpp:245] Train net output #66: loss2/loss01 = 1.90215 (* 0.0272727 = 0.0518768 loss) | |
I0327 13:39:53.325323 21344 solver.cpp:245] Train net output #67: loss2/loss02 = 3.35679 (* 0.0272727 = 0.0915489 loss) | |
I0327 13:39:53.325337 21344 solver.cpp:245] Train net output #68: loss2/loss03 = 3.12805 (* 0.0272727 = 0.0853103 loss) | |
I0327 13:39:53.325351 21344 solver.cpp:245] Train net output #69: loss2/loss04 = 3.31498 (* 0.0272727 = 0.0904085 loss) | |
I0327 13:39:53.325366 21344 solver.cpp:245] Train net output #70: loss2/loss05 = 2.605 (* 0.0272727 = 0.0710454 loss) | |
I0327 13:39:53.325379 21344 solver.cpp:245] Train net output #71: loss2/loss06 = 3.24461 (* 0.0272727 = 0.0884894 loss) | |
I0327 13:39:53.325393 21344 solver.cpp:245] Train net output #72: loss2/loss07 = 1.78626 (* 0.0272727 = 0.0487161 loss) | |
I0327 13:39:53.325407 21344 solver.cpp:245] Train net output #73: loss2/loss08 = 0.639773 (* 0.0272727 = 0.0174483 loss) | |
I0327 13:39:53.325420 21344 solver.cpp:245] Train net output #74: loss2/loss09 = 0.53135 (* 0.0272727 = 0.0144914 loss) | |
I0327 13:39:53.325434 21344 solver.cpp:245] Train net output #75: loss2/loss10 = 0.694693 (* 0.0272727 = 0.0189462 loss) | |
I0327 13:39:53.325449 21344 solver.cpp:245] Train net output #76: loss2/loss11 = 0.00042289 (* 0.0272727 = 1.15334e-05 loss) | |
I0327 13:39:53.325477 21344 solver.cpp:245] Train net output #77: loss2/loss12 = 0.000627649 (* 0.0272727 = 1.71177e-05 loss) | |
I0327 13:39:53.325494 21344 solver.cpp:245] Train net output #78: loss2/loss13 = 0.000938941 (* 0.0272727 = 2.56075e-05 loss) | |
I0327 13:39:53.325508 21344 solver.cpp:245] Train net output #79: loss2/loss14 = 0.00038741 (* 0.0272727 = 1.05657e-05 loss) | |
I0327 13:39:53.325523 21344 solver.cpp:245] Train net output #80: loss2/loss15 = 0.00030928 (* 0.0272727 = 8.43491e-06 loss) | |
I0327 13:39:53.325548 21344 solver.cpp:245] Train net output #81: loss2/loss16 = 0.000230488 (* 0.0272727 = 6.28602e-06 loss) | |
I0327 13:39:53.325567 21344 solver.cpp:245] Train net output #82: loss2/loss17 = 0.000557629 (* 0.0272727 = 1.52081e-05 loss) | |
I0327 13:39:53.325580 21344 solver.cpp:245] Train net output #83: loss2/loss18 = 0.000638887 (* 0.0272727 = 1.74242e-05 loss) | |
I0327 13:39:53.325594 21344 solver.cpp:245] Train net output #84: loss2/loss19 = 0.000699768 (* 0.0272727 = 1.90846e-05 loss) | |
I0327 13:39:53.325608 21344 solver.cpp:245] Train net output #85: loss2/loss20 = 0.000566933 (* 0.0272727 = 1.54618e-05 loss) | |
I0327 13:39:53.325623 21344 solver.cpp:245] Train net output #86: loss2/loss21 = 0.000384155 (* 0.0272727 = 1.0477e-05 loss) | |
I0327 13:39:53.325636 21344 solver.cpp:245] Train net output #87: loss2/loss22 = 0.000547302 (* 0.0272727 = 1.49264e-05 loss) | |
I0327 13:39:53.325649 21344 solver.cpp:245] Train net output #88: loss3/accuracy01 = 0.75 | |
I0327 13:39:53.325660 21344 solver.cpp:245] Train net output #89: loss3/accuracy02 = 0 | |
I0327 13:39:53.325671 21344 solver.cpp:245] Train net output #90: loss3/accuracy03 = 0 | |
I0327 13:39:53.325682 21344 solver.cpp:245] Train net output #91: loss3/accuracy04 = 0 | |
I0327 13:39:53.325695 21344 solver.cpp:245] Train net output #92: loss3/accuracy05 = 0.375 | |
I0327 13:39:53.325706 21344 solver.cpp:245] Train net output #93: loss3/accuracy06 = 0.25 | |
I0327 13:39:53.325717 21344 solver.cpp:245] Train net output #94: loss3/accuracy07 = 0.625 | |
I0327 13:39:53.325728 21344 solver.cpp:245] Train net output #95: loss3/accuracy08 = 0.875 | |
I0327 13:39:53.325741 21344 solver.cpp:245] Train net output #96: loss3/accuracy09 = 0.875 | |
I0327 13:39:53.325752 21344 solver.cpp:245] Train net output #97: loss3/accuracy10 = 0.875 | |
I0327 13:39:53.325762 21344 solver.cpp:245] Train net output #98: loss3/accuracy11 = 1 | |
I0327 13:39:53.325773 21344 solver.cpp:245] Train net output #99: loss3/accuracy12 = 1 | |
I0327 13:39:53.325785 21344 solver.cpp:245] Train net output #100: loss3/accuracy13 = 1 | |
I0327 13:39:53.325796 21344 solver.cpp:245] Train net output #101: loss3/accuracy14 = 1 | |
I0327 13:39:53.325808 21344 solver.cpp:245] Train net output #102: loss3/accuracy15 = 1 | |
I0327 13:39:53.325819 21344 solver.cpp:245] Train net output #103: loss3/accuracy16 = 1 | |
I0327 13:39:53.325829 21344 solver.cpp:245] Train net output #104: loss3/accuracy17 = 1 | |
I0327 13:39:53.325841 21344 solver.cpp:245] Train net output #105: loss3/accuracy18 = 1 | |
I0327 13:39:53.325852 21344 solver.cpp:245] Train net output #106: loss3/accuracy19 = 1 | |
I0327 13:39:53.325863 21344 solver.cpp:245] Train net output #107: loss3/accuracy20 = 1 | |
I0327 13:39:53.325875 21344 solver.cpp:245] Train net output #108: loss3/accuracy21 = 1 | |
I0327 13:39:53.325886 21344 solver.cpp:245] Train net output #109: loss3/accuracy22 = 1 | |
I0327 13:39:53.325899 21344 solver.cpp:245] Train net output #110: loss3/loss01 = 1.34414 (* 0.0909091 = 0.122195 loss) | |
I0327 13:39:53.325913 21344 solver.cpp:245] Train net output #111: loss3/loss02 = 3.07022 (* 0.0909091 = 0.279111 loss) | |
I0327 13:39:53.325927 21344 solver.cpp:245] Train net output #112: loss3/loss03 = 3.62101 (* 0.0909091 = 0.329183 loss) | |
I0327 13:39:53.325940 21344 solver.cpp:245] Train net output #113: loss3/loss04 = 3.11453 (* 0.0909091 = 0.283139 loss) | |
I0327 13:39:53.325954 21344 solver.cpp:245] Train net output #114: loss3/loss05 = 2.66296 (* 0.0909091 = 0.242087 loss) | |
I0327 13:39:53.325980 21344 solver.cpp:245] Train net output #115: loss3/loss06 = 2.89379 (* 0.0909091 = 0.263072 loss) | |
I0327 13:39:53.325995 21344 solver.cpp:245] Train net output #116: loss3/loss07 = 1.53323 (* 0.0909091 = 0.139384 loss) | |
I0327 13:39:53.326009 21344 solver.cpp:245] Train net output #117: loss3/loss08 = 0.440756 (* 0.0909091 = 0.0400687 loss) | |
I0327 13:39:53.326023 21344 solver.cpp:245] Train net output #118: loss3/loss09 = 0.412996 (* 0.0909091 = 0.0375451 loss) | |
I0327 13:39:53.326037 21344 solver.cpp:245] Train net output #119: loss3/loss10 = 0.463326 (* 0.0909091 = 0.0421206 loss) | |
I0327 13:39:53.326056 21344 solver.cpp:245] Train net output #120: loss3/loss11 = 0.000270174 (* 0.0909091 = 2.45613e-05 loss) | |
I0327 13:39:53.326069 21344 solver.cpp:245] Train net output #121: loss3/loss12 = 0.00028088 (* 0.0909091 = 2.55345e-05 loss) | |
I0327 13:39:53.326084 21344 solver.cpp:245] Train net output #122: loss3/loss13 = 0.000510604 (* 0.0909091 = 4.64185e-05 loss) | |
I0327 13:39:53.326098 21344 solver.cpp:245] Train net output #123: loss3/loss14 = 0.000401712 (* 0.0909091 = 3.65193e-05 loss) | |
I0327 13:39:53.326112 21344 solver.cpp:245] Train net output #124: loss3/loss15 = 0.000426885 (* 0.0909091 = 3.88078e-05 loss) | |
I0327 13:39:53.326128 21344 solver.cpp:245] Train net output #125: loss3/loss16 = 0.000285838 (* 0.0909091 = 2.59853e-05 loss) | |
I0327 13:39:53.326141 21344 solver.cpp:245] Train net output #126: loss3/loss17 = 0.000248804 (* 0.0909091 = 2.26186e-05 loss) | |
I0327 13:39:53.326155 21344 solver.cpp:245] Train net output #127: loss3/loss18 = 0.00046607 (* 0.0909091 = 4.237e-05 loss) | |
I0327 13:39:53.326169 21344 solver.cpp:245] Train net output #128: loss3/loss19 = 0.000443181 (* 0.0909091 = 4.02892e-05 loss) | |
I0327 13:39:53.326184 21344 solver.cpp:245] Train net output #129: loss3/loss20 = 0.000422785 (* 0.0909091 = 3.8435e-05 loss) | |
I0327 13:39:53.326198 21344 solver.cpp:245] Train net output #130: loss3/loss21 = 0.000345611 (* 0.0909091 = 3.14192e-05 loss) | |
I0327 13:39:53.326211 21344 solver.cpp:245] Train net output #131: loss3/loss22 = 0.000282211 (* 0.0909091 = 2.56556e-05 loss) | |
I0327 13:39:53.326225 21344 solver.cpp:245] Train net output #132: total_accuracy = 0 | |
I0327 13:39:53.326236 21344 solver.cpp:245] Train net output #133: total_confidence = 0.00021582 | |
I0327 13:39:53.326248 21344 sgd_solver.cpp:106] Iteration 14500, lr = 0.01 | |
I0327 13:41:40.947301 21344 solver.cpp:338] Iteration 15000, Testing net (#0) | |
I0327 13:42:11.949666 21344 solver.cpp:393] Test loss: 2.19642 | |
I0327 13:42:11.949815 21344 solver.cpp:406] Test net output #0: loss1/accuracy01 = 0.504 | |
I0327 13:42:11.949846 21344 solver.cpp:406] Test net output #1: loss1/accuracy02 = 0.158 | |
I0327 13:42:11.949861 21344 solver.cpp:406] Test net output #2: loss1/accuracy03 = 0.164 | |
I0327 13:42:11.949872 21344 solver.cpp:406] Test net output #3: loss1/accuracy04 = 0.187 | |
I0327 13:42:11.949885 21344 solver.cpp:406] Test net output #4: loss1/accuracy05 = 0.251 | |
I0327 13:42:11.949898 21344 solver.cpp:406] Test net output #5: loss1/accuracy06 = 0.503 | |
I0327 13:42:11.949908 21344 solver.cpp:406] Test net output #6: loss1/accuracy07 = 0.895 | |
I0327 13:42:11.949921 21344 solver.cpp:406] Test net output #7: loss1/accuracy08 = 0.969 | |
I0327 13:42:11.949933 21344 solver.cpp:406] Test net output #8: loss1/accuracy09 = 0.995 | |
I0327 13:42:11.949944 21344 solver.cpp:406] Test net output #9: loss1/accuracy10 = 0.998 | |
I0327 13:42:11.949955 21344 solver.cpp:406] Test net output #10: loss1/accuracy11 = 1 | |
I0327 13:42:11.949967 21344 solver.cpp:406] Test net output #11: loss1/accuracy12 = 1 | |
I0327 13:42:11.949980 21344 solver.cpp:406] Test net output #12: loss1/accuracy13 = 1 | |
I0327 13:42:11.949993 21344 solver.cpp:406] Test net output #13: loss1/accuracy14 = 1 | |
I0327 13:42:11.950006 21344 solver.cpp:406] Test net output #14: loss1/accuracy15 = 1 | |
I0327 13:42:11.950017 21344 solver.cpp:406] Test net output #15: loss1/accuracy16 = 1 | |
I0327 13:42:11.950028 21344 solver.cpp:406] Test net output #16: loss1/accuracy17 = 1 | |
I0327 13:42:11.950040 21344 solver.cpp:406] Test net output #17: loss1/accuracy18 = 1 | |
I0327 13:42:11.950052 21344 solver.cpp:406] Test net output #18: loss1/accuracy19 = 1 | |
I0327 13:42:11.950062 21344 solver.cpp:406] Test net output #19: loss1/accuracy20 = 1 | |
I0327 13:42:11.950075 21344 solver.cpp:406] Test net output #20: loss1/accuracy21 = 1 | |
I0327 13:42:11.950086 21344 solver.cpp:406] Test net output #21: loss1/accuracy22 = 1 | |
I0327 13:42:11.950103 21344 solver.cpp:406] Test net output #22: loss1/loss01 = 1.87191 (* 0.0272727 = 0.0510522 loss) | |
I0327 13:42:11.950117 21344 solver.cpp:406] Test net output #23: loss1/loss02 = 2.63544 (* 0.0272727 = 0.0718757 loss) | |
I0327 13:42:11.950131 21344 solver.cpp:406] Test net output #24: loss1/loss03 = 2.73185 (* 0.0272727 = 0.074505 loss) | |
I0327 13:42:11.950145 21344 solver.cpp:406] Test net output #25: loss1/loss04 = 2.69624 (* 0.0272727 = 0.0735338 loss) | |
I0327 13:42:11.950158 21344 solver.cpp:406] Test net output #26: loss1/loss05 = 2.56566 (* 0.0272727 = 0.0699727 loss) | |
I0327 13:42:11.950171 21344 solver.cpp:406] Test net output #27: loss1/loss06 = 1.74966 (* 0.0272727 = 0.0477181 loss) | |
I0327 13:42:11.950186 21344 solver.cpp:406] Test net output #28: loss1/loss07 = 0.611665 (* 0.0272727 = 0.0166818 loss) | |
I0327 13:42:11.950199 21344 solver.cpp:406] Test net output #29: loss1/loss08 = 0.214454 (* 0.0272727 = 0.00584873 loss) | |
I0327 13:42:11.950213 21344 solver.cpp:406] Test net output #30: loss1/loss09 = 0.0414711 (* 0.0272727 = 0.00113103 loss) | |
I0327 13:42:11.950227 21344 solver.cpp:406] Test net output #31: loss1/loss10 = 0.0178535 (* 0.0272727 = 0.000486915 loss) | |
I0327 13:42:11.950242 21344 solver.cpp:406] Test net output #32: loss1/loss11 = 0.000150324 (* 0.0272727 = 4.09974e-06 loss) | |
I0327 13:42:11.950255 21344 solver.cpp:406] Test net output #33: loss1/loss12 = 0.000196083 (* 0.0272727 = 5.34773e-06 loss) | |
I0327 13:42:11.950269 21344 solver.cpp:406] Test net output #34: loss1/loss13 = 0.000129358 (* 0.0272727 = 3.52795e-06 loss) | |
I0327 13:42:11.950284 21344 solver.cpp:406] Test net output #35: loss1/loss14 = 0.000160415 (* 0.0272727 = 4.37495e-06 loss) | |
I0327 13:42:11.950297 21344 solver.cpp:406] Test net output #36: loss1/loss15 = 0.000146672 (* 0.0272727 = 4.00014e-06 loss) | |
I0327 13:42:11.950320 21344 solver.cpp:406] Test net output #37: loss1/loss16 = 0.000172033 (* 0.0272727 = 4.6918e-06 loss) | |
I0327 13:42:11.950347 21344 solver.cpp:406] Test net output #38: loss1/loss17 = 0.000137874 (* 0.0272727 = 3.76021e-06 loss) | |
I0327 13:42:11.950381 21344 solver.cpp:406] Test net output #39: loss1/loss18 = 0.000160305 (* 0.0272727 = 4.37195e-06 loss) | |
I0327 13:42:11.950395 21344 solver.cpp:406] Test net output #40: loss1/loss19 = 0.000124393 (* 0.0272727 = 3.39253e-06 loss) | |
I0327 13:42:11.950409 21344 solver.cpp:406] Test net output #41: loss1/loss20 = 0.000128285 (* 0.0272727 = 3.49868e-06 loss) | |
I0327 13:42:11.950423 21344 solver.cpp:406] Test net output #42: loss1/loss21 = 0.000139348 (* 0.0272727 = 3.8004e-06 loss) | |
I0327 13:42:11.950438 21344 solver.cpp:406] Test net output #43: loss1/loss22 = 0.000171503 (* 0.0272727 = 4.67736e-06 loss) | |
I0327 13:42:11.950449 21344 solver.cpp:406] Test net output #44: loss2/accuracy01 = 0.526 | |
I0327 13:42:11.950461 21344 solver.cpp:406] Test net output #45: loss2/accuracy02 = 0.162 | |
I0327 13:42:11.950474 21344 solver.cpp:406] Test net output #46: loss2/accuracy03 = 0.148 | |
I0327 13:42:11.950485 21344 solver.cpp:406] Test net output #47: loss2/accuracy04 = 0.192 | |
I0327 13:42:11.950496 21344 solver.cpp:406] Test net output #48: loss2/accuracy05 = 0.268 | |
I0327 13:42:11.950508 21344 solver.cpp:406] Test net output #49: loss2/accuracy06 = 0.516 | |
I0327 13:42:11.950520 21344 solver.cpp:406] Test net output #50: loss2/accuracy07 = 0.895 | |
I0327 13:42:11.950531 21344 solver.cpp:406] Test net output #51: loss2/accuracy08 = 0.969 | |
I0327 13:42:11.950543 21344 solver.cpp:406] Test net output #52: loss2/accuracy09 = 0.995 | |
I0327 13:42:11.950554 21344 solver.cpp:406] Test net output #53: loss2/accuracy10 = 0.998 | |
I0327 13:42:11.950570 21344 solver.cpp:406] Test net output #54: loss2/accuracy11 = 1 | |
I0327 13:42:11.950582 21344 solver.cpp:406] Test net output #55: loss2/accuracy12 = 1 | |
I0327 13:42:11.950593 21344 solver.cpp:406] Test net output #56: loss2/accuracy13 = 1 | |
I0327 13:42:11.950604 21344 solver.cpp:406] Test net output #57: loss2/accuracy14 = 1 | |
I0327 13:42:11.950615 21344 solver.cpp:406] Test net output #58: loss2/accuracy15 = 1 | |
I0327 13:42:11.950626 21344 solver.cpp:406] Test net output #59: loss2/accuracy16 = 1 | |
I0327 13:42:11.950639 21344 solver.cpp:406] Test net output #60: loss2/accuracy17 = 1 | |
I0327 13:42:11.950645 21344 solver.cpp:406] Test net output #61: loss2/accuracy18 = 1 | |
I0327 13:42:11.950652 21344 solver.cpp:406] Test net output #62: loss2/accuracy19 = 1 | |
I0327 13:42:11.950664 21344 solver.cpp:406] Test net output #63: loss2/accuracy20 = 1 | |
I0327 13:42:11.950676 21344 solver.cpp:406] Test net output #64: loss2/accuracy21 = 1 | |
I0327 13:42:11.950687 21344 solver.cpp:406] Test net output #65: loss2/accuracy22 = 1 | |
I0327 13:42:11.950701 21344 solver.cpp:406] Test net output #66: loss2/loss01 = 1.84603 (* 0.0272727 = 0.0503462 loss) | |
I0327 13:42:11.950716 21344 solver.cpp:406] Test net output #67: loss2/loss02 = 2.65535 (* 0.0272727 = 0.0724188 loss) | |
I0327 13:42:11.950728 21344 solver.cpp:406] Test net output #68: loss2/loss03 = 2.74451 (* 0.0272727 = 0.0748503 loss) | |
I0327 13:42:11.950742 21344 solver.cpp:406] Test net output #69: loss2/loss04 = 2.68009 (* 0.0272727 = 0.0730933 loss) | |
I0327 13:42:11.950755 21344 solver.cpp:406] Test net output #70: loss2/loss05 = 2.55573 (* 0.0272727 = 0.0697018 loss) | |
I0327 13:42:11.950768 21344 solver.cpp:406] Test net output #71: loss2/loss06 = 1.66501 (* 0.0272727 = 0.0454094 loss) | |
I0327 13:42:11.950783 21344 solver.cpp:406] Test net output #72: loss2/loss07 = 0.542146 (* 0.0272727 = 0.0147858 loss) | |
I0327 13:42:11.950796 21344 solver.cpp:406] Test net output #73: loss2/loss08 = 0.218141 (* 0.0272727 = 0.0059493 loss) | |
I0327 13:42:11.950810 21344 solver.cpp:406] Test net output #74: loss2/loss09 = 0.0456984 (* 0.0272727 = 0.00124632 loss) | |
I0327 13:42:11.950824 21344 solver.cpp:406] Test net output #75: loss2/loss10 = 0.023659 (* 0.0272727 = 0.000645247 loss) | |
I0327 13:42:11.950839 21344 solver.cpp:406] Test net output #76: loss2/loss11 = 0.000395519 (* 0.0272727 = 1.07869e-05 loss) | |
I0327 13:42:11.950852 21344 solver.cpp:406] Test net output #77: loss2/loss12 = 0.000360678 (* 0.0272727 = 9.83666e-06 loss) | |
I0327 13:42:11.950877 21344 solver.cpp:406] Test net output #78: loss2/loss13 = 0.000306976 (* 0.0272727 = 8.37208e-06 loss) | |
I0327 13:42:11.950892 21344 solver.cpp:406] Test net output #79: loss2/loss14 = 0.00029397 (* 0.0272727 = 8.01736e-06 loss) | |
I0327 13:42:11.950906 21344 solver.cpp:406] Test net output #80: loss2/loss15 = 0.00036707 (* 0.0272727 = 1.0011e-05 loss) | |
I0327 13:42:11.950922 21344 solver.cpp:406] Test net output #81: loss2/loss16 = 0.000352768 (* 0.0272727 = 9.62093e-06 loss) | |
I0327 13:42:11.950938 21344 solver.cpp:406] Test net output #82: loss2/loss17 = 0.000363443 (* 0.0272727 = 9.91207e-06 loss) | |
I0327 13:42:11.950953 21344 solver.cpp:406] Test net output #83: loss2/loss18 = 0.00030045 (* 0.0272727 = 8.19408e-06 loss) | |
I0327 13:42:11.950965 21344 solver.cpp:406] Test net output #84: loss2/loss19 = 0.000356124 (* 0.0272727 = 9.71248e-06 loss) | |
I0327 13:42:11.950979 21344 solver.cpp:406] Test net output #85: loss2/loss20 = 0.000322125 (* 0.0272727 = 8.78524e-06 loss) | |
I0327 13:42:11.950994 21344 solver.cpp:406] Test net output #86: loss2/loss21 = 0.00035904 (* 0.0272727 = 9.79201e-06 loss) | |
I0327 13:42:11.951006 21344 solver.cpp:406] Test net output #87: loss2/loss22 = 0.000373929 (* 0.0272727 = 1.01981e-05 loss) | |
I0327 13:42:11.951019 21344 solver.cpp:406] Test net output #88: loss3/accuracy01 = 0.471 | |
I0327 13:42:11.951030 21344 solver.cpp:406] Test net output #89: loss3/accuracy02 = 0.15 | |
I0327 13:42:11.951045 21344 solver.cpp:406] Test net output #90: loss3/accuracy03 = 0.153 | |
I0327 13:42:11.951057 21344 solver.cpp:406] Test net output #91: loss3/accuracy04 = 0.193 | |
I0327 13:42:11.951069 21344 solver.cpp:406] Test net output #92: loss3/accuracy05 = 0.289 | |
I0327 13:42:11.951081 21344 solver.cpp:406] Test net output #93: loss3/accuracy06 = 0.522 | |
I0327 13:42:11.951092 21344 solver.cpp:406] Test net output #94: loss3/accuracy07 = 0.894 | |
I0327 13:42:11.951102 21344 solver.cpp:406] Test net output #95: loss3/accuracy08 = 0.969 | |
I0327 13:42:11.951113 21344 solver.cpp:406] Test net output #96: loss3/accuracy09 = 0.995 | |
I0327 13:42:11.951124 21344 solver.cpp:406] Test net output #97: loss3/accuracy10 = 0.998 | |
I0327 13:42:11.951135 21344 solver.cpp:406] Test net output #98: loss3/accuracy11 = 1 | |
I0327 13:42:11.951146 21344 solver.cpp:406] Test net output #99: loss3/accuracy12 = 1 | |
I0327 13:42:11.951159 21344 solver.cpp:406] Test net output #100: loss3/accuracy13 = 1 | |
I0327 13:42:11.951169 21344 solver.cpp:406] Test net output #101: loss3/accuracy14 = 1 | |
I0327 13:42:11.951180 21344 solver.cpp:406] Test net output #102: loss3/accuracy15 = 1 | |
I0327 13:42:11.951191 21344 solver.cpp:406] Test net output #103: loss3/accuracy16 = 1 | |
I0327 13:42:11.951202 21344 solver.cpp:406] Test net output #104: loss3/accuracy17 = 1 | |
I0327 13:42:11.951213 21344 solver.cpp:406] Test net output #105: loss3/accuracy18 = 1 | |
I0327 13:42:11.951225 21344 solver.cpp:406] Test net output #106: loss3/accuracy19 = 1 | |
I0327 13:42:11.951236 21344 solver.cpp:406] Test net output #107: loss3/accuracy20 = 1 | |
I0327 13:42:11.951246 21344 solver.cpp:406] Test net output #108: loss3/accuracy21 = 1 | |
I0327 13:42:11.951257 21344 solver.cpp:406] Test net output #109: loss3/accuracy22 = 1 | |
I0327 13:42:11.951270 21344 solver.cpp:406] Test net output #110: loss3/loss01 = 1.88179 (* 0.0909091 = 0.171072 loss) | |
I0327 13:42:11.951284 21344 solver.cpp:406] Test net output #111: loss3/loss02 = 2.68507 (* 0.0909091 = 0.244098 loss) | |
I0327 13:42:11.951298 21344 solver.cpp:406] Test net output #112: loss3/loss03 = 2.7728 (* 0.0909091 = 0.252073 loss) | |
I0327 13:42:11.951311 21344 solver.cpp:406] Test net output #113: loss3/loss04 = 2.69694 (* 0.0909091 = 0.245176 loss) | |
I0327 13:42:11.951325 21344 solver.cpp:406] Test net output #114: loss3/loss05 = 2.51814 (* 0.0909091 = 0.228922 loss) | |
I0327 13:42:11.951339 21344 solver.cpp:406] Test net output #115: loss3/loss06 = 1.67098 (* 0.0909091 = 0.151907 loss) | |
I0327 13:42:11.951364 21344 solver.cpp:406] Test net output #116: loss3/loss07 = 0.560404 (* 0.0909091 = 0.0509458 loss) | |
I0327 13:42:11.951378 21344 solver.cpp:406] Test net output #117: loss3/loss08 = 0.256286 (* 0.0909091 = 0.0232988 loss) | |
I0327 13:42:11.951392 21344 solver.cpp:406] Test net output #118: loss3/loss09 = 0.0535895 (* 0.0909091 = 0.00487177 loss) | |
I0327 13:42:11.951406 21344 solver.cpp:406] Test net output #119: loss3/loss10 = 0.0283712 (* 0.0909091 = 0.0025792 loss) | |
I0327 13:42:11.951421 21344 solver.cpp:406] Test net output #120: loss3/loss11 = 4.61352e-05 (* 0.0909091 = 4.19411e-06 loss) | |
I0327 13:42:11.951434 21344 solver.cpp:406] Test net output #121: loss3/loss12 = 5.37207e-05 (* 0.0909091 = 4.8837e-06 loss) | |
I0327 13:42:11.951447 21344 solver.cpp:406] Test net output #122: loss3/loss13 = 5.95732e-05 (* 0.0909091 = 5.41575e-06 loss) | |
I0327 13:42:11.951494 21344 solver.cpp:406] Test net output #123: loss3/loss14 = 5.59876e-05 (* 0.0909091 = 5.08978e-06 loss) | |
I0327 13:42:11.951509 21344 solver.cpp:406] Test net output #124: loss3/loss15 = 5.23517e-05 (* 0.0909091 = 4.75925e-06 loss) | |
I0327 13:42:11.951524 21344 solver.cpp:406] Test net output #125: loss3/loss16 = 4.81611e-05 (* 0.0909091 = 4.37828e-06 loss) | |
I0327 13:42:11.951537 21344 solver.cpp:406] Test net output #126: loss3/loss17 = 5.00921e-05 (* 0.0909091 = 4.55383e-06 loss) | |
I0327 13:42:11.951550 21344 solver.cpp:406] Test net output #127: loss3/loss18 = 5.99147e-05 (* 0.0909091 = 5.44679e-06 loss) | |
I0327 13:42:11.951565 21344 solver.cpp:406] Test net output #128: loss3/loss19 = 4.72103e-05 (* 0.0909091 = 4.29184e-06 loss) | |
I0327 13:42:11.951578 21344 solver.cpp:406] Test net output #129: loss3/loss20 = 5.56817e-05 (* 0.0909091 = 5.06197e-06 loss) | |
I0327 13:42:11.951591 21344 solver.cpp:406] Test net output #130: loss3/loss21 = 5.21409e-05 (* 0.0909091 = 4.74008e-06 loss) | |
I0327 13:42:11.951606 21344 solver.cpp:406] Test net output #131: loss3/loss22 = 4.61948e-05 (* 0.0909091 = 4.19952e-06 loss) | |
I0327 13:42:11.951617 21344 solver.cpp:406] Test net output #132: total_accuracy = 0.001 | |
I0327 13:42:11.951628 21344 solver.cpp:406] Test net output #133: total_confidence = 0.00178901 | |
I0327 13:42:12.062741 21344 solver.cpp:229] Iteration 15000, loss = 2.7479 | |
I0327 13:42:12.062795 21344 solver.cpp:245] Train net output #0: loss1/accuracy01 = 0.375 | |
I0327 13:42:12.062813 21344 solver.cpp:245] Train net output #1: loss1/accuracy02 = 0.125 | |
I0327 13:42:12.062825 21344 solver.cpp:245] Train net output #2: loss1/accuracy03 = 0.125 | |
I0327 13:42:12.062837 21344 solver.cpp:245] Train net output #3: loss1/accuracy04 = 0.625 | |
I0327 13:42:12.062849 21344 solver.cpp:245] Train net output #4: loss1/accuracy05 = 0.75 | |
I0327 13:42:12.062861 21344 solver.cpp:245] Train net output #5: loss1/accuracy06 = 0.75 | |
I0327 13:42:12.062873 21344 solver.cpp:245] Train net output #6: loss1/accuracy07 = 0.625 | |
I0327 13:42:12.062885 21344 solver.cpp:245] Train net output #7: loss1/accuracy08 = 0.75 | |
I0327 13:42:12.062897 21344 solver.cpp:245] Train net output #8: loss1/accuracy09 = 1 | |
I0327 13:42:12.062909 21344 solver.cpp:245] Train net output #9: loss1/accuracy10 = 1 | |
I0327 13:42:12.062922 21344 solver.cpp:245] Train net output #10: loss1/accuracy11 = 1 | |
I0327 13:42:12.062933 21344 solver.cpp:245] Train net output #11: loss1/accuracy12 = 1 | |
I0327 13:42:12.062948 21344 solver.cpp:245] Train net output #12: loss1/accuracy13 = 1 | |
I0327 13:42:12.062961 21344 solver.cpp:245] Train net output #13: loss1/accuracy14 = 1 | |
I0327 13:42:12.062973 21344 solver.cpp:245] Train net output #14: loss1/accuracy15 = 1 | |
I0327 13:42:12.062985 21344 solver.cpp:245] Train net output #15: loss1/accuracy16 = 1 | |
I0327 13:42:12.062997 21344 solver.cpp:245] Train net output #16: loss1/accuracy17 = 1 | |
I0327 13:42:12.063009 21344 solver.cpp:245] Train net output #17: loss1/accuracy18 = 1 | |
I0327 13:42:12.063020 21344 solver.cpp:245] Train net output #18: loss1/accuracy19 = 1 | |
I0327 13:42:12.063056 21344 solver.cpp:245] Train net output #19: loss1/accuracy20 = 1 | |
I0327 13:42:12.063071 21344 solver.cpp:245] Train net output #20: loss1/accuracy21 = 1 | |
I0327 13:42:12.063082 21344 solver.cpp:245] Train net output #21: loss1/accuracy22 = 1 | |
I0327 13:42:12.063100 21344 solver.cpp:245] Train net output #22: loss1/loss01 = 2.5243 (* 0.0272727 = 0.0688446 loss) | |
I0327 13:42:12.063117 21344 solver.cpp:245] Train net output #23: loss1/loss02 = 2.86045 (* 0.0272727 = 0.0780121 loss) | |
I0327 13:42:12.063132 21344 solver.cpp:245] Train net output #24: loss1/loss03 = 2.8532 (* 0.0272727 = 0.0778146 loss) | |
I0327 13:42:12.063145 21344 solver.cpp:245] Train net output #25: loss1/loss04 = 2.30696 (* 0.0272727 = 0.062917 loss) | |
I0327 13:42:12.063159 21344 solver.cpp:245] Train net output #26: loss1/loss05 = 1.56652 (* 0.0272727 = 0.0427233 loss) | |
I0327 13:42:12.063174 21344 solver.cpp:245] Train net output #27: loss1/loss06 = 1.47069 (* 0.0272727 = 0.0401098 loss) | |
I0327 13:42:12.063187 21344 solver.cpp:245] Train net output #28: loss1/loss07 = 1.20653 (* 0.0272727 = 0.0329053 loss) | |
I0327 13:42:12.063201 21344 solver.cpp:245] Train net output #29: loss1/loss08 = 1.28118 (* 0.0272727 = 0.0349413 loss) | |
I0327 13:42:12.063220 21344 solver.cpp:245] Train net output #30: loss1/loss09 = 0.0143061 (* 0.0272727 = 0.000390166 loss) | |
I0327 13:42:12.063243 21344 solver.cpp:245] Train net output #31: loss1/loss10 = 0.00498629 (* 0.0272727 = 0.00013599 loss) | |
I0327 13:42:12.063258 21344 solver.cpp:245] Train net output #32: loss1/loss11 = 0.000228643 (* 0.0272727 = 6.23573e-06 loss) | |
I0327 13:42:12.063273 21344 solver.cpp:245] Train net output #33: loss1/loss12 = 0.000187118 (* 0.0272727 = 5.10321e-06 loss) | |
I0327 13:42:12.063287 21344 solver.cpp:245] Train net output #34: loss1/loss13 = 0.000221054 (* 0.0272727 = 6.02875e-06 loss) | |
I0327 13:42:12.063302 21344 solver.cpp:245] Train net output #35: loss1/loss14 = 0.000244485 (* 0.0272727 = 6.66776e-06 loss) | |
I0327 13:42:12.063316 21344 solver.cpp:245] Train net output #36: loss1/loss15 = 0.00011734 (* 0.0272727 = 3.20019e-06 loss) | |
I0327 13:42:12.063330 21344 solver.cpp:245] Train net output #37: loss1/loss16 = 0.000299418 (* 0.0272727 = 8.16595e-06 loss) | |
I0327 13:42:12.063344 21344 solver.cpp:245] Train net output #38: loss1/loss17 = 0.000155134 (* 0.0272727 = 4.23092e-06 loss) | |
I0327 13:42:12.063359 21344 solver.cpp:245] Train net output #39: loss1/loss18 = 0.000207984 (* 0.0272727 = 5.67229e-06 loss) | |
I0327 13:42:12.063372 21344 solver.cpp:245] Train net output #40: loss1/loss19 = 6.94284e-05 (* 0.0272727 = 1.8935e-06 loss) | |
I0327 13:42:12.063386 21344 solver.cpp:245] Train net output #41: loss1/loss20 = 0.000112263 (* 0.0272727 = 3.06171e-06 loss) | |
I0327 13:42:12.063401 21344 solver.cpp:245] Train net output #42: loss1/loss21 = 0.000221309 (* 0.0272727 = 6.03571e-06 loss) | |
I0327 13:42:12.063415 21344 solver.cpp:245] Train net output #43: loss1/loss22 = 0.000141552 (* 0.0272727 = 3.86051e-06 loss) | |
I0327 13:42:12.063427 21344 solver.cpp:245] Train net output #44: loss2/accuracy01 = 0.25 | |
I0327 13:42:12.063439 21344 solver.cpp:245] Train net output #45: loss2/accuracy02 = 0.25 | |
I0327 13:42:12.063452 21344 solver.cpp:245] Train net output #46: loss2/accuracy03 = 0.125 | |
I0327 13:42:12.063462 21344 solver.cpp:245] Train net output #47: loss2/accuracy04 = 0.5 | |
I0327 13:42:12.063474 21344 solver.cpp:245] Train net output #48: loss2/accuracy05 = 0.5 | |
I0327 13:42:12.063487 21344 solver.cpp:245] Train net output #49: loss2/accuracy06 = 0.375 | |
I0327 13:42:12.063498 21344 solver.cpp:245] Train net output #50: loss2/accuracy07 = 0.625 | |
I0327 13:42:12.063510 21344 solver.cpp:245] Train net output #51: loss2/accuracy08 = 0.75 | |
I0327 13:42:12.063522 21344 solver.cpp:245] Train net output #52: loss2/accuracy09 = 1 | |
I0327 13:42:12.063534 21344 solver.cpp:245] Train net output #53: loss2/accuracy10 = 1 | |
I0327 13:42:12.063544 21344 solver.cpp:245] Train net output #54: loss2/accuracy11 = 1 | |
I0327 13:42:12.063567 21344 solver.cpp:245] Train net output #55: loss2/accuracy12 = 1 | |
I0327 13:42:12.063581 21344 solver.cpp:245] Train net output #56: loss2/accuracy13 = 1 | |
I0327 13:42:12.063592 21344 solver.cpp:245] Train net output #57: loss2/accuracy14 = 1 | |
I0327 13:42:12.063604 21344 solver.cpp:245] Train net output #58: loss2/accuracy15 = 1 | |
I0327 13:42:12.063616 21344 solver.cpp:245] Train net output #59: loss2/accuracy16 = 1 | |
I0327 13:42:12.063627 21344 solver.cpp:245] Train net output #60: loss2/accuracy17 = 1 | |
I0327 13:42:12.063638 21344 solver.cpp:245] Train net output #61: loss2/accuracy18 = 1 | |
I0327 13:42:12.063650 21344 solver.cpp:245] Train net output #62: loss2/accuracy19 = 1 | |
I0327 13:42:12.063662 21344 solver.cpp:245] Train net output #63: loss2/accuracy20 = 1 | |
I0327 13:42:12.063673 21344 solver.cpp:245] Train net output #64: loss2/accuracy21 = 1 | |
I0327 13:42:12.063685 21344 solver.cpp:245] Train net output #65: loss2/accuracy22 = 1 | |
I0327 13:42:12.063699 21344 solver.cpp:245] Train net output #66: loss2/loss01 = 2.07887 (* 0.0272727 = 0.0566965 loss) | |
I0327 13:42:12.063714 21344 solver.cpp:245] Train net output #67: loss2/loss02 = 2.496 (* 0.0272727 = 0.0680726 loss) | |
I0327 13:42:12.063727 21344 solver.cpp:245] Train net output #68: loss2/loss03 = 2.90322 (* 0.0272727 = 0.0791788 loss) | |
I0327 13:42:12.063741 21344 solver.cpp:245] Train net output #69: loss2/loss04 = 2.37337 (* 0.0272727 = 0.0647284 loss) | |
I0327 13:42:12.063755 21344 solver.cpp:245] Train net output #70: loss2/loss05 = 2.01357 (* 0.0272727 = 0.0549156 loss) | |
I0327 13:42:12.063769 21344 solver.cpp:245] Train net output #71: loss2/loss06 = 1.96098 (* 0.0272727 = 0.0534813 loss) | |
I0327 13:42:12.063783 21344 solver.cpp:245] Train net output #72: loss2/loss07 = 1.41645 (* 0.0272727 = 0.0386305 loss) | |
I0327 13:42:12.063797 21344 solver.cpp:245] Train net output #73: loss2/loss08 = 1.42606 (* 0.0272727 = 0.0388925 loss) | |
I0327 13:42:12.063812 21344 solver.cpp:245] Train net output #74: loss2/loss09 = 0.0182835 (* 0.0272727 = 0.00049864 loss) | |
I0327 13:42:12.063825 21344 solver.cpp:245] Train net output #75: loss2/loss10 = 0.00474456 (* 0.0272727 = 0.000129397 loss) | |
I0327 13:42:12.063839 21344 solver.cpp:245] Train net output #76: loss2/loss11 = 0.000105095 (* 0.0272727 = 2.86622e-06 loss) | |
I0327 13:42:12.063853 21344 solver.cpp:245] Train net output #77: loss2/loss12 = 8.39325e-05 (* 0.0272727 = 2.28907e-06 loss) | |
I0327 13:42:12.063868 21344 solver.cpp:245] Train net output #78: loss2/loss13 = 0.000165653 (* 0.0272727 = 4.51782e-06 loss) | |
I0327 13:42:12.063881 21344 solver.cpp:245] Train net output #79: loss2/loss14 = 0.000113325 (* 0.0272727 = 3.09069e-06 loss) | |
I0327 13:42:12.063895 21344 solver.cpp:245] Train net output #80: loss2/loss15 = 0.000115679 (* 0.0272727 = 3.15489e-06 loss) | |
I0327 13:42:12.063910 21344 solver.cpp:245] Train net output #81: loss2/loss16 = 0.000156553 (* 0.0272727 = 4.26963e-06 loss) | |
I0327 13:42:12.063923 21344 solver.cpp:245] Train net output #82: loss2/loss17 = 9.71745e-05 (* 0.0272727 = 2.65021e-06 loss) | |
I0327 13:42:12.063937 21344 solver.cpp:245] Train net output #83: loss2/loss18 = 0.000134268 (* 0.0272727 = 3.66185e-06 loss) | |
I0327 13:42:12.063951 21344 solver.cpp:245] Train net output #84: loss2/loss19 = 0.000126418 (* 0.0272727 = 3.44777e-06 loss) | |
I0327 13:42:12.063966 21344 solver.cpp:245] Train net output #85: loss2/loss20 = 0.000208872 (* 0.0272727 = 5.69651e-06 loss) | |
I0327 13:42:12.063979 21344 solver.cpp:245] Train net output #86: loss2/loss21 = 0.000119083 (* 0.0272727 = 3.24773e-06 loss) | |
I0327 13:42:12.063995 21344 solver.cpp:245] Train net output #87: loss2/loss22 = 0.000143656 (* 0.0272727 = 3.9179e-06 loss) | |
I0327 13:42:12.064009 21344 solver.cpp:245] Train net output #88: loss3/accuracy01 = 0.75 | |
I0327 13:42:12.064021 21344 solver.cpp:245] Train net output #89: loss3/accuracy02 = 0.125 | |
I0327 13:42:12.064033 21344 solver.cpp:245] Train net output #90: loss3/accuracy03 = 0.125 | |
I0327 13:42:12.064055 21344 solver.cpp:245] Train net output #91: loss3/accuracy04 = 0.375 | |
I0327 13:42:12.064069 21344 solver.cpp:245] Train net output #92: loss3/accuracy05 = 0.375 | |
I0327 13:42:12.064080 21344 solver.cpp:245] Train net output #93: loss3/accuracy06 = 0.375 | |
I0327 13:42:12.064092 21344 solver.cpp:245] Train net output #94: loss3/accuracy07 = 0.625 | |
I0327 13:42:12.064105 21344 solver.cpp:245] Train net output #95: loss3/accuracy08 = 0.75 | |
I0327 13:42:12.064116 21344 solver.cpp:245] Train net output #96: loss3/accuracy09 = 1 | |
I0327 13:42:12.064127 21344 solver.cpp:245] Train net output #97: loss3/accuracy10 = 1 | |
I0327 13:42:12.064138 21344 solver.cpp:245] Train net output #98: loss3/accuracy11 = 1 | |
I0327 13:42:12.064153 21344 solver.cpp:245] Train net output #99: loss3/accuracy12 = 1 | |
I0327 13:42:12.064165 21344 solver.cpp:245] Train net output #100: loss3/accuracy13 = 1 | |
I0327 13:42:12.064177 21344 solver.cpp:245] Train net output #101: loss3/accuracy14 = 1 | |
I0327 13:42:12.064188 21344 solver.cpp:245] Train net output #102: loss3/accuracy15 = 1 | |
I0327 13:42:12.064199 21344 solver.cpp:245] Train net output #103: loss3/accuracy16 = 1 | |
I0327 13:42:12.064211 21344 solver.cpp:245] Train net output #104: loss3/accuracy17 = 1 | |
I0327 13:42:12.064223 21344 solver.cpp:245] Train net output #105: loss3/accuracy18 = 1 | |
I0327 13:42:12.064234 21344 solver.cpp:245] Train net output #106: loss3/accuracy19 = 1 | |
I0327 13:42:12.064245 21344 solver.cpp:245] Train net output #107: loss3/accuracy20 = 1 | |
I0327 13:42:12.064257 21344 solver.cpp:245] Train net output #108: loss3/accuracy21 = 1 | |
I0327 13:42:12.064268 21344 solver.cpp:245] Train net output #109: loss3/accuracy22 = 1 | |
I0327 13:42:12.064282 21344 solver.cpp:245] Train net output #110: loss3/loss01 = 1.59038 (* 0.0909091 = 0.14458 loss) | |
I0327 13:42:12.064296 21344 solver.cpp:245] Train net output #111: loss3/loss02 = 2.67046 (* 0.0909091 = 0.242769 loss) | |
I0327 13:42:12.064311 21344 solver.cpp:245] Train net output #112: loss3/loss03 = 3.10484 (* 0.0909091 = 0.282258 loss) | |
I0327 13:42:12.064324 21344 solver.cpp:245] Train net output #113: loss3/loss04 = 2.36734 (* 0.0909091 = 0.215213 loss) | |
I0327 13:42:12.064338 21344 solver.cpp:245] Train net output #114: loss3/loss05 = 1.89253 (* 0.0909091 = 0.172049 loss) | |
I0327 13:42:12.064352 21344 solver.cpp:245] Train net output #115: loss3/loss06 = 1.66898 (* 0.0909091 = 0.151725 loss) | |
I0327 13:42:12.064365 21344 solver.cpp:245] Train net output #116: loss3/loss07 = 1.25891 (* 0.0909091 = 0.114446 loss) | |
I0327 13:42:12.064379 21344 solver.cpp:245] Train net output #117: loss3/loss08 = 1.05489 (* 0.0909091 = 0.0958994 loss) | |
I0327 13:42:12.064393 21344 solver.cpp:245] Train net output #118: loss3/loss09 = 0.0160238 (* 0.0909091 = 0.00145671 loss) | |
I0327 13:42:12.064409 21344 solver.cpp:245] Train net output #119: loss3/loss10 = 0.00604909 (* 0.0909091 = 0.000549917 loss) | |
I0327 13:42:12.064422 21344 solver.cpp:245] Train net output #120: loss3/loss11 = 0.000157305 (* 0.0909091 = 1.43005e-05 loss) | |
I0327 13:42:12.064436 21344 solver.cpp:245] Train net output #121: loss3/loss12 = 0.000139786 (* 0.0909091 = 1.27078e-05 loss) | |
I0327 13:42:12.064450 21344 solver.cpp:245] Train net output #122: loss3/loss13 = 0.000142165 (* 0.0909091 = 1.29241e-05 loss) | |
I0327 13:42:12.064465 21344 solver.cpp:245] Train net output #123: loss3/loss14 = 0.000219182 (* 0.0909091 = 1.99257e-05 loss) | |
I0327 13:42:12.064478 21344 solver.cpp:245] Train net output #124: loss3/loss15 = 0.000237844 (* 0.0909091 = 2.16222e-05 loss) | |
I0327 13:42:12.064497 21344 solver.cpp:245] Train net output #125: loss3/loss16 = 0.000182753 (* 0.0909091 = 1.66139e-05 loss) | |
I0327 13:42:12.064512 21344 solver.cpp:245] Train net output #126: loss3/loss17 = 0.000158959 (* 0.0909091 = 1.44508e-05 loss) | |
I0327 13:42:12.064525 21344 solver.cpp:245] Train net output #127: loss3/loss18 = 0.000171555 (* 0.0909091 = 1.55959e-05 loss) | |
I0327 13:42:12.064549 21344 solver.cpp:245] Train net output #128: loss3/loss19 = 0.000201817 (* 0.0909091 = 1.8347e-05 loss) | |
I0327 13:42:12.064565 21344 solver.cpp:245] Train net output #129: loss3/loss20 = 0.000174803 (* 0.0909091 = 1.58912e-05 loss) | |
I0327 13:42:12.064579 21344 solver.cpp:245] Train net output #130: loss3/loss21 = 0.000187451 (* 0.0909091 = 1.7041e-05 loss) | |
I0327 13:42:12.064594 21344 solver.cpp:245] Train net output #131: loss3/loss22 = 0.000204689 (* 0.0909091 = 1.86081e-05 loss) | |
I0327 13:42:12.064604 21344 solver.cpp:245] Train net output #132: total_accuracy = 0 | |
I0327 13:42:12.064616 21344 solver.cpp:245] Train net output #133: total_confidence = 0.000470584 | |
I0327 13:42:12.064630 21344 sgd_solver.cpp:106] Iteration 15000, lr = 0.01 | |
I0327 13:44:00.001790 21344 solver.cpp:229] Iteration 15500, loss = 2.73598 | |
I0327 13:44:00.001899 21344 solver.cpp:245] Train net output #0: loss1/accuracy01 = 0.375 | |
I0327 13:44:00.001917 21344 solver.cpp:245] Train net output #1: loss1/accuracy02 = 0.125 | |
I0327 13:44:00.001930 21344 solver.cpp:245] Train net output #2: loss1/accuracy03 = 0 | |
I0327 13:44:00.001942 21344 solver.cpp:245] Train net output #3: loss1/accuracy04 = 0 | |
I0327 13:44:00.001955 21344 solver.cpp:245] Train net output #4: loss1/accuracy05 = 0.5 | |
I0327 13:44:00.001966 21344 solver.cpp:245] Train net output #5: loss1/accuracy06 = 0.375 | |
I0327 13:44:00.001978 21344 solver.cpp:245] Train net output #6: loss1/accuracy07 = 0.75 | |
I0327 13:44:00.001991 21344 solver.cpp:245] Train net output #7: loss1/accuracy08 = 1 | |
I0327 13:44:00.002002 21344 solver.cpp:245] Train net output #8: loss1/accuracy09 = 1 | |
I0327 13:44:00.002014 21344 solver.cpp:245] Train net output #9: loss1/accuracy10 = 1 | |
I0327 13:44:00.002025 21344 solver.cpp:245] Train net output #10: loss1/accuracy11 = 1 | |
I0327 13:44:00.002038 21344 solver.cpp:245] Train net output #11: loss1/accuracy12 = 1 | |
I0327 13:44:00.002048 21344 solver.cpp:245] Train net output #12: loss1/accuracy13 = 1 | |
I0327 13:44:00.002060 21344 solver.cpp:245] Train net output #13: loss1/accuracy14 = 1 | |
I0327 13:44:00.002073 21344 solver.cpp:245] Train net output #14: loss1/accuracy15 = 1 | |
I0327 13:44:00.002087 21344 solver.cpp:245] Train net output #15: loss1/accuracy16 = 1 | |
I0327 13:44:00.002099 21344 solver.cpp:245] Train net output #16: loss1/accuracy17 = 1 | |
I0327 13:44:00.002111 21344 solver.cpp:245] Train net output #17: loss1/accuracy18 = 1 | |
I0327 13:44:00.002123 21344 solver.cpp:245] Train net output #18: loss1/accuracy19 = 1 | |
I0327 13:44:00.002135 21344 solver.cpp:245] Train net output #19: loss1/accuracy20 = 1 | |
I0327 13:44:00.002146 21344 solver.cpp:245] Train net output #20: loss1/accuracy21 = 1 | |
I0327 13:44:00.002158 21344 solver.cpp:245] Train net output #21: loss1/accuracy22 = 1 | |
I0327 13:44:00.002174 21344 solver.cpp:245] Train net output #22: loss1/loss01 = 2.39835 (* 0.0272727 = 0.0654095 loss) | |
I0327 13:44:00.002189 21344 solver.cpp:245] Train net output #23: loss1/loss02 = 2.96882 (* 0.0272727 = 0.0809679 loss) | |
I0327 13:44:00.002203 21344 solver.cpp:245] Train net output #24: loss1/loss03 = 3.54148 (* 0.0272727 = 0.096586 loss) | |
I0327 13:44:00.002218 21344 solver.cpp:245] Train net output #25: loss1/loss04 = 3.21295 (* 0.0272727 = 0.087626 loss) | |
I0327 13:44:00.002233 21344 solver.cpp:245] Train net output #26: loss1/loss05 = 2.72392 (* 0.0272727 = 0.0742888 loss) | |
I0327 13:44:00.002246 21344 solver.cpp:245] Train net output #27: loss1/loss06 = 2.55621 (* 0.0272727 = 0.0697148 loss) | |
I0327 13:44:00.002259 21344 solver.cpp:245] Train net output #28: loss1/loss07 = 1.13043 (* 0.0272727 = 0.0308299 loss) | |
I0327 13:44:00.002274 21344 solver.cpp:245] Train net output #29: loss1/loss08 = 0.0476531 (* 0.0272727 = 0.00129963 loss) | |
I0327 13:44:00.002288 21344 solver.cpp:245] Train net output #30: loss1/loss09 = 0.00620348 (* 0.0272727 = 0.000169186 loss) | |
I0327 13:44:00.002303 21344 solver.cpp:245] Train net output #31: loss1/loss10 = 0.00553044 (* 0.0272727 = 0.00015083 loss) | |
I0327 13:44:00.002317 21344 solver.cpp:245] Train net output #32: loss1/loss11 = 0.000134966 (* 0.0272727 = 3.68088e-06 loss) | |
I0327 13:44:00.002331 21344 solver.cpp:245] Train net output #33: loss1/loss12 = 0.00020837 (* 0.0272727 = 5.68283e-06 loss) | |
I0327 13:44:00.002346 21344 solver.cpp:245] Train net output #34: loss1/loss13 = 9.93902e-05 (* 0.0272727 = 2.71064e-06 loss) | |
I0327 13:44:00.002360 21344 solver.cpp:245] Train net output #35: loss1/loss14 = 0.000115692 (* 0.0272727 = 3.15525e-06 loss) | |
I0327 13:44:00.002374 21344 solver.cpp:245] Train net output #36: loss1/loss15 = 0.000182895 (* 0.0272727 = 4.98804e-06 loss) | |
I0327 13:44:00.002388 21344 solver.cpp:245] Train net output #37: loss1/loss16 = 0.000102922 (* 0.0272727 = 2.80695e-06 loss) | |
I0327 13:44:00.002403 21344 solver.cpp:245] Train net output #38: loss1/loss17 = 0.000111268 (* 0.0272727 = 3.03459e-06 loss) | |
I0327 13:44:00.002434 21344 solver.cpp:245] Train net output #39: loss1/loss18 = 8.63668e-05 (* 0.0272727 = 2.35546e-06 loss) | |
I0327 13:44:00.002449 21344 solver.cpp:245] Train net output #40: loss1/loss19 = 0.00141514 (* 0.0272727 = 3.85947e-05 loss) | |
I0327 13:44:00.002463 21344 solver.cpp:245] Train net output #41: loss1/loss20 = 0.000123048 (* 0.0272727 = 3.35586e-06 loss) | |
I0327 13:44:00.002477 21344 solver.cpp:245] Train net output #42: loss1/loss21 = 0.000280966 (* 0.0272727 = 7.6627e-06 loss) | |
I0327 13:44:00.002491 21344 solver.cpp:245] Train net output #43: loss1/loss22 = 0.000487192 (* 0.0272727 = 1.32871e-05 loss) | |
I0327 13:44:00.002504 21344 solver.cpp:245] Train net output #44: loss2/accuracy01 = 0.5 | |
I0327 13:44:00.002516 21344 solver.cpp:245] Train net output #45: loss2/accuracy02 = 0.25 | |
I0327 13:44:00.002528 21344 solver.cpp:245] Train net output #46: loss2/accuracy03 = 0.125 | |
I0327 13:44:00.002540 21344 solver.cpp:245] Train net output #47: loss2/accuracy04 = 0.125 | |
I0327 13:44:00.002552 21344 solver.cpp:245] Train net output #48: loss2/accuracy05 = 0.375 | |
I0327 13:44:00.002564 21344 solver.cpp:245] Train net output #49: loss2/accuracy06 = 0.5 | |
I0327 13:44:00.002576 21344 solver.cpp:245] Train net output #50: loss2/accuracy07 = 0.75 | |
I0327 13:44:00.002588 21344 solver.cpp:245] Train net output #51: loss2/accuracy08 = 1 | |
I0327 13:44:00.002600 21344 solver.cpp:245] Train net output #52: loss2/accuracy09 = 1 | |
I0327 13:44:00.002611 21344 solver.cpp:245] Train net output #53: loss2/accuracy10 = 1 | |
I0327 13:44:00.002624 21344 solver.cpp:245] Train net output #54: loss2/accuracy11 = 1 | |
I0327 13:44:00.002635 21344 solver.cpp:245] Train net output #55: loss2/accuracy12 = 1 | |
I0327 13:44:00.002646 21344 solver.cpp:245] Train net output #56: loss2/accuracy13 = 1 | |
I0327 13:44:00.002657 21344 solver.cpp:245] Train net output #57: loss2/accuracy14 = 1 | |
I0327 13:44:00.002668 21344 solver.cpp:245] Train net output #58: loss2/accuracy15 = 1 | |
I0327 13:44:00.002681 21344 solver.cpp:245] Train net output #59: loss2/accuracy16 = 1 | |
I0327 13:44:00.002691 21344 solver.cpp:245] Train net output #60: loss2/accuracy17 = 1 | |
I0327 13:44:00.002703 21344 solver.cpp:245] Train net output #61: loss2/accuracy18 = 1 | |
I0327 13:44:00.002714 21344 solver.cpp:245] Train net output #62: loss2/accuracy19 = 1 | |
I0327 13:44:00.002725 21344 solver.cpp:245] Train net output #63: loss2/accuracy20 = 1 | |
I0327 13:44:00.002737 21344 solver.cpp:245] Train net output #64: loss2/accuracy21 = 1 | |
I0327 13:44:00.002748 21344 solver.cpp:245] Train net output #65: loss2/accuracy22 = 1 | |
I0327 13:44:00.002763 21344 solver.cpp:245] Train net output #66: loss2/loss01 = 1.67653 (* 0.0272727 = 0.0457235 loss) | |
I0327 13:44:00.002776 21344 solver.cpp:245] Train net output #67: loss2/loss02 = 2.41643 (* 0.0272727 = 0.0659028 loss) | |
I0327 13:44:00.002790 21344 solver.cpp:245] Train net output #68: loss2/loss03 = 3.09821 (* 0.0272727 = 0.0844967 loss) | |
I0327 13:44:00.002804 21344 solver.cpp:245] Train net output #69: loss2/loss04 = 2.89404 (* 0.0272727 = 0.0789284 loss) | |
I0327 13:44:00.002818 21344 solver.cpp:245] Train net output #70: loss2/loss05 = 2.76687 (* 0.0272727 = 0.0754601 loss) | |
I0327 13:44:00.002831 21344 solver.cpp:245] Train net output #71: loss2/loss06 = 2.07518 (* 0.0272727 = 0.0565957 loss) | |
I0327 13:44:00.002846 21344 solver.cpp:245] Train net output #72: loss2/loss07 = 1.15607 (* 0.0272727 = 0.0315292 loss) | |
I0327 13:44:00.002859 21344 solver.cpp:245] Train net output #73: loss2/loss08 = 0.0286903 (* 0.0272727 = 0.000782462 loss) | |
I0327 13:44:00.002871 21344 solver.cpp:245] Train net output #74: loss2/loss09 = 0.00906118 (* 0.0272727 = 0.000247123 loss) | |
I0327 13:44:00.002879 21344 solver.cpp:245] Train net output #75: loss2/loss10 = 0.00571084 (* 0.0272727 = 0.00015575 loss) | |
I0327 13:44:00.002894 21344 solver.cpp:245] Train net output #76: loss2/loss11 = 0.000130067 (* 0.0272727 = 3.54729e-06 loss) | |
I0327 13:44:00.002919 21344 solver.cpp:245] Train net output #77: loss2/loss12 = 0.000328566 (* 0.0272727 = 8.9609e-06 loss) | |
I0327 13:44:00.002934 21344 solver.cpp:245] Train net output #78: loss2/loss13 = 0.000197719 (* 0.0272727 = 5.39234e-06 loss) | |
I0327 13:44:00.002948 21344 solver.cpp:245] Train net output #79: loss2/loss14 = 0.000213695 (* 0.0272727 = 5.82805e-06 loss) | |
I0327 13:44:00.002962 21344 solver.cpp:245] Train net output #80: loss2/loss15 = 0.000106567 (* 0.0272727 = 2.90638e-06 loss) | |
I0327 13:44:00.002976 21344 solver.cpp:245] Train net output #81: loss2/loss16 = 0.000119834 (* 0.0272727 = 3.26819e-06 loss) | |
I0327 13:44:00.002990 21344 solver.cpp:245] Train net output #82: loss2/loss17 = 0.00020599 (* 0.0272727 = 5.61791e-06 loss) | |
I0327 13:44:00.003005 21344 solver.cpp:245] Train net output #83: loss2/loss18 = 0.000111081 (* 0.0272727 = 3.02949e-06 loss) | |
I0327 13:44:00.003018 21344 solver.cpp:245] Train net output #84: loss2/loss19 = 0.00030297 (* 0.0272727 = 8.26281e-06 loss) | |
I0327 13:44:00.003032 21344 solver.cpp:245] Train net output #85: loss2/loss20 = 0.000115305 (* 0.0272727 = 3.14468e-06 loss) | |
I0327 13:44:00.003047 21344 solver.cpp:245] Train net output #86: loss2/loss21 = 9.64577e-05 (* 0.0272727 = 2.63066e-06 loss) | |
I0327 13:44:00.003060 21344 solver.cpp:245] Train net output #87: loss2/loss22 = 0.000119723 (* 0.0272727 = 3.26518e-06 loss) | |
I0327 13:44:00.003073 21344 solver.cpp:245] Train net output #88: loss3/accuracy01 = 0.625 | |
I0327 13:44:00.003085 21344 solver.cpp:245] Train net output #89: loss3/accuracy02 = 0.125 | |
I0327 13:44:00.003098 21344 solver.cpp:245] Train net output #90: loss3/accuracy03 = 0 | |
I0327 13:44:00.003108 21344 solver.cpp:245] Train net output #91: loss3/accuracy04 = 0.25 | |
I0327 13:44:00.003120 21344 solver.cpp:245] Train net output #92: loss3/accuracy05 = 0.375 | |
I0327 13:44:00.003136 21344 solver.cpp:245] Train net output #93: loss3/accuracy06 = 0.25 | |
I0327 13:44:00.003149 21344 solver.cpp:245] Train net output #94: loss3/accuracy07 = 0.75 | |
I0327 13:44:00.003160 21344 solver.cpp:245] Train net output #95: loss3/accuracy08 = 1 | |
I0327 13:44:00.003171 21344 solver.cpp:245] Train net output #96: loss3/accuracy09 = 1 | |
I0327 13:44:00.003183 21344 solver.cpp:245] Train net output #97: loss3/accuracy10 = 1 | |
I0327 13:44:00.003195 21344 solver.cpp:245] Train net output #98: loss3/accuracy11 = 1 | |
I0327 13:44:00.003206 21344 solver.cpp:245] Train net output #99: loss3/accuracy12 = 1 | |
I0327 13:44:00.003217 21344 solver.cpp:245] Train net output #100: loss3/accuracy13 = 1 | |
I0327 13:44:00.003228 21344 solver.cpp:245] Train net output #101: loss3/accuracy14 = 1 | |
I0327 13:44:00.003240 21344 solver.cpp:245] Train net output #102: loss3/accuracy15 = 1 | |
I0327 13:44:00.003252 21344 solver.cpp:245] Train net output #103: loss3/accuracy16 = 1 | |
I0327 13:44:00.003262 21344 solver.cpp:245] Train net output #104: loss3/accuracy17 = 1 | |
I0327 13:44:00.003274 21344 solver.cpp:245] Train net output #105: loss3/accuracy18 = 1 | |
I0327 13:44:00.003285 21344 solver.cpp:245] Train net output #106: loss3/accuracy19 = 1 | |
I0327 13:44:00.003296 21344 solver.cpp:245] Train net output #107: loss3/accuracy20 = 1 | |
I0327 13:44:00.003309 21344 solver.cpp:245] Train net output #108: loss3/accuracy21 = 1 | |
I0327 13:44:00.003319 21344 solver.cpp:245] Train net output #109: loss3/accuracy22 = 1 | |
I0327 13:44:00.003334 21344 solver.cpp:245] Train net output #110: loss3/loss01 = 1.262 (* 0.0909091 = 0.114727 loss) | |
I0327 13:44:00.003346 21344 solver.cpp:245] Train net output #111: loss3/loss02 = 2.66779 (* 0.0909091 = 0.242527 loss) | |
I0327 13:44:00.003360 21344 solver.cpp:245] Train net output #112: loss3/loss03 = 3.16526 (* 0.0909091 = 0.287751 loss) | |
I0327 13:44:00.003373 21344 solver.cpp:245] Train net output #113: loss3/loss04 = 2.94842 (* 0.0909091 = 0.268038 loss) | |
I0327 13:44:00.003387 21344 solver.cpp:245] Train net output #114: loss3/loss05 = 2.54011 (* 0.0909091 = 0.230919 loss) | |
I0327 13:44:00.003412 21344 solver.cpp:245] Train net output #115: loss3/loss06 = 2.34255 (* 0.0909091 = 0.212959 loss) | |
I0327 13:44:00.003427 21344 solver.cpp:245] Train net output #116: loss3/loss07 = 1.20911 (* 0.0909091 = 0.109919 loss) | |
I0327 13:44:00.003442 21344 solver.cpp:245] Train net output #117: loss3/loss08 = 0.0172607 (* 0.0909091 = 0.00156916 loss) | |
I0327 13:44:00.003455 21344 solver.cpp:245] Train net output #118: loss3/loss09 = 0.00526433 (* 0.0909091 = 0.000478575 loss) | |
I0327 13:44:00.003469 21344 solver.cpp:245] Train net output #119: loss3/loss10 = 0.00229277 (* 0.0909091 = 0.000208434 loss) | |
I0327 13:44:00.003484 21344 solver.cpp:245] Train net output #120: loss3/loss11 = 0.000232512 (* 0.0909091 = 2.11374e-05 loss) | |
I0327 13:44:00.003499 21344 solver.cpp:245] Train net output #121: loss3/loss12 = 0.000179481 (* 0.0909091 = 1.63165e-05 loss) | |
I0327 13:44:00.003512 21344 solver.cpp:245] Train net output #122: loss3/loss13 = 0.000204633 (* 0.0909091 = 1.8603e-05 loss) | |
I0327 13:44:00.003527 21344 solver.cpp:245] Train net output #123: loss3/loss14 = 0.000153844 (* 0.0909091 = 1.39858e-05 loss) | |
I0327 13:44:00.003541 21344 solver.cpp:245] Train net output #124: loss3/loss15 = 0.000245021 (* 0.0909091 = 2.22746e-05 loss) | |
I0327 13:44:00.003556 21344 solver.cpp:245] Train net output #125: loss3/loss16 = 0.000162587 (* 0.0909091 = 1.47806e-05 loss) | |
I0327 13:44:00.003569 21344 solver.cpp:245] Train net output #126: loss3/loss17 = 0.000183099 (* 0.0909091 = 1.66454e-05 loss) | |
I0327 13:44:00.003583 21344 solver.cpp:245] Train net output #127: loss3/loss18 = 0.000166881 (* 0.0909091 = 1.5171e-05 loss) | |
I0327 13:44:00.003597 21344 solver.cpp:245] Train net output #128: loss3/loss19 = 0.000245611 (* 0.0909091 = 2.23283e-05 loss) | |
I0327 13:44:00.003612 21344 solver.cpp:245] Train net output #129: loss3/loss20 = 0.000182882 (* 0.0909091 = 1.66256e-05 loss) | |
I0327 13:44:00.003625 21344 solver.cpp:245] Train net output #130: loss3/loss21 = 0.000153294 (* 0.0909091 = 1.39358e-05 loss) | |
I0327 13:44:00.003639 21344 solver.cpp:245] Train net output #131: loss3/loss22 = 0.000233036 (* 0.0909091 = 2.11851e-05 loss) | |
I0327 13:44:00.003651 21344 solver.cpp:245] Train net output #132: total_accuracy = 0 | |
I0327 13:44:00.003662 21344 solver.cpp:245] Train net output #133: total_confidence = 0.000644672 | |
I0327 13:44:00.003675 21344 sgd_solver.cpp:106] Iteration 15500, lr = 0.01 | |
I0327 13:45:47.773134 21344 solver.cpp:229] Iteration 16000, loss = 2.72474 | |
I0327 13:45:47.773277 21344 solver.cpp:245] Train net output #0: loss1/accuracy01 = 0 | |
I0327 13:45:47.773298 21344 solver.cpp:245] Train net output #1: loss1/accuracy02 = 0 | |
I0327 13:45:47.773309 21344 solver.cpp:245] Train net output #2: loss1/accuracy03 = 0 | |
I0327 13:45:47.773320 21344 solver.cpp:245] Train net output #3: loss1/accuracy04 = 0.125 | |
I0327 13:45:47.773334 21344 solver.cpp:245] Train net output #4: loss1/accuracy05 = 0.375 | |
I0327 13:45:47.773345 21344 solver.cpp:245] Train net output #5: loss1/accuracy06 = 0.625 | |
I0327 13:45:47.773357 21344 solver.cpp:245] Train net output #6: loss1/accuracy07 = 0.75 | |
I0327 13:45:47.773370 21344 solver.cpp:245] Train net output #7: loss1/accuracy08 = 0.75 | |
I0327 13:45:47.773381 21344 solver.cpp:245] Train net output #8: loss1/accuracy09 = 1 | |
I0327 13:45:47.773393 21344 solver.cpp:245] Train net output #9: loss1/accuracy10 = 1 | |
I0327 13:45:47.773406 21344 solver.cpp:245] Train net output #10: loss1/accuracy11 = 1 | |
I0327 13:45:47.773416 21344 solver.cpp:245] Train net output #11: loss1/accuracy12 = 1 | |
I0327 13:45:47.773427 21344 solver.cpp:245] Train net output #12: loss1/accuracy13 = 1 | |
I0327 13:45:47.773439 21344 solver.cpp:245] Train net output #13: loss1/accuracy14 = 1 | |
I0327 13:45:47.773452 21344 solver.cpp:245] Train net output #14: loss1/accuracy15 = 1 | |
I0327 13:45:47.773463 21344 solver.cpp:245] Train net output #15: loss1/accuracy16 = 1 | |
I0327 13:45:47.773473 21344 solver.cpp:245] Train net output #16: loss1/accuracy17 = 1 | |
I0327 13:45:47.773491 21344 solver.cpp:245] Train net output #17: loss1/accuracy18 = 1 | |
I0327 13:45:47.773504 21344 solver.cpp:245] Train net output #18: loss1/accuracy19 = 1 | |
I0327 13:45:47.773516 21344 solver.cpp:245] Train net output #19: loss1/accuracy20 = 1 | |
I0327 13:45:47.773527 21344 solver.cpp:245] Train net output #20: loss1/accuracy21 = 1 | |
I0327 13:45:47.773551 21344 solver.cpp:245] Train net output #21: loss1/accuracy22 = 1 | |
I0327 13:45:47.773581 21344 solver.cpp:245] Train net output #22: loss1/loss01 = 3.35673 (* 0.0272727 = 0.0915472 loss) | |
I0327 13:45:47.773597 21344 solver.cpp:245] Train net output #23: loss1/loss02 = 3.5564 (* 0.0272727 = 0.0969928 loss) | |
I0327 13:45:47.773612 21344 solver.cpp:245] Train net output #24: loss1/loss03 = 3.29873 (* 0.0272727 = 0.0899655 loss) | |
I0327 13:45:47.773627 21344 solver.cpp:245] Train net output #25: loss1/loss04 = 3.02338 (* 0.0272727 = 0.0824558 loss) | |
I0327 13:45:47.773640 21344 solver.cpp:245] Train net output #26: loss1/loss05 = 2.60666 (* 0.0272727 = 0.0710908 loss) | |
I0327 13:45:47.773654 21344 solver.cpp:245] Train net output #27: loss1/loss06 = 1.9338 (* 0.0272727 = 0.05274 loss) | |
I0327 13:45:47.773668 21344 solver.cpp:245] Train net output #28: loss1/loss07 = 0.985629 (* 0.0272727 = 0.0268808 loss) | |
I0327 13:45:47.773682 21344 solver.cpp:245] Train net output #29: loss1/loss08 = 1.34141 (* 0.0272727 = 0.036584 loss) | |
I0327 13:45:47.773696 21344 solver.cpp:245] Train net output #30: loss1/loss09 = 0.147567 (* 0.0272727 = 0.00402456 loss) | |
I0327 13:45:47.773710 21344 solver.cpp:245] Train net output #31: loss1/loss10 = 0.0683712 (* 0.0272727 = 0.00186467 loss) | |
I0327 13:45:47.773725 21344 solver.cpp:245] Train net output #32: loss1/loss11 = 0.000662057 (* 0.0272727 = 1.80561e-05 loss) | |
I0327 13:45:47.773738 21344 solver.cpp:245] Train net output #33: loss1/loss12 = 0.000528936 (* 0.0272727 = 1.44255e-05 loss) | |
I0327 13:45:47.773752 21344 solver.cpp:245] Train net output #34: loss1/loss13 = 0.000230601 (* 0.0272727 = 6.28911e-06 loss) | |
I0327 13:45:47.773766 21344 solver.cpp:245] Train net output #35: loss1/loss14 = 0.00189041 (* 0.0272727 = 5.15565e-05 loss) | |
I0327 13:45:47.773782 21344 solver.cpp:245] Train net output #36: loss1/loss15 = 0.000493856 (* 0.0272727 = 1.34688e-05 loss) | |
I0327 13:45:47.773795 21344 solver.cpp:245] Train net output #37: loss1/loss16 = 0.000520017 (* 0.0272727 = 1.41823e-05 loss) | |
I0327 13:45:47.773809 21344 solver.cpp:245] Train net output #38: loss1/loss17 = 0.000690437 (* 0.0272727 = 1.88301e-05 loss) | |
I0327 13:45:47.773841 21344 solver.cpp:245] Train net output #39: loss1/loss18 = 0.000368563 (* 0.0272727 = 1.00517e-05 loss) | |
I0327 13:45:47.773857 21344 solver.cpp:245] Train net output #40: loss1/loss19 = 0.000724616 (* 0.0272727 = 1.97622e-05 loss) | |
I0327 13:45:47.773877 21344 solver.cpp:245] Train net output #41: loss1/loss20 = 0.00104339 (* 0.0272727 = 2.8456e-05 loss) | |
I0327 13:45:47.773895 21344 solver.cpp:245] Train net output #42: loss1/loss21 = 0.00047574 (* 0.0272727 = 1.29747e-05 loss) | |
I0327 13:45:47.773919 21344 solver.cpp:245] Train net output #43: loss1/loss22 = 0.00042537 (* 0.0272727 = 1.1601e-05 loss) | |
I0327 13:45:47.773932 21344 solver.cpp:245] Train net output #44: loss2/accuracy01 = 0.125 | |
I0327 13:45:47.773946 21344 solver.cpp:245] Train net output #45: loss2/accuracy02 = 0.125 | |
I0327 13:45:47.773957 21344 solver.cpp:245] Train net output #46: loss2/accuracy03 = 0 | |
I0327 13:45:47.773968 21344 solver.cpp:245] Train net output #47: loss2/accuracy04 = 0.125 | |
I0327 13:45:47.773980 21344 solver.cpp:245] Train net output #48: loss2/accuracy05 = 0.375 | |
I0327 13:45:47.773995 21344 solver.cpp:245] Train net output #49: loss2/accuracy06 = 0.625 | |
I0327 13:45:47.774008 21344 solver.cpp:245] Train net output #50: loss2/accuracy07 = 0.75 | |
I0327 13:45:47.774019 21344 solver.cpp:245] Train net output #51: loss2/accuracy08 = 0.75 | |
I0327 13:45:47.774030 21344 solver.cpp:245] Train net output #52: loss2/accuracy09 = 1 | |
I0327 13:45:47.774042 21344 solver.cpp:245] Train net output #53: loss2/accuracy10 = 1 | |
I0327 13:45:47.774054 21344 solver.cpp:245] Train net output #54: loss2/accuracy11 = 1 | |
I0327 13:45:47.774065 21344 solver.cpp:245] Train net output #55: loss2/accuracy12 = 1 | |
I0327 13:45:47.774075 21344 solver.cpp:245] Train net output #56: loss2/accuracy13 = 1 | |
I0327 13:45:47.774086 21344 solver.cpp:245] Train net output #57: loss2/accuracy14 = 1 | |
I0327 13:45:47.774098 21344 solver.cpp:245] Train net output #58: loss2/accuracy15 = 1 | |
I0327 13:45:47.774109 21344 solver.cpp:245] Train net output #59: loss2/accuracy16 = 1 | |
I0327 13:45:47.774121 21344 solver.cpp:245] Train net output #60: loss2/accuracy17 = 1 | |
I0327 13:45:47.774132 21344 solver.cpp:245] Train net output #61: loss2/accuracy18 = 1 | |
I0327 13:45:47.774142 21344 solver.cpp:245] Train net output #62: loss2/accuracy19 = 1 | |
I0327 13:45:47.774154 21344 solver.cpp:245] Train net output #63: loss2/accuracy20 = 1 | |
I0327 13:45:47.774165 21344 solver.cpp:245] Train net output #64: loss2/accuracy21 = 1 | |
I0327 13:45:47.774176 21344 solver.cpp:245] Train net output #65: loss2/accuracy22 = 1 | |
I0327 13:45:47.774190 21344 solver.cpp:245] Train net output #66: loss2/loss01 = 3.62701 (* 0.0272727 = 0.0989184 loss) | |
I0327 13:45:47.774204 21344 solver.cpp:245] Train net output #67: loss2/loss02 = 3.22589 (* 0.0272727 = 0.0879788 loss) | |
I0327 13:45:47.774217 21344 solver.cpp:245] Train net output #68: loss2/loss03 = 2.97051 (* 0.0272727 = 0.0810139 loss) | |
I0327 13:45:47.774231 21344 solver.cpp:245] Train net output #69: loss2/loss04 = 3.09507 (* 0.0272727 = 0.0844111 loss) | |
I0327 13:45:47.774245 21344 solver.cpp:245] Train net output #70: loss2/loss05 = 2.66933 (* 0.0272727 = 0.0728 loss) | |
I0327 13:45:47.774260 21344 solver.cpp:245] Train net output #71: loss2/loss06 = 1.57742 (* 0.0272727 = 0.0430206 loss) | |
I0327 13:45:47.774272 21344 solver.cpp:245] Train net output #72: loss2/loss07 = 0.828766 (* 0.0272727 = 0.0226027 loss) | |
I0327 13:45:47.774286 21344 solver.cpp:245] Train net output #73: loss2/loss08 = 1.09631 (* 0.0272727 = 0.0298993 loss) | |
I0327 13:45:47.774304 21344 solver.cpp:245] Train net output #74: loss2/loss09 = 0.0340029 (* 0.0272727 = 0.000927353 loss) | |
I0327 13:45:47.774319 21344 solver.cpp:245] Train net output #75: loss2/loss10 = 0.0106478 (* 0.0272727 = 0.000290394 loss) | |
I0327 13:45:47.774333 21344 solver.cpp:245] Train net output #76: loss2/loss11 = 0.0001886 (* 0.0272727 = 5.14364e-06 loss) | |
I0327 13:45:47.774359 21344 solver.cpp:245] Train net output #77: loss2/loss12 = 0.000197644 (* 0.0272727 = 5.39029e-06 loss) | |
I0327 13:45:47.774374 21344 solver.cpp:245] Train net output #78: loss2/loss13 = 0.000303203 (* 0.0272727 = 8.26916e-06 loss) | |
I0327 13:45:47.774389 21344 solver.cpp:245] Train net output #79: loss2/loss14 = 8.41634e-05 (* 0.0272727 = 2.29536e-06 loss) | |
I0327 13:45:47.774404 21344 solver.cpp:245] Train net output #80: loss2/loss15 = 0.000271799 (* 0.0272727 = 7.4127e-06 loss) | |
I0327 13:45:47.774417 21344 solver.cpp:245] Train net output #81: loss2/loss16 = 0.00014067 (* 0.0272727 = 3.83646e-06 loss) | |
I0327 13:45:47.774431 21344 solver.cpp:245] Train net output #82: loss2/loss17 = 0.000169119 (* 0.0272727 = 4.61233e-06 loss) | |
I0327 13:45:47.774446 21344 solver.cpp:245] Train net output #83: loss2/loss18 = 0.000143781 (* 0.0272727 = 3.92129e-06 loss) | |
I0327 13:45:47.774459 21344 solver.cpp:245] Train net output #84: loss2/loss19 = 0.000209133 (* 0.0272727 = 5.70364e-06 loss) | |
I0327 13:45:47.774473 21344 solver.cpp:245] Train net output #85: loss2/loss20 = 6.71424e-05 (* 0.0272727 = 1.83116e-06 loss) | |
I0327 13:45:47.774487 21344 solver.cpp:245] Train net output #86: loss2/loss21 = 0.000150109 (* 0.0272727 = 4.09389e-06 loss) | |
I0327 13:45:47.774502 21344 solver.cpp:245] Train net output #87: loss2/loss22 = 0.000166643 (* 0.0272727 = 4.5448e-06 loss) | |
I0327 13:45:47.774513 21344 solver.cpp:245] Train net output #88: loss3/accuracy01 = 0 | |
I0327 13:45:47.774525 21344 solver.cpp:245] Train net output #89: loss3/accuracy02 = 0 | |
I0327 13:45:47.774536 21344 solver.cpp:245] Train net output #90: loss3/accuracy03 = 0 | |
I0327 13:45:47.774547 21344 solver.cpp:245] Train net output #91: loss3/accuracy04 = 0.25 | |
I0327 13:45:47.774559 21344 solver.cpp:245] Train net output #92: loss3/accuracy05 = 0.375 | |
I0327 13:45:47.774570 21344 solver.cpp:245] Train net output #93: loss3/accuracy06 = 0.625 | |
I0327 13:45:47.774581 21344 solver.cpp:245] Train net output #94: loss3/accuracy07 = 0.75 | |
I0327 13:45:47.774592 21344 solver.cpp:245] Train net output #95: loss3/accuracy08 = 0.75 | |
I0327 13:45:47.774605 21344 solver.cpp:245] Train net output #96: loss3/accuracy09 = 1 | |
I0327 13:45:47.774616 21344 solver.cpp:245] Train net output #97: loss3/accuracy10 = 1 | |
I0327 13:45:47.774626 21344 solver.cpp:245] Train net output #98: loss3/accuracy11 = 1 | |
I0327 13:45:47.774637 21344 solver.cpp:245] Train net output #99: loss3/accuracy12 = 1 | |
I0327 13:45:47.774649 21344 solver.cpp:245] Train net output #100: loss3/accuracy13 = 1 | |
I0327 13:45:47.774660 21344 solver.cpp:245] Train net output #101: loss3/accuracy14 = 1 | |
I0327 13:45:47.774672 21344 solver.cpp:245] Train net output #102: loss3/accuracy15 = 1 | |
I0327 13:45:47.774682 21344 solver.cpp:245] Train net output #103: loss3/accuracy16 = 1 | |
I0327 13:45:47.774694 21344 solver.cpp:245] Train net output #104: loss3/accuracy17 = 1 | |
I0327 13:45:47.774705 21344 solver.cpp:245] Train net output #105: loss3/accuracy18 = 1 | |
I0327 13:45:47.774716 21344 solver.cpp:245] Train net output #106: loss3/accuracy19 = 1 | |
I0327 13:45:47.774727 21344 solver.cpp:245] Train net output #107: loss3/accuracy20 = 1 | |
I0327 13:45:47.774739 21344 solver.cpp:245] Train net output #108: loss3/accuracy21 = 1 | |
I0327 13:45:47.774749 21344 solver.cpp:245] Train net output #109: loss3/accuracy22 = 1 | |
I0327 13:45:47.774762 21344 solver.cpp:245] Train net output #110: loss3/loss01 = 3.72351 (* 0.0909091 = 0.338501 loss) | |
I0327 13:45:47.774776 21344 solver.cpp:245] Train net output #111: loss3/loss02 = 2.94736 (* 0.0909091 = 0.267942 loss) | |
I0327 13:45:47.774791 21344 solver.cpp:245] Train net output #112: loss3/loss03 = 3.1959 (* 0.0909091 = 0.290536 loss) | |
I0327 13:45:47.774803 21344 solver.cpp:245] Train net output #113: loss3/loss04 = 3.06695 (* 0.0909091 = 0.278814 loss) | |
I0327 13:45:47.774817 21344 solver.cpp:245] Train net output #114: loss3/loss05 = 1.97985 (* 0.0909091 = 0.179986 loss) | |
I0327 13:45:47.774832 21344 solver.cpp:245] Train net output #115: loss3/loss06 = 1.62346 (* 0.0909091 = 0.147587 loss) | |
I0327 13:45:47.774854 21344 solver.cpp:245] Train net output #116: loss3/loss07 = 0.873927 (* 0.0909091 = 0.079448 loss) | |
I0327 13:45:47.774869 21344 solver.cpp:245] Train net output #117: loss3/loss08 = 1.04755 (* 0.0909091 = 0.0952319 loss) | |
I0327 13:45:47.774883 21344 solver.cpp:245] Train net output #118: loss3/loss09 = 0.0805231 (* 0.0909091 = 0.00732028 loss) | |
I0327 13:45:47.774898 21344 solver.cpp:245] Train net output #119: loss3/loss10 = 0.0274551 (* 0.0909091 = 0.00249592 loss) | |
I0327 13:45:47.774911 21344 solver.cpp:245] Train net output #120: loss3/loss11 = 0.000246967 (* 0.0909091 = 2.24515e-05 loss) | |
I0327 13:45:47.774925 21344 solver.cpp:245] Train net output #121: loss3/loss12 = 0.000215442 (* 0.0909091 = 1.95856e-05 loss) | |
I0327 13:45:47.774940 21344 solver.cpp:245] Train net output #122: loss3/loss13 = 0.000267668 (* 0.0909091 = 2.43335e-05 loss) | |
I0327 13:45:47.774953 21344 solver.cpp:245] Train net output #123: loss3/loss14 = 0.000269752 (* 0.0909091 = 2.45229e-05 loss) | |
I0327 13:45:47.774967 21344 solver.cpp:245] Train net output #124: loss3/loss15 = 0.00017135 (* 0.0909091 = 1.55772e-05 loss) | |
I0327 13:45:47.774977 21344 solver.cpp:245] Train net output #125: loss3/loss16 = 0.000304886 (* 0.0909091 = 2.77169e-05 loss) | |
I0327 13:45:47.774992 21344 solver.cpp:245] Train net output #126: loss3/loss17 = 0.000262615 (* 0.0909091 = 2.38741e-05 loss) | |
I0327 13:45:47.775007 21344 solver.cpp:245] Train net output #127: loss3/loss18 = 0.000225909 (* 0.0909091 = 2.05372e-05 loss) | |
I0327 13:45:47.775027 21344 solver.cpp:245] Train net output #128: loss3/loss19 = 0.000268737 (* 0.0909091 = 2.44306e-05 loss) | |
I0327 13:45:47.775044 21344 solver.cpp:245] Train net output #129: loss3/loss20 = 0.000200417 (* 0.0909091 = 1.82198e-05 loss) | |
I0327 13:45:47.775075 21344 solver.cpp:245] Train net output #130: loss3/loss21 = 0.000237905 (* 0.0909091 = 2.16277e-05 loss) | |
I0327 13:45:47.775091 21344 solver.cpp:245] Train net output #131: loss3/loss22 = 0.000220481 (* 0.0909091 = 2.00437e-05 loss) | |
I0327 13:45:47.775104 21344 solver.cpp:245] Train net output #132: total_accuracy = 0 | |
I0327 13:45:47.775125 21344 solver.cpp:245] Train net output #133: total_confidence = 0.00068003 | |
I0327 13:45:47.775147 21344 sgd_solver.cpp:106] Iteration 16000, lr = 0.01 | |
I0327 13:47:35.576812 21344 solver.cpp:229] Iteration 16500, loss = 2.68612 | |
I0327 13:47:35.577029 21344 solver.cpp:245] Train net output #0: loss1/accuracy01 = 0.5 | |
I0327 13:47:35.577061 21344 solver.cpp:245] Train net output #1: loss1/accuracy02 = 0.25 | |
I0327 13:47:35.577085 21344 solver.cpp:245] Train net output #2: loss1/accuracy03 = 0.25 | |
I0327 13:47:35.577105 21344 solver.cpp:245] Train net output #3: loss1/accuracy04 = 0 | |
I0327 13:47:35.577127 21344 solver.cpp:245] Train net output #4: loss1/accuracy05 = 0.25 | |
I0327 13:47:35.577149 21344 solver.cpp:245] Train net output #5: loss1/accuracy06 = 0.25 | |
I0327 13:47:35.577170 21344 solver.cpp:245] Train net output #6: loss1/accuracy07 = 0.625 | |
I0327 13:47:35.577193 21344 solver.cpp:245] Train net output #7: loss1/accuracy08 = 0.875 | |
I0327 13:47:35.577214 21344 solver.cpp:245] Train net output #8: loss1/accuracy09 = 1 | |
I0327 13:47:35.577236 21344 solver.cpp:245] Train net output #9: loss1/accuracy10 = 1 | |
I0327 13:47:35.577258 21344 solver.cpp:245] Train net output #10: loss1/accuracy11 = 1 | |
I0327 13:47:35.577280 21344 solver.cpp:245] Train net output #11: loss1/accuracy12 = 1 | |
I0327 13:47:35.577301 21344 solver.cpp:245] Train net output #12: loss1/accuracy13 = 1 | |
I0327 13:47:35.577325 21344 solver.cpp:245] Train net output #13: loss1/accuracy14 = 1 | |
I0327 13:47:35.577349 21344 solver.cpp:245] Train net output #14: loss1/accuracy15 = 1 | |
I0327 13:47:35.577371 21344 solver.cpp:245] Train net output #15: loss1/accuracy16 = 1 | |
I0327 13:47:35.577394 21344 solver.cpp:245] Train net output #16: loss1/accuracy17 = 1 | |
I0327 13:47:35.577415 21344 solver.cpp:245] Train net output #17: loss1/accuracy18 = 1 | |
I0327 13:47:35.577437 21344 solver.cpp:245] Train net output #18: loss1/accuracy19 = 1 | |
I0327 13:47:35.577460 21344 solver.cpp:245] Train net output #19: loss1/accuracy20 = 1 | |
I0327 13:47:35.577481 21344 solver.cpp:245] Train net output #20: loss1/accuracy21 = 1 | |
I0327 13:47:35.577502 21344 solver.cpp:245] Train net output #21: loss1/accuracy22 = 1 | |
I0327 13:47:35.577533 21344 solver.cpp:245] Train net output #22: loss1/loss01 = 1.39512 (* 0.0272727 = 0.0380487 loss) | |
I0327 13:47:35.577589 21344 solver.cpp:245] Train net output #23: loss1/loss02 = 3.09236 (* 0.0272727 = 0.0843372 loss) | |
I0327 13:47:35.577617 21344 solver.cpp:245] Train net output #24: loss1/loss03 = 2.88196 (* 0.0272727 = 0.0785989 loss) | |
I0327 13:47:35.577643 21344 solver.cpp:245] Train net output #25: loss1/loss04 = 3.30262 (* 0.0272727 = 0.0900715 loss) | |
I0327 13:47:35.577671 21344 solver.cpp:245] Train net output #26: loss1/loss05 = 2.38773 (* 0.0272727 = 0.0651198 loss) | |
I0327 13:47:35.577699 21344 solver.cpp:245] Train net output #27: loss1/loss06 = 2.87692 (* 0.0272727 = 0.0784613 loss) | |
I0327 13:47:35.577726 21344 solver.cpp:245] Train net output #28: loss1/loss07 = 1.60286 (* 0.0272727 = 0.0437144 loss) | |
I0327 13:47:35.577754 21344 solver.cpp:245] Train net output #29: loss1/loss08 = 0.184262 (* 0.0272727 = 0.00502533 loss) | |
I0327 13:47:35.577780 21344 solver.cpp:245] Train net output #30: loss1/loss09 = 0.0240096 (* 0.0272727 = 0.000654807 loss) | |
I0327 13:47:35.577807 21344 solver.cpp:245] Train net output #31: loss1/loss10 = 0.00279339 (* 0.0272727 = 7.61834e-05 loss) | |
I0327 13:47:35.577836 21344 solver.cpp:245] Train net output #32: loss1/loss11 = 3.72631e-05 (* 0.0272727 = 1.01627e-06 loss) | |
I0327 13:47:35.577862 21344 solver.cpp:245] Train net output #33: loss1/loss12 = 8.60085e-05 (* 0.0272727 = 2.34569e-06 loss) | |
I0327 13:47:35.577889 21344 solver.cpp:245] Train net output #34: loss1/loss13 = 4.2046e-05 (* 0.0272727 = 1.14671e-06 loss) | |
I0327 13:47:35.577916 21344 solver.cpp:245] Train net output #35: loss1/loss14 = 2.67335e-05 (* 0.0272727 = 7.29094e-07 loss) | |
I0327 13:47:35.577944 21344 solver.cpp:245] Train net output #36: loss1/loss15 = 4.47207e-05 (* 0.0272727 = 1.21966e-06 loss) | |
I0327 13:47:35.577971 21344 solver.cpp:245] Train net output #37: loss1/loss16 = 2.73591e-05 (* 0.0272727 = 7.46158e-07 loss) | |
I0327 13:47:35.578003 21344 solver.cpp:245] Train net output #38: loss1/loss17 = 4.61662e-05 (* 0.0272727 = 1.25908e-06 loss) | |
I0327 13:47:35.578054 21344 solver.cpp:245] Train net output #39: loss1/loss18 = 2.92073e-05 (* 0.0272727 = 7.96561e-07 loss) | |
I0327 13:47:35.578084 21344 solver.cpp:245] Train net output #40: loss1/loss19 = 2.60477e-05 (* 0.0272727 = 7.10392e-07 loss) | |
I0327 13:47:35.578114 21344 solver.cpp:245] Train net output #41: loss1/loss20 = 4.51752e-05 (* 0.0272727 = 1.23205e-06 loss) | |
I0327 13:47:35.578145 21344 solver.cpp:245] Train net output #42: loss1/loss21 = 6.46183e-05 (* 0.0272727 = 1.76232e-06 loss) | |
I0327 13:47:35.578173 21344 solver.cpp:245] Train net output #43: loss1/loss22 = 4.47051e-05 (* 0.0272727 = 1.21923e-06 loss) | |
I0327 13:47:35.578197 21344 solver.cpp:245] Train net output #44: loss2/accuracy01 = 0.625 | |
I0327 13:47:35.578219 21344 solver.cpp:245] Train net output #45: loss2/accuracy02 = 0 | |
I0327 13:47:35.578241 21344 solver.cpp:245] Train net output #46: loss2/accuracy03 = 0 | |
I0327 13:47:35.578263 21344 solver.cpp:245] Train net output #47: loss2/accuracy04 = 0 | |
I0327 13:47:35.578285 21344 solver.cpp:245] Train net output #48: loss2/accuracy05 = 0.25 | |
I0327 13:47:35.578308 21344 solver.cpp:245] Train net output #49: loss2/accuracy06 = 0.375 | |
I0327 13:47:35.578330 21344 solver.cpp:245] Train net output #50: loss2/accuracy07 = 0.625 | |
I0327 13:47:35.578353 21344 solver.cpp:245] Train net output #51: loss2/accuracy08 = 1 | |
I0327 13:47:35.578375 21344 solver.cpp:245] Train net output #52: loss2/accuracy09 = 1 | |
I0327 13:47:35.578397 21344 solver.cpp:245] Train net output #53: loss2/accuracy10 = 1 | |
I0327 13:47:35.578419 21344 solver.cpp:245] Train net output #54: loss2/accuracy11 = 1 | |
I0327 13:47:35.578441 21344 solver.cpp:245] Train net output #55: loss2/accuracy12 = 1 | |
I0327 13:47:35.578464 21344 solver.cpp:245] Train net output #56: loss2/accuracy13 = 1 | |
I0327 13:47:35.578485 21344 solver.cpp:245] Train net output #57: loss2/accuracy14 = 1 | |
I0327 13:47:35.578507 21344 solver.cpp:245] Train net output #58: loss2/accuracy15 = 1 | |
I0327 13:47:35.578529 21344 solver.cpp:245] Train net output #59: loss2/accuracy16 = 1 | |
I0327 13:47:35.578550 21344 solver.cpp:245] Train net output #60: loss2/accuracy17 = 1 | |
I0327 13:47:35.578572 21344 solver.cpp:245] Train net output #61: loss2/accuracy18 = 1 | |
I0327 13:47:35.578593 21344 solver.cpp:245] Train net output #62: loss2/accuracy19 = 1 | |
I0327 13:47:35.578614 21344 solver.cpp:245] Train net output #63: loss2/accuracy20 = 1 | |
I0327 13:47:35.578637 21344 solver.cpp:245] Train net output #64: loss2/accuracy21 = 1 | |
I0327 13:47:35.578660 21344 solver.cpp:245] Train net output #65: loss2/accuracy22 = 1 | |
I0327 13:47:35.578685 21344 solver.cpp:245] Train net output #66: loss2/loss01 = 1.52833 (* 0.0272727 = 0.0416818 loss) | |
I0327 13:47:35.578712 21344 solver.cpp:245] Train net output #67: loss2/loss02 = 2.87683 (* 0.0272727 = 0.078459 loss) | |
I0327 13:47:35.578739 21344 solver.cpp:245] Train net output #68: loss2/loss03 = 3.11757 (* 0.0272727 = 0.0850246 loss) | |
I0327 13:47:35.578768 21344 solver.cpp:245] Train net output #69: loss2/loss04 = 3.52914 (* 0.0272727 = 0.0962494 loss) | |
I0327 13:47:35.578794 21344 solver.cpp:245] Train net output #70: loss2/loss05 = 2.65928 (* 0.0272727 = 0.0725257 loss) | |
I0327 13:47:35.578819 21344 solver.cpp:245] Train net output #71: loss2/loss06 = 2.65744 (* 0.0272727 = 0.0724756 loss) | |
I0327 13:47:35.578845 21344 solver.cpp:245] Train net output #72: loss2/loss07 = 2.20845 (* 0.0272727 = 0.0602303 loss) | |
I0327 13:47:35.578871 21344 solver.cpp:245] Train net output #73: loss2/loss08 = 0.0705645 (* 0.0272727 = 0.00192449 loss) | |
I0327 13:47:35.578897 21344 solver.cpp:245] Train net output #74: loss2/loss09 = 0.0283347 (* 0.0272727 = 0.000772763 loss) | |
I0327 13:47:35.578924 21344 solver.cpp:245] Train net output #75: loss2/loss10 = 0.0029012 (* 0.0272727 = 7.91236e-05 loss) | |
I0327 13:47:35.578951 21344 solver.cpp:245] Train net output #76: loss2/loss11 = 0.00012749 (* 0.0272727 = 3.477e-06 loss) | |
I0327 13:47:35.578997 21344 solver.cpp:245] Train net output #77: loss2/loss12 = 0.00010392 (* 0.0272727 = 2.83417e-06 loss) | |
I0327 13:47:35.579025 21344 solver.cpp:245] Train net output #78: loss2/loss13 = 0.000113015 (* 0.0272727 = 3.08223e-06 loss) | |
I0327 13:47:35.579057 21344 solver.cpp:245] Train net output #79: loss2/loss14 = 0.000156429 (* 0.0272727 = 4.26625e-06 loss) | |
I0327 13:47:35.579087 21344 solver.cpp:245] Train net output #80: loss2/loss15 = 0.000313882 (* 0.0272727 = 8.56042e-06 loss) | |
I0327 13:47:35.579113 21344 solver.cpp:245] Train net output #81: loss2/loss16 = 0.000110956 (* 0.0272727 = 3.02607e-06 loss) | |
I0327 13:47:35.579140 21344 solver.cpp:245] Train net output #82: loss2/loss17 = 7.44696e-05 (* 0.0272727 = 2.03099e-06 loss) | |
I0327 13:47:35.579167 21344 solver.cpp:245] Train net output #83: loss2/loss18 = 7.5304e-05 (* 0.0272727 = 2.05375e-06 loss) | |
I0327 13:47:35.579195 21344 solver.cpp:245] Train net output #84: loss2/loss19 = 9.20052e-05 (* 0.0272727 = 2.50923e-06 loss) | |
I0327 13:47:35.579221 21344 solver.cpp:245] Train net output #85: loss2/loss20 = 7.59439e-05 (* 0.0272727 = 2.0712e-06 loss) | |
I0327 13:47:35.579248 21344 solver.cpp:245] Train net output #86: loss2/loss21 = 3.28881e-05 (* 0.0272727 = 8.96948e-07 loss) | |
I0327 13:47:35.579274 21344 solver.cpp:245] Train net output #87: loss2/loss22 = 0.000114036 (* 0.0272727 = 3.11008e-06 loss) | |
I0327 13:47:35.579298 21344 solver.cpp:245] Train net output #88: loss3/accuracy01 = 0.75 | |
I0327 13:47:35.579319 21344 solver.cpp:245] Train net output #89: loss3/accuracy02 = 0.125 | |
I0327 13:47:35.579340 21344 solver.cpp:245] Train net output #90: loss3/accuracy03 = 0 | |
I0327 13:47:35.579361 21344 solver.cpp:245] Train net output #91: loss3/accuracy04 = 0.125 | |
I0327 13:47:35.579383 21344 solver.cpp:245] Train net output #92: loss3/accuracy05 = 0.25 | |
I0327 13:47:35.579404 21344 solver.cpp:245] Train net output #93: loss3/accuracy06 = 0.375 | |
I0327 13:47:35.579426 21344 solver.cpp:245] Train net output #94: loss3/accuracy07 = 0.625 | |
I0327 13:47:35.579447 21344 solver.cpp:245] Train net output #95: loss3/accuracy08 = 1 | |
I0327 13:47:35.579469 21344 solver.cpp:245] Train net output #96: loss3/accuracy09 = 1 | |
I0327 13:47:35.579490 21344 solver.cpp:245] Train net output #97: loss3/accuracy10 = 1 | |
I0327 13:47:35.579511 21344 solver.cpp:245] Train net output #98: loss3/accuracy11 = 1 | |
I0327 13:47:35.579533 21344 solver.cpp:245] Train net output #99: loss3/accuracy12 = 1 | |
I0327 13:47:35.579555 21344 solver.cpp:245] Train net output #100: loss3/accuracy13 = 1 | |
I0327 13:47:35.579576 21344 solver.cpp:245] Train net output #101: loss3/accuracy14 = 1 | |
I0327 13:47:35.579596 21344 solver.cpp:245] Train net output #102: loss3/accuracy15 = 1 | |
I0327 13:47:35.579618 21344 solver.cpp:245] Train net output #103: loss3/accuracy16 = 1 | |
I0327 13:47:35.579639 21344 solver.cpp:245] Train net output #104: loss3/accuracy17 = 1 | |
I0327 13:47:35.579660 21344 solver.cpp:245] Train net output #105: loss3/accuracy18 = 1 | |
I0327 13:47:35.579682 21344 solver.cpp:245] Train net output #106: loss3/accuracy19 = 1 | |
I0327 13:47:35.579704 21344 solver.cpp:245] Train net output #107: loss3/accuracy20 = 1 | |
I0327 13:47:35.579725 21344 solver.cpp:245] Train net output #108: loss3/accuracy21 = 1 | |
I0327 13:47:35.579746 21344 solver.cpp:245] Train net output #109: loss3/accuracy22 = 1 | |
I0327 13:47:35.579772 21344 solver.cpp:245] Train net output #110: loss3/loss01 = 1.19136 (* 0.0909091 = 0.108305 loss) | |
I0327 13:47:35.579798 21344 solver.cpp:245] Train net output #111: loss3/loss02 = 2.96563 (* 0.0909091 = 0.269603 loss) | |
I0327 13:47:35.579824 21344 solver.cpp:245] Train net output #112: loss3/loss03 = 2.93349 (* 0.0909091 = 0.266681 loss) | |
I0327 13:47:35.579850 21344 solver.cpp:245] Train net output #113: loss3/loss04 = 3.16574 (* 0.0909091 = 0.287794 loss) | |
I0327 13:47:35.579876 21344 solver.cpp:245] Train net output #114: loss3/loss05 = 2.7372 (* 0.0909091 = 0.248837 loss) | |
I0327 13:47:35.579919 21344 solver.cpp:245] Train net output #115: loss3/loss06 = 2.54054 (* 0.0909091 = 0.230958 loss) | |
I0327 13:47:35.579947 21344 solver.cpp:245] Train net output #116: loss3/loss07 = 1.70648 (* 0.0909091 = 0.155135 loss) | |
I0327 13:47:35.579973 21344 solver.cpp:245] Train net output #117: loss3/loss08 = 0.230447 (* 0.0909091 = 0.0209497 loss) | |
I0327 13:47:35.580000 21344 solver.cpp:245] Train net output #118: loss3/loss09 = 0.0536131 (* 0.0909091 = 0.00487392 loss) | |
I0327 13:47:35.580026 21344 solver.cpp:245] Train net output #119: loss3/loss10 = 0.0145906 (* 0.0909091 = 0.00132641 loss) | |
I0327 13:47:35.580052 21344 solver.cpp:245] Train net output #120: loss3/loss11 = 0.000150677 (* 0.0909091 = 1.36979e-05 loss) | |
I0327 13:47:35.580078 21344 solver.cpp:245] Train net output #121: loss3/loss12 = 0.0001517 (* 0.0909091 = 1.37909e-05 loss) | |
I0327 13:47:35.580111 21344 solver.cpp:245] Train net output #122: loss3/loss13 = 0.000114373 (* 0.0909091 = 1.03976e-05 loss) | |
I0327 13:47:35.580138 21344 solver.cpp:245] Train net output #123: loss3/loss14 = 0.000165722 (* 0.0909091 = 1.50656e-05 loss) | |
I0327 13:47:35.580165 21344 solver.cpp:245] Train net output #124: loss3/loss15 = 0.000165701 (* 0.0909091 = 1.50638e-05 loss) | |
I0327 13:47:35.580193 21344 solver.cpp:245] Train net output #125: loss3/loss16 = 0.000175129 (* 0.0909091 = 1.59208e-05 loss) | |
I0327 13:47:35.580219 21344 solver.cpp:245] Train net output #126: loss3/loss17 = 0.000138778 (* 0.0909091 = 1.26162e-05 loss) | |
I0327 13:47:35.580247 21344 solver.cpp:245] Train net output #127: loss3/loss18 = 0.000119445 (* 0.0909091 = 1.08586e-05 loss) | |
I0327 13:47:35.580282 21344 solver.cpp:245] Train net output #128: loss3/loss19 = 0.000168297 (* 0.0909091 = 1.52997e-05 loss) | |
I0327 13:47:35.580312 21344 solver.cpp:245] Train net output #129: loss3/loss20 = 0.000144134 (* 0.0909091 = 1.31031e-05 loss) | |
I0327 13:47:35.580340 21344 solver.cpp:245] Train net output #130: loss3/loss21 = 0.000128774 (* 0.0909091 = 1.17067e-05 loss) | |
I0327 13:47:35.580365 21344 solver.cpp:245] Train net output #131: loss3/loss22 = 0.000129281 (* 0.0909091 = 1.17528e-05 loss) | |
I0327 13:47:35.580389 21344 solver.cpp:245] Train net output #132: total_accuracy = 0 | |
I0327 13:47:35.580410 21344 solver.cpp:245] Train net output #133: total_confidence = 0.000691999 | |
I0327 13:47:35.580431 21344 sgd_solver.cpp:106] Iteration 16500, lr = 0.01 | |
I0327 13:49:23.494496 21344 solver.cpp:229] Iteration 17000, loss = 2.68192 | |
I0327 13:49:23.494674 21344 solver.cpp:245] Train net output #0: loss1/accuracy01 = 0.375 | |
I0327 13:49:23.494695 21344 solver.cpp:245] Train net output #1: loss1/accuracy02 = 0.125 | |
I0327 13:49:23.494709 21344 solver.cpp:245] Train net output #2: loss1/accuracy03 = 0.125 | |
I0327 13:49:23.494720 21344 solver.cpp:245] Train net output #3: loss1/accuracy04 = 0.5 | |
I0327 13:49:23.494732 21344 solver.cpp:245] Train net output #4: loss1/accuracy05 = 0.375 | |
I0327 13:49:23.494750 21344 solver.cpp:245] Train net output #5: loss1/accuracy06 = 0.625 | |
I0327 13:49:23.494762 21344 solver.cpp:245] Train net output #6: loss1/accuracy07 = 0.875 | |
I0327 13:49:23.494774 21344 solver.cpp:245] Train net output #7: loss1/accuracy08 = 0.875 | |
I0327 13:49:23.494786 21344 solver.cpp:245] Train net output #8: loss1/accuracy09 = 1 | |
I0327 13:49:23.494797 21344 solver.cpp:245] Train net output #9: loss1/accuracy10 = 1 | |
I0327 13:49:23.494809 21344 solver.cpp:245] Train net output #10: loss1/accuracy11 = 1 | |
I0327 13:49:23.494822 21344 solver.cpp:245] Train net output #11: loss1/accuracy12 = 1 | |
I0327 13:49:23.494832 21344 solver.cpp:245] Train net output #12: loss1/accuracy13 = 1 | |
I0327 13:49:23.494844 21344 solver.cpp:245] Train net output #13: loss1/accuracy14 = 1 | |
I0327 13:49:23.494856 21344 solver.cpp:245] Train net output #14: loss1/accuracy15 = 1 | |
I0327 13:49:23.494868 21344 solver.cpp:245] Train net output #15: loss1/accuracy16 = 1 | |
I0327 13:49:23.494879 21344 solver.cpp:245] Train net output #16: loss1/accuracy17 = 1 | |
I0327 13:49:23.494899 21344 solver.cpp:245] Train net output #17: loss1/accuracy18 = 1 | |
I0327 13:49:23.494910 21344 solver.cpp:245] Train net output #18: loss1/accuracy19 = 1 | |
I0327 13:49:23.494921 21344 solver.cpp:245] Train net output #19: loss1/accuracy20 = 1 | |
I0327 13:49:23.494933 21344 solver.cpp:245] Train net output #20: loss1/accuracy21 = 1 | |
I0327 13:49:23.494945 21344 solver.cpp:245] Train net output #21: loss1/accuracy22 = 1 | |
I0327 13:49:23.494967 21344 solver.cpp:245] Train net output #22: loss1/loss01 = 2.34494 (* 0.0272727 = 0.063953 loss) | |
I0327 13:49:23.494982 21344 solver.cpp:245] Train net output #23: loss1/loss02 = 2.82161 (* 0.0272727 = 0.0769529 loss) | |
I0327 13:49:23.494997 21344 solver.cpp:245] Train net output #24: loss1/loss03 = 2.84048 (* 0.0272727 = 0.0774678 loss) | |
I0327 13:49:23.495010 21344 solver.cpp:245] Train net output #25: loss1/loss04 = 2.50238 (* 0.0272727 = 0.0682467 loss) | |
I0327 13:49:23.495024 21344 solver.cpp:245] Train net output #26: loss1/loss05 = 2.0448 (* 0.0272727 = 0.0557672 loss) | |
I0327 13:49:23.495046 21344 solver.cpp:245] Train net output #27: loss1/loss06 = 1.58838 (* 0.0272727 = 0.0433196 loss) | |
I0327 13:49:23.495060 21344 solver.cpp:245] Train net output #28: loss1/loss07 = 0.649891 (* 0.0272727 = 0.0177243 loss) | |
I0327 13:49:23.495074 21344 solver.cpp:245] Train net output #29: loss1/loss08 = 0.370235 (* 0.0272727 = 0.0100973 loss) | |
I0327 13:49:23.495097 21344 solver.cpp:245] Train net output #30: loss1/loss09 = 0.205406 (* 0.0272727 = 0.00560197 loss) | |
I0327 13:49:23.495115 21344 solver.cpp:245] Train net output #31: loss1/loss10 = 0.13443 (* 0.0272727 = 0.00366626 loss) | |
I0327 13:49:23.495129 21344 solver.cpp:245] Train net output #32: loss1/loss11 = 0.00416288 (* 0.0272727 = 0.000113533 loss) | |
I0327 13:49:23.495143 21344 solver.cpp:245] Train net output #33: loss1/loss12 = 0.0085909 (* 0.0272727 = 0.000234297 loss) | |
I0327 13:49:23.495167 21344 solver.cpp:245] Train net output #34: loss1/loss13 = 0.00695728 (* 0.0272727 = 0.000189744 loss) | |
I0327 13:49:23.495189 21344 solver.cpp:245] Train net output #35: loss1/loss14 = 0.00787535 (* 0.0272727 = 0.000214782 loss) | |
I0327 13:49:23.495228 21344 solver.cpp:245] Train net output #36: loss1/loss15 = 0.0057814 (* 0.0272727 = 0.000157675 loss) | |
I0327 13:49:23.495257 21344 solver.cpp:245] Train net output #37: loss1/loss16 = 0.0111118 (* 0.0272727 = 0.000303049 loss) | |
I0327 13:49:23.495302 21344 solver.cpp:245] Train net output #38: loss1/loss17 = 0.00426174 (* 0.0272727 = 0.000116229 loss) | |
I0327 13:49:23.495343 21344 solver.cpp:245] Train net output #39: loss1/loss18 = 0.00862271 (* 0.0272727 = 0.000235165 loss) | |
I0327 13:49:23.495359 21344 solver.cpp:245] Train net output #40: loss1/loss19 = 0.0086664 (* 0.0272727 = 0.000236356 loss) | |
I0327 13:49:23.495374 21344 solver.cpp:245] Train net output #41: loss1/loss20 = 0.00516728 (* 0.0272727 = 0.000140926 loss) | |
I0327 13:49:23.495388 21344 solver.cpp:245] Train net output #42: loss1/loss21 = 0.00648902 (* 0.0272727 = 0.000176973 loss) | |
I0327 13:49:23.495404 21344 solver.cpp:245] Train net output #43: loss1/loss22 = 0.00175307 (* 0.0272727 = 4.78109e-05 loss) | |
I0327 13:49:23.495415 21344 solver.cpp:245] Train net output #44: loss2/accuracy01 = 0.375 | |
I0327 13:49:23.495429 21344 solver.cpp:245] Train net output #45: loss2/accuracy02 = 0 | |
I0327 13:49:23.495440 21344 solver.cpp:245] Train net output #46: loss2/accuracy03 = 0.125 | |
I0327 13:49:23.495451 21344 solver.cpp:245] Train net output #47: loss2/accuracy04 = 0.5 | |
I0327 13:49:23.495466 21344 solver.cpp:245] Train net output #48: loss2/accuracy05 = 0.25 | |
I0327 13:49:23.495478 21344 solver.cpp:245] Train net output #49: loss2/accuracy06 = 0.75 | |
I0327 13:49:23.495491 21344 solver.cpp:245] Train net output #50: loss2/accuracy07 = 0.875 | |
I0327 13:49:23.495502 21344 solver.cpp:245] Train net output #51: loss2/accuracy08 = 1 | |
I0327 13:49:23.495514 21344 solver.cpp:245] Train net output #52: loss2/accuracy09 = 1 | |
I0327 13:49:23.495525 21344 solver.cpp:245] Train net output #53: loss2/accuracy10 = 1 | |
I0327 13:49:23.495537 21344 solver.cpp:245] Train net output #54: loss2/accuracy11 = 1 | |
I0327 13:49:23.495548 21344 solver.cpp:245] Train net output #55: loss2/accuracy12 = 1 | |
I0327 13:49:23.495559 21344 solver.cpp:245] Train net output #56: loss2/accuracy13 = 1 | |
I0327 13:49:23.495570 21344 solver.cpp:245] Train net output #57: loss2/accuracy14 = 1 | |
I0327 13:49:23.495581 21344 solver.cpp:245] Train net output #58: loss2/accuracy15 = 1 | |
I0327 13:49:23.495592 21344 solver.cpp:245] Train net output #59: loss2/accuracy16 = 1 | |
I0327 13:49:23.495604 21344 solver.cpp:245] Train net output #60: loss2/accuracy17 = 1 | |
I0327 13:49:23.495615 21344 solver.cpp:245] Train net output #61: loss2/accuracy18 = 1 | |
I0327 13:49:23.495626 21344 solver.cpp:245] Train net output #62: loss2/accuracy19 = 1 | |
I0327 13:49:23.495637 21344 solver.cpp:245] Train net output #63: loss2/accuracy20 = 1 | |
I0327 13:49:23.495648 21344 solver.cpp:245] Train net output #64: loss2/accuracy21 = 1 | |
I0327 13:49:23.495661 21344 solver.cpp:245] Train net output #65: loss2/accuracy22 = 1 | |
I0327 13:49:23.495673 21344 solver.cpp:245] Train net output #66: loss2/loss01 = 2.27099 (* 0.0272727 = 0.061936 loss) | |
I0327 13:49:23.495687 21344 solver.cpp:245] Train net output #67: loss2/loss02 = 3.38096 (* 0.0272727 = 0.0922081 loss) | |
I0327 13:49:23.495702 21344 solver.cpp:245] Train net output #68: loss2/loss03 = 3.22515 (* 0.0272727 = 0.0879588 loss) | |
I0327 13:49:23.495717 21344 solver.cpp:245] Train net output #69: loss2/loss04 = 2.56286 (* 0.0272727 = 0.0698961 loss) | |
I0327 13:49:23.495730 21344 solver.cpp:245] Train net output #70: loss2/loss05 = 2.4801 (* 0.0272727 = 0.0676391 loss) | |
I0327 13:49:23.495743 21344 solver.cpp:245] Train net output #71: loss2/loss06 = 1.49042 (* 0.0272727 = 0.0406477 loss) | |
I0327 13:49:23.495759 21344 solver.cpp:245] Train net output #72: loss2/loss07 = 0.573091 (* 0.0272727 = 0.0156298 loss) | |
I0327 13:49:23.495772 21344 solver.cpp:245] Train net output #73: loss2/loss08 = 0.300234 (* 0.0272727 = 0.00818821 loss) | |
I0327 13:49:23.495786 21344 solver.cpp:245] Train net output #74: loss2/loss09 = 0.103987 (* 0.0272727 = 0.00283602 loss) | |
I0327 13:49:23.495801 21344 solver.cpp:245] Train net output #75: loss2/loss10 = 0.0449973 (* 0.0272727 = 0.0012272 loss) | |
I0327 13:49:23.495815 21344 solver.cpp:245] Train net output #76: loss2/loss11 = 0.000940126 (* 0.0272727 = 2.56398e-05 loss) | |
I0327 13:49:23.495841 21344 solver.cpp:245] Train net output #77: loss2/loss12 = 0.00307592 (* 0.0272727 = 8.38886e-05 loss) | |
I0327 13:49:23.495858 21344 solver.cpp:245] Train net output #78: loss2/loss13 = 0.00162364 (* 0.0272727 = 4.42811e-05 loss) | |
I0327 13:49:23.495872 21344 solver.cpp:245] Train net output #79: loss2/loss14 = 0.00109355 (* 0.0272727 = 2.9824e-05 loss) | |
I0327 13:49:23.495893 21344 solver.cpp:245] Train net output #80: loss2/loss15 = 0.000894689 (* 0.0272727 = 2.44006e-05 loss) | |
I0327 13:49:23.495906 21344 solver.cpp:245] Train net output #81: loss2/loss16 = 0.00090903 (* 0.0272727 = 2.47917e-05 loss) | |
I0327 13:49:23.495920 21344 solver.cpp:245] Train net output #82: loss2/loss17 = 0.000515639 (* 0.0272727 = 1.40629e-05 loss) | |
I0327 13:49:23.495934 21344 solver.cpp:245] Train net output #83: loss2/loss18 = 0.000590338 (* 0.0272727 = 1.61001e-05 loss) | |
I0327 13:49:23.495949 21344 solver.cpp:245] Train net output #84: loss2/loss19 = 0.000573172 (* 0.0272727 = 1.5632e-05 loss) | |
I0327 13:49:23.495970 21344 solver.cpp:245] Train net output #85: loss2/loss20 = 0.00222105 (* 0.0272727 = 6.05741e-05 loss) | |
I0327 13:49:23.495985 21344 solver.cpp:245] Train net output #86: loss2/loss21 = 0.000978542 (* 0.0272727 = 2.66875e-05 loss) | |
I0327 13:49:23.495998 21344 solver.cpp:245] Train net output #87: loss2/loss22 = 0.00356498 (* 0.0272727 = 9.72267e-05 loss) | |
I0327 13:49:23.496011 21344 solver.cpp:245] Train net output #88: loss3/accuracy01 = 0.375 | |
I0327 13:49:23.496022 21344 solver.cpp:245] Train net output #89: loss3/accuracy02 = 0.375 | |
I0327 13:49:23.496034 21344 solver.cpp:245] Train net output #90: loss3/accuracy03 = 0.25 | |
I0327 13:49:23.496047 21344 solver.cpp:245] Train net output #91: loss3/accuracy04 = 0.25 | |
I0327 13:49:23.496059 21344 solver.cpp:245] Train net output #92: loss3/accuracy05 = 0.25 | |
I0327 13:49:23.496071 21344 solver.cpp:245] Train net output #93: loss3/accuracy06 = 0.875 | |
I0327 13:49:23.496083 21344 solver.cpp:245] Train net output #94: loss3/accuracy07 = 0.75 | |
I0327 13:49:23.496093 21344 solver.cpp:245] Train net output #95: loss3/accuracy08 = 1 | |
I0327 13:49:23.496114 21344 solver.cpp:245] Train net output #96: loss3/accuracy09 = 1 | |
I0327 13:49:23.496125 21344 solver.cpp:245] Train net output #97: loss3/accuracy10 = 1 | |
I0327 13:49:23.496136 21344 solver.cpp:245] Train net output #98: loss3/accuracy11 = 1 | |
I0327 13:49:23.496147 21344 solver.cpp:245] Train net output #99: loss3/accuracy12 = 1 | |
I0327 13:49:23.496162 21344 solver.cpp:245] Train net output #100: loss3/accuracy13 = 1 | |
I0327 13:49:23.496173 21344 solver.cpp:245] Train net output #101: loss3/accuracy14 = 1 | |
I0327 13:49:23.496186 21344 solver.cpp:245] Train net output #102: loss3/accuracy15 = 1 | |
I0327 13:49:23.496196 21344 solver.cpp:245] Train net output #103: loss3/accuracy16 = 1 | |
I0327 13:49:23.496207 21344 solver.cpp:245] Train net output #104: loss3/accuracy17 = 1 | |
I0327 13:49:23.496218 21344 solver.cpp:245] Train net output #105: loss3/accuracy18 = 1 | |
I0327 13:49:23.496229 21344 solver.cpp:245] Train net output #106: loss3/accuracy19 = 1 | |
I0327 13:49:23.496240 21344 solver.cpp:245] Train net output #107: loss3/accuracy20 = 1 | |
I0327 13:49:23.496253 21344 solver.cpp:245] Train net output #108: loss3/accuracy21 = 1 | |
I0327 13:49:23.496263 21344 solver.cpp:245] Train net output #109: loss3/accuracy22 = 1 | |
I0327 13:49:23.496276 21344 solver.cpp:245] Train net output #110: loss3/loss01 = 1.81995 (* 0.0909091 = 0.16545 loss) | |
I0327 13:49:23.496290 21344 solver.cpp:245] Train net output #111: loss3/loss02 = 2.53993 (* 0.0909091 = 0.230903 loss) | |
I0327 13:49:23.496304 21344 solver.cpp:245] Train net output #112: loss3/loss03 = 3.1686 (* 0.0909091 = 0.288055 loss) | |
I0327 13:49:23.496317 21344 solver.cpp:245] Train net output #113: loss3/loss04 = 2.90981 (* 0.0909091 = 0.264528 loss) | |
I0327 13:49:23.496331 21344 solver.cpp:245] Train net output #114: loss3/loss05 = 2.24651 (* 0.0909091 = 0.204228 loss) | |
I0327 13:49:23.496345 21344 solver.cpp:245] Train net output #115: loss3/loss06 = 1.25399 (* 0.0909091 = 0.113999 loss) | |
I0327 13:49:23.496371 21344 solver.cpp:245] Train net output #116: loss3/loss07 = 0.719914 (* 0.0909091 = 0.0654467 loss) | |
I0327 13:49:23.496386 21344 solver.cpp:245] Train net output #117: loss3/loss08 = 0.259135 (* 0.0909091 = 0.0235577 loss) | |
I0327 13:49:23.496399 21344 solver.cpp:245] Train net output #118: loss3/loss09 = 0.100086 (* 0.0909091 = 0.00909874 loss) | |
I0327 13:49:23.496413 21344 solver.cpp:245] Train net output #119: loss3/loss10 = 0.0417042 (* 0.0909091 = 0.00379129 loss) | |
I0327 13:49:23.496428 21344 solver.cpp:245] Train net output #120: loss3/loss11 = 0.00145036 (* 0.0909091 = 0.000131851 loss) | |
I0327 13:49:23.496443 21344 solver.cpp:245] Train net output #121: loss3/loss12 = 0.000898964 (* 0.0909091 = 8.1724e-05 loss) | |
I0327 13:49:23.496456 21344 solver.cpp:245] Train net output #122: loss3/loss13 = 0.00131547 (* 0.0909091 = 0.000119588 loss) | |
I0327 13:49:23.496470 21344 solver.cpp:245] Train net output #123: loss3/loss14 = 0.000965254 (* 0.0909091 = 8.77504e-05 loss) | |
I0327 13:49:23.496484 21344 solver.cpp:245] Train net output #124: loss3/loss15 = 0.00100795 (* 0.0909091 = 9.16318e-05 loss) | |
I0327 13:49:23.496498 21344 solver.cpp:245] Train net output #125: loss3/loss16 = 0.00101299 (* 0.0909091 = 9.20903e-05 loss) | |
I0327 13:49:23.496515 21344 solver.cpp:245] Train net output #126: loss3/loss17 = 0.00140868 (* 0.0909091 = 0.000128062 loss) | |
I0327 13:49:23.496529 21344 solver.cpp:245] Train net output #127: loss3/loss18 = 0.000792402 (* 0.0909091 = 7.20365e-05 loss) | |
I0327 13:49:23.496544 21344 solver.cpp:245] Train net output #128: loss3/loss19 = 0.0008928 (* 0.0909091 = 8.11636e-05 loss) | |
I0327 13:49:23.496558 21344 solver.cpp:245] Train net output #129: loss3/loss20 = 0.00162617 (* 0.0909091 = 0.000147834 loss) | |
I0327 13:49:23.496572 21344 solver.cpp:245] Train net output #130: loss3/loss21 = 0.0011032 (* 0.0909091 = 0.000100291 loss) | |
I0327 13:49:23.496587 21344 solver.cpp:245] Train net output #131: loss3/loss22 = 0.000877029 (* 0.0909091 = 7.97299e-05 loss) | |
I0327 13:49:23.496598 21344 solver.cpp:245] Train net output #132: total_accuracy = 0 | |
I0327 13:49:23.496610 21344 solver.cpp:245] Train net output #133: total_confidence = 0.000716852 | |
I0327 13:49:23.496623 21344 sgd_solver.cpp:106] Iteration 17000, lr = 0.01 | |
I0327 13:51:11.408695 21344 solver.cpp:229] Iteration 17500, loss = 2.66249 | |
I0327 13:51:11.408807 21344 solver.cpp:245] Train net output #0: loss1/accuracy01 = 0.5 | |
I0327 13:51:11.408828 21344 solver.cpp:245] Train net output #1: loss1/accuracy02 = 0.25 | |
I0327 13:51:11.408840 21344 solver.cpp:245] Train net output #2: loss1/accuracy03 = 0 | |
I0327 13:51:11.408852 21344 solver.cpp:245] Train net output #3: loss1/accuracy04 = 0.125 | |
I0327 13:51:11.408864 21344 solver.cpp:245] Train net output #4: loss1/accuracy05 = 0 | |
I0327 13:51:11.408876 21344 solver.cpp:245] Train net output #5: loss1/accuracy06 = 0.75 | |
I0327 13:51:11.408888 21344 solver.cpp:245] Train net output #6: loss1/accuracy07 = 0.5 | |
I0327 13:51:11.408900 21344 solver.cpp:245] Train net output #7: loss1/accuracy08 = 0.875 | |
I0327 13:51:11.408913 21344 solver.cpp:245] Train net output #8: loss1/accuracy09 = 0.875 | |
I0327 13:51:11.408926 21344 solver.cpp:245] Train net output #9: loss1/accuracy10 = 0.875 | |
I0327 13:51:11.408937 21344 solver.cpp:245] Train net output #10: loss1/accuracy11 = 1 | |
I0327 13:51:11.408948 21344 solver.cpp:245] Train net output #11: loss1/accuracy12 = 1 | |
I0327 13:51:11.408960 21344 solver.cpp:245] Train net output #12: loss1/accuracy13 = 1 | |
I0327 13:51:11.408972 21344 solver.cpp:245] Train net output #13: loss1/accuracy14 = 1 | |
I0327 13:51:11.408983 21344 solver.cpp:245] Train net output #14: loss1/accuracy15 = 1 | |
I0327 13:51:11.408998 21344 solver.cpp:245] Train net output #15: loss1/accuracy16 = 1 | |
I0327 13:51:11.409009 21344 solver.cpp:245] Train net output #16: loss1/accuracy17 = 1 | |
I0327 13:51:11.409021 21344 solver.cpp:245] Train net output #17: loss1/accuracy18 = 1 | |
I0327 13:51:11.409034 21344 solver.cpp:245] Train net output #18: loss1/accuracy19 = 1 | |
I0327 13:51:11.409044 21344 solver.cpp:245] Train net output #19: loss1/accuracy20 = 1 | |
I0327 13:51:11.409055 21344 solver.cpp:245] Train net output #20: loss1/accuracy21 = 1 | |
I0327 13:51:11.409067 21344 solver.cpp:245] Train net output #21: loss1/accuracy22 = 1 | |
I0327 13:51:11.409083 21344 solver.cpp:245] Train net output #22: loss1/loss01 = 1.83468 (* 0.0272727 = 0.0500366 loss) | |
I0327 13:51:11.409097 21344 solver.cpp:245] Train net output #23: loss1/loss02 = 2.5274 (* 0.0272727 = 0.0689291 loss) | |
I0327 13:51:11.409111 21344 solver.cpp:245] Train net output #24: loss1/loss03 = 2.53906 (* 0.0272727 = 0.0692472 loss) | |
I0327 13:51:11.409126 21344 solver.cpp:245] Train net output #25: loss1/loss04 = 3.0156 (* 0.0272727 = 0.0822437 loss) | |
I0327 13:51:11.409139 21344 solver.cpp:245] Train net output #26: loss1/loss05 = 3.79891 (* 0.0272727 = 0.103607 loss) | |
I0327 13:51:11.409153 21344 solver.cpp:245] Train net output #27: loss1/loss06 = 1.37318 (* 0.0272727 = 0.0374505 loss) | |
I0327 13:51:11.409168 21344 solver.cpp:245] Train net output #28: loss1/loss07 = 2.17455 (* 0.0272727 = 0.0593058 loss) | |
I0327 13:51:11.409183 21344 solver.cpp:245] Train net output #29: loss1/loss08 = 0.437127 (* 0.0272727 = 0.0119216 loss) | |
I0327 13:51:11.409196 21344 solver.cpp:245] Train net output #30: loss1/loss09 = 0.483319 (* 0.0272727 = 0.0131814 loss) | |
I0327 13:51:11.409210 21344 solver.cpp:245] Train net output #31: loss1/loss10 = 0.846897 (* 0.0272727 = 0.0230972 loss) | |
I0327 13:51:11.409225 21344 solver.cpp:245] Train net output #32: loss1/loss11 = 0.000233643 (* 0.0272727 = 6.37209e-06 loss) | |
I0327 13:51:11.409240 21344 solver.cpp:245] Train net output #33: loss1/loss12 = 0.000327906 (* 0.0272727 = 8.94289e-06 loss) | |
I0327 13:51:11.409255 21344 solver.cpp:245] Train net output #34: loss1/loss13 = 0.000193043 (* 0.0272727 = 5.2648e-06 loss) | |
I0327 13:51:11.409268 21344 solver.cpp:245] Train net output #35: loss1/loss14 = 0.000166805 (* 0.0272727 = 4.54924e-06 loss) | |
I0327 13:51:11.409282 21344 solver.cpp:245] Train net output #36: loss1/loss15 = 0.000233906 (* 0.0272727 = 6.37925e-06 loss) | |
I0327 13:51:11.409296 21344 solver.cpp:245] Train net output #37: loss1/loss16 = 0.000281903 (* 0.0272727 = 7.68828e-06 loss) | |
I0327 13:51:11.409310 21344 solver.cpp:245] Train net output #38: loss1/loss17 = 0.000280746 (* 0.0272727 = 7.65671e-06 loss) | |
I0327 13:51:11.409342 21344 solver.cpp:245] Train net output #39: loss1/loss18 = 0.000411516 (* 0.0272727 = 1.12232e-05 loss) | |
I0327 13:51:11.409358 21344 solver.cpp:245] Train net output #40: loss1/loss19 = 0.000548751 (* 0.0272727 = 1.49659e-05 loss) | |
I0327 13:51:11.409371 21344 solver.cpp:245] Train net output #41: loss1/loss20 = 0.000189749 (* 0.0272727 = 5.17497e-06 loss) | |
I0327 13:51:11.409385 21344 solver.cpp:245] Train net output #42: loss1/loss21 = 0.000104957 (* 0.0272727 = 2.86247e-06 loss) | |
I0327 13:51:11.409399 21344 solver.cpp:245] Train net output #43: loss1/loss22 = 0.000233066 (* 0.0272727 = 6.35635e-06 loss) | |
I0327 13:51:11.409411 21344 solver.cpp:245] Train net output #44: loss2/accuracy01 = 0.625 | |
I0327 13:51:11.409423 21344 solver.cpp:245] Train net output #45: loss2/accuracy02 = 0 | |
I0327 13:51:11.409435 21344 solver.cpp:245] Train net output #46: loss2/accuracy03 = 0 | |
I0327 13:51:11.409446 21344 solver.cpp:245] Train net output #47: loss2/accuracy04 = 0 | |
I0327 13:51:11.409458 21344 solver.cpp:245] Train net output #48: loss2/accuracy05 = 0.125 | |
I0327 13:51:11.409471 21344 solver.cpp:245] Train net output #49: loss2/accuracy06 = 0.375 | |
I0327 13:51:11.409482 21344 solver.cpp:245] Train net output #50: loss2/accuracy07 = 0.5 | |
I0327 13:51:11.409493 21344 solver.cpp:245] Train net output #51: loss2/accuracy08 = 0.875 | |
I0327 13:51:11.409504 21344 solver.cpp:245] Train net output #52: loss2/accuracy09 = 0.875 | |
I0327 13:51:11.409517 21344 solver.cpp:245] Train net output #53: loss2/accuracy10 = 0.875 | |
I0327 13:51:11.409528 21344 solver.cpp:245] Train net output #54: loss2/accuracy11 = 1 | |
I0327 13:51:11.409554 21344 solver.cpp:245] Train net output #55: loss2/accuracy12 = 1 | |
I0327 13:51:11.409570 21344 solver.cpp:245] Train net output #56: loss2/accuracy13 = 1 | |
I0327 13:51:11.409582 21344 solver.cpp:245] Train net output #57: loss2/accuracy14 = 1 | |
I0327 13:51:11.409593 21344 solver.cpp:245] Train net output #58: loss2/accuracy15 = 1 | |
I0327 13:51:11.409605 21344 solver.cpp:245] Train net output #59: loss2/accuracy16 = 1 | |
I0327 13:51:11.409615 21344 solver.cpp:245] Train net output #60: loss2/accuracy17 = 1 | |
I0327 13:51:11.409626 21344 solver.cpp:245] Train net output #61: loss2/accuracy18 = 1 | |
I0327 13:51:11.409637 21344 solver.cpp:245] Train net output #62: loss2/accuracy19 = 1 | |
I0327 13:51:11.409649 21344 solver.cpp:245] Train net output #63: loss2/accuracy20 = 1 | |
I0327 13:51:11.409660 21344 solver.cpp:245] Train net output #64: loss2/accuracy21 = 1 | |
I0327 13:51:11.409672 21344 solver.cpp:245] Train net output #65: loss2/accuracy22 = 1 | |
I0327 13:51:11.409685 21344 solver.cpp:245] Train net output #66: loss2/loss01 = 2.03113 (* 0.0272727 = 0.0553945 loss) | |
I0327 13:51:11.409699 21344 solver.cpp:245] Train net output #67: loss2/loss02 = 3.15544 (* 0.0272727 = 0.0860575 loss) | |
I0327 13:51:11.409713 21344 solver.cpp:245] Train net output #68: loss2/loss03 = 3.01874 (* 0.0272727 = 0.0823291 loss) | |
I0327 13:51:11.409726 21344 solver.cpp:245] Train net output #69: loss2/loss04 = 3.16419 (* 0.0272727 = 0.0862961 loss) | |
I0327 13:51:11.409741 21344 solver.cpp:245] Train net output #70: loss2/loss05 = 3.46514 (* 0.0272727 = 0.0945039 loss) | |
I0327 13:51:11.409754 21344 solver.cpp:245] Train net output #71: loss2/loss06 = 1.82982 (* 0.0272727 = 0.0499042 loss) | |
I0327 13:51:11.409768 21344 solver.cpp:245] Train net output #72: loss2/loss07 = 1.65257 (* 0.0272727 = 0.0450701 loss) | |
I0327 13:51:11.409782 21344 solver.cpp:245] Train net output #73: loss2/loss08 = 0.32189 (* 0.0272727 = 0.00877881 loss) | |
I0327 13:51:11.409796 21344 solver.cpp:245] Train net output #74: loss2/loss09 = 0.454016 (* 0.0272727 = 0.0123823 loss) | |
I0327 13:51:11.409811 21344 solver.cpp:245] Train net output #75: loss2/loss10 = 0.625885 (* 0.0272727 = 0.0170696 loss) | |
I0327 13:51:11.409827 21344 solver.cpp:245] Train net output #76: loss2/loss11 = 0.000145713 (* 0.0272727 = 3.974e-06 loss) | |
I0327 13:51:11.409855 21344 solver.cpp:245] Train net output #77: loss2/loss12 = 0.000181293 (* 0.0272727 = 4.94435e-06 loss) | |
I0327 13:51:11.409870 21344 solver.cpp:245] Train net output #78: loss2/loss13 = 0.000183022 (* 0.0272727 = 4.99151e-06 loss) | |
I0327 13:51:11.409885 21344 solver.cpp:245] Train net output #79: loss2/loss14 = 0.000172715 (* 0.0272727 = 4.71041e-06 loss) | |
I0327 13:51:11.409899 21344 solver.cpp:245] Train net output #80: loss2/loss15 = 7.53393e-05 (* 0.0272727 = 2.05471e-06 loss) | |
I0327 13:51:11.409914 21344 solver.cpp:245] Train net output #81: loss2/loss16 = 0.000134968 (* 0.0272727 = 3.68095e-06 loss) | |
I0327 13:51:11.409927 21344 solver.cpp:245] Train net output #82: loss2/loss17 = 0.000160273 (* 0.0272727 = 4.37109e-06 loss) | |
I0327 13:51:11.409941 21344 solver.cpp:245] Train net output #83: loss2/loss18 = 0.000223785 (* 0.0272727 = 6.10322e-06 loss) | |
I0327 13:51:11.409955 21344 solver.cpp:245] Train net output #84: loss2/loss19 = 0.000138804 (* 0.0272727 = 3.78555e-06 loss) | |
I0327 13:51:11.409970 21344 solver.cpp:245] Train net output #85: loss2/loss20 = 0.000155311 (* 0.0272727 = 4.23574e-06 loss) | |
I0327 13:51:11.409981 21344 solver.cpp:245] Train net output #86: loss2/loss21 = 0.000184421 (* 0.0272727 = 5.02967e-06 loss) | |
I0327 13:51:11.409996 21344 solver.cpp:245] Train net output #87: loss2/loss22 = 9.76268e-05 (* 0.0272727 = 2.66255e-06 loss) | |
I0327 13:51:11.410007 21344 solver.cpp:245] Train net output #88: loss3/accuracy01 = 0.375 | |
I0327 13:51:11.410020 21344 solver.cpp:245] Train net output #89: loss3/accuracy02 = 0.375 | |
I0327 13:51:11.410032 21344 solver.cpp:245] Train net output #90: loss3/accuracy03 = 0.375 | |
I0327 13:51:11.410046 21344 solver.cpp:245] Train net output #91: loss3/accuracy04 = 0.125 | |
I0327 13:51:11.410058 21344 solver.cpp:245] Train net output #92: loss3/accuracy05 = 0.125 | |
I0327 13:51:11.410070 21344 solver.cpp:245] Train net output #93: loss3/accuracy06 = 0.5 | |
I0327 13:51:11.410081 21344 solver.cpp:245] Train net output #94: loss3/accuracy07 = 0.5 | |
I0327 13:51:11.410094 21344 solver.cpp:245] Train net output #95: loss3/accuracy08 = 0.875 | |
I0327 13:51:11.410105 21344 solver.cpp:245] Train net output #96: loss3/accuracy09 = 0.875 | |
I0327 13:51:11.410116 21344 solver.cpp:245] Train net output #97: loss3/accuracy10 = 0.875 | |
I0327 13:51:11.410128 21344 solver.cpp:245] Train net output #98: loss3/accuracy11 = 1 | |
I0327 13:51:11.410140 21344 solver.cpp:245] Train net output #99: loss3/accuracy12 = 1 | |
I0327 13:51:11.410151 21344 solver.cpp:245] Train net output #100: loss3/accuracy13 = 1 | |
I0327 13:51:11.410161 21344 solver.cpp:245] Train net output #101: loss3/accuracy14 = 1 | |
I0327 13:51:11.410173 21344 solver.cpp:245] Train net output #102: loss3/accuracy15 = 1 | |
I0327 13:51:11.410184 21344 solver.cpp:245] Train net output #103: loss3/accuracy16 = 1 | |
I0327 13:51:11.410195 21344 solver.cpp:245] Train net output #104: loss3/accuracy17 = 1 | |
I0327 13:51:11.410207 21344 solver.cpp:245] Train net output #105: loss3/accuracy18 = 1 | |
I0327 13:51:11.410218 21344 solver.cpp:245] Train net output #106: loss3/accuracy19 = 1 | |
I0327 13:51:11.410228 21344 solver.cpp:245] Train net output #107: loss3/accuracy20 = 1 | |
I0327 13:51:11.410239 21344 solver.cpp:245] Train net output #108: loss3/accuracy21 = 1 | |
I0327 13:51:11.410250 21344 solver.cpp:245] Train net output #109: loss3/accuracy22 = 1 | |
I0327 13:51:11.410264 21344 solver.cpp:245] Train net output #110: loss3/loss01 = 1.60326 (* 0.0909091 = 0.145751 loss) | |
I0327 13:51:11.410277 21344 solver.cpp:245] Train net output #111: loss3/loss02 = 2.69441 (* 0.0909091 = 0.244947 loss) | |
I0327 13:51:11.410291 21344 solver.cpp:245] Train net output #112: loss3/loss03 = 2.28101 (* 0.0909091 = 0.207365 loss) | |
I0327 13:51:11.410305 21344 solver.cpp:245] Train net output #113: loss3/loss04 = 3.26471 (* 0.0909091 = 0.296792 loss) | |
I0327 13:51:11.410318 21344 solver.cpp:245] Train net output #114: loss3/loss05 = 3.42517 (* 0.0909091 = 0.311379 loss) | |
I0327 13:51:11.410342 21344 solver.cpp:245] Train net output #115: loss3/loss06 = 1.56699 (* 0.0909091 = 0.142454 loss) | |
I0327 13:51:11.410357 21344 solver.cpp:245] Train net output #116: loss3/loss07 = 2.0846 (* 0.0909091 = 0.189509 loss) | |
I0327 13:51:11.410372 21344 solver.cpp:245] Train net output #117: loss3/loss08 = 0.354433 (* 0.0909091 = 0.0322212 loss) | |
I0327 13:51:11.410385 21344 solver.cpp:245] Train net output #118: loss3/loss09 = 0.445359 (* 0.0909091 = 0.0404872 loss) | |
I0327 13:51:11.410399 21344 solver.cpp:245] Train net output #119: loss3/loss10 = 0.586467 (* 0.0909091 = 0.0533151 loss) | |
I0327 13:51:11.410413 21344 solver.cpp:245] Train net output #120: loss3/loss11 = 8.8657e-05 (* 0.0909091 = 8.05973e-06 loss) | |
I0327 13:51:11.410428 21344 solver.cpp:245] Train net output #121: loss3/loss12 = 9.81578e-05 (* 0.0909091 = 8.92344e-06 loss) | |
I0327 13:51:11.410440 21344 solver.cpp:245] Train net output #122: loss3/loss13 = 0.000108496 (* 0.0909091 = 9.86324e-06 loss) | |
I0327 13:51:11.410454 21344 solver.cpp:245] Train net output #123: loss3/loss14 = 0.000105777 (* 0.0909091 = 9.61609e-06 loss) | |
I0327 13:51:11.410468 21344 solver.cpp:245] Train net output #124: loss3/loss15 = 0.000103962 (* 0.0909091 = 9.4511e-06 loss) | |
I0327 13:51:11.410482 21344 solver.cpp:245] Train net output #125: loss3/loss16 = 9.45738e-05 (* 0.0909091 = 8.59762e-06 loss) | |
I0327 13:51:11.410496 21344 solver.cpp:245] Train net output #126: loss3/loss17 = 0.000102364 (* 0.0909091 = 9.30578e-06 loss) | |
I0327 13:51:11.410511 21344 solver.cpp:245] Train net output #127: loss3/loss18 = 0.000128358 (* 0.0909091 = 1.16689e-05 loss) | |
I0327 13:51:11.410524 21344 solver.cpp:245] Train net output #128: loss3/loss19 = 9.23165e-05 (* 0.0909091 = 8.39241e-06 loss) | |
I0327 13:51:11.410538 21344 solver.cpp:245] Train net output #129: loss3/loss20 = 9.61324e-05 (* 0.0909091 = 8.73931e-06 loss) | |
I0327 13:51:11.410552 21344 solver.cpp:245] Train net output #130: loss3/loss21 = 0.000116106 (* 0.0909091 = 1.05551e-05 loss) | |
I0327 13:51:11.410567 21344 solver.cpp:245] Train net output #131: loss3/loss22 = 9.34624e-05 (* 0.0909091 = 8.49658e-06 loss) | |
I0327 13:51:11.410578 21344 solver.cpp:245] Train net output #132: total_accuracy = 0 | |
I0327 13:51:11.410589 21344 solver.cpp:245] Train net output #133: total_confidence = 0.00246034 | |
I0327 13:51:11.410601 21344 sgd_solver.cpp:106] Iteration 17500, lr = 0.01 | |
I0327 13:52:59.679381 21344 solver.cpp:229] Iteration 18000, loss = 2.67964 | |
I0327 13:52:59.679525 21344 solver.cpp:245] Train net output #0: loss1/accuracy01 = 0 | |
I0327 13:52:59.679546 21344 solver.cpp:245] Train net output #1: loss1/accuracy02 = 0 | |
I0327 13:52:59.679569 21344 solver.cpp:245] Train net output #2: loss1/accuracy03 = 0.25 | |
I0327 13:52:59.679585 21344 solver.cpp:245] Train net output #3: loss1/accuracy04 = 0.125 | |
I0327 13:52:59.679597 21344 solver.cpp:245] Train net output #4: loss1/accuracy05 = 0.375 | |
I0327 13:52:59.679610 21344 solver.cpp:245] Train net output #5: loss1/accuracy06 = 0.5 | |
I0327 13:52:59.679622 21344 solver.cpp:245] Train net output #6: loss1/accuracy07 = 0.875 | |
I0327 13:52:59.679635 21344 solver.cpp:245] Train net output #7: loss1/accuracy08 = 1 | |
I0327 13:52:59.679646 21344 solver.cpp:245] Train net output #8: loss1/accuracy09 = 1 | |
I0327 13:52:59.679658 21344 solver.cpp:245] Train net output #9: loss1/accuracy10 = 1 | |
I0327 13:52:59.679669 21344 solver.cpp:245] Train net output #10: loss1/accuracy11 = 1 | |
I0327 13:52:59.679682 21344 solver.cpp:245] Train net output #11: loss1/accuracy12 = 1 | |
I0327 13:52:59.679693 21344 solver.cpp:245] Train net output #12: loss1/accuracy13 = 1 | |
I0327 13:52:59.679704 21344 solver.cpp:245] Train net output #13: loss1/accuracy14 = 1 | |
I0327 13:52:59.679716 21344 solver.cpp:245] Train net output #14: loss1/accuracy15 = 1 | |
I0327 13:52:59.679728 21344 solver.cpp:245] Train net output #15: loss1/accuracy16 = 1 | |
I0327 13:52:59.679739 21344 solver.cpp:245] Train net output #16: loss1/accuracy17 = 1 | |
I0327 13:52:59.679757 21344 solver.cpp:245] Train net output #17: loss1/accuracy18 = 1 | |
I0327 13:52:59.679775 21344 solver.cpp:245] Train net output #18: loss1/accuracy19 = 1 | |
I0327 13:52:59.679788 21344 solver.cpp:245] Train net output #19: loss1/accuracy20 = 1 | |
I0327 13:52:59.679800 21344 solver.cpp:245] Train net output #20: loss1/accuracy21 = 1 | |
I0327 13:52:59.679811 21344 solver.cpp:245] Train net output #21: loss1/accuracy22 = 1 | |
I0327 13:52:59.679826 21344 solver.cpp:245] Train net output #22: loss1/loss01 = 3.11202 (* 0.0272727 = 0.0848734 loss) | |
I0327 13:52:59.679841 21344 solver.cpp:245] Train net output #23: loss1/loss02 = 3.26493 (* 0.0272727 = 0.0890436 loss) | |
I0327 13:52:59.679855 21344 solver.cpp:245] Train net output #24: loss1/loss03 = 2.71264 (* 0.0272727 = 0.0739811 loss) | |
I0327 13:52:59.679869 21344 solver.cpp:245] Train net output #25: loss1/loss04 = 3.06159 (* 0.0272727 = 0.083498 loss) | |
I0327 13:52:59.679884 21344 solver.cpp:245] Train net output #26: loss1/loss05 = 2.47441 (* 0.0272727 = 0.067484 loss) | |
I0327 13:52:59.679898 21344 solver.cpp:245] Train net output #27: loss1/loss06 = 2.1369 (* 0.0272727 = 0.0582791 loss) | |
I0327 13:52:59.679913 21344 solver.cpp:245] Train net output #28: loss1/loss07 = 1.09467 (* 0.0272727 = 0.0298547 loss) | |
I0327 13:52:59.679927 21344 solver.cpp:245] Train net output #29: loss1/loss08 = 0.0661555 (* 0.0272727 = 0.00180424 loss) | |
I0327 13:52:59.679941 21344 solver.cpp:245] Train net output #30: loss1/loss09 = 0.00744993 (* 0.0272727 = 0.00020318 loss) | |
I0327 13:52:59.679960 21344 solver.cpp:245] Train net output #31: loss1/loss10 = 0.00401114 (* 0.0272727 = 0.000109395 loss) | |
I0327 13:52:59.679982 21344 solver.cpp:245] Train net output #32: loss1/loss11 = 0.000227222 (* 0.0272727 = 6.19696e-06 loss) | |
I0327 13:52:59.680001 21344 solver.cpp:245] Train net output #33: loss1/loss12 = 0.000199814 (* 0.0272727 = 5.44946e-06 loss) | |
I0327 13:52:59.680016 21344 solver.cpp:245] Train net output #34: loss1/loss13 = 0.000364553 (* 0.0272727 = 9.94235e-06 loss) | |
I0327 13:52:59.680037 21344 solver.cpp:245] Train net output #35: loss1/loss14 = 0.000148496 (* 0.0272727 = 4.0499e-06 loss) | |
I0327 13:52:59.680068 21344 solver.cpp:245] Train net output #36: loss1/loss15 = 0.000207898 (* 0.0272727 = 5.66996e-06 loss) | |
I0327 13:52:59.680099 21344 solver.cpp:245] Train net output #37: loss1/loss16 = 0.000369025 (* 0.0272727 = 1.00643e-05 loss) | |
I0327 13:52:59.680127 21344 solver.cpp:245] Train net output #38: loss1/loss17 = 0.000137285 (* 0.0272727 = 3.74414e-06 loss) | |
I0327 13:52:59.680163 21344 solver.cpp:245] Train net output #39: loss1/loss18 = 8.21266e-05 (* 0.0272727 = 2.23982e-06 loss) | |
I0327 13:52:59.680181 21344 solver.cpp:245] Train net output #40: loss1/loss19 = 0.00046313 (* 0.0272727 = 1.26308e-05 loss) | |
I0327 13:52:59.680194 21344 solver.cpp:245] Train net output #41: loss1/loss20 = 0.000261697 (* 0.0272727 = 7.13719e-06 loss) | |
I0327 13:52:59.680208 21344 solver.cpp:245] Train net output #42: loss1/loss21 = 0.000151835 (* 0.0272727 = 4.14095e-06 loss) | |
I0327 13:52:59.680222 21344 solver.cpp:245] Train net output #43: loss1/loss22 = 0.000359047 (* 0.0272727 = 9.79219e-06 loss) | |
I0327 13:52:59.680235 21344 solver.cpp:245] Train net output #44: loss2/accuracy01 = 0.125 | |
I0327 13:52:59.680248 21344 solver.cpp:245] Train net output #45: loss2/accuracy02 = 0 | |
I0327 13:52:59.680259 21344 solver.cpp:245] Train net output #46: loss2/accuracy03 = 0.125 | |
I0327 13:52:59.680270 21344 solver.cpp:245] Train net output #47: loss2/accuracy04 = 0.25 | |
I0327 13:52:59.680282 21344 solver.cpp:245] Train net output #48: loss2/accuracy05 = 0.5 | |
I0327 13:52:59.680294 21344 solver.cpp:245] Train net output #49: loss2/accuracy06 = 0.5 | |
I0327 13:52:59.680306 21344 solver.cpp:245] Train net output #50: loss2/accuracy07 = 0.875 | |
I0327 13:52:59.680318 21344 solver.cpp:245] Train net output #51: loss2/accuracy08 = 1 | |
I0327 13:52:59.680330 21344 solver.cpp:245] Train net output #52: loss2/accuracy09 = 1 | |
I0327 13:52:59.680342 21344 solver.cpp:245] Train net output #53: loss2/accuracy10 = 1 | |
I0327 13:52:59.680353 21344 solver.cpp:245] Train net output #54: loss2/accuracy11 = 1 | |
I0327 13:52:59.680366 21344 solver.cpp:245] Train net output #55: loss2/accuracy12 = 1 | |
I0327 13:52:59.680377 21344 solver.cpp:245] Train net output #56: loss2/accuracy13 = 1 | |
I0327 13:52:59.680388 21344 solver.cpp:245] Train net output #57: loss2/accuracy14 = 1 | |
I0327 13:52:59.680399 21344 solver.cpp:245] Train net output #58: loss2/accuracy15 = 1 | |
I0327 13:52:59.680411 21344 solver.cpp:245] Train net output #59: loss2/accuracy16 = 1 | |
I0327 13:52:59.680423 21344 solver.cpp:245] Train net output #60: loss2/accuracy17 = 1 | |
I0327 13:52:59.680434 21344 solver.cpp:245] Train net output #61: loss2/accuracy18 = 1 | |
I0327 13:52:59.680445 21344 solver.cpp:245] Train net output #62: loss2/accuracy19 = 1 | |
I0327 13:52:59.680456 21344 solver.cpp:245] Train net output #63: loss2/accuracy20 = 1 | |
I0327 13:52:59.680469 21344 solver.cpp:245] Train net output #64: loss2/accuracy21 = 1 | |
I0327 13:52:59.680480 21344 solver.cpp:245] Train net output #65: loss2/accuracy22 = 1 | |
I0327 13:52:59.680493 21344 solver.cpp:245] Train net output #66: loss2/loss01 = 2.9326 (* 0.0272727 = 0.0799799 loss) | |
I0327 13:52:59.680507 21344 solver.cpp:245] Train net output #67: loss2/loss02 = 3.40979 (* 0.0272727 = 0.0929943 loss) | |
I0327 13:52:59.680521 21344 solver.cpp:245] Train net output #68: loss2/loss03 = 3.22466 (* 0.0272727 = 0.0879454 loss) | |
I0327 13:52:59.680536 21344 solver.cpp:245] Train net output #69: loss2/loss04 = 3.63721 (* 0.0272727 = 0.0991965 loss) | |
I0327 13:52:59.680553 21344 solver.cpp:245] Train net output #70: loss2/loss05 = 2.8895 (* 0.0272727 = 0.0788046 loss) | |
I0327 13:52:59.680567 21344 solver.cpp:245] Train net output #71: loss2/loss06 = 2.21519 (* 0.0272727 = 0.0604143 loss) | |
I0327 13:52:59.680582 21344 solver.cpp:245] Train net output #72: loss2/loss07 = 1.08782 (* 0.0272727 = 0.0296679 loss) | |
I0327 13:52:59.680596 21344 solver.cpp:245] Train net output #73: loss2/loss08 = 0.0668747 (* 0.0272727 = 0.00182386 loss) | |
I0327 13:52:59.680606 21344 solver.cpp:245] Train net output #74: loss2/loss09 = 0.0191596 (* 0.0272727 = 0.000522535 loss) | |
I0327 13:52:59.680621 21344 solver.cpp:245] Train net output #75: loss2/loss10 = 0.00722366 (* 0.0272727 = 0.000197009 loss) | |
I0327 13:52:59.680635 21344 solver.cpp:245] Train net output #76: loss2/loss11 = 0.00546675 (* 0.0272727 = 0.000149093 loss) | |
I0327 13:52:59.680660 21344 solver.cpp:245] Train net output #77: loss2/loss12 = 0.00139503 (* 0.0272727 = 3.80463e-05 loss) | |
I0327 13:52:59.680675 21344 solver.cpp:245] Train net output #78: loss2/loss13 = 0.00382727 (* 0.0272727 = 0.00010438 loss) | |
I0327 13:52:59.680690 21344 solver.cpp:245] Train net output #79: loss2/loss14 = 0.00169205 (* 0.0272727 = 4.61467e-05 loss) | |
I0327 13:52:59.680703 21344 solver.cpp:245] Train net output #80: loss2/loss15 = 0.00187917 (* 0.0272727 = 5.12501e-05 loss) | |
I0327 13:52:59.680717 21344 solver.cpp:245] Train net output #81: loss2/loss16 = 0.00361664 (* 0.0272727 = 9.86355e-05 loss) | |
I0327 13:52:59.680732 21344 solver.cpp:245] Train net output #82: loss2/loss17 = 0.0013756 (* 0.0272727 = 3.75165e-05 loss) | |
I0327 13:52:59.680747 21344 solver.cpp:245] Train net output #83: loss2/loss18 = 0.00142356 (* 0.0272727 = 3.88245e-05 loss) | |
I0327 13:52:59.680760 21344 solver.cpp:245] Train net output #84: loss2/loss19 = 0.00190754 (* 0.0272727 = 5.20239e-05 loss) | |
I0327 13:52:59.680773 21344 solver.cpp:245] Train net output #85: loss2/loss20 = 0.00106212 (* 0.0272727 = 2.89668e-05 loss) | |
I0327 13:52:59.680788 21344 solver.cpp:245] Train net output #86: loss2/loss21 = 0.00164872 (* 0.0272727 = 4.49651e-05 loss) | |
I0327 13:52:59.680801 21344 solver.cpp:245] Train net output #87: loss2/loss22 = 0.00177482 (* 0.0272727 = 4.84042e-05 loss) | |
I0327 13:52:59.680814 21344 solver.cpp:245] Train net output #88: loss3/accuracy01 = 0.25 | |
I0327 13:52:59.680825 21344 solver.cpp:245] Train net output #89: loss3/accuracy02 = 0.125 | |
I0327 13:52:59.680837 21344 solver.cpp:245] Train net output #90: loss3/accuracy03 = 0.25 | |
I0327 13:52:59.680850 21344 solver.cpp:245] Train net output #91: loss3/accuracy04 = 0.125 | |
I0327 13:52:59.680861 21344 solver.cpp:245] Train net output #92: loss3/accuracy05 = 0.625 | |
I0327 13:52:59.680872 21344 solver.cpp:245] Train net output #93: loss3/accuracy06 = 0.5 | |
I0327 13:52:59.680884 21344 solver.cpp:245] Train net output #94: loss3/accuracy07 = 0.875 | |
I0327 13:52:59.680896 21344 solver.cpp:245] Train net output #95: loss3/accuracy08 = 1 | |
I0327 13:52:59.680907 21344 solver.cpp:245] Train net output #96: loss3/accuracy09 = 1 | |
I0327 13:52:59.680918 21344 solver.cpp:245] Train net output #97: loss3/accuracy10 = 1 | |
I0327 13:52:59.680930 21344 solver.cpp:245] Train net output #98: loss3/accuracy11 = 1 | |
I0327 13:52:59.680941 21344 solver.cpp:245] Train net output #99: loss3/accuracy12 = 1 | |
I0327 13:52:59.680953 21344 solver.cpp:245] Train net output #100: loss3/accuracy13 = 1 | |
I0327 13:52:59.680964 21344 solver.cpp:245] Train net output #101: loss3/accuracy14 = 1 | |
I0327 13:52:59.680976 21344 solver.cpp:245] Train net output #102: loss3/accuracy15 = 1 | |
I0327 13:52:59.680987 21344 solver.cpp:245] Train net output #103: loss3/accuracy16 = 1 | |
I0327 13:52:59.680999 21344 solver.cpp:245] Train net output #104: loss3/accuracy17 = 1 | |
I0327 13:52:59.681010 21344 solver.cpp:245] Train net output #105: loss3/accuracy18 = 1 | |
I0327 13:52:59.681021 21344 solver.cpp:245] Train net output #106: loss3/accuracy19 = 1 | |
I0327 13:52:59.681032 21344 solver.cpp:245] Train net output #107: loss3/accuracy20 = 1 | |
I0327 13:52:59.681046 21344 solver.cpp:245] Train net output #108: loss3/accuracy21 = 1 | |
I0327 13:52:59.681058 21344 solver.cpp:245] Train net output #109: loss3/accuracy22 = 1 | |
I0327 13:52:59.681072 21344 solver.cpp:245] Train net output #110: loss3/loss01 = 2.54846 (* 0.0909091 = 0.231678 loss) | |
I0327 13:52:59.681087 21344 solver.cpp:245] Train net output #111: loss3/loss02 = 2.77092 (* 0.0909091 = 0.251902 loss) | |
I0327 13:52:59.681100 21344 solver.cpp:245] Train net output #112: loss3/loss03 = 2.94267 (* 0.0909091 = 0.267516 loss) | |
I0327 13:52:59.681114 21344 solver.cpp:245] Train net output #113: loss3/loss04 = 3.16146 (* 0.0909091 = 0.287405 loss) | |
I0327 13:52:59.681128 21344 solver.cpp:245] Train net output #114: loss3/loss05 = 2.06259 (* 0.0909091 = 0.187509 loss) | |
I0327 13:52:59.681152 21344 solver.cpp:245] Train net output #115: loss3/loss06 = 1.82265 (* 0.0909091 = 0.165695 loss) | |
I0327 13:52:59.681169 21344 solver.cpp:245] Train net output #116: loss3/loss07 = 0.741988 (* 0.0909091 = 0.0674535 loss) | |
I0327 13:52:59.681182 21344 solver.cpp:245] Train net output #117: loss3/loss08 = 0.0238172 (* 0.0909091 = 0.0021652 loss) | |
I0327 13:52:59.681196 21344 solver.cpp:245] Train net output #118: loss3/loss09 = 0.00530338 (* 0.0909091 = 0.000482126 loss) | |
I0327 13:52:59.681210 21344 solver.cpp:245] Train net output #119: loss3/loss10 = 0.00260942 (* 0.0909091 = 0.00023722 loss) | |
I0327 13:52:59.681224 21344 solver.cpp:245] Train net output #120: loss3/loss11 = 0.000125469 (* 0.0909091 = 1.14062e-05 loss) | |
I0327 13:52:59.681238 21344 solver.cpp:245] Train net output #121: loss3/loss12 = 0.000167509 (* 0.0909091 = 1.5228e-05 loss) | |
I0327 13:52:59.681253 21344 solver.cpp:245] Train net output #122: loss3/loss13 = 9.86505e-05 (* 0.0909091 = 8.96823e-06 loss) | |
I0327 13:52:59.681267 21344 solver.cpp:245] Train net output #123: loss3/loss14 = 0.000141878 (* 0.0909091 = 1.2898e-05 loss) | |
I0327 13:52:59.681282 21344 solver.cpp:245] Train net output #124: loss3/loss15 = 0.000138749 (* 0.0909091 = 1.26135e-05 loss) | |
I0327 13:52:59.681295 21344 solver.cpp:245] Train net output #125: loss3/loss16 = 0.000136862 (* 0.0909091 = 1.2442e-05 loss) | |
I0327 13:52:59.681309 21344 solver.cpp:245] Train net output #126: loss3/loss17 = 0.00011305 (* 0.0909091 = 1.02773e-05 loss) | |
I0327 13:52:59.681324 21344 solver.cpp:245] Train net output #127: loss3/loss18 = 9.87723e-05 (* 0.0909091 = 8.9793e-06 loss) | |
I0327 13:52:59.681337 21344 solver.cpp:245] Train net output #128: loss3/loss19 = 0.000111352 (* 0.0909091 = 1.01229e-05 loss) | |
I0327 13:52:59.681351 21344 solver.cpp:245] Train net output #129: loss3/loss20 = 0.000122941 (* 0.0909091 = 1.11764e-05 loss) | |
I0327 13:52:59.681365 21344 solver.cpp:245] Train net output #130: loss3/loss21 = 0.000130287 (* 0.0909091 = 1.18443e-05 loss) | |
I0327 13:52:59.681378 21344 solver.cpp:245] Train net output #131: loss3/loss22 = 0.000138898 (* 0.0909091 = 1.26271e-05 loss) | |
I0327 13:52:59.681391 21344 solver.cpp:245] Train net output #132: total_accuracy = 0 | |
I0327 13:52:59.681402 21344 solver.cpp:245] Train net output #133: total_confidence = 0.00115384 | |
I0327 13:52:59.681414 21344 sgd_solver.cpp:106] Iteration 18000, lr = 0.01 | |
I0327 13:54:47.399299 21344 solver.cpp:229] Iteration 18500, loss = 2.64639 | |
I0327 13:54:47.399421 21344 solver.cpp:245] Train net output #0: loss1/accuracy01 = 0.5 | |
I0327 13:54:47.399441 21344 solver.cpp:245] Train net output #1: loss1/accuracy02 = 0.125 | |
I0327 13:54:47.399453 21344 solver.cpp:245] Train net output #2: loss1/accuracy03 = 0 | |
I0327 13:54:47.399466 21344 solver.cpp:245] Train net output #3: loss1/accuracy04 = 0 | |
I0327 13:54:47.399477 21344 solver.cpp:245] Train net output #4: loss1/accuracy05 = 0.125 | |
I0327 13:54:47.399490 21344 solver.cpp:245] Train net output #5: loss1/accuracy06 = 0.25 | |
I0327 13:54:47.399502 21344 solver.cpp:245] Train net output #6: loss1/accuracy07 = 0.625 | |
I0327 13:54:47.399514 21344 solver.cpp:245] Train net output #7: loss1/accuracy08 = 1 | |
I0327 13:54:47.399526 21344 solver.cpp:245] Train net output #8: loss1/accuracy09 = 1 | |
I0327 13:54:47.399538 21344 solver.cpp:245] Train net output #9: loss1/accuracy10 = 1 | |
I0327 13:54:47.399549 21344 solver.cpp:245] Train net output #10: loss1/accuracy11 = 1 | |
I0327 13:54:47.399560 21344 solver.cpp:245] Train net output #11: loss1/accuracy12 = 1 | |
I0327 13:54:47.399572 21344 solver.cpp:245] Train net output #12: loss1/accuracy13 = 1 | |
I0327 13:54:47.399583 21344 solver.cpp:245] Train net output #13: loss1/accuracy14 = 1 | |
I0327 13:54:47.399595 21344 solver.cpp:245] Train net output #14: loss1/accuracy15 = 1 | |
I0327 13:54:47.399606 21344 solver.cpp:245] Train net output #15: loss1/accuracy16 = 1 | |
I0327 13:54:47.399618 21344 solver.cpp:245] Train net output #16: loss1/accuracy17 = 1 | |
I0327 13:54:47.399631 21344 solver.cpp:245] Train net output #17: loss1/accuracy18 = 1 | |
I0327 13:54:47.399641 21344 solver.cpp:245] Train net output #18: loss1/accuracy19 = 1 | |
I0327 13:54:47.399653 21344 solver.cpp:245] Train net output #19: loss1/accuracy20 = 1 | |
I0327 13:54:47.399664 21344 solver.cpp:245] Train net output #20: loss1/accuracy21 = 1 | |
I0327 13:54:47.399677 21344 solver.cpp:245] Train net output #21: loss1/accuracy22 = 1 | |
I0327 13:54:47.399691 21344 solver.cpp:245] Train net output #22: loss1/loss01 = 1.75502 (* 0.0272727 = 0.0478642 loss) | |
I0327 13:54:47.399706 21344 solver.cpp:245] Train net output #23: loss1/loss02 = 3.1421 (* 0.0272727 = 0.0856936 loss) | |
I0327 13:54:47.399720 21344 solver.cpp:245] Train net output #24: loss1/loss03 = 3.30868 (* 0.0272727 = 0.0902367 loss) | |
I0327 13:54:47.399734 21344 solver.cpp:245] Train net output #25: loss1/loss04 = 3.35827 (* 0.0272727 = 0.0915893 loss) | |
I0327 13:54:47.399749 21344 solver.cpp:245] Train net output #26: loss1/loss05 = 2.71736 (* 0.0272727 = 0.0741098 loss) | |
I0327 13:54:47.399762 21344 solver.cpp:245] Train net output #27: loss1/loss06 = 2.24713 (* 0.0272727 = 0.0612853 loss) | |
I0327 13:54:47.399776 21344 solver.cpp:245] Train net output #28: loss1/loss07 = 1.09818 (* 0.0272727 = 0.0299504 loss) | |
I0327 13:54:47.399791 21344 solver.cpp:245] Train net output #29: loss1/loss08 = 0.0681258 (* 0.0272727 = 0.00185798 loss) | |
I0327 13:54:47.399804 21344 solver.cpp:245] Train net output #30: loss1/loss09 = 0.0100922 (* 0.0272727 = 0.000275243 loss) | |
I0327 13:54:47.399818 21344 solver.cpp:245] Train net output #31: loss1/loss10 = 0.00647977 (* 0.0272727 = 0.000176721 loss) | |
I0327 13:54:47.399833 21344 solver.cpp:245] Train net output #32: loss1/loss11 = 6.59131e-05 (* 0.0272727 = 1.79763e-06 loss) | |
I0327 13:54:47.399847 21344 solver.cpp:245] Train net output #33: loss1/loss12 = 0.000135444 (* 0.0272727 = 3.69393e-06 loss) | |
I0327 13:54:47.399860 21344 solver.cpp:245] Train net output #34: loss1/loss13 = 0.000153192 (* 0.0272727 = 4.17796e-06 loss) | |
I0327 13:54:47.399874 21344 solver.cpp:245] Train net output #35: loss1/loss14 = 0.000187593 (* 0.0272727 = 5.11616e-06 loss) | |
I0327 13:54:47.399888 21344 solver.cpp:245] Train net output #36: loss1/loss15 = 0.000247645 (* 0.0272727 = 6.75396e-06 loss) | |
I0327 13:54:47.399902 21344 solver.cpp:245] Train net output #37: loss1/loss16 = 0.000110556 (* 0.0272727 = 3.01518e-06 loss) | |
I0327 13:54:47.399916 21344 solver.cpp:245] Train net output #38: loss1/loss17 = 8.69312e-05 (* 0.0272727 = 2.37085e-06 loss) | |
I0327 13:54:47.399946 21344 solver.cpp:245] Train net output #39: loss1/loss18 = 7.06991e-05 (* 0.0272727 = 1.92816e-06 loss) | |
I0327 13:54:47.399962 21344 solver.cpp:245] Train net output #40: loss1/loss19 = 0.000174891 (* 0.0272727 = 4.76974e-06 loss) | |
I0327 13:54:47.399976 21344 solver.cpp:245] Train net output #41: loss1/loss20 = 0.000149154 (* 0.0272727 = 4.06783e-06 loss) | |
I0327 13:54:47.399992 21344 solver.cpp:245] Train net output #42: loss1/loss21 = 6.07357e-05 (* 0.0272727 = 1.65643e-06 loss) | |
I0327 13:54:47.400007 21344 solver.cpp:245] Train net output #43: loss1/loss22 = 8.59267e-05 (* 0.0272727 = 2.34346e-06 loss) | |
I0327 13:54:47.400020 21344 solver.cpp:245] Train net output #44: loss2/accuracy01 = 0.5 | |
I0327 13:54:47.400032 21344 solver.cpp:245] Train net output #45: loss2/accuracy02 = 0 | |
I0327 13:54:47.400044 21344 solver.cpp:245] Train net output #46: loss2/accuracy03 = 0 | |
I0327 13:54:47.400055 21344 solver.cpp:245] Train net output #47: loss2/accuracy04 = 0.125 | |
I0327 13:54:47.400068 21344 solver.cpp:245] Train net output #48: loss2/accuracy05 = 0.25 | |
I0327 13:54:47.400079 21344 solver.cpp:245] Train net output #49: loss2/accuracy06 = 0.375 | |
I0327 13:54:47.400091 21344 solver.cpp:245] Train net output #50: loss2/accuracy07 = 0.75 | |
I0327 13:54:47.400104 21344 solver.cpp:245] Train net output #51: loss2/accuracy08 = 1 | |
I0327 13:54:47.400115 21344 solver.cpp:245] Train net output #52: loss2/accuracy09 = 1 | |
I0327 13:54:47.400126 21344 solver.cpp:245] Train net output #53: loss2/accuracy10 = 1 | |
I0327 13:54:47.400137 21344 solver.cpp:245] Train net output #54: loss2/accuracy11 = 1 | |
I0327 13:54:47.400148 21344 solver.cpp:245] Train net output #55: loss2/accuracy12 = 1 | |
I0327 13:54:47.400161 21344 solver.cpp:245] Train net output #56: loss2/accuracy13 = 1 | |
I0327 13:54:47.400172 21344 solver.cpp:245] Train net output #57: loss2/accuracy14 = 1 | |
I0327 13:54:47.400183 21344 solver.cpp:245] Train net output #58: loss2/accuracy15 = 1 | |
I0327 13:54:47.400194 21344 solver.cpp:245] Train net output #59: loss2/accuracy16 = 1 | |
I0327 13:54:47.400207 21344 solver.cpp:245] Train net output #60: loss2/accuracy17 = 1 | |
I0327 13:54:47.400218 21344 solver.cpp:245] Train net output #61: loss2/accuracy18 = 1 | |
I0327 13:54:47.400228 21344 solver.cpp:245] Train net output #62: loss2/accuracy19 = 1 | |
I0327 13:54:47.400240 21344 solver.cpp:245] Train net output #63: loss2/accuracy20 = 1 | |
I0327 13:54:47.400251 21344 solver.cpp:245] Train net output #64: loss2/accuracy21 = 1 | |
I0327 13:54:47.400264 21344 solver.cpp:245] Train net output #65: loss2/accuracy22 = 1 | |
I0327 13:54:47.400277 21344 solver.cpp:245] Train net output #66: loss2/loss01 = 1.48552 (* 0.0272727 = 0.0405141 loss) | |
I0327 13:54:47.400290 21344 solver.cpp:245] Train net output #67: loss2/loss02 = 2.65497 (* 0.0272727 = 0.0724082 loss) | |
I0327 13:54:47.400305 21344 solver.cpp:245] Train net output #68: loss2/loss03 = 3.57947 (* 0.0272727 = 0.0976219 loss) | |
I0327 13:54:47.400318 21344 solver.cpp:245] Train net output #69: loss2/loss04 = 3.13492 (* 0.0272727 = 0.0854978 loss) | |
I0327 13:54:47.400332 21344 solver.cpp:245] Train net output #70: loss2/loss05 = 3.29118 (* 0.0272727 = 0.0897593 loss) | |
I0327 13:54:47.400346 21344 solver.cpp:245] Train net output #71: loss2/loss06 = 2.22952 (* 0.0272727 = 0.0608052 loss) | |
I0327 13:54:47.400362 21344 solver.cpp:245] Train net output #72: loss2/loss07 = 1.25402 (* 0.0272727 = 0.0342005 loss) | |
I0327 13:54:47.400374 21344 solver.cpp:245] Train net output #73: loss2/loss08 = 0.055253 (* 0.0272727 = 0.0015069 loss) | |
I0327 13:54:47.400388 21344 solver.cpp:245] Train net output #74: loss2/loss09 = 0.00710375 (* 0.0272727 = 0.000193739 loss) | |
I0327 13:54:47.400398 21344 solver.cpp:245] Train net output #75: loss2/loss10 = 0.00171843 (* 0.0272727 = 4.68662e-05 loss) | |
I0327 13:54:47.400413 21344 solver.cpp:245] Train net output #76: loss2/loss11 = 8.70565e-05 (* 0.0272727 = 2.37427e-06 loss) | |
I0327 13:54:47.400441 21344 solver.cpp:245] Train net output #77: loss2/loss12 = 9.48181e-05 (* 0.0272727 = 2.58595e-06 loss) | |
I0327 13:54:47.400457 21344 solver.cpp:245] Train net output #78: loss2/loss13 = 7.5676e-05 (* 0.0272727 = 2.06389e-06 loss) | |
I0327 13:54:47.400471 21344 solver.cpp:245] Train net output #79: loss2/loss14 = 0.000126297 (* 0.0272727 = 3.44447e-06 loss) | |
I0327 13:54:47.400485 21344 solver.cpp:245] Train net output #80: loss2/loss15 = 0.000154782 (* 0.0272727 = 4.22132e-06 loss) | |
I0327 13:54:47.400499 21344 solver.cpp:245] Train net output #81: loss2/loss16 = 2.9499e-05 (* 0.0272727 = 8.04519e-07 loss) | |
I0327 13:54:47.400513 21344 solver.cpp:245] Train net output #82: loss2/loss17 = 4.29774e-05 (* 0.0272727 = 1.17211e-06 loss) | |
I0327 13:54:47.400527 21344 solver.cpp:245] Train net output #83: loss2/loss18 = 4.88433e-05 (* 0.0272727 = 1.33209e-06 loss) | |
I0327 13:54:47.400542 21344 solver.cpp:245] Train net output #84: loss2/loss19 = 4.04732e-05 (* 0.0272727 = 1.10381e-06 loss) | |
I0327 13:54:47.400555 21344 solver.cpp:245] Train net output #85: loss2/loss20 = 4.05331e-05 (* 0.0272727 = 1.10545e-06 loss) | |
I0327 13:54:47.400569 21344 solver.cpp:245] Train net output #86: loss2/loss21 = 6.76424e-05 (* 0.0272727 = 1.84479e-06 loss) | |
I0327 13:54:47.400583 21344 solver.cpp:245] Train net output #87: loss2/loss22 = 0.000100171 (* 0.0272727 = 2.73194e-06 loss) | |
I0327 13:54:47.400594 21344 solver.cpp:245] Train net output #88: loss3/accuracy01 = 0.625 | |
I0327 13:54:47.400607 21344 solver.cpp:245] Train net output #89: loss3/accuracy02 = 0.5 | |
I0327 13:54:47.400619 21344 solver.cpp:245] Train net output #90: loss3/accuracy03 = 0 | |
I0327 13:54:47.400630 21344 solver.cpp:245] Train net output #91: loss3/accuracy04 = 0.125 | |
I0327 13:54:47.400642 21344 solver.cpp:245] Train net output #92: loss3/accuracy05 = 0.25 | |
I0327 13:54:47.400655 21344 solver.cpp:245] Train net output #93: loss3/accuracy06 = 0.375 | |
I0327 13:54:47.400665 21344 solver.cpp:245] Train net output #94: loss3/accuracy07 = 0.75 | |
I0327 13:54:47.400677 21344 solver.cpp:245] Train net output #95: loss3/accuracy08 = 1 | |
I0327 13:54:47.400689 21344 solver.cpp:245] Train net output #96: loss3/accuracy09 = 1 | |
I0327 13:54:47.400701 21344 solver.cpp:245] Train net output #97: loss3/accuracy10 = 1 | |
I0327 13:54:47.400712 21344 solver.cpp:245] Train net output #98: loss3/accuracy11 = 1 | |
I0327 13:54:47.400722 21344 solver.cpp:245] Train net output #99: loss3/accuracy12 = 1 | |
I0327 13:54:47.400734 21344 solver.cpp:245] Train net output #100: loss3/accuracy13 = 1 | |
I0327 13:54:47.400745 21344 solver.cpp:245] Train net output #101: loss3/accuracy14 = 1 | |
I0327 13:54:47.400758 21344 solver.cpp:245] Train net output #102: loss3/accuracy15 = 1 | |
I0327 13:54:47.400768 21344 solver.cpp:245] Train net output #103: loss3/accuracy16 = 1 | |
I0327 13:54:47.400780 21344 solver.cpp:245] Train net output #104: loss3/accuracy17 = 1 | |
I0327 13:54:47.400791 21344 solver.cpp:245] Train net output #105: loss3/accuracy18 = 1 | |
I0327 13:54:47.400802 21344 solver.cpp:245] Train net output #106: loss3/accuracy19 = 1 | |
I0327 13:54:47.400813 21344 solver.cpp:245] Train net output #107: loss3/accuracy20 = 1 | |
I0327 13:54:47.400825 21344 solver.cpp:245] Train net output #108: loss3/accuracy21 = 1 | |
I0327 13:54:47.400836 21344 solver.cpp:245] Train net output #109: loss3/accuracy22 = 1 | |
I0327 13:54:47.400849 21344 solver.cpp:245] Train net output #110: loss3/loss01 = 1.4225 (* 0.0909091 = 0.129318 loss) | |
I0327 13:54:47.400863 21344 solver.cpp:245] Train net output #111: loss3/loss02 = 2.08716 (* 0.0909091 = 0.189742 loss) | |
I0327 13:54:47.400877 21344 solver.cpp:245] Train net output #112: loss3/loss03 = 3.21206 (* 0.0909091 = 0.292005 loss) | |
I0327 13:54:47.400892 21344 solver.cpp:245] Train net output #113: loss3/loss04 = 2.86019 (* 0.0909091 = 0.260018 loss) | |
I0327 13:54:47.400905 21344 solver.cpp:245] Train net output #114: loss3/loss05 = 2.76741 (* 0.0909091 = 0.251582 loss) | |
I0327 13:54:47.400929 21344 solver.cpp:245] Train net output #115: loss3/loss06 = 2.02142 (* 0.0909091 = 0.183765 loss) | |
I0327 13:54:47.400944 21344 solver.cpp:245] Train net output #116: loss3/loss07 = 1.06701 (* 0.0909091 = 0.0970006 loss) | |
I0327 13:54:47.400959 21344 solver.cpp:245] Train net output #117: loss3/loss08 = 0.0262948 (* 0.0909091 = 0.00239044 loss) | |
I0327 13:54:47.400974 21344 solver.cpp:245] Train net output #118: loss3/loss09 = 0.00402643 (* 0.0909091 = 0.00036604 loss) | |
I0327 13:54:47.400987 21344 solver.cpp:245] Train net output #119: loss3/loss10 = 0.00199225 (* 0.0909091 = 0.000181113 loss) | |
I0327 13:54:47.401001 21344 solver.cpp:245] Train net output #120: loss3/loss11 = 4.25601e-05 (* 0.0909091 = 3.8691e-06 loss) | |
I0327 13:54:47.401015 21344 solver.cpp:245] Train net output #121: loss3/loss12 = 4.22614e-05 (* 0.0909091 = 3.84195e-06 loss) | |
I0327 13:54:47.401029 21344 solver.cpp:245] Train net output #122: loss3/loss13 = 4.40052e-05 (* 0.0909091 = 4.00047e-06 loss) | |
I0327 13:54:47.401046 21344 solver.cpp:245] Train net output #123: loss3/loss14 = 4.35583e-05 (* 0.0909091 = 3.95984e-06 loss) | |
I0327 13:54:47.401062 21344 solver.cpp:245] Train net output #124: loss3/loss15 = 4.12634e-05 (* 0.0909091 = 3.75122e-06 loss) | |
I0327 13:54:47.401075 21344 solver.cpp:245] Train net output #125: loss3/loss16 = 3.39163e-05 (* 0.0909091 = 3.0833e-06 loss) | |
I0327 13:54:47.401089 21344 solver.cpp:245] Train net output #126: loss3/loss17 = 4.42882e-05 (* 0.0909091 = 4.0262e-06 loss) | |
I0327 13:54:47.401103 21344 solver.cpp:245] Train net output #127: loss3/loss18 = 3.94302e-05 (* 0.0909091 = 3.58456e-06 loss) | |
I0327 13:54:47.401118 21344 solver.cpp:245] Train net output #128: loss3/loss19 = 4.26045e-05 (* 0.0909091 = 3.87314e-06 loss) | |
I0327 13:54:47.401131 21344 solver.cpp:245] Train net output #129: loss3/loss20 = 4.61069e-05 (* 0.0909091 = 4.19153e-06 loss) | |
I0327 13:54:47.401145 21344 solver.cpp:245] Train net output #130: loss3/loss21 = 4.52269e-05 (* 0.0909091 = 4.11154e-06 loss) | |
I0327 13:54:47.401160 21344 solver.cpp:245] Train net output #131: loss3/loss22 = 3.7925e-05 (* 0.0909091 = 3.44773e-06 loss) | |
I0327 13:54:47.401171 21344 solver.cpp:245] Train net output #132: total_accuracy = 0 | |
I0327 13:54:47.401182 21344 solver.cpp:245] Train net output #133: total_confidence = 0.00314658 | |
I0327 13:54:47.401195 21344 sgd_solver.cpp:106] Iteration 18500, lr = 0.01 | |
I0327 13:56:35.120676 21344 solver.cpp:229] Iteration 19000, loss = 2.64078 | |
I0327 13:56:35.120847 21344 solver.cpp:245] Train net output #0: loss1/accuracy01 = 0.375 | |
I0327 13:56:35.120867 21344 solver.cpp:245] Train net output #1: loss1/accuracy02 = 0.375 | |
I0327 13:56:35.120880 21344 solver.cpp:245] Train net output #2: loss1/accuracy03 = 0 | |
I0327 13:56:35.120893 21344 solver.cpp:245] Train net output #3: loss1/accuracy04 = 0.25 | |
I0327 13:56:35.120905 21344 solver.cpp:245] Train net output #4: loss1/accuracy05 = 0.375 | |
I0327 13:56:35.120918 21344 solver.cpp:245] Train net output #5: loss1/accuracy06 = 0.5 | |
I0327 13:56:35.120929 21344 solver.cpp:245] Train net output #6: loss1/accuracy07 = 0.625 | |
I0327 13:56:35.120940 21344 solver.cpp:245] Train net output #7: loss1/accuracy08 = 0.75 | |
I0327 13:56:35.120952 21344 solver.cpp:245] Train net output #8: loss1/accuracy09 = 1 | |
I0327 13:56:35.120965 21344 solver.cpp:245] Train net output #9: loss1/accuracy10 = 1 | |
I0327 13:56:35.120976 21344 solver.cpp:245] Train net output #10: loss1/accuracy11 = 1 | |
I0327 13:56:35.120987 21344 solver.cpp:245] Train net output #11: loss1/accuracy12 = 1 | |
I0327 13:56:35.121002 21344 solver.cpp:245] Train net output #12: loss1/accuracy13 = 1 | |
I0327 13:56:35.121016 21344 solver.cpp:245] Train net output #13: loss1/accuracy14 = 1 | |
I0327 13:56:35.121029 21344 solver.cpp:245] Train net output #14: loss1/accuracy15 = 1 | |
I0327 13:56:35.121042 21344 solver.cpp:245] Train net output #15: loss1/accuracy16 = 1 | |
I0327 13:56:35.121053 21344 solver.cpp:245] Train net output #16: loss1/accuracy17 = 1 | |
I0327 13:56:35.121065 21344 solver.cpp:245] Train net output #17: loss1/accuracy18 = 1 | |
I0327 13:56:35.121076 21344 solver.cpp:245] Train net output #18: loss1/accuracy19 = 1 | |
I0327 13:56:35.121088 21344 solver.cpp:245] Train net output #19: loss1/accuracy20 = 1 | |
I0327 13:56:35.121099 21344 solver.cpp:245] Train net output #20: loss1/accuracy21 = 1 | |
I0327 13:56:35.121111 21344 solver.cpp:245] Train net output #21: loss1/accuracy22 = 1 | |
I0327 13:56:35.121126 21344 solver.cpp:245] Train net output #22: loss1/loss01 = 2.63962 (* 0.0272727 = 0.0719896 loss) | |
I0327 13:56:35.121141 21344 solver.cpp:245] Train net output #23: loss1/loss02 = 3.146 (* 0.0272727 = 0.0858 loss) | |
I0327 13:56:35.121155 21344 solver.cpp:245] Train net output #24: loss1/loss03 = 3.55097 (* 0.0272727 = 0.0968447 loss) | |
I0327 13:56:35.121170 21344 solver.cpp:245] Train net output #25: loss1/loss04 = 2.92679 (* 0.0272727 = 0.0798217 loss) | |
I0327 13:56:35.121183 21344 solver.cpp:245] Train net output #26: loss1/loss05 = 2.91578 (* 0.0272727 = 0.0795212 loss) | |
I0327 13:56:35.121198 21344 solver.cpp:245] Train net output #27: loss1/loss06 = 2.10834 (* 0.0272727 = 0.0575001 loss) | |
I0327 13:56:35.121212 21344 solver.cpp:245] Train net output #28: loss1/loss07 = 1.41241 (* 0.0272727 = 0.0385203 loss) | |
I0327 13:56:35.121225 21344 solver.cpp:245] Train net output #29: loss1/loss08 = 0.602174 (* 0.0272727 = 0.0164229 loss) | |
I0327 13:56:35.121239 21344 solver.cpp:245] Train net output #30: loss1/loss09 = 0.108633 (* 0.0272727 = 0.00296271 loss) | |
I0327 13:56:35.121254 21344 solver.cpp:245] Train net output #31: loss1/loss10 = 0.0272227 (* 0.0272727 = 0.000742437 loss) | |
I0327 13:56:35.121269 21344 solver.cpp:245] Train net output #32: loss1/loss11 = 0.000324322 (* 0.0272727 = 8.84515e-06 loss) | |
I0327 13:56:35.121284 21344 solver.cpp:245] Train net output #33: loss1/loss12 = 0.000482728 (* 0.0272727 = 1.31653e-05 loss) | |
I0327 13:56:35.121299 21344 solver.cpp:245] Train net output #34: loss1/loss13 = 0.000642709 (* 0.0272727 = 1.75284e-05 loss) | |
I0327 13:56:35.121312 21344 solver.cpp:245] Train net output #35: loss1/loss14 = 0.00046613 (* 0.0272727 = 1.27126e-05 loss) | |
I0327 13:56:35.121326 21344 solver.cpp:245] Train net output #36: loss1/loss15 = 0.000434824 (* 0.0272727 = 1.18588e-05 loss) | |
I0327 13:56:35.121340 21344 solver.cpp:245] Train net output #37: loss1/loss16 = 0.000159597 (* 0.0272727 = 4.35265e-06 loss) | |
I0327 13:56:35.121354 21344 solver.cpp:245] Train net output #38: loss1/loss17 = 0.000611796 (* 0.0272727 = 1.66853e-05 loss) | |
I0327 13:56:35.121382 21344 solver.cpp:245] Train net output #39: loss1/loss18 = 0.000247017 (* 0.0272727 = 6.73682e-06 loss) | |
I0327 13:56:35.121397 21344 solver.cpp:245] Train net output #40: loss1/loss19 = 0.00054841 (* 0.0272727 = 1.49566e-05 loss) | |
I0327 13:56:35.121412 21344 solver.cpp:245] Train net output #41: loss1/loss20 = 0.000275736 (* 0.0272727 = 7.52007e-06 loss) | |
I0327 13:56:35.121439 21344 solver.cpp:245] Train net output #42: loss1/loss21 = 0.000305945 (* 0.0272727 = 8.34396e-06 loss) | |
I0327 13:56:35.121455 21344 solver.cpp:245] Train net output #43: loss1/loss22 = 0.00075568 (* 0.0272727 = 2.06094e-05 loss) | |
I0327 13:56:35.121469 21344 solver.cpp:245] Train net output #44: loss2/accuracy01 = 0.5 | |
I0327 13:56:35.121480 21344 solver.cpp:245] Train net output #45: loss2/accuracy02 = 0 | |
I0327 13:56:35.121492 21344 solver.cpp:245] Train net output #46: loss2/accuracy03 = 0.125 | |
I0327 13:56:35.121505 21344 solver.cpp:245] Train net output #47: loss2/accuracy04 = 0.375 | |
I0327 13:56:35.121516 21344 solver.cpp:245] Train net output #48: loss2/accuracy05 = 0.375 | |
I0327 13:56:35.121528 21344 solver.cpp:245] Train net output #49: loss2/accuracy06 = 0.625 | |
I0327 13:56:35.121556 21344 solver.cpp:245] Train net output #50: loss2/accuracy07 = 0.625 | |
I0327 13:56:35.121570 21344 solver.cpp:245] Train net output #51: loss2/accuracy08 = 0.875 | |
I0327 13:56:35.121583 21344 solver.cpp:245] Train net output #52: loss2/accuracy09 = 1 | |
I0327 13:56:35.121594 21344 solver.cpp:245] Train net output #53: loss2/accuracy10 = 1 | |
I0327 13:56:35.121606 21344 solver.cpp:245] Train net output #54: loss2/accuracy11 = 1 | |
I0327 13:56:35.121618 21344 solver.cpp:245] Train net output #55: loss2/accuracy12 = 1 | |
I0327 13:56:35.121629 21344 solver.cpp:245] Train net output #56: loss2/accuracy13 = 1 | |
I0327 13:56:35.121640 21344 solver.cpp:245] Train net output #57: loss2/accuracy14 = 1 | |
I0327 13:56:35.121651 21344 solver.cpp:245] Train net output #58: loss2/accuracy15 = 1 | |
I0327 13:56:35.121664 21344 solver.cpp:245] Train net output #59: loss2/accuracy16 = 1 | |
I0327 13:56:35.121675 21344 solver.cpp:245] Train net output #60: loss2/accuracy17 = 1 | |
I0327 13:56:35.121686 21344 solver.cpp:245] Train net output #61: loss2/accuracy18 = 1 | |
I0327 13:56:35.121697 21344 solver.cpp:245] Train net output #62: loss2/accuracy19 = 1 | |
I0327 13:56:35.121708 21344 solver.cpp:245] Train net output #63: loss2/accuracy20 = 1 | |
I0327 13:56:35.121721 21344 solver.cpp:245] Train net output #64: loss2/accuracy21 = 1 | |
I0327 13:56:35.121731 21344 solver.cpp:245] Train net output #65: loss2/accuracy22 = 1 | |
I0327 13:56:35.121745 21344 solver.cpp:245] Train net output #66: loss2/loss01 = 2.15122 (* 0.0272727 = 0.0586697 loss) | |
I0327 13:56:35.121772 21344 solver.cpp:245] Train net output #67: loss2/loss02 = 3.26053 (* 0.0272727 = 0.0889237 loss) | |
I0327 13:56:35.121799 21344 solver.cpp:245] Train net output #68: loss2/loss03 = 3.29377 (* 0.0272727 = 0.08983 loss) | |
I0327 13:56:35.121826 21344 solver.cpp:245] Train net output #69: loss2/loss04 = 2.69494 (* 0.0272727 = 0.0734982 loss) | |
I0327 13:56:35.121851 21344 solver.cpp:245] Train net output #70: loss2/loss05 = 2.84068 (* 0.0272727 = 0.077473 loss) | |
I0327 13:56:35.121881 21344 solver.cpp:245] Train net output #71: loss2/loss06 = 1.84111 (* 0.0272727 = 0.0502121 loss) | |
I0327 13:56:35.121903 21344 solver.cpp:245] Train net output #72: loss2/loss07 = 1.57566 (* 0.0272727 = 0.0429726 loss) | |
I0327 13:56:35.121927 21344 solver.cpp:245] Train net output #73: loss2/loss08 = 0.56305 (* 0.0272727 = 0.0153559 loss) | |
I0327 13:56:35.121949 21344 solver.cpp:245] Train net output #74: loss2/loss09 = 0.115885 (* 0.0272727 = 0.0031605 loss) | |
I0327 13:56:35.121973 21344 solver.cpp:245] Train net output #75: loss2/loss10 = 0.0333445 (* 0.0272727 = 0.000909396 loss) | |
I0327 13:56:35.121999 21344 solver.cpp:245] Train net output #76: loss2/loss11 = 0.000942027 (* 0.0272727 = 2.56916e-05 loss) | |
I0327 13:56:35.122046 21344 solver.cpp:245] Train net output #77: loss2/loss12 = 0.000236086 (* 0.0272727 = 6.43872e-06 loss) | |
I0327 13:56:35.122078 21344 solver.cpp:245] Train net output #78: loss2/loss13 = 0.00099923 (* 0.0272727 = 2.72517e-05 loss) | |
I0327 13:56:35.122105 21344 solver.cpp:245] Train net output #79: loss2/loss14 = 0.000142619 (* 0.0272727 = 3.88961e-06 loss) | |
I0327 13:56:35.122133 21344 solver.cpp:245] Train net output #80: loss2/loss15 = 0.000476948 (* 0.0272727 = 1.30077e-05 loss) | |
I0327 13:56:35.122158 21344 solver.cpp:245] Train net output #81: loss2/loss16 = 0.000947919 (* 0.0272727 = 2.58523e-05 loss) | |
I0327 13:56:35.122185 21344 solver.cpp:245] Train net output #82: loss2/loss17 = 0.000374245 (* 0.0272727 = 1.02067e-05 loss) | |
I0327 13:56:35.122205 21344 solver.cpp:245] Train net output #83: loss2/loss18 = 0.000876208 (* 0.0272727 = 2.38966e-05 loss) | |
I0327 13:56:35.122233 21344 solver.cpp:245] Train net output #84: loss2/loss19 = 0.000417904 (* 0.0272727 = 1.13974e-05 loss) | |
I0327 13:56:35.122261 21344 solver.cpp:245] Train net output #85: loss2/loss20 = 0.000454664 (* 0.0272727 = 1.23999e-05 loss) | |
I0327 13:56:35.122287 21344 solver.cpp:245] Train net output #86: loss2/loss21 = 0.000460438 (* 0.0272727 = 1.25574e-05 loss) | |
I0327 13:56:35.122313 21344 solver.cpp:245] Train net output #87: loss2/loss22 = 0.000362642 (* 0.0272727 = 9.89025e-06 loss) | |
I0327 13:56:35.122334 21344 solver.cpp:245] Train net output #88: loss3/accuracy01 = 0.375 | |
I0327 13:56:35.122357 21344 solver.cpp:245] Train net output #89: loss3/accuracy02 = 0.25 | |
I0327 13:56:35.122380 21344 solver.cpp:245] Train net output #90: loss3/accuracy03 = 0.25 | |
I0327 13:56:35.122401 21344 solver.cpp:245] Train net output #91: loss3/accuracy04 = 0.25 | |
I0327 13:56:35.122423 21344 solver.cpp:245] Train net output #92: loss3/accuracy05 = 0.375 | |
I0327 13:56:35.122445 21344 solver.cpp:245] Train net output #93: loss3/accuracy06 = 0.625 | |
I0327 13:56:35.122467 21344 solver.cpp:245] Train net output #94: loss3/accuracy07 = 0.625 | |
I0327 13:56:35.122489 21344 solver.cpp:245] Train net output #95: loss3/accuracy08 = 0.875 | |
I0327 13:56:35.122511 21344 solver.cpp:245] Train net output #96: loss3/accuracy09 = 1 | |
I0327 13:56:35.122534 21344 solver.cpp:245] Train net output #97: loss3/accuracy10 = 1 | |
I0327 13:56:35.122556 21344 solver.cpp:245] Train net output #98: loss3/accuracy11 = 1 | |
I0327 13:56:35.122577 21344 solver.cpp:245] Train net output #99: loss3/accuracy12 = 1 | |
I0327 13:56:35.122601 21344 solver.cpp:245] Train net output #100: loss3/accuracy13 = 1 | |
I0327 13:56:35.122622 21344 solver.cpp:245] Train net output #101: loss3/accuracy14 = 1 | |
I0327 13:56:35.122643 21344 solver.cpp:245] Train net output #102: loss3/accuracy15 = 1 | |
I0327 13:56:35.122665 21344 solver.cpp:245] Train net output #103: loss3/accuracy16 = 1 | |
I0327 13:56:35.122686 21344 solver.cpp:245] Train net output #104: loss3/accuracy17 = 1 | |
I0327 13:56:35.122707 21344 solver.cpp:245] Train net output #105: loss3/accuracy18 = 1 | |
I0327 13:56:35.122727 21344 solver.cpp:245] Train net output #106: loss3/accuracy19 = 1 | |
I0327 13:56:35.122747 21344 solver.cpp:245] Train net output #107: loss3/accuracy20 = 1 | |
I0327 13:56:35.122768 21344 solver.cpp:245] Train net output #108: loss3/accuracy21 = 1 | |
I0327 13:56:35.122788 21344 solver.cpp:245] Train net output #109: loss3/accuracy22 = 1 | |
I0327 13:56:35.122817 21344 solver.cpp:245] Train net output #110: loss3/loss01 = 2.2798 (* 0.0909091 = 0.207254 loss) | |
I0327 13:56:35.122843 21344 solver.cpp:245] Train net output #111: loss3/loss02 = 2.87567 (* 0.0909091 = 0.261424 loss) | |
I0327 13:56:35.122869 21344 solver.cpp:245] Train net output #112: loss3/loss03 = 3.08149 (* 0.0909091 = 0.280136 loss) | |
I0327 13:56:35.122894 21344 solver.cpp:245] Train net output #113: loss3/loss04 = 2.80206 (* 0.0909091 = 0.254732 loss) | |
I0327 13:56:35.122925 21344 solver.cpp:245] Train net output #114: loss3/loss05 = 3.02615 (* 0.0909091 = 0.275104 loss) | |
I0327 13:56:35.122967 21344 solver.cpp:245] Train net output #115: loss3/loss06 = 1.948 (* 0.0909091 = 0.177091 loss) | |
I0327 13:56:35.122992 21344 solver.cpp:245] Train net output #116: loss3/loss07 = 1.34852 (* 0.0909091 = 0.122592 loss) | |
I0327 13:56:35.123014 21344 solver.cpp:245] Train net output #117: loss3/loss08 = 0.468303 (* 0.0909091 = 0.042573 loss) | |
I0327 13:56:35.123040 21344 solver.cpp:245] Train net output #118: loss3/loss09 = 0.185527 (* 0.0909091 = 0.0168661 loss) | |
I0327 13:56:35.123064 21344 solver.cpp:245] Train net output #119: loss3/loss10 = 0.034608 (* 0.0909091 = 0.00314618 loss) | |
I0327 13:56:35.123080 21344 solver.cpp:245] Train net output #120: loss3/loss11 = 6.98848e-05 (* 0.0909091 = 6.35316e-06 loss) | |
I0327 13:56:35.123096 21344 solver.cpp:245] Train net output #121: loss3/loss12 = 0.000113026 (* 0.0909091 = 1.02751e-05 loss) | |
I0327 13:56:35.123111 21344 solver.cpp:245] Train net output #122: loss3/loss13 = 0.000102428 (* 0.0909091 = 9.31163e-06 loss) | |
I0327 13:56:35.123126 21344 solver.cpp:245] Train net output #123: loss3/loss14 = 8.35502e-05 (* 0.0909091 = 7.59547e-06 loss) | |
I0327 13:56:35.123141 21344 solver.cpp:245] Train net output #124: loss3/loss15 = 8.59424e-05 (* 0.0909091 = 7.81294e-06 loss) | |
I0327 13:56:35.123154 21344 solver.cpp:245] Train net output #125: loss3/loss16 = 8.02493e-05 (* 0.0909091 = 7.29539e-06 loss) | |
I0327 13:56:35.123168 21344 solver.cpp:245] Train net output #126: loss3/loss17 = 8.21874e-05 (* 0.0909091 = 7.47158e-06 loss) | |
I0327 13:56:35.123183 21344 solver.cpp:245] Train net output #127: loss3/loss18 = 8.56667e-05 (* 0.0909091 = 7.78788e-06 loss) | |
I0327 13:56:35.123196 21344 solver.cpp:245] Train net output #128: loss3/loss19 = 9.5005e-05 (* 0.0909091 = 8.63682e-06 loss) | |
I0327 13:56:35.123211 21344 solver.cpp:245] Train net output #129: loss3/loss20 = 8.74189e-05 (* 0.0909091 = 7.94717e-06 loss) | |
I0327 13:56:35.123225 21344 solver.cpp:245] Train net output #130: loss3/loss21 = 0.000112405 (* 0.0909091 = 1.02187e-05 loss) | |
I0327 13:56:35.123239 21344 solver.cpp:245] Train net output #131: loss3/loss22 = 0.000101965 (* 0.0909091 = 9.26953e-06 loss) | |
I0327 13:56:35.123252 21344 solver.cpp:245] Train net output #132: total_accuracy = 0 | |
I0327 13:56:35.123263 21344 solver.cpp:245] Train net output #133: total_confidence = 0.00466071 | |
I0327 13:56:35.123276 21344 sgd_solver.cpp:106] Iteration 19000, lr = 0.01 | |
I0327 13:58:23.284157 21344 solver.cpp:229] Iteration 19500, loss = 2.62943 | |
I0327 13:58:23.284307 21344 solver.cpp:245] Train net output #0: loss1/accuracy01 = 0.375 | |
I0327 13:58:23.284327 21344 solver.cpp:245] Train net output #1: loss1/accuracy02 = 0.125 | |
I0327 13:58:23.284339 21344 solver.cpp:245] Train net output #2: loss1/accuracy03 = 0 | |
I0327 13:58:23.284351 21344 solver.cpp:245] Train net output #3: loss1/accuracy04 = 0.125 | |
I0327 13:58:23.284363 21344 solver.cpp:245] Train net output #4: loss1/accuracy05 = 0.25 | |
I0327 13:58:23.284376 21344 solver.cpp:245] Train net output #5: loss1/accuracy06 = 0.5 | |
I0327 13:58:23.284389 21344 solver.cpp:245] Train net output #6: loss1/accuracy07 = 0.625 | |
I0327 13:58:23.284400 21344 solver.cpp:245] Train net output #7: loss1/accuracy08 = 0.875 | |
I0327 13:58:23.284412 21344 solver.cpp:245] Train net output #8: loss1/accuracy09 = 1 | |
I0327 13:58:23.284425 21344 solver.cpp:245] Train net output #9: loss1/accuracy10 = 1 | |
I0327 13:58:23.284442 21344 solver.cpp:245] Train net output #10: loss1/accuracy11 = 1 | |
I0327 13:58:23.284456 21344 solver.cpp:245] Train net output #11: loss1/accuracy12 = 1 | |
I0327 13:58:23.284467 21344 solver.cpp:245] Train net output #12: loss1/accuracy13 = 1 | |
I0327 13:58:23.284478 21344 solver.cpp:245] Train net output #13: loss1/accuracy14 = 1 | |
I0327 13:58:23.284490 21344 solver.cpp:245] Train net output #14: loss1/accuracy15 = 1 | |
I0327 13:58:23.284502 21344 solver.cpp:245] Train net output #15: loss1/accuracy16 = 1 | |
I0327 13:58:23.284513 21344 solver.cpp:245] Train net output #16: loss1/accuracy17 = 1 | |
I0327 13:58:23.284525 21344 solver.cpp:245] Train net output #17: loss1/accuracy18 = 1 | |
I0327 13:58:23.284538 21344 solver.cpp:245] Train net output #18: loss1/accuracy19 = 1 | |
I0327 13:58:23.284548 21344 solver.cpp:245] Train net output #19: loss1/accuracy20 = 1 | |
I0327 13:58:23.284560 21344 solver.cpp:245] Train net output #20: loss1/accuracy21 = 1 | |
I0327 13:58:23.284571 21344 solver.cpp:245] Train net output #21: loss1/accuracy22 = 1 | |
I0327 13:58:23.284587 21344 solver.cpp:245] Train net output #22: loss1/loss01 = 2.79711 (* 0.0272727 = 0.0762848 loss) | |
I0327 13:58:23.284602 21344 solver.cpp:245] Train net output #23: loss1/loss02 = 3.25195 (* 0.0272727 = 0.0886896 loss) | |
I0327 13:58:23.284616 21344 solver.cpp:245] Train net output #24: loss1/loss03 = 2.99487 (* 0.0272727 = 0.0816783 loss) | |
I0327 13:58:23.284634 21344 solver.cpp:245] Train net output #25: loss1/loss04 = 3.06587 (* 0.0272727 = 0.0836147 loss) | |
I0327 13:58:23.284649 21344 solver.cpp:245] Train net output #26: loss1/loss05 = 1.97717 (* 0.0272727 = 0.0539228 loss) | |
I0327 13:58:23.284663 21344 solver.cpp:245] Train net output #27: loss1/loss06 = 1.82777 (* 0.0272727 = 0.0498482 loss) | |
I0327 13:58:23.284677 21344 solver.cpp:245] Train net output #28: loss1/loss07 = 1.7227 (* 0.0272727 = 0.0469826 loss) | |
I0327 13:58:23.284692 21344 solver.cpp:245] Train net output #29: loss1/loss08 = 0.388659 (* 0.0272727 = 0.0105998 loss) | |
I0327 13:58:23.284706 21344 solver.cpp:245] Train net output #30: loss1/loss09 = 0.0108463 (* 0.0272727 = 0.000295809 loss) | |
I0327 13:58:23.284720 21344 solver.cpp:245] Train net output #31: loss1/loss10 = 0.00181101 (* 0.0272727 = 4.93911e-05 loss) | |
I0327 13:58:23.284735 21344 solver.cpp:245] Train net output #32: loss1/loss11 = 0.000124311 (* 0.0272727 = 3.39031e-06 loss) | |
I0327 13:58:23.284754 21344 solver.cpp:245] Train net output #33: loss1/loss12 = 0.000126434 (* 0.0272727 = 3.4482e-06 loss) | |
I0327 13:58:23.284785 21344 solver.cpp:245] Train net output #34: loss1/loss13 = 5.7487e-05 (* 0.0272727 = 1.56783e-06 loss) | |
I0327 13:58:23.284816 21344 solver.cpp:245] Train net output #35: loss1/loss14 = 0.000101061 (* 0.0272727 = 2.75621e-06 loss) | |
I0327 13:58:23.284847 21344 solver.cpp:245] Train net output #36: loss1/loss15 = 8.79419e-05 (* 0.0272727 = 2.39842e-06 loss) | |
I0327 13:58:23.284874 21344 solver.cpp:245] Train net output #37: loss1/loss16 = 6.13222e-05 (* 0.0272727 = 1.67242e-06 loss) | |
I0327 13:58:23.284893 21344 solver.cpp:245] Train net output #38: loss1/loss17 = 0.000105075 (* 0.0272727 = 2.86567e-06 loss) | |
I0327 13:58:23.284921 21344 solver.cpp:245] Train net output #39: loss1/loss18 = 5.94092e-05 (* 0.0272727 = 1.62025e-06 loss) | |
I0327 13:58:23.284936 21344 solver.cpp:245] Train net output #40: loss1/loss19 = 7.68449e-05 (* 0.0272727 = 2.09577e-06 loss) | |
I0327 13:58:23.284950 21344 solver.cpp:245] Train net output #41: loss1/loss20 = 5.7889e-05 (* 0.0272727 = 1.57879e-06 loss) | |
I0327 13:58:23.284965 21344 solver.cpp:245] Train net output #42: loss1/loss21 = 4.96533e-05 (* 0.0272727 = 1.35418e-06 loss) | |
I0327 13:58:23.284978 21344 solver.cpp:245] Train net output #43: loss1/loss22 = 4.75066e-05 (* 0.0272727 = 1.29563e-06 loss) | |
I0327 13:58:23.284994 21344 solver.cpp:245] Train net output #44: loss2/accuracy01 = 0.375 | |
I0327 13:58:23.285007 21344 solver.cpp:245] Train net output #45: loss2/accuracy02 = 0.125 | |
I0327 13:58:23.285019 21344 solver.cpp:245] Train net output #46: loss2/accuracy03 = 0.25 | |
I0327 13:58:23.285032 21344 solver.cpp:245] Train net output #47: loss2/accuracy04 = 0 | |
I0327 13:58:23.285043 21344 solver.cpp:245] Train net output #48: loss2/accuracy05 = 0.25 | |
I0327 13:58:23.285054 21344 solver.cpp:245] Train net output #49: loss2/accuracy06 = 0.5 | |
I0327 13:58:23.285066 21344 solver.cpp:245] Train net output #50: loss2/accuracy07 = 0.625 | |
I0327 13:58:23.285079 21344 solver.cpp:245] Train net output #51: loss2/accuracy08 = 0.875 | |
I0327 13:58:23.285090 21344 solver.cpp:245] Train net output #52: loss2/accuracy09 = 1 | |
I0327 13:58:23.285101 21344 solver.cpp:245] Train net output #53: loss2/accuracy10 = 1 | |
I0327 13:58:23.285112 21344 solver.cpp:245] Train net output #54: loss2/accuracy11 = 1 | |
I0327 13:58:23.285123 21344 solver.cpp:245] Train net output #55: loss2/accuracy12 = 1 | |
I0327 13:58:23.285135 21344 solver.cpp:245] Train net output #56: loss2/accuracy13 = 1 | |
I0327 13:58:23.285146 21344 solver.cpp:245] Train net output #57: loss2/accuracy14 = 1 | |
I0327 13:58:23.285158 21344 solver.cpp:245] Train net output #58: loss2/accuracy15 = 1 | |
I0327 13:58:23.285169 21344 solver.cpp:245] Train net output #59: loss2/accuracy16 = 1 | |
I0327 13:58:23.285181 21344 solver.cpp:245] Train net output #60: loss2/accuracy17 = 1 | |
I0327 13:58:23.285192 21344 solver.cpp:245] Train net output #61: loss2/accuracy18 = 1 | |
I0327 13:58:23.285202 21344 solver.cpp:245] Train net output #62: loss2/accuracy19 = 1 | |
I0327 13:58:23.285214 21344 solver.cpp:245] Train net output #63: loss2/accuracy20 = 1 | |
I0327 13:58:23.285225 21344 solver.cpp:245] Train net output #64: loss2/accuracy21 = 1 | |
I0327 13:58:23.285236 21344 solver.cpp:245] Train net output #65: loss2/accuracy22 = 1 | |
I0327 13:58:23.285250 21344 solver.cpp:245] Train net output #66: loss2/loss01 = 2.80615 (* 0.0272727 = 0.0765314 loss) | |
I0327 13:58:23.285264 21344 solver.cpp:245] Train net output #67: loss2/loss02 = 3.219 (* 0.0272727 = 0.087791 loss) | |
I0327 13:58:23.285277 21344 solver.cpp:245] Train net output #68: loss2/loss03 = 2.80714 (* 0.0272727 = 0.0765584 loss) | |
I0327 13:58:23.285291 21344 solver.cpp:245] Train net output #69: loss2/loss04 = 3.31334 (* 0.0272727 = 0.0903637 loss) | |
I0327 13:58:23.285305 21344 solver.cpp:245] Train net output #70: loss2/loss05 = 2.06878 (* 0.0272727 = 0.0564213 loss) | |
I0327 13:58:23.285320 21344 solver.cpp:245] Train net output #71: loss2/loss06 = 1.79178 (* 0.0272727 = 0.0488666 loss) | |
I0327 13:58:23.285336 21344 solver.cpp:245] Train net output #72: loss2/loss07 = 1.15947 (* 0.0272727 = 0.0316218 loss) | |
I0327 13:58:23.285351 21344 solver.cpp:245] Train net output #73: loss2/loss08 = 0.569858 (* 0.0272727 = 0.0155416 loss) | |
I0327 13:58:23.285365 21344 solver.cpp:245] Train net output #74: loss2/loss09 = 0.00792751 (* 0.0272727 = 0.000216205 loss) | |
I0327 13:58:23.285378 21344 solver.cpp:245] Train net output #75: loss2/loss10 = 0.00160483 (* 0.0272727 = 4.37681e-05 loss) | |
I0327 13:58:23.285393 21344 solver.cpp:245] Train net output #76: loss2/loss11 = 0.000103547 (* 0.0272727 = 2.82402e-06 loss) | |
I0327 13:58:23.285418 21344 solver.cpp:245] Train net output #77: loss2/loss12 = 8.12456e-05 (* 0.0272727 = 2.21579e-06 loss) | |
I0327 13:58:23.285434 21344 solver.cpp:245] Train net output #78: loss2/loss13 = 0.000165185 (* 0.0272727 = 4.50504e-06 loss) | |
I0327 13:58:23.285447 21344 solver.cpp:245] Train net output #79: loss2/loss14 = 0.000106415 (* 0.0272727 = 2.90222e-06 loss) | |
I0327 13:58:23.285461 21344 solver.cpp:245] Train net output #80: loss2/loss15 = 6.52609e-05 (* 0.0272727 = 1.77984e-06 loss) | |
I0327 13:58:23.285475 21344 solver.cpp:245] Train net output #81: loss2/loss16 = 0.000167686 (* 0.0272727 = 4.57325e-06 loss) | |
I0327 13:58:23.285490 21344 solver.cpp:245] Train net output #82: loss2/loss17 = 0.000132198 (* 0.0272727 = 3.60541e-06 loss) | |
I0327 13:58:23.285503 21344 solver.cpp:245] Train net output #83: loss2/loss18 = 0.00036747 (* 0.0272727 = 1.00219e-05 loss) | |
I0327 13:58:23.285517 21344 solver.cpp:245] Train net output #84: loss2/loss19 = 0.000113511 (* 0.0272727 = 3.09576e-06 loss) | |
I0327 13:58:23.285531 21344 solver.cpp:245] Train net output #85: loss2/loss20 = 9.43996e-05 (* 0.0272727 = 2.57454e-06 loss) | |
I0327 13:58:23.285564 21344 solver.cpp:245] Train net output #86: loss2/loss21 = 0.0002258 (* 0.0272727 = 6.15819e-06 loss) | |
I0327 13:58:23.285579 21344 solver.cpp:245] Train net output #87: loss2/loss22 = 9.69851e-05 (* 0.0272727 = 2.64505e-06 loss) | |
I0327 13:58:23.285593 21344 solver.cpp:245] Train net output #88: loss3/accuracy01 = 0.25 | |
I0327 13:58:23.285604 21344 solver.cpp:245] Train net output #89: loss3/accuracy02 = 0.125 | |
I0327 13:58:23.285616 21344 solver.cpp:245] Train net output #90: loss3/accuracy03 = 0.375 | |
I0327 13:58:23.285629 21344 solver.cpp:245] Train net output #91: loss3/accuracy04 = 0.125 | |
I0327 13:58:23.285640 21344 solver.cpp:245] Train net output #92: loss3/accuracy05 = 0.375 | |
I0327 13:58:23.285651 21344 solver.cpp:245] Train net output #93: loss3/accuracy06 = 0.5 | |
I0327 13:58:23.285670 21344 solver.cpp:245] Train net output #94: loss3/accuracy07 = 0.75 | |
I0327 13:58:23.285692 21344 solver.cpp:245] Train net output #95: loss3/accuracy08 = 0.875 | |
I0327 13:58:23.285708 21344 solver.cpp:245] Train net output #96: loss3/accuracy09 = 1 | |
I0327 13:58:23.285720 21344 solver.cpp:245] Train net output #97: loss3/accuracy10 = 1 | |
I0327 13:58:23.285732 21344 solver.cpp:245] Train net output #98: loss3/accuracy11 = 1 | |
I0327 13:58:23.285742 21344 solver.cpp:245] Train net output #99: loss3/accuracy12 = 1 | |
I0327 13:58:23.285754 21344 solver.cpp:245] Train net output #100: loss3/accuracy13 = 1 | |
I0327 13:58:23.285765 21344 solver.cpp:245] Train net output #101: loss3/accuracy14 = 1 | |
I0327 13:58:23.285776 21344 solver.cpp:245] Train net output #102: loss3/accuracy15 = 1 | |
I0327 13:58:23.285789 21344 solver.cpp:245] Train net output #103: loss3/accuracy16 = 1 | |
I0327 13:58:23.285799 21344 solver.cpp:245] Train net output #104: loss3/accuracy17 = 1 | |
I0327 13:58:23.285811 21344 solver.cpp:245] Train net output #105: loss3/accuracy18 = 1 | |
I0327 13:58:23.285823 21344 solver.cpp:245] Train net output #106: loss3/accuracy19 = 1 | |
I0327 13:58:23.285835 21344 solver.cpp:245] Train net output #107: loss3/accuracy20 = 1 | |
I0327 13:58:23.285846 21344 solver.cpp:245] Train net output #108: loss3/accuracy21 = 1 | |
I0327 13:58:23.285857 21344 solver.cpp:245] Train net output #109: loss3/accuracy22 = 1 | |
I0327 13:58:23.285871 21344 solver.cpp:245] Train net output #110: loss3/loss01 = 2.51606 (* 0.0909091 = 0.228732 loss) | |
I0327 13:58:23.285886 21344 solver.cpp:245] Train net output #111: loss3/loss02 = 2.71238 (* 0.0909091 = 0.24658 loss) | |
I0327 13:58:23.285900 21344 solver.cpp:245] Train net output #112: loss3/loss03 = 2.4565 (* 0.0909091 = 0.223318 loss) | |
I0327 13:58:23.285914 21344 solver.cpp:245] Train net output #113: loss3/loss04 = 3.32076 (* 0.0909091 = 0.301888 loss) | |
I0327 13:58:23.285928 21344 solver.cpp:245] Train net output #114: loss3/loss05 = 1.87802 (* 0.0909091 = 0.170729 loss) | |
I0327 13:58:23.285955 21344 solver.cpp:245] Train net output #115: loss3/loss06 = 1.77975 (* 0.0909091 = 0.161795 loss) | |
I0327 13:58:23.285970 21344 solver.cpp:245] Train net output #116: loss3/loss07 = 0.950977 (* 0.0909091 = 0.0864525 loss) | |
I0327 13:58:23.285984 21344 solver.cpp:245] Train net output #117: loss3/loss08 = 0.469794 (* 0.0909091 = 0.0427085 loss) | |
I0327 13:58:23.285998 21344 solver.cpp:245] Train net output #118: loss3/loss09 = 0.0125131 (* 0.0909091 = 0.00113755 loss) | |
I0327 13:58:23.286012 21344 solver.cpp:245] Train net output #119: loss3/loss10 = 0.00271159 (* 0.0909091 = 0.000246508 loss) | |
I0327 13:58:23.286026 21344 solver.cpp:245] Train net output #120: loss3/loss11 = 5.21954e-05 (* 0.0909091 = 4.74503e-06 loss) | |
I0327 13:58:23.286043 21344 solver.cpp:245] Train net output #121: loss3/loss12 = 8.79049e-05 (* 0.0909091 = 7.99136e-06 loss) | |
I0327 13:58:23.286058 21344 solver.cpp:245] Train net output #122: loss3/loss13 = 5.7604e-05 (* 0.0909091 = 5.23672e-06 loss) | |
I0327 13:58:23.286073 21344 solver.cpp:245] Train net output #123: loss3/loss14 = 7.37686e-05 (* 0.0909091 = 6.70624e-06 loss) | |
I0327 13:58:23.286087 21344 solver.cpp:245] Train net output #124: loss3/loss15 = 7.30819e-05 (* 0.0909091 = 6.64381e-06 loss) | |
I0327 13:58:23.286101 21344 solver.cpp:245] Train net output #125: loss3/loss16 = 7.0652e-05 (* 0.0909091 = 6.42291e-06 loss) | |
I0327 13:58:23.286116 21344 solver.cpp:245] Train net output #126: loss3/loss17 = 5.452e-05 (* 0.0909091 = 4.95637e-06 loss) | |
I0327 13:58:23.286130 21344 solver.cpp:245] Train net output #127: loss3/loss18 = 6.60329e-05 (* 0.0909091 = 6.00299e-06 loss) | |
I0327 13:58:23.286144 21344 solver.cpp:245] Train net output #128: loss3/loss19 = 5.33795e-05 (* 0.0909091 = 4.85268e-06 loss) | |
I0327 13:58:23.286159 21344 solver.cpp:245] Train net output #129: loss3/loss20 = 6.64577e-05 (* 0.0909091 = 6.04161e-06 loss) | |
I0327 13:58:23.286173 21344 solver.cpp:245] Train net output #130: loss3/loss21 = 7.27688e-05 (* 0.0909091 = 6.61534e-06 loss) | |
I0327 13:58:23.286187 21344 solver.cpp:245] Train net output #131: loss3/loss22 = 7.67038e-05 (* 0.0909091 = 6.97307e-06 loss) | |
I0327 13:58:23.286200 21344 solver.cpp:245] Train net output #132: total_accuracy = 0 | |
I0327 13:58:23.286211 21344 solver.cpp:245] Train net output #133: total_confidence = 0.000647507 | |
I0327 13:58:23.286223 21344 sgd_solver.cpp:106] Iteration 19500, lr = 0.01 | |
I0327 14:00:11.277266 21344 solver.cpp:338] Iteration 20000, Testing net (#0) | |
I0327 14:00:42.515892 21344 solver.cpp:393] Test loss: 2.1399 | |
I0327 14:00:42.516005 21344 solver.cpp:406] Test net output #0: loss1/accuracy01 = 0.334 | |
I0327 14:00:42.516024 21344 solver.cpp:406] Test net output #1: loss1/accuracy02 = 0.202 | |
I0327 14:00:42.516037 21344 solver.cpp:406] Test net output #2: loss1/accuracy03 = 0.196 | |
I0327 14:00:42.516049 21344 solver.cpp:406] Test net output #3: loss1/accuracy04 = 0.198 | |
I0327 14:00:42.516062 21344 solver.cpp:406] Test net output #4: loss1/accuracy05 = 0.287 | |
I0327 14:00:42.516073 21344 solver.cpp:406] Test net output #5: loss1/accuracy06 = 0.533 | |
I0327 14:00:42.516084 21344 solver.cpp:406] Test net output #6: loss1/accuracy07 = 0.892 | |
I0327 14:00:42.516096 21344 solver.cpp:406] Test net output #7: loss1/accuracy08 = 0.971 | |
I0327 14:00:42.516108 21344 solver.cpp:406] Test net output #8: loss1/accuracy09 = 0.995 | |
I0327 14:00:42.516120 21344 solver.cpp:406] Test net output #9: loss1/accuracy10 = 0.998 | |
I0327 14:00:42.516132 21344 solver.cpp:406] Test net output #10: loss1/accuracy11 = 1 | |
I0327 14:00:42.516144 21344 solver.cpp:406] Test net output #11: loss1/accuracy12 = 1 | |
I0327 14:00:42.516155 21344 solver.cpp:406] Test net output #12: loss1/accuracy13 = 1 | |
I0327 14:00:42.516166 21344 solver.cpp:406] Test net output #13: loss1/accuracy14 = 1 | |
I0327 14:00:42.516177 21344 solver.cpp:406] Test net output #14: loss1/accuracy15 = 1 | |
I0327 14:00:42.516190 21344 solver.cpp:406] Test net output #15: loss1/accuracy16 = 1 | |
I0327 14:00:42.516201 21344 solver.cpp:406] Test net output #16: loss1/accuracy17 = 1 | |
I0327 14:00:42.516211 21344 solver.cpp:406] Test net output #17: loss1/accuracy18 = 1 | |
I0327 14:00:42.516223 21344 solver.cpp:406] Test net output #18: loss1/accuracy19 = 1 | |
I0327 14:00:42.516234 21344 solver.cpp:406] Test net output #19: loss1/accuracy20 = 1 | |
I0327 14:00:42.516245 21344 solver.cpp:406] Test net output #20: loss1/accuracy21 = 1 | |
I0327 14:00:42.516257 21344 solver.cpp:406] Test net output #21: loss1/accuracy22 = 1 | |
I0327 14:00:42.516273 21344 solver.cpp:406] Test net output #22: loss1/loss01 = 2.33994 (* 0.0272727 = 0.0638166 loss) | |
I0327 14:00:42.516286 21344 solver.cpp:406] Test net output #23: loss1/loss02 = 2.71243 (* 0.0272727 = 0.0739755 loss) | |
I0327 14:00:42.516300 21344 solver.cpp:406] Test net output #24: loss1/loss03 = 2.73478 (* 0.0272727 = 0.074585 loss) | |
I0327 14:00:42.516314 21344 solver.cpp:406] Test net output #25: loss1/loss04 = 2.71821 (* 0.0272727 = 0.074133 loss) | |
I0327 14:00:42.516327 21344 solver.cpp:406] Test net output #26: loss1/loss05 = 2.57047 (* 0.0272727 = 0.0701037 loss) | |
I0327 14:00:42.516340 21344 solver.cpp:406] Test net output #27: loss1/loss06 = 1.69267 (* 0.0272727 = 0.0461638 loss) | |
I0327 14:00:42.516355 21344 solver.cpp:406] Test net output #28: loss1/loss07 = 0.669451 (* 0.0272727 = 0.0182577 loss) | |
I0327 14:00:42.516368 21344 solver.cpp:406] Test net output #29: loss1/loss08 = 0.205151 (* 0.0272727 = 0.00559504 loss) | |
I0327 14:00:42.516381 21344 solver.cpp:406] Test net output #30: loss1/loss09 = 0.0455807 (* 0.0272727 = 0.00124311 loss) | |
I0327 14:00:42.516396 21344 solver.cpp:406] Test net output #31: loss1/loss10 = 0.0201621 (* 0.0272727 = 0.000549876 loss) | |
I0327 14:00:42.516410 21344 solver.cpp:406] Test net output #32: loss1/loss11 = 0.00041675 (* 0.0272727 = 1.13659e-05 loss) | |
I0327 14:00:42.516424 21344 solver.cpp:406] Test net output #33: loss1/loss12 = 0.000465576 (* 0.0272727 = 1.26975e-05 loss) | |
I0327 14:00:42.516438 21344 solver.cpp:406] Test net output #34: loss1/loss13 = 0.000509294 (* 0.0272727 = 1.38898e-05 loss) | |
I0327 14:00:42.516451 21344 solver.cpp:406] Test net output #35: loss1/loss14 = 0.000483326 (* 0.0272727 = 1.31816e-05 loss) | |
I0327 14:00:42.516466 21344 solver.cpp:406] Test net output #36: loss1/loss15 = 0.000527545 (* 0.0272727 = 1.43876e-05 loss) | |
I0327 14:00:42.516479 21344 solver.cpp:406] Test net output #37: loss1/loss16 = 0.000482522 (* 0.0272727 = 1.31597e-05 loss) | |
I0327 14:00:42.516494 21344 solver.cpp:406] Test net output #38: loss1/loss17 = 0.000547437 (* 0.0272727 = 1.49301e-05 loss) | |
I0327 14:00:42.516527 21344 solver.cpp:406] Test net output #39: loss1/loss18 = 0.000447424 (* 0.0272727 = 1.22025e-05 loss) | |
I0327 14:00:42.516542 21344 solver.cpp:406] Test net output #40: loss1/loss19 = 0.00043174 (* 0.0272727 = 1.17747e-05 loss) | |
I0327 14:00:42.516556 21344 solver.cpp:406] Test net output #41: loss1/loss20 = 0.00042038 (* 0.0272727 = 1.14649e-05 loss) | |
I0327 14:00:42.516571 21344 solver.cpp:406] Test net output #42: loss1/loss21 = 0.000533918 (* 0.0272727 = 1.45614e-05 loss) | |
I0327 14:00:42.516584 21344 solver.cpp:406] Test net output #43: loss1/loss22 = 0.000503512 (* 0.0272727 = 1.37321e-05 loss) | |
I0327 14:00:42.516597 21344 solver.cpp:406] Test net output #44: loss2/accuracy01 = 0.554 | |
I0327 14:00:42.516609 21344 solver.cpp:406] Test net output #45: loss2/accuracy02 = 0.24 | |
I0327 14:00:42.516620 21344 solver.cpp:406] Test net output #46: loss2/accuracy03 = 0.196 | |
I0327 14:00:42.516633 21344 solver.cpp:406] Test net output #47: loss2/accuracy04 = 0.223 | |
I0327 14:00:42.516644 21344 solver.cpp:406] Test net output #48: loss2/accuracy05 = 0.294 | |
I0327 14:00:42.516655 21344 solver.cpp:406] Test net output #49: loss2/accuracy06 = 0.542 | |
I0327 14:00:42.516666 21344 solver.cpp:406] Test net output #50: loss2/accuracy07 = 0.892 | |
I0327 14:00:42.516679 21344 solver.cpp:406] Test net output #51: loss2/accuracy08 = 0.971 | |
I0327 14:00:42.516690 21344 solver.cpp:406] Test net output #52: loss2/accuracy09 = 0.995 | |
I0327 14:00:42.516701 21344 solver.cpp:406] Test net output #53: loss2/accuracy10 = 0.998 | |
I0327 14:00:42.516712 21344 solver.cpp:406] Test net output #54: loss2/accuracy11 = 1 | |
I0327 14:00:42.516723 21344 solver.cpp:406] Test net output #55: loss2/accuracy12 = 1 | |
I0327 14:00:42.516736 21344 solver.cpp:406] Test net output #56: loss2/accuracy13 = 1 | |
I0327 14:00:42.516746 21344 solver.cpp:406] Test net output #57: loss2/accuracy14 = 1 | |
I0327 14:00:42.516757 21344 solver.cpp:406] Test net output #58: loss2/accuracy15 = 1 | |
I0327 14:00:42.516768 21344 solver.cpp:406] Test net output #59: loss2/accuracy16 = 1 | |
I0327 14:00:42.516779 21344 solver.cpp:406] Test net output #60: loss2/accuracy17 = 1 | |
I0327 14:00:42.516790 21344 solver.cpp:406] Test net output #61: loss2/accuracy18 = 1 | |
I0327 14:00:42.516801 21344 solver.cpp:406] Test net output #62: loss2/accuracy19 = 1 | |
I0327 14:00:42.516813 21344 solver.cpp:406] Test net output #63: loss2/accuracy20 = 1 | |
I0327 14:00:42.516824 21344 solver.cpp:406] Test net output #64: loss2/accuracy21 = 1 | |
I0327 14:00:42.516834 21344 solver.cpp:406] Test net output #65: loss2/accuracy22 = 1 | |
I0327 14:00:42.516849 21344 solver.cpp:406] Test net output #66: loss2/loss01 = 1.85596 (* 0.0272727 = 0.0506171 loss) | |
I0327 14:00:42.516862 21344 solver.cpp:406] Test net output #67: loss2/loss02 = 2.5794 (* 0.0272727 = 0.0703474 loss) | |
I0327 14:00:42.516875 21344 solver.cpp:406] Test net output #68: loss2/loss03 = 2.67397 (* 0.0272727 = 0.0729265 loss) | |
I0327 14:00:42.516890 21344 solver.cpp:406] Test net output #69: loss2/loss04 = 2.64583 (* 0.0272727 = 0.0721591 loss) | |
I0327 14:00:42.516903 21344 solver.cpp:406] Test net output #70: loss2/loss05 = 2.51427 (* 0.0272727 = 0.0685709 loss) | |
I0327 14:00:42.516916 21344 solver.cpp:406] Test net output #71: loss2/loss06 = 1.61635 (* 0.0272727 = 0.0440823 loss) | |
I0327 14:00:42.516929 21344 solver.cpp:406] Test net output #72: loss2/loss07 = 0.627496 (* 0.0272727 = 0.0171135 loss) | |
I0327 14:00:42.516943 21344 solver.cpp:406] Test net output #73: loss2/loss08 = 0.197887 (* 0.0272727 = 0.00539692 loss) | |
I0327 14:00:42.516957 21344 solver.cpp:406] Test net output #74: loss2/loss09 = 0.0413561 (* 0.0272727 = 0.00112789 loss) | |
I0327 14:00:42.516970 21344 solver.cpp:406] Test net output #75: loss2/loss10 = 0.0222891 (* 0.0272727 = 0.000607884 loss) | |
I0327 14:00:42.516984 21344 solver.cpp:406] Test net output #76: loss2/loss11 = 0.000451037 (* 0.0272727 = 1.2301e-05 loss) | |
I0327 14:00:42.517002 21344 solver.cpp:406] Test net output #77: loss2/loss12 = 0.000367869 (* 0.0272727 = 1.00328e-05 loss) | |
I0327 14:00:42.517027 21344 solver.cpp:406] Test net output #78: loss2/loss13 = 0.000337117 (* 0.0272727 = 9.1941e-06 loss) | |
I0327 14:00:42.517042 21344 solver.cpp:406] Test net output #79: loss2/loss14 = 0.00035923 (* 0.0272727 = 9.79718e-06 loss) | |
I0327 14:00:42.517056 21344 solver.cpp:406] Test net output #80: loss2/loss15 = 0.000438662 (* 0.0272727 = 1.19635e-05 loss) | |
I0327 14:00:42.517071 21344 solver.cpp:406] Test net output #81: loss2/loss16 = 0.000345243 (* 0.0272727 = 9.41571e-06 loss) | |
I0327 14:00:42.517084 21344 solver.cpp:406] Test net output #82: loss2/loss17 = 0.000405949 (* 0.0272727 = 1.10713e-05 loss) | |
I0327 14:00:42.517098 21344 solver.cpp:406] Test net output #83: loss2/loss18 = 0.000401585 (* 0.0272727 = 1.09523e-05 loss) | |
I0327 14:00:42.517112 21344 solver.cpp:406] Test net output #84: loss2/loss19 = 0.000342342 (* 0.0272727 = 9.3366e-06 loss) | |
I0327 14:00:42.517127 21344 solver.cpp:406] Test net output #85: loss2/loss20 = 0.00037511 (* 0.0272727 = 1.02303e-05 loss) | |
I0327 14:00:42.517140 21344 solver.cpp:406] Test net output #86: loss2/loss21 = 0.000424313 (* 0.0272727 = 1.15722e-05 loss) | |
I0327 14:00:42.517153 21344 solver.cpp:406] Test net output #87: loss2/loss22 = 0.000420774 (* 0.0272727 = 1.14757e-05 loss) | |
I0327 14:00:42.517166 21344 solver.cpp:406] Test net output #88: loss3/accuracy01 = 0.557 | |
I0327 14:00:42.517177 21344 solver.cpp:406] Test net output #89: loss3/accuracy02 = 0.274 | |
I0327 14:00:42.517189 21344 solver.cpp:406] Test net output #90: loss3/accuracy03 = 0.213 | |
I0327 14:00:42.517200 21344 solver.cpp:406] Test net output #91: loss3/accuracy04 = 0.216 | |
I0327 14:00:42.517211 21344 solver.cpp:406] Test net output #92: loss3/accuracy05 = 0.289 | |
I0327 14:00:42.517222 21344 solver.cpp:406] Test net output #93: loss3/accuracy06 = 0.552 | |
I0327 14:00:42.517235 21344 solver.cpp:406] Test net output #94: loss3/accuracy07 = 0.89 | |
I0327 14:00:42.517246 21344 solver.cpp:406] Test net output #95: loss3/accuracy08 = 0.971 | |
I0327 14:00:42.517257 21344 solver.cpp:406] Test net output #96: loss3/accuracy09 = 0.995 | |
I0327 14:00:42.517268 21344 solver.cpp:406] Test net output #97: loss3/accuracy10 = 0.998 | |
I0327 14:00:42.517279 21344 solver.cpp:406] Test net output #98: loss3/accuracy11 = 1 | |
I0327 14:00:42.517290 21344 solver.cpp:406] Test net output #99: loss3/accuracy12 = 1 | |
I0327 14:00:42.517302 21344 solver.cpp:406] Test net output #100: loss3/accuracy13 = 1 | |
I0327 14:00:42.517313 21344 solver.cpp:406] Test net output #101: loss3/accuracy14 = 1 | |
I0327 14:00:42.517323 21344 solver.cpp:406] Test net output #102: loss3/accuracy15 = 1 | |
I0327 14:00:42.517334 21344 solver.cpp:406] Test net output #103: loss3/accuracy16 = 1 | |
I0327 14:00:42.517345 21344 solver.cpp:406] Test net output #104: loss3/accuracy17 = 1 | |
I0327 14:00:42.517356 21344 solver.cpp:406] Test net output #105: loss3/accuracy18 = 1 | |
I0327 14:00:42.517367 21344 solver.cpp:406] Test net output #106: loss3/accuracy19 = 1 | |
I0327 14:00:42.517379 21344 solver.cpp:406] Test net output #107: loss3/accuracy20 = 1 | |
I0327 14:00:42.517390 21344 solver.cpp:406] Test net output #108: loss3/accuracy21 = 1 | |
I0327 14:00:42.517400 21344 solver.cpp:406] Test net output #109: loss3/accuracy22 = 1 | |
I0327 14:00:42.517415 21344 solver.cpp:406] Test net output #110: loss3/loss01 = 1.7403 (* 0.0909091 = 0.158209 loss) | |
I0327 14:00:42.517427 21344 solver.cpp:406] Test net output #111: loss3/loss02 = 2.40787 (* 0.0909091 = 0.218897 loss) | |
I0327 14:00:42.517441 21344 solver.cpp:406] Test net output #112: loss3/loss03 = 2.62136 (* 0.0909091 = 0.238305 loss) | |
I0327 14:00:42.517454 21344 solver.cpp:406] Test net output #113: loss3/loss04 = 2.66025 (* 0.0909091 = 0.241841 loss) | |
I0327 14:00:42.517468 21344 solver.cpp:406] Test net output #114: loss3/loss05 = 2.53292 (* 0.0909091 = 0.230265 loss) | |
I0327 14:00:42.517482 21344 solver.cpp:406] Test net output #115: loss3/loss06 = 1.56611 (* 0.0909091 = 0.142374 loss) | |
I0327 14:00:42.517506 21344 solver.cpp:406] Test net output #116: loss3/loss07 = 0.598087 (* 0.0909091 = 0.0543715 loss) | |
I0327 14:00:42.517521 21344 solver.cpp:406] Test net output #117: loss3/loss08 = 0.190009 (* 0.0909091 = 0.0172736 loss) | |
I0327 14:00:42.517535 21344 solver.cpp:406] Test net output #118: loss3/loss09 = 0.0453543 (* 0.0909091 = 0.00412312 loss) | |
I0327 14:00:42.517567 21344 solver.cpp:406] Test net output #119: loss3/loss10 = 0.0258703 (* 0.0909091 = 0.00235185 loss) | |
I0327 14:00:42.517582 21344 solver.cpp:406] Test net output #120: loss3/loss11 = 0.000200383 (* 0.0909091 = 1.82166e-05 loss) | |
I0327 14:00:42.517596 21344 solver.cpp:406] Test net output #121: loss3/loss12 = 0.000260139 (* 0.0909091 = 2.3649e-05 loss) | |
I0327 14:00:42.517609 21344 solver.cpp:406] Test net output #122: loss3/loss13 = 0.000219063 (* 0.0909091 = 1.99148e-05 loss) | |
I0327 14:00:42.517622 21344 solver.cpp:406] Test net output #123: loss3/loss14 = 0.000217088 (* 0.0909091 = 1.97352e-05 loss) | |
I0327 14:00:42.517637 21344 solver.cpp:406] Test net output #124: loss3/loss15 = 0.000210053 (* 0.0909091 = 1.90957e-05 loss) | |
I0327 14:00:42.517650 21344 solver.cpp:406] Test net output #125: loss3/loss16 = 0.000230233 (* 0.0909091 = 2.09303e-05 loss) | |
I0327 14:00:42.517663 21344 solver.cpp:406] Test net output #126: loss3/loss17 = 0.00022241 (* 0.0909091 = 2.02191e-05 loss) | |
I0327 14:00:42.517676 21344 solver.cpp:406] Test net output #127: loss3/loss18 = 0.000206114 (* 0.0909091 = 1.87377e-05 loss) | |
I0327 14:00:42.517690 21344 solver.cpp:406] Test net output #128: loss3/loss19 = 0.000179209 (* 0.0909091 = 1.62917e-05 loss) | |
I0327 14:00:42.517704 21344 solver.cpp:406] Test net output #129: loss3/loss20 = 0.000215026 (* 0.0909091 = 1.95478e-05 loss) | |
I0327 14:00:42.517717 21344 solver.cpp:406] Test net output #130: loss3/loss21 = 0.000216333 (* 0.0909091 = 1.96667e-05 loss) | |
I0327 14:00:42.517730 21344 solver.cpp:406] Test net output #131: loss3/loss22 = 0.000181497 (* 0.0909091 = 1.64997e-05 loss) | |
I0327 14:00:42.517742 21344 solver.cpp:406] Test net output #132: total_accuracy = 0.002 | |
I0327 14:00:42.517753 21344 solver.cpp:406] Test net output #133: total_confidence = 0.00402119 | |
I0327 14:00:42.628387 21344 solver.cpp:229] Iteration 20000, loss = 2.59294 | |
I0327 14:00:42.628423 21344 solver.cpp:245] Train net output #0: loss1/accuracy01 = 0.375 | |
I0327 14:00:42.628439 21344 solver.cpp:245] Train net output #1: loss1/accuracy02 = 0.125 | |
I0327 14:00:42.628453 21344 solver.cpp:245] Train net output #2: loss1/accuracy03 = 0.125 | |
I0327 14:00:42.628463 21344 solver.cpp:245] Train net output #3: loss1/accuracy04 = 0.125 | |
I0327 14:00:42.628475 21344 solver.cpp:245] Train net output #4: loss1/accuracy05 = 0.125 | |
I0327 14:00:42.628487 21344 solver.cpp:245] Train net output #5: loss1/accuracy06 = 0.25 | |
I0327 14:00:42.628499 21344 solver.cpp:245] Train net output #6: loss1/accuracy07 = 0.875 | |
I0327 14:00:42.628511 21344 solver.cpp:245] Train net output #7: loss1/accuracy08 = 0.875 | |
I0327 14:00:42.628523 21344 solver.cpp:245] Train net output #8: loss1/accuracy09 = 0.875 | |
I0327 14:00:42.628535 21344 solver.cpp:245] Train net output #9: loss1/accuracy10 = 1 | |
I0327 14:00:42.628546 21344 solver.cpp:245] Train net output #10: loss1/accuracy11 = 1 | |
I0327 14:00:42.628558 21344 solver.cpp:245] Train net output #11: loss1/accuracy12 = 1 | |
I0327 14:00:42.628569 21344 solver.cpp:245] Train net output #12: loss1/accuracy13 = 1 | |
I0327 14:00:42.628581 21344 solver.cpp:245] Train net output #13: loss1/accuracy14 = 1 | |
I0327 14:00:42.628592 21344 solver.cpp:245] Train net output #14: loss1/accuracy15 = 1 | |
I0327 14:00:42.628603 21344 solver.cpp:245] Train net output #15: loss1/accuracy16 = 1 | |
I0327 14:00:42.628614 21344 solver.cpp:245] Train net output #16: loss1/accuracy17 = 1 | |
I0327 14:00:42.628626 21344 solver.cpp:245] Train net output #17: loss1/accuracy18 = 1 | |
I0327 14:00:42.628638 21344 solver.cpp:245] Train net output #18: loss1/accuracy19 = 1 | |
I0327 14:00:42.628665 21344 solver.cpp:245] Train net output #19: loss1/accuracy20 = 1 | |
I0327 14:00:42.628679 21344 solver.cpp:245] Train net output #20: loss1/accuracy21 = 1 | |
I0327 14:00:42.628690 21344 solver.cpp:245] Train net output #21: loss1/accuracy22 = 1 | |
I0327 14:00:42.628705 21344 solver.cpp:245] Train net output #22: loss1/loss01 = 2.02147 (* 0.0272727 = 0.0551311 loss) | |
I0327 14:00:42.628720 21344 solver.cpp:245] Train net output #23: loss1/loss02 = 2.8083 (* 0.0272727 = 0.0765901 loss) | |
I0327 14:00:42.628734 21344 solver.cpp:245] Train net output #24: loss1/loss03 = 3.18963 (* 0.0272727 = 0.0869899 loss) | |
I0327 14:00:42.628748 21344 solver.cpp:245] Train net output #25: loss1/loss04 = 3.31065 (* 0.0272727 = 0.0902905 loss) | |
I0327 14:00:42.628762 21344 solver.cpp:245] Train net output #26: loss1/loss05 = 3.03663 (* 0.0272727 = 0.0828173 loss) | |
I0327 14:00:42.628777 21344 solver.cpp:245] Train net output #27: loss1/loss06 = 2.84456 (* 0.0272727 = 0.0775789 loss) | |
I0327 14:00:42.628790 21344 solver.cpp:245] Train net output #28: loss1/loss07 = 0.617078 (* 0.0272727 = 0.0168294 loss) | |
I0327 14:00:42.628804 21344 solver.cpp:245] Train net output #29: loss1/loss08 = 0.718371 (* 0.0272727 = 0.0195919 loss) | |
I0327 14:00:42.628818 21344 solver.cpp:245] Train net output #30: loss1/loss09 = 0.616567 (* 0.0272727 = 0.0168155 loss) | |
I0327 14:00:42.628832 21344 solver.cpp:245] Train net output #31: loss1/loss10 = 0.022192 (* 0.0272727 = 0.000605236 loss) | |
I0327 14:00:42.628847 21344 solver.cpp:245] Train net output #32: loss1/loss11 = 0.000773852 (* 0.0272727 = 2.11051e-05 loss) | |
I0327 14:00:42.628861 21344 solver.cpp:245] Train net output #33: loss1/loss12 = 0.000551609 (* 0.0272727 = 1.50439e-05 loss) | |
I0327 14:00:42.628875 21344 solver.cpp:245] Train net output #34: loss1/loss13 = 0.000526549 (* 0.0272727 = 1.43604e-05 loss) | |
I0327 14:00:42.628890 21344 solver.cpp:245] Train net output #35: loss1/loss14 = 0.000423209 (* 0.0272727 = 1.15421e-05 loss) | |
I0327 14:00:42.628903 21344 solver.cpp:245] Train net output #36: loss1/loss15 = 0.00035554 (* 0.0272727 = 9.69655e-06 loss) | |
I0327 14:00:42.628918 21344 solver.cpp:245] Train net output #37: loss1/loss16 = 0.000373223 (* 0.0272727 = 1.01788e-05 loss) | |
I0327 14:00:42.628932 21344 solver.cpp:245] Train net output #38: loss1/loss17 = 0.000319929 (* 0.0272727 = 8.72533e-06 loss) | |
I0327 14:00:42.628949 21344 solver.cpp:245] Train net output #39: loss1/loss18 = 0.000285838 (* 0.0272727 = 7.7956e-06 loss) | |
I0327 14:00:42.628964 21344 solver.cpp:245] Train net output #40: loss1/loss19 = 0.00040981 (* 0.0272727 = 1.11766e-05 loss) | |
I0327 14:00:42.628978 21344 solver.cpp:245] Train net output #41: loss1/loss20 = 0.000513867 (* 0.0272727 = 1.40146e-05 loss) | |
I0327 14:00:42.628993 21344 solver.cpp:245] Train net output #42: loss1/loss21 = 0.000412888 (* 0.0272727 = 1.12606e-05 loss) | |
I0327 14:00:42.629006 21344 solver.cpp:245] Train net output #43: loss1/loss22 = 0.00090184 (* 0.0272727 = 2.45956e-05 loss) | |
I0327 14:00:42.629019 21344 solver.cpp:245] Train net output #44: loss2/accuracy01 = 0.625 | |
I0327 14:00:42.629031 21344 solver.cpp:245] Train net output #45: loss2/accuracy02 = 0.375 | |
I0327 14:00:42.629043 21344 solver.cpp:245] Train net output #46: loss2/accuracy03 = 0.25 | |
I0327 14:00:42.629057 21344 solver.cpp:245] Train net output #47: loss2/accuracy04 = 0.125 | |
I0327 14:00:42.629070 21344 solver.cpp:245] Train net output #48: loss2/accuracy05 = 0.125 | |
I0327 14:00:42.629081 21344 solver.cpp:245] Train net output #49: loss2/accuracy06 = 0.375 | |
I0327 14:00:42.629092 21344 solver.cpp:245] Train net output #50: loss2/accuracy07 = 0.875 | |
I0327 14:00:42.629104 21344 solver.cpp:245] Train net output #51: loss2/accuracy08 = 0.875 | |
I0327 14:00:42.629117 21344 solver.cpp:245] Train net output #52: loss2/accuracy09 = 0.875 | |
I0327 14:00:42.629128 21344 solver.cpp:245] Train net output #53: loss2/accuracy10 = 1 | |
I0327 14:00:42.629139 21344 solver.cpp:245] Train net output #54: loss2/accuracy11 = 1 | |
I0327 14:00:42.629163 21344 solver.cpp:245] Train net output #55: loss2/accuracy12 = 1 | |
I0327 14:00:42.629175 21344 solver.cpp:245] Train net output #56: loss2/accuracy13 = 1 | |
I0327 14:00:42.629186 21344 solver.cpp:245] Train net output #57: loss2/accuracy14 = 1 | |
I0327 14:00:42.629199 21344 solver.cpp:245] Train net output #58: loss2/accuracy15 = 1 | |
I0327 14:00:42.629209 21344 solver.cpp:245] Train net output #59: loss2/accuracy16 = 1 | |
I0327 14:00:42.629220 21344 solver.cpp:245] Train net output #60: loss2/accuracy17 = 1 | |
I0327 14:00:42.629232 21344 solver.cpp:245] Train net output #61: loss2/accuracy18 = 1 | |
I0327 14:00:42.629243 21344 solver.cpp:245] Train net output #62: loss2/accuracy19 = 1 | |
I0327 14:00:42.629254 21344 solver.cpp:245] Train net output #63: loss2/accuracy20 = 1 | |
I0327 14:00:42.629266 21344 solver.cpp:245] Train net output #64: loss2/accuracy21 = 1 | |
I0327 14:00:42.629277 21344 solver.cpp:245] Train net output #65: loss2/accuracy22 = 1 | |
I0327 14:00:42.629292 21344 solver.cpp:245] Train net output #66: loss2/loss01 = 1.6593 (* 0.0272727 = 0.0452536 loss) | |
I0327 14:00:42.629305 21344 solver.cpp:245] Train net output #67: loss2/loss02 = 2.30639 (* 0.0272727 = 0.0629016 loss) | |
I0327 14:00:42.629320 21344 solver.cpp:245] Train net output #68: loss2/loss03 = 2.75546 (* 0.0272727 = 0.0751489 loss) | |
I0327 14:00:42.629334 21344 solver.cpp:245] Train net output #69: loss2/loss04 = 3.40275 (* 0.0272727 = 0.0928023 loss) | |
I0327 14:00:42.629348 21344 solver.cpp:245] Train net output #70: loss2/loss05 = 3.16641 (* 0.0272727 = 0.0863566 loss) | |
I0327 14:00:42.629362 21344 solver.cpp:245] Train net output #71: loss2/loss06 = 2.80808 (* 0.0272727 = 0.0765839 loss) | |
I0327 14:00:42.629376 21344 solver.cpp:245] Train net output #72: loss2/loss07 = 0.545443 (* 0.0272727 = 0.0148757 loss) | |
I0327 14:00:42.629390 21344 solver.cpp:245] Train net output #73: loss2/loss08 = 0.544323 (* 0.0272727 = 0.0148452 loss) | |
I0327 14:00:42.629405 21344 solver.cpp:245] Train net output #74: loss2/loss09 = 0.675075 (* 0.0272727 = 0.0184111 loss) | |
I0327 14:00:42.629418 21344 solver.cpp:245] Train net output #75: loss2/loss10 = 0.00487935 (* 0.0272727 = 0.000133073 loss) | |
I0327 14:00:42.629432 21344 solver.cpp:245] Train net output #76: loss2/loss11 = 0.000299411 (* 0.0272727 = 8.16575e-06 loss) | |
I0327 14:00:42.629446 21344 solver.cpp:245] Train net output #77: loss2/loss12 = 7.87026e-05 (* 0.0272727 = 2.14643e-06 loss) | |
I0327 14:00:42.629461 21344 solver.cpp:245] Train net output #78: loss2/loss13 = 0.000212274 (* 0.0272727 = 5.78928e-06 loss) | |
I0327 14:00:42.629474 21344 solver.cpp:245] Train net output #79: loss2/loss14 = 0.000196676 (* 0.0272727 = 5.3639e-06 loss) | |
I0327 14:00:42.629488 21344 solver.cpp:245] Train net output #80: loss2/loss15 = 0.000196165 (* 0.0272727 = 5.34996e-06 loss) | |
I0327 14:00:42.629503 21344 solver.cpp:245] Train net output #81: loss2/loss16 = 0.000183244 (* 0.0272727 = 4.99755e-06 loss) | |
I0327 14:00:42.629516 21344 solver.cpp:245] Train net output #82: loss2/loss17 = 0.000206412 (* 0.0272727 = 5.62943e-06 loss) | |
I0327 14:00:42.629530 21344 solver.cpp:245] Train net output #83: loss2/loss18 = 0.000170313 (* 0.0272727 = 4.64489e-06 loss) | |
I0327 14:00:42.629564 21344 solver.cpp:245] Train net output #84: loss2/loss19 = 0.000143432 (* 0.0272727 = 3.91179e-06 loss) | |
I0327 14:00:42.629580 21344 solver.cpp:245] Train net output #85: loss2/loss20 = 0.000144208 (* 0.0272727 = 3.93293e-06 loss) | |
I0327 14:00:42.629593 21344 solver.cpp:245] Train net output #86: loss2/loss21 = 0.000194833 (* 0.0272727 = 5.31363e-06 loss) | |
I0327 14:00:42.629607 21344 solver.cpp:245] Train net output #87: loss2/loss22 = 0.000256688 (* 0.0272727 = 7.00058e-06 loss) | |
I0327 14:00:42.629619 21344 solver.cpp:245] Train net output #88: loss3/accuracy01 = 0.625 | |
I0327 14:00:42.629631 21344 solver.cpp:245] Train net output #89: loss3/accuracy02 = 0.25 | |
I0327 14:00:42.629643 21344 solver.cpp:245] Train net output #90: loss3/accuracy03 = 0.125 | |
I0327 14:00:42.629667 21344 solver.cpp:245] Train net output #91: loss3/accuracy04 = 0.125 | |
I0327 14:00:42.629679 21344 solver.cpp:245] Train net output #92: loss3/accuracy05 = 0.25 | |
I0327 14:00:42.629691 21344 solver.cpp:245] Train net output #93: loss3/accuracy06 = 0.25 | |
I0327 14:00:42.629703 21344 solver.cpp:245] Train net output #94: loss3/accuracy07 = 1 | |
I0327 14:00:42.629714 21344 solver.cpp:245] Train net output #95: loss3/accuracy08 = 0.875 | |
I0327 14:00:42.629725 21344 solver.cpp:245] Train net output #96: loss3/accuracy09 = 0.875 | |
I0327 14:00:42.629737 21344 solver.cpp:245] Train net output #97: loss3/accuracy10 = 1 | |
I0327 14:00:42.629748 21344 solver.cpp:245] Train net output #98: loss3/accuracy11 = 1 | |
I0327 14:00:42.629760 21344 solver.cpp:245] Train net output #99: loss3/accuracy12 = 1 | |
I0327 14:00:42.629770 21344 solver.cpp:245] Train net output #100: loss3/accuracy13 = 1 | |
I0327 14:00:42.629782 21344 solver.cpp:245] Train net output #101: loss3/accuracy14 = 1 | |
I0327 14:00:42.629793 21344 solver.cpp:245] Train net output #102: loss3/accuracy15 = 1 | |
I0327 14:00:42.629804 21344 solver.cpp:245] Train net output #103: loss3/accuracy16 = 1 | |
I0327 14:00:42.629817 21344 solver.cpp:245] Train net output #104: loss3/accuracy17 = 1 | |
I0327 14:00:42.629827 21344 solver.cpp:245] Train net output #105: loss3/accuracy18 = 1 | |
I0327 14:00:42.629838 21344 solver.cpp:245] Train net output #106: loss3/accuracy19 = 1 | |
I0327 14:00:42.629850 21344 solver.cpp:245] Train net output #107: loss3/accuracy20 = 1 | |
I0327 14:00:42.629861 21344 solver.cpp:245] Train net output #108: loss3/accuracy21 = 1 | |
I0327 14:00:42.629873 21344 solver.cpp:245] Train net output #109: loss3/accuracy22 = 1 | |
I0327 14:00:42.629885 21344 solver.cpp:245] Train net output #110: loss3/loss01 = 1.66726 (* 0.0909091 = 0.151569 loss) | |
I0327 14:00:42.629899 21344 solver.cpp:245] Train net output #111: loss3/loss02 = 2.31497 (* 0.0909091 = 0.210452 loss) | |
I0327 14:00:42.629914 21344 solver.cpp:245] Train net output #112: loss3/loss03 = 2.8948 (* 0.0909091 = 0.263164 loss) | |
I0327 14:00:42.629927 21344 solver.cpp:245] Train net output #113: loss3/loss04 = 2.9634 (* 0.0909091 = 0.2694 loss) | |
I0327 14:00:42.629941 21344 solver.cpp:245] Train net output #114: loss3/loss05 = 3.04144 (* 0.0909091 = 0.276494 loss) | |
I0327 14:00:42.629956 21344 solver.cpp:245] Train net output #115: loss3/loss06 = 2.47273 (* 0.0909091 = 0.224794 loss) | |
I0327 14:00:42.629969 21344 solver.cpp:245] Train net output #116: loss3/loss07 = 0.417611 (* 0.0909091 = 0.0379647 loss) | |
I0327 14:00:42.629983 21344 solver.cpp:245] Train net output #117: loss3/loss08 = 0.547329 (* 0.0909091 = 0.0497572 loss) | |
I0327 14:00:42.630000 21344 solver.cpp:245] Train net output #118: loss3/loss09 = 0.635546 (* 0.0909091 = 0.0577769 loss) | |
I0327 14:00:42.630015 21344 solver.cpp:245] Train net output #119: loss3/loss10 = 0.00542317 (* 0.0909091 = 0.000493015 loss) | |
I0327 14:00:42.630029 21344 solver.cpp:245] Train net output #120: loss3/loss11 = 0.000111738 (* 0.0909091 = 1.0158e-05 loss) | |
I0327 14:00:42.630043 21344 solver.cpp:245] Train net output #121: loss3/loss12 = 7.12215e-05 (* 0.0909091 = 6.47468e-06 loss) | |
I0327 14:00:42.630058 21344 solver.cpp:245] Train net output #122: loss3/loss13 = 8.38648e-05 (* 0.0909091 = 7.62407e-06 loss) | |
I0327 14:00:42.630071 21344 solver.cpp:245] Train net output #123: loss3/loss14 = 7.01047e-05 (* 0.0909091 = 6.37316e-06 loss) | |
I0327 14:00:42.630085 21344 solver.cpp:245] Train net output #124: loss3/loss15 = 5.96171e-05 (* 0.0909091 = 5.41974e-06 loss) | |
I0327 14:00:42.630101 21344 solver.cpp:245] Train net output #125: loss3/loss16 = 6.53983e-05 (* 0.0909091 = 5.9453e-06 loss) | |
I0327 14:00:42.630115 21344 solver.cpp:245] Train net output #126: loss3/loss17 = 9.44728e-05 (* 0.0909091 = 8.58844e-06 loss) | |
I0327 14:00:42.630130 21344 solver.cpp:245] Train net output #127: loss3/loss18 = 6.45647e-05 (* 0.0909091 = 5.86952e-06 loss) | |
I0327 14:00:42.630153 21344 solver.cpp:245] Train net output #128: loss3/loss19 = 5.43265e-05 (* 0.0909091 = 4.93877e-06 loss) | |
I0327 14:00:42.630169 21344 solver.cpp:245] Train net output #129: loss3/loss20 = 6.3418e-05 (* 0.0909091 = 5.76527e-06 loss) | |
I0327 14:00:42.630183 21344 solver.cpp:245] Train net output #130: loss3/loss21 = 9.30984e-05 (* 0.0909091 = 8.46349e-06 loss) | |
I0327 14:00:42.630198 21344 solver.cpp:245] Train net output #131: loss3/loss22 = 8.21692e-05 (* 0.0909091 = 7.46993e-06 loss) | |
I0327 14:00:42.630209 21344 solver.cpp:245] Train net output #132: total_accuracy = 0 | |
I0327 14:00:42.630221 21344 solver.cpp:245] Train net output #133: total_confidence = 0.0009274 | |
I0327 14:00:42.630234 21344 sgd_solver.cpp:106] Iteration 20000, lr = 0.01 | |
I0327 14:02:30.719386 21344 solver.cpp:229] Iteration 20500, loss = 2.59883 | |
I0327 14:02:30.719568 21344 solver.cpp:245] Train net output #0: loss1/accuracy01 = 0.5 | |
I0327 14:02:30.719589 21344 solver.cpp:245] Train net output #1: loss1/accuracy02 = 0.125 | |
I0327 14:02:30.719604 21344 solver.cpp:245] Train net output #2: loss1/accuracy03 = 0.125 | |
I0327 14:02:30.719615 21344 solver.cpp:245] Train net output #3: loss1/accuracy04 = 0.125 | |
I0327 14:02:30.719627 21344 solver.cpp:245] Train net output #4: loss1/accuracy05 = 0.125 | |
I0327 14:02:30.719640 21344 solver.cpp:245] Train net output #5: loss1/accuracy06 = 0.25 | |
I0327 14:02:30.719651 21344 solver.cpp:245] Train net output #6: loss1/accuracy07 = 0.625 | |
I0327 14:02:30.719665 21344 solver.cpp:245] Train net output #7: loss1/accuracy08 = 0.875 | |
I0327 14:02:30.719676 21344 solver.cpp:245] Train net output #8: loss1/accuracy09 = 0.875 | |
I0327 14:02:30.719688 21344 solver.cpp:245] Train net output #9: loss1/accuracy10 = 1 | |
I0327 14:02:30.719701 21344 solver.cpp:245] Train net output #10: loss1/accuracy11 = 1 | |
I0327 14:02:30.719712 21344 solver.cpp:245] Train net output #11: loss1/accuracy12 = 1 | |
I0327 14:02:30.719724 21344 solver.cpp:245] Train net output #12: loss1/accuracy13 = 1 | |
I0327 14:02:30.719738 21344 solver.cpp:245] Train net output #13: loss1/accuracy14 = 1 | |
I0327 14:02:30.719749 21344 solver.cpp:245] Train net output #14: loss1/accuracy15 = 1 | |
I0327 14:02:30.719761 21344 solver.cpp:245] Train net output #15: loss1/accuracy16 = 1 | |
I0327 14:02:30.719774 21344 solver.cpp:245] Train net output #16: loss1/accuracy17 = 1 | |
I0327 14:02:30.719785 21344 solver.cpp:245] Train net output #17: loss1/accuracy18 = 1 | |
I0327 14:02:30.719797 21344 solver.cpp:245] Train net output #18: loss1/accuracy19 = 1 | |
I0327 14:02:30.719808 21344 solver.cpp:245] Train net output #19: loss1/accuracy20 = 1 | |
I0327 14:02:30.719820 21344 solver.cpp:245] Train net output #20: loss1/accuracy21 = 1 | |
I0327 14:02:30.719832 21344 solver.cpp:245] Train net output #21: loss1/accuracy22 = 1 | |
I0327 14:02:30.719849 21344 solver.cpp:245] Train net output #22: loss1/loss01 = 1.70647 (* 0.0272727 = 0.0465402 loss) | |
I0327 14:02:30.719866 21344 solver.cpp:245] Train net output #23: loss1/loss02 = 3.37376 (* 0.0272727 = 0.0920116 loss) | |
I0327 14:02:30.719879 21344 solver.cpp:245] Train net output #24: loss1/loss03 = 3.21635 (* 0.0272727 = 0.0877187 loss) | |
I0327 14:02:30.719893 21344 solver.cpp:245] Train net output #25: loss1/loss04 = 3.43216 (* 0.0272727 = 0.0936044 loss) | |
I0327 14:02:30.719907 21344 solver.cpp:245] Train net output #26: loss1/loss05 = 2.75754 (* 0.0272727 = 0.0752055 loss) | |
I0327 14:02:30.719923 21344 solver.cpp:245] Train net output #27: loss1/loss06 = 2.62451 (* 0.0272727 = 0.0715775 loss) | |
I0327 14:02:30.719936 21344 solver.cpp:245] Train net output #28: loss1/loss07 = 1.23003 (* 0.0272727 = 0.0335462 loss) | |
I0327 14:02:30.719950 21344 solver.cpp:245] Train net output #29: loss1/loss08 = 0.422414 (* 0.0272727 = 0.0115204 loss) | |
I0327 14:02:30.719964 21344 solver.cpp:245] Train net output #30: loss1/loss09 = 0.43986 (* 0.0272727 = 0.0119962 loss) | |
I0327 14:02:30.719980 21344 solver.cpp:245] Train net output #31: loss1/loss10 = 0.0079292 (* 0.0272727 = 0.000216251 loss) | |
I0327 14:02:30.719997 21344 solver.cpp:245] Train net output #32: loss1/loss11 = 0.000136455 (* 0.0272727 = 3.7215e-06 loss) | |
I0327 14:02:30.720012 21344 solver.cpp:245] Train net output #33: loss1/loss12 = 0.000123858 (* 0.0272727 = 3.37794e-06 loss) | |
I0327 14:02:30.720027 21344 solver.cpp:245] Train net output #34: loss1/loss13 = 0.000531781 (* 0.0272727 = 1.45031e-05 loss) | |
I0327 14:02:30.720041 21344 solver.cpp:245] Train net output #35: loss1/loss14 = 0.000140419 (* 0.0272727 = 3.8296e-06 loss) | |
I0327 14:02:30.720057 21344 solver.cpp:245] Train net output #36: loss1/loss15 = 0.000267714 (* 0.0272727 = 7.30128e-06 loss) | |
I0327 14:02:30.720070 21344 solver.cpp:245] Train net output #37: loss1/loss16 = 6.1429e-05 (* 0.0272727 = 1.67534e-06 loss) | |
I0327 14:02:30.720084 21344 solver.cpp:245] Train net output #38: loss1/loss17 = 0.000139074 (* 0.0272727 = 3.79293e-06 loss) | |
I0327 14:02:30.720113 21344 solver.cpp:245] Train net output #39: loss1/loss18 = 6.57562e-05 (* 0.0272727 = 1.79335e-06 loss) | |
I0327 14:02:30.720134 21344 solver.cpp:245] Train net output #40: loss1/loss19 = 9.10819e-05 (* 0.0272727 = 2.48405e-06 loss) | |
I0327 14:02:30.720149 21344 solver.cpp:245] Train net output #41: loss1/loss20 = 0.000151921 (* 0.0272727 = 4.1433e-06 loss) | |
I0327 14:02:30.720163 21344 solver.cpp:245] Train net output #42: loss1/loss21 = 8.04107e-05 (* 0.0272727 = 2.19302e-06 loss) | |
I0327 14:02:30.720177 21344 solver.cpp:245] Train net output #43: loss1/loss22 = 0.000118185 (* 0.0272727 = 3.22321e-06 loss) | |
I0327 14:02:30.720191 21344 solver.cpp:245] Train net output #44: loss2/accuracy01 = 0.375 | |
I0327 14:02:30.720203 21344 solver.cpp:245] Train net output #45: loss2/accuracy02 = 0.125 | |
I0327 14:02:30.720216 21344 solver.cpp:245] Train net output #46: loss2/accuracy03 = 0.375 | |
I0327 14:02:30.720227 21344 solver.cpp:245] Train net output #47: loss2/accuracy04 = 0.375 | |
I0327 14:02:30.720238 21344 solver.cpp:245] Train net output #48: loss2/accuracy05 = 0.125 | |
I0327 14:02:30.720250 21344 solver.cpp:245] Train net output #49: loss2/accuracy06 = 0.375 | |
I0327 14:02:30.720263 21344 solver.cpp:245] Train net output #50: loss2/accuracy07 = 0.625 | |
I0327 14:02:30.720274 21344 solver.cpp:245] Train net output #51: loss2/accuracy08 = 0.875 | |
I0327 14:02:30.720285 21344 solver.cpp:245] Train net output #52: loss2/accuracy09 = 0.875 | |
I0327 14:02:30.720298 21344 solver.cpp:245] Train net output #53: loss2/accuracy10 = 1 | |
I0327 14:02:30.720309 21344 solver.cpp:245] Train net output #54: loss2/accuracy11 = 1 | |
I0327 14:02:30.720320 21344 solver.cpp:245] Train net output #55: loss2/accuracy12 = 1 | |
I0327 14:02:30.720331 21344 solver.cpp:245] Train net output #56: loss2/accuracy13 = 1 | |
I0327 14:02:30.720342 21344 solver.cpp:245] Train net output #57: loss2/accuracy14 = 1 | |
I0327 14:02:30.720353 21344 solver.cpp:245] Train net output #58: loss2/accuracy15 = 1 | |
I0327 14:02:30.720366 21344 solver.cpp:245] Train net output #59: loss2/accuracy16 = 1 | |
I0327 14:02:30.720376 21344 solver.cpp:245] Train net output #60: loss2/accuracy17 = 1 | |
I0327 14:02:30.720387 21344 solver.cpp:245] Train net output #61: loss2/accuracy18 = 1 | |
I0327 14:02:30.720398 21344 solver.cpp:245] Train net output #62: loss2/accuracy19 = 1 | |
I0327 14:02:30.720410 21344 solver.cpp:245] Train net output #63: loss2/accuracy20 = 1 | |
I0327 14:02:30.720422 21344 solver.cpp:245] Train net output #64: loss2/accuracy21 = 1 | |
I0327 14:02:30.720432 21344 solver.cpp:245] Train net output #65: loss2/accuracy22 = 1 | |
I0327 14:02:30.720446 21344 solver.cpp:245] Train net output #66: loss2/loss01 = 1.62843 (* 0.0272727 = 0.0444116 loss) | |
I0327 14:02:30.720460 21344 solver.cpp:245] Train net output #67: loss2/loss02 = 3.26679 (* 0.0272727 = 0.0890943 loss) | |
I0327 14:02:30.720474 21344 solver.cpp:245] Train net output #68: loss2/loss03 = 2.71544 (* 0.0272727 = 0.0740575 loss) | |
I0327 14:02:30.720489 21344 solver.cpp:245] Train net output #69: loss2/loss04 = 3.14866 (* 0.0272727 = 0.0858725 loss) | |
I0327 14:02:30.720502 21344 solver.cpp:245] Train net output #70: loss2/loss05 = 3.33851 (* 0.0272727 = 0.0910502 loss) | |
I0327 14:02:30.720516 21344 solver.cpp:245] Train net output #71: loss2/loss06 = 2.53158 (* 0.0272727 = 0.0690431 loss) | |
I0327 14:02:30.720530 21344 solver.cpp:245] Train net output #72: loss2/loss07 = 1.66965 (* 0.0272727 = 0.045536 loss) | |
I0327 14:02:30.720544 21344 solver.cpp:245] Train net output #73: loss2/loss08 = 0.441902 (* 0.0272727 = 0.0120519 loss) | |
I0327 14:02:30.720559 21344 solver.cpp:245] Train net output #74: loss2/loss09 = 0.487369 (* 0.0272727 = 0.0132919 loss) | |
I0327 14:02:30.720577 21344 solver.cpp:245] Train net output #75: loss2/loss10 = 0.0100713 (* 0.0272727 = 0.000274671 loss) | |
I0327 14:02:30.720592 21344 solver.cpp:245] Train net output #76: loss2/loss11 = 9.45419e-05 (* 0.0272727 = 2.57842e-06 loss) | |
I0327 14:02:30.720618 21344 solver.cpp:245] Train net output #77: loss2/loss12 = 5.54285e-05 (* 0.0272727 = 1.51169e-06 loss) | |
I0327 14:02:30.720633 21344 solver.cpp:245] Train net output #78: loss2/loss13 = 3.64049e-05 (* 0.0272727 = 9.92862e-07 loss) | |
I0327 14:02:30.720646 21344 solver.cpp:245] Train net output #79: loss2/loss14 = 9.0715e-05 (* 0.0272727 = 2.47405e-06 loss) | |
I0327 14:02:30.720661 21344 solver.cpp:245] Train net output #80: loss2/loss15 = 3.14575e-05 (* 0.0272727 = 8.57933e-07 loss) | |
I0327 14:02:30.720675 21344 solver.cpp:245] Train net output #81: loss2/loss16 = 7.56615e-05 (* 0.0272727 = 2.0635e-06 loss) | |
I0327 14:02:30.720690 21344 solver.cpp:245] Train net output #82: loss2/loss17 = 5.31494e-05 (* 0.0272727 = 1.44953e-06 loss) | |
I0327 14:02:30.720703 21344 solver.cpp:245] Train net output #83: loss2/loss18 = 0.000131531 (* 0.0272727 = 3.58721e-06 loss) | |
I0327 14:02:30.720718 21344 solver.cpp:245] Train net output #84: loss2/loss19 = 0.000164704 (* 0.0272727 = 4.49193e-06 loss) | |
I0327 14:02:30.720732 21344 solver.cpp:245] Train net output #85: loss2/loss20 = 0.000104943 (* 0.0272727 = 2.86209e-06 loss) | |
I0327 14:02:30.720746 21344 solver.cpp:245] Train net output #86: loss2/loss21 = 0.000174679 (* 0.0272727 = 4.76396e-06 loss) | |
I0327 14:02:30.720760 21344 solver.cpp:245] Train net output #87: loss2/loss22 = 4.19133e-05 (* 0.0272727 = 1.14309e-06 loss) | |
I0327 14:02:30.720772 21344 solver.cpp:245] Train net output #88: loss3/accuracy01 = 0.5 | |
I0327 14:02:30.720785 21344 solver.cpp:245] Train net output #89: loss3/accuracy02 = 0.375 | |
I0327 14:02:30.720796 21344 solver.cpp:245] Train net output #90: loss3/accuracy03 = 0.25 | |
I0327 14:02:30.720808 21344 solver.cpp:245] Train net output #91: loss3/accuracy04 = 0.125 | |
I0327 14:02:30.720819 21344 solver.cpp:245] Train net output #92: loss3/accuracy05 = 0.125 | |
I0327 14:02:30.720831 21344 solver.cpp:245] Train net output #93: loss3/accuracy06 = 0.25 | |
I0327 14:02:30.720842 21344 solver.cpp:245] Train net output #94: loss3/accuracy07 = 0.625 | |
I0327 14:02:30.720854 21344 solver.cpp:245] Train net output #95: loss3/accuracy08 = 0.875 | |
I0327 14:02:30.720865 21344 solver.cpp:245] Train net output #96: loss3/accuracy09 = 0.875 | |
I0327 14:02:30.720876 21344 solver.cpp:245] Train net output #97: loss3/accuracy10 = 1 | |
I0327 14:02:30.720887 21344 solver.cpp:245] Train net output #98: loss3/accuracy11 = 1 | |
I0327 14:02:30.720899 21344 solver.cpp:245] Train net output #99: loss3/accuracy12 = 1 | |
I0327 14:02:30.720911 21344 solver.cpp:245] Train net output #100: loss3/accuracy13 = 1 | |
I0327 14:02:30.720921 21344 solver.cpp:245] Train net output #101: loss3/accuracy14 = 1 | |
I0327 14:02:30.720933 21344 solver.cpp:245] Train net output #102: loss3/accuracy15 = 1 | |
I0327 14:02:30.720944 21344 solver.cpp:245] Train net output #103: loss3/accuracy16 = 1 | |
I0327 14:02:30.720955 21344 solver.cpp:245] Train net output #104: loss3/accuracy17 = 1 | |
I0327 14:02:30.720968 21344 solver.cpp:245] Train net output #105: loss3/accuracy18 = 1 | |
I0327 14:02:30.720978 21344 solver.cpp:245] Train net output #106: loss3/accuracy19 = 1 | |
I0327 14:02:30.720989 21344 solver.cpp:245] Train net output #107: loss3/accuracy20 = 1 | |
I0327 14:02:30.721001 21344 solver.cpp:245] Train net output #108: loss3/accuracy21 = 1 | |
I0327 14:02:30.721012 21344 solver.cpp:245] Train net output #109: loss3/accuracy22 = 1 | |
I0327 14:02:30.721025 21344 solver.cpp:245] Train net output #110: loss3/loss01 = 1.34115 (* 0.0909091 = 0.121923 loss) | |
I0327 14:02:30.721040 21344 solver.cpp:245] Train net output #111: loss3/loss02 = 2.61758 (* 0.0909091 = 0.237962 loss) | |
I0327 14:02:30.721057 21344 solver.cpp:245] Train net output #112: loss3/loss03 = 2.82025 (* 0.0909091 = 0.256387 loss) | |
I0327 14:02:30.721071 21344 solver.cpp:245] Train net output #113: loss3/loss04 = 2.85351 (* 0.0909091 = 0.25941 loss) | |
I0327 14:02:30.721086 21344 solver.cpp:245] Train net output #114: loss3/loss05 = 2.74169 (* 0.0909091 = 0.249244 loss) | |
I0327 14:02:30.721109 21344 solver.cpp:245] Train net output #115: loss3/loss06 = 2.54658 (* 0.0909091 = 0.231507 loss) | |
I0327 14:02:30.721124 21344 solver.cpp:245] Train net output #116: loss3/loss07 = 1.23468 (* 0.0909091 = 0.112244 loss) | |
I0327 14:02:30.721138 21344 solver.cpp:245] Train net output #117: loss3/loss08 = 0.395049 (* 0.0909091 = 0.0359135 loss) | |
I0327 14:02:30.721153 21344 solver.cpp:245] Train net output #118: loss3/loss09 = 0.574826 (* 0.0909091 = 0.0522569 loss) | |
I0327 14:02:30.721166 21344 solver.cpp:245] Train net output #119: loss3/loss10 = 0.0271303 (* 0.0909091 = 0.00246639 loss) | |
I0327 14:02:30.721181 21344 solver.cpp:245] Train net output #120: loss3/loss11 = 0.000134524 (* 0.0909091 = 1.22294e-05 loss) | |
I0327 14:02:30.721195 21344 solver.cpp:245] Train net output #121: loss3/loss12 = 0.000133049 (* 0.0909091 = 1.20954e-05 loss) | |
I0327 14:02:30.721210 21344 solver.cpp:245] Train net output #122: loss3/loss13 = 9.76696e-05 (* 0.0909091 = 8.87905e-06 loss) | |
I0327 14:02:30.721223 21344 solver.cpp:245] Train net output #123: loss3/loss14 = 0.000145457 (* 0.0909091 = 1.32234e-05 loss) | |
I0327 14:02:30.721238 21344 solver.cpp:245] Train net output #124: loss3/loss15 = 0.000116286 (* 0.0909091 = 1.05714e-05 loss) | |
I0327 14:02:30.721252 21344 solver.cpp:245] Train net output #125: loss3/loss16 = 0.000151446 (* 0.0909091 = 1.37679e-05 loss) | |
I0327 14:02:30.721266 21344 solver.cpp:245] Train net output #126: loss3/loss17 = 0.000117389 (* 0.0909091 = 1.06717e-05 loss) | |
I0327 14:02:30.721281 21344 solver.cpp:245] Train net output #127: loss3/loss18 = 0.000112041 (* 0.0909091 = 1.01855e-05 loss) | |
I0327 14:02:30.721295 21344 solver.cpp:245] Train net output #128: loss3/loss19 = 0.000103185 (* 0.0909091 = 9.38047e-06 loss) | |
I0327 14:02:30.721309 21344 solver.cpp:245] Train net output #129: loss3/loss20 = 0.00013992 (* 0.0909091 = 1.272e-05 loss) | |
I0327 14:02:30.721323 21344 solver.cpp:245] Train net output #130: loss3/loss21 = 0.000167848 (* 0.0909091 = 1.52589e-05 loss) | |
I0327 14:02:30.721338 21344 solver.cpp:245] Train net output #131: loss3/loss22 = 0.000123046 (* 0.0909091 = 1.1186e-05 loss) | |
I0327 14:02:30.721350 21344 solver.cpp:245] Train net output #132: total_accuracy = 0 | |
I0327 14:02:30.721361 21344 solver.cpp:245] Train net output #133: total_confidence = 0.00185571 | |
I0327 14:02:30.721374 21344 sgd_solver.cpp:106] Iteration 20500, lr = 0.01 | |
I0327 14:04:19.094635 21344 solver.cpp:229] Iteration 21000, loss = 2.57035 | |
I0327 14:04:19.094764 21344 solver.cpp:245] Train net output #0: loss1/accuracy01 = 0.25 | |
I0327 14:04:19.094784 21344 solver.cpp:245] Train net output #1: loss1/accuracy02 = 0 | |
I0327 14:04:19.094797 21344 solver.cpp:245] Train net output #2: loss1/accuracy03 = 0 | |
I0327 14:04:19.094808 21344 solver.cpp:245] Train net output #3: loss1/accuracy04 = 0 | |
I0327 14:04:19.094820 21344 solver.cpp:245] Train net output #4: loss1/accuracy05 = 0.25 | |
I0327 14:04:19.094832 21344 solver.cpp:245] Train net output #5: loss1/accuracy06 = 0.5 | |
I0327 14:04:19.094844 21344 solver.cpp:245] Train net output #6: loss1/accuracy07 = 0.75 | |
I0327 14:04:19.094856 21344 solver.cpp:245] Train net output #7: loss1/accuracy08 = 0.75 | |
I0327 14:04:19.094868 21344 solver.cpp:245] Train net output #8: loss1/accuracy09 = 0.875 | |
I0327 14:04:19.094880 21344 solver.cpp:245] Train net output #9: loss1/accuracy10 = 1 | |
I0327 14:04:19.094892 21344 solver.cpp:245] Train net output #10: loss1/accuracy11 = 1 | |
I0327 14:04:19.094903 21344 solver.cpp:245] Train net output #11: loss1/accuracy12 = 1 | |
I0327 14:04:19.094915 21344 solver.cpp:245] Train net output #12: loss1/accuracy13 = 1 | |
I0327 14:04:19.094928 21344 solver.cpp:245] Train net output #13: loss1/accuracy14 = 1 | |
I0327 14:04:19.094938 21344 solver.cpp:245] Train net output #14: loss1/accuracy15 = 1 | |
I0327 14:04:19.094951 21344 solver.cpp:245] Train net output #15: loss1/accuracy16 = 1 | |
I0327 14:04:19.094962 21344 solver.cpp:245] Train net output #16: loss1/accuracy17 = 1 | |
I0327 14:04:19.094974 21344 solver.cpp:245] Train net output #17: loss1/accuracy18 = 1 | |
I0327 14:04:19.094985 21344 solver.cpp:245] Train net output #18: loss1/accuracy19 = 1 | |
I0327 14:04:19.095000 21344 solver.cpp:245] Train net output #19: loss1/accuracy20 = 1 | |
I0327 14:04:19.095012 21344 solver.cpp:245] Train net output #20: loss1/accuracy21 = 1 | |
I0327 14:04:19.095024 21344 solver.cpp:245] Train net output #21: loss1/accuracy22 = 1 | |
I0327 14:04:19.095041 21344 solver.cpp:245] Train net output #22: loss1/loss01 = 2.10124 (* 0.0272727 = 0.0573066 loss) | |
I0327 14:04:19.095055 21344 solver.cpp:245] Train net output #23: loss1/loss02 = 3.56448 (* 0.0272727 = 0.097213 loss) | |
I0327 14:04:19.095070 21344 solver.cpp:245] Train net output #24: loss1/loss03 = 2.66959 (* 0.0272727 = 0.072807 loss) | |
I0327 14:04:19.095084 21344 solver.cpp:245] Train net output #25: loss1/loss04 = 3.4673 (* 0.0272727 = 0.0945627 loss) | |
I0327 14:04:19.095098 21344 solver.cpp:245] Train net output #26: loss1/loss05 = 2.77321 (* 0.0272727 = 0.075633 loss) | |
I0327 14:04:19.095113 21344 solver.cpp:245] Train net output #27: loss1/loss06 = 2.22963 (* 0.0272727 = 0.0608081 loss) | |
I0327 14:04:19.095126 21344 solver.cpp:245] Train net output #28: loss1/loss07 = 1.49197 (* 0.0272727 = 0.04069 loss) | |
I0327 14:04:19.095140 21344 solver.cpp:245] Train net output #29: loss1/loss08 = 1.09096 (* 0.0272727 = 0.0297535 loss) | |
I0327 14:04:19.095155 21344 solver.cpp:245] Train net output #30: loss1/loss09 = 0.517671 (* 0.0272727 = 0.0141183 loss) | |
I0327 14:04:19.095168 21344 solver.cpp:245] Train net output #31: loss1/loss10 = 0.0215792 (* 0.0272727 = 0.000588524 loss) | |
I0327 14:04:19.095183 21344 solver.cpp:245] Train net output #32: loss1/loss11 = 0.000102445 (* 0.0272727 = 2.79396e-06 loss) | |
I0327 14:04:19.095198 21344 solver.cpp:245] Train net output #33: loss1/loss12 = 0.000115266 (* 0.0272727 = 3.14362e-06 loss) | |
I0327 14:04:19.095212 21344 solver.cpp:245] Train net output #34: loss1/loss13 = 6.65766e-05 (* 0.0272727 = 1.81572e-06 loss) | |
I0327 14:04:19.095227 21344 solver.cpp:245] Train net output #35: loss1/loss14 = 0.00013401 (* 0.0272727 = 3.65482e-06 loss) | |
I0327 14:04:19.095240 21344 solver.cpp:245] Train net output #36: loss1/loss15 = 0.000119633 (* 0.0272727 = 3.26271e-06 loss) | |
I0327 14:04:19.095254 21344 solver.cpp:245] Train net output #37: loss1/loss16 = 0.000117781 (* 0.0272727 = 3.21222e-06 loss) | |
I0327 14:04:19.095268 21344 solver.cpp:245] Train net output #38: loss1/loss17 = 5.1039e-05 (* 0.0272727 = 1.39197e-06 loss) | |
I0327 14:04:19.095301 21344 solver.cpp:245] Train net output #39: loss1/loss18 = 0.000186254 (* 0.0272727 = 5.07964e-06 loss) | |
I0327 14:04:19.095317 21344 solver.cpp:245] Train net output #40: loss1/loss19 = 9.14944e-05 (* 0.0272727 = 2.4953e-06 loss) | |
I0327 14:04:19.095331 21344 solver.cpp:245] Train net output #41: loss1/loss20 = 0.000209419 (* 0.0272727 = 5.71141e-06 loss) | |
I0327 14:04:19.095345 21344 solver.cpp:245] Train net output #42: loss1/loss21 = 8.82182e-05 (* 0.0272727 = 2.40595e-06 loss) | |
I0327 14:04:19.095360 21344 solver.cpp:245] Train net output #43: loss1/loss22 = 0.000158653 (* 0.0272727 = 4.32691e-06 loss) | |
I0327 14:04:19.095371 21344 solver.cpp:245] Train net output #44: loss2/accuracy01 = 0.375 | |
I0327 14:04:19.095384 21344 solver.cpp:245] Train net output #45: loss2/accuracy02 = 0.125 | |
I0327 14:04:19.095396 21344 solver.cpp:245] Train net output #46: loss2/accuracy03 = 0.25 | |
I0327 14:04:19.095408 21344 solver.cpp:245] Train net output #47: loss2/accuracy04 = 0 | |
I0327 14:04:19.095420 21344 solver.cpp:245] Train net output #48: loss2/accuracy05 = 0.5 | |
I0327 14:04:19.095432 21344 solver.cpp:245] Train net output #49: loss2/accuracy06 = 0.625 | |
I0327 14:04:19.095444 21344 solver.cpp:245] Train net output #50: loss2/accuracy07 = 0.625 | |
I0327 14:04:19.095455 21344 solver.cpp:245] Train net output #51: loss2/accuracy08 = 0.75 | |
I0327 14:04:19.095463 21344 solver.cpp:245] Train net output #52: loss2/accuracy09 = 0.875 | |
I0327 14:04:19.095475 21344 solver.cpp:245] Train net output #53: loss2/accuracy10 = 1 | |
I0327 14:04:19.095487 21344 solver.cpp:245] Train net output #54: loss2/accuracy11 = 1 | |
I0327 14:04:19.095499 21344 solver.cpp:245] Train net output #55: loss2/accuracy12 = 1 | |
I0327 14:04:19.095510 21344 solver.cpp:245] Train net output #56: loss2/accuracy13 = 1 | |
I0327 14:04:19.095521 21344 solver.cpp:245] Train net output #57: loss2/accuracy14 = 1 | |
I0327 14:04:19.095533 21344 solver.cpp:245] Train net output #58: loss2/accuracy15 = 1 | |
I0327 14:04:19.095544 21344 solver.cpp:245] Train net output #59: loss2/accuracy16 = 1 | |
I0327 14:04:19.095556 21344 solver.cpp:245] Train net output #60: loss2/accuracy17 = 1 | |
I0327 14:04:19.095567 21344 solver.cpp:245] Train net output #61: loss2/accuracy18 = 1 | |
I0327 14:04:19.095578 21344 solver.cpp:245] Train net output #62: loss2/accuracy19 = 1 | |
I0327 14:04:19.095590 21344 solver.cpp:245] Train net output #63: loss2/accuracy20 = 1 | |
I0327 14:04:19.095602 21344 solver.cpp:245] Train net output #64: loss2/accuracy21 = 1 | |
I0327 14:04:19.095613 21344 solver.cpp:245] Train net output #65: loss2/accuracy22 = 1 | |
I0327 14:04:19.095628 21344 solver.cpp:245] Train net output #66: loss2/loss01 = 2.01868 (* 0.0272727 = 0.0550548 loss) | |
I0327 14:04:19.095641 21344 solver.cpp:245] Train net output #67: loss2/loss02 = 3.37129 (* 0.0272727 = 0.0919442 loss) | |
I0327 14:04:19.095655 21344 solver.cpp:245] Train net output #68: loss2/loss03 = 2.45205 (* 0.0272727 = 0.0668741 loss) | |
I0327 14:04:19.095669 21344 solver.cpp:245] Train net output #69: loss2/loss04 = 3.44769 (* 0.0272727 = 0.0940279 loss) | |
I0327 14:04:19.095682 21344 solver.cpp:245] Train net output #70: loss2/loss05 = 2.1556 (* 0.0272727 = 0.0587891 loss) | |
I0327 14:04:19.095696 21344 solver.cpp:245] Train net output #71: loss2/loss06 = 1.76338 (* 0.0272727 = 0.0480921 loss) | |
I0327 14:04:19.095710 21344 solver.cpp:245] Train net output #72: loss2/loss07 = 1.276 (* 0.0272727 = 0.0348 loss) | |
I0327 14:04:19.095724 21344 solver.cpp:245] Train net output #73: loss2/loss08 = 0.970722 (* 0.0272727 = 0.0264742 loss) | |
I0327 14:04:19.095738 21344 solver.cpp:245] Train net output #74: loss2/loss09 = 0.471667 (* 0.0272727 = 0.0128636 loss) | |
I0327 14:04:19.095753 21344 solver.cpp:245] Train net output #75: loss2/loss10 = 0.0611583 (* 0.0272727 = 0.00166795 loss) | |
I0327 14:04:19.095767 21344 solver.cpp:245] Train net output #76: loss2/loss11 = 0.00374408 (* 0.0272727 = 0.000102111 loss) | |
I0327 14:04:19.095795 21344 solver.cpp:245] Train net output #77: loss2/loss12 = 0.00409301 (* 0.0272727 = 0.000111628 loss) | |
I0327 14:04:19.095811 21344 solver.cpp:245] Train net output #78: loss2/loss13 = 0.00460533 (* 0.0272727 = 0.0001256 loss) | |
I0327 14:04:19.095826 21344 solver.cpp:245] Train net output #79: loss2/loss14 = 0.00188928 (* 0.0272727 = 5.15259e-05 loss) | |
I0327 14:04:19.095840 21344 solver.cpp:245] Train net output #80: loss2/loss15 = 0.00561062 (* 0.0272727 = 0.000153017 loss) | |
I0327 14:04:19.095854 21344 solver.cpp:245] Train net output #81: loss2/loss16 = 0.00318326 (* 0.0272727 = 8.68161e-05 loss) | |
I0327 14:04:19.095868 21344 solver.cpp:245] Train net output #82: loss2/loss17 = 0.00430081 (* 0.0272727 = 0.000117295 loss) | |
I0327 14:04:19.095882 21344 solver.cpp:245] Train net output #83: loss2/loss18 = 0.00493494 (* 0.0272727 = 0.000134589 loss) | |
I0327 14:04:19.095897 21344 solver.cpp:245] Train net output #84: loss2/loss19 = 0.0043321 (* 0.0272727 = 0.000118148 loss) | |
I0327 14:04:19.095911 21344 solver.cpp:245] Train net output #85: loss2/loss20 = 0.00325173 (* 0.0272727 = 8.86836e-05 loss) | |
I0327 14:04:19.095926 21344 solver.cpp:245] Train net output #86: loss2/loss21 = 0.00232662 (* 0.0272727 = 6.34533e-05 loss) | |
I0327 14:04:19.095939 21344 solver.cpp:245] Train net output #87: loss2/loss22 = 0.00159786 (* 0.0272727 = 4.35781e-05 loss) | |
I0327 14:04:19.095952 21344 solver.cpp:245] Train net output #88: loss3/accuracy01 = 0.375 | |
I0327 14:04:19.095964 21344 solver.cpp:245] Train net output #89: loss3/accuracy02 = 0 | |
I0327 14:04:19.095975 21344 solver.cpp:245] Train net output #90: loss3/accuracy03 = 0.125 | |
I0327 14:04:19.095988 21344 solver.cpp:245] Train net output #91: loss3/accuracy04 = 0.125 | |
I0327 14:04:19.095999 21344 solver.cpp:245] Train net output #92: loss3/accuracy05 = 0.375 | |
I0327 14:04:19.096010 21344 solver.cpp:245] Train net output #93: loss3/accuracy06 = 0.375 | |
I0327 14:04:19.096021 21344 solver.cpp:245] Train net output #94: loss3/accuracy07 = 0.625 | |
I0327 14:04:19.096034 21344 solver.cpp:245] Train net output #95: loss3/accuracy08 = 0.75 | |
I0327 14:04:19.096047 21344 solver.cpp:245] Train net output #96: loss3/accuracy09 = 0.875 | |
I0327 14:04:19.096060 21344 solver.cpp:245] Train net output #97: loss3/accuracy10 = 1 | |
I0327 14:04:19.096071 21344 solver.cpp:245] Train net output #98: loss3/accuracy11 = 1 | |
I0327 14:04:19.096082 21344 solver.cpp:245] Train net output #99: loss3/accuracy12 = 1 | |
I0327 14:04:19.096094 21344 solver.cpp:245] Train net output #100: loss3/accuracy13 = 1 | |
I0327 14:04:19.096106 21344 solver.cpp:245] Train net output #101: loss3/accuracy14 = 1 | |
I0327 14:04:19.096117 21344 solver.cpp:245] Train net output #102: loss3/accuracy15 = 1 | |
I0327 14:04:19.096128 21344 solver.cpp:245] Train net output #103: loss3/accuracy16 = 1 | |
I0327 14:04:19.096139 21344 solver.cpp:245] Train net output #104: loss3/accuracy17 = 1 | |
I0327 14:04:19.096151 21344 solver.cpp:245] Train net output #105: loss3/accuracy18 = 1 | |
I0327 14:04:19.096163 21344 solver.cpp:245] Train net output #106: loss3/accuracy19 = 1 | |
I0327 14:04:19.096174 21344 solver.cpp:245] Train net output #107: loss3/accuracy20 = 1 | |
I0327 14:04:19.096185 21344 solver.cpp:245] Train net output #108: loss3/accuracy21 = 1 | |
I0327 14:04:19.096197 21344 solver.cpp:245] Train net output #109: loss3/accuracy22 = 1 | |
I0327 14:04:19.096210 21344 solver.cpp:245] Train net output #110: loss3/loss01 = 1.63853 (* 0.0909091 = 0.148957 loss) | |
I0327 14:04:19.096225 21344 solver.cpp:245] Train net output #111: loss3/loss02 = 3.29892 (* 0.0909091 = 0.299902 loss) | |
I0327 14:04:19.096240 21344 solver.cpp:245] Train net output #112: loss3/loss03 = 2.31137 (* 0.0909091 = 0.210124 loss) | |
I0327 14:04:19.096253 21344 solver.cpp:245] Train net output #113: loss3/loss04 = 3.05071 (* 0.0909091 = 0.277337 loss) | |
I0327 14:04:19.096267 21344 solver.cpp:245] Train net output #114: loss3/loss05 = 2.23225 (* 0.0909091 = 0.202932 loss) | |
I0327 14:04:19.096282 21344 solver.cpp:245] Train net output #115: loss3/loss06 = 1.89404 (* 0.0909091 = 0.172185 loss) | |
I0327 14:04:19.096305 21344 solver.cpp:245] Train net output #116: loss3/loss07 = 1.27922 (* 0.0909091 = 0.116293 loss) | |
I0327 14:04:19.096320 21344 solver.cpp:245] Train net output #117: loss3/loss08 = 0.865347 (* 0.0909091 = 0.0786679 loss) | |
I0327 14:04:19.096335 21344 solver.cpp:245] Train net output #118: loss3/loss09 = 0.509131 (* 0.0909091 = 0.0462847 loss) | |
I0327 14:04:19.096349 21344 solver.cpp:245] Train net output #119: loss3/loss10 = 0.0160765 (* 0.0909091 = 0.0014615 loss) | |
I0327 14:04:19.096364 21344 solver.cpp:245] Train net output #120: loss3/loss11 = 0.000172037 (* 0.0909091 = 1.56397e-05 loss) | |
I0327 14:04:19.096379 21344 solver.cpp:245] Train net output #121: loss3/loss12 = 0.000140235 (* 0.0909091 = 1.27487e-05 loss) | |
I0327 14:04:19.096392 21344 solver.cpp:245] Train net output #122: loss3/loss13 = 0.00018372 (* 0.0909091 = 1.67018e-05 loss) | |
I0327 14:04:19.096407 21344 solver.cpp:245] Train net output #123: loss3/loss14 = 0.000190849 (* 0.0909091 = 1.735e-05 loss) | |
I0327 14:04:19.096421 21344 solver.cpp:245] Train net output #124: loss3/loss15 = 0.000115785 (* 0.0909091 = 1.05259e-05 loss) | |
I0327 14:04:19.096436 21344 solver.cpp:245] Train net output #125: loss3/loss16 = 0.000212133 (* 0.0909091 = 1.92848e-05 loss) | |
I0327 14:04:19.096451 21344 solver.cpp:245] Train net output #126: loss3/loss17 = 0.000161845 (* 0.0909091 = 1.47132e-05 loss) | |
I0327 14:04:19.096464 21344 solver.cpp:245] Train net output #127: loss3/loss18 = 0.000203531 (* 0.0909091 = 1.85028e-05 loss) | |
I0327 14:04:19.096478 21344 solver.cpp:245] Train net output #128: loss3/loss19 = 0.000157921 (* 0.0909091 = 1.43565e-05 loss) | |
I0327 14:04:19.096493 21344 solver.cpp:245] Train net output #129: loss3/loss20 = 0.000182392 (* 0.0909091 = 1.65811e-05 loss) | |
I0327 14:04:19.096506 21344 solver.cpp:245] Train net output #130: loss3/loss21 = 0.000202691 (* 0.0909091 = 1.84264e-05 loss) | |
I0327 14:04:19.096520 21344 solver.cpp:245] Train net output #131: loss3/loss22 = 0.000167119 (* 0.0909091 = 1.51926e-05 loss) | |
I0327 14:04:19.096532 21344 solver.cpp:245] Train net output #132: total_accuracy = 0 | |
I0327 14:04:19.096544 21344 solver.cpp:245] Train net output #133: total_confidence = 0.00257538 | |
I0327 14:04:19.096556 21344 sgd_solver.cpp:106] Iteration 21000, lr = 0.01 | |
I0327 14:06:07.582128 21344 solver.cpp:229] Iteration 21500, loss = 2.57818 | |
I0327 14:06:07.582375 21344 solver.cpp:245] Train net output #0: loss1/accuracy01 = 0.125 | |
I0327 14:06:07.582406 21344 solver.cpp:245] Train net output #1: loss1/accuracy02 = 0.25 | |
I0327 14:06:07.582430 21344 solver.cpp:245] Train net output #2: loss1/accuracy03 = 0.125 | |
I0327 14:06:07.582442 21344 solver.cpp:245] Train net output #3: loss1/accuracy04 = 0 | |
I0327 14:06:07.582455 21344 solver.cpp:245] Train net output #4: loss1/accuracy05 = 0.125 | |
I0327 14:06:07.582468 21344 solver.cpp:245] Train net output #5: loss1/accuracy06 = 0.125 | |
I0327 14:06:07.582486 21344 solver.cpp:245] Train net output #6: loss1/accuracy07 = 0.5 | |
I0327 14:06:07.582499 21344 solver.cpp:245] Train net output #7: loss1/accuracy08 = 0.75 | |
I0327 14:06:07.582510 21344 solver.cpp:245] Train net output #8: loss1/accuracy09 = 0.875 | |
I0327 14:06:07.582523 21344 solver.cpp:245] Train net output #9: loss1/accuracy10 = 1 | |
I0327 14:06:07.582545 21344 solver.cpp:245] Train net output #10: loss1/accuracy11 = 1 | |
I0327 14:06:07.582557 21344 solver.cpp:245] Train net output #11: loss1/accuracy12 = 1 | |
I0327 14:06:07.582569 21344 solver.cpp:245] Train net output #12: loss1/accuracy13 = 1 | |
I0327 14:06:07.582581 21344 solver.cpp:245] Train net output #13: loss1/accuracy14 = 1 | |
I0327 14:06:07.582593 21344 solver.cpp:245] Train net output #14: loss1/accuracy15 = 1 | |
I0327 14:06:07.582609 21344 solver.cpp:245] Train net output #15: loss1/accuracy16 = 1 | |
I0327 14:06:07.582622 21344 solver.cpp:245] Train net output #16: loss1/accuracy17 = 1 | |
I0327 14:06:07.582633 21344 solver.cpp:245] Train net output #17: loss1/accuracy18 = 1 | |
I0327 14:06:07.582645 21344 solver.cpp:245] Train net output #18: loss1/accuracy19 = 1 | |
I0327 14:06:07.582658 21344 solver.cpp:245] Train net output #19: loss1/accuracy20 = 1 | |
I0327 14:06:07.582669 21344 solver.cpp:245] Train net output #20: loss1/accuracy21 = 1 | |
I0327 14:06:07.582681 21344 solver.cpp:245] Train net output #21: loss1/accuracy22 = 1 | |
I0327 14:06:07.582700 21344 solver.cpp:245] Train net output #22: loss1/loss01 = 2.55285 (* 0.0272727 = 0.0696232 loss) | |
I0327 14:06:07.582715 21344 solver.cpp:245] Train net output #23: loss1/loss02 = 3.56127 (* 0.0272727 = 0.0971256 loss) | |
I0327 14:06:07.582729 21344 solver.cpp:245] Train net output #24: loss1/loss03 = 3.15036 (* 0.0272727 = 0.0859189 loss) | |
I0327 14:06:07.582743 21344 solver.cpp:245] Train net output #25: loss1/loss04 = 2.77198 (* 0.0272727 = 0.0755994 loss) | |
I0327 14:06:07.582757 21344 solver.cpp:245] Train net output #26: loss1/loss05 = 2.84349 (* 0.0272727 = 0.0775497 loss) | |
I0327 14:06:07.582772 21344 solver.cpp:245] Train net output #27: loss1/loss06 = 3.02264 (* 0.0272727 = 0.0824356 loss) | |
I0327 14:06:07.582787 21344 solver.cpp:245] Train net output #28: loss1/loss07 = 2.37176 (* 0.0272727 = 0.0646842 loss) | |
I0327 14:06:07.582800 21344 solver.cpp:245] Train net output #29: loss1/loss08 = 1.04782 (* 0.0272727 = 0.028577 loss) | |
I0327 14:06:07.582814 21344 solver.cpp:245] Train net output #30: loss1/loss09 = 0.714195 (* 0.0272727 = 0.0194781 loss) | |
I0327 14:06:07.582830 21344 solver.cpp:245] Train net output #31: loss1/loss10 = 0.0191642 (* 0.0272727 = 0.000522659 loss) | |
I0327 14:06:07.582845 21344 solver.cpp:245] Train net output #32: loss1/loss11 = 0.000397083 (* 0.0272727 = 1.08295e-05 loss) | |
I0327 14:06:07.582859 21344 solver.cpp:245] Train net output #33: loss1/loss12 = 0.000434994 (* 0.0272727 = 1.18635e-05 loss) | |
I0327 14:06:07.582875 21344 solver.cpp:245] Train net output #34: loss1/loss13 = 0.000433064 (* 0.0272727 = 1.18108e-05 loss) | |
I0327 14:06:07.582888 21344 solver.cpp:245] Train net output #35: loss1/loss14 = 0.000484057 (* 0.0272727 = 1.32016e-05 loss) | |
I0327 14:06:07.582903 21344 solver.cpp:245] Train net output #36: loss1/loss15 = 0.000704846 (* 0.0272727 = 1.92231e-05 loss) | |
I0327 14:06:07.582918 21344 solver.cpp:245] Train net output #37: loss1/loss16 = 0.000526415 (* 0.0272727 = 1.43568e-05 loss) | |
I0327 14:06:07.582932 21344 solver.cpp:245] Train net output #38: loss1/loss17 = 0.000985052 (* 0.0272727 = 2.6865e-05 loss) | |
I0327 14:06:07.582962 21344 solver.cpp:245] Train net output #39: loss1/loss18 = 0.000587273 (* 0.0272727 = 1.60165e-05 loss) | |
I0327 14:06:07.582978 21344 solver.cpp:245] Train net output #40: loss1/loss19 = 0.000466157 (* 0.0272727 = 1.27134e-05 loss) | |
I0327 14:06:07.582995 21344 solver.cpp:245] Train net output #41: loss1/loss20 = 0.000939003 (* 0.0272727 = 2.56092e-05 loss) | |
I0327 14:06:07.583010 21344 solver.cpp:245] Train net output #42: loss1/loss21 = 0.000830874 (* 0.0272727 = 2.26602e-05 loss) | |
I0327 14:06:07.583025 21344 solver.cpp:245] Train net output #43: loss1/loss22 = 0.000571886 (* 0.0272727 = 1.55969e-05 loss) | |
I0327 14:06:07.583046 21344 solver.cpp:245] Train net output #44: loss2/accuracy01 = 0.25 | |
I0327 14:06:07.583058 21344 solver.cpp:245] Train net output #45: loss2/accuracy02 = 0.125 | |
I0327 14:06:07.583071 21344 solver.cpp:245] Train net output #46: loss2/accuracy03 = 0.375 | |
I0327 14:06:07.583086 21344 solver.cpp:245] Train net output #47: loss2/accuracy04 = 0.125 | |
I0327 14:06:07.583106 21344 solver.cpp:245] Train net output #48: loss2/accuracy05 = 0.25 | |
I0327 14:06:07.583118 21344 solver.cpp:245] Train net output #49: loss2/accuracy06 = 0.125 | |
I0327 14:06:07.583132 21344 solver.cpp:245] Train net output #50: loss2/accuracy07 = 0.5 | |
I0327 14:06:07.583143 21344 solver.cpp:245] Train net output #51: loss2/accuracy08 = 0.75 | |
I0327 14:06:07.583156 21344 solver.cpp:245] Train net output #52: loss2/accuracy09 = 0.875 | |
I0327 14:06:07.583168 21344 solver.cpp:245] Train net output #53: loss2/accuracy10 = 1 | |
I0327 14:06:07.583180 21344 solver.cpp:245] Train net output #54: loss2/accuracy11 = 1 | |
I0327 14:06:07.583191 21344 solver.cpp:245] Train net output #55: loss2/accuracy12 = 1 | |
I0327 14:06:07.583204 21344 solver.cpp:245] Train net output #56: loss2/accuracy13 = 1 | |
I0327 14:06:07.583215 21344 solver.cpp:245] Train net output #57: loss2/accuracy14 = 1 | |
I0327 14:06:07.583233 21344 solver.cpp:245] Train net output #58: loss2/accuracy15 = 1 | |
I0327 14:06:07.583245 21344 solver.cpp:245] Train net output #59: loss2/accuracy16 = 1 | |
I0327 14:06:07.583257 21344 solver.cpp:245] Train net output #60: loss2/accuracy17 = 1 | |
I0327 14:06:07.583268 21344 solver.cpp:245] Train net output #61: loss2/accuracy18 = 1 | |
I0327 14:06:07.583288 21344 solver.cpp:245] Train net output #62: loss2/accuracy19 = 1 | |
I0327 14:06:07.583300 21344 solver.cpp:245] Train net output #63: loss2/accuracy20 = 1 | |
I0327 14:06:07.583312 21344 solver.cpp:245] Train net output #64: loss2/accuracy21 = 1 | |
I0327 14:06:07.583323 21344 solver.cpp:245] Train net output #65: loss2/accuracy22 = 1 | |
I0327 14:06:07.583338 21344 solver.cpp:245] Train net output #66: loss2/loss01 = 2.88771 (* 0.0272727 = 0.0787557 loss) | |
I0327 14:06:07.583353 21344 solver.cpp:245] Train net output #67: loss2/loss02 = 3.66555 (* 0.0272727 = 0.0999696 loss) | |
I0327 14:06:07.583370 21344 solver.cpp:245] Train net output #68: loss2/loss03 = 3.39906 (* 0.0272727 = 0.0927015 loss) | |
I0327 14:06:07.583385 21344 solver.cpp:245] Train net output #69: loss2/loss04 = 2.76803 (* 0.0272727 = 0.0754918 loss) | |
I0327 14:06:07.583400 21344 solver.cpp:245] Train net output #70: loss2/loss05 = 2.44343 (* 0.0272727 = 0.066639 loss) | |
I0327 14:06:07.583415 21344 solver.cpp:245] Train net output #71: loss2/loss06 = 2.79137 (* 0.0272727 = 0.0761283 loss) | |
I0327 14:06:07.583428 21344 solver.cpp:245] Train net output #72: loss2/loss07 = 2.0369 (* 0.0272727 = 0.0555517 loss) | |
I0327 14:06:07.583442 21344 solver.cpp:245] Train net output #73: loss2/loss08 = 0.802375 (* 0.0272727 = 0.0218829 loss) | |
I0327 14:06:07.583456 21344 solver.cpp:245] Train net output #74: loss2/loss09 = 0.693013 (* 0.0272727 = 0.0189004 loss) | |
I0327 14:06:07.583472 21344 solver.cpp:245] Train net output #75: loss2/loss10 = 0.0373449 (* 0.0272727 = 0.0010185 loss) | |
I0327 14:06:07.583485 21344 solver.cpp:245] Train net output #76: loss2/loss11 = 0.000927823 (* 0.0272727 = 2.53043e-05 loss) | |
I0327 14:06:07.583511 21344 solver.cpp:245] Train net output #77: loss2/loss12 = 0.000380275 (* 0.0272727 = 1.03711e-05 loss) | |
I0327 14:06:07.583528 21344 solver.cpp:245] Train net output #78: loss2/loss13 = 0.000646882 (* 0.0272727 = 1.76422e-05 loss) | |
I0327 14:06:07.583541 21344 solver.cpp:245] Train net output #79: loss2/loss14 = 0.000182645 (* 0.0272727 = 4.98122e-06 loss) | |
I0327 14:06:07.583556 21344 solver.cpp:245] Train net output #80: loss2/loss15 = 0.000321667 (* 0.0272727 = 8.77274e-06 loss) | |
I0327 14:06:07.583570 21344 solver.cpp:245] Train net output #81: loss2/loss16 = 0.00101553 (* 0.0272727 = 2.76962e-05 loss) | |
I0327 14:06:07.583585 21344 solver.cpp:245] Train net output #82: loss2/loss17 = 0.000553461 (* 0.0272727 = 1.50944e-05 loss) | |
I0327 14:06:07.583600 21344 solver.cpp:245] Train net output #83: loss2/loss18 = 0.00069889 (* 0.0272727 = 1.90606e-05 loss) | |
I0327 14:06:07.583614 21344 solver.cpp:245] Train net output #84: loss2/loss19 = 0.0009769 (* 0.0272727 = 2.66427e-05 loss) | |
I0327 14:06:07.583628 21344 solver.cpp:245] Train net output #85: loss2/loss20 = 0.000693999 (* 0.0272727 = 1.89273e-05 loss) | |
I0327 14:06:07.583643 21344 solver.cpp:245] Train net output #86: loss2/loss21 = 0.000879902 (* 0.0272727 = 2.39973e-05 loss) | |
I0327 14:06:07.583657 21344 solver.cpp:245] Train net output #87: loss2/loss22 = 0.00087106 (* 0.0272727 = 2.37562e-05 loss) | |
I0327 14:06:07.583670 21344 solver.cpp:245] Train net output #88: loss3/accuracy01 = 0.625 | |
I0327 14:06:07.583683 21344 solver.cpp:245] Train net output #89: loss3/accuracy02 = 0.25 | |
I0327 14:06:07.583695 21344 solver.cpp:245] Train net output #90: loss3/accuracy03 = 0.125 | |
I0327 14:06:07.583708 21344 solver.cpp:245] Train net output #91: loss3/accuracy04 = 0.375 | |
I0327 14:06:07.583720 21344 solver.cpp:245] Train net output #92: loss3/accuracy05 = 0.375 | |
I0327 14:06:07.583732 21344 solver.cpp:245] Train net output #93: loss3/accuracy06 = 0.375 | |
I0327 14:06:07.583744 21344 solver.cpp:245] Train net output #94: loss3/accuracy07 = 0.5 | |
I0327 14:06:07.583755 21344 solver.cpp:245] Train net output #95: loss3/accuracy08 = 0.75 | |
I0327 14:06:07.583767 21344 solver.cpp:245] Train net output #96: loss3/accuracy09 = 0.875 | |
I0327 14:06:07.583780 21344 solver.cpp:245] Train net output #97: loss3/accuracy10 = 1 | |
I0327 14:06:07.583791 21344 solver.cpp:245] Train net output #98: loss3/accuracy11 = 1 | |
I0327 14:06:07.583803 21344 solver.cpp:245] Train net output #99: loss3/accuracy12 = 1 | |
I0327 14:06:07.583816 21344 solver.cpp:245] Train net output #100: loss3/accuracy13 = 1 | |
I0327 14:06:07.583827 21344 solver.cpp:245] Train net output #101: loss3/accuracy14 = 1 | |
I0327 14:06:07.583839 21344 solver.cpp:245] Train net output #102: loss3/accuracy15 = 1 | |
I0327 14:06:07.583852 21344 solver.cpp:245] Train net output #103: loss3/accuracy16 = 1 | |
I0327 14:06:07.583863 21344 solver.cpp:245] Train net output #104: loss3/accuracy17 = 1 | |
I0327 14:06:07.583875 21344 solver.cpp:245] Train net output #105: loss3/accuracy18 = 1 | |
I0327 14:06:07.583887 21344 solver.cpp:245] Train net output #106: loss3/accuracy19 = 1 | |
I0327 14:06:07.583899 21344 solver.cpp:245] Train net output #107: loss3/accuracy20 = 1 | |
I0327 14:06:07.583911 21344 solver.cpp:245] Train net output #108: loss3/accuracy21 = 1 | |
I0327 14:06:07.583923 21344 solver.cpp:245] Train net output #109: loss3/accuracy22 = 1 | |
I0327 14:06:07.583937 21344 solver.cpp:245] Train net output #110: loss3/loss01 = 2.82716 (* 0.0909091 = 0.257014 loss) | |
I0327 14:06:07.583951 21344 solver.cpp:245] Train net output #111: loss3/loss02 = 2.81376 (* 0.0909091 = 0.255797 loss) | |
I0327 14:06:07.583966 21344 solver.cpp:245] Train net output #112: loss3/loss03 = 3.14112 (* 0.0909091 = 0.285557 loss) | |
I0327 14:06:07.583979 21344 solver.cpp:245] Train net output #113: loss3/loss04 = 2.32619 (* 0.0909091 = 0.211472 loss) | |
I0327 14:06:07.583993 21344 solver.cpp:245] Train net output #114: loss3/loss05 = 2.47821 (* 0.0909091 = 0.225292 loss) | |
I0327 14:06:07.584018 21344 solver.cpp:245] Train net output #115: loss3/loss06 = 2.6974 (* 0.0909091 = 0.245218 loss) | |
I0327 14:06:07.584045 21344 solver.cpp:245] Train net output #116: loss3/loss07 = 1.96313 (* 0.0909091 = 0.178466 loss) | |
I0327 14:06:07.584056 21344 solver.cpp:245] Train net output #117: loss3/loss08 = 0.95106 (* 0.0909091 = 0.08646 loss) | |
I0327 14:06:07.584071 21344 solver.cpp:245] Train net output #118: loss3/loss09 = 0.586868 (* 0.0909091 = 0.0533516 loss) | |
I0327 14:06:07.584085 21344 solver.cpp:245] Train net output #119: loss3/loss10 = 0.0228755 (* 0.0909091 = 0.00207959 loss) | |
I0327 14:06:07.584105 21344 solver.cpp:245] Train net output #120: loss3/loss11 = 0.000169406 (* 0.0909091 = 1.54005e-05 loss) | |
I0327 14:06:07.584118 21344 solver.cpp:245] Train net output #121: loss3/loss12 = 0.000189854 (* 0.0909091 = 1.72594e-05 loss) | |
I0327 14:06:07.584132 21344 solver.cpp:245] Train net output #122: loss3/loss13 = 0.000184622 (* 0.0909091 = 1.67838e-05 loss) | |
I0327 14:06:07.584146 21344 solver.cpp:245] Train net output #123: loss3/loss14 = 0.000164005 (* 0.0909091 = 1.49096e-05 loss) | |
I0327 14:06:07.584161 21344 solver.cpp:245] Train net output #124: loss3/loss15 = 0.000168921 (* 0.0909091 = 1.53565e-05 loss) | |
I0327 14:06:07.584175 21344 solver.cpp:245] Train net output #125: loss3/loss16 = 0.00014204 (* 0.0909091 = 1.29127e-05 loss) | |
I0327 14:06:07.584189 21344 solver.cpp:245] Train net output #126: loss3/loss17 = 0.000151396 (* 0.0909091 = 1.37633e-05 loss) | |
I0327 14:06:07.584204 21344 solver.cpp:245] Train net output #127: loss3/loss18 = 0.000158204 (* 0.0909091 = 1.43822e-05 loss) | |
I0327 14:06:07.584218 21344 solver.cpp:245] Train net output #128: loss3/loss19 = 0.000154605 (* 0.0909091 = 1.4055e-05 loss) | |
I0327 14:06:07.584233 21344 solver.cpp:245] Train net output #129: loss3/loss20 = 0.000182055 (* 0.0909091 = 1.65505e-05 loss) | |
I0327 14:06:07.584247 21344 solver.cpp:245] Train net output #130: loss3/loss21 = 0.000174806 (* 0.0909091 = 1.58915e-05 loss) | |
I0327 14:06:07.584261 21344 solver.cpp:245] Train net output #131: loss3/loss22 = 0.000146988 (* 0.0909091 = 1.33626e-05 loss) | |
I0327 14:06:07.584273 21344 solver.cpp:245] Train net output #132: total_accuracy = 0 | |
I0327 14:06:07.584285 21344 solver.cpp:245] Train net output #133: total_confidence = 0.0013521 | |
I0327 14:06:07.584298 21344 sgd_solver.cpp:106] Iteration 21500, lr = 0.01 | |
I0327 14:07:56.638605 21344 solver.cpp:229] Iteration 22000, loss = 2.53138 | |
I0327 14:07:56.638743 21344 solver.cpp:245] Train net output #0: loss1/accuracy01 = 0.5 | |
I0327 14:07:56.638762 21344 solver.cpp:245] Train net output #1: loss1/accuracy02 = 0.125 | |
I0327 14:07:56.638784 21344 solver.cpp:245] Train net output #2: loss1/accuracy03 = 0.125 | |
I0327 14:07:56.638797 21344 solver.cpp:245] Train net output #3: loss1/accuracy04 = 0.375 | |
I0327 14:07:56.638808 21344 solver.cpp:245] Train net output #4: loss1/accuracy05 = 0.5 | |
I0327 14:07:56.638820 21344 solver.cpp:245] Train net output #5: loss1/accuracy06 = 0.5 | |
I0327 14:07:56.638831 21344 solver.cpp:245] Train net output #6: loss1/accuracy07 = 0.875 | |
I0327 14:07:56.638844 21344 solver.cpp:245] Train net output #7: loss1/accuracy08 = 1 | |
I0327 14:07:56.638855 21344 solver.cpp:245] Train net output #8: loss1/accuracy09 = 1 | |
I0327 14:07:56.638867 21344 solver.cpp:245] Train net output #9: loss1/accuracy10 = 1 | |
I0327 14:07:56.638880 21344 solver.cpp:245] Train net output #10: loss1/accuracy11 = 1 | |
I0327 14:07:56.638898 21344 solver.cpp:245] Train net output #11: loss1/accuracy12 = 1 | |
I0327 14:07:56.638911 21344 solver.cpp:245] Train net output #12: loss1/accuracy13 = 1 | |
I0327 14:07:56.638922 21344 solver.cpp:245] Train net output #13: loss1/accuracy14 = 1 | |
I0327 14:07:56.638933 21344 solver.cpp:245] Train net output #14: loss1/accuracy15 = 1 | |
I0327 14:07:56.638945 21344 solver.cpp:245] Train net output #15: loss1/accuracy16 = 1 | |
I0327 14:07:56.638965 21344 solver.cpp:245] Train net output #16: loss1/accuracy17 = 1 | |
I0327 14:07:56.638978 21344 solver.cpp:245] Train net output #17: loss1/accuracy18 = 1 | |
I0327 14:07:56.638991 21344 solver.cpp:245] Train net output #18: loss1/accuracy19 = 1 | |
I0327 14:07:56.639003 21344 solver.cpp:245] Train net output #19: loss1/accuracy20 = 1 | |
I0327 14:07:56.639015 21344 solver.cpp:245] Train net output #20: loss1/accuracy21 = 1 | |
I0327 14:07:56.639027 21344 solver.cpp:245] Train net output #21: loss1/accuracy22 = 1 | |
I0327 14:07:56.639052 21344 solver.cpp:245] Train net output #22: loss1/loss01 = 2.36571 (* 0.0272727 = 0.0645194 loss) | |
I0327 14:07:56.639067 21344 solver.cpp:245] Train net output #23: loss1/loss02 = 3.05227 (* 0.0272727 = 0.0832438 loss) | |
I0327 14:07:56.639081 21344 solver.cpp:245] Train net output #24: loss1/loss03 = 3.46874 (* 0.0272727 = 0.094602 loss) | |
I0327 14:07:56.639104 21344 solver.cpp:245] Train net output #25: loss1/loss04 = 2.36476 (* 0.0272727 = 0.0644935 loss) | |
I0327 14:07:56.639118 21344 solver.cpp:245] Train net output #26: loss1/loss05 = 1.86804 (* 0.0272727 = 0.0509464 loss) | |
I0327 14:07:56.639132 21344 solver.cpp:245] Train net output #27: loss1/loss06 = 1.86439 (* 0.0272727 = 0.050847 loss) | |
I0327 14:07:56.639147 21344 solver.cpp:245] Train net output #28: loss1/loss07 = 0.866682 (* 0.0272727 = 0.0236368 loss) | |
I0327 14:07:56.639161 21344 solver.cpp:245] Train net output #29: loss1/loss08 = 0.0681982 (* 0.0272727 = 0.00185995 loss) | |
I0327 14:07:56.639175 21344 solver.cpp:245] Train net output #30: loss1/loss09 = 0.0162487 (* 0.0272727 = 0.000443145 loss) | |
I0327 14:07:56.639189 21344 solver.cpp:245] Train net output #31: loss1/loss10 = 0.00716776 (* 0.0272727 = 0.000195484 loss) | |
I0327 14:07:56.639204 21344 solver.cpp:245] Train net output #32: loss1/loss11 = 0.00141328 (* 0.0272727 = 3.85441e-05 loss) | |
I0327 14:07:56.639219 21344 solver.cpp:245] Train net output #33: loss1/loss12 = 0.00251826 (* 0.0272727 = 6.86798e-05 loss) | |
I0327 14:07:56.639232 21344 solver.cpp:245] Train net output #34: loss1/loss13 = 0.000927305 (* 0.0272727 = 2.52901e-05 loss) | |
I0327 14:07:56.639246 21344 solver.cpp:245] Train net output #35: loss1/loss14 = 0.0017687 (* 0.0272727 = 4.82374e-05 loss) | |
I0327 14:07:56.639261 21344 solver.cpp:245] Train net output #36: loss1/loss15 = 0.00201624 (* 0.0272727 = 5.49884e-05 loss) | |
I0327 14:07:56.639276 21344 solver.cpp:245] Train net output #37: loss1/loss16 = 0.00154954 (* 0.0272727 = 4.22602e-05 loss) | |
I0327 14:07:56.639291 21344 solver.cpp:245] Train net output #38: loss1/loss17 = 0.00208436 (* 0.0272727 = 5.68462e-05 loss) | |
I0327 14:07:56.639323 21344 solver.cpp:245] Train net output #39: loss1/loss18 = 0.00180729 (* 0.0272727 = 4.92897e-05 loss) | |
I0327 14:07:56.639339 21344 solver.cpp:245] Train net output #40: loss1/loss19 = 0.00232079 (* 0.0272727 = 6.32942e-05 loss) | |
I0327 14:07:56.639354 21344 solver.cpp:245] Train net output #41: loss1/loss20 = 0.00178115 (* 0.0272727 = 4.85769e-05 loss) | |
I0327 14:07:56.639369 21344 solver.cpp:245] Train net output #42: loss1/loss21 = 0.000898628 (* 0.0272727 = 2.4508e-05 loss) | |
I0327 14:07:56.639382 21344 solver.cpp:245] Train net output #43: loss1/loss22 = 0.00141725 (* 0.0272727 = 3.86523e-05 loss) | |
I0327 14:07:56.639395 21344 solver.cpp:245] Train net output #44: loss2/accuracy01 = 0.375 | |
I0327 14:07:56.639407 21344 solver.cpp:245] Train net output #45: loss2/accuracy02 = 0.25 | |
I0327 14:07:56.639420 21344 solver.cpp:245] Train net output #46: loss2/accuracy03 = 0.25 | |
I0327 14:07:56.639431 21344 solver.cpp:245] Train net output #47: loss2/accuracy04 = 0.5 | |
I0327 14:07:56.639443 21344 solver.cpp:245] Train net output #48: loss2/accuracy05 = 0.625 | |
I0327 14:07:56.639456 21344 solver.cpp:245] Train net output #49: loss2/accuracy06 = 0.5 | |
I0327 14:07:56.639467 21344 solver.cpp:245] Train net output #50: loss2/accuracy07 = 0.875 | |
I0327 14:07:56.639478 21344 solver.cpp:245] Train net output #51: loss2/accuracy08 = 1 | |
I0327 14:07:56.639490 21344 solver.cpp:245] Train net output #52: loss2/accuracy09 = 1 | |
I0327 14:07:56.639503 21344 solver.cpp:245] Train net output #53: loss2/accuracy10 = 1 | |
I0327 14:07:56.639513 21344 solver.cpp:245] Train net output #54: loss2/accuracy11 = 1 | |
I0327 14:07:56.639525 21344 solver.cpp:245] Train net output #55: loss2/accuracy12 = 1 | |
I0327 14:07:56.639538 21344 solver.cpp:245] Train net output #56: loss2/accuracy13 = 1 | |
I0327 14:07:56.639549 21344 solver.cpp:245] Train net output #57: loss2/accuracy14 = 1 | |
I0327 14:07:56.639560 21344 solver.cpp:245] Train net output #58: loss2/accuracy15 = 1 | |
I0327 14:07:56.639571 21344 solver.cpp:245] Train net output #59: loss2/accuracy16 = 1 | |
I0327 14:07:56.639583 21344 solver.cpp:245] Train net output #60: loss2/accuracy17 = 1 | |
I0327 14:07:56.639595 21344 solver.cpp:245] Train net output #61: loss2/accuracy18 = 1 | |
I0327 14:07:56.639606 21344 solver.cpp:245] Train net output #62: loss2/accuracy19 = 1 | |
I0327 14:07:56.639617 21344 solver.cpp:245] Train net output #63: loss2/accuracy20 = 1 | |
I0327 14:07:56.639628 21344 solver.cpp:245] Train net output #64: loss2/accuracy21 = 1 | |
I0327 14:07:56.639641 21344 solver.cpp:245] Train net output #65: loss2/accuracy22 = 1 | |
I0327 14:07:56.639654 21344 solver.cpp:245] Train net output #66: loss2/loss01 = 2.45366 (* 0.0272727 = 0.0669181 loss) | |
I0327 14:07:56.639668 21344 solver.cpp:245] Train net output #67: loss2/loss02 = 2.96435 (* 0.0272727 = 0.080846 loss) | |
I0327 14:07:56.639683 21344 solver.cpp:245] Train net output #68: loss2/loss03 = 2.63669 (* 0.0272727 = 0.0719097 loss) | |
I0327 14:07:56.639695 21344 solver.cpp:245] Train net output #69: loss2/loss04 = 1.96701 (* 0.0272727 = 0.0536458 loss) | |
I0327 14:07:56.639709 21344 solver.cpp:245] Train net output #70: loss2/loss05 = 1.44173 (* 0.0272727 = 0.03932 loss) | |
I0327 14:07:56.639724 21344 solver.cpp:245] Train net output #71: loss2/loss06 = 1.54857 (* 0.0272727 = 0.0422337 loss) | |
I0327 14:07:56.639737 21344 solver.cpp:245] Train net output #72: loss2/loss07 = 0.621873 (* 0.0272727 = 0.0169602 loss) | |
I0327 14:07:56.639755 21344 solver.cpp:245] Train net output #73: loss2/loss08 = 0.0932583 (* 0.0272727 = 0.00254341 loss) | |
I0327 14:07:56.639770 21344 solver.cpp:245] Train net output #74: loss2/loss09 = 0.0332446 (* 0.0272727 = 0.000906672 loss) | |
I0327 14:07:56.639785 21344 solver.cpp:245] Train net output #75: loss2/loss10 = 0.00323781 (* 0.0272727 = 8.83038e-05 loss) | |
I0327 14:07:56.639798 21344 solver.cpp:245] Train net output #76: loss2/loss11 = 0.00265135 (* 0.0272727 = 7.23097e-05 loss) | |
I0327 14:07:56.639824 21344 solver.cpp:245] Train net output #77: loss2/loss12 = 0.00123885 (* 0.0272727 = 3.37868e-05 loss) | |
I0327 14:07:56.639840 21344 solver.cpp:245] Train net output #78: loss2/loss13 = 0.00153797 (* 0.0272727 = 4.19446e-05 loss) | |
I0327 14:07:56.639854 21344 solver.cpp:245] Train net output #79: loss2/loss14 = 0.00145818 (* 0.0272727 = 3.97685e-05 loss) | |
I0327 14:07:56.639868 21344 solver.cpp:245] Train net output #80: loss2/loss15 = 0.0015999 (* 0.0272727 = 4.36336e-05 loss) | |
I0327 14:07:56.639883 21344 solver.cpp:245] Train net output #81: loss2/loss16 = 0.00134922 (* 0.0272727 = 3.67969e-05 loss) | |
I0327 14:07:56.639897 21344 solver.cpp:245] Train net output #82: loss2/loss17 = 0.00149678 (* 0.0272727 = 4.08213e-05 loss) | |
I0327 14:07:56.639911 21344 solver.cpp:245] Train net output #83: loss2/loss18 = 0.00160658 (* 0.0272727 = 4.38157e-05 loss) | |
I0327 14:07:56.639925 21344 solver.cpp:245] Train net output #84: loss2/loss19 = 0.00102881 (* 0.0272727 = 2.80584e-05 loss) | |
I0327 14:07:56.639940 21344 solver.cpp:245] Train net output #85: loss2/loss20 = 0.00129808 (* 0.0272727 = 3.54021e-05 loss) | |
I0327 14:07:56.639953 21344 solver.cpp:245] Train net output #86: loss2/loss21 = 0.0018911 (* 0.0272727 = 5.15756e-05 loss) | |
I0327 14:07:56.639967 21344 solver.cpp:245] Train net output #87: loss2/loss22 = 0.00095345 (* 0.0272727 = 2.60032e-05 loss) | |
I0327 14:07:56.639979 21344 solver.cpp:245] Train net output #88: loss3/accuracy01 = 0.375 | |
I0327 14:07:56.639992 21344 solver.cpp:245] Train net output #89: loss3/accuracy02 = 0.125 | |
I0327 14:07:56.640004 21344 solver.cpp:245] Train net output #90: loss3/accuracy03 = 0.25 | |
I0327 14:07:56.640017 21344 solver.cpp:245] Train net output #91: loss3/accuracy04 = 0.375 | |
I0327 14:07:56.640028 21344 solver.cpp:245] Train net output #92: loss3/accuracy05 = 0.5 | |
I0327 14:07:56.640050 21344 solver.cpp:245] Train net output #93: loss3/accuracy06 = 0.5 | |
I0327 14:07:56.640063 21344 solver.cpp:245] Train net output #94: loss3/accuracy07 = 0.75 | |
I0327 14:07:56.640074 21344 solver.cpp:245] Train net output #95: loss3/accuracy08 = 1 | |
I0327 14:07:56.640086 21344 solver.cpp:245] Train net output #96: loss3/accuracy09 = 1 | |
I0327 14:07:56.640105 21344 solver.cpp:245] Train net output #97: loss3/accuracy10 = 1 | |
I0327 14:07:56.640116 21344 solver.cpp:245] Train net output #98: loss3/accuracy11 = 1 | |
I0327 14:07:56.640127 21344 solver.cpp:245] Train net output #99: loss3/accuracy12 = 1 | |
I0327 14:07:56.640139 21344 solver.cpp:245] Train net output #100: loss3/accuracy13 = 1 | |
I0327 14:07:56.640151 21344 solver.cpp:245] Train net output #101: loss3/accuracy14 = 1 | |
I0327 14:07:56.640162 21344 solver.cpp:245] Train net output #102: loss3/accuracy15 = 1 | |
I0327 14:07:56.640173 21344 solver.cpp:245] Train net output #103: loss3/accuracy16 = 1 | |
I0327 14:07:56.640185 21344 solver.cpp:245] Train net output #104: loss3/accuracy17 = 1 | |
I0327 14:07:56.640197 21344 solver.cpp:245] Train net output #105: loss3/accuracy18 = 1 | |
I0327 14:07:56.640208 21344 solver.cpp:245] Train net output #106: loss3/accuracy19 = 1 | |
I0327 14:07:56.640219 21344 solver.cpp:245] Train net output #107: loss3/accuracy20 = 1 | |
I0327 14:07:56.640231 21344 solver.cpp:245] Train net output #108: loss3/accuracy21 = 1 | |
I0327 14:07:56.640242 21344 solver.cpp:245] Train net output #109: loss3/accuracy22 = 1 | |
I0327 14:07:56.640256 21344 solver.cpp:245] Train net output #110: loss3/loss01 = 2.26674 (* 0.0909091 = 0.206067 loss) | |
I0327 14:07:56.640270 21344 solver.cpp:245] Train net output #111: loss3/loss02 = 2.57885 (* 0.0909091 = 0.234441 loss) | |
I0327 14:07:56.640285 21344 solver.cpp:245] Train net output #112: loss3/loss03 = 2.57169 (* 0.0909091 = 0.23379 loss) | |
I0327 14:07:56.640298 21344 solver.cpp:245] Train net output #113: loss3/loss04 = 2.21787 (* 0.0909091 = 0.201625 loss) | |
I0327 14:07:56.640312 21344 solver.cpp:245] Train net output #114: loss3/loss05 = 1.5338 (* 0.0909091 = 0.139436 loss) | |
I0327 14:07:56.640326 21344 solver.cpp:245] Train net output #115: loss3/loss06 = 1.88204 (* 0.0909091 = 0.171095 loss) | |
I0327 14:07:56.640352 21344 solver.cpp:245] Train net output #116: loss3/loss07 = 0.810993 (* 0.0909091 = 0.0737267 loss) | |
I0327 14:07:56.640367 21344 solver.cpp:245] Train net output #117: loss3/loss08 = 0.120723 (* 0.0909091 = 0.0109748 loss) | |
I0327 14:07:56.640382 21344 solver.cpp:245] Train net output #118: loss3/loss09 = 0.02315 (* 0.0909091 = 0.00210455 loss) | |
I0327 14:07:56.640395 21344 solver.cpp:245] Train net output #119: loss3/loss10 = 0.00282445 (* 0.0909091 = 0.000256768 loss) | |
I0327 14:07:56.640410 21344 solver.cpp:245] Train net output #120: loss3/loss11 = 0.000177728 (* 0.0909091 = 1.61571e-05 loss) | |
I0327 14:07:56.640424 21344 solver.cpp:245] Train net output #121: loss3/loss12 = 0.000212854 (* 0.0909091 = 1.93503e-05 loss) | |
I0327 14:07:56.640439 21344 solver.cpp:245] Train net output #122: loss3/loss13 = 0.000193363 (* 0.0909091 = 1.75784e-05 loss) | |
I0327 14:07:56.640452 21344 solver.cpp:245] Train net output #123: loss3/loss14 = 0.000217645 (* 0.0909091 = 1.9786e-05 loss) | |
I0327 14:07:56.640466 21344 solver.cpp:245] Train net output #124: loss3/loss15 = 0.000187534 (* 0.0909091 = 1.70485e-05 loss) | |
I0327 14:07:56.640481 21344 solver.cpp:245] Train net output #125: loss3/loss16 = 0.000208305 (* 0.0909091 = 1.89368e-05 loss) | |
I0327 14:07:56.640496 21344 solver.cpp:245] Train net output #126: loss3/loss17 = 0.000179351 (* 0.0909091 = 1.63046e-05 loss) | |
I0327 14:07:56.640509 21344 solver.cpp:245] Train net output #127: loss3/loss18 = 0.000174737 (* 0.0909091 = 1.58851e-05 loss) | |
I0327 14:07:56.640523 21344 solver.cpp:245] Train net output #128: loss3/loss19 = 0.000170623 (* 0.0909091 = 1.55111e-05 loss) | |
I0327 14:07:56.640537 21344 solver.cpp:245] Train net output #129: loss3/loss20 = 0.000187899 (* 0.0909091 = 1.70817e-05 loss) | |
I0327 14:07:56.640552 21344 solver.cpp:245] Train net output #130: loss3/loss21 = 0.00020639 (* 0.0909091 = 1.87627e-05 loss) | |
I0327 14:07:56.640566 21344 solver.cpp:245] Train net output #131: loss3/loss22 = 0.000199513 (* 0.0909091 = 1.81375e-05 loss) | |
I0327 14:07:56.640578 21344 solver.cpp:245] Train net output #132: total_accuracy = 0 | |
I0327 14:07:56.640589 21344 solver.cpp:245] Train net output #133: total_confidence = 0.00553458 | |
I0327 14:07:56.640602 21344 sgd_solver.cpp:106] Iteration 22000, lr = 0.01 | |
I0327 14:09:45.640401 21344 solver.cpp:229] Iteration 22500, loss = 2.49254 | |
I0327 14:09:45.640615 21344 solver.cpp:245] Train net output #0: loss1/accuracy01 = 0.25 | |
I0327 14:09:45.640636 21344 solver.cpp:245] Train net output #1: loss1/accuracy02 = 0.25 | |
I0327 14:09:45.640650 21344 solver.cpp:245] Train net output #2: loss1/accuracy03 = 0.25 | |
I0327 14:09:45.640661 21344 solver.cpp:245] Train net output #3: loss1/accuracy04 = 0.25 | |
I0327 14:09:45.640673 21344 solver.cpp:245] Train net output #4: loss1/accuracy05 = 0.625 | |
I0327 14:09:45.640686 21344 solver.cpp:245] Train net output #5: loss1/accuracy06 = 0.625 | |
I0327 14:09:45.640698 21344 solver.cpp:245] Train net output #6: loss1/accuracy07 = 1 | |
I0327 14:09:45.640710 21344 solver.cpp:245] Train net output #7: loss1/accuracy08 = 1 | |
I0327 14:09:45.640722 21344 solver.cpp:245] Train net output #8: loss1/accuracy09 = 1 | |
I0327 14:09:45.640734 21344 solver.cpp:245] Train net output #9: loss1/accuracy10 = 1 | |
I0327 14:09:45.640746 21344 solver.cpp:245] Train net output #10: loss1/accuracy11 = 1 | |
I0327 14:09:45.640758 21344 solver.cpp:245] Train net output #11: loss1/accuracy12 = 1 | |
I0327 14:09:45.640770 21344 solver.cpp:245] Train net output #12: loss1/accuracy13 = 1 | |
I0327 14:09:45.640782 21344 solver.cpp:245] Train net output #13: loss1/accuracy14 = 1 | |
I0327 14:09:45.640794 21344 solver.cpp:245] Train net output #14: loss1/accuracy15 = 1 | |
I0327 14:09:45.640806 21344 solver.cpp:245] Train net output #15: loss1/accuracy16 = 1 | |
I0327 14:09:45.640818 21344 solver.cpp:245] Train net output #16: loss1/accuracy17 = 1 | |
I0327 14:09:45.640830 21344 solver.cpp:245] Train net output #17: loss1/accuracy18 = 1 | |
I0327 14:09:45.640841 21344 solver.cpp:245] Train net output #18: loss1/accuracy19 = 1 | |
I0327 14:09:45.640853 21344 solver.cpp:245] Train net output #19: loss1/accuracy20 = 1 | |
I0327 14:09:45.640866 21344 solver.cpp:245] Train net output #20: loss1/accuracy21 = 1 | |
I0327 14:09:45.640877 21344 solver.cpp:245] Train net output #21: loss1/accuracy22 = 1 | |
I0327 14:09:45.640894 21344 solver.cpp:245] Train net output #22: loss1/loss01 = 2.15943 (* 0.0272727 = 0.0588935 loss) | |
I0327 14:09:45.640909 21344 solver.cpp:245] Train net output #23: loss1/loss02 = 3.10466 (* 0.0272727 = 0.0846724 loss) | |
I0327 14:09:45.640931 21344 solver.cpp:245] Train net output #24: loss1/loss03 = 2.7669 (* 0.0272727 = 0.0754608 loss) | |
I0327 14:09:45.640947 21344 solver.cpp:245] Train net output #25: loss1/loss04 = 3.31453 (* 0.0272727 = 0.0903963 loss) | |
I0327 14:09:45.640961 21344 solver.cpp:245] Train net output #26: loss1/loss05 = 1.943 (* 0.0272727 = 0.0529909 loss) | |
I0327 14:09:45.640975 21344 solver.cpp:245] Train net output #27: loss1/loss06 = 1.63165 (* 0.0272727 = 0.0444997 loss) | |
I0327 14:09:45.640993 21344 solver.cpp:245] Train net output #28: loss1/loss07 = 0.227553 (* 0.0272727 = 0.00620599 loss) | |
I0327 14:09:45.641008 21344 solver.cpp:245] Train net output #29: loss1/loss08 = 0.0284701 (* 0.0272727 = 0.000776458 loss) | |
I0327 14:09:45.641023 21344 solver.cpp:245] Train net output #30: loss1/loss09 = 0.00673501 (* 0.0272727 = 0.000183682 loss) | |
I0327 14:09:45.641038 21344 solver.cpp:245] Train net output #31: loss1/loss10 = 0.00235512 (* 0.0272727 = 6.42305e-05 loss) | |
I0327 14:09:45.641052 21344 solver.cpp:245] Train net output #32: loss1/loss11 = 0.00229146 (* 0.0272727 = 6.24945e-05 loss) | |
I0327 14:09:45.641067 21344 solver.cpp:245] Train net output #33: loss1/loss12 = 0.000372684 (* 0.0272727 = 1.01641e-05 loss) | |
I0327 14:09:45.641082 21344 solver.cpp:245] Train net output #34: loss1/loss13 = 0.00479313 (* 0.0272727 = 0.000130722 loss) | |
I0327 14:09:45.641096 21344 solver.cpp:245] Train net output #35: loss1/loss14 = 0.00257095 (* 0.0272727 = 7.01169e-05 loss) | |
I0327 14:09:45.641110 21344 solver.cpp:245] Train net output #36: loss1/loss15 = 0.00109225 (* 0.0272727 = 2.97886e-05 loss) | |
I0327 14:09:45.641125 21344 solver.cpp:245] Train net output #37: loss1/loss16 = 0.00126148 (* 0.0272727 = 3.4404e-05 loss) | |
I0327 14:09:45.641139 21344 solver.cpp:245] Train net output #38: loss1/loss17 = 0.00132137 (* 0.0272727 = 3.60375e-05 loss) | |
I0327 14:09:45.641167 21344 solver.cpp:245] Train net output #39: loss1/loss18 = 0.00191732 (* 0.0272727 = 5.22906e-05 loss) | |
I0327 14:09:45.641183 21344 solver.cpp:245] Train net output #40: loss1/loss19 = 0.00184006 (* 0.0272727 = 5.01834e-05 loss) | |
I0327 14:09:45.641197 21344 solver.cpp:245] Train net output #41: loss1/loss20 = 0.00183888 (* 0.0272727 = 5.01513e-05 loss) | |
I0327 14:09:45.641211 21344 solver.cpp:245] Train net output #42: loss1/loss21 = 0.00164415 (* 0.0272727 = 4.48405e-05 loss) | |
I0327 14:09:45.641227 21344 solver.cpp:245] Train net output #43: loss1/loss22 = 0.00111006 (* 0.0272727 = 3.02745e-05 loss) | |
I0327 14:09:45.641238 21344 solver.cpp:245] Train net output #44: loss2/accuracy01 = 0.75 | |
I0327 14:09:45.641252 21344 solver.cpp:245] Train net output #45: loss2/accuracy02 = 0 | |
I0327 14:09:45.641263 21344 solver.cpp:245] Train net output #46: loss2/accuracy03 = 0.25 | |
I0327 14:09:45.641275 21344 solver.cpp:245] Train net output #47: loss2/accuracy04 = 0.25 | |
I0327 14:09:45.641288 21344 solver.cpp:245] Train net output #48: loss2/accuracy05 = 0.625 | |
I0327 14:09:45.641299 21344 solver.cpp:245] Train net output #49: loss2/accuracy06 = 0.75 | |
I0327 14:09:45.641311 21344 solver.cpp:245] Train net output #50: loss2/accuracy07 = 0.875 | |
I0327 14:09:45.641324 21344 solver.cpp:245] Train net output #51: loss2/accuracy08 = 1 | |
I0327 14:09:45.641336 21344 solver.cpp:245] Train net output #52: loss2/accuracy09 = 1 | |
I0327 14:09:45.641347 21344 solver.cpp:245] Train net output #53: loss2/accuracy10 = 1 | |
I0327 14:09:45.641360 21344 solver.cpp:245] Train net output #54: loss2/accuracy11 = 1 | |
I0327 14:09:45.641371 21344 solver.cpp:245] Train net output #55: loss2/accuracy12 = 1 | |
I0327 14:09:45.641382 21344 solver.cpp:245] Train net output #56: loss2/accuracy13 = 1 | |
I0327 14:09:45.641394 21344 solver.cpp:245] Train net output #57: loss2/accuracy14 = 1 | |
I0327 14:09:45.641407 21344 solver.cpp:245] Train net output #58: loss2/accuracy15 = 1 | |
I0327 14:09:45.641418 21344 solver.cpp:245] Train net output #59: loss2/accuracy16 = 1 | |
I0327 14:09:45.641429 21344 solver.cpp:245] Train net output #60: loss2/accuracy17 = 1 | |
I0327 14:09:45.641441 21344 solver.cpp:245] Train net output #61: loss2/accuracy18 = 1 | |
I0327 14:09:45.641453 21344 solver.cpp:245] Train net output #62: loss2/accuracy19 = 1 | |
I0327 14:09:45.641464 21344 solver.cpp:245] Train net output #63: loss2/accuracy20 = 1 | |
I0327 14:09:45.641476 21344 solver.cpp:245] Train net output #64: loss2/accuracy21 = 1 | |
I0327 14:09:45.641487 21344 solver.cpp:245] Train net output #65: loss2/accuracy22 = 1 | |
I0327 14:09:45.641501 21344 solver.cpp:245] Train net output #66: loss2/loss01 = 1.53095 (* 0.0272727 = 0.0417531 loss) | |
I0327 14:09:45.641515 21344 solver.cpp:245] Train net output #67: loss2/loss02 = 3.57117 (* 0.0272727 = 0.0973954 loss) | |
I0327 14:09:45.641530 21344 solver.cpp:245] Train net output #68: loss2/loss03 = 2.97778 (* 0.0272727 = 0.0812121 loss) | |
I0327 14:09:45.641561 21344 solver.cpp:245] Train net output #69: loss2/loss04 = 3.63271 (* 0.0272727 = 0.099074 loss) | |
I0327 14:09:45.641577 21344 solver.cpp:245] Train net output #70: loss2/loss05 = 1.80518 (* 0.0272727 = 0.0492322 loss) | |
I0327 14:09:45.641592 21344 solver.cpp:245] Train net output #71: loss2/loss06 = 1.53574 (* 0.0272727 = 0.0418839 loss) | |
I0327 14:09:45.641605 21344 solver.cpp:245] Train net output #72: loss2/loss07 = 0.504629 (* 0.0272727 = 0.0137626 loss) | |
I0327 14:09:45.641623 21344 solver.cpp:245] Train net output #73: loss2/loss08 = 0.0691677 (* 0.0272727 = 0.00188639 loss) | |
I0327 14:09:45.641639 21344 solver.cpp:245] Train net output #74: loss2/loss09 = 0.0102117 (* 0.0272727 = 0.0002785 loss) | |
I0327 14:09:45.641654 21344 solver.cpp:245] Train net output #75: loss2/loss10 = 0.00166494 (* 0.0272727 = 4.54075e-05 loss) | |
I0327 14:09:45.641669 21344 solver.cpp:245] Train net output #76: loss2/loss11 = 5.44919e-05 (* 0.0272727 = 1.48614e-06 loss) | |
I0327 14:09:45.641695 21344 solver.cpp:245] Train net output #77: loss2/loss12 = 4.93254e-05 (* 0.0272727 = 1.34524e-06 loss) | |
I0327 14:09:45.641711 21344 solver.cpp:245] Train net output #78: loss2/loss13 = 4.77848e-05 (* 0.0272727 = 1.30322e-06 loss) | |
I0327 14:09:45.641726 21344 solver.cpp:245] Train net output #79: loss2/loss14 = 7.49543e-05 (* 0.0272727 = 2.04421e-06 loss) | |
I0327 14:09:45.641741 21344 solver.cpp:245] Train net output #80: loss2/loss15 = 6.82122e-05 (* 0.0272727 = 1.86033e-06 loss) | |
I0327 14:09:45.641755 21344 solver.cpp:245] Train net output #81: loss2/loss16 = 0.000153485 (* 0.0272727 = 4.18595e-06 loss) | |
I0327 14:09:45.641769 21344 solver.cpp:245] Train net output #82: loss2/loss17 = 8.22164e-05 (* 0.0272727 = 2.24227e-06 loss) | |
I0327 14:09:45.641783 21344 solver.cpp:245] Train net output #83: loss2/loss18 = 7.5332e-05 (* 0.0272727 = 2.05451e-06 loss) | |
I0327 14:09:45.641798 21344 solver.cpp:245] Train net output #84: loss2/loss19 = 7.74788e-05 (* 0.0272727 = 2.11306e-06 loss) | |
I0327 14:09:45.641811 21344 solver.cpp:245] Train net output #85: loss2/loss20 = 5.59604e-05 (* 0.0272727 = 1.52619e-06 loss) | |
I0327 14:09:45.641826 21344 solver.cpp:245] Train net output #86: loss2/loss21 = 7.65076e-05 (* 0.0272727 = 2.08657e-06 loss) | |
I0327 14:09:45.641840 21344 solver.cpp:245] Train net output #87: loss2/loss22 = 5.20675e-05 (* 0.0272727 = 1.42002e-06 loss) | |
I0327 14:09:45.641852 21344 solver.cpp:245] Train net output #88: loss3/accuracy01 = 0.5 | |
I0327 14:09:45.641865 21344 solver.cpp:245] Train net output #89: loss3/accuracy02 = 0.125 | |
I0327 14:09:45.641877 21344 solver.cpp:245] Train net output #90: loss3/accuracy03 = 0.25 | |
I0327 14:09:45.641890 21344 solver.cpp:245] Train net output #91: loss3/accuracy04 = 0.25 | |
I0327 14:09:45.641901 21344 solver.cpp:245] Train net output #92: loss3/accuracy05 = 0.625 | |
I0327 14:09:45.641913 21344 solver.cpp:245] Train net output #93: loss3/accuracy06 = 0.75 | |
I0327 14:09:45.641926 21344 solver.cpp:245] Train net output #94: loss3/accuracy07 = 1 | |
I0327 14:09:45.641937 21344 solver.cpp:245] Train net output #95: loss3/accuracy08 = 1 | |
I0327 14:09:45.641949 21344 solver.cpp:245] Train net output #96: loss3/accuracy09 = 1 | |
I0327 14:09:45.641960 21344 solver.cpp:245] Train net output #97: loss3/accuracy10 = 1 | |
I0327 14:09:45.641973 21344 solver.cpp:245] Train net output #98: loss3/accuracy11 = 1 | |
I0327 14:09:45.641983 21344 solver.cpp:245] Train net output #99: loss3/accuracy12 = 1 | |
I0327 14:09:45.641995 21344 solver.cpp:245] Train net output #100: loss3/accuracy13 = 1 | |
I0327 14:09:45.642007 21344 solver.cpp:245] Train net output #101: loss3/accuracy14 = 1 | |
I0327 14:09:45.642019 21344 solver.cpp:245] Train net output #102: loss3/accuracy15 = 1 | |
I0327 14:09:45.642030 21344 solver.cpp:245] Train net output #103: loss3/accuracy16 = 1 | |
I0327 14:09:45.642045 21344 solver.cpp:245] Train net output #104: loss3/accuracy17 = 1 | |
I0327 14:09:45.642057 21344 solver.cpp:245] Train net output #105: loss3/accuracy18 = 1 | |
I0327 14:09:45.642068 21344 solver.cpp:245] Train net output #106: loss3/accuracy19 = 1 | |
I0327 14:09:45.642081 21344 solver.cpp:245] Train net output #107: loss3/accuracy20 = 1 | |
I0327 14:09:45.642092 21344 solver.cpp:245] Train net output #108: loss3/accuracy21 = 1 | |
I0327 14:09:45.642104 21344 solver.cpp:245] Train net output #109: loss3/accuracy22 = 1 | |
I0327 14:09:45.642118 21344 solver.cpp:245] Train net output #110: loss3/loss01 = 1.56755 (* 0.0909091 = 0.142505 loss) | |
I0327 14:09:45.642132 21344 solver.cpp:245] Train net output #111: loss3/loss02 = 3.04264 (* 0.0909091 = 0.276604 loss) | |
I0327 14:09:45.642146 21344 solver.cpp:245] Train net output #112: loss3/loss03 = 2.6875 (* 0.0909091 = 0.244319 loss) | |
I0327 14:09:45.642161 21344 solver.cpp:245] Train net output #113: loss3/loss04 = 3.19442 (* 0.0909091 = 0.290402 loss) | |
I0327 14:09:45.642175 21344 solver.cpp:245] Train net output #114: loss3/loss05 = 1.84231 (* 0.0909091 = 0.167483 loss) | |
I0327 14:09:45.642200 21344 solver.cpp:245] Train net output #115: loss3/loss06 = 1.07183 (* 0.0909091 = 0.0974395 loss) | |
I0327 14:09:45.642215 21344 solver.cpp:245] Train net output #116: loss3/loss07 = 0.414413 (* 0.0909091 = 0.0376739 loss) | |
I0327 14:09:45.642230 21344 solver.cpp:245] Train net output #117: loss3/loss08 = 0.064025 (* 0.0909091 = 0.00582046 loss) | |
I0327 14:09:45.642244 21344 solver.cpp:245] Train net output #118: loss3/loss09 = 0.00802189 (* 0.0909091 = 0.000729263 loss) | |
I0327 14:09:45.642258 21344 solver.cpp:245] Train net output #119: loss3/loss10 = 0.00383822 (* 0.0909091 = 0.000348929 loss) | |
I0327 14:09:45.642273 21344 solver.cpp:245] Train net output #120: loss3/loss11 = 0.000196485 (* 0.0909091 = 1.78622e-05 loss) | |
I0327 14:09:45.642287 21344 solver.cpp:245] Train net output #121: loss3/loss12 = 0.000210564 (* 0.0909091 = 1.91422e-05 loss) | |
I0327 14:09:45.642302 21344 solver.cpp:245] Train net output #122: loss3/loss13 = 0.000258603 (* 0.0909091 = 2.35094e-05 loss) | |
I0327 14:09:45.642316 21344 solver.cpp:245] Train net output #123: loss3/loss14 = 0.000252808 (* 0.0909091 = 2.29826e-05 loss) | |
I0327 14:09:45.642330 21344 solver.cpp:245] Train net output #124: loss3/loss15 = 0.000201781 (* 0.0909091 = 1.83437e-05 loss) | |
I0327 14:09:45.642345 21344 solver.cpp:245] Train net output #125: loss3/loss16 = 0.000232173 (* 0.0909091 = 2.11067e-05 loss) | |
I0327 14:09:45.642359 21344 solver.cpp:245] Train net output #126: loss3/loss17 = 0.000185789 (* 0.0909091 = 1.68899e-05 loss) | |
I0327 14:09:45.642374 21344 solver.cpp:245] Train net output #127: loss3/loss18 = 0.000202157 (* 0.0909091 = 1.83779e-05 loss) | |
I0327 14:09:45.642388 21344 solver.cpp:245] Train net output #128: loss3/loss19 = 0.000175705 (* 0.0909091 = 1.59732e-05 loss) | |
I0327 14:09:45.642403 21344 solver.cpp:245] Train net output #129: loss3/loss20 = 0.000217648 (* 0.0909091 = 1.97862e-05 loss) | |
I0327 14:09:45.642417 21344 solver.cpp:245] Train net output #130: loss3/loss21 = 0.000155325 (* 0.0909091 = 1.41204e-05 loss) | |
I0327 14:09:45.642431 21344 solver.cpp:245] Train net output #131: loss3/loss22 = 0.000172454 (* 0.0909091 = 1.56777e-05 loss) | |
I0327 14:09:45.642444 21344 solver.cpp:245] Train net output #132: total_accuracy = 0 | |
I0327 14:09:45.642455 21344 solver.cpp:245] Train net output #133: total_confidence = 0.0038611 | |
I0327 14:09:45.642469 21344 sgd_solver.cpp:106] Iteration 22500, lr = 0.01 | |
I0327 14:11:34.024080 21344 solver.cpp:229] Iteration 23000, loss = 2.51829 | |
I0327 14:11:34.024263 21344 solver.cpp:245] Train net output #0: loss1/accuracy01 = 0.25 | |
I0327 14:11:34.024284 21344 solver.cpp:245] Train net output #1: loss1/accuracy02 = 0 | |
I0327 14:11:34.024297 21344 solver.cpp:245] Train net output #2: loss1/accuracy03 = 0.125 | |
I0327 14:11:34.024310 21344 solver.cpp:245] Train net output #3: loss1/accuracy04 = 0.25 | |
I0327 14:11:34.024323 21344 solver.cpp:245] Train net output #4: loss1/accuracy05 = 0.25 | |
I0327 14:11:34.024335 21344 solver.cpp:245] Train net output #5: loss1/accuracy06 = 0.375 | |
I0327 14:11:34.024348 21344 solver.cpp:245] Train net output #6: loss1/accuracy07 = 0.5 | |
I0327 14:11:34.024359 21344 solver.cpp:245] Train net output #7: loss1/accuracy08 = 0.75 | |
I0327 14:11:34.024372 21344 solver.cpp:245] Train net output #8: loss1/accuracy09 = 1 | |
I0327 14:11:34.024384 21344 solver.cpp:245] Train net output #9: loss1/accuracy10 = 1 | |
I0327 14:11:34.024396 21344 solver.cpp:245] Train net output #10: loss1/accuracy11 = 1 | |
I0327 14:11:34.024408 21344 solver.cpp:245] Train net output #11: loss1/accuracy12 = 1 | |
I0327 14:11:34.024420 21344 solver.cpp:245] Train net output #12: loss1/accuracy13 = 1 | |
I0327 14:11:34.024432 21344 solver.cpp:245] Train net output #13: loss1/accuracy14 = 1 | |
I0327 14:11:34.024444 21344 solver.cpp:245] Train net output #14: loss1/accuracy15 = 1 | |
I0327 14:11:34.024456 21344 solver.cpp:245] Train net output #15: loss1/accuracy16 = 1 | |
I0327 14:11:34.024468 21344 solver.cpp:245] Train net output #16: loss1/accuracy17 = 1 | |
I0327 14:11:34.024480 21344 solver.cpp:245] Train net output #17: loss1/accuracy18 = 1 | |
I0327 14:11:34.024492 21344 solver.cpp:245] Train net output #18: loss1/accuracy19 = 1 | |
I0327 14:11:34.024504 21344 solver.cpp:245] Train net output #19: loss1/accuracy20 = 1 | |
I0327 14:11:34.024516 21344 solver.cpp:245] Train net output #20: loss1/accuracy21 = 1 | |
I0327 14:11:34.024528 21344 solver.cpp:245] Train net output #21: loss1/accuracy22 = 1 | |
I0327 14:11:34.024545 21344 solver.cpp:245] Train net output #22: loss1/loss01 = 3.02421 (* 0.0272727 = 0.0824784 loss) | |
I0327 14:11:34.024561 21344 solver.cpp:245] Train net output #23: loss1/loss02 = 4.37247 (* 0.0272727 = 0.119249 loss) | |
I0327 14:11:34.024575 21344 solver.cpp:245] Train net output #24: loss1/loss03 = 3.69404 (* 0.0272727 = 0.100746 loss) | |
I0327 14:11:34.024590 21344 solver.cpp:245] Train net output #25: loss1/loss04 = 3.33754 (* 0.0272727 = 0.0910239 loss) | |
I0327 14:11:34.024605 21344 solver.cpp:245] Train net output #26: loss1/loss05 = 3.14677 (* 0.0272727 = 0.085821 loss) | |
I0327 14:11:34.024618 21344 solver.cpp:245] Train net output #27: loss1/loss06 = 2.7965 (* 0.0272727 = 0.0762682 loss) | |
I0327 14:11:34.024632 21344 solver.cpp:245] Train net output #28: loss1/loss07 = 2.22771 (* 0.0272727 = 0.0607558 loss) | |
I0327 14:11:34.024646 21344 solver.cpp:245] Train net output #29: loss1/loss08 = 1.19704 (* 0.0272727 = 0.0326467 loss) | |
I0327 14:11:34.024662 21344 solver.cpp:245] Train net output #30: loss1/loss09 = 0.0904552 (* 0.0272727 = 0.00246696 loss) | |
I0327 14:11:34.024677 21344 solver.cpp:245] Train net output #31: loss1/loss10 = 0.0202223 (* 0.0272727 = 0.000551518 loss) | |
I0327 14:11:34.024691 21344 solver.cpp:245] Train net output #32: loss1/loss11 = 0.000670607 (* 0.0272727 = 1.82893e-05 loss) | |
I0327 14:11:34.024706 21344 solver.cpp:245] Train net output #33: loss1/loss12 = 0.00132312 (* 0.0272727 = 3.60851e-05 loss) | |
I0327 14:11:34.024720 21344 solver.cpp:245] Train net output #34: loss1/loss13 = 0.00145359 (* 0.0272727 = 3.96435e-05 loss) | |
I0327 14:11:34.024735 21344 solver.cpp:245] Train net output #35: loss1/loss14 = 0.00121803 (* 0.0272727 = 3.3219e-05 loss) | |
I0327 14:11:34.024749 21344 solver.cpp:245] Train net output #36: loss1/loss15 = 0.00181853 (* 0.0272727 = 4.95964e-05 loss) | |
I0327 14:11:34.024765 21344 solver.cpp:245] Train net output #37: loss1/loss16 = 0.00260905 (* 0.0272727 = 7.11559e-05 loss) | |
I0327 14:11:34.024780 21344 solver.cpp:245] Train net output #38: loss1/loss17 = 0.00166618 (* 0.0272727 = 4.54412e-05 loss) | |
I0327 14:11:34.024806 21344 solver.cpp:245] Train net output #39: loss1/loss18 = 0.00150302 (* 0.0272727 = 4.09915e-05 loss) | |
I0327 14:11:34.024822 21344 solver.cpp:245] Train net output #40: loss1/loss19 = 0.0028168 (* 0.0272727 = 7.68219e-05 loss) | |
I0327 14:11:34.024837 21344 solver.cpp:245] Train net output #41: loss1/loss20 = 0.00158046 (* 0.0272727 = 4.31035e-05 loss) | |
I0327 14:11:34.024855 21344 solver.cpp:245] Train net output #42: loss1/loss21 = 0.00279416 (* 0.0272727 = 7.62044e-05 loss) | |
I0327 14:11:34.024871 21344 solver.cpp:245] Train net output #43: loss1/loss22 = 0.00159752 (* 0.0272727 = 4.35688e-05 loss) | |
I0327 14:11:34.024884 21344 solver.cpp:245] Train net output #44: loss2/accuracy01 = 0.5 | |
I0327 14:11:34.024898 21344 solver.cpp:245] Train net output #45: loss2/accuracy02 = 0 | |
I0327 14:11:34.024909 21344 solver.cpp:245] Train net output #46: loss2/accuracy03 = 0 | |
I0327 14:11:34.024920 21344 solver.cpp:245] Train net output #47: loss2/accuracy04 = 0.125 | |
I0327 14:11:34.024932 21344 solver.cpp:245] Train net output #48: loss2/accuracy05 = 0.25 | |
I0327 14:11:34.024945 21344 solver.cpp:245] Train net output #49: loss2/accuracy06 = 0.375 | |
I0327 14:11:34.024957 21344 solver.cpp:245] Train net output #50: loss2/accuracy07 = 0.625 | |
I0327 14:11:34.024969 21344 solver.cpp:245] Train net output #51: loss2/accuracy08 = 0.75 | |
I0327 14:11:34.024981 21344 solver.cpp:245] Train net output #52: loss2/accuracy09 = 1 | |
I0327 14:11:34.024996 21344 solver.cpp:245] Train net output #53: loss2/accuracy10 = 1 | |
I0327 14:11:34.025008 21344 solver.cpp:245] Train net output #54: loss2/accuracy11 = 1 | |
I0327 14:11:34.025020 21344 solver.cpp:245] Train net output #55: loss2/accuracy12 = 1 | |
I0327 14:11:34.025032 21344 solver.cpp:245] Train net output #56: loss2/accuracy13 = 1 | |
I0327 14:11:34.025044 21344 solver.cpp:245] Train net output #57: loss2/accuracy14 = 1 | |
I0327 14:11:34.025056 21344 solver.cpp:245] Train net output #58: loss2/accuracy15 = 1 | |
I0327 14:11:34.025068 21344 solver.cpp:245] Train net output #59: loss2/accuracy16 = 1 | |
I0327 14:11:34.025079 21344 solver.cpp:245] Train net output #60: loss2/accuracy17 = 1 | |
I0327 14:11:34.025091 21344 solver.cpp:245] Train net output #61: loss2/accuracy18 = 1 | |
I0327 14:11:34.025102 21344 solver.cpp:245] Train net output #62: loss2/accuracy19 = 1 | |
I0327 14:11:34.025115 21344 solver.cpp:245] Train net output #63: loss2/accuracy20 = 1 | |
I0327 14:11:34.025126 21344 solver.cpp:245] Train net output #64: loss2/accuracy21 = 1 | |
I0327 14:11:34.025137 21344 solver.cpp:245] Train net output #65: loss2/accuracy22 = 1 | |
I0327 14:11:34.025151 21344 solver.cpp:245] Train net output #66: loss2/loss01 = 2.83008 (* 0.0272727 = 0.077184 loss) | |
I0327 14:11:34.025166 21344 solver.cpp:245] Train net output #67: loss2/loss02 = 3.98988 (* 0.0272727 = 0.108815 loss) | |
I0327 14:11:34.025180 21344 solver.cpp:245] Train net output #68: loss2/loss03 = 3.52607 (* 0.0272727 = 0.0961656 loss) | |
I0327 14:11:34.025194 21344 solver.cpp:245] Train net output #69: loss2/loss04 = 3.45479 (* 0.0272727 = 0.0942215 loss) | |
I0327 14:11:34.025208 21344 solver.cpp:245] Train net output #70: loss2/loss05 = 3.00009 (* 0.0272727 = 0.0818207 loss) | |
I0327 14:11:34.025223 21344 solver.cpp:245] Train net output #71: loss2/loss06 = 2.6659 (* 0.0272727 = 0.0727065 loss) | |
I0327 14:11:34.025238 21344 solver.cpp:245] Train net output #72: loss2/loss07 = 2.0825 (* 0.0272727 = 0.0567954 loss) | |
I0327 14:11:34.025251 21344 solver.cpp:245] Train net output #73: loss2/loss08 = 1.69849 (* 0.0272727 = 0.0463224 loss) | |
I0327 14:11:34.025265 21344 solver.cpp:245] Train net output #74: loss2/loss09 = 0.114694 (* 0.0272727 = 0.003128 loss) | |
I0327 14:11:34.025284 21344 solver.cpp:245] Train net output #75: loss2/loss10 = 0.0297062 (* 0.0272727 = 0.00081017 loss) | |
I0327 14:11:34.025298 21344 solver.cpp:245] Train net output #76: loss2/loss11 = 0.000607217 (* 0.0272727 = 1.65605e-05 loss) | |
I0327 14:11:34.025323 21344 solver.cpp:245] Train net output #77: loss2/loss12 = 0.00160792 (* 0.0272727 = 4.38523e-05 loss) | |
I0327 14:11:34.025339 21344 solver.cpp:245] Train net output #78: loss2/loss13 = 0.000987579 (* 0.0272727 = 2.6934e-05 loss) | |
I0327 14:11:34.025354 21344 solver.cpp:245] Train net output #79: loss2/loss14 = 0.000960296 (* 0.0272727 = 2.61899e-05 loss) | |
I0327 14:11:34.025368 21344 solver.cpp:245] Train net output #80: loss2/loss15 = 0.0016796 (* 0.0272727 = 4.58074e-05 loss) | |
I0327 14:11:34.025383 21344 solver.cpp:245] Train net output #81: loss2/loss16 = 0.00168135 (* 0.0272727 = 4.58549e-05 loss) | |
I0327 14:11:34.025398 21344 solver.cpp:245] Train net output #82: loss2/loss17 = 0.00115761 (* 0.0272727 = 3.15712e-05 loss) | |
I0327 14:11:34.025413 21344 solver.cpp:245] Train net output #83: loss2/loss18 = 0.000581727 (* 0.0272727 = 1.58653e-05 loss) | |
I0327 14:11:34.025426 21344 solver.cpp:245] Train net output #84: loss2/loss19 = 0.000594828 (* 0.0272727 = 1.62226e-05 loss) | |
I0327 14:11:34.025440 21344 solver.cpp:245] Train net output #85: loss2/loss20 = 0.000747559 (* 0.0272727 = 2.0388e-05 loss) | |
I0327 14:11:34.025455 21344 solver.cpp:245] Train net output #86: loss2/loss21 = 0.00110262 (* 0.0272727 = 3.00715e-05 loss) | |
I0327 14:11:34.025470 21344 solver.cpp:245] Train net output #87: loss2/loss22 = 0.00125361 (* 0.0272727 = 3.41895e-05 loss) | |
I0327 14:11:34.025482 21344 solver.cpp:245] Train net output #88: loss3/accuracy01 = 0.5 | |
I0327 14:11:34.025496 21344 solver.cpp:245] Train net output #89: loss3/accuracy02 = 0.125 | |
I0327 14:11:34.025507 21344 solver.cpp:245] Train net output #90: loss3/accuracy03 = 0.125 | |
I0327 14:11:34.025519 21344 solver.cpp:245] Train net output #91: loss3/accuracy04 = 0.375 | |
I0327 14:11:34.025532 21344 solver.cpp:245] Train net output #92: loss3/accuracy05 = 0.25 | |
I0327 14:11:34.025563 21344 solver.cpp:245] Train net output #93: loss3/accuracy06 = 0.5 | |
I0327 14:11:34.025578 21344 solver.cpp:245] Train net output #94: loss3/accuracy07 = 0.625 | |
I0327 14:11:34.025590 21344 solver.cpp:245] Train net output #95: loss3/accuracy08 = 0.75 | |
I0327 14:11:34.025602 21344 solver.cpp:245] Train net output #96: loss3/accuracy09 = 1 | |
I0327 14:11:34.025614 21344 solver.cpp:245] Train net output #97: loss3/accuracy10 = 1 | |
I0327 14:11:34.025626 21344 solver.cpp:245] Train net output #98: loss3/accuracy11 = 1 | |
I0327 14:11:34.025637 21344 solver.cpp:245] Train net output #99: loss3/accuracy12 = 1 | |
I0327 14:11:34.025650 21344 solver.cpp:245] Train net output #100: loss3/accuracy13 = 1 | |
I0327 14:11:34.025661 21344 solver.cpp:245] Train net output #101: loss3/accuracy14 = 1 | |
I0327 14:11:34.025674 21344 solver.cpp:245] Train net output #102: loss3/accuracy15 = 1 | |
I0327 14:11:34.025686 21344 solver.cpp:245] Train net output #103: loss3/accuracy16 = 1 | |
I0327 14:11:34.025696 21344 solver.cpp:245] Train net output #104: loss3/accuracy17 = 1 | |
I0327 14:11:34.025702 21344 solver.cpp:245] Train net output #105: loss3/accuracy18 = 1 | |
I0327 14:11:34.025715 21344 solver.cpp:245] Train net output #106: loss3/accuracy19 = 1 | |
I0327 14:11:34.025727 21344 solver.cpp:245] Train net output #107: loss3/accuracy20 = 1 | |
I0327 14:11:34.025739 21344 solver.cpp:245] Train net output #108: loss3/accuracy21 = 1 | |
I0327 14:11:34.025751 21344 solver.cpp:245] Train net output #109: loss3/accuracy22 = 1 | |
I0327 14:11:34.025765 21344 solver.cpp:245] Train net output #110: loss3/loss01 = 2.14401 (* 0.0909091 = 0.19491 loss) | |
I0327 14:11:34.025779 21344 solver.cpp:245] Train net output #111: loss3/loss02 = 3.45733 (* 0.0909091 = 0.314303 loss) | |
I0327 14:11:34.025794 21344 solver.cpp:245] Train net output #112: loss3/loss03 = 3.24655 (* 0.0909091 = 0.295141 loss) | |
I0327 14:11:34.025807 21344 solver.cpp:245] Train net output #113: loss3/loss04 = 2.94412 (* 0.0909091 = 0.267647 loss) | |
I0327 14:11:34.025821 21344 solver.cpp:245] Train net output #114: loss3/loss05 = 3.04664 (* 0.0909091 = 0.276967 loss) | |
I0327 14:11:34.025836 21344 solver.cpp:245] Train net output #115: loss3/loss06 = 2.13979 (* 0.0909091 = 0.194526 loss) | |
I0327 14:11:34.025862 21344 solver.cpp:245] Train net output #116: loss3/loss07 = 1.87334 (* 0.0909091 = 0.170304 loss) | |
I0327 14:11:34.025877 21344 solver.cpp:245] Train net output #117: loss3/loss08 = 1.41073 (* 0.0909091 = 0.128248 loss) | |
I0327 14:11:34.025892 21344 solver.cpp:245] Train net output #118: loss3/loss09 = 0.16209 (* 0.0909091 = 0.0147354 loss) | |
I0327 14:11:34.025907 21344 solver.cpp:245] Train net output #119: loss3/loss10 = 0.0473641 (* 0.0909091 = 0.00430583 loss) | |
I0327 14:11:34.025920 21344 solver.cpp:245] Train net output #120: loss3/loss11 = 0.000200745 (* 0.0909091 = 1.82495e-05 loss) | |
I0327 14:11:34.025935 21344 solver.cpp:245] Train net output #121: loss3/loss12 = 0.000206284 (* 0.0909091 = 1.87531e-05 loss) | |
I0327 14:11:34.025949 21344 solver.cpp:245] Train net output #122: loss3/loss13 = 0.000164121 (* 0.0909091 = 1.49201e-05 loss) | |
I0327 14:11:34.025964 21344 solver.cpp:245] Train net output #123: loss3/loss14 = 0.00012725 (* 0.0909091 = 1.15682e-05 loss) | |
I0327 14:11:34.025979 21344 solver.cpp:245] Train net output #124: loss3/loss15 = 9.32019e-05 (* 0.0909091 = 8.4729e-06 loss) | |
I0327 14:11:34.025993 21344 solver.cpp:245] Train net output #125: loss3/loss16 = 0.000143007 (* 0.0909091 = 1.30006e-05 loss) | |
I0327 14:11:34.026007 21344 solver.cpp:245] Train net output #126: loss3/loss17 = 0.000197044 (* 0.0909091 = 1.79131e-05 loss) | |
I0327 14:11:34.026021 21344 solver.cpp:245] Train net output #127: loss3/loss18 = 0.000128271 (* 0.0909091 = 1.1661e-05 loss) | |
I0327 14:11:34.026036 21344 solver.cpp:245] Train net output #128: loss3/loss19 = 0.000159328 (* 0.0909091 = 1.44844e-05 loss) | |
I0327 14:11:34.026053 21344 solver.cpp:245] Train net output #129: loss3/loss20 = 0.000127697 (* 0.0909091 = 1.16088e-05 loss) | |
I0327 14:11:34.026067 21344 solver.cpp:245] Train net output #130: loss3/loss21 = 0.000136196 (* 0.0909091 = 1.23815e-05 loss) | |
I0327 14:11:34.026082 21344 solver.cpp:245] Train net output #131: loss3/loss22 = 0.000211035 (* 0.0909091 = 1.9185e-05 loss) | |
I0327 14:11:34.026094 21344 solver.cpp:245] Train net output #132: total_accuracy = 0 | |
I0327 14:11:34.026105 21344 solver.cpp:245] Train net output #133: total_confidence = 0.00201328 | |
I0327 14:11:34.026118 21344 sgd_solver.cpp:106] Iteration 23000, lr = 0.01 | |
I0327 14:13:22.498188 21344 solver.cpp:229] Iteration 23500, loss = 2.47864 | |
I0327 14:13:22.498356 21344 solver.cpp:245] Train net output #0: loss1/accuracy01 = 0.125 | |
I0327 14:13:22.498378 21344 solver.cpp:245] Train net output #1: loss1/accuracy02 = 0 | |
I0327 14:13:22.498391 21344 solver.cpp:245] Train net output #2: loss1/accuracy03 = 0.375 | |
I0327 14:13:22.498404 21344 solver.cpp:245] Train net output #3: loss1/accuracy04 = 0 | |
I0327 14:13:22.498416 21344 solver.cpp:245] Train net output #4: loss1/accuracy05 = 0.25 | |
I0327 14:13:22.498430 21344 solver.cpp:245] Train net output #5: loss1/accuracy06 = 0.375 | |
I0327 14:13:22.498441 21344 solver.cpp:245] Train net output #6: loss1/accuracy07 = 0.875 | |
I0327 14:13:22.498453 21344 solver.cpp:245] Train net output #7: loss1/accuracy08 = 1 | |
I0327 14:13:22.498466 21344 solver.cpp:245] Train net output #8: loss1/accuracy09 = 1 | |
I0327 14:13:22.498478 21344 solver.cpp:245] Train net output #9: loss1/accuracy10 = 1 | |
I0327 14:13:22.498489 21344 solver.cpp:245] Train net output #10: loss1/accuracy11 = 1 | |
I0327 14:13:22.498502 21344 solver.cpp:245] Train net output #11: loss1/accuracy12 = 1 | |
I0327 14:13:22.498513 21344 solver.cpp:245] Train net output #12: loss1/accuracy13 = 1 | |
I0327 14:13:22.498525 21344 solver.cpp:245] Train net output #13: loss1/accuracy14 = 1 | |
I0327 14:13:22.498538 21344 solver.cpp:245] Train net output #14: loss1/accuracy15 = 1 | |
I0327 14:13:22.498549 21344 solver.cpp:245] Train net output #15: loss1/accuracy16 = 1 | |
I0327 14:13:22.498561 21344 solver.cpp:245] Train net output #16: loss1/accuracy17 = 1 | |
I0327 14:13:22.498574 21344 solver.cpp:245] Train net output #17: loss1/accuracy18 = 1 | |
I0327 14:13:22.498586 21344 solver.cpp:245] Train net output #18: loss1/accuracy19 = 1 | |
I0327 14:13:22.498599 21344 solver.cpp:245] Train net output #19: loss1/accuracy20 = 1 | |
I0327 14:13:22.498610 21344 solver.cpp:245] Train net output #20: loss1/accuracy21 = 1 | |
I0327 14:13:22.498621 21344 solver.cpp:245] Train net output #21: loss1/accuracy22 = 1 | |
I0327 14:13:22.498638 21344 solver.cpp:245] Train net output #22: loss1/loss01 = 2.88544 (* 0.0272727 = 0.0786937 loss) | |
I0327 14:13:22.498654 21344 solver.cpp:245] Train net output #23: loss1/loss02 = 2.85464 (* 0.0272727 = 0.0778537 loss) | |
I0327 14:13:22.498669 21344 solver.cpp:245] Train net output #24: loss1/loss03 = 2.52072 (* 0.0272727 = 0.068747 loss) | |
I0327 14:13:22.498684 21344 solver.cpp:245] Train net output #25: loss1/loss04 = 3.26792 (* 0.0272727 = 0.0891252 loss) | |
I0327 14:13:22.498698 21344 solver.cpp:245] Train net output #26: loss1/loss05 = 2.85167 (* 0.0272727 = 0.0777729 loss) | |
I0327 14:13:22.498713 21344 solver.cpp:245] Train net output #27: loss1/loss06 = 2.96566 (* 0.0272727 = 0.0808816 loss) | |
I0327 14:13:22.498726 21344 solver.cpp:245] Train net output #28: loss1/loss07 = 0.552987 (* 0.0272727 = 0.0150815 loss) | |
I0327 14:13:22.498741 21344 solver.cpp:245] Train net output #29: loss1/loss08 = 0.155018 (* 0.0272727 = 0.00422777 loss) | |
I0327 14:13:22.498756 21344 solver.cpp:245] Train net output #30: loss1/loss09 = 0.0324266 (* 0.0272727 = 0.000884363 loss) | |
I0327 14:13:22.498770 21344 solver.cpp:245] Train net output #31: loss1/loss10 = 0.0129484 (* 0.0272727 = 0.000353137 loss) | |
I0327 14:13:22.498785 21344 solver.cpp:245] Train net output #32: loss1/loss11 = 0.00635206 (* 0.0272727 = 0.000173238 loss) | |
I0327 14:13:22.498800 21344 solver.cpp:245] Train net output #33: loss1/loss12 = 0.00320675 (* 0.0272727 = 8.74568e-05 loss) | |
I0327 14:13:22.498814 21344 solver.cpp:245] Train net output #34: loss1/loss13 = 0.000958524 (* 0.0272727 = 2.61416e-05 loss) | |
I0327 14:13:22.498829 21344 solver.cpp:245] Train net output #35: loss1/loss14 = 0.00160384 (* 0.0272727 = 4.3741e-05 loss) | |
I0327 14:13:22.498844 21344 solver.cpp:245] Train net output #36: loss1/loss15 = 0.00319728 (* 0.0272727 = 8.71985e-05 loss) | |
I0327 14:13:22.498858 21344 solver.cpp:245] Train net output #37: loss1/loss16 = 0.0024788 (* 0.0272727 = 6.76036e-05 loss) | |
I0327 14:13:22.498873 21344 solver.cpp:245] Train net output #38: loss1/loss17 = 0.00139671 (* 0.0272727 = 3.80922e-05 loss) | |
I0327 14:13:22.498908 21344 solver.cpp:245] Train net output #39: loss1/loss18 = 0.00367029 (* 0.0272727 = 0.000100099 loss) | |
I0327 14:13:22.498924 21344 solver.cpp:245] Train net output #40: loss1/loss19 = 0.00146028 (* 0.0272727 = 3.98257e-05 loss) | |
I0327 14:13:22.498937 21344 solver.cpp:245] Train net output #41: loss1/loss20 = 0.00129161 (* 0.0272727 = 3.52258e-05 loss) | |
I0327 14:13:22.498952 21344 solver.cpp:245] Train net output #42: loss1/loss21 = 0.00101671 (* 0.0272727 = 2.77284e-05 loss) | |
I0327 14:13:22.498966 21344 solver.cpp:245] Train net output #43: loss1/loss22 = 0.00245906 (* 0.0272727 = 6.70653e-05 loss) | |
I0327 14:13:22.498978 21344 solver.cpp:245] Train net output #44: loss2/accuracy01 = 0 | |
I0327 14:13:22.498994 21344 solver.cpp:245] Train net output #45: loss2/accuracy02 = 0 | |
I0327 14:13:22.499006 21344 solver.cpp:245] Train net output #46: loss2/accuracy03 = 0.5 | |
I0327 14:13:22.499019 21344 solver.cpp:245] Train net output #47: loss2/accuracy04 = 0.125 | |
I0327 14:13:22.499032 21344 solver.cpp:245] Train net output #48: loss2/accuracy05 = 0.25 | |
I0327 14:13:22.499043 21344 solver.cpp:245] Train net output #49: loss2/accuracy06 = 0.25 | |
I0327 14:13:22.499055 21344 solver.cpp:245] Train net output #50: loss2/accuracy07 = 0.875 | |
I0327 14:13:22.499068 21344 solver.cpp:245] Train net output #51: loss2/accuracy08 = 1 | |
I0327 14:13:22.499080 21344 solver.cpp:245] Train net output #52: loss2/accuracy09 = 1 | |
I0327 14:13:22.499092 21344 solver.cpp:245] Train net output #53: loss2/accuracy10 = 1 | |
I0327 14:13:22.499104 21344 solver.cpp:245] Train net output #54: loss2/accuracy11 = 1 | |
I0327 14:13:22.499115 21344 solver.cpp:245] Train net output #55: loss2/accuracy12 = 1 | |
I0327 14:13:22.499127 21344 solver.cpp:245] Train net output #56: loss2/accuracy13 = 1 | |
I0327 14:13:22.499140 21344 solver.cpp:245] Train net output #57: loss2/accuracy14 = 1 | |
I0327 14:13:22.499152 21344 solver.cpp:245] Train net output #58: loss2/accuracy15 = 1 | |
I0327 14:13:22.499164 21344 solver.cpp:245] Train net output #59: loss2/accuracy16 = 1 | |
I0327 14:13:22.499176 21344 solver.cpp:245] Train net output #60: loss2/accuracy17 = 1 | |
I0327 14:13:22.499188 21344 solver.cpp:245] Train net output #61: loss2/accuracy18 = 1 | |
I0327 14:13:22.499199 21344 solver.cpp:245] Train net output #62: loss2/accuracy19 = 1 | |
I0327 14:13:22.499212 21344 solver.cpp:245] Train net output #63: loss2/accuracy20 = 1 | |
I0327 14:13:22.499223 21344 solver.cpp:245] Train net output #64: loss2/accuracy21 = 1 | |
I0327 14:13:22.499234 21344 solver.cpp:245] Train net output #65: loss2/accuracy22 = 1 | |
I0327 14:13:22.499248 21344 solver.cpp:245] Train net output #66: loss2/loss01 = 3.05973 (* 0.0272727 = 0.0834471 loss) | |
I0327 14:13:22.499264 21344 solver.cpp:245] Train net output #67: loss2/loss02 = 3.18486 (* 0.0272727 = 0.0868598 loss) | |
I0327 14:13:22.499279 21344 solver.cpp:245] Train net output #68: loss2/loss03 = 2.48132 (* 0.0272727 = 0.0676724 loss) | |
I0327 14:13:22.499292 21344 solver.cpp:245] Train net output #69: loss2/loss04 = 3.11374 (* 0.0272727 = 0.0849201 loss) | |
I0327 14:13:22.499306 21344 solver.cpp:245] Train net output #70: loss2/loss05 = 2.70488 (* 0.0272727 = 0.0737694 loss) | |
I0327 14:13:22.499321 21344 solver.cpp:245] Train net output #71: loss2/loss06 = 3.1154 (* 0.0272727 = 0.0849653 loss) | |
I0327 14:13:22.499336 21344 solver.cpp:245] Train net output #72: loss2/loss07 = 0.462366 (* 0.0272727 = 0.01261 loss) | |
I0327 14:13:22.499351 21344 solver.cpp:245] Train net output #73: loss2/loss08 = 0.0873227 (* 0.0272727 = 0.00238153 loss) | |
I0327 14:13:22.499367 21344 solver.cpp:245] Train net output #74: loss2/loss09 = 0.0155153 (* 0.0272727 = 0.000423145 loss) | |
I0327 14:13:22.499383 21344 solver.cpp:245] Train net output #75: loss2/loss10 = 0.0094942 (* 0.0272727 = 0.000258933 loss) | |
I0327 14:13:22.499398 21344 solver.cpp:245] Train net output #76: loss2/loss11 = 0.000205893 (* 0.0272727 = 5.61525e-06 loss) | |
I0327 14:13:22.499423 21344 solver.cpp:245] Train net output #77: loss2/loss12 = 0.000344176 (* 0.0272727 = 9.38661e-06 loss) | |
I0327 14:13:22.499439 21344 solver.cpp:245] Train net output #78: loss2/loss13 = 0.000285837 (* 0.0272727 = 7.79556e-06 loss) | |
I0327 14:13:22.499454 21344 solver.cpp:245] Train net output #79: loss2/loss14 = 0.000340293 (* 0.0272727 = 9.28072e-06 loss) | |
I0327 14:13:22.499469 21344 solver.cpp:245] Train net output #80: loss2/loss15 = 0.000148383 (* 0.0272727 = 4.04681e-06 loss) | |
I0327 14:13:22.499483 21344 solver.cpp:245] Train net output #81: loss2/loss16 = 0.000293942 (* 0.0272727 = 8.01661e-06 loss) | |
I0327 14:13:22.499497 21344 solver.cpp:245] Train net output #82: loss2/loss17 = 0.000463235 (* 0.0272727 = 1.26337e-05 loss) | |
I0327 14:13:22.499511 21344 solver.cpp:245] Train net output #83: loss2/loss18 = 0.000168839 (* 0.0272727 = 4.60471e-06 loss) | |
I0327 14:13:22.499526 21344 solver.cpp:245] Train net output #84: loss2/loss19 = 0.000328804 (* 0.0272727 = 8.96737e-06 loss) | |
I0327 14:13:22.499541 21344 solver.cpp:245] Train net output #85: loss2/loss20 = 0.000226251 (* 0.0272727 = 6.17048e-06 loss) | |
I0327 14:13:22.499554 21344 solver.cpp:245] Train net output #86: loss2/loss21 = 0.000511469 (* 0.0272727 = 1.39492e-05 loss) | |
I0327 14:13:22.499569 21344 solver.cpp:245] Train net output #87: loss2/loss22 = 0.000205041 (* 0.0272727 = 5.59204e-06 loss) | |
I0327 14:13:22.499582 21344 solver.cpp:245] Train net output #88: loss3/accuracy01 = 0.375 | |
I0327 14:13:22.499594 21344 solver.cpp:245] Train net output #89: loss3/accuracy02 = 0.25 | |
I0327 14:13:22.499606 21344 solver.cpp:245] Train net output #90: loss3/accuracy03 = 0.375 | |
I0327 14:13:22.499617 21344 solver.cpp:245] Train net output #91: loss3/accuracy04 = 0.125 | |
I0327 14:13:22.499630 21344 solver.cpp:245] Train net output #92: loss3/accuracy05 = 0.125 | |
I0327 14:13:22.499641 21344 solver.cpp:245] Train net output #93: loss3/accuracy06 = 0.375 | |
I0327 14:13:22.499653 21344 solver.cpp:245] Train net output #94: loss3/accuracy07 = 0.875 | |
I0327 14:13:22.499666 21344 solver.cpp:245] Train net output #95: loss3/accuracy08 = 1 | |
I0327 14:13:22.499678 21344 solver.cpp:245] Train net output #96: loss3/accuracy09 = 1 | |
I0327 14:13:22.499689 21344 solver.cpp:245] Train net output #97: loss3/accuracy10 = 1 | |
I0327 14:13:22.499701 21344 solver.cpp:245] Train net output #98: loss3/accuracy11 = 1 | |
I0327 14:13:22.499712 21344 solver.cpp:245] Train net output #99: loss3/accuracy12 = 1 | |
I0327 14:13:22.499724 21344 solver.cpp:245] Train net output #100: loss3/accuracy13 = 1 | |
I0327 14:13:22.499737 21344 solver.cpp:245] Train net output #101: loss3/accuracy14 = 1 | |
I0327 14:13:22.499748 21344 solver.cpp:245] Train net output #102: loss3/accuracy15 = 1 | |
I0327 14:13:22.499759 21344 solver.cpp:245] Train net output #103: loss3/accuracy16 = 1 | |
I0327 14:13:22.499771 21344 solver.cpp:245] Train net output #104: loss3/accuracy17 = 1 | |
I0327 14:13:22.499783 21344 solver.cpp:245] Train net output #105: loss3/accuracy18 = 1 | |
I0327 14:13:22.499795 21344 solver.cpp:245] Train net output #106: loss3/accuracy19 = 1 | |
I0327 14:13:22.499806 21344 solver.cpp:245] Train net output #107: loss3/accuracy20 = 1 | |
I0327 14:13:22.499819 21344 solver.cpp:245] Train net output #108: loss3/accuracy21 = 1 | |
I0327 14:13:22.499830 21344 solver.cpp:245] Train net output #109: loss3/accuracy22 = 1 | |
I0327 14:13:22.499845 21344 solver.cpp:245] Train net output #110: loss3/loss01 = 2.4185 (* 0.0909091 = 0.219864 loss) | |
I0327 14:13:22.499858 21344 solver.cpp:245] Train net output #111: loss3/loss02 = 2.74109 (* 0.0909091 = 0.24919 loss) | |
I0327 14:13:22.499872 21344 solver.cpp:245] Train net output #112: loss3/loss03 = 2.23956 (* 0.0909091 = 0.203596 loss) | |
I0327 14:13:22.499886 21344 solver.cpp:245] Train net output #113: loss3/loss04 = 3.16292 (* 0.0909091 = 0.287538 loss) | |
I0327 14:13:22.499900 21344 solver.cpp:245] Train net output #114: loss3/loss05 = 2.7642 (* 0.0909091 = 0.251291 loss) | |
I0327 14:13:22.499924 21344 solver.cpp:245] Train net output #115: loss3/loss06 = 2.45405 (* 0.0909091 = 0.223096 loss) | |
I0327 14:13:22.499940 21344 solver.cpp:245] Train net output #116: loss3/loss07 = 0.403863 (* 0.0909091 = 0.0367148 loss) | |
I0327 14:13:22.499954 21344 solver.cpp:245] Train net output #117: loss3/loss08 = 0.184812 (* 0.0909091 = 0.0168011 loss) | |
I0327 14:13:22.499969 21344 solver.cpp:245] Train net output #118: loss3/loss09 = 0.0135346 (* 0.0909091 = 0.00123042 loss) | |
I0327 14:13:22.499984 21344 solver.cpp:245] Train net output #119: loss3/loss10 = 0.00380241 (* 0.0909091 = 0.000345674 loss) | |
I0327 14:13:22.499997 21344 solver.cpp:245] Train net output #120: loss3/loss11 = 0.000135982 (* 0.0909091 = 1.2362e-05 loss) | |
I0327 14:13:22.500012 21344 solver.cpp:245] Train net output #121: loss3/loss12 = 9.21962e-05 (* 0.0909091 = 8.38147e-06 loss) | |
I0327 14:13:22.500026 21344 solver.cpp:245] Train net output #122: loss3/loss13 = 0.000109659 (* 0.0909091 = 9.96898e-06 loss) | |
I0327 14:13:22.500043 21344 solver.cpp:245] Train net output #123: loss3/loss14 = 9.74716e-05 (* 0.0909091 = 8.86106e-06 loss) | |
I0327 14:13:22.500059 21344 solver.cpp:245] Train net output #124: loss3/loss15 = 0.000119259 (* 0.0909091 = 1.08418e-05 loss) | |
I0327 14:13:22.500074 21344 solver.cpp:245] Train net output #125: loss3/loss16 = 0.000105709 (* 0.0909091 = 9.60994e-06 loss) | |
I0327 14:13:22.500088 21344 solver.cpp:245] Train net output #126: loss3/loss17 = 8.19827e-05 (* 0.0909091 = 7.45298e-06 loss) | |
I0327 14:13:22.500102 21344 solver.cpp:245] Train net output #127: loss3/loss18 = 0.000102835 (* 0.0909091 = 9.34859e-06 loss) | |
I0327 14:13:22.500118 21344 solver.cpp:245] Train net output #128: loss3/loss19 = 0.000102714 (* 0.0909091 = 9.33765e-06 loss) | |
I0327 14:13:22.500133 21344 solver.cpp:245] Train net output #129: loss3/loss20 = 0.000114445 (* 0.0909091 = 1.04041e-05 loss) | |
I0327 14:13:22.500146 21344 solver.cpp:245] Train net output #130: loss3/loss21 = 0.000105808 (* 0.0909091 = 9.61894e-06 loss) | |
I0327 14:13:22.500161 21344 solver.cpp:245] Train net output #131: loss3/loss22 = 0.000115348 (* 0.0909091 = 1.04862e-05 loss) | |
I0327 14:13:22.500174 21344 solver.cpp:245] Train net output #132: total_accuracy = 0 | |
I0327 14:13:22.500185 21344 solver.cpp:245] Train net output #133: total_confidence = 0.00263211 | |
I0327 14:13:22.500198 21344 sgd_solver.cpp:106] Iteration 23500, lr = 0.01 | |
I0327 14:15:10.805251 21344 solver.cpp:229] Iteration 24000, loss = 2.46838 | |
I0327 14:15:10.805415 21344 solver.cpp:245] Train net output #0: loss1/accuracy01 = 0.875 | |
I0327 14:15:10.805438 21344 solver.cpp:245] Train net output #1: loss1/accuracy02 = 0 | |
I0327 14:15:10.805450 21344 solver.cpp:245] Train net output #2: loss1/accuracy03 = 0.125 | |
I0327 14:15:10.805462 21344 solver.cpp:245] Train net output #3: loss1/accuracy04 = 0.5 | |
I0327 14:15:10.805474 21344 solver.cpp:245] Train net output #4: loss1/accuracy05 = 0.25 | |
I0327 14:15:10.805486 21344 solver.cpp:245] Train net output #5: loss1/accuracy06 = 0.875 | |
I0327 14:15:10.805498 21344 solver.cpp:245] Train net output #6: loss1/accuracy07 = 0.75 | |
I0327 14:15:10.805510 21344 solver.cpp:245] Train net output #7: loss1/accuracy08 = 1 | |
I0327 14:15:10.805522 21344 solver.cpp:245] Train net output #8: loss1/accuracy09 = 1 | |
I0327 14:15:10.805534 21344 solver.cpp:245] Train net output #9: loss1/accuracy10 = 1 | |
I0327 14:15:10.805558 21344 solver.cpp:245] Train net output #10: loss1/accuracy11 = 1 | |
I0327 14:15:10.805572 21344 solver.cpp:245] Train net output #11: loss1/accuracy12 = 1 | |
I0327 14:15:10.805583 21344 solver.cpp:245] Train net output #12: loss1/accuracy13 = 1 | |
I0327 14:15:10.805594 21344 solver.cpp:245] Train net output #13: loss1/accuracy14 = 1 | |
I0327 14:15:10.805606 21344 solver.cpp:245] Train net output #14: loss1/accuracy15 = 1 | |
I0327 14:15:10.805619 21344 solver.cpp:245] Train net output #15: loss1/accuracy16 = 1 | |
I0327 14:15:10.805629 21344 solver.cpp:245] Train net output #16: loss1/accuracy17 = 1 | |
I0327 14:15:10.805641 21344 solver.cpp:245] Train net output #17: loss1/accuracy18 = 1 | |
I0327 14:15:10.805652 21344 solver.cpp:245] Train net output #18: loss1/accuracy19 = 1 | |
I0327 14:15:10.805665 21344 solver.cpp:245] Train net output #19: loss1/accuracy20 = 1 | |
I0327 14:15:10.805675 21344 solver.cpp:245] Train net output #20: loss1/accuracy21 = 1 | |
I0327 14:15:10.805687 21344 solver.cpp:245] Train net output #21: loss1/accuracy22 = 1 | |
I0327 14:15:10.805703 21344 solver.cpp:245] Train net output #22: loss1/loss01 = 0.744001 (* 0.0272727 = 0.0202909 loss) | |
I0327 14:15:10.805718 21344 solver.cpp:245] Train net output #23: loss1/loss02 = 3.36447 (* 0.0272727 = 0.0917583 loss) | |
I0327 14:15:10.805732 21344 solver.cpp:245] Train net output #24: loss1/loss03 = 2.74454 (* 0.0272727 = 0.074851 loss) | |
I0327 14:15:10.805747 21344 solver.cpp:245] Train net output #25: loss1/loss04 = 2.2921 (* 0.0272727 = 0.0625119 loss) | |
I0327 14:15:10.805760 21344 solver.cpp:245] Train net output #26: loss1/loss05 = 2.23764 (* 0.0272727 = 0.0610266 loss) | |
I0327 14:15:10.805774 21344 solver.cpp:245] Train net output #27: loss1/loss06 = 0.941604 (* 0.0272727 = 0.0256801 loss) | |
I0327 14:15:10.805788 21344 solver.cpp:245] Train net output #28: loss1/loss07 = 0.876657 (* 0.0272727 = 0.0239088 loss) | |
I0327 14:15:10.805802 21344 solver.cpp:245] Train net output #29: loss1/loss08 = 0.114526 (* 0.0272727 = 0.00312343 loss) | |
I0327 14:15:10.805817 21344 solver.cpp:245] Train net output #30: loss1/loss09 = 0.0146845 (* 0.0272727 = 0.000400488 loss) | |
I0327 14:15:10.805831 21344 solver.cpp:245] Train net output #31: loss1/loss10 = 0.00395376 (* 0.0272727 = 0.00010783 loss) | |
I0327 14:15:10.805846 21344 solver.cpp:245] Train net output #32: loss1/loss11 = 0.00013437 (* 0.0272727 = 3.66463e-06 loss) | |
I0327 14:15:10.805860 21344 solver.cpp:245] Train net output #33: loss1/loss12 = 7.99483e-05 (* 0.0272727 = 2.18041e-06 loss) | |
I0327 14:15:10.805874 21344 solver.cpp:245] Train net output #34: loss1/loss13 = 0.000284013 (* 0.0272727 = 7.74581e-06 loss) | |
I0327 14:15:10.805889 21344 solver.cpp:245] Train net output #35: loss1/loss14 = 0.000326417 (* 0.0272727 = 8.90228e-06 loss) | |
I0327 14:15:10.805903 21344 solver.cpp:245] Train net output #36: loss1/loss15 = 0.000142471 (* 0.0272727 = 3.88558e-06 loss) | |
I0327 14:15:10.805917 21344 solver.cpp:245] Train net output #37: loss1/loss16 = 0.000135422 (* 0.0272727 = 3.69332e-06 loss) | |
I0327 14:15:10.805932 21344 solver.cpp:245] Train net output #38: loss1/loss17 = 8.58311e-05 (* 0.0272727 = 2.34085e-06 loss) | |
I0327 14:15:10.805964 21344 solver.cpp:245] Train net output #39: loss1/loss18 = 0.00012937 (* 0.0272727 = 3.52829e-06 loss) | |
I0327 14:15:10.805980 21344 solver.cpp:245] Train net output #40: loss1/loss19 = 0.000193899 (* 0.0272727 = 5.28814e-06 loss) | |
I0327 14:15:10.805997 21344 solver.cpp:245] Train net output #41: loss1/loss20 = 0.000346507 (* 0.0272727 = 9.45018e-06 loss) | |
I0327 14:15:10.806012 21344 solver.cpp:245] Train net output #42: loss1/loss21 = 0.000114384 (* 0.0272727 = 3.11955e-06 loss) | |
I0327 14:15:10.806026 21344 solver.cpp:245] Train net output #43: loss1/loss22 = 9.80173e-05 (* 0.0272727 = 2.6732e-06 loss) | |
I0327 14:15:10.806038 21344 solver.cpp:245] Train net output #44: loss2/accuracy01 = 0.75 | |
I0327 14:15:10.806051 21344 solver.cpp:245] Train net output #45: loss2/accuracy02 = 0.125 | |
I0327 14:15:10.806063 21344 solver.cpp:245] Train net output #46: loss2/accuracy03 = 0.25 | |
I0327 14:15:10.806076 21344 solver.cpp:245] Train net output #47: loss2/accuracy04 = 0.375 | |
I0327 14:15:10.806087 21344 solver.cpp:245] Train net output #48: loss2/accuracy05 = 0.25 | |
I0327 14:15:10.806099 21344 solver.cpp:245] Train net output #49: loss2/accuracy06 = 0.75 | |
I0327 14:15:10.806110 21344 solver.cpp:245] Train net output #50: loss2/accuracy07 = 0.75 | |
I0327 14:15:10.806123 21344 solver.cpp:245] Train net output #51: loss2/accuracy08 = 1 | |
I0327 14:15:10.806133 21344 solver.cpp:245] Train net output #52: loss2/accuracy09 = 1 | |
I0327 14:15:10.806145 21344 solver.cpp:245] Train net output #53: loss2/accuracy10 = 1 | |
I0327 14:15:10.806156 21344 solver.cpp:245] Train net output #54: loss2/accuracy11 = 1 | |
I0327 14:15:10.806169 21344 solver.cpp:245] Train net output #55: loss2/accuracy12 = 1 | |
I0327 14:15:10.806180 21344 solver.cpp:245] Train net output #56: loss2/accuracy13 = 1 | |
I0327 14:15:10.806190 21344 solver.cpp:245] Train net output #57: loss2/accuracy14 = 1 | |
I0327 14:15:10.806202 21344 solver.cpp:245] Train net output #58: loss2/accuracy15 = 1 | |
I0327 14:15:10.806213 21344 solver.cpp:245] Train net output #59: loss2/accuracy16 = 1 | |
I0327 14:15:10.806224 21344 solver.cpp:245] Train net output #60: loss2/accuracy17 = 1 | |
I0327 14:15:10.806236 21344 solver.cpp:245] Train net output #61: loss2/accuracy18 = 1 | |
I0327 14:15:10.806247 21344 solver.cpp:245] Train net output #62: loss2/accuracy19 = 1 | |
I0327 14:15:10.806258 21344 solver.cpp:245] Train net output #63: loss2/accuracy20 = 1 | |
I0327 14:15:10.806270 21344 solver.cpp:245] Train net output #64: loss2/accuracy21 = 1 | |
I0327 14:15:10.806282 21344 solver.cpp:245] Train net output #65: loss2/accuracy22 = 1 | |
I0327 14:15:10.806295 21344 solver.cpp:245] Train net output #66: loss2/loss01 = 0.833926 (* 0.0272727 = 0.0227434 loss) | |
I0327 14:15:10.806309 21344 solver.cpp:245] Train net output #67: loss2/loss02 = 2.8789 (* 0.0272727 = 0.0785154 loss) | |
I0327 14:15:10.806324 21344 solver.cpp:245] Train net output #68: loss2/loss03 = 2.28798 (* 0.0272727 = 0.0623993 loss) | |
I0327 14:15:10.806337 21344 solver.cpp:245] Train net output #69: loss2/loss04 = 2.52308 (* 0.0272727 = 0.0688114 loss) | |
I0327 14:15:10.806351 21344 solver.cpp:245] Train net output #70: loss2/loss05 = 2.36288 (* 0.0272727 = 0.0644421 loss) | |
I0327 14:15:10.806366 21344 solver.cpp:245] Train net output #71: loss2/loss06 = 1.02198 (* 0.0272727 = 0.0278722 loss) | |
I0327 14:15:10.806380 21344 solver.cpp:245] Train net output #72: loss2/loss07 = 1.09364 (* 0.0272727 = 0.0298265 loss) | |
I0327 14:15:10.806394 21344 solver.cpp:245] Train net output #73: loss2/loss08 = 0.102805 (* 0.0272727 = 0.00280379 loss) | |
I0327 14:15:10.806408 21344 solver.cpp:245] Train net output #74: loss2/loss09 = 0.0173498 (* 0.0272727 = 0.000473177 loss) | |
I0327 14:15:10.806426 21344 solver.cpp:245] Train net output #75: loss2/loss10 = 0.0084493 (* 0.0272727 = 0.000230435 loss) | |
I0327 14:15:10.806440 21344 solver.cpp:245] Train net output #76: loss2/loss11 = 0.000126246 (* 0.0272727 = 3.44306e-06 loss) | |
I0327 14:15:10.806465 21344 solver.cpp:245] Train net output #77: loss2/loss12 = 9.36114e-05 (* 0.0272727 = 2.55304e-06 loss) | |
I0327 14:15:10.806481 21344 solver.cpp:245] Train net output #78: loss2/loss13 = 0.000349008 (* 0.0272727 = 9.51839e-06 loss) | |
I0327 14:15:10.806495 21344 solver.cpp:245] Train net output #79: loss2/loss14 = 7.54029e-05 (* 0.0272727 = 2.05644e-06 loss) | |
I0327 14:15:10.806509 21344 solver.cpp:245] Train net output #80: loss2/loss15 = 0.00010331 (* 0.0272727 = 2.81754e-06 loss) | |
I0327 14:15:10.806524 21344 solver.cpp:245] Train net output #81: loss2/loss16 = 0.000108394 (* 0.0272727 = 2.95619e-06 loss) | |
I0327 14:15:10.806538 21344 solver.cpp:245] Train net output #82: loss2/loss17 = 0.000567252 (* 0.0272727 = 1.54705e-05 loss) | |
I0327 14:15:10.806552 21344 solver.cpp:245] Train net output #83: loss2/loss18 = 0.000210116 (* 0.0272727 = 5.73042e-06 loss) | |
I0327 14:15:10.806566 21344 solver.cpp:245] Train net output #84: loss2/loss19 = 0.000208217 (* 0.0272727 = 5.67865e-06 loss) | |
I0327 14:15:10.806581 21344 solver.cpp:245] Train net output #85: loss2/loss20 = 7.86971e-05 (* 0.0272727 = 2.14628e-06 loss) | |
I0327 14:15:10.806594 21344 solver.cpp:245] Train net output #86: loss2/loss21 = 8.19859e-05 (* 0.0272727 = 2.23598e-06 loss) | |
I0327 14:15:10.806608 21344 solver.cpp:245] Train net output #87: loss2/loss22 = 0.000154282 (* 0.0272727 = 4.20769e-06 loss) | |
I0327 14:15:10.806622 21344 solver.cpp:245] Train net output #88: loss3/accuracy01 = 0.875 | |
I0327 14:15:10.806633 21344 solver.cpp:245] Train net output #89: loss3/accuracy02 = 0.125 | |
I0327 14:15:10.806645 21344 solver.cpp:245] Train net output #90: loss3/accuracy03 = 0.375 | |
I0327 14:15:10.806656 21344 solver.cpp:245] Train net output #91: loss3/accuracy04 = 0.5 | |
I0327 14:15:10.806668 21344 solver.cpp:245] Train net output #92: loss3/accuracy05 = 0.375 | |
I0327 14:15:10.806680 21344 solver.cpp:245] Train net output #93: loss3/accuracy06 = 0.875 | |
I0327 14:15:10.806691 21344 solver.cpp:245] Train net output #94: loss3/accuracy07 = 0.75 | |
I0327 14:15:10.806704 21344 solver.cpp:245] Train net output #95: loss3/accuracy08 = 1 | |
I0327 14:15:10.806715 21344 solver.cpp:245] Train net output #96: loss3/accuracy09 = 1 | |
I0327 14:15:10.806725 21344 solver.cpp:245] Train net output #97: loss3/accuracy10 = 1 | |
I0327 14:15:10.806736 21344 solver.cpp:245] Train net output #98: loss3/accuracy11 = 1 | |
I0327 14:15:10.806748 21344 solver.cpp:245] Train net output #99: loss3/accuracy12 = 1 | |
I0327 14:15:10.806759 21344 solver.cpp:245] Train net output #100: loss3/accuracy13 = 1 | |
I0327 14:15:10.806771 21344 solver.cpp:245] Train net output #101: loss3/accuracy14 = 1 | |
I0327 14:15:10.806782 21344 solver.cpp:245] Train net output #102: loss3/accuracy15 = 1 | |
I0327 14:15:10.806793 21344 solver.cpp:245] Train net output #103: loss3/accuracy16 = 1 | |
I0327 14:15:10.806805 21344 solver.cpp:245] Train net output #104: loss3/accuracy17 = 1 | |
I0327 14:15:10.806816 21344 solver.cpp:245] Train net output #105: loss3/accuracy18 = 1 | |
I0327 14:15:10.806828 21344 solver.cpp:245] Train net output #106: loss3/accuracy19 = 1 | |
I0327 14:15:10.806838 21344 solver.cpp:245] Train net output #107: loss3/accuracy20 = 1 | |
I0327 14:15:10.806850 21344 solver.cpp:245] Train net output #108: loss3/accuracy21 = 1 | |
I0327 14:15:10.806861 21344 solver.cpp:245] Train net output #109: loss3/accuracy22 = 1 | |
I0327 14:15:10.806875 21344 solver.cpp:245] Train net output #110: loss3/loss01 = 0.599877 (* 0.0909091 = 0.0545343 loss) | |
I0327 14:15:10.806890 21344 solver.cpp:245] Train net output #111: loss3/loss02 = 3.28416 (* 0.0909091 = 0.29856 loss) | |
I0327 14:15:10.806903 21344 solver.cpp:245] Train net output #112: loss3/loss03 = 2.3612 (* 0.0909091 = 0.214655 loss) | |
I0327 14:15:10.806916 21344 solver.cpp:245] Train net output #113: loss3/loss04 = 1.91364 (* 0.0909091 = 0.173967 loss) | |
I0327 14:15:10.806931 21344 solver.cpp:245] Train net output #114: loss3/loss05 = 2.2378 (* 0.0909091 = 0.203436 loss) | |
I0327 14:15:10.806953 21344 solver.cpp:245] Train net output #115: loss3/loss06 = 0.665275 (* 0.0909091 = 0.0604796 loss) | |
I0327 14:15:10.806968 21344 solver.cpp:245] Train net output #116: loss3/loss07 = 1.10045 (* 0.0909091 = 0.100041 loss) | |
I0327 14:15:10.806982 21344 solver.cpp:245] Train net output #117: loss3/loss08 = 0.0373259 (* 0.0909091 = 0.00339327 loss) | |
I0327 14:15:10.806996 21344 solver.cpp:245] Train net output #118: loss3/loss09 = 0.00444986 (* 0.0909091 = 0.000404532 loss) | |
I0327 14:15:10.807010 21344 solver.cpp:245] Train net output #119: loss3/loss10 = 0.00281712 (* 0.0909091 = 0.000256102 loss) | |
I0327 14:15:10.807025 21344 solver.cpp:245] Train net output #120: loss3/loss11 = 8.18879e-05 (* 0.0909091 = 7.44436e-06 loss) | |
I0327 14:15:10.807039 21344 solver.cpp:245] Train net output #121: loss3/loss12 = 6.49753e-05 (* 0.0909091 = 5.90685e-06 loss) | |
I0327 14:15:10.807056 21344 solver.cpp:245] Train net output #122: loss3/loss13 = 0.000127064 (* 0.0909091 = 1.15512e-05 loss) | |
I0327 14:15:10.807070 21344 solver.cpp:245] Train net output #123: loss3/loss14 = 0.000106226 (* 0.0909091 = 9.65694e-06 loss) | |
I0327 14:15:10.807085 21344 solver.cpp:245] Train net output #124: loss3/loss15 = 8.60448e-05 (* 0.0909091 = 7.82225e-06 loss) | |
I0327 14:15:10.807103 21344 solver.cpp:245] Train net output #125: loss3/loss16 = 8.77952e-05 (* 0.0909091 = 7.98138e-06 loss) | |
I0327 14:15:10.807117 21344 solver.cpp:245] Train net output #126: loss3/loss17 = 9.17463e-05 (* 0.0909091 = 8.34057e-06 loss) | |
I0327 14:15:10.807132 21344 solver.cpp:245] Train net output #127: loss3/loss18 = 0.000104553 (* 0.0909091 = 9.50478e-06 loss) | |
I0327 14:15:10.807147 21344 solver.cpp:245] Train net output #128: loss3/loss19 = 9.39257e-05 (* 0.0909091 = 8.5387e-06 loss) | |
I0327 14:15:10.807160 21344 solver.cpp:245] Train net output #129: loss3/loss20 = 0.000111408 (* 0.0909091 = 1.0128e-05 loss) | |
I0327 14:15:10.807173 21344 solver.cpp:245] Train net output #130: loss3/loss21 = 0.000106069 (* 0.0909091 = 9.64262e-06 loss) | |
I0327 14:15:10.807188 21344 solver.cpp:245] Train net output #131: loss3/loss22 = 0.000113708 (* 0.0909091 = 1.03371e-05 loss) | |
I0327 14:15:10.807200 21344 solver.cpp:245] Train net output #132: total_accuracy = 0 | |
I0327 14:15:10.807211 21344 solver.cpp:245] Train net output #133: total_confidence = 0.00561889 | |
I0327 14:15:10.807224 21344 sgd_solver.cpp:106] Iteration 24000, lr = 0.01 | |
I0327 14:16:59.112181 21344 solver.cpp:229] Iteration 24500, loss = 2.48738 | |
I0327 14:16:59.112336 21344 solver.cpp:245] Train net output #0: loss1/accuracy01 = 0.375 | |
I0327 14:16:59.112356 21344 solver.cpp:245] Train net output #1: loss1/accuracy02 = 0.125 | |
I0327 14:16:59.112370 21344 solver.cpp:245] Train net output #2: loss1/accuracy03 = 0 | |
I0327 14:16:59.112382 21344 solver.cpp:245] Train net output #3: loss1/accuracy04 = 0.125 | |
I0327 14:16:59.112395 21344 solver.cpp:245] Train net output #4: loss1/accuracy05 = 0.25 | |
I0327 14:16:59.112407 21344 solver.cpp:245] Train net output #5: loss1/accuracy06 = 0.375 | |
I0327 14:16:59.112419 21344 solver.cpp:245] Train net output #6: loss1/accuracy07 = 0.75 | |
I0327 14:16:59.112432 21344 solver.cpp:245] Train net output #7: loss1/accuracy08 = 0.875 | |
I0327 14:16:59.112443 21344 solver.cpp:245] Train net output #8: loss1/accuracy09 = 0.875 | |
I0327 14:16:59.112455 21344 solver.cpp:245] Train net output #9: loss1/accuracy10 = 1 | |
I0327 14:16:59.112468 21344 solver.cpp:245] Train net output #10: loss1/accuracy11 = 1 | |
I0327 14:16:59.112479 21344 solver.cpp:245] Train net output #11: loss1/accuracy12 = 1 | |
I0327 14:16:59.112490 21344 solver.cpp:245] Train net output #12: loss1/accuracy13 = 1 | |
I0327 14:16:59.112503 21344 solver.cpp:245] Train net output #13: loss1/accuracy14 = 1 | |
I0327 14:16:59.112514 21344 solver.cpp:245] Train net output #14: loss1/accuracy15 = 1 | |
I0327 14:16:59.112526 21344 solver.cpp:245] Train net output #15: loss1/accuracy16 = 1 | |
I0327 14:16:59.112537 21344 solver.cpp:245] Train net output #16: loss1/accuracy17 = 1 | |
I0327 14:16:59.112550 21344 solver.cpp:245] Train net output #17: loss1/accuracy18 = 1 | |
I0327 14:16:59.112561 21344 solver.cpp:245] Train net output #18: loss1/accuracy19 = 1 | |
I0327 14:16:59.112573 21344 solver.cpp:245] Train net output #19: loss1/accuracy20 = 1 | |
I0327 14:16:59.112584 21344 solver.cpp:245] Train net output #20: loss1/accuracy21 = 1 | |
I0327 14:16:59.112596 21344 solver.cpp:245] Train net output #21: loss1/accuracy22 = 1 | |
I0327 14:16:59.112612 21344 solver.cpp:245] Train net output #22: loss1/loss01 = 1.79829 (* 0.0272727 = 0.0490442 loss) | |
I0327 14:16:59.112627 21344 solver.cpp:245] Train net output #23: loss1/loss02 = 2.51252 (* 0.0272727 = 0.0685232 loss) | |
I0327 14:16:59.112640 21344 solver.cpp:245] Train net output #24: loss1/loss03 = 2.94867 (* 0.0272727 = 0.0804183 loss) | |
I0327 14:16:59.112655 21344 solver.cpp:245] Train net output #25: loss1/loss04 = 3.19924 (* 0.0272727 = 0.087252 loss) | |
I0327 14:16:59.112668 21344 solver.cpp:245] Train net output #26: loss1/loss05 = 2.38818 (* 0.0272727 = 0.0651321 loss) | |
I0327 14:16:59.112682 21344 solver.cpp:245] Train net output #27: loss1/loss06 = 1.96136 (* 0.0272727 = 0.0534917 loss) | |
I0327 14:16:59.112696 21344 solver.cpp:245] Train net output #28: loss1/loss07 = 1.21562 (* 0.0272727 = 0.0331532 loss) | |
I0327 14:16:59.112710 21344 solver.cpp:245] Train net output #29: loss1/loss08 = 0.193716 (* 0.0272727 = 0.00528315 loss) | |
I0327 14:16:59.112725 21344 solver.cpp:245] Train net output #30: loss1/loss09 = 0.362558 (* 0.0272727 = 0.00988794 loss) | |
I0327 14:16:59.112738 21344 solver.cpp:245] Train net output #31: loss1/loss10 = 0.00938002 (* 0.0272727 = 0.000255819 loss) | |
I0327 14:16:59.112753 21344 solver.cpp:245] Train net output #32: loss1/loss11 = 3.94599e-05 (* 0.0272727 = 1.07618e-06 loss) | |
I0327 14:16:59.112767 21344 solver.cpp:245] Train net output #33: loss1/loss12 = 6.11924e-05 (* 0.0272727 = 1.66888e-06 loss) | |
I0327 14:16:59.112782 21344 solver.cpp:245] Train net output #34: loss1/loss13 = 6.02495e-05 (* 0.0272727 = 1.64317e-06 loss) | |
I0327 14:16:59.112797 21344 solver.cpp:245] Train net output #35: loss1/loss14 = 8.22291e-05 (* 0.0272727 = 2.24261e-06 loss) | |
I0327 14:16:59.112810 21344 solver.cpp:245] Train net output #36: loss1/loss15 = 5.04663e-05 (* 0.0272727 = 1.37635e-06 loss) | |
I0327 14:16:59.112824 21344 solver.cpp:245] Train net output #37: loss1/loss16 = 8.69064e-05 (* 0.0272727 = 2.37018e-06 loss) | |
I0327 14:16:59.112838 21344 solver.cpp:245] Train net output #38: loss1/loss17 = 4.74627e-05 (* 0.0272727 = 1.29444e-06 loss) | |
I0327 14:16:59.112865 21344 solver.cpp:245] Train net output #39: loss1/loss18 = 6.48482e-05 (* 0.0272727 = 1.76859e-06 loss) | |
I0327 14:16:59.112881 21344 solver.cpp:245] Train net output #40: loss1/loss19 = 7.06015e-05 (* 0.0272727 = 1.9255e-06 loss) | |
I0327 14:16:59.112895 21344 solver.cpp:245] Train net output #41: loss1/loss20 = 4.17854e-05 (* 0.0272727 = 1.1396e-06 loss) | |
I0327 14:16:59.112910 21344 solver.cpp:245] Train net output #42: loss1/loss21 = 4.23069e-05 (* 0.0272727 = 1.15383e-06 loss) | |
I0327 14:16:59.112923 21344 solver.cpp:245] Train net output #43: loss1/loss22 = 5.41028e-05 (* 0.0272727 = 1.47553e-06 loss) | |
I0327 14:16:59.112936 21344 solver.cpp:245] Train net output #44: loss2/accuracy01 = 0.25 | |
I0327 14:16:59.112949 21344 solver.cpp:245] Train net output #45: loss2/accuracy02 = 0.125 | |
I0327 14:16:59.112962 21344 solver.cpp:245] Train net output #46: loss2/accuracy03 = 0.125 | |
I0327 14:16:59.112972 21344 solver.cpp:245] Train net output #47: loss2/accuracy04 = 0.375 | |
I0327 14:16:59.112984 21344 solver.cpp:245] Train net output #48: loss2/accuracy05 = 0.5 | |
I0327 14:16:59.113000 21344 solver.cpp:245] Train net output #49: loss2/accuracy06 = 0.5 | |
I0327 14:16:59.113013 21344 solver.cpp:245] Train net output #50: loss2/accuracy07 = 0.75 | |
I0327 14:16:59.113024 21344 solver.cpp:245] Train net output #51: loss2/accuracy08 = 0.875 | |
I0327 14:16:59.113036 21344 solver.cpp:245] Train net output #52: loss2/accuracy09 = 0.875 | |
I0327 14:16:59.113047 21344 solver.cpp:245] Train net output #53: loss2/accuracy10 = 1 | |
I0327 14:16:59.113059 21344 solver.cpp:245] Train net output #54: loss2/accuracy11 = 1 | |
I0327 14:16:59.113071 21344 solver.cpp:245] Train net output #55: loss2/accuracy12 = 1 | |
I0327 14:16:59.113082 21344 solver.cpp:245] Train net output #56: loss2/accuracy13 = 1 | |
I0327 14:16:59.113090 21344 solver.cpp:245] Train net output #57: loss2/accuracy14 = 1 | |
I0327 14:16:59.113098 21344 solver.cpp:245] Train net output #58: loss2/accuracy15 = 1 | |
I0327 14:16:59.113109 21344 solver.cpp:245] Train net output #59: loss2/accuracy16 = 1 | |
I0327 14:16:59.113121 21344 solver.cpp:245] Train net output #60: loss2/accuracy17 = 1 | |
I0327 14:16:59.113133 21344 solver.cpp:245] Train net output #61: loss2/accuracy18 = 1 | |
I0327 14:16:59.113144 21344 solver.cpp:245] Train net output #62: loss2/accuracy19 = 1 | |
I0327 14:16:59.113155 21344 solver.cpp:245] Train net output #63: loss2/accuracy20 = 1 | |
I0327 14:16:59.113168 21344 solver.cpp:245] Train net output #64: loss2/accuracy21 = 1 | |
I0327 14:16:59.113178 21344 solver.cpp:245] Train net output #65: loss2/accuracy22 = 1 | |
I0327 14:16:59.113193 21344 solver.cpp:245] Train net output #66: loss2/loss01 = 1.77163 (* 0.0272727 = 0.0483173 loss) | |
I0327 14:16:59.113206 21344 solver.cpp:245] Train net output #67: loss2/loss02 = 2.65801 (* 0.0272727 = 0.0724913 loss) | |
I0327 14:16:59.113220 21344 solver.cpp:245] Train net output #68: loss2/loss03 = 2.93453 (* 0.0272727 = 0.0800326 loss) | |
I0327 14:16:59.113234 21344 solver.cpp:245] Train net output #69: loss2/loss04 = 2.39396 (* 0.0272727 = 0.0652897 loss) | |
I0327 14:16:59.113248 21344 solver.cpp:245] Train net output #70: loss2/loss05 = 2.47391 (* 0.0272727 = 0.0674702 loss) | |
I0327 14:16:59.113261 21344 solver.cpp:245] Train net output #71: loss2/loss06 = 1.72831 (* 0.0272727 = 0.0471358 loss) | |
I0327 14:16:59.113276 21344 solver.cpp:245] Train net output #72: loss2/loss07 = 1.2007 (* 0.0272727 = 0.0327464 loss) | |
I0327 14:16:59.113289 21344 solver.cpp:245] Train net output #73: loss2/loss08 = 0.432398 (* 0.0272727 = 0.0117927 loss) | |
I0327 14:16:59.113303 21344 solver.cpp:245] Train net output #74: loss2/loss09 = 0.503387 (* 0.0272727 = 0.0137287 loss) | |
I0327 14:16:59.113317 21344 solver.cpp:245] Train net output #75: loss2/loss10 = 0.0151887 (* 0.0272727 = 0.000414238 loss) | |
I0327 14:16:59.113332 21344 solver.cpp:245] Train net output #76: loss2/loss11 = 0.000675221 (* 0.0272727 = 1.84151e-05 loss) | |
I0327 14:16:59.113360 21344 solver.cpp:245] Train net output #77: loss2/loss12 = 0.000737401 (* 0.0272727 = 2.01109e-05 loss) | |
I0327 14:16:59.113375 21344 solver.cpp:245] Train net output #78: loss2/loss13 = 0.000403264 (* 0.0272727 = 1.09981e-05 loss) | |
I0327 14:16:59.113390 21344 solver.cpp:245] Train net output #79: loss2/loss14 = 0.000405127 (* 0.0272727 = 1.10489e-05 loss) | |
I0327 14:16:59.113404 21344 solver.cpp:245] Train net output #80: loss2/loss15 = 0.00050335 (* 0.0272727 = 1.37277e-05 loss) | |
I0327 14:16:59.113418 21344 solver.cpp:245] Train net output #81: loss2/loss16 = 0.000245455 (* 0.0272727 = 6.69423e-06 loss) | |
I0327 14:16:59.113432 21344 solver.cpp:245] Train net output #82: loss2/loss17 = 0.000558359 (* 0.0272727 = 1.5228e-05 loss) | |
I0327 14:16:59.113445 21344 solver.cpp:245] Train net output #83: loss2/loss18 = 0.000617274 (* 0.0272727 = 1.68347e-05 loss) | |
I0327 14:16:59.113461 21344 solver.cpp:245] Train net output #84: loss2/loss19 = 0.000977972 (* 0.0272727 = 2.6672e-05 loss) | |
I0327 14:16:59.113474 21344 solver.cpp:245] Train net output #85: loss2/loss20 = 0.000309729 (* 0.0272727 = 8.44715e-06 loss) | |
I0327 14:16:59.113487 21344 solver.cpp:245] Train net output #86: loss2/loss21 = 0.00176827 (* 0.0272727 = 4.82255e-05 loss) | |
I0327 14:16:59.113502 21344 solver.cpp:245] Train net output #87: loss2/loss22 = 0.000315866 (* 0.0272727 = 8.61453e-06 loss) | |
I0327 14:16:59.113514 21344 solver.cpp:245] Train net output #88: loss3/accuracy01 = 0.5 | |
I0327 14:16:59.113526 21344 solver.cpp:245] Train net output #89: loss3/accuracy02 = 0 | |
I0327 14:16:59.113549 21344 solver.cpp:245] Train net output #90: loss3/accuracy03 = 0 | |
I0327 14:16:59.113564 21344 solver.cpp:245] Train net output #91: loss3/accuracy04 = 0.125 | |
I0327 14:16:59.113576 21344 solver.cpp:245] Train net output #92: loss3/accuracy05 = 0.25 | |
I0327 14:16:59.113589 21344 solver.cpp:245] Train net output #93: loss3/accuracy06 = 0.375 | |
I0327 14:16:59.113600 21344 solver.cpp:245] Train net output #94: loss3/accuracy07 = 0.75 | |
I0327 14:16:59.113611 21344 solver.cpp:245] Train net output #95: loss3/accuracy08 = 0.875 | |
I0327 14:16:59.113623 21344 solver.cpp:245] Train net output #96: loss3/accuracy09 = 0.875 | |
I0327 14:16:59.113634 21344 solver.cpp:245] Train net output #97: loss3/accuracy10 = 1 | |
I0327 14:16:59.113646 21344 solver.cpp:245] Train net output #98: loss3/accuracy11 = 1 | |
I0327 14:16:59.113657 21344 solver.cpp:245] Train net output #99: loss3/accuracy12 = 1 | |
I0327 14:16:59.113669 21344 solver.cpp:245] Train net output #100: loss3/accuracy13 = 1 | |
I0327 14:16:59.113680 21344 solver.cpp:245] Train net output #101: loss3/accuracy14 = 1 | |
I0327 14:16:59.113692 21344 solver.cpp:245] Train net output #102: loss3/accuracy15 = 1 | |
I0327 14:16:59.113703 21344 solver.cpp:245] Train net output #103: loss3/accuracy16 = 1 | |
I0327 14:16:59.113714 21344 solver.cpp:245] Train net output #104: loss3/accuracy17 = 1 | |
I0327 14:16:59.113725 21344 solver.cpp:245] Train net output #105: loss3/accuracy18 = 1 | |
I0327 14:16:59.113736 21344 solver.cpp:245] Train net output #106: loss3/accuracy19 = 1 | |
I0327 14:16:59.113749 21344 solver.cpp:245] Train net output #107: loss3/accuracy20 = 1 | |
I0327 14:16:59.113759 21344 solver.cpp:245] Train net output #108: loss3/accuracy21 = 1 | |
I0327 14:16:59.113771 21344 solver.cpp:245] Train net output #109: loss3/accuracy22 = 1 | |
I0327 14:16:59.113785 21344 solver.cpp:245] Train net output #110: loss3/loss01 = 1.73784 (* 0.0909091 = 0.157986 loss) | |
I0327 14:16:59.113798 21344 solver.cpp:245] Train net output #111: loss3/loss02 = 2.68342 (* 0.0909091 = 0.243947 loss) | |
I0327 14:16:59.113812 21344 solver.cpp:245] Train net output #112: loss3/loss03 = 2.91026 (* 0.0909091 = 0.264569 loss) | |
I0327 14:16:59.113826 21344 solver.cpp:245] Train net output #113: loss3/loss04 = 2.5772 (* 0.0909091 = 0.23429 loss) | |
I0327 14:16:59.113840 21344 solver.cpp:245] Train net output #114: loss3/loss05 = 2.21481 (* 0.0909091 = 0.201347 loss) | |
I0327 14:16:59.113867 21344 solver.cpp:245] Train net output #115: loss3/loss06 = 1.54293 (* 0.0909091 = 0.140266 loss) | |
I0327 14:16:59.113883 21344 solver.cpp:245] Train net output #116: loss3/loss07 = 0.98097 (* 0.0909091 = 0.0891791 loss) | |
I0327 14:16:59.113896 21344 solver.cpp:245] Train net output #117: loss3/loss08 = 0.287356 (* 0.0909091 = 0.0261233 loss) | |
I0327 14:16:59.113910 21344 solver.cpp:245] Train net output #118: loss3/loss09 = 0.418977 (* 0.0909091 = 0.0380888 loss) | |
I0327 14:16:59.113924 21344 solver.cpp:245] Train net output #119: loss3/loss10 = 0.00962642 (* 0.0909091 = 0.000875129 loss) | |
I0327 14:16:59.113939 21344 solver.cpp:245] Train net output #120: loss3/loss11 = 0.000110226 (* 0.0909091 = 1.00206e-05 loss) | |
I0327 14:16:59.113952 21344 solver.cpp:245] Train net output #121: loss3/loss12 = 8.11902e-05 (* 0.0909091 = 7.38093e-06 loss) | |
I0327 14:16:59.113966 21344 solver.cpp:245] Train net output #122: loss3/loss13 = 8.192e-05 (* 0.0909091 = 7.44727e-06 loss) | |
I0327 14:16:59.113981 21344 solver.cpp:245] Train net output #123: loss3/loss14 = 0.000103018 (* 0.0909091 = 9.36531e-06 loss) | |
I0327 14:16:59.113994 21344 solver.cpp:245] Train net output #124: loss3/loss15 = 7.36257e-05 (* 0.0909091 = 6.69325e-06 loss) | |
I0327 14:16:59.114009 21344 solver.cpp:245] Train net output #125: loss3/loss16 = 8.19647e-05 (* 0.0909091 = 7.45134e-06 loss) | |
I0327 14:16:59.114023 21344 solver.cpp:245] Train net output #126: loss3/loss17 = 8.82178e-05 (* 0.0909091 = 8.0198e-06 loss) | |
I0327 14:16:59.114037 21344 solver.cpp:245] Train net output #127: loss3/loss18 = 0.000105044 (* 0.0909091 = 9.54944e-06 loss) | |
I0327 14:16:59.114055 21344 solver.cpp:245] Train net output #128: loss3/loss19 = 9.78018e-05 (* 0.0909091 = 8.89107e-06 loss) | |
I0327 14:16:59.114069 21344 solver.cpp:245] Train net output #129: loss3/loss20 = 9.78448e-05 (* 0.0909091 = 8.89498e-06 loss) | |
I0327 14:16:59.114084 21344 solver.cpp:245] Train net output #130: loss3/loss21 = 9.57141e-05 (* 0.0909091 = 8.70128e-06 loss) | |
I0327 14:16:59.114097 21344 solver.cpp:245] Train net output #131: loss3/loss22 = 7.7016e-05 (* 0.0909091 = 7.00146e-06 loss) | |
I0327 14:16:59.114109 21344 solver.cpp:245] Train net output #132: total_accuracy = 0 | |
I0327 14:16:59.114121 21344 solver.cpp:245] Train net output #133: total_confidence = 0.0013402 | |
I0327 14:16:59.114133 21344 sgd_solver.cpp:106] Iteration 24500, lr = 0.01 | |
I0327 14:18:47.405966 21344 solver.cpp:338] Iteration 25000, Testing net (#0) | |
I0327 14:19:18.664235 21344 solver.cpp:393] Test loss: 2.08724 | |
I0327 14:19:18.664321 21344 solver.cpp:406] Test net output #0: loss1/accuracy01 = 0.482 | |
I0327 14:19:18.664340 21344 solver.cpp:406] Test net output #1: loss1/accuracy02 = 0.251 | |
I0327 14:19:18.664351 21344 solver.cpp:406] Test net output #2: loss1/accuracy03 = 0.25 | |
I0327 14:19:18.664365 21344 solver.cpp:406] Test net output #3: loss1/accuracy04 = 0.225 | |
I0327 14:19:18.664376 21344 solver.cpp:406] Test net output #4: loss1/accuracy05 = 0.252 | |
I0327 14:19:18.664387 21344 solver.cpp:406] Test net output #5: loss1/accuracy06 = 0.522 | |
I0327 14:19:18.664398 21344 solver.cpp:406] Test net output #6: loss1/accuracy07 = 0.892 | |
I0327 14:19:18.664410 21344 solver.cpp:406] Test net output #7: loss1/accuracy08 = 0.969 | |
I0327 14:19:18.664422 21344 solver.cpp:406] Test net output #8: loss1/accuracy09 = 0.995 | |
I0327 14:19:18.664436 21344 solver.cpp:406] Test net output #9: loss1/accuracy10 = 0.998 | |
I0327 14:19:18.664448 21344 solver.cpp:406] Test net output #10: loss1/accuracy11 = 1 | |
I0327 14:19:18.664460 21344 solver.cpp:406] Test net output #11: loss1/accuracy12 = 1 | |
I0327 14:19:18.664472 21344 solver.cpp:406] Test net output #12: loss1/accuracy13 = 1 | |
I0327 14:19:18.664484 21344 solver.cpp:406] Test net output #13: loss1/accuracy14 = 1 | |
I0327 14:19:18.664494 21344 solver.cpp:406] Test net output #14: loss1/accuracy15 = 1 | |
I0327 14:19:18.664506 21344 solver.cpp:406] Test net output #15: loss1/accuracy16 = 1 | |
I0327 14:19:18.664517 21344 solver.cpp:406] Test net output #16: loss1/accuracy17 = 1 | |
I0327 14:19:18.664528 21344 solver.cpp:406] Test net output #17: loss1/accuracy18 = 1 | |
I0327 14:19:18.664540 21344 solver.cpp:406] Test net output #18: loss1/accuracy19 = 1 | |
I0327 14:19:18.664551 21344 solver.cpp:406] Test net output #19: loss1/accuracy20 = 1 | |
I0327 14:19:18.664562 21344 solver.cpp:406] Test net output #20: loss1/accuracy21 = 1 | |
I0327 14:19:18.664573 21344 solver.cpp:406] Test net output #21: loss1/accuracy22 = 1 | |
I0327 14:19:18.664589 21344 solver.cpp:406] Test net output #22: loss1/loss01 = 1.80568 (* 0.0272727 = 0.0492458 loss) | |
I0327 14:19:18.664604 21344 solver.cpp:406] Test net output #23: loss1/loss02 = 2.45192 (* 0.0272727 = 0.0668705 loss) | |
I0327 14:19:18.664618 21344 solver.cpp:406] Test net output #24: loss1/loss03 = 2.50689 (* 0.0272727 = 0.0683699 loss) | |
I0327 14:19:18.664631 21344 solver.cpp:406] Test net output #25: loss1/loss04 = 2.58306 (* 0.0272727 = 0.0704472 loss) | |
I0327 14:19:18.664645 21344 solver.cpp:406] Test net output #26: loss1/loss05 = 2.79652 (* 0.0272727 = 0.0762688 loss) | |
I0327 14:19:18.664659 21344 solver.cpp:406] Test net output #27: loss1/loss06 = 1.73664 (* 0.0272727 = 0.0473629 loss) | |
I0327 14:19:18.664671 21344 solver.cpp:406] Test net output #28: loss1/loss07 = 0.622061 (* 0.0272727 = 0.0169653 loss) | |
I0327 14:19:18.664685 21344 solver.cpp:406] Test net output #29: loss1/loss08 = 0.239719 (* 0.0272727 = 0.0065378 loss) | |
I0327 14:19:18.664700 21344 solver.cpp:406] Test net output #30: loss1/loss09 = 0.049266 (* 0.0272727 = 0.00134362 loss) | |
I0327 14:19:18.664713 21344 solver.cpp:406] Test net output #31: loss1/loss10 = 0.0247208 (* 0.0272727 = 0.000674203 loss) | |
I0327 14:19:18.664727 21344 solver.cpp:406] Test net output #32: loss1/loss11 = 4.3523e-05 (* 0.0272727 = 1.18699e-06 loss) | |
I0327 14:19:18.664741 21344 solver.cpp:406] Test net output #33: loss1/loss12 = 4.38744e-05 (* 0.0272727 = 1.19658e-06 loss) | |
I0327 14:19:18.664755 21344 solver.cpp:406] Test net output #34: loss1/loss13 = 3.58745e-05 (* 0.0272727 = 9.78396e-07 loss) | |
I0327 14:19:18.664768 21344 solver.cpp:406] Test net output #35: loss1/loss14 = 3.66461e-05 (* 0.0272727 = 9.99438e-07 loss) | |
I0327 14:19:18.664783 21344 solver.cpp:406] Test net output #36: loss1/loss15 = 4.42558e-05 (* 0.0272727 = 1.20698e-06 loss) | |
I0327 14:19:18.664796 21344 solver.cpp:406] Test net output #37: loss1/loss16 = 4.23911e-05 (* 0.0272727 = 1.15612e-06 loss) | |
I0327 14:19:18.664810 21344 solver.cpp:406] Test net output #38: loss1/loss17 = 3.9696e-05 (* 0.0272727 = 1.08262e-06 loss) | |
I0327 14:19:18.664844 21344 solver.cpp:406] Test net output #39: loss1/loss18 = 3.79676e-05 (* 0.0272727 = 1.03548e-06 loss) | |
I0327 14:19:18.664860 21344 solver.cpp:406] Test net output #40: loss1/loss19 = 3.26479e-05 (* 0.0272727 = 8.90398e-07 loss) | |
I0327 14:19:18.664873 21344 solver.cpp:406] Test net output #41: loss1/loss20 = 3.84735e-05 (* 0.0272727 = 1.04928e-06 loss) | |
I0327 14:19:18.664886 21344 solver.cpp:406] Test net output #42: loss1/loss21 = 3.64971e-05 (* 0.0272727 = 9.95376e-07 loss) | |
I0327 14:19:18.664903 21344 solver.cpp:406] Test net output #43: loss1/loss22 = 4.2706e-05 (* 0.0272727 = 1.16471e-06 loss) | |
I0327 14:19:18.664916 21344 solver.cpp:406] Test net output #44: loss2/accuracy01 = 0.612 | |
I0327 14:19:18.664928 21344 solver.cpp:406] Test net output #45: loss2/accuracy02 = 0.286 | |
I0327 14:19:18.664940 21344 solver.cpp:406] Test net output #46: loss2/accuracy03 = 0.232 | |
I0327 14:19:18.664952 21344 solver.cpp:406] Test net output #47: loss2/accuracy04 = 0.237 | |
I0327 14:19:18.664963 21344 solver.cpp:406] Test net output #48: loss2/accuracy05 = 0.264 | |
I0327 14:19:18.664974 21344 solver.cpp:406] Test net output #49: loss2/accuracy06 = 0.552 | |
I0327 14:19:18.664985 21344 solver.cpp:406] Test net output #50: loss2/accuracy07 = 0.892 | |
I0327 14:19:18.664997 21344 solver.cpp:406] Test net output #51: loss2/accuracy08 = 0.969 | |
I0327 14:19:18.665009 21344 solver.cpp:406] Test net output #52: loss2/accuracy09 = 0.995 | |
I0327 14:19:18.665019 21344 solver.cpp:406] Test net output #53: loss2/accuracy10 = 0.998 | |
I0327 14:19:18.665027 21344 solver.cpp:406] Test net output #54: loss2/accuracy11 = 1 | |
I0327 14:19:18.665040 21344 solver.cpp:406] Test net output #55: loss2/accuracy12 = 1 | |
I0327 14:19:18.665050 21344 solver.cpp:406] Test net output #56: loss2/accuracy13 = 1 | |
I0327 14:19:18.665061 21344 solver.cpp:406] Test net output #57: loss2/accuracy14 = 1 | |
I0327 14:19:18.665072 21344 solver.cpp:406] Test net output #58: loss2/accuracy15 = 1 | |
I0327 14:19:18.665084 21344 solver.cpp:406] Test net output #59: loss2/accuracy16 = 1 | |
I0327 14:19:18.665096 21344 solver.cpp:406] Test net output #60: loss2/accuracy17 = 1 | |
I0327 14:19:18.665107 21344 solver.cpp:406] Test net output #61: loss2/accuracy18 = 1 | |
I0327 14:19:18.665117 21344 solver.cpp:406] Test net output #62: loss2/accuracy19 = 1 | |
I0327 14:19:18.665128 21344 solver.cpp:406] Test net output #63: loss2/accuracy20 = 1 | |
I0327 14:19:18.665139 21344 solver.cpp:406] Test net output #64: loss2/accuracy21 = 1 | |
I0327 14:19:18.665150 21344 solver.cpp:406] Test net output #65: loss2/accuracy22 = 1 | |
I0327 14:19:18.665163 21344 solver.cpp:406] Test net output #66: loss2/loss01 = 1.63004 (* 0.0272727 = 0.0444557 loss) | |
I0327 14:19:18.665176 21344 solver.cpp:406] Test net output #67: loss2/loss02 = 2.45412 (* 0.0272727 = 0.0669307 loss) | |
I0327 14:19:18.665190 21344 solver.cpp:406] Test net output #68: loss2/loss03 = 2.56321 (* 0.0272727 = 0.0699056 loss) | |
I0327 14:19:18.665204 21344 solver.cpp:406] Test net output #69: loss2/loss04 = 2.63895 (* 0.0272727 = 0.0719714 loss) | |
I0327 14:19:18.665217 21344 solver.cpp:406] Test net output #70: loss2/loss05 = 2.69589 (* 0.0272727 = 0.0735242 loss) | |
I0327 14:19:18.665230 21344 solver.cpp:406] Test net output #71: loss2/loss06 = 1.57159 (* 0.0272727 = 0.0428614 loss) | |
I0327 14:19:18.665243 21344 solver.cpp:406] Test net output #72: loss2/loss07 = 0.503922 (* 0.0272727 = 0.0137433 loss) | |
I0327 14:19:18.665257 21344 solver.cpp:406] Test net output #73: loss2/loss08 = 0.21627 (* 0.0272727 = 0.00589828 loss) | |
I0327 14:19:18.665271 21344 solver.cpp:406] Test net output #74: loss2/loss09 = 0.0485414 (* 0.0272727 = 0.00132386 loss) | |
I0327 14:19:18.665284 21344 solver.cpp:406] Test net output #75: loss2/loss10 = 0.0235078 (* 0.0272727 = 0.000641123 loss) | |
I0327 14:19:18.665298 21344 solver.cpp:406] Test net output #76: loss2/loss11 = 0.000137109 (* 0.0272727 = 3.73935e-06 loss) | |
I0327 14:19:18.665312 21344 solver.cpp:406] Test net output #77: loss2/loss12 = 0.000129944 (* 0.0272727 = 3.54393e-06 loss) | |
I0327 14:19:18.665338 21344 solver.cpp:406] Test net output #78: loss2/loss13 = 0.000136871 (* 0.0272727 = 3.73284e-06 loss) | |
I0327 14:19:18.665352 21344 solver.cpp:406] Test net output #79: loss2/loss14 = 0.000111499 (* 0.0272727 = 3.04087e-06 loss) | |
I0327 14:19:18.665365 21344 solver.cpp:406] Test net output #80: loss2/loss15 = 0.000145956 (* 0.0272727 = 3.98063e-06 loss) | |
I0327 14:19:18.665380 21344 solver.cpp:406] Test net output #81: loss2/loss16 = 0.000154138 (* 0.0272727 = 4.20378e-06 loss) | |
I0327 14:19:18.665393 21344 solver.cpp:406] Test net output #82: loss2/loss17 = 0.00012439 (* 0.0272727 = 3.39245e-06 loss) | |
I0327 14:19:18.665406 21344 solver.cpp:406] Test net output #83: loss2/loss18 = 0.000133399 (* 0.0272727 = 3.63814e-06 loss) | |
I0327 14:19:18.665421 21344 solver.cpp:406] Test net output #84: loss2/loss19 = 0.000130074 (* 0.0272727 = 3.54747e-06 loss) | |
I0327 14:19:18.665434 21344 solver.cpp:406] Test net output #85: loss2/loss20 = 0.000140249 (* 0.0272727 = 3.82498e-06 loss) | |
I0327 14:19:18.665447 21344 solver.cpp:406] Test net output #86: loss2/loss21 = 0.000116271 (* 0.0272727 = 3.17101e-06 loss) | |
I0327 14:19:18.665460 21344 solver.cpp:406] Test net output #87: loss2/loss22 = 0.00014193 (* 0.0272727 = 3.87083e-06 loss) | |
I0327 14:19:18.665472 21344 solver.cpp:406] Test net output #88: loss3/accuracy01 = 0.543 | |
I0327 14:19:18.665487 21344 solver.cpp:406] Test net output #89: loss3/accuracy02 = 0.304 | |
I0327 14:19:18.665499 21344 solver.cpp:406] Test net output #90: loss3/accuracy03 = 0.263 | |
I0327 14:19:18.665510 21344 solver.cpp:406] Test net output #91: loss3/accuracy04 = 0.262 | |
I0327 14:19:18.665523 21344 solver.cpp:406] Test net output #92: loss3/accuracy05 = 0.312 | |
I0327 14:19:18.665534 21344 solver.cpp:406] Test net output #93: loss3/accuracy06 = 0.583 | |
I0327 14:19:18.665560 21344 solver.cpp:406] Test net output #94: loss3/accuracy07 = 0.893 | |
I0327 14:19:18.665573 21344 solver.cpp:406] Test net output #95: loss3/accuracy08 = 0.969 | |
I0327 14:19:18.665585 21344 solver.cpp:406] Test net output #96: loss3/accuracy09 = 0.995 | |
I0327 14:19:18.665596 21344 solver.cpp:406] Test net output #97: loss3/accuracy10 = 0.998 | |
I0327 14:19:18.665607 21344 solver.cpp:406] Test net output #98: loss3/accuracy11 = 1 | |
I0327 14:19:18.665618 21344 solver.cpp:406] Test net output #99: loss3/accuracy12 = 1 | |
I0327 14:19:18.665629 21344 solver.cpp:406] Test net output #100: loss3/accuracy13 = 1 | |
I0327 14:19:18.665640 21344 solver.cpp:406] Test net output #101: loss3/accuracy14 = 1 | |
I0327 14:19:18.665652 21344 solver.cpp:406] Test net output #102: loss3/accuracy15 = 1 | |
I0327 14:19:18.665663 21344 solver.cpp:406] Test net output #103: loss3/accuracy16 = 1 | |
I0327 14:19:18.665674 21344 solver.cpp:406] Test net output #104: loss3/accuracy17 = 1 | |
I0327 14:19:18.665685 21344 solver.cpp:406] Test net output #105: loss3/accuracy18 = 1 | |
I0327 14:19:18.665696 21344 solver.cpp:406] Test net output #106: loss3/accuracy19 = 1 | |
I0327 14:19:18.665707 21344 solver.cpp:406] Test net output #107: loss3/accuracy20 = 1 | |
I0327 14:19:18.665719 21344 solver.cpp:406] Test net output #108: loss3/accuracy21 = 1 | |
I0327 14:19:18.665729 21344 solver.cpp:406] Test net output #109: loss3/accuracy22 = 1 | |
I0327 14:19:18.665743 21344 solver.cpp:406] Test net output #110: loss3/loss01 = 1.69125 (* 0.0909091 = 0.15375 loss) | |
I0327 14:19:18.665756 21344 solver.cpp:406] Test net output #111: loss3/loss02 = 2.33569 (* 0.0909091 = 0.212335 loss) | |
I0327 14:19:18.665771 21344 solver.cpp:406] Test net output #112: loss3/loss03 = 2.58721 (* 0.0909091 = 0.235201 loss) | |
I0327 14:19:18.665783 21344 solver.cpp:406] Test net output #113: loss3/loss04 = 2.67185 (* 0.0909091 = 0.242896 loss) | |
I0327 14:19:18.665796 21344 solver.cpp:406] Test net output #114: loss3/loss05 = 2.61498 (* 0.0909091 = 0.237725 loss) | |
I0327 14:19:18.665809 21344 solver.cpp:406] Test net output #115: loss3/loss06 = 1.53602 (* 0.0909091 = 0.139638 loss) | |
I0327 14:19:18.665835 21344 solver.cpp:406] Test net output #116: loss3/loss07 = 0.479315 (* 0.0909091 = 0.0435741 loss) | |
I0327 14:19:18.665850 21344 solver.cpp:406] Test net output #117: loss3/loss08 = 0.209989 (* 0.0909091 = 0.0190899 loss) | |
I0327 14:19:18.665864 21344 solver.cpp:406] Test net output #118: loss3/loss09 = 0.0538638 (* 0.0909091 = 0.00489671 loss) | |
I0327 14:19:18.665879 21344 solver.cpp:406] Test net output #119: loss3/loss10 = 0.0277896 (* 0.0909091 = 0.00252633 loss) | |
I0327 14:19:18.665891 21344 solver.cpp:406] Test net output #120: loss3/loss11 = 0.000181311 (* 0.0909091 = 1.64828e-05 loss) | |
I0327 14:19:18.665905 21344 solver.cpp:406] Test net output #121: loss3/loss12 = 0.000224149 (* 0.0909091 = 2.03772e-05 loss) | |
I0327 14:19:18.665920 21344 solver.cpp:406] Test net output #122: loss3/loss13 = 0.000224761 (* 0.0909091 = 2.04328e-05 loss) | |
I0327 14:19:18.665932 21344 solver.cpp:406] Test net output #123: loss3/loss14 = 0.000188146 (* 0.0909091 = 1.71042e-05 loss) | |
I0327 14:19:18.665948 21344 solver.cpp:406] Test net output #124: loss3/loss15 = 0.000205054 (* 0.0909091 = 1.86412e-05 loss) | |
I0327 14:19:18.665963 21344 solver.cpp:406] Test net output #125: loss3/loss16 = 0.000199709 (* 0.0909091 = 1.81553e-05 loss) | |
I0327 14:19:18.665977 21344 solver.cpp:406] Test net output #126: loss3/loss17 = 0.000188191 (* 0.0909091 = 1.71083e-05 loss) | |
I0327 14:19:18.665992 21344 solver.cpp:406] Test net output #127: loss3/loss18 = 0.000191626 (* 0.0909091 = 1.74205e-05 loss) | |
I0327 14:19:18.666005 21344 solver.cpp:406] Test net output #128: loss3/loss19 = 0.000162315 (* 0.0909091 = 1.47559e-05 loss) | |
I0327 14:19:18.666018 21344 solver.cpp:406] Test net output #129: loss3/loss20 = 0.000190823 (* 0.0909091 = 1.73476e-05 loss) | |
I0327 14:19:18.666033 21344 solver.cpp:406] Test net output #130: loss3/loss21 = 0.000188225 (* 0.0909091 = 1.71114e-05 loss) | |
I0327 14:19:18.666045 21344 solver.cpp:406] Test net output #131: loss3/loss22 = 0.000154318 (* 0.0909091 = 1.40289e-05 loss) | |
I0327 14:19:18.666057 21344 solver.cpp:406] Test net output #132: total_accuracy = 0.004 | |
I0327 14:19:18.666069 21344 solver.cpp:406] Test net output #133: total_confidence = 0.00870709 | |
I0327 14:19:18.776504 21344 solver.cpp:229] Iteration 25000, loss = 2.46874 | |
I0327 14:19:18.776545 21344 solver.cpp:245] Train net output #0: loss1/accuracy01 = 0.75 | |
I0327 14:19:18.776561 21344 solver.cpp:245] Train net output #1: loss1/accuracy02 = 0.25 | |
I0327 14:19:18.776573 21344 solver.cpp:245] Train net output #2: loss1/accuracy03 = 0.375 | |
I0327 14:19:18.776585 21344 solver.cpp:245] Train net output #3: loss1/accuracy04 = 0.125 | |
I0327 14:19:18.776597 21344 solver.cpp:245] Train net output #4: loss1/accuracy05 = 0.125 | |
I0327 14:19:18.776609 21344 solver.cpp:245] Train net output #5: loss1/accuracy06 = 0.125 | |
I0327 14:19:18.776621 21344 solver.cpp:245] Train net output #6: loss1/accuracy07 = 0.75 | |
I0327 14:19:18.776633 21344 solver.cpp:245] Train net output #7: loss1/accuracy08 = 0.875 | |
I0327 14:19:18.776645 21344 solver.cpp:245] Train net output #8: loss1/accuracy09 = 1 | |
I0327 14:19:18.776657 21344 solver.cpp:245] Train net output #9: loss1/accuracy10 = 1 | |
I0327 14:19:18.776669 21344 solver.cpp:245] Train net output #10: loss1/accuracy11 = 1 | |
I0327 14:19:18.776679 21344 solver.cpp:245] Train net output #11: loss1/accuracy12 = 1 | |
I0327 14:19:18.776691 21344 solver.cpp:245] Train net output #12: loss1/accuracy13 = 1 | |
I0327 14:19:18.776702 21344 solver.cpp:245] Train net output #13: loss1/accuracy14 = 1 | |
I0327 14:19:18.776713 21344 solver.cpp:245] Train net output #14: loss1/accuracy15 = 1 | |
I0327 14:19:18.776726 21344 solver.cpp:245] Train net output #15: loss1/accuracy16 = 1 | |
I0327 14:19:18.776736 21344 solver.cpp:245] Train net output #16: loss1/accuracy17 = 1 | |
I0327 14:19:18.776748 21344 solver.cpp:245] Train net output #17: loss1/accuracy18 = 1 | |
I0327 14:19:18.776759 21344 solver.cpp:245] Train net output #18: loss1/accuracy19 = 1 | |
I0327 14:19:18.776787 21344 solver.cpp:245] Train net output #19: loss1/accuracy20 = 1 | |
I0327 14:19:18.776801 21344 solver.cpp:245] Train net output #20: loss1/accuracy21 = 1 | |
I0327 14:19:18.776813 21344 solver.cpp:245] Train net output #21: loss1/accuracy22 = 1 | |
I0327 14:19:18.776829 21344 solver.cpp:245] Train net output #22: loss1/loss01 = 1.48181 (* 0.0272727 = 0.040413 loss) | |
I0327 14:19:18.776844 21344 solver.cpp:245] Train net output #23: loss1/loss02 = 2.74405 (* 0.0272727 = 0.0748377 loss) | |
I0327 14:19:18.776857 21344 solver.cpp:245] Train net output #24: loss1/loss03 = 2.55421 (* 0.0272727 = 0.0696604 loss) | |
I0327 14:19:18.776871 21344 solver.cpp:245] Train net output #25: loss1/loss04 = 3.04577 (* 0.0272727 = 0.0830664 loss) | |
I0327 14:19:18.776885 21344 solver.cpp:245] Train net output #26: loss1/loss05 = 2.42043 (* 0.0272727 = 0.0660116 loss) | |
I0327 14:19:18.776898 21344 solver.cpp:245] Train net output #27: loss1/loss06 = 2.0079 (* 0.0272727 = 0.054761 loss) | |
I0327 14:19:18.776912 21344 solver.cpp:245] Train net output #28: loss1/loss07 = 1.33426 (* 0.0272727 = 0.036389 loss) | |
I0327 14:19:18.776926 21344 solver.cpp:245] Train net output #29: loss1/loss08 = 0.674217 (* 0.0272727 = 0.0183877 loss) | |
I0327 14:19:18.776940 21344 solver.cpp:245] Train net output #30: loss1/loss09 = 0.00720049 (* 0.0272727 = 0.000196377 loss) | |
I0327 14:19:18.776954 21344 solver.cpp:245] Train net output #31: loss1/loss10 = 0.00576841 (* 0.0272727 = 0.00015732 loss) | |
I0327 14:19:18.776968 21344 solver.cpp:245] Train net output #32: loss1/loss11 = 9.03632e-05 (* 0.0272727 = 2.46445e-06 loss) | |
I0327 14:19:18.776983 21344 solver.cpp:245] Train net output #33: loss1/loss12 = 8.56376e-05 (* 0.0272727 = 2.33557e-06 loss) | |
I0327 14:19:18.776996 21344 solver.cpp:245] Train net output #34: loss1/loss13 = 4.43184e-05 (* 0.0272727 = 1.20868e-06 loss) | |
I0327 14:19:18.777010 21344 solver.cpp:245] Train net output #35: loss1/loss14 = 7.64271e-05 (* 0.0272727 = 2.08437e-06 loss) | |
I0327 14:19:18.777025 21344 solver.cpp:245] Train net output #36: loss1/loss15 = 7.22059e-05 (* 0.0272727 = 1.96925e-06 loss) | |
I0327 14:19:18.777040 21344 solver.cpp:245] Train net output #37: loss1/loss16 = 0.000106445 (* 0.0272727 = 2.90303e-06 loss) | |
I0327 14:19:18.777053 21344 solver.cpp:245] Train net output #38: loss1/loss17 = 6.69193e-05 (* 0.0272727 = 1.82507e-06 loss) | |
I0327 14:19:18.777067 21344 solver.cpp:245] Train net output #39: loss1/loss18 = 6.28201e-05 (* 0.0272727 = 1.71328e-06 loss) | |
I0327 14:19:18.777084 21344 solver.cpp:245] Train net output #40: loss1/loss19 = 5.83052e-05 (* 0.0272727 = 1.59014e-06 loss) | |
I0327 14:19:18.777098 21344 solver.cpp:245] Train net output #41: loss1/loss20 = 9.17743e-05 (* 0.0272727 = 2.50294e-06 loss) | |
I0327 14:19:18.777112 21344 solver.cpp:245] Train net output #42: loss1/loss21 = 5.03987e-05 (* 0.0272727 = 1.37451e-06 loss) | |
I0327 14:19:18.777127 21344 solver.cpp:245] Train net output #43: loss1/loss22 = 0.000166269 (* 0.0272727 = 4.53462e-06 loss) | |
I0327 14:19:18.777138 21344 solver.cpp:245] Train net output #44: loss2/accuracy01 = 0.25 | |
I0327 14:19:18.777150 21344 solver.cpp:245] Train net output #45: loss2/accuracy02 = 0.25 | |
I0327 14:19:18.777163 21344 solver.cpp:245] Train net output #46: loss2/accuracy03 = 0.375 | |
I0327 14:19:18.777173 21344 solver.cpp:245] Train net output #47: loss2/accuracy04 = 0.125 | |
I0327 14:19:18.777185 21344 solver.cpp:245] Train net output #48: loss2/accuracy05 = 0.125 | |
I0327 14:19:18.777197 21344 solver.cpp:245] Train net output #49: loss2/accuracy06 = 0.375 | |
I0327 14:19:18.777209 21344 solver.cpp:245] Train net output #50: loss2/accuracy07 = 0.875 | |
I0327 14:19:18.777220 21344 solver.cpp:245] Train net output #51: loss2/accuracy08 = 0.875 | |
I0327 14:19:18.777231 21344 solver.cpp:245] Train net output #52: loss2/accuracy09 = 1 | |
I0327 14:19:18.777242 21344 solver.cpp:245] Train net output #53: loss2/accuracy10 = 1 | |
I0327 14:19:18.777253 21344 solver.cpp:245] Train net output #54: loss2/accuracy11 = 1 | |
I0327 14:19:18.777276 21344 solver.cpp:245] Train net output #55: loss2/accuracy12 = 1 | |
I0327 14:19:18.777287 21344 solver.cpp:245] Train net output #56: loss2/accuracy13 = 1 | |
I0327 14:19:18.777299 21344 solver.cpp:245] Train net output #57: loss2/accuracy14 = 1 | |
I0327 14:19:18.777310 21344 solver.cpp:245] Train net output #58: loss2/accuracy15 = 1 | |
I0327 14:19:18.777321 21344 solver.cpp:245] Train net output #59: loss2/accuracy16 = 1 | |
I0327 14:19:18.777333 21344 solver.cpp:245] Train net output #60: loss2/accuracy17 = 1 | |
I0327 14:19:18.777343 21344 solver.cpp:245] Train net output #61: loss2/accuracy18 = 1 | |
I0327 14:19:18.777354 21344 solver.cpp:245] Train net output #62: loss2/accuracy19 = 1 | |
I0327 14:19:18.777361 21344 solver.cpp:245] Train net output #63: loss2/accuracy20 = 1 | |
I0327 14:19:18.777369 21344 solver.cpp:245] Train net output #64: loss2/accuracy21 = 1 | |
I0327 14:19:18.777381 21344 solver.cpp:245] Train net output #65: loss2/accuracy22 = 1 | |
I0327 14:19:18.777395 21344 solver.cpp:245] Train net output #66: loss2/loss01 = 2.07259 (* 0.0272727 = 0.0565251 loss) | |
I0327 14:19:18.777408 21344 solver.cpp:245] Train net output #67: loss2/loss02 = 2.6602 (* 0.0272727 = 0.0725509 loss) | |
I0327 14:19:18.777422 21344 solver.cpp:245] Train net output #68: loss2/loss03 = 2.45891 (* 0.0272727 = 0.0670611 loss) | |
I0327 14:19:18.777436 21344 solver.cpp:245] Train net output #69: loss2/loss04 = 3.06378 (* 0.0272727 = 0.0835577 loss) | |
I0327 14:19:18.777449 21344 solver.cpp:245] Train net output #70: loss2/loss05 = 2.72921 (* 0.0272727 = 0.0744329 loss) | |
I0327 14:19:18.777463 21344 solver.cpp:245] Train net output #71: loss2/loss06 = 2.26385 (* 0.0272727 = 0.0617413 loss) | |
I0327 14:19:18.777477 21344 solver.cpp:245] Train net output #72: loss2/loss07 = 0.846358 (* 0.0272727 = 0.0230825 loss) | |
I0327 14:19:18.777492 21344 solver.cpp:245] Train net output #73: loss2/loss08 = 0.701606 (* 0.0272727 = 0.0191347 loss) | |
I0327 14:19:18.777505 21344 solver.cpp:245] Train net output #74: loss2/loss09 = 0.0427901 (* 0.0272727 = 0.001167 loss) | |
I0327 14:19:18.777519 21344 solver.cpp:245] Train net output #75: loss2/loss10 = 0.0145918 (* 0.0272727 = 0.000397959 loss) | |
I0327 14:19:18.777532 21344 solver.cpp:245] Train net output #76: loss2/loss11 = 0.000334998 (* 0.0272727 = 9.13631e-06 loss) | |
I0327 14:19:18.777565 21344 solver.cpp:245] Train net output #77: loss2/loss12 = 0.000605081 (* 0.0272727 = 1.65022e-05 loss) | |
I0327 14:19:18.777581 21344 solver.cpp:245] Train net output #78: loss2/loss13 = 0.000806947 (* 0.0272727 = 2.20077e-05 loss) | |
I0327 14:19:18.777595 21344 solver.cpp:245] Train net output #79: loss2/loss14 = 0.000345231 (* 0.0272727 = 9.4154e-06 loss) | |
I0327 14:19:18.777609 21344 solver.cpp:245] Train net output #80: loss2/loss15 = 0.00093144 (* 0.0272727 = 2.54029e-05 loss) | |
I0327 14:19:18.777623 21344 solver.cpp:245] Train net output #81: loss2/loss16 = 0.000360457 (* 0.0272727 = 9.83065e-06 loss) | |
I0327 14:19:18.777637 21344 solver.cpp:245] Train net output #82: loss2/loss17 = 0.000506588 (* 0.0272727 = 1.3816e-05 loss) | |
I0327 14:19:18.777652 21344 solver.cpp:245] Train net output #83: loss2/loss18 = 0.000458009 (* 0.0272727 = 1.24912e-05 loss) | |
I0327 14:19:18.777665 21344 solver.cpp:245] Train net output #84: loss2/loss19 = 0.000709444 (* 0.0272727 = 1.93485e-05 loss) | |
I0327 14:19:18.777678 21344 solver.cpp:245] Train net output #85: loss2/loss20 = 0.000779683 (* 0.0272727 = 2.12641e-05 loss) | |
I0327 14:19:18.777693 21344 solver.cpp:245] Train net output #86: loss2/loss21 = 0.000514648 (* 0.0272727 = 1.40359e-05 loss) | |
I0327 14:19:18.777705 21344 solver.cpp:245] Train net output #87: loss2/loss22 = 0.000902805 (* 0.0272727 = 2.4622e-05 loss) | |
I0327 14:19:18.777717 21344 solver.cpp:245] Train net output #88: loss3/accuracy01 = 0.5 | |
I0327 14:19:18.777729 21344 solver.cpp:245] Train net output #89: loss3/accuracy02 = 0.5 | |
I0327 14:19:18.777741 21344 solver.cpp:245] Train net output #90: loss3/accuracy03 = 0.375 | |
I0327 14:19:18.777765 21344 solver.cpp:245] Train net output #91: loss3/accuracy04 = 0.375 | |
I0327 14:19:18.777778 21344 solver.cpp:245] Train net output #92: loss3/accuracy05 = 0.125 | |
I0327 14:19:18.777791 21344 solver.cpp:245] Train net output #93: loss3/accuracy06 = 0.375 | |
I0327 14:19:18.777802 21344 solver.cpp:245] Train net output #94: loss3/accuracy07 = 0.75 | |
I0327 14:19:18.777813 21344 solver.cpp:245] Train net output #95: loss3/accuracy08 = 0.875 | |
I0327 14:19:18.777824 21344 solver.cpp:245] Train net output #96: loss3/accuracy09 = 1 | |
I0327 14:19:18.777837 21344 solver.cpp:245] Train net output #97: loss3/accuracy10 = 1 | |
I0327 14:19:18.777848 21344 solver.cpp:245] Train net output #98: loss3/accuracy11 = 1 | |
I0327 14:19:18.777858 21344 solver.cpp:245] Train net output #99: loss3/accuracy12 = 1 | |
I0327 14:19:18.777869 21344 solver.cpp:245] Train net output #100: loss3/accuracy13 = 1 | |
I0327 14:19:18.777880 21344 solver.cpp:245] Train net output #101: loss3/accuracy14 = 1 | |
I0327 14:19:18.777891 21344 solver.cpp:245] Train net output #102: loss3/accuracy15 = 1 | |
I0327 14:19:18.777904 21344 solver.cpp:245] Train net output #103: loss3/accuracy16 = 1 | |
I0327 14:19:18.777915 21344 solver.cpp:245] Train net output #104: loss3/accuracy17 = 1 | |
I0327 14:19:18.777925 21344 solver.cpp:245] Train net output #105: loss3/accuracy18 = 1 | |
I0327 14:19:18.777936 21344 solver.cpp:245] Train net output #106: loss3/accuracy19 = 1 | |
I0327 14:19:18.777947 21344 solver.cpp:245] Train net output #107: loss3/accuracy20 = 1 | |
I0327 14:19:18.777958 21344 solver.cpp:245] Train net output #108: loss3/accuracy21 = 1 | |
I0327 14:19:18.777969 21344 solver.cpp:245] Train net output #109: loss3/accuracy22 = 1 | |
I0327 14:19:18.777982 21344 solver.cpp:245] Train net output #110: loss3/loss01 = 1.29006 (* 0.0909091 = 0.117278 loss) | |
I0327 14:19:18.777997 21344 solver.cpp:245] Train net output #111: loss3/loss02 = 2.2686 (* 0.0909091 = 0.206237 loss) | |
I0327 14:19:18.778009 21344 solver.cpp:245] Train net output #112: loss3/loss03 = 2.05048 (* 0.0909091 = 0.186407 loss) | |
I0327 14:19:18.778023 21344 solver.cpp:245] Train net output #113: loss3/loss04 = 2.6676 (* 0.0909091 = 0.242509 loss) | |
I0327 14:19:18.778036 21344 solver.cpp:245] Train net output #114: loss3/loss05 = 2.61792 (* 0.0909091 = 0.237992 loss) | |
I0327 14:19:18.778050 21344 solver.cpp:245] Train net output #115: loss3/loss06 = 2.02089 (* 0.0909091 = 0.183717 loss) | |
I0327 14:19:18.778064 21344 solver.cpp:245] Train net output #116: loss3/loss07 = 1.03577 (* 0.0909091 = 0.0941609 loss) | |
I0327 14:19:18.778077 21344 solver.cpp:245] Train net output #117: loss3/loss08 = 0.822614 (* 0.0909091 = 0.0747831 loss) | |
I0327 14:19:18.778091 21344 solver.cpp:245] Train net output #118: loss3/loss09 = 0.0137973 (* 0.0909091 = 0.0012543 loss) | |
I0327 14:19:18.778105 21344 solver.cpp:245] Train net output #119: loss3/loss10 = 0.00366038 (* 0.0909091 = 0.000332762 loss) | |
I0327 14:19:18.778118 21344 solver.cpp:245] Train net output #120: loss3/loss11 = 0.000153633 (* 0.0909091 = 1.39666e-05 loss) | |
I0327 14:19:18.778136 21344 solver.cpp:245] Train net output #121: loss3/loss12 = 0.000180397 (* 0.0909091 = 1.63997e-05 loss) | |
I0327 14:19:18.778149 21344 solver.cpp:245] Train net output #122: loss3/loss13 = 0.000130654 (* 0.0909091 = 1.18777e-05 loss) | |
I0327 14:19:18.778163 21344 solver.cpp:245] Train net output #123: loss3/loss14 = 0.00011321 (* 0.0909091 = 1.02918e-05 loss) | |
I0327 14:19:18.778177 21344 solver.cpp:245] Train net output #124: loss3/loss15 = 0.000184642 (* 0.0909091 = 1.67856e-05 loss) | |
I0327 14:19:18.778190 21344 solver.cpp:245] Train net output #125: loss3/loss16 = 0.000158549 (* 0.0909091 = 1.44135e-05 loss) | |
I0327 14:19:18.778204 21344 solver.cpp:245] Train net output #126: loss3/loss17 = 0.000138163 (* 0.0909091 = 1.25603e-05 loss) | |
I0327 14:19:18.778218 21344 solver.cpp:245] Train net output #127: loss3/loss18 = 0.00012033 (* 0.0909091 = 1.09391e-05 loss) | |
I0327 14:19:18.778242 21344 solver.cpp:245] Train net output #128: loss3/loss19 = 0.000127928 (* 0.0909091 = 1.16298e-05 loss) | |
I0327 14:19:18.778257 21344 solver.cpp:245] Train net output #129: loss3/loss20 = 0.000130687 (* 0.0909091 = 1.18806e-05 loss) | |
I0327 14:19:18.778271 21344 solver.cpp:245] Train net output #130: loss3/loss21 = 0.000184723 (* 0.0909091 = 1.6793e-05 loss) | |
I0327 14:19:18.778285 21344 solver.cpp:245] Train net output #131: loss3/loss22 = 0.000127226 (* 0.0909091 = 1.1566e-05 loss) | |
I0327 14:19:18.778297 21344 solver.cpp:245] Train net output #132: total_accuracy = 0.125 | |
I0327 14:19:18.778308 21344 solver.cpp:245] Train net output #133: total_confidence = 0.000476407 | |
I0327 14:19:18.778321 21344 sgd_solver.cpp:106] Iteration 25000, lr = 0.01 | |
I0327 14:21:07.229307 21344 solver.cpp:229] Iteration 25500, loss = 2.4247 | |
I0327 14:21:07.229451 21344 solver.cpp:245] Train net output #0: loss1/accuracy01 = 0.25 | |
I0327 14:21:07.229471 21344 solver.cpp:245] Train net output #1: loss1/accuracy02 = 0.125 | |
I0327 14:21:07.229485 21344 solver.cpp:245] Train net output #2: loss1/accuracy03 = 0.25 | |
I0327 14:21:07.229497 21344 solver.cpp:245] Train net output #3: loss1/accuracy04 = 0.25 | |
I0327 14:21:07.229509 21344 solver.cpp:245] Train net output #4: loss1/accuracy05 = 0.5 | |
I0327 14:21:07.229522 21344 solver.cpp:245] Train net output #5: loss1/accuracy06 = 0.625 | |
I0327 14:21:07.229534 21344 solver.cpp:245] Train net output #6: loss1/accuracy07 = 1 | |
I0327 14:21:07.229547 21344 solver.cpp:245] Train net output #7: loss1/accuracy08 = 1 | |
I0327 14:21:07.229558 21344 solver.cpp:245] Train net output #8: loss1/accuracy09 = 1 | |
I0327 14:21:07.229583 21344 solver.cpp:245] Train net output #9: loss1/accuracy10 = 1 | |
I0327 14:21:07.229596 21344 solver.cpp:245] Train net output #10: loss1/accuracy11 = 1 | |
I0327 14:21:07.229609 21344 solver.cpp:245] Train net output #11: loss1/accuracy12 = 1 | |
I0327 14:21:07.229620 21344 solver.cpp:245] Train net output #12: loss1/accuracy13 = 1 | |
I0327 14:21:07.229632 21344 solver.cpp:245] Train net output #13: loss1/accuracy14 = 1 | |
I0327 14:21:07.229645 21344 solver.cpp:245] Train net output #14: loss1/accuracy15 = 1 | |
I0327 14:21:07.229656 21344 solver.cpp:245] Train net output #15: loss1/accuracy16 = 1 | |
I0327 14:21:07.229667 21344 solver.cpp:245] Train net output #16: loss1/accuracy17 = 1 | |
I0327 14:21:07.229679 21344 solver.cpp:245] Train net output #17: loss1/accuracy18 = 1 | |
I0327 14:21:07.229691 21344 solver.cpp:245] Train net output #18: loss1/accuracy19 = 1 | |
I0327 14:21:07.229703 21344 solver.cpp:245] Train net output #19: loss1/accuracy20 = 1 | |
I0327 14:21:07.229715 21344 solver.cpp:245] Train net output #20: loss1/accuracy21 = 1 | |
I0327 14:21:07.229727 21344 solver.cpp:245] Train net output #21: loss1/accuracy22 = 1 | |
I0327 14:21:07.229743 21344 solver.cpp:245] Train net output #22: loss1/loss01 = 2.70713 (* 0.0272727 = 0.0738307 loss) | |
I0327 14:21:07.229758 21344 solver.cpp:245] Train net output #23: loss1/loss02 = 3.33034 (* 0.0272727 = 0.0908275 loss) | |
I0327 14:21:07.229773 21344 solver.cpp:245] Train net output #24: loss1/loss03 = 3.17685 (* 0.0272727 = 0.0866414 loss) | |
I0327 14:21:07.229787 21344 solver.cpp:245] Train net output #25: loss1/loss04 = 2.88566 (* 0.0272727 = 0.0786999 loss) | |
I0327 14:21:07.229801 21344 solver.cpp:245] Train net output #26: loss1/loss05 = 2.21489 (* 0.0272727 = 0.060406 loss) | |
I0327 14:21:07.229815 21344 solver.cpp:245] Train net output #27: loss1/loss06 = 1.35721 (* 0.0272727 = 0.0370148 loss) | |
I0327 14:21:07.229830 21344 solver.cpp:245] Train net output #28: loss1/loss07 = 0.331135 (* 0.0272727 = 0.00903095 loss) | |
I0327 14:21:07.229845 21344 solver.cpp:245] Train net output #29: loss1/loss08 = 0.0618246 (* 0.0272727 = 0.00168613 loss) | |
I0327 14:21:07.229858 21344 solver.cpp:245] Train net output #30: loss1/loss09 = 0.00966211 (* 0.0272727 = 0.000263512 loss) | |
I0327 14:21:07.229873 21344 solver.cpp:245] Train net output #31: loss1/loss10 = 0.00210104 (* 0.0272727 = 5.73012e-05 loss) | |
I0327 14:21:07.229887 21344 solver.cpp:245] Train net output #32: loss1/loss11 = 0.000353976 (* 0.0272727 = 9.65389e-06 loss) | |
I0327 14:21:07.229902 21344 solver.cpp:245] Train net output #33: loss1/loss12 = 0.000509843 (* 0.0272727 = 1.39048e-05 loss) | |
I0327 14:21:07.229917 21344 solver.cpp:245] Train net output #34: loss1/loss13 = 0.000191711 (* 0.0272727 = 5.22848e-06 loss) | |
I0327 14:21:07.229930 21344 solver.cpp:245] Train net output #35: loss1/loss14 = 0.000105338 (* 0.0272727 = 2.87286e-06 loss) | |
I0327 14:21:07.229945 21344 solver.cpp:245] Train net output #36: loss1/loss15 = 0.000164267 (* 0.0272727 = 4.48001e-06 loss) | |
I0327 14:21:07.229959 21344 solver.cpp:245] Train net output #37: loss1/loss16 = 0.000102055 (* 0.0272727 = 2.78333e-06 loss) | |
I0327 14:21:07.229974 21344 solver.cpp:245] Train net output #38: loss1/loss17 = 0.000242816 (* 0.0272727 = 6.62225e-06 loss) | |
I0327 14:21:07.230008 21344 solver.cpp:245] Train net output #39: loss1/loss18 = 0.000361119 (* 0.0272727 = 9.84869e-06 loss) | |
I0327 14:21:07.230023 21344 solver.cpp:245] Train net output #40: loss1/loss19 = 0.000457923 (* 0.0272727 = 1.24888e-05 loss) | |
I0327 14:21:07.230037 21344 solver.cpp:245] Train net output #41: loss1/loss20 = 0.00019892 (* 0.0272727 = 5.4251e-06 loss) | |
I0327 14:21:07.230052 21344 solver.cpp:245] Train net output #42: loss1/loss21 = 9.29818e-05 (* 0.0272727 = 2.53587e-06 loss) | |
I0327 14:21:07.230067 21344 solver.cpp:245] Train net output #43: loss1/loss22 = 0.000330335 (* 0.0272727 = 9.00915e-06 loss) | |
I0327 14:21:07.230078 21344 solver.cpp:245] Train net output #44: loss2/accuracy01 = 0.25 | |
I0327 14:21:07.230092 21344 solver.cpp:245] Train net output #45: loss2/accuracy02 = 0 | |
I0327 14:21:07.230103 21344 solver.cpp:245] Train net output #46: loss2/accuracy03 = 0.125 | |
I0327 14:21:07.230114 21344 solver.cpp:245] Train net output #47: loss2/accuracy04 = 0.625 | |
I0327 14:21:07.230126 21344 solver.cpp:245] Train net output #48: loss2/accuracy05 = 0.625 | |
I0327 14:21:07.230139 21344 solver.cpp:245] Train net output #49: loss2/accuracy06 = 0.625 | |
I0327 14:21:07.230150 21344 solver.cpp:245] Train net output #50: loss2/accuracy07 = 1 | |
I0327 14:21:07.230162 21344 solver.cpp:245] Train net output #51: loss2/accuracy08 = 1 | |
I0327 14:21:07.230175 21344 solver.cpp:245] Train net output #52: loss2/accuracy09 = 1 | |
I0327 14:21:07.230185 21344 solver.cpp:245] Train net output #53: loss2/accuracy10 = 1 | |
I0327 14:21:07.230196 21344 solver.cpp:245] Train net output #54: loss2/accuracy11 = 1 | |
I0327 14:21:07.230208 21344 solver.cpp:245] Train net output #55: loss2/accuracy12 = 1 | |
I0327 14:21:07.230219 21344 solver.cpp:245] Train net output #56: loss2/accuracy13 = 1 | |
I0327 14:21:07.230226 21344 solver.cpp:245] Train net output #57: loss2/accuracy14 = 1 | |
I0327 14:21:07.230239 21344 solver.cpp:245] Train net output #58: loss2/accuracy15 = 1 | |
I0327 14:21:07.230252 21344 solver.cpp:245] Train net output #59: loss2/accuracy16 = 1 | |
I0327 14:21:07.230262 21344 solver.cpp:245] Train net output #60: loss2/accuracy17 = 1 | |
I0327 14:21:07.230274 21344 solver.cpp:245] Train net output #61: loss2/accuracy18 = 1 | |
I0327 14:21:07.230285 21344 solver.cpp:245] Train net output #62: loss2/accuracy19 = 1 | |
I0327 14:21:07.230296 21344 solver.cpp:245] Train net output #63: loss2/accuracy20 = 1 | |
I0327 14:21:07.230309 21344 solver.cpp:245] Train net output #64: loss2/accuracy21 = 1 | |
I0327 14:21:07.230319 21344 solver.cpp:245] Train net output #65: loss2/accuracy22 = 1 | |
I0327 14:21:07.230334 21344 solver.cpp:245] Train net output #66: loss2/loss01 = 2.47229 (* 0.0272727 = 0.067426 loss) | |
I0327 14:21:07.230347 21344 solver.cpp:245] Train net output #67: loss2/loss02 = 3.26755 (* 0.0272727 = 0.0891151 loss) | |
I0327 14:21:07.230362 21344 solver.cpp:245] Train net output #68: loss2/loss03 = 3.09024 (* 0.0272727 = 0.0842793 loss) | |
I0327 14:21:07.230376 21344 solver.cpp:245] Train net output #69: loss2/loss04 = 2.25588 (* 0.0272727 = 0.061524 loss) | |
I0327 14:21:07.230391 21344 solver.cpp:245] Train net output #70: loss2/loss05 = 2.27821 (* 0.0272727 = 0.0621331 loss) | |
I0327 14:21:07.230404 21344 solver.cpp:245] Train net output #71: loss2/loss06 = 1.66641 (* 0.0272727 = 0.0454477 loss) | |
I0327 14:21:07.230418 21344 solver.cpp:245] Train net output #72: loss2/loss07 = 0.38924 (* 0.0272727 = 0.0106156 loss) | |
I0327 14:21:07.230432 21344 solver.cpp:245] Train net output #73: loss2/loss08 = 0.0442067 (* 0.0272727 = 0.00120564 loss) | |
I0327 14:21:07.230446 21344 solver.cpp:245] Train net output #74: loss2/loss09 = 0.00514157 (* 0.0272727 = 0.000140225 loss) | |
I0327 14:21:07.230464 21344 solver.cpp:245] Train net output #75: loss2/loss10 = 0.00299363 (* 0.0272727 = 8.16444e-05 loss) | |
I0327 14:21:07.230479 21344 solver.cpp:245] Train net output #76: loss2/loss11 = 0.000359372 (* 0.0272727 = 9.80107e-06 loss) | |
I0327 14:21:07.230505 21344 solver.cpp:245] Train net output #77: loss2/loss12 = 0.000138988 (* 0.0272727 = 3.79057e-06 loss) | |
I0327 14:21:07.230520 21344 solver.cpp:245] Train net output #78: loss2/loss13 = 0.000225917 (* 0.0272727 = 6.16139e-06 loss) | |
I0327 14:21:07.230535 21344 solver.cpp:245] Train net output #79: loss2/loss14 = 0.000172772 (* 0.0272727 = 4.71196e-06 loss) | |
I0327 14:21:07.230548 21344 solver.cpp:245] Train net output #80: loss2/loss15 = 0.000187195 (* 0.0272727 = 5.10533e-06 loss) | |
I0327 14:21:07.230562 21344 solver.cpp:245] Train net output #81: loss2/loss16 = 0.000184723 (* 0.0272727 = 5.03789e-06 loss) | |
I0327 14:21:07.230576 21344 solver.cpp:245] Train net output #82: loss2/loss17 = 8.59787e-05 (* 0.0272727 = 2.34487e-06 loss) | |
I0327 14:21:07.230590 21344 solver.cpp:245] Train net output #83: loss2/loss18 = 0.000315578 (* 0.0272727 = 8.60668e-06 loss) | |
I0327 14:21:07.230605 21344 solver.cpp:245] Train net output #84: loss2/loss19 = 0.000128757 (* 0.0272727 = 3.51156e-06 loss) | |
I0327 14:21:07.230619 21344 solver.cpp:245] Train net output #85: loss2/loss20 = 0.000199978 (* 0.0272727 = 5.45395e-06 loss) | |
I0327 14:21:07.230633 21344 solver.cpp:245] Train net output #86: loss2/loss21 = 0.000152927 (* 0.0272727 = 4.17074e-06 loss) | |
I0327 14:21:07.230648 21344 solver.cpp:245] Train net output #87: loss2/loss22 = 0.000140375 (* 0.0272727 = 3.8284e-06 loss) | |
I0327 14:21:07.230659 21344 solver.cpp:245] Train net output #88: loss3/accuracy01 = 0.25 | |
I0327 14:21:07.230672 21344 solver.cpp:245] Train net output #89: loss3/accuracy02 = 0 | |
I0327 14:21:07.230684 21344 solver.cpp:245] Train net output #90: loss3/accuracy03 = 0.125 | |
I0327 14:21:07.230695 21344 solver.cpp:245] Train net output #91: loss3/accuracy04 = 0.375 | |
I0327 14:21:07.230707 21344 solver.cpp:245] Train net output #92: loss3/accuracy05 = 0.375 | |
I0327 14:21:07.230718 21344 solver.cpp:245] Train net output #93: loss3/accuracy06 = 0.75 | |
I0327 14:21:07.230731 21344 solver.cpp:245] Train net output #94: loss3/accuracy07 = 1 | |
I0327 14:21:07.230741 21344 solver.cpp:245] Train net output #95: loss3/accuracy08 = 1 | |
I0327 14:21:07.230753 21344 solver.cpp:245] Train net output #96: loss3/accuracy09 = 1 | |
I0327 14:21:07.230764 21344 solver.cpp:245] Train net output #97: loss3/accuracy10 = 1 | |
I0327 14:21:07.230777 21344 solver.cpp:245] Train net output #98: loss3/accuracy11 = 1 | |
I0327 14:21:07.230787 21344 solver.cpp:245] Train net output #99: loss3/accuracy12 = 1 | |
I0327 14:21:07.230799 21344 solver.cpp:245] Train net output #100: loss3/accuracy13 = 1 | |
I0327 14:21:07.230810 21344 solver.cpp:245] Train net output #101: loss3/accuracy14 = 1 | |
I0327 14:21:07.230823 21344 solver.cpp:245] Train net output #102: loss3/accuracy15 = 1 | |
I0327 14:21:07.230834 21344 solver.cpp:245] Train net output #103: loss3/accuracy16 = 1 | |
I0327 14:21:07.230845 21344 solver.cpp:245] Train net output #104: loss3/accuracy17 = 1 | |
I0327 14:21:07.230857 21344 solver.cpp:245] Train net output #105: loss3/accuracy18 = 1 | |
I0327 14:21:07.230868 21344 solver.cpp:245] Train net output #106: loss3/accuracy19 = 1 | |
I0327 14:21:07.230880 21344 solver.cpp:245] Train net output #107: loss3/accuracy20 = 1 | |
I0327 14:21:07.230891 21344 solver.cpp:245] Train net output #108: loss3/accuracy21 = 1 | |
I0327 14:21:07.230902 21344 solver.cpp:245] Train net output #109: loss3/accuracy22 = 1 | |
I0327 14:21:07.230916 21344 solver.cpp:245] Train net output #110: loss3/loss01 = 2.02981 (* 0.0909091 = 0.184528 loss) | |
I0327 14:21:07.230931 21344 solver.cpp:245] Train net output #111: loss3/loss02 = 3.47167 (* 0.0909091 = 0.315607 loss) | |
I0327 14:21:07.230944 21344 solver.cpp:245] Train net output #112: loss3/loss03 = 2.72524 (* 0.0909091 = 0.247749 loss) | |
I0327 14:21:07.230958 21344 solver.cpp:245] Train net output #113: loss3/loss04 = 2.67043 (* 0.0909091 = 0.242767 loss) | |
I0327 14:21:07.230973 21344 solver.cpp:245] Train net output #114: loss3/loss05 = 2.10604 (* 0.0909091 = 0.191459 loss) | |
I0327 14:21:07.230996 21344 solver.cpp:245] Train net output #115: loss3/loss06 = 1.0432 (* 0.0909091 = 0.0948365 loss) | |
I0327 14:21:07.231012 21344 solver.cpp:245] Train net output #116: loss3/loss07 = 0.282637 (* 0.0909091 = 0.0256943 loss) | |
I0327 14:21:07.231026 21344 solver.cpp:245] Train net output #117: loss3/loss08 = 0.0538023 (* 0.0909091 = 0.00489112 loss) | |
I0327 14:21:07.231043 21344 solver.cpp:245] Train net output #118: loss3/loss09 = 0.00551699 (* 0.0909091 = 0.000501544 loss) | |
I0327 14:21:07.231058 21344 solver.cpp:245] Train net output #119: loss3/loss10 = 0.00294984 (* 0.0909091 = 0.000268167 loss) | |
I0327 14:21:07.231072 21344 solver.cpp:245] Train net output #120: loss3/loss11 = 0.000106634 (* 0.0909091 = 9.69404e-06 loss) | |
I0327 14:21:07.231087 21344 solver.cpp:245] Train net output #121: loss3/loss12 = 0.000127821 (* 0.0909091 = 1.16201e-05 loss) | |
I0327 14:21:07.231101 21344 solver.cpp:245] Train net output #122: loss3/loss13 = 0.000141875 (* 0.0909091 = 1.28977e-05 loss) | |
I0327 14:21:07.231115 21344 solver.cpp:245] Train net output #123: loss3/loss14 = 0.000126558 (* 0.0909091 = 1.15053e-05 loss) | |
I0327 14:21:07.231129 21344 solver.cpp:245] Train net output #124: loss3/loss15 = 0.000108973 (* 0.0909091 = 9.90665e-06 loss) | |
I0327 14:21:07.231144 21344 solver.cpp:245] Train net output #125: loss3/loss16 = 0.000121374 (* 0.0909091 = 1.1034e-05 loss) | |
I0327 14:21:07.231158 21344 solver.cpp:245] Train net output #126: loss3/loss17 = 0.000112666 (* 0.0909091 = 1.02424e-05 loss) | |
I0327 14:21:07.231173 21344 solver.cpp:245] Train net output #127: loss3/loss18 = 0.00011326 (* 0.0909091 = 1.02964e-05 loss) | |
I0327 14:21:07.231187 21344 solver.cpp:245] Train net output #128: loss3/loss19 = 0.00011588 (* 0.0909091 = 1.05345e-05 loss) | |
I0327 14:21:07.231201 21344 solver.cpp:245] Train net output #129: loss3/loss20 = 0.000126582 (* 0.0909091 = 1.15075e-05 loss) | |
I0327 14:21:07.231215 21344 solver.cpp:245] Train net output #130: loss3/loss21 = 9.08575e-05 (* 0.0909091 = 8.25977e-06 loss) | |
I0327 14:21:07.231230 21344 solver.cpp:245] Train net output #131: loss3/loss22 = 9.78707e-05 (* 0.0909091 = 8.89734e-06 loss) | |
I0327 14:21:07.231241 21344 solver.cpp:245] Train net output #132: total_accuracy = 0 | |
I0327 14:21:07.231253 21344 solver.cpp:245] Train net output #133: total_confidence = 0.00116113 | |
I0327 14:21:07.231266 21344 sgd_solver.cpp:106] Iteration 25500, lr = 0.01 | |
I0327 14:22:55.535845 21344 solver.cpp:229] Iteration 26000, loss = 2.41636 | |
I0327 14:22:55.536013 21344 solver.cpp:245] Train net output #0: loss1/accuracy01 = 0.5 | |
I0327 14:22:55.536033 21344 solver.cpp:245] Train net output #1: loss1/accuracy02 = 0.125 | |
I0327 14:22:55.536046 21344 solver.cpp:245] Train net output #2: loss1/accuracy03 = 0.125 | |
I0327 14:22:55.536059 21344 solver.cpp:245] Train net output #3: loss1/accuracy04 = 0.5 | |
I0327 14:22:55.536072 21344 solver.cpp:245] Train net output #4: loss1/accuracy05 = 0.5 | |
I0327 14:22:55.536083 21344 solver.cpp:245] Train net output #5: loss1/accuracy06 = 0.375 | |
I0327 14:22:55.536097 21344 solver.cpp:245] Train net output #6: loss1/accuracy07 = 0.875 | |
I0327 14:22:55.536108 21344 solver.cpp:245] Train net output #7: loss1/accuracy08 = 1 | |
I0327 14:22:55.536120 21344 solver.cpp:245] Train net output #8: loss1/accuracy09 = 1 | |
I0327 14:22:55.536133 21344 solver.cpp:245] Train net output #9: loss1/accuracy10 = 1 | |
I0327 14:22:55.536144 21344 solver.cpp:245] Train net output #10: loss1/accuracy11 = 1 | |
I0327 14:22:55.536157 21344 solver.cpp:245] Train net output #11: loss1/accuracy12 = 1 | |
I0327 14:22:55.536169 21344 solver.cpp:245] Train net output #12: loss1/accuracy13 = 1 | |
I0327 14:22:55.536181 21344 solver.cpp:245] Train net output #13: loss1/accuracy14 = 1 | |
I0327 14:22:55.536192 21344 solver.cpp:245] Train net output #14: loss1/accuracy15 = 1 | |
I0327 14:22:55.536204 21344 solver.cpp:245] Train net output #15: loss1/accuracy16 = 1 | |
I0327 14:22:55.536216 21344 solver.cpp:245] Train net output #16: loss1/accuracy17 = 1 | |
I0327 14:22:55.536228 21344 solver.cpp:245] Train net output #17: loss1/accuracy18 = 1 | |
I0327 14:22:55.536240 21344 solver.cpp:245] Train net output #18: loss1/accuracy19 = 1 | |
I0327 14:22:55.536252 21344 solver.cpp:245] Train net output #19: loss1/accuracy20 = 1 | |
I0327 14:22:55.536263 21344 solver.cpp:245] Train net output #20: loss1/accuracy21 = 1 | |
I0327 14:22:55.536275 21344 solver.cpp:245] Train net output #21: loss1/accuracy22 = 1 | |
I0327 14:22:55.536291 21344 solver.cpp:245] Train net output #22: loss1/loss01 = 1.5648 (* 0.0272727 = 0.0426764 loss) | |
I0327 14:22:55.536308 21344 solver.cpp:245] Train net output #23: loss1/loss02 = 2.76909 (* 0.0272727 = 0.0755208 loss) | |
I0327 14:22:55.536321 21344 solver.cpp:245] Train net output #24: loss1/loss03 = 2.62244 (* 0.0272727 = 0.071521 loss) | |
I0327 14:22:55.536335 21344 solver.cpp:245] Train net output #25: loss1/loss04 = 1.82521 (* 0.0272727 = 0.0497786 loss) | |
I0327 14:22:55.536350 21344 solver.cpp:245] Train net output #26: loss1/loss05 = 2.10585 (* 0.0272727 = 0.0574324 loss) | |
I0327 14:22:55.536363 21344 solver.cpp:245] Train net output #27: loss1/loss06 = 2.31764 (* 0.0272727 = 0.0632085 loss) | |
I0327 14:22:55.536377 21344 solver.cpp:245] Train net output #28: loss1/loss07 = 0.970001 (* 0.0272727 = 0.0264546 loss) | |
I0327 14:22:55.536391 21344 solver.cpp:245] Train net output #29: loss1/loss08 = 0.0367633 (* 0.0272727 = 0.00100263 loss) | |
I0327 14:22:55.536406 21344 solver.cpp:245] Train net output #30: loss1/loss09 = 0.00477021 (* 0.0272727 = 0.000130097 loss) | |
I0327 14:22:55.536420 21344 solver.cpp:245] Train net output #31: loss1/loss10 = 0.00182269 (* 0.0272727 = 4.97096e-05 loss) | |
I0327 14:22:55.536434 21344 solver.cpp:245] Train net output #32: loss1/loss11 = 4.52968e-05 (* 0.0272727 = 1.23537e-06 loss) | |
I0327 14:22:55.536449 21344 solver.cpp:245] Train net output #33: loss1/loss12 = 8.99469e-05 (* 0.0272727 = 2.4531e-06 loss) | |
I0327 14:22:55.536463 21344 solver.cpp:245] Train net output #34: loss1/loss13 = 0.000129542 (* 0.0272727 = 3.53297e-06 loss) | |
I0327 14:22:55.536478 21344 solver.cpp:245] Train net output #35: loss1/loss14 = 0.000180329 (* 0.0272727 = 4.91807e-06 loss) | |
I0327 14:22:55.536491 21344 solver.cpp:245] Train net output #36: loss1/loss15 = 0.000161326 (* 0.0272727 = 4.39981e-06 loss) | |
I0327 14:22:55.536505 21344 solver.cpp:245] Train net output #37: loss1/loss16 = 0.000140795 (* 0.0272727 = 3.83988e-06 loss) | |
I0327 14:22:55.536520 21344 solver.cpp:245] Train net output #38: loss1/loss17 = 5.85105e-05 (* 0.0272727 = 1.59574e-06 loss) | |
I0327 14:22:55.536559 21344 solver.cpp:245] Train net output #39: loss1/loss18 = 8.79942e-05 (* 0.0272727 = 2.39984e-06 loss) | |
I0327 14:22:55.536576 21344 solver.cpp:245] Train net output #40: loss1/loss19 = 3.57584e-05 (* 0.0272727 = 9.75229e-07 loss) | |
I0327 14:22:55.536591 21344 solver.cpp:245] Train net output #41: loss1/loss20 = 5.06414e-05 (* 0.0272727 = 1.38113e-06 loss) | |
I0327 14:22:55.536605 21344 solver.cpp:245] Train net output #42: loss1/loss21 = 0.000133751 (* 0.0272727 = 3.64775e-06 loss) | |
I0327 14:22:55.536619 21344 solver.cpp:245] Train net output #43: loss1/loss22 = 9.03538e-05 (* 0.0272727 = 2.46419e-06 loss) | |
I0327 14:22:55.536631 21344 solver.cpp:245] Train net output #44: loss2/accuracy01 = 0.375 | |
I0327 14:22:55.536643 21344 solver.cpp:245] Train net output #45: loss2/accuracy02 = 0.125 | |
I0327 14:22:55.536655 21344 solver.cpp:245] Train net output #46: loss2/accuracy03 = 0.25 | |
I0327 14:22:55.536666 21344 solver.cpp:245] Train net output #47: loss2/accuracy04 = 0.375 | |
I0327 14:22:55.536679 21344 solver.cpp:245] Train net output #48: loss2/accuracy05 = 0.375 | |
I0327 14:22:55.536690 21344 solver.cpp:245] Train net output #49: loss2/accuracy06 = 0.5 | |
I0327 14:22:55.536702 21344 solver.cpp:245] Train net output #50: loss2/accuracy07 = 0.875 | |
I0327 14:22:55.536713 21344 solver.cpp:245] Train net output #51: loss2/accuracy08 = 1 | |
I0327 14:22:55.536725 21344 solver.cpp:245] Train net output #52: loss2/accuracy09 = 1 | |
I0327 14:22:55.536736 21344 solver.cpp:245] Train net output #53: loss2/accuracy10 = 1 | |
I0327 14:22:55.536748 21344 solver.cpp:245] Train net output #54: loss2/accuracy11 = 1 | |
I0327 14:22:55.536759 21344 solver.cpp:245] Train net output #55: loss2/accuracy12 = 1 | |
I0327 14:22:55.536770 21344 solver.cpp:245] Train net output #56: loss2/accuracy13 = 1 | |
I0327 14:22:55.536782 21344 solver.cpp:245] Train net output #57: loss2/accuracy14 = 1 | |
I0327 14:22:55.536793 21344 solver.cpp:245] Train net output #58: loss2/accuracy15 = 1 | |
I0327 14:22:55.536805 21344 solver.cpp:245] Train net output #59: loss2/accuracy16 = 1 | |
I0327 14:22:55.536816 21344 solver.cpp:245] Train net output #60: loss2/accuracy17 = 1 | |
I0327 14:22:55.536828 21344 solver.cpp:245] Train net output #61: loss2/accuracy18 = 1 | |
I0327 14:22:55.536839 21344 solver.cpp:245] Train net output #62: loss2/accuracy19 = 1 | |
I0327 14:22:55.536849 21344 solver.cpp:245] Train net output #63: loss2/accuracy20 = 1 | |
I0327 14:22:55.536861 21344 solver.cpp:245] Train net output #64: loss2/accuracy21 = 1 | |
I0327 14:22:55.536872 21344 solver.cpp:245] Train net output #65: loss2/accuracy22 = 1 | |
I0327 14:22:55.536885 21344 solver.cpp:245] Train net output #66: loss2/loss01 = 1.81988 (* 0.0272727 = 0.049633 loss) | |
I0327 14:22:55.536901 21344 solver.cpp:245] Train net output #67: loss2/loss02 = 2.41048 (* 0.0272727 = 0.0657403 loss) | |
I0327 14:22:55.536916 21344 solver.cpp:245] Train net output #68: loss2/loss03 = 2.99458 (* 0.0272727 = 0.0816705 loss) | |
I0327 14:22:55.536931 21344 solver.cpp:245] Train net output #69: loss2/loss04 = 2.12497 (* 0.0272727 = 0.0579538 loss) | |
I0327 14:22:55.536944 21344 solver.cpp:245] Train net output #70: loss2/loss05 = 1.77073 (* 0.0272727 = 0.0482926 loss) | |
I0327 14:22:55.536957 21344 solver.cpp:245] Train net output #71: loss2/loss06 = 1.78096 (* 0.0272727 = 0.0485717 loss) | |
I0327 14:22:55.536972 21344 solver.cpp:245] Train net output #72: loss2/loss07 = 1.00087 (* 0.0272727 = 0.0272964 loss) | |
I0327 14:22:55.536985 21344 solver.cpp:245] Train net output #73: loss2/loss08 = 0.0429421 (* 0.0272727 = 0.00117115 loss) | |
I0327 14:22:55.537004 21344 solver.cpp:245] Train net output #74: loss2/loss09 = 0.0109232 (* 0.0272727 = 0.000297905 loss) | |
I0327 14:22:55.537019 21344 solver.cpp:245] Train net output #75: loss2/loss10 = 0.00184778 (* 0.0272727 = 5.0394e-05 loss) | |
I0327 14:22:55.537034 21344 solver.cpp:245] Train net output #76: loss2/loss11 = 1.79265e-05 (* 0.0272727 = 4.88904e-07 loss) | |
I0327 14:22:55.537058 21344 solver.cpp:245] Train net output #77: loss2/loss12 = 2.80448e-05 (* 0.0272727 = 7.64857e-07 loss) | |
I0327 14:22:55.537075 21344 solver.cpp:245] Train net output #78: loss2/loss13 = 1.69727e-05 (* 0.0272727 = 4.62892e-07 loss) | |
I0327 14:22:55.537088 21344 solver.cpp:245] Train net output #79: loss2/loss14 = 4.46251e-05 (* 0.0272727 = 1.21705e-06 loss) | |
I0327 14:22:55.537102 21344 solver.cpp:245] Train net output #80: loss2/loss15 = 2.44091e-05 (* 0.0272727 = 6.65703e-07 loss) | |
I0327 14:22:55.537117 21344 solver.cpp:245] Train net output #81: loss2/loss16 = 1.31878e-05 (* 0.0272727 = 3.59666e-07 loss) | |
I0327 14:22:55.537130 21344 solver.cpp:245] Train net output #82: loss2/loss17 = 2.43937e-05 (* 0.0272727 = 6.65282e-07 loss) | |
I0327 14:22:55.537144 21344 solver.cpp:245] Train net output #83: loss2/loss18 = 1.68088e-05 (* 0.0272727 = 4.58421e-07 loss) | |
I0327 14:22:55.537158 21344 solver.cpp:245] Train net output #84: loss2/loss19 = 2.62863e-05 (* 0.0272727 = 7.169e-07 loss) | |
I0327 14:22:55.537173 21344 solver.cpp:245] Train net output #85: loss2/loss20 = 2.25758e-05 (* 0.0272727 = 6.15703e-07 loss) | |
I0327 14:22:55.537186 21344 solver.cpp:245] Train net output #86: loss2/loss21 = 3.56602e-05 (* 0.0272727 = 9.7255e-07 loss) | |
I0327 14:22:55.537200 21344 solver.cpp:245] Train net output #87: loss2/loss22 = 2.36341e-05 (* 0.0272727 = 6.44566e-07 loss) | |
I0327 14:22:55.537212 21344 solver.cpp:245] Train net output #88: loss3/accuracy01 = 0.5 | |
I0327 14:22:55.537225 21344 solver.cpp:245] Train net output #89: loss3/accuracy02 = 0.25 | |
I0327 14:22:55.537236 21344 solver.cpp:245] Train net output #90: loss3/accuracy03 = 0.125 | |
I0327 14:22:55.537248 21344 solver.cpp:245] Train net output #91: loss3/accuracy04 = 0.375 | |
I0327 14:22:55.537261 21344 solver.cpp:245] Train net output #92: loss3/accuracy05 = 0.625 | |
I0327 14:22:55.537272 21344 solver.cpp:245] Train net output #93: loss3/accuracy06 = 0.375 | |
I0327 14:22:55.537284 21344 solver.cpp:245] Train net output #94: loss3/accuracy07 = 0.875 | |
I0327 14:22:55.537295 21344 solver.cpp:245] Train net output #95: loss3/accuracy08 = 1 | |
I0327 14:22:55.537307 21344 solver.cpp:245] Train net output #96: loss3/accuracy09 = 1 | |
I0327 14:22:55.537318 21344 solver.cpp:245] Train net output #97: loss3/accuracy10 = 1 | |
I0327 14:22:55.537329 21344 solver.cpp:245] Train net output #98: loss3/accuracy11 = 1 | |
I0327 14:22:55.537340 21344 solver.cpp:245] Train net output #99: loss3/accuracy12 = 1 | |
I0327 14:22:55.537351 21344 solver.cpp:245] Train net output #100: loss3/accuracy13 = 1 | |
I0327 14:22:55.537364 21344 solver.cpp:245] Train net output #101: loss3/accuracy14 = 1 | |
I0327 14:22:55.537374 21344 solver.cpp:245] Train net output #102: loss3/accuracy15 = 1 | |
I0327 14:22:55.537385 21344 solver.cpp:245] Train net output #103: loss3/accuracy16 = 1 | |
I0327 14:22:55.537396 21344 solver.cpp:245] Train net output #104: loss3/accuracy17 = 1 | |
I0327 14:22:55.537408 21344 solver.cpp:245] Train net output #105: loss3/accuracy18 = 1 | |
I0327 14:22:55.537420 21344 solver.cpp:245] Train net output #106: loss3/accuracy19 = 1 | |
I0327 14:22:55.537431 21344 solver.cpp:245] Train net output #107: loss3/accuracy20 = 1 | |
I0327 14:22:55.537442 21344 solver.cpp:245] Train net output #108: loss3/accuracy21 = 1 | |
I0327 14:22:55.537453 21344 solver.cpp:245] Train net output #109: loss3/accuracy22 = 1 | |
I0327 14:22:55.537467 21344 solver.cpp:245] Train net output #110: loss3/loss01 = 1.47327 (* 0.0909091 = 0.133934 loss) | |
I0327 14:22:55.537480 21344 solver.cpp:245] Train net output #111: loss3/loss02 = 1.96023 (* 0.0909091 = 0.178202 loss) | |
I0327 14:22:55.537494 21344 solver.cpp:245] Train net output #112: loss3/loss03 = 2.82474 (* 0.0909091 = 0.256795 loss) | |
I0327 14:22:55.537508 21344 solver.cpp:245] Train net output #113: loss3/loss04 = 1.91691 (* 0.0909091 = 0.174265 loss) | |
I0327 14:22:55.537523 21344 solver.cpp:245] Train net output #114: loss3/loss05 = 1.61793 (* 0.0909091 = 0.147084 loss) | |
I0327 14:22:55.537564 21344 solver.cpp:245] Train net output #115: loss3/loss06 = 1.9178 (* 0.0909091 = 0.174345 loss) | |
I0327 14:22:55.537580 21344 solver.cpp:245] Train net output #116: loss3/loss07 = 0.727998 (* 0.0909091 = 0.0661817 loss) | |
I0327 14:22:55.537595 21344 solver.cpp:245] Train net output #117: loss3/loss08 = 0.0469809 (* 0.0909091 = 0.00427099 loss) | |
I0327 14:22:55.537608 21344 solver.cpp:245] Train net output #118: loss3/loss09 = 0.00997504 (* 0.0909091 = 0.000906822 loss) | |
I0327 14:22:55.537622 21344 solver.cpp:245] Train net output #119: loss3/loss10 = 0.00248677 (* 0.0909091 = 0.00022607 loss) | |
I0327 14:22:55.537636 21344 solver.cpp:245] Train net output #120: loss3/loss11 = 6.46854e-05 (* 0.0909091 = 5.88049e-06 loss) | |
I0327 14:22:55.537652 21344 solver.cpp:245] Train net output #121: loss3/loss12 = 8.30316e-05 (* 0.0909091 = 7.54832e-06 loss) | |
I0327 14:22:55.537665 21344 solver.cpp:245] Train net output #122: loss3/loss13 = 9.25633e-05 (* 0.0909091 = 8.41484e-06 loss) | |
I0327 14:22:55.537679 21344 solver.cpp:245] Train net output #123: loss3/loss14 = 6.39758e-05 (* 0.0909091 = 5.81598e-06 loss) | |
I0327 14:22:55.537693 21344 solver.cpp:245] Train net output #124: loss3/loss15 = 6.31942e-05 (* 0.0909091 = 5.74493e-06 loss) | |
I0327 14:22:55.537708 21344 solver.cpp:245] Train net output #125: loss3/loss16 = 7.51994e-05 (* 0.0909091 = 6.83631e-06 loss) | |
I0327 14:22:55.537722 21344 solver.cpp:245] Train net output #126: loss3/loss17 = 5.42068e-05 (* 0.0909091 = 4.92789e-06 loss) | |
I0327 14:22:55.537736 21344 solver.cpp:245] Train net output #127: loss3/loss18 = 6.08163e-05 (* 0.0909091 = 5.52875e-06 loss) | |
I0327 14:22:55.537750 21344 solver.cpp:245] Train net output #128: loss3/loss19 = 4.56896e-05 (* 0.0909091 = 4.1536e-06 loss) | |
I0327 14:22:55.537765 21344 solver.cpp:245] Train net output #129: loss3/loss20 = 8.01786e-05 (* 0.0909091 = 7.28897e-06 loss) | |
I0327 14:22:55.537778 21344 solver.cpp:245] Train net output #130: loss3/loss21 = 6.63531e-05 (* 0.0909091 = 6.0321e-06 loss) | |
I0327 14:22:55.537792 21344 solver.cpp:245] Train net output #131: loss3/loss22 = 7.32237e-05 (* 0.0909091 = 6.6567e-06 loss) | |
I0327 14:22:55.537804 21344 solver.cpp:245] Train net output #132: total_accuracy = 0 | |
I0327 14:22:55.537817 21344 solver.cpp:245] Train net output #133: total_confidence = 0.00302173 | |
I0327 14:22:55.537829 21344 sgd_solver.cpp:106] Iteration 26000, lr = 0.01 | |
I0327 14:24:43.894778 21344 solver.cpp:229] Iteration 26500, loss = 2.43568 | |
I0327 14:24:43.894947 21344 solver.cpp:245] Train net output #0: loss1/accuracy01 = 0.75 | |
I0327 14:24:43.894968 21344 solver.cpp:245] Train net output #1: loss1/accuracy02 = 0.125 | |
I0327 14:24:43.894981 21344 solver.cpp:245] Train net output #2: loss1/accuracy03 = 0.375 | |
I0327 14:24:43.894996 21344 solver.cpp:245] Train net output #3: loss1/accuracy04 = 0 | |
I0327 14:24:43.895009 21344 solver.cpp:245] Train net output #4: loss1/accuracy05 = 0.125 | |
I0327 14:24:43.895020 21344 solver.cpp:245] Train net output #5: loss1/accuracy06 = 0.75 | |
I0327 14:24:43.895032 21344 solver.cpp:245] Train net output #6: loss1/accuracy07 = 0.875 | |
I0327 14:24:43.895045 21344 solver.cpp:245] Train net output #7: loss1/accuracy08 = 1 | |
I0327 14:24:43.895056 21344 solver.cpp:245] Train net output #8: loss1/accuracy09 = 1 | |
I0327 14:24:43.895068 21344 solver.cpp:245] Train net output #9: loss1/accuracy10 = 1 | |
I0327 14:24:43.895081 21344 solver.cpp:245] Train net output #10: loss1/accuracy11 = 1 | |
I0327 14:24:43.895093 21344 solver.cpp:245] Train net output #11: loss1/accuracy12 = 1 | |
I0327 14:24:43.895104 21344 solver.cpp:245] Train net output #12: loss1/accuracy13 = 1 | |
I0327 14:24:43.895117 21344 solver.cpp:245] Train net output #13: loss1/accuracy14 = 1 | |
I0327 14:24:43.895128 21344 solver.cpp:245] Train net output #14: loss1/accuracy15 = 1 | |
I0327 14:24:43.895139 21344 solver.cpp:245] Train net output #15: loss1/accuracy16 = 1 | |
I0327 14:24:43.895150 21344 solver.cpp:245] Train net output #16: loss1/accuracy17 = 1 | |
I0327 14:24:43.895162 21344 solver.cpp:245] Train net output #17: loss1/accuracy18 = 1 | |
I0327 14:24:43.895174 21344 solver.cpp:245] Train net output #18: loss1/accuracy19 = 1 | |
I0327 14:24:43.895185 21344 solver.cpp:245] Train net output #19: loss1/accuracy20 = 1 | |
I0327 14:24:43.895200 21344 solver.cpp:245] Train net output #20: loss1/accuracy21 = 1 | |
I0327 14:24:43.895222 21344 solver.cpp:245] Train net output #21: loss1/accuracy22 = 1 | |
I0327 14:24:43.895254 21344 solver.cpp:245] Train net output #22: loss1/loss01 = 1.07641 (* 0.0272727 = 0.0293566 loss) | |
I0327 14:24:43.895280 21344 solver.cpp:245] Train net output #23: loss1/loss02 = 2.82082 (* 0.0272727 = 0.0769315 loss) | |
I0327 14:24:43.895304 21344 solver.cpp:245] Train net output #24: loss1/loss03 = 2.04991 (* 0.0272727 = 0.0559066 loss) | |
I0327 14:24:43.895330 21344 solver.cpp:245] Train net output #25: loss1/loss04 = 2.80167 (* 0.0272727 = 0.0764091 loss) | |
I0327 14:24:43.895359 21344 solver.cpp:245] Train net output #26: loss1/loss05 = 2.66835 (* 0.0272727 = 0.0727731 loss) | |
I0327 14:24:43.895385 21344 solver.cpp:245] Train net output #27: loss1/loss06 = 1.4389 (* 0.0272727 = 0.0392426 loss) | |
I0327 14:24:43.895400 21344 solver.cpp:245] Train net output #28: loss1/loss07 = 0.796142 (* 0.0272727 = 0.021713 loss) | |
I0327 14:24:43.895414 21344 solver.cpp:245] Train net output #29: loss1/loss08 = 0.0245291 (* 0.0272727 = 0.000668975 loss) | |
I0327 14:24:43.895428 21344 solver.cpp:245] Train net output #30: loss1/loss09 = 0.00524537 (* 0.0272727 = 0.000143056 loss) | |
I0327 14:24:43.895442 21344 solver.cpp:245] Train net output #31: loss1/loss10 = 0.00164224 (* 0.0272727 = 4.47882e-05 loss) | |
I0327 14:24:43.895457 21344 solver.cpp:245] Train net output #32: loss1/loss11 = 0.000108553 (* 0.0272727 = 2.96053e-06 loss) | |
I0327 14:24:43.895472 21344 solver.cpp:245] Train net output #33: loss1/loss12 = 0.000155954 (* 0.0272727 = 4.25328e-06 loss) | |
I0327 14:24:43.895486 21344 solver.cpp:245] Train net output #34: loss1/loss13 = 0.000268524 (* 0.0272727 = 7.32338e-06 loss) | |
I0327 14:24:43.895500 21344 solver.cpp:245] Train net output #35: loss1/loss14 = 8.76778e-05 (* 0.0272727 = 2.39121e-06 loss) | |
I0327 14:24:43.895515 21344 solver.cpp:245] Train net output #36: loss1/loss15 = 9.86208e-05 (* 0.0272727 = 2.68966e-06 loss) | |
I0327 14:24:43.895529 21344 solver.cpp:245] Train net output #37: loss1/loss16 = 9.01204e-05 (* 0.0272727 = 2.45783e-06 loss) | |
I0327 14:24:43.895545 21344 solver.cpp:245] Train net output #38: loss1/loss17 = 0.000108241 (* 0.0272727 = 2.95204e-06 loss) | |
I0327 14:24:43.895573 21344 solver.cpp:245] Train net output #39: loss1/loss18 = 0.000124647 (* 0.0272727 = 3.39947e-06 loss) | |
I0327 14:24:43.895588 21344 solver.cpp:245] Train net output #40: loss1/loss19 = 4.43424e-05 (* 0.0272727 = 1.20934e-06 loss) | |
I0327 14:24:43.895602 21344 solver.cpp:245] Train net output #41: loss1/loss20 = 0.000276329 (* 0.0272727 = 7.53624e-06 loss) | |
I0327 14:24:43.895617 21344 solver.cpp:245] Train net output #42: loss1/loss21 = 9.99004e-05 (* 0.0272727 = 2.72456e-06 loss) | |
I0327 14:24:43.895632 21344 solver.cpp:245] Train net output #43: loss1/loss22 = 3.74627e-05 (* 0.0272727 = 1.02171e-06 loss) | |
I0327 14:24:43.895643 21344 solver.cpp:245] Train net output #44: loss2/accuracy01 = 0.75 | |
I0327 14:24:43.895656 21344 solver.cpp:245] Train net output #45: loss2/accuracy02 = 0.25 | |
I0327 14:24:43.895668 21344 solver.cpp:245] Train net output #46: loss2/accuracy03 = 0.125 | |
I0327 14:24:43.895679 21344 solver.cpp:245] Train net output #47: loss2/accuracy04 = 0.125 | |
I0327 14:24:43.895691 21344 solver.cpp:245] Train net output #48: loss2/accuracy05 = 0.125 | |
I0327 14:24:43.895704 21344 solver.cpp:245] Train net output #49: loss2/accuracy06 = 0.5 | |
I0327 14:24:43.895715 21344 solver.cpp:245] Train net output #50: loss2/accuracy07 = 0.875 | |
I0327 14:24:43.895727 21344 solver.cpp:245] Train net output #51: loss2/accuracy08 = 1 | |
I0327 14:24:43.895740 21344 solver.cpp:245] Train net output #52: loss2/accuracy09 = 1 | |
I0327 14:24:43.895756 21344 solver.cpp:245] Train net output #53: loss2/accuracy10 = 1 | |
I0327 14:24:43.895776 21344 solver.cpp:245] Train net output #54: loss2/accuracy11 = 1 | |
I0327 14:24:43.895788 21344 solver.cpp:245] Train net output #55: loss2/accuracy12 = 1 | |
I0327 14:24:43.895800 21344 solver.cpp:245] Train net output #56: loss2/accuracy13 = 1 | |
I0327 14:24:43.895812 21344 solver.cpp:245] Train net output #57: loss2/accuracy14 = 1 | |
I0327 14:24:43.895823 21344 solver.cpp:245] Train net output #58: loss2/accuracy15 = 1 | |
I0327 14:24:43.895834 21344 solver.cpp:245] Train net output #59: loss2/accuracy16 = 1 | |
I0327 14:24:43.895846 21344 solver.cpp:245] Train net output #60: loss2/accuracy17 = 1 | |
I0327 14:24:43.895858 21344 solver.cpp:245] Train net output #61: loss2/accuracy18 = 1 | |
I0327 14:24:43.895869 21344 solver.cpp:245] Train net output #62: loss2/accuracy19 = 1 | |
I0327 14:24:43.895880 21344 solver.cpp:245] Train net output #63: loss2/accuracy20 = 1 | |
I0327 14:24:43.895891 21344 solver.cpp:245] Train net output #64: loss2/accuracy21 = 1 | |
I0327 14:24:43.895903 21344 solver.cpp:245] Train net output #65: loss2/accuracy22 = 1 | |
I0327 14:24:43.895917 21344 solver.cpp:245] Train net output #66: loss2/loss01 = 1.02118 (* 0.0272727 = 0.0278503 loss) | |
I0327 14:24:43.895931 21344 solver.cpp:245] Train net output #67: loss2/loss02 = 2.53361 (* 0.0272727 = 0.0690985 loss) | |
I0327 14:24:43.895946 21344 solver.cpp:245] Train net output #68: loss2/loss03 = 2.68621 (* 0.0272727 = 0.0732603 loss) | |
I0327 14:24:43.895963 21344 solver.cpp:245] Train net output #69: loss2/loss04 = 2.51717 (* 0.0272727 = 0.0686501 loss) | |
I0327 14:24:43.895977 21344 solver.cpp:245] Train net output #70: loss2/loss05 = 2.86953 (* 0.0272727 = 0.0782599 loss) | |
I0327 14:24:43.895992 21344 solver.cpp:245] Train net output #71: loss2/loss06 = 1.30891 (* 0.0272727 = 0.0356975 loss) | |
I0327 14:24:43.896005 21344 solver.cpp:245] Train net output #72: loss2/loss07 = 0.739244 (* 0.0272727 = 0.0201612 loss) | |
I0327 14:24:43.896019 21344 solver.cpp:245] Train net output #73: loss2/loss08 = 0.0372046 (* 0.0272727 = 0.00101467 loss) | |
I0327 14:24:43.896034 21344 solver.cpp:245] Train net output #74: loss2/loss09 = 0.00422677 (* 0.0272727 = 0.000115276 loss) | |
I0327 14:24:43.896050 21344 solver.cpp:245] Train net output #75: loss2/loss10 = 0.000746251 (* 0.0272727 = 2.03523e-05 loss) | |
I0327 14:24:43.896065 21344 solver.cpp:245] Train net output #76: loss2/loss11 = 5.17943e-05 (* 0.0272727 = 1.41257e-06 loss) | |
I0327 14:24:43.896092 21344 solver.cpp:245] Train net output #77: loss2/loss12 = 5.45595e-05 (* 0.0272727 = 1.48799e-06 loss) | |
I0327 14:24:43.896107 21344 solver.cpp:245] Train net output #78: loss2/loss13 = 2.31429e-05 (* 0.0272727 = 6.31169e-07 loss) | |
I0327 14:24:43.896121 21344 solver.cpp:245] Train net output #79: loss2/loss14 = 2.20402e-05 (* 0.0272727 = 6.01096e-07 loss) | |
I0327 14:24:43.896136 21344 solver.cpp:245] Train net output #80: loss2/loss15 = 1.86567e-05 (* 0.0272727 = 5.08819e-07 loss) | |
I0327 14:24:43.896150 21344 solver.cpp:245] Train net output #81: loss2/loss16 = 6.53761e-05 (* 0.0272727 = 1.78299e-06 loss) | |
I0327 14:24:43.896164 21344 solver.cpp:245] Train net output #82: loss2/loss17 = 5.27628e-05 (* 0.0272727 = 1.43899e-06 loss) | |
I0327 14:24:43.896178 21344 solver.cpp:245] Train net output #83: loss2/loss18 = 3.9498e-05 (* 0.0272727 = 1.07722e-06 loss) | |
I0327 14:24:43.896191 21344 solver.cpp:245] Train net output #84: loss2/loss19 = 2.32165e-05 (* 0.0272727 = 6.33178e-07 loss) | |
I0327 14:24:43.896206 21344 solver.cpp:245] Train net output #85: loss2/loss20 = 4.96184e-05 (* 0.0272727 = 1.35323e-06 loss) | |
I0327 14:24:43.896219 21344 solver.cpp:245] Train net output #86: loss2/loss21 = 9.3758e-05 (* 0.0272727 = 2.55704e-06 loss) | |
I0327 14:24:43.896234 21344 solver.cpp:245] Train net output #87: loss2/loss22 = 2.58844e-05 (* 0.0272727 = 7.05938e-07 loss) | |
I0327 14:24:43.896245 21344 solver.cpp:245] Train net output #88: loss3/accuracy01 = 0.875 | |
I0327 14:24:43.896258 21344 solver.cpp:245] Train net output #89: loss3/accuracy02 = 0.5 | |
I0327 14:24:43.896270 21344 solver.cpp:245] Train net output #90: loss3/accuracy03 = 0.625 | |
I0327 14:24:43.896281 21344 solver.cpp:245] Train net output #91: loss3/accuracy04 = 0.375 | |
I0327 14:24:43.896293 21344 solver.cpp:245] Train net output #92: loss3/accuracy05 = 0.25 | |
I0327 14:24:43.896304 21344 solver.cpp:245] Train net output #93: loss3/accuracy06 = 0.875 | |
I0327 14:24:43.896317 21344 solver.cpp:245] Train net output #94: loss3/accuracy07 = 0.75 | |
I0327 14:24:43.896327 21344 solver.cpp:245] Train net output #95: loss3/accuracy08 = 1 | |
I0327 14:24:43.896339 21344 solver.cpp:245] Train net output #96: loss3/accuracy09 = 1 | |
I0327 14:24:43.896350 21344 solver.cpp:245] Train net output #97: loss3/accuracy10 = 1 | |
I0327 14:24:43.896361 21344 solver.cpp:245] Train net output #98: loss3/accuracy11 = 1 | |
I0327 14:24:43.896373 21344 solver.cpp:245] Train net output #99: loss3/accuracy12 = 1 | |
I0327 14:24:43.896384 21344 solver.cpp:245] Train net output #100: loss3/accuracy13 = 1 | |
I0327 14:24:43.896396 21344 solver.cpp:245] Train net output #101: loss3/accuracy14 = 1 | |
I0327 14:24:43.896407 21344 solver.cpp:245] Train net output #102: loss3/accuracy15 = 1 | |
I0327 14:24:43.896419 21344 solver.cpp:245] Train net output #103: loss3/accuracy16 = 1 | |
I0327 14:24:43.896430 21344 solver.cpp:245] Train net output #104: loss3/accuracy17 = 1 | |
I0327 14:24:43.896441 21344 solver.cpp:245] Train net output #105: loss3/accuracy18 = 1 | |
I0327 14:24:43.896452 21344 solver.cpp:245] Train net output #106: loss3/accuracy19 = 1 | |
I0327 14:24:43.896463 21344 solver.cpp:245] Train net output #107: loss3/accuracy20 = 1 | |
I0327 14:24:43.896476 21344 solver.cpp:245] Train net output #108: loss3/accuracy21 = 1 | |
I0327 14:24:43.896487 21344 solver.cpp:245] Train net output #109: loss3/accuracy22 = 1 | |
I0327 14:24:43.896500 21344 solver.cpp:245] Train net output #110: loss3/loss01 = 0.703618 (* 0.0909091 = 0.0639653 loss) | |
I0327 14:24:43.896514 21344 solver.cpp:245] Train net output #111: loss3/loss02 = 1.92067 (* 0.0909091 = 0.174606 loss) | |
I0327 14:24:43.896529 21344 solver.cpp:245] Train net output #112: loss3/loss03 = 1.74485 (* 0.0909091 = 0.158623 loss) | |
I0327 14:24:43.896543 21344 solver.cpp:245] Train net output #113: loss3/loss04 = 2.2212 (* 0.0909091 = 0.201927 loss) | |
I0327 14:24:43.896556 21344 solver.cpp:245] Train net output #114: loss3/loss05 = 2.46223 (* 0.0909091 = 0.223839 loss) | |
I0327 14:24:43.896582 21344 solver.cpp:245] Train net output #115: loss3/loss06 = 0.870109 (* 0.0909091 = 0.0791008 loss) | |
I0327 14:24:43.896597 21344 solver.cpp:245] Train net output #116: loss3/loss07 = 0.722505 (* 0.0909091 = 0.0656823 loss) | |
I0327 14:24:43.896611 21344 solver.cpp:245] Train net output #117: loss3/loss08 = 0.0246521 (* 0.0909091 = 0.0022411 loss) | |
I0327 14:24:43.896625 21344 solver.cpp:245] Train net output #118: loss3/loss09 = 0.00510663 (* 0.0909091 = 0.000464239 loss) | |
I0327 14:24:43.896639 21344 solver.cpp:245] Train net output #119: loss3/loss10 = 0.00133359 (* 0.0909091 = 0.000121236 loss) | |
I0327 14:24:43.896654 21344 solver.cpp:245] Train net output #120: loss3/loss11 = 1.32027e-05 (* 0.0909091 = 1.20024e-06 loss) | |
I0327 14:24:43.896668 21344 solver.cpp:245] Train net output #121: loss3/loss12 = 1.59297e-05 (* 0.0909091 = 1.44816e-06 loss) | |
I0327 14:24:43.896682 21344 solver.cpp:245] Train net output #122: loss3/loss13 = 1.60937e-05 (* 0.0909091 = 1.46306e-06 loss) | |
I0327 14:24:43.896697 21344 solver.cpp:245] Train net output #123: loss3/loss14 = 1.68985e-05 (* 0.0909091 = 1.53623e-06 loss) | |
I0327 14:24:43.896709 21344 solver.cpp:245] Train net output #124: loss3/loss15 = 1.93723e-05 (* 0.0909091 = 1.76112e-06 loss) | |
I0327 14:24:43.896723 21344 solver.cpp:245] Train net output #125: loss3/loss16 = 1.99386e-05 (* 0.0909091 = 1.8126e-06 loss) | |
I0327 14:24:43.896738 21344 solver.cpp:245] Train net output #126: loss3/loss17 = 1.42161e-05 (* 0.0909091 = 1.29237e-06 loss) | |
I0327 14:24:43.896751 21344 solver.cpp:245] Train net output #127: loss3/loss18 = 1.41565e-05 (* 0.0909091 = 1.28695e-06 loss) | |
I0327 14:24:43.896765 21344 solver.cpp:245] Train net output #128: loss3/loss19 = 1.50058e-05 (* 0.0909091 = 1.36417e-06 loss) | |
I0327 14:24:43.896780 21344 solver.cpp:245] Train net output #129: loss3/loss20 = 1.30835e-05 (* 0.0909091 = 1.18941e-06 loss) | |
I0327 14:24:43.896792 21344 solver.cpp:245] Train net output #130: loss3/loss21 = 1.50207e-05 (* 0.0909091 = 1.36552e-06 loss) | |
I0327 14:24:43.896806 21344 solver.cpp:245] Train net output #131: loss3/loss22 = 1.2696e-05 (* 0.0909091 = 1.15418e-06 loss) | |
I0327 14:24:43.896818 21344 solver.cpp:245] Train net output #132: total_accuracy = 0 | |
I0327 14:24:43.896831 21344 solver.cpp:245] Train net output #133: total_confidence = 0.0200405 | |
I0327 14:24:43.896843 21344 sgd_solver.cpp:106] Iteration 26500, lr = 0.01 | |
I0327 14:26:32.150620 21344 solver.cpp:229] Iteration 27000, loss = 2.37812 | |
I0327 14:26:32.150782 21344 solver.cpp:245] Train net output #0: loss1/accuracy01 = 0.375 | |
I0327 14:26:32.150804 21344 solver.cpp:245] Train net output #1: loss1/accuracy02 = 0 | |
I0327 14:26:32.150816 21344 solver.cpp:245] Train net output #2: loss1/accuracy03 = 0.25 | |
I0327 14:26:32.150830 21344 solver.cpp:245] Train net output #3: loss1/accuracy04 = 0.25 | |
I0327 14:26:32.150841 21344 solver.cpp:245] Train net output #4: loss1/accuracy05 = 0.125 | |
I0327 14:26:32.150853 21344 solver.cpp:245] Train net output #5: loss1/accuracy06 = 0.25 | |
I0327 14:26:32.150864 21344 solver.cpp:245] Train net output #6: loss1/accuracy07 = 0.75 | |
I0327 14:26:32.150876 21344 solver.cpp:245] Train net output #7: loss1/accuracy08 = 0.875 | |
I0327 14:26:32.150889 21344 solver.cpp:245] Train net output #8: loss1/accuracy09 = 1 | |
I0327 14:26:32.150902 21344 solver.cpp:245] Train net output #9: loss1/accuracy10 = 1 | |
I0327 14:26:32.150913 21344 solver.cpp:245] Train net output #10: loss1/accuracy11 = 1 | |
I0327 14:26:32.150925 21344 solver.cpp:245] Train net output #11: loss1/accuracy12 = 1 | |
I0327 14:26:32.150936 21344 solver.cpp:245] Train net output #12: loss1/accuracy13 = 1 | |
I0327 14:26:32.150949 21344 solver.cpp:245] Train net output #13: loss1/accuracy14 = 1 | |
I0327 14:26:32.150960 21344 solver.cpp:245] Train net output #14: loss1/accuracy15 = 1 | |
I0327 14:26:32.150972 21344 solver.cpp:245] Train net output #15: loss1/accuracy16 = 1 | |
I0327 14:26:32.150984 21344 solver.cpp:245] Train net output #16: loss1/accuracy17 = 1 | |
I0327 14:26:32.150997 21344 solver.cpp:245] Train net output #17: loss1/accuracy18 = 1 | |
I0327 14:26:32.151010 21344 solver.cpp:245] Train net output #18: loss1/accuracy19 = 1 | |
I0327 14:26:32.151021 21344 solver.cpp:245] Train net output #19: loss1/accuracy20 = 1 | |
I0327 14:26:32.151033 21344 solver.cpp:245] Train net output #20: loss1/accuracy21 = 1 | |
I0327 14:26:32.151046 21344 solver.cpp:245] Train net output #21: loss1/accuracy22 = 1 | |
I0327 14:26:32.151062 21344 solver.cpp:245] Train net output #22: loss1/loss01 = 2.91315 (* 0.0272727 = 0.0794495 loss) | |
I0327 14:26:32.151077 21344 solver.cpp:245] Train net output #23: loss1/loss02 = 3.39223 (* 0.0272727 = 0.0925154 loss) | |
I0327 14:26:32.151092 21344 solver.cpp:245] Train net output #24: loss1/loss03 = 3.29132 (* 0.0272727 = 0.0897633 loss) | |
I0327 14:26:32.151105 21344 solver.cpp:245] Train net output #25: loss1/loss04 = 2.58661 (* 0.0272727 = 0.070544 loss) | |
I0327 14:26:32.151119 21344 solver.cpp:245] Train net output #26: loss1/loss05 = 2.61416 (* 0.0272727 = 0.0712952 loss) | |
I0327 14:26:32.151134 21344 solver.cpp:245] Train net output #27: loss1/loss06 = 2.50498 (* 0.0272727 = 0.0683177 loss) | |
I0327 14:26:32.151147 21344 solver.cpp:245] Train net output #28: loss1/loss07 = 1.0322 (* 0.0272727 = 0.0281508 loss) | |
I0327 14:26:32.151161 21344 solver.cpp:245] Train net output #29: loss1/loss08 = 0.471682 (* 0.0272727 = 0.0128641 loss) | |
I0327 14:26:32.151176 21344 solver.cpp:245] Train net output #30: loss1/loss09 = 0.0375955 (* 0.0272727 = 0.00102533 loss) | |
I0327 14:26:32.151190 21344 solver.cpp:245] Train net output #31: loss1/loss10 = 0.0164111 (* 0.0272727 = 0.000447575 loss) | |
I0327 14:26:32.151206 21344 solver.cpp:245] Train net output #32: loss1/loss11 = 0.00121762 (* 0.0272727 = 3.32078e-05 loss) | |
I0327 14:26:32.151219 21344 solver.cpp:245] Train net output #33: loss1/loss12 = 0.00110503 (* 0.0272727 = 3.01371e-05 loss) | |
I0327 14:26:32.151233 21344 solver.cpp:245] Train net output #34: loss1/loss13 = 0.00213708 (* 0.0272727 = 5.82841e-05 loss) | |
I0327 14:26:32.151247 21344 solver.cpp:245] Train net output #35: loss1/loss14 = 0.00479503 (* 0.0272727 = 0.000130773 loss) | |
I0327 14:26:32.151262 21344 solver.cpp:245] Train net output #36: loss1/loss15 = 0.000890223 (* 0.0272727 = 2.42788e-05 loss) | |
I0327 14:26:32.151276 21344 solver.cpp:245] Train net output #37: loss1/loss16 = 0.00140841 (* 0.0272727 = 3.84111e-05 loss) | |
I0327 14:26:32.151290 21344 solver.cpp:245] Train net output #38: loss1/loss17 = 0.00131372 (* 0.0272727 = 3.58288e-05 loss) | |
I0327 14:26:32.151324 21344 solver.cpp:245] Train net output #39: loss1/loss18 = 0.00259844 (* 0.0272727 = 7.08665e-05 loss) | |
I0327 14:26:32.151340 21344 solver.cpp:245] Train net output #40: loss1/loss19 = 0.000969239 (* 0.0272727 = 2.64338e-05 loss) | |
I0327 14:26:32.151355 21344 solver.cpp:245] Train net output #41: loss1/loss20 = 0.00153254 (* 0.0272727 = 4.17965e-05 loss) | |
I0327 14:26:32.151372 21344 solver.cpp:245] Train net output #42: loss1/loss21 = 0.00239432 (* 0.0272727 = 6.52998e-05 loss) | |
I0327 14:26:32.151399 21344 solver.cpp:245] Train net output #43: loss1/loss22 = 0.00114633 (* 0.0272727 = 3.12636e-05 loss) | |
I0327 14:26:32.151423 21344 solver.cpp:245] Train net output #44: loss2/accuracy01 = 0.25 | |
I0327 14:26:32.151439 21344 solver.cpp:245] Train net output #45: loss2/accuracy02 = 0.125 | |
I0327 14:26:32.151451 21344 solver.cpp:245] Train net output #46: loss2/accuracy03 = 0.25 | |
I0327 14:26:32.151463 21344 solver.cpp:245] Train net output #47: loss2/accuracy04 = 0.375 | |
I0327 14:26:32.151475 21344 solver.cpp:245] Train net output #48: loss2/accuracy05 = 0.375 | |
I0327 14:26:32.151489 21344 solver.cpp:245] Train net output #49: loss2/accuracy06 = 0.375 | |
I0327 14:26:32.151500 21344 solver.cpp:245] Train net output #50: loss2/accuracy07 = 0.75 | |
I0327 14:26:32.151512 21344 solver.cpp:245] Train net output #51: loss2/accuracy08 = 0.875 | |
I0327 14:26:32.151525 21344 solver.cpp:245] Train net output #52: loss2/accuracy09 = 1 | |
I0327 14:26:32.151536 21344 solver.cpp:245] Train net output #53: loss2/accuracy10 = 1 | |
I0327 14:26:32.151548 21344 solver.cpp:245] Train net output #54: loss2/accuracy11 = 1 | |
I0327 14:26:32.151561 21344 solver.cpp:245] Train net output #55: loss2/accuracy12 = 1 | |
I0327 14:26:32.151572 21344 solver.cpp:245] Train net output #56: loss2/accuracy13 = 1 | |
I0327 14:26:32.151583 21344 solver.cpp:245] Train net output #57: loss2/accuracy14 = 1 | |
I0327 14:26:32.151595 21344 solver.cpp:245] Train net output #58: loss2/accuracy15 = 1 | |
I0327 14:26:32.151607 21344 solver.cpp:245] Train net output #59: loss2/accuracy16 = 1 | |
I0327 14:26:32.151618 21344 solver.cpp:245] Train net output #60: loss2/accuracy17 = 1 | |
I0327 14:26:32.151630 21344 solver.cpp:245] Train net output #61: loss2/accuracy18 = 1 | |
I0327 14:26:32.151641 21344 solver.cpp:245] Train net output #62: loss2/accuracy19 = 1 | |
I0327 14:26:32.151654 21344 solver.cpp:245] Train net output #63: loss2/accuracy20 = 1 | |
I0327 14:26:32.151665 21344 solver.cpp:245] Train net output #64: loss2/accuracy21 = 1 | |
I0327 14:26:32.151677 21344 solver.cpp:245] Train net output #65: loss2/accuracy22 = 1 | |
I0327 14:26:32.151690 21344 solver.cpp:245] Train net output #66: loss2/loss01 = 2.41005 (* 0.0272727 = 0.0657287 loss) | |
I0327 14:26:32.151705 21344 solver.cpp:245] Train net output #67: loss2/loss02 = 2.72476 (* 0.0272727 = 0.0743115 loss) | |
I0327 14:26:32.151720 21344 solver.cpp:245] Train net output #68: loss2/loss03 = 2.81157 (* 0.0272727 = 0.0766792 loss) | |
I0327 14:26:32.151733 21344 solver.cpp:245] Train net output #69: loss2/loss04 = 2.40589 (* 0.0272727 = 0.0656151 loss) | |
I0327 14:26:32.151747 21344 solver.cpp:245] Train net output #70: loss2/loss05 = 2.54245 (* 0.0272727 = 0.0693395 loss) | |
I0327 14:26:32.151762 21344 solver.cpp:245] Train net output #71: loss2/loss06 = 2.23012 (* 0.0272727 = 0.0608215 loss) | |
I0327 14:26:32.151775 21344 solver.cpp:245] Train net output #72: loss2/loss07 = 0.718382 (* 0.0272727 = 0.0195922 loss) | |
I0327 14:26:32.151793 21344 solver.cpp:245] Train net output #73: loss2/loss08 = 0.646072 (* 0.0272727 = 0.0176201 loss) | |
I0327 14:26:32.151808 21344 solver.cpp:245] Train net output #74: loss2/loss09 = 0.00526265 (* 0.0272727 = 0.000143527 loss) | |
I0327 14:26:32.151823 21344 solver.cpp:245] Train net output #75: loss2/loss10 = 0.0022028 (* 0.0272727 = 6.00764e-05 loss) | |
I0327 14:26:32.151837 21344 solver.cpp:245] Train net output #76: loss2/loss11 = 5.21865e-05 (* 0.0272727 = 1.42327e-06 loss) | |
I0327 14:26:32.151865 21344 solver.cpp:245] Train net output #77: loss2/loss12 = 0.000110139 (* 0.0272727 = 3.00379e-06 loss) | |
I0327 14:26:32.151880 21344 solver.cpp:245] Train net output #78: loss2/loss13 = 3.54511e-05 (* 0.0272727 = 9.66847e-07 loss) | |
I0327 14:26:32.151895 21344 solver.cpp:245] Train net output #79: loss2/loss14 = 9.05414e-05 (* 0.0272727 = 2.46931e-06 loss) | |
I0327 14:26:32.151909 21344 solver.cpp:245] Train net output #80: loss2/loss15 = 0.000106585 (* 0.0272727 = 2.90686e-06 loss) | |
I0327 14:26:32.151924 21344 solver.cpp:245] Train net output #81: loss2/loss16 = 7.92087e-05 (* 0.0272727 = 2.16024e-06 loss) | |
I0327 14:26:32.151938 21344 solver.cpp:245] Train net output #82: loss2/loss17 = 0.000100341 (* 0.0272727 = 2.73657e-06 loss) | |
I0327 14:26:32.151953 21344 solver.cpp:245] Train net output #83: loss2/loss18 = 7.37987e-05 (* 0.0272727 = 2.01269e-06 loss) | |
I0327 14:26:32.151968 21344 solver.cpp:245] Train net output #84: loss2/loss19 = 8.24549e-05 (* 0.0272727 = 2.24877e-06 loss) | |
I0327 14:26:32.151983 21344 solver.cpp:245] Train net output #85: loss2/loss20 = 4.24106e-05 (* 0.0272727 = 1.15665e-06 loss) | |
I0327 14:26:32.151996 21344 solver.cpp:245] Train net output #86: loss2/loss21 = 6.81319e-05 (* 0.0272727 = 1.85814e-06 loss) | |
I0327 14:26:32.152011 21344 solver.cpp:245] Train net output #87: loss2/loss22 = 0.000100602 (* 0.0272727 = 2.74368e-06 loss) | |
I0327 14:26:32.152024 21344 solver.cpp:245] Train net output #88: loss3/accuracy01 = 0.5 | |
I0327 14:26:32.152036 21344 solver.cpp:245] Train net output #89: loss3/accuracy02 = 0.375 | |
I0327 14:26:32.152052 21344 solver.cpp:245] Train net output #90: loss3/accuracy03 = 0.125 | |
I0327 14:26:32.152065 21344 solver.cpp:245] Train net output #91: loss3/accuracy04 = 0.25 | |
I0327 14:26:32.152076 21344 solver.cpp:245] Train net output #92: loss3/accuracy05 = 0.375 | |
I0327 14:26:32.152088 21344 solver.cpp:245] Train net output #93: loss3/accuracy06 = 0.25 | |
I0327 14:26:32.152101 21344 solver.cpp:245] Train net output #94: loss3/accuracy07 = 0.75 | |
I0327 14:26:32.152112 21344 solver.cpp:245] Train net output #95: loss3/accuracy08 = 0.875 | |
I0327 14:26:32.152123 21344 solver.cpp:245] Train net output #96: loss3/accuracy09 = 1 | |
I0327 14:26:32.152135 21344 solver.cpp:245] Train net output #97: loss3/accuracy10 = 1 | |
I0327 14:26:32.152146 21344 solver.cpp:245] Train net output #98: loss3/accuracy11 = 1 | |
I0327 14:26:32.152158 21344 solver.cpp:245] Train net output #99: loss3/accuracy12 = 1 | |
I0327 14:26:32.152169 21344 solver.cpp:245] Train net output #100: loss3/accuracy13 = 1 | |
I0327 14:26:32.152181 21344 solver.cpp:245] Train net output #101: loss3/accuracy14 = 1 | |
I0327 14:26:32.152192 21344 solver.cpp:245] Train net output #102: loss3/accuracy15 = 1 | |
I0327 14:26:32.152204 21344 solver.cpp:245] Train net output #103: loss3/accuracy16 = 1 | |
I0327 14:26:32.152216 21344 solver.cpp:245] Train net output #104: loss3/accuracy17 = 1 | |
I0327 14:26:32.152227 21344 solver.cpp:245] Train net output #105: loss3/accuracy18 = 1 | |
I0327 14:26:32.152240 21344 solver.cpp:245] Train net output #106: loss3/accuracy19 = 1 | |
I0327 14:26:32.152251 21344 solver.cpp:245] Train net output #107: loss3/accuracy20 = 1 | |
I0327 14:26:32.152262 21344 solver.cpp:245] Train net output #108: loss3/accuracy21 = 1 | |
I0327 14:26:32.152273 21344 solver.cpp:245] Train net output #109: loss3/accuracy22 = 1 | |
I0327 14:26:32.152288 21344 solver.cpp:245] Train net output #110: loss3/loss01 = 2.07525 (* 0.0909091 = 0.188659 loss) | |
I0327 14:26:32.152302 21344 solver.cpp:245] Train net output #111: loss3/loss02 = 2.12949 (* 0.0909091 = 0.19359 loss) | |
I0327 14:26:32.152317 21344 solver.cpp:245] Train net output #112: loss3/loss03 = 2.64103 (* 0.0909091 = 0.240094 loss) | |
I0327 14:26:32.152330 21344 solver.cpp:245] Train net output #113: loss3/loss04 = 2.72284 (* 0.0909091 = 0.247531 loss) | |
I0327 14:26:32.152344 21344 solver.cpp:245] Train net output #114: loss3/loss05 = 2.16777 (* 0.0909091 = 0.19707 loss) | |
I0327 14:26:32.152372 21344 solver.cpp:245] Train net output #115: loss3/loss06 = 2.15725 (* 0.0909091 = 0.196114 loss) | |
I0327 14:26:32.152389 21344 solver.cpp:245] Train net output #116: loss3/loss07 = 0.704467 (* 0.0909091 = 0.0640424 loss) | |
I0327 14:26:32.152402 21344 solver.cpp:245] Train net output #117: loss3/loss08 = 0.54251 (* 0.0909091 = 0.0493191 loss) | |
I0327 14:26:32.152416 21344 solver.cpp:245] Train net output #118: loss3/loss09 = 0.00783952 (* 0.0909091 = 0.000712684 loss) | |
I0327 14:26:32.152431 21344 solver.cpp:245] Train net output #119: loss3/loss10 = 0.00269319 (* 0.0909091 = 0.000244835 loss) | |
I0327 14:26:32.152446 21344 solver.cpp:245] Train net output #120: loss3/loss11 = 8.86359e-05 (* 0.0909091 = 8.05781e-06 loss) | |
I0327 14:26:32.152459 21344 solver.cpp:245] Train net output #121: loss3/loss12 = 9.8508e-05 (* 0.0909091 = 8.95527e-06 loss) | |
I0327 14:26:32.152473 21344 solver.cpp:245] Train net output #122: loss3/loss13 = 0.000143441 (* 0.0909091 = 1.30401e-05 loss) | |
I0327 14:26:32.152487 21344 solver.cpp:245] Train net output #123: loss3/loss14 = 7.4948e-05 (* 0.0909091 = 6.81345e-06 loss) | |
I0327 14:26:32.152501 21344 solver.cpp:245] Train net output #124: loss3/loss15 = 0.000104151 (* 0.0909091 = 9.46829e-06 loss) | |
I0327 14:26:32.152516 21344 solver.cpp:245] Train net output #125: loss3/loss16 = 8.13671e-05 (* 0.0909091 = 7.39701e-06 loss) | |
I0327 14:26:32.152529 21344 solver.cpp:245] Train net output #126: loss3/loss17 = 8.74438e-05 (* 0.0909091 = 7.94944e-06 loss) | |
I0327 14:26:32.152544 21344 solver.cpp:245] Train net output #127: loss3/loss18 = 0.000118908 (* 0.0909091 = 1.08098e-05 loss) | |
I0327 14:26:32.152559 21344 solver.cpp:245] Train net output #128: loss3/loss19 = 8.34536e-05 (* 0.0909091 = 7.58669e-06 loss) | |
I0327 14:26:32.152572 21344 solver.cpp:245] Train net output #129: loss3/loss20 = 9.60387e-05 (* 0.0909091 = 8.73079e-06 loss) | |
I0327 14:26:32.152586 21344 solver.cpp:245] Train net output #130: loss3/loss21 = 9.57704e-05 (* 0.0909091 = 8.7064e-06 loss) | |
I0327 14:26:32.152601 21344 solver.cpp:245] Train net output #131: loss3/loss22 = 9.09616e-05 (* 0.0909091 = 8.26924e-06 loss) | |
I0327 14:26:32.152613 21344 solver.cpp:245] Train net output #132: total_accuracy = 0 | |
I0327 14:26:32.152624 21344 solver.cpp:245] Train net output #133: total_confidence = 0.00253394 | |
I0327 14:26:32.152637 21344 sgd_solver.cpp:106] Iteration 27000, lr = 0.01 | |
I0327 14:28:20.411342 21344 solver.cpp:229] Iteration 27500, loss = 2.37042 | |
I0327 14:28:20.411525 21344 solver.cpp:245] Train net output #0: loss1/accuracy01 = 0.5 | |
I0327 14:28:20.411545 21344 solver.cpp:245] Train net output #1: loss1/accuracy02 = 0.375 | |
I0327 14:28:20.411558 21344 solver.cpp:245] Train net output #2: loss1/accuracy03 = 0 | |
I0327 14:28:20.411571 21344 solver.cpp:245] Train net output #3: loss1/accuracy04 = 0.25 | |
I0327 14:28:20.411583 21344 solver.cpp:245] Train net output #4: loss1/accuracy05 = 0.375 | |
I0327 14:28:20.411595 21344 solver.cpp:245] Train net output #5: loss1/accuracy06 = 0.375 | |
I0327 14:28:20.411607 21344 solver.cpp:245] Train net output #6: loss1/accuracy07 = 0.875 | |
I0327 14:28:20.411619 21344 solver.cpp:245] Train net output #7: loss1/accuracy08 = 1 | |
I0327 14:28:20.411631 21344 solver.cpp:245] Train net output #8: loss1/accuracy09 = 1 | |
I0327 14:28:20.411643 21344 solver.cpp:245] Train net output #9: loss1/accuracy10 = 1 | |
I0327 14:28:20.411655 21344 solver.cpp:245] Train net output #10: loss1/accuracy11 = 1 | |
I0327 14:28:20.411667 21344 solver.cpp:245] Train net output #11: loss1/accuracy12 = 1 | |
I0327 14:28:20.411679 21344 solver.cpp:245] Train net output #12: loss1/accuracy13 = 1 | |
I0327 14:28:20.411690 21344 solver.cpp:245] Train net output #13: loss1/accuracy14 = 1 | |
I0327 14:28:20.411701 21344 solver.cpp:245] Train net output #14: loss1/accuracy15 = 1 | |
I0327 14:28:20.411713 21344 solver.cpp:245] Train net output #15: loss1/accuracy16 = 1 | |
I0327 14:28:20.411725 21344 solver.cpp:245] Train net output #16: loss1/accuracy17 = 1 | |
I0327 14:28:20.411736 21344 solver.cpp:245] Train net output #17: loss1/accuracy18 = 1 | |
I0327 14:28:20.411748 21344 solver.cpp:245] Train net output #18: loss1/accuracy19 = 1 | |
I0327 14:28:20.411759 21344 solver.cpp:245] Train net output #19: loss1/accuracy20 = 1 | |
I0327 14:28:20.411772 21344 solver.cpp:245] Train net output #20: loss1/accuracy21 = 1 | |
I0327 14:28:20.411782 21344 solver.cpp:245] Train net output #21: loss1/accuracy22 = 1 | |
I0327 14:28:20.411798 21344 solver.cpp:245] Train net output #22: loss1/loss01 = 1.69631 (* 0.0272727 = 0.0462631 loss) | |
I0327 14:28:20.411813 21344 solver.cpp:245] Train net output #23: loss1/loss02 = 2.17176 (* 0.0272727 = 0.0592298 loss) | |
I0327 14:28:20.411828 21344 solver.cpp:245] Train net output #24: loss1/loss03 = 3.02526 (* 0.0272727 = 0.082507 loss) | |
I0327 14:28:20.411842 21344 solver.cpp:245] Train net output #25: loss1/loss04 = 3.29563 (* 0.0272727 = 0.0898809 loss) | |
I0327 14:28:20.411855 21344 solver.cpp:245] Train net output #26: loss1/loss05 = 2.08237 (* 0.0272727 = 0.0567919 loss) | |
I0327 14:28:20.411870 21344 solver.cpp:245] Train net output #27: loss1/loss06 = 2.32821 (* 0.0272727 = 0.0634967 loss) | |
I0327 14:28:20.411883 21344 solver.cpp:245] Train net output #28: loss1/loss07 = 0.507427 (* 0.0272727 = 0.0138389 loss) | |
I0327 14:28:20.411898 21344 solver.cpp:245] Train net output #29: loss1/loss08 = 0.0300475 (* 0.0272727 = 0.000819478 loss) | |
I0327 14:28:20.411912 21344 solver.cpp:245] Train net output #30: loss1/loss09 = 0.00848167 (* 0.0272727 = 0.000231318 loss) | |
I0327 14:28:20.411926 21344 solver.cpp:245] Train net output #31: loss1/loss10 = 0.00174422 (* 0.0272727 = 4.75697e-05 loss) | |
I0327 14:28:20.411942 21344 solver.cpp:245] Train net output #32: loss1/loss11 = 2.17414e-05 (* 0.0272727 = 5.92947e-07 loss) | |
I0327 14:28:20.411955 21344 solver.cpp:245] Train net output #33: loss1/loss12 = 9.15868e-05 (* 0.0272727 = 2.49782e-06 loss) | |
I0327 14:28:20.411969 21344 solver.cpp:245] Train net output #34: loss1/loss13 = 0.000101423 (* 0.0272727 = 2.76608e-06 loss) | |
I0327 14:28:20.411983 21344 solver.cpp:245] Train net output #35: loss1/loss14 = 3.9812e-05 (* 0.0272727 = 1.08578e-06 loss) | |
I0327 14:28:20.412001 21344 solver.cpp:245] Train net output #36: loss1/loss15 = 4.52582e-05 (* 0.0272727 = 1.23431e-06 loss) | |
I0327 14:28:20.412016 21344 solver.cpp:245] Train net output #37: loss1/loss16 = 6.06397e-05 (* 0.0272727 = 1.65381e-06 loss) | |
I0327 14:28:20.412030 21344 solver.cpp:245] Train net output #38: loss1/loss17 = 4.36131e-05 (* 0.0272727 = 1.18945e-06 loss) | |
I0327 14:28:20.412061 21344 solver.cpp:245] Train net output #39: loss1/loss18 = 4.7934e-05 (* 0.0272727 = 1.30729e-06 loss) | |
I0327 14:28:20.412078 21344 solver.cpp:245] Train net output #40: loss1/loss19 = 4.5519e-05 (* 0.0272727 = 1.24143e-06 loss) | |
I0327 14:28:20.412092 21344 solver.cpp:245] Train net output #41: loss1/loss20 = 3.727e-05 (* 0.0272727 = 1.01645e-06 loss) | |
I0327 14:28:20.412107 21344 solver.cpp:245] Train net output #42: loss1/loss21 = 7.43455e-05 (* 0.0272727 = 2.02761e-06 loss) | |
I0327 14:28:20.412122 21344 solver.cpp:245] Train net output #43: loss1/loss22 = 5.9186e-05 (* 0.0272727 = 1.61416e-06 loss) | |
I0327 14:28:20.412133 21344 solver.cpp:245] Train net output #44: loss2/accuracy01 = 0.5 | |
I0327 14:28:20.412147 21344 solver.cpp:245] Train net output #45: loss2/accuracy02 = 0 | |
I0327 14:28:20.412158 21344 solver.cpp:245] Train net output #46: loss2/accuracy03 = 0 | |
I0327 14:28:20.412169 21344 solver.cpp:245] Train net output #47: loss2/accuracy04 = 0.375 | |
I0327 14:28:20.412181 21344 solver.cpp:245] Train net output #48: loss2/accuracy05 = 0.5 | |
I0327 14:28:20.412194 21344 solver.cpp:245] Train net output #49: loss2/accuracy06 = 0.25 | |
I0327 14:28:20.412205 21344 solver.cpp:245] Train net output #50: loss2/accuracy07 = 0.875 | |
I0327 14:28:20.412217 21344 solver.cpp:245] Train net output #51: loss2/accuracy08 = 1 | |
I0327 14:28:20.412230 21344 solver.cpp:245] Train net output #52: loss2/accuracy09 = 1 | |
I0327 14:28:20.412240 21344 solver.cpp:245] Train net output #53: loss2/accuracy10 = 1 | |
I0327 14:28:20.412251 21344 solver.cpp:245] Train net output #54: loss2/accuracy11 = 1 | |
I0327 14:28:20.412263 21344 solver.cpp:245] Train net output #55: loss2/accuracy12 = 1 | |
I0327 14:28:20.412276 21344 solver.cpp:245] Train net output #56: loss2/accuracy13 = 1 | |
I0327 14:28:20.412286 21344 solver.cpp:245] Train net output #57: loss2/accuracy14 = 1 | |
I0327 14:28:20.412298 21344 solver.cpp:245] Train net output #58: loss2/accuracy15 = 1 | |
I0327 14:28:20.412310 21344 solver.cpp:245] Train net output #59: loss2/accuracy16 = 1 | |
I0327 14:28:20.412322 21344 solver.cpp:245] Train net output #60: loss2/accuracy17 = 1 | |
I0327 14:28:20.412333 21344 solver.cpp:245] Train net output #61: loss2/accuracy18 = 1 | |
I0327 14:28:20.412344 21344 solver.cpp:245] Train net output #62: loss2/accuracy19 = 1 | |
I0327 14:28:20.412355 21344 solver.cpp:245] Train net output #63: loss2/accuracy20 = 1 | |
I0327 14:28:20.412367 21344 solver.cpp:245] Train net output #64: loss2/accuracy21 = 1 | |
I0327 14:28:20.412379 21344 solver.cpp:245] Train net output #65: loss2/accuracy22 = 1 | |
I0327 14:28:20.412392 21344 solver.cpp:245] Train net output #66: loss2/loss01 = 1.56412 (* 0.0272727 = 0.0426578 loss) | |
I0327 14:28:20.412406 21344 solver.cpp:245] Train net output #67: loss2/loss02 = 2.41752 (* 0.0272727 = 0.0659325 loss) | |
I0327 14:28:20.412420 21344 solver.cpp:245] Train net output #68: loss2/loss03 = 3.05172 (* 0.0272727 = 0.0832288 loss) | |
I0327 14:28:20.412434 21344 solver.cpp:245] Train net output #69: loss2/loss04 = 2.72753 (* 0.0272727 = 0.0743873 loss) | |
I0327 14:28:20.412448 21344 solver.cpp:245] Train net output #70: loss2/loss05 = 1.86125 (* 0.0272727 = 0.0507613 loss) | |
I0327 14:28:20.412462 21344 solver.cpp:245] Train net output #71: loss2/loss06 = 2.31529 (* 0.0272727 = 0.0631443 loss) | |
I0327 14:28:20.412477 21344 solver.cpp:245] Train net output #72: loss2/loss07 = 0.555671 (* 0.0272727 = 0.0151547 loss) | |
I0327 14:28:20.412490 21344 solver.cpp:245] Train net output #73: loss2/loss08 = 0.0631192 (* 0.0272727 = 0.00172143 loss) | |
I0327 14:28:20.412505 21344 solver.cpp:245] Train net output #74: loss2/loss09 = 0.0153546 (* 0.0272727 = 0.000418762 loss) | |
I0327 14:28:20.412519 21344 solver.cpp:245] Train net output #75: loss2/loss10 = 0.0057204 (* 0.0272727 = 0.000156011 loss) | |
I0327 14:28:20.412538 21344 solver.cpp:245] Train net output #76: loss2/loss11 = 0.000280285 (* 0.0272727 = 7.64413e-06 loss) | |
I0327 14:28:20.412564 21344 solver.cpp:245] Train net output #77: loss2/loss12 = 0.000352547 (* 0.0272727 = 9.61492e-06 loss) | |
I0327 14:28:20.412580 21344 solver.cpp:245] Train net output #78: loss2/loss13 = 0.000313081 (* 0.0272727 = 8.53856e-06 loss) | |
I0327 14:28:20.412595 21344 solver.cpp:245] Train net output #79: loss2/loss14 = 0.000142332 (* 0.0272727 = 3.88178e-06 loss) | |
I0327 14:28:20.412608 21344 solver.cpp:245] Train net output #80: loss2/loss15 = 0.000527631 (* 0.0272727 = 1.43899e-05 loss) | |
I0327 14:28:20.412622 21344 solver.cpp:245] Train net output #81: loss2/loss16 = 0.000137165 (* 0.0272727 = 3.74087e-06 loss) | |
I0327 14:28:20.412636 21344 solver.cpp:245] Train net output #82: loss2/loss17 = 0.000462162 (* 0.0272727 = 1.26044e-05 loss) | |
I0327 14:28:20.412649 21344 solver.cpp:245] Train net output #83: loss2/loss18 = 0.000511235 (* 0.0272727 = 1.39428e-05 loss) | |
I0327 14:28:20.412664 21344 solver.cpp:245] Train net output #84: loss2/loss19 = 0.000206628 (* 0.0272727 = 5.6353e-06 loss) | |
I0327 14:28:20.412678 21344 solver.cpp:245] Train net output #85: loss2/loss20 = 0.000240644 (* 0.0272727 = 6.56302e-06 loss) | |
I0327 14:28:20.412693 21344 solver.cpp:245] Train net output #86: loss2/loss21 = 0.000325434 (* 0.0272727 = 8.87547e-06 loss) | |
I0327 14:28:20.412706 21344 solver.cpp:245] Train net output #87: loss2/loss22 = 0.000318537 (* 0.0272727 = 8.68736e-06 loss) | |
I0327 14:28:20.412719 21344 solver.cpp:245] Train net output #88: loss3/accuracy01 = 0.75 | |
I0327 14:28:20.412730 21344 solver.cpp:245] Train net output #89: loss3/accuracy02 = 0.375 | |
I0327 14:28:20.412742 21344 solver.cpp:245] Train net output #90: loss3/accuracy03 = 0 | |
I0327 14:28:20.412753 21344 solver.cpp:245] Train net output #91: loss3/accuracy04 = 0.5 | |
I0327 14:28:20.412765 21344 solver.cpp:245] Train net output #92: loss3/accuracy05 = 0.25 | |
I0327 14:28:20.412777 21344 solver.cpp:245] Train net output #93: loss3/accuracy06 = 0.375 | |
I0327 14:28:20.412788 21344 solver.cpp:245] Train net output #94: loss3/accuracy07 = 0.875 | |
I0327 14:28:20.412801 21344 solver.cpp:245] Train net output #95: loss3/accuracy08 = 1 | |
I0327 14:28:20.412812 21344 solver.cpp:245] Train net output #96: loss3/accuracy09 = 1 | |
I0327 14:28:20.412823 21344 solver.cpp:245] Train net output #97: loss3/accuracy10 = 1 | |
I0327 14:28:20.412834 21344 solver.cpp:245] Train net output #98: loss3/accuracy11 = 1 | |
I0327 14:28:20.412845 21344 solver.cpp:245] Train net output #99: loss3/accuracy12 = 1 | |
I0327 14:28:20.412858 21344 solver.cpp:245] Train net output #100: loss3/accuracy13 = 1 | |
I0327 14:28:20.412868 21344 solver.cpp:245] Train net output #101: loss3/accuracy14 = 1 | |
I0327 14:28:20.412880 21344 solver.cpp:245] Train net output #102: loss3/accuracy15 = 1 | |
I0327 14:28:20.412891 21344 solver.cpp:245] Train net output #103: loss3/accuracy16 = 1 | |
I0327 14:28:20.412904 21344 solver.cpp:245] Train net output #104: loss3/accuracy17 = 1 | |
I0327 14:28:20.412914 21344 solver.cpp:245] Train net output #105: loss3/accuracy18 = 1 | |
I0327 14:28:20.412925 21344 solver.cpp:245] Train net output #106: loss3/accuracy19 = 1 | |
I0327 14:28:20.412936 21344 solver.cpp:245] Train net output #107: loss3/accuracy20 = 1 | |
I0327 14:28:20.412947 21344 solver.cpp:245] Train net output #108: loss3/accuracy21 = 1 | |
I0327 14:28:20.412960 21344 solver.cpp:245] Train net output #109: loss3/accuracy22 = 1 | |
I0327 14:28:20.412973 21344 solver.cpp:245] Train net output #110: loss3/loss01 = 1.00648 (* 0.0909091 = 0.091498 loss) | |
I0327 14:28:20.412987 21344 solver.cpp:245] Train net output #111: loss3/loss02 = 1.87389 (* 0.0909091 = 0.170354 loss) | |
I0327 14:28:20.413002 21344 solver.cpp:245] Train net output #112: loss3/loss03 = 2.68191 (* 0.0909091 = 0.24381 loss) | |
I0327 14:28:20.413015 21344 solver.cpp:245] Train net output #113: loss3/loss04 = 2.2445 (* 0.0909091 = 0.204045 loss) | |
I0327 14:28:20.413029 21344 solver.cpp:245] Train net output #114: loss3/loss05 = 2.21574 (* 0.0909091 = 0.201431 loss) | |
I0327 14:28:20.413058 21344 solver.cpp:245] Train net output #115: loss3/loss06 = 2.18504 (* 0.0909091 = 0.19864 loss) | |
I0327 14:28:20.413074 21344 solver.cpp:245] Train net output #116: loss3/loss07 = 0.38037 (* 0.0909091 = 0.0345791 loss) | |
I0327 14:28:20.413087 21344 solver.cpp:245] Train net output #117: loss3/loss08 = 0.0175006 (* 0.0909091 = 0.00159096 loss) | |
I0327 14:28:20.413102 21344 solver.cpp:245] Train net output #118: loss3/loss09 = 0.00418773 (* 0.0909091 = 0.000380703 loss) | |
I0327 14:28:20.413116 21344 solver.cpp:245] Train net output #119: loss3/loss10 = 0.0014082 (* 0.0909091 = 0.000128018 loss) | |
I0327 14:28:20.413130 21344 solver.cpp:245] Train net output #120: loss3/loss11 = 0.000126498 (* 0.0909091 = 1.14999e-05 loss) | |
I0327 14:28:20.413146 21344 solver.cpp:245] Train net output #121: loss3/loss12 = 0.00015199 (* 0.0909091 = 1.38173e-05 loss) | |
I0327 14:28:20.413159 21344 solver.cpp:245] Train net output #122: loss3/loss13 = 0.000123037 (* 0.0909091 = 1.11852e-05 loss) | |
I0327 14:28:20.413173 21344 solver.cpp:245] Train net output #123: loss3/loss14 = 8.98724e-05 (* 0.0909091 = 8.17022e-06 loss) | |
I0327 14:28:20.413183 21344 solver.cpp:245] Train net output #124: loss3/loss15 = 0.000106019 (* 0.0909091 = 9.63812e-06 loss) | |
I0327 14:28:20.413193 21344 solver.cpp:245] Train net output #125: loss3/loss16 = 0.000107762 (* 0.0909091 = 9.79652e-06 loss) | |
I0327 14:28:20.413208 21344 solver.cpp:245] Train net output #126: loss3/loss17 = 6.372e-05 (* 0.0909091 = 5.79273e-06 loss) | |
I0327 14:28:20.413223 21344 solver.cpp:245] Train net output #127: loss3/loss18 = 7.80476e-05 (* 0.0909091 = 7.09523e-06 loss) | |
I0327 14:28:20.413236 21344 solver.cpp:245] Train net output #128: loss3/loss19 = 7.51303e-05 (* 0.0909091 = 6.83003e-06 loss) | |
I0327 14:28:20.413250 21344 solver.cpp:245] Train net output #129: loss3/loss20 = 7.55188e-05 (* 0.0909091 = 6.86535e-06 loss) | |
I0327 14:28:20.413264 21344 solver.cpp:245] Train net output #130: loss3/loss21 = 8.33529e-05 (* 0.0909091 = 7.57754e-06 loss) | |
I0327 14:28:20.413278 21344 solver.cpp:245] Train net output #131: loss3/loss22 = 9.20666e-05 (* 0.0909091 = 8.36969e-06 loss) | |
I0327 14:28:20.413290 21344 solver.cpp:245] Train net output #132: total_accuracy = 0 | |
I0327 14:28:20.413302 21344 solver.cpp:245] Train net output #133: total_confidence = 0.0328967 | |
I0327 14:28:20.413314 21344 sgd_solver.cpp:106] Iteration 27500, lr = 0.01 | |
I0327 14:30:08.731334 21344 solver.cpp:229] Iteration 28000, loss = 2.35233 | |
I0327 14:30:08.731519 21344 solver.cpp:245] Train net output #0: loss1/accuracy01 = 0.375 | |
I0327 14:30:08.731540 21344 solver.cpp:245] Train net output #1: loss1/accuracy02 = 0.25 | |
I0327 14:30:08.731554 21344 solver.cpp:245] Train net output #2: loss1/accuracy03 = 0.125 | |
I0327 14:30:08.731565 21344 solver.cpp:245] Train net output #3: loss1/accuracy04 = 0.25 | |
I0327 14:30:08.731576 21344 solver.cpp:245] Train net output #4: loss1/accuracy05 = 0.375 | |
I0327 14:30:08.731588 21344 solver.cpp:245] Train net output #5: loss1/accuracy06 = 0.625 | |
I0327 14:30:08.731601 21344 solver.cpp:245] Train net output #6: loss1/accuracy07 = 0.875 | |
I0327 14:30:08.731613 21344 solver.cpp:245] Train net output #7: loss1/accuracy08 = 0.875 | |
I0327 14:30:08.731626 21344 solver.cpp:245] Train net output #8: loss1/accuracy09 = 1 | |
I0327 14:30:08.731637 21344 solver.cpp:245] Train net output #9: loss1/accuracy10 = 1 | |
I0327 14:30:08.731648 21344 solver.cpp:245] Train net output #10: loss1/accuracy11 = 1 | |
I0327 14:30:08.731660 21344 solver.cpp:245] Train net output #11: loss1/accuracy12 = 1 | |
I0327 14:30:08.731672 21344 solver.cpp:245] Train net output #12: loss1/accuracy13 = 1 | |
I0327 14:30:08.731683 21344 solver.cpp:245] Train net output #13: loss1/accuracy14 = 1 | |
I0327 14:30:08.731694 21344 solver.cpp:245] Train net output #14: loss1/accuracy15 = 1 | |
I0327 14:30:08.731706 21344 solver.cpp:245] Train net output #15: loss1/accuracy16 = 1 | |
I0327 14:30:08.731717 21344 solver.cpp:245] Train net output #16: loss1/accuracy17 = 1 | |
I0327 14:30:08.731729 21344 solver.cpp:245] Train net output #17: loss1/accuracy18 = 1 | |
I0327 14:30:08.731740 21344 solver.cpp:245] Train net output #18: loss1/accuracy19 = 1 | |
I0327 14:30:08.731752 21344 solver.cpp:245] Train net output #19: loss1/accuracy20 = 1 | |
I0327 14:30:08.731763 21344 solver.cpp:245] Train net output #20: loss1/accuracy21 = 1 | |
I0327 14:30:08.731775 21344 solver.cpp:245] Train net output #21: loss1/accuracy22 = 1 | |
I0327 14:30:08.731791 21344 solver.cpp:245] Train net output #22: loss1/loss01 = 1.9655 (* 0.0272727 = 0.0536045 loss) | |
I0327 14:30:08.731806 21344 solver.cpp:245] Train net output #23: loss1/loss02 = 2.88463 (* 0.0272727 = 0.0786718 loss) | |
I0327 14:30:08.731819 21344 solver.cpp:245] Train net output #24: loss1/loss03 = 3.07615 (* 0.0272727 = 0.083895 loss) | |
I0327 14:30:08.731833 21344 solver.cpp:245] Train net output #25: loss1/loss04 = 3.25196 (* 0.0272727 = 0.0886899 loss) | |
I0327 14:30:08.731848 21344 solver.cpp:245] Train net output #26: loss1/loss05 = 1.90994 (* 0.0272727 = 0.0520892 loss) | |
I0327 14:30:08.731861 21344 solver.cpp:245] Train net output #27: loss1/loss06 = 1.38553 (* 0.0272727 = 0.0377872 loss) | |
I0327 14:30:08.731875 21344 solver.cpp:245] Train net output #28: loss1/loss07 = 0.923126 (* 0.0272727 = 0.0251762 loss) | |
I0327 14:30:08.731889 21344 solver.cpp:245] Train net output #29: loss1/loss08 = 0.564068 (* 0.0272727 = 0.0153837 loss) |
View raw
(Sorry about that, but we can’t show files that are this big right now.)
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment