Skip to content

Instantly share code, notes, and snippets.

@stas-sl
Last active April 19, 2016 15:17
Show Gist options
  • Save stas-sl/d3e20a04fd778617075df4f9d149ee36 to your computer and use it in GitHub Desktop.
Save stas-sl/d3e20a04fd778617075df4f9d149ee36 to your computer and use it in GitHub Desktop.
This file has been truncated, but you can view the full file.
I0407 23:54:15.468787 3443 solver.cpp:280] Solving mixed_lstm
I0407 23:54:15.468801 3443 solver.cpp:281] Learning Rate Policy: poly
I0407 23:54:16.245584 3443 solver.cpp:229] Iteration 0, loss = 13.8505
I0407 23:54:16.245641 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0208333
I0407 23:54:16.245658 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.00568182
I0407 23:54:16.245672 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.0416667
I0407 23:54:16.245688 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 4.34597 (* 0.3 = 1.30379 loss)
I0407 23:54:16.245735 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 4.31917 (* 0.3 = 1.29575 loss)
I0407 23:54:16.245749 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0
I0407 23:54:16.245761 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0
I0407 23:54:16.245774 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0
I0407 23:54:16.245787 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 4.35609 (* 0.3 = 1.30683 loss)
I0407 23:54:16.245801 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 4.45959 (* 0.3 = 1.33788 loss)
I0407 23:54:16.245815 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0
I0407 23:54:16.245826 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0
I0407 23:54:16.245837 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.0625
I0407 23:54:16.245851 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 4.28897 (* 1 = 4.28897 loss)
I0407 23:54:16.245865 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 4.31729 (* 1 = 4.31729 loss)
I0407 23:54:16.245877 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0407 23:54:16.245888 3443 solver.cpp:245] Train net output #16: total_confidence = 4.27234e-37
I0407 23:54:16.245915 3443 sgd_solver.cpp:106] Iteration 0, lr = 0.01
I0407 23:54:16.278374 3443 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 32.1432 > 30) by scale factor 0.933324
I0407 23:59:49.577603 3443 solver.cpp:229] Iteration 500, loss = 8.57124
I0407 23:59:49.577884 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0227273
I0407 23:59:49.577906 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.755682
I0407 23:59:49.577922 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.181818
I0407 23:59:49.577939 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.70578 (* 0.3 = 1.11174 loss)
I0407 23:59:49.577955 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.30314 (* 0.3 = 0.390943 loss)
I0407 23:59:49.577967 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.113636
I0407 23:59:49.577980 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.778409
I0407 23:59:49.577992 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.159091
I0407 23:59:49.578006 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.73571 (* 0.3 = 1.12071 loss)
I0407 23:59:49.578021 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.22712 (* 0.3 = 0.368136 loss)
I0407 23:59:49.578033 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0681818
I0407 23:59:49.578045 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.732955
I0407 23:59:49.578058 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.136364
I0407 23:59:49.578073 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.47405 (* 1 = 3.47405 loss)
I0407 23:59:49.578088 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 1.11772 (* 1 = 1.11772 loss)
I0407 23:59:49.578099 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0407 23:59:49.578110 3443 solver.cpp:245] Train net output #16: total_confidence = 1.09867e-06
I0407 23:59:49.578125 3443 sgd_solver.cpp:106] Iteration 500, lr = 0.00999286
I0408 00:05:22.958407 3443 solver.cpp:229] Iteration 1000, loss = 7.79891
I0408 00:05:22.958576 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.037037
I0408 00:05:22.958597 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.704545
I0408 00:05:22.958611 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.148148
I0408 00:05:22.958627 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.98178 (* 0.3 = 1.19453 loss)
I0408 00:05:22.958642 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.30737 (* 0.3 = 0.392212 loss)
I0408 00:05:22.958654 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.037037
I0408 00:05:22.958667 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.704545
I0408 00:05:22.958679 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.12963
I0408 00:05:22.958693 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 4.0223 (* 0.3 = 1.20669 loss)
I0408 00:05:22.958706 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.30932 (* 0.3 = 0.392797 loss)
I0408 00:05:22.958719 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0740741
I0408 00:05:22.958729 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.710227
I0408 00:05:22.958741 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.148148
I0408 00:05:22.958755 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.75606 (* 1 = 3.75606 loss)
I0408 00:05:22.958770 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 1.22914 (* 1 = 1.22914 loss)
I0408 00:05:22.958781 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 00:05:22.958792 3443 solver.cpp:245] Train net output #16: total_confidence = 1.49262e-07
I0408 00:05:22.958806 3443 sgd_solver.cpp:106] Iteration 1000, lr = 0.00998571
I0408 00:10:56.322994 3443 solver.cpp:229] Iteration 1500, loss = 7.52531
I0408 00:10:56.323139 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0444444
I0408 00:10:56.323161 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.755682
I0408 00:10:56.323174 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.155556
I0408 00:10:56.323191 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.74326 (* 0.3 = 1.12298 loss)
I0408 00:10:56.323206 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.13512 (* 0.3 = 0.340536 loss)
I0408 00:10:56.323218 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.111111
I0408 00:10:56.323231 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.767045
I0408 00:10:56.323245 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.2
I0408 00:10:56.323258 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.75473 (* 0.3 = 1.12642 loss)
I0408 00:10:56.323272 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.18927 (* 0.3 = 0.35678 loss)
I0408 00:10:56.323283 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.111111
I0408 00:10:56.323295 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.772727
I0408 00:10:56.323307 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.2
I0408 00:10:56.323338 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.67668 (* 1 = 3.67668 loss)
I0408 00:10:56.323354 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.973071 (* 1 = 0.973071 loss)
I0408 00:10:56.323366 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 00:10:56.323379 3443 solver.cpp:245] Train net output #16: total_confidence = 0.000113603
I0408 00:10:56.323393 3443 sgd_solver.cpp:106] Iteration 1500, lr = 0.00997857
I0408 00:16:29.714017 3443 solver.cpp:229] Iteration 2000, loss = 7.3746
I0408 00:16:29.714135 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0
I0408 00:16:29.714154 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.732955
I0408 00:16:29.714169 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.148936
I0408 00:16:29.714184 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.99205 (* 0.3 = 1.19762 loss)
I0408 00:16:29.714200 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.15481 (* 0.3 = 0.346444 loss)
I0408 00:16:29.714213 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0212766
I0408 00:16:29.714226 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.738636
I0408 00:16:29.714238 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.106383
I0408 00:16:29.714252 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 4.06675 (* 0.3 = 1.22002 loss)
I0408 00:16:29.714267 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.22205 (* 0.3 = 0.366616 loss)
I0408 00:16:29.714278 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0638298
I0408 00:16:29.714290 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.727273
I0408 00:16:29.714303 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.12766
I0408 00:16:29.714316 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.54962 (* 1 = 3.54962 loss)
I0408 00:16:29.714329 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 1.1295 (* 1 = 1.1295 loss)
I0408 00:16:29.714341 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 00:16:29.714354 3443 solver.cpp:245] Train net output #16: total_confidence = 9.01431e-08
I0408 00:16:29.714368 3443 sgd_solver.cpp:106] Iteration 2000, lr = 0.00997143
I0408 00:22:03.105708 3443 solver.cpp:229] Iteration 2500, loss = 7.32302
I0408 00:22:03.105895 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.111111
I0408 00:22:03.105933 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.744318
I0408 00:22:03.105960 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.244444
I0408 00:22:03.105993 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.62751 (* 0.3 = 1.08825 loss)
I0408 00:22:03.106025 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.18702 (* 0.3 = 0.356107 loss)
I0408 00:22:03.106051 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.155556
I0408 00:22:03.106077 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.761364
I0408 00:22:03.106103 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.266667
I0408 00:22:03.106133 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.5063 (* 0.3 = 1.05189 loss)
I0408 00:22:03.106163 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.15554 (* 0.3 = 0.346663 loss)
I0408 00:22:03.106189 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.133333
I0408 00:22:03.106215 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.772727
I0408 00:22:03.106238 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.222222
I0408 00:22:03.106267 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.38337 (* 1 = 3.38337 loss)
I0408 00:22:03.106294 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.98052 (* 1 = 0.98052 loss)
I0408 00:22:03.106318 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 00:22:03.106341 3443 solver.cpp:245] Train net output #16: total_confidence = 1.35487e-06
I0408 00:22:03.106366 3443 sgd_solver.cpp:106] Iteration 2500, lr = 0.00996429
I0408 00:27:36.487051 3443 solver.cpp:229] Iteration 3000, loss = 7.2269
I0408 00:27:36.487251 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0576923
I0408 00:27:36.487272 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.721591
I0408 00:27:36.487285 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.153846
I0408 00:27:36.487301 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.4688 (* 0.3 = 1.04064 loss)
I0408 00:27:36.487316 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.1772 (* 0.3 = 0.35316 loss)
I0408 00:27:36.487329 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0961538
I0408 00:27:36.487341 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.727273
I0408 00:27:36.487354 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.134615
I0408 00:27:36.487380 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.67985 (* 0.3 = 1.10396 loss)
I0408 00:27:36.487397 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.2238 (* 0.3 = 0.36714 loss)
I0408 00:27:36.487411 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0576923
I0408 00:27:36.487423 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.721591
I0408 00:27:36.487437 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.115385
I0408 00:27:36.487450 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.40934 (* 1 = 3.40934 loss)
I0408 00:27:36.487464 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 1.05973 (* 1 = 1.05973 loss)
I0408 00:27:36.487476 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 00:27:36.487488 3443 solver.cpp:245] Train net output #16: total_confidence = 1.15075e-05
I0408 00:27:36.487504 3443 sgd_solver.cpp:106] Iteration 3000, lr = 0.00995714
I0408 00:33:09.884913 3443 solver.cpp:229] Iteration 3500, loss = 7.13741
I0408 00:33:09.885085 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.06
I0408 00:33:09.885107 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.732955
I0408 00:33:09.885120 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.1
I0408 00:33:09.885138 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.64733 (* 0.3 = 1.0942 loss)
I0408 00:33:09.885152 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.15128 (* 0.3 = 0.345384 loss)
I0408 00:33:09.885164 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.02
I0408 00:33:09.885177 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.710227
I0408 00:33:09.885190 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.1
I0408 00:33:09.885203 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.79749 (* 0.3 = 1.13925 loss)
I0408 00:33:09.885217 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.2949 (* 0.3 = 0.38847 loss)
I0408 00:33:09.885229 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.06
I0408 00:33:09.885241 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.721591
I0408 00:33:09.885253 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.2
I0408 00:33:09.885268 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.37589 (* 1 = 3.37589 loss)
I0408 00:33:09.885282 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 1.06474 (* 1 = 1.06474 loss)
I0408 00:33:09.885294 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 00:33:09.885306 3443 solver.cpp:245] Train net output #16: total_confidence = 3.58602e-07
I0408 00:33:09.885321 3443 sgd_solver.cpp:106] Iteration 3500, lr = 0.00995
I0408 00:38:43.268569 3443 solver.cpp:229] Iteration 4000, loss = 7.03864
I0408 00:38:43.268792 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0612245
I0408 00:38:43.268813 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.732955
I0408 00:38:43.268827 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.183673
I0408 00:38:43.268844 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.29901 (* 0.3 = 0.989703 loss)
I0408 00:38:43.268858 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.05602 (* 0.3 = 0.316805 loss)
I0408 00:38:43.268872 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0408163
I0408 00:38:43.268883 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.727273
I0408 00:38:43.268895 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.22449
I0408 00:38:43.268909 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.43611 (* 0.3 = 1.03083 loss)
I0408 00:38:43.268926 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.05983 (* 0.3 = 0.31795 loss)
I0408 00:38:43.268939 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0612245
I0408 00:38:43.268957 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.738636
I0408 00:38:43.268970 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.204082
I0408 00:38:43.268985 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.29647 (* 1 = 3.29647 loss)
I0408 00:38:43.268998 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.977883 (* 1 = 0.977883 loss)
I0408 00:38:43.269011 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 00:38:43.269022 3443 solver.cpp:245] Train net output #16: total_confidence = 6.47519e-06
I0408 00:38:43.269037 3443 sgd_solver.cpp:106] Iteration 4000, lr = 0.00994286
I0408 00:44:16.674360 3443 solver.cpp:229] Iteration 4500, loss = 7.02923
I0408 00:44:16.674512 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.075
I0408 00:44:16.674533 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.732955
I0408 00:44:16.674546 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.15
I0408 00:44:16.674563 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.36885 (* 0.3 = 1.01065 loss)
I0408 00:44:16.674577 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.12503 (* 0.3 = 0.33751 loss)
I0408 00:44:16.674589 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.125
I0408 00:44:16.674602 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.784091
I0408 00:44:16.674614 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.3
I0408 00:44:16.674628 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.1542 (* 0.3 = 0.94626 loss)
I0408 00:44:16.674641 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.892524 (* 0.3 = 0.267757 loss)
I0408 00:44:16.674654 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.125
I0408 00:44:16.674664 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.767045
I0408 00:44:16.674676 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.325
I0408 00:44:16.674690 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.05293 (* 1 = 3.05293 loss)
I0408 00:44:16.674705 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.859965 (* 1 = 0.859965 loss)
I0408 00:44:16.674716 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 00:44:16.674727 3443 solver.cpp:245] Train net output #16: total_confidence = 9.64655e-05
I0408 00:44:16.674742 3443 sgd_solver.cpp:106] Iteration 4500, lr = 0.00993571
I0408 00:49:50.311938 3443 solver.cpp:338] Iteration 5000, Testing net (#0)
I0408 00:50:31.495959 3443 solver.cpp:393] Test loss: 8.68262
I0408 00:50:31.496080 3443 solver.cpp:406] Test net output #0: loss1/accuracy = 0.0452167
I0408 00:50:31.496100 3443 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.76641
I0408 00:50:31.496114 3443 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.119341
I0408 00:50:31.496130 3443 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 4.58886 (* 0.3 = 1.37666 loss)
I0408 00:50:31.496145 3443 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 1.14863 (* 0.3 = 0.344589 loss)
I0408 00:50:31.496156 3443 solver.cpp:406] Test net output #5: loss2/accuracy = 0.0387071
I0408 00:50:31.496170 3443 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.764682
I0408 00:50:31.496181 3443 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.112384
I0408 00:50:31.496194 3443 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 4.45574 (* 0.3 = 1.33672 loss)
I0408 00:50:31.496207 3443 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 1.11161 (* 0.3 = 0.333483 loss)
I0408 00:50:31.496219 3443 solver.cpp:406] Test net output #10: loss3/accuracy = 0.0388385
I0408 00:50:31.496232 3443 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.761181
I0408 00:50:31.496243 3443 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.103648
I0408 00:50:31.496256 3443 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 4.18329 (* 1 = 4.18329 loss)
I0408 00:50:31.496269 3443 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 1.10788 (* 1 = 1.10788 loss)
I0408 00:50:31.496280 3443 solver.cpp:406] Test net output #15: total_accuracy = 0
I0408 00:50:31.496292 3443 solver.cpp:406] Test net output #16: total_confidence = 2.95794e-05
I0408 00:50:31.868674 3443 solver.cpp:229] Iteration 5000, loss = 6.96566
I0408 00:50:31.868736 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0465116
I0408 00:50:31.868755 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.744318
I0408 00:50:31.868768 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.162791
I0408 00:50:31.868784 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.50065 (* 0.3 = 1.0502 loss)
I0408 00:50:31.868799 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.06964 (* 0.3 = 0.320891 loss)
I0408 00:50:31.868811 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0697674
I0408 00:50:31.868824 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.738636
I0408 00:50:31.868836 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.186047
I0408 00:50:31.868849 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.57923 (* 0.3 = 1.07377 loss)
I0408 00:50:31.868863 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.09333 (* 0.3 = 0.327999 loss)
I0408 00:50:31.868875 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0232558
I0408 00:50:31.868888 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.744318
I0408 00:50:31.868901 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.116279
I0408 00:50:31.868914 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.29118 (* 1 = 3.29118 loss)
I0408 00:50:31.868928 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.934273 (* 1 = 0.934273 loss)
I0408 00:50:31.868940 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 00:50:31.868952 3443 solver.cpp:245] Train net output #16: total_confidence = 0.00020139
I0408 00:50:31.868968 3443 sgd_solver.cpp:106] Iteration 5000, lr = 0.00992857
I0408 00:56:05.103965 3443 solver.cpp:229] Iteration 5500, loss = 6.96715
I0408 00:56:05.104156 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0625
I0408 00:56:05.104176 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.744318
I0408 00:56:05.104190 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.145833
I0408 00:56:05.104207 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.38839 (* 0.3 = 1.01652 loss)
I0408 00:56:05.104221 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.97679 (* 0.3 = 0.293037 loss)
I0408 00:56:05.104234 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0208333
I0408 00:56:05.104246 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.732955
I0408 00:56:05.104259 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.208333
I0408 00:56:05.104274 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.48493 (* 0.3 = 1.04548 loss)
I0408 00:56:05.104287 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.02138 (* 0.3 = 0.306415 loss)
I0408 00:56:05.104300 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0416667
I0408 00:56:05.104312 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.732955
I0408 00:56:05.104324 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.1875
I0408 00:56:05.104338 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.38987 (* 1 = 3.38987 loss)
I0408 00:56:05.104352 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.988944 (* 1 = 0.988944 loss)
I0408 00:56:05.104364 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 00:56:05.104377 3443 solver.cpp:245] Train net output #16: total_confidence = 9.83636e-07
I0408 00:56:05.104392 3443 sgd_solver.cpp:106] Iteration 5500, lr = 0.00992143
I0408 01:01:38.518291 3443 solver.cpp:229] Iteration 6000, loss = 6.88576
I0408 01:01:38.518440 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0869565
I0408 01:01:38.518461 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.75
I0408 01:01:38.518476 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.217391
I0408 01:01:38.518492 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.35048 (* 0.3 = 1.00514 loss)
I0408 01:01:38.518507 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.01227 (* 0.3 = 0.303681 loss)
I0408 01:01:38.518519 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0434783
I0408 01:01:38.518532 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.744318
I0408 01:01:38.518544 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.173913
I0408 01:01:38.518558 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.42432 (* 0.3 = 1.0273 loss)
I0408 01:01:38.518571 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.04517 (* 0.3 = 0.313551 loss)
I0408 01:01:38.518584 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0869565
I0408 01:01:38.518595 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.755682
I0408 01:01:38.518607 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.23913
I0408 01:01:38.518620 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.23763 (* 1 = 3.23763 loss)
I0408 01:01:38.518635 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.946734 (* 1 = 0.946734 loss)
I0408 01:01:38.518646 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 01:01:38.518658 3443 solver.cpp:245] Train net output #16: total_confidence = 1.10272e-06
I0408 01:01:38.518673 3443 sgd_solver.cpp:106] Iteration 6000, lr = 0.00991429
I0408 01:07:11.878407 3443 solver.cpp:229] Iteration 6500, loss = 6.83744
I0408 01:07:11.878624 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.1
I0408 01:07:11.878646 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.744318
I0408 01:07:11.878659 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.24
I0408 01:07:11.878676 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.52527 (* 0.3 = 1.05758 loss)
I0408 01:07:11.878691 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.07446 (* 0.3 = 0.322339 loss)
I0408 01:07:11.878705 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.1
I0408 01:07:11.878716 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.732955
I0408 01:07:11.878728 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.24
I0408 01:07:11.878743 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.24729 (* 0.3 = 0.974188 loss)
I0408 01:07:11.878757 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.09492 (* 0.3 = 0.328477 loss)
I0408 01:07:11.878769 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.08
I0408 01:07:11.878782 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.738636
I0408 01:07:11.878794 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.3
I0408 01:07:11.878808 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.24869 (* 1 = 3.24869 loss)
I0408 01:07:11.878823 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.963159 (* 1 = 0.963159 loss)
I0408 01:07:11.878834 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 01:07:11.878845 3443 solver.cpp:245] Train net output #16: total_confidence = 6.6002e-06
I0408 01:07:11.878861 3443 sgd_solver.cpp:106] Iteration 6500, lr = 0.00990714
I0408 01:12:45.268910 3443 solver.cpp:229] Iteration 7000, loss = 6.78223
I0408 01:12:45.269050 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0465116
I0408 01:12:45.269070 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.761364
I0408 01:12:45.269083 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.255814
I0408 01:12:45.269109 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.36986 (* 0.3 = 1.01096 loss)
I0408 01:12:45.269124 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.923711 (* 0.3 = 0.277113 loss)
I0408 01:12:45.269136 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0930233
I0408 01:12:45.269150 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.772727
I0408 01:12:45.269161 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.255814
I0408 01:12:45.269176 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.21002 (* 0.3 = 0.963007 loss)
I0408 01:12:45.269191 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.971047 (* 0.3 = 0.291314 loss)
I0408 01:12:45.269202 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0465116
I0408 01:12:45.269214 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.761364
I0408 01:12:45.269227 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.255814
I0408 01:12:45.269240 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.0852 (* 1 = 3.0852 loss)
I0408 01:12:45.269253 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.821484 (* 1 = 0.821484 loss)
I0408 01:12:45.269265 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 01:12:45.269278 3443 solver.cpp:245] Train net output #16: total_confidence = 8.29975e-05
I0408 01:12:45.269291 3443 sgd_solver.cpp:106] Iteration 7000, lr = 0.0099
I0408 01:18:18.755538 3443 solver.cpp:229] Iteration 7500, loss = 6.75431
I0408 01:18:18.755767 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0869565
I0408 01:18:18.755795 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.75
I0408 01:18:18.755808 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.26087
I0408 01:18:18.755826 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.16702 (* 0.3 = 0.950106 loss)
I0408 01:18:18.755841 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.947802 (* 0.3 = 0.284341 loss)
I0408 01:18:18.755853 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0869565
I0408 01:18:18.755867 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.75
I0408 01:18:18.755879 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.152174
I0408 01:18:18.755903 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.17755 (* 0.3 = 0.953266 loss)
I0408 01:18:18.755916 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.908958 (* 0.3 = 0.272687 loss)
I0408 01:18:18.755933 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.130435
I0408 01:18:18.755945 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.767045
I0408 01:18:18.755957 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.26087
I0408 01:18:18.755971 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.00633 (* 1 = 3.00633 loss)
I0408 01:18:18.755985 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.897838 (* 1 = 0.897838 loss)
I0408 01:18:18.755998 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 01:18:18.756011 3443 solver.cpp:245] Train net output #16: total_confidence = 0.000113947
I0408 01:18:18.756026 3443 sgd_solver.cpp:106] Iteration 7500, lr = 0.00989286
I0408 01:23:52.054919 3443 solver.cpp:229] Iteration 8000, loss = 6.70293
I0408 01:23:52.055099 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.08
I0408 01:23:52.055131 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.721591
I0408 01:23:52.055148 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.12
I0408 01:23:52.055166 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.30661 (* 0.3 = 0.991982 loss)
I0408 01:23:52.055181 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.0523 (* 0.3 = 0.31569 loss)
I0408 01:23:52.055193 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.04
I0408 01:23:52.055207 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.727273
I0408 01:23:52.055218 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.1
I0408 01:23:52.055233 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.37371 (* 0.3 = 1.01211 loss)
I0408 01:23:52.055246 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.04192 (* 0.3 = 0.312577 loss)
I0408 01:23:52.055258 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.06
I0408 01:23:52.055270 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.727273
I0408 01:23:52.055282 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.22
I0408 01:23:52.055296 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.34 (* 1 = 3.34 loss)
I0408 01:23:52.055310 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 1.0034 (* 1 = 1.0034 loss)
I0408 01:23:52.055341 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 01:23:52.055356 3443 solver.cpp:245] Train net output #16: total_confidence = 7.26029e-05
I0408 01:23:52.055371 3443 sgd_solver.cpp:106] Iteration 8000, lr = 0.00988571
I0408 01:29:25.509419 3443 solver.cpp:229] Iteration 8500, loss = 6.7423
I0408 01:29:25.509620 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0638298
I0408 01:29:25.509642 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.738636
I0408 01:29:25.509655 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.191489
I0408 01:29:25.509672 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.15295 (* 0.3 = 0.945884 loss)
I0408 01:29:25.509687 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.950862 (* 0.3 = 0.285259 loss)
I0408 01:29:25.509701 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.170213
I0408 01:29:25.509712 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.772727
I0408 01:29:25.509724 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.361702
I0408 01:29:25.509738 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.03076 (* 0.3 = 0.909227 loss)
I0408 01:29:25.509752 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.888856 (* 0.3 = 0.266657 loss)
I0408 01:29:25.509764 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.148936
I0408 01:29:25.509776 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.761364
I0408 01:29:25.509788 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.319149
I0408 01:29:25.509802 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.88177 (* 1 = 2.88177 loss)
I0408 01:29:25.509816 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.875165 (* 1 = 0.875165 loss)
I0408 01:29:25.509829 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 01:29:25.509840 3443 solver.cpp:245] Train net output #16: total_confidence = 8.48266e-05
I0408 01:29:25.509855 3443 sgd_solver.cpp:106] Iteration 8500, lr = 0.00987857
I0408 01:34:59.203960 3443 solver.cpp:229] Iteration 9000, loss = 6.70921
I0408 01:34:59.204139 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0833333
I0408 01:34:59.204160 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.744318
I0408 01:34:59.204175 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.229167
I0408 01:34:59.204192 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.23136 (* 0.3 = 0.969409 loss)
I0408 01:34:59.204206 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.981896 (* 0.3 = 0.294569 loss)
I0408 01:34:59.204218 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0833333
I0408 01:34:59.204231 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.744318
I0408 01:34:59.204243 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.25
I0408 01:34:59.204257 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.15698 (* 0.3 = 0.947095 loss)
I0408 01:34:59.204272 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.949926 (* 0.3 = 0.284978 loss)
I0408 01:34:59.204283 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0625
I0408 01:34:59.204295 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.744318
I0408 01:34:59.204308 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.208333
I0408 01:34:59.204321 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.06259 (* 1 = 3.06259 loss)
I0408 01:34:59.204335 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.882237 (* 1 = 0.882237 loss)
I0408 01:34:59.204347 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 01:34:59.204360 3443 solver.cpp:245] Train net output #16: total_confidence = 2.68575e-05
I0408 01:34:59.204375 3443 sgd_solver.cpp:106] Iteration 9000, lr = 0.00987143
I0408 01:40:32.952997 3443 solver.cpp:229] Iteration 9500, loss = 6.63286
I0408 01:40:32.953204 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0612245
I0408 01:40:32.953227 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.738636
I0408 01:40:32.953240 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.306122
I0408 01:40:32.953258 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.16729 (* 0.3 = 0.950187 loss)
I0408 01:40:32.953272 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.955458 (* 0.3 = 0.286638 loss)
I0408 01:40:32.953285 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0816327
I0408 01:40:32.953299 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.727273
I0408 01:40:32.953310 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.265306
I0408 01:40:32.953325 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.23331 (* 0.3 = 0.969995 loss)
I0408 01:40:32.953338 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.02186 (* 0.3 = 0.306558 loss)
I0408 01:40:32.953351 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.122449
I0408 01:40:32.953363 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.75
I0408 01:40:32.953375 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.244898
I0408 01:40:32.953390 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.10136 (* 1 = 3.10136 loss)
I0408 01:40:32.953404 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.93279 (* 1 = 0.93279 loss)
I0408 01:40:32.953416 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 01:40:32.953428 3443 solver.cpp:245] Train net output #16: total_confidence = 6.09814e-07
I0408 01:40:32.953444 3443 sgd_solver.cpp:106] Iteration 9500, lr = 0.00986429
I0408 01:46:05.866292 3443 solver.cpp:456] Snapshotting to binary proto file /mnt/snapshots/mixed_lstm10_bn_iter_10000.caffemodel
I0408 01:46:06.445940 3443 sgd_solver.cpp:273] Snapshotting solver state to binary proto file /mnt/snapshots/mixed_lstm10_bn_iter_10000.solverstate
I0408 01:46:06.698824 3443 solver.cpp:338] Iteration 10000, Testing net (#0)
I0408 01:46:47.708153 3443 solver.cpp:393] Test loss: 6.41976
I0408 01:46:47.708286 3443 solver.cpp:406] Test net output #0: loss1/accuracy = 0.115397
I0408 01:46:47.708305 3443 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.782273
I0408 01:46:47.708319 3443 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.316424
I0408 01:46:47.708336 3443 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 3.17685 (* 0.3 = 0.953054 loss)
I0408 01:46:47.708353 3443 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.800331 (* 0.3 = 0.240099 loss)
I0408 01:46:47.708365 3443 solver.cpp:406] Test net output #5: loss2/accuracy = 0.0954313
I0408 01:46:47.708379 3443 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.778727
I0408 01:46:47.708391 3443 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.290776
I0408 01:46:47.708406 3443 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 3.20138 (* 0.3 = 0.960414 loss)
I0408 01:46:47.708420 3443 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.798825 (* 0.3 = 0.239647 loss)
I0408 01:46:47.708433 3443 solver.cpp:406] Test net output #10: loss3/accuracy = 0.114487
I0408 01:46:47.708446 3443 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.779909
I0408 01:46:47.708457 3443 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.291609
I0408 01:46:47.708472 3443 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 3.20638 (* 1 = 3.20638 loss)
I0408 01:46:47.708485 3443 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.82017 (* 1 = 0.82017 loss)
I0408 01:46:47.708498 3443 solver.cpp:406] Test net output #15: total_accuracy = 0.002
I0408 01:46:47.708510 3443 solver.cpp:406] Test net output #16: total_confidence = 0.000754739
I0408 01:46:48.081652 3443 solver.cpp:229] Iteration 10000, loss = 6.63282
I0408 01:46:48.081728 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0714286
I0408 01:46:48.081748 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.75
I0408 01:46:48.081763 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.261905
I0408 01:46:48.081779 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.15879 (* 0.3 = 0.947638 loss)
I0408 01:46:48.081795 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.944388 (* 0.3 = 0.283316 loss)
I0408 01:46:48.081809 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0714286
I0408 01:46:48.081821 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.755682
I0408 01:46:48.081835 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.261905
I0408 01:46:48.081850 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.99565 (* 0.3 = 0.898696 loss)
I0408 01:46:48.081864 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.888492 (* 0.3 = 0.266548 loss)
I0408 01:46:48.081877 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.119048
I0408 01:46:48.081890 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.761364
I0408 01:46:48.081903 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.404762
I0408 01:46:48.081918 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.99631 (* 1 = 2.99631 loss)
I0408 01:46:48.081933 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.892211 (* 1 = 0.892211 loss)
I0408 01:46:48.081945 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 01:46:48.081959 3443 solver.cpp:245] Train net output #16: total_confidence = 0.000626543
I0408 01:46:48.081974 3443 sgd_solver.cpp:106] Iteration 10000, lr = 0.00985714
I0408 01:52:21.322742 3443 solver.cpp:229] Iteration 10500, loss = 6.60527
I0408 01:52:21.322854 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0952381
I0408 01:52:21.322876 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.767045
I0408 01:52:21.322890 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.214286
I0408 01:52:21.322906 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.61797 (* 0.3 = 1.08539 loss)
I0408 01:52:21.322924 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.998391 (* 0.3 = 0.299517 loss)
I0408 01:52:21.322937 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0714286
I0408 01:52:21.322950 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.772727
I0408 01:52:21.322963 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.166667
I0408 01:52:21.322978 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.65355 (* 0.3 = 1.09606 loss)
I0408 01:52:21.322993 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.959195 (* 0.3 = 0.287759 loss)
I0408 01:52:21.323006 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.119048
I0408 01:52:21.323019 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.778409
I0408 01:52:21.323031 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.261905
I0408 01:52:21.323045 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.53152 (* 1 = 3.53152 loss)
I0408 01:52:21.323060 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.94171 (* 1 = 0.94171 loss)
I0408 01:52:21.323072 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 01:52:21.323084 3443 solver.cpp:245] Train net output #16: total_confidence = 0.000155565
I0408 01:52:21.323099 3443 sgd_solver.cpp:106] Iteration 10500, lr = 0.00985
I0408 01:57:54.694224 3443 solver.cpp:229] Iteration 11000, loss = 6.58077
I0408 01:57:54.694381 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0416667
I0408 01:57:54.694402 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.727273
I0408 01:57:54.694416 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.270833
I0408 01:57:54.694433 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.18979 (* 0.3 = 0.956937 loss)
I0408 01:57:54.694448 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.990983 (* 0.3 = 0.297295 loss)
I0408 01:57:54.694461 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0833333
I0408 01:57:54.694474 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.738636
I0408 01:57:54.694486 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.270833
I0408 01:57:54.694500 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.17816 (* 0.3 = 0.953449 loss)
I0408 01:57:54.694515 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.959466 (* 0.3 = 0.28784 loss)
I0408 01:57:54.694535 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.104167
I0408 01:57:54.694547 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.744318
I0408 01:57:54.694560 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.25
I0408 01:57:54.694574 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.09052 (* 1 = 3.09052 loss)
I0408 01:57:54.694597 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.944494 (* 1 = 0.944494 loss)
I0408 01:57:54.694609 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 01:57:54.694622 3443 solver.cpp:245] Train net output #16: total_confidence = 2.03084e-05
I0408 01:57:54.694636 3443 sgd_solver.cpp:106] Iteration 11000, lr = 0.00984286
I0408 02:03:28.141132 3443 solver.cpp:229] Iteration 11500, loss = 6.53889
I0408 02:03:28.141249 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0566038
I0408 02:03:28.141268 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.715909
I0408 02:03:28.141283 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.188679
I0408 02:03:28.141299 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.27794 (* 0.3 = 0.983382 loss)
I0408 02:03:28.141315 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.04266 (* 0.3 = 0.312799 loss)
I0408 02:03:28.141329 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0566038
I0408 02:03:28.141340 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.715909
I0408 02:03:28.141352 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.245283
I0408 02:03:28.141367 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.26085 (* 0.3 = 0.978256 loss)
I0408 02:03:28.141381 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.03133 (* 0.3 = 0.309398 loss)
I0408 02:03:28.141394 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0566038
I0408 02:03:28.141407 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.715909
I0408 02:03:28.141419 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.245283
I0408 02:03:28.141433 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.18574 (* 1 = 3.18574 loss)
I0408 02:03:28.141448 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.996939 (* 1 = 0.996939 loss)
I0408 02:03:28.141461 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 02:03:28.141474 3443 solver.cpp:245] Train net output #16: total_confidence = 6.79727e-06
I0408 02:03:28.141489 3443 sgd_solver.cpp:106] Iteration 11500, lr = 0.00983571
I0408 02:09:01.466855 3443 solver.cpp:229] Iteration 12000, loss = 6.58063
I0408 02:09:01.466995 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.107143
I0408 02:09:01.467015 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.698864
I0408 02:09:01.467030 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.214286
I0408 02:09:01.467046 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.26884 (* 0.3 = 0.980652 loss)
I0408 02:09:01.467062 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.17759 (* 0.3 = 0.353277 loss)
I0408 02:09:01.467075 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0892857
I0408 02:09:01.467087 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.704545
I0408 02:09:01.467100 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.285714
I0408 02:09:01.467114 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.20895 (* 0.3 = 0.962686 loss)
I0408 02:09:01.467129 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.09683 (* 0.3 = 0.329048 loss)
I0408 02:09:01.467142 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.107143
I0408 02:09:01.467155 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.715909
I0408 02:09:01.467167 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.267857
I0408 02:09:01.467182 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.10934 (* 1 = 3.10934 loss)
I0408 02:09:01.467196 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 1.0198 (* 1 = 1.0198 loss)
I0408 02:09:01.467209 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 02:09:01.467221 3443 solver.cpp:245] Train net output #16: total_confidence = 1.90635e-05
I0408 02:09:01.467236 3443 sgd_solver.cpp:106] Iteration 12000, lr = 0.00982857
I0408 02:14:34.832674 3443 solver.cpp:229] Iteration 12500, loss = 6.47738
I0408 02:14:34.832792 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.102041
I0408 02:14:34.832811 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.75
I0408 02:14:34.832825 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.183673
I0408 02:14:34.832842 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.32352 (* 0.3 = 0.997055 loss)
I0408 02:14:34.832859 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.981483 (* 0.3 = 0.294445 loss)
I0408 02:14:34.832870 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0816327
I0408 02:14:34.832883 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.744318
I0408 02:14:34.832896 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.204082
I0408 02:14:34.832911 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.3199 (* 0.3 = 0.99597 loss)
I0408 02:14:34.832926 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.971394 (* 0.3 = 0.291418 loss)
I0408 02:14:34.832937 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.102041
I0408 02:14:34.832954 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.75
I0408 02:14:34.832968 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.204082
I0408 02:14:34.832983 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.31281 (* 1 = 3.31281 loss)
I0408 02:14:34.832998 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.992899 (* 1 = 0.992899 loss)
I0408 02:14:34.833010 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 02:14:34.833024 3443 solver.cpp:245] Train net output #16: total_confidence = 6.83323e-05
I0408 02:14:34.833039 3443 sgd_solver.cpp:106] Iteration 12500, lr = 0.00982143
I0408 02:20:08.237329 3443 solver.cpp:229] Iteration 13000, loss = 6.4472
I0408 02:20:08.237529 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0
I0408 02:20:08.237551 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.715909
I0408 02:20:08.237566 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.12766
I0408 02:20:08.237584 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 4.31029 (* 0.3 = 1.29309 loss)
I0408 02:20:08.237599 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.25873 (* 0.3 = 0.377619 loss)
I0408 02:20:08.237612 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.106383
I0408 02:20:08.237627 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.75
I0408 02:20:08.237639 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.191489
I0408 02:20:08.237654 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 4.31412 (* 0.3 = 1.29423 loss)
I0408 02:20:08.237669 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.23987 (* 0.3 = 0.37196 loss)
I0408 02:20:08.237682 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.148936
I0408 02:20:08.237694 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.761364
I0408 02:20:08.237707 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.234043
I0408 02:20:08.237722 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 4.10973 (* 1 = 4.10973 loss)
I0408 02:20:08.237737 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 1.1961 (* 1 = 1.1961 loss)
I0408 02:20:08.237751 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 02:20:08.237762 3443 solver.cpp:245] Train net output #16: total_confidence = 0.00041101
I0408 02:20:08.237778 3443 sgd_solver.cpp:106] Iteration 13000, lr = 0.00981429
I0408 02:25:42.615715 3443 solver.cpp:229] Iteration 13500, loss = 6.41417
I0408 02:25:42.615835 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0888889
I0408 02:25:42.615855 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.755682
I0408 02:25:42.615869 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.222222
I0408 02:25:42.615886 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.17528 (* 0.3 = 0.952583 loss)
I0408 02:25:42.615902 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.935502 (* 0.3 = 0.28065 loss)
I0408 02:25:42.615914 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0888889
I0408 02:25:42.615931 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.755682
I0408 02:25:42.615943 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.177778
I0408 02:25:42.615958 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.2288 (* 0.3 = 0.968639 loss)
I0408 02:25:42.615973 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.948312 (* 0.3 = 0.284494 loss)
I0408 02:25:42.615986 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.177778
I0408 02:25:42.615998 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.772727
I0408 02:25:42.616010 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.311111
I0408 02:25:42.616025 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.01037 (* 1 = 3.01037 loss)
I0408 02:25:42.616039 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.865301 (* 1 = 0.865301 loss)
I0408 02:25:42.616052 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 02:25:42.616065 3443 solver.cpp:245] Train net output #16: total_confidence = 5.19581e-05
I0408 02:25:42.616080 3443 sgd_solver.cpp:106] Iteration 13500, lr = 0.00980714
I0408 02:31:16.686941 3443 solver.cpp:229] Iteration 14000, loss = 6.40078
I0408 02:31:16.687052 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.121951
I0408 02:31:16.687070 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.784091
I0408 02:31:16.687084 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.317073
I0408 02:31:16.687101 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.48454 (* 0.3 = 1.04536 loss)
I0408 02:31:16.687116 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.94436 (* 0.3 = 0.283308 loss)
I0408 02:31:16.687129 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.146341
I0408 02:31:16.687142 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.778409
I0408 02:31:16.687155 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.243902
I0408 02:31:16.687168 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.47854 (* 0.3 = 1.04356 loss)
I0408 02:31:16.687183 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.946943 (* 0.3 = 0.284083 loss)
I0408 02:31:16.687196 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.146341
I0408 02:31:16.687208 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.784091
I0408 02:31:16.687221 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.268293
I0408 02:31:16.687234 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.24218 (* 1 = 3.24218 loss)
I0408 02:31:16.687249 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.87597 (* 1 = 0.87597 loss)
I0408 02:31:16.687261 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 02:31:16.687273 3443 solver.cpp:245] Train net output #16: total_confidence = 2.6492e-06
I0408 02:31:16.687288 3443 sgd_solver.cpp:106] Iteration 14000, lr = 0.0098
I0408 02:36:50.599452 3443 solver.cpp:229] Iteration 14500, loss = 6.38503
I0408 02:36:50.599598 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.12963
I0408 02:36:50.599619 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.732955
I0408 02:36:50.599633 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.296296
I0408 02:36:50.599661 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.11398 (* 0.3 = 0.934194 loss)
I0408 02:36:50.599686 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.996034 (* 0.3 = 0.29881 loss)
I0408 02:36:50.599700 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0555556
I0408 02:36:50.599714 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.704545
I0408 02:36:50.599735 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.259259
I0408 02:36:50.599750 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.16719 (* 0.3 = 0.950157 loss)
I0408 02:36:50.599764 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.03688 (* 0.3 = 0.311064 loss)
I0408 02:36:50.599777 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0925926
I0408 02:36:50.599792 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.721591
I0408 02:36:50.599804 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.240741
I0408 02:36:50.599819 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.0275 (* 1 = 3.0275 loss)
I0408 02:36:50.599834 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.975328 (* 1 = 0.975328 loss)
I0408 02:36:50.599846 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 02:36:50.599859 3443 solver.cpp:245] Train net output #16: total_confidence = 2.07313e-06
I0408 02:36:50.599874 3443 sgd_solver.cpp:106] Iteration 14500, lr = 0.00979286
I0408 02:42:24.104883 3443 solver.cpp:338] Iteration 15000, Testing net (#0)
I0408 02:43:05.553393 3443 solver.cpp:393] Test loss: 5.6876
I0408 02:43:05.553534 3443 solver.cpp:406] Test net output #0: loss1/accuracy = 0.111799
I0408 02:43:05.553555 3443 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.778954
I0408 02:43:05.553568 3443 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.339578
I0408 02:43:05.553586 3443 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 2.88876 (* 0.3 = 0.866627 loss)
I0408 02:43:05.553601 3443 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.730929 (* 0.3 = 0.219279 loss)
I0408 02:43:05.553614 3443 solver.cpp:406] Test net output #5: loss2/accuracy = 0.102841
I0408 02:43:05.553627 3443 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.779272
I0408 02:43:05.553637 3443 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.329391
I0408 02:43:05.553652 3443 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 2.89455 (* 0.3 = 0.868366 loss)
I0408 02:43:05.553665 3443 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.731875 (* 0.3 = 0.219563 loss)
I0408 02:43:05.553678 3443 solver.cpp:406] Test net output #10: loss3/accuracy = 0.120547
I0408 02:43:05.553690 3443 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.778136
I0408 02:43:05.553702 3443 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.360552
I0408 02:43:05.553717 3443 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 2.78008 (* 1 = 2.78008 loss)
I0408 02:43:05.553731 3443 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.733689 (* 1 = 0.733689 loss)
I0408 02:43:05.553743 3443 solver.cpp:406] Test net output #15: total_accuracy = 0
I0408 02:43:05.553755 3443 solver.cpp:406] Test net output #16: total_confidence = 0.000918233
I0408 02:43:05.929527 3443 solver.cpp:229] Iteration 15000, loss = 6.33632
I0408 02:43:05.929599 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0869565
I0408 02:43:05.929617 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.755682
I0408 02:43:05.929631 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.347826
I0408 02:43:05.929648 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.81354 (* 0.3 = 0.844062 loss)
I0408 02:43:05.929663 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.830055 (* 0.3 = 0.249016 loss)
I0408 02:43:05.929677 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0652174
I0408 02:43:05.929689 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.744318
I0408 02:43:05.929707 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.347826
I0408 02:43:05.929723 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.7482 (* 0.3 = 0.82446 loss)
I0408 02:43:05.929738 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.787455 (* 0.3 = 0.236236 loss)
I0408 02:43:05.929751 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.217391
I0408 02:43:05.929764 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.789773
I0408 02:43:05.929776 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.521739
I0408 02:43:05.929791 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.40939 (* 1 = 2.40939 loss)
I0408 02:43:05.929805 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.720687 (* 1 = 0.720687 loss)
I0408 02:43:05.929818 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 02:43:05.929831 3443 solver.cpp:245] Train net output #16: total_confidence = 0.000688183
I0408 02:43:05.929846 3443 sgd_solver.cpp:106] Iteration 15000, lr = 0.00978571
I0408 02:48:39.182595 3443 solver.cpp:229] Iteration 15500, loss = 6.29518
I0408 02:48:39.182742 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.145833
I0408 02:48:39.182765 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.755682
I0408 02:48:39.182778 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.354167
I0408 02:48:39.182796 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.88797 (* 0.3 = 0.866392 loss)
I0408 02:48:39.182811 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.888101 (* 0.3 = 0.26643 loss)
I0408 02:48:39.182823 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.145833
I0408 02:48:39.182837 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.761364
I0408 02:48:39.182848 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.333333
I0408 02:48:39.182863 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.83267 (* 0.3 = 0.849802 loss)
I0408 02:48:39.182878 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.852831 (* 0.3 = 0.255849 loss)
I0408 02:48:39.182891 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.1875
I0408 02:48:39.182904 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.772727
I0408 02:48:39.182916 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.354167
I0408 02:48:39.182934 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.63761 (* 1 = 2.63761 loss)
I0408 02:48:39.182948 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.782233 (* 1 = 0.782233 loss)
I0408 02:48:39.182961 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 02:48:39.182973 3443 solver.cpp:245] Train net output #16: total_confidence = 0.000685446
I0408 02:48:39.182988 3443 sgd_solver.cpp:106] Iteration 15500, lr = 0.00977857
I0408 02:54:12.558722 3443 solver.cpp:229] Iteration 16000, loss = 6.23655
I0408 02:54:12.558851 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0961538
I0408 02:54:12.558871 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.732955
I0408 02:54:12.558886 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.25
I0408 02:54:12.558902 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.14522 (* 0.3 = 0.943566 loss)
I0408 02:54:12.558919 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.972384 (* 0.3 = 0.291715 loss)
I0408 02:54:12.558933 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0576923
I0408 02:54:12.558946 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.721591
I0408 02:54:12.558959 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.269231
I0408 02:54:12.558974 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.98626 (* 0.3 = 0.895877 loss)
I0408 02:54:12.558989 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.933076 (* 0.3 = 0.279923 loss)
I0408 02:54:12.559001 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.115385
I0408 02:54:12.559015 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.738636
I0408 02:54:12.559026 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.307692
I0408 02:54:12.559041 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.8921 (* 1 = 2.8921 loss)
I0408 02:54:12.559056 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.895257 (* 1 = 0.895257 loss)
I0408 02:54:12.559068 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 02:54:12.559080 3443 solver.cpp:245] Train net output #16: total_confidence = 9.86625e-05
I0408 02:54:12.559094 3443 sgd_solver.cpp:106] Iteration 16000, lr = 0.00977143
I0408 02:59:45.953665 3443 solver.cpp:229] Iteration 16500, loss = 6.18739
I0408 02:59:45.953778 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0833333
I0408 02:59:45.953799 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.75
I0408 02:59:45.953812 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.166667
I0408 02:59:45.953830 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.59447 (* 0.3 = 1.07834 loss)
I0408 02:59:45.953845 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.0439 (* 0.3 = 0.313169 loss)
I0408 02:59:45.953857 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.104167
I0408 02:59:45.953871 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.75
I0408 02:59:45.953883 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.229167
I0408 02:59:45.953897 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.44302 (* 0.3 = 1.0329 loss)
I0408 02:59:45.953912 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.0028 (* 0.3 = 0.30084 loss)
I0408 02:59:45.953924 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.145833
I0408 02:59:45.953938 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.755682
I0408 02:59:45.953949 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.270833
I0408 02:59:45.953964 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.06971 (* 1 = 3.06971 loss)
I0408 02:59:45.953979 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.931412 (* 1 = 0.931412 loss)
I0408 02:59:45.953990 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 02:59:45.954004 3443 solver.cpp:245] Train net output #16: total_confidence = 0.000232244
I0408 02:59:45.954017 3443 sgd_solver.cpp:106] Iteration 16500, lr = 0.00976429
I0408 03:05:19.326282 3443 solver.cpp:229] Iteration 17000, loss = 6.22728
I0408 03:05:19.326357 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.204545
I0408 03:05:19.326376 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.801136
I0408 03:05:19.326390 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.318182
I0408 03:05:19.326406 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.24279 (* 0.3 = 0.972838 loss)
I0408 03:05:19.326422 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.878274 (* 0.3 = 0.263482 loss)
I0408 03:05:19.326436 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.136364
I0408 03:05:19.326448 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.778409
I0408 03:05:19.326460 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.318182
I0408 03:05:19.326474 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.10526 (* 0.3 = 0.931579 loss)
I0408 03:05:19.326489 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.853778 (* 0.3 = 0.256134 loss)
I0408 03:05:19.326501 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.25
I0408 03:05:19.326514 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.789773
I0408 03:05:19.326526 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.409091
I0408 03:05:19.326541 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.97708 (* 1 = 2.97708 loss)
I0408 03:05:19.326560 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.838919 (* 1 = 0.838919 loss)
I0408 03:05:19.326571 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 03:05:19.326584 3443 solver.cpp:245] Train net output #16: total_confidence = 0.000253977
I0408 03:05:19.326598 3443 sgd_solver.cpp:106] Iteration 17000, lr = 0.00975714
I0408 03:10:52.727918 3443 solver.cpp:229] Iteration 17500, loss = 6.154
I0408 03:10:52.728051 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0689655
I0408 03:10:52.728072 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.681818
I0408 03:10:52.728086 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.206897
I0408 03:10:52.728104 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.50125 (* 0.3 = 1.05038 loss)
I0408 03:10:52.728119 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.2217 (* 0.3 = 0.36651 loss)
I0408 03:10:52.728132 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0517241
I0408 03:10:52.728145 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.676136
I0408 03:10:52.728157 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.172414
I0408 03:10:52.728171 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.40802 (* 0.3 = 1.02241 loss)
I0408 03:10:52.728186 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.19211 (* 0.3 = 0.357633 loss)
I0408 03:10:52.728199 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.103448
I0408 03:10:52.728211 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.693182
I0408 03:10:52.728224 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.275862
I0408 03:10:52.728238 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.65851 (* 1 = 3.65851 loss)
I0408 03:10:52.728252 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 1.26509 (* 1 = 1.26509 loss)
I0408 03:10:52.728265 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 03:10:52.728276 3443 solver.cpp:245] Train net output #16: total_confidence = 9.95308e-06
I0408 03:10:52.728291 3443 sgd_solver.cpp:106] Iteration 17500, lr = 0.00975
I0408 03:16:26.094965 3443 solver.cpp:229] Iteration 18000, loss = 6.11283
I0408 03:16:26.095083 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.097561
I0408 03:16:26.095104 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.767045
I0408 03:16:26.095118 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.268293
I0408 03:16:26.095135 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.06155 (* 0.3 = 0.918464 loss)
I0408 03:16:26.095150 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.883058 (* 0.3 = 0.264917 loss)
I0408 03:16:26.095163 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.121951
I0408 03:16:26.095176 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.772727
I0408 03:16:26.095188 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.317073
I0408 03:16:26.095203 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.9982 (* 0.3 = 0.899461 loss)
I0408 03:16:26.095218 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.848543 (* 0.3 = 0.254563 loss)
I0408 03:16:26.095230 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.219512
I0408 03:16:26.095243 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.784091
I0408 03:16:26.095257 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.512195
I0408 03:16:26.095270 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.69777 (* 1 = 2.69777 loss)
I0408 03:16:26.095285 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.786169 (* 1 = 0.786169 loss)
I0408 03:16:26.095299 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 03:16:26.095335 3443 solver.cpp:245] Train net output #16: total_confidence = 0.000815731
I0408 03:16:26.095352 3443 sgd_solver.cpp:106] Iteration 18000, lr = 0.00974286
I0408 03:21:59.491999 3443 solver.cpp:229] Iteration 18500, loss = 6.05918
I0408 03:21:59.492120 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.162791
I0408 03:21:59.492139 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.789773
I0408 03:21:59.492153 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.325581
I0408 03:21:59.492169 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.96062 (* 0.3 = 0.888186 loss)
I0408 03:21:59.492184 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.806971 (* 0.3 = 0.242091 loss)
I0408 03:21:59.492197 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.186047
I0408 03:21:59.492210 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.789773
I0408 03:21:59.492223 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.302326
I0408 03:21:59.492238 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.73543 (* 0.3 = 0.82063 loss)
I0408 03:21:59.492252 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.757007 (* 0.3 = 0.227102 loss)
I0408 03:21:59.492264 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.162791
I0408 03:21:59.492277 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.795455
I0408 03:21:59.492290 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.348837
I0408 03:21:59.492305 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.76149 (* 1 = 2.76149 loss)
I0408 03:21:59.492318 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.722848 (* 1 = 0.722848 loss)
I0408 03:21:59.492331 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 03:21:59.492342 3443 solver.cpp:245] Train net output #16: total_confidence = 0.000268515
I0408 03:21:59.492357 3443 sgd_solver.cpp:106] Iteration 18500, lr = 0.00973571
I0408 03:27:32.865396 3443 solver.cpp:229] Iteration 19000, loss = 6.07331
I0408 03:27:32.865542 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.125
I0408 03:27:32.865563 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.755682
I0408 03:27:32.865577 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.395833
I0408 03:27:32.865593 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.93278 (* 0.3 = 0.879833 loss)
I0408 03:27:32.865609 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.867772 (* 0.3 = 0.260332 loss)
I0408 03:27:32.865622 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0833333
I0408 03:27:32.865635 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.744318
I0408 03:27:32.865648 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.333333
I0408 03:27:32.865661 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.13244 (* 0.3 = 0.939732 loss)
I0408 03:27:32.865676 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.920409 (* 0.3 = 0.276123 loss)
I0408 03:27:32.865689 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.166667
I0408 03:27:32.865701 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.772727
I0408 03:27:32.865713 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.354167
I0408 03:27:32.865727 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.89764 (* 1 = 2.89764 loss)
I0408 03:27:32.865741 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.823988 (* 1 = 0.823988 loss)
I0408 03:27:32.865754 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 03:27:32.865767 3443 solver.cpp:245] Train net output #16: total_confidence = 0.000703157
I0408 03:27:32.865782 3443 sgd_solver.cpp:106] Iteration 19000, lr = 0.00972857
I0408 03:33:06.261752 3443 solver.cpp:229] Iteration 19500, loss = 6.02707
I0408 03:33:06.261965 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.139535
I0408 03:33:06.261996 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.778409
I0408 03:33:06.262018 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.302326
I0408 03:33:06.262045 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.86896 (* 0.3 = 0.860689 loss)
I0408 03:33:06.262069 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.841048 (* 0.3 = 0.252314 loss)
I0408 03:33:06.262090 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.139535
I0408 03:33:06.262110 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.767045
I0408 03:33:06.262131 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.302326
I0408 03:33:06.262157 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.82822 (* 0.3 = 0.848467 loss)
I0408 03:33:06.262186 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.843234 (* 0.3 = 0.25297 loss)
I0408 03:33:06.262208 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.209302
I0408 03:33:06.262230 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.789773
I0408 03:33:06.262251 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.372093
I0408 03:33:06.262277 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.59688 (* 1 = 2.59688 loss)
I0408 03:33:06.262302 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.740166 (* 1 = 0.740166 loss)
I0408 03:33:06.262325 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 03:33:06.262344 3443 solver.cpp:245] Train net output #16: total_confidence = 0.000361148
I0408 03:33:06.262369 3443 sgd_solver.cpp:106] Iteration 19500, lr = 0.00972143
I0408 03:38:39.419463 3443 solver.cpp:456] Snapshotting to binary proto file /mnt/snapshots/mixed_lstm10_bn_iter_20000.caffemodel
I0408 03:38:40.408098 3443 sgd_solver.cpp:273] Snapshotting solver state to binary proto file /mnt/snapshots/mixed_lstm10_bn_iter_20000.solverstate
I0408 03:38:40.663452 3443 solver.cpp:338] Iteration 20000, Testing net (#0)
I0408 03:39:22.200975 3443 solver.cpp:393] Test loss: 5.47749
I0408 03:39:22.201160 3443 solver.cpp:406] Test net output #0: loss1/accuracy = 0.121362
I0408 03:39:22.201181 3443 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.782772
I0408 03:39:22.201195 3443 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.312271
I0408 03:39:22.201212 3443 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 3.10695 (* 0.3 = 0.932086 loss)
I0408 03:39:22.201227 3443 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.80271 (* 0.3 = 0.240813 loss)
I0408 03:39:22.201241 3443 solver.cpp:406] Test net output #5: loss2/accuracy = 0.187429
I0408 03:39:22.201252 3443 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.791636
I0408 03:39:22.201264 3443 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.422584
I0408 03:39:22.201278 3443 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 2.80781 (* 0.3 = 0.842343 loss)
I0408 03:39:22.201292 3443 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.768699 (* 0.3 = 0.23061 loss)
I0408 03:39:22.201304 3443 solver.cpp:406] Test net output #10: loss3/accuracy = 0.248012
I0408 03:39:22.201318 3443 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.805499
I0408 03:39:22.201328 3443 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.517742
I0408 03:39:22.201341 3443 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 2.53828 (* 1 = 2.53828 loss)
I0408 03:39:22.201355 3443 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.693356 (* 1 = 0.693356 loss)
I0408 03:39:22.201367 3443 solver.cpp:406] Test net output #15: total_accuracy = 0
I0408 03:39:22.201378 3443 solver.cpp:406] Test net output #16: total_confidence = 0.00353288
I0408 03:39:22.578279 3443 solver.cpp:229] Iteration 20000, loss = 5.90747
I0408 03:39:22.578366 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0851064
I0408 03:39:22.578397 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.75
I0408 03:39:22.578418 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.212766
I0408 03:39:22.578445 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.17171 (* 0.3 = 0.951513 loss)
I0408 03:39:22.578471 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.906176 (* 0.3 = 0.271853 loss)
I0408 03:39:22.578493 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.148936
I0408 03:39:22.578516 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.772727
I0408 03:39:22.578543 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.276596
I0408 03:39:22.578569 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.98058 (* 0.3 = 0.894174 loss)
I0408 03:39:22.578594 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.867251 (* 0.3 = 0.260175 loss)
I0408 03:39:22.578616 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.191489
I0408 03:39:22.578637 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.784091
I0408 03:39:22.578660 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.340426
I0408 03:39:22.578683 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.74857 (* 1 = 2.74857 loss)
I0408 03:39:22.578711 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.777717 (* 1 = 0.777717 loss)
I0408 03:39:22.578734 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 03:39:22.578755 3443 solver.cpp:245] Train net output #16: total_confidence = 0.000365537
I0408 03:39:22.578779 3443 sgd_solver.cpp:106] Iteration 20000, lr = 0.00971429
I0408 03:44:56.047286 3443 solver.cpp:229] Iteration 20500, loss = 5.96394
I0408 03:44:56.047472 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0232558
I0408 03:44:56.047494 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.744318
I0408 03:44:56.047508 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.209302
I0408 03:44:56.047524 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.49207 (* 0.3 = 1.04762 loss)
I0408 03:44:56.047540 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.990423 (* 0.3 = 0.297127 loss)
I0408 03:44:56.047554 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0697674
I0408 03:44:56.047567 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.767045
I0408 03:44:56.047590 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.209302
I0408 03:44:56.047605 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.37157 (* 0.3 = 1.01147 loss)
I0408 03:44:56.047621 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.895009 (* 0.3 = 0.268503 loss)
I0408 03:44:56.047632 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.209302
I0408 03:44:56.047646 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.784091
I0408 03:44:56.047658 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.302326
I0408 03:44:56.047673 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.95396 (* 1 = 2.95396 loss)
I0408 03:44:56.047688 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.840022 (* 1 = 0.840022 loss)
I0408 03:44:56.047700 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 03:44:56.047713 3443 solver.cpp:245] Train net output #16: total_confidence = 0.00479399
I0408 03:44:56.047727 3443 sgd_solver.cpp:106] Iteration 20500, lr = 0.00970714
I0408 03:50:29.756602 3443 solver.cpp:229] Iteration 21000, loss = 5.89677
I0408 03:50:29.756731 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.170213
I0408 03:50:29.756750 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.767045
I0408 03:50:29.756764 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.361702
I0408 03:50:29.756781 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.1291 (* 0.3 = 0.938729 loss)
I0408 03:50:29.756796 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.919596 (* 0.3 = 0.275879 loss)
I0408 03:50:29.756809 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.106383
I0408 03:50:29.756824 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.761364
I0408 03:50:29.756835 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.255319
I0408 03:50:29.756850 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.15096 (* 0.3 = 0.945289 loss)
I0408 03:50:29.756865 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.896236 (* 0.3 = 0.268871 loss)
I0408 03:50:29.756876 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.148936
I0408 03:50:29.756888 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.767045
I0408 03:50:29.756901 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.404255
I0408 03:50:29.756916 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.88524 (* 1 = 2.88524 loss)
I0408 03:50:29.756932 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.827257 (* 1 = 0.827257 loss)
I0408 03:50:29.756944 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 03:50:29.756958 3443 solver.cpp:245] Train net output #16: total_confidence = 0.000214557
I0408 03:50:29.756973 3443 sgd_solver.cpp:106] Iteration 21000, lr = 0.0097
I0408 03:56:03.296778 3443 solver.cpp:229] Iteration 21500, loss = 5.8648
I0408 03:56:03.296967 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.102041
I0408 03:56:03.296989 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.744318
I0408 03:56:03.297003 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.326531
I0408 03:56:03.297021 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.91291 (* 0.3 = 0.873874 loss)
I0408 03:56:03.297037 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.847433 (* 0.3 = 0.25423 loss)
I0408 03:56:03.297050 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0408163
I0408 03:56:03.297063 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.732955
I0408 03:56:03.297076 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.346939
I0408 03:56:03.297091 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.90866 (* 0.3 = 0.872597 loss)
I0408 03:56:03.297106 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.840847 (* 0.3 = 0.252254 loss)
I0408 03:56:03.297117 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.183673
I0408 03:56:03.297130 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.772727
I0408 03:56:03.297144 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.469388
I0408 03:56:03.297159 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.58836 (* 1 = 2.58836 loss)
I0408 03:56:03.297173 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.755498 (* 1 = 0.755498 loss)
I0408 03:56:03.297186 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 03:56:03.297199 3443 solver.cpp:245] Train net output #16: total_confidence = 0.000526112
I0408 03:56:03.297214 3443 sgd_solver.cpp:106] Iteration 21500, lr = 0.00969286
I0408 04:01:37.219444 3443 solver.cpp:229] Iteration 22000, loss = 5.84008
I0408 04:01:37.219607 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.121212
I0408 04:01:37.219630 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.789773
I0408 04:01:37.219643 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.424242
I0408 04:01:37.219660 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.32698 (* 0.3 = 0.998095 loss)
I0408 04:01:37.219676 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.891549 (* 0.3 = 0.267465 loss)
I0408 04:01:37.219696 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.242424
I0408 04:01:37.219722 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.806818
I0408 04:01:37.219746 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.393939
I0408 04:01:37.219763 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.26208 (* 0.3 = 0.978625 loss)
I0408 04:01:37.219777 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.878891 (* 0.3 = 0.263667 loss)
I0408 04:01:37.219790 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.181818
I0408 04:01:37.219804 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.8125
I0408 04:01:37.219815 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.424242
I0408 04:01:37.219830 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.23786 (* 1 = 3.23786 loss)
I0408 04:01:37.219846 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.77744 (* 1 = 0.77744 loss)
I0408 04:01:37.219858 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 04:01:37.219871 3443 solver.cpp:245] Train net output #16: total_confidence = 0.000834102
I0408 04:01:37.219887 3443 sgd_solver.cpp:106] Iteration 22000, lr = 0.00968571
I0408 04:07:10.587605 3443 solver.cpp:229] Iteration 22500, loss = 5.79453
I0408 04:07:10.587749 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0909091
I0408 04:07:10.587769 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.767045
I0408 04:07:10.587782 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.431818
I0408 04:07:10.587800 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.7063 (* 0.3 = 0.81189 loss)
I0408 04:07:10.587815 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.761748 (* 0.3 = 0.228524 loss)
I0408 04:07:10.587828 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.136364
I0408 04:07:10.587841 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.778409
I0408 04:07:10.587853 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.477273
I0408 04:07:10.587867 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.65143 (* 0.3 = 0.79543 loss)
I0408 04:07:10.587882 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.724082 (* 0.3 = 0.217225 loss)
I0408 04:07:10.587894 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.204545
I0408 04:07:10.587908 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.789773
I0408 04:07:10.587929 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.477273
I0408 04:07:10.587957 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.49052 (* 1 = 2.49052 loss)
I0408 04:07:10.587975 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.664172 (* 1 = 0.664172 loss)
I0408 04:07:10.587990 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 04:07:10.588001 3443 solver.cpp:245] Train net output #16: total_confidence = 0.00108864
I0408 04:07:10.588016 3443 sgd_solver.cpp:106] Iteration 22500, lr = 0.00967857
I0408 04:12:43.973495 3443 solver.cpp:229] Iteration 23000, loss = 5.75905
I0408 04:12:43.973620 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0769231
I0408 04:12:43.973641 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.727273
I0408 04:12:43.973655 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.269231
I0408 04:12:43.973672 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.21488 (* 0.3 = 0.964463 loss)
I0408 04:12:43.973687 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.987613 (* 0.3 = 0.296284 loss)
I0408 04:12:43.973701 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0961538
I0408 04:12:43.973713 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.732955
I0408 04:12:43.973726 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.365385
I0408 04:12:43.973740 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.20837 (* 0.3 = 0.962512 loss)
I0408 04:12:43.973754 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.987533 (* 0.3 = 0.29626 loss)
I0408 04:12:43.973767 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.134615
I0408 04:12:43.973779 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.738636
I0408 04:12:43.973793 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.346154
I0408 04:12:43.973806 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.90652 (* 1 = 2.90652 loss)
I0408 04:12:43.973820 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.912728 (* 1 = 0.912728 loss)
I0408 04:12:43.973832 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 04:12:43.973845 3443 solver.cpp:245] Train net output #16: total_confidence = 0.00286899
I0408 04:12:43.973860 3443 sgd_solver.cpp:106] Iteration 23000, lr = 0.00967143
I0408 04:18:17.359911 3443 solver.cpp:229] Iteration 23500, loss = 5.72152
I0408 04:18:17.360080 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0697674
I0408 04:18:17.360102 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.767045
I0408 04:18:17.360116 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.372093
I0408 04:18:17.360132 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.88174 (* 0.3 = 0.864522 loss)
I0408 04:18:17.360148 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.76453 (* 0.3 = 0.229359 loss)
I0408 04:18:17.360160 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.255814
I0408 04:18:17.360173 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.806818
I0408 04:18:17.360186 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.465116
I0408 04:18:17.360200 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.7252 (* 0.3 = 0.817559 loss)
I0408 04:18:17.360215 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.739986 (* 0.3 = 0.221996 loss)
I0408 04:18:17.360229 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.255814
I0408 04:18:17.360240 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.801136
I0408 04:18:17.360252 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.488372
I0408 04:18:17.360267 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.45667 (* 1 = 2.45667 loss)
I0408 04:18:17.360281 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.673545 (* 1 = 0.673545 loss)
I0408 04:18:17.360294 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 04:18:17.360306 3443 solver.cpp:245] Train net output #16: total_confidence = 0.000185179
I0408 04:18:17.360321 3443 sgd_solver.cpp:106] Iteration 23500, lr = 0.00966429
I0408 04:23:51.076306 3443 solver.cpp:229] Iteration 24000, loss = 5.6634
I0408 04:23:51.076447 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.130435
I0408 04:23:51.076468 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.761364
I0408 04:23:51.076493 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.391304
I0408 04:23:51.076520 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.92501 (* 0.3 = 0.877504 loss)
I0408 04:23:51.076537 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.841139 (* 0.3 = 0.252342 loss)
I0408 04:23:51.076550 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.152174
I0408 04:23:51.076563 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.761364
I0408 04:23:51.076575 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.391304
I0408 04:23:51.076591 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.79658 (* 0.3 = 0.838975 loss)
I0408 04:23:51.076604 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.832479 (* 0.3 = 0.249744 loss)
I0408 04:23:51.076617 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.217391
I0408 04:23:51.076629 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.778409
I0408 04:23:51.076642 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.5
I0408 04:23:51.076656 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.48546 (* 1 = 2.48546 loss)
I0408 04:23:51.076670 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.723716 (* 1 = 0.723716 loss)
I0408 04:23:51.076683 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 04:23:51.076694 3443 solver.cpp:245] Train net output #16: total_confidence = 0.00111612
I0408 04:23:51.076709 3443 sgd_solver.cpp:106] Iteration 24000, lr = 0.00965714
I0408 04:29:25.118901 3443 solver.cpp:229] Iteration 24500, loss = 5.68391
I0408 04:29:25.119024 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.102041
I0408 04:29:25.119053 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.738636
I0408 04:29:25.119077 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.387755
I0408 04:29:25.119105 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.69484 (* 0.3 = 0.808452 loss)
I0408 04:29:25.119134 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.854493 (* 0.3 = 0.256348 loss)
I0408 04:29:25.119161 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.142857
I0408 04:29:25.119185 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.738636
I0408 04:29:25.119205 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.489796
I0408 04:29:25.119233 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.59141 (* 0.3 = 0.777422 loss)
I0408 04:29:25.119261 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.839809 (* 0.3 = 0.251943 loss)
I0408 04:29:25.119282 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.22449
I0408 04:29:25.119304 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.778409
I0408 04:29:25.119348 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.612245
I0408 04:29:25.119376 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.26674 (* 1 = 2.26674 loss)
I0408 04:29:25.119403 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.700507 (* 1 = 0.700507 loss)
I0408 04:29:25.119426 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 04:29:25.119449 3443 solver.cpp:245] Train net output #16: total_confidence = 0.000385832
I0408 04:29:25.119474 3443 sgd_solver.cpp:106] Iteration 24500, lr = 0.00965
I0408 04:34:58.115461 3443 solver.cpp:338] Iteration 25000, Testing net (#0)
I0408 04:35:39.420289 3443 solver.cpp:393] Test loss: 4.91618
I0408 04:35:39.420397 3443 solver.cpp:406] Test net output #0: loss1/accuracy = 0.137866
I0408 04:35:39.420418 3443 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.786045
I0408 04:35:39.420434 3443 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.386392
I0408 04:35:39.420454 3443 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 2.87346 (* 0.3 = 0.862037 loss)
I0408 04:35:39.420470 3443 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.73311 (* 0.3 = 0.219933 loss)
I0408 04:35:39.420483 3443 solver.cpp:406] Test net output #5: loss2/accuracy = 0.239812
I0408 04:35:39.420496 3443 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.808728
I0408 04:35:39.420508 3443 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.507788
I0408 04:35:39.420522 3443 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 2.51268 (* 0.3 = 0.753803 loss)
I0408 04:35:39.420537 3443 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.656623 (* 0.3 = 0.196987 loss)
I0408 04:35:39.420549 3443 solver.cpp:406] Test net output #10: loss3/accuracy = 0.301843
I0408 04:35:39.420562 3443 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.822955
I0408 04:35:39.420572 3443 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.609965
I0408 04:35:39.420586 3443 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 2.28575 (* 1 = 2.28575 loss)
I0408 04:35:39.420601 3443 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.597672 (* 1 = 0.597672 loss)
I0408 04:35:39.420614 3443 solver.cpp:406] Test net output #15: total_accuracy = 0
I0408 04:35:39.420625 3443 solver.cpp:406] Test net output #16: total_confidence = 0.0125953
I0408 04:35:39.799145 3443 solver.cpp:229] Iteration 25000, loss = 5.61565
I0408 04:35:39.799216 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.181818
I0408 04:35:39.799234 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.789773
I0408 04:35:39.799247 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.386364
I0408 04:35:39.799264 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.99888 (* 0.3 = 0.899664 loss)
I0408 04:35:39.799280 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.819139 (* 0.3 = 0.245742 loss)
I0408 04:35:39.799293 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.204545
I0408 04:35:39.799306 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.795455
I0408 04:35:39.799334 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.454545
I0408 04:35:39.799351 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.68279 (* 0.3 = 0.804837 loss)
I0408 04:35:39.799366 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.741027 (* 0.3 = 0.222308 loss)
I0408 04:35:39.799379 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.25
I0408 04:35:39.799392 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.801136
I0408 04:35:39.799406 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.5
I0408 04:35:39.799419 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.52897 (* 1 = 2.52897 loss)
I0408 04:35:39.799434 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.689765 (* 1 = 0.689765 loss)
I0408 04:35:39.799446 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 04:35:39.799459 3443 solver.cpp:245] Train net output #16: total_confidence = 0.00927546
I0408 04:35:39.799474 3443 sgd_solver.cpp:106] Iteration 25000, lr = 0.00964286
I0408 04:41:13.217890 3443 solver.cpp:229] Iteration 25500, loss = 5.57057
I0408 04:41:13.218024 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.1
I0408 04:41:13.218044 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.738636
I0408 04:41:13.218057 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.28
I0408 04:41:13.218073 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.05437 (* 0.3 = 0.916312 loss)
I0408 04:41:13.218088 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.909091 (* 0.3 = 0.272727 loss)
I0408 04:41:13.218101 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.08
I0408 04:41:13.218114 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.738636
I0408 04:41:13.218127 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.36
I0408 04:41:13.218140 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.89131 (* 0.3 = 0.867392 loss)
I0408 04:41:13.218155 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.863423 (* 0.3 = 0.259027 loss)
I0408 04:41:13.218168 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.16
I0408 04:41:13.218180 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.755682
I0408 04:41:13.218192 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.42
I0408 04:41:13.218207 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.55978 (* 1 = 2.55978 loss)
I0408 04:41:13.218221 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.768538 (* 1 = 0.768538 loss)
I0408 04:41:13.218233 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 04:41:13.218245 3443 solver.cpp:245] Train net output #16: total_confidence = 0.000503808
I0408 04:41:13.218260 3443 sgd_solver.cpp:106] Iteration 25500, lr = 0.00963571
I0408 04:46:46.612912 3443 solver.cpp:229] Iteration 26000, loss = 5.57131
I0408 04:46:46.613049 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.1
I0408 04:46:46.613070 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.732955
I0408 04:46:46.613083 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.28
I0408 04:46:46.613101 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.07281 (* 0.3 = 0.921844 loss)
I0408 04:46:46.613116 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.964706 (* 0.3 = 0.289412 loss)
I0408 04:46:46.613128 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.16
I0408 04:46:46.613142 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.744318
I0408 04:46:46.613154 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.46
I0408 04:46:46.613168 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.86093 (* 0.3 = 0.858279 loss)
I0408 04:46:46.613183 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.934049 (* 0.3 = 0.280215 loss)
I0408 04:46:46.613195 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.28
I0408 04:46:46.613207 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.784091
I0408 04:46:46.613219 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.52
I0408 04:46:46.613234 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.6548 (* 1 = 2.6548 loss)
I0408 04:46:46.613248 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.828316 (* 1 = 0.828316 loss)
I0408 04:46:46.613261 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 04:46:46.613272 3443 solver.cpp:245] Train net output #16: total_confidence = 0.00319384
I0408 04:46:46.613287 3443 sgd_solver.cpp:106] Iteration 26000, lr = 0.00962857
I0408 04:52:19.982720 3443 solver.cpp:229] Iteration 26500, loss = 5.45498
I0408 04:52:19.982820 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.159091
I0408 04:52:19.982839 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.778409
I0408 04:52:19.982853 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.295455
I0408 04:52:19.982870 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.03894 (* 0.3 = 0.911683 loss)
I0408 04:52:19.982885 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.84789 (* 0.3 = 0.254367 loss)
I0408 04:52:19.982897 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.204545
I0408 04:52:19.982910 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.778409
I0408 04:52:19.982923 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.454545
I0408 04:52:19.982936 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.7609 (* 0.3 = 0.82827 loss)
I0408 04:52:19.982951 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.824445 (* 0.3 = 0.247334 loss)
I0408 04:52:19.982964 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.340909
I0408 04:52:19.982976 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.823864
I0408 04:52:19.982988 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.568182
I0408 04:52:19.983003 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.31374 (* 1 = 2.31374 loss)
I0408 04:52:19.983017 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.693164 (* 1 = 0.693164 loss)
I0408 04:52:19.983029 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 04:52:19.983042 3443 solver.cpp:245] Train net output #16: total_confidence = 0.00202379
I0408 04:52:19.983057 3443 sgd_solver.cpp:106] Iteration 26500, lr = 0.00962143
I0408 04:57:53.373890 3443 solver.cpp:229] Iteration 27000, loss = 5.41715
I0408 04:57:53.374053 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.209302
I0408 04:57:53.374074 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.801136
I0408 04:57:53.374089 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.325581
I0408 04:57:53.374104 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.71844 (* 0.3 = 0.815532 loss)
I0408 04:57:53.374120 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.735085 (* 0.3 = 0.220525 loss)
I0408 04:57:53.374133 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.27907
I0408 04:57:53.374145 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.806818
I0408 04:57:53.374157 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.395349
I0408 04:57:53.374172 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.56507 (* 0.3 = 0.76952 loss)
I0408 04:57:53.374186 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.713445 (* 0.3 = 0.214033 loss)
I0408 04:57:53.374199 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.255814
I0408 04:57:53.374212 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.795455
I0408 04:57:53.374223 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.55814
I0408 04:57:53.374241 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.34383 (* 1 = 2.34383 loss)
I0408 04:57:53.374258 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.655706 (* 1 = 0.655706 loss)
I0408 04:57:53.374270 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 04:57:53.374284 3443 solver.cpp:245] Train net output #16: total_confidence = 0.0113597
I0408 04:57:53.374297 3443 sgd_solver.cpp:106] Iteration 27000, lr = 0.00961429
I0408 05:03:26.762840 3443 solver.cpp:229] Iteration 27500, loss = 5.44701
I0408 05:03:26.762984 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.302326
I0408 05:03:26.763006 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.818182
I0408 05:03:26.763020 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.488372
I0408 05:03:26.763036 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.60715 (* 0.3 = 0.782145 loss)
I0408 05:03:26.763052 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.711584 (* 0.3 = 0.213475 loss)
I0408 05:03:26.763065 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.255814
I0408 05:03:26.763078 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.806818
I0408 05:03:26.763092 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.581395
I0408 05:03:26.763105 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.29083 (* 0.3 = 0.68725 loss)
I0408 05:03:26.763120 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.632539 (* 0.3 = 0.189762 loss)
I0408 05:03:26.763133 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.418605
I0408 05:03:26.763145 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.840909
I0408 05:03:26.763159 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.627907
I0408 05:03:26.763172 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.93984 (* 1 = 1.93984 loss)
I0408 05:03:26.763186 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.564072 (* 1 = 0.564072 loss)
I0408 05:03:26.763200 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 05:03:26.763211 3443 solver.cpp:245] Train net output #16: total_confidence = 0.00527866
I0408 05:03:26.763226 3443 sgd_solver.cpp:106] Iteration 27500, lr = 0.00960714
I0408 05:09:00.148047 3443 solver.cpp:229] Iteration 28000, loss = 5.37176
I0408 05:09:00.148181 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.229167
I0408 05:09:00.148202 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.784091
I0408 05:09:00.148216 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.354167
I0408 05:09:00.148233 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.16015 (* 0.3 = 0.948046 loss)
I0408 05:09:00.148248 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.92977 (* 0.3 = 0.278931 loss)
I0408 05:09:00.148262 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.25
I0408 05:09:00.148274 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.778409
I0408 05:09:00.148295 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.333333
I0408 05:09:00.148310 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.09371 (* 0.3 = 0.928112 loss)
I0408 05:09:00.148325 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.929118 (* 0.3 = 0.278736 loss)
I0408 05:09:00.148337 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.270833
I0408 05:09:00.148350 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.795455
I0408 05:09:00.148363 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.479167
I0408 05:09:00.148377 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.67246 (* 1 = 2.67246 loss)
I0408 05:09:00.148392 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.761312 (* 1 = 0.761312 loss)
I0408 05:09:00.148404 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 05:09:00.148416 3443 solver.cpp:245] Train net output #16: total_confidence = 0.00234873
I0408 05:09:00.148432 3443 sgd_solver.cpp:106] Iteration 28000, lr = 0.0096
I0408 05:14:33.524186 3443 solver.cpp:229] Iteration 28500, loss = 5.34711
I0408 05:14:33.524307 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.125
I0408 05:14:33.524334 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.761364
I0408 05:14:33.524349 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.25
I0408 05:14:33.524365 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.23819 (* 0.3 = 0.971458 loss)
I0408 05:14:33.524381 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.925843 (* 0.3 = 0.277753 loss)
I0408 05:14:33.524394 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.1875
I0408 05:14:33.524406 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.772727
I0408 05:14:33.524420 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.270833
I0408 05:14:33.524433 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.94815 (* 0.3 = 0.884445 loss)
I0408 05:14:33.524447 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.861943 (* 0.3 = 0.258583 loss)
I0408 05:14:33.524461 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.354167
I0408 05:14:33.524472 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.818182
I0408 05:14:33.524484 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.520833
I0408 05:14:33.524498 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.5553 (* 1 = 2.5553 loss)
I0408 05:14:33.524513 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.751491 (* 1 = 0.751491 loss)
I0408 05:14:33.524525 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 05:14:33.524538 3443 solver.cpp:245] Train net output #16: total_confidence = 0.00175085
I0408 05:14:33.524552 3443 sgd_solver.cpp:106] Iteration 28500, lr = 0.00959286
I0408 05:20:06.928674 3443 solver.cpp:229] Iteration 29000, loss = 5.27811
I0408 05:20:06.928879 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.170213
I0408 05:20:06.928901 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.767045
I0408 05:20:06.928916 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.382979
I0408 05:20:06.928937 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.80283 (* 0.3 = 0.840849 loss)
I0408 05:20:06.928953 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.838168 (* 0.3 = 0.25145 loss)
I0408 05:20:06.928966 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.170213
I0408 05:20:06.928980 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.772727
I0408 05:20:06.928992 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.425532
I0408 05:20:06.929008 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.59605 (* 0.3 = 0.778814 loss)
I0408 05:20:06.929023 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.740494 (* 0.3 = 0.222148 loss)
I0408 05:20:06.929035 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.382979
I0408 05:20:06.929047 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.823864
I0408 05:20:06.929059 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.638298
I0408 05:20:06.929075 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.99669 (* 1 = 1.99669 loss)
I0408 05:20:06.929090 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.595919 (* 1 = 0.595919 loss)
I0408 05:20:06.929102 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 05:20:06.929114 3443 solver.cpp:245] Train net output #16: total_confidence = 0.00155956
I0408 05:20:06.929131 3443 sgd_solver.cpp:106] Iteration 29000, lr = 0.00958571
I0408 05:25:40.312585 3443 solver.cpp:229] Iteration 29500, loss = 5.24723
I0408 05:25:40.312729 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.166667
I0408 05:25:40.312752 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.778409
I0408 05:25:40.312765 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.238095
I0408 05:25:40.312783 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.93647 (* 0.3 = 0.88094 loss)
I0408 05:25:40.312798 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.830184 (* 0.3 = 0.249055 loss)
I0408 05:25:40.312811 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.214286
I0408 05:25:40.312824 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.795455
I0408 05:25:40.312836 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.380952
I0408 05:25:40.312850 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.71661 (* 0.3 = 0.814982 loss)
I0408 05:25:40.312865 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.750702 (* 0.3 = 0.225211 loss)
I0408 05:25:40.312878 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.309524
I0408 05:25:40.312891 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.8125
I0408 05:25:40.312903 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.571429
I0408 05:25:40.312921 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.41253 (* 1 = 2.41253 loss)
I0408 05:25:40.312942 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.642644 (* 1 = 0.642644 loss)
I0408 05:25:40.312954 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 05:25:40.312966 3443 solver.cpp:245] Train net output #16: total_confidence = 0.00615939
I0408 05:25:40.312990 3443 sgd_solver.cpp:106] Iteration 29500, lr = 0.00957857
I0408 05:31:13.343006 3443 solver.cpp:456] Snapshotting to binary proto file /mnt/snapshots/mixed_lstm10_bn_iter_30000.caffemodel
I0408 05:31:13.919284 3443 sgd_solver.cpp:273] Snapshotting solver state to binary proto file /mnt/snapshots/mixed_lstm10_bn_iter_30000.solverstate
I0408 05:31:14.174617 3443 solver.cpp:338] Iteration 30000, Testing net (#0)
I0408 05:31:55.663022 3443 solver.cpp:393] Test loss: 4.97754
I0408 05:31:55.663162 3443 solver.cpp:406] Test net output #0: loss1/accuracy = 0.145619
I0408 05:31:55.663182 3443 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.789954
I0408 05:31:55.663197 3443 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.397102
I0408 05:31:55.663213 3443 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 2.90851 (* 0.3 = 0.872554 loss)
I0408 05:31:55.663228 3443 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.732237 (* 0.3 = 0.219671 loss)
I0408 05:31:55.663241 3443 solver.cpp:406] Test net output #5: loss2/accuracy = 0.242848
I0408 05:31:55.663254 3443 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.8115
I0408 05:31:55.663267 3443 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.524725
I0408 05:31:55.663282 3443 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 2.5926 (* 0.3 = 0.777781 loss)
I0408 05:31:55.663296 3443 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.659972 (* 0.3 = 0.197992 loss)
I0408 05:31:55.663308 3443 solver.cpp:406] Test net output #10: loss3/accuracy = 0.326873
I0408 05:31:55.663334 3443 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.831501
I0408 05:31:55.663348 3443 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.63838
I0408 05:31:55.663362 3443 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 2.31849 (* 1 = 2.31849 loss)
I0408 05:31:55.663377 3443 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.591059 (* 1 = 0.591059 loss)
I0408 05:31:55.663388 3443 solver.cpp:406] Test net output #15: total_accuracy = 0.004
I0408 05:31:55.663401 3443 solver.cpp:406] Test net output #16: total_confidence = 0.0169928
I0408 05:31:56.036801 3443 solver.cpp:229] Iteration 30000, loss = 5.21011
I0408 05:31:56.036875 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.116279
I0408 05:31:56.036895 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.778409
I0408 05:31:56.036907 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.232558
I0408 05:31:56.036924 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.25716 (* 0.3 = 0.977147 loss)
I0408 05:31:56.036941 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.869196 (* 0.3 = 0.260759 loss)
I0408 05:31:56.036953 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.116279
I0408 05:31:56.036967 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.778409
I0408 05:31:56.036979 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.302326
I0408 05:31:56.036994 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.17902 (* 0.3 = 0.953705 loss)
I0408 05:31:56.037009 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.829304 (* 0.3 = 0.248791 loss)
I0408 05:31:56.037022 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.232558
I0408 05:31:56.037035 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.8125
I0408 05:31:56.037047 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.44186
I0408 05:31:56.037062 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.60331 (* 1 = 2.60331 loss)
I0408 05:31:56.037076 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.68663 (* 1 = 0.68663 loss)
I0408 05:31:56.037089 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 05:31:56.037104 3443 solver.cpp:245] Train net output #16: total_confidence = 0.0220163
I0408 05:31:56.037120 3443 sgd_solver.cpp:106] Iteration 30000, lr = 0.00957143
I0408 05:37:29.441752 3443 solver.cpp:229] Iteration 30500, loss = 5.2441
I0408 05:37:29.441911 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.109091
I0408 05:37:29.441943 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.715909
I0408 05:37:29.441968 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.309091
I0408 05:37:29.441999 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.31876 (* 0.3 = 0.995627 loss)
I0408 05:37:29.442025 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.07219 (* 0.3 = 0.321658 loss)
I0408 05:37:29.442047 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.145455
I0408 05:37:29.442071 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.727273
I0408 05:37:29.442093 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.436364
I0408 05:37:29.442119 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.85704 (* 0.3 = 0.857112 loss)
I0408 05:37:29.442144 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.931557 (* 0.3 = 0.279467 loss)
I0408 05:37:29.442167 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.290909
I0408 05:37:29.442190 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.772727
I0408 05:37:29.442212 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.545455
I0408 05:37:29.442239 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.44747 (* 1 = 2.44747 loss)
I0408 05:37:29.442265 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.790017 (* 1 = 0.790017 loss)
I0408 05:37:29.442286 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 05:37:29.442306 3443 solver.cpp:245] Train net output #16: total_confidence = 0.0100726
I0408 05:37:29.442329 3443 sgd_solver.cpp:106] Iteration 30500, lr = 0.00956429
I0408 05:43:02.813120 3443 solver.cpp:229] Iteration 31000, loss = 5.16199
I0408 05:43:02.813248 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.111111
I0408 05:43:02.813269 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.767045
I0408 05:43:02.813282 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.266667
I0408 05:43:02.813299 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.0193 (* 0.3 = 0.905791 loss)
I0408 05:43:02.813315 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.82371 (* 0.3 = 0.247113 loss)
I0408 05:43:02.813328 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.133333
I0408 05:43:02.813340 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.772727
I0408 05:43:02.813354 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.377778
I0408 05:43:02.813369 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.89512 (* 0.3 = 0.868535 loss)
I0408 05:43:02.813383 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.78978 (* 0.3 = 0.236934 loss)
I0408 05:43:02.813395 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.333333
I0408 05:43:02.813408 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.823864
I0408 05:43:02.813421 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.622222
I0408 05:43:02.813436 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.54797 (* 1 = 2.54797 loss)
I0408 05:43:02.813449 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.704613 (* 1 = 0.704613 loss)
I0408 05:43:02.813462 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 05:43:02.813477 3443 solver.cpp:245] Train net output #16: total_confidence = 0.00452278
I0408 05:43:02.813491 3443 sgd_solver.cpp:106] Iteration 31000, lr = 0.00955714
I0408 05:48:36.197264 3443 solver.cpp:229] Iteration 31500, loss = 5.10699
I0408 05:48:36.197386 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.1
I0408 05:48:36.197405 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.738636
I0408 05:48:36.197419 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.3
I0408 05:48:36.197437 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.78707 (* 0.3 = 0.83612 loss)
I0408 05:48:36.197453 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.821366 (* 0.3 = 0.24641 loss)
I0408 05:48:36.197465 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.18
I0408 05:48:36.197479 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.767045
I0408 05:48:36.197490 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.4
I0408 05:48:36.197505 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.52776 (* 0.3 = 0.758329 loss)
I0408 05:48:36.197520 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.742024 (* 0.3 = 0.222607 loss)
I0408 05:48:36.197532 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.32
I0408 05:48:36.197546 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.801136
I0408 05:48:36.197561 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.7
I0408 05:48:36.197576 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.08504 (* 1 = 2.08504 loss)
I0408 05:48:36.197590 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.63094 (* 1 = 0.63094 loss)
I0408 05:48:36.197603 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 05:48:36.197615 3443 solver.cpp:245] Train net output #16: total_confidence = 0.00303106
I0408 05:48:36.197629 3443 sgd_solver.cpp:106] Iteration 31500, lr = 0.00955
I0408 05:54:09.581734 3443 solver.cpp:229] Iteration 32000, loss = 5.04984
I0408 05:54:09.581858 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0612245
I0408 05:54:09.581879 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.732955
I0408 05:54:09.581893 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.244898
I0408 05:54:09.581923 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.16992 (* 0.3 = 0.950975 loss)
I0408 05:54:09.581939 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.941856 (* 0.3 = 0.282557 loss)
I0408 05:54:09.581953 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.163265
I0408 05:54:09.581965 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.761364
I0408 05:54:09.581985 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.326531
I0408 05:54:09.582000 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.96188 (* 0.3 = 0.888563 loss)
I0408 05:54:09.582015 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.871674 (* 0.3 = 0.261502 loss)
I0408 05:54:09.582027 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.22449
I0408 05:54:09.582039 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.778409
I0408 05:54:09.582052 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.510204
I0408 05:54:09.582067 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.5644 (* 1 = 2.5644 loss)
I0408 05:54:09.582082 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.748741 (* 1 = 0.748741 loss)
I0408 05:54:09.582093 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 05:54:09.582106 3443 solver.cpp:245] Train net output #16: total_confidence = 0.00474768
I0408 05:54:09.582123 3443 sgd_solver.cpp:106] Iteration 32000, lr = 0.00954286
I0408 05:59:42.964702 3443 solver.cpp:229] Iteration 32500, loss = 5.04794
I0408 05:59:42.964870 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.170213
I0408 05:59:42.964891 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.755682
I0408 05:59:42.964905 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.340426
I0408 05:59:42.964923 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.97821 (* 0.3 = 0.893463 loss)
I0408 05:59:42.964939 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.888276 (* 0.3 = 0.266483 loss)
I0408 05:59:42.964962 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.234043
I0408 05:59:42.964974 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.761364
I0408 05:59:42.964987 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.446809
I0408 05:59:42.965000 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.45597 (* 0.3 = 0.736791 loss)
I0408 05:59:42.965016 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.801562 (* 0.3 = 0.240469 loss)
I0408 05:59:42.965037 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.404255
I0408 05:59:42.965049 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.823864
I0408 05:59:42.965062 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.617021
I0408 05:59:42.965076 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.95904 (* 1 = 1.95904 loss)
I0408 05:59:42.965098 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.567995 (* 1 = 0.567995 loss)
I0408 05:59:42.965111 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 05:59:42.965123 3443 solver.cpp:245] Train net output #16: total_confidence = 0.0299854
I0408 05:59:42.965138 3443 sgd_solver.cpp:106] Iteration 32500, lr = 0.00953571
I0408 06:05:16.352061 3443 solver.cpp:229] Iteration 33000, loss = 4.97942
I0408 06:05:16.352185 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.265306
I0408 06:05:16.352206 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.778409
I0408 06:05:16.352221 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.489796
I0408 06:05:16.352237 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.67611 (* 0.3 = 0.802834 loss)
I0408 06:05:16.352253 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.826175 (* 0.3 = 0.247852 loss)
I0408 06:05:16.352265 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.265306
I0408 06:05:16.352279 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.784091
I0408 06:05:16.352293 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.469388
I0408 06:05:16.352306 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.50913 (* 0.3 = 0.752738 loss)
I0408 06:05:16.352320 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.752596 (* 0.3 = 0.225779 loss)
I0408 06:05:16.352334 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.326531
I0408 06:05:16.352345 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.795455
I0408 06:05:16.352357 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.693878
I0408 06:05:16.352373 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.93327 (* 1 = 1.93327 loss)
I0408 06:05:16.352387 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.587124 (* 1 = 0.587124 loss)
I0408 06:05:16.352401 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 06:05:16.352412 3443 solver.cpp:245] Train net output #16: total_confidence = 0.0250051
I0408 06:05:16.352427 3443 sgd_solver.cpp:106] Iteration 33000, lr = 0.00952857
I0408 06:10:49.742142 3443 solver.cpp:229] Iteration 33500, loss = 4.93185
I0408 06:10:49.742288 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.139535
I0408 06:10:49.742310 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.772727
I0408 06:10:49.742323 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.325581
I0408 06:10:49.742341 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.62702 (* 0.3 = 0.788106 loss)
I0408 06:10:49.742355 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.757426 (* 0.3 = 0.227228 loss)
I0408 06:10:49.742368 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.27907
I0408 06:10:49.742382 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.806818
I0408 06:10:49.742393 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.581395
I0408 06:10:49.742408 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.32824 (* 0.3 = 0.698473 loss)
I0408 06:10:49.742422 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.670243 (* 0.3 = 0.201073 loss)
I0408 06:10:49.742435 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.372093
I0408 06:10:49.742447 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.818182
I0408 06:10:49.742460 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.697674
I0408 06:10:49.742475 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.86117 (* 1 = 1.86117 loss)
I0408 06:10:49.742488 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.543658 (* 1 = 0.543658 loss)
I0408 06:10:49.742501 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 06:10:49.742513 3443 solver.cpp:245] Train net output #16: total_confidence = 0.00785647
I0408 06:10:49.742527 3443 sgd_solver.cpp:106] Iteration 33500, lr = 0.00952143
I0408 06:16:23.122870 3443 solver.cpp:229] Iteration 34000, loss = 4.84969
I0408 06:16:23.122992 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.230769
I0408 06:16:23.123013 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.772727
I0408 06:16:23.123025 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.403846
I0408 06:16:23.123044 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.88372 (* 0.3 = 0.865115 loss)
I0408 06:16:23.123059 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.877545 (* 0.3 = 0.263263 loss)
I0408 06:16:23.123072 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.288462
I0408 06:16:23.123085 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.789773
I0408 06:16:23.123097 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.5
I0408 06:16:23.123111 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.48519 (* 0.3 = 0.745559 loss)
I0408 06:16:23.123126 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.750957 (* 0.3 = 0.225287 loss)
I0408 06:16:23.123139 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.288462
I0408 06:16:23.123152 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.784091
I0408 06:16:23.123163 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.576923
I0408 06:16:23.123178 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.23586 (* 1 = 2.23586 loss)
I0408 06:16:23.123193 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.679149 (* 1 = 0.679149 loss)
I0408 06:16:23.123204 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 06:16:23.123216 3443 solver.cpp:245] Train net output #16: total_confidence = 0.00947154
I0408 06:16:23.123231 3443 sgd_solver.cpp:106] Iteration 34000, lr = 0.00951429
I0408 06:21:56.498411 3443 solver.cpp:229] Iteration 34500, loss = 4.85039
I0408 06:21:56.498551 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.131579
I0408 06:21:56.498572 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.789773
I0408 06:21:56.498586 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.289474
I0408 06:21:56.498605 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.85295 (* 0.3 = 0.855886 loss)
I0408 06:21:56.498620 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.733991 (* 0.3 = 0.220197 loss)
I0408 06:21:56.498633 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.210526
I0408 06:21:56.498646 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.806818
I0408 06:21:56.498661 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.5
I0408 06:21:56.498674 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.47461 (* 0.3 = 0.742383 loss)
I0408 06:21:56.498689 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.643811 (* 0.3 = 0.193143 loss)
I0408 06:21:56.498703 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.315789
I0408 06:21:56.498715 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.829545
I0408 06:21:56.498728 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.684211
I0408 06:21:56.498742 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.07816 (* 1 = 2.07816 loss)
I0408 06:21:56.498759 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.547755 (* 1 = 0.547755 loss)
I0408 06:21:56.498770 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 06:21:56.498782 3443 solver.cpp:245] Train net output #16: total_confidence = 0.00605544
I0408 06:21:56.498797 3443 sgd_solver.cpp:106] Iteration 34500, lr = 0.00950714
I0408 06:27:29.485337 3443 solver.cpp:338] Iteration 35000, Testing net (#0)
I0408 06:28:10.367095 3443 solver.cpp:393] Test loss: 4.0954
I0408 06:28:10.367198 3443 solver.cpp:406] Test net output #0: loss1/accuracy = 0.215172
I0408 06:28:10.367218 3443 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.805272
I0408 06:28:10.367233 3443 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.471191
I0408 06:28:10.367249 3443 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 2.61869 (* 0.3 = 0.785608 loss)
I0408 06:28:10.367264 3443 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.669698 (* 0.3 = 0.200909 loss)
I0408 06:28:10.367276 3443 solver.cpp:406] Test net output #5: loss2/accuracy = 0.299377
I0408 06:28:10.367288 3443 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.821319
I0408 06:28:10.367300 3443 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.613951
I0408 06:28:10.367314 3443 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 2.24778 (* 0.3 = 0.674333 loss)
I0408 06:28:10.367346 3443 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.590392 (* 0.3 = 0.177118 loss)
I0408 06:28:10.367360 3443 solver.cpp:406] Test net output #10: loss3/accuracy = 0.451047
I0408 06:28:10.367372 3443 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.854503
I0408 06:28:10.367384 3443 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.747107
I0408 06:28:10.367398 3443 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 1.77778 (* 1 = 1.77778 loss)
I0408 06:28:10.367413 3443 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.479648 (* 1 = 0.479648 loss)
I0408 06:28:10.367424 3443 solver.cpp:406] Test net output #15: total_accuracy = 0.017
I0408 06:28:10.367436 3443 solver.cpp:406] Test net output #16: total_confidence = 0.0301474
I0408 06:28:10.741078 3443 solver.cpp:229] Iteration 35000, loss = 4.83928
I0408 06:28:10.741122 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.148936
I0408 06:28:10.741139 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.767045
I0408 06:28:10.741153 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.276596
I0408 06:28:10.741168 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.1082 (* 0.3 = 0.932461 loss)
I0408 06:28:10.741184 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.890236 (* 0.3 = 0.267071 loss)
I0408 06:28:10.741196 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.212766
I0408 06:28:10.741209 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.784091
I0408 06:28:10.741221 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.468085
I0408 06:28:10.741236 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.76517 (* 0.3 = 0.82955 loss)
I0408 06:28:10.741251 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.794256 (* 0.3 = 0.238277 loss)
I0408 06:28:10.741263 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.276596
I0408 06:28:10.741276 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.801136
I0408 06:28:10.741287 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.595745
I0408 06:28:10.741302 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.28737 (* 1 = 2.28737 loss)
I0408 06:28:10.741315 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.635768 (* 1 = 0.635768 loss)
I0408 06:28:10.741336 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 06:28:10.741359 3443 solver.cpp:245] Train net output #16: total_confidence = 0.035943
I0408 06:28:10.741376 3443 sgd_solver.cpp:106] Iteration 35000, lr = 0.0095
I0408 06:33:43.934198 3443 solver.cpp:229] Iteration 35500, loss = 4.75338
I0408 06:33:43.934358 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0652174
I0408 06:33:43.934381 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.744318
I0408 06:33:43.934393 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.369565
I0408 06:33:43.934411 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.21137 (* 0.3 = 0.96341 loss)
I0408 06:33:43.934427 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.944004 (* 0.3 = 0.283201 loss)
I0408 06:33:43.934439 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.173913
I0408 06:33:43.934451 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.761364
I0408 06:33:43.934463 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.434783
I0408 06:33:43.934478 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.12269 (* 0.3 = 0.936808 loss)
I0408 06:33:43.934492 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.912652 (* 0.3 = 0.273796 loss)
I0408 06:33:43.934504 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.369565
I0408 06:33:43.934516 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.823864
I0408 06:33:43.934530 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.543478
I0408 06:33:43.934545 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.24622 (* 1 = 2.24622 loss)
I0408 06:33:43.934558 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.654418 (* 1 = 0.654418 loss)
I0408 06:33:43.934571 3443 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0408 06:33:43.934583 3443 solver.cpp:245] Train net output #16: total_confidence = 0.0109744
I0408 06:33:43.934597 3443 sgd_solver.cpp:106] Iteration 35500, lr = 0.00949286
I0408 06:39:17.318689 3443 solver.cpp:229] Iteration 36000, loss = 4.81359
I0408 06:39:17.318843 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.181818
I0408 06:39:17.318864 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.772727
I0408 06:39:17.318878 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.454545
I0408 06:39:17.318895 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.80751 (* 0.3 = 0.842254 loss)
I0408 06:39:17.318910 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.804576 (* 0.3 = 0.241373 loss)
I0408 06:39:17.318927 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.272727
I0408 06:39:17.318939 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.789773
I0408 06:39:17.318953 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.590909
I0408 06:39:17.318967 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.44805 (* 0.3 = 0.734414 loss)
I0408 06:39:17.318981 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.746742 (* 0.3 = 0.224023 loss)
I0408 06:39:17.318994 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.386364
I0408 06:39:17.319007 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.840909
I0408 06:39:17.319020 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.75
I0408 06:39:17.319034 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.73737 (* 1 = 1.73737 loss)
I0408 06:39:17.319048 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.468786 (* 1 = 0.468786 loss)
I0408 06:39:17.319061 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 06:39:17.319073 3443 solver.cpp:245] Train net output #16: total_confidence = 0.0451285
I0408 06:39:17.319087 3443 sgd_solver.cpp:106] Iteration 36000, lr = 0.00948571
I0408 06:44:50.705765 3443 solver.cpp:229] Iteration 36500, loss = 4.65573
I0408 06:44:50.705905 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.1875
I0408 06:44:50.705929 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.767045
I0408 06:44:50.705942 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.416667
I0408 06:44:50.705960 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.83622 (* 0.3 = 0.850867 loss)
I0408 06:44:50.705976 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.828629 (* 0.3 = 0.248589 loss)
I0408 06:44:50.705987 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.208333
I0408 06:44:50.706001 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.778409
I0408 06:44:50.706013 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.4375
I0408 06:44:50.706027 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.69789 (* 0.3 = 0.809367 loss)
I0408 06:44:50.706043 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.797178 (* 0.3 = 0.239154 loss)
I0408 06:44:50.706056 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.375
I0408 06:44:50.706068 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.818182
I0408 06:44:50.706080 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.729167
I0408 06:44:50.706094 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.95794 (* 1 = 1.95794 loss)
I0408 06:44:50.706110 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.574129 (* 1 = 0.574129 loss)
I0408 06:44:50.706121 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 06:44:50.706133 3443 solver.cpp:245] Train net output #16: total_confidence = 0.0182024
I0408 06:44:50.706148 3443 sgd_solver.cpp:106] Iteration 36500, lr = 0.00947857
I0408 06:50:24.272944 3443 solver.cpp:229] Iteration 37000, loss = 4.70395
I0408 06:50:24.273102 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.232558
I0408 06:50:24.273134 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.8125
I0408 06:50:24.273159 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.511628
I0408 06:50:24.273185 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.55963 (* 0.3 = 0.767889 loss)
I0408 06:50:24.273216 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.667124 (* 0.3 = 0.200137 loss)
I0408 06:50:24.273233 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.372093
I0408 06:50:24.273247 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.835227
I0408 06:50:24.273259 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.604651
I0408 06:50:24.273275 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.22153 (* 0.3 = 0.66646 loss)
I0408 06:50:24.273290 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.603912 (* 0.3 = 0.181174 loss)
I0408 06:50:24.273303 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.395349
I0408 06:50:24.273315 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.846591
I0408 06:50:24.273327 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.837209
I0408 06:50:24.273344 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.61394 (* 1 = 1.61394 loss)
I0408 06:50:24.273357 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.425367 (* 1 = 0.425367 loss)
I0408 06:50:24.273370 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 06:50:24.273382 3443 solver.cpp:245] Train net output #16: total_confidence = 0.0102365
I0408 06:50:24.273398 3443 sgd_solver.cpp:106] Iteration 37000, lr = 0.00947143
I0408 06:55:57.808449 3443 solver.cpp:229] Iteration 37500, loss = 4.66713
I0408 06:55:57.808560 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.181818
I0408 06:55:57.808579 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.784091
I0408 06:55:57.808593 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.431818
I0408 06:55:57.808611 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.81697 (* 0.3 = 0.84509 loss)
I0408 06:55:57.808627 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.785185 (* 0.3 = 0.235555 loss)
I0408 06:55:57.808640 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.295455
I0408 06:55:57.808652 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.806818
I0408 06:55:57.808665 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.590909
I0408 06:55:57.808679 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.42629 (* 0.3 = 0.727886 loss)
I0408 06:55:57.808693 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.669031 (* 0.3 = 0.200709 loss)
I0408 06:55:57.808706 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.568182
I0408 06:55:57.808719 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.875
I0408 06:55:57.808732 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.818182
I0408 06:55:57.808746 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.56279 (* 1 = 1.56279 loss)
I0408 06:55:57.808760 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.453297 (* 1 = 0.453297 loss)
I0408 06:55:57.808773 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 06:55:57.808784 3443 solver.cpp:245] Train net output #16: total_confidence = 0.0321454
I0408 06:55:57.808799 3443 sgd_solver.cpp:106] Iteration 37500, lr = 0.00946429
I0408 07:01:31.207726 3443 solver.cpp:229] Iteration 38000, loss = 4.63113
I0408 07:01:31.207869 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.28
I0408 07:01:31.207900 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.789773
I0408 07:01:31.207926 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.58
I0408 07:01:31.207957 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.39881 (* 0.3 = 0.719643 loss)
I0408 07:01:31.207984 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.728012 (* 0.3 = 0.218404 loss)
I0408 07:01:31.208006 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.26
I0408 07:01:31.208027 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.789773
I0408 07:01:31.208048 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.64
I0408 07:01:31.208076 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.15989 (* 0.3 = 0.647967 loss)
I0408 07:01:31.208103 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.641307 (* 0.3 = 0.192392 loss)
I0408 07:01:31.208124 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.4
I0408 07:01:31.208145 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.823864
I0408 07:01:31.208165 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.72
I0408 07:01:31.208191 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.75136 (* 1 = 1.75136 loss)
I0408 07:01:31.208219 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.516362 (* 1 = 0.516362 loss)
I0408 07:01:31.208242 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 07:01:31.208263 3443 solver.cpp:245] Train net output #16: total_confidence = 0.0133313
I0408 07:01:31.208287 3443 sgd_solver.cpp:106] Iteration 38000, lr = 0.00945714
I0408 07:07:04.594871 3443 solver.cpp:229] Iteration 38500, loss = 4.5094
I0408 07:07:04.595007 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.26
I0408 07:07:04.595038 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.789773
I0408 07:07:04.595060 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.4
I0408 07:07:04.595090 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.6328 (* 0.3 = 0.789839 loss)
I0408 07:07:04.595119 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.791143 (* 0.3 = 0.237343 loss)
I0408 07:07:04.595140 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.32
I0408 07:07:04.595163 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.795455
I0408 07:07:04.595185 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.56
I0408 07:07:04.595211 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.31136 (* 0.3 = 0.693408 loss)
I0408 07:07:04.595239 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.712426 (* 0.3 = 0.213728 loss)
I0408 07:07:04.595262 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.44
I0408 07:07:04.595283 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.840909
I0408 07:07:04.595304 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.72
I0408 07:07:04.595351 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.63677 (* 1 = 1.63677 loss)
I0408 07:07:04.595381 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.503981 (* 1 = 0.503981 loss)
I0408 07:07:04.595405 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 07:07:04.595428 3443 solver.cpp:245] Train net output #16: total_confidence = 0.0520383
I0408 07:07:04.595454 3443 sgd_solver.cpp:106] Iteration 38500, lr = 0.00945
I0408 07:12:37.969761 3443 solver.cpp:229] Iteration 39000, loss = 4.59841
I0408 07:12:37.969902 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.181818
I0408 07:12:37.969925 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.795455
I0408 07:12:37.969938 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.386364
I0408 07:12:37.969955 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.92327 (* 0.3 = 0.876981 loss)
I0408 07:12:37.969970 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.787195 (* 0.3 = 0.236158 loss)
I0408 07:12:37.969983 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.295455
I0408 07:12:37.969995 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.8125
I0408 07:12:37.970008 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.522727
I0408 07:12:37.970022 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.62766 (* 0.3 = 0.788298 loss)
I0408 07:12:37.970037 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.718012 (* 0.3 = 0.215404 loss)
I0408 07:12:37.970051 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.454545
I0408 07:12:37.970062 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.846591
I0408 07:12:37.970074 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.636364
I0408 07:12:37.970089 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.16104 (* 1 = 2.16104 loss)
I0408 07:12:37.970103 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.584129 (* 1 = 0.584129 loss)
I0408 07:12:37.970115 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 07:12:37.970127 3443 solver.cpp:245] Train net output #16: total_confidence = 0.0392059
I0408 07:12:37.970142 3443 sgd_solver.cpp:106] Iteration 39000, lr = 0.00944286
I0408 07:18:11.350213 3443 solver.cpp:229] Iteration 39500, loss = 4.58564
I0408 07:18:11.350385 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.261905
I0408 07:18:11.350407 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.806818
I0408 07:18:11.350421 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.380952
I0408 07:18:11.350440 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.63829 (* 0.3 = 0.791486 loss)
I0408 07:18:11.350455 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.720649 (* 0.3 = 0.216195 loss)
I0408 07:18:11.350467 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.190476
I0408 07:18:11.350481 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.784091
I0408 07:18:11.350493 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.47619
I0408 07:18:11.350509 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.46013 (* 0.3 = 0.738039 loss)
I0408 07:18:11.350524 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.694471 (* 0.3 = 0.208341 loss)
I0408 07:18:11.350536 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.52381
I0408 07:18:11.350549 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.875
I0408 07:18:11.350563 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.833333
I0408 07:18:11.350576 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.52654 (* 1 = 1.52654 loss)
I0408 07:18:11.350591 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.420523 (* 1 = 0.420523 loss)
I0408 07:18:11.350605 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 07:18:11.350616 3443 solver.cpp:245] Train net output #16: total_confidence = 0.0155166
I0408 07:18:11.350631 3443 sgd_solver.cpp:106] Iteration 39500, lr = 0.00943571
I0408 07:23:44.363075 3443 solver.cpp:456] Snapshotting to binary proto file /mnt/snapshots/mixed_lstm10_bn_iter_40000.caffemodel
I0408 07:23:44.896877 3443 sgd_solver.cpp:273] Snapshotting solver state to binary proto file /mnt/snapshots/mixed_lstm10_bn_iter_40000.solverstate
I0408 07:23:45.160977 3443 solver.cpp:338] Iteration 40000, Testing net (#0)
I0408 07:24:25.984428 3443 solver.cpp:393] Test loss: 4.28317
I0408 07:24:25.984539 3443 solver.cpp:406] Test net output #0: loss1/accuracy = 0.201693
I0408 07:24:25.984558 3443 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.792636
I0408 07:24:25.984572 3443 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.435667
I0408 07:24:25.984589 3443 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 2.70979 (* 0.3 = 0.812938 loss)
I0408 07:24:25.984603 3443 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.737151 (* 0.3 = 0.221145 loss)
I0408 07:24:25.984616 3443 solver.cpp:406] Test net output #5: loss2/accuracy = 0.31752
I0408 07:24:25.984628 3443 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.824
I0408 07:24:25.984642 3443 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.618525
I0408 07:24:25.984655 3443 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 2.34303 (* 0.3 = 0.702908 loss)
I0408 07:24:25.984669 3443 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.617507 (* 0.3 = 0.185252 loss)
I0408 07:24:25.984681 3443 solver.cpp:406] Test net output #10: loss3/accuracy = 0.466562
I0408 07:24:25.984694 3443 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.860321
I0408 07:24:25.984705 3443 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.736778
I0408 07:24:25.984719 3443 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 1.87025 (* 1 = 1.87025 loss)
I0408 07:24:25.984733 3443 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.490685 (* 1 = 0.490685 loss)
I0408 07:24:25.984745 3443 solver.cpp:406] Test net output #15: total_accuracy = 0.025
I0408 07:24:25.984757 3443 solver.cpp:406] Test net output #16: total_confidence = 0.0479606
I0408 07:24:26.357055 3443 solver.cpp:229] Iteration 40000, loss = 4.51147
I0408 07:24:26.357100 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.214286
I0408 07:24:26.357120 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.795455
I0408 07:24:26.357132 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.47619
I0408 07:24:26.357148 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.51309 (* 0.3 = 0.753927 loss)
I0408 07:24:26.357163 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.682643 (* 0.3 = 0.204793 loss)
I0408 07:24:26.357177 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.452381
I0408 07:24:26.357189 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.863636
I0408 07:24:26.357202 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.666667
I0408 07:24:26.357215 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.91446 (* 0.3 = 0.574338 loss)
I0408 07:24:26.357230 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.526834 (* 0.3 = 0.15805 loss)
I0408 07:24:26.357244 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.428571
I0408 07:24:26.357255 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.852273
I0408 07:24:26.357267 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.761905
I0408 07:24:26.357282 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.51038 (* 1 = 1.51038 loss)
I0408 07:24:26.357296 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.430583 (* 1 = 0.430583 loss)
I0408 07:24:26.357308 3443 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0408 07:24:26.357321 3443 solver.cpp:245] Train net output #16: total_confidence = 0.0117866
I0408 07:24:26.357336 3443 sgd_solver.cpp:106] Iteration 40000, lr = 0.00942857
I0408 07:29:59.787551 3443 solver.cpp:229] Iteration 40500, loss = 4.53543
I0408 07:29:59.787688 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.159091
I0408 07:29:59.787708 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.75
I0408 07:29:59.787721 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.454545
I0408 07:29:59.787737 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.74372 (* 0.3 = 0.823117 loss)
I0408 07:29:59.787753 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.996515 (* 0.3 = 0.298955 loss)
I0408 07:29:59.787766 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.25
I0408 07:29:59.787778 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.778409
I0408 07:29:59.787791 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.522727
I0408 07:29:59.787806 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.46781 (* 0.3 = 0.740344 loss)
I0408 07:29:59.787820 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.857632 (* 0.3 = 0.25729 loss)
I0408 07:29:59.787832 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.409091
I0408 07:29:59.787845 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.801136
I0408 07:29:59.787858 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.704545
I0408 07:29:59.787871 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.0294 (* 1 = 2.0294 loss)
I0408 07:29:59.787886 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.764169 (* 1 = 0.764169 loss)
I0408 07:29:59.787899 3443 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0408 07:29:59.787910 3443 solver.cpp:245] Train net output #16: total_confidence = 0.0122209
I0408 07:29:59.787927 3443 sgd_solver.cpp:106] Iteration 40500, lr = 0.00942143
I0408 07:35:33.181404 3443 solver.cpp:229] Iteration 41000, loss = 4.38253
I0408 07:35:33.181511 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.179487
I0408 07:35:33.181530 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.801136
I0408 07:35:33.181545 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.487179
I0408 07:35:33.181561 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.73064 (* 0.3 = 0.819191 loss)
I0408 07:35:33.181577 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.718487 (* 0.3 = 0.215546 loss)
I0408 07:35:33.181591 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.307692
I0408 07:35:33.181602 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.818182
I0408 07:35:33.181615 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.564103
I0408 07:35:33.181629 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.3394 (* 0.3 = 0.70182 loss)
I0408 07:35:33.181644 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.636151 (* 0.3 = 0.190845 loss)
I0408 07:35:33.181656 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.512821
I0408 07:35:33.181669 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.875
I0408 07:35:33.181681 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.794872
I0408 07:35:33.181695 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.45096 (* 1 = 1.45096 loss)
I0408 07:35:33.181710 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.37363 (* 1 = 0.37363 loss)
I0408 07:35:33.181722 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 07:35:33.181733 3443 solver.cpp:245] Train net output #16: total_confidence = 0.0165384
I0408 07:35:33.181748 3443 sgd_solver.cpp:106] Iteration 41000, lr = 0.00941429
I0408 07:41:06.555713 3443 solver.cpp:229] Iteration 41500, loss = 4.33516
I0408 07:41:06.555891 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.1875
I0408 07:41:06.555912 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.772727
I0408 07:41:06.555929 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.333333
I0408 07:41:06.555948 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.79003 (* 0.3 = 0.837008 loss)
I0408 07:41:06.555963 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.80129 (* 0.3 = 0.240387 loss)
I0408 07:41:06.555976 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.1875
I0408 07:41:06.555989 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.755682
I0408 07:41:06.556002 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.541667
I0408 07:41:06.556016 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.63525 (* 0.3 = 0.790576 loss)
I0408 07:41:06.556031 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.803931 (* 0.3 = 0.241179 loss)
I0408 07:41:06.556043 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.458333
I0408 07:41:06.556056 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.823864
I0408 07:41:06.556068 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.75
I0408 07:41:06.556083 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.73477 (* 1 = 1.73477 loss)
I0408 07:41:06.556098 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.533991 (* 1 = 0.533991 loss)
I0408 07:41:06.556110 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 07:41:06.556123 3443 solver.cpp:245] Train net output #16: total_confidence = 0.0100958
I0408 07:41:06.556138 3443 sgd_solver.cpp:106] Iteration 41500, lr = 0.00940714
I0408 07:46:39.958488 3443 solver.cpp:229] Iteration 42000, loss = 4.41297
I0408 07:46:39.958622 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.108696
I0408 07:46:39.958643 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.738636
I0408 07:46:39.958657 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.173913
I0408 07:46:39.958673 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.99757 (* 0.3 = 0.899272 loss)
I0408 07:46:39.958689 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.927949 (* 0.3 = 0.278385 loss)
I0408 07:46:39.958703 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.195652
I0408 07:46:39.958715 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.772727
I0408 07:46:39.958727 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.434783
I0408 07:46:39.958742 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.74967 (* 0.3 = 0.8249 loss)
I0408 07:46:39.958756 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.84251 (* 0.3 = 0.252753 loss)
I0408 07:46:39.958770 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.434783
I0408 07:46:39.958782 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.835227
I0408 07:46:39.958796 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.630435
I0408 07:46:39.958811 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.94645 (* 1 = 1.94645 loss)
I0408 07:46:39.958824 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.598705 (* 1 = 0.598705 loss)
I0408 07:46:39.958837 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 07:46:39.958848 3443 solver.cpp:245] Train net output #16: total_confidence = 0.00729562
I0408 07:46:39.958863 3443 sgd_solver.cpp:106] Iteration 42000, lr = 0.0094
I0408 07:52:14.001816 3443 solver.cpp:229] Iteration 42500, loss = 4.32487
I0408 07:52:14.001966 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.204545
I0408 07:52:14.001987 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.789773
I0408 07:52:14.002002 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.5
I0408 07:52:14.002019 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.52528 (* 0.3 = 0.757583 loss)
I0408 07:52:14.002034 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.732987 (* 0.3 = 0.219896 loss)
I0408 07:52:14.002048 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.386364
I0408 07:52:14.002060 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.829545
I0408 07:52:14.002073 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.636364
I0408 07:52:14.002087 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.14141 (* 0.3 = 0.642424 loss)
I0408 07:52:14.002102 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.632104 (* 0.3 = 0.189631 loss)
I0408 07:52:14.002115 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.477273
I0408 07:52:14.002128 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.857955
I0408 07:52:14.002140 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.795455
I0408 07:52:14.002154 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.43281 (* 1 = 1.43281 loss)
I0408 07:52:14.002168 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.397218 (* 1 = 0.397218 loss)
I0408 07:52:14.002182 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 07:52:14.002193 3443 solver.cpp:245] Train net output #16: total_confidence = 0.0298337
I0408 07:52:14.002209 3443 sgd_solver.cpp:106] Iteration 42500, lr = 0.00939286
I0408 07:57:47.741140 3443 solver.cpp:229] Iteration 43000, loss = 4.30786
I0408 07:57:47.741315 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.270833
I0408 07:57:47.741338 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.795455
I0408 07:57:47.741351 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.520833
I0408 07:57:47.741370 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.52953 (* 0.3 = 0.75886 loss)
I0408 07:57:47.741390 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.731093 (* 0.3 = 0.219328 loss)
I0408 07:57:47.741418 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.458333
I0408 07:57:47.741446 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.852273
I0408 07:57:47.741475 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.666667
I0408 07:57:47.741509 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.25857 (* 0.3 = 0.677571 loss)
I0408 07:57:47.741544 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.643874 (* 0.3 = 0.193162 loss)
I0408 07:57:47.741574 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.583333
I0408 07:57:47.741601 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.880682
I0408 07:57:47.741629 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.895833
I0408 07:57:47.741662 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.31631 (* 1 = 1.31631 loss)
I0408 07:57:47.741691 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.373632 (* 1 = 0.373632 loss)
I0408 07:57:47.741717 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 07:57:47.741739 3443 solver.cpp:245] Train net output #16: total_confidence = 0.0408934
I0408 07:57:47.741761 3443 sgd_solver.cpp:106] Iteration 43000, lr = 0.00938571
I0408 08:03:21.110702 3443 solver.cpp:229] Iteration 43500, loss = 4.29116
I0408 08:03:21.110875 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.196078
I0408 08:03:21.110898 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.75
I0408 08:03:21.110911 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.45098
I0408 08:03:21.110931 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.9299 (* 0.3 = 0.878971 loss)
I0408 08:03:21.110946 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.927684 (* 0.3 = 0.278305 loss)
I0408 08:03:21.110960 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.333333
I0408 08:03:21.110977 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.795455
I0408 08:03:21.110991 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.568627
I0408 08:03:21.111006 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.44474 (* 0.3 = 0.733423 loss)
I0408 08:03:21.111021 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.76311 (* 0.3 = 0.228933 loss)
I0408 08:03:21.111033 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.470588
I0408 08:03:21.111047 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.840909
I0408 08:03:21.111058 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.745098
I0408 08:03:21.111073 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.74062 (* 1 = 1.74062 loss)
I0408 08:03:21.111088 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.526914 (* 1 = 0.526914 loss)
I0408 08:03:21.111101 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 08:03:21.111114 3443 solver.cpp:245] Train net output #16: total_confidence = 0.0392329
I0408 08:03:21.111129 3443 sgd_solver.cpp:106] Iteration 43500, lr = 0.00937857
I0408 08:08:54.502329 3443 solver.cpp:229] Iteration 44000, loss = 4.26276
I0408 08:08:54.502465 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.1875
I0408 08:08:54.502485 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.767045
I0408 08:08:54.502501 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.270833
I0408 08:08:54.502517 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.2683 (* 0.3 = 0.98049 loss)
I0408 08:08:54.502533 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.978263 (* 0.3 = 0.293479 loss)
I0408 08:08:54.502547 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.25
I0408 08:08:54.502560 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.789773
I0408 08:08:54.502573 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.4375
I0408 08:08:54.502588 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.99348 (* 0.3 = 0.898043 loss)
I0408 08:08:54.502602 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.861443 (* 0.3 = 0.258433 loss)
I0408 08:08:54.502615 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.333333
I0408 08:08:54.502627 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.818182
I0408 08:08:54.502640 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.666667
I0408 08:08:54.502655 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.07118 (* 1 = 2.07118 loss)
I0408 08:08:54.502670 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.588973 (* 1 = 0.588973 loss)
I0408 08:08:54.502682 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 08:08:54.502694 3443 solver.cpp:245] Train net output #16: total_confidence = 0.00549494
I0408 08:08:54.502710 3443 sgd_solver.cpp:106] Iteration 44000, lr = 0.00937143
I0408 08:14:27.913336 3443 solver.cpp:229] Iteration 44500, loss = 4.18289
I0408 08:14:27.913528 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.229167
I0408 08:14:27.913550 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.778409
I0408 08:14:27.913573 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.4375
I0408 08:14:27.913590 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.91427 (* 0.3 = 0.874283 loss)
I0408 08:14:27.913605 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.869366 (* 0.3 = 0.26081 loss)
I0408 08:14:27.913619 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.229167
I0408 08:14:27.913632 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.772727
I0408 08:14:27.913645 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.5625
I0408 08:14:27.913660 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.59131 (* 0.3 = 0.777394 loss)
I0408 08:14:27.913674 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.77895 (* 0.3 = 0.233685 loss)
I0408 08:14:27.913687 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.5
I0408 08:14:27.913700 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.857955
I0408 08:14:27.913712 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.770833
I0408 08:14:27.913728 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.73475 (* 1 = 1.73475 loss)
I0408 08:14:27.913743 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.509851 (* 1 = 0.509851 loss)
I0408 08:14:27.913755 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 08:14:27.913769 3443 solver.cpp:245] Train net output #16: total_confidence = 0.0273994
I0408 08:14:27.913784 3443 sgd_solver.cpp:106] Iteration 44500, lr = 0.00936429
I0408 08:20:00.877070 3443 solver.cpp:338] Iteration 45000, Testing net (#0)
I0408 08:20:42.370219 3443 solver.cpp:393] Test loss: 3.70414
I0408 08:20:42.370339 3443 solver.cpp:406] Test net output #0: loss1/accuracy = 0.262795
I0408 08:20:42.370358 3443 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.812455
I0408 08:20:42.370373 3443 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.561312
I0408 08:20:42.370390 3443 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 2.33902 (* 0.3 = 0.701707 loss)
I0408 08:20:42.370406 3443 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.62291 (* 0.3 = 0.186873 loss)
I0408 08:20:42.370419 3443 solver.cpp:406] Test net output #5: loss2/accuracy = 0.406812
I0408 08:20:42.370431 3443 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.844274
I0408 08:20:42.370443 3443 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.712847
I0408 08:20:42.370458 3443 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.96986 (* 0.3 = 0.590959 loss)
I0408 08:20:42.370472 3443 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.535288 (* 0.3 = 0.160586 loss)
I0408 08:20:42.370486 3443 solver.cpp:406] Test net output #10: loss3/accuracy = 0.515773
I0408 08:20:42.370497 3443 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.879186
I0408 08:20:42.370509 3443 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.811592
I0408 08:20:42.370523 3443 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 1.64699 (* 1 = 1.64699 loss)
I0408 08:20:42.370537 3443 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.417033 (* 1 = 0.417033 loss)
I0408 08:20:42.370550 3443 solver.cpp:406] Test net output #15: total_accuracy = 0.057
I0408 08:20:42.370563 3443 solver.cpp:406] Test net output #16: total_confidence = 0.0777983
I0408 08:20:42.749699 3443 solver.cpp:229] Iteration 45000, loss = 4.22782
I0408 08:20:42.749770 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.117647
I0408 08:20:42.749788 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.738636
I0408 08:20:42.749802 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.392157
I0408 08:20:42.749820 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.58254 (* 0.3 = 0.774762 loss)
I0408 08:20:42.749835 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.792316 (* 0.3 = 0.237695 loss)
I0408 08:20:42.749848 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.294118
I0408 08:20:42.749861 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.789773
I0408 08:20:42.749874 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.647059
I0408 08:20:42.749891 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.31662 (* 0.3 = 0.694987 loss)
I0408 08:20:42.749904 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.71464 (* 0.3 = 0.214392 loss)
I0408 08:20:42.749917 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.607843
I0408 08:20:42.749930 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.875
I0408 08:20:42.749943 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.803922
I0408 08:20:42.749956 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.42669 (* 1 = 1.42669 loss)
I0408 08:20:42.749971 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.441891 (* 1 = 0.441891 loss)
I0408 08:20:42.749984 3443 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0408 08:20:42.749997 3443 solver.cpp:245] Train net output #16: total_confidence = 0.0416125
I0408 08:20:42.750012 3443 sgd_solver.cpp:106] Iteration 45000, lr = 0.00935714
I0408 08:26:16.039364 3443 solver.cpp:229] Iteration 45500, loss = 4.14317
I0408 08:26:16.039577 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.270833
I0408 08:26:16.039599 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.789773
I0408 08:26:16.039614 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.375
I0408 08:26:16.039633 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.9851 (* 0.3 = 0.895529 loss)
I0408 08:26:16.039647 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.880025 (* 0.3 = 0.264008 loss)
I0408 08:26:16.039661 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.3125
I0408 08:26:16.039674 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.789773
I0408 08:26:16.039687 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.458333
I0408 08:26:16.039703 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.53239 (* 0.3 = 0.759717 loss)
I0408 08:26:16.039718 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.804404 (* 0.3 = 0.241321 loss)
I0408 08:26:16.039731 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.479167
I0408 08:26:16.039743 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.840909
I0408 08:26:16.039757 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.708333
I0408 08:26:16.039772 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.82212 (* 1 = 1.82212 loss)
I0408 08:26:16.039785 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.545502 (* 1 = 0.545502 loss)
I0408 08:26:16.039798 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 08:26:16.039810 3443 solver.cpp:245] Train net output #16: total_confidence = 0.0557219
I0408 08:26:16.039826 3443 sgd_solver.cpp:106] Iteration 45500, lr = 0.00935
I0408 08:31:50.326874 3443 solver.cpp:229] Iteration 46000, loss = 4.16537
I0408 08:31:50.327046 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.212766
I0408 08:31:50.327069 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.784091
I0408 08:31:50.327082 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.361702
I0408 08:31:50.327100 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.73033 (* 0.3 = 0.819098 loss)
I0408 08:31:50.327116 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.775577 (* 0.3 = 0.232673 loss)
I0408 08:31:50.327128 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.255319
I0408 08:31:50.327142 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.795455
I0408 08:31:50.327153 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.595745
I0408 08:31:50.327168 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.42142 (* 0.3 = 0.726427 loss)
I0408 08:31:50.327183 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.681215 (* 0.3 = 0.204364 loss)
I0408 08:31:50.327196 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.510638
I0408 08:31:50.327209 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.857955
I0408 08:31:50.327221 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.87234
I0408 08:31:50.327236 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.7496 (* 1 = 1.7496 loss)
I0408 08:31:50.327250 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.510245 (* 1 = 0.510245 loss)
I0408 08:31:50.327263 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 08:31:50.327276 3443 solver.cpp:245] Train net output #16: total_confidence = 0.037237
I0408 08:31:50.327291 3443 sgd_solver.cpp:106] Iteration 46000, lr = 0.00934286
I0408 08:37:23.921041 3443 solver.cpp:229] Iteration 46500, loss = 4.12648
I0408 08:37:23.921207 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.232558
I0408 08:37:23.921229 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.801136
I0408 08:37:23.921242 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.488372
I0408 08:37:23.921260 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.34259 (* 0.3 = 0.702776 loss)
I0408 08:37:23.921277 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.642685 (* 0.3 = 0.192806 loss)
I0408 08:37:23.921290 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.44186
I0408 08:37:23.921303 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.852273
I0408 08:37:23.921316 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.767442
I0408 08:37:23.921331 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.82075 (* 0.3 = 0.546224 loss)
I0408 08:37:23.921345 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.500723 (* 0.3 = 0.150217 loss)
I0408 08:37:23.921358 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.72093
I0408 08:37:23.921371 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.909091
I0408 08:37:23.921383 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.883721
I0408 08:37:23.921398 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.990515 (* 1 = 0.990515 loss)
I0408 08:37:23.921412 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.296504 (* 1 = 0.296504 loss)
I0408 08:37:23.921425 3443 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0408 08:37:23.921438 3443 solver.cpp:245] Train net output #16: total_confidence = 0.0528966
I0408 08:37:23.921453 3443 sgd_solver.cpp:106] Iteration 46500, lr = 0.00933571
I0408 08:42:58.185261 3443 solver.cpp:229] Iteration 47000, loss = 4.08458
I0408 08:42:58.185442 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.130435
I0408 08:42:58.185462 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.75
I0408 08:42:58.185477 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.369565
I0408 08:42:58.185495 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.90335 (* 0.3 = 0.871004 loss)
I0408 08:42:58.185513 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.868988 (* 0.3 = 0.260696 loss)
I0408 08:42:58.185525 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.23913
I0408 08:42:58.185539 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.778409
I0408 08:42:58.185551 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.478261
I0408 08:42:58.185566 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.54151 (* 0.3 = 0.762454 loss)
I0408 08:42:58.185580 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.762412 (* 0.3 = 0.228724 loss)
I0408 08:42:58.185593 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.413043
I0408 08:42:58.185606 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.823864
I0408 08:42:58.185618 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.717391
I0408 08:42:58.185633 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.69967 (* 1 = 1.69967 loss)
I0408 08:42:58.185648 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.545159 (* 1 = 0.545159 loss)
I0408 08:42:58.185662 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 08:42:58.185673 3443 solver.cpp:245] Train net output #16: total_confidence = 0.0416656
I0408 08:42:58.185688 3443 sgd_solver.cpp:106] Iteration 47000, lr = 0.00932857
I0408 08:48:31.634920 3443 solver.cpp:229] Iteration 47500, loss = 4.0875
I0408 08:48:31.635064 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.148936
I0408 08:48:31.635087 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.75
I0408 08:48:31.635100 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.340426
I0408 08:48:31.635118 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.21337 (* 0.3 = 0.964011 loss)
I0408 08:48:31.635133 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.00573 (* 0.3 = 0.30172 loss)
I0408 08:48:31.635148 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.234043
I0408 08:48:31.635160 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.778409
I0408 08:48:31.635172 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.361702
I0408 08:48:31.635187 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.77413 (* 0.3 = 0.832239 loss)
I0408 08:48:31.635202 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.815685 (* 0.3 = 0.244705 loss)
I0408 08:48:31.635215 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.340426
I0408 08:48:31.635227 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.806818
I0408 08:48:31.635241 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.680851
I0408 08:48:31.635254 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.19916 (* 1 = 2.19916 loss)
I0408 08:48:31.635269 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.655697 (* 1 = 0.655697 loss)
I0408 08:48:31.635282 3443 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0408 08:48:31.635294 3443 solver.cpp:245] Train net output #16: total_confidence = 0.0168393
I0408 08:48:31.635310 3443 sgd_solver.cpp:106] Iteration 47500, lr = 0.00932143
I0408 08:54:05.018049 3443 solver.cpp:229] Iteration 48000, loss = 4.01293
I0408 08:54:05.018231 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.130435
I0408 08:54:05.018252 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.767045
I0408 08:54:05.018266 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.478261
I0408 08:54:05.018283 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.60688 (* 0.3 = 0.782065 loss)
I0408 08:54:05.018299 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.738723 (* 0.3 = 0.221617 loss)
I0408 08:54:05.018312 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.326087
I0408 08:54:05.018326 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.806818
I0408 08:54:05.018337 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.565217
I0408 08:54:05.018352 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.23764 (* 0.3 = 0.671293 loss)
I0408 08:54:05.018368 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.652562 (* 0.3 = 0.195769 loss)
I0408 08:54:05.018380 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.456522
I0408 08:54:05.018393 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.846591
I0408 08:54:05.018405 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.76087
I0408 08:54:05.018419 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.72949 (* 1 = 1.72949 loss)
I0408 08:54:05.018435 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.496588 (* 1 = 0.496588 loss)
I0408 08:54:05.018447 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 08:54:05.018458 3443 solver.cpp:245] Train net output #16: total_confidence = 0.0332214
I0408 08:54:05.018474 3443 sgd_solver.cpp:106] Iteration 48000, lr = 0.00931429
I0408 08:59:38.758241 3443 solver.cpp:229] Iteration 48500, loss = 3.9872
I0408 08:59:38.758395 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.113636
I0408 08:59:38.758416 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.75
I0408 08:59:38.758430 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.431818
I0408 08:59:38.758447 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.86639 (* 0.3 = 0.859918 loss)
I0408 08:59:38.758463 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.885945 (* 0.3 = 0.265783 loss)
I0408 08:59:38.758476 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.227273
I0408 08:59:38.758489 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.761364
I0408 08:59:38.758502 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.5
I0408 08:59:38.758517 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.61334 (* 0.3 = 0.784002 loss)
I0408 08:59:38.758533 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.895284 (* 0.3 = 0.268585 loss)
I0408 08:59:38.758544 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.545455
I0408 08:59:38.758558 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.863636
I0408 08:59:38.758569 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.681818
I0408 08:59:38.758584 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.7929 (* 1 = 1.7929 loss)
I0408 08:59:38.758599 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.580862 (* 1 = 0.580862 loss)
I0408 08:59:38.758611 3443 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0408 08:59:38.758623 3443 solver.cpp:245] Train net output #16: total_confidence = 0.0750654
I0408 08:59:38.758638 3443 sgd_solver.cpp:106] Iteration 48500, lr = 0.00930714
I0408 09:05:12.239279 3443 solver.cpp:229] Iteration 49000, loss = 4.04302
I0408 09:05:12.239449 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.183673
I0408 09:05:12.239470 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.755682
I0408 09:05:12.239485 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.367347
I0408 09:05:12.239500 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.74593 (* 0.3 = 0.823778 loss)
I0408 09:05:12.239516 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.834283 (* 0.3 = 0.250285 loss)
I0408 09:05:12.239529 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.285714
I0408 09:05:12.239542 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.772727
I0408 09:05:12.239554 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.55102
I0408 09:05:12.239569 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.3752 (* 0.3 = 0.71256 loss)
I0408 09:05:12.239584 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.77604 (* 0.3 = 0.232812 loss)
I0408 09:05:12.239600 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.428571
I0408 09:05:12.239614 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.829545
I0408 09:05:12.239626 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.653061
I0408 09:05:12.239641 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.64359 (* 1 = 1.64359 loss)
I0408 09:05:12.239656 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.488295 (* 1 = 0.488295 loss)
I0408 09:05:12.239668 3443 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0408 09:05:12.239681 3443 solver.cpp:245] Train net output #16: total_confidence = 0.0908568
I0408 09:05:12.239697 3443 sgd_solver.cpp:106] Iteration 49000, lr = 0.0093
I0408 09:10:45.819412 3443 solver.cpp:229] Iteration 49500, loss = 3.94229
I0408 09:10:45.819550 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.175
I0408 09:10:45.819571 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.795455
I0408 09:10:45.819586 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.325
I0408 09:10:45.819602 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.74164 (* 0.3 = 0.822493 loss)
I0408 09:10:45.819618 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.773376 (* 0.3 = 0.232013 loss)
I0408 09:10:45.819631 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.275
I0408 09:10:45.819644 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.818182
I0408 09:10:45.819656 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.5
I0408 09:10:45.819671 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.26481 (* 0.3 = 0.679442 loss)
I0408 09:10:45.819686 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.61455 (* 0.3 = 0.184365 loss)
I0408 09:10:45.819700 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.575
I0408 09:10:45.819711 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.886364
I0408 09:10:45.819725 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.825
I0408 09:10:45.819739 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.40893 (* 1 = 1.40893 loss)
I0408 09:10:45.819754 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.415714 (* 1 = 0.415714 loss)
I0408 09:10:45.819767 3443 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0408 09:10:45.819779 3443 solver.cpp:245] Train net output #16: total_confidence = 0.087181
I0408 09:10:45.819794 3443 sgd_solver.cpp:106] Iteration 49500, lr = 0.00929286
I0408 09:16:18.860211 3443 solver.cpp:456] Snapshotting to binary proto file /mnt/snapshots/mixed_lstm10_bn_iter_50000.caffemodel
I0408 09:16:19.424011 3443 sgd_solver.cpp:273] Snapshotting solver state to binary proto file /mnt/snapshots/mixed_lstm10_bn_iter_50000.solverstate
I0408 09:16:19.682634 3443 solver.cpp:338] Iteration 50000, Testing net (#0)
I0408 09:17:01.030030 3443 solver.cpp:393] Test loss: 3.50954
I0408 09:17:01.030125 3443 solver.cpp:406] Test net output #0: loss1/accuracy = 0.190558
I0408 09:17:01.030144 3443 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.796636
I0408 09:17:01.030159 3443 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.443852
I0408 09:17:01.030175 3443 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 2.80606 (* 0.3 = 0.841817 loss)
I0408 09:17:01.030190 3443 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.727638 (* 0.3 = 0.218291 loss)
I0408 09:17:01.030203 3443 solver.cpp:406] Test net output #5: loss2/accuracy = 0.430367
I0408 09:17:01.030215 3443 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.850548
I0408 09:17:01.030227 3443 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.730112
I0408 09:17:01.030241 3443 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.90238 (* 0.3 = 0.570713 loss)
I0408 09:17:01.030256 3443 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.507911 (* 0.3 = 0.152373 loss)
I0408 09:17:01.030268 3443 solver.cpp:406] Test net output #10: loss3/accuracy = 0.617329
I0408 09:17:01.030280 3443 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.895504
I0408 09:17:01.030292 3443 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.848691
I0408 09:17:01.030306 3443 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 1.35811 (* 1 = 1.35811 loss)
I0408 09:17:01.030320 3443 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.368237 (* 1 = 0.368237 loss)
I0408 09:17:01.030333 3443 solver.cpp:406] Test net output #15: total_accuracy = 0.06
I0408 09:17:01.030344 3443 solver.cpp:406] Test net output #16: total_confidence = 0.0745652
I0408 09:17:01.404201 3443 solver.cpp:229] Iteration 50000, loss = 3.93725
I0408 09:17:01.404254 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.348837
I0408 09:17:01.404273 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.806818
I0408 09:17:01.404286 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.488372
I0408 09:17:01.404302 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.44191 (* 0.3 = 0.732572 loss)
I0408 09:17:01.404317 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.775296 (* 0.3 = 0.232589 loss)
I0408 09:17:01.404330 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.348837
I0408 09:17:01.404343 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.795455
I0408 09:17:01.404356 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.697674
I0408 09:17:01.404371 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.05708 (* 0.3 = 0.617125 loss)
I0408 09:17:01.404386 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.709426 (* 0.3 = 0.212828 loss)
I0408 09:17:01.404399 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.651163
I0408 09:17:01.404412 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.857955
I0408 09:17:01.404424 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.860465
I0408 09:17:01.404441 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.23018 (* 1 = 1.23018 loss)
I0408 09:17:01.404458 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.499838 (* 1 = 0.499838 loss)
I0408 09:17:01.404470 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 09:17:01.404482 3443 solver.cpp:245] Train net output #16: total_confidence = 0.0903435
I0408 09:17:01.404497 3443 sgd_solver.cpp:106] Iteration 50000, lr = 0.00928571
I0408 09:22:34.903231 3443 solver.cpp:229] Iteration 50500, loss = 3.87351
I0408 09:22:34.903419 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.309524
I0408 09:22:34.903440 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.801136
I0408 09:22:34.903455 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.547619
I0408 09:22:34.903472 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.39885 (* 0.3 = 0.719654 loss)
I0408 09:22:34.903487 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.730287 (* 0.3 = 0.219086 loss)
I0408 09:22:34.903501 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.380952
I0408 09:22:34.903513 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.823864
I0408 09:22:34.903527 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.619048
I0408 09:22:34.903540 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.15242 (* 0.3 = 0.645726 loss)
I0408 09:22:34.903555 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.648724 (* 0.3 = 0.194617 loss)
I0408 09:22:34.903568 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.619048
I0408 09:22:34.903581 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.880682
I0408 09:22:34.903594 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.785714
I0408 09:22:34.903609 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.35736 (* 1 = 1.35736 loss)
I0408 09:22:34.903623 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.410744 (* 1 = 0.410744 loss)
I0408 09:22:34.903637 3443 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0408 09:22:34.903650 3443 solver.cpp:245] Train net output #16: total_confidence = 0.101376
I0408 09:22:34.903666 3443 sgd_solver.cpp:106] Iteration 50500, lr = 0.00927857
I0408 09:28:08.306874 3443 solver.cpp:229] Iteration 51000, loss = 3.89955
I0408 09:28:08.307045 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.134615
I0408 09:28:08.307068 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.732955
I0408 09:28:08.307082 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.365385
I0408 09:28:08.307101 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.78082 (* 0.3 = 0.834245 loss)
I0408 09:28:08.307116 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.881471 (* 0.3 = 0.264441 loss)
I0408 09:28:08.307129 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.346154
I0408 09:28:08.307142 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.806818
I0408 09:28:08.307155 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.519231
I0408 09:28:08.307170 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.46918 (* 0.3 = 0.740754 loss)
I0408 09:28:08.307185 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.750153 (* 0.3 = 0.225046 loss)
I0408 09:28:08.307198 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.384615
I0408 09:28:08.307210 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.795455
I0408 09:28:08.307224 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.615385
I0408 09:28:08.307238 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.98868 (* 1 = 1.98868 loss)
I0408 09:28:08.307253 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.670761 (* 1 = 0.670761 loss)
I0408 09:28:08.307265 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 09:28:08.307278 3443 solver.cpp:245] Train net output #16: total_confidence = 0.0280175
I0408 09:28:08.307293 3443 sgd_solver.cpp:106] Iteration 51000, lr = 0.00927143
I0408 09:33:42.101816 3443 solver.cpp:229] Iteration 51500, loss = 3.84542
I0408 09:33:42.102283 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.190476
I0408 09:33:42.102306 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.784091
I0408 09:33:42.102321 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.380952
I0408 09:33:42.102340 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.25572 (* 0.3 = 0.976717 loss)
I0408 09:33:42.102355 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.89719 (* 0.3 = 0.269157 loss)
I0408 09:33:42.102368 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.285714
I0408 09:33:42.102382 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.795455
I0408 09:33:42.102394 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.52381
I0408 09:33:42.102409 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.64087 (* 0.3 = 0.792262 loss)
I0408 09:33:42.102424 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.752167 (* 0.3 = 0.22565 loss)
I0408 09:33:42.102437 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.547619
I0408 09:33:42.102450 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.869318
I0408 09:33:42.102463 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.714286
I0408 09:33:42.102478 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.68187 (* 1 = 1.68187 loss)
I0408 09:33:42.102493 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.448615 (* 1 = 0.448615 loss)
I0408 09:33:42.102505 3443 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0408 09:33:42.102517 3443 solver.cpp:245] Train net output #16: total_confidence = 0.16407
I0408 09:33:42.102533 3443 sgd_solver.cpp:106] Iteration 51500, lr = 0.00926429
I0408 09:39:15.541847 3443 solver.cpp:229] Iteration 52000, loss = 3.86542
I0408 09:39:15.541996 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.325
I0408 09:39:15.542016 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.818182
I0408 09:39:15.542031 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.475
I0408 09:39:15.542048 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.54118 (* 0.3 = 0.762355 loss)
I0408 09:39:15.542063 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.698118 (* 0.3 = 0.209436 loss)
I0408 09:39:15.542076 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.425
I0408 09:39:15.542089 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.835227
I0408 09:39:15.542103 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.725
I0408 09:39:15.542116 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.92787 (* 0.3 = 0.57836 loss)
I0408 09:39:15.542131 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.570286 (* 0.3 = 0.171086 loss)
I0408 09:39:15.542143 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.75
I0408 09:39:15.542156 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.914773
I0408 09:39:15.542170 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.95
I0408 09:39:15.542183 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.93207 (* 1 = 0.93207 loss)
I0408 09:39:15.542198 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.284772 (* 1 = 0.284772 loss)
I0408 09:39:15.542212 3443 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0408 09:39:15.542223 3443 solver.cpp:245] Train net output #16: total_confidence = 0.0789691
I0408 09:39:15.542239 3443 sgd_solver.cpp:106] Iteration 52000, lr = 0.00925714
I0408 09:44:48.919039 3443 solver.cpp:229] Iteration 52500, loss = 3.80522
I0408 09:44:48.919539 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.24
I0408 09:44:48.919562 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.784091
I0408 09:44:48.919577 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.44
I0408 09:44:48.919595 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.76324 (* 0.3 = 0.828973 loss)
I0408 09:44:48.919610 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.823641 (* 0.3 = 0.247092 loss)
I0408 09:44:48.919625 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.3
I0408 09:44:48.919636 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.789773
I0408 09:44:48.919649 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.62
I0408 09:44:48.919664 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.21419 (* 0.3 = 0.664257 loss)
I0408 09:44:48.919679 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.666676 (* 0.3 = 0.200003 loss)
I0408 09:44:48.919692 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.56
I0408 09:44:48.919704 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.857955
I0408 09:44:48.919718 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.82
I0408 09:44:48.919731 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.53753 (* 1 = 1.53753 loss)
I0408 09:44:48.919747 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.485502 (* 1 = 0.485502 loss)
I0408 09:44:48.919760 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 09:44:48.919772 3443 solver.cpp:245] Train net output #16: total_confidence = 0.0392622
I0408 09:44:48.919787 3443 sgd_solver.cpp:106] Iteration 52500, lr = 0.00925
I0408 09:50:22.271160 3443 solver.cpp:229] Iteration 53000, loss = 3.86425
I0408 09:50:22.271280 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.229167
I0408 09:50:22.271311 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.784091
I0408 09:50:22.271359 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.479167
I0408 09:50:22.271392 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.79969 (* 0.3 = 0.839907 loss)
I0408 09:50:22.271422 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.81329 (* 0.3 = 0.243987 loss)
I0408 09:50:22.271445 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.354167
I0408 09:50:22.271469 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.818182
I0408 09:50:22.271492 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.666667
I0408 09:50:22.271518 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.25262 (* 0.3 = 0.675785 loss)
I0408 09:50:22.271544 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.663965 (* 0.3 = 0.199189 loss)
I0408 09:50:22.271569 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.541667
I0408 09:50:22.271591 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.869318
I0408 09:50:22.271616 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.8125
I0408 09:50:22.271647 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.70103 (* 1 = 1.70103 loss)
I0408 09:50:22.271677 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.487557 (* 1 = 0.487557 loss)
I0408 09:50:22.271702 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 09:50:22.271723 3443 solver.cpp:245] Train net output #16: total_confidence = 0.0639214
I0408 09:50:22.271749 3443 sgd_solver.cpp:106] Iteration 53000, lr = 0.00924286
I0408 09:55:55.908529 3443 solver.cpp:229] Iteration 53500, loss = 3.7541
I0408 09:55:55.908932 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.170213
I0408 09:55:55.908954 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.778409
I0408 09:55:55.908967 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.425532
I0408 09:55:55.908984 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.92748 (* 0.3 = 0.878245 loss)
I0408 09:55:55.908999 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.832402 (* 0.3 = 0.249721 loss)
I0408 09:55:55.909013 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.191489
I0408 09:55:55.909025 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.778409
I0408 09:55:55.909037 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.404255
I0408 09:55:55.909051 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.62275 (* 0.3 = 0.786826 loss)
I0408 09:55:55.909066 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.743678 (* 0.3 = 0.223103 loss)
I0408 09:55:55.909078 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.638298
I0408 09:55:55.909091 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.897727
I0408 09:55:55.909103 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.829787
I0408 09:55:55.909117 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.26441 (* 1 = 1.26441 loss)
I0408 09:55:55.909132 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.367668 (* 1 = 0.367668 loss)
I0408 09:55:55.909145 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 09:55:55.909157 3443 solver.cpp:245] Train net output #16: total_confidence = 0.038417
I0408 09:55:55.909173 3443 sgd_solver.cpp:106] Iteration 53500, lr = 0.00923571
I0408 10:01:29.365522 3443 solver.cpp:229] Iteration 54000, loss = 3.77631
I0408 10:01:29.365659 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.170213
I0408 10:01:29.365680 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.772727
I0408 10:01:29.365694 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.382979
I0408 10:01:29.365710 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.7261 (* 0.3 = 0.817831 loss)
I0408 10:01:29.365725 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.797582 (* 0.3 = 0.239275 loss)
I0408 10:01:29.365738 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.361702
I0408 10:01:29.365751 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.818182
I0408 10:01:29.365763 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.574468
I0408 10:01:29.365777 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.52451 (* 0.3 = 0.757354 loss)
I0408 10:01:29.365792 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.720904 (* 0.3 = 0.216271 loss)
I0408 10:01:29.365804 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.574468
I0408 10:01:29.365818 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.886364
I0408 10:01:29.365830 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.723404
I0408 10:01:29.365844 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.04732 (* 1 = 2.04732 loss)
I0408 10:01:29.365859 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.563827 (* 1 = 0.563827 loss)
I0408 10:01:29.365872 3443 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0408 10:01:29.365885 3443 solver.cpp:245] Train net output #16: total_confidence = 0.119996
I0408 10:01:29.365908 3443 sgd_solver.cpp:106] Iteration 54000, lr = 0.00922857
I0408 10:07:02.687732 3443 solver.cpp:229] Iteration 54500, loss = 3.7368
I0408 10:07:02.688166 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.226415
I0408 10:07:02.688189 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.761364
I0408 10:07:02.688202 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.433962
I0408 10:07:02.688220 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.56945 (* 0.3 = 0.770836 loss)
I0408 10:07:02.688235 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.796454 (* 0.3 = 0.238936 loss)
I0408 10:07:02.688247 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.339623
I0408 10:07:02.688261 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.795455
I0408 10:07:02.688273 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.566038
I0408 10:07:02.688287 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.17992 (* 0.3 = 0.653976 loss)
I0408 10:07:02.688302 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.683631 (* 0.3 = 0.205089 loss)
I0408 10:07:02.688315 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.54717
I0408 10:07:02.688328 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.857955
I0408 10:07:02.688340 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.754717
I0408 10:07:02.688356 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.45734 (* 1 = 1.45734 loss)
I0408 10:07:02.688371 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.457991 (* 1 = 0.457991 loss)
I0408 10:07:02.688383 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 10:07:02.688395 3443 solver.cpp:245] Train net output #16: total_confidence = 0.0264492
I0408 10:07:02.688411 3443 sgd_solver.cpp:106] Iteration 54500, lr = 0.00922143
I0408 10:12:35.682016 3443 solver.cpp:338] Iteration 55000, Testing net (#0)
I0408 10:13:16.585360 3443 solver.cpp:393] Test loss: 3.40197
I0408 10:13:16.585489 3443 solver.cpp:406] Test net output #0: loss1/accuracy = 0.210996
I0408 10:13:16.585510 3443 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.805409
I0408 10:13:16.585523 3443 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.47487
I0408 10:13:16.585539 3443 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 2.71706 (* 0.3 = 0.815118 loss)
I0408 10:13:16.585554 3443 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.684171 (* 0.3 = 0.205251 loss)
I0408 10:13:16.585568 3443 solver.cpp:406] Test net output #5: loss2/accuracy = 0.401732
I0408 10:13:16.585580 3443 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.849866
I0408 10:13:16.585592 3443 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.746683
I0408 10:13:16.585607 3443 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.92677 (* 0.3 = 0.578031 loss)
I0408 10:13:16.585620 3443 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.489848 (* 0.3 = 0.146955 loss)
I0408 10:13:16.585631 3443 solver.cpp:406] Test net output #10: loss3/accuracy = 0.627243
I0408 10:13:16.585644 3443 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.905775
I0408 10:13:16.585655 3443 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.865385
I0408 10:13:16.585669 3443 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 1.32215 (* 1 = 1.32215 loss)
I0408 10:13:16.585683 3443 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.334463 (* 1 = 0.334463 loss)
I0408 10:13:16.585695 3443 solver.cpp:406] Test net output #15: total_accuracy = 0.14
I0408 10:13:16.585707 3443 solver.cpp:406] Test net output #16: total_confidence = 0.172498
I0408 10:13:16.958045 3443 solver.cpp:229] Iteration 55000, loss = 3.72537
I0408 10:13:16.958096 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.315789
I0408 10:13:16.958115 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.840909
I0408 10:13:16.958128 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.578947
I0408 10:13:16.958145 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.15683 (* 0.3 = 0.64705 loss)
I0408 10:13:16.958160 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.550057 (* 0.3 = 0.165017 loss)
I0408 10:13:16.958173 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.5
I0408 10:13:16.958186 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.857955
I0408 10:13:16.958199 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.763158
I0408 10:13:16.958214 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.7039 (* 0.3 = 0.511171 loss)
I0408 10:13:16.958228 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.465891 (* 0.3 = 0.139767 loss)
I0408 10:13:16.958240 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.736842
I0408 10:13:16.958253 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.9375
I0408 10:13:16.958266 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.947368
I0408 10:13:16.958279 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.741311 (* 1 = 0.741311 loss)
I0408 10:13:16.958294 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.18732 (* 1 = 0.18732 loss)
I0408 10:13:16.958307 3443 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0408 10:13:16.958319 3443 solver.cpp:245] Train net output #16: total_confidence = 0.210917
I0408 10:13:16.958334 3443 sgd_solver.cpp:106] Iteration 55000, lr = 0.00921429
I0408 10:18:50.460870 3443 solver.cpp:229] Iteration 55500, loss = 3.7359
I0408 10:18:50.460973 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.195652
I0408 10:18:50.460993 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.778409
I0408 10:18:50.461005 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.5
I0408 10:18:50.461022 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.56535 (* 0.3 = 0.769605 loss)
I0408 10:18:50.461038 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.751759 (* 0.3 = 0.225528 loss)
I0408 10:18:50.461051 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.456522
I0408 10:18:50.461064 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.846591
I0408 10:18:50.461076 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.695652
I0408 10:18:50.461091 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.91438 (* 0.3 = 0.574315 loss)
I0408 10:18:50.461105 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.551228 (* 0.3 = 0.165368 loss)
I0408 10:18:50.461117 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.76087
I0408 10:18:50.461130 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.909091
I0408 10:18:50.461143 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.934783
I0408 10:18:50.461158 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.737849 (* 1 = 0.737849 loss)
I0408 10:18:50.461170 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.268415 (* 1 = 0.268415 loss)
I0408 10:18:50.461184 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 10:18:50.461195 3443 solver.cpp:245] Train net output #16: total_confidence = 0.0579981
I0408 10:18:50.461210 3443 sgd_solver.cpp:106] Iteration 55500, lr = 0.00920714
I0408 10:24:23.996737 3443 solver.cpp:229] Iteration 56000, loss = 3.7612
I0408 10:24:23.997128 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.108696
I0408 10:24:23.997148 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.738636
I0408 10:24:23.997164 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.195652
I0408 10:24:23.997180 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.18501 (* 0.3 = 0.955503 loss)
I0408 10:24:23.997195 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.07651 (* 0.3 = 0.322953 loss)
I0408 10:24:23.997208 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.173913
I0408 10:24:23.997221 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.738636
I0408 10:24:23.997233 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.326087
I0408 10:24:23.997248 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.23806 (* 0.3 = 0.971418 loss)
I0408 10:24:23.997262 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.05891 (* 0.3 = 0.317673 loss)
I0408 10:24:23.997275 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.5
I0408 10:24:23.997288 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.8125
I0408 10:24:23.997300 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.608696
I0408 10:24:23.997315 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.13831 (* 1 = 2.13831 loss)
I0408 10:24:23.997329 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.805548 (* 1 = 0.805548 loss)
I0408 10:24:23.997342 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 10:24:23.997354 3443 solver.cpp:245] Train net output #16: total_confidence = 0.0402396
I0408 10:24:23.997370 3443 sgd_solver.cpp:106] Iteration 56000, lr = 0.0092
I0408 10:29:57.623093 3443 solver.cpp:229] Iteration 56500, loss = 3.70488
I0408 10:29:57.623283 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.254902
I0408 10:29:57.623306 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.784091
I0408 10:29:57.623319 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.529412
I0408 10:29:57.623337 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.58184 (* 0.3 = 0.774551 loss)
I0408 10:29:57.623353 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.772729 (* 0.3 = 0.231819 loss)
I0408 10:29:57.623365 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.294118
I0408 10:29:57.623378 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.784091
I0408 10:29:57.623391 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.607843
I0408 10:29:57.623421 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.3651 (* 0.3 = 0.709531 loss)
I0408 10:29:57.623437 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.717205 (* 0.3 = 0.215161 loss)
I0408 10:29:57.623450 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.568627
I0408 10:29:57.623463 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.869318
I0408 10:29:57.623476 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.764706
I0408 10:29:57.623491 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.44408 (* 1 = 1.44408 loss)
I0408 10:29:57.623505 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.438478 (* 1 = 0.438478 loss)
I0408 10:29:57.623518 3443 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0408 10:29:57.623530 3443 solver.cpp:245] Train net output #16: total_confidence = 0.0525542
I0408 10:29:57.623546 3443 sgd_solver.cpp:106] Iteration 56500, lr = 0.00919286
I0408 10:35:31.390022 3443 solver.cpp:229] Iteration 57000, loss = 3.66924
I0408 10:35:31.390405 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.183673
I0408 10:35:31.390427 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.767045
I0408 10:35:31.390441 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.346939
I0408 10:35:31.390460 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.77391 (* 0.3 = 0.832174 loss)
I0408 10:35:31.390475 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.836753 (* 0.3 = 0.251026 loss)
I0408 10:35:31.390487 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.285714
I0408 10:35:31.390501 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.795455
I0408 10:35:31.390513 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.44898
I0408 10:35:31.390527 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.50232 (* 0.3 = 0.750696 loss)
I0408 10:35:31.390542 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.754554 (* 0.3 = 0.226366 loss)
I0408 10:35:31.390555 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.489796
I0408 10:35:31.390568 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.835227
I0408 10:35:31.390581 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.795918
I0408 10:35:31.390595 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.78511 (* 1 = 1.78511 loss)
I0408 10:35:31.390610 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.550956 (* 1 = 0.550956 loss)
I0408 10:35:31.390624 3443 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0408 10:35:31.390635 3443 solver.cpp:245] Train net output #16: total_confidence = 0.0448623
I0408 10:35:31.390650 3443 sgd_solver.cpp:106] Iteration 57000, lr = 0.00918571
I0408 10:41:05.519536 3443 solver.cpp:229] Iteration 57500, loss = 3.67591
I0408 10:41:05.519701 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.340426
I0408 10:41:05.519721 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.801136
I0408 10:41:05.519737 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.680851
I0408 10:41:05.519754 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.38514 (* 0.3 = 0.715542 loss)
I0408 10:41:05.519770 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.745789 (* 0.3 = 0.223737 loss)
I0408 10:41:05.519783 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.425532
I0408 10:41:05.519796 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.818182
I0408 10:41:05.519809 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.617021
I0408 10:41:05.519824 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.11699 (* 0.3 = 0.635097 loss)
I0408 10:41:05.519839 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.672115 (* 0.3 = 0.201635 loss)
I0408 10:41:05.519851 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.744681
I0408 10:41:05.519865 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.920455
I0408 10:41:05.519877 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.957447
I0408 10:41:05.519892 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.844032 (* 1 = 0.844032 loss)
I0408 10:41:05.519907 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.273503 (* 1 = 0.273503 loss)
I0408 10:41:05.519923 3443 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0408 10:41:05.519937 3443 solver.cpp:245] Train net output #16: total_confidence = 0.131857
I0408 10:41:05.519953 3443 sgd_solver.cpp:106] Iteration 57500, lr = 0.00917857
I0408 10:46:39.566627 3443 solver.cpp:229] Iteration 58000, loss = 3.64727
I0408 10:46:39.567076 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.26
I0408 10:46:39.567101 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.789773
I0408 10:46:39.567116 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.46
I0408 10:46:39.567132 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.40367 (* 0.3 = 0.721102 loss)
I0408 10:46:39.567148 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.719607 (* 0.3 = 0.215882 loss)
I0408 10:46:39.567162 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.28
I0408 10:46:39.567175 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.784091
I0408 10:46:39.567188 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.66
I0408 10:46:39.567203 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.06164 (* 0.3 = 0.618493 loss)
I0408 10:46:39.567219 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.629814 (* 0.3 = 0.188944 loss)
I0408 10:46:39.567235 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.72
I0408 10:46:39.567263 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.875
I0408 10:46:39.567287 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.9
I0408 10:46:39.567304 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.876963 (* 1 = 0.876963 loss)
I0408 10:46:39.567342 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.354774 (* 1 = 0.354774 loss)
I0408 10:46:39.567358 3443 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0408 10:46:39.567369 3443 solver.cpp:245] Train net output #16: total_confidence = 0.073232
I0408 10:46:39.567385 3443 sgd_solver.cpp:106] Iteration 58000, lr = 0.00917143
I0408 10:52:12.899822 3443 solver.cpp:229] Iteration 58500, loss = 3.60253
I0408 10:52:12.900231 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.170213
I0408 10:52:12.900254 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.772727
I0408 10:52:12.900267 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.446809
I0408 10:52:12.900286 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.80731 (* 0.3 = 0.842193 loss)
I0408 10:52:12.900302 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.805183 (* 0.3 = 0.241555 loss)
I0408 10:52:12.900315 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.234043
I0408 10:52:12.900328 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.784091
I0408 10:52:12.900341 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.489362
I0408 10:52:12.900357 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.435 (* 0.3 = 0.7305 loss)
I0408 10:52:12.900372 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.701563 (* 0.3 = 0.210469 loss)
I0408 10:52:12.900384 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.510638
I0408 10:52:12.900398 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.852273
I0408 10:52:12.900410 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.829787
I0408 10:52:12.900425 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.6553 (* 1 = 1.6553 loss)
I0408 10:52:12.900439 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.506835 (* 1 = 0.506835 loss)
I0408 10:52:12.900452 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 10:52:12.900465 3443 solver.cpp:245] Train net output #16: total_confidence = 0.0403508
I0408 10:52:12.900480 3443 sgd_solver.cpp:106] Iteration 58500, lr = 0.00916429
I0408 10:57:46.536463 3443 solver.cpp:229] Iteration 59000, loss = 3.61423
I0408 10:57:46.536685 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.155556
I0408 10:57:46.536707 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.778409
I0408 10:57:46.536721 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.4
I0408 10:57:46.536739 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.69887 (* 0.3 = 0.80966 loss)
I0408 10:57:46.536754 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.75954 (* 0.3 = 0.227862 loss)
I0408 10:57:46.536767 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.355556
I0408 10:57:46.536782 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.818182
I0408 10:57:46.536793 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.622222
I0408 10:57:46.536808 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.10597 (* 0.3 = 0.631791 loss)
I0408 10:57:46.536823 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.617394 (* 0.3 = 0.185218 loss)
I0408 10:57:46.536836 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.733333
I0408 10:57:46.536849 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.926136
I0408 10:57:46.536861 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.911111
I0408 10:57:46.536875 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.93498 (* 1 = 0.93498 loss)
I0408 10:57:46.536890 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.252203 (* 1 = 0.252203 loss)
I0408 10:57:46.536903 3443 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0408 10:57:46.536916 3443 solver.cpp:245] Train net output #16: total_confidence = 0.08483
I0408 10:57:46.536934 3443 sgd_solver.cpp:106] Iteration 59000, lr = 0.00915714
I0408 11:03:19.916813 3443 solver.cpp:229] Iteration 59500, loss = 3.55155
I0408 11:03:19.917109 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.155556
I0408 11:03:19.917145 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.772727
I0408 11:03:19.917165 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.4
I0408 11:03:19.917183 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.80527 (* 0.3 = 0.84158 loss)
I0408 11:03:19.917201 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.78559 (* 0.3 = 0.235677 loss)
I0408 11:03:19.917213 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.266667
I0408 11:03:19.917227 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.801136
I0408 11:03:19.917239 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.577778
I0408 11:03:19.917253 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.30948 (* 0.3 = 0.692843 loss)
I0408 11:03:19.917268 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.625826 (* 0.3 = 0.187748 loss)
I0408 11:03:19.917281 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.533333
I0408 11:03:19.917294 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.880682
I0408 11:03:19.917306 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.733333
I0408 11:03:19.917320 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.63747 (* 1 = 1.63747 loss)
I0408 11:03:19.917335 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.438247 (* 1 = 0.438247 loss)
I0408 11:03:19.917348 3443 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0408 11:03:19.917361 3443 solver.cpp:245] Train net output #16: total_confidence = 0.125727
I0408 11:03:19.917376 3443 sgd_solver.cpp:106] Iteration 59500, lr = 0.00915
I0408 11:08:52.920253 3443 solver.cpp:456] Snapshotting to binary proto file /mnt/snapshots/mixed_lstm10_bn_iter_60000.caffemodel
I0408 11:08:53.530155 3443 sgd_solver.cpp:273] Snapshotting solver state to binary proto file /mnt/snapshots/mixed_lstm10_bn_iter_60000.solverstate
I0408 11:08:53.793843 3443 solver.cpp:338] Iteration 60000, Testing net (#0)
I0408 11:09:34.996886 3443 solver.cpp:393] Test loss: 3.48418
I0408 11:09:34.996976 3443 solver.cpp:406] Test net output #0: loss1/accuracy = 0.187125
I0408 11:09:34.996995 3443 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.799408
I0408 11:09:34.997009 3443 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.445353
I0408 11:09:34.997026 3443 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 2.88373 (* 0.3 = 0.86512 loss)
I0408 11:09:34.997042 3443 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.72653 (* 0.3 = 0.217959 loss)
I0408 11:09:34.997054 3443 solver.cpp:406] Test net output #5: loss2/accuracy = 0.437334
I0408 11:09:34.997066 3443 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.856775
I0408 11:09:34.997078 3443 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.759493
I0408 11:09:34.997092 3443 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.87746 (* 0.3 = 0.563239 loss)
I0408 11:09:34.997107 3443 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.486616 (* 0.3 = 0.145985 loss)
I0408 11:09:34.997118 3443 solver.cpp:406] Test net output #10: loss3/accuracy = 0.633475
I0408 11:09:34.997131 3443 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.905184
I0408 11:09:34.997143 3443 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.859517
I0408 11:09:34.997158 3443 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 1.34482 (* 1 = 1.34482 loss)
I0408 11:09:34.997170 3443 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.347059 (* 1 = 0.347059 loss)
I0408 11:09:34.997184 3443 solver.cpp:406] Test net output #15: total_accuracy = 0.166
I0408 11:09:34.997195 3443 solver.cpp:406] Test net output #16: total_confidence = 0.163634
I0408 11:09:35.371390 3443 solver.cpp:229] Iteration 60000, loss = 3.52198
I0408 11:09:35.371448 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.183673
I0408 11:09:35.371467 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.767045
I0408 11:09:35.371481 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.387755
I0408 11:09:35.371498 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.52143 (* 0.3 = 0.756429 loss)
I0408 11:09:35.371515 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.748841 (* 0.3 = 0.224652 loss)
I0408 11:09:35.371532 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.22449
I0408 11:09:35.371546 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.778409
I0408 11:09:35.371558 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.714286
I0408 11:09:35.371573 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.0764 (* 0.3 = 0.622919 loss)
I0408 11:09:35.371588 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.612169 (* 0.3 = 0.183651 loss)
I0408 11:09:35.371601 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.612245
I0408 11:09:35.371614 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.886364
I0408 11:09:35.371626 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.857143
I0408 11:09:35.371641 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.2685 (* 1 = 1.2685 loss)
I0408 11:09:35.371655 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.368635 (* 1 = 0.368635 loss)
I0408 11:09:35.371668 3443 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0408 11:09:35.371681 3443 solver.cpp:245] Train net output #16: total_confidence = 0.152606
I0408 11:09:35.371696 3443 sgd_solver.cpp:106] Iteration 60000, lr = 0.00914286
I0408 11:15:08.693100 3443 solver.cpp:229] Iteration 60500, loss = 3.52712
I0408 11:15:08.693475 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.297872
I0408 11:15:08.693497 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.806818
I0408 11:15:08.693511 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.531915
I0408 11:15:08.693527 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.35567 (* 0.3 = 0.706702 loss)
I0408 11:15:08.693542 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.689462 (* 0.3 = 0.206839 loss)
I0408 11:15:08.693555 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.255319
I0408 11:15:08.693568 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.801136
I0408 11:15:08.693581 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.638298
I0408 11:15:08.693594 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.15271 (* 0.3 = 0.645813 loss)
I0408 11:15:08.693609 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.597349 (* 0.3 = 0.179205 loss)
I0408 11:15:08.693621 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.574468
I0408 11:15:08.693634 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.880682
I0408 11:15:08.693646 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.808511
I0408 11:15:08.693660 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.29279 (* 1 = 1.29279 loss)
I0408 11:15:08.693675 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.391341 (* 1 = 0.391341 loss)
I0408 11:15:08.693686 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 11:15:08.693698 3443 solver.cpp:245] Train net output #16: total_confidence = 0.0946371
I0408 11:15:08.693712 3443 sgd_solver.cpp:106] Iteration 60500, lr = 0.00913571
I0408 11:20:42.074808 3443 solver.cpp:229] Iteration 61000, loss = 3.50445
I0408 11:20:42.074913 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.295455
I0408 11:20:42.074931 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.801136
I0408 11:20:42.074944 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.477273
I0408 11:20:42.074961 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.51246 (* 0.3 = 0.753737 loss)
I0408 11:20:42.074976 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.746655 (* 0.3 = 0.223996 loss)
I0408 11:20:42.074991 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.386364
I0408 11:20:42.075004 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.818182
I0408 11:20:42.075017 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.636364
I0408 11:20:42.075031 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.17316 (* 0.3 = 0.651947 loss)
I0408 11:20:42.075045 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.627462 (* 0.3 = 0.188239 loss)
I0408 11:20:42.075058 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.659091
I0408 11:20:42.075072 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.897727
I0408 11:20:42.075083 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.909091
I0408 11:20:42.075098 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.07746 (* 1 = 1.07746 loss)
I0408 11:20:42.075112 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.327231 (* 1 = 0.327231 loss)
I0408 11:20:42.075125 3443 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0408 11:20:42.075137 3443 solver.cpp:245] Train net output #16: total_confidence = 0.119539
I0408 11:20:42.075151 3443 sgd_solver.cpp:106] Iteration 61000, lr = 0.00912857
I0408 11:26:15.458230 3443 solver.cpp:229] Iteration 61500, loss = 3.49769
I0408 11:26:15.458529 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.377778
I0408 11:26:15.458554 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.835227
I0408 11:26:15.458566 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.555556
I0408 11:26:15.458583 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.37871 (* 0.3 = 0.713613 loss)
I0408 11:26:15.458598 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.667191 (* 0.3 = 0.200157 loss)
I0408 11:26:15.458611 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.4
I0408 11:26:15.458624 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.835227
I0408 11:26:15.458636 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.733333
I0408 11:26:15.458650 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.04564 (* 0.3 = 0.613692 loss)
I0408 11:26:15.458664 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.579142 (* 0.3 = 0.173743 loss)
I0408 11:26:15.458676 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.755556
I0408 11:26:15.458689 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.926136
I0408 11:26:15.458701 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.911111
I0408 11:26:15.458715 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.845799 (* 1 = 0.845799 loss)
I0408 11:26:15.458729 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.255806 (* 1 = 0.255806 loss)
I0408 11:26:15.458741 3443 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0408 11:26:15.458755 3443 solver.cpp:245] Train net output #16: total_confidence = 0.173829
I0408 11:26:15.458767 3443 sgd_solver.cpp:106] Iteration 61500, lr = 0.00912143
I0408 11:31:48.849228 3443 solver.cpp:229] Iteration 62000, loss = 3.49207
I0408 11:31:48.849354 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.217391
I0408 11:31:48.849373 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.784091
I0408 11:31:48.849386 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.543478
I0408 11:31:48.849403 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.58267 (* 0.3 = 0.7748 loss)
I0408 11:31:48.849418 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.7413 (* 0.3 = 0.22239 loss)
I0408 11:31:48.849431 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.369565
I0408 11:31:48.849443 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.829545
I0408 11:31:48.849457 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.608696
I0408 11:31:48.849470 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.21541 (* 0.3 = 0.664622 loss)
I0408 11:31:48.849484 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.647358 (* 0.3 = 0.194207 loss)
I0408 11:31:48.849496 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.673913
I0408 11:31:48.849509 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.892045
I0408 11:31:48.849520 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.891304
I0408 11:31:48.849535 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.11836 (* 1 = 1.11836 loss)
I0408 11:31:48.849550 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.361928 (* 1 = 0.361928 loss)
I0408 11:31:48.849562 3443 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0408 11:31:48.849575 3443 solver.cpp:245] Train net output #16: total_confidence = 0.139846
I0408 11:31:48.849589 3443 sgd_solver.cpp:106] Iteration 62000, lr = 0.00911429
I0408 11:37:22.226192 3443 solver.cpp:229] Iteration 62500, loss = 3.44632
I0408 11:37:22.226552 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.304348
I0408 11:37:22.226572 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.806818
I0408 11:37:22.226585 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.630435
I0408 11:37:22.226603 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.25842 (* 0.3 = 0.677527 loss)
I0408 11:37:22.226618 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.653495 (* 0.3 = 0.196049 loss)
I0408 11:37:22.226630 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.434783
I0408 11:37:22.226642 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.840909
I0408 11:37:22.226655 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.695652
I0408 11:37:22.226668 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.87739 (* 0.3 = 0.563217 loss)
I0408 11:37:22.226683 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.557116 (* 0.3 = 0.167135 loss)
I0408 11:37:22.226696 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.717391
I0408 11:37:22.226707 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.909091
I0408 11:37:22.226719 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.934783
I0408 11:37:22.226734 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.975509 (* 1 = 0.975509 loss)
I0408 11:37:22.226748 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.308414 (* 1 = 0.308414 loss)
I0408 11:37:22.226760 3443 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0408 11:37:22.226773 3443 solver.cpp:245] Train net output #16: total_confidence = 0.177911
I0408 11:37:22.226786 3443 sgd_solver.cpp:106] Iteration 62500, lr = 0.00910714
I0408 11:42:55.615823 3443 solver.cpp:229] Iteration 63000, loss = 3.4143
I0408 11:42:55.616144 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.282609
I0408 11:42:55.616166 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.795455
I0408 11:42:55.616180 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.543478
I0408 11:42:55.616197 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.55631 (* 0.3 = 0.766894 loss)
I0408 11:42:55.616214 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.76566 (* 0.3 = 0.229698 loss)
I0408 11:42:55.616226 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.413043
I0408 11:42:55.616240 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.8125
I0408 11:42:55.616253 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.652174
I0408 11:42:55.616267 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.17226 (* 0.3 = 0.651679 loss)
I0408 11:42:55.616281 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.682501 (* 0.3 = 0.20475 loss)
I0408 11:42:55.616294 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.608696
I0408 11:42:55.616307 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.892045
I0408 11:42:55.616318 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.804348
I0408 11:42:55.616333 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.66186 (* 1 = 1.66186 loss)
I0408 11:42:55.616348 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.470194 (* 1 = 0.470194 loss)
I0408 11:42:55.616359 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 11:42:55.616371 3443 solver.cpp:245] Train net output #16: total_confidence = 0.143958
I0408 11:42:55.616386 3443 sgd_solver.cpp:106] Iteration 63000, lr = 0.0091
I0408 11:48:28.999984 3443 solver.cpp:229] Iteration 63500, loss = 3.43353
I0408 11:48:29.000146 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.295455
I0408 11:48:29.000167 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.8125
I0408 11:48:29.000181 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.568182
I0408 11:48:29.000200 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.38163 (* 0.3 = 0.71449 loss)
I0408 11:48:29.000214 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.64411 (* 0.3 = 0.193233 loss)
I0408 11:48:29.000227 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.454545
I0408 11:48:29.000239 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.857955
I0408 11:48:29.000252 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.75
I0408 11:48:29.000265 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.75699 (* 0.3 = 0.527096 loss)
I0408 11:48:29.000280 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.466681 (* 0.3 = 0.140004 loss)
I0408 11:48:29.000293 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.727273
I0408 11:48:29.000306 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.920455
I0408 11:48:29.000319 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.909091
I0408 11:48:29.000332 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.00627 (* 1 = 1.00627 loss)
I0408 11:48:29.000347 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.279032 (* 1 = 0.279032 loss)
I0408 11:48:29.000360 3443 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0408 11:48:29.000371 3443 solver.cpp:245] Train net output #16: total_confidence = 0.196153
I0408 11:48:29.000386 3443 sgd_solver.cpp:106] Iteration 63500, lr = 0.00909286
I0408 11:54:02.390983 3443 solver.cpp:229] Iteration 64000, loss = 3.42656
I0408 11:54:02.391273 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.137255
I0408 11:54:02.391291 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.75
I0408 11:54:02.391305 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.352941
I0408 11:54:02.391337 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.86649 (* 0.3 = 0.859946 loss)
I0408 11:54:02.391355 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.86971 (* 0.3 = 0.260913 loss)
I0408 11:54:02.391368 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.215686
I0408 11:54:02.391381 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.767045
I0408 11:54:02.391392 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.490196
I0408 11:54:02.391407 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.68894 (* 0.3 = 0.806681 loss)
I0408 11:54:02.391422 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.80452 (* 0.3 = 0.241356 loss)
I0408 11:54:02.391434 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.54902
I0408 11:54:02.391448 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.857955
I0408 11:54:02.391463 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.803922
I0408 11:54:02.391477 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.72471 (* 1 = 1.72471 loss)
I0408 11:54:02.391491 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.545151 (* 1 = 0.545151 loss)
I0408 11:54:02.391505 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 11:54:02.391516 3443 solver.cpp:245] Train net output #16: total_confidence = 0.0221892
I0408 11:54:02.391531 3443 sgd_solver.cpp:106] Iteration 64000, lr = 0.00908571
I0408 11:59:35.765523 3443 solver.cpp:229] Iteration 64500, loss = 3.4451
I0408 11:59:35.765673 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.261905
I0408 11:59:35.765693 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.795455
I0408 11:59:35.765707 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.547619
I0408 11:59:35.765723 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.33548 (* 0.3 = 0.700643 loss)
I0408 11:59:35.765738 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.693395 (* 0.3 = 0.208018 loss)
I0408 11:59:35.765751 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.404762
I0408 11:59:35.765764 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.835227
I0408 11:59:35.765776 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.666667
I0408 11:59:35.765790 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.89033 (* 0.3 = 0.5671 loss)
I0408 11:59:35.765805 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.556063 (* 0.3 = 0.166819 loss)
I0408 11:59:35.765817 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.714286
I0408 11:59:35.765830 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.914773
I0408 11:59:35.765842 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.857143
I0408 11:59:35.765856 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.12459 (* 1 = 1.12459 loss)
I0408 11:59:35.765872 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.334134 (* 1 = 0.334134 loss)
I0408 11:59:35.765883 3443 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0408 11:59:35.765895 3443 solver.cpp:245] Train net output #16: total_confidence = 0.207497
I0408 11:59:35.765909 3443 sgd_solver.cpp:106] Iteration 64500, lr = 0.00907857
I0408 12:05:08.766448 3443 solver.cpp:338] Iteration 65000, Testing net (#0)
I0408 12:05:49.576123 3443 solver.cpp:393] Test loss: 3.40687
I0408 12:05:49.576242 3443 solver.cpp:406] Test net output #0: loss1/accuracy = 0.209199
I0408 12:05:49.576262 3443 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.804818
I0408 12:05:49.576277 3443 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.467768
I0408 12:05:49.576292 3443 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 2.86446 (* 0.3 = 0.859338 loss)
I0408 12:05:49.576308 3443 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.730046 (* 0.3 = 0.219014 loss)
I0408 12:05:49.576319 3443 solver.cpp:406] Test net output #5: loss2/accuracy = 0.447484
I0408 12:05:49.576333 3443 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.860048
I0408 12:05:49.576344 3443 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.7481
I0408 12:05:49.576359 3443 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.88966 (* 0.3 = 0.566899 loss)
I0408 12:05:49.576372 3443 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.490716 (* 0.3 = 0.147215 loss)
I0408 12:05:49.576385 3443 solver.cpp:406] Test net output #10: loss3/accuracy = 0.670039
I0408 12:05:49.576397 3443 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.904183
I0408 12:05:49.576408 3443 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.851985
I0408 12:05:49.576422 3443 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 1.25658 (* 1 = 1.25658 loss)
I0408 12:05:49.576436 3443 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.35783 (* 1 = 0.35783 loss)
I0408 12:05:49.576449 3443 solver.cpp:406] Test net output #15: total_accuracy = 0.169
I0408 12:05:49.576460 3443 solver.cpp:406] Test net output #16: total_confidence = 0.113329
I0408 12:05:49.948267 3443 solver.cpp:229] Iteration 65000, loss = 3.40538
I0408 12:05:49.948309 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.207547
I0408 12:05:49.948326 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.761364
I0408 12:05:49.948339 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.45283
I0408 12:05:49.948354 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.51305 (* 0.3 = 0.753916 loss)
I0408 12:05:49.948369 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.781157 (* 0.3 = 0.234347 loss)
I0408 12:05:49.948382 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.433962
I0408 12:05:49.948395 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.818182
I0408 12:05:49.948407 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.698113
I0408 12:05:49.948421 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.03744 (* 0.3 = 0.611231 loss)
I0408 12:05:49.948436 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.642785 (* 0.3 = 0.192836 loss)
I0408 12:05:49.948453 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.622642
I0408 12:05:49.948467 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.869318
I0408 12:05:49.948479 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.830189
I0408 12:05:49.948493 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.19817 (* 1 = 1.19817 loss)
I0408 12:05:49.948508 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.38789 (* 1 = 0.38789 loss)
I0408 12:05:49.948519 3443 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 12:05:49.948531 3443 solver.cpp:245] Train net output #16: total_confidence = 0.0922243
I0408 12:05:49.948546 3443 sgd_solver.cpp:106] Iteration 65000, lr = 0.00907143
I0408 12:11:23.205088 3443 solver.cpp:229] Iteration 65500, loss = 3.35518
I0408 12:11:23.205204 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.177778
I0408 12:11:23.205224 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.789773
I0408 12:11:23.205237 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.444444
I0408 12:11:23.205255 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.5205 (* 0.3 = 0.75615 loss)
I0408 12:11:23.205271 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.697258 (* 0.3 = 0.209177 loss)
I0408 12:11:23.205283 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.288889
I0408 12:11:23.205297 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.806818
I0408 12:11:23.205309 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.555556
I0408 12:11:23.205323 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.43026 (* 0.3 = 0.729079 loss)
I0408 12:11:23.205338 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.701138 (* 0.3 = 0.210341 loss)
I0408 12:11:23.205350 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.555556
I0408 12:11:23.205363 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.880682
I0408 12:11:23.205375 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.822222
I0408 12:11:23.205389 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.58255 (* 1 = 1.58255 loss)
I0408 12:11:23.205404 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.424321 (* 1 = 0.424321 loss)
I0408 12:11:23.205416 3443 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0408 12:11:23.205432 3443 solver.cpp:245] Train net output #16: total_confidence = 0.112649
I0408 12:11:23.205447 3443 sgd_solver.cpp:106] Iteration 65500, lr = 0.00906429
I0408 12:16:56.631533 3443 solver.cpp:229] Iteration 66000, loss = 3.31988
I0408 12:16:56.631906 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.266667
I0408 12:16:56.631938 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.806818
I0408 12:16:56.631963 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.422222
I0408 12:16:56.631992 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.66012 (* 0.3 = 0.798035 loss)
I0408 12:16:56.632024 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.742604 (* 0.3 = 0.222781 loss)
I0408 12:16:56.632051 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.355556
I0408 12:16:56.632076 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.829545
I0408 12:16:56.632099 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.666667
I0408 12:16:56.632127 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.27552 (* 0.3 = 0.682655 loss)
I0408 12:16:56.632153 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.61516 (* 0.3 = 0.184548 loss)
I0408 12:16:56.632175 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.666667
I0408 12:16:56.632197 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.909091
I0408 12:16:56.632220 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.822222
I0408 12:16:56.632246 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.1339 (* 1 = 1.1339 loss)
I0408 12:16:56.632272 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.31551 (* 1 = 0.31551 loss)
I0408 12:16:56.632297 3443 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0408 12:16:56.632318 3443 solver.cpp:245] Train net output #16: total_confidence = 0.124892
I0408 12:16:56.632342 3443 sgd_solver.cpp:106] Iteration 66000, lr = 0.00905714
I0408 12:22:29.956660 3443 solver.cpp:229] Iteration 66500, loss = 3.32183
I0408 12:22:29.956926 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.183673
I0408 12:22:29.956946 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.767045
I0408 12:22:29.956959 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.469388
I0408 12:22:29.956976 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.62551 (* 0.3 = 0.787652 loss)
I0408 12:22:29.956992 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.786873 (* 0.3 = 0.236062 loss)
I0408 12:22:29.957006 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.326531
I0408 12:22:29.957018 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.801136
I0408 12:22:29.957031 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.693878
I0408 12:22:29.957044 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.02139 (* 0.3 = 0.606417 loss)
I0408 12:22:29.957059 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.609497 (* 0.3 = 0.182849 loss)
I0408 12:22:29.957072 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.77551
I0408 12:22:29.957083 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.931818
I0408 12:22:29.957096 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.938776
I0408 12:22:29.957110 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.78081 (* 1 = 0.78081 loss)
I0408 12:22:29.957125 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.236746 (* 1 = 0.236746 loss)
I0408 12:22:29.957137 3443 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0408 12:22:29.957149 3443 solver.cpp:245] Train net output #16: total_confidence = 0.0644862
I0408 12:22:29.957164 3443 sgd_solver.cpp:106] Iteration 66500, lr = 0.00905
I0408 12:28:03.351414 3443 solver.cpp:229] Iteration 67000, loss = 3.31722
I0408 12:28:03.351555 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.255814
I0408 12:28:03.351577 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.789773
I0408 12:28:03.351589 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.534884
I0408 12:28:03.351608 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.44842 (* 0.3 = 0.734525 loss)
I0408 12:28:03.351622 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.733326 (* 0.3 = 0.219998 loss)
I0408 12:28:03.351635 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.488372
I0408 12:28:03.351649 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.852273
I0408 12:28:03.351660 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.767442
I0408 12:28:03.351675 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.74245 (* 0.3 = 0.522735 loss)
I0408 12:28:03.351689 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.525752 (* 0.3 = 0.157726 loss)
I0408 12:28:03.351701 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.837209
I0408 12:28:03.351713 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.943182
I0408 12:28:03.351727 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 1
I0408 12:28:03.351740 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.651136 (* 1 = 0.651136 loss)
I0408 12:28:03.351754 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.202429 (* 1 = 0.202429 loss)
I0408 12:28:03.351768 3443 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0408 12:28:03.351779 3443 solver.cpp:245] Train net output #16: total_confidence = 0.166429
I0408 12:28:03.351794 3443 sgd_solver.cpp:106] Iteration 67000, lr = 0.00904286
I0408 12:33:36.740633 3443 solver.cpp:229] Iteration 67500, loss = 3.33852
I0408 12:33:36.740978 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.25
I0408 12:33:36.741006 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.784091
I0408 12:33:36.741029 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.520833
I0408 12:33:36.741057 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.35802 (* 0.3 = 0.707407 loss)
I0408 12:33:36.741086 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.708073 (* 0.3 = 0.212422 loss)
I0408 12:33:36.741109 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.354167
I0408 12:33:36.741132 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.8125
I0408 12:33:36.741156 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.666667
I0408 12:33:36.741183 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.98254 (* 0.3 = 0.594763 loss)
I0408 12:33:36.741207 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.587025 (* 0.3 = 0.176108 loss)
I0408 12:33:36.741231 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.770833
I0408 12:33:36.741255 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.920455
I0408 12:33:36.741281 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.854167
I0408 12:33:36.741308 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.920429 (* 1 = 0.920429 loss)
I0408 12:33:36.741336 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.302467 (* 1 = 0.302467 loss)
I0408 12:33:36.741358 3443 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0408 12:33:36.741381 3443 solver.cpp:245] Train net output #16: total_confidence = 0.157872
I0408 12:33:36.741406 3443 sgd_solver.cpp:106] Iteration 67500, lr = 0.00903571
I0408 12:39:10.133369 3443 solver.cpp:229] Iteration 68000, loss = 3.32713
I0408 12:39:10.133566 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.2
I0408 12:39:10.133586 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.767045
I0408 12:39:10.133600 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.42
I0408 12:39:10.133618 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.65689 (* 0.3 = 0.797066 loss)
I0408 12:39:10.133633 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.79288 (* 0.3 = 0.237864 loss)
I0408 12:39:10.133646 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.3
I0408 12:39:10.133659 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.795455
I0408 12:39:10.133671 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.58
I0408 12:39:10.133687 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.38521 (* 0.3 = 0.715562 loss)
I0408 12:39:10.133702 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.708181 (* 0.3 = 0.212454 loss)
I0408 12:39:10.133714 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.66
I0408 12:39:10.133728 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.886364
I0408 12:39:10.133739 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.86
I0408 12:39:10.133754 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.11182 (* 1 = 1.11182 loss)
I0408 12:39:10.133769 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.38027 (* 1 = 0.38027 loss)
I0408 12:39:10.133781 3443 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0408 12:39:10.133793 3443 solver.cpp:245] Train net output #16: total_confidence = 0.237414
I0408 12:39:10.133808 3443 sgd_solver.cpp:106] Iteration 68000, lr = 0.00902857
I0408 12:44:43.525818 3443 solver.cpp:229] Iteration 68500, loss = 3.30194
I0408 12:44:43.526129 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.229167
I0408 12:44:43.526149 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.789773
I0408 12:44:43.526163 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.416667
I0408 12:44:43.526180 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.53872 (* 0.3 = 0.761615 loss)
I0408 12:44:43.526196 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.711161 (* 0.3 = 0.213348 loss)
I0408 12:44:43.526208 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.291667
I0408 12:44:43.526221 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.784091
I0408 12:44:43.526233 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.604167
I0408 12:44:43.526248 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.33546 (* 0.3 = 0.700638 loss)
I0408 12:44:43.526262 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.689288 (* 0.3 = 0.206786 loss)
I0408 12:44:43.526275 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.583333
I0408 12:44:43.526288 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.886364
I0408 12:44:43.526300 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.791667
I0408 12:44:43.526315 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.38849 (* 1 = 1.38849 loss)
I0408 12:44:43.526330 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.389279 (* 1 = 0.389279 loss)
I0408 12:44:43.526342 3443 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0408 12:44:43.526355 3443 solver.cpp:245] Train net output #16: total_confidence = 0.125763
I0408 12:44:43.526371 3443 sgd_solver.cpp:106] Iteration 68500, lr = 0.00902143
I0408 12:50:16.915913 3443 solver.cpp:229] Iteration 69000, loss = 3.2793
I0408 12:50:16.916113 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.166667
I0408 12:50:16.916136 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.755682
I0408 12:50:16.916149 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.416667
I0408 12:50:16.916167 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.63101 (* 0.3 = 0.789303 loss)
I0408 12:50:16.916182 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.777323 (* 0.3 = 0.233197 loss)
I0408 12:50:16.916194 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.291667
I0408 12:50:16.916208 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.801136
I0408 12:50:16.916219 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.645833
I0408 12:50:16.916234 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.24916 (* 0.3 = 0.674747 loss)
I0408 12:50:16.916249 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.649462 (* 0.3 = 0.194839 loss)
I0408 12:50:16.916261 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.729167
I0408 12:50:16.916273 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.920455
I0408 12:50:16.916286 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.916667
I0408 12:50:16.916301 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.942724 (* 1 = 0.942724 loss)
I0408 12:50:16.916316 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.282369 (* 1 = 0.282369 loss)
I0408 12:50:16.916328 3443 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0408 12:50:16.916340 3443 solver.cpp:245] Train net output #16: total_confidence = 0.234627
I0408 12:50:16.916357 3443 sgd_solver.cpp:106] Iteration 69000, lr = 0.00901429
I0408 12:55:50.322963 3443 solver.cpp:229] Iteration 69500, loss = 3.2878
I0408 12:55:50.323287 3443 solver.cpp:245] Train net output #0: loss1/accuracy = 0.292683
I0408 12:55:50.323307 3443 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.801136
I0408 12:55:50.323338 3443 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.512195
I0408 12:55:50.323356 3443 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.48236 (* 0.3 = 0.744707 loss)
I0408 12:55:50.323372 3443 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.716489 (* 0.3 = 0.214947 loss)
I0408 12:55:50.323385 3443 solver.cpp:245] Train net output #5: loss2/accuracy = 0.292683
I0408 12:55:50.323398 3443 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.801136
I0408 12:55:50.323410 3443 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.609756
I0408 12:55:50.323426 3443 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.21864 (* 0.3 = 0.665593 loss)
I0408 12:55:50.323441 3443 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.696968 (* 0.3 = 0.20909 loss)
I0408 12:55:50.323453 3443 solver.cpp:245] Train net output #10: loss3/accuracy = 0.560976
I0408 12:55:50.323467 3443 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.852273
I0408 12:55:50.323478 3443 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.756098
I0408 12:55:50.323493 3443 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.58245 (* 1 = 1.58245 loss)
I0408 12:55:50.323506 3443 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.515651 (* 1 = 0.515651 loss)
I0408 12:55:50.323519 3443 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0408 12:55:50.323532 3443 solver.cpp:245] Train net output #16: total_confidence = 0.143788
I0408 12:55:50.323546 3443 sgd_solver.cpp:106] Iteration 69500, lr = 0.00900714
I0408 15:42:06.473958 8707 solver.cpp:280] Solving mixed_lstm
I0408 15:42:06.473971 8707 solver.cpp:281] Learning Rate Policy: poly
I0408 15:42:06.494449 8707 solver.cpp:338] Iteration 70000, Testing net (#0)
I0408 15:42:50.254896 8707 solver.cpp:393] Test loss: 3.14009
I0408 15:42:50.255269 8707 solver.cpp:406] Test net output #0: loss1/accuracy = 0.295435
I0408 15:42:50.255290 8707 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.823273
I0408 15:42:50.255302 8707 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.575922
I0408 15:42:50.255318 8707 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 2.46766 (* 0.3 = 0.740297 loss)
I0408 15:42:50.255332 8707 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.640659 (* 0.3 = 0.192198 loss)
I0408 15:42:50.255345 8707 solver.cpp:406] Test net output #5: loss2/accuracy = 0.497499
I0408 15:42:50.255357 8707 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.866458
I0408 15:42:50.255368 8707 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.756083
I0408 15:42:50.255383 8707 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.76814 (* 0.3 = 0.530441 loss)
I0408 15:42:50.255395 8707 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.472837 (* 0.3 = 0.141851 loss)
I0408 15:42:50.255408 8707 solver.cpp:406] Test net output #10: loss3/accuracy = 0.697533
I0408 15:42:50.255419 8707 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.909456
I0408 15:42:50.255431 8707 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.856439
I0408 15:42:50.255445 8707 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 1.19293 (* 1 = 1.19293 loss)
I0408 15:42:50.255458 8707 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.342372 (* 1 = 0.342372 loss)
I0408 15:42:50.255470 8707 solver.cpp:406] Test net output #15: total_accuracy = 0.147
I0408 15:42:50.255481 8707 solver.cpp:406] Test net output #16: total_confidence = 0.160926
I0408 15:42:50.977965 8707 solver.cpp:229] Iteration 70000, loss = 2.57209
I0408 15:42:50.978024 8707 solver.cpp:245] Train net output #0: loss1/accuracy = 0.363636
I0408 15:42:50.978044 8707 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.840909
I0408 15:42:50.978056 8707 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.590909
I0408 15:42:50.978075 8707 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.15054 (* 0.3 = 0.645163 loss)
I0408 15:42:50.978090 8707 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.571997 (* 0.3 = 0.171599 loss)
I0408 15:42:50.978102 8707 solver.cpp:245] Train net output #5: loss2/accuracy = 0.431818
I0408 15:42:50.978116 8707 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.846591
I0408 15:42:50.978127 8707 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.772727
I0408 15:42:50.978140 8707 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.73462 (* 0.3 = 0.520385 loss)
I0408 15:42:50.978155 8707 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.479666 (* 0.3 = 0.1439 loss)
I0408 15:42:50.978168 8707 solver.cpp:245] Train net output #10: loss3/accuracy = 0.704545
I0408 15:42:50.978180 8707 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.914773
I0408 15:42:50.978193 8707 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.909091
I0408 15:42:50.978206 8707 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.845733 (* 1 = 0.845733 loss)
I0408 15:42:50.978220 8707 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.245311 (* 1 = 0.245311 loss)
I0408 15:42:50.978234 8707 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0408 15:42:50.978245 8707 solver.cpp:245] Train net output #16: total_confidence = 0.164924
I0408 15:42:50.978271 8707 sgd_solver.cpp:106] Iteration 70000, lr = 0.009
I0408 15:48:33.850759 8707 solver.cpp:229] Iteration 70500, loss = 3.29909
I0408 15:48:33.850924 8707 solver.cpp:245] Train net output #0: loss1/accuracy = 0.348837
I0408 15:48:33.850946 8707 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.801136
I0408 15:48:33.850960 8707 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.627907
I0408 15:48:33.850975 8707 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.46495 (* 0.3 = 0.739485 loss)
I0408 15:48:33.850991 8707 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.864671 (* 0.3 = 0.259401 loss)
I0408 15:48:33.851002 8707 solver.cpp:245] Train net output #5: loss2/accuracy = 0.372093
I0408 15:48:33.851014 8707 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.801136
I0408 15:48:33.851027 8707 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.697674
I0408 15:48:33.851040 8707 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.11225 (* 0.3 = 0.633674 loss)
I0408 15:48:33.851054 8707 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.890119 (* 0.3 = 0.267036 loss)
I0408 15:48:33.851066 8707 solver.cpp:245] Train net output #10: loss3/accuracy = 0.72093
I0408 15:48:33.851078 8707 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.897727
I0408 15:48:33.851090 8707 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.953488
I0408 15:48:33.851104 8707 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.831518 (* 1 = 0.831518 loss)
I0408 15:48:33.851117 8707 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.558633 (* 1 = 0.558633 loss)
I0408 15:48:33.851130 8707 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0408 15:48:33.851141 8707 solver.cpp:245] Train net output #16: total_confidence = 0.269043
I0408 15:48:33.851156 8707 sgd_solver.cpp:106] Iteration 70500, lr = 0.00899286
I0408 15:54:14.145403 8707 solver.cpp:229] Iteration 71000, loss = 3.26091
I0408 15:54:14.145546 8707 solver.cpp:245] Train net output #0: loss1/accuracy = 0.191489
I0408 15:54:14.145566 8707 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.778409
I0408 15:54:14.145581 8707 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.361702
I0408 15:54:14.145596 8707 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.03794 (* 0.3 = 0.911382 loss)
I0408 15:54:14.145612 8707 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.874393 (* 0.3 = 0.262318 loss)
I0408 15:54:14.145624 8707 solver.cpp:245] Train net output #5: loss2/accuracy = 0.255319
I0408 15:54:14.145637 8707 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.778409
I0408 15:54:14.145648 8707 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.489362
I0408 15:54:14.145663 8707 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.88942 (* 0.3 = 0.866826 loss)
I0408 15:54:14.145676 8707 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.846134 (* 0.3 = 0.25384 loss)
I0408 15:54:14.145689 8707 solver.cpp:245] Train net output #10: loss3/accuracy = 0.617021
I0408 15:54:14.145701 8707 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.875
I0408 15:54:14.145714 8707 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.702128
I0408 15:54:14.145727 8707 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.49237 (* 1 = 1.49237 loss)
I0408 15:54:14.145741 8707 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.469902 (* 1 = 0.469902 loss)
I0408 15:54:14.145756 8707 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 15:54:14.145768 8707 solver.cpp:245] Train net output #16: total_confidence = 0.106006
I0408 15:54:14.145783 8707 sgd_solver.cpp:106] Iteration 71000, lr = 0.00898571
I0408 15:59:53.047387 8707 solver.cpp:229] Iteration 71500, loss = 3.25126
I0408 15:59:53.047528 8707 solver.cpp:245] Train net output #0: loss1/accuracy = 0.361702
I0408 15:59:53.047547 8707 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.818182
I0408 15:59:53.047560 8707 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.595745
I0408 15:59:53.047577 8707 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.20013 (* 0.3 = 0.66004 loss)
I0408 15:59:53.047591 8707 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.65036 (* 0.3 = 0.195108 loss)
I0408 15:59:53.047605 8707 solver.cpp:245] Train net output #5: loss2/accuracy = 0.468085
I0408 15:59:53.047617 8707 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.846591
I0408 15:59:53.047629 8707 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.787234
I0408 15:59:53.047643 8707 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.71556 (* 0.3 = 0.514669 loss)
I0408 15:59:53.047657 8707 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.485297 (* 0.3 = 0.145589 loss)
I0408 15:59:53.047669 8707 solver.cpp:245] Train net output #10: loss3/accuracy = 0.765957
I0408 15:59:53.047682 8707 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.9375
I0408 15:59:53.047698 8707 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.957447
I0408 15:59:53.047725 8707 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.741202 (* 1 = 0.741202 loss)
I0408 15:59:53.047756 8707 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.20162 (* 1 = 0.20162 loss)
I0408 15:59:53.047780 8707 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0408 15:59:53.047802 8707 solver.cpp:245] Train net output #16: total_confidence = 0.161017
I0408 15:59:53.047818 8707 sgd_solver.cpp:106] Iteration 71500, lr = 0.00897857
I0408 16:05:31.167095 8707 solver.cpp:229] Iteration 72000, loss = 3.24851
I0408 16:05:31.167230 8707 solver.cpp:245] Train net output #0: loss1/accuracy = 0.288889
I0408 16:05:31.167250 8707 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.801136
I0408 16:05:31.167263 8707 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.355556
I0408 16:05:31.167279 8707 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.6579 (* 0.3 = 0.797369 loss)
I0408 16:05:31.167294 8707 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.786724 (* 0.3 = 0.236017 loss)
I0408 16:05:31.167307 8707 solver.cpp:245] Train net output #5: loss2/accuracy = 0.4
I0408 16:05:31.167318 8707 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.823864
I0408 16:05:31.167330 8707 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.533333
I0408 16:05:31.167345 8707 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.28861 (* 0.3 = 0.686584 loss)
I0408 16:05:31.167358 8707 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.689335 (* 0.3 = 0.2068 loss)
I0408 16:05:31.167371 8707 solver.cpp:245] Train net output #10: loss3/accuracy = 0.488889
I0408 16:05:31.167383 8707 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.852273
I0408 16:05:31.167395 8707 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.733333
I0408 16:05:31.167409 8707 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.02215 (* 1 = 2.02215 loss)
I0408 16:05:31.167423 8707 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.551221 (* 1 = 0.551221 loss)
I0408 16:05:31.167436 8707 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 16:05:31.167448 8707 solver.cpp:245] Train net output #16: total_confidence = 0.0983394
I0408 16:05:31.167464 8707 sgd_solver.cpp:106] Iteration 72000, lr = 0.00897143
I0408 16:11:08.521605 8707 solver.cpp:229] Iteration 72500, loss = 3.22106
I0408 16:11:08.521821 8707 solver.cpp:245] Train net output #0: loss1/accuracy = 0.243902
I0408 16:11:08.521842 8707 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.806818
I0408 16:11:08.521855 8707 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.536585
I0408 16:11:08.521873 8707 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.64527 (* 0.3 = 0.793581 loss)
I0408 16:11:08.521888 8707 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.683155 (* 0.3 = 0.204947 loss)
I0408 16:11:08.521900 8707 solver.cpp:245] Train net output #5: loss2/accuracy = 0.365854
I0408 16:11:08.521913 8707 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.840909
I0408 16:11:08.521924 8707 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.658537
I0408 16:11:08.521939 8707 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.09762 (* 0.3 = 0.629286 loss)
I0408 16:11:08.521953 8707 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.554902 (* 0.3 = 0.166471 loss)
I0408 16:11:08.521965 8707 solver.cpp:245] Train net output #10: loss3/accuracy = 0.609756
I0408 16:11:08.521977 8707 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.892045
I0408 16:11:08.521989 8707 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.756098
I0408 16:11:08.522003 8707 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.43715 (* 1 = 1.43715 loss)
I0408 16:11:08.522017 8707 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.371818 (* 1 = 0.371818 loss)
I0408 16:11:08.522029 8707 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0408 16:11:08.522042 8707 solver.cpp:245] Train net output #16: total_confidence = 0.161857
I0408 16:11:08.522056 8707 sgd_solver.cpp:106] Iteration 72500, lr = 0.00896429
I0408 16:16:45.525104 8707 solver.cpp:229] Iteration 73000, loss = 3.21028
I0408 16:16:45.525270 8707 solver.cpp:245] Train net output #0: loss1/accuracy = 0.266667
I0408 16:16:45.525291 8707 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.789773
I0408 16:16:45.525305 8707 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.555556
I0408 16:16:45.525321 8707 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.48508 (* 0.3 = 0.745523 loss)
I0408 16:16:45.525336 8707 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.713707 (* 0.3 = 0.214112 loss)
I0408 16:16:45.525349 8707 solver.cpp:245] Train net output #5: loss2/accuracy = 0.422222
I0408 16:16:45.525362 8707 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.835227
I0408 16:16:45.525373 8707 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.733333
I0408 16:16:45.525388 8707 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.00921 (* 0.3 = 0.602762 loss)
I0408 16:16:45.525401 8707 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.591675 (* 0.3 = 0.177502 loss)
I0408 16:16:45.525414 8707 solver.cpp:245] Train net output #10: loss3/accuracy = 0.555556
I0408 16:16:45.525426 8707 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.875
I0408 16:16:45.525439 8707 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.822222
I0408 16:16:45.525454 8707 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.60203 (* 1 = 1.60203 loss)
I0408 16:16:45.525468 8707 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.430654 (* 1 = 0.430654 loss)
I0408 16:16:45.525480 8707 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0408 16:16:45.525492 8707 solver.cpp:245] Train net output #16: total_confidence = 0.226538
I0408 16:16:45.525507 8707 sgd_solver.cpp:106] Iteration 73000, lr = 0.00895714
I0408 16:22:21.785189 8707 solver.cpp:229] Iteration 73500, loss = 3.20769
I0408 16:22:21.785377 8707 solver.cpp:245] Train net output #0: loss1/accuracy = 0.184211
I0408 16:22:21.785398 8707 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.8125
I0408 16:22:21.785413 8707 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.473684
I0408 16:22:21.785429 8707 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.53334 (* 0.3 = 0.760001 loss)
I0408 16:22:21.785444 8707 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.613924 (* 0.3 = 0.184177 loss)
I0408 16:22:21.785456 8707 solver.cpp:245] Train net output #5: loss2/accuracy = 0.421053
I0408 16:22:21.785468 8707 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.852273
I0408 16:22:21.785480 8707 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.763158
I0408 16:22:21.785495 8707 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.91431 (* 0.3 = 0.574293 loss)
I0408 16:22:21.785508 8707 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.497319 (* 0.3 = 0.149196 loss)
I0408 16:22:21.785521 8707 solver.cpp:245] Train net output #10: loss3/accuracy = 0.763158
I0408 16:22:21.785533 8707 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.948864
I0408 16:22:21.785545 8707 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.894737
I0408 16:22:21.785559 8707 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.967538 (* 1 = 0.967538 loss)
I0408 16:22:21.785573 8707 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.220353 (* 1 = 0.220353 loss)
I0408 16:22:21.785586 8707 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0408 16:22:21.785598 8707 solver.cpp:245] Train net output #16: total_confidence = 0.253819
I0408 16:22:21.785614 8707 sgd_solver.cpp:106] Iteration 73500, lr = 0.00895
I0408 16:27:58.003021 8707 solver.cpp:229] Iteration 74000, loss = 3.16193
I0408 16:27:58.003190 8707 solver.cpp:245] Train net output #0: loss1/accuracy = 0.230769
I0408 16:27:58.003212 8707 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.755682
I0408 16:27:58.003226 8707 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.442308
I0408 16:27:58.003242 8707 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.6992 (* 0.3 = 0.809761 loss)
I0408 16:27:58.003257 8707 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.86977 (* 0.3 = 0.260931 loss)
I0408 16:27:58.003269 8707 solver.cpp:245] Train net output #5: loss2/accuracy = 0.403846
I0408 16:27:58.003283 8707 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.801136
I0408 16:27:58.003294 8707 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.634615
I0408 16:27:58.003309 8707 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.18173 (* 0.3 = 0.65452 loss)
I0408 16:27:58.003324 8707 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.751892 (* 0.3 = 0.225568 loss)
I0408 16:27:58.003336 8707 solver.cpp:245] Train net output #10: loss3/accuracy = 0.576923
I0408 16:27:58.003348 8707 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.857955
I0408 16:27:58.003360 8707 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.769231
I0408 16:27:58.003376 8707 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.89972 (* 1 = 1.89972 loss)
I0408 16:27:58.003389 8707 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.628828 (* 1 = 0.628828 loss)
I0408 16:27:58.003402 8707 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0408 16:27:58.003414 8707 solver.cpp:245] Train net output #16: total_confidence = 0.206609
I0408 16:27:58.003430 8707 sgd_solver.cpp:106] Iteration 74000, lr = 0.00894286
I0408 16:33:33.534056 8707 solver.cpp:229] Iteration 74500, loss = 3.10243
I0408 16:33:33.534227 8707 solver.cpp:245] Train net output #0: loss1/accuracy = 0.311111
I0408 16:33:33.534247 8707 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.806818
I0408 16:33:33.534260 8707 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.533333
I0408 16:33:33.534276 8707 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.13815 (* 0.3 = 0.641444 loss)
I0408 16:33:33.534291 8707 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.636352 (* 0.3 = 0.190905 loss)
I0408 16:33:33.534304 8707 solver.cpp:245] Train net output #5: loss2/accuracy = 0.6
I0408 16:33:33.534317 8707 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.869318
I0408 16:33:33.534328 8707 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.866667
I0408 16:33:33.534343 8707 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.34153 (* 0.3 = 0.402458 loss)
I0408 16:33:33.534356 8707 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.447047 (* 0.3 = 0.134114 loss)
I0408 16:33:33.534369 8707 solver.cpp:245] Train net output #10: loss3/accuracy = 0.688889
I0408 16:33:33.534381 8707 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.903409
I0408 16:33:33.534394 8707 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.888889
I0408 16:33:33.534406 8707 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.933056 (* 1 = 0.933056 loss)
I0408 16:33:33.534420 8707 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.286905 (* 1 = 0.286905 loss)
I0408 16:33:33.534432 8707 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0408 16:33:33.534446 8707 solver.cpp:245] Train net output #16: total_confidence = 0.202984
I0408 16:33:33.534459 8707 sgd_solver.cpp:106] Iteration 74500, lr = 0.00893571
I0408 16:39:08.310617 8707 solver.cpp:338] Iteration 75000, Testing net (#0)
I0408 16:39:49.685219 8707 solver.cpp:393] Test loss: 2.73925
I0408 16:39:49.685389 8707 solver.cpp:406] Test net output #0: loss1/accuracy = 0.360805
I0408 16:39:49.685410 8707 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.824683
I0408 16:39:49.685425 8707 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.665328
I0408 16:39:49.685439 8707 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 2.12212 (* 0.3 = 0.636636 loss)
I0408 16:39:49.685454 8707 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.608654 (* 0.3 = 0.182596 loss)
I0408 16:39:49.685467 8707 solver.cpp:406] Test net output #5: loss2/accuracy = 0.549683
I0408 16:39:49.685478 8707 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.852412
I0408 16:39:49.685489 8707 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.824926
I0408 16:39:49.685503 8707 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.55519 (* 0.3 = 0.466557 loss)
I0408 16:39:49.685518 8707 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.50233 (* 0.3 = 0.150699 loss)
I0408 16:39:49.685529 8707 solver.cpp:406] Test net output #10: loss3/accuracy = 0.738352
I0408 16:39:49.685540 8707 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.910774
I0408 16:39:49.685552 8707 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.89243
I0408 16:39:49.685565 8707 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 0.987608 (* 1 = 0.987608 loss)
I0408 16:39:49.685580 8707 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.315155 (* 1 = 0.315155 loss)
I0408 16:39:49.685590 8707 solver.cpp:406] Test net output #15: total_accuracy = 0.182
I0408 16:39:49.685609 8707 solver.cpp:406] Test net output #16: total_confidence = 0.170584
I0408 16:39:50.061269 8707 solver.cpp:229] Iteration 75000, loss = 3.16333
I0408 16:39:50.061326 8707 solver.cpp:245] Train net output #0: loss1/accuracy = 0.208333
I0408 16:39:50.061343 8707 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.761364
I0408 16:39:50.061357 8707 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.4375
I0408 16:39:50.061372 8707 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.40978 (* 0.3 = 1.02294 loss)
I0408 16:39:50.061388 8707 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.00693 (* 0.3 = 0.302079 loss)
I0408 16:39:50.061400 8707 solver.cpp:245] Train net output #5: loss2/accuracy = 0.354167
I0408 16:39:50.061413 8707 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.801136
I0408 16:39:50.061424 8707 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.666667
I0408 16:39:50.061439 8707 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.58006 (* 0.3 = 0.774018 loss)
I0408 16:39:50.061452 8707 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.770197 (* 0.3 = 0.231059 loss)
I0408 16:39:50.061465 8707 solver.cpp:245] Train net output #10: loss3/accuracy = 0.645833
I0408 16:39:50.061477 8707 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.886364
I0408 16:39:50.061488 8707 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.770833
I0408 16:39:50.061502 8707 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.5947 (* 1 = 2.5947 loss)
I0408 16:39:50.061517 8707 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.756216 (* 1 = 0.756216 loss)
I0408 16:39:50.061529 8707 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 16:39:50.061542 8707 solver.cpp:245] Train net output #16: total_confidence = 0.190053
I0408 16:39:50.061558 8707 sgd_solver.cpp:106] Iteration 75000, lr = 0.00892857
I0408 16:45:24.709820 8707 solver.cpp:229] Iteration 75500, loss = 3.16236
I0408 16:45:24.710053 8707 solver.cpp:245] Train net output #0: loss1/accuracy = 0.18
I0408 16:45:24.710072 8707 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.761364
I0408 16:45:24.710085 8707 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.42
I0408 16:45:24.710101 8707 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.78781 (* 0.3 = 0.836344 loss)
I0408 16:45:24.710116 8707 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.828207 (* 0.3 = 0.248462 loss)
I0408 16:45:24.710129 8707 solver.cpp:245] Train net output #5: loss2/accuracy = 0.32
I0408 16:45:24.710140 8707 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.801136
I0408 16:45:24.710152 8707 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.58
I0408 16:45:24.710166 8707 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.4962 (* 0.3 = 0.748859 loss)
I0408 16:45:24.710181 8707 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.731841 (* 0.3 = 0.219552 loss)
I0408 16:45:24.710193 8707 solver.cpp:245] Train net output #10: loss3/accuracy = 0.74
I0408 16:45:24.710206 8707 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.920455
I0408 16:45:24.710217 8707 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.9
I0408 16:45:24.710232 8707 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.10157 (* 1 = 1.10157 loss)
I0408 16:45:24.710245 8707 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.336943 (* 1 = 0.336943 loss)
I0408 16:45:24.710258 8707 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0408 16:45:24.710269 8707 solver.cpp:245] Train net output #16: total_confidence = 0.161092
I0408 16:45:24.710286 8707 sgd_solver.cpp:106] Iteration 75500, lr = 0.00892143
I0408 16:50:59.409294 8707 solver.cpp:229] Iteration 76000, loss = 3.12183
I0408 16:50:59.409457 8707 solver.cpp:245] Train net output #0: loss1/accuracy = 0.207547
I0408 16:50:59.409477 8707 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.761364
I0408 16:50:59.409490 8707 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.509434
I0408 16:50:59.409507 8707 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.44571 (* 0.3 = 0.733714 loss)
I0408 16:50:59.409521 8707 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.759755 (* 0.3 = 0.227926 loss)
I0408 16:50:59.409534 8707 solver.cpp:245] Train net output #5: loss2/accuracy = 0.45283
I0408 16:50:59.409546 8707 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.829545
I0408 16:50:59.409559 8707 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.716981
I0408 16:50:59.409574 8707 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.91889 (* 0.3 = 0.575667 loss)
I0408 16:50:59.409589 8707 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.608568 (* 0.3 = 0.18257 loss)
I0408 16:50:59.409600 8707 solver.cpp:245] Train net output #10: loss3/accuracy = 0.584906
I0408 16:50:59.409612 8707 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.869318
I0408 16:50:59.409624 8707 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.90566
I0408 16:50:59.409638 8707 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.06587 (* 1 = 1.06587 loss)
I0408 16:50:59.409652 8707 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.339463 (* 1 = 0.339463 loss)
I0408 16:50:59.409665 8707 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0408 16:50:59.409677 8707 solver.cpp:245] Train net output #16: total_confidence = 0.0764779
I0408 16:50:59.409693 8707 sgd_solver.cpp:106] Iteration 76000, lr = 0.00891429
I0408 16:56:34.182046 8707 solver.cpp:229] Iteration 76500, loss = 3.11187
I0408 16:56:34.182325 8707 solver.cpp:245] Train net output #0: loss1/accuracy = 0.2
I0408 16:56:34.182345 8707 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.795455
I0408 16:56:34.182359 8707 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.422222
I0408 16:56:34.182376 8707 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.61232 (* 0.3 = 0.783697 loss)
I0408 16:56:34.182391 8707 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.722049 (* 0.3 = 0.216615 loss)
I0408 16:56:34.182404 8707 solver.cpp:245] Train net output #5: loss2/accuracy = 0.422222
I0408 16:56:34.182416 8707 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.835227
I0408 16:56:34.182430 8707 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.622222
I0408 16:56:34.182458 8707 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.96692 (* 0.3 = 0.590077 loss)
I0408 16:56:34.182479 8707 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.552633 (* 0.3 = 0.16579 loss)
I0408 16:56:34.182493 8707 solver.cpp:245] Train net output #10: loss3/accuracy = 0.8
I0408 16:56:34.182505 8707 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.943182
I0408 16:56:34.182518 8707 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.866667
I0408 16:56:34.182531 8707 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.86918 (* 1 = 0.86918 loss)
I0408 16:56:34.182545 8707 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.249897 (* 1 = 0.249897 loss)
I0408 16:56:34.182559 8707 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0408 16:56:34.182570 8707 solver.cpp:245] Train net output #16: total_confidence = 0.155635
I0408 16:56:34.182585 8707 sgd_solver.cpp:106] Iteration 76500, lr = 0.00890714
I0408 17:02:08.899943 8707 solver.cpp:229] Iteration 77000, loss = 3.07348
I0408 17:02:08.900302 8707 solver.cpp:245] Train net output #0: loss1/accuracy = 0.326087
I0408 17:02:08.900324 8707 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.801136
I0408 17:02:08.900338 8707 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.565217
I0408 17:02:08.900355 8707 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.44388 (* 0.3 = 0.733164 loss)
I0408 17:02:08.900370 8707 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.710086 (* 0.3 = 0.213026 loss)
I0408 17:02:08.900383 8707 solver.cpp:245] Train net output #5: loss2/accuracy = 0.369565
I0408 17:02:08.900395 8707 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.818182
I0408 17:02:08.900408 8707 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.673913
I0408 17:02:08.900421 8707 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.14927 (* 0.3 = 0.644781 loss)
I0408 17:02:08.900435 8707 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.631128 (* 0.3 = 0.189338 loss)
I0408 17:02:08.900447 8707 solver.cpp:245] Train net output #10: loss3/accuracy = 0.76087
I0408 17:02:08.900460 8707 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.9375
I0408 17:02:08.900473 8707 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.891304
I0408 17:02:08.900511 8707 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.00659 (* 1 = 1.00659 loss)
I0408 17:02:08.900527 8707 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.279815 (* 1 = 0.279815 loss)
I0408 17:02:08.900538 8707 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0408 17:02:08.900552 8707 solver.cpp:245] Train net output #16: total_confidence = 0.291625
I0408 17:02:08.900565 8707 sgd_solver.cpp:106] Iteration 77000, lr = 0.0089
I0408 17:07:43.256314 8707 solver.cpp:229] Iteration 77500, loss = 3.12204
I0408 17:07:43.256414 8707 solver.cpp:245] Train net output #0: loss1/accuracy = 0.325581
I0408 17:07:43.256434 8707 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.806818
I0408 17:07:43.256448 8707 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.581395
I0408 17:07:43.256464 8707 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.31984 (* 0.3 = 0.695953 loss)
I0408 17:07:43.256479 8707 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.661303 (* 0.3 = 0.198391 loss)
I0408 17:07:43.256506 8707 solver.cpp:245] Train net output #5: loss2/accuracy = 0.511628
I0408 17:07:43.256520 8707 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.840909
I0408 17:07:43.256531 8707 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.790698
I0408 17:07:43.256546 8707 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.52527 (* 0.3 = 0.457583 loss)
I0408 17:07:43.256559 8707 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.481942 (* 0.3 = 0.144583 loss)
I0408 17:07:43.256572 8707 solver.cpp:245] Train net output #10: loss3/accuracy = 0.837209
I0408 17:07:43.256584 8707 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.948864
I0408 17:07:43.256597 8707 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.906977
I0408 17:07:43.256611 8707 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.634815 (* 1 = 0.634815 loss)
I0408 17:07:43.256625 8707 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.184315 (* 1 = 0.184315 loss)
I0408 17:07:43.256638 8707 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0408 17:07:43.256649 8707 solver.cpp:245] Train net output #16: total_confidence = 0.246545
I0408 17:07:43.256664 8707 sgd_solver.cpp:106] Iteration 77500, lr = 0.00889286
I0408 17:13:17.327582 8707 solver.cpp:229] Iteration 78000, loss = 3.17777
I0408 17:13:17.327882 8707 solver.cpp:245] Train net output #0: loss1/accuracy = 0.269231
I0408 17:13:17.327903 8707 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.784091
I0408 17:13:17.327915 8707 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.480769
I0408 17:13:17.327932 8707 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.54727 (* 0.3 = 0.764182 loss)
I0408 17:13:17.327947 8707 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.783228 (* 0.3 = 0.234968 loss)
I0408 17:13:17.327960 8707 solver.cpp:245] Train net output #5: loss2/accuracy = 0.384615
I0408 17:13:17.327973 8707 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.818182
I0408 17:13:17.327986 8707 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.576923
I0408 17:13:17.327998 8707 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.12143 (* 0.3 = 0.63643 loss)
I0408 17:13:17.328013 8707 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.64082 (* 0.3 = 0.192246 loss)
I0408 17:13:17.328025 8707 solver.cpp:245] Train net output #10: loss3/accuracy = 0.692308
I0408 17:13:17.328038 8707 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.903409
I0408 17:13:17.328049 8707 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.923077
I0408 17:13:17.328064 8707 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.835142 (* 1 = 0.835142 loss)
I0408 17:13:17.328078 8707 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.269435 (* 1 = 0.269435 loss)
I0408 17:13:17.328090 8707 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0408 17:13:17.328104 8707 solver.cpp:245] Train net output #16: total_confidence = 0.104507
I0408 17:13:17.328117 8707 sgd_solver.cpp:106] Iteration 78000, lr = 0.00888571
I0408 17:18:52.079133 8707 solver.cpp:229] Iteration 78500, loss = 3.10331
I0408 17:18:52.079268 8707 solver.cpp:245] Train net output #0: loss1/accuracy = 0.183673
I0408 17:18:52.079289 8707 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.772727
I0408 17:18:52.079305 8707 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.469388
I0408 17:18:52.079322 8707 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.49335 (* 0.3 = 0.748005 loss)
I0408 17:18:52.079336 8707 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.72026 (* 0.3 = 0.216078 loss)
I0408 17:18:52.079349 8707 solver.cpp:245] Train net output #5: loss2/accuracy = 0.387755
I0408 17:18:52.079362 8707 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.829545
I0408 17:18:52.079375 8707 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.714286
I0408 17:18:52.079388 8707 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.88002 (* 0.3 = 0.564005 loss)
I0408 17:18:52.079402 8707 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.549799 (* 0.3 = 0.16494 loss)
I0408 17:18:52.079416 8707 solver.cpp:245] Train net output #10: loss3/accuracy = 0.795918
I0408 17:18:52.079427 8707 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.931818
I0408 17:18:52.079439 8707 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.918367
I0408 17:18:52.079453 8707 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.905009 (* 1 = 0.905009 loss)
I0408 17:18:52.079468 8707 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.276912 (* 1 = 0.276912 loss)
I0408 17:18:52.079480 8707 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0408 17:18:52.079493 8707 solver.cpp:245] Train net output #16: total_confidence = 0.203936
I0408 17:18:52.079506 8707 sgd_solver.cpp:106] Iteration 78500, lr = 0.00887857
I0408 17:24:26.589975 8707 solver.cpp:229] Iteration 79000, loss = 3.06792
I0408 17:24:26.590353 8707 solver.cpp:245] Train net output #0: loss1/accuracy = 0.380952
I0408 17:24:26.590374 8707 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.829545
I0408 17:24:26.590389 8707 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.547619
I0408 17:24:26.590404 8707 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.32372 (* 0.3 = 0.697117 loss)
I0408 17:24:26.590420 8707 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.635815 (* 0.3 = 0.190744 loss)
I0408 17:24:26.590432 8707 solver.cpp:245] Train net output #5: loss2/accuracy = 0.357143
I0408 17:24:26.590445 8707 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.829545
I0408 17:24:26.590456 8707 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.666667
I0408 17:24:26.590471 8707 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.97177 (* 0.3 = 0.59153 loss)
I0408 17:24:26.590486 8707 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.515173 (* 0.3 = 0.154552 loss)
I0408 17:24:26.590498 8707 solver.cpp:245] Train net output #10: loss3/accuracy = 0.833333
I0408 17:24:26.590510 8707 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.948864
I0408 17:24:26.590523 8707 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.952381
I0408 17:24:26.590536 8707 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.632977 (* 1 = 0.632977 loss)
I0408 17:24:26.590551 8707 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.191864 (* 1 = 0.191864 loss)
I0408 17:24:26.590564 8707 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0408 17:24:26.590576 8707 solver.cpp:245] Train net output #16: total_confidence = 0.311084
I0408 17:24:26.590590 8707 sgd_solver.cpp:106] Iteration 79000, lr = 0.00887143
I0408 17:30:00.337054 8707 solver.cpp:229] Iteration 79500, loss = 3.07973
I0408 17:30:00.337147 8707 solver.cpp:245] Train net output #0: loss1/accuracy = 0.319149
I0408 17:30:00.337165 8707 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.8125
I0408 17:30:00.337178 8707 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.574468
I0408 17:30:00.337194 8707 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.32078 (* 0.3 = 0.696233 loss)
I0408 17:30:00.337210 8707 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.663778 (* 0.3 = 0.199134 loss)
I0408 17:30:00.337224 8707 solver.cpp:245] Train net output #5: loss2/accuracy = 0.553191
I0408 17:30:00.337235 8707 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.863636
I0408 17:30:00.337249 8707 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.829787
I0408 17:30:00.337265 8707 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.46909 (* 0.3 = 0.440727 loss)
I0408 17:30:00.337280 8707 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.451567 (* 0.3 = 0.13547 loss)
I0408 17:30:00.337292 8707 solver.cpp:245] Train net output #10: loss3/accuracy = 0.87234
I0408 17:30:00.337304 8707 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.960227
I0408 17:30:00.337317 8707 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.978723
I0408 17:30:00.337332 8707 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.389131 (* 1 = 0.389131 loss)
I0408 17:30:00.337345 8707 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.117018 (* 1 = 0.117018 loss)
I0408 17:30:00.337358 8707 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0408 17:30:00.337370 8707 solver.cpp:245] Train net output #16: total_confidence = 0.304178
I0408 17:30:00.337384 8707 sgd_solver.cpp:106] Iteration 79500, lr = 0.00886429
I0408 17:35:33.257277 8707 solver.cpp:456] Snapshotting to binary proto file /mnt2/snapshots/1/mixed_lstm10_bn_iter_80000.caffemodel
I0408 17:35:33.640089 8707 sgd_solver.cpp:273] Snapshotting solver state to binary proto file /mnt2/snapshots/1/mixed_lstm10_bn_iter_80000.solverstate
I0408 17:35:33.828174 8707 solver.cpp:338] Iteration 80000, Testing net (#0)
I0408 17:36:14.690225 8707 solver.cpp:393] Test loss: 2.99133
I0408 17:36:14.690338 8707 solver.cpp:406] Test net output #0: loss1/accuracy = 0.300511
I0408 17:36:14.690357 8707 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.822728
I0408 17:36:14.690371 8707 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.586804
I0408 17:36:14.690385 8707 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 2.36811 (* 0.3 = 0.710432 loss)
I0408 17:36:14.690400 8707 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.613158 (* 0.3 = 0.183947 loss)
I0408 17:36:14.690412 8707 solver.cpp:406] Test net output #5: loss2/accuracy = 0.547735
I0408 17:36:14.690424 8707 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.871866
I0408 17:36:14.690436 8707 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.812063
I0408 17:36:14.690450 8707 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.59676 (* 0.3 = 0.479028 loss)
I0408 17:36:14.690464 8707 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.447835 (* 0.3 = 0.134351 loss)
I0408 17:36:14.690475 8707 solver.cpp:406] Test net output #10: loss3/accuracy = 0.712425
I0408 17:36:14.690487 8707 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.925047
I0408 17:36:14.690498 8707 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.856386
I0408 17:36:14.690512 8707 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 1.17836 (* 1 = 1.17836 loss)
I0408 17:36:14.690526 8707 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.305203 (* 1 = 0.305203 loss)
I0408 17:36:14.690538 8707 solver.cpp:406] Test net output #15: total_accuracy = 0.333
I0408 17:36:14.690549 8707 solver.cpp:406] Test net output #16: total_confidence = 0.284053
I0408 17:36:15.063191 8707 solver.cpp:229] Iteration 80000, loss = 3.03264
I0408 17:36:15.063249 8707 solver.cpp:245] Train net output #0: loss1/accuracy = 0.369565
I0408 17:36:15.063266 8707 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.8125
I0408 17:36:15.063279 8707 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.695652
I0408 17:36:15.063297 8707 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.95854 (* 0.3 = 0.587561 loss)
I0408 17:36:15.063311 8707 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.592121 (* 0.3 = 0.177636 loss)
I0408 17:36:15.063324 8707 solver.cpp:245] Train net output #5: loss2/accuracy = 0.608696
I0408 17:36:15.063336 8707 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.875
I0408 17:36:15.063350 8707 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.804348
I0408 17:36:15.063364 8707 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.52657 (* 0.3 = 0.457972 loss)
I0408 17:36:15.063380 8707 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.463719 (* 0.3 = 0.139116 loss)
I0408 17:36:15.063391 8707 solver.cpp:245] Train net output #10: loss3/accuracy = 0.804348
I0408 17:36:15.063405 8707 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.909091
I0408 17:36:15.063416 8707 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.913043
I0408 17:36:15.063431 8707 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.63669 (* 1 = 0.63669 loss)
I0408 17:36:15.063444 8707 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.268516 (* 1 = 0.268516 loss)
I0408 17:36:15.063457 8707 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0408 17:36:15.063469 8707 solver.cpp:245] Train net output #16: total_confidence = 0.34347
I0408 17:36:15.063484 8707 sgd_solver.cpp:106] Iteration 80000, lr = 0.00885714
I0408 17:41:48.447929 8707 solver.cpp:229] Iteration 80500, loss = 3.05907
I0408 17:41:48.448273 8707 solver.cpp:245] Train net output #0: loss1/accuracy = 0.22
I0408 17:41:48.448297 8707 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.767045
I0408 17:41:48.448309 8707 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.38
I0408 17:41:48.448325 8707 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.79009 (* 0.3 = 0.837028 loss)
I0408 17:41:48.448340 8707 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.849467 (* 0.3 = 0.25484 loss)
I0408 17:41:48.448354 8707 solver.cpp:245] Train net output #5: loss2/accuracy = 0.26
I0408 17:41:48.448365 8707 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.784091
I0408 17:41:48.448377 8707 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.5
I0408 17:41:48.448392 8707 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.41334 (* 0.3 = 0.724001 loss)
I0408 17:41:48.448407 8707 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.717153 (* 0.3 = 0.215146 loss)
I0408 17:41:48.448420 8707 solver.cpp:245] Train net output #10: loss3/accuracy = 0.68
I0408 17:41:48.448431 8707 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.909091
I0408 17:41:48.448443 8707 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.8
I0408 17:41:48.448457 8707 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.33771 (* 1 = 1.33771 loss)
I0408 17:41:48.448472 8707 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.405535 (* 1 = 0.405535 loss)
I0408 17:41:48.448501 8707 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0408 17:41:48.448516 8707 solver.cpp:245] Train net output #16: total_confidence = 0.0934694
I0408 17:41:48.448531 8707 sgd_solver.cpp:106] Iteration 80500, lr = 0.00885
I0408 17:47:22.067620 8707 solver.cpp:229] Iteration 81000, loss = 3.04221
I0408 17:47:22.067775 8707 solver.cpp:245] Train net output #0: loss1/accuracy = 0.22449
I0408 17:47:22.067796 8707 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.784091
I0408 17:47:22.067811 8707 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.55102
I0408 17:47:22.067826 8707 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.17574 (* 0.3 = 0.652722 loss)
I0408 17:47:22.067842 8707 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.634328 (* 0.3 = 0.190298 loss)
I0408 17:47:22.067854 8707 solver.cpp:245] Train net output #5: loss2/accuracy = 0.387755
I0408 17:47:22.067867 8707 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.829545
I0408 17:47:22.067878 8707 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.795918
I0408 17:47:22.067893 8707 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.72889 (* 0.3 = 0.518667 loss)
I0408 17:47:22.067908 8707 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.51399 (* 0.3 = 0.154197 loss)
I0408 17:47:22.067919 8707 solver.cpp:245] Train net output #10: loss3/accuracy = 0.877551
I0408 17:47:22.067931 8707 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.960227
I0408 17:47:22.067944 8707 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.918367
I0408 17:47:22.067957 8707 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.616591 (* 1 = 0.616591 loss)
I0408 17:47:22.067971 8707 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.182701 (* 1 = 0.182701 loss)
I0408 17:47:22.067983 8707 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0408 17:47:22.067996 8707 solver.cpp:245] Train net output #16: total_confidence = 0.233288
I0408 17:47:22.068009 8707 sgd_solver.cpp:106] Iteration 81000, lr = 0.00884286
I0408 17:52:55.462575 8707 solver.cpp:229] Iteration 81500, loss = 3.07769
I0408 17:52:55.462803 8707 solver.cpp:245] Train net output #0: loss1/accuracy = 0.341463
I0408 17:52:55.462823 8707 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.835227
I0408 17:52:55.462836 8707 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.536585
I0408 17:52:55.462852 8707 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.35193 (* 0.3 = 0.70558 loss)
I0408 17:52:55.462867 8707 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.625225 (* 0.3 = 0.187567 loss)
I0408 17:52:55.462880 8707 solver.cpp:245] Train net output #5: loss2/accuracy = 0.487805
I0408 17:52:55.462893 8707 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.857955
I0408 17:52:55.462904 8707 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.658537
I0408 17:52:55.462918 8707 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.98074 (* 0.3 = 0.594223 loss)
I0408 17:52:55.462932 8707 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.52869 (* 0.3 = 0.158607 loss)
I0408 17:52:55.462945 8707 solver.cpp:245] Train net output #10: loss3/accuracy = 0.634146
I0408 17:52:55.462957 8707 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.892045
I0408 17:52:55.462970 8707 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.853659
I0408 17:52:55.462985 8707 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.17625 (* 1 = 1.17625 loss)
I0408 17:52:55.462998 8707 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.35196 (* 1 = 0.35196 loss)
I0408 17:52:55.463011 8707 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0408 17:52:55.463023 8707 solver.cpp:245] Train net output #16: total_confidence = 0.123438
I0408 17:52:55.463038 8707 sgd_solver.cpp:106] Iteration 81500, lr = 0.00883571
I0408 17:58:28.800583 8707 solver.cpp:229] Iteration 82000, loss = 2.987
I0408 17:58:28.800719 8707 solver.cpp:245] Train net output #0: loss1/accuracy = 0.23913
I0408 17:58:28.800739 8707 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.789773
I0408 17:58:28.800755 8707 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.478261
I0408 17:58:28.800771 8707 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.53793 (* 0.3 = 0.761378 loss)
I0408 17:58:28.800786 8707 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.740443 (* 0.3 = 0.222133 loss)
I0408 17:58:28.800799 8707 solver.cpp:245] Train net output #5: loss2/accuracy = 0.347826
I0408 17:58:28.800812 8707 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.8125
I0408 17:58:28.800824 8707 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.586957
I0408 17:58:28.800839 8707 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.31162 (* 0.3 = 0.693486 loss)
I0408 17:58:28.800853 8707 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.673928 (* 0.3 = 0.202178 loss)
I0408 17:58:28.800865 8707 solver.cpp:245] Train net output #10: loss3/accuracy = 0.565217
I0408 17:58:28.800879 8707 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.846591
I0408 17:58:28.800889 8707 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.847826
I0408 17:58:28.800904 8707 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.47288 (* 1 = 1.47288 loss)
I0408 17:58:28.800918 8707 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.539795 (* 1 = 0.539795 loss)
I0408 17:58:28.800930 8707 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0408 17:58:28.800942 8707 solver.cpp:245] Train net output #16: total_confidence = 0.0761612
I0408 17:58:28.800957 8707 sgd_solver.cpp:106] Iteration 82000, lr = 0.00882857
I0408 18:04:02.173528 8707 solver.cpp:229] Iteration 82500, loss = 3.09506
I0408 18:04:02.173770 8707 solver.cpp:245] Train net output #0: loss1/accuracy = 0.326087
I0408 18:04:02.173790 8707 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.818182
I0408 18:04:02.173804 8707 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.565217
I0408 18:04:02.173820 8707 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.3998 (* 0.3 = 0.71994 loss)
I0408 18:04:02.173835 8707 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.684994 (* 0.3 = 0.205498 loss)
I0408 18:04:02.173847 8707 solver.cpp:245] Train net output #5: loss2/accuracy = 0.434783
I0408 18:04:02.173861 8707 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.840909
I0408 18:04:02.173871 8707 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.73913
I0408 18:04:02.173885 8707 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.76416 (* 0.3 = 0.529247 loss)
I0408 18:04:02.173899 8707 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.501512 (* 0.3 = 0.150454 loss)
I0408 18:04:02.173913 8707 solver.cpp:245] Train net output #10: loss3/accuracy = 0.695652
I0408 18:04:02.173924 8707 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.920455
I0408 18:04:02.173936 8707 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.891304
I0408 18:04:02.173949 8707 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.01186 (* 1 = 1.01186 loss)
I0408 18:04:02.173964 8707 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.282392 (* 1 = 0.282392 loss)
I0408 18:04:02.173975 8707 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 18:04:02.173987 8707 solver.cpp:245] Train net output #16: total_confidence = 0.0786592
I0408 18:04:02.174001 8707 sgd_solver.cpp:106] Iteration 82500, lr = 0.00882143
I0408 18:09:35.552259 8707 solver.cpp:229] Iteration 83000, loss = 2.96551
I0408 18:09:35.552412 8707 solver.cpp:245] Train net output #0: loss1/accuracy = 0.325
I0408 18:09:35.552433 8707 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.8125
I0408 18:09:35.552446 8707 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.65
I0408 18:09:35.552462 8707 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.22126 (* 0.3 = 0.666379 loss)
I0408 18:09:35.552477 8707 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.642284 (* 0.3 = 0.192685 loss)
I0408 18:09:35.552490 8707 solver.cpp:245] Train net output #5: loss2/accuracy = 0.55
I0408 18:09:35.552503 8707 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.880682
I0408 18:09:35.552515 8707 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.675
I0408 18:09:35.552530 8707 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.9125 (* 0.3 = 0.573749 loss)
I0408 18:09:35.552557 8707 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.516975 (* 0.3 = 0.155093 loss)
I0408 18:09:35.552570 8707 solver.cpp:245] Train net output #10: loss3/accuracy = 0.85
I0408 18:09:35.552582 8707 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.943182
I0408 18:09:35.552594 8707 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.9
I0408 18:09:35.552608 8707 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.832987 (* 1 = 0.832987 loss)
I0408 18:09:35.552623 8707 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.260665 (* 1 = 0.260665 loss)
I0408 18:09:35.552634 8707 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0408 18:09:35.552647 8707 solver.cpp:245] Train net output #16: total_confidence = 0.244681
I0408 18:09:35.552661 8707 sgd_solver.cpp:106] Iteration 83000, lr = 0.00881429
I0408 18:15:08.908161 8707 solver.cpp:229] Iteration 83500, loss = 2.97429
I0408 18:15:08.908427 8707 solver.cpp:245] Train net output #0: loss1/accuracy = 0.215686
I0408 18:15:08.908448 8707 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.744318
I0408 18:15:08.908462 8707 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.490196
I0408 18:15:08.908478 8707 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.83623 (* 0.3 = 0.850869 loss)
I0408 18:15:08.908510 8707 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.916341 (* 0.3 = 0.274902 loss)
I0408 18:15:08.908524 8707 solver.cpp:245] Train net output #5: loss2/accuracy = 0.411765
I0408 18:15:08.908537 8707 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.801136
I0408 18:15:08.908550 8707 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.666667
I0408 18:15:08.908563 8707 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.06979 (* 0.3 = 0.620936 loss)
I0408 18:15:08.908578 8707 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.687369 (* 0.3 = 0.206211 loss)
I0408 18:15:08.908591 8707 solver.cpp:245] Train net output #10: loss3/accuracy = 0.686275
I0408 18:15:08.908604 8707 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.886364
I0408 18:15:08.908617 8707 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.882353
I0408 18:15:08.908630 8707 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.06502 (* 1 = 1.06502 loss)
I0408 18:15:08.908644 8707 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.355221 (* 1 = 0.355221 loss)
I0408 18:15:08.908656 8707 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0408 18:15:08.908669 8707 solver.cpp:245] Train net output #16: total_confidence = 0.133338
I0408 18:15:08.908684 8707 sgd_solver.cpp:106] Iteration 83500, lr = 0.00880714
I0408 18:20:42.273823 8707 solver.cpp:229] Iteration 84000, loss = 3.0311
I0408 18:20:42.273965 8707 solver.cpp:245] Train net output #0: loss1/accuracy = 0.352941
I0408 18:20:42.273985 8707 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.801136
I0408 18:20:42.273998 8707 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.529412
I0408 18:20:42.274014 8707 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.20627 (* 0.3 = 0.661881 loss)
I0408 18:20:42.274030 8707 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.714417 (* 0.3 = 0.214325 loss)
I0408 18:20:42.274042 8707 solver.cpp:245] Train net output #5: loss2/accuracy = 0.470588
I0408 18:20:42.274055 8707 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.829545
I0408 18:20:42.274067 8707 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.72549
I0408 18:20:42.274080 8707 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.89722 (* 0.3 = 0.569167 loss)
I0408 18:20:42.274094 8707 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.60295 (* 0.3 = 0.180885 loss)
I0408 18:20:42.274106 8707 solver.cpp:245] Train net output #10: loss3/accuracy = 0.901961
I0408 18:20:42.274119 8707 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.971591
I0408 18:20:42.274130 8707 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.980392
I0408 18:20:42.274144 8707 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.397409 (* 1 = 0.397409 loss)
I0408 18:20:42.274158 8707 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.122578 (* 1 = 0.122578 loss)
I0408 18:20:42.274171 8707 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0408 18:20:42.274183 8707 solver.cpp:245] Train net output #16: total_confidence = 0.260257
I0408 18:20:42.274197 8707 sgd_solver.cpp:106] Iteration 84000, lr = 0.0088
I0408 18:26:15.673602 8707 solver.cpp:229] Iteration 84500, loss = 3.0665
I0408 18:26:15.673862 8707 solver.cpp:245] Train net output #0: loss1/accuracy = 0.219512
I0408 18:26:15.673884 8707 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.784091
I0408 18:26:15.673898 8707 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.439024
I0408 18:26:15.673914 8707 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.69846 (* 0.3 = 0.809538 loss)
I0408 18:26:15.673930 8707 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.786572 (* 0.3 = 0.235972 loss)
I0408 18:26:15.673943 8707 solver.cpp:245] Train net output #5: loss2/accuracy = 0.414634
I0408 18:26:15.673955 8707 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.846591
I0408 18:26:15.673967 8707 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.536585
I0408 18:26:15.673981 8707 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.25274 (* 0.3 = 0.675823 loss)
I0408 18:26:15.673996 8707 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.633057 (* 0.3 = 0.189917 loss)
I0408 18:26:15.674008 8707 solver.cpp:245] Train net output #10: loss3/accuracy = 0.658537
I0408 18:26:15.674021 8707 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.903409
I0408 18:26:15.674033 8707 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.804878
I0408 18:26:15.674047 8707 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.06276 (* 1 = 1.06276 loss)
I0408 18:26:15.674062 8707 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.358029 (* 1 = 0.358029 loss)
I0408 18:26:15.674073 8707 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0408 18:26:15.674087 8707 solver.cpp:245] Train net output #16: total_confidence = 0.210731
I0408 18:26:15.674100 8707 sgd_solver.cpp:106] Iteration 84500, lr = 0.00879286
I0408 18:31:48.623544 8707 solver.cpp:338] Iteration 85000, Testing net (#0)
I0408 18:32:29.498246 8707 solver.cpp:393] Test loss: 2.65124
I0408 18:32:29.498363 8707 solver.cpp:406] Test net output #0: loss1/accuracy = 0.339836
I0408 18:32:29.498381 8707 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.832728
I0408 18:32:29.498394 8707 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.644915
I0408 18:32:29.498410 8707 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 2.20487 (* 0.3 = 0.661462 loss)
I0408 18:32:29.498425 8707 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.574947 (* 0.3 = 0.172484 loss)
I0408 18:32:29.498437 8707 solver.cpp:406] Test net output #5: loss2/accuracy = 0.558076
I0408 18:32:29.498450 8707 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.881367
I0408 18:32:29.498461 8707 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.830814
I0408 18:32:29.498473 8707 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.51834 (* 0.3 = 0.455502 loss)
I0408 18:32:29.498487 8707 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.414451 (* 0.3 = 0.124335 loss)
I0408 18:32:29.498499 8707 solver.cpp:406] Test net output #10: loss3/accuracy = 0.751264
I0408 18:32:29.498512 8707 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.931229
I0408 18:32:29.498522 8707 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.888767
I0408 18:32:29.498536 8707 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 0.968915 (* 1 = 0.968915 loss)
I0408 18:32:29.498549 8707 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.268544 (* 1 = 0.268544 loss)
I0408 18:32:29.498561 8707 solver.cpp:406] Test net output #15: total_accuracy = 0.351
I0408 18:32:29.498574 8707 solver.cpp:406] Test net output #16: total_confidence = 0.254078
I0408 18:32:29.871906 8707 solver.cpp:229] Iteration 85000, loss = 2.98518
I0408 18:32:29.871970 8707 solver.cpp:245] Train net output #0: loss1/accuracy = 0.386364
I0408 18:32:29.871989 8707 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.823864
I0408 18:32:29.872001 8707 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.613636
I0408 18:32:29.872019 8707 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.1325 (* 0.3 = 0.639751 loss)
I0408 18:32:29.872033 8707 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.60783 (* 0.3 = 0.182349 loss)
I0408 18:32:29.872046 8707 solver.cpp:245] Train net output #5: loss2/accuracy = 0.363636
I0408 18:32:29.872058 8707 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.835227
I0408 18:32:29.872071 8707 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.704545
I0408 18:32:29.872084 8707 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.93673 (* 0.3 = 0.58102 loss)
I0408 18:32:29.872099 8707 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.518482 (* 0.3 = 0.155545 loss)
I0408 18:32:29.872112 8707 solver.cpp:245] Train net output #10: loss3/accuracy = 0.704545
I0408 18:32:29.872123 8707 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.926136
I0408 18:32:29.872135 8707 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.931818
I0408 18:32:29.872149 8707 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.841591 (* 1 = 0.841591 loss)
I0408 18:32:29.872164 8707 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.232296 (* 1 = 0.232296 loss)
I0408 18:32:29.872176 8707 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0408 18:32:29.872189 8707 solver.cpp:245] Train net output #16: total_confidence = 0.110502
I0408 18:32:29.872202 8707 sgd_solver.cpp:106] Iteration 85000, lr = 0.00878571
I0408 18:38:03.208255 8707 solver.cpp:229] Iteration 85500, loss = 3.00995
I0408 18:38:03.208428 8707 solver.cpp:245] Train net output #0: loss1/accuracy = 0.302326
I0408 18:38:03.208449 8707 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.806818
I0408 18:38:03.208462 8707 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.697674
I0408 18:38:03.208478 8707 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.19347 (* 0.3 = 0.658042 loss)
I0408 18:38:03.208493 8707 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.63722 (* 0.3 = 0.191166 loss)
I0408 18:38:03.208506 8707 solver.cpp:245] Train net output #5: loss2/accuracy = 0.372093
I0408 18:38:03.208518 8707 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.8125
I0408 18:38:03.208530 8707 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.697674
I0408 18:38:03.208555 8707 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.73769 (* 0.3 = 0.521308 loss)
I0408 18:38:03.208573 8707 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.54122 (* 0.3 = 0.162366 loss)
I0408 18:38:03.208586 8707 solver.cpp:245] Train net output #10: loss3/accuracy = 0.790698
I0408 18:38:03.208600 8707 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.931818
I0408 18:38:03.208611 8707 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.953488
I0408 18:38:03.208626 8707 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.774108 (* 1 = 0.774108 loss)
I0408 18:38:03.208639 8707 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.248967 (* 1 = 0.248967 loss)
I0408 18:38:03.208652 8707 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0408 18:38:03.208663 8707 solver.cpp:245] Train net output #16: total_confidence = 0.235052
I0408 18:38:03.208678 8707 sgd_solver.cpp:106] Iteration 85500, lr = 0.00877857
I0408 18:43:36.439546 8707 solver.cpp:229] Iteration 86000, loss = 3.01417
I0408 18:43:36.439791 8707 solver.cpp:245] Train net output #0: loss1/accuracy = 0.14
I0408 18:43:36.439810 8707 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.75
I0408 18:43:36.439824 8707 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.5
I0408 18:43:36.439841 8707 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.59996 (* 0.3 = 0.779989 loss)
I0408 18:43:36.439856 8707 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.793021 (* 0.3 = 0.237906 loss)
I0408 18:43:36.439868 8707 solver.cpp:245] Train net output #5: loss2/accuracy = 0.36
I0408 18:43:36.439882 8707 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.8125
I0408 18:43:36.439893 8707 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.58
I0408 18:43:36.439908 8707 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.18678 (* 0.3 = 0.656035 loss)
I0408 18:43:36.439921 8707 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.665074 (* 0.3 = 0.199522 loss)
I0408 18:43:36.439934 8707 solver.cpp:245] Train net output #10: loss3/accuracy = 0.54
I0408 18:43:36.439946 8707 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.846591
I0408 18:43:36.439957 8707 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.84
I0408 18:43:36.439971 8707 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.48096 (* 1 = 1.48096 loss)
I0408 18:43:36.439985 8707 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.4756 (* 1 = 0.4756 loss)
I0408 18:43:36.439996 8707 solver.cpp:245] Train net output #15: total_accuracy = 0
I0408 18:43:36.440008 8707 solver.cpp:245] Train net output #16: total_confidence = 0.0568312
I0408 18:43:36.440022 8707 sgd_solver.cpp:106] Iteration 86000, lr = 0.00877143
I0408 18:49:09.819535 8707 solver.cpp:229] Iteration 86500, loss = 3.00121
I0408 18:49:09.819694 8707 solver.cpp:245] Train net output #0: loss1/accuracy = 0.170732
I0408 18:49:09.819715 8707 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.778409
I0408 18:49:09.819728 8707 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.487805
I0408 18:49:09.819747 8707 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.73288 (* 0.3 = 0.819863 loss)
I0408 18:49:09.819763 8707 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.766004 (* 0.3 = 0.229801 loss)
I0408 18:49:09.819777 8707 solver.cpp:245] Train net output #5: loss2/accuracy = 0.365854
I0408 18:49:09.819788 8707 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.829545
I0408 18:49:09.819800 8707 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.780488
I0408 18:49:09.819814 8707 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.09337 (* 0.3 = 0.628012 loss)
I0408 18:49:09.819829 8707 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.572326 (* 0.3 = 0.171698 loss)
I0408 18:49:09.819841 8707 solver.cpp:245] Train net output #10: loss3/accuracy = 0.658537
I0408 18:49:09.819854 8707 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.897727
I0408 18:49:09.819865 8707 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.878049
I0408 18:49:09.819880 8707 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.09981 (* 1 = 1.09981 loss)
I0408 18:49:09.819893 8707 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.313241 (* 1 = 0.313241 loss)
I0408 18:49:09.819905 8707 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0408 18:49:09.819917 8707 solver.cpp:245] Train net output #16: total_confidence = 0.08579
I0408 18:49:09.819931 8707 sgd_solver.cpp:106] Iteration 86500, lr = 0.00876429
I0408 18:54:43.169487 8707 solver.cpp:229] Iteration 87000, loss = 3.01525
I0408 18:54:43.169713 8707 solver.cpp:245] Train net output #0: loss1/accuracy = 0.282609
I0408 18:54:43.169731 8707 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.789773
I0408 18:54:43.169744 8707 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.630435
I0408 18:54:43.169760 8707 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.14713 (* 0.3 = 0.644138 loss)
I0408 18:54:43.169775 8707 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.648328 (* 0.3 = 0.194499 loss)
I0408 18:54:43.169787 8707 solver.cpp:245] Train net output #5: loss2/accuracy = 0.543478
I0408 18:54:43.169800 8707 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.875
I0408 18:54:43.169812 8707 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.847826
I0408 18:54:43.169826 8707 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.53195 (* 0.3 = 0.459584 loss)
I0408 18:54:43.169841 8707 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.437659 (* 0.3 = 0.131298 loss)
I0408 18:54:43.169852 8707 solver.cpp:245] Train net output #10: loss3/accuracy = 0.76087
I0408 18:54:43.169865 8707 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.920455
I0408 18:54:43.169877 8707 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.956522
I0408 18:54:43.169891 8707 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.709409 (* 1 = 0.709409 loss)
I0408 18:54:43.169905 8707 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.233434 (* 1 = 0.233434 loss)
I0408 18:54:43.169917 8707 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0408 18:54:43.169929 8707 solver.cpp:245] Train net output #16: total_confidence = 0.181273
I0408 18:54:43.169944 8707 sgd_solver.cpp:106] Iteration 87000, lr = 0.00875714
I0408 19:00:16.547564 8707 solver.cpp:229] Iteration 87500, loss = 2.87674
I0408 19:00:16.547816 8707 solver.cpp:245] Train net output #0: loss1/accuracy = 0.372093
I0408 19:00:16.547838 8707 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.818182
I0408 19:00:16.547852 8707 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.627907
I0408 19:00:16.547868 8707 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.06953 (* 0.3 = 0.620859 loss)
I0408 19:00:16.547883 8707 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.599962 (* 0.3 = 0.179989 loss)
I0408 19:00:16.547896 8707 solver.cpp:245] Train net output #5: loss2/accuracy = 0.55814
I0408 19:00:16.547909 8707 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.857955
I0408 19:00:16.547920 8707 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.813953
I0408 19:00:16.547935 8707 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.51036 (* 0.3 = 0.453107 loss)
I0408 19:00:16.547950 8707 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.446202 (* 0.3 = 0.133861 loss)
I0408 19:00:16.547962 8707 solver.cpp:245] Train net output #10: loss3/accuracy = 0.860465
I0408 19:00:16.547974 8707 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.960227
I0408 19:00:16.547986 8707 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.953488
I0408 19:00:16.548002 8707 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.5362 (* 1 = 0.5362 loss)
I0408 19:00:16.548015 8707 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.159062 (* 1 = 0.159062 loss)
I0408 19:00:16.548027 8707 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0408 19:00:16.548039 8707 solver.cpp:245] Train net output #16: total_confidence = 0.438583
I0408 19:00:16.548054 8707 sgd_solver.cpp:106] Iteration 87500, lr = 0.00875
I0408 19:05:49.908521 8707 solver.cpp:229] Iteration 88000, loss = 2.94024
I0408 19:05:49.908767 8707 solver.cpp:245] Train net output #0: loss1/accuracy = 0.367347
I0408 19:05:49.908788 8707 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.823864
I0408 19:05:49.908802 8707 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.591837
I0408 19:05:49.908818 8707 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.2037 (* 0.3 = 0.661111 loss)
I0408 19:05:49.908833 8707 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.636232 (* 0.3 = 0.19087 loss)
I0408 19:05:49.908844 8707 solver.cpp:245] Train net output #5: loss2/accuracy = 0.469388
I0408 19:05:49.908857 8707 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.846591
I0408 19:05:49.908869 8707 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.77551
I0408 19:05:49.908882 8707 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.57318 (* 0.3 = 0.471955 loss)
I0408 19:05:49.908896 8707 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.455267 (* 0.3 = 0.13658 loss)
I0408 19:05:49.908908 8707 solver.cpp:245] Train net output #10: loss3/accuracy = 0.77551
I0408 19:05:49.908921 8707 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.9375
I0408 19:05:49.908932 8707 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.938776
I0408 19:05:49.908946 8707 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.884549 (* 1 = 0.884549 loss)
I0408 19:05:49.908960 8707 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.255119 (* 1 = 0.255119 loss)
I0408 19:05:49.908972 8707 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0408 19:05:49.908984 8707 solver.cpp:245] Train net output #16: total_confidence = 0.297564
I0408 19:05:49.909001 8707 sgd_solver.cpp:106] Iteration 88000, lr = 0.00874286
I0408 19:11:23.286762 8707 solver.cpp:229] Iteration 88500, loss = 2.92946
I0408 19:11:23.286890 8707 solver.cpp:245] Train net output #0: loss1/accuracy = 0.386364
I0408 19:11:23.286911 8707 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.8125
I0408 19:11:23.286923 8707 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.659091
I0408 19:11:23.286939 8707 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.9376 (* 0.3 = 0.581279 loss)
I0408 19:11:23.286954 8707 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.583042 (* 0.3 = 0.174913 loss)
I0408 19:11:23.286968 8707 solver.cpp:245] Train net output #5: loss2/accuracy = 0.522727
I0408 19:11:23.286980 8707 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.863636
I0408 19:11:23.286993 8707 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.909091
I0408 19:11:23.287006 8707 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.41161 (* 0.3 = 0.423482 loss)
I0408 19:11:23.287021 8707 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.411256 (* 0.3 = 0.123377 loss)
I0408 19:11:23.287034 8707 solver.cpp:245] Train net output #10: loss3/accuracy = 0.863636
I0408 19:11:23.287045 8707 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.960227
I0408 19:11:23.287057 8707 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.954545
I0408 19:11:23.287071 8707 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.576127 (* 1 = 0.576127 loss)
I0408 19:11:23.287086 8707 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.167656 (* 1 = 0.167656 loss)
I0408 19:11:23.287097 8707 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0408 19:11:23.287109 8707 solver.cpp:245] Train net output #16: total_confidence = 0.367608
I0408 19:11:23.287123 8707 sgd_solver.cpp:106] Iteration 88500, lr = 0.00873571
I0408 19:16:56.693526 8707 solver.cpp:229] Iteration 89000, loss = 2.88463
I0408 19:16:56.693789 8707 solver.cpp:245] Train net output #0: loss1/accuracy = 0.244444
I0408 19:16:56.693810 8707 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.789773
I0408 19:16:56.693824 8707 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.444444
I0408 19:16:56.693840 8707 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.50412 (* 0.3 = 0.751237 loss)
I0408 19:16:56.693855 8707 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.744779 (* 0.3 = 0.223434 loss)
I0408 19:16:56.693866 8707 solver.cpp:245] Train net output #5: loss2/accuracy = 0.355556
I0408 19:16:56.693882 8707 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.801136
I0408 19:16:56.693895 8707 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.666667
I0408 19:16:56.693909 8707 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.09439 (* 0.3 = 0.628317 loss)
I0408 19:16:56.693924 8707 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.673824 (* 0.3 = 0.202147 loss)
I0408 19:16:56.693936 8707 solver.cpp:245] Train net output #10: loss3/accuracy = 0.644444
I0408 19:16:56.693948 8707 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.886364
I0408 19:16:56.693960 8707 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.866667
I0408 19:16:56.693974 8707 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.17082 (* 1 = 1.17082 loss)
I0408 19:16:56.693989 8707 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.385109 (* 1 = 0.385109 loss)
I0408 19:16:56.694000 8707 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0408 19:16:56.694012 8707 solver.cpp:245] Train net output #16: total_confidence = 0.166263
I0408 19:16:56.694026 8707 sgd_solver.cpp:106] Iteration 89000, lr = 0.00872857
I0408 19:22:30.054682 8707 solver.cpp:229] Iteration 89500, loss = 2.94994
I0408 19:22:30.055043 8707 solver.cpp:245] Train net output #0: loss1/accuracy = 0.25
I0408 19:22:30.055065 8707 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.767045
I0408 19:22:30.055078 8707 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.583333
I0408 19:22:30.055095 8707 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.37605 (* 0.3 = 0.712814 loss)
I0408 19:22:30.055110 8707 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.733296 (* 0.3 = 0.219989 loss)
I0408 19:22:30.055124 8707 solver.cpp:245] Train net output #5: loss2/accuracy = 0.416667
I0408 19:22:30.055136 8707 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.823864
I0408 19:22:30.055148 8707 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.75
I0408 19:22:30.055162 8707 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.66825 (* 0.3 = 0.500475 loss)
I0408 19:22:30.055176 8707 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.503162 (* 0.3 = 0.150949 loss)
I0408 19:22:30.055188 8707 solver.cpp:245] Train net output #10: loss3/accuracy = 0.854167
I0408 19:22:30.055200 8707 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.960227
I0408 19:22:30.055212 8707 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.9375
I0408 19:22:30.055227 8707 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.551832 (* 1 = 0.551832 loss)
I0408 19:22:30.055240 8707 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.158025 (* 1 = 0.158025 loss)
I0408 19:22:30.055253 8707 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0408 19:22:30.055265 8707 solver.cpp:245] Train net output #16: total_confidence = 0.244925
I0408 19:22:30.055279 8707 sgd_solver.cpp:106] Iteration 89500, lr = 0.00872143
I0409 00:55:42.503006 12249 solver.cpp:280] Solving mixed_lstm
I0409 00:55:42.503020 12249 solver.cpp:281] Learning Rate Policy: poly
I0409 00:55:42.523172 12249 solver.cpp:338] Iteration 90000, Testing net (#0)
I0409 00:56:23.569026 12249 solver.cpp:393] Test loss: 2.57982
I0409 00:56:23.569416 12249 solver.cpp:406] Test net output #0: loss1/accuracy = 0.356605
I0409 00:56:23.569437 12249 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.832274
I0409 00:56:23.569450 12249 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.680637
I0409 00:56:23.569468 12249 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 2.05094 (* 0.3 = 0.615282 loss)
I0409 00:56:23.569483 12249 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.554579 (* 0.3 = 0.166374 loss)
I0409 00:56:23.569494 12249 solver.cpp:406] Test net output #5: loss2/accuracy = 0.520773
I0409 00:56:23.569507 12249 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.876367
I0409 00:56:23.569519 12249 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.817653
I0409 00:56:23.569532 12249 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.60275 (* 0.3 = 0.480825 loss)
I0409 00:56:23.569545 12249 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.421428 (* 0.3 = 0.126428 loss)
I0409 00:56:23.569557 12249 solver.cpp:406] Test net output #10: loss3/accuracy = 0.773594
I0409 00:56:23.569569 12249 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.936456
I0409 00:56:23.569581 12249 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.898757
I0409 00:56:23.569596 12249 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 0.933398 (* 1 = 0.933398 loss)
I0409 00:56:23.569608 12249 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.257516 (* 1 = 0.257516 loss)
I0409 00:56:23.569620 12249 solver.cpp:406] Test net output #15: total_accuracy = 0.407
I0409 00:56:23.569633 12249 solver.cpp:406] Test net output #16: total_confidence = 0.341069
I0409 00:56:24.274955 12249 solver.cpp:229] Iteration 90000, loss = 3.04573
I0409 00:56:24.275022 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.27907
I0409 00:56:24.275039 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.772727
I0409 00:56:24.275053 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.418605
I0409 00:56:24.275071 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.71841 (* 0.3 = 0.815523 loss)
I0409 00:56:24.275087 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.867524 (* 0.3 = 0.260257 loss)
I0409 00:56:24.275100 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.511628
I0409 00:56:24.275113 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.840909
I0409 00:56:24.275125 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.72093
I0409 00:56:24.275141 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.78847 (* 0.3 = 0.53654 loss)
I0409 00:56:24.275156 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.583104 (* 0.3 = 0.174931 loss)
I0409 00:56:24.275168 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.767442
I0409 00:56:24.275180 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.914773
I0409 00:56:24.275193 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.860465
I0409 00:56:24.275207 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.938318 (* 1 = 0.938318 loss)
I0409 00:56:24.275223 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.320164 (* 1 = 0.320164 loss)
I0409 00:56:24.275234 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0409 00:56:24.275248 12249 solver.cpp:245] Train net output #16: total_confidence = 0.0990351
I0409 00:56:24.275274 12249 sgd_solver.cpp:106] Iteration 90000, lr = 0.00871429
I0409 01:01:57.473618 12249 solver.cpp:229] Iteration 90500, loss = 2.87117
I0409 01:01:57.473943 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.355556
I0409 01:01:57.473966 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.823864
I0409 01:01:57.473979 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.666667
I0409 01:01:57.473996 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.0876 (* 0.3 = 0.62628 loss)
I0409 01:01:57.474012 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.604099 (* 0.3 = 0.18123 loss)
I0409 01:01:57.474025 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.466667
I0409 01:01:57.474036 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.840909
I0409 01:01:57.474048 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.733333
I0409 01:01:57.474063 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.71163 (* 0.3 = 0.51349 loss)
I0409 01:01:57.474077 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.51686 (* 0.3 = 0.155058 loss)
I0409 01:01:57.474092 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.666667
I0409 01:01:57.474103 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.897727
I0409 01:01:57.474115 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.933333
I0409 01:01:57.474129 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.14588 (* 1 = 1.14588 loss)
I0409 01:01:57.474143 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.342521 (* 1 = 0.342521 loss)
I0409 01:01:57.474155 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0409 01:01:57.474169 12249 solver.cpp:245] Train net output #16: total_confidence = 0.214732
I0409 01:01:57.474182 12249 sgd_solver.cpp:106] Iteration 90500, lr = 0.00870714
I0409 01:07:30.839711 12249 solver.cpp:229] Iteration 91000, loss = 2.9023
I0409 01:07:30.839815 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.159091
I0409 01:07:30.839834 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.767045
I0409 01:07:30.839848 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.454545
I0409 01:07:30.839864 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.96345 (* 0.3 = 0.889036 loss)
I0409 01:07:30.839879 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.84929 (* 0.3 = 0.254787 loss)
I0409 01:07:30.839892 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.363636
I0409 01:07:30.839905 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.8125
I0409 01:07:30.839917 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.75
I0409 01:07:30.839932 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.02524 (* 0.3 = 0.607573 loss)
I0409 01:07:30.839947 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.617482 (* 0.3 = 0.185245 loss)
I0409 01:07:30.839959 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.795455
I0409 01:07:30.839972 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.948864
I0409 01:07:30.839984 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.954545
I0409 01:07:30.839998 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.82514 (* 1 = 0.82514 loss)
I0409 01:07:30.840013 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.226472 (* 1 = 0.226472 loss)
I0409 01:07:30.840025 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0409 01:07:30.840037 12249 solver.cpp:245] Train net output #16: total_confidence = 0.088946
I0409 01:07:30.840052 12249 sgd_solver.cpp:106] Iteration 91000, lr = 0.0087
I0409 01:13:04.547045 12249 solver.cpp:229] Iteration 91500, loss = 2.86614
I0409 01:13:04.547387 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.28
I0409 01:13:04.547417 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.784091
I0409 01:13:04.547441 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.46
I0409 01:13:04.547472 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.65006 (* 0.3 = 0.79502 loss)
I0409 01:13:04.547499 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.805304 (* 0.3 = 0.241591 loss)
I0409 01:13:04.547523 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.36
I0409 01:13:04.547546 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.8125
I0409 01:13:04.547574 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.56
I0409 01:13:04.547601 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.21016 (* 0.3 = 0.663047 loss)
I0409 01:13:04.547631 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.664749 (* 0.3 = 0.199425 loss)
I0409 01:13:04.547653 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.74
I0409 01:13:04.547677 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.909091
I0409 01:13:04.547698 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.92
I0409 01:13:04.547724 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.06999 (* 1 = 1.06999 loss)
I0409 01:13:04.547755 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.346564 (* 1 = 0.346564 loss)
I0409 01:13:04.547780 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0409 01:13:04.547802 12249 solver.cpp:245] Train net output #16: total_confidence = 0.141045
I0409 01:13:04.547828 12249 sgd_solver.cpp:106] Iteration 91500, lr = 0.00869286
I0409 01:18:38.257272 12249 solver.cpp:229] Iteration 92000, loss = 2.87813
I0409 01:18:38.257385 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.222222
I0409 01:18:38.257414 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.75
I0409 01:18:38.257438 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.444444
I0409 01:18:38.257468 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.58191 (* 0.3 = 0.774572 loss)
I0409 01:18:38.257495 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.837518 (* 0.3 = 0.251255 loss)
I0409 01:18:38.257519 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.351852
I0409 01:18:38.257544 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.789773
I0409 01:18:38.257570 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.648148
I0409 01:18:38.257597 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.87983 (* 0.3 = 0.563948 loss)
I0409 01:18:38.257624 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.619257 (* 0.3 = 0.185777 loss)
I0409 01:18:38.257647 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.796296
I0409 01:18:38.257668 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.920455
I0409 01:18:38.257690 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.907407
I0409 01:18:38.257717 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.789904 (* 1 = 0.789904 loss)
I0409 01:18:38.257748 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.278951 (* 1 = 0.278951 loss)
I0409 01:18:38.257772 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0409 01:18:38.257794 12249 solver.cpp:245] Train net output #16: total_confidence = 0.179466
I0409 01:18:38.257820 12249 sgd_solver.cpp:106] Iteration 92000, lr = 0.00868571
I0409 01:24:11.618089 12249 solver.cpp:229] Iteration 92500, loss = 2.92217
I0409 01:24:11.618398 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.263158
I0409 01:24:11.618420 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.8125
I0409 01:24:11.618434 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.473684
I0409 01:24:11.618451 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.8122 (* 0.3 = 0.84366 loss)
I0409 01:24:11.618468 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.762948 (* 0.3 = 0.228884 loss)
I0409 01:24:11.618480 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.289474
I0409 01:24:11.618494 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.789773
I0409 01:24:11.618505 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.684211
I0409 01:24:11.618520 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.42719 (* 0.3 = 0.728157 loss)
I0409 01:24:11.618533 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.741499 (* 0.3 = 0.22245 loss)
I0409 01:24:11.618546 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.578947
I0409 01:24:11.618558 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.880682
I0409 01:24:11.618571 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.789474
I0409 01:24:11.618584 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.61056 (* 1 = 1.61056 loss)
I0409 01:24:11.618598 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.429304 (* 1 = 0.429304 loss)
I0409 01:24:11.618612 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0409 01:24:11.618623 12249 solver.cpp:245] Train net output #16: total_confidence = 0.164802
I0409 01:24:11.618638 12249 sgd_solver.cpp:106] Iteration 92500, lr = 0.00867857
I0409 01:29:44.988615 12249 solver.cpp:229] Iteration 93000, loss = 2.91308
I0409 01:29:44.988739 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.116279
I0409 01:29:44.988759 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.772727
I0409 01:29:44.988773 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.465116
I0409 01:29:44.988790 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.8333 (* 0.3 = 0.849989 loss)
I0409 01:29:44.988806 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.781681 (* 0.3 = 0.234504 loss)
I0409 01:29:44.988818 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.348837
I0409 01:29:44.988831 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.818182
I0409 01:29:44.988843 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.697674
I0409 01:29:44.988857 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.17943 (* 0.3 = 0.653829 loss)
I0409 01:29:44.988872 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.627782 (* 0.3 = 0.188335 loss)
I0409 01:29:44.988884 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.697674
I0409 01:29:44.988896 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.914773
I0409 01:29:44.988909 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.883721
I0409 01:29:44.988922 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.2899 (* 1 = 1.2899 loss)
I0409 01:29:44.988936 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.384855 (* 1 = 0.384855 loss)
I0409 01:29:44.988950 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0409 01:29:44.988961 12249 solver.cpp:245] Train net output #16: total_confidence = 0.204981
I0409 01:29:44.988976 12249 sgd_solver.cpp:106] Iteration 93000, lr = 0.00867143
I0409 01:35:18.363997 12249 solver.cpp:229] Iteration 93500, loss = 2.84844
I0409 01:35:18.364295 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.25
I0409 01:35:18.364315 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.778409
I0409 01:35:18.364329 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.538462
I0409 01:35:18.364346 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.51957 (* 0.3 = 0.755872 loss)
I0409 01:35:18.364362 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.76354 (* 0.3 = 0.229062 loss)
I0409 01:35:18.364374 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.346154
I0409 01:35:18.364387 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.806818
I0409 01:35:18.364398 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.711538
I0409 01:35:18.364413 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.87828 (* 0.3 = 0.563484 loss)
I0409 01:35:18.364426 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.57162 (* 0.3 = 0.171486 loss)
I0409 01:35:18.364439 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.692308
I0409 01:35:18.364450 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.909091
I0409 01:35:18.364462 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.961538
I0409 01:35:18.364477 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.887355 (* 1 = 0.887355 loss)
I0409 01:35:18.364511 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.266395 (* 1 = 0.266395 loss)
I0409 01:35:18.364524 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0409 01:35:18.364537 12249 solver.cpp:245] Train net output #16: total_confidence = 0.158292
I0409 01:35:18.364552 12249 sgd_solver.cpp:106] Iteration 93500, lr = 0.00866429
I0409 01:40:51.735038 12249 solver.cpp:229] Iteration 94000, loss = 2.86169
I0409 01:40:51.735290 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.404762
I0409 01:40:51.735309 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.835227
I0409 01:40:51.735322 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.619048
I0409 01:40:51.735339 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.06141 (* 0.3 = 0.618422 loss)
I0409 01:40:51.735354 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.596282 (* 0.3 = 0.178885 loss)
I0409 01:40:51.735368 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.5
I0409 01:40:51.735380 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.846591
I0409 01:40:51.735393 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.833333
I0409 01:40:51.735406 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.48754 (* 0.3 = 0.446262 loss)
I0409 01:40:51.735420 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.447557 (* 0.3 = 0.134267 loss)
I0409 01:40:51.735433 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.809524
I0409 01:40:51.735445 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.948864
I0409 01:40:51.735457 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.928571
I0409 01:40:51.735471 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.725544 (* 1 = 0.725544 loss)
I0409 01:40:51.735486 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.201954 (* 1 = 0.201954 loss)
I0409 01:40:51.735498 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0409 01:40:51.735510 12249 solver.cpp:245] Train net output #16: total_confidence = 0.43628
I0409 01:40:51.735524 12249 sgd_solver.cpp:106] Iteration 94000, lr = 0.00865714
I0409 01:46:25.101899 12249 solver.cpp:229] Iteration 94500, loss = 2.84423
I0409 01:46:25.102059 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.160714
I0409 01:46:25.102080 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.732955
I0409 01:46:25.102093 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.410714
I0409 01:46:25.102109 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.97296 (* 0.3 = 0.891889 loss)
I0409 01:46:25.102125 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.958986 (* 0.3 = 0.287696 loss)
I0409 01:46:25.102138 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.196429
I0409 01:46:25.102150 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.738636
I0409 01:46:25.102162 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.482143
I0409 01:46:25.102175 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.11189 (* 0.3 = 0.933566 loss)
I0409 01:46:25.102190 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.03257 (* 0.3 = 0.309772 loss)
I0409 01:46:25.102202 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.5
I0409 01:46:25.102215 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.840909
I0409 01:46:25.102226 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.75
I0409 01:46:25.102241 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.95866 (* 1 = 1.95866 loss)
I0409 01:46:25.102254 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.635301 (* 1 = 0.635301 loss)
I0409 01:46:25.102267 12249 solver.cpp:245] Train net output #15: total_accuracy = 0
I0409 01:46:25.102278 12249 solver.cpp:245] Train net output #16: total_confidence = 0.0565807
I0409 01:46:25.102293 12249 sgd_solver.cpp:106] Iteration 94500, lr = 0.00865
I0409 01:51:58.075446 12249 solver.cpp:338] Iteration 95000, Testing net (#0)
I0409 01:52:39.116176 12249 solver.cpp:393] Test loss: 2.62675
I0409 01:52:39.116328 12249 solver.cpp:406] Test net output #0: loss1/accuracy = 0.362579
I0409 01:52:39.116348 12249 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.835729
I0409 01:52:39.116361 12249 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.665097
I0409 01:52:39.116379 12249 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 2.10976 (* 0.3 = 0.632928 loss)
I0409 01:52:39.116394 12249 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.562934 (* 0.3 = 0.16888 loss)
I0409 01:52:39.116405 12249 solver.cpp:406] Test net output #5: loss2/accuracy = 0.569629
I0409 01:52:39.116418 12249 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.886003
I0409 01:52:39.116430 12249 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.837462
I0409 01:52:39.116443 12249 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.47874 (* 0.3 = 0.443622 loss)
I0409 01:52:39.116457 12249 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.398241 (* 0.3 = 0.119472 loss)
I0409 01:52:39.116469 12249 solver.cpp:406] Test net output #10: loss3/accuracy = 0.758965
I0409 01:52:39.116493 12249 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.938364
I0409 01:52:39.116508 12249 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.887183
I0409 01:52:39.116523 12249 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 1.00269 (* 1 = 1.00269 loss)
I0409 01:52:39.116538 12249 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.259159 (* 1 = 0.259159 loss)
I0409 01:52:39.116549 12249 solver.cpp:406] Test net output #15: total_accuracy = 0.389
I0409 01:52:39.116560 12249 solver.cpp:406] Test net output #16: total_confidence = 0.302611
I0409 01:52:39.489275 12249 solver.cpp:229] Iteration 95000, loss = 2.78452
I0409 01:52:39.489338 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.4
I0409 01:52:39.489356 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.835227
I0409 01:52:39.489369 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.555556
I0409 01:52:39.489385 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.19088 (* 0.3 = 0.657263 loss)
I0409 01:52:39.489400 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.618245 (* 0.3 = 0.185473 loss)
I0409 01:52:39.489413 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.511111
I0409 01:52:39.489426 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.857955
I0409 01:52:39.489437 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.866667
I0409 01:52:39.489451 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.56835 (* 0.3 = 0.470504 loss)
I0409 01:52:39.489465 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.47248 (* 0.3 = 0.141744 loss)
I0409 01:52:39.489478 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.866667
I0409 01:52:39.489490 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.954545
I0409 01:52:39.489502 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.933333
I0409 01:52:39.489516 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.524652 (* 1 = 0.524652 loss)
I0409 01:52:39.489531 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.172419 (* 1 = 0.172419 loss)
I0409 01:52:39.489542 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0409 01:52:39.489555 12249 solver.cpp:245] Train net output #16: total_confidence = 0.294216
I0409 01:52:39.489569 12249 sgd_solver.cpp:106] Iteration 95000, lr = 0.00864286
I0409 01:58:12.845011 12249 solver.cpp:229] Iteration 95500, loss = 2.80802
I0409 01:58:12.845156 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.282609
I0409 01:58:12.845176 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.795455
I0409 01:58:12.845190 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.543478
I0409 01:58:12.845206 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.64437 (* 0.3 = 0.79331 loss)
I0409 01:58:12.845221 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.764577 (* 0.3 = 0.229373 loss)
I0409 01:58:12.845234 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.413043
I0409 01:58:12.845247 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.806818
I0409 01:58:12.845259 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.73913
I0409 01:58:12.845273 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.80202 (* 0.3 = 0.540607 loss)
I0409 01:58:12.845288 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.593826 (* 0.3 = 0.178148 loss)
I0409 01:58:12.845300 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.869565
I0409 01:58:12.845312 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.960227
I0409 01:58:12.845324 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.978261
I0409 01:58:12.845338 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.504891 (* 1 = 0.504891 loss)
I0409 01:58:12.845353 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.149382 (* 1 = 0.149382 loss)
I0409 01:58:12.845366 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0409 01:58:12.845377 12249 solver.cpp:245] Train net output #16: total_confidence = 0.200284
I0409 01:58:12.845392 12249 sgd_solver.cpp:106] Iteration 95500, lr = 0.00863571
I0409 02:03:46.218155 12249 solver.cpp:229] Iteration 96000, loss = 2.88656
I0409 02:03:46.218467 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.409091
I0409 02:03:46.218488 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.840909
I0409 02:03:46.218502 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.681818
I0409 02:03:46.218519 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.93477 (* 0.3 = 0.58043 loss)
I0409 02:03:46.218534 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.526081 (* 0.3 = 0.157824 loss)
I0409 02:03:46.218547 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.545455
I0409 02:03:46.218559 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.869318
I0409 02:03:46.218572 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.75
I0409 02:03:46.218586 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.65316 (* 0.3 = 0.495947 loss)
I0409 02:03:46.218601 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.489519 (* 0.3 = 0.146856 loss)
I0409 02:03:46.218613 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.840909
I0409 02:03:46.218626 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.954545
I0409 02:03:46.218637 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.977273
I0409 02:03:46.218652 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.449103 (* 1 = 0.449103 loss)
I0409 02:03:46.218665 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.134463 (* 1 = 0.134463 loss)
I0409 02:03:46.218678 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0409 02:03:46.218690 12249 solver.cpp:245] Train net output #16: total_confidence = 0.297701
I0409 02:03:46.218704 12249 sgd_solver.cpp:106] Iteration 96000, lr = 0.00862857
I0409 02:09:19.620496 12249 solver.cpp:229] Iteration 96500, loss = 2.88829
I0409 02:09:19.620647 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.369565
I0409 02:09:19.620667 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.823864
I0409 02:09:19.620682 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.652174
I0409 02:09:19.620697 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.10894 (* 0.3 = 0.632683 loss)
I0409 02:09:19.620713 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.6244 (* 0.3 = 0.18732 loss)
I0409 02:09:19.620726 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.565217
I0409 02:09:19.620738 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.869318
I0409 02:09:19.620754 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.913043
I0409 02:09:19.620769 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.21616 (* 0.3 = 0.364849 loss)
I0409 02:09:19.620784 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.390896 (* 0.3 = 0.117269 loss)
I0409 02:09:19.620796 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.826087
I0409 02:09:19.620808 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.948864
I0409 02:09:19.620820 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.978261
I0409 02:09:19.620836 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.44003 (* 1 = 0.44003 loss)
I0409 02:09:19.620849 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.147872 (* 1 = 0.147872 loss)
I0409 02:09:19.620862 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0409 02:09:19.620873 12249 solver.cpp:245] Train net output #16: total_confidence = 0.33311
I0409 02:09:19.620889 12249 sgd_solver.cpp:106] Iteration 96500, lr = 0.00862143
I0409 02:14:52.968894 12249 solver.cpp:229] Iteration 97000, loss = 2.81622
I0409 02:14:52.969243 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.276596
I0409 02:14:52.969265 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.795455
I0409 02:14:52.969279 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.489362
I0409 02:14:52.969296 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.59669 (* 0.3 = 0.779008 loss)
I0409 02:14:52.969312 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.771925 (* 0.3 = 0.231578 loss)
I0409 02:14:52.969324 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.446809
I0409 02:14:52.969337 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.8125
I0409 02:14:52.969350 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.702128
I0409 02:14:52.969364 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.78672 (* 0.3 = 0.536017 loss)
I0409 02:14:52.969378 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.569903 (* 0.3 = 0.170971 loss)
I0409 02:14:52.969391 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.723404
I0409 02:14:52.969403 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.897727
I0409 02:14:52.969415 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.851064
I0409 02:14:52.969430 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.929496 (* 1 = 0.929496 loss)
I0409 02:14:52.969444 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.327139 (* 1 = 0.327139 loss)
I0409 02:14:52.969457 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0409 02:14:52.969470 12249 solver.cpp:245] Train net output #16: total_confidence = 0.224099
I0409 02:14:52.969485 12249 sgd_solver.cpp:106] Iteration 97000, lr = 0.00861429
I0409 02:20:26.333663 12249 solver.cpp:229] Iteration 97500, loss = 2.81084
I0409 02:20:26.333961 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.339286
I0409 02:20:26.333982 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.784091
I0409 02:20:26.333997 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.553571
I0409 02:20:26.334013 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.42013 (* 0.3 = 0.726038 loss)
I0409 02:20:26.334028 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.815888 (* 0.3 = 0.244767 loss)
I0409 02:20:26.334041 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.482143
I0409 02:20:26.334053 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.835227
I0409 02:20:26.334066 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.696429
I0409 02:20:26.334080 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.83807 (* 0.3 = 0.551421 loss)
I0409 02:20:26.334095 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.599152 (* 0.3 = 0.179746 loss)
I0409 02:20:26.334107 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.75
I0409 02:20:26.334120 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.920455
I0409 02:20:26.334131 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.875
I0409 02:20:26.334146 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.01354 (* 1 = 1.01354 loss)
I0409 02:20:26.334161 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.329275 (* 1 = 0.329275 loss)
I0409 02:20:26.334172 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0409 02:20:26.334184 12249 solver.cpp:245] Train net output #16: total_confidence = 0.346715
I0409 02:20:26.334199 12249 sgd_solver.cpp:106] Iteration 97500, lr = 0.00860714
I0409 02:26:00.044270 12249 solver.cpp:229] Iteration 98000, loss = 2.8159
I0409 02:26:00.044405 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.263158
I0409 02:26:00.044425 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.761364
I0409 02:26:00.044440 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.45614
I0409 02:26:00.044456 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.66737 (* 0.3 = 0.80021 loss)
I0409 02:26:00.044471 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.882365 (* 0.3 = 0.26471 loss)
I0409 02:26:00.044483 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.315789
I0409 02:26:00.044495 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.778409
I0409 02:26:00.044507 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.701754
I0409 02:26:00.044522 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.16277 (* 0.3 = 0.648832 loss)
I0409 02:26:00.044549 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.709709 (* 0.3 = 0.212913 loss)
I0409 02:26:00.044564 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.736842
I0409 02:26:00.044575 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.909091
I0409 02:26:00.044587 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.894737
I0409 02:26:00.044601 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.877061 (* 1 = 0.877061 loss)
I0409 02:26:00.044615 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.293708 (* 1 = 0.293708 loss)
I0409 02:26:00.044628 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0409 02:26:00.044641 12249 solver.cpp:245] Train net output #16: total_confidence = 0.14613
I0409 02:26:00.044654 12249 sgd_solver.cpp:106] Iteration 98000, lr = 0.0086
I0409 02:31:33.411733 12249 solver.cpp:229] Iteration 98500, loss = 2.82857
I0409 02:31:33.411934 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.416667
I0409 02:31:33.411955 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.829545
I0409 02:31:33.411968 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.583333
I0409 02:31:33.411984 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.06952 (* 0.3 = 0.620857 loss)
I0409 02:31:33.411999 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.628607 (* 0.3 = 0.188582 loss)
I0409 02:31:33.412011 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.5
I0409 02:31:33.412024 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.840909
I0409 02:31:33.412035 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.8125
I0409 02:31:33.412050 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.52863 (* 0.3 = 0.458588 loss)
I0409 02:31:33.412065 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.467488 (* 0.3 = 0.140247 loss)
I0409 02:31:33.412077 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.854167
I0409 02:31:33.412089 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.960227
I0409 02:31:33.412101 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.958333
I0409 02:31:33.412116 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.560507 (* 1 = 0.560507 loss)
I0409 02:31:33.412129 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.162209 (* 1 = 0.162209 loss)
I0409 02:31:33.412142 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0409 02:31:33.412153 12249 solver.cpp:245] Train net output #16: total_confidence = 0.366749
I0409 02:31:33.412168 12249 sgd_solver.cpp:106] Iteration 98500, lr = 0.00859286
I0409 02:37:06.783778 12249 solver.cpp:229] Iteration 99000, loss = 2.80202
I0409 02:37:06.783937 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.3
I0409 02:37:06.783958 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.806818
I0409 02:37:06.783972 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.5
I0409 02:37:06.783989 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.57052 (* 0.3 = 0.771156 loss)
I0409 02:37:06.784004 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.730033 (* 0.3 = 0.21901 loss)
I0409 02:37:06.784016 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.325
I0409 02:37:06.784029 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.806818
I0409 02:37:06.784041 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.625
I0409 02:37:06.784055 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.10448 (* 0.3 = 0.631344 loss)
I0409 02:37:06.784070 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.687101 (* 0.3 = 0.20613 loss)
I0409 02:37:06.784081 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.675
I0409 02:37:06.784095 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.909091
I0409 02:37:06.784106 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.8
I0409 02:37:06.784121 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.26241 (* 1 = 1.26241 loss)
I0409 02:37:06.784135 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.371476 (* 1 = 0.371476 loss)
I0409 02:37:06.784147 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0409 02:37:06.784159 12249 solver.cpp:245] Train net output #16: total_confidence = 0.220528
I0409 02:37:06.784173 12249 sgd_solver.cpp:106] Iteration 99000, lr = 0.00858571
I0409 02:42:40.514129 12249 solver.cpp:229] Iteration 99500, loss = 2.77062
I0409 02:42:40.514415 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.395833
I0409 02:42:40.514446 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.806818
I0409 02:42:40.514468 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.604167
I0409 02:42:40.514497 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.17829 (* 0.3 = 0.653487 loss)
I0409 02:42:40.514523 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.694461 (* 0.3 = 0.208338 loss)
I0409 02:42:40.514546 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.416667
I0409 02:42:40.514569 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.829545
I0409 02:42:40.514590 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.645833
I0409 02:42:40.514614 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.93311 (* 0.3 = 0.579932 loss)
I0409 02:42:40.514639 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.589271 (* 0.3 = 0.176781 loss)
I0409 02:42:40.514662 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.75
I0409 02:42:40.514684 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.920455
I0409 02:42:40.514708 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.833333
I0409 02:42:40.514735 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.05243 (* 1 = 1.05243 loss)
I0409 02:42:40.514761 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.307638 (* 1 = 0.307638 loss)
I0409 02:42:40.514783 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0409 02:42:40.514804 12249 solver.cpp:245] Train net output #16: total_confidence = 0.422808
I0409 02:42:40.514829 12249 sgd_solver.cpp:106] Iteration 99500, lr = 0.00857857
I0409 02:48:13.805173 12249 solver.cpp:456] Snapshotting to binary proto file /mnt/snapshots/mixed_lstm10_bn_iter_100000.caffemodel
I0409 02:48:14.247494 12249 sgd_solver.cpp:273] Snapshotting solver state to binary proto file /mnt/snapshots/mixed_lstm10_bn_iter_100000.solverstate
I0409 02:48:14.487318 12249 solver.cpp:338] Iteration 100000, Testing net (#0)
I0409 02:48:56.345772 12249 solver.cpp:393] Test loss: 2.47916
I0409 02:48:56.345862 12249 solver.cpp:406] Test net output #0: loss1/accuracy = 0.389447
I0409 02:48:56.345880 12249 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.833638
I0409 02:48:56.345893 12249 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.699179
I0409 02:48:56.345909 12249 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 2.01544 (* 0.3 = 0.604633 loss)
I0409 02:48:56.345924 12249 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.566369 (* 0.3 = 0.169911 loss)
I0409 02:48:56.345937 12249 solver.cpp:406] Test net output #5: loss2/accuracy = 0.598308
I0409 02:48:56.345948 12249 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.887048
I0409 02:48:56.345960 12249 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.851232
I0409 02:48:56.345974 12249 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.40007 (* 0.3 = 0.420022 loss)
I0409 02:48:56.345988 12249 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.39165 (* 0.3 = 0.117495 loss)
I0409 02:48:56.346000 12249 solver.cpp:406] Test net output #10: loss3/accuracy = 0.780273
I0409 02:48:56.346012 12249 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.929865
I0409 02:48:56.346024 12249 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.899249
I0409 02:48:56.346037 12249 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 0.894687 (* 1 = 0.894687 loss)
I0409 02:48:56.346051 12249 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.272417 (* 1 = 0.272417 loss)
I0409 02:48:56.346062 12249 solver.cpp:406] Test net output #15: total_accuracy = 0.368
I0409 02:48:56.346074 12249 solver.cpp:406] Test net output #16: total_confidence = 0.316005
I0409 02:48:56.719123 12249 solver.cpp:229] Iteration 100000, loss = 2.82872
I0409 02:48:56.719175 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.3
I0409 02:48:56.719193 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.823864
I0409 02:48:56.719207 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.525
I0409 02:48:56.719223 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.31507 (* 0.3 = 0.694522 loss)
I0409 02:48:56.719238 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.610244 (* 0.3 = 0.183073 loss)
I0409 02:48:56.719251 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.425
I0409 02:48:56.719264 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.840909
I0409 02:48:56.719280 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.725
I0409 02:48:56.719293 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.8754 (* 0.3 = 0.562621 loss)
I0409 02:48:56.719307 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.495721 (* 0.3 = 0.148716 loss)
I0409 02:48:56.719321 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.675
I0409 02:48:56.719332 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.914773
I0409 02:48:56.719344 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.85
I0409 02:48:56.719359 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.05928 (* 1 = 1.05928 loss)
I0409 02:48:56.719373 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.277421 (* 1 = 0.277421 loss)
I0409 02:48:56.719385 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0409 02:48:56.719398 12249 solver.cpp:245] Train net output #16: total_confidence = 0.161994
I0409 02:48:56.719413 12249 sgd_solver.cpp:106] Iteration 100000, lr = 0.00857143
I0409 02:54:30.970578 12249 solver.cpp:229] Iteration 100500, loss = 2.75407
I0409 02:54:30.970973 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.326087
I0409 02:54:30.970998 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.8125
I0409 02:54:30.971011 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.543478
I0409 02:54:30.971029 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.42057 (* 0.3 = 0.72617 loss)
I0409 02:54:30.971051 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.699398 (* 0.3 = 0.20982 loss)
I0409 02:54:30.971072 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.434783
I0409 02:54:30.971096 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.823864
I0409 02:54:30.971119 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.76087
I0409 02:54:30.971138 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.76756 (* 0.3 = 0.530268 loss)
I0409 02:54:30.971153 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.529264 (* 0.3 = 0.158779 loss)
I0409 02:54:30.971165 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.847826
I0409 02:54:30.971177 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.943182
I0409 02:54:30.971189 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.956522
I0409 02:54:30.971204 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.84508 (* 1 = 0.84508 loss)
I0409 02:54:30.971217 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.331098 (* 1 = 0.331098 loss)
I0409 02:54:30.971230 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.75
I0409 02:54:30.971242 12249 solver.cpp:245] Train net output #16: total_confidence = 0.399372
I0409 02:54:30.971257 12249 sgd_solver.cpp:106] Iteration 100500, lr = 0.00856429
I0409 03:00:04.994613 12249 solver.cpp:229] Iteration 101000, loss = 2.8018
I0409 03:00:04.994839 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.3
I0409 03:00:04.994860 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.806818
I0409 03:00:04.994884 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.45
I0409 03:00:04.994900 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.27406 (* 0.3 = 0.682219 loss)
I0409 03:00:04.994915 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.682407 (* 0.3 = 0.204722 loss)
I0409 03:00:04.994930 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.425
I0409 03:00:04.994941 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.829545
I0409 03:00:04.994953 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.75
I0409 03:00:04.994967 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.72047 (* 0.3 = 0.516141 loss)
I0409 03:00:04.994982 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.580313 (* 0.3 = 0.174094 loss)
I0409 03:00:04.994994 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.7
I0409 03:00:04.995007 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.909091
I0409 03:00:04.995019 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.875
I0409 03:00:04.995033 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.05484 (* 1 = 1.05484 loss)
I0409 03:00:04.995048 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.351235 (* 1 = 0.351235 loss)
I0409 03:00:04.995059 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0409 03:00:04.995071 12249 solver.cpp:245] Train net output #16: total_confidence = 0.324518
I0409 03:00:04.995087 12249 sgd_solver.cpp:106] Iteration 101000, lr = 0.00855714
I0409 03:05:39.993187 12249 solver.cpp:229] Iteration 101500, loss = 2.76511
I0409 03:05:39.993412 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.26
I0409 03:05:39.993430 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.784091
I0409 03:05:39.993443 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.56
I0409 03:05:39.993461 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.23355 (* 0.3 = 0.670066 loss)
I0409 03:05:39.993476 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.668353 (* 0.3 = 0.200506 loss)
I0409 03:05:39.993489 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.38
I0409 03:05:39.993501 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.823864
I0409 03:05:39.993513 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.82
I0409 03:05:39.993530 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.67346 (* 0.3 = 0.502038 loss)
I0409 03:05:39.993546 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.494145 (* 0.3 = 0.148243 loss)
I0409 03:05:39.993559 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.92
I0409 03:05:39.993572 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.965909
I0409 03:05:39.993584 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 1
I0409 03:05:39.993599 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.372674 (* 1 = 0.372674 loss)
I0409 03:05:39.993613 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.126909 (* 1 = 0.126909 loss)
I0409 03:05:39.993626 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0409 03:05:39.993638 12249 solver.cpp:245] Train net output #16: total_confidence = 0.293725
I0409 03:05:39.993652 12249 sgd_solver.cpp:106] Iteration 101500, lr = 0.00855
I0409 03:11:13.372665 12249 solver.cpp:229] Iteration 102000, loss = 2.71757
I0409 03:11:13.372985 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.235294
I0409 03:11:13.373008 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.772727
I0409 03:11:13.373020 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.529412
I0409 03:11:13.373036 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.50669 (* 0.3 = 0.752008 loss)
I0409 03:11:13.373051 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.748485 (* 0.3 = 0.224545 loss)
I0409 03:11:13.373064 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.411765
I0409 03:11:13.373076 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.818182
I0409 03:11:13.373093 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.764706
I0409 03:11:13.373123 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.84712 (* 0.3 = 0.554137 loss)
I0409 03:11:13.373142 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.567265 (* 0.3 = 0.17018 loss)
I0409 03:11:13.373154 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.745098
I0409 03:11:13.373167 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.914773
I0409 03:11:13.373178 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.921569
I0409 03:11:13.373193 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.938041 (* 1 = 0.938041 loss)
I0409 03:11:13.373208 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.286184 (* 1 = 0.286184 loss)
I0409 03:11:13.373224 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0409 03:11:13.373237 12249 solver.cpp:245] Train net output #16: total_confidence = 0.246338
I0409 03:11:13.373250 12249 sgd_solver.cpp:106] Iteration 102000, lr = 0.00854286
I0409 03:16:46.743373 12249 solver.cpp:229] Iteration 102500, loss = 2.77049
I0409 03:16:46.743486 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.254902
I0409 03:16:46.743506 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.767045
I0409 03:16:46.743520 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.470588
I0409 03:16:46.743536 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.61965 (* 0.3 = 0.785895 loss)
I0409 03:16:46.743551 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.830396 (* 0.3 = 0.249119 loss)
I0409 03:16:46.743563 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.372549
I0409 03:16:46.743577 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.806818
I0409 03:16:46.743588 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.686275
I0409 03:16:46.743602 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.00523 (* 0.3 = 0.601568 loss)
I0409 03:16:46.743618 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.618849 (* 0.3 = 0.185655 loss)
I0409 03:16:46.743629 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.607843
I0409 03:16:46.743641 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.875
I0409 03:16:46.743654 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.882353
I0409 03:16:46.743669 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.985973 (* 1 = 0.985973 loss)
I0409 03:16:46.743682 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.330088 (* 1 = 0.330088 loss)
I0409 03:16:46.743695 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0409 03:16:46.743706 12249 solver.cpp:245] Train net output #16: total_confidence = 0.140101
I0409 03:16:46.743719 12249 sgd_solver.cpp:106] Iteration 102500, lr = 0.00853571
I0409 03:22:20.100725 12249 solver.cpp:229] Iteration 103000, loss = 2.74896
I0409 03:22:20.101066 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.3125
I0409 03:22:20.101099 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.795455
I0409 03:22:20.101124 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.625
I0409 03:22:20.101153 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.17889 (* 0.3 = 0.653667 loss)
I0409 03:22:20.101181 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.664792 (* 0.3 = 0.199438 loss)
I0409 03:22:20.101203 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.354167
I0409 03:22:20.101227 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.818182
I0409 03:22:20.101249 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.729167
I0409 03:22:20.101275 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.7197 (* 0.3 = 0.51591 loss)
I0409 03:22:20.101301 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.502087 (* 0.3 = 0.150626 loss)
I0409 03:22:20.101323 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.8125
I0409 03:22:20.101347 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.943182
I0409 03:22:20.101369 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.9375
I0409 03:22:20.101397 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.591239 (* 1 = 0.591239 loss)
I0409 03:22:20.101423 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.177221 (* 1 = 0.177221 loss)
I0409 03:22:20.101446 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0409 03:22:20.101467 12249 solver.cpp:245] Train net output #16: total_confidence = 0.296052
I0409 03:22:20.101491 12249 sgd_solver.cpp:106] Iteration 103000, lr = 0.00852857
I0409 03:27:53.470608 12249 solver.cpp:229] Iteration 103500, loss = 2.71607
I0409 03:27:53.470722 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.478261
I0409 03:27:53.470741 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.835227
I0409 03:27:53.470757 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.673913
I0409 03:27:53.470774 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.87482 (* 0.3 = 0.562445 loss)
I0409 03:27:53.470789 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.579948 (* 0.3 = 0.173985 loss)
I0409 03:27:53.470801 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.543478
I0409 03:27:53.470814 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.869318
I0409 03:27:53.470825 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.847826
I0409 03:27:53.470839 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.29754 (* 0.3 = 0.389262 loss)
I0409 03:27:53.470854 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.396448 (* 0.3 = 0.118934 loss)
I0409 03:27:53.470865 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.913043
I0409 03:27:53.470878 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.971591
I0409 03:27:53.470891 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 1
I0409 03:27:53.470906 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.235279 (* 1 = 0.235279 loss)
I0409 03:27:53.470919 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.0739727 (* 1 = 0.0739727 loss)
I0409 03:27:53.470932 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0409 03:27:53.470944 12249 solver.cpp:245] Train net output #16: total_confidence = 0.472802
I0409 03:27:53.470958 12249 sgd_solver.cpp:106] Iteration 103500, lr = 0.00852143
I0409 03:33:26.844339 12249 solver.cpp:229] Iteration 104000, loss = 2.74515
I0409 03:33:26.844715 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.25
I0409 03:33:26.844737 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.767045
I0409 03:33:26.844753 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.538462
I0409 03:33:26.844770 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.34916 (* 0.3 = 0.704749 loss)
I0409 03:33:26.844785 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.736475 (* 0.3 = 0.220943 loss)
I0409 03:33:26.844799 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.5
I0409 03:33:26.844810 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.852273
I0409 03:33:26.844823 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.673077
I0409 03:33:26.844837 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.73071 (* 0.3 = 0.519212 loss)
I0409 03:33:26.844851 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.525049 (* 0.3 = 0.157515 loss)
I0409 03:33:26.844863 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.884615
I0409 03:33:26.844876 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.965909
I0409 03:33:26.844888 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.961538
I0409 03:33:26.844902 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.385275 (* 1 = 0.385275 loss)
I0409 03:33:26.844916 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.117054 (* 1 = 0.117054 loss)
I0409 03:33:26.844929 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.75
I0409 03:33:26.844941 12249 solver.cpp:245] Train net output #16: total_confidence = 0.384584
I0409 03:33:26.844954 12249 sgd_solver.cpp:106] Iteration 104000, lr = 0.00851429
I0409 03:39:00.217986 12249 solver.cpp:229] Iteration 104500, loss = 2.78757
I0409 03:39:00.218117 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.363636
I0409 03:39:00.218137 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.829545
I0409 03:39:00.218152 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.636364
I0409 03:39:00.218168 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.29529 (* 0.3 = 0.688587 loss)
I0409 03:39:00.218183 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.631543 (* 0.3 = 0.189463 loss)
I0409 03:39:00.218196 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.477273
I0409 03:39:00.218209 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.840909
I0409 03:39:00.218220 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.772727
I0409 03:39:00.218237 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.67317 (* 0.3 = 0.501951 loss)
I0409 03:39:00.218252 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.520096 (* 0.3 = 0.156029 loss)
I0409 03:39:00.218266 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.840909
I0409 03:39:00.218277 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.954545
I0409 03:39:00.218289 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.977273
I0409 03:39:00.218303 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.525933 (* 1 = 0.525933 loss)
I0409 03:39:00.218317 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.150843 (* 1 = 0.150843 loss)
I0409 03:39:00.218330 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0409 03:39:00.218343 12249 solver.cpp:245] Train net output #16: total_confidence = 0.180205
I0409 03:39:00.218356 12249 sgd_solver.cpp:106] Iteration 104500, lr = 0.00850714
I0409 03:44:33.189661 12249 solver.cpp:338] Iteration 105000, Testing net (#0)
I0409 03:45:14.440274 12249 solver.cpp:393] Test loss: 2.74817
I0409 03:45:14.440388 12249 solver.cpp:406] Test net output #0: loss1/accuracy = 0.330407
I0409 03:45:14.440407 12249 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.81941
I0409 03:45:14.440420 12249 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.599002
I0409 03:45:14.440436 12249 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 2.32719 (* 0.3 = 0.698158 loss)
I0409 03:45:14.440451 12249 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.641159 (* 0.3 = 0.192348 loss)
I0409 03:45:14.440464 12249 solver.cpp:406] Test net output #5: loss2/accuracy = 0.566252
I0409 03:45:14.440476 12249 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.882548
I0409 03:45:14.440487 12249 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.817479
I0409 03:45:14.440501 12249 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.52617 (* 0.3 = 0.45785 loss)
I0409 03:45:14.440527 12249 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.413966 (* 0.3 = 0.12419 loss)
I0409 03:45:14.440542 12249 solver.cpp:406] Test net output #10: loss3/accuracy = 0.757564
I0409 03:45:14.440554 12249 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.936001
I0409 03:45:14.440565 12249 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.883055
I0409 03:45:14.440579 12249 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 1.00656 (* 1 = 1.00656 loss)
I0409 03:45:14.440593 12249 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.269067 (* 1 = 0.269067 loss)
I0409 03:45:14.440605 12249 solver.cpp:406] Test net output #15: total_accuracy = 0.395
I0409 03:45:14.440618 12249 solver.cpp:406] Test net output #16: total_confidence = 0.337421
I0409 03:45:14.818361 12249 solver.cpp:229] Iteration 105000, loss = 2.72172
I0409 03:45:14.818400 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.47619
I0409 03:45:14.818418 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.846591
I0409 03:45:14.818430 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.690476
I0409 03:45:14.818446 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.83801 (* 0.3 = 0.551403 loss)
I0409 03:45:14.818461 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.5524 (* 0.3 = 0.16572 loss)
I0409 03:45:14.818473 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.642857
I0409 03:45:14.818485 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.880682
I0409 03:45:14.818497 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.857143
I0409 03:45:14.818512 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.33707 (* 0.3 = 0.401122 loss)
I0409 03:45:14.818526 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.431256 (* 0.3 = 0.129377 loss)
I0409 03:45:14.818538 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.785714
I0409 03:45:14.818550 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.943182
I0409 03:45:14.818562 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.928571
I0409 03:45:14.818577 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.649741 (* 1 = 0.649741 loss)
I0409 03:45:14.818590 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.171255 (* 1 = 0.171255 loss)
I0409 03:45:14.818603 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0409 03:45:14.818615 12249 solver.cpp:245] Train net output #16: total_confidence = 0.391635
I0409 03:45:14.818629 12249 sgd_solver.cpp:106] Iteration 105000, lr = 0.0085
I0409 03:50:48.305531 12249 solver.cpp:229] Iteration 105500, loss = 2.67123
I0409 03:50:48.305812 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.390244
I0409 03:50:48.305838 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.840909
I0409 03:50:48.305852 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.512195
I0409 03:50:48.305869 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.50148 (* 0.3 = 0.750444 loss)
I0409 03:50:48.305891 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.682568 (* 0.3 = 0.20477 loss)
I0409 03:50:48.305904 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.512195
I0409 03:50:48.305917 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.869318
I0409 03:50:48.305928 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.707317
I0409 03:50:48.305943 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.84592 (* 0.3 = 0.553775 loss)
I0409 03:50:48.305958 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.517725 (* 0.3 = 0.155318 loss)
I0409 03:50:48.305970 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.731707
I0409 03:50:48.305982 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.931818
I0409 03:50:48.305994 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.951219
I0409 03:50:48.306008 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.668641 (* 1 = 0.668641 loss)
I0409 03:50:48.306023 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.183783 (* 1 = 0.183783 loss)
I0409 03:50:48.306035 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0409 03:50:48.306048 12249 solver.cpp:245] Train net output #16: total_confidence = 0.23782
I0409 03:50:48.306062 12249 sgd_solver.cpp:106] Iteration 105500, lr = 0.00849286
I0409 03:56:21.655602 12249 solver.cpp:229] Iteration 106000, loss = 2.7238
I0409 03:56:21.655704 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.342105
I0409 03:56:21.655722 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.818182
I0409 03:56:21.655735 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.684211
I0409 03:56:21.655750 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.07748 (* 0.3 = 0.623245 loss)
I0409 03:56:21.655766 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.617942 (* 0.3 = 0.185383 loss)
I0409 03:56:21.655778 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.526316
I0409 03:56:21.655791 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.829545
I0409 03:56:21.655802 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.763158
I0409 03:56:21.655817 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.52879 (* 0.3 = 0.458637 loss)
I0409 03:56:21.655832 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.571869 (* 0.3 = 0.171561 loss)
I0409 03:56:21.655843 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.842105
I0409 03:56:21.655856 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.960227
I0409 03:56:21.655869 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.868421
I0409 03:56:21.655882 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.44315 (* 1 = 1.44315 loss)
I0409 03:56:21.655897 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.33347 (* 1 = 0.33347 loss)
I0409 03:56:21.655910 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.75
I0409 03:56:21.655921 12249 solver.cpp:245] Train net output #16: total_confidence = 0.456408
I0409 03:56:21.655936 12249 sgd_solver.cpp:106] Iteration 106000, lr = 0.00848571
I0409 04:01:55.029731 12249 solver.cpp:229] Iteration 106500, loss = 2.70752
I0409 04:01:55.030062 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.185185
I0409 04:01:55.030084 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.738636
I0409 04:01:55.030097 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.37037
I0409 04:01:55.030113 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.18999 (* 0.3 = 0.956996 loss)
I0409 04:01:55.030129 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.03141 (* 0.3 = 0.309424 loss)
I0409 04:01:55.030141 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.37037
I0409 04:01:55.030154 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.801136
I0409 04:01:55.030165 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.62963
I0409 04:01:55.030179 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.28864 (* 0.3 = 0.686593 loss)
I0409 04:01:55.030194 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.723983 (* 0.3 = 0.217195 loss)
I0409 04:01:55.030206 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.62963
I0409 04:01:55.030220 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.886364
I0409 04:01:55.030231 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.87037
I0409 04:01:55.030246 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.39631 (* 1 = 1.39631 loss)
I0409 04:01:55.030259 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.434571 (* 1 = 0.434571 loss)
I0409 04:01:55.030272 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0409 04:01:55.030283 12249 solver.cpp:245] Train net output #16: total_confidence = 0.11214
I0409 04:01:55.030298 12249 sgd_solver.cpp:106] Iteration 106500, lr = 0.00847857
I0409 04:07:28.394511 12249 solver.cpp:229] Iteration 107000, loss = 2.68768
I0409 04:07:28.394632 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.348837
I0409 04:07:28.394652 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.8125
I0409 04:07:28.394665 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.627907
I0409 04:07:28.394682 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.16244 (* 0.3 = 0.648731 loss)
I0409 04:07:28.394697 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.625195 (* 0.3 = 0.187558 loss)
I0409 04:07:28.394711 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.511628
I0409 04:07:28.394722 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.852273
I0409 04:07:28.394734 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.837209
I0409 04:07:28.394752 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.5257 (* 0.3 = 0.457711 loss)
I0409 04:07:28.394767 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.46315 (* 0.3 = 0.138945 loss)
I0409 04:07:28.394779 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.860465
I0409 04:07:28.394791 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.954545
I0409 04:07:28.394804 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.953488
I0409 04:07:28.394819 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.561866 (* 1 = 0.561866 loss)
I0409 04:07:28.394832 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.171024 (* 1 = 0.171024 loss)
I0409 04:07:28.394845 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0409 04:07:28.394857 12249 solver.cpp:245] Train net output #16: total_confidence = 0.3148
I0409 04:07:28.394872 12249 sgd_solver.cpp:106] Iteration 107000, lr = 0.00847143
I0409 04:13:01.787242 12249 solver.cpp:229] Iteration 107500, loss = 2.69857
I0409 04:13:01.787536 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.416667
I0409 04:13:01.787557 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.840909
I0409 04:13:01.787570 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.708333
I0409 04:13:01.787587 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.11725 (* 0.3 = 0.635176 loss)
I0409 04:13:01.787602 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.626035 (* 0.3 = 0.187811 loss)
I0409 04:13:01.787616 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.541667
I0409 04:13:01.787627 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.863636
I0409 04:13:01.787639 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.770833
I0409 04:13:01.787653 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.54964 (* 0.3 = 0.464892 loss)
I0409 04:13:01.787667 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.474538 (* 0.3 = 0.142361 loss)
I0409 04:13:01.787680 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.916667
I0409 04:13:01.787693 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.965909
I0409 04:13:01.787704 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.958333
I0409 04:13:01.787719 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.51343 (* 1 = 0.51343 loss)
I0409 04:13:01.787732 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.174248 (* 1 = 0.174248 loss)
I0409 04:13:01.787747 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0409 04:13:01.787760 12249 solver.cpp:245] Train net output #16: total_confidence = 0.359011
I0409 04:13:01.787775 12249 sgd_solver.cpp:106] Iteration 107500, lr = 0.00846429
I0409 04:18:35.135864 12249 solver.cpp:229] Iteration 108000, loss = 2.70461
I0409 04:18:35.136003 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.269231
I0409 04:18:35.136024 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.778409
I0409 04:18:35.136037 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.538462
I0409 04:18:35.136054 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.40879 (* 0.3 = 0.722638 loss)
I0409 04:18:35.136070 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.74 (* 0.3 = 0.222 loss)
I0409 04:18:35.136083 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.403846
I0409 04:18:35.136096 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.823864
I0409 04:18:35.136107 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.692308
I0409 04:18:35.136121 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.75549 (* 0.3 = 0.526647 loss)
I0409 04:18:35.136135 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.529006 (* 0.3 = 0.158702 loss)
I0409 04:18:35.136147 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.826923
I0409 04:18:35.136159 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.920455
I0409 04:18:35.136171 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.942308
I0409 04:18:35.136185 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.561139 (* 1 = 0.561139 loss)
I0409 04:18:35.136200 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.237048 (* 1 = 0.237048 loss)
I0409 04:18:35.136212 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0409 04:18:35.136224 12249 solver.cpp:245] Train net output #16: total_confidence = 0.224325
I0409 04:18:35.136240 12249 sgd_solver.cpp:106] Iteration 108000, lr = 0.00845714
I0409 04:24:08.508927 12249 solver.cpp:229] Iteration 108500, loss = 2.71684
I0409 04:24:08.509259 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.291667
I0409 04:24:08.509281 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.806818
I0409 04:24:08.509295 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.625
I0409 04:24:08.509311 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.14166 (* 0.3 = 0.642499 loss)
I0409 04:24:08.509326 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.625065 (* 0.3 = 0.18752 loss)
I0409 04:24:08.509341 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.479167
I0409 04:24:08.509352 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.835227
I0409 04:24:08.509364 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.6875
I0409 04:24:08.509378 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.76117 (* 0.3 = 0.52835 loss)
I0409 04:24:08.509392 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.548789 (* 0.3 = 0.164637 loss)
I0409 04:24:08.509404 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.708333
I0409 04:24:08.509418 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.920455
I0409 04:24:08.509429 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.895833
I0409 04:24:08.509443 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.846494 (* 1 = 0.846494 loss)
I0409 04:24:08.509459 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.249335 (* 1 = 0.249335 loss)
I0409 04:24:08.509471 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0409 04:24:08.509484 12249 solver.cpp:245] Train net output #16: total_confidence = 0.289246
I0409 04:24:08.509497 12249 sgd_solver.cpp:106] Iteration 108500, lr = 0.00845
I0409 04:29:42.549311 12249 solver.cpp:229] Iteration 109000, loss = 2.65821
I0409 04:29:42.549460 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.388889
I0409 04:29:42.549480 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.835227
I0409 04:29:42.549494 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.666667
I0409 04:29:42.549510 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.9638 (* 0.3 = 0.58914 loss)
I0409 04:29:42.549525 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.553321 (* 0.3 = 0.165996 loss)
I0409 04:29:42.549537 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.583333
I0409 04:29:42.549551 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.863636
I0409 04:29:42.549562 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.833333
I0409 04:29:42.549576 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.52361 (* 0.3 = 0.457084 loss)
I0409 04:29:42.549590 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.494581 (* 0.3 = 0.148374 loss)
I0409 04:29:42.549602 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.888889
I0409 04:29:42.549614 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.954545
I0409 04:29:42.549626 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.972222
I0409 04:29:42.549641 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.413921 (* 1 = 0.413921 loss)
I0409 04:29:42.549655 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.129267 (* 1 = 0.129267 loss)
I0409 04:29:42.549667 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0409 04:29:42.549680 12249 solver.cpp:245] Train net output #16: total_confidence = 0.407029
I0409 04:29:42.549695 12249 sgd_solver.cpp:106] Iteration 109000, lr = 0.00844286
I0409 04:35:15.908308 12249 solver.cpp:229] Iteration 109500, loss = 2.75269
I0409 04:35:15.908650 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.232558
I0409 04:35:15.908671 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.795455
I0409 04:35:15.908685 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.581395
I0409 04:35:15.908701 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.51599 (* 0.3 = 0.754796 loss)
I0409 04:35:15.908717 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.686869 (* 0.3 = 0.206061 loss)
I0409 04:35:15.908730 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.418605
I0409 04:35:15.908745 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.846591
I0409 04:35:15.908757 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.767442
I0409 04:35:15.908771 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.756 (* 0.3 = 0.5268 loss)
I0409 04:35:15.908787 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.479939 (* 0.3 = 0.143982 loss)
I0409 04:35:15.908799 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.767442
I0409 04:35:15.908812 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.926136
I0409 04:35:15.908823 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.953488
I0409 04:35:15.908838 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.915436 (* 1 = 0.915436 loss)
I0409 04:35:15.908851 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.272046 (* 1 = 0.272046 loss)
I0409 04:35:15.908864 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0409 04:35:15.908875 12249 solver.cpp:245] Train net output #16: total_confidence = 0.181166
I0409 04:35:15.908890 12249 sgd_solver.cpp:106] Iteration 109500, lr = 0.00843571
I0409 04:40:48.894635 12249 solver.cpp:456] Snapshotting to binary proto file /mnt/snapshots/mixed_lstm10_bn_iter_110000.caffemodel
I0409 04:40:49.332358 12249 sgd_solver.cpp:273] Snapshotting solver state to binary proto file /mnt/snapshots/mixed_lstm10_bn_iter_110000.solverstate
I0409 04:40:49.571470 12249 solver.cpp:338] Iteration 110000, Testing net (#0)
I0409 04:41:30.531529 12249 solver.cpp:393] Test loss: 2.40213
I0409 04:41:30.531661 12249 solver.cpp:406] Test net output #0: loss1/accuracy = 0.414106
I0409 04:41:30.531680 12249 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.839911
I0409 04:41:30.531693 12249 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.729206
I0409 04:41:30.531709 12249 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 1.86584 (* 0.3 = 0.559753 loss)
I0409 04:41:30.531724 12249 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.524951 (* 0.3 = 0.157485 loss)
I0409 04:41:30.531736 12249 solver.cpp:406] Test net output #5: loss2/accuracy = 0.604912
I0409 04:41:30.531752 12249 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.886867
I0409 04:41:30.531764 12249 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.864748
I0409 04:41:30.531779 12249 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.37329 (* 0.3 = 0.411987 loss)
I0409 04:41:30.531792 12249 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.389873 (* 0.3 = 0.116962 loss)
I0409 04:41:30.531805 12249 solver.cpp:406] Test net output #10: loss3/accuracy = 0.786191
I0409 04:41:30.531816 12249 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.945546
I0409 04:41:30.531827 12249 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.901554
I0409 04:41:30.531841 12249 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 0.91754 (* 1 = 0.91754 loss)
I0409 04:41:30.531855 12249 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.238407 (* 1 = 0.238407 loss)
I0409 04:41:30.531867 12249 solver.cpp:406] Test net output #15: total_accuracy = 0.468
I0409 04:41:30.531878 12249 solver.cpp:406] Test net output #16: total_confidence = 0.427525
I0409 04:41:30.903426 12249 solver.cpp:229] Iteration 110000, loss = 2.61311
I0409 04:41:30.903487 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.288889
I0409 04:41:30.903504 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.772727
I0409 04:41:30.903517 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.533333
I0409 04:41:30.903533 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.7857 (* 0.3 = 0.835711 loss)
I0409 04:41:30.903548 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.854579 (* 0.3 = 0.256374 loss)
I0409 04:41:30.903561 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.4
I0409 04:41:30.903574 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.823864
I0409 04:41:30.903586 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.688889
I0409 04:41:30.903600 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.17935 (* 0.3 = 0.653804 loss)
I0409 04:41:30.903614 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.658121 (* 0.3 = 0.197436 loss)
I0409 04:41:30.903626 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.688889
I0409 04:41:30.903640 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.897727
I0409 04:41:30.903651 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.866667
I0409 04:41:30.903666 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.05531 (* 1 = 1.05531 loss)
I0409 04:41:30.903679 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.328299 (* 1 = 0.328299 loss)
I0409 04:41:30.903692 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0409 04:41:30.903704 12249 solver.cpp:245] Train net output #16: total_confidence = 0.317682
I0409 04:41:30.903719 12249 sgd_solver.cpp:106] Iteration 110000, lr = 0.00842857
I0409 04:47:04.327121 12249 solver.cpp:229] Iteration 110500, loss = 2.66001
I0409 04:47:04.327265 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.395833
I0409 04:47:04.327285 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.818182
I0409 04:47:04.327298 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.645833
I0409 04:47:04.327314 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.06597 (* 0.3 = 0.619791 loss)
I0409 04:47:04.327329 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.619191 (* 0.3 = 0.185757 loss)
I0409 04:47:04.327342 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.520833
I0409 04:47:04.327356 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.857955
I0409 04:47:04.327368 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.770833
I0409 04:47:04.327383 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.63063 (* 0.3 = 0.489188 loss)
I0409 04:47:04.327396 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.489471 (* 0.3 = 0.146841 loss)
I0409 04:47:04.327409 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.770833
I0409 04:47:04.327421 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.9375
I0409 04:47:04.327433 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.895833
I0409 04:47:04.327450 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.81771 (* 1 = 0.81771 loss)
I0409 04:47:04.327464 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.228639 (* 1 = 0.228639 loss)
I0409 04:47:04.327476 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0409 04:47:04.327488 12249 solver.cpp:245] Train net output #16: total_confidence = 0.342129
I0409 04:47:04.327502 12249 sgd_solver.cpp:106] Iteration 110500, lr = 0.00842143
I0409 04:52:37.693267 12249 solver.cpp:229] Iteration 111000, loss = 2.60661
I0409 04:52:37.693577 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.27451
I0409 04:52:37.693598 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.767045
I0409 04:52:37.693611 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.490196
I0409 04:52:37.693629 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.67312 (* 0.3 = 0.801937 loss)
I0409 04:52:37.693645 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.870185 (* 0.3 = 0.261055 loss)
I0409 04:52:37.693656 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.470588
I0409 04:52:37.693670 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.823864
I0409 04:52:37.693681 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.72549
I0409 04:52:37.693696 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.94329 (* 0.3 = 0.582986 loss)
I0409 04:52:37.693711 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.636981 (* 0.3 = 0.191094 loss)
I0409 04:52:37.693722 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.588235
I0409 04:52:37.693734 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.863636
I0409 04:52:37.693749 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.862745
I0409 04:52:37.693764 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.12632 (* 1 = 1.12632 loss)
I0409 04:52:37.693778 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.388524 (* 1 = 0.388524 loss)
I0409 04:52:37.693791 12249 solver.cpp:245] Train net output #15: total_accuracy = 0
I0409 04:52:37.693804 12249 solver.cpp:245] Train net output #16: total_confidence = 0.20886
I0409 04:52:37.693817 12249 sgd_solver.cpp:106] Iteration 111000, lr = 0.00841429
I0409 04:58:11.061836 12249 solver.cpp:229] Iteration 111500, loss = 2.6425
I0409 04:58:11.061924 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.288889
I0409 04:58:11.061944 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.795455
I0409 04:58:11.061956 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.555556
I0409 04:58:11.061972 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.43251 (* 0.3 = 0.729754 loss)
I0409 04:58:11.061988 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.716559 (* 0.3 = 0.214968 loss)
I0409 04:58:11.062000 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.577778
I0409 04:58:11.062012 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.869318
I0409 04:58:11.062024 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.822222
I0409 04:58:11.062039 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.54559 (* 0.3 = 0.463676 loss)
I0409 04:58:11.062053 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.454343 (* 0.3 = 0.136303 loss)
I0409 04:58:11.062065 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.911111
I0409 04:58:11.062078 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.971591
I0409 04:58:11.062089 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.933333
I0409 04:58:11.062103 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.589383 (* 1 = 0.589383 loss)
I0409 04:58:11.062119 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.158338 (* 1 = 0.158338 loss)
I0409 04:58:11.062130 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0409 04:58:11.062142 12249 solver.cpp:245] Train net output #16: total_confidence = 0.529967
I0409 04:58:11.062157 12249 sgd_solver.cpp:106] Iteration 111500, lr = 0.00840714
I0409 05:03:44.441897 12249 solver.cpp:229] Iteration 112000, loss = 2.64588
I0409 05:03:44.442188 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.355556
I0409 05:03:44.442208 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.801136
I0409 05:03:44.442221 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.644444
I0409 05:03:44.442239 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.2852 (* 0.3 = 0.685559 loss)
I0409 05:03:44.442253 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.708562 (* 0.3 = 0.212569 loss)
I0409 05:03:44.442266 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.555556
I0409 05:03:44.442279 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.840909
I0409 05:03:44.442291 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.777778
I0409 05:03:44.442304 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.62828 (* 0.3 = 0.488483 loss)
I0409 05:03:44.442318 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.539649 (* 0.3 = 0.161895 loss)
I0409 05:03:44.442332 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.844444
I0409 05:03:44.442343 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.948864
I0409 05:03:44.442355 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.955556
I0409 05:03:44.442369 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.582862 (* 1 = 0.582862 loss)
I0409 05:03:44.442384 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.170433 (* 1 = 0.170433 loss)
I0409 05:03:44.442396 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0409 05:03:44.442409 12249 solver.cpp:245] Train net output #16: total_confidence = 0.235643
I0409 05:03:44.442422 12249 sgd_solver.cpp:106] Iteration 112000, lr = 0.0084
I0409 05:09:17.803278 12249 solver.cpp:229] Iteration 112500, loss = 2.70788
I0409 05:09:17.803407 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.25
I0409 05:09:17.803427 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.778409
I0409 05:09:17.803442 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.604167
I0409 05:09:17.803458 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.30139 (* 0.3 = 0.690416 loss)
I0409 05:09:17.803473 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.730051 (* 0.3 = 0.219015 loss)
I0409 05:09:17.803486 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.541667
I0409 05:09:17.803499 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.852273
I0409 05:09:17.803511 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.770833
I0409 05:09:17.803525 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.51592 (* 0.3 = 0.454776 loss)
I0409 05:09:17.803540 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.485536 (* 0.3 = 0.145661 loss)
I0409 05:09:17.803552 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.854167
I0409 05:09:17.803565 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.948864
I0409 05:09:17.803577 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.9375
I0409 05:09:17.803592 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.726794 (* 1 = 0.726794 loss)
I0409 05:09:17.803606 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.21586 (* 1 = 0.21586 loss)
I0409 05:09:17.803618 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0409 05:09:17.803630 12249 solver.cpp:245] Train net output #16: total_confidence = 0.302705
I0409 05:09:17.803645 12249 sgd_solver.cpp:106] Iteration 112500, lr = 0.00839286
I0409 05:14:51.171010 12249 solver.cpp:229] Iteration 113000, loss = 2.62513
I0409 05:14:51.171306 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.188679
I0409 05:14:51.171329 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.75
I0409 05:14:51.171342 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.415094
I0409 05:14:51.171358 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.31856 (* 0.3 = 0.995568 loss)
I0409 05:14:51.171375 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.03154 (* 0.3 = 0.309463 loss)
I0409 05:14:51.171386 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.320755
I0409 05:14:51.171399 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.789773
I0409 05:14:51.171411 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.490566
I0409 05:14:51.171425 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.80231 (* 0.3 = 0.840694 loss)
I0409 05:14:51.171439 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.871357 (* 0.3 = 0.261407 loss)
I0409 05:14:51.171452 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.528302
I0409 05:14:51.171465 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.852273
I0409 05:14:51.171478 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.603774
I0409 05:14:51.171491 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.13191 (* 1 = 2.13191 loss)
I0409 05:14:51.171505 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.657888 (* 1 = 0.657888 loss)
I0409 05:14:51.171519 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0409 05:14:51.171530 12249 solver.cpp:245] Train net output #16: total_confidence = 0.220002
I0409 05:14:51.171545 12249 sgd_solver.cpp:106] Iteration 113000, lr = 0.00838571
I0409 05:20:24.554216 12249 solver.cpp:229] Iteration 113500, loss = 2.65347
I0409 05:20:24.554339 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.333333
I0409 05:20:24.554359 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.806818
I0409 05:20:24.554373 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.622222
I0409 05:20:24.554389 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.6574 (* 0.3 = 0.797219 loss)
I0409 05:20:24.554404 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.785619 (* 0.3 = 0.235686 loss)
I0409 05:20:24.554417 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.377778
I0409 05:20:24.554430 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.818182
I0409 05:20:24.554442 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.6
I0409 05:20:24.554456 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.03341 (* 0.3 = 0.610023 loss)
I0409 05:20:24.554471 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.589958 (* 0.3 = 0.176987 loss)
I0409 05:20:24.554483 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.622222
I0409 05:20:24.554496 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.892045
I0409 05:20:24.554507 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.844444
I0409 05:20:24.554522 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.33337 (* 1 = 1.33337 loss)
I0409 05:20:24.554535 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.361866 (* 1 = 0.361866 loss)
I0409 05:20:24.554548 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0409 05:20:24.554559 12249 solver.cpp:245] Train net output #16: total_confidence = 0.430326
I0409 05:20:24.554574 12249 sgd_solver.cpp:106] Iteration 113500, lr = 0.00837857
I0409 05:25:57.916656 12249 solver.cpp:229] Iteration 114000, loss = 2.59866
I0409 05:25:57.916972 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.348837
I0409 05:25:57.916995 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.829545
I0409 05:25:57.917007 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.488372
I0409 05:25:57.917024 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.49373 (* 0.3 = 0.74812 loss)
I0409 05:25:57.917039 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.686297 (* 0.3 = 0.205889 loss)
I0409 05:25:57.917052 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.44186
I0409 05:25:57.917064 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.829545
I0409 05:25:57.917076 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.790698
I0409 05:25:57.917090 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.68256 (* 0.3 = 0.504768 loss)
I0409 05:25:57.917105 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.516466 (* 0.3 = 0.15494 loss)
I0409 05:25:57.917117 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.674419
I0409 05:25:57.917129 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.897727
I0409 05:25:57.917141 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.906977
I0409 05:25:57.917156 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.835534 (* 1 = 0.835534 loss)
I0409 05:25:57.917171 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.277481 (* 1 = 0.277481 loss)
I0409 05:25:57.917183 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0409 05:25:57.917196 12249 solver.cpp:245] Train net output #16: total_confidence = 0.268015
I0409 05:25:57.917209 12249 sgd_solver.cpp:106] Iteration 114000, lr = 0.00837143
I0409 05:31:31.283607 12249 solver.cpp:229] Iteration 114500, loss = 2.57998
I0409 05:31:31.283859 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.4
I0409 05:31:31.283880 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.835227
I0409 05:31:31.283893 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.6
I0409 05:31:31.283910 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.04304 (* 0.3 = 0.612912 loss)
I0409 05:31:31.283926 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.576116 (* 0.3 = 0.172835 loss)
I0409 05:31:31.283938 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.666667
I0409 05:31:31.283951 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.897727
I0409 05:31:31.283963 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.844444
I0409 05:31:31.283977 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.22396 (* 0.3 = 0.367187 loss)
I0409 05:31:31.283993 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.363359 (* 0.3 = 0.109008 loss)
I0409 05:31:31.284004 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.933333
I0409 05:31:31.284016 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.982955
I0409 05:31:31.284029 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.977778
I0409 05:31:31.284044 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.256894 (* 1 = 0.256894 loss)
I0409 05:31:31.284059 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.0720504 (* 1 = 0.0720504 loss)
I0409 05:31:31.284071 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.75
I0409 05:31:31.284083 12249 solver.cpp:245] Train net output #16: total_confidence = 0.459295
I0409 05:31:31.284097 12249 sgd_solver.cpp:106] Iteration 114500, lr = 0.00836429
I0409 05:37:04.266458 12249 solver.cpp:338] Iteration 115000, Testing net (#0)
I0409 05:37:45.596933 12249 solver.cpp:393] Test loss: 2.57863
I0409 05:37:45.597046 12249 solver.cpp:406] Test net output #0: loss1/accuracy = 0.363978
I0409 05:37:45.597066 12249 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.839046
I0409 05:37:45.597079 12249 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.659029
I0409 05:37:45.597095 12249 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 2.25259 (* 0.3 = 0.675776 loss)
I0409 05:37:45.597111 12249 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.578006 (* 0.3 = 0.173402 loss)
I0409 05:37:45.597123 12249 solver.cpp:406] Test net output #5: loss2/accuracy = 0.575355
I0409 05:37:45.597136 12249 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.887049
I0409 05:37:45.597147 12249 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.850998
I0409 05:37:45.597162 12249 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.43872 (* 0.3 = 0.431617 loss)
I0409 05:37:45.597175 12249 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.387128 (* 0.3 = 0.116139 loss)
I0409 05:37:45.597187 12249 solver.cpp:406] Test net output #10: loss3/accuracy = 0.766218
I0409 05:37:45.597199 12249 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.940683
I0409 05:37:45.597210 12249 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.902077
I0409 05:37:45.597225 12249 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 0.938187 (* 1 = 0.938187 loss)
I0409 05:37:45.597239 12249 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.243513 (* 1 = 0.243513 loss)
I0409 05:37:45.597250 12249 solver.cpp:406] Test net output #15: total_accuracy = 0.408
I0409 05:37:45.597261 12249 solver.cpp:406] Test net output #16: total_confidence = 0.382974
I0409 05:37:45.976344 12249 solver.cpp:229] Iteration 115000, loss = 2.59329
I0409 05:37:45.976404 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.275
I0409 05:37:45.976423 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.795455
I0409 05:37:45.976436 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.625
I0409 05:37:45.976454 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.26109 (* 0.3 = 0.678327 loss)
I0409 05:37:45.976469 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.684197 (* 0.3 = 0.205259 loss)
I0409 05:37:45.976493 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.5
I0409 05:37:45.976510 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.846591
I0409 05:37:45.976522 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.7
I0409 05:37:45.976536 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.7208 (* 0.3 = 0.516239 loss)
I0409 05:37:45.976552 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.541828 (* 0.3 = 0.162548 loss)
I0409 05:37:45.976563 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.7
I0409 05:37:45.976577 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.897727
I0409 05:37:45.976588 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.9
I0409 05:37:45.976603 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.02145 (* 1 = 1.02145 loss)
I0409 05:37:45.976616 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.38738 (* 1 = 0.38738 loss)
I0409 05:37:45.976629 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0409 05:37:45.976641 12249 solver.cpp:245] Train net output #16: total_confidence = 0.284379
I0409 05:37:45.976656 12249 sgd_solver.cpp:106] Iteration 115000, lr = 0.00835714
I0409 05:43:19.343511 12249 solver.cpp:229] Iteration 115500, loss = 2.58224
I0409 05:43:19.343828 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.277778
I0409 05:43:19.343852 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.778409
I0409 05:43:19.343864 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.574074
I0409 05:43:19.343881 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.39226 (* 0.3 = 0.717679 loss)
I0409 05:43:19.343896 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.742962 (* 0.3 = 0.222889 loss)
I0409 05:43:19.343909 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.351852
I0409 05:43:19.343921 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.801136
I0409 05:43:19.343933 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.703704
I0409 05:43:19.343947 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.1377 (* 0.3 = 0.64131 loss)
I0409 05:43:19.343961 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.658745 (* 0.3 = 0.197623 loss)
I0409 05:43:19.343974 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.814815
I0409 05:43:19.343986 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.943182
I0409 05:43:19.343998 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.888889
I0409 05:43:19.344012 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.909903 (* 1 = 0.909903 loss)
I0409 05:43:19.344027 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.285447 (* 1 = 0.285447 loss)
I0409 05:43:19.344039 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0409 05:43:19.344051 12249 solver.cpp:245] Train net output #16: total_confidence = 0.353419
I0409 05:43:19.344065 12249 sgd_solver.cpp:106] Iteration 115500, lr = 0.00835
I0409 05:48:52.722563 12249 solver.cpp:229] Iteration 116000, loss = 2.66869
I0409 05:48:52.722676 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.28
I0409 05:48:52.722694 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.784091
I0409 05:48:52.722707 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.6
I0409 05:48:52.722723 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.26088 (* 0.3 = 0.678265 loss)
I0409 05:48:52.722739 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.688197 (* 0.3 = 0.206459 loss)
I0409 05:48:52.722751 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.46
I0409 05:48:52.722764 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.818182
I0409 05:48:52.722776 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.76
I0409 05:48:52.722790 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.71486 (* 0.3 = 0.514458 loss)
I0409 05:48:52.722803 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.567069 (* 0.3 = 0.170121 loss)
I0409 05:48:52.722816 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.82
I0409 05:48:52.722828 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.926136
I0409 05:48:52.722841 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.88
I0409 05:48:52.722854 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.924655 (* 1 = 0.924655 loss)
I0409 05:48:52.722868 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.34887 (* 1 = 0.34887 loss)
I0409 05:48:52.722880 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0409 05:48:52.722892 12249 solver.cpp:245] Train net output #16: total_confidence = 0.241547
I0409 05:48:52.722906 12249 sgd_solver.cpp:106] Iteration 116000, lr = 0.00834286
I0409 05:54:26.091040 12249 solver.cpp:229] Iteration 116500, loss = 2.59315
I0409 05:54:26.091362 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.266667
I0409 05:54:26.091383 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.806818
I0409 05:54:26.091397 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.488889
I0409 05:54:26.091413 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.28567 (* 0.3 = 0.685702 loss)
I0409 05:54:26.091428 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.626359 (* 0.3 = 0.187908 loss)
I0409 05:54:26.091441 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.444444
I0409 05:54:26.091455 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.852273
I0409 05:54:26.091467 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.777778
I0409 05:54:26.091481 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.70863 (* 0.3 = 0.512588 loss)
I0409 05:54:26.091495 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.46484 (* 0.3 = 0.139452 loss)
I0409 05:54:26.091508 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.733333
I0409 05:54:26.091521 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.926136
I0409 05:54:26.091532 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.911111
I0409 05:54:26.091547 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.934214 (* 1 = 0.934214 loss)
I0409 05:54:26.091562 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.252488 (* 1 = 0.252488 loss)
I0409 05:54:26.091573 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0409 05:54:26.091586 12249 solver.cpp:245] Train net output #16: total_confidence = 0.362665
I0409 05:54:26.091600 12249 sgd_solver.cpp:106] Iteration 116500, lr = 0.00833571
I0409 05:59:59.801210 12249 solver.cpp:229] Iteration 117000, loss = 2.58426
I0409 05:59:59.801358 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.255814
I0409 05:59:59.801385 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.789773
I0409 05:59:59.801398 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.55814
I0409 05:59:59.801415 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.29355 (* 0.3 = 0.688065 loss)
I0409 05:59:59.801430 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.681346 (* 0.3 = 0.204404 loss)
I0409 05:59:59.801443 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.418605
I0409 05:59:59.801456 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.840909
I0409 05:59:59.801467 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.767442
I0409 05:59:59.801481 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.80541 (* 0.3 = 0.541624 loss)
I0409 05:59:59.801496 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.511877 (* 0.3 = 0.153563 loss)
I0409 05:59:59.801507 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.790698
I0409 05:59:59.801520 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.9375
I0409 05:59:59.801533 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.906977
I0409 05:59:59.801548 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.755646 (* 1 = 0.755646 loss)
I0409 05:59:59.801561 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.217797 (* 1 = 0.217797 loss)
I0409 05:59:59.801574 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0409 05:59:59.801586 12249 solver.cpp:245] Train net output #16: total_confidence = 0.271197
I0409 05:59:59.801600 12249 sgd_solver.cpp:106] Iteration 117000, lr = 0.00832857
I0409 06:05:33.165406 12249 solver.cpp:229] Iteration 117500, loss = 2.59464
I0409 06:05:33.165710 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.395833
I0409 06:05:33.165730 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.823864
I0409 06:05:33.165745 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.604167
I0409 06:05:33.165763 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.11803 (* 0.3 = 0.635409 loss)
I0409 06:05:33.165778 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.622613 (* 0.3 = 0.186784 loss)
I0409 06:05:33.165791 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.4375
I0409 06:05:33.165803 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.829545
I0409 06:05:33.165817 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.770833
I0409 06:05:33.165830 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.47522 (* 0.3 = 0.442566 loss)
I0409 06:05:33.165844 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.452359 (* 0.3 = 0.135708 loss)
I0409 06:05:33.165858 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.770833
I0409 06:05:33.165869 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.926136
I0409 06:05:33.165881 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.9375
I0409 06:05:33.165896 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.68231 (* 1 = 0.68231 loss)
I0409 06:05:33.165911 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.210273 (* 1 = 0.210273 loss)
I0409 06:05:33.165923 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0409 06:05:33.165935 12249 solver.cpp:245] Train net output #16: total_confidence = 0.374987
I0409 06:05:33.165949 12249 sgd_solver.cpp:106] Iteration 117500, lr = 0.00832143
I0409 06:11:06.537881 12249 solver.cpp:229] Iteration 118000, loss = 2.57512
I0409 06:11:06.538103 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.444444
I0409 06:11:06.538122 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.846591
I0409 06:11:06.538136 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.644444
I0409 06:11:06.538152 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.02952 (* 0.3 = 0.608855 loss)
I0409 06:11:06.538167 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.596675 (* 0.3 = 0.179002 loss)
I0409 06:11:06.538180 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.577778
I0409 06:11:06.538192 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.857955
I0409 06:11:06.538204 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.888889
I0409 06:11:06.538218 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.36613 (* 0.3 = 0.409838 loss)
I0409 06:11:06.538233 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.460707 (* 0.3 = 0.138212 loss)
I0409 06:11:06.538245 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.866667
I0409 06:11:06.538257 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.948864
I0409 06:11:06.538269 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 1
I0409 06:11:06.538283 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.345451 (* 1 = 0.345451 loss)
I0409 06:11:06.538297 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.134642 (* 1 = 0.134642 loss)
I0409 06:11:06.538310 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0409 06:11:06.538324 12249 solver.cpp:245] Train net output #16: total_confidence = 0.383356
I0409 06:11:06.538339 12249 sgd_solver.cpp:106] Iteration 118000, lr = 0.00831429
I0409 06:16:39.906896 12249 solver.cpp:229] Iteration 118500, loss = 2.60407
I0409 06:16:39.907052 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.434783
I0409 06:16:39.907071 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.835227
I0409 06:16:39.907084 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.804348
I0409 06:16:39.907101 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.70922 (* 0.3 = 0.512766 loss)
I0409 06:16:39.907116 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.54123 (* 0.3 = 0.162369 loss)
I0409 06:16:39.907130 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.586957
I0409 06:16:39.907141 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.869318
I0409 06:16:39.907153 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.891304
I0409 06:16:39.907167 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.19681 (* 0.3 = 0.359042 loss)
I0409 06:16:39.907182 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.394906 (* 0.3 = 0.118472 loss)
I0409 06:16:39.907194 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.782609
I0409 06:16:39.907207 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.931818
I0409 06:16:39.907219 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.956522
I0409 06:16:39.907234 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.635636 (* 1 = 0.635636 loss)
I0409 06:16:39.907248 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.199847 (* 1 = 0.199847 loss)
I0409 06:16:39.907261 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0409 06:16:39.907274 12249 solver.cpp:245] Train net output #16: total_confidence = 0.415608
I0409 06:16:39.907289 12249 sgd_solver.cpp:106] Iteration 118500, lr = 0.00830714
I0409 06:22:13.289268 12249 solver.cpp:229] Iteration 119000, loss = 2.61402
I0409 06:22:13.289566 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.326923
I0409 06:22:13.289587 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.778409
I0409 06:22:13.289600 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.596154
I0409 06:22:13.289618 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.6664 (* 0.3 = 0.799919 loss)
I0409 06:22:13.289633 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.857286 (* 0.3 = 0.257186 loss)
I0409 06:22:13.289646 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.403846
I0409 06:22:13.289659 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.8125
I0409 06:22:13.289671 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.711538
I0409 06:22:13.289685 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.49562 (* 0.3 = 0.748685 loss)
I0409 06:22:13.289700 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.762245 (* 0.3 = 0.228674 loss)
I0409 06:22:13.289712 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.692308
I0409 06:22:13.289724 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.903409
I0409 06:22:13.289736 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.807692
I0409 06:22:13.289752 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.78733 (* 1 = 1.78733 loss)
I0409 06:22:13.289767 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.541037 (* 1 = 0.541037 loss)
I0409 06:22:13.289779 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0409 06:22:13.289791 12249 solver.cpp:245] Train net output #16: total_confidence = 0.401963
I0409 06:22:13.289806 12249 sgd_solver.cpp:106] Iteration 119000, lr = 0.0083
I0409 06:27:46.649063 12249 solver.cpp:229] Iteration 119500, loss = 2.67059
I0409 06:27:46.649215 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.361702
I0409 06:27:46.649237 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.8125
I0409 06:27:46.649250 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.595745
I0409 06:27:46.649266 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.13078 (* 0.3 = 0.639235 loss)
I0409 06:27:46.649281 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.637823 (* 0.3 = 0.191347 loss)
I0409 06:27:46.649294 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.574468
I0409 06:27:46.649307 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.880682
I0409 06:27:46.649318 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.787234
I0409 06:27:46.649333 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.44916 (* 0.3 = 0.434748 loss)
I0409 06:27:46.649348 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.430662 (* 0.3 = 0.129199 loss)
I0409 06:27:46.649359 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.87234
I0409 06:27:46.649371 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.943182
I0409 06:27:46.649384 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.957447
I0409 06:27:46.649397 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.492358 (* 1 = 0.492358 loss)
I0409 06:27:46.649411 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.172659 (* 1 = 0.172659 loss)
I0409 06:27:46.649425 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0409 06:27:46.649436 12249 solver.cpp:245] Train net output #16: total_confidence = 0.317622
I0409 06:27:46.649451 12249 sgd_solver.cpp:106] Iteration 119500, lr = 0.00829286
I0409 06:33:19.960094 12249 solver.cpp:456] Snapshotting to binary proto file /mnt/snapshots/mixed_lstm10_bn_iter_120000.caffemodel
I0409 06:33:20.398789 12249 sgd_solver.cpp:273] Snapshotting solver state to binary proto file /mnt/snapshots/mixed_lstm10_bn_iter_120000.solverstate
I0409 06:33:20.637243 12249 solver.cpp:338] Iteration 120000, Testing net (#0)
I0409 06:34:01.613256 12249 solver.cpp:393] Test loss: 2.26209
I0409 06:34:01.613373 12249 solver.cpp:406] Test net output #0: loss1/accuracy = 0.403778
I0409 06:34:01.613391 12249 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.846729
I0409 06:34:01.613404 12249 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.718307
I0409 06:34:01.613420 12249 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 1.97453 (* 0.3 = 0.592359 loss)
I0409 06:34:01.613435 12249 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.523324 (* 0.3 = 0.156997 loss)
I0409 06:34:01.613447 12249 solver.cpp:406] Test net output #5: loss2/accuracy = 0.623445
I0409 06:34:01.613459 12249 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.897366
I0409 06:34:01.613471 12249 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.868129
I0409 06:34:01.613486 12249 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.29665 (* 0.3 = 0.388997 loss)
I0409 06:34:01.613499 12249 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.355162 (* 0.3 = 0.106548 loss)
I0409 06:34:01.613512 12249 solver.cpp:406] Test net output #10: loss3/accuracy = 0.807356
I0409 06:34:01.613523 12249 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.950001
I0409 06:34:01.613534 12249 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.911078
I0409 06:34:01.613548 12249 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 0.8004 (* 1 = 0.8004 loss)
I0409 06:34:01.613562 12249 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.216793 (* 1 = 0.216793 loss)
I0409 06:34:01.613574 12249 solver.cpp:406] Test net output #15: total_accuracy = 0.498
I0409 06:34:01.613585 12249 solver.cpp:406] Test net output #16: total_confidence = 0.423018
I0409 06:34:01.986304 12249 solver.cpp:229] Iteration 120000, loss = 2.55497
I0409 06:34:01.986359 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.266667
I0409 06:34:01.986377 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.806818
I0409 06:34:01.986390 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.466667
I0409 06:34:01.986407 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.86911 (* 0.3 = 0.860732 loss)
I0409 06:34:01.986423 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.78682 (* 0.3 = 0.236046 loss)
I0409 06:34:01.986434 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.466667
I0409 06:34:01.986448 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.835227
I0409 06:34:01.986460 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.688889
I0409 06:34:01.986474 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.51509 (* 0.3 = 0.754527 loss)
I0409 06:34:01.986488 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.713883 (* 0.3 = 0.214165 loss)
I0409 06:34:01.986501 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.6
I0409 06:34:01.986513 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.886364
I0409 06:34:01.986526 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.644444
I0409 06:34:01.986539 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.45132 (* 1 = 2.45132 loss)
I0409 06:34:01.986554 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.679777 (* 1 = 0.679777 loss)
I0409 06:34:01.986567 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0409 06:34:01.986579 12249 solver.cpp:245] Train net output #16: total_confidence = 0.259242
I0409 06:34:01.986593 12249 sgd_solver.cpp:106] Iteration 120000, lr = 0.00828571
I0409 06:39:35.392350 12249 solver.cpp:229] Iteration 120500, loss = 2.57106
I0409 06:39:35.392514 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.369565
I0409 06:39:35.392535 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.823864
I0409 06:39:35.392549 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.565217
I0409 06:39:35.392565 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.22158 (* 0.3 = 0.666475 loss)
I0409 06:39:35.392580 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.636073 (* 0.3 = 0.190822 loss)
I0409 06:39:35.392593 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.521739
I0409 06:39:35.392606 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.857955
I0409 06:39:35.392617 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.804348
I0409 06:39:35.392632 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.61043 (* 0.3 = 0.483128 loss)
I0409 06:39:35.392647 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.480421 (* 0.3 = 0.144126 loss)
I0409 06:39:35.392658 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.869565
I0409 06:39:35.392670 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.965909
I0409 06:39:35.392683 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.934783
I0409 06:39:35.392696 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.647246 (* 1 = 0.647246 loss)
I0409 06:39:35.392711 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.175555 (* 1 = 0.175555 loss)
I0409 06:39:35.392724 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0409 06:39:35.392735 12249 solver.cpp:245] Train net output #16: total_confidence = 0.370299
I0409 06:39:35.392752 12249 sgd_solver.cpp:106] Iteration 120500, lr = 0.00827857
I0409 06:45:08.758685 12249 solver.cpp:229] Iteration 121000, loss = 2.63547
I0409 06:45:08.759003 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.44898
I0409 06:45:08.759024 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.829545
I0409 06:45:08.759037 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.612245
I0409 06:45:08.759053 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.07367 (* 0.3 = 0.622102 loss)
I0409 06:45:08.759068 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.645149 (* 0.3 = 0.193545 loss)
I0409 06:45:08.759081 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.612245
I0409 06:45:08.759094 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.880682
I0409 06:45:08.759105 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.77551
I0409 06:45:08.759119 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.55329 (* 0.3 = 0.465987 loss)
I0409 06:45:08.759135 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.470121 (* 0.3 = 0.141036 loss)
I0409 06:45:08.759147 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.857143
I0409 06:45:08.759160 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.960227
I0409 06:45:08.759171 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.938776
I0409 06:45:08.759186 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.525002 (* 1 = 0.525002 loss)
I0409 06:45:08.759199 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.155821 (* 1 = 0.155821 loss)
I0409 06:45:08.759212 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0409 06:45:08.759223 12249 solver.cpp:245] Train net output #16: total_confidence = 0.478823
I0409 06:45:08.759239 12249 sgd_solver.cpp:106] Iteration 121000, lr = 0.00827143
I0409 06:50:42.140656 12249 solver.cpp:229] Iteration 121500, loss = 2.59114
I0409 06:50:42.140785 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.288889
I0409 06:50:42.140806 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.784091
I0409 06:50:42.140820 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.622222
I0409 06:50:42.140836 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.02397 (* 0.3 = 0.607193 loss)
I0409 06:50:42.140853 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.617192 (* 0.3 = 0.185158 loss)
I0409 06:50:42.140866 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.666667
I0409 06:50:42.140878 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.892045
I0409 06:50:42.140890 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.955556
I0409 06:50:42.140904 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.03829 (* 0.3 = 0.311488 loss)
I0409 06:50:42.140918 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.357376 (* 0.3 = 0.107213 loss)
I0409 06:50:42.140931 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.955556
I0409 06:50:42.140944 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.988636
I0409 06:50:42.140956 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.977778
I0409 06:50:42.140970 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.218969 (* 1 = 0.218969 loss)
I0409 06:50:42.140985 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.0618752 (* 1 = 0.0618752 loss)
I0409 06:50:42.140998 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.75
I0409 06:50:42.141010 12249 solver.cpp:245] Train net output #16: total_confidence = 0.561389
I0409 06:50:42.141024 12249 sgd_solver.cpp:106] Iteration 121500, lr = 0.00826429
I0409 06:56:15.507429 12249 solver.cpp:229] Iteration 122000, loss = 2.63104
I0409 06:56:15.507740 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.488372
I0409 06:56:15.507761 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.846591
I0409 06:56:15.507774 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.813953
I0409 06:56:15.507791 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.66347 (* 0.3 = 0.499042 loss)
I0409 06:56:15.507807 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.508003 (* 0.3 = 0.152401 loss)
I0409 06:56:15.507819 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.651163
I0409 06:56:15.507833 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.886364
I0409 06:56:15.507844 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.883721
I0409 06:56:15.507858 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.19718 (* 0.3 = 0.359154 loss)
I0409 06:56:15.507872 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.388032 (* 0.3 = 0.11641 loss)
I0409 06:56:15.507885 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.976744
I0409 06:56:15.507899 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.994318
I0409 06:56:15.507910 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.976744
I0409 06:56:15.507925 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.221706 (* 1 = 0.221706 loss)
I0409 06:56:15.507941 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.0564779 (* 1 = 0.0564779 loss)
I0409 06:56:15.507953 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.875
I0409 06:56:15.507966 12249 solver.cpp:245] Train net output #16: total_confidence = 0.629188
I0409 06:56:15.507980 12249 sgd_solver.cpp:106] Iteration 122000, lr = 0.00825714
I0409 07:01:48.876585 12249 solver.cpp:229] Iteration 122500, loss = 2.61912
I0409 07:01:48.876822 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.292683
I0409 07:01:48.876842 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.801136
I0409 07:01:48.876854 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.512195
I0409 07:01:48.876871 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.7901 (* 0.3 = 0.837031 loss)
I0409 07:01:48.876886 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.819586 (* 0.3 = 0.245876 loss)
I0409 07:01:48.876899 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.512195
I0409 07:01:48.876912 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.840909
I0409 07:01:48.876924 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.707317
I0409 07:01:48.876937 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.03161 (* 0.3 = 0.609483 loss)
I0409 07:01:48.876952 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.603479 (* 0.3 = 0.181044 loss)
I0409 07:01:48.876965 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.780488
I0409 07:01:48.876977 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.931818
I0409 07:01:48.876989 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.804878
I0409 07:01:48.877003 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.18892 (* 1 = 1.18892 loss)
I0409 07:01:48.877017 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.338719 (* 1 = 0.338719 loss)
I0409 07:01:48.877030 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0409 07:01:48.877043 12249 solver.cpp:245] Train net output #16: total_confidence = 0.279417
I0409 07:01:48.877058 12249 sgd_solver.cpp:106] Iteration 122500, lr = 0.00825
I0409 07:07:22.248556 12249 solver.cpp:229] Iteration 123000, loss = 2.57714
I0409 07:07:22.248711 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.318182
I0409 07:07:22.248733 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.829545
I0409 07:07:22.248749 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.636364
I0409 07:07:22.248766 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.08183 (* 0.3 = 0.624548 loss)
I0409 07:07:22.248782 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.550051 (* 0.3 = 0.165015 loss)
I0409 07:07:22.248795 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.545455
I0409 07:07:22.248808 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.875
I0409 07:07:22.248821 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.840909
I0409 07:07:22.248836 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.42951 (* 0.3 = 0.428854 loss)
I0409 07:07:22.248849 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.388238 (* 0.3 = 0.116471 loss)
I0409 07:07:22.248862 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.863636
I0409 07:07:22.248874 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.960227
I0409 07:07:22.248888 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.954545
I0409 07:07:22.248901 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.465583 (* 1 = 0.465583 loss)
I0409 07:07:22.248916 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.132556 (* 1 = 0.132556 loss)
I0409 07:07:22.248929 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0409 07:07:22.248940 12249 solver.cpp:245] Train net output #16: total_confidence = 0.37236
I0409 07:07:22.248955 12249 sgd_solver.cpp:106] Iteration 123000, lr = 0.00824286
I0409 07:12:55.613330 12249 solver.cpp:229] Iteration 123500, loss = 2.56381
I0409 07:12:55.613579 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.395833
I0409 07:12:55.613597 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.835227
I0409 07:12:55.613611 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.6875
I0409 07:12:55.613627 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.95535 (* 0.3 = 0.586606 loss)
I0409 07:12:55.613643 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.556657 (* 0.3 = 0.166997 loss)
I0409 07:12:55.613656 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.6875
I0409 07:12:55.613668 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.903409
I0409 07:12:55.613680 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.895833
I0409 07:12:55.613694 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.01121 (* 0.3 = 0.303363 loss)
I0409 07:12:55.613708 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.313613 (* 0.3 = 0.094084 loss)
I0409 07:12:55.613721 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.895833
I0409 07:12:55.613734 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.960227
I0409 07:12:55.613745 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 1
I0409 07:12:55.613759 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.364536 (* 1 = 0.364536 loss)
I0409 07:12:55.613773 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.123344 (* 1 = 0.123344 loss)
I0409 07:12:55.613786 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0409 07:12:55.613798 12249 solver.cpp:245] Train net output #16: total_confidence = 0.490717
I0409 07:12:55.613813 12249 sgd_solver.cpp:106] Iteration 123500, lr = 0.00823571
I0409 07:18:28.985133 12249 solver.cpp:229] Iteration 124000, loss = 2.5081
I0409 07:18:28.985282 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.35
I0409 07:18:28.985313 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.846591
I0409 07:18:28.985337 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.75
I0409 07:18:28.985355 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.93656 (* 0.3 = 0.580967 loss)
I0409 07:18:28.985370 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.510524 (* 0.3 = 0.153157 loss)
I0409 07:18:28.985383 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.55
I0409 07:18:28.985395 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.886364
I0409 07:18:28.985409 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.825
I0409 07:18:28.985422 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.19924 (* 0.3 = 0.359773 loss)
I0409 07:18:28.985436 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.319846 (* 0.3 = 0.0959539 loss)
I0409 07:18:28.985450 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.95
I0409 07:18:28.985461 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.988636
I0409 07:18:28.985474 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.975
I0409 07:18:28.985488 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.26638 (* 1 = 0.26638 loss)
I0409 07:18:28.985502 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.0648798 (* 1 = 0.0648798 loss)
I0409 07:18:28.985515 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.875
I0409 07:18:28.985527 12249 solver.cpp:245] Train net output #16: total_confidence = 0.484448
I0409 07:18:28.985543 12249 sgd_solver.cpp:106] Iteration 124000, lr = 0.00822857
I0409 07:24:02.353322 12249 solver.cpp:229] Iteration 124500, loss = 2.58881
I0409 07:24:02.353549 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.468085
I0409 07:24:02.353569 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.852273
I0409 07:24:02.353582 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.702128
I0409 07:24:02.353598 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.00454 (* 0.3 = 0.601361 loss)
I0409 07:24:02.353613 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.589261 (* 0.3 = 0.176778 loss)
I0409 07:24:02.353626 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.531915
I0409 07:24:02.353638 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.846591
I0409 07:24:02.353651 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.765957
I0409 07:24:02.353664 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.59512 (* 0.3 = 0.478536 loss)
I0409 07:24:02.353678 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.509594 (* 0.3 = 0.152878 loss)
I0409 07:24:02.353691 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.851064
I0409 07:24:02.353703 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.943182
I0409 07:24:02.353715 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.957447
I0409 07:24:02.353729 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.610039 (* 1 = 0.610039 loss)
I0409 07:24:02.353744 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.208621 (* 1 = 0.208621 loss)
I0409 07:24:02.353755 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0409 07:24:02.353767 12249 solver.cpp:245] Train net output #16: total_confidence = 0.398221
I0409 07:24:02.353781 12249 sgd_solver.cpp:106] Iteration 124500, lr = 0.00822143
I0409 07:29:35.337332 12249 solver.cpp:338] Iteration 125000, Testing net (#0)
I0409 07:30:16.302208 12249 solver.cpp:393] Test loss: 2.22867
I0409 07:30:16.302331 12249 solver.cpp:406] Test net output #0: loss1/accuracy = 0.457727
I0409 07:30:16.302350 12249 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.854912
I0409 07:30:16.302363 12249 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.739827
I0409 07:30:16.302379 12249 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 1.85633 (* 0.3 = 0.556898 loss)
I0409 07:30:16.302395 12249 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.511526 (* 0.3 = 0.153458 loss)
I0409 07:30:16.302407 12249 solver.cpp:406] Test net output #5: loss2/accuracy = 0.657241
I0409 07:30:16.302419 12249 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.899594
I0409 07:30:16.302431 12249 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.87277
I0409 07:30:16.302444 12249 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.22209 (* 0.3 = 0.366626 loss)
I0409 07:30:16.302459 12249 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.350132 (* 0.3 = 0.10504 loss)
I0409 07:30:16.302470 12249 solver.cpp:406] Test net output #10: loss3/accuracy = 0.808277
I0409 07:30:16.302482 12249 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.944546
I0409 07:30:16.302495 12249 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.908586
I0409 07:30:16.302507 12249 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 0.816605 (* 1 = 0.816605 loss)
I0409 07:30:16.302521 12249 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.230042 (* 1 = 0.230042 loss)
I0409 07:30:16.302533 12249 solver.cpp:406] Test net output #15: total_accuracy = 0.467
I0409 07:30:16.302546 12249 solver.cpp:406] Test net output #16: total_confidence = 0.371828
I0409 07:30:16.674953 12249 solver.cpp:229] Iteration 125000, loss = 2.53409
I0409 07:30:16.675009 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.288889
I0409 07:30:16.675025 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.801136
I0409 07:30:16.675039 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.488889
I0409 07:30:16.675055 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.3939 (* 0.3 = 0.71817 loss)
I0409 07:30:16.675071 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.678025 (* 0.3 = 0.203408 loss)
I0409 07:30:16.675083 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.466667
I0409 07:30:16.675096 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.846591
I0409 07:30:16.675110 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.755556
I0409 07:30:16.675125 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.64867 (* 0.3 = 0.494601 loss)
I0409 07:30:16.675140 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.475417 (* 0.3 = 0.142625 loss)
I0409 07:30:16.675153 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.8
I0409 07:30:16.675165 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.943182
I0409 07:30:16.675179 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.977778
I0409 07:30:16.675192 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.732124 (* 1 = 0.732124 loss)
I0409 07:30:16.675206 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.196907 (* 1 = 0.196907 loss)
I0409 07:30:16.675218 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0409 07:30:16.675230 12249 solver.cpp:245] Train net output #16: total_confidence = 0.357864
I0409 07:30:16.675247 12249 sgd_solver.cpp:106] Iteration 125000, lr = 0.00821429
I0409 07:35:50.090364 12249 solver.cpp:229] Iteration 125500, loss = 2.47461
I0409 07:35:50.090673 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.276596
I0409 07:35:50.090694 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.795455
I0409 07:35:50.090708 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.553191
I0409 07:35:50.090724 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.34911 (* 0.3 = 0.704734 loss)
I0409 07:35:50.090740 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.666509 (* 0.3 = 0.199953 loss)
I0409 07:35:50.090756 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.468085
I0409 07:35:50.090770 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.852273
I0409 07:35:50.090781 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.723404
I0409 07:35:50.090795 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.57444 (* 0.3 = 0.472332 loss)
I0409 07:35:50.090809 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.44137 (* 0.3 = 0.132411 loss)
I0409 07:35:50.090822 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.808511
I0409 07:35:50.090834 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.943182
I0409 07:35:50.090845 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.893617
I0409 07:35:50.090859 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.812575 (* 1 = 0.812575 loss)
I0409 07:35:50.090874 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.239658 (* 1 = 0.239658 loss)
I0409 07:35:50.090885 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0409 07:35:50.090898 12249 solver.cpp:245] Train net output #16: total_confidence = 0.308164
I0409 07:35:50.090912 12249 sgd_solver.cpp:106] Iteration 125500, lr = 0.00820714
I0409 07:41:23.467108 12249 solver.cpp:229] Iteration 126000, loss = 2.5125
I0409 07:41:23.467373 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.411765
I0409 07:41:23.467394 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.818182
I0409 07:41:23.467408 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.686275
I0409 07:41:23.467424 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.74432 (* 0.3 = 0.523297 loss)
I0409 07:41:23.467439 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.547013 (* 0.3 = 0.164104 loss)
I0409 07:41:23.467453 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.568627
I0409 07:41:23.467464 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.863636
I0409 07:41:23.467476 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.862745
I0409 07:41:23.467490 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.14446 (* 0.3 = 0.343337 loss)
I0409 07:41:23.467505 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.364198 (* 0.3 = 0.109259 loss)
I0409 07:41:23.467517 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.960784
I0409 07:41:23.467532 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.988636
I0409 07:41:23.467545 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 1
I0409 07:41:23.467560 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.138086 (* 1 = 0.138086 loss)
I0409 07:41:23.467574 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.0430773 (* 1 = 0.0430773 loss)
I0409 07:41:23.467586 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.75
I0409 07:41:23.467598 12249 solver.cpp:245] Train net output #16: total_confidence = 0.544787
I0409 07:41:23.467613 12249 sgd_solver.cpp:106] Iteration 126000, lr = 0.0082
I0409 07:46:56.841337 12249 solver.cpp:229] Iteration 126500, loss = 2.52097
I0409 07:46:56.841498 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.428571
I0409 07:46:56.841519 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.829545
I0409 07:46:56.841533 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.761905
I0409 07:46:56.841549 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.61443 (* 0.3 = 0.484328 loss)
I0409 07:46:56.841565 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.50718 (* 0.3 = 0.152154 loss)
I0409 07:46:56.841578 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.714286
I0409 07:46:56.841590 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.869318
I0409 07:46:56.841603 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.857143
I0409 07:46:56.841617 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.03899 (* 0.3 = 0.311696 loss)
I0409 07:46:56.841631 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.454881 (* 0.3 = 0.136464 loss)
I0409 07:46:56.841644 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.97619
I0409 07:46:56.841655 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.982955
I0409 07:46:56.841667 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 1
I0409 07:46:56.841682 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.180897 (* 1 = 0.180897 loss)
I0409 07:46:56.841696 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.0747018 (* 1 = 0.0747018 loss)
I0409 07:46:56.841709 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.75
I0409 07:46:56.841722 12249 solver.cpp:245] Train net output #16: total_confidence = 0.573108
I0409 07:46:56.841737 12249 sgd_solver.cpp:106] Iteration 126500, lr = 0.00819286
I0409 07:52:30.209954 12249 solver.cpp:229] Iteration 127000, loss = 2.52973
I0409 07:52:30.210222 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.25
I0409 07:52:30.210247 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.772727
I0409 07:52:30.210261 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.423077
I0409 07:52:30.210278 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.52605 (* 0.3 = 0.757814 loss)
I0409 07:52:30.210294 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.791788 (* 0.3 = 0.237536 loss)
I0409 07:52:30.210306 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.423077
I0409 07:52:30.210319 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.829545
I0409 07:52:30.210330 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.711538
I0409 07:52:30.210343 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.95896 (* 0.3 = 0.587688 loss)
I0409 07:52:30.210361 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.596388 (* 0.3 = 0.178916 loss)
I0409 07:52:30.210373 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.865385
I0409 07:52:30.210386 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.948864
I0409 07:52:30.210397 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.961538
I0409 07:52:30.210412 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.573734 (* 1 = 0.573734 loss)
I0409 07:52:30.210427 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.202048 (* 1 = 0.202048 loss)
I0409 07:52:30.210439 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0409 07:52:30.210451 12249 solver.cpp:245] Train net output #16: total_confidence = 0.31193
I0409 07:52:30.210466 12249 sgd_solver.cpp:106] Iteration 127000, lr = 0.00818571
I0409 07:56:57.836638 12249 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 31.0398 > 30) by scale factor 0.966501
I0409 07:58:03.580299 12249 solver.cpp:229] Iteration 127500, loss = 2.55627
I0409 07:58:03.580425 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.463415
I0409 07:58:03.580446 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.846591
I0409 07:58:03.580459 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.731707
I0409 07:58:03.580476 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.70739 (* 0.3 = 0.512217 loss)
I0409 07:58:03.580492 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.518055 (* 0.3 = 0.155417 loss)
I0409 07:58:03.580503 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.780488
I0409 07:58:03.580516 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.920455
I0409 07:58:03.580528 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.902439
I0409 07:58:03.580543 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.02568 (* 0.3 = 0.307705 loss)
I0409 07:58:03.580570 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.315487 (* 0.3 = 0.0946461 loss)
I0409 07:58:03.580585 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.951219
I0409 07:58:03.580596 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.982955
I0409 07:58:03.580608 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.951219
I0409 07:58:03.580623 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.291564 (* 1 = 0.291564 loss)
I0409 07:58:03.580637 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.0821252 (* 1 = 0.0821252 loss)
I0409 07:58:03.580651 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0409 07:58:03.580662 12249 solver.cpp:245] Train net output #16: total_confidence = 0.434034
I0409 07:58:03.580677 12249 sgd_solver.cpp:106] Iteration 127500, lr = 0.00817857
I0409 08:03:36.945221 12249 solver.cpp:229] Iteration 128000, loss = 2.51403
I0409 08:03:36.945483 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.347826
I0409 08:03:36.945504 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.795455
I0409 08:03:36.945518 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.543478
I0409 08:03:36.945535 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.30431 (* 0.3 = 0.691294 loss)
I0409 08:03:36.945550 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.718939 (* 0.3 = 0.215682 loss)
I0409 08:03:36.945562 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.521739
I0409 08:03:36.945575 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.857955
I0409 08:03:36.945587 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.782609
I0409 08:03:36.945601 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.7256 (* 0.3 = 0.517679 loss)
I0409 08:03:36.945616 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.514302 (* 0.3 = 0.154291 loss)
I0409 08:03:36.945627 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.652174
I0409 08:03:36.945639 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.897727
I0409 08:03:36.945652 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.913043
I0409 08:03:36.945665 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.12517 (* 1 = 1.12517 loss)
I0409 08:03:36.945679 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.353808 (* 1 = 0.353808 loss)
I0409 08:03:36.945691 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0409 08:03:36.945703 12249 solver.cpp:245] Train net output #16: total_confidence = 0.335195
I0409 08:03:36.945718 12249 sgd_solver.cpp:106] Iteration 128000, lr = 0.00817143
I0409 08:09:10.331878 12249 solver.cpp:229] Iteration 128500, loss = 2.54717
I0409 08:09:10.332057 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.431818
I0409 08:09:10.332078 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.829545
I0409 08:09:10.332092 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.772727
I0409 08:09:10.332108 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.64037 (* 0.3 = 0.49211 loss)
I0409 08:09:10.332123 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.495648 (* 0.3 = 0.148694 loss)
I0409 08:09:10.332135 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.681818
I0409 08:09:10.332149 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.909091
I0409 08:09:10.332160 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.954545
I0409 08:09:10.332175 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.01124 (* 0.3 = 0.303371 loss)
I0409 08:09:10.332190 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.308139 (* 0.3 = 0.0924416 loss)
I0409 08:09:10.332201 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.931818
I0409 08:09:10.332213 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.982955
I0409 08:09:10.332226 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.931818
I0409 08:09:10.332239 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.418238 (* 1 = 0.418238 loss)
I0409 08:09:10.332254 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.108639 (* 1 = 0.108639 loss)
I0409 08:09:10.332267 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.75
I0409 08:09:10.332280 12249 solver.cpp:245] Train net output #16: total_confidence = 0.567227
I0409 08:09:10.332295 12249 sgd_solver.cpp:106] Iteration 128500, lr = 0.00816429
I0409 08:14:44.026849 12249 solver.cpp:229] Iteration 129000, loss = 2.47992
I0409 08:14:44.027112 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.3
I0409 08:14:44.027133 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.795455
I0409 08:14:44.027146 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.62
I0409 08:14:44.027163 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.20604 (* 0.3 = 0.661812 loss)
I0409 08:14:44.027178 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.646342 (* 0.3 = 0.193902 loss)
I0409 08:14:44.027190 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.42
I0409 08:14:44.027209 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.829545
I0409 08:14:44.027221 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.76
I0409 08:14:44.027235 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.89614 (* 0.3 = 0.568843 loss)
I0409 08:14:44.027251 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.558536 (* 0.3 = 0.167561 loss)
I0409 08:14:44.027262 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.88
I0409 08:14:44.027276 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.965909
I0409 08:14:44.027287 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.92
I0409 08:14:44.027302 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.707176 (* 1 = 0.707176 loss)
I0409 08:14:44.027315 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.206338 (* 1 = 0.206338 loss)
I0409 08:14:44.027328 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0409 08:14:44.027339 12249 solver.cpp:245] Train net output #16: total_confidence = 0.394778
I0409 08:14:44.027354 12249 sgd_solver.cpp:106] Iteration 129000, lr = 0.00815714
I0409 08:20:17.387351 12249 solver.cpp:229] Iteration 129500, loss = 2.49319
I0409 08:20:17.387502 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.302326
I0409 08:20:17.387522 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.806818
I0409 08:20:17.387537 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.55814
I0409 08:20:17.387552 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.41054 (* 0.3 = 0.723163 loss)
I0409 08:20:17.387567 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.684627 (* 0.3 = 0.205388 loss)
I0409 08:20:17.387580 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.395349
I0409 08:20:17.387593 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.818182
I0409 08:20:17.387605 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.767442
I0409 08:20:17.387619 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.85825 (* 0.3 = 0.557475 loss)
I0409 08:20:17.387634 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.577084 (* 0.3 = 0.173125 loss)
I0409 08:20:17.387645 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.72093
I0409 08:20:17.387657 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.914773
I0409 08:20:17.387670 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.860465
I0409 08:20:17.387683 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.03058 (* 1 = 1.03058 loss)
I0409 08:20:17.387697 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.309942 (* 1 = 0.309942 loss)
I0409 08:20:17.387711 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0409 08:20:17.387722 12249 solver.cpp:245] Train net output #16: total_confidence = 0.208537
I0409 08:20:17.387737 12249 sgd_solver.cpp:106] Iteration 129500, lr = 0.00815
I0409 08:25:50.373987 12249 solver.cpp:456] Snapshotting to binary proto file /mnt/snapshots/mixed_lstm10_bn_iter_130000.caffemodel
I0409 08:25:50.810255 12249 sgd_solver.cpp:273] Snapshotting solver state to binary proto file /mnt/snapshots/mixed_lstm10_bn_iter_130000.solverstate
I0409 08:25:51.048702 12249 solver.cpp:338] Iteration 130000, Testing net (#0)
I0409 08:26:32.009665 12249 solver.cpp:393] Test loss: 2.2589
I0409 08:26:32.009791 12249 solver.cpp:406] Test net output #0: loss1/accuracy = 0.432437
I0409 08:26:32.009810 12249 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.85373
I0409 08:26:32.009824 12249 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.714287
I0409 08:26:32.009840 12249 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 1.99129 (* 0.3 = 0.597389 loss)
I0409 08:26:32.009855 12249 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.52001 (* 0.3 = 0.156003 loss)
I0409 08:26:32.009867 12249 solver.cpp:406] Test net output #5: loss2/accuracy = 0.620485
I0409 08:26:32.009879 12249 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.901821
I0409 08:26:32.009891 12249 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.863702
I0409 08:26:32.009904 12249 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.32181 (* 0.3 = 0.396542 loss)
I0409 08:26:32.009918 12249 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.3456 (* 0.3 = 0.10368 loss)
I0409 08:26:32.009930 12249 solver.cpp:406] Test net output #10: loss3/accuracy = 0.811306
I0409 08:26:32.009943 12249 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.951773
I0409 08:26:32.009954 12249 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.908748
I0409 08:26:32.009968 12249 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 0.791398 (* 1 = 0.791398 loss)
I0409 08:26:32.009981 12249 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.213885 (* 1 = 0.213885 loss)
I0409 08:26:32.009994 12249 solver.cpp:406] Test net output #15: total_accuracy = 0.511
I0409 08:26:32.010005 12249 solver.cpp:406] Test net output #16: total_confidence = 0.375729
I0409 08:26:32.383299 12249 solver.cpp:229] Iteration 130000, loss = 2.51094
I0409 08:26:32.383368 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.380952
I0409 08:26:32.383386 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.840909
I0409 08:26:32.383401 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.547619
I0409 08:26:32.383417 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.39184 (* 0.3 = 0.717552 loss)
I0409 08:26:32.383432 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.638136 (* 0.3 = 0.191441 loss)
I0409 08:26:32.383445 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.47619
I0409 08:26:32.383458 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.840909
I0409 08:26:32.383471 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.785714
I0409 08:26:32.383484 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.44969 (* 0.3 = 0.434908 loss)
I0409 08:26:32.383499 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.411231 (* 0.3 = 0.123369 loss)
I0409 08:26:32.383512 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.857143
I0409 08:26:32.383524 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.960227
I0409 08:26:32.383536 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.952381
I0409 08:26:32.383551 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.455165 (* 1 = 0.455165 loss)
I0409 08:26:32.383566 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.13839 (* 1 = 0.13839 loss)
I0409 08:26:32.383579 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0409 08:26:32.383590 12249 solver.cpp:245] Train net output #16: total_confidence = 0.356144
I0409 08:26:32.383605 12249 sgd_solver.cpp:106] Iteration 130000, lr = 0.00814286
I0409 08:32:05.798238 12249 solver.cpp:229] Iteration 130500, loss = 2.46888
I0409 08:32:05.798557 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.444444
I0409 08:32:05.798578 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.852273
I0409 08:32:05.798593 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.75
I0409 08:32:05.798609 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.74602 (* 0.3 = 0.523807 loss)
I0409 08:32:05.798624 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.487738 (* 0.3 = 0.146321 loss)
I0409 08:32:05.798637 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.722222
I0409 08:32:05.798650 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.903409
I0409 08:32:05.798661 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.916667
I0409 08:32:05.798676 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.01843 (* 0.3 = 0.305529 loss)
I0409 08:32:05.798689 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.367931 (* 0.3 = 0.110379 loss)
I0409 08:32:05.798702 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.916667
I0409 08:32:05.798714 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.977273
I0409 08:32:05.798727 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.972222
I0409 08:32:05.798741 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.280874 (* 1 = 0.280874 loss)
I0409 08:32:05.798759 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.0729467 (* 1 = 0.0729467 loss)
I0409 08:32:05.798773 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0409 08:32:05.798784 12249 solver.cpp:245] Train net output #16: total_confidence = 0.486939
I0409 08:32:05.798799 12249 sgd_solver.cpp:106] Iteration 130500, lr = 0.00813571
I0409 08:37:39.179215 12249 solver.cpp:229] Iteration 131000, loss = 2.45349
I0409 08:37:39.179335 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.375
I0409 08:37:39.179355 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.840909
I0409 08:37:39.179368 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.7
I0409 08:37:39.179385 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.90548 (* 0.3 = 0.571643 loss)
I0409 08:37:39.179400 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.512124 (* 0.3 = 0.153637 loss)
I0409 08:37:39.179414 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.55
I0409 08:37:39.179425 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.880682
I0409 08:37:39.179437 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.85
I0409 08:37:39.179451 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.34152 (* 0.3 = 0.402456 loss)
I0409 08:37:39.179466 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.385819 (* 0.3 = 0.115746 loss)
I0409 08:37:39.179478 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.825
I0409 08:37:39.179491 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.948864
I0409 08:37:39.179502 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.95
I0409 08:37:39.179517 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.660275 (* 1 = 0.660275 loss)
I0409 08:37:39.179532 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.173331 (* 1 = 0.173331 loss)
I0409 08:37:39.179543 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0409 08:37:39.179555 12249 solver.cpp:245] Train net output #16: total_confidence = 0.392376
I0409 08:37:39.179569 12249 sgd_solver.cpp:106] Iteration 131000, lr = 0.00812857
I0409 08:43:12.547541 12249 solver.cpp:229] Iteration 131500, loss = 2.42263
I0409 08:43:12.547767 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.469388
I0409 08:43:12.547786 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.846591
I0409 08:43:12.547799 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.714286
I0409 08:43:12.547816 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.78443 (* 0.3 = 0.535329 loss)
I0409 08:43:12.547832 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.536337 (* 0.3 = 0.160901 loss)
I0409 08:43:12.547844 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.612245
I0409 08:43:12.547857 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.875
I0409 08:43:12.547868 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.816327
I0409 08:43:12.547883 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.40276 (* 0.3 = 0.420827 loss)
I0409 08:43:12.547897 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.443883 (* 0.3 = 0.133165 loss)
I0409 08:43:12.547910 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.938776
I0409 08:43:12.547922 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.977273
I0409 08:43:12.547935 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 1
I0409 08:43:12.547948 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.168841 (* 1 = 0.168841 loss)
I0409 08:43:12.547963 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.0654866 (* 1 = 0.0654866 loss)
I0409 08:43:12.547976 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0409 08:43:12.547989 12249 solver.cpp:245] Train net output #16: total_confidence = 0.538119
I0409 08:43:12.548003 12249 sgd_solver.cpp:106] Iteration 131500, lr = 0.00812143
I0409 08:48:45.915904 12249 solver.cpp:229] Iteration 132000, loss = 2.51872
I0409 08:48:45.916038 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.255319
I0409 08:48:45.916057 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.778409
I0409 08:48:45.916070 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.617021
I0409 08:48:45.916087 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.32542 (* 0.3 = 0.697627 loss)
I0409 08:48:45.916102 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.700437 (* 0.3 = 0.210131 loss)
I0409 08:48:45.916115 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.382979
I0409 08:48:45.916127 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.8125
I0409 08:48:45.916141 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.702128
I0409 08:48:45.916154 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.88819 (* 0.3 = 0.566456 loss)
I0409 08:48:45.916168 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.570185 (* 0.3 = 0.171056 loss)
I0409 08:48:45.916182 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.851064
I0409 08:48:45.916193 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.960227
I0409 08:48:45.916206 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 1
I0409 08:48:45.916220 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.435911 (* 1 = 0.435911 loss)
I0409 08:48:45.916235 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.119915 (* 1 = 0.119915 loss)
I0409 08:48:45.916247 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.75
I0409 08:48:45.916260 12249 solver.cpp:245] Train net output #16: total_confidence = 0.406243
I0409 08:48:45.916275 12249 sgd_solver.cpp:106] Iteration 132000, lr = 0.00811428
I0409 08:54:19.287875 12249 solver.cpp:229] Iteration 132500, loss = 2.50314
I0409 08:54:19.288115 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.456522
I0409 08:54:19.288135 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.840909
I0409 08:54:19.288147 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.673913
I0409 08:54:19.288163 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.99246 (* 0.3 = 0.597739 loss)
I0409 08:54:19.288179 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.589025 (* 0.3 = 0.176707 loss)
I0409 08:54:19.288192 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.586957
I0409 08:54:19.288204 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.857955
I0409 08:54:19.288216 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.869565
I0409 08:54:19.288230 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.32891 (* 0.3 = 0.398672 loss)
I0409 08:54:19.288244 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.449571 (* 0.3 = 0.134871 loss)
I0409 08:54:19.288257 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.826087
I0409 08:54:19.288269 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.954545
I0409 08:54:19.288282 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.934783
I0409 08:54:19.288296 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.515987 (* 1 = 0.515987 loss)
I0409 08:54:19.288311 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.139833 (* 1 = 0.139833 loss)
I0409 08:54:19.288323 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.75
I0409 08:54:19.288336 12249 solver.cpp:245] Train net output #16: total_confidence = 0.523376
I0409 08:54:19.288350 12249 sgd_solver.cpp:106] Iteration 132500, lr = 0.00810714
I0409 08:59:52.663269 12249 solver.cpp:229] Iteration 133000, loss = 2.42525
I0409 08:59:52.663422 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.333333
I0409 08:59:52.663444 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.8125
I0409 08:59:52.663457 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.645833
I0409 08:59:52.663473 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.17426 (* 0.3 = 0.652277 loss)
I0409 08:59:52.663488 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.644224 (* 0.3 = 0.193267 loss)
I0409 08:59:52.663501 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.520833
I0409 08:59:52.663513 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.846591
I0409 08:59:52.663525 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.854167
I0409 08:59:52.663539 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.40342 (* 0.3 = 0.421026 loss)
I0409 08:59:52.663553 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.451407 (* 0.3 = 0.135422 loss)
I0409 08:59:52.663566 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.895833
I0409 08:59:52.663578 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.971591
I0409 08:59:52.663590 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.979167
I0409 08:59:52.663604 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.486336 (* 1 = 0.486336 loss)
I0409 08:59:52.663619 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.141794 (* 1 = 0.141794 loss)
I0409 08:59:52.663631 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0409 08:59:52.663643 12249 solver.cpp:245] Train net output #16: total_confidence = 0.397453
I0409 08:59:52.663658 12249 sgd_solver.cpp:106] Iteration 133000, lr = 0.0081
I0409 09:05:26.027685 12249 solver.cpp:229] Iteration 133500, loss = 2.42622
I0409 09:05:26.027926 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.320755
I0409 09:05:26.027945 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.784091
I0409 09:05:26.027958 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.622642
I0409 09:05:26.027974 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.20057 (* 0.3 = 0.660171 loss)
I0409 09:05:26.027990 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.695938 (* 0.3 = 0.208781 loss)
I0409 09:05:26.028003 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.471698
I0409 09:05:26.028015 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.840909
I0409 09:05:26.028028 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.754717
I0409 09:05:26.028041 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.75669 (* 0.3 = 0.527006 loss)
I0409 09:05:26.028055 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.545657 (* 0.3 = 0.163697 loss)
I0409 09:05:26.028069 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.849057
I0409 09:05:26.028080 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.9375
I0409 09:05:26.028092 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.943396
I0409 09:05:26.028107 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.485684 (* 1 = 0.485684 loss)
I0409 09:05:26.028121 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.185563 (* 1 = 0.185563 loss)
I0409 09:05:26.028133 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0409 09:05:26.028146 12249 solver.cpp:245] Train net output #16: total_confidence = 0.323552
I0409 09:05:26.028159 12249 sgd_solver.cpp:106] Iteration 133500, lr = 0.00809286
I0409 09:10:59.399304 12249 solver.cpp:229] Iteration 134000, loss = 2.45457
I0409 09:10:59.399673 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.413043
I0409 09:10:59.399695 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.835227
I0409 09:10:59.399709 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.673913
I0409 09:10:59.399726 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.00317 (* 0.3 = 0.60095 loss)
I0409 09:10:59.399741 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.59016 (* 0.3 = 0.177048 loss)
I0409 09:10:59.399758 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.5
I0409 09:10:59.399771 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.835227
I0409 09:10:59.399783 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.782609
I0409 09:10:59.399797 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.47147 (* 0.3 = 0.441441 loss)
I0409 09:10:59.399812 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.476818 (* 0.3 = 0.143045 loss)
I0409 09:10:59.399826 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.891304
I0409 09:10:59.399837 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.965909
I0409 09:10:59.399849 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.934783
I0409 09:10:59.399863 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.409579 (* 1 = 0.409579 loss)
I0409 09:10:59.399878 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.137488 (* 1 = 0.137488 loss)
I0409 09:10:59.399890 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0409 09:10:59.399902 12249 solver.cpp:245] Train net output #16: total_confidence = 0.455602
I0409 09:10:59.399917 12249 sgd_solver.cpp:106] Iteration 134000, lr = 0.00808571
I0409 09:16:32.768645 12249 solver.cpp:229] Iteration 134500, loss = 2.54263
I0409 09:16:32.768771 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.261905
I0409 09:16:32.768791 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.818182
I0409 09:16:32.768805 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.428571
I0409 09:16:32.768821 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.22645 (* 0.3 = 0.667935 loss)
I0409 09:16:32.768836 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.588784 (* 0.3 = 0.176635 loss)
I0409 09:16:32.768849 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.52381
I0409 09:16:32.768862 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.886364
I0409 09:16:32.768873 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.714286
I0409 09:16:32.768887 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.6016 (* 0.3 = 0.48048 loss)
I0409 09:16:32.768901 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.409878 (* 0.3 = 0.122963 loss)
I0409 09:16:32.768914 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.761905
I0409 09:16:32.768926 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.943182
I0409 09:16:32.768939 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 1
I0409 09:16:32.768952 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.60555 (* 1 = 0.60555 loss)
I0409 09:16:32.768966 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.14947 (* 1 = 0.14947 loss)
I0409 09:16:32.768980 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0409 09:16:32.768991 12249 solver.cpp:245] Train net output #16: total_confidence = 0.281216
I0409 09:16:32.769006 12249 sgd_solver.cpp:106] Iteration 134500, lr = 0.00807857
I0409 09:22:05.746928 12249 solver.cpp:338] Iteration 135000, Testing net (#0)
I0409 09:22:46.827841 12249 solver.cpp:393] Test loss: 2.1199
I0409 09:22:46.827972 12249 solver.cpp:406] Test net output #0: loss1/accuracy = 0.453829
I0409 09:22:46.827993 12249 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.861002
I0409 09:22:46.828007 12249 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.750279
I0409 09:22:46.828024 12249 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 1.80973 (* 0.3 = 0.542919 loss)
I0409 09:22:46.828040 12249 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.46949 (* 0.3 = 0.140847 loss)
I0409 09:22:46.828052 12249 solver.cpp:406] Test net output #5: loss2/accuracy = 0.668795
I0409 09:22:46.828064 12249 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.90923
I0409 09:22:46.828076 12249 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.885917
I0409 09:22:46.828090 12249 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.15724 (* 0.3 = 0.347171 loss)
I0409 09:22:46.828109 12249 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.31592 (* 0.3 = 0.0947759 loss)
I0409 09:22:46.828121 12249 solver.cpp:406] Test net output #10: loss3/accuracy = 0.81235
I0409 09:22:46.828133 12249 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.954136
I0409 09:22:46.828145 12249 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.913773
I0409 09:22:46.828158 12249 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 0.794635 (* 1 = 0.794635 loss)
I0409 09:22:46.828172 12249 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.199556 (* 1 = 0.199556 loss)
I0409 09:22:46.828184 12249 solver.cpp:406] Test net output #15: total_accuracy = 0.526
I0409 09:22:46.828197 12249 solver.cpp:406] Test net output #16: total_confidence = 0.44173
I0409 09:22:47.204591 12249 solver.cpp:229] Iteration 135000, loss = 2.43466
I0409 09:22:47.204669 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.295455
I0409 09:22:47.204687 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.818182
I0409 09:22:47.204701 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.545455
I0409 09:22:47.204718 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.26785 (* 0.3 = 0.680355 loss)
I0409 09:22:47.204733 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.605044 (* 0.3 = 0.181513 loss)
I0409 09:22:47.204747 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.545455
I0409 09:22:47.204759 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.880682
I0409 09:22:47.204771 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.840909
I0409 09:22:47.204787 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.55497 (* 0.3 = 0.466491 loss)
I0409 09:22:47.204800 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.415797 (* 0.3 = 0.124739 loss)
I0409 09:22:47.204813 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.840909
I0409 09:22:47.204825 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.960227
I0409 09:22:47.204838 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.954545
I0409 09:22:47.204852 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.52457 (* 1 = 0.52457 loss)
I0409 09:22:47.204867 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.133559 (* 1 = 0.133559 loss)
I0409 09:22:47.204879 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0409 09:22:47.204892 12249 solver.cpp:245] Train net output #16: total_confidence = 0.297796
I0409 09:22:47.204907 12249 sgd_solver.cpp:106] Iteration 135000, lr = 0.00807143
I0409 09:28:21.171994 12249 solver.cpp:229] Iteration 135500, loss = 2.44013
I0409 09:28:21.172157 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.380952
I0409 09:28:21.172176 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.835227
I0409 09:28:21.172190 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.52381
I0409 09:28:21.172207 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.43216 (* 0.3 = 0.729649 loss)
I0409 09:28:21.172222 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.648775 (* 0.3 = 0.194633 loss)
I0409 09:28:21.172235 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.52381
I0409 09:28:21.172247 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.863636
I0409 09:28:21.172260 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.809524
I0409 09:28:21.172274 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.59839 (* 0.3 = 0.479516 loss)
I0409 09:28:21.172289 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.474421 (* 0.3 = 0.142326 loss)
I0409 09:28:21.172302 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.833333
I0409 09:28:21.172313 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.960227
I0409 09:28:21.172325 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.904762
I0409 09:28:21.172339 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.975585 (* 1 = 0.975585 loss)
I0409 09:28:21.172353 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.237155 (* 1 = 0.237155 loss)
I0409 09:28:21.172366 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0409 09:28:21.172379 12249 solver.cpp:245] Train net output #16: total_confidence = 0.301255
I0409 09:28:21.172394 12249 sgd_solver.cpp:106] Iteration 135500, lr = 0.00806428
I0409 09:33:54.559824 12249 solver.cpp:229] Iteration 136000, loss = 2.43957
I0409 09:33:54.560108 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.52381
I0409 09:33:54.560128 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.846591
I0409 09:33:54.560142 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.761905
I0409 09:33:54.560158 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.76305 (* 0.3 = 0.528916 loss)
I0409 09:33:54.560173 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.568276 (* 0.3 = 0.170483 loss)
I0409 09:33:54.560186 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.595238
I0409 09:33:54.560199 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.880682
I0409 09:33:54.560211 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.928571
I0409 09:33:54.560226 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.14208 (* 0.3 = 0.342625 loss)
I0409 09:33:54.560241 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.372309 (* 0.3 = 0.111693 loss)
I0409 09:33:54.560253 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.904762
I0409 09:33:54.560266 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.977273
I0409 09:33:54.560278 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.97619
I0409 09:33:54.560292 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.397228 (* 1 = 0.397228 loss)
I0409 09:33:54.560307 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.115881 (* 1 = 0.115881 loss)
I0409 09:33:54.560320 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.75
I0409 09:33:54.560335 12249 solver.cpp:245] Train net output #16: total_confidence = 0.427768
I0409 09:33:54.560351 12249 sgd_solver.cpp:106] Iteration 136000, lr = 0.00805714
I0409 09:39:27.921391 12249 solver.cpp:229] Iteration 136500, loss = 2.42259
I0409 09:39:27.921540 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.456522
I0409 09:39:27.921561 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.846591
I0409 09:39:27.921573 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.673913
I0409 09:39:27.921589 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.91763 (* 0.3 = 0.575289 loss)
I0409 09:39:27.921604 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.535481 (* 0.3 = 0.160644 loss)
I0409 09:39:27.921617 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.456522
I0409 09:39:27.921630 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.857955
I0409 09:39:27.921643 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.826087
I0409 09:39:27.921656 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.62269 (* 0.3 = 0.486807 loss)
I0409 09:39:27.921670 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.448206 (* 0.3 = 0.134462 loss)
I0409 09:39:27.921682 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.76087
I0409 09:39:27.921695 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.9375
I0409 09:39:27.921707 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.934783
I0409 09:39:27.921721 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.792635 (* 1 = 0.792635 loss)
I0409 09:39:27.921736 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.221793 (* 1 = 0.221793 loss)
I0409 09:39:27.921751 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0409 09:39:27.921764 12249 solver.cpp:245] Train net output #16: total_confidence = 0.413552
I0409 09:39:27.921779 12249 sgd_solver.cpp:106] Iteration 136500, lr = 0.00805
I0409 09:45:01.294555 12249 solver.cpp:229] Iteration 137000, loss = 2.4345
I0409 09:45:01.294790 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.333333
I0409 09:45:01.294811 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.818182
I0409 09:45:01.294824 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.555556
I0409 09:45:01.294841 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.39231 (* 0.3 = 0.717692 loss)
I0409 09:45:01.294855 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.684899 (* 0.3 = 0.20547 loss)
I0409 09:45:01.294868 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.4
I0409 09:45:01.294880 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.823864
I0409 09:45:01.294893 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.666667
I0409 09:45:01.294906 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.14499 (* 0.3 = 0.643496 loss)
I0409 09:45:01.294920 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.652116 (* 0.3 = 0.195635 loss)
I0409 09:45:01.294934 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.577778
I0409 09:45:01.294945 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.886364
I0409 09:45:01.294957 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.777778
I0409 09:45:01.294972 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.6171 (* 1 = 1.6171 loss)
I0409 09:45:01.294986 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.466087 (* 1 = 0.466087 loss)
I0409 09:45:01.294998 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0409 09:45:01.295011 12249 solver.cpp:245] Train net output #16: total_confidence = 0.298845
I0409 09:45:01.295025 12249 sgd_solver.cpp:106] Iteration 137000, lr = 0.00804286
I0409 09:50:34.670027 12249 solver.cpp:229] Iteration 137500, loss = 2.44517
I0409 09:50:34.670187 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.4
I0409 09:50:34.670208 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.818182
I0409 09:50:34.670222 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.68
I0409 09:50:34.670238 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.95028 (* 0.3 = 0.585084 loss)
I0409 09:50:34.670253 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.597315 (* 0.3 = 0.179195 loss)
I0409 09:50:34.670265 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.56
I0409 09:50:34.670279 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.875
I0409 09:50:34.670290 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.88
I0409 09:50:34.670305 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.36227 (* 0.3 = 0.408681 loss)
I0409 09:50:34.670318 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.414429 (* 0.3 = 0.124329 loss)
I0409 09:50:34.670331 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.92
I0409 09:50:34.670343 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.977273
I0409 09:50:34.670356 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.98
I0409 09:50:34.670369 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.378492 (* 1 = 0.378492 loss)
I0409 09:50:34.670383 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.122245 (* 1 = 0.122245 loss)
I0409 09:50:34.670397 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.875
I0409 09:50:34.670408 12249 solver.cpp:245] Train net output #16: total_confidence = 0.300618
I0409 09:50:34.670423 12249 sgd_solver.cpp:106] Iteration 137500, lr = 0.00803571
I0409 09:56:08.026155 12249 solver.cpp:229] Iteration 138000, loss = 2.43391
I0409 09:56:08.026391 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.395833
I0409 09:56:08.026410 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.8125
I0409 09:56:08.026423 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.6875
I0409 09:56:08.026440 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.00092 (* 0.3 = 0.600276 loss)
I0409 09:56:08.026455 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.628776 (* 0.3 = 0.188633 loss)
I0409 09:56:08.026468 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.5
I0409 09:56:08.026481 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.857955
I0409 09:56:08.026494 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.833333
I0409 09:56:08.026507 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.53568 (* 0.3 = 0.460703 loss)
I0409 09:56:08.026521 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.449136 (* 0.3 = 0.134741 loss)
I0409 09:56:08.026535 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.875
I0409 09:56:08.026546 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.954545
I0409 09:56:08.026559 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.958333
I0409 09:56:08.026573 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.566222 (* 1 = 0.566222 loss)
I0409 09:56:08.026588 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.179015 (* 1 = 0.179015 loss)
I0409 09:56:08.026602 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0409 09:56:08.026613 12249 solver.cpp:245] Train net output #16: total_confidence = 0.253494
I0409 09:56:08.026628 12249 sgd_solver.cpp:106] Iteration 138000, lr = 0.00802857
I0409 10:01:41.402386 12249 solver.cpp:229] Iteration 138500, loss = 2.42245
I0409 10:01:41.402679 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.25
I0409 10:01:41.402699 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.789773
I0409 10:01:41.402714 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.431818
I0409 10:01:41.402730 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.59756 (* 0.3 = 0.779269 loss)
I0409 10:01:41.402747 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.761828 (* 0.3 = 0.228548 loss)
I0409 10:01:41.402761 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.477273
I0409 10:01:41.402775 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.840909
I0409 10:01:41.402786 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.727273
I0409 10:01:41.402801 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.81103 (* 0.3 = 0.543309 loss)
I0409 10:01:41.402814 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.567566 (* 0.3 = 0.17027 loss)
I0409 10:01:41.402827 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.636364
I0409 10:01:41.402839 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.897727
I0409 10:01:41.402851 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.75
I0409 10:01:41.402865 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.2007 (* 1 = 1.2007 loss)
I0409 10:01:41.402879 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.360287 (* 1 = 0.360287 loss)
I0409 10:01:41.402892 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0409 10:01:41.402904 12249 solver.cpp:245] Train net output #16: total_confidence = 0.296864
I0409 10:01:41.402918 12249 sgd_solver.cpp:106] Iteration 138500, lr = 0.00802143
I0409 10:07:14.778046 12249 solver.cpp:229] Iteration 139000, loss = 2.41146
I0409 10:07:14.778178 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.333333
I0409 10:07:14.778199 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.806818
I0409 10:07:14.778213 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.627451
I0409 10:07:14.778229 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.1651 (* 0.3 = 0.64953 loss)
I0409 10:07:14.778244 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.637674 (* 0.3 = 0.191302 loss)
I0409 10:07:14.778259 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.431373
I0409 10:07:14.778270 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.835227
I0409 10:07:14.778282 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.803922
I0409 10:07:14.778296 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.83572 (* 0.3 = 0.550717 loss)
I0409 10:07:14.778311 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.543552 (* 0.3 = 0.163066 loss)
I0409 10:07:14.778324 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.72549
I0409 10:07:14.778337 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.920455
I0409 10:07:14.778348 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.843137
I0409 10:07:14.778363 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.943864 (* 1 = 0.943864 loss)
I0409 10:07:14.778378 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.281438 (* 1 = 0.281438 loss)
I0409 10:07:14.778390 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0409 10:07:14.778403 12249 solver.cpp:245] Train net output #16: total_confidence = 0.306502
I0409 10:07:14.778416 12249 sgd_solver.cpp:106] Iteration 139000, lr = 0.00801429
I0409 10:12:48.145740 12249 solver.cpp:229] Iteration 139500, loss = 2.47688
I0409 10:12:48.146035 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.245283
I0409 10:12:48.146056 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.772727
I0409 10:12:48.146070 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.566038
I0409 10:12:48.146085 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.3621 (* 0.3 = 0.708629 loss)
I0409 10:12:48.146101 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.727688 (* 0.3 = 0.218306 loss)
I0409 10:12:48.146114 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.45283
I0409 10:12:48.146127 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.829545
I0409 10:12:48.146139 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.698113
I0409 10:12:48.146153 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.69803 (* 0.3 = 0.509409 loss)
I0409 10:12:48.146167 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.534186 (* 0.3 = 0.160256 loss)
I0409 10:12:48.146180 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.792453
I0409 10:12:48.146193 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.931818
I0409 10:12:48.146204 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.867925
I0409 10:12:48.146219 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.777967 (* 1 = 0.777967 loss)
I0409 10:12:48.146234 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.250802 (* 1 = 0.250802 loss)
I0409 10:12:48.146245 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0409 10:12:48.146257 12249 solver.cpp:245] Train net output #16: total_confidence = 0.31746
I0409 10:12:48.146272 12249 sgd_solver.cpp:106] Iteration 139500, lr = 0.00800714
I0409 10:18:21.133306 12249 solver.cpp:456] Snapshotting to binary proto file /mnt/snapshots/mixed_lstm10_bn_iter_140000.caffemodel
I0409 10:18:21.595228 12249 sgd_solver.cpp:273] Snapshotting solver state to binary proto file /mnt/snapshots/mixed_lstm10_bn_iter_140000.solverstate
I0409 10:18:21.835618 12249 solver.cpp:338] Iteration 140000, Testing net (#0)
I0409 10:19:02.801059 12249 solver.cpp:393] Test loss: 2.20881
I0409 10:19:02.801162 12249 solver.cpp:406] Test net output #0: loss1/accuracy = 0.442424
I0409 10:19:02.801182 12249 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.855912
I0409 10:19:02.801194 12249 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.748575
I0409 10:19:02.801210 12249 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 1.85039 (* 0.3 = 0.555118 loss)
I0409 10:19:02.801225 12249 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.487163 (* 0.3 = 0.146149 loss)
I0409 10:19:02.801239 12249 solver.cpp:406] Test net output #5: loss2/accuracy = 0.665583
I0409 10:19:02.801249 12249 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.910275
I0409 10:19:02.801261 12249 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.879537
I0409 10:19:02.801275 12249 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.20257 (* 0.3 = 0.360772 loss)
I0409 10:19:02.801288 12249 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.320179 (* 0.3 = 0.0960538 loss)
I0409 10:19:02.801301 12249 solver.cpp:406] Test net output #10: loss3/accuracy = 0.813651
I0409 10:19:02.801312 12249 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.953137
I0409 10:19:02.801323 12249 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.906417
I0409 10:19:02.801337 12249 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 0.836632 (* 1 = 0.836632 loss)
I0409 10:19:02.801352 12249 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.214086 (* 1 = 0.214086 loss)
I0409 10:19:02.801363 12249 solver.cpp:406] Test net output #15: total_accuracy = 0.524
I0409 10:19:02.801374 12249 solver.cpp:406] Test net output #16: total_confidence = 0.487279
I0409 10:19:03.174015 12249 solver.cpp:229] Iteration 140000, loss = 2.42223
I0409 10:19:03.174064 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.368421
I0409 10:19:03.174082 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.829545
I0409 10:19:03.174094 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.605263
I0409 10:19:03.174109 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.35258 (* 0.3 = 0.705775 loss)
I0409 10:19:03.174124 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.646389 (* 0.3 = 0.193917 loss)
I0409 10:19:03.174137 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.526316
I0409 10:19:03.174151 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.857955
I0409 10:19:03.174173 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.789474
I0409 10:19:03.174199 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.84627 (* 0.3 = 0.55388 loss)
I0409 10:19:03.174226 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.51474 (* 0.3 = 0.154422 loss)
I0409 10:19:03.174255 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.684211
I0409 10:19:03.174271 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.920455
I0409 10:19:03.174283 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.789474
I0409 10:19:03.174298 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.3984 (* 1 = 1.3984 loss)
I0409 10:19:03.174312 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.333392 (* 1 = 0.333392 loss)
I0409 10:19:03.174324 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0409 10:19:03.174336 12249 solver.cpp:245] Train net output #16: total_confidence = 0.340496
I0409 10:19:03.174351 12249 sgd_solver.cpp:106] Iteration 140000, lr = 0.008
I0409 10:24:36.542121 12249 solver.cpp:229] Iteration 140500, loss = 2.38628
I0409 10:24:36.542440 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.408163
I0409 10:24:36.542471 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.829545
I0409 10:24:36.542495 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.632653
I0409 10:24:36.542526 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.17745 (* 0.3 = 0.653236 loss)
I0409 10:24:36.542553 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.653935 (* 0.3 = 0.196181 loss)
I0409 10:24:36.542575 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.469388
I0409 10:24:36.542598 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.829545
I0409 10:24:36.542621 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.755102
I0409 10:24:36.542651 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.7268 (* 0.3 = 0.518041 loss)
I0409 10:24:36.542680 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.519459 (* 0.3 = 0.155838 loss)
I0409 10:24:36.542703 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.795918
I0409 10:24:36.542726 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.926136
I0409 10:24:36.542752 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.877551
I0409 10:24:36.542779 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.817548 (* 1 = 0.817548 loss)
I0409 10:24:36.542805 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.252092 (* 1 = 0.252092 loss)
I0409 10:24:36.542829 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0409 10:24:36.542851 12249 solver.cpp:245] Train net output #16: total_confidence = 0.315377
I0409 10:24:36.542876 12249 sgd_solver.cpp:106] Iteration 140500, lr = 0.00799286
I0409 10:30:09.922626 12249 solver.cpp:229] Iteration 141000, loss = 2.38396
I0409 10:30:09.922776 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.27907
I0409 10:30:09.922797 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.789773
I0409 10:30:09.922811 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.604651
I0409 10:30:09.922827 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.3115 (* 0.3 = 0.693449 loss)
I0409 10:30:09.922842 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.700441 (* 0.3 = 0.210132 loss)
I0409 10:30:09.922854 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.488372
I0409 10:30:09.922868 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.835227
I0409 10:30:09.922879 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.790698
I0409 10:30:09.922894 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.76373 (* 0.3 = 0.52912 loss)
I0409 10:30:09.922907 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.564903 (* 0.3 = 0.169471 loss)
I0409 10:30:09.922919 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.813953
I0409 10:30:09.922931 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.9375
I0409 10:30:09.922943 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 1
I0409 10:30:09.922957 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.592549 (* 1 = 0.592549 loss)
I0409 10:30:09.922971 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.209952 (* 1 = 0.209952 loss)
I0409 10:30:09.922983 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0409 10:30:09.922996 12249 solver.cpp:245] Train net output #16: total_confidence = 0.389136
I0409 10:30:09.923019 12249 sgd_solver.cpp:106] Iteration 141000, lr = 0.00798571
I0409 10:35:43.286412 12249 solver.cpp:229] Iteration 141500, loss = 2.39582
I0409 10:35:43.286726 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.480769
I0409 10:35:43.286751 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.823864
I0409 10:35:43.286764 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.788462
I0409 10:35:43.286782 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.85391 (* 0.3 = 0.556172 loss)
I0409 10:35:43.286797 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.607594 (* 0.3 = 0.182278 loss)
I0409 10:35:43.286809 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.576923
I0409 10:35:43.286823 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.863636
I0409 10:35:43.286834 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.807692
I0409 10:35:43.286849 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.42331 (* 0.3 = 0.426994 loss)
I0409 10:35:43.286862 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.444153 (* 0.3 = 0.133246 loss)
I0409 10:35:43.286875 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.826923
I0409 10:35:43.286888 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.948864
I0409 10:35:43.286900 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.923077
I0409 10:35:43.286916 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.646671 (* 1 = 0.646671 loss)
I0409 10:35:43.286929 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.201488 (* 1 = 0.201488 loss)
I0409 10:35:43.286942 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.75
I0409 10:35:43.286954 12249 solver.cpp:245] Train net output #16: total_confidence = 0.365466
I0409 10:35:43.286968 12249 sgd_solver.cpp:106] Iteration 141500, lr = 0.00797857
I0409 10:41:16.661661 12249 solver.cpp:229] Iteration 142000, loss = 2.40584
I0409 10:41:16.661986 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.456522
I0409 10:41:16.662008 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.835227
I0409 10:41:16.662021 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.869565
I0409 10:41:16.662039 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.53665 (* 0.3 = 0.460996 loss)
I0409 10:41:16.662053 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.471956 (* 0.3 = 0.141587 loss)
I0409 10:41:16.662066 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.673913
I0409 10:41:16.662078 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.903409
I0409 10:41:16.662091 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.956522
I0409 10:41:16.662104 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 0.921542 (* 0.3 = 0.276463 loss)
I0409 10:41:16.662118 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.264772 (* 0.3 = 0.0794316 loss)
I0409 10:41:16.662132 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.934783
I0409 10:41:16.662143 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.977273
I0409 10:41:16.662155 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 1
I0409 10:41:16.662169 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.328764 (* 1 = 0.328764 loss)
I0409 10:41:16.662184 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.102598 (* 1 = 0.102598 loss)
I0409 10:41:16.662196 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0409 10:41:16.662209 12249 solver.cpp:245] Train net output #16: total_confidence = 0.578115
I0409 10:41:16.662223 12249 sgd_solver.cpp:106] Iteration 142000, lr = 0.00797143
I0409 10:46:50.031373 12249 solver.cpp:229] Iteration 142500, loss = 2.38421
I0409 10:46:50.031479 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.4
I0409 10:46:50.031498 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.823864
I0409 10:46:50.031512 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.6
I0409 10:46:50.031528 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.1332 (* 0.3 = 0.63996 loss)
I0409 10:46:50.031543 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.627674 (* 0.3 = 0.188302 loss)
I0409 10:46:50.031556 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.6
I0409 10:46:50.031569 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.857955
I0409 10:46:50.031580 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.866667
I0409 10:46:50.031594 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.43086 (* 0.3 = 0.429259 loss)
I0409 10:46:50.031608 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.472932 (* 0.3 = 0.14188 loss)
I0409 10:46:50.031620 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.844444
I0409 10:46:50.031632 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.954545
I0409 10:46:50.031644 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.866667
I0409 10:46:50.031658 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.769212 (* 1 = 0.769212 loss)
I0409 10:46:50.031672 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.224479 (* 1 = 0.224479 loss)
I0409 10:46:50.031684 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0409 10:46:50.031697 12249 solver.cpp:245] Train net output #16: total_confidence = 0.517022
I0409 10:46:50.031711 12249 sgd_solver.cpp:106] Iteration 142500, lr = 0.00796429
I0409 10:52:23.408284 12249 solver.cpp:229] Iteration 143000, loss = 2.42997
I0409 10:52:23.408656 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.219512
I0409 10:52:23.408679 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.806818
I0409 10:52:23.408692 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.536585
I0409 10:52:23.408709 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.1548 (* 0.3 = 0.646439 loss)
I0409 10:52:23.408725 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.571644 (* 0.3 = 0.171493 loss)
I0409 10:52:23.408736 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.487805
I0409 10:52:23.408752 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.846591
I0409 10:52:23.408764 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.731707
I0409 10:52:23.408779 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.53801 (* 0.3 = 0.461404 loss)
I0409 10:52:23.408793 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.483932 (* 0.3 = 0.14518 loss)
I0409 10:52:23.408807 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.731707
I0409 10:52:23.408818 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.920455
I0409 10:52:23.408830 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.804878
I0409 10:52:23.408844 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.851379 (* 1 = 0.851379 loss)
I0409 10:52:23.408859 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.257501 (* 1 = 0.257501 loss)
I0409 10:52:23.408871 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0409 10:52:23.408884 12249 solver.cpp:245] Train net output #16: total_confidence = 0.203123
I0409 10:52:23.408897 12249 sgd_solver.cpp:106] Iteration 143000, lr = 0.00795714
I0409 10:57:56.768846 12249 solver.cpp:229] Iteration 143500, loss = 2.4093
I0409 10:57:56.768961 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.3
I0409 10:57:56.768981 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.789773
I0409 10:57:56.768995 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.6
I0409 10:57:56.769011 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.21729 (* 0.3 = 0.665187 loss)
I0409 10:57:56.769026 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.67497 (* 0.3 = 0.202491 loss)
I0409 10:57:56.769038 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.5
I0409 10:57:56.769052 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.852273
I0409 10:57:56.769063 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.72
I0409 10:57:56.769078 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.5252 (* 0.3 = 0.45756 loss)
I0409 10:57:56.769093 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.458934 (* 0.3 = 0.13768 loss)
I0409 10:57:56.769104 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.78
I0409 10:57:56.769116 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.920455
I0409 10:57:56.769129 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.9
I0409 10:57:56.769142 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.723068 (* 1 = 0.723068 loss)
I0409 10:57:56.769156 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.272653 (* 1 = 0.272653 loss)
I0409 10:57:56.769168 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0409 10:57:56.769181 12249 solver.cpp:245] Train net output #16: total_confidence = 0.381325
I0409 10:57:56.769196 12249 sgd_solver.cpp:106] Iteration 143500, lr = 0.00795
I0409 11:03:30.174057 12249 solver.cpp:229] Iteration 144000, loss = 2.41996
I0409 11:03:30.174378 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.35
I0409 11:03:30.174408 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.835227
I0409 11:03:30.174429 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.575
I0409 11:03:30.174458 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.12248 (* 0.3 = 0.636745 loss)
I0409 11:03:30.174484 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.55918 (* 0.3 = 0.167754 loss)
I0409 11:03:30.174507 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.55
I0409 11:03:30.174530 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.857955
I0409 11:03:30.174551 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.85
I0409 11:03:30.174578 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.43081 (* 0.3 = 0.429243 loss)
I0409 11:03:30.174602 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.449777 (* 0.3 = 0.134933 loss)
I0409 11:03:30.174628 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.825
I0409 11:03:30.174652 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.943182
I0409 11:03:30.174675 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.925
I0409 11:03:30.174702 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.66846 (* 1 = 0.66846 loss)
I0409 11:03:30.174728 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.221335 (* 1 = 0.221335 loss)
I0409 11:03:30.174756 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0409 11:03:30.174796 12249 solver.cpp:245] Train net output #16: total_confidence = 0.439925
I0409 11:03:30.174823 12249 sgd_solver.cpp:106] Iteration 144000, lr = 0.00794286
I0409 11:09:03.517451 12249 solver.cpp:229] Iteration 144500, loss = 2.4556
I0409 11:09:03.517566 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.269231
I0409 11:09:03.517586 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.772727
I0409 11:09:03.517599 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.576923
I0409 11:09:03.517616 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.28323 (* 0.3 = 0.684969 loss)
I0409 11:09:03.517630 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.725318 (* 0.3 = 0.217595 loss)
I0409 11:09:03.517643 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.461538
I0409 11:09:03.517655 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.840909
I0409 11:09:03.517668 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.673077
I0409 11:09:03.517681 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.87124 (* 0.3 = 0.561373 loss)
I0409 11:09:03.517695 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.57425 (* 0.3 = 0.172275 loss)
I0409 11:09:03.517707 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.692308
I0409 11:09:03.517719 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.897727
I0409 11:09:03.517731 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.923077
I0409 11:09:03.517748 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.06009 (* 1 = 1.06009 loss)
I0409 11:09:03.517763 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.335362 (* 1 = 0.335362 loss)
I0409 11:09:03.517776 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0409 11:09:03.517787 12249 solver.cpp:245] Train net output #16: total_confidence = 0.29044
I0409 11:09:03.517802 12249 sgd_solver.cpp:106] Iteration 144500, lr = 0.00793571
I0409 11:14:36.492895 12249 solver.cpp:338] Iteration 145000, Testing net (#0)
I0409 11:15:17.931279 12249 solver.cpp:393] Test loss: 2.09945
I0409 11:15:17.931393 12249 solver.cpp:406] Test net output #0: loss1/accuracy = 0.48634
I0409 11:15:17.931411 12249 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.858048
I0409 11:15:17.931426 12249 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.780706
I0409 11:15:17.931442 12249 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 1.74367 (* 0.3 = 0.523102 loss)
I0409 11:15:17.931457 12249 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.486253 (* 0.3 = 0.145876 loss)
I0409 11:15:17.931468 12249 solver.cpp:406] Test net output #5: loss2/accuracy = 0.68091
I0409 11:15:17.931480 12249 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.906548
I0409 11:15:17.931493 12249 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.88319
I0409 11:15:17.931505 12249 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.15371 (* 0.3 = 0.346113 loss)
I0409 11:15:17.931519 12249 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.329381 (* 0.3 = 0.0988144 loss)
I0409 11:15:17.931531 12249 solver.cpp:406] Test net output #10: loss3/accuracy = 0.815855
I0409 11:15:17.931543 12249 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.951501
I0409 11:15:17.931555 12249 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.913829
I0409 11:15:17.931568 12249 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 0.777927 (* 1 = 0.777927 loss)
I0409 11:15:17.931581 12249 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.207618 (* 1 = 0.207618 loss)
I0409 11:15:17.931593 12249 solver.cpp:406] Test net output #15: total_accuracy = 0.519
I0409 11:15:17.931605 12249 solver.cpp:406] Test net output #16: total_confidence = 0.465326
I0409 11:15:18.309847 12249 solver.cpp:229] Iteration 145000, loss = 2.37244
I0409 11:15:18.309909 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.431818
I0409 11:15:18.309926 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.835227
I0409 11:15:18.309940 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.704545
I0409 11:15:18.309957 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.02669 (* 0.3 = 0.608006 loss)
I0409 11:15:18.309972 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.600878 (* 0.3 = 0.180263 loss)
I0409 11:15:18.309984 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.613636
I0409 11:15:18.309998 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.880682
I0409 11:15:18.310009 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.818182
I0409 11:15:18.310024 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.17844 (* 0.3 = 0.353533 loss)
I0409 11:15:18.310039 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.376978 (* 0.3 = 0.113094 loss)
I0409 11:15:18.310051 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.909091
I0409 11:15:18.310065 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.971591
I0409 11:15:18.310076 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 1
I0409 11:15:18.310091 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.273503 (* 1 = 0.273503 loss)
I0409 11:15:18.310106 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.0910311 (* 1 = 0.0910311 loss)
I0409 11:15:18.310119 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0409 11:15:18.310132 12249 solver.cpp:245] Train net output #16: total_confidence = 0.463848
I0409 11:15:18.310147 12249 sgd_solver.cpp:106] Iteration 145000, lr = 0.00792857
I0409 11:20:51.589089 12249 solver.cpp:229] Iteration 145500, loss = 2.39817
I0409 11:20:51.589277 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.319149
I0409 11:20:51.589298 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.8125
I0409 11:20:51.589313 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.574468
I0409 11:20:51.589329 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.21953 (* 0.3 = 0.665858 loss)
I0409 11:20:51.589344 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.644334 (* 0.3 = 0.1933 loss)
I0409 11:20:51.589357 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.553191
I0409 11:20:51.589370 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.875
I0409 11:20:51.589382 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.702128
I0409 11:20:51.589396 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.75585 (* 0.3 = 0.526755 loss)
I0409 11:20:51.589411 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.508473 (* 0.3 = 0.152542 loss)
I0409 11:20:51.589422 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.595745
I0409 11:20:51.589435 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.892045
I0409 11:20:51.589447 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.744681
I0409 11:20:51.589462 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.38665 (* 1 = 1.38665 loss)
I0409 11:20:51.589476 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.385939 (* 1 = 0.385939 loss)
I0409 11:20:51.589489 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0409 11:20:51.589501 12249 solver.cpp:245] Train net output #16: total_confidence = 0.295622
I0409 11:20:51.589516 12249 sgd_solver.cpp:106] Iteration 145500, lr = 0.00792143
I0409 11:26:24.960623 12249 solver.cpp:229] Iteration 146000, loss = 2.41995
I0409 11:26:24.960870 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.428571
I0409 11:26:24.960888 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.852273
I0409 11:26:24.960901 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.642857
I0409 11:26:24.960918 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.88297 (* 0.3 = 0.56489 loss)
I0409 11:26:24.960933 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.540033 (* 0.3 = 0.16201 loss)
I0409 11:26:24.960945 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.595238
I0409 11:26:24.960959 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.897727
I0409 11:26:24.960971 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.880952
I0409 11:26:24.960984 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.24416 (* 0.3 = 0.37325 loss)
I0409 11:26:24.960999 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.347542 (* 0.3 = 0.104263 loss)
I0409 11:26:24.961011 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.880952
I0409 11:26:24.961024 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.954545
I0409 11:26:24.961035 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.928571
I0409 11:26:24.961050 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.463512 (* 1 = 0.463512 loss)
I0409 11:26:24.961063 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.191244 (* 1 = 0.191244 loss)
I0409 11:26:24.961074 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0409 11:26:24.961086 12249 solver.cpp:245] Train net output #16: total_confidence = 0.46006
I0409 11:26:24.961100 12249 sgd_solver.cpp:106] Iteration 146000, lr = 0.00791429
I0409 11:31:58.327209 12249 solver.cpp:229] Iteration 146500, loss = 2.36285
I0409 11:31:58.327514 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.413043
I0409 11:31:58.327535 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.823864
I0409 11:31:58.327548 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.673913
I0409 11:31:58.327564 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.79778 (* 0.3 = 0.539335 loss)
I0409 11:31:58.327580 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.546225 (* 0.3 = 0.163868 loss)
I0409 11:31:58.327594 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.695652
I0409 11:31:58.327605 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.909091
I0409 11:31:58.327617 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.891304
I0409 11:31:58.327630 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.18127 (* 0.3 = 0.354382 loss)
I0409 11:31:58.327646 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.343654 (* 0.3 = 0.103096 loss)
I0409 11:31:58.327657 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.826087
I0409 11:31:58.327669 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.948864
I0409 11:31:58.327682 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 1
I0409 11:31:58.327695 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.356999 (* 1 = 0.356999 loss)
I0409 11:31:58.327709 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.124468 (* 1 = 0.124468 loss)
I0409 11:31:58.327723 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0409 11:31:58.327733 12249 solver.cpp:245] Train net output #16: total_confidence = 0.451373
I0409 11:31:58.327750 12249 sgd_solver.cpp:106] Iteration 146500, lr = 0.00790714
I0409 11:37:31.703477 12249 solver.cpp:229] Iteration 147000, loss = 2.41608
I0409 11:37:31.703585 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.463415
I0409 11:37:31.703604 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.869318
I0409 11:37:31.703618 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.756098
I0409 11:37:31.703634 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.86077 (* 0.3 = 0.55823 loss)
I0409 11:37:31.703649 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.50595 (* 0.3 = 0.151785 loss)
I0409 11:37:31.703662 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.609756
I0409 11:37:31.703675 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.892045
I0409 11:37:31.703686 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.853659
I0409 11:37:31.703701 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.2391 (* 0.3 = 0.371729 loss)
I0409 11:37:31.703716 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.345398 (* 0.3 = 0.10362 loss)
I0409 11:37:31.703727 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.756098
I0409 11:37:31.703739 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.931818
I0409 11:37:31.703754 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.926829
I0409 11:37:31.703769 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.728068 (* 1 = 0.728068 loss)
I0409 11:37:31.703783 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.199975 (* 1 = 0.199975 loss)
I0409 11:37:31.703796 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0409 11:37:31.703809 12249 solver.cpp:245] Train net output #16: total_confidence = 0.374089
I0409 11:37:31.703824 12249 sgd_solver.cpp:106] Iteration 147000, lr = 0.0079
I0409 11:43:05.064947 12249 solver.cpp:229] Iteration 147500, loss = 2.39906
I0409 11:43:05.065258 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.232558
I0409 11:43:05.065279 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.778409
I0409 11:43:05.065292 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.372093
I0409 11:43:05.065310 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.71933 (* 0.3 = 0.8158 loss)
I0409 11:43:05.065325 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.814624 (* 0.3 = 0.244387 loss)
I0409 11:43:05.065337 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.465116
I0409 11:43:05.065349 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.8125
I0409 11:43:05.065361 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.72093
I0409 11:43:05.065376 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.84638 (* 0.3 = 0.553914 loss)
I0409 11:43:05.065389 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.650321 (* 0.3 = 0.195096 loss)
I0409 11:43:05.065402 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.790698
I0409 11:43:05.065415 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.943182
I0409 11:43:05.065428 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.883721
I0409 11:43:05.065441 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.784113 (* 1 = 0.784113 loss)
I0409 11:43:05.065455 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.203787 (* 1 = 0.203787 loss)
I0409 11:43:05.065469 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0409 11:43:05.065480 12249 solver.cpp:245] Train net output #16: total_confidence = 0.409508
I0409 11:43:05.065495 12249 sgd_solver.cpp:106] Iteration 147500, lr = 0.00789286
I0409 11:48:38.435695 12249 solver.cpp:229] Iteration 148000, loss = 2.29894
I0409 11:48:38.435817 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.326923
I0409 11:48:38.435837 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.778409
I0409 11:48:38.435850 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.576923
I0409 11:48:38.435868 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.2238 (* 0.3 = 0.667139 loss)
I0409 11:48:38.435883 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.728121 (* 0.3 = 0.218436 loss)
I0409 11:48:38.435895 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.596154
I0409 11:48:38.435909 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.869318
I0409 11:48:38.435920 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.826923
I0409 11:48:38.435935 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.63736 (* 0.3 = 0.491207 loss)
I0409 11:48:38.435950 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.504454 (* 0.3 = 0.151336 loss)
I0409 11:48:38.435961 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.807692
I0409 11:48:38.435974 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.943182
I0409 11:48:38.435986 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.923077
I0409 11:48:38.436002 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.786096 (* 1 = 0.786096 loss)
I0409 11:48:38.436015 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.236743 (* 1 = 0.236743 loss)
I0409 11:48:38.436028 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0409 11:48:38.436040 12249 solver.cpp:245] Train net output #16: total_confidence = 0.403394
I0409 11:48:38.436054 12249 sgd_solver.cpp:106] Iteration 148000, lr = 0.00788571
I0409 11:54:12.145874 12249 solver.cpp:229] Iteration 148500, loss = 2.32786
I0409 11:54:12.146205 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.439024
I0409 11:54:12.146226 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.852273
I0409 11:54:12.146239 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.707317
I0409 11:54:12.146256 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.81257 (* 0.3 = 0.54377 loss)
I0409 11:54:12.146271 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.496792 (* 0.3 = 0.149038 loss)
I0409 11:54:12.146284 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.707317
I0409 11:54:12.146296 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.909091
I0409 11:54:12.146308 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.902439
I0409 11:54:12.146322 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.11566 (* 0.3 = 0.334697 loss)
I0409 11:54:12.146337 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.340156 (* 0.3 = 0.102047 loss)
I0409 11:54:12.146348 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.878049
I0409 11:54:12.146360 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.965909
I0409 11:54:12.146373 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.97561
I0409 11:54:12.146387 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.421557 (* 1 = 0.421557 loss)
I0409 11:54:12.146401 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.113659 (* 1 = 0.113659 loss)
I0409 11:54:12.146414 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0409 11:54:12.146426 12249 solver.cpp:245] Train net output #16: total_confidence = 0.509454
I0409 11:54:12.146441 12249 sgd_solver.cpp:106] Iteration 148500, lr = 0.00787857
I0409 11:59:45.513896 12249 solver.cpp:229] Iteration 149000, loss = 2.36902
I0409 11:59:45.514014 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.4
I0409 11:59:45.514034 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.846591
I0409 11:59:45.514046 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.725
I0409 11:59:45.514062 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.94374 (* 0.3 = 0.583122 loss)
I0409 11:59:45.514077 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.499473 (* 0.3 = 0.149842 loss)
I0409 11:59:45.514091 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.575
I0409 11:59:45.514103 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.880682
I0409 11:59:45.514116 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.85
I0409 11:59:45.514128 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.36714 (* 0.3 = 0.410141 loss)
I0409 11:59:45.514143 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.381281 (* 0.3 = 0.114384 loss)
I0409 11:59:45.514155 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.9
I0409 11:59:45.514168 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.977273
I0409 11:59:45.514179 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.95
I0409 11:59:45.514194 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.695352 (* 1 = 0.695352 loss)
I0409 11:59:45.514207 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.160875 (* 1 = 0.160875 loss)
I0409 11:59:45.514219 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0409 11:59:45.514232 12249 solver.cpp:245] Train net output #16: total_confidence = 0.544589
I0409 11:59:45.514246 12249 sgd_solver.cpp:106] Iteration 149000, lr = 0.00787143
I0409 12:05:18.878000 12249 solver.cpp:229] Iteration 149500, loss = 2.34995
I0409 12:05:18.878314 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.4
I0409 12:05:18.878334 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.806818
I0409 12:05:18.878347 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.64
I0409 12:05:18.878365 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.90832 (* 0.3 = 0.572495 loss)
I0409 12:05:18.878379 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.612451 (* 0.3 = 0.183735 loss)
I0409 12:05:18.878392 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.52
I0409 12:05:18.878404 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.852273
I0409 12:05:18.878417 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.74
I0409 12:05:18.878432 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.52321 (* 0.3 = 0.456963 loss)
I0409 12:05:18.878445 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.469903 (* 0.3 = 0.140971 loss)
I0409 12:05:18.878458 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.78
I0409 12:05:18.878470 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.9375
I0409 12:05:18.878482 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.9
I0409 12:05:18.878497 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.608615 (* 1 = 0.608615 loss)
I0409 12:05:18.878511 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.182256 (* 1 = 0.182256 loss)
I0409 12:05:18.878525 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0409 12:05:18.878536 12249 solver.cpp:245] Train net output #16: total_confidence = 0.404554
I0409 12:05:18.878551 12249 sgd_solver.cpp:106] Iteration 149500, lr = 0.00786429
I0409 12:10:51.857184 12249 solver.cpp:456] Snapshotting to binary proto file /mnt/snapshots/mixed_lstm10_bn_iter_150000.caffemodel
I0409 12:10:52.340406 12249 sgd_solver.cpp:273] Snapshotting solver state to binary proto file /mnt/snapshots/mixed_lstm10_bn_iter_150000.solverstate
I0409 12:10:52.584153 12249 solver.cpp:338] Iteration 150000, Testing net (#0)
I0409 12:11:33.607570 12249 solver.cpp:393] Test loss: 2.13854
I0409 12:11:33.607830 12249 solver.cpp:406] Test net output #0: loss1/accuracy = 0.438572
I0409 12:11:33.607848 12249 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.856457
I0409 12:11:33.607861 12249 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.749453
I0409 12:11:33.607877 12249 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 1.83468 (* 0.3 = 0.550405 loss)
I0409 12:11:33.607892 12249 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.477656 (* 0.3 = 0.143297 loss)
I0409 12:11:33.607903 12249 solver.cpp:406] Test net output #5: loss2/accuracy = 0.674428
I0409 12:11:33.607915 12249 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.91582
I0409 12:11:33.607928 12249 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.877198
I0409 12:11:33.607940 12249 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.18024 (* 0.3 = 0.354073 loss)
I0409 12:11:33.607954 12249 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.309566 (* 0.3 = 0.0928698 loss)
I0409 12:11:33.607966 12249 solver.cpp:406] Test net output #10: loss3/accuracy = 0.813568
I0409 12:11:33.607978 12249 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.954318
I0409 12:11:33.607990 12249 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.90797
I0409 12:11:33.608003 12249 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 0.795938 (* 1 = 0.795938 loss)
I0409 12:11:33.608016 12249 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.201956 (* 1 = 0.201956 loss)
I0409 12:11:33.608028 12249 solver.cpp:406] Test net output #15: total_accuracy = 0.555
I0409 12:11:33.608039 12249 solver.cpp:406] Test net output #16: total_confidence = 0.46665
I0409 12:11:33.980741 12249 solver.cpp:229] Iteration 150000, loss = 2.38211
I0409 12:11:33.980800 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.568182
I0409 12:11:33.980818 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.869318
I0409 12:11:33.980831 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.840909
I0409 12:11:33.980849 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.48624 (* 0.3 = 0.445873 loss)
I0409 12:11:33.980864 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.452518 (* 0.3 = 0.135755 loss)
I0409 12:11:33.980875 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.704545
I0409 12:11:33.980888 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.892045
I0409 12:11:33.980901 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.909091
I0409 12:11:33.980914 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.00486 (* 0.3 = 0.301457 loss)
I0409 12:11:33.980929 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.329121 (* 0.3 = 0.0987364 loss)
I0409 12:11:33.980942 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.931818
I0409 12:11:33.980954 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.960227
I0409 12:11:33.980967 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 1
I0409 12:11:33.980981 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.271672 (* 1 = 0.271672 loss)
I0409 12:11:33.980995 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.116727 (* 1 = 0.116727 loss)
I0409 12:11:33.981009 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0409 12:11:33.981020 12249 solver.cpp:245] Train net output #16: total_confidence = 0.540281
I0409 12:11:33.981035 12249 sgd_solver.cpp:106] Iteration 150000, lr = 0.00785714
I0409 12:17:07.293083 12249 solver.cpp:229] Iteration 150500, loss = 2.37127
I0409 12:17:07.293243 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.372549
I0409 12:17:07.293272 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.8125
I0409 12:17:07.293298 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.666667
I0409 12:17:07.293330 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.99868 (* 0.3 = 0.599603 loss)
I0409 12:17:07.293364 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.621207 (* 0.3 = 0.186362 loss)
I0409 12:17:07.293395 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.529412
I0409 12:17:07.293422 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.852273
I0409 12:17:07.293439 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.843137
I0409 12:17:07.293453 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.40565 (* 0.3 = 0.421694 loss)
I0409 12:17:07.293468 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.471031 (* 0.3 = 0.141309 loss)
I0409 12:17:07.293480 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.784314
I0409 12:17:07.293493 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.926136
I0409 12:17:07.293505 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.882353
I0409 12:17:07.293519 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.732834 (* 1 = 0.732834 loss)
I0409 12:17:07.293534 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.251158 (* 1 = 0.251158 loss)
I0409 12:17:07.293545 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0409 12:17:07.293558 12249 solver.cpp:245] Train net output #16: total_confidence = 0.397505
I0409 12:17:07.293572 12249 sgd_solver.cpp:106] Iteration 150500, lr = 0.00785
I0409 12:22:40.664530 12249 solver.cpp:229] Iteration 151000, loss = 2.41054
I0409 12:22:40.664829 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.238095
I0409 12:22:40.664850 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.801136
I0409 12:22:40.664865 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.547619
I0409 12:22:40.664880 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.48105 (* 0.3 = 0.744316 loss)
I0409 12:22:40.664896 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.685568 (* 0.3 = 0.20567 loss)
I0409 12:22:40.664908 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.5
I0409 12:22:40.664921 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.829545
I0409 12:22:40.664932 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.738095
I0409 12:22:40.664947 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.46689 (* 0.3 = 0.440067 loss)
I0409 12:22:40.664961 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.50973 (* 0.3 = 0.152919 loss)
I0409 12:22:40.664974 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.833333
I0409 12:22:40.664986 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.954545
I0409 12:22:40.664997 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.928571
I0409 12:22:40.665012 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.799514 (* 1 = 0.799514 loss)
I0409 12:22:40.665026 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.210474 (* 1 = 0.210474 loss)
I0409 12:22:40.665038 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0409 12:22:40.665051 12249 solver.cpp:245] Train net output #16: total_confidence = 0.256115
I0409 12:22:40.665066 12249 sgd_solver.cpp:106] Iteration 151000, lr = 0.00784286
I0409 12:28:14.031847 12249 solver.cpp:229] Iteration 151500, loss = 2.36512
I0409 12:28:14.031980 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.4
I0409 12:28:14.032002 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.829545
I0409 12:28:14.032016 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.644444
I0409 12:28:14.032032 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.26751 (* 0.3 = 0.680254 loss)
I0409 12:28:14.032048 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.646487 (* 0.3 = 0.193946 loss)
I0409 12:28:14.032061 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.6
I0409 12:28:14.032073 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.863636
I0409 12:28:14.032085 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.822222
I0409 12:28:14.032099 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.31746 (* 0.3 = 0.395237 loss)
I0409 12:28:14.032114 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.450885 (* 0.3 = 0.135265 loss)
I0409 12:28:14.032127 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.822222
I0409 12:28:14.032140 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.9375
I0409 12:28:14.032151 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.933333
I0409 12:28:14.032166 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.596286 (* 1 = 0.596286 loss)
I0409 12:28:14.032181 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.212457 (* 1 = 0.212457 loss)
I0409 12:28:14.032192 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0409 12:28:14.032205 12249 solver.cpp:245] Train net output #16: total_confidence = 0.352042
I0409 12:28:14.032220 12249 sgd_solver.cpp:106] Iteration 151500, lr = 0.00783571
I0409 12:33:47.406499 12249 solver.cpp:229] Iteration 152000, loss = 2.3002
I0409 12:33:47.406831 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.5
I0409 12:33:47.406852 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.857955
I0409 12:33:47.406867 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.785714
I0409 12:33:47.406883 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.62707 (* 0.3 = 0.488122 loss)
I0409 12:33:47.406898 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.463339 (* 0.3 = 0.139002 loss)
I0409 12:33:47.406911 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.809524
I0409 12:33:47.406924 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.926136
I0409 12:33:47.406935 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.904762
I0409 12:33:47.406949 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.09297 (* 0.3 = 0.32789 loss)
I0409 12:33:47.406965 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.328621 (* 0.3 = 0.0985862 loss)
I0409 12:33:47.406977 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.857143
I0409 12:33:47.406990 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.960227
I0409 12:33:47.407001 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.928571
I0409 12:33:47.407016 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.559465 (* 1 = 0.559465 loss)
I0409 12:33:47.407029 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.160635 (* 1 = 0.160635 loss)
I0409 12:33:47.407042 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.75
I0409 12:33:47.407053 12249 solver.cpp:245] Train net output #16: total_confidence = 0.631278
I0409 12:33:47.407068 12249 sgd_solver.cpp:106] Iteration 152000, lr = 0.00782857
I0409 12:39:20.776233 12249 solver.cpp:229] Iteration 152500, loss = 2.34007
I0409 12:39:20.776345 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.488889
I0409 12:39:20.776365 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.857955
I0409 12:39:20.776379 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.777778
I0409 12:39:20.776396 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.80512 (* 0.3 = 0.541537 loss)
I0409 12:39:20.776410 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.495624 (* 0.3 = 0.148687 loss)
I0409 12:39:20.776423 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.577778
I0409 12:39:20.776437 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.869318
I0409 12:39:20.776448 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.911111
I0409 12:39:20.776463 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.25169 (* 0.3 = 0.375508 loss)
I0409 12:39:20.776476 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.386146 (* 0.3 = 0.115844 loss)
I0409 12:39:20.776504 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.866667
I0409 12:39:20.776517 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.965909
I0409 12:39:20.776530 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 1
I0409 12:39:20.776545 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.324612 (* 1 = 0.324612 loss)
I0409 12:39:20.776569 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.0883524 (* 1 = 0.0883524 loss)
I0409 12:39:20.776588 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0409 12:39:20.776607 12249 solver.cpp:245] Train net output #16: total_confidence = 0.439943
I0409 12:39:20.776621 12249 sgd_solver.cpp:106] Iteration 152500, lr = 0.00782143
I0409 12:44:54.803848 12249 solver.cpp:229] Iteration 153000, loss = 2.29679
I0409 12:44:54.804143 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.416667
I0409 12:44:54.804164 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.801136
I0409 12:44:54.804177 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.708333
I0409 12:44:54.804193 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.94989 (* 0.3 = 0.584968 loss)
I0409 12:44:54.804208 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.660749 (* 0.3 = 0.198225 loss)
I0409 12:44:54.804221 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.583333
I0409 12:44:54.804234 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.840909
I0409 12:44:54.804245 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.8125
I0409 12:44:54.804260 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.45164 (* 0.3 = 0.435493 loss)
I0409 12:44:54.804273 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.513607 (* 0.3 = 0.154082 loss)
I0409 12:44:54.804286 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.770833
I0409 12:44:54.804297 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.914773
I0409 12:44:54.804309 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.916667
I0409 12:44:54.804323 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.691592 (* 1 = 0.691592 loss)
I0409 12:44:54.804337 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.243755 (* 1 = 0.243755 loss)
I0409 12:44:54.804349 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0409 12:44:54.804361 12249 solver.cpp:245] Train net output #16: total_confidence = 0.368882
I0409 12:44:54.804376 12249 sgd_solver.cpp:106] Iteration 153000, lr = 0.00781429
I0409 12:50:28.187567 12249 solver.cpp:229] Iteration 153500, loss = 2.32309
I0409 12:50:28.187695 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.352941
I0409 12:50:28.187714 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.801136
I0409 12:50:28.187727 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.588235
I0409 12:50:28.187747 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.30456 (* 0.3 = 0.691368 loss)
I0409 12:50:28.187762 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.713087 (* 0.3 = 0.213926 loss)
I0409 12:50:28.187775 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.411765
I0409 12:50:28.187788 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.823864
I0409 12:50:28.187799 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.862745
I0409 12:50:28.187814 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.55174 (* 0.3 = 0.465523 loss)
I0409 12:50:28.187829 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.468545 (* 0.3 = 0.140564 loss)
I0409 12:50:28.187840 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.784314
I0409 12:50:28.187852 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.9375
I0409 12:50:28.187865 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.980392
I0409 12:50:28.187880 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.614926 (* 1 = 0.614926 loss)
I0409 12:50:28.187893 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.18066 (* 1 = 0.18066 loss)
I0409 12:50:28.187906 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0409 12:50:28.187918 12249 solver.cpp:245] Train net output #16: total_confidence = 0.45317
I0409 12:50:28.187933 12249 sgd_solver.cpp:106] Iteration 153500, lr = 0.00780714
I0409 12:56:01.546021 12249 solver.cpp:229] Iteration 154000, loss = 2.33782
I0409 12:56:01.546385 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.2
I0409 12:56:01.546406 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.789773
I0409 12:56:01.546421 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.577778
I0409 12:56:01.546437 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.73017 (* 0.3 = 0.819051 loss)
I0409 12:56:01.546452 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.757373 (* 0.3 = 0.227212 loss)
I0409 12:56:01.546464 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.4
I0409 12:56:01.546478 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.8125
I0409 12:56:01.546489 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.666667
I0409 12:56:01.546505 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.13765 (* 0.3 = 0.641295 loss)
I0409 12:56:01.546519 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.669335 (* 0.3 = 0.2008 loss)
I0409 12:56:01.546531 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.711111
I0409 12:56:01.546545 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.914773
I0409 12:56:01.546556 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.844444
I0409 12:56:01.546571 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.07537 (* 1 = 1.07537 loss)
I0409 12:56:01.546584 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.326845 (* 1 = 0.326845 loss)
I0409 12:56:01.546597 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0409 12:56:01.546609 12249 solver.cpp:245] Train net output #16: total_confidence = 0.241872
I0409 12:56:01.546624 12249 sgd_solver.cpp:106] Iteration 154000, lr = 0.0078
I0409 13:01:34.922852 12249 solver.cpp:229] Iteration 154500, loss = 2.33109
I0409 13:01:34.923153 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.44
I0409 13:01:34.923176 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.823864
I0409 13:01:34.923189 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.58
I0409 13:01:34.923205 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.51419 (* 0.3 = 0.754257 loss)
I0409 13:01:34.923220 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.758725 (* 0.3 = 0.227618 loss)
I0409 13:01:34.923233 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.4
I0409 13:01:34.923245 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.818182
I0409 13:01:34.923257 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.74
I0409 13:01:34.923271 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.86883 (* 0.3 = 0.56065 loss)
I0409 13:01:34.923285 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.5635 (* 0.3 = 0.16905 loss)
I0409 13:01:34.923298 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.74
I0409 13:01:34.923310 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.920455
I0409 13:01:34.923322 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.88
I0409 13:01:34.923337 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.933676 (* 1 = 0.933676 loss)
I0409 13:01:34.923352 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.300974 (* 1 = 0.300974 loss)
I0409 13:01:34.923365 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0409 13:01:34.923378 12249 solver.cpp:245] Train net output #16: total_confidence = 0.307397
I0409 13:01:34.923393 12249 sgd_solver.cpp:106] Iteration 154500, lr = 0.00779286
I0409 13:07:08.557943 12249 solver.cpp:338] Iteration 155000, Testing net (#0)
I0409 13:07:49.512954 12249 solver.cpp:393] Test loss: 2.14572
I0409 13:07:49.513067 12249 solver.cpp:406] Test net output #0: loss1/accuracy = 0.446503
I0409 13:07:49.513087 12249 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.859503
I0409 13:07:49.513099 12249 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.752926
I0409 13:07:49.513115 12249 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 1.90033 (* 0.3 = 0.570098 loss)
I0409 13:07:49.513130 12249 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.488796 (* 0.3 = 0.146639 loss)
I0409 13:07:49.513142 12249 solver.cpp:406] Test net output #5: loss2/accuracy = 0.683821
I0409 13:07:49.513154 12249 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.915182
I0409 13:07:49.513165 12249 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.892571
I0409 13:07:49.513180 12249 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.13327 (* 0.3 = 0.339982 loss)
I0409 13:07:49.513193 12249 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.303137 (* 0.3 = 0.090941 loss)
I0409 13:07:49.513206 12249 solver.cpp:406] Test net output #10: loss3/accuracy = 0.817207
I0409 13:07:49.513217 12249 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.955319
I0409 13:07:49.513229 12249 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.913199
I0409 13:07:49.513243 12249 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 0.7953 (* 1 = 0.7953 loss)
I0409 13:07:49.513257 12249 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.202761 (* 1 = 0.202761 loss)
I0409 13:07:49.513268 12249 solver.cpp:406] Test net output #15: total_accuracy = 0.572
I0409 13:07:49.513280 12249 solver.cpp:406] Test net output #16: total_confidence = 0.520902
I0409 13:07:49.885273 12249 solver.cpp:229] Iteration 155000, loss = 2.29698
I0409 13:07:49.885324 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.28
I0409 13:07:49.885341 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.789773
I0409 13:07:49.885354 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.66
I0409 13:07:49.885371 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.15119 (* 0.3 = 0.645357 loss)
I0409 13:07:49.885386 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.655449 (* 0.3 = 0.196635 loss)
I0409 13:07:49.885399 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.54
I0409 13:07:49.885412 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.863636
I0409 13:07:49.885424 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.82
I0409 13:07:49.885438 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.41739 (* 0.3 = 0.425218 loss)
I0409 13:07:49.885452 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.434802 (* 0.3 = 0.130441 loss)
I0409 13:07:49.885465 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.82
I0409 13:07:49.885478 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.948864
I0409 13:07:49.885489 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.96
I0409 13:07:49.885504 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.550752 (* 1 = 0.550752 loss)
I0409 13:07:49.885517 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.162076 (* 1 = 0.162076 loss)
I0409 13:07:49.885530 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0409 13:07:49.885542 12249 solver.cpp:245] Train net output #16: total_confidence = 0.411567
I0409 13:07:49.885556 12249 sgd_solver.cpp:106] Iteration 155000, lr = 0.00778571
I0409 13:13:23.334980 12249 solver.cpp:229] Iteration 155500, loss = 2.33078
I0409 13:13:23.335392 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.358491
I0409 13:13:23.335414 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.801136
I0409 13:13:23.335428 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.603774
I0409 13:13:23.335445 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.26151 (* 0.3 = 0.678452 loss)
I0409 13:13:23.335460 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.699804 (* 0.3 = 0.209941 loss)
I0409 13:13:23.335474 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.45283
I0409 13:13:23.335486 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.823864
I0409 13:13:23.335499 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.811321
I0409 13:13:23.335512 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.4644 (* 0.3 = 0.439319 loss)
I0409 13:13:23.335527 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.458808 (* 0.3 = 0.137643 loss)
I0409 13:13:23.335541 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.830189
I0409 13:13:23.335552 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.943182
I0409 13:13:23.335564 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.943396
I0409 13:13:23.335579 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.661218 (* 1 = 0.661218 loss)
I0409 13:13:23.335593 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.220017 (* 1 = 0.220017 loss)
I0409 13:13:23.335607 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0409 13:13:23.335618 12249 solver.cpp:245] Train net output #16: total_confidence = 0.401831
I0409 13:13:23.335633 12249 sgd_solver.cpp:106] Iteration 155500, lr = 0.00777857
I0409 13:18:56.694002 12249 solver.cpp:229] Iteration 156000, loss = 2.33146
I0409 13:18:56.694124 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.511628
I0409 13:18:56.694144 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.875
I0409 13:18:56.694156 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.837209
I0409 13:18:56.694174 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.52479 (* 0.3 = 0.457436 loss)
I0409 13:18:56.694190 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.415702 (* 0.3 = 0.124711 loss)
I0409 13:18:56.694202 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.604651
I0409 13:18:56.694216 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.886364
I0409 13:18:56.694227 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.860465
I0409 13:18:56.694242 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.35108 (* 0.3 = 0.405323 loss)
I0409 13:18:56.694255 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.383366 (* 0.3 = 0.11501 loss)
I0409 13:18:56.694268 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.860465
I0409 13:18:56.694280 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.965909
I0409 13:18:56.694293 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.930233
I0409 13:18:56.694306 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.655119 (* 1 = 0.655119 loss)
I0409 13:18:56.694320 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.164986 (* 1 = 0.164986 loss)
I0409 13:18:56.694334 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0409 13:18:56.694345 12249 solver.cpp:245] Train net output #16: total_confidence = 0.620643
I0409 13:18:56.694360 12249 sgd_solver.cpp:106] Iteration 156000, lr = 0.00777143
I0409 13:24:30.840188 12249 solver.cpp:229] Iteration 156500, loss = 2.28411
I0409 13:24:30.840657 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.294118
I0409 13:24:30.840679 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.772727
I0409 13:24:30.840693 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.568627
I0409 13:24:30.840709 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.68535 (* 0.3 = 0.805605 loss)
I0409 13:24:30.840725 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.850856 (* 0.3 = 0.255257 loss)
I0409 13:24:30.840737 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.431373
I0409 13:24:30.840754 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.806818
I0409 13:24:30.840766 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.705882
I0409 13:24:30.840780 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.07506 (* 0.3 = 0.622517 loss)
I0409 13:24:30.840795 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.674968 (* 0.3 = 0.20249 loss)
I0409 13:24:30.840807 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.627451
I0409 13:24:30.840819 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.869318
I0409 13:24:30.840831 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.72549
I0409 13:24:30.840847 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.31738 (* 1 = 2.31738 loss)
I0409 13:24:30.840860 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.749407 (* 1 = 0.749407 loss)
I0409 13:24:30.840873 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0409 13:24:30.840884 12249 solver.cpp:245] Train net output #16: total_confidence = 0.311255
I0409 13:24:30.840899 12249 sgd_solver.cpp:106] Iteration 156500, lr = 0.00776429
I0409 13:30:04.113538 12249 solver.cpp:229] Iteration 157000, loss = 2.3113
I0409 13:30:04.113661 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.3
I0409 13:30:04.113680 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.789773
I0409 13:30:04.113693 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.62
I0409 13:30:04.113710 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.01085 (* 0.3 = 0.603254 loss)
I0409 13:30:04.113725 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.626387 (* 0.3 = 0.187916 loss)
I0409 13:30:04.113739 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.5
I0409 13:30:04.113754 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.852273
I0409 13:30:04.113766 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.82
I0409 13:30:04.113780 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.41666 (* 0.3 = 0.424997 loss)
I0409 13:30:04.113795 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.429333 (* 0.3 = 0.1288 loss)
I0409 13:30:04.113807 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.8
I0409 13:30:04.113819 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.943182
I0409 13:30:04.113831 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.98
I0409 13:30:04.113847 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.544056 (* 1 = 0.544056 loss)
I0409 13:30:04.113862 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.164404 (* 1 = 0.164404 loss)
I0409 13:30:04.113873 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0409 13:30:04.113885 12249 solver.cpp:245] Train net output #16: total_confidence = 0.343418
I0409 13:30:04.113899 12249 sgd_solver.cpp:106] Iteration 157000, lr = 0.00775714
I0409 13:35:37.490679 12249 solver.cpp:229] Iteration 157500, loss = 2.29463
I0409 13:35:37.490984 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.404255
I0409 13:35:37.491005 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.829545
I0409 13:35:37.491019 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.595745
I0409 13:35:37.491035 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.08247 (* 0.3 = 0.624742 loss)
I0409 13:35:37.491050 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.634509 (* 0.3 = 0.190353 loss)
I0409 13:35:37.491063 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.553191
I0409 13:35:37.491076 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.869318
I0409 13:35:37.491088 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.87234
I0409 13:35:37.491101 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.26563 (* 0.3 = 0.379689 loss)
I0409 13:35:37.491117 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.385916 (* 0.3 = 0.115775 loss)
I0409 13:35:37.491129 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.87234
I0409 13:35:37.491142 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.960227
I0409 13:35:37.491154 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.957447
I0409 13:35:37.491168 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.512256 (* 1 = 0.512256 loss)
I0409 13:35:37.491183 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.158955 (* 1 = 0.158955 loss)
I0409 13:35:37.491194 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0409 13:35:37.491206 12249 solver.cpp:245] Train net output #16: total_confidence = 0.287908
I0409 13:35:37.491221 12249 sgd_solver.cpp:106] Iteration 157500, lr = 0.00775
I0409 13:41:10.856710 12249 solver.cpp:229] Iteration 158000, loss = 2.37219
I0409 13:41:10.856843 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.444444
I0409 13:41:10.856864 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.840909
I0409 13:41:10.856878 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.733333
I0409 13:41:10.856894 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.70456 (* 0.3 = 0.511367 loss)
I0409 13:41:10.856909 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.510376 (* 0.3 = 0.153113 loss)
I0409 13:41:10.856922 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.666667
I0409 13:41:10.856935 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.897727
I0409 13:41:10.856946 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.844444
I0409 13:41:10.856961 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.12424 (* 0.3 = 0.337272 loss)
I0409 13:41:10.856974 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.328838 (* 0.3 = 0.0986513 loss)
I0409 13:41:10.856987 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.888889
I0409 13:41:10.856999 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.965909
I0409 13:41:10.857012 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.911111
I0409 13:41:10.857025 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.495001 (* 1 = 0.495001 loss)
I0409 13:41:10.857039 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.152968 (* 1 = 0.152968 loss)
I0409 13:41:10.857051 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.75
I0409 13:41:10.857064 12249 solver.cpp:245] Train net output #16: total_confidence = 0.604225
I0409 13:41:10.857079 12249 sgd_solver.cpp:106] Iteration 158000, lr = 0.00774286
I0409 13:46:44.222134 12249 solver.cpp:229] Iteration 158500, loss = 2.28311
I0409 13:46:44.222426 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.361702
I0409 13:46:44.222448 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.8125
I0409 13:46:44.222462 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.659574
I0409 13:46:44.222478 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.95487 (* 0.3 = 0.586461 loss)
I0409 13:46:44.222494 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.583493 (* 0.3 = 0.175048 loss)
I0409 13:46:44.222506 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.468085
I0409 13:46:44.222519 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.846591
I0409 13:46:44.222532 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.93617
I0409 13:46:44.222544 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.28939 (* 0.3 = 0.386818 loss)
I0409 13:46:44.222559 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.381496 (* 0.3 = 0.114449 loss)
I0409 13:46:44.222571 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.787234
I0409 13:46:44.222584 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.931818
I0409 13:46:44.222595 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.93617
I0409 13:46:44.222610 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.847494 (* 1 = 0.847494 loss)
I0409 13:46:44.222625 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.244825 (* 1 = 0.244825 loss)
I0409 13:46:44.222636 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0409 13:46:44.222648 12249 solver.cpp:245] Train net output #16: total_confidence = 0.409671
I0409 13:46:44.222663 12249 sgd_solver.cpp:106] Iteration 158500, lr = 0.00773571
I0409 13:52:17.608281 12249 solver.cpp:229] Iteration 159000, loss = 2.33322
I0409 13:52:17.608638 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.416667
I0409 13:52:17.608659 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.818182
I0409 13:52:17.608672 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.645833
I0409 13:52:17.608690 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.08109 (* 0.3 = 0.624326 loss)
I0409 13:52:17.608705 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.647039 (* 0.3 = 0.194112 loss)
I0409 13:52:17.608717 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.604167
I0409 13:52:17.608731 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.857955
I0409 13:52:17.608744 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.8125
I0409 13:52:17.608760 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.16751 (* 0.3 = 0.650252 loss)
I0409 13:52:17.608774 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.665714 (* 0.3 = 0.199714 loss)
I0409 13:52:17.608788 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.770833
I0409 13:52:17.608799 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.9375
I0409 13:52:17.608811 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.875
I0409 13:52:17.608825 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.846451 (* 1 = 0.846451 loss)
I0409 13:52:17.608839 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.242464 (* 1 = 0.242464 loss)
I0409 13:52:17.608852 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0409 13:52:17.608865 12249 solver.cpp:245] Train net output #16: total_confidence = 0.476819
I0409 13:52:17.608880 12249 sgd_solver.cpp:106] Iteration 159000, lr = 0.00772857
I0409 13:57:50.968025 12249 solver.cpp:229] Iteration 159500, loss = 2.32734
I0409 13:57:50.968258 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.564103
I0409 13:57:50.968279 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.880682
I0409 13:57:50.968293 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.846154
I0409 13:57:50.968310 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.64598 (* 0.3 = 0.493794 loss)
I0409 13:57:50.968325 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.447389 (* 0.3 = 0.134217 loss)
I0409 13:57:50.968338 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.717949
I0409 13:57:50.968351 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.914773
I0409 13:57:50.968364 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.846154
I0409 13:57:50.968377 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.11638 (* 0.3 = 0.334913 loss)
I0409 13:57:50.968392 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.304046 (* 0.3 = 0.0912137 loss)
I0409 13:57:50.968405 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.846154
I0409 13:57:50.968417 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.960227
I0409 13:57:50.968430 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.923077
I0409 13:57:50.968443 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.440641 (* 1 = 0.440641 loss)
I0409 13:57:50.968458 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.10758 (* 1 = 0.10758 loss)
I0409 13:57:50.968472 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0409 13:57:50.968497 12249 solver.cpp:245] Train net output #16: total_confidence = 0.508475
I0409 13:57:50.968514 12249 sgd_solver.cpp:106] Iteration 159500, lr = 0.00772143
I0409 14:03:23.956611 12249 solver.cpp:456] Snapshotting to binary proto file /mnt/snapshots/mixed_lstm10_bn_iter_160000.caffemodel
I0409 14:03:24.438662 12249 sgd_solver.cpp:273] Snapshotting solver state to binary proto file /mnt/snapshots/mixed_lstm10_bn_iter_160000.solverstate
I0409 14:03:24.685377 12249 solver.cpp:338] Iteration 160000, Testing net (#0)
I0409 14:04:05.828133 12249 solver.cpp:393] Test loss: 2.26081
I0409 14:04:05.828280 12249 solver.cpp:406] Test net output #0: loss1/accuracy = 0.461289
I0409 14:04:05.828299 12249 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.859276
I0409 14:04:05.828313 12249 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.721346
I0409 14:04:05.828330 12249 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 1.94924 (* 0.3 = 0.584771 loss)
I0409 14:04:05.828344 12249 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.512471 (* 0.3 = 0.153741 loss)
I0409 14:04:05.828356 12249 solver.cpp:406] Test net output #5: loss2/accuracy = 0.676874
I0409 14:04:05.828368 12249 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.91591
I0409 14:04:05.828379 12249 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.88203
I0409 14:04:05.828394 12249 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.19853 (* 0.3 = 0.359559 loss)
I0409 14:04:05.828408 12249 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.312582 (* 0.3 = 0.0937746 loss)
I0409 14:04:05.828420 12249 solver.cpp:406] Test net output #10: loss3/accuracy = 0.805702
I0409 14:04:05.828433 12249 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.951455
I0409 14:04:05.828444 12249 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.901993
I0409 14:04:05.828457 12249 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 0.850689 (* 1 = 0.850689 loss)
I0409 14:04:05.828471 12249 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.218278 (* 1 = 0.218278 loss)
I0409 14:04:05.828497 12249 solver.cpp:406] Test net output #15: total_accuracy = 0.512
I0409 14:04:05.828511 12249 solver.cpp:406] Test net output #16: total_confidence = 0.487499
I0409 14:04:06.201546 12249 solver.cpp:229] Iteration 160000, loss = 2.26377
I0409 14:04:06.201611 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.489796
I0409 14:04:06.201628 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.857955
I0409 14:04:06.201642 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.714286
I0409 14:04:06.201658 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.86319 (* 0.3 = 0.558956 loss)
I0409 14:04:06.201673 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.549064 (* 0.3 = 0.164719 loss)
I0409 14:04:06.201686 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.530612
I0409 14:04:06.201699 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.857955
I0409 14:04:06.201711 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.816327
I0409 14:04:06.201725 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.43007 (* 0.3 = 0.42902 loss)
I0409 14:04:06.201740 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.421018 (* 0.3 = 0.126305 loss)
I0409 14:04:06.201752 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.877551
I0409 14:04:06.201764 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.960227
I0409 14:04:06.201776 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.938776
I0409 14:04:06.201791 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.435332 (* 1 = 0.435332 loss)
I0409 14:04:06.201804 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.148128 (* 1 = 0.148128 loss)
I0409 14:04:06.201817 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0409 14:04:06.201829 12249 solver.cpp:245] Train net output #16: total_confidence = 0.438017
I0409 14:04:06.201845 12249 sgd_solver.cpp:106] Iteration 160000, lr = 0.00771429
I0409 14:09:39.454536 12249 solver.cpp:229] Iteration 160500, loss = 2.2842
I0409 14:09:39.454751 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.346939
I0409 14:09:39.454773 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.801136
I0409 14:09:39.454787 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.591837
I0409 14:09:39.454804 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.74855 (* 0.3 = 0.824564 loss)
I0409 14:09:39.454819 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.82632 (* 0.3 = 0.247896 loss)
I0409 14:09:39.454833 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.571429
I0409 14:09:39.454844 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.863636
I0409 14:09:39.454857 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.77551
I0409 14:09:39.454871 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.85126 (* 0.3 = 0.555377 loss)
I0409 14:09:39.454885 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.568187 (* 0.3 = 0.170456 loss)
I0409 14:09:39.454897 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.734694
I0409 14:09:39.454910 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.920455
I0409 14:09:39.454922 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.77551
I0409 14:09:39.454936 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.34626 (* 1 = 1.34626 loss)
I0409 14:09:39.454951 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.394037 (* 1 = 0.394037 loss)
I0409 14:09:39.454963 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0409 14:09:39.454975 12249 solver.cpp:245] Train net output #16: total_confidence = 0.396659
I0409 14:09:39.454991 12249 sgd_solver.cpp:106] Iteration 160500, lr = 0.00770714
I0409 14:15:12.795734 12249 solver.cpp:229] Iteration 161000, loss = 2.23153
I0409 14:15:12.796169 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.431818
I0409 14:15:12.796190 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.829545
I0409 14:15:12.796205 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.659091
I0409 14:15:12.796222 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.05631 (* 0.3 = 0.616892 loss)
I0409 14:15:12.796237 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.61104 (* 0.3 = 0.183312 loss)
I0409 14:15:12.796250 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.704545
I0409 14:15:12.796262 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.914773
I0409 14:15:12.796274 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.909091
I0409 14:15:12.796289 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.0131 (* 0.3 = 0.30393 loss)
I0409 14:15:12.796304 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.312648 (* 0.3 = 0.0937945 loss)
I0409 14:15:12.796317 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.909091
I0409 14:15:12.796329 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.977273
I0409 14:15:12.796342 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.977273
I0409 14:15:12.796356 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.306128 (* 1 = 0.306128 loss)
I0409 14:15:12.796371 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.080349 (* 1 = 0.080349 loss)
I0409 14:15:12.796385 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.875
I0409 14:15:12.796396 12249 solver.cpp:245] Train net output #16: total_confidence = 0.630225
I0409 14:15:12.796412 12249 sgd_solver.cpp:106] Iteration 161000, lr = 0.0077
I0409 14:20:46.491402 12249 solver.cpp:229] Iteration 161500, loss = 2.31206
I0409 14:20:46.491564 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.307692
I0409 14:20:46.491585 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.789773
I0409 14:20:46.491598 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.589744
I0409 14:20:46.491614 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.33681 (* 0.3 = 0.701043 loss)
I0409 14:20:46.491631 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.727203 (* 0.3 = 0.218161 loss)
I0409 14:20:46.491643 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.512821
I0409 14:20:46.491655 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.8125
I0409 14:20:46.491668 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.794872
I0409 14:20:46.491683 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.78456 (* 0.3 = 0.535367 loss)
I0409 14:20:46.491696 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.647888 (* 0.3 = 0.194366 loss)
I0409 14:20:46.491709 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.641026
I0409 14:20:46.491721 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.886364
I0409 14:20:46.491734 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.794872
I0409 14:20:46.491751 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.26517 (* 1 = 1.26517 loss)
I0409 14:20:46.491766 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.384084 (* 1 = 0.384084 loss)
I0409 14:20:46.491780 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0409 14:20:46.491791 12249 solver.cpp:245] Train net output #16: total_confidence = 0.287917
I0409 14:20:46.491806 12249 sgd_solver.cpp:106] Iteration 161500, lr = 0.00769286
I0409 14:26:20.221925 12249 solver.cpp:229] Iteration 162000, loss = 2.33649
I0409 14:26:20.222329 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.377358
I0409 14:26:20.222350 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.8125
I0409 14:26:20.222364 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.679245
I0409 14:26:20.222381 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.00692 (* 0.3 = 0.602075 loss)
I0409 14:26:20.222398 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.625021 (* 0.3 = 0.187506 loss)
I0409 14:26:20.222411 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.509434
I0409 14:26:20.222424 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.852273
I0409 14:26:20.222436 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.754717
I0409 14:26:20.222450 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.65807 (* 0.3 = 0.497421 loss)
I0409 14:26:20.222465 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.516795 (* 0.3 = 0.155039 loss)
I0409 14:26:20.222476 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.811321
I0409 14:26:20.222489 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.943182
I0409 14:26:20.222501 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.962264
I0409 14:26:20.222517 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.610604 (* 1 = 0.610604 loss)
I0409 14:26:20.222530 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.188794 (* 1 = 0.188794 loss)
I0409 14:26:20.222543 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0409 14:26:20.222559 12249 solver.cpp:245] Train net output #16: total_confidence = 0.324072
I0409 14:26:20.222587 12249 sgd_solver.cpp:106] Iteration 162000, lr = 0.00768571
I0409 14:31:54.058820 12249 solver.cpp:229] Iteration 162500, loss = 2.27149
I0409 14:31:54.059128 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.465116
I0409 14:31:54.059147 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.852273
I0409 14:31:54.059162 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.72093
I0409 14:31:54.059180 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.66474 (* 0.3 = 0.499421 loss)
I0409 14:31:54.059195 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.477457 (* 0.3 = 0.143237 loss)
I0409 14:31:54.059206 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.55814
I0409 14:31:54.059219 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.880682
I0409 14:31:54.059231 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.860465
I0409 14:31:54.059247 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.30139 (* 0.3 = 0.390418 loss)
I0409 14:31:54.059262 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.357512 (* 0.3 = 0.107254 loss)
I0409 14:31:54.059278 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.837209
I0409 14:31:54.059291 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.9375
I0409 14:31:54.059303 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.976744
I0409 14:31:54.059319 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.558073 (* 1 = 0.558073 loss)
I0409 14:31:54.059332 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.173829 (* 1 = 0.173829 loss)
I0409 14:31:54.059345 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0409 14:31:54.059357 12249 solver.cpp:245] Train net output #16: total_confidence = 0.293307
I0409 14:31:54.059372 12249 sgd_solver.cpp:106] Iteration 162500, lr = 0.00767857
I0409 14:37:28.431324 12249 solver.cpp:229] Iteration 163000, loss = 2.23081
I0409 14:37:28.431529 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.386364
I0409 14:37:28.431548 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.840909
I0409 14:37:28.431561 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.75
I0409 14:37:28.431578 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.69933 (* 0.3 = 0.509799 loss)
I0409 14:37:28.431593 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.45658 (* 0.3 = 0.136974 loss)
I0409 14:37:28.431607 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.681818
I0409 14:37:28.431619 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.914773
I0409 14:37:28.431632 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.909091
I0409 14:37:28.431645 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.07328 (* 0.3 = 0.321983 loss)
I0409 14:37:28.431660 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.30553 (* 0.3 = 0.0916589 loss)
I0409 14:37:28.431674 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.977273
I0409 14:37:28.431685 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.994318
I0409 14:37:28.431697 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.977273
I0409 14:37:28.431712 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.206694 (* 1 = 0.206694 loss)
I0409 14:37:28.431726 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.0678437 (* 1 = 0.0678437 loss)
I0409 14:37:28.431740 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.875
I0409 14:37:28.431756 12249 solver.cpp:245] Train net output #16: total_confidence = 0.51224
I0409 14:37:28.431771 12249 sgd_solver.cpp:106] Iteration 163000, lr = 0.00767143
I0409 14:43:02.733757 12249 solver.cpp:229] Iteration 163500, loss = 2.29856
I0409 14:43:02.734076 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.226415
I0409 14:43:02.734096 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.767045
I0409 14:43:02.734109 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.45283
I0409 14:43:02.734127 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.60492 (* 0.3 = 0.781477 loss)
I0409 14:43:02.734141 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.804968 (* 0.3 = 0.24149 loss)
I0409 14:43:02.734154 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.566038
I0409 14:43:02.734166 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.869318
I0409 14:43:02.734179 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.830189
I0409 14:43:02.734194 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.58735 (* 0.3 = 0.476205 loss)
I0409 14:43:02.734207 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.494376 (* 0.3 = 0.148313 loss)
I0409 14:43:02.734220 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.849057
I0409 14:43:02.734231 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.954545
I0409 14:43:02.734243 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.962264
I0409 14:43:02.734258 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.510207 (* 1 = 0.510207 loss)
I0409 14:43:02.734272 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.163189 (* 1 = 0.163189 loss)
I0409 14:43:02.734287 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0409 14:43:02.734302 12249 solver.cpp:245] Train net output #16: total_confidence = 0.328236
I0409 14:43:02.734316 12249 sgd_solver.cpp:106] Iteration 163500, lr = 0.00766429
I0409 14:48:37.201575 12249 solver.cpp:229] Iteration 164000, loss = 2.27024
I0409 14:48:37.201735 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.456522
I0409 14:48:37.201756 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.829545
I0409 14:48:37.201778 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.586957
I0409 14:48:37.201807 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.98586 (* 0.3 = 0.595757 loss)
I0409 14:48:37.201836 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.600286 (* 0.3 = 0.180086 loss)
I0409 14:48:37.201859 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.608696
I0409 14:48:37.201885 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.880682
I0409 14:48:37.201910 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.804348
I0409 14:48:37.201936 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.43329 (* 0.3 = 0.429987 loss)
I0409 14:48:37.201963 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.437193 (* 0.3 = 0.131158 loss)
I0409 14:48:37.201987 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.804348
I0409 14:48:37.202010 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.948864
I0409 14:48:37.202031 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.956522
I0409 14:48:37.202057 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.574554 (* 1 = 0.574554 loss)
I0409 14:48:37.202083 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.156374 (* 1 = 0.156374 loss)
I0409 14:48:37.202105 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.75
I0409 14:48:37.202126 12249 solver.cpp:245] Train net output #16: total_confidence = 0.571316
I0409 14:48:37.202150 12249 sgd_solver.cpp:106] Iteration 164000, lr = 0.00765714
I0409 14:54:11.695454 12249 solver.cpp:229] Iteration 164500, loss = 2.34068
I0409 14:54:11.695780 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.456522
I0409 14:54:11.695801 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.846591
I0409 14:54:11.695814 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.76087
I0409 14:54:11.695832 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.89022 (* 0.3 = 0.567065 loss)
I0409 14:54:11.695847 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.570409 (* 0.3 = 0.171123 loss)
I0409 14:54:11.695860 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.652174
I0409 14:54:11.695873 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.892045
I0409 14:54:11.695886 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.869565
I0409 14:54:11.695901 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.27737 (* 0.3 = 0.38321 loss)
I0409 14:54:11.695915 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.398239 (* 0.3 = 0.119472 loss)
I0409 14:54:11.695929 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.869565
I0409 14:54:11.695941 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.960227
I0409 14:54:11.695953 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.956522
I0409 14:54:11.695968 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.680274 (* 1 = 0.680274 loss)
I0409 14:54:11.695982 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.196681 (* 1 = 0.196681 loss)
I0409 14:54:11.695996 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0409 14:54:11.696007 12249 solver.cpp:245] Train net output #16: total_confidence = 0.487209
I0409 14:54:11.696028 12249 sgd_solver.cpp:106] Iteration 164500, lr = 0.00765
I0409 14:59:45.760294 12249 solver.cpp:338] Iteration 165000, Testing net (#0)
I0409 15:00:27.650741 12249 solver.cpp:393] Test loss: 1.99828
I0409 15:00:27.650887 12249 solver.cpp:406] Test net output #0: loss1/accuracy = 0.482655
I0409 15:00:27.650907 12249 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.865139
I0409 15:00:27.650920 12249 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.773492
I0409 15:00:27.650938 12249 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 1.71535 (* 0.3 = 0.514605 loss)
I0409 15:00:27.650952 12249 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.457189 (* 0.3 = 0.137157 loss)
I0409 15:00:27.650964 12249 solver.cpp:406] Test net output #5: loss2/accuracy = 0.706928
I0409 15:00:27.650976 12249 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.917548
I0409 15:00:27.650987 12249 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.888044
I0409 15:00:27.651001 12249 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.07431 (* 0.3 = 0.322294 loss)
I0409 15:00:27.651015 12249 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.297585 (* 0.3 = 0.0892755 loss)
I0409 15:00:27.651027 12249 solver.cpp:406] Test net output #10: loss3/accuracy = 0.824106
I0409 15:00:27.651039 12249 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.953409
I0409 15:00:27.651051 12249 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.912902
I0409 15:00:27.651064 12249 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 0.737889 (* 1 = 0.737889 loss)
I0409 15:00:27.651078 12249 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.197062 (* 1 = 0.197062 loss)
I0409 15:00:27.651090 12249 solver.cpp:406] Test net output #15: total_accuracy = 0.543
I0409 15:00:27.651103 12249 solver.cpp:406] Test net output #16: total_confidence = 0.450222
I0409 15:00:28.029608 12249 solver.cpp:229] Iteration 165000, loss = 2.25822
I0409 15:00:28.029690 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.5
I0409 15:00:28.029708 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.869318
I0409 15:00:28.029722 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.76087
I0409 15:00:28.029742 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.62685 (* 0.3 = 0.488054 loss)
I0409 15:00:28.029757 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.464126 (* 0.3 = 0.139238 loss)
I0409 15:00:28.029769 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.695652
I0409 15:00:28.029783 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.920455
I0409 15:00:28.029794 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.934783
I0409 15:00:28.029808 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.0398 (* 0.3 = 0.31194 loss)
I0409 15:00:28.029824 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.290173 (* 0.3 = 0.0870518 loss)
I0409 15:00:28.029836 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.913043
I0409 15:00:28.029850 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.977273
I0409 15:00:28.029861 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 1
I0409 15:00:28.029875 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.341514 (* 1 = 0.341514 loss)
I0409 15:00:28.029891 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.0911226 (* 1 = 0.0911226 loss)
I0409 15:00:28.029903 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.875
I0409 15:00:28.029916 12249 solver.cpp:245] Train net output #16: total_confidence = 0.66853
I0409 15:00:28.029932 12249 sgd_solver.cpp:106] Iteration 165000, lr = 0.00764286
I0409 15:06:01.999687 12249 solver.cpp:229] Iteration 165500, loss = 2.24749
I0409 15:06:02.000077 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.555556
I0409 15:06:02.000098 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.869318
I0409 15:06:02.000113 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.8
I0409 15:06:02.000129 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.54356 (* 0.3 = 0.463068 loss)
I0409 15:06:02.000144 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.445944 (* 0.3 = 0.133783 loss)
I0409 15:06:02.000157 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.755556
I0409 15:06:02.000169 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.914773
I0409 15:06:02.000182 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.933333
I0409 15:06:02.000196 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 0.783561 (* 0.3 = 0.235068 loss)
I0409 15:06:02.000211 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.236266 (* 0.3 = 0.0708799 loss)
I0409 15:06:02.000224 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.888889
I0409 15:06:02.000236 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.965909
I0409 15:06:02.000248 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 1
I0409 15:06:02.000263 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.265616 (* 1 = 0.265616 loss)
I0409 15:06:02.000278 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.0925275 (* 1 = 0.0925275 loss)
I0409 15:06:02.000290 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0409 15:06:02.000303 12249 solver.cpp:245] Train net output #16: total_confidence = 0.559605
I0409 15:06:02.000319 12249 sgd_solver.cpp:106] Iteration 165500, lr = 0.00763571
I0409 15:11:35.574129 12249 solver.cpp:229] Iteration 166000, loss = 2.3048
I0409 15:11:35.574429 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.473684
I0409 15:11:35.574450 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.852273
I0409 15:11:35.574463 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.578947
I0409 15:11:35.574481 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.12211 (* 0.3 = 0.636634 loss)
I0409 15:11:35.574496 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.569759 (* 0.3 = 0.170928 loss)
I0409 15:11:35.574508 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.342105
I0409 15:11:35.574522 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.823864
I0409 15:11:35.574532 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.605263
I0409 15:11:35.574547 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.06108 (* 0.3 = 0.618325 loss)
I0409 15:11:35.574560 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.59102 (* 0.3 = 0.177306 loss)
I0409 15:11:35.574573 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.763158
I0409 15:11:35.574585 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.9375
I0409 15:11:35.574597 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.894737
I0409 15:11:35.574612 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.961839 (* 1 = 0.961839 loss)
I0409 15:11:35.574626 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.232704 (* 1 = 0.232704 loss)
I0409 15:11:35.574640 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.125
I0409 15:11:35.574652 12249 solver.cpp:245] Train net output #16: total_confidence = 0.264307
I0409 15:11:35.574667 12249 sgd_solver.cpp:106] Iteration 166000, lr = 0.00762857
I0409 15:17:08.923501 12249 solver.cpp:229] Iteration 166500, loss = 2.25597
I0409 15:17:08.923722 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.372093
I0409 15:17:08.923746 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.823864
I0409 15:17:08.923761 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.674419
I0409 15:17:08.923779 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.87631 (* 0.3 = 0.562893 loss)
I0409 15:17:08.923794 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.530137 (* 0.3 = 0.159041 loss)
I0409 15:17:08.923807 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.627907
I0409 15:17:08.923820 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.880682
I0409 15:17:08.923832 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.883721
I0409 15:17:08.923846 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.10344 (* 0.3 = 0.331031 loss)
I0409 15:17:08.923861 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.363265 (* 0.3 = 0.10898 loss)
I0409 15:17:08.923873 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.860465
I0409 15:17:08.923885 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.960227
I0409 15:17:08.923897 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 1
I0409 15:17:08.923913 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.374674 (* 1 = 0.374674 loss)
I0409 15:17:08.923928 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.102284 (* 1 = 0.102284 loss)
I0409 15:17:08.923940 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0409 15:17:08.923952 12249 solver.cpp:245] Train net output #16: total_confidence = 0.46858
I0409 15:17:08.923967 12249 sgd_solver.cpp:106] Iteration 166500, lr = 0.00762143
I0409 15:22:42.325626 12249 solver.cpp:229] Iteration 167000, loss = 2.28188
I0409 15:22:42.325924 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.521739
I0409 15:22:42.325944 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.863636
I0409 15:22:42.325958 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.652174
I0409 15:22:42.325973 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.6798 (* 0.3 = 0.503941 loss)
I0409 15:22:42.325989 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.47638 (* 0.3 = 0.142914 loss)
I0409 15:22:42.326001 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.652174
I0409 15:22:42.326014 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.903409
I0409 15:22:42.326026 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.891304
I0409 15:22:42.326040 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.19718 (* 0.3 = 0.359153 loss)
I0409 15:22:42.326058 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.32813 (* 0.3 = 0.098439 loss)
I0409 15:22:42.326071 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.826087
I0409 15:22:42.326084 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.948864
I0409 15:22:42.326097 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.956522
I0409 15:22:42.326110 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.546257 (* 1 = 0.546257 loss)
I0409 15:22:42.326124 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.164871 (* 1 = 0.164871 loss)
I0409 15:22:42.326138 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0409 15:22:42.326150 12249 solver.cpp:245] Train net output #16: total_confidence = 0.483983
I0409 15:22:42.326165 12249 sgd_solver.cpp:106] Iteration 167000, lr = 0.00761429
I0409 15:28:15.688665 12249 solver.cpp:229] Iteration 167500, loss = 2.3039
I0409 15:28:15.688873 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.23913
I0409 15:28:15.688894 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.795455
I0409 15:28:15.688907 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.413043
I0409 15:28:15.688925 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.40785 (* 0.3 = 0.722356 loss)
I0409 15:28:15.688941 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.65607 (* 0.3 = 0.196821 loss)
I0409 15:28:15.688953 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.413043
I0409 15:28:15.688966 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.846591
I0409 15:28:15.688978 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.673913
I0409 15:28:15.688992 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.20008 (* 0.3 = 0.660025 loss)
I0409 15:28:15.689007 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.597657 (* 0.3 = 0.179297 loss)
I0409 15:28:15.689019 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.652174
I0409 15:28:15.689031 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.909091
I0409 15:28:15.689043 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.717391
I0409 15:28:15.689059 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.52246 (* 1 = 1.52246 loss)
I0409 15:28:15.689072 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.420194 (* 1 = 0.420194 loss)
I0409 15:28:15.689085 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0409 15:28:15.689097 12249 solver.cpp:245] Train net output #16: total_confidence = 0.281178
I0409 15:28:15.689112 12249 sgd_solver.cpp:106] Iteration 167500, lr = 0.00760714
I0409 15:33:49.066294 12249 solver.cpp:229] Iteration 168000, loss = 2.27522
I0409 15:33:49.066591 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.5
I0409 15:33:49.066612 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.846591
I0409 15:33:49.066627 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.65
I0409 15:33:49.066642 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.93872 (* 0.3 = 0.581615 loss)
I0409 15:33:49.066658 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.604402 (* 0.3 = 0.18132 loss)
I0409 15:33:49.066670 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.625
I0409 15:33:49.066682 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.892045
I0409 15:33:49.066694 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.925
I0409 15:33:49.066709 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 0.977455 (* 0.3 = 0.293236 loss)
I0409 15:33:49.066722 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.299034 (* 0.3 = 0.0897101 loss)
I0409 15:33:49.066735 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.9
I0409 15:33:49.066747 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.960227
I0409 15:33:49.066759 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.95
I0409 15:33:49.066773 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.464056 (* 1 = 0.464056 loss)
I0409 15:33:49.066788 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.152186 (* 1 = 0.152186 loss)
I0409 15:33:49.066800 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0409 15:33:49.066812 12249 solver.cpp:245] Train net output #16: total_confidence = 0.440329
I0409 15:33:49.066826 12249 sgd_solver.cpp:106] Iteration 168000, lr = 0.0076
I0409 15:39:22.425823 12249 solver.cpp:229] Iteration 168500, loss = 2.27551
I0409 15:39:22.425983 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.382979
I0409 15:39:22.426014 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.789773
I0409 15:39:22.426041 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.744681
I0409 15:39:22.426065 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.9121 (* 0.3 = 0.573631 loss)
I0409 15:39:22.426081 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.721874 (* 0.3 = 0.216562 loss)
I0409 15:39:22.426095 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.531915
I0409 15:39:22.426106 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.829545
I0409 15:39:22.426120 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.829787
I0409 15:39:22.426133 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.45706 (* 0.3 = 0.437117 loss)
I0409 15:39:22.426147 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.614846 (* 0.3 = 0.184454 loss)
I0409 15:39:22.426161 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.893617
I0409 15:39:22.426172 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.926136
I0409 15:39:22.426184 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.957447
I0409 15:39:22.426198 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.507466 (* 1 = 0.507466 loss)
I0409 15:39:22.426213 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.386532 (* 1 = 0.386532 loss)
I0409 15:39:22.426224 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0409 15:39:22.426236 12249 solver.cpp:245] Train net output #16: total_confidence = 0.325402
I0409 15:39:22.426251 12249 sgd_solver.cpp:106] Iteration 168500, lr = 0.00759286
I0409 15:44:55.788681 12249 solver.cpp:229] Iteration 169000, loss = 2.29205
I0409 15:44:55.788965 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.425532
I0409 15:44:55.788995 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.835227
I0409 15:44:55.789019 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.595745
I0409 15:44:55.789048 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.95132 (* 0.3 = 0.585397 loss)
I0409 15:44:55.789075 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.580624 (* 0.3 = 0.174187 loss)
I0409 15:44:55.789101 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.489362
I0409 15:44:55.789125 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.835227
I0409 15:44:55.789147 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.829787
I0409 15:44:55.789172 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.59336 (* 0.3 = 0.478009 loss)
I0409 15:44:55.789196 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.515803 (* 0.3 = 0.154741 loss)
I0409 15:44:55.789218 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.702128
I0409 15:44:55.789240 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.909091
I0409 15:44:55.789263 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.851064
I0409 15:44:55.789289 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.962786 (* 1 = 0.962786 loss)
I0409 15:44:55.789314 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.288002 (* 1 = 0.288002 loss)
I0409 15:44:55.789335 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0409 15:44:55.789357 12249 solver.cpp:245] Train net output #16: total_confidence = 0.288824
I0409 15:44:55.789383 12249 sgd_solver.cpp:106] Iteration 169000, lr = 0.00758571
I0409 15:50:29.163164 12249 solver.cpp:229] Iteration 169500, loss = 2.30099
I0409 15:50:29.163352 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.302326
I0409 15:50:29.163381 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.789773
I0409 15:50:29.163403 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.55814
I0409 15:50:29.163431 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.12753 (* 0.3 = 0.638258 loss)
I0409 15:50:29.163460 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.668909 (* 0.3 = 0.200673 loss)
I0409 15:50:29.163481 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.604651
I0409 15:50:29.163503 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.863636
I0409 15:50:29.163524 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.813953
I0409 15:50:29.163550 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.34458 (* 0.3 = 0.403374 loss)
I0409 15:50:29.163578 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.444045 (* 0.3 = 0.133213 loss)
I0409 15:50:29.163599 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.883721
I0409 15:50:29.163620 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.960227
I0409 15:50:29.163640 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.953488
I0409 15:50:29.163666 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.501737 (* 1 = 0.501737 loss)
I0409 15:50:29.163691 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.163493 (* 1 = 0.163493 loss)
I0409 15:50:29.163712 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.75
I0409 15:50:29.163734 12249 solver.cpp:245] Train net output #16: total_confidence = 0.484239
I0409 15:50:29.163763 12249 sgd_solver.cpp:106] Iteration 169500, lr = 0.00757857
I0409 15:56:02.146132 12249 solver.cpp:456] Snapshotting to binary proto file /mnt/snapshots/mixed_lstm10_bn_iter_170000.caffemodel
I0409 15:56:02.644613 12249 sgd_solver.cpp:273] Snapshotting solver state to binary proto file /mnt/snapshots/mixed_lstm10_bn_iter_170000.solverstate
I0409 15:56:02.891125 12249 solver.cpp:338] Iteration 170000, Testing net (#0)
I0409 15:56:43.888973 12249 solver.cpp:393] Test loss: 2.00803
I0409 15:56:43.889084 12249 solver.cpp:406] Test net output #0: loss1/accuracy = 0.491253
I0409 15:56:43.889103 12249 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.864639
I0409 15:56:43.889117 12249 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.769775
I0409 15:56:43.889132 12249 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 1.76791 (* 0.3 = 0.530373 loss)
I0409 15:56:43.889147 12249 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.476219 (* 0.3 = 0.142866 loss)
I0409 15:56:43.889159 12249 solver.cpp:406] Test net output #5: loss2/accuracy = 0.724651
I0409 15:56:43.889171 12249 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.917865
I0409 15:56:43.889183 12249 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.891795
I0409 15:56:43.889195 12249 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.05954 (* 0.3 = 0.317862 loss)
I0409 15:56:43.889210 12249 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.306369 (* 0.3 = 0.0919106 loss)
I0409 15:56:43.889221 12249 solver.cpp:406] Test net output #10: loss3/accuracy = 0.827024
I0409 15:56:43.889233 12249 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.953455
I0409 15:56:43.889245 12249 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.912772
I0409 15:56:43.889258 12249 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 0.729098 (* 1 = 0.729098 loss)
I0409 15:56:43.889272 12249 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.195917 (* 1 = 0.195917 loss)
I0409 15:56:43.889284 12249 solver.cpp:406] Test net output #15: total_accuracy = 0.557
I0409 15:56:43.889295 12249 solver.cpp:406] Test net output #16: total_confidence = 0.493723
I0409 15:56:44.262045 12249 solver.cpp:229] Iteration 170000, loss = 2.32927
I0409 15:56:44.262104 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.377358
I0409 15:56:44.262121 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.806818
I0409 15:56:44.262135 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.566038
I0409 15:56:44.262151 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.37741 (* 0.3 = 0.713224 loss)
I0409 15:56:44.262166 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.755261 (* 0.3 = 0.226578 loss)
I0409 15:56:44.262178 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.396226
I0409 15:56:44.262190 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.8125
I0409 15:56:44.262202 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.641509
I0409 15:56:44.262217 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.93761 (* 0.3 = 0.581284 loss)
I0409 15:56:44.262231 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.609375 (* 0.3 = 0.182813 loss)
I0409 15:56:44.262246 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.641509
I0409 15:56:44.262260 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.880682
I0409 15:56:44.262272 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.811321
I0409 15:56:44.262286 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.15219 (* 1 = 1.15219 loss)
I0409 15:56:44.262300 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.368796 (* 1 = 0.368796 loss)
I0409 15:56:44.262313 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0409 15:56:44.262326 12249 solver.cpp:245] Train net output #16: total_confidence = 0.186865
I0409 15:56:44.262341 12249 sgd_solver.cpp:106] Iteration 170000, lr = 0.00757143
I0409 16:02:17.567322 12249 solver.cpp:229] Iteration 170500, loss = 2.27431
I0409 16:02:17.567651 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.416667
I0409 16:02:17.567672 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.818182
I0409 16:02:17.567685 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.666667
I0409 16:02:17.567703 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.95287 (* 0.3 = 0.585862 loss)
I0409 16:02:17.567718 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.598231 (* 0.3 = 0.179469 loss)
I0409 16:02:17.567731 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.625
I0409 16:02:17.567747 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.880682
I0409 16:02:17.567759 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.854167
I0409 16:02:17.567773 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.16082 (* 0.3 = 0.348246 loss)
I0409 16:02:17.567788 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.377697 (* 0.3 = 0.113309 loss)
I0409 16:02:17.567801 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.916667
I0409 16:02:17.567813 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.971591
I0409 16:02:17.567826 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 1
I0409 16:02:17.567839 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.32778 (* 1 = 0.32778 loss)
I0409 16:02:17.567853 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.105041 (* 1 = 0.105041 loss)
I0409 16:02:17.567865 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0409 16:02:17.567878 12249 solver.cpp:245] Train net output #16: total_confidence = 0.398262
I0409 16:02:17.567893 12249 sgd_solver.cpp:106] Iteration 170500, lr = 0.00756429
I0409 16:07:50.954659 12249 solver.cpp:229] Iteration 171000, loss = 2.25821
I0409 16:07:50.954790 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.38
I0409 16:07:50.954810 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.806818
I0409 16:07:50.954823 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.62
I0409 16:07:50.954840 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.95873 (* 0.3 = 0.587618 loss)
I0409 16:07:50.954855 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.631927 (* 0.3 = 0.189578 loss)
I0409 16:07:50.954869 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.7
I0409 16:07:50.954880 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.903409
I0409 16:07:50.954892 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.9
I0409 16:07:50.954906 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.06739 (* 0.3 = 0.320216 loss)
I0409 16:07:50.954921 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.329505 (* 0.3 = 0.0988516 loss)
I0409 16:07:50.954933 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.94
I0409 16:07:50.954946 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.971591
I0409 16:07:50.954957 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 1
I0409 16:07:50.954972 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.284972 (* 1 = 0.284972 loss)
I0409 16:07:50.954987 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.109406 (* 1 = 0.109406 loss)
I0409 16:07:50.954999 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.75
I0409 16:07:50.955011 12249 solver.cpp:245] Train net output #16: total_confidence = 0.362988
I0409 16:07:50.955025 12249 sgd_solver.cpp:106] Iteration 171000, lr = 0.00755714
I0409 16:13:24.319866 12249 solver.cpp:229] Iteration 171500, loss = 2.24767
I0409 16:13:24.320251 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.3
I0409 16:13:24.320273 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.806818
I0409 16:13:24.320287 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.425
I0409 16:13:24.320304 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.48585 (* 0.3 = 0.745756 loss)
I0409 16:13:24.320319 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.680268 (* 0.3 = 0.20408 loss)
I0409 16:13:24.320333 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.6
I0409 16:13:24.320344 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.892045
I0409 16:13:24.320356 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.825
I0409 16:13:24.320370 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.41377 (* 0.3 = 0.424131 loss)
I0409 16:13:24.320386 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.404625 (* 0.3 = 0.121387 loss)
I0409 16:13:24.320399 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.9
I0409 16:13:24.320411 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.977273
I0409 16:13:24.320423 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.975
I0409 16:13:24.320437 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.489545 (* 1 = 0.489545 loss)
I0409 16:13:24.320452 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.115556 (* 1 = 0.115556 loss)
I0409 16:13:24.320466 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.75
I0409 16:13:24.320477 12249 solver.cpp:245] Train net output #16: total_confidence = 0.460575
I0409 16:13:24.320511 12249 sgd_solver.cpp:106] Iteration 171500, lr = 0.00755
I0409 16:18:57.687446 12249 solver.cpp:229] Iteration 172000, loss = 2.25689
I0409 16:18:57.687577 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.268293
I0409 16:18:57.687607 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.795455
I0409 16:18:57.687629 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.560976
I0409 16:18:57.687657 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.53152 (* 0.3 = 0.759455 loss)
I0409 16:18:57.687685 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.745537 (* 0.3 = 0.223661 loss)
I0409 16:18:57.687706 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.560976
I0409 16:18:57.687728 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.852273
I0409 16:18:57.687752 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.804878
I0409 16:18:57.687778 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.52469 (* 0.3 = 0.457408 loss)
I0409 16:18:57.687805 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.493221 (* 0.3 = 0.147966 loss)
I0409 16:18:57.687827 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.829268
I0409 16:18:57.687849 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.9375
I0409 16:18:57.687868 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.853659
I0409 16:18:57.687893 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.10772 (* 1 = 1.10772 loss)
I0409 16:18:57.687918 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.332266 (* 1 = 0.332266 loss)
I0409 16:18:57.687939 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0409 16:18:57.687963 12249 solver.cpp:245] Train net output #16: total_confidence = 0.50855
I0409 16:18:57.687988 12249 sgd_solver.cpp:106] Iteration 172000, lr = 0.00754286
I0409 16:24:31.069054 12249 solver.cpp:229] Iteration 172500, loss = 2.25641
I0409 16:24:31.069413 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.479167
I0409 16:24:31.069442 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.852273
I0409 16:24:31.069465 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.6875
I0409 16:24:31.069492 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.97574 (* 0.3 = 0.592723 loss)
I0409 16:24:31.069522 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.57525 (* 0.3 = 0.172575 loss)
I0409 16:24:31.069543 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.625
I0409 16:24:31.069564 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.886364
I0409 16:24:31.069584 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.770833
I0409 16:24:31.069609 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.29256 (* 0.3 = 0.387768 loss)
I0409 16:24:31.069631 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.381139 (* 0.3 = 0.114342 loss)
I0409 16:24:31.069653 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.854167
I0409 16:24:31.069676 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.960227
I0409 16:24:31.069699 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.916667
I0409 16:24:31.069722 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.665848 (* 1 = 0.665848 loss)
I0409 16:24:31.069752 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.187122 (* 1 = 0.187122 loss)
I0409 16:24:31.069777 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0409 16:24:31.069799 12249 solver.cpp:245] Train net output #16: total_confidence = 0.521498
I0409 16:24:31.069823 12249 sgd_solver.cpp:106] Iteration 172500, lr = 0.00753571
I0409 16:30:04.460060 12249 solver.cpp:229] Iteration 173000, loss = 2.20033
I0409 16:30:04.460201 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.265306
I0409 16:30:04.460221 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.772727
I0409 16:30:04.460233 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.571429
I0409 16:30:04.460250 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.58375 (* 0.3 = 0.775125 loss)
I0409 16:30:04.460265 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.787128 (* 0.3 = 0.236138 loss)
I0409 16:30:04.460278 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.408163
I0409 16:30:04.460290 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.818182
I0409 16:30:04.460302 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.77551
I0409 16:30:04.460316 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.77528 (* 0.3 = 0.532585 loss)
I0409 16:30:04.460330 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.546288 (* 0.3 = 0.163886 loss)
I0409 16:30:04.460343 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.714286
I0409 16:30:04.460355 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.909091
I0409 16:30:04.460367 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.938776
I0409 16:30:04.460382 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.843843 (* 1 = 0.843843 loss)
I0409 16:30:04.460397 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.298738 (* 1 = 0.298738 loss)
I0409 16:30:04.460408 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0409 16:30:04.460420 12249 solver.cpp:245] Train net output #16: total_confidence = 0.37599
I0409 16:30:04.460436 12249 sgd_solver.cpp:106] Iteration 173000, lr = 0.00752857
I0409 16:35:37.798632 12249 solver.cpp:229] Iteration 173500, loss = 2.27872
I0409 16:35:37.799800 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.358974
I0409 16:35:37.799824 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.823864
I0409 16:35:37.799839 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.564103
I0409 16:35:37.799855 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.42109 (* 0.3 = 0.726328 loss)
I0409 16:35:37.799871 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.666982 (* 0.3 = 0.200095 loss)
I0409 16:35:37.799885 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.538462
I0409 16:35:37.799897 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.835227
I0409 16:35:37.799909 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.717949
I0409 16:35:37.799924 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.82517 (* 0.3 = 0.547551 loss)
I0409 16:35:37.799939 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.661493 (* 0.3 = 0.198448 loss)
I0409 16:35:37.799952 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.641026
I0409 16:35:37.799964 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.892045
I0409 16:35:37.799978 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.769231
I0409 16:35:37.799991 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.44139 (* 1 = 1.44139 loss)
I0409 16:35:37.800005 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.459048 (* 1 = 0.459048 loss)
I0409 16:35:37.800019 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0409 16:35:37.800031 12249 solver.cpp:245] Train net output #16: total_confidence = 0.408684
I0409 16:35:37.800046 12249 sgd_solver.cpp:106] Iteration 173500, lr = 0.00752143
I0409 16:41:11.176165 12249 solver.cpp:229] Iteration 174000, loss = 2.27186
I0409 16:41:11.176314 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.384615
I0409 16:41:11.176336 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.852273
I0409 16:41:11.176348 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.692308
I0409 16:41:11.176365 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.06781 (* 0.3 = 0.620343 loss)
I0409 16:41:11.176381 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.557763 (* 0.3 = 0.167329 loss)
I0409 16:41:11.176394 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.564103
I0409 16:41:11.176406 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.857955
I0409 16:41:11.176419 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.794872
I0409 16:41:11.176434 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.38643 (* 0.3 = 0.415928 loss)
I0409 16:41:11.176448 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.444219 (* 0.3 = 0.133266 loss)
I0409 16:41:11.176461 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.846154
I0409 16:41:11.176473 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.948864
I0409 16:41:11.176499 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.948718
I0409 16:41:11.176517 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.566763 (* 1 = 0.566763 loss)
I0409 16:41:11.176530 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.194002 (* 1 = 0.194002 loss)
I0409 16:41:11.176543 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0409 16:41:11.176555 12249 solver.cpp:245] Train net output #16: total_confidence = 0.30383
I0409 16:41:11.176570 12249 sgd_solver.cpp:106] Iteration 174000, lr = 0.00751429
I0409 16:46:44.559134 12249 solver.cpp:229] Iteration 174500, loss = 2.23068
I0409 16:46:44.559474 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.27027
I0409 16:46:44.559495 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.806818
I0409 16:46:44.559509 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.675676
I0409 16:46:44.559525 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.21491 (* 0.3 = 0.664473 loss)
I0409 16:46:44.559541 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.602088 (* 0.3 = 0.180626 loss)
I0409 16:46:44.559553 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.540541
I0409 16:46:44.559566 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.852273
I0409 16:46:44.559578 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.756757
I0409 16:46:44.559592 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.44097 (* 0.3 = 0.43229 loss)
I0409 16:46:44.559607 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.468682 (* 0.3 = 0.140605 loss)
I0409 16:46:44.559620 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.837838
I0409 16:46:44.559633 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.954545
I0409 16:46:44.559645 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.918919
I0409 16:46:44.559659 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.7427 (* 1 = 0.7427 loss)
I0409 16:46:44.559674 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.203948 (* 1 = 0.203948 loss)
I0409 16:46:44.559686 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0409 16:46:44.559698 12249 solver.cpp:245] Train net output #16: total_confidence = 0.364475
I0409 16:46:44.559713 12249 sgd_solver.cpp:106] Iteration 174500, lr = 0.00750714
I0409 16:52:17.875975 12249 solver.cpp:338] Iteration 175000, Testing net (#0)
I0409 16:52:59.158888 12249 solver.cpp:393] Test loss: 1.9786
I0409 16:52:59.159024 12249 solver.cpp:406] Test net output #0: loss1/accuracy = 0.520521
I0409 16:52:59.159044 12249 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.870594
I0409 16:52:59.159057 12249 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.785487
I0409 16:52:59.159075 12249 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 1.66403 (* 0.3 = 0.49921 loss)
I0409 16:52:59.159090 12249 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.452655 (* 0.3 = 0.135797 loss)
I0409 16:52:59.159101 12249 solver.cpp:406] Test net output #5: loss2/accuracy = 0.681281
I0409 16:52:59.159113 12249 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.918183
I0409 16:52:59.159124 12249 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.890832
I0409 16:52:59.159138 12249 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.12115 (* 0.3 = 0.336346 loss)
I0409 16:52:59.159152 12249 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.292197 (* 0.3 = 0.0876592 loss)
I0409 16:52:59.159163 12249 solver.cpp:406] Test net output #10: loss3/accuracy = 0.823389
I0409 16:52:59.159175 12249 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.954364
I0409 16:52:59.159188 12249 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.91312
I0409 16:52:59.159201 12249 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 0.724724 (* 1 = 0.724724 loss)
I0409 16:52:59.159215 12249 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.194869 (* 1 = 0.194869 loss)
I0409 16:52:59.159227 12249 solver.cpp:406] Test net output #15: total_accuracy = 0.534
I0409 16:52:59.159238 12249 solver.cpp:406] Test net output #16: total_confidence = 0.487336
I0409 16:52:59.535024 12249 solver.cpp:229] Iteration 175000, loss = 2.27472
I0409 16:52:59.535089 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.571429
I0409 16:52:59.535106 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.880682
I0409 16:52:59.535120 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.809524
I0409 16:52:59.535136 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.45453 (* 0.3 = 0.436359 loss)
I0409 16:52:59.535151 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.401233 (* 0.3 = 0.12037 loss)
I0409 16:52:59.535164 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.714286
I0409 16:52:59.535176 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.920455
I0409 16:52:59.535188 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.880952
I0409 16:52:59.535203 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.15793 (* 0.3 = 0.34738 loss)
I0409 16:52:59.535218 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.318287 (* 0.3 = 0.095486 loss)
I0409 16:52:59.535230 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.880952
I0409 16:52:59.535243 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.960227
I0409 16:52:59.535254 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.952381
I0409 16:52:59.535269 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.530678 (* 1 = 0.530678 loss)
I0409 16:52:59.535282 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.164988 (* 1 = 0.164988 loss)
I0409 16:52:59.535295 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0409 16:52:59.535307 12249 solver.cpp:245] Train net output #16: total_confidence = 0.598115
I0409 16:52:59.535321 12249 sgd_solver.cpp:106] Iteration 175000, lr = 0.0075
I0409 16:58:32.955554 12249 solver.cpp:229] Iteration 175500, loss = 2.25388
I0409 16:58:32.955716 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.311111
I0409 16:58:32.955737 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.8125
I0409 16:58:32.955754 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.511111
I0409 16:58:32.955770 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.4495 (* 0.3 = 0.73485 loss)
I0409 16:58:32.955785 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.669101 (* 0.3 = 0.20073 loss)
I0409 16:58:32.955798 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.533333
I0409 16:58:32.955811 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.863636
I0409 16:58:32.955822 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.844444
I0409 16:58:32.955837 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.60506 (* 0.3 = 0.481519 loss)
I0409 16:58:32.955850 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.452922 (* 0.3 = 0.135877 loss)
I0409 16:58:32.955862 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.822222
I0409 16:58:32.955874 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.948864
I0409 16:58:32.955886 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.911111
I0409 16:58:32.955900 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.14634 (* 1 = 1.14634 loss)
I0409 16:58:32.955914 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.311389 (* 1 = 0.311389 loss)
I0409 16:58:32.955926 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0409 16:58:32.955938 12249 solver.cpp:245] Train net output #16: total_confidence = 0.388467
I0409 16:58:32.955953 12249 sgd_solver.cpp:106] Iteration 175500, lr = 0.00749286
I0409 17:04:06.335975 12249 solver.cpp:229] Iteration 176000, loss = 2.26146
I0409 17:04:06.336316 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.428571
I0409 17:04:06.336338 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.857955
I0409 17:04:06.336350 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.642857
I0409 17:04:06.336367 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.93617 (* 0.3 = 0.58085 loss)
I0409 17:04:06.336385 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.492267 (* 0.3 = 0.14768 loss)
I0409 17:04:06.336396 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.571429
I0409 17:04:06.336408 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.886364
I0409 17:04:06.336421 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.833333
I0409 17:04:06.336434 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.28127 (* 0.3 = 0.384382 loss)
I0409 17:04:06.336448 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.336683 (* 0.3 = 0.101005 loss)
I0409 17:04:06.336462 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.904762
I0409 17:04:06.336473 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.977273
I0409 17:04:06.336506 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.952381
I0409 17:04:06.336524 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.303643 (* 1 = 0.303643 loss)
I0409 17:04:06.336539 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.078732 (* 1 = 0.078732 loss)
I0409 17:04:06.336550 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0409 17:04:06.336562 12249 solver.cpp:245] Train net output #16: total_confidence = 0.529136
I0409 17:04:06.336577 12249 sgd_solver.cpp:106] Iteration 176000, lr = 0.00748571
I0409 17:09:39.714808 12249 solver.cpp:229] Iteration 176500, loss = 2.23284
I0409 17:09:39.714951 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.533333
I0409 17:09:39.714978 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.852273
I0409 17:09:39.715001 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.822222
I0409 17:09:39.715029 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.33525 (* 0.3 = 0.400576 loss)
I0409 17:09:39.715055 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.405679 (* 0.3 = 0.121704 loss)
I0409 17:09:39.715078 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.711111
I0409 17:09:39.715101 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.897727
I0409 17:09:39.715124 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.955556
I0409 17:09:39.715148 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 0.891324 (* 0.3 = 0.267397 loss)
I0409 17:09:39.715174 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.297048 (* 0.3 = 0.0891145 loss)
I0409 17:09:39.715198 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.933333
I0409 17:09:39.715217 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.982955
I0409 17:09:39.715240 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 1
I0409 17:09:39.715266 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.255608 (* 1 = 0.255608 loss)
I0409 17:09:39.715293 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.0738675 (* 1 = 0.0738675 loss)
I0409 17:09:39.715315 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0409 17:09:39.715337 12249 solver.cpp:245] Train net output #16: total_confidence = 0.462178
I0409 17:09:39.715361 12249 sgd_solver.cpp:106] Iteration 176500, lr = 0.00747857
I0409 17:15:13.086069 12249 solver.cpp:229] Iteration 177000, loss = 2.21173
I0409 17:15:13.086360 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.259259
I0409 17:15:13.086380 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.761364
I0409 17:15:13.086393 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.592593
I0409 17:15:13.086410 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.32307 (* 0.3 = 0.696922 loss)
I0409 17:15:13.086426 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.747929 (* 0.3 = 0.224379 loss)
I0409 17:15:13.086438 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.5
I0409 17:15:13.086452 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.846591
I0409 17:15:13.086463 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.740741
I0409 17:15:13.086477 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.87264 (* 0.3 = 0.561792 loss)
I0409 17:15:13.086491 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.588957 (* 0.3 = 0.176687 loss)
I0409 17:15:13.086504 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.759259
I0409 17:15:13.086516 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.926136
I0409 17:15:13.086529 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.962963
I0409 17:15:13.086542 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.963783 (* 1 = 0.963783 loss)
I0409 17:15:13.086557 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.29992 (* 1 = 0.29992 loss)
I0409 17:15:13.086570 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0409 17:15:13.086581 12249 solver.cpp:245] Train net output #16: total_confidence = 0.323042
I0409 17:15:13.086596 12249 sgd_solver.cpp:106] Iteration 177000, lr = 0.00747143
I0409 17:20:46.448889 12249 solver.cpp:229] Iteration 177500, loss = 2.21142
I0409 17:20:46.449010 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.425532
I0409 17:20:46.449030 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.840909
I0409 17:20:46.449043 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.765957
I0409 17:20:46.449060 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.73261 (* 0.3 = 0.519784 loss)
I0409 17:20:46.449075 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.480514 (* 0.3 = 0.144154 loss)
I0409 17:20:46.449087 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.638298
I0409 17:20:46.449100 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.897727
I0409 17:20:46.449111 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.829787
I0409 17:20:46.449126 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.26264 (* 0.3 = 0.378792 loss)
I0409 17:20:46.449141 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.3611 (* 0.3 = 0.10833 loss)
I0409 17:20:46.449153 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.93617
I0409 17:20:46.449165 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.982955
I0409 17:20:46.449177 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.978723
I0409 17:20:46.449192 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.352459 (* 1 = 0.352459 loss)
I0409 17:20:46.449206 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.0967293 (* 1 = 0.0967293 loss)
I0409 17:20:46.449218 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.75
I0409 17:20:46.449230 12249 solver.cpp:245] Train net output #16: total_confidence = 0.535571
I0409 17:20:46.449245 12249 sgd_solver.cpp:106] Iteration 177500, lr = 0.00746429
I0409 17:26:19.828718 12249 solver.cpp:229] Iteration 178000, loss = 2.21916
I0409 17:26:19.829089 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.410256
I0409 17:26:19.829112 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.846591
I0409 17:26:19.829125 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.641026
I0409 17:26:19.829143 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.0768 (* 0.3 = 0.62304 loss)
I0409 17:26:19.829157 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.560124 (* 0.3 = 0.168037 loss)
I0409 17:26:19.829170 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.692308
I0409 17:26:19.829182 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.914773
I0409 17:26:19.829195 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.871795
I0409 17:26:19.829210 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.10719 (* 0.3 = 0.332157 loss)
I0409 17:26:19.829223 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.318543 (* 0.3 = 0.095563 loss)
I0409 17:26:19.829236 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.897436
I0409 17:26:19.829248 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.977273
I0409 17:26:19.829262 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.948718
I0409 17:26:19.829275 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.406235 (* 1 = 0.406235 loss)
I0409 17:26:19.829289 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.114291 (* 1 = 0.114291 loss)
I0409 17:26:19.829303 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0409 17:26:19.829314 12249 solver.cpp:245] Train net output #16: total_confidence = 0.388592
I0409 17:26:19.829329 12249 sgd_solver.cpp:106] Iteration 178000, lr = 0.00745714
I0409 17:31:53.200016 12249 solver.cpp:229] Iteration 178500, loss = 2.27778
I0409 17:31:53.200276 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.46
I0409 17:31:53.200307 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.823864
I0409 17:31:53.200332 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.7
I0409 17:31:53.200361 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.04358 (* 0.3 = 0.613074 loss)
I0409 17:31:53.200381 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.643741 (* 0.3 = 0.193122 loss)
I0409 17:31:53.200397 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.72
I0409 17:31:53.200409 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.920455
I0409 17:31:53.200422 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.88
I0409 17:31:53.200435 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.20405 (* 0.3 = 0.361215 loss)
I0409 17:31:53.200450 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.359464 (* 0.3 = 0.107839 loss)
I0409 17:31:53.200462 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.86
I0409 17:31:53.200474 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.954545
I0409 17:31:53.200501 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.96
I0409 17:31:53.200518 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.443728 (* 1 = 0.443728 loss)
I0409 17:31:53.200532 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.148677 (* 1 = 0.148677 loss)
I0409 17:31:53.200544 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0409 17:31:53.200556 12249 solver.cpp:245] Train net output #16: total_confidence = 0.393436
I0409 17:31:53.200572 12249 sgd_solver.cpp:106] Iteration 178500, lr = 0.00745
I0409 17:37:26.567981 12249 solver.cpp:229] Iteration 179000, loss = 2.2338
I0409 17:37:26.568140 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.355556
I0409 17:37:26.568169 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.818182
I0409 17:37:26.568192 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.622222
I0409 17:37:26.568222 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.23917 (* 0.3 = 0.671752 loss)
I0409 17:37:26.568249 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.633498 (* 0.3 = 0.19005 loss)
I0409 17:37:26.568271 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.511111
I0409 17:37:26.568292 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.846591
I0409 17:37:26.568312 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.822222
I0409 17:37:26.568341 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.6159 (* 0.3 = 0.484769 loss)
I0409 17:37:26.568367 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.459861 (* 0.3 = 0.137958 loss)
I0409 17:37:26.568388 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.688889
I0409 17:37:26.568409 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.920455
I0409 17:37:26.568430 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.866667
I0409 17:37:26.568455 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.0485 (* 1 = 1.0485 loss)
I0409 17:37:26.568498 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.280955 (* 1 = 0.280955 loss)
I0409 17:37:26.568524 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0409 17:37:26.568547 12249 solver.cpp:245] Train net output #16: total_confidence = 0.296686
I0409 17:37:26.568570 12249 sgd_solver.cpp:106] Iteration 179000, lr = 0.00744286
I0409 17:43:00.297263 12249 solver.cpp:229] Iteration 179500, loss = 2.2287
I0409 17:43:00.297503 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.372093
I0409 17:43:00.297524 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.8125
I0409 17:43:00.297538 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.55814
I0409 17:43:00.297554 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.46683 (* 0.3 = 0.74005 loss)
I0409 17:43:00.297569 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.691899 (* 0.3 = 0.20757 loss)
I0409 17:43:00.297581 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.488372
I0409 17:43:00.297593 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.857955
I0409 17:43:00.297605 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.72093
I0409 17:43:00.297619 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.93874 (* 0.3 = 0.581622 loss)
I0409 17:43:00.297633 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.543178 (* 0.3 = 0.162954 loss)
I0409 17:43:00.297646 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.697674
I0409 17:43:00.297658 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.909091
I0409 17:43:00.297670 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.767442
I0409 17:43:00.297684 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.52129 (* 1 = 1.52129 loss)
I0409 17:43:00.297698 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.420224 (* 1 = 0.420224 loss)
I0409 17:43:00.297711 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0409 17:43:00.297724 12249 solver.cpp:245] Train net output #16: total_confidence = 0.367608
I0409 17:43:00.297739 12249 sgd_solver.cpp:106] Iteration 179500, lr = 0.00743571
I0409 17:48:33.258967 12249 solver.cpp:456] Snapshotting to binary proto file /mnt/snapshots/mixed_lstm10_bn_iter_180000.caffemodel
I0409 17:48:33.745582 12249 sgd_solver.cpp:273] Snapshotting solver state to binary proto file /mnt/snapshots/mixed_lstm10_bn_iter_180000.solverstate
I0409 17:48:33.993926 12249 solver.cpp:338] Iteration 180000, Testing net (#0)
I0409 17:49:15.018455 12249 solver.cpp:393] Test loss: 1.93503
I0409 17:49:15.018571 12249 solver.cpp:406] Test net output #0: loss1/accuracy = 0.503377
I0409 17:49:15.018591 12249 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.873094
I0409 17:49:15.018604 12249 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.792699
I0409 17:49:15.018621 12249 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 1.70533 (* 0.3 = 0.5116 loss)
I0409 17:49:15.018636 12249 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.441274 (* 0.3 = 0.132382 loss)
I0409 17:49:15.018648 12249 solver.cpp:406] Test net output #5: loss2/accuracy = 0.704162
I0409 17:49:15.018661 12249 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.923638
I0409 17:49:15.018672 12249 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.893033
I0409 17:49:15.018687 12249 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.0691 (* 0.3 = 0.320731 loss)
I0409 17:49:15.018700 12249 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.278649 (* 0.3 = 0.0835948 loss)
I0409 17:49:15.018712 12249 solver.cpp:406] Test net output #10: loss3/accuracy = 0.834521
I0409 17:49:15.018724 12249 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.960137
I0409 17:49:15.018736 12249 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.922212
I0409 17:49:15.018759 12249 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 0.707285 (* 1 = 0.707285 loss)
I0409 17:49:15.018784 12249 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.179436 (* 1 = 0.179436 loss)
I0409 17:49:15.018797 12249 solver.cpp:406] Test net output #15: total_accuracy = 0.586
I0409 17:49:15.018808 12249 solver.cpp:406] Test net output #16: total_confidence = 0.507133
I0409 17:49:15.391975 12249 solver.cpp:229] Iteration 180000, loss = 2.23578
I0409 17:49:15.392040 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.477273
I0409 17:49:15.392057 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.852273
I0409 17:49:15.392071 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.727273
I0409 17:49:15.392087 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.75292 (* 0.3 = 0.525877 loss)
I0409 17:49:15.392102 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.485661 (* 0.3 = 0.145698 loss)
I0409 17:49:15.392115 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.704545
I0409 17:49:15.392127 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.909091
I0409 17:49:15.392140 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.909091
I0409 17:49:15.392154 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 0.841706 (* 0.3 = 0.252512 loss)
I0409 17:49:15.392169 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.264084 (* 0.3 = 0.0792251 loss)
I0409 17:49:15.392181 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.886364
I0409 17:49:15.392194 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.971591
I0409 17:49:15.392205 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.954545
I0409 17:49:15.392223 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.348649 (* 1 = 0.348649 loss)
I0409 17:49:15.392238 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.0949748 (* 1 = 0.0949748 loss)
I0409 17:49:15.392251 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0409 17:49:15.392263 12249 solver.cpp:245] Train net output #16: total_confidence = 0.511888
I0409 17:49:15.392278 12249 sgd_solver.cpp:106] Iteration 180000, lr = 0.00742857
I0409 17:54:48.698468 12249 solver.cpp:229] Iteration 180500, loss = 2.22692
I0409 17:54:48.698797 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.348837
I0409 17:54:48.698818 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.818182
I0409 17:54:48.698832 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.767442
I0409 17:54:48.698848 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.17782 (* 0.3 = 0.653345 loss)
I0409 17:54:48.698863 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.642007 (* 0.3 = 0.192602 loss)
I0409 17:54:48.698876 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.418605
I0409 17:54:48.698889 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.835227
I0409 17:54:48.698900 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.72093
I0409 17:54:48.698915 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.7545 (* 0.3 = 0.526351 loss)
I0409 17:54:48.698928 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.558752 (* 0.3 = 0.167626 loss)
I0409 17:54:48.698940 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.790698
I0409 17:54:48.698952 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.931818
I0409 17:54:48.698964 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.953488
I0409 17:54:48.698979 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.767564 (* 1 = 0.767564 loss)
I0409 17:54:48.698993 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.257435 (* 1 = 0.257435 loss)
I0409 17:54:48.699005 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0409 17:54:48.699018 12249 solver.cpp:245] Train net output #16: total_confidence = 0.328296
I0409 17:54:48.699031 12249 sgd_solver.cpp:106] Iteration 180500, lr = 0.00742143
I0409 18:00:22.081393 12249 solver.cpp:229] Iteration 181000, loss = 2.21416
I0409 18:00:22.081511 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.489362
I0409 18:00:22.081529 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.857955
I0409 18:00:22.081543 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.765957
I0409 18:00:22.081560 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.54094 (* 0.3 = 0.462282 loss)
I0409 18:00:22.081575 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.447086 (* 0.3 = 0.134126 loss)
I0409 18:00:22.081588 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.595745
I0409 18:00:22.081600 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.880682
I0409 18:00:22.081614 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.957447
I0409 18:00:22.081627 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.10523 (* 0.3 = 0.33157 loss)
I0409 18:00:22.081642 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.33862 (* 0.3 = 0.101586 loss)
I0409 18:00:22.081655 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.93617
I0409 18:00:22.081667 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.977273
I0409 18:00:22.081679 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 1
I0409 18:00:22.081693 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.230118 (* 1 = 0.230118 loss)
I0409 18:00:22.081708 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.0700585 (* 1 = 0.0700585 loss)
I0409 18:00:22.081720 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.75
I0409 18:00:22.081733 12249 solver.cpp:245] Train net output #16: total_confidence = 0.485238
I0409 18:00:22.081748 12249 sgd_solver.cpp:106] Iteration 181000, lr = 0.00741429
I0409 18:05:55.429587 12249 solver.cpp:229] Iteration 181500, loss = 2.25535
I0409 18:05:55.429956 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.227273
I0409 18:05:55.429980 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.795455
I0409 18:05:55.429992 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.568182
I0409 18:05:55.430009 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.34851 (* 0.3 = 0.704553 loss)
I0409 18:05:55.430025 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.65255 (* 0.3 = 0.195765 loss)
I0409 18:05:55.430038 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.636364
I0409 18:05:55.430050 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.892045
I0409 18:05:55.430063 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.818182
I0409 18:05:55.430076 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.39855 (* 0.3 = 0.419564 loss)
I0409 18:05:55.430091 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.394172 (* 0.3 = 0.118252 loss)
I0409 18:05:55.430104 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.931818
I0409 18:05:55.430115 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.982955
I0409 18:05:55.430127 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.954545
I0409 18:05:55.430142 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.485901 (* 1 = 0.485901 loss)
I0409 18:05:55.430156 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.135564 (* 1 = 0.135564 loss)
I0409 18:05:55.430168 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.75
I0409 18:05:55.430181 12249 solver.cpp:245] Train net output #16: total_confidence = 0.408593
I0409 18:05:55.430197 12249 sgd_solver.cpp:106] Iteration 181500, lr = 0.00740714
I0409 18:11:28.792356 12249 solver.cpp:229] Iteration 182000, loss = 2.23339
I0409 18:11:28.792469 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.387755
I0409 18:11:28.792505 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.829545
I0409 18:11:28.792520 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.857143
I0409 18:11:28.792537 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.60051 (* 0.3 = 0.480153 loss)
I0409 18:11:28.792552 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.460655 (* 0.3 = 0.138197 loss)
I0409 18:11:28.792565 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.632653
I0409 18:11:28.792578 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.892045
I0409 18:11:28.792590 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.918367
I0409 18:11:28.792604 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.09283 (* 0.3 = 0.32785 loss)
I0409 18:11:28.792618 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.324208 (* 0.3 = 0.0972623 loss)
I0409 18:11:28.792631 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.938776
I0409 18:11:28.792644 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.977273
I0409 18:11:28.792656 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 1
I0409 18:11:28.792670 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.168774 (* 1 = 0.168774 loss)
I0409 18:11:28.792686 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.057426 (* 1 = 0.057426 loss)
I0409 18:11:28.792700 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0409 18:11:28.792711 12249 solver.cpp:245] Train net output #16: total_confidence = 0.521803
I0409 18:11:28.792726 12249 sgd_solver.cpp:106] Iteration 182000, lr = 0.0074
I0409 18:17:02.173941 12249 solver.cpp:229] Iteration 182500, loss = 2.22953
I0409 18:17:02.174300 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.4375
I0409 18:17:02.174324 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.835227
I0409 18:17:02.174337 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.625
I0409 18:17:02.174353 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.31978 (* 0.3 = 0.695935 loss)
I0409 18:17:02.174370 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.693886 (* 0.3 = 0.208166 loss)
I0409 18:17:02.174382 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.583333
I0409 18:17:02.174394 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.869318
I0409 18:17:02.174407 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.791667
I0409 18:17:02.174422 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.51408 (* 0.3 = 0.454225 loss)
I0409 18:17:02.174437 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.46378 (* 0.3 = 0.139134 loss)
I0409 18:17:02.174449 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.875
I0409 18:17:02.174461 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.954545
I0409 18:17:02.174474 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.895833
I0409 18:17:02.174489 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.687994 (* 1 = 0.687994 loss)
I0409 18:17:02.174504 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.206273 (* 1 = 0.206273 loss)
I0409 18:17:02.174516 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.75
I0409 18:17:02.174528 12249 solver.cpp:245] Train net output #16: total_confidence = 0.456017
I0409 18:17:02.174543 12249 sgd_solver.cpp:106] Iteration 182500, lr = 0.00739286
I0409 18:22:35.545428 12249 solver.cpp:229] Iteration 183000, loss = 2.20773
I0409 18:22:35.545737 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.306122
I0409 18:22:35.545758 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.806818
I0409 18:22:35.545771 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.612245
I0409 18:22:35.545789 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.36963 (* 0.3 = 0.710888 loss)
I0409 18:22:35.545804 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.685183 (* 0.3 = 0.205555 loss)
I0409 18:22:35.545820 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.530612
I0409 18:22:35.545835 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.863636
I0409 18:22:35.545846 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.755102
I0409 18:22:35.545861 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.64366 (* 0.3 = 0.493097 loss)
I0409 18:22:35.545874 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.496828 (* 0.3 = 0.149048 loss)
I0409 18:22:35.545887 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.795918
I0409 18:22:35.545899 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.943182
I0409 18:22:35.545912 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.877551
I0409 18:22:35.545925 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.872403 (* 1 = 0.872403 loss)
I0409 18:22:35.545940 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.24799 (* 1 = 0.24799 loss)
I0409 18:22:35.545953 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0409 18:22:35.545965 12249 solver.cpp:245] Train net output #16: total_confidence = 0.370731
I0409 18:22:35.545980 12249 sgd_solver.cpp:106] Iteration 183000, lr = 0.00738571
I0409 18:28:08.930145 12249 solver.cpp:229] Iteration 183500, loss = 2.23015
I0409 18:28:08.930295 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.521739
I0409 18:28:08.930316 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.857955
I0409 18:28:08.930330 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.73913
I0409 18:28:08.930346 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.65106 (* 0.3 = 0.495318 loss)
I0409 18:28:08.930361 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.490848 (* 0.3 = 0.147254 loss)
I0409 18:28:08.930374 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.717391
I0409 18:28:08.930387 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.909091
I0409 18:28:08.930398 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.913043
I0409 18:28:08.930413 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 0.83974 (* 0.3 = 0.251922 loss)
I0409 18:28:08.930428 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.263932 (* 0.3 = 0.0791795 loss)
I0409 18:28:08.930439 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.826087
I0409 18:28:08.930451 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.943182
I0409 18:28:08.930464 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.869565
I0409 18:28:08.930479 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.951998 (* 1 = 0.951998 loss)
I0409 18:28:08.930492 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.292312 (* 1 = 0.292312 loss)
I0409 18:28:08.930505 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0409 18:28:08.930516 12249 solver.cpp:245] Train net output #16: total_confidence = 0.60049
I0409 18:28:08.930531 12249 sgd_solver.cpp:106] Iteration 183500, lr = 0.00737857
I0409 18:33:42.283906 12249 solver.cpp:229] Iteration 184000, loss = 2.21676
I0409 18:33:42.284190 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.513514
I0409 18:33:42.284219 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.863636
I0409 18:33:42.284242 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.648649
I0409 18:33:42.284271 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.75044 (* 0.3 = 0.525133 loss)
I0409 18:33:42.284297 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.495296 (* 0.3 = 0.148589 loss)
I0409 18:33:42.284319 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.756757
I0409 18:33:42.284343 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.897727
I0409 18:33:42.284365 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.837838
I0409 18:33:42.284394 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.12061 (* 0.3 = 0.336183 loss)
I0409 18:33:42.284420 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.439302 (* 0.3 = 0.131791 loss)
I0409 18:33:42.284441 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.783784
I0409 18:33:42.284462 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.948864
I0409 18:33:42.284504 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.864865
I0409 18:33:42.284535 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.693767 (* 1 = 0.693767 loss)
I0409 18:33:42.284562 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.165193 (* 1 = 0.165193 loss)
I0409 18:33:42.284584 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0409 18:33:42.284605 12249 solver.cpp:245] Train net output #16: total_confidence = 0.409432
I0409 18:33:42.284631 12249 sgd_solver.cpp:106] Iteration 184000, lr = 0.00737143
I0409 18:39:15.661748 12249 solver.cpp:229] Iteration 184500, loss = 2.20419
I0409 18:39:15.661898 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.236842
I0409 18:39:15.661918 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.801136
I0409 18:39:15.661931 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.473684
I0409 18:39:15.661948 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.12114 (* 0.3 = 0.936342 loss)
I0409 18:39:15.661964 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.790871 (* 0.3 = 0.237261 loss)
I0409 18:39:15.661977 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.5
I0409 18:39:15.661989 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.863636
I0409 18:39:15.662001 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.605263
I0409 18:39:15.662015 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.22295 (* 0.3 = 0.666884 loss)
I0409 18:39:15.662029 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.552968 (* 0.3 = 0.165891 loss)
I0409 18:39:15.662041 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.526316
I0409 18:39:15.662053 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.886364
I0409 18:39:15.662066 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.657895
I0409 18:39:15.662081 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.05775 (* 1 = 2.05775 loss)
I0409 18:39:15.662096 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.487226 (* 1 = 0.487226 loss)
I0409 18:39:15.662107 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0409 18:39:15.662119 12249 solver.cpp:245] Train net output #16: total_confidence = 0.337309
I0409 18:39:15.662134 12249 sgd_solver.cpp:106] Iteration 184500, lr = 0.00736429
I0409 18:44:48.634768 12249 solver.cpp:338] Iteration 185000, Testing net (#0)
I0409 18:45:30.022099 12249 solver.cpp:393] Test loss: 1.94773
I0409 18:45:30.022187 12249 solver.cpp:406] Test net output #0: loss1/accuracy = 0.536832
I0409 18:45:30.022205 12249 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.875367
I0409 18:45:30.022218 12249 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.80797
I0409 18:45:30.022235 12249 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 1.59603 (* 0.3 = 0.478808 loss)
I0409 18:45:30.022250 12249 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.438559 (* 0.3 = 0.131568 loss)
I0409 18:45:30.022263 12249 solver.cpp:406] Test net output #5: loss2/accuracy = 0.714587
I0409 18:45:30.022274 12249 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.920683
I0409 18:45:30.022287 12249 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.899041
I0409 18:45:30.022300 12249 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.05572 (* 0.3 = 0.316715 loss)
I0409 18:45:30.022315 12249 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.296048 (* 0.3 = 0.0888145 loss)
I0409 18:45:30.022327 12249 solver.cpp:406] Test net output #10: loss3/accuracy = 0.833849
I0409 18:45:30.022339 12249 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.958091
I0409 18:45:30.022351 12249 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.917112
I0409 18:45:30.022364 12249 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 0.739657 (* 1 = 0.739657 loss)
I0409 18:45:30.022377 12249 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.19217 (* 1 = 0.19217 loss)
I0409 18:45:30.022389 12249 solver.cpp:406] Test net output #15: total_accuracy = 0.578
I0409 18:45:30.022402 12249 solver.cpp:406] Test net output #16: total_confidence = 0.534147
I0409 18:45:30.400782 12249 solver.cpp:229] Iteration 185000, loss = 2.1659
I0409 18:45:30.400838 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.452381
I0409 18:45:30.400856 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.846591
I0409 18:45:30.400869 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.785714
I0409 18:45:30.400887 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.547 (* 0.3 = 0.464099 loss)
I0409 18:45:30.400902 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.472812 (* 0.3 = 0.141844 loss)
I0409 18:45:30.400914 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.642857
I0409 18:45:30.400928 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.892045
I0409 18:45:30.400938 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.880952
I0409 18:45:30.400952 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.11947 (* 0.3 = 0.33584 loss)
I0409 18:45:30.400967 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.348983 (* 0.3 = 0.104695 loss)
I0409 18:45:30.400979 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.928571
I0409 18:45:30.400992 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.965909
I0409 18:45:30.401005 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.97619
I0409 18:45:30.401018 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.256266 (* 1 = 0.256266 loss)
I0409 18:45:30.401032 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.160456 (* 1 = 0.160456 loss)
I0409 18:45:30.401044 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0409 18:45:30.401057 12249 solver.cpp:245] Train net output #16: total_confidence = 0.613299
I0409 18:45:30.401072 12249 sgd_solver.cpp:106] Iteration 185000, lr = 0.00735714
I0409 18:51:03.762104 12249 solver.cpp:229] Iteration 185500, loss = 2.19719
I0409 18:51:03.762284 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.425
I0409 18:51:03.762305 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.857955
I0409 18:51:03.762317 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.8
I0409 18:51:03.762334 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.47774 (* 0.3 = 0.443323 loss)
I0409 18:51:03.762351 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.374554 (* 0.3 = 0.112366 loss)
I0409 18:51:03.762363 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.75
I0409 18:51:03.762375 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.909091
I0409 18:51:03.762387 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 1
I0409 18:51:03.762401 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 0.736459 (* 0.3 = 0.220938 loss)
I0409 18:51:03.762416 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.251146 (* 0.3 = 0.0753438 loss)
I0409 18:51:03.762428 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.975
I0409 18:51:03.762440 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.994318
I0409 18:51:03.762452 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 1
I0409 18:51:03.762466 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.0676004 (* 1 = 0.0676004 loss)
I0409 18:51:03.762481 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.0255706 (* 1 = 0.0255706 loss)
I0409 18:51:03.762493 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.875
I0409 18:51:03.762506 12249 solver.cpp:245] Train net output #16: total_confidence = 0.594963
I0409 18:51:03.762521 12249 sgd_solver.cpp:106] Iteration 185500, lr = 0.00735
I0409 18:56:37.434100 12249 solver.cpp:229] Iteration 186000, loss = 2.19424
I0409 18:56:37.434422 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.321429
I0409 18:56:37.434443 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.784091
I0409 18:56:37.434456 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.642857
I0409 18:56:37.434473 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.09281 (* 0.3 = 0.627844 loss)
I0409 18:56:37.434489 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.693857 (* 0.3 = 0.208157 loss)
I0409 18:56:37.434500 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.464286
I0409 18:56:37.434514 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.829545
I0409 18:56:37.434525 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.767857
I0409 18:56:37.434540 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.65466 (* 0.3 = 0.496399 loss)
I0409 18:56:37.434553 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.540642 (* 0.3 = 0.162193 loss)
I0409 18:56:37.434566 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.785714
I0409 18:56:37.434577 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.926136
I0409 18:56:37.434589 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.928571
I0409 18:56:37.434603 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.777632 (* 1 = 0.777632 loss)
I0409 18:56:37.434617 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.264157 (* 1 = 0.264157 loss)
I0409 18:56:37.434629 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0409 18:56:37.434643 12249 solver.cpp:245] Train net output #16: total_confidence = 0.306564
I0409 18:56:37.434656 12249 sgd_solver.cpp:106] Iteration 186000, lr = 0.00734286
I0409 19:02:10.819536 12249 solver.cpp:229] Iteration 186500, loss = 2.18916
I0409 19:02:10.819803 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.355556
I0409 19:02:10.819823 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.818182
I0409 19:02:10.819836 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.644444
I0409 19:02:10.819852 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.06702 (* 0.3 = 0.620107 loss)
I0409 19:02:10.819869 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.584261 (* 0.3 = 0.175278 loss)
I0409 19:02:10.819881 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.666667
I0409 19:02:10.819893 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.903409
I0409 19:02:10.819905 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.866667
I0409 19:02:10.819921 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.1635 (* 0.3 = 0.34905 loss)
I0409 19:02:10.819934 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.336425 (* 0.3 = 0.100927 loss)
I0409 19:02:10.819947 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.844444
I0409 19:02:10.819959 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.960227
I0409 19:02:10.819973 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.955556
I0409 19:02:10.819988 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.394688 (* 1 = 0.394688 loss)
I0409 19:02:10.820001 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.104594 (* 1 = 0.104594 loss)
I0409 19:02:10.820014 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0409 19:02:10.820026 12249 solver.cpp:245] Train net output #16: total_confidence = 0.416137
I0409 19:02:10.820040 12249 sgd_solver.cpp:106] Iteration 186500, lr = 0.00733571
I0409 19:07:44.171347 12249 solver.cpp:229] Iteration 187000, loss = 2.16506
I0409 19:07:44.171562 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.288462
I0409 19:07:44.171583 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.778409
I0409 19:07:44.171597 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.423077
I0409 19:07:44.171613 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.72656 (* 0.3 = 0.817968 loss)
I0409 19:07:44.171629 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.874631 (* 0.3 = 0.262389 loss)
I0409 19:07:44.171641 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.365385
I0409 19:07:44.171654 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.795455
I0409 19:07:44.171666 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.692308
I0409 19:07:44.171680 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.97084 (* 0.3 = 0.591253 loss)
I0409 19:07:44.171694 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.647364 (* 0.3 = 0.194209 loss)
I0409 19:07:44.171706 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.653846
I0409 19:07:44.171720 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.880682
I0409 19:07:44.171731 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.807692
I0409 19:07:44.171747 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.28998 (* 1 = 1.28998 loss)
I0409 19:07:44.171763 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.418701 (* 1 = 0.418701 loss)
I0409 19:07:44.171775 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0409 19:07:44.171787 12249 solver.cpp:245] Train net output #16: total_confidence = 0.262176
I0409 19:07:44.171802 12249 sgd_solver.cpp:106] Iteration 187000, lr = 0.00732857
I0409 19:13:17.545014 12249 solver.cpp:229] Iteration 187500, loss = 2.1759
I0409 19:13:17.545289 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.413043
I0409 19:13:17.545307 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.823864
I0409 19:13:17.545320 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.586957
I0409 19:13:17.545337 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.00906 (* 0.3 = 0.602719 loss)
I0409 19:13:17.545352 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.610436 (* 0.3 = 0.183131 loss)
I0409 19:13:17.545366 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.565217
I0409 19:13:17.545382 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.869318
I0409 19:13:17.545394 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.804348
I0409 19:13:17.545408 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.33074 (* 0.3 = 0.399223 loss)
I0409 19:13:17.545423 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.406178 (* 0.3 = 0.121853 loss)
I0409 19:13:17.545435 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.73913
I0409 19:13:17.545447 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.909091
I0409 19:13:17.545459 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.956522
I0409 19:13:17.545476 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.742441 (* 1 = 0.742441 loss)
I0409 19:13:17.545491 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.262528 (* 1 = 0.262528 loss)
I0409 19:13:17.545505 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0409 19:13:17.545517 12249 solver.cpp:245] Train net output #16: total_confidence = 0.394946
I0409 19:13:17.545532 12249 sgd_solver.cpp:106] Iteration 187500, lr = 0.00732143
I0409 19:18:51.251920 12249 solver.cpp:229] Iteration 188000, loss = 2.20919
I0409 19:18:51.252071 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.42
I0409 19:18:51.252092 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.823864
I0409 19:18:51.252106 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.74
I0409 19:18:51.252122 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.80421 (* 0.3 = 0.541264 loss)
I0409 19:18:51.252138 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.543417 (* 0.3 = 0.163025 loss)
I0409 19:18:51.252151 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.64
I0409 19:18:51.252163 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.880682
I0409 19:18:51.252176 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.92
I0409 19:18:51.252190 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.06903 (* 0.3 = 0.320708 loss)
I0409 19:18:51.252204 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.363971 (* 0.3 = 0.109191 loss)
I0409 19:18:51.252218 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.9
I0409 19:18:51.252229 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.965909
I0409 19:18:51.252241 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 1
I0409 19:18:51.252255 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.25775 (* 1 = 0.25775 loss)
I0409 19:18:51.252270 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.0856372 (* 1 = 0.0856372 loss)
I0409 19:18:51.252284 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0409 19:18:51.252295 12249 solver.cpp:245] Train net output #16: total_confidence = 0.471162
I0409 19:18:51.252310 12249 sgd_solver.cpp:106] Iteration 188000, lr = 0.00731429
I0409 19:24:24.979512 12249 solver.cpp:229] Iteration 188500, loss = 2.21316
I0409 19:24:24.979836 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.456522
I0409 19:24:24.979857 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.835227
I0409 19:24:24.979871 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.652174
I0409 19:24:24.979887 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.96444 (* 0.3 = 0.589333 loss)
I0409 19:24:24.979902 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.591058 (* 0.3 = 0.177318 loss)
I0409 19:24:24.979915 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.673913
I0409 19:24:24.979928 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.886364
I0409 19:24:24.979939 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.869565
I0409 19:24:24.979954 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.12129 (* 0.3 = 0.336388 loss)
I0409 19:24:24.979969 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.371927 (* 0.3 = 0.111578 loss)
I0409 19:24:24.979981 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.913043
I0409 19:24:24.979993 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.965909
I0409 19:24:24.980005 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.934783
I0409 19:24:24.980020 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.589692 (* 1 = 0.589692 loss)
I0409 19:24:24.980034 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.192055 (* 1 = 0.192055 loss)
I0409 19:24:24.980046 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0409 19:24:24.980058 12249 solver.cpp:245] Train net output #16: total_confidence = 0.55342
I0409 19:24:24.980072 12249 sgd_solver.cpp:106] Iteration 188500, lr = 0.00730714
I0409 19:29:58.336009 12249 solver.cpp:229] Iteration 189000, loss = 2.23904
I0409 19:29:58.336196 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.45283
I0409 19:29:58.336228 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.8125
I0409 19:29:58.336252 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.641509
I0409 19:29:58.336272 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.09049 (* 0.3 = 0.627148 loss)
I0409 19:29:58.336287 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.693224 (* 0.3 = 0.207967 loss)
I0409 19:29:58.336300 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.490566
I0409 19:29:58.336313 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.835227
I0409 19:29:58.336324 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.716981
I0409 19:29:58.336338 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.62765 (* 0.3 = 0.488296 loss)
I0409 19:29:58.336354 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.529339 (* 0.3 = 0.158802 loss)
I0409 19:29:58.336365 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.811321
I0409 19:29:58.336377 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.931818
I0409 19:29:58.336390 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.886792
I0409 19:29:58.336403 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.67135 (* 1 = 0.67135 loss)
I0409 19:29:58.336417 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.224996 (* 1 = 0.224996 loss)
I0409 19:29:58.336431 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0409 19:29:58.336443 12249 solver.cpp:245] Train net output #16: total_confidence = 0.333743
I0409 19:29:58.336457 12249 sgd_solver.cpp:106] Iteration 189000, lr = 0.0073
I0409 19:35:31.714242 12249 solver.cpp:229] Iteration 189500, loss = 2.17631
I0409 19:35:31.714542 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.325581
I0409 19:35:31.714563 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.806818
I0409 19:35:31.714576 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.511628
I0409 19:35:31.714594 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.85234 (* 0.3 = 0.855701 loss)
I0409 19:35:31.714609 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.800171 (* 0.3 = 0.240051 loss)
I0409 19:35:31.714622 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.534884
I0409 19:35:31.714634 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.863636
I0409 19:35:31.714646 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.697674
I0409 19:35:31.714660 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.97383 (* 0.3 = 0.592148 loss)
I0409 19:35:31.714675 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.566286 (* 0.3 = 0.169886 loss)
I0409 19:35:31.714687 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.674419
I0409 19:35:31.714699 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.892045
I0409 19:35:31.714711 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.744186
I0409 19:35:31.714726 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.2362 (* 1 = 1.2362 loss)
I0409 19:35:31.714745 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.372045 (* 1 = 0.372045 loss)
I0409 19:35:31.714756 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0409 19:35:31.714768 12249 solver.cpp:245] Train net output #16: total_confidence = 0.305544
I0409 19:35:31.714784 12249 sgd_solver.cpp:106] Iteration 189500, lr = 0.00729286
I0409 19:41:04.675607 12249 solver.cpp:456] Snapshotting to binary proto file /mnt/snapshots/mixed_lstm10_bn_iter_190000.caffemodel
I0409 19:41:05.137645 12249 sgd_solver.cpp:273] Snapshotting solver state to binary proto file /mnt/snapshots/mixed_lstm10_bn_iter_190000.solverstate
I0409 19:41:05.380820 12249 solver.cpp:338] Iteration 190000, Testing net (#0)
I0409 19:41:46.462391 12249 solver.cpp:393] Test loss: 1.89503
I0409 19:41:46.462486 12249 solver.cpp:406] Test net output #0: loss1/accuracy = 0.516005
I0409 19:41:46.462503 12249 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.874049
I0409 19:41:46.462517 12249 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.787693
I0409 19:41:46.462532 12249 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 1.70646 (* 0.3 = 0.511938 loss)
I0409 19:41:46.462548 12249 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.450503 (* 0.3 = 0.135151 loss)
I0409 19:41:46.462560 12249 solver.cpp:406] Test net output #5: loss2/accuracy = 0.735479
I0409 19:41:46.462573 12249 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.924774
I0409 19:41:46.462584 12249 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.898292
I0409 19:41:46.462597 12249 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 0.989079 (* 0.3 = 0.296724 loss)
I0409 19:41:46.462611 12249 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.276665 (* 0.3 = 0.0829994 loss)
I0409 19:41:46.462623 12249 solver.cpp:406] Test net output #10: loss3/accuracy = 0.835007
I0409 19:41:46.462635 12249 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.960228
I0409 19:41:46.462646 12249 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.917118
I0409 19:41:46.462661 12249 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 0.692851 (* 1 = 0.692851 loss)
I0409 19:41:46.462674 12249 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.175363 (* 1 = 0.175363 loss)
I0409 19:41:46.462687 12249 solver.cpp:406] Test net output #15: total_accuracy = 0.604
I0409 19:41:46.462698 12249 solver.cpp:406] Test net output #16: total_confidence = 0.510485
I0409 19:41:46.835480 12249 solver.cpp:229] Iteration 190000, loss = 2.1684
I0409 19:41:46.835538 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.294118
I0409 19:41:46.835556 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.778409
I0409 19:41:46.835568 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.627451
I0409 19:41:46.835585 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.3458 (* 0.3 = 0.703741 loss)
I0409 19:41:46.835600 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.730468 (* 0.3 = 0.219141 loss)
I0409 19:41:46.835613 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.411765
I0409 19:41:46.835626 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.818182
I0409 19:41:46.835638 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.784314
I0409 19:41:46.835652 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.85014 (* 0.3 = 0.555041 loss)
I0409 19:41:46.835666 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.557108 (* 0.3 = 0.167132 loss)
I0409 19:41:46.835680 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.705882
I0409 19:41:46.835691 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.897727
I0409 19:41:46.835703 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.862745
I0409 19:41:46.835717 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.21715 (* 1 = 1.21715 loss)
I0409 19:41:46.835732 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.411558 (* 1 = 0.411558 loss)
I0409 19:41:46.835744 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0409 19:41:46.835757 12249 solver.cpp:245] Train net output #16: total_confidence = 0.288221
I0409 19:41:46.835772 12249 sgd_solver.cpp:106] Iteration 190000, lr = 0.00728571
I0409 19:47:20.113459 12249 solver.cpp:229] Iteration 190500, loss = 2.14788
I0409 19:47:20.113804 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.5
I0409 19:47:20.113826 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.852273
I0409 19:47:20.113839 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.8
I0409 19:47:20.113857 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.55986 (* 0.3 = 0.467959 loss)
I0409 19:47:20.113873 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.468446 (* 0.3 = 0.140534 loss)
I0409 19:47:20.113885 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.72
I0409 19:47:20.113898 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.920455
I0409 19:47:20.113909 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.96
I0409 19:47:20.113924 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 0.883922 (* 0.3 = 0.265177 loss)
I0409 19:47:20.113939 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.256591 (* 0.3 = 0.0769775 loss)
I0409 19:47:20.113951 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 1
I0409 19:47:20.113963 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.994318
I0409 19:47:20.113975 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 1
I0409 19:47:20.113988 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.0514849 (* 1 = 0.0514849 loss)
I0409 19:47:20.114003 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.0232809 (* 1 = 0.0232809 loss)
I0409 19:47:20.114015 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.875
I0409 19:47:20.114028 12249 solver.cpp:245] Train net output #16: total_confidence = 0.682198
I0409 19:47:20.114042 12249 sgd_solver.cpp:106] Iteration 190500, lr = 0.00727857
I0409 19:52:53.490232 12249 solver.cpp:229] Iteration 191000, loss = 2.12955
I0409 19:52:53.490512 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.375
I0409 19:52:53.490533 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.829545
I0409 19:52:53.490547 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.75
I0409 19:52:53.490563 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.83455 (* 0.3 = 0.550365 loss)
I0409 19:52:53.490578 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.502919 (* 0.3 = 0.150876 loss)
I0409 19:52:53.490592 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.7
I0409 19:52:53.490603 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.903409
I0409 19:52:53.490615 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.875
I0409 19:52:53.490629 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.31936 (* 0.3 = 0.395807 loss)
I0409 19:52:53.490643 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.383901 (* 0.3 = 0.11517 loss)
I0409 19:52:53.490655 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.825
I0409 19:52:53.490669 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.960227
I0409 19:52:53.490680 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.925
I0409 19:52:53.490694 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.840484 (* 1 = 0.840484 loss)
I0409 19:52:53.490708 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.198389 (* 1 = 0.198389 loss)
I0409 19:52:53.490721 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0409 19:52:53.490733 12249 solver.cpp:245] Train net output #16: total_confidence = 0.568223
I0409 19:52:53.490747 12249 sgd_solver.cpp:106] Iteration 191000, lr = 0.00727143
I0409 19:58:26.854962 12249 solver.cpp:229] Iteration 191500, loss = 2.214
I0409 19:58:26.855108 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.44898
I0409 19:58:26.855139 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.829545
I0409 19:58:26.855165 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.714286
I0409 19:58:26.855190 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.01248 (* 0.3 = 0.603745 loss)
I0409 19:58:26.855206 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.610413 (* 0.3 = 0.183124 loss)
I0409 19:58:26.855218 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.55102
I0409 19:58:26.855231 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.857955
I0409 19:58:26.855242 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.77551
I0409 19:58:26.855257 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.75666 (* 0.3 = 0.526997 loss)
I0409 19:58:26.855271 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.525432 (* 0.3 = 0.15763 loss)
I0409 19:58:26.855283 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.714286
I0409 19:58:26.855296 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.914773
I0409 19:58:26.855309 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.836735
I0409 19:58:26.855321 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.39544 (* 1 = 1.39544 loss)
I0409 19:58:26.855336 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.401433 (* 1 = 0.401433 loss)
I0409 19:58:26.855348 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0409 19:58:26.855360 12249 solver.cpp:245] Train net output #16: total_confidence = 0.352553
I0409 19:58:26.855375 12249 sgd_solver.cpp:106] Iteration 191500, lr = 0.00726429
I0409 20:04:00.224781 12249 solver.cpp:229] Iteration 192000, loss = 2.12901
I0409 20:04:00.225072 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.44898
I0409 20:04:00.225091 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.835227
I0409 20:04:00.225105 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.755102
I0409 20:04:00.225121 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.66732 (* 0.3 = 0.500195 loss)
I0409 20:04:00.225136 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.512352 (* 0.3 = 0.153706 loss)
I0409 20:04:00.225149 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.632653
I0409 20:04:00.225162 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.897727
I0409 20:04:00.225173 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.959184
I0409 20:04:00.225188 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.08187 (* 0.3 = 0.32456 loss)
I0409 20:04:00.225203 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.316915 (* 0.3 = 0.0950746 loss)
I0409 20:04:00.225214 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.979592
I0409 20:04:00.225227 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.988636
I0409 20:04:00.225239 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 1
I0409 20:04:00.225253 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.117364 (* 1 = 0.117364 loss)
I0409 20:04:00.225268 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.0397128 (* 1 = 0.0397128 loss)
I0409 20:04:00.225281 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.75
I0409 20:04:00.225293 12249 solver.cpp:245] Train net output #16: total_confidence = 0.571676
I0409 20:04:00.225307 12249 sgd_solver.cpp:106] Iteration 192000, lr = 0.00725714
I0409 20:09:33.594239 12249 solver.cpp:229] Iteration 192500, loss = 2.12022
I0409 20:09:33.594400 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.325581
I0409 20:09:33.594421 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.795455
I0409 20:09:33.594434 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.627907
I0409 20:09:33.594452 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.45641 (* 0.3 = 0.736923 loss)
I0409 20:09:33.594467 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.772989 (* 0.3 = 0.231897 loss)
I0409 20:09:33.594480 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.581395
I0409 20:09:33.594492 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.875
I0409 20:09:33.594506 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.883721
I0409 20:09:33.594519 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.25935 (* 0.3 = 0.377806 loss)
I0409 20:09:33.594533 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.402985 (* 0.3 = 0.120895 loss)
I0409 20:09:33.594545 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.883721
I0409 20:09:33.594558 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.965909
I0409 20:09:33.594570 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.930233
I0409 20:09:33.594585 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.42316 (* 1 = 0.42316 loss)
I0409 20:09:33.594599 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.117474 (* 1 = 0.117474 loss)
I0409 20:09:33.594614 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0409 20:09:33.594625 12249 solver.cpp:245] Train net output #16: total_confidence = 0.487467
I0409 20:09:33.594640 12249 sgd_solver.cpp:106] Iteration 192500, lr = 0.00725
I0409 20:15:06.970275 12249 solver.cpp:229] Iteration 193000, loss = 2.10378
I0409 20:15:06.970604 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.4
I0409 20:15:06.970626 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.829545
I0409 20:15:06.970639 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.72
I0409 20:15:06.970655 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.72534 (* 0.3 = 0.517603 loss)
I0409 20:15:06.970671 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.512056 (* 0.3 = 0.153617 loss)
I0409 20:15:06.970685 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.66
I0409 20:15:06.970696 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.897727
I0409 20:15:06.970708 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.92
I0409 20:15:06.970722 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.12163 (* 0.3 = 0.336491 loss)
I0409 20:15:06.970737 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.343269 (* 0.3 = 0.102981 loss)
I0409 20:15:06.970749 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.98
I0409 20:15:06.970762 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.988636
I0409 20:15:06.970773 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 1
I0409 20:15:06.970788 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.145391 (* 1 = 0.145391 loss)
I0409 20:15:06.970801 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.0513221 (* 1 = 0.0513221 loss)
I0409 20:15:06.970813 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.75
I0409 20:15:06.970825 12249 solver.cpp:245] Train net output #16: total_confidence = 0.463481
I0409 20:15:06.970840 12249 sgd_solver.cpp:106] Iteration 193000, lr = 0.00724286
I0409 20:20:40.336730 12249 solver.cpp:229] Iteration 193500, loss = 2.20543
I0409 20:20:40.336881 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.423077
I0409 20:20:40.336902 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.829545
I0409 20:20:40.336916 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.711538
I0409 20:20:40.336932 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.8602 (* 0.3 = 0.558059 loss)
I0409 20:20:40.336947 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.576622 (* 0.3 = 0.172987 loss)
I0409 20:20:40.336961 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.576923
I0409 20:20:40.336972 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.863636
I0409 20:20:40.336984 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.903846
I0409 20:20:40.336998 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.27622 (* 0.3 = 0.382865 loss)
I0409 20:20:40.337013 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.390662 (* 0.3 = 0.117199 loss)
I0409 20:20:40.337025 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.923077
I0409 20:20:40.337038 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.977273
I0409 20:20:40.337050 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 1
I0409 20:20:40.337064 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.253347 (* 1 = 0.253347 loss)
I0409 20:20:40.337079 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.0793728 (* 1 = 0.0793728 loss)
I0409 20:20:40.337091 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0409 20:20:40.337103 12249 solver.cpp:245] Train net output #16: total_confidence = 0.363808
I0409 20:20:40.337118 12249 sgd_solver.cpp:106] Iteration 193500, lr = 0.00723571
I0409 20:26:13.712254 12249 solver.cpp:229] Iteration 194000, loss = 2.21969
I0409 20:26:13.712537 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.456522
I0409 20:26:13.712555 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.852273
I0409 20:26:13.712568 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.608696
I0409 20:26:13.712585 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.92352 (* 0.3 = 0.577056 loss)
I0409 20:26:13.712600 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.549597 (* 0.3 = 0.164879 loss)
I0409 20:26:13.712613 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.652174
I0409 20:26:13.712625 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.909091
I0409 20:26:13.712638 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.869565
I0409 20:26:13.712653 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.11489 (* 0.3 = 0.334468 loss)
I0409 20:26:13.712668 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.316887 (* 0.3 = 0.095066 loss)
I0409 20:26:13.712680 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.956522
I0409 20:26:13.712692 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.988636
I0409 20:26:13.712704 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.956522
I0409 20:26:13.712719 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.258016 (* 1 = 0.258016 loss)
I0409 20:26:13.712733 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.0728882 (* 1 = 0.0728882 loss)
I0409 20:26:13.712746 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.875
I0409 20:26:13.712759 12249 solver.cpp:245] Train net output #16: total_confidence = 0.505175
I0409 20:26:13.712774 12249 sgd_solver.cpp:106] Iteration 194000, lr = 0.00722857
I0409 20:31:47.092473 12249 solver.cpp:229] Iteration 194500, loss = 2.11596
I0409 20:31:47.092628 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.367347
I0409 20:31:47.092648 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.801136
I0409 20:31:47.092663 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.510204
I0409 20:31:47.092679 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.2178 (* 0.3 = 0.665339 loss)
I0409 20:31:47.092694 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.665192 (* 0.3 = 0.199558 loss)
I0409 20:31:47.092708 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.489796
I0409 20:31:47.092720 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.846591
I0409 20:31:47.092732 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.795918
I0409 20:31:47.092749 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.54123 (* 0.3 = 0.46237 loss)
I0409 20:31:47.092764 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.473401 (* 0.3 = 0.14202 loss)
I0409 20:31:47.092777 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.632653
I0409 20:31:47.092789 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.897727
I0409 20:31:47.092802 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.857143
I0409 20:31:47.092815 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.01301 (* 1 = 1.01301 loss)
I0409 20:31:47.092829 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.284122 (* 1 = 0.284122 loss)
I0409 20:31:47.092842 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0409 20:31:47.092854 12249 solver.cpp:245] Train net output #16: total_confidence = 0.359319
I0409 20:31:47.092869 12249 sgd_solver.cpp:106] Iteration 194500, lr = 0.00722143
I0409 20:37:20.062177 12249 solver.cpp:338] Iteration 195000, Testing net (#0)
I0409 20:38:01.248199 12249 solver.cpp:393] Test loss: 1.93431
I0409 20:38:01.248292 12249 solver.cpp:406] Test net output #0: loss1/accuracy = 0.533626
I0409 20:38:01.248318 12249 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.879867
I0409 20:38:01.248340 12249 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.793777
I0409 20:38:01.248366 12249 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 1.63645 (* 0.3 = 0.490934 loss)
I0409 20:38:01.248391 12249 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.431291 (* 0.3 = 0.129387 loss)
I0409 20:38:01.248412 12249 solver.cpp:406] Test net output #5: loss2/accuracy = 0.695292
I0409 20:38:01.248435 12249 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.92041
I0409 20:38:01.248456 12249 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.89191
I0409 20:38:01.248497 12249 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.09699 (* 0.3 = 0.329098 loss)
I0409 20:38:01.248527 12249 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.294744 (* 0.3 = 0.0884231 loss)
I0409 20:38:01.248548 12249 solver.cpp:406] Test net output #10: loss3/accuracy = 0.829782
I0409 20:38:01.248569 12249 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.958637
I0409 20:38:01.248589 12249 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.911781
I0409 20:38:01.248613 12249 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 0.712897 (* 1 = 0.712897 loss)
I0409 20:38:01.248639 12249 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.183568 (* 1 = 0.183568 loss)
I0409 20:38:01.248661 12249 solver.cpp:406] Test net output #15: total_accuracy = 0.601
I0409 20:38:01.248680 12249 solver.cpp:406] Test net output #16: total_confidence = 0.541839
I0409 20:38:01.624584 12249 solver.cpp:229] Iteration 195000, loss = 2.15499
I0409 20:38:01.624642 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.34
I0409 20:38:01.624660 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.795455
I0409 20:38:01.624675 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.7
I0409 20:38:01.624691 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.11268 (* 0.3 = 0.633803 loss)
I0409 20:38:01.624706 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.648719 (* 0.3 = 0.194616 loss)
I0409 20:38:01.624718 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.54
I0409 20:38:01.624732 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.857955
I0409 20:38:01.624743 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.88
I0409 20:38:01.624758 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.27413 (* 0.3 = 0.38224 loss)
I0409 20:38:01.624773 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.403961 (* 0.3 = 0.121188 loss)
I0409 20:38:01.624784 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.82
I0409 20:38:01.624796 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.943182
I0409 20:38:01.624809 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.92
I0409 20:38:01.624822 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.727543 (* 1 = 0.727543 loss)
I0409 20:38:01.624840 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.23008 (* 1 = 0.23008 loss)
I0409 20:38:01.624853 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0409 20:38:01.624866 12249 solver.cpp:245] Train net output #16: total_confidence = 0.329482
I0409 20:38:01.624881 12249 sgd_solver.cpp:106] Iteration 195000, lr = 0.00721429
I0409 20:43:34.839449 12249 solver.cpp:229] Iteration 195500, loss = 2.14795
I0409 20:43:34.839747 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.314815
I0409 20:43:34.839768 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.789773
I0409 20:43:34.839781 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.592593
I0409 20:43:34.839797 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.25462 (* 0.3 = 0.676387 loss)
I0409 20:43:34.839812 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.714273 (* 0.3 = 0.214282 loss)
I0409 20:43:34.839825 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.444444
I0409 20:43:34.839838 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.829545
I0409 20:43:34.839850 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.740741
I0409 20:43:34.839864 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.79451 (* 0.3 = 0.538354 loss)
I0409 20:43:34.839879 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.562527 (* 0.3 = 0.168758 loss)
I0409 20:43:34.839890 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.833333
I0409 20:43:34.839902 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.948864
I0409 20:43:34.839913 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.907407
I0409 20:43:34.839928 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.741703 (* 1 = 0.741703 loss)
I0409 20:43:34.839942 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.240222 (* 1 = 0.240222 loss)
I0409 20:43:34.839954 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0409 20:43:34.839967 12249 solver.cpp:245] Train net output #16: total_confidence = 0.26995
I0409 20:43:34.839982 12249 sgd_solver.cpp:106] Iteration 195500, lr = 0.00720714
I0409 20:49:08.212800 12249 solver.cpp:229] Iteration 196000, loss = 2.18081
I0409 20:49:08.212940 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.45
I0409 20:49:08.212970 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.852273
I0409 20:49:08.212996 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.625
I0409 20:49:08.213018 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.91799 (* 0.3 = 0.575398 loss)
I0409 20:49:08.213034 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.497793 (* 0.3 = 0.149338 loss)
I0409 20:49:08.213047 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.6
I0409 20:49:08.213059 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.897727
I0409 20:49:08.213071 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.825
I0409 20:49:08.213085 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.12594 (* 0.3 = 0.337783 loss)
I0409 20:49:08.213100 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.295729 (* 0.3 = 0.0887187 loss)
I0409 20:49:08.213112 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.875
I0409 20:49:08.213125 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.971591
I0409 20:49:08.213136 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.975
I0409 20:49:08.213150 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.440383 (* 1 = 0.440383 loss)
I0409 20:49:08.213165 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.105581 (* 1 = 0.105581 loss)
I0409 20:49:08.213177 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0409 20:49:08.213189 12249 solver.cpp:245] Train net output #16: total_confidence = 0.420241
I0409 20:49:08.213204 12249 sgd_solver.cpp:106] Iteration 196000, lr = 0.0072
I0409 20:54:41.564728 12249 solver.cpp:229] Iteration 196500, loss = 2.19159
I0409 20:54:41.564988 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.444444
I0409 20:54:41.565007 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.846591
I0409 20:54:41.565021 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.711111
I0409 20:54:41.565037 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.80008 (* 0.3 = 0.540024 loss)
I0409 20:54:41.565052 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.511394 (* 0.3 = 0.153418 loss)
I0409 20:54:41.565064 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.511111
I0409 20:54:41.565076 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.852273
I0409 20:54:41.565088 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.866667
I0409 20:54:41.565101 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.35561 (* 0.3 = 0.406682 loss)
I0409 20:54:41.565116 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.422546 (* 0.3 = 0.126764 loss)
I0409 20:54:41.565129 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.955556
I0409 20:54:41.565140 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.977273
I0409 20:54:41.565152 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.955556
I0409 20:54:41.565166 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.305615 (* 1 = 0.305615 loss)
I0409 20:54:41.565186 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.117045 (* 1 = 0.117045 loss)
I0409 20:54:41.565198 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.875
I0409 20:54:41.565210 12249 solver.cpp:245] Train net output #16: total_confidence = 0.604933
I0409 20:54:41.565224 12249 sgd_solver.cpp:106] Iteration 196500, lr = 0.00719286
I0409 21:00:14.941545 12249 solver.cpp:229] Iteration 197000, loss = 2.14113
I0409 21:00:14.941712 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.365854
I0409 21:00:14.941737 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.8125
I0409 21:00:14.941752 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.634146
I0409 21:00:14.941769 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.05473 (* 0.3 = 0.616418 loss)
I0409 21:00:14.941784 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.629336 (* 0.3 = 0.188801 loss)
I0409 21:00:14.941797 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.560976
I0409 21:00:14.941809 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.875
I0409 21:00:14.941822 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.829268
I0409 21:00:14.941835 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.28905 (* 0.3 = 0.386715 loss)
I0409 21:00:14.941850 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.474474 (* 0.3 = 0.142342 loss)
I0409 21:00:14.941864 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.926829
I0409 21:00:14.941875 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.960227
I0409 21:00:14.941887 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.97561
I0409 21:00:14.941901 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.23649 (* 1 = 0.23649 loss)
I0409 21:00:14.941918 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.204433 (* 1 = 0.204433 loss)
I0409 21:00:14.941931 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0409 21:00:14.941943 12249 solver.cpp:245] Train net output #16: total_confidence = 0.626897
I0409 21:00:14.941958 12249 sgd_solver.cpp:106] Iteration 197000, lr = 0.00718571
I0409 21:05:48.305181 12249 solver.cpp:229] Iteration 197500, loss = 2.18545
I0409 21:05:48.305465 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.313726
I0409 21:05:48.305485 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.795455
I0409 21:05:48.305498 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.54902
I0409 21:05:48.305516 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.24069 (* 0.3 = 0.672206 loss)
I0409 21:05:48.305531 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.697598 (* 0.3 = 0.209279 loss)
I0409 21:05:48.305543 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.54902
I0409 21:05:48.305557 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.857955
I0409 21:05:48.305568 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.784314
I0409 21:05:48.305583 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.53146 (* 0.3 = 0.459437 loss)
I0409 21:05:48.305596 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.481727 (* 0.3 = 0.144518 loss)
I0409 21:05:48.305608 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.882353
I0409 21:05:48.305621 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.965909
I0409 21:05:48.305634 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.941176
I0409 21:05:48.305649 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.549704 (* 1 = 0.549704 loss)
I0409 21:05:48.305662 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.168926 (* 1 = 0.168926 loss)
I0409 21:05:48.305675 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.75
I0409 21:05:48.305687 12249 solver.cpp:245] Train net output #16: total_confidence = 0.546465
I0409 21:05:48.305701 12249 sgd_solver.cpp:106] Iteration 197500, lr = 0.00717857
I0409 21:11:21.678614 12249 solver.cpp:229] Iteration 198000, loss = 2.13253
I0409 21:11:21.678724 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.285714
I0409 21:11:21.678753 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.795455
I0409 21:11:21.678774 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.510204
I0409 21:11:21.678792 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.37923 (* 0.3 = 0.71377 loss)
I0409 21:11:21.678807 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.716425 (* 0.3 = 0.214928 loss)
I0409 21:11:21.678820 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.612245
I0409 21:11:21.678833 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.875
I0409 21:11:21.678845 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.877551
I0409 21:11:21.678858 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.30253 (* 0.3 = 0.39076 loss)
I0409 21:11:21.678874 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.408825 (* 0.3 = 0.122647 loss)
I0409 21:11:21.678885 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.938776
I0409 21:11:21.678897 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.977273
I0409 21:11:21.678910 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 1
I0409 21:11:21.678925 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.211945 (* 1 = 0.211945 loss)
I0409 21:11:21.678938 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.0714908 (* 1 = 0.0714908 loss)
I0409 21:11:21.678951 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.625
I0409 21:11:21.678963 12249 solver.cpp:245] Train net output #16: total_confidence = 0.377464
I0409 21:11:21.678977 12249 sgd_solver.cpp:106] Iteration 198000, lr = 0.00717143
I0409 21:16:55.047655 12249 solver.cpp:229] Iteration 198500, loss = 2.16332
I0409 21:16:55.047889 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.276596
I0409 21:16:55.047909 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.795455
I0409 21:16:55.047921 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.617021
I0409 21:16:55.047937 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.09185 (* 0.3 = 0.627555 loss)
I0409 21:16:55.047952 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.625587 (* 0.3 = 0.187676 loss)
I0409 21:16:55.047965 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.574468
I0409 21:16:55.047976 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.875
I0409 21:16:55.047988 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.787234
I0409 21:16:55.048002 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.6845 (* 0.3 = 0.50535 loss)
I0409 21:16:55.048017 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.494737 (* 0.3 = 0.148421 loss)
I0409 21:16:55.048029 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.723404
I0409 21:16:55.048041 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.926136
I0409 21:16:55.048053 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.87234
I0409 21:16:55.048068 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.10967 (* 1 = 1.10967 loss)
I0409 21:16:55.048081 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.316969 (* 1 = 0.316969 loss)
I0409 21:16:55.048094 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0409 21:16:55.048105 12249 solver.cpp:245] Train net output #16: total_confidence = 0.31901
I0409 21:16:55.048120 12249 sgd_solver.cpp:106] Iteration 198500, lr = 0.00716429
I0409 21:22:28.411051 12249 solver.cpp:229] Iteration 199000, loss = 2.14067
I0409 21:22:28.411396 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.456522
I0409 21:22:28.411418 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.852273
I0409 21:22:28.411432 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.73913
I0409 21:22:28.411448 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.75909 (* 0.3 = 0.527727 loss)
I0409 21:22:28.411463 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.495582 (* 0.3 = 0.148675 loss)
I0409 21:22:28.411476 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.652174
I0409 21:22:28.411489 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.903409
I0409 21:22:28.411501 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.934783
I0409 21:22:28.411515 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.11863 (* 0.3 = 0.335588 loss)
I0409 21:22:28.411530 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.317603 (* 0.3 = 0.0952808 loss)
I0409 21:22:28.411542 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.956522
I0409 21:22:28.411555 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.988636
I0409 21:22:28.411566 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 1
I0409 21:22:28.411581 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.164696 (* 1 = 0.164696 loss)
I0409 21:22:28.411594 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.0496942 (* 1 = 0.0496942 loss)
I0409 21:22:28.411607 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.75
I0409 21:22:28.411619 12249 solver.cpp:245] Train net output #16: total_confidence = 0.504681
I0409 21:22:28.411633 12249 sgd_solver.cpp:106] Iteration 199000, lr = 0.00715714
I0409 21:28:01.784289 12249 solver.cpp:229] Iteration 199500, loss = 2.16072
I0409 21:28:01.784405 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.4
I0409 21:28:01.784425 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.818182
I0409 21:28:01.784438 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.66
I0409 21:28:01.784454 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.0427 (* 0.3 = 0.612811 loss)
I0409 21:28:01.784469 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.620475 (* 0.3 = 0.186143 loss)
I0409 21:28:01.784482 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.7
I0409 21:28:01.784494 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.897727
I0409 21:28:01.784507 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.84
I0409 21:28:01.784521 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.29122 (* 0.3 = 0.387365 loss)
I0409 21:28:01.784550 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.426139 (* 0.3 = 0.127842 loss)
I0409 21:28:01.784564 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.84
I0409 21:28:01.784576 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.948864
I0409 21:28:01.784589 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.96
I0409 21:28:01.784602 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.542244 (* 1 = 0.542244 loss)
I0409 21:28:01.784616 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.180759 (* 1 = 0.180759 loss)
I0409 21:28:01.784628 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.375
I0409 21:28:01.784642 12249 solver.cpp:245] Train net output #16: total_confidence = 0.348674
I0409 21:28:01.784657 12249 sgd_solver.cpp:106] Iteration 199500, lr = 0.00715
I0409 21:33:34.777505 12249 solver.cpp:456] Snapshotting to binary proto file /mnt/snapshots/mixed_lstm10_bn_iter_200000.caffemodel
I0409 21:33:35.385962 12249 sgd_solver.cpp:273] Snapshotting solver state to binary proto file /mnt/snapshots/mixed_lstm10_bn_iter_200000.solverstate
I0409 21:33:35.629808 12249 solver.cpp:338] Iteration 200000, Testing net (#0)
I0409 21:34:17.001790 12249 solver.cpp:393] Test loss: 1.88013
I0409 21:34:17.001938 12249 solver.cpp:406] Test net output #0: loss1/accuracy = 0.527624
I0409 21:34:17.001972 12249 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.878685
I0409 21:34:17.002001 12249 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.801222
I0409 21:34:17.002033 12249 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 1.58444 (* 0.3 = 0.475332 loss)
I0409 21:34:17.002065 12249 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.417491 (* 0.3 = 0.125247 loss)
I0409 21:34:17.002091 12249 solver.cpp:406] Test net output #5: loss2/accuracy = 0.716128
I0409 21:34:17.002116 12249 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.926138
I0409 21:34:17.002141 12249 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.900219
I0409 21:34:17.002169 12249 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 1.04778 (* 0.3 = 0.314334 loss)
I0409 21:34:17.002192 12249 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 0.276314 (* 0.3 = 0.0828941 loss)
I0409 21:34:17.002214 12249 solver.cpp:406] Test net output #10: loss3/accuracy = 0.839961
I0409 21:34:17.002235 12249 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.960819
I0409 21:34:17.002256 12249 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.923835
I0409 21:34:17.002282 12249 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 0.700885 (* 1 = 0.700885 loss)
I0409 21:34:17.002306 12249 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.181434 (* 1 = 0.181434 loss)
I0409 21:34:17.002326 12249 solver.cpp:406] Test net output #15: total_accuracy = 0.618
I0409 21:34:17.002344 12249 solver.cpp:406] Test net output #16: total_confidence = 0.589672
I0409 21:34:17.376088 12249 solver.cpp:229] Iteration 200000, loss = 2.12325
I0409 21:34:17.376147 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.434783
I0409 21:34:17.376165 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.823864
I0409 21:34:17.376178 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.717391
I0409 21:34:17.376194 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.89517 (* 0.3 = 0.56855 loss)
I0409 21:34:17.376209 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.562809 (* 0.3 = 0.168843 loss)
I0409 21:34:17.376225 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.478261
I0409 21:34:17.376240 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.857955
I0409 21:34:17.376251 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.717391
I0409 21:34:17.376266 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.00524 (* 0.3 = 0.601573 loss)
I0409 21:34:17.376281 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.548116 (* 0.3 = 0.164435 loss)
I0409 21:34:17.376293 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.717391
I0409 21:34:17.376307 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.926136
I0409 21:34:17.376318 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.891304
I0409 21:34:17.376332 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 1.14992 (* 1 = 1.14992 loss)
I0409 21:34:17.376348 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.308549 (* 1 = 0.308549 loss)
I0409 21:34:17.376359 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0409 21:34:17.376373 12249 solver.cpp:245] Train net output #16: total_confidence = 0.575486
I0409 21:34:17.376389 12249 sgd_solver.cpp:106] Iteration 200000, lr = 0.00714286
I0409 21:39:50.871021 12249 solver.cpp:229] Iteration 200500, loss = 2.13235
I0409 21:39:50.871186 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.291667
I0409 21:39:50.871211 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.789773
I0409 21:39:50.871224 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.5625
I0409 21:39:50.871242 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.43944 (* 0.3 = 0.731833 loss)
I0409 21:39:50.871258 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.737243 (* 0.3 = 0.221173 loss)
I0409 21:39:50.871270 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.520833
I0409 21:39:50.871282 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.863636
I0409 21:39:50.871294 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.770833
I0409 21:39:50.871309 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.63912 (* 0.3 = 0.491736 loss)
I0409 21:39:50.871325 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.463689 (* 0.3 = 0.139107 loss)
I0409 21:39:50.871337 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.916667
I0409 21:39:50.871350 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.971591
I0409 21:39:50.871361 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 1
I0409 21:39:50.871376 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.262327 (* 1 = 0.262327 loss)
I0409 21:39:50.871390 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.086173 (* 1 = 0.086173 loss)
I0409 21:39:50.871402 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0409 21:39:50.871415 12249 solver.cpp:245] Train net output #16: total_confidence = 0.391667
I0409 21:39:50.871429 12249 sgd_solver.cpp:106] Iteration 200500, lr = 0.00713571
I0409 21:45:24.235496 12249 solver.cpp:229] Iteration 201000, loss = 2.16955
I0409 21:45:24.235772 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.319149
I0409 21:45:24.235792 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.8125
I0409 21:45:24.235806 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.553191
I0409 21:45:24.235823 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.41789 (* 0.3 = 0.725366 loss)
I0409 21:45:24.235838 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.685641 (* 0.3 = 0.205692 loss)
I0409 21:45:24.235852 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.553191
I0409 21:45:24.235864 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.875
I0409 21:45:24.235877 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.808511
I0409 21:45:24.235891 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.6101 (* 0.3 = 0.483029 loss)
I0409 21:45:24.235905 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.486166 (* 0.3 = 0.14585 loss)
I0409 21:45:24.235918 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.829787
I0409 21:45:24.235930 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.948864
I0409 21:45:24.235944 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.957447
I0409 21:45:24.235957 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.56874 (* 1 = 0.56874 loss)
I0409 21:45:24.235972 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.175889 (* 1 = 0.175889 loss)
I0409 21:45:24.235985 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0409 21:45:24.235996 12249 solver.cpp:245] Train net output #16: total_confidence = 0.304581
I0409 21:45:24.236013 12249 sgd_solver.cpp:106] Iteration 201000, lr = 0.00712857
I0409 21:50:57.612284 12249 solver.cpp:229] Iteration 201500, loss = 2.14689
I0409 21:50:57.612473 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.404762
I0409 21:50:57.612493 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.835227
I0409 21:50:57.612507 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.690476
I0409 21:50:57.612524 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.19601 (* 0.3 = 0.658804 loss)
I0409 21:50:57.612540 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.616052 (* 0.3 = 0.184816 loss)
I0409 21:50:57.612552 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.452381
I0409 21:50:57.612565 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.840909
I0409 21:50:57.612578 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.833333
I0409 21:50:57.612592 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.61044 (* 0.3 = 0.483132 loss)
I0409 21:50:57.612607 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.451649 (* 0.3 = 0.135495 loss)
I0409 21:50:57.612619 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.833333
I0409 21:50:57.612632 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.954545
I0409 21:50:57.612643 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.97619
I0409 21:50:57.612658 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.4557 (* 1 = 0.4557 loss)
I0409 21:50:57.612673 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.132018 (* 1 = 0.132018 loss)
I0409 21:50:57.612685 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.75
I0409 21:50:57.612697 12249 solver.cpp:245] Train net output #16: total_confidence = 0.474416
I0409 21:50:57.612712 12249 sgd_solver.cpp:106] Iteration 201500, lr = 0.00712143
I0409 21:56:30.991586 12249 solver.cpp:229] Iteration 202000, loss = 2.10746
I0409 21:56:30.991925 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.509804
I0409 21:56:30.991946 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.852273
I0409 21:56:30.991960 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.764706
I0409 21:56:30.991976 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.51007 (* 0.3 = 0.45302 loss)
I0409 21:56:30.991991 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.458439 (* 0.3 = 0.137532 loss)
I0409 21:56:30.992004 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.686275
I0409 21:56:30.992017 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.909091
I0409 21:56:30.992028 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.882353
I0409 21:56:30.992043 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 0.935842 (* 0.3 = 0.280752 loss)
I0409 21:56:30.992058 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.279899 (* 0.3 = 0.0839696 loss)
I0409 21:56:30.992070 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.901961
I0409 21:56:30.992082 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.971591
I0409 21:56:30.992094 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.941176
I0409 21:56:30.992110 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.387519 (* 1 = 0.387519 loss)
I0409 21:56:30.992123 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.11835 (* 1 = 0.11835 loss)
I0409 21:56:30.992136 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.75
I0409 21:56:30.992147 12249 solver.cpp:245] Train net output #16: total_confidence = 0.515193
I0409 21:56:30.992162 12249 sgd_solver.cpp:106] Iteration 202000, lr = 0.00711429
I0409 22:02:04.686964 12249 solver.cpp:229] Iteration 202500, loss = 2.17605
I0409 22:02:04.687104 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.425532
I0409 22:02:04.687124 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.846591
I0409 22:02:04.687137 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.723404
I0409 22:02:04.687155 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.88349 (* 0.3 = 0.565048 loss)
I0409 22:02:04.687170 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.518979 (* 0.3 = 0.155694 loss)
I0409 22:02:04.687182 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.680851
I0409 22:02:04.687194 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.903409
I0409 22:02:04.687206 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.87234
I0409 22:02:04.687221 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.23751 (* 0.3 = 0.371253 loss)
I0409 22:02:04.687234 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.354022 (* 0.3 = 0.106207 loss)
I0409 22:02:04.687247 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.914894
I0409 22:02:04.687258 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.977273
I0409 22:02:04.687270 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.978723
I0409 22:02:04.687285 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.369778 (* 1 = 0.369778 loss)
I0409 22:02:04.687299 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.101003 (* 1 = 0.101003 loss)
I0409 22:02:04.687311 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.5
I0409 22:02:04.687324 12249 solver.cpp:245] Train net output #16: total_confidence = 0.375216
I0409 22:02:04.687337 12249 sgd_solver.cpp:106] Iteration 202500, lr = 0.00710714
I0409 22:07:38.069916 12249 solver.cpp:229] Iteration 203000, loss = 2.08689
I0409 22:07:38.070206 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.435897
I0409 22:07:38.070226 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.857955
I0409 22:07:38.070240 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.564103
I0409 22:07:38.070257 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.4531 (* 0.3 = 0.735931 loss)
I0409 22:07:38.070272 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.603539 (* 0.3 = 0.181062 loss)
I0409 22:07:38.070288 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.512821
I0409 22:07:38.070302 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.880682
I0409 22:07:38.070313 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.74359
I0409 22:07:38.070327 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.50224 (* 0.3 = 0.450671 loss)
I0409 22:07:38.070343 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.392845 (* 0.3 = 0.117854 loss)
I0409 22:07:38.070354 12249 solver.cpp:245] Train net output #10: loss3/accuracy = 0.74359
I0409 22:07:38.070368 12249 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.9375
I0409 22:07:38.070379 12249 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.820513
I0409 22:07:38.070394 12249 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 0.827973 (* 1 = 0.827973 loss)
I0409 22:07:38.070408 12249 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.2063 (* 1 = 0.2063 loss)
I0409 22:07:38.070420 12249 solver.cpp:245] Train net output #15: total_accuracy = 0.25
I0409 22:07:38.070432 12249 solver.cpp:245] Train net output #16: total_confidence = 0.421686
I0409 22:07:38.070448 12249 sgd_solver.cpp:106] Iteration 203000, lr = 0.0071
I0409 22:13:11.439563 12249 solver.cpp:229] Iteration 203500, loss = 2.07353
I0409 22:13:11.439934 12249 solver.cpp:245] Train net output #0: loss1/accuracy = 0.425532
I0409 22:13:11.439955 12249 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.835227
I0409 22:13:11.439970 12249 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.765957
I0409 22:13:11.439985 12249 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 1.73913 (* 0.3 = 0.52174 loss)
I0409 22:13:11.440001 12249 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.508937 (* 0.3 = 0.152681 loss)
I0409 22:13:11.440016 12249 solver.cpp:245] Train net output #5: loss2/accuracy = 0.680851
I0409 22:13:11.440027 12249 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.909091
I0409 22:13:11.440039 12249 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.851064
I0409 22:13:11.440054 12249 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 1.14654 (* 0.3 = 0.343961 loss)
I0409 22:13:11.440069 12249 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.331854 (* 0.3 = 0.0
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment