-
-
Save stas-sl/d3e254b9b94f643ead59f8a48c3708bc to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
I0401 10:07:22.297281 31447 solver.cpp:280] Solving mixed_lstm | |
I0401 10:07:22.297292 31447 solver.cpp:281] Learning Rate Policy: fixed | |
I0401 10:07:22.643712 31447 solver.cpp:229] Iteration 0, loss = 14.0021 | |
I0401 10:07:22.643754 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0 | |
I0401 10:07:22.643769 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0 | |
I0401 10:07:22.643782 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.0238095 | |
I0401 10:07:22.643798 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 4.45928 (* 0.3 = 1.33778 loss) | |
I0401 10:07:22.643812 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 4.36399 (* 0.3 = 1.3092 loss) | |
I0401 10:07:22.643826 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0 | |
I0401 10:07:22.643837 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0 | |
I0401 10:07:22.643873 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.0714286 | |
I0401 10:07:22.643890 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 4.29269 (* 0.3 = 1.28781 loss) | |
I0401 10:07:22.643904 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 4.42637 (* 0.3 = 1.32791 loss) | |
I0401 10:07:22.643916 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0 | |
I0401 10:07:22.643928 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0 | |
I0401 10:07:22.643939 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0 | |
I0401 10:07:22.643952 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 4.39482 (* 1 = 4.39482 loss) | |
I0401 10:07:22.643965 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 4.34453 (* 1 = 4.34453 loss) | |
I0401 10:07:22.643977 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 10:07:22.643990 31447 solver.cpp:245] Train net output #16: total_confidence = 2.29857e-33 | |
I0401 10:07:22.644007 31447 sgd_solver.cpp:106] Iteration 0, lr = 0.05 | |
I0401 10:07:22.661419 31447 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 31.5701 > 30) by scale factor 0.950265 | |
I0401 10:09:39.937007 31447 solver.cpp:229] Iteration 500, loss = 8.4845 | |
I0401 10:09:39.937325 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0769231 | |
I0401 10:09:39.937345 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.744318 | |
I0401 10:09:39.937358 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.128205 | |
I0401 10:09:39.937374 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.66361 (* 0.3 = 1.09908 loss) | |
I0401 10:09:39.937389 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.14997 (* 0.3 = 0.344991 loss) | |
I0401 10:09:39.937402 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0512821 | |
I0401 10:09:39.937414 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.784091 | |
I0401 10:09:39.937427 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.102564 | |
I0401 10:09:39.937440 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.7524 (* 0.3 = 1.12572 loss) | |
I0401 10:09:39.937453 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.955194 (* 0.3 = 0.286558 loss) | |
I0401 10:09:39.937466 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0.025641 | |
I0401 10:09:39.937479 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.767045 | |
I0401 10:09:39.937490 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.205128 | |
I0401 10:09:39.937504 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.60386 (* 1 = 3.60386 loss) | |
I0401 10:09:39.937520 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 1.02063 (* 1 = 1.02063 loss) | |
I0401 10:09:39.937532 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 10:09:39.937544 31447 solver.cpp:245] Train net output #16: total_confidence = 6.91831e-08 | |
I0401 10:09:39.937556 31447 sgd_solver.cpp:106] Iteration 500, lr = 0.05 | |
I0401 10:11:55.218194 31447 solver.cpp:229] Iteration 1000, loss = 8.0588 | |
I0401 10:11:55.218322 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0175439 | |
I0401 10:11:55.218343 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.664773 | |
I0401 10:11:55.218355 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.0701754 | |
I0401 10:11:55.218371 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.81747 (* 0.3 = 1.14524 loss) | |
I0401 10:11:55.218385 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.48454 (* 0.3 = 0.445362 loss) | |
I0401 10:11:55.218399 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0175439 | |
I0401 10:11:55.218411 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.676136 | |
I0401 10:11:55.218422 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.0877193 | |
I0401 10:11:55.218436 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.85042 (* 0.3 = 1.15513 loss) | |
I0401 10:11:55.218451 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.40503 (* 0.3 = 0.421509 loss) | |
I0401 10:11:55.218462 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0175439 | |
I0401 10:11:55.218474 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.681818 | |
I0401 10:11:55.218487 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.0701754 | |
I0401 10:11:55.218500 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.8703 (* 1 = 3.8703 loss) | |
I0401 10:11:55.218514 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 1.34249 (* 1 = 1.34249 loss) | |
I0401 10:11:55.218529 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 10:11:55.218541 31447 solver.cpp:245] Train net output #16: total_confidence = 2.87411e-07 | |
I0401 10:11:55.218554 31447 sgd_solver.cpp:106] Iteration 1000, lr = 0.05 | |
I0401 10:14:09.062777 31447 solver.cpp:229] Iteration 1500, loss = 7.90593 | |
I0401 10:14:09.063005 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0444444 | |
I0401 10:14:09.063025 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.755682 | |
I0401 10:14:09.063038 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.133333 | |
I0401 10:14:09.063056 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.93499 (* 0.3 = 1.1805 loss) | |
I0401 10:14:09.063071 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.22782 (* 0.3 = 0.368346 loss) | |
I0401 10:14:09.063084 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0444444 | |
I0401 10:14:09.063097 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.755682 | |
I0401 10:14:09.063108 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.111111 | |
I0401 10:14:09.063122 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.89466 (* 0.3 = 1.1684 loss) | |
I0401 10:14:09.063136 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.10339 (* 0.3 = 0.331017 loss) | |
I0401 10:14:09.063148 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0222222 | |
I0401 10:14:09.063160 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.744318 | |
I0401 10:14:09.063172 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.0888889 | |
I0401 10:14:09.063186 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.91233 (* 1 = 3.91233 loss) | |
I0401 10:14:09.063199 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 1.13475 (* 1 = 1.13475 loss) | |
I0401 10:14:09.063211 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 10:14:09.063223 31447 solver.cpp:245] Train net output #16: total_confidence = 1.08004e-06 | |
I0401 10:14:09.063235 31447 sgd_solver.cpp:106] Iteration 1500, lr = 0.05 | |
I0401 10:16:21.920889 31447 solver.cpp:229] Iteration 2000, loss = 7.7953 | |
I0401 10:16:21.921196 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0731707 | |
I0401 10:16:21.921218 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.75 | |
I0401 10:16:21.921231 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.219512 | |
I0401 10:16:21.921247 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.53857 (* 0.3 = 1.06157 loss) | |
I0401 10:16:21.921262 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.17712 (* 0.3 = 0.353136 loss) | |
I0401 10:16:21.921274 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0487805 | |
I0401 10:16:21.921286 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.744318 | |
I0401 10:16:21.921298 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.121951 | |
I0401 10:16:21.921311 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.65119 (* 0.3 = 1.09536 loss) | |
I0401 10:16:21.921325 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.17547 (* 0.3 = 0.35264 loss) | |
I0401 10:16:21.921337 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0731707 | |
I0401 10:16:21.921350 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.767045 | |
I0401 10:16:21.921361 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.170732 | |
I0401 10:16:21.921375 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.68009 (* 1 = 3.68009 loss) | |
I0401 10:16:21.921388 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 1.03867 (* 1 = 1.03867 loss) | |
I0401 10:16:21.921401 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 10:16:21.921412 31447 solver.cpp:245] Train net output #16: total_confidence = 2.44957e-06 | |
I0401 10:16:21.921424 31447 sgd_solver.cpp:106] Iteration 2000, lr = 0.05 | |
I0401 10:18:34.086995 31447 solver.cpp:229] Iteration 2500, loss = 7.75007 | |
I0401 10:18:34.087103 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0652174 | |
I0401 10:18:34.087128 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.732955 | |
I0401 10:18:34.087141 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.173913 | |
I0401 10:18:34.087157 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.62505 (* 0.3 = 1.08752 loss) | |
I0401 10:18:34.087172 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.1446 (* 0.3 = 0.34338 loss) | |
I0401 10:18:34.087185 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0652174 | |
I0401 10:18:34.087198 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.738636 | |
I0401 10:18:34.087210 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.152174 | |
I0401 10:18:34.087224 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.59562 (* 0.3 = 1.07869 loss) | |
I0401 10:18:34.087237 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.21445 (* 0.3 = 0.364335 loss) | |
I0401 10:18:34.087249 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0652174 | |
I0401 10:18:34.087261 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.75 | |
I0401 10:18:34.087273 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.195652 | |
I0401 10:18:34.087290 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.5994 (* 1 = 3.5994 loss) | |
I0401 10:18:34.087303 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 1.05716 (* 1 = 1.05716 loss) | |
I0401 10:18:34.087316 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 10:18:34.087327 31447 solver.cpp:245] Train net output #16: total_confidence = 2.92561e-05 | |
I0401 10:18:34.087339 31447 sgd_solver.cpp:106] Iteration 2500, lr = 0.05 | |
I0401 10:20:45.572913 31447 solver.cpp:229] Iteration 3000, loss = 7.67646 | |
I0401 10:20:45.573036 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0208333 | |
I0401 10:20:45.573056 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.630682 | |
I0401 10:20:45.573070 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.125 | |
I0401 10:20:45.573086 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.88973 (* 0.3 = 1.16692 loss) | |
I0401 10:20:45.573107 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.49621 (* 0.3 = 0.448862 loss) | |
I0401 10:20:45.573132 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0 | |
I0401 10:20:45.573148 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.630682 | |
I0401 10:20:45.573160 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.0833333 | |
I0401 10:20:45.573175 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.89172 (* 0.3 = 1.16752 loss) | |
I0401 10:20:45.573189 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.46019 (* 0.3 = 0.438058 loss) | |
I0401 10:20:45.573202 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0208333 | |
I0401 10:20:45.573215 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.715909 | |
I0401 10:20:45.573225 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.0833333 | |
I0401 10:20:45.573240 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.92089 (* 1 = 3.92089 loss) | |
I0401 10:20:45.573252 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 1.25091 (* 1 = 1.25091 loss) | |
I0401 10:20:45.573264 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 10:20:45.573276 31447 solver.cpp:245] Train net output #16: total_confidence = 4.56838e-07 | |
I0401 10:20:45.573288 31447 sgd_solver.cpp:106] Iteration 3000, lr = 0.05 | |
I0401 10:22:56.938113 31447 solver.cpp:229] Iteration 3500, loss = 7.49258 | |
I0401 10:22:56.938215 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0769231 | |
I0401 10:22:56.938233 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.727273 | |
I0401 10:22:56.938249 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.230769 | |
I0401 10:22:56.938266 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.46954 (* 0.3 = 1.04086 loss) | |
I0401 10:22:56.938282 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.10675 (* 0.3 = 0.332025 loss) | |
I0401 10:22:56.938293 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0769231 | |
I0401 10:22:56.938307 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.721591 | |
I0401 10:22:56.938318 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.153846 | |
I0401 10:22:56.938331 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.58776 (* 0.3 = 1.07633 loss) | |
I0401 10:22:56.938345 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.15081 (* 0.3 = 0.345243 loss) | |
I0401 10:22:56.938357 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0384615 | |
I0401 10:22:56.938369 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.704545 | |
I0401 10:22:56.938381 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.115385 | |
I0401 10:22:56.938395 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.62136 (* 1 = 3.62136 loss) | |
I0401 10:22:56.938408 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 1.19916 (* 1 = 1.19916 loss) | |
I0401 10:22:56.938421 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 10:22:56.938432 31447 solver.cpp:245] Train net output #16: total_confidence = 1.78431e-06 | |
I0401 10:22:56.938444 31447 sgd_solver.cpp:106] Iteration 3500, lr = 0.05 | |
I0401 10:25:08.040726 31447 solver.cpp:229] Iteration 4000, loss = 7.43541 | |
I0401 10:25:08.040976 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0.04 | |
I0401 10:25:08.040995 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.727273 | |
I0401 10:25:08.041008 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.14 | |
I0401 10:25:08.041024 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.52256 (* 0.3 = 1.05677 loss) | |
I0401 10:25:08.041039 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.1191 (* 0.3 = 0.33573 loss) | |
I0401 10:25:08.041069 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.02 | |
I0401 10:25:08.041082 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.721591 | |
I0401 10:25:08.041095 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.1 | |
I0401 10:25:08.041110 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.58161 (* 0.3 = 1.07448 loss) | |
I0401 10:25:08.041123 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.12284 (* 0.3 = 0.336852 loss) | |
I0401 10:25:08.041136 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0.04 | |
I0401 10:25:08.041147 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.727273 | |
I0401 10:25:08.041159 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.16 | |
I0401 10:25:08.041172 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.38369 (* 1 = 3.38369 loss) | |
I0401 10:25:08.041187 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 1.02775 (* 1 = 1.02775 loss) | |
I0401 10:25:08.041198 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 10:25:08.041209 31447 solver.cpp:245] Train net output #16: total_confidence = 1.86441e-05 | |
I0401 10:25:08.041223 31447 sgd_solver.cpp:106] Iteration 4000, lr = 0.05 | |
I0401 10:27:18.562579 31447 solver.cpp:229] Iteration 4500, loss = 7.33296 | |
I0401 10:27:18.562686 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0681818 | |
I0401 10:27:18.562706 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.767045 | |
I0401 10:27:18.562718 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.227273 | |
I0401 10:27:18.562734 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.2244 (* 0.3 = 0.96732 loss) | |
I0401 10:27:18.562749 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.921885 (* 0.3 = 0.276565 loss) | |
I0401 10:27:18.562762 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0909091 | |
I0401 10:27:18.562774 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.767045 | |
I0401 10:27:18.562786 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.227273 | |
I0401 10:27:18.562800 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.20662 (* 0.3 = 0.961985 loss) | |
I0401 10:27:18.562814 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.96095 (* 0.3 = 0.288285 loss) | |
I0401 10:27:18.562826 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0.159091 | |
I0401 10:27:18.562839 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.772727 | |
I0401 10:27:18.562850 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.227273 | |
I0401 10:27:18.562865 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.12757 (* 1 = 3.12757 loss) | |
I0401 10:27:18.562878 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.937485 (* 1 = 0.937485 loss) | |
I0401 10:27:18.562891 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 10:27:18.562902 31447 solver.cpp:245] Train net output #16: total_confidence = 2.79196e-07 | |
I0401 10:27:18.562914 31447 sgd_solver.cpp:106] Iteration 4500, lr = 0.05 | |
I0401 10:29:28.883522 31447 solver.cpp:338] Iteration 5000, Testing net (#0) | |
I0401 10:30:01.564424 31447 solver.cpp:393] Test loss: 9.02601 | |
I0401 10:30:01.564527 31447 solver.cpp:406] Test net output #0: loss1/accuracy = 0.118462 | |
I0401 10:30:01.564548 31447 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.644409 | |
I0401 10:30:01.564560 31447 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.302396 | |
I0401 10:30:01.564576 31447 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 3.37803 (* 0.3 = 1.01341 loss) | |
I0401 10:30:01.564591 31447 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 1.51148 (* 0.3 = 0.453443 loss) | |
I0401 10:30:01.564604 31447 solver.cpp:406] Test net output #5: loss2/accuracy = 0.0659536 | |
I0401 10:30:01.564615 31447 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.535773 | |
I0401 10:30:01.564627 31447 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.180392 | |
I0401 10:30:01.564640 31447 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 3.55198 (* 0.3 = 1.06559 loss) | |
I0401 10:30:01.564654 31447 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 1.87488 (* 0.3 = 0.562464 loss) | |
I0401 10:30:01.564666 31447 solver.cpp:406] Test net output #10: loss3/accuracy = 0.0961015 | |
I0401 10:30:01.564678 31447 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.469636 | |
I0401 10:30:01.564689 31447 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.219661 | |
I0401 10:30:01.564703 31447 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 3.44299 (* 1 = 3.44299 loss) | |
I0401 10:30:01.564716 31447 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 2.48812 (* 1 = 2.48812 loss) | |
I0401 10:30:01.564728 31447 solver.cpp:406] Test net output #15: total_accuracy = 0 | |
I0401 10:30:01.564740 31447 solver.cpp:406] Test net output #16: total_confidence = 2.92926e-05 | |
I0401 10:30:01.715370 31447 solver.cpp:229] Iteration 5000, loss = 7.30369 | |
I0401 10:30:01.715409 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0425532 | |
I0401 10:30:01.715425 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.732955 | |
I0401 10:30:01.715438 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.191489 | |
I0401 10:30:01.715453 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.70196 (* 0.3 = 1.11059 loss) | |
I0401 10:30:01.715467 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.19505 (* 0.3 = 0.358515 loss) | |
I0401 10:30:01.715479 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0425532 | |
I0401 10:30:01.715492 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.744318 | |
I0401 10:30:01.715503 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.170213 | |
I0401 10:30:01.715517 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.79743 (* 0.3 = 1.13923 loss) | |
I0401 10:30:01.715531 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.1537 (* 0.3 = 0.34611 loss) | |
I0401 10:30:01.715543 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0425532 | |
I0401 10:30:01.715555 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.744318 | |
I0401 10:30:01.715566 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.148936 | |
I0401 10:30:01.715580 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.66647 (* 1 = 3.66647 loss) | |
I0401 10:30:01.715593 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 1.08638 (* 1 = 1.08638 loss) | |
I0401 10:30:01.715605 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 10:30:01.715617 31447 solver.cpp:245] Train net output #16: total_confidence = 3.11934e-07 | |
I0401 10:30:01.715631 31447 sgd_solver.cpp:106] Iteration 5000, lr = 0.05 | |
I0401 10:32:12.165473 31447 solver.cpp:229] Iteration 5500, loss = 7.26118 | |
I0401 10:32:12.165568 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0 | |
I0401 10:32:12.165586 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.710227 | |
I0401 10:32:12.165599 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.106383 | |
I0401 10:32:12.165616 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.35702 (* 0.3 = 1.00711 loss) | |
I0401 10:32:12.165632 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.07803 (* 0.3 = 0.32341 loss) | |
I0401 10:32:12.165643 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0212766 | |
I0401 10:32:12.165657 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.727273 | |
I0401 10:32:12.165673 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.170213 | |
I0401 10:32:12.165686 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.51953 (* 0.3 = 1.05586 loss) | |
I0401 10:32:12.165700 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.1613 (* 0.3 = 0.348391 loss) | |
I0401 10:32:12.165712 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0425532 | |
I0401 10:32:12.165724 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.732955 | |
I0401 10:32:12.165736 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.191489 | |
I0401 10:32:12.165750 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.48118 (* 1 = 3.48118 loss) | |
I0401 10:32:12.165765 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 1.04803 (* 1 = 1.04803 loss) | |
I0401 10:32:12.165776 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 10:32:12.165787 31447 solver.cpp:245] Train net output #16: total_confidence = 2.18508e-05 | |
I0401 10:32:12.165801 31447 sgd_solver.cpp:106] Iteration 5500, lr = 0.05 | |
I0401 10:34:22.652707 31447 solver.cpp:229] Iteration 6000, loss = 7.18585 | |
I0401 10:34:22.652801 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0465116 | |
I0401 10:34:22.652819 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.75 | |
I0401 10:34:22.652832 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.325581 | |
I0401 10:34:22.652848 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.10021 (* 0.3 = 0.930064 loss) | |
I0401 10:34:22.652863 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.921475 (* 0.3 = 0.276443 loss) | |
I0401 10:34:22.652879 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0930233 | |
I0401 10:34:22.652892 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.767045 | |
I0401 10:34:22.652904 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.209302 | |
I0401 10:34:22.652918 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.06814 (* 0.3 = 0.920443 loss) | |
I0401 10:34:22.652940 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.979367 (* 0.3 = 0.29381 loss) | |
I0401 10:34:22.652963 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0465116 | |
I0401 10:34:22.652982 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.767045 | |
I0401 10:34:22.652995 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.325581 | |
I0401 10:34:22.653009 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.96385 (* 1 = 2.96385 loss) | |
I0401 10:34:22.653024 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.854304 (* 1 = 0.854304 loss) | |
I0401 10:34:22.653036 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 10:34:22.653066 31447 solver.cpp:245] Train net output #16: total_confidence = 6.47205e-07 | |
I0401 10:34:22.653081 31447 sgd_solver.cpp:106] Iteration 6000, lr = 0.05 | |
I0401 10:36:32.591294 31447 solver.cpp:229] Iteration 6500, loss = 7.2004 | |
I0401 10:36:32.591548 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0192308 | |
I0401 10:36:32.591579 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.710227 | |
I0401 10:36:32.591604 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.230769 | |
I0401 10:36:32.591631 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.43788 (* 0.3 = 1.03136 loss) | |
I0401 10:36:32.591661 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.07174 (* 0.3 = 0.321521 loss) | |
I0401 10:36:32.591687 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0384615 | |
I0401 10:36:32.591711 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.715909 | |
I0401 10:36:32.591734 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.192308 | |
I0401 10:36:32.591759 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.49427 (* 0.3 = 1.04828 loss) | |
I0401 10:36:32.591786 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.11501 (* 0.3 = 0.334503 loss) | |
I0401 10:36:32.591809 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0384615 | |
I0401 10:36:32.591830 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.715909 | |
I0401 10:36:32.591851 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.211538 | |
I0401 10:36:32.591876 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.3657 (* 1 = 3.3657 loss) | |
I0401 10:36:32.591902 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 1.03682 (* 1 = 1.03682 loss) | |
I0401 10:36:32.591924 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 10:36:32.591944 31447 solver.cpp:245] Train net output #16: total_confidence = 8.7927e-05 | |
I0401 10:36:32.591966 31447 sgd_solver.cpp:106] Iteration 6500, lr = 0.05 | |
I0401 10:38:42.548524 31447 solver.cpp:229] Iteration 7000, loss = 7.15174 | |
I0401 10:38:42.548632 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0625 | |
I0401 10:38:42.548652 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.732955 | |
I0401 10:38:42.548666 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.166667 | |
I0401 10:38:42.548681 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.42472 (* 0.3 = 1.02742 loss) | |
I0401 10:38:42.548696 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.10329 (* 0.3 = 0.330987 loss) | |
I0401 10:38:42.548708 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0416667 | |
I0401 10:38:42.548722 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.732955 | |
I0401 10:38:42.548733 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.104167 | |
I0401 10:38:42.548746 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.66769 (* 0.3 = 1.10031 loss) | |
I0401 10:38:42.548760 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.19331 (* 0.3 = 0.357993 loss) | |
I0401 10:38:42.548773 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0416667 | |
I0401 10:38:42.548785 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.732955 | |
I0401 10:38:42.548796 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.0833333 | |
I0401 10:38:42.548811 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.42921 (* 1 = 3.42921 loss) | |
I0401 10:38:42.548825 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 1.05694 (* 1 = 1.05694 loss) | |
I0401 10:38:42.548836 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 10:38:42.548848 31447 solver.cpp:245] Train net output #16: total_confidence = 9.98726e-06 | |
I0401 10:38:42.548861 31447 sgd_solver.cpp:106] Iteration 7000, lr = 0.05 | |
I0401 10:40:52.497665 31447 solver.cpp:229] Iteration 7500, loss = 7.14815 | |
I0401 10:40:52.497799 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0384615 | |
I0401 10:40:52.497822 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.704545 | |
I0401 10:40:52.497833 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.153846 | |
I0401 10:40:52.497849 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.61527 (* 0.3 = 1.08458 loss) | |
I0401 10:40:52.497864 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.18834 (* 0.3 = 0.356503 loss) | |
I0401 10:40:52.497877 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0576923 | |
I0401 10:40:52.497890 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.721591 | |
I0401 10:40:52.497902 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.0961538 | |
I0401 10:40:52.497916 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.78424 (* 0.3 = 1.13527 loss) | |
I0401 10:40:52.497931 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.23429 (* 0.3 = 0.370288 loss) | |
I0401 10:40:52.497942 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0576923 | |
I0401 10:40:52.497954 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.721591 | |
I0401 10:40:52.497967 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.134615 | |
I0401 10:40:52.497979 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.55559 (* 1 = 3.55559 loss) | |
I0401 10:40:52.497993 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 1.1219 (* 1 = 1.1219 loss) | |
I0401 10:40:52.498005 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 10:40:52.498018 31447 solver.cpp:245] Train net output #16: total_confidence = 6.70406e-08 | |
I0401 10:40:52.498030 31447 sgd_solver.cpp:106] Iteration 7500, lr = 0.05 | |
I0401 10:43:02.361325 31447 solver.cpp:229] Iteration 8000, loss = 7.09206 | |
I0401 10:43:02.361461 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0243902 | |
I0401 10:43:02.361482 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.75 | |
I0401 10:43:02.361495 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.243902 | |
I0401 10:43:02.361511 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.15362 (* 0.3 = 0.946087 loss) | |
I0401 10:43:02.361529 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.952513 (* 0.3 = 0.285754 loss) | |
I0401 10:43:02.361542 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0243902 | |
I0401 10:43:02.361556 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.755682 | |
I0401 10:43:02.361567 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.268293 | |
I0401 10:43:02.361582 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.16177 (* 0.3 = 0.94853 loss) | |
I0401 10:43:02.361595 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.919329 (* 0.3 = 0.275799 loss) | |
I0401 10:43:02.361608 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0 | |
I0401 10:43:02.361620 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.727273 | |
I0401 10:43:02.361632 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.219512 | |
I0401 10:43:02.361646 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.07003 (* 1 = 3.07003 loss) | |
I0401 10:43:02.361661 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.933359 (* 1 = 0.933359 loss) | |
I0401 10:43:02.361673 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 10:43:02.361685 31447 solver.cpp:245] Train net output #16: total_confidence = 0.000368991 | |
I0401 10:43:02.361699 31447 sgd_solver.cpp:106] Iteration 8000, lr = 0.05 | |
I0401 10:45:11.915096 31447 solver.cpp:229] Iteration 8500, loss = 7.0311 | |
I0401 10:45:11.915381 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0.130435 | |
I0401 10:45:11.915403 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.761364 | |
I0401 10:45:11.915416 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.26087 | |
I0401 10:45:11.915432 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.20153 (* 0.3 = 0.960458 loss) | |
I0401 10:45:11.915447 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.00703 (* 0.3 = 0.302108 loss) | |
I0401 10:45:11.915460 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0869565 | |
I0401 10:45:11.915473 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.755682 | |
I0401 10:45:11.915485 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.26087 | |
I0401 10:45:11.915498 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.15529 (* 0.3 = 0.946587 loss) | |
I0401 10:45:11.915513 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.987235 (* 0.3 = 0.29617 loss) | |
I0401 10:45:11.915527 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0.130435 | |
I0401 10:45:11.915539 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.755682 | |
I0401 10:45:11.915551 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.304348 | |
I0401 10:45:11.915565 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.07865 (* 1 = 3.07865 loss) | |
I0401 10:45:11.915578 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.964204 (* 1 = 0.964204 loss) | |
I0401 10:45:11.915591 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 10:45:11.915602 31447 solver.cpp:245] Train net output #16: total_confidence = 1.40189e-06 | |
I0401 10:45:11.915616 31447 sgd_solver.cpp:106] Iteration 8500, lr = 0.05 | |
I0401 10:47:21.321585 31447 solver.cpp:229] Iteration 9000, loss = 7.01921 | |
I0401 10:47:21.321686 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0.075 | |
I0401 10:47:21.321707 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.755682 | |
I0401 10:47:21.321719 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.225 | |
I0401 10:47:21.321735 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.16561 (* 0.3 = 0.949683 loss) | |
I0401 10:47:21.321750 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.93509 (* 0.3 = 0.280527 loss) | |
I0401 10:47:21.321763 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.05 | |
I0401 10:47:21.321775 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.755682 | |
I0401 10:47:21.321786 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.225 | |
I0401 10:47:21.321800 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.07341 (* 0.3 = 0.922023 loss) | |
I0401 10:47:21.321815 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.977897 (* 0.3 = 0.293369 loss) | |
I0401 10:47:21.321826 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0.075 | |
I0401 10:47:21.321838 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.761364 | |
I0401 10:47:21.321851 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.175 | |
I0401 10:47:21.321864 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.09824 (* 1 = 3.09824 loss) | |
I0401 10:47:21.321878 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.885343 (* 1 = 0.885343 loss) | |
I0401 10:47:21.321890 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 10:47:21.321902 31447 solver.cpp:245] Train net output #16: total_confidence = 3.73739e-05 | |
I0401 10:47:21.321914 31447 sgd_solver.cpp:106] Iteration 9000, lr = 0.05 | |
I0401 10:49:30.846891 31447 solver.cpp:229] Iteration 9500, loss = 7.03755 | |
I0401 10:49:30.847019 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0243902 | |
I0401 10:49:30.847040 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.744318 | |
I0401 10:49:30.847054 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.170732 | |
I0401 10:49:30.847069 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.14395 (* 0.3 = 0.943185 loss) | |
I0401 10:49:30.847084 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.965905 (* 0.3 = 0.289772 loss) | |
I0401 10:49:30.847096 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0243902 | |
I0401 10:49:30.847110 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.744318 | |
I0401 10:49:30.847121 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.146341 | |
I0401 10:49:30.847134 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.22086 (* 0.3 = 0.966258 loss) | |
I0401 10:49:30.847148 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.988799 (* 0.3 = 0.29664 loss) | |
I0401 10:49:30.847160 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0243902 | |
I0401 10:49:30.847172 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.738636 | |
I0401 10:49:30.847184 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.219512 | |
I0401 10:49:30.847198 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.09102 (* 1 = 3.09102 loss) | |
I0401 10:49:30.847213 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.932101 (* 1 = 0.932101 loss) | |
I0401 10:49:30.847224 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 10:49:30.847236 31447 solver.cpp:245] Train net output #16: total_confidence = 1.88155e-05 | |
I0401 10:49:30.847255 31447 sgd_solver.cpp:106] Iteration 9500, lr = 0.05 | |
I0401 10:51:40.304813 31447 solver.cpp:338] Iteration 10000, Testing net (#0) | |
I0401 10:52:10.095230 31447 solver.cpp:393] Test loss: 6.57555 | |
I0401 10:52:10.095278 31447 solver.cpp:406] Test net output #0: loss1/accuracy = 0.126468 | |
I0401 10:52:10.095295 31447 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.771726 | |
I0401 10:52:10.095309 31447 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.320689 | |
I0401 10:52:10.095324 31447 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 3.09905 (* 0.3 = 0.929716 loss) | |
I0401 10:52:10.095338 31447 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.874265 (* 0.3 = 0.26228 loss) | |
I0401 10:52:10.095350 31447 solver.cpp:406] Test net output #5: loss2/accuracy = 0.14872 | |
I0401 10:52:10.095362 31447 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.698909 | |
I0401 10:52:10.095374 31447 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.304892 | |
I0401 10:52:10.095387 31447 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 3.13778 (* 0.3 = 0.941333 loss) | |
I0401 10:52:10.095402 31447 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 1.2205 (* 0.3 = 0.366151 loss) | |
I0401 10:52:10.095412 31447 solver.cpp:406] Test net output #10: loss3/accuracy = 0.162881 | |
I0401 10:52:10.095424 31447 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.726591 | |
I0401 10:52:10.095437 31447 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.337139 | |
I0401 10:52:10.095449 31447 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 2.93699 (* 1 = 2.93699 loss) | |
I0401 10:52:10.095463 31447 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 1.13908 (* 1 = 1.13908 loss) | |
I0401 10:52:10.095474 31447 solver.cpp:406] Test net output #15: total_accuracy = 0 | |
I0401 10:52:10.095486 31447 solver.cpp:406] Test net output #16: total_confidence = 0.000124669 | |
I0401 10:52:10.247308 31447 solver.cpp:229] Iteration 10000, loss = 7.02116 | |
I0401 10:52:10.247370 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0638298 | |
I0401 10:52:10.247387 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.732955 | |
I0401 10:52:10.247401 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.170213 | |
I0401 10:52:10.247418 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.41513 (* 0.3 = 1.02454 loss) | |
I0401 10:52:10.247432 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.03599 (* 0.3 = 0.310798 loss) | |
I0401 10:52:10.247445 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0425532 | |
I0401 10:52:10.247457 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.727273 | |
I0401 10:52:10.247473 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.170213 | |
I0401 10:52:10.247488 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.34853 (* 0.3 = 1.00456 loss) | |
I0401 10:52:10.247501 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.06553 (* 0.3 = 0.31966 loss) | |
I0401 10:52:10.247514 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0212766 | |
I0401 10:52:10.247526 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.727273 | |
I0401 10:52:10.247539 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.191489 | |
I0401 10:52:10.247552 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.22606 (* 1 = 3.22606 loss) | |
I0401 10:52:10.247566 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.979342 (* 1 = 0.979342 loss) | |
I0401 10:52:10.247578 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 10:52:10.247591 31447 solver.cpp:245] Train net output #16: total_confidence = 4.34381e-07 | |
I0401 10:52:10.247604 31447 sgd_solver.cpp:106] Iteration 10000, lr = 0.05 | |
I0401 10:54:19.732379 31447 solver.cpp:229] Iteration 10500, loss = 6.94567 | |
I0401 10:54:19.732507 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0769231 | |
I0401 10:54:19.732527 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.778409 | |
I0401 10:54:19.732539 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.153846 | |
I0401 10:54:19.732555 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.14397 (* 0.3 = 0.943192 loss) | |
I0401 10:54:19.732570 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.852547 (* 0.3 = 0.255764 loss) | |
I0401 10:54:19.732583 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.102564 | |
I0401 10:54:19.732595 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.784091 | |
I0401 10:54:19.732607 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.205128 | |
I0401 10:54:19.732621 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.09603 (* 0.3 = 0.928808 loss) | |
I0401 10:54:19.732635 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.855776 (* 0.3 = 0.256733 loss) | |
I0401 10:54:19.732647 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0.025641 | |
I0401 10:54:19.732659 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.761364 | |
I0401 10:54:19.732671 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.128205 | |
I0401 10:54:19.732686 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.07572 (* 1 = 3.07572 loss) | |
I0401 10:54:19.732698 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.835178 (* 1 = 0.835178 loss) | |
I0401 10:54:19.732710 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 10:54:19.732722 31447 solver.cpp:245] Train net output #16: total_confidence = 8.12738e-05 | |
I0401 10:54:19.732735 31447 sgd_solver.cpp:106] Iteration 10500, lr = 0.05 | |
I0401 10:56:29.687058 31447 solver.cpp:229] Iteration 11000, loss = 6.9215 | |
I0401 10:56:29.687325 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0.06 | |
I0401 10:56:29.687345 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.721591 | |
I0401 10:56:29.687358 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.24 | |
I0401 10:56:29.687374 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.38849 (* 0.3 = 1.01655 loss) | |
I0401 10:56:29.687389 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.07288 (* 0.3 = 0.321863 loss) | |
I0401 10:56:29.687402 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.12 | |
I0401 10:56:29.687414 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.727273 | |
I0401 10:56:29.687427 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.28 | |
I0401 10:56:29.687440 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.36495 (* 0.3 = 1.00949 loss) | |
I0401 10:56:29.687453 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.18375 (* 0.3 = 0.355126 loss) | |
I0401 10:56:29.687465 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0.06 | |
I0401 10:56:29.687479 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.727273 | |
I0401 10:56:29.687490 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.16 | |
I0401 10:56:29.687504 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.23563 (* 1 = 3.23563 loss) | |
I0401 10:56:29.687520 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.987894 (* 1 = 0.987894 loss) | |
I0401 10:56:29.687532 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 10:56:29.687544 31447 solver.cpp:245] Train net output #16: total_confidence = 5.01888e-05 | |
I0401 10:56:29.687556 31447 sgd_solver.cpp:106] Iteration 11000, lr = 0.05 | |
I0401 10:58:39.200718 31447 solver.cpp:229] Iteration 11500, loss = 6.90679 | |
I0401 10:58:39.200850 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0909091 | |
I0401 10:58:39.200870 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.744318 | |
I0401 10:58:39.200883 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.272727 | |
I0401 10:58:39.200901 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.14622 (* 0.3 = 0.943866 loss) | |
I0401 10:58:39.200916 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.965346 (* 0.3 = 0.289604 loss) | |
I0401 10:58:39.200927 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0681818 | |
I0401 10:58:39.200940 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.767045 | |
I0401 10:58:39.200953 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.204545 | |
I0401 10:58:39.200965 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.23767 (* 0.3 = 0.9713 loss) | |
I0401 10:58:39.200980 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.854302 (* 0.3 = 0.256291 loss) | |
I0401 10:58:39.200992 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0681818 | |
I0401 10:58:39.201004 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.744318 | |
I0401 10:58:39.201016 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.25 | |
I0401 10:58:39.201030 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.19202 (* 1 = 3.19202 loss) | |
I0401 10:58:39.201057 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.91941 (* 1 = 0.91941 loss) | |
I0401 10:58:39.201072 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 10:58:39.201084 31447 solver.cpp:245] Train net output #16: total_confidence = 6.28907e-05 | |
I0401 10:58:39.201097 31447 sgd_solver.cpp:106] Iteration 11500, lr = 0.05 | |
I0401 11:00:48.513089 31447 solver.cpp:229] Iteration 12000, loss = 6.85376 | |
I0401 11:00:48.513221 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0.025 | |
I0401 11:00:48.513242 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.761364 | |
I0401 11:00:48.513253 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.25 | |
I0401 11:00:48.513269 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.34758 (* 0.3 = 1.00427 loss) | |
I0401 11:00:48.513284 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.915381 (* 0.3 = 0.274614 loss) | |
I0401 11:00:48.513298 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.05 | |
I0401 11:00:48.513310 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.778409 | |
I0401 11:00:48.513324 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.25 | |
I0401 11:00:48.513336 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.18698 (* 0.3 = 0.956094 loss) | |
I0401 11:00:48.513350 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.847171 (* 0.3 = 0.254151 loss) | |
I0401 11:00:48.513362 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0.175 | |
I0401 11:00:48.513375 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.801136 | |
I0401 11:00:48.513386 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.25 | |
I0401 11:00:48.513401 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.04066 (* 1 = 3.04066 loss) | |
I0401 11:00:48.513414 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.790594 (* 1 = 0.790594 loss) | |
I0401 11:00:48.513427 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 11:00:48.513437 31447 solver.cpp:245] Train net output #16: total_confidence = 0.000456405 | |
I0401 11:00:48.513450 31447 sgd_solver.cpp:106] Iteration 12000, lr = 0.05 | |
I0401 11:02:57.806831 31447 solver.cpp:229] Iteration 12500, loss = 6.88715 | |
I0401 11:02:57.806936 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0869565 | |
I0401 11:02:57.806956 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.75 | |
I0401 11:02:57.806969 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.217391 | |
I0401 11:02:57.806984 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.33544 (* 0.3 = 1.00063 loss) | |
I0401 11:02:57.807000 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.979513 (* 0.3 = 0.293854 loss) | |
I0401 11:02:57.807013 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0869565 | |
I0401 11:02:57.807024 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.755682 | |
I0401 11:02:57.807036 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.195652 | |
I0401 11:02:57.807049 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.28666 (* 0.3 = 0.985997 loss) | |
I0401 11:02:57.807063 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.943889 (* 0.3 = 0.283167 loss) | |
I0401 11:02:57.807076 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0652174 | |
I0401 11:02:57.807088 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.75 | |
I0401 11:02:57.807101 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.282609 | |
I0401 11:02:57.807114 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.2252 (* 1 = 3.2252 loss) | |
I0401 11:02:57.807128 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.898052 (* 1 = 0.898052 loss) | |
I0401 11:02:57.807140 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 11:02:57.807157 31447 solver.cpp:245] Train net output #16: total_confidence = 3.47409e-05 | |
I0401 11:02:57.807176 31447 sgd_solver.cpp:106] Iteration 12500, lr = 0.05 | |
I0401 11:05:07.275419 31447 solver.cpp:229] Iteration 13000, loss = 6.83265 | |
I0401 11:05:07.275686 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0.179487 | |
I0401 11:05:07.275707 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.795455 | |
I0401 11:05:07.275719 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.25641 | |
I0401 11:05:07.275734 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.24876 (* 0.3 = 0.974629 loss) | |
I0401 11:05:07.275749 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.909586 (* 0.3 = 0.272876 loss) | |
I0401 11:05:07.275763 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0512821 | |
I0401 11:05:07.275775 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.778409 | |
I0401 11:05:07.275787 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.25641 | |
I0401 11:05:07.275801 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.2703 (* 0.3 = 0.981089 loss) | |
I0401 11:05:07.275815 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.906939 (* 0.3 = 0.272082 loss) | |
I0401 11:05:07.275827 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0.102564 | |
I0401 11:05:07.275840 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.784091 | |
I0401 11:05:07.275851 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.230769 | |
I0401 11:05:07.275866 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.2242 (* 1 = 3.2242 loss) | |
I0401 11:05:07.275879 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.853905 (* 1 = 0.853905 loss) | |
I0401 11:05:07.275892 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 11:05:07.275903 31447 solver.cpp:245] Train net output #16: total_confidence = 5.20698e-05 | |
I0401 11:05:07.275915 31447 sgd_solver.cpp:106] Iteration 13000, lr = 0.05 | |
I0401 11:07:16.563278 31447 solver.cpp:229] Iteration 13500, loss = 6.85462 | |
I0401 11:07:16.563386 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0 | |
I0401 11:07:16.563405 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.738636 | |
I0401 11:07:16.563418 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.0909091 | |
I0401 11:07:16.563434 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.86068 (* 0.3 = 1.1582 loss) | |
I0401 11:07:16.563449 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.06975 (* 0.3 = 0.320924 loss) | |
I0401 11:07:16.563462 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0 | |
I0401 11:07:16.563474 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.721591 | |
I0401 11:07:16.563485 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.136364 | |
I0401 11:07:16.563499 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.63054 (* 0.3 = 1.08916 loss) | |
I0401 11:07:16.563513 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.07492 (* 0.3 = 0.322477 loss) | |
I0401 11:07:16.563529 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0681818 | |
I0401 11:07:16.563541 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.744318 | |
I0401 11:07:16.563554 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.136364 | |
I0401 11:07:16.563567 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.5212 (* 1 = 3.5212 loss) | |
I0401 11:07:16.563580 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 1.01434 (* 1 = 1.01434 loss) | |
I0401 11:07:16.563592 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 11:07:16.563604 31447 solver.cpp:245] Train net output #16: total_confidence = 5.51353e-05 | |
I0401 11:07:16.563617 31447 sgd_solver.cpp:106] Iteration 13500, lr = 0.05 | |
I0401 11:09:26.566402 31447 solver.cpp:229] Iteration 14000, loss = 6.82927 | |
I0401 11:09:26.566529 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0 | |
I0401 11:09:26.566550 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.698864 | |
I0401 11:09:26.566562 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.0961538 | |
I0401 11:09:26.566578 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.22745 (* 0.3 = 0.968236 loss) | |
I0401 11:09:26.566593 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.06493 (* 0.3 = 0.31948 loss) | |
I0401 11:09:26.566606 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0384615 | |
I0401 11:09:26.566618 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.710227 | |
I0401 11:09:26.566630 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.153846 | |
I0401 11:09:26.566644 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.225 (* 0.3 = 0.967499 loss) | |
I0401 11:09:26.566658 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.02976 (* 0.3 = 0.308928 loss) | |
I0401 11:09:26.566670 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0 | |
I0401 11:09:26.566684 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.704545 | |
I0401 11:09:26.566695 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.134615 | |
I0401 11:09:26.566709 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.04002 (* 1 = 3.04002 loss) | |
I0401 11:09:26.566722 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.954043 (* 1 = 0.954043 loss) | |
I0401 11:09:26.566735 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 11:09:26.566746 31447 solver.cpp:245] Train net output #16: total_confidence = 3.75094e-05 | |
I0401 11:09:26.566758 31447 sgd_solver.cpp:106] Iteration 14000, lr = 0.05 | |
I0401 11:11:35.906218 31447 solver.cpp:229] Iteration 14500, loss = 6.77427 | |
I0401 11:11:35.906322 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0434783 | |
I0401 11:11:35.906342 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.738636 | |
I0401 11:11:35.906353 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.130435 | |
I0401 11:11:35.906369 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.20046 (* 0.3 = 0.960137 loss) | |
I0401 11:11:35.906385 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.94099 (* 0.3 = 0.282297 loss) | |
I0401 11:11:35.906397 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0434783 | |
I0401 11:11:35.906411 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.75 | |
I0401 11:11:35.906424 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.108696 | |
I0401 11:11:35.906437 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.1636 (* 0.3 = 0.949079 loss) | |
I0401 11:11:35.906451 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.939333 (* 0.3 = 0.2818 loss) | |
I0401 11:11:35.906463 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0217391 | |
I0401 11:11:35.906476 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.744318 | |
I0401 11:11:35.906487 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.195652 | |
I0401 11:11:35.906500 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.1174 (* 1 = 3.1174 loss) | |
I0401 11:11:35.906514 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.904541 (* 1 = 0.904541 loss) | |
I0401 11:11:35.906529 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 11:11:35.906541 31447 solver.cpp:245] Train net output #16: total_confidence = 8.23459e-07 | |
I0401 11:11:35.906554 31447 sgd_solver.cpp:106] Iteration 14500, lr = 0.05 | |
I0401 11:13:44.887145 31447 solver.cpp:338] Iteration 15000, Testing net (#0) | |
I0401 11:14:14.671084 31447 solver.cpp:393] Test loss: 6.84012 | |
I0401 11:14:14.671133 31447 solver.cpp:406] Test net output #0: loss1/accuracy = 0.118761 | |
I0401 11:14:14.671159 31447 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.772909 | |
I0401 11:14:14.671185 31447 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.286252 | |
I0401 11:14:14.671211 31447 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 3.10582 (* 0.3 = 0.931747 loss) | |
I0401 11:14:14.671241 31447 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.863085 (* 0.3 = 0.258925 loss) | |
I0401 11:14:14.671264 31447 solver.cpp:406] Test net output #5: loss2/accuracy = 0.128375 | |
I0401 11:14:14.671286 31447 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.684364 | |
I0401 11:14:14.671306 31447 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.299695 | |
I0401 11:14:14.671332 31447 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 3.15802 (* 0.3 = 0.947407 loss) | |
I0401 11:14:14.671357 31447 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 1.76949 (* 0.3 = 0.530847 loss) | |
I0401 11:14:14.671378 31447 solver.cpp:406] Test net output #10: loss3/accuracy = 0.113399 | |
I0401 11:14:14.671399 31447 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.721227 | |
I0401 11:14:14.671421 31447 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.299622 | |
I0401 11:14:14.671445 31447 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 2.92447 (* 1 = 2.92447 loss) | |
I0401 11:14:14.671473 31447 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 1.24673 (* 1 = 1.24673 loss) | |
I0401 11:14:14.671497 31447 solver.cpp:406] Test net output #15: total_accuracy = 0.001 | |
I0401 11:14:14.671524 31447 solver.cpp:406] Test net output #16: total_confidence = 5.43999e-05 | |
I0401 11:14:14.822613 31447 solver.cpp:229] Iteration 15000, loss = 6.85827 | |
I0401 11:14:14.822656 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0.04 | |
I0401 11:14:14.822685 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.727273 | |
I0401 11:14:14.822713 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.16 | |
I0401 11:14:14.822742 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.30188 (* 0.3 = 0.990564 loss) | |
I0401 11:14:14.822772 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.01173 (* 0.3 = 0.303519 loss) | |
I0401 11:14:14.822798 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.08 | |
I0401 11:14:14.822820 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.738636 | |
I0401 11:14:14.822844 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.22 | |
I0401 11:14:14.822870 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.36035 (* 0.3 = 1.0081 loss) | |
I0401 11:14:14.822896 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.04453 (* 0.3 = 0.313359 loss) | |
I0401 11:14:14.822916 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0.06 | |
I0401 11:14:14.822938 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.727273 | |
I0401 11:14:14.822960 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.16 | |
I0401 11:14:14.822985 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.37809 (* 1 = 3.37809 loss) | |
I0401 11:14:14.823010 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 1.01996 (* 1 = 1.01996 loss) | |
I0401 11:14:14.823032 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 11:14:14.823056 31447 solver.cpp:245] Train net output #16: total_confidence = 4.29245e-07 | |
I0401 11:14:14.823081 31447 sgd_solver.cpp:106] Iteration 15000, lr = 0.05 | |
I0401 11:16:23.843647 31447 solver.cpp:229] Iteration 15500, loss = 6.82119 | |
I0401 11:16:23.843914 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0.133333 | |
I0401 11:16:23.843935 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.778409 | |
I0401 11:16:23.843946 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.288889 | |
I0401 11:16:23.843962 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.98122 (* 0.3 = 0.894365 loss) | |
I0401 11:16:23.843977 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.81619 (* 0.3 = 0.244857 loss) | |
I0401 11:16:23.843989 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.133333 | |
I0401 11:16:23.844002 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.772727 | |
I0401 11:16:23.844014 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.266667 | |
I0401 11:16:23.844028 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.06237 (* 0.3 = 0.918712 loss) | |
I0401 11:16:23.844043 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.898177 (* 0.3 = 0.269453 loss) | |
I0401 11:16:23.844054 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0888889 | |
I0401 11:16:23.844066 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.767045 | |
I0401 11:16:23.844077 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.288889 | |
I0401 11:16:23.844091 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.96414 (* 1 = 2.96414 loss) | |
I0401 11:16:23.844105 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.793952 (* 1 = 0.793952 loss) | |
I0401 11:16:23.844117 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 11:16:23.844130 31447 solver.cpp:245] Train net output #16: total_confidence = 1.50311e-05 | |
I0401 11:16:23.844141 31447 sgd_solver.cpp:106] Iteration 15500, lr = 0.05 | |
I0401 11:18:33.145603 31447 solver.cpp:229] Iteration 16000, loss = 6.81961 | |
I0401 11:18:33.145755 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0.104167 | |
I0401 11:18:33.145776 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.738636 | |
I0401 11:18:33.145789 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.3125 | |
I0401 11:18:33.145807 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.96312 (* 0.3 = 0.888937 loss) | |
I0401 11:18:33.145822 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.923139 (* 0.3 = 0.276942 loss) | |
I0401 11:18:33.145833 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0416667 | |
I0401 11:18:33.145846 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.727273 | |
I0401 11:18:33.145859 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.166667 | |
I0401 11:18:33.145889 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.14594 (* 0.3 = 0.943781 loss) | |
I0401 11:18:33.145907 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.974801 (* 0.3 = 0.29244 loss) | |
I0401 11:18:33.145920 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0416667 | |
I0401 11:18:33.145932 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.732955 | |
I0401 11:18:33.145944 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.145833 | |
I0401 11:18:33.145958 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.01636 (* 1 = 3.01636 loss) | |
I0401 11:18:33.145972 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.900213 (* 1 = 0.900213 loss) | |
I0401 11:18:33.145984 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 11:18:33.145997 31447 solver.cpp:245] Train net output #16: total_confidence = 0.000253748 | |
I0401 11:18:33.146009 31447 sgd_solver.cpp:106] Iteration 16000, lr = 0.05 | |
I0401 11:20:42.105851 31447 solver.cpp:229] Iteration 16500, loss = 6.74981 | |
I0401 11:20:42.106003 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0454545 | |
I0401 11:20:42.106024 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.738636 | |
I0401 11:20:42.106036 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.113636 | |
I0401 11:20:42.106052 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.32432 (* 0.3 = 0.997295 loss) | |
I0401 11:20:42.106067 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.988179 (* 0.3 = 0.296454 loss) | |
I0401 11:20:42.106081 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0454545 | |
I0401 11:20:42.106092 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.744318 | |
I0401 11:20:42.106104 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.181818 | |
I0401 11:20:42.106117 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.19633 (* 0.3 = 0.958898 loss) | |
I0401 11:20:42.106133 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.977196 (* 0.3 = 0.293159 loss) | |
I0401 11:20:42.106144 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0681818 | |
I0401 11:20:42.106158 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.75 | |
I0401 11:20:42.106169 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.181818 | |
I0401 11:20:42.106184 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.25947 (* 1 = 3.25947 loss) | |
I0401 11:20:42.106197 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.944047 (* 1 = 0.944047 loss) | |
I0401 11:20:42.106209 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 11:20:42.106221 31447 solver.cpp:245] Train net output #16: total_confidence = 8.56118e-07 | |
I0401 11:20:42.106235 31447 sgd_solver.cpp:106] Iteration 16500, lr = 0.05 | |
I0401 11:22:51.174625 31447 solver.cpp:229] Iteration 17000, loss = 6.73016 | |
I0401 11:22:51.174767 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0784314 | |
I0401 11:22:51.174787 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.732955 | |
I0401 11:22:51.174800 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.176471 | |
I0401 11:22:51.174818 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.23278 (* 0.3 = 0.969834 loss) | |
I0401 11:22:51.174832 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.978248 (* 0.3 = 0.293474 loss) | |
I0401 11:22:51.174845 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0392157 | |
I0401 11:22:51.174857 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.721591 | |
I0401 11:22:51.174870 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.196078 | |
I0401 11:22:51.174883 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.22145 (* 0.3 = 0.966434 loss) | |
I0401 11:22:51.174897 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.989039 (* 0.3 = 0.296712 loss) | |
I0401 11:22:51.174909 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0784314 | |
I0401 11:22:51.174921 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.732955 | |
I0401 11:22:51.174933 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.27451 | |
I0401 11:22:51.174947 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.04248 (* 1 = 3.04248 loss) | |
I0401 11:22:51.174960 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.922856 (* 1 = 0.922856 loss) | |
I0401 11:22:51.174973 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 11:22:51.174985 31447 solver.cpp:245] Train net output #16: total_confidence = 1.95092e-06 | |
I0401 11:22:51.174998 31447 sgd_solver.cpp:106] Iteration 17000, lr = 0.05 | |
I0401 11:25:00.126704 31447 solver.cpp:229] Iteration 17500, loss = 6.70327 | |
I0401 11:25:00.126842 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0416667 | |
I0401 11:25:00.126863 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.732955 | |
I0401 11:25:00.126875 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.229167 | |
I0401 11:25:00.126891 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.39643 (* 0.3 = 1.01893 loss) | |
I0401 11:25:00.126906 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.00564 (* 0.3 = 0.301693 loss) | |
I0401 11:25:00.126919 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0625 | |
I0401 11:25:00.126931 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.738636 | |
I0401 11:25:00.126943 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.1875 | |
I0401 11:25:00.126956 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.44461 (* 0.3 = 1.03338 loss) | |
I0401 11:25:00.126971 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.01599 (* 0.3 = 0.304798 loss) | |
I0401 11:25:00.126982 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0208333 | |
I0401 11:25:00.126994 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.727273 | |
I0401 11:25:00.127007 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.208333 | |
I0401 11:25:00.127020 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.42022 (* 1 = 3.42022 loss) | |
I0401 11:25:00.127034 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 1.00408 (* 1 = 1.00408 loss) | |
I0401 11:25:00.127046 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 11:25:00.127058 31447 solver.cpp:245] Train net output #16: total_confidence = 2.78401e-06 | |
I0401 11:25:00.127069 31447 sgd_solver.cpp:106] Iteration 17500, lr = 0.05 | |
I0401 11:27:09.260237 31447 solver.cpp:229] Iteration 18000, loss = 6.69793 | |
I0401 11:27:09.260470 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0.177778 | |
I0401 11:27:09.260489 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.778409 | |
I0401 11:27:09.260502 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.355556 | |
I0401 11:27:09.260519 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.83541 (* 0.3 = 0.850624 loss) | |
I0401 11:27:09.260532 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.806087 (* 0.3 = 0.241826 loss) | |
I0401 11:27:09.260545 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.177778 | |
I0401 11:27:09.260557 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.778409 | |
I0401 11:27:09.260570 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.355556 | |
I0401 11:27:09.260582 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.87698 (* 0.3 = 0.863093 loss) | |
I0401 11:27:09.260596 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.843269 (* 0.3 = 0.252981 loss) | |
I0401 11:27:09.260608 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0.222222 | |
I0401 11:27:09.260620 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.801136 | |
I0401 11:27:09.260632 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.4 | |
I0401 11:27:09.260646 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.65981 (* 1 = 2.65981 loss) | |
I0401 11:27:09.260660 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.716114 (* 1 = 0.716114 loss) | |
I0401 11:27:09.260673 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 11:27:09.260684 31447 solver.cpp:245] Train net output #16: total_confidence = 0.000395087 | |
I0401 11:27:09.260696 31447 sgd_solver.cpp:106] Iteration 18000, lr = 0.05 | |
I0401 11:29:18.279605 31447 solver.cpp:229] Iteration 18500, loss = 6.73159 | |
I0401 11:29:18.279780 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0.119048 | |
I0401 11:29:18.279803 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.789773 | |
I0401 11:29:18.279814 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.285714 | |
I0401 11:29:18.279830 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.86986 (* 0.3 = 0.860957 loss) | |
I0401 11:29:18.279845 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.758748 (* 0.3 = 0.227624 loss) | |
I0401 11:29:18.279858 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.119048 | |
I0401 11:29:18.279871 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.784091 | |
I0401 11:29:18.279882 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.309524 | |
I0401 11:29:18.279896 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.88253 (* 0.3 = 0.864759 loss) | |
I0401 11:29:18.279911 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.78807 (* 0.3 = 0.236421 loss) | |
I0401 11:29:18.279922 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0.142857 | |
I0401 11:29:18.279934 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.795455 | |
I0401 11:29:18.279947 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.261905 | |
I0401 11:29:18.279960 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.78921 (* 1 = 2.78921 loss) | |
I0401 11:29:18.279974 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.741273 (* 1 = 0.741273 loss) | |
I0401 11:29:18.279985 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 11:29:18.279997 31447 solver.cpp:245] Train net output #16: total_confidence = 0.000326672 | |
I0401 11:29:18.280009 31447 sgd_solver.cpp:106] Iteration 18500, lr = 0.05 | |
I0401 11:31:27.447751 31447 solver.cpp:229] Iteration 19000, loss = 6.65687 | |
I0401 11:31:27.447888 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0.1 | |
I0401 11:31:27.447909 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.744318 | |
I0401 11:31:27.447921 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.28 | |
I0401 11:31:27.447938 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.08886 (* 0.3 = 0.926657 loss) | |
I0401 11:31:27.447952 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.924297 (* 0.3 = 0.277289 loss) | |
I0401 11:31:27.447965 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.06 | |
I0401 11:31:27.447978 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.732955 | |
I0401 11:31:27.447989 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.22 | |
I0401 11:31:27.448004 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.11446 (* 0.3 = 0.934339 loss) | |
I0401 11:31:27.448016 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.945824 (* 0.3 = 0.283747 loss) | |
I0401 11:31:27.448029 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0.14 | |
I0401 11:31:27.448040 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.755682 | |
I0401 11:31:27.448052 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.28 | |
I0401 11:31:27.448065 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.04928 (* 1 = 3.04928 loss) | |
I0401 11:31:27.448088 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.923117 (* 1 = 0.923117 loss) | |
I0401 11:31:27.448110 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 11:31:27.448124 31447 solver.cpp:245] Train net output #16: total_confidence = 3.15767e-06 | |
I0401 11:31:27.448137 31447 sgd_solver.cpp:106] Iteration 19000, lr = 0.05 | |
I0401 11:33:36.669929 31447 solver.cpp:229] Iteration 19500, loss = 6.69879 | |
I0401 11:33:36.670070 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0638298 | |
I0401 11:33:36.670090 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.75 | |
I0401 11:33:36.670104 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.191489 | |
I0401 11:33:36.670120 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.00373 (* 0.3 = 0.901119 loss) | |
I0401 11:33:36.670137 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.829349 (* 0.3 = 0.248805 loss) | |
I0401 11:33:36.670161 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0425532 | |
I0401 11:33:36.670182 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.744318 | |
I0401 11:33:36.670197 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.12766 | |
I0401 11:33:36.670210 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.14126 (* 0.3 = 0.942379 loss) | |
I0401 11:33:36.670224 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.893111 (* 0.3 = 0.267933 loss) | |
I0401 11:33:36.670238 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0425532 | |
I0401 11:33:36.670249 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.744318 | |
I0401 11:33:36.670260 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.212766 | |
I0401 11:33:36.670274 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.94746 (* 1 = 2.94746 loss) | |
I0401 11:33:36.670289 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.816489 (* 1 = 0.816489 loss) | |
I0401 11:33:36.670300 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 11:33:36.670312 31447 solver.cpp:245] Train net output #16: total_confidence = 0.000106236 | |
I0401 11:33:36.670325 31447 sgd_solver.cpp:106] Iteration 19500, lr = 0.05 | |
I0401 11:35:45.458858 31447 solver.cpp:338] Iteration 20000, Testing net (#0) | |
I0401 11:36:15.263394 31447 solver.cpp:393] Test loss: 6.39369 | |
I0401 11:36:15.263442 31447 solver.cpp:406] Test net output #0: loss1/accuracy = 0.098063 | |
I0401 11:36:15.263458 31447 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.774227 | |
I0401 11:36:15.263471 31447 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.271838 | |
I0401 11:36:15.263489 31447 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 3.06198 (* 0.3 = 0.918593 loss) | |
I0401 11:36:15.263504 31447 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.829713 (* 0.3 = 0.248914 loss) | |
I0401 11:36:15.263515 31447 solver.cpp:406] Test net output #5: loss2/accuracy = 0.0911015 | |
I0401 11:36:15.263531 31447 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.753181 | |
I0401 11:36:15.263543 31447 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.249839 | |
I0401 11:36:15.263557 31447 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 3.15339 (* 0.3 = 0.946017 loss) | |
I0401 11:36:15.263571 31447 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 1.08421 (* 0.3 = 0.325263 loss) | |
I0401 11:36:15.263582 31447 solver.cpp:406] Test net output #10: loss3/accuracy = 0.133775 | |
I0401 11:36:15.263595 31447 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.782272 | |
I0401 11:36:15.263607 31447 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.27498 | |
I0401 11:36:15.263620 31447 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 3.0959 (* 1 = 3.0959 loss) | |
I0401 11:36:15.263634 31447 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.859001 (* 1 = 0.859001 loss) | |
I0401 11:36:15.263646 31447 solver.cpp:406] Test net output #15: total_accuracy = 0 | |
I0401 11:36:15.263659 31447 solver.cpp:406] Test net output #16: total_confidence = 6.27805e-05 | |
I0401 11:36:15.414266 31447 solver.cpp:229] Iteration 20000, loss = 6.65628 | |
I0401 11:36:15.414304 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0465116 | |
I0401 11:36:15.414322 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.75 | |
I0401 11:36:15.414335 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.186047 | |
I0401 11:36:15.414350 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.9841 (* 0.3 = 1.19523 loss) | |
I0401 11:36:15.414366 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.11508 (* 0.3 = 0.334525 loss) | |
I0401 11:36:15.414378 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0465116 | |
I0401 11:36:15.414391 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.761364 | |
I0401 11:36:15.414402 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.186047 | |
I0401 11:36:15.414417 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 4.02688 (* 0.3 = 1.20806 loss) | |
I0401 11:36:15.414430 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.09183 (* 0.3 = 0.327548 loss) | |
I0401 11:36:15.414443 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0 | |
I0401 11:36:15.414454 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.744318 | |
I0401 11:36:15.414465 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.139535 | |
I0401 11:36:15.414479 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.91993 (* 1 = 3.91993 loss) | |
I0401 11:36:15.414494 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 1.07095 (* 1 = 1.07095 loss) | |
I0401 11:36:15.414505 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 11:36:15.414516 31447 solver.cpp:245] Train net output #16: total_confidence = 8.89328e-05 | |
I0401 11:36:15.414530 31447 sgd_solver.cpp:106] Iteration 20000, lr = 0.05 | |
I0401 11:38:24.265202 31447 solver.cpp:229] Iteration 20500, loss = 6.66704 | |
I0401 11:38:24.265409 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0487805 | |
I0401 11:38:24.265434 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.761364 | |
I0401 11:38:24.265445 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.219512 | |
I0401 11:38:24.265462 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.11617 (* 0.3 = 0.93485 loss) | |
I0401 11:38:24.265477 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.838418 (* 0.3 = 0.251525 loss) | |
I0401 11:38:24.265489 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0487805 | |
I0401 11:38:24.265501 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.772727 | |
I0401 11:38:24.265513 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.219512 | |
I0401 11:38:24.265530 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.25693 (* 0.3 = 0.977078 loss) | |
I0401 11:38:24.265544 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.878504 (* 0.3 = 0.263551 loss) | |
I0401 11:38:24.265558 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0.146341 | |
I0401 11:38:24.265569 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.784091 | |
I0401 11:38:24.265581 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.268293 | |
I0401 11:38:24.265595 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.9533 (* 1 = 2.9533 loss) | |
I0401 11:38:24.265609 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.853877 (* 1 = 0.853877 loss) | |
I0401 11:38:24.265620 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 11:38:24.265632 31447 solver.cpp:245] Train net output #16: total_confidence = 3.5811e-05 | |
I0401 11:38:24.265645 31447 sgd_solver.cpp:106] Iteration 20500, lr = 0.05 | |
I0401 11:40:33.254006 31447 solver.cpp:229] Iteration 21000, loss = 6.63513 | |
I0401 11:40:33.254151 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0.075 | |
I0401 11:40:33.254173 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.778409 | |
I0401 11:40:33.254185 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.125 | |
I0401 11:40:33.254201 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.55838 (* 0.3 = 1.06752 loss) | |
I0401 11:40:33.254216 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.908712 (* 0.3 = 0.272614 loss) | |
I0401 11:40:33.254228 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.05 | |
I0401 11:40:33.254240 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.784091 | |
I0401 11:40:33.254252 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.175 | |
I0401 11:40:33.254266 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.59513 (* 0.3 = 1.07854 loss) | |
I0401 11:40:33.254279 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.885734 (* 0.3 = 0.26572 loss) | |
I0401 11:40:33.254292 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0.075 | |
I0401 11:40:33.254304 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.789773 | |
I0401 11:40:33.254315 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.15 | |
I0401 11:40:33.254329 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.53802 (* 1 = 3.53802 loss) | |
I0401 11:40:33.254343 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.870339 (* 1 = 0.870339 loss) | |
I0401 11:40:33.254354 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 11:40:33.254365 31447 solver.cpp:245] Train net output #16: total_confidence = 0.000355387 | |
I0401 11:40:33.254379 31447 sgd_solver.cpp:106] Iteration 21000, lr = 0.05 | |
I0401 11:42:42.116894 31447 solver.cpp:229] Iteration 21500, loss = 6.63652 | |
I0401 11:42:42.117063 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0.12 | |
I0401 11:42:42.117085 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.75 | |
I0401 11:42:42.117099 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.32 | |
I0401 11:42:42.117115 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.24581 (* 0.3 = 0.973743 loss) | |
I0401 11:42:42.117130 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.960261 (* 0.3 = 0.288078 loss) | |
I0401 11:42:42.117142 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.06 | |
I0401 11:42:42.117156 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.732955 | |
I0401 11:42:42.117167 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.24 | |
I0401 11:42:42.117182 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.1975 (* 0.3 = 0.959251 loss) | |
I0401 11:42:42.117195 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.953304 (* 0.3 = 0.285991 loss) | |
I0401 11:42:42.117208 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0.14 | |
I0401 11:42:42.117219 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.75 | |
I0401 11:42:42.117231 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.36 | |
I0401 11:42:42.117245 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.0343 (* 1 = 3.0343 loss) | |
I0401 11:42:42.117259 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.915558 (* 1 = 0.915558 loss) | |
I0401 11:42:42.117270 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 11:42:42.117282 31447 solver.cpp:245] Train net output #16: total_confidence = 0.00044572 | |
I0401 11:42:42.117295 31447 sgd_solver.cpp:106] Iteration 21500, lr = 0.05 | |
I0401 11:44:51.109897 31447 solver.cpp:229] Iteration 22000, loss = 6.61003 | |
I0401 11:44:51.110036 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0.113208 | |
I0401 11:44:51.110057 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.727273 | |
I0401 11:44:51.110069 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.320755 | |
I0401 11:44:51.110085 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.09746 (* 0.3 = 0.929237 loss) | |
I0401 11:44:51.110100 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.0229 (* 0.3 = 0.306871 loss) | |
I0401 11:44:51.110113 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.113208 | |
I0401 11:44:51.110126 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.721591 | |
I0401 11:44:51.110138 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.283019 | |
I0401 11:44:51.110152 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.21551 (* 0.3 = 0.964654 loss) | |
I0401 11:44:51.110165 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.05798 (* 0.3 = 0.317395 loss) | |
I0401 11:44:51.110178 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0.132075 | |
I0401 11:44:51.110190 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.732955 | |
I0401 11:44:51.110203 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.245283 | |
I0401 11:44:51.110216 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.14618 (* 1 = 3.14618 loss) | |
I0401 11:44:51.110229 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 1.01148 (* 1 = 1.01148 loss) | |
I0401 11:44:51.110241 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 11:44:51.110254 31447 solver.cpp:245] Train net output #16: total_confidence = 2.77906e-06 | |
I0401 11:44:51.110266 31447 sgd_solver.cpp:106] Iteration 22000, lr = 0.05 | |
I0401 11:45:25.753068 31447 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 32.3642 > 30) by scale factor 0.92695 | |
I0401 11:46:59.733364 31447 solver.cpp:229] Iteration 22500, loss = 6.67448 | |
I0401 11:46:59.733480 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0.148936 | |
I0401 11:46:59.733500 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.772727 | |
I0401 11:46:59.733513 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.319149 | |
I0401 11:46:59.733532 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.91955 (* 0.3 = 0.875866 loss) | |
I0401 11:46:59.733547 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.83516 (* 0.3 = 0.250548 loss) | |
I0401 11:46:59.733561 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.106383 | |
I0401 11:46:59.733573 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.755682 | |
I0401 11:46:59.733585 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.340426 | |
I0401 11:46:59.733599 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.93853 (* 0.3 = 0.88156 loss) | |
I0401 11:46:59.733613 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.85109 (* 0.3 = 0.255327 loss) | |
I0401 11:46:59.733625 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0.148936 | |
I0401 11:46:59.733639 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.767045 | |
I0401 11:46:59.733649 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.297872 | |
I0401 11:46:59.733664 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.96957 (* 1 = 2.96957 loss) | |
I0401 11:46:59.733677 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.83541 (* 1 = 0.83541 loss) | |
I0401 11:46:59.733690 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 11:46:59.733702 31447 solver.cpp:245] Train net output #16: total_confidence = 0.000370114 | |
I0401 11:46:59.733716 31447 sgd_solver.cpp:106] Iteration 22500, lr = 0.05 | |
I0401 11:49:08.537348 31447 solver.cpp:229] Iteration 23000, loss = 6.59504 | |
I0401 11:49:08.537547 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0754717 | |
I0401 11:49:08.537571 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.721591 | |
I0401 11:49:08.537585 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.320755 | |
I0401 11:49:08.537600 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.04535 (* 0.3 = 0.913605 loss) | |
I0401 11:49:08.537616 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.981499 (* 0.3 = 0.29445 loss) | |
I0401 11:49:08.537628 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.150943 | |
I0401 11:49:08.537642 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.744318 | |
I0401 11:49:08.537653 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.301887 | |
I0401 11:49:08.537667 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.14842 (* 0.3 = 0.944525 loss) | |
I0401 11:49:08.537680 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.991788 (* 0.3 = 0.297537 loss) | |
I0401 11:49:08.537693 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0.132075 | |
I0401 11:49:08.537705 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.738636 | |
I0401 11:49:08.537717 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.339623 | |
I0401 11:49:08.537731 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.00633 (* 1 = 3.00633 loss) | |
I0401 11:49:08.537746 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.974402 (* 1 = 0.974402 loss) | |
I0401 11:49:08.537758 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 11:49:08.537770 31447 solver.cpp:245] Train net output #16: total_confidence = 7.14575e-06 | |
I0401 11:49:08.537783 31447 sgd_solver.cpp:106] Iteration 23000, lr = 0.05 | |
I0401 11:51:17.113847 31447 solver.cpp:229] Iteration 23500, loss = 6.63031 | |
I0401 11:51:17.113973 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0465116 | |
I0401 11:51:17.113993 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.75 | |
I0401 11:51:17.114006 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.162791 | |
I0401 11:51:17.114022 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.15369 (* 0.3 = 0.946106 loss) | |
I0401 11:51:17.114037 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.893401 (* 0.3 = 0.26802 loss) | |
I0401 11:51:17.114050 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.116279 | |
I0401 11:51:17.114063 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.778409 | |
I0401 11:51:17.114074 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.232558 | |
I0401 11:51:17.114089 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.07963 (* 0.3 = 0.923888 loss) | |
I0401 11:51:17.114102 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.855814 (* 0.3 = 0.256744 loss) | |
I0401 11:51:17.114114 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0.116279 | |
I0401 11:51:17.114126 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.778409 | |
I0401 11:51:17.114138 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.325581 | |
I0401 11:51:17.114152 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.01565 (* 1 = 3.01565 loss) | |
I0401 11:51:17.114166 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.825555 (* 1 = 0.825555 loss) | |
I0401 11:51:17.114178 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 11:51:17.114189 31447 solver.cpp:245] Train net output #16: total_confidence = 7.00245e-05 | |
I0401 11:51:17.114202 31447 sgd_solver.cpp:106] Iteration 23500, lr = 0.05 | |
I0401 11:53:25.960703 31447 solver.cpp:229] Iteration 24000, loss = 6.57825 | |
I0401 11:53:25.960840 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0434783 | |
I0401 11:53:25.960862 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.732955 | |
I0401 11:53:25.960875 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.173913 | |
I0401 11:53:25.960891 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.27406 (* 0.3 = 0.982218 loss) | |
I0401 11:53:25.960906 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.944766 (* 0.3 = 0.28343 loss) | |
I0401 11:53:25.960918 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0869565 | |
I0401 11:53:25.960932 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.75 | |
I0401 11:53:25.960943 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.195652 | |
I0401 11:53:25.960958 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.32958 (* 0.3 = 0.998874 loss) | |
I0401 11:53:25.960971 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.0089 (* 0.3 = 0.302671 loss) | |
I0401 11:53:25.960983 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0.108696 | |
I0401 11:53:25.960995 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.761364 | |
I0401 11:53:25.961007 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.26087 | |
I0401 11:53:25.961021 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.23961 (* 1 = 3.23961 loss) | |
I0401 11:53:25.961035 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.932254 (* 1 = 0.932254 loss) | |
I0401 11:53:25.961064 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 11:53:25.961078 31447 solver.cpp:245] Train net output #16: total_confidence = 3.12191e-06 | |
I0401 11:53:25.961091 31447 sgd_solver.cpp:106] Iteration 24000, lr = 0.05 | |
I0401 11:55:34.697960 31447 solver.cpp:229] Iteration 24500, loss = 6.6139 | |
I0401 11:55:34.698185 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0.104167 | |
I0401 11:55:34.698204 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.738636 | |
I0401 11:55:34.698216 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.208333 | |
I0401 11:55:34.698232 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.97209 (* 0.3 = 0.891627 loss) | |
I0401 11:55:34.698247 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.93015 (* 0.3 = 0.279045 loss) | |
I0401 11:55:34.698259 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.125 | |
I0401 11:55:34.698271 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.75 | |
I0401 11:55:34.698283 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.208333 | |
I0401 11:55:34.698297 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.91862 (* 0.3 = 0.875585 loss) | |
I0401 11:55:34.698312 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.898243 (* 0.3 = 0.269473 loss) | |
I0401 11:55:34.698323 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0833333 | |
I0401 11:55:34.698335 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.738636 | |
I0401 11:55:34.698348 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.3125 | |
I0401 11:55:34.698361 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.78063 (* 1 = 2.78063 loss) | |
I0401 11:55:34.698375 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.857674 (* 1 = 0.857674 loss) | |
I0401 11:55:34.698387 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 11:55:34.698400 31447 solver.cpp:245] Train net output #16: total_confidence = 7.07007e-06 | |
I0401 11:55:34.698411 31447 sgd_solver.cpp:106] Iteration 24500, lr = 0.05 | |
I0401 11:57:43.288077 31447 solver.cpp:338] Iteration 25000, Testing net (#0) | |
I0401 11:58:13.080390 31447 solver.cpp:393] Test loss: 6.43145 | |
I0401 11:58:13.080440 31447 solver.cpp:406] Test net output #0: loss1/accuracy = 0.0890714 | |
I0401 11:58:13.080457 31447 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.767272 | |
I0401 11:58:13.080471 31447 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.259474 | |
I0401 11:58:13.080487 31447 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 3.15469 (* 0.3 = 0.946407 loss) | |
I0401 11:58:13.080502 31447 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.868826 (* 0.3 = 0.260648 loss) | |
I0401 11:58:13.080514 31447 solver.cpp:406] Test net output #5: loss2/accuracy = 0.121075 | |
I0401 11:58:13.080530 31447 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.749908 | |
I0401 11:58:13.080543 31447 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.28881 | |
I0401 11:58:13.080556 31447 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 3.02058 (* 0.3 = 0.906173 loss) | |
I0401 11:58:13.080570 31447 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 1.11001 (* 0.3 = 0.333004 loss) | |
I0401 11:58:13.080582 31447 solver.cpp:406] Test net output #10: loss3/accuracy = 0.104328 | |
I0401 11:58:13.080595 31447 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.763363 | |
I0401 11:58:13.080606 31447 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.273946 | |
I0401 11:58:13.080621 31447 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 3.08522 (* 1 = 3.08522 loss) | |
I0401 11:58:13.080633 31447 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.899988 (* 1 = 0.899988 loss) | |
I0401 11:58:13.080646 31447 solver.cpp:406] Test net output #15: total_accuracy = 0 | |
I0401 11:58:13.080657 31447 solver.cpp:406] Test net output #16: total_confidence = 4.79027e-05 | |
I0401 11:58:13.231775 31447 solver.cpp:229] Iteration 25000, loss = 6.52742 | |
I0401 11:58:13.231822 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0555556 | |
I0401 11:58:13.231838 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.710227 | |
I0401 11:58:13.231851 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.314815 | |
I0401 11:58:13.231866 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.03851 (* 0.3 = 0.911553 loss) | |
I0401 11:58:13.231881 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.976507 (* 0.3 = 0.292952 loss) | |
I0401 11:58:13.231894 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0925926 | |
I0401 11:58:13.231907 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.721591 | |
I0401 11:58:13.231920 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.333333 | |
I0401 11:58:13.231932 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.06801 (* 0.3 = 0.920402 loss) | |
I0401 11:58:13.231946 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.983609 (* 0.3 = 0.295083 loss) | |
I0401 11:58:13.231958 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0.111111 | |
I0401 11:58:13.231973 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.727273 | |
I0401 11:58:13.231986 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.296296 | |
I0401 11:58:13.232000 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.99004 (* 1 = 2.99004 loss) | |
I0401 11:58:13.232014 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.938092 (* 1 = 0.938092 loss) | |
I0401 11:58:13.232026 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 11:58:13.232038 31447 solver.cpp:245] Train net output #16: total_confidence = 0.000142136 | |
I0401 11:58:13.232051 31447 sgd_solver.cpp:106] Iteration 25000, lr = 0.05 | |
I0401 12:00:22.037478 31447 solver.cpp:229] Iteration 25500, loss = 6.59794 | |
I0401 12:00:22.037598 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0666667 | |
I0401 12:00:22.037628 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.75 | |
I0401 12:00:22.037652 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.244444 | |
I0401 12:00:22.037679 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.99816 (* 0.3 = 0.899448 loss) | |
I0401 12:00:22.037706 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.862841 (* 0.3 = 0.258852 loss) | |
I0401 12:00:22.037729 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0666667 | |
I0401 12:00:22.037752 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.755682 | |
I0401 12:00:22.037775 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.244444 | |
I0401 12:00:22.037799 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.06565 (* 0.3 = 0.919695 loss) | |
I0401 12:00:22.037824 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.865275 (* 0.3 = 0.259583 loss) | |
I0401 12:00:22.037845 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0444444 | |
I0401 12:00:22.037866 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.755682 | |
I0401 12:00:22.037886 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.311111 | |
I0401 12:00:22.037911 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.94134 (* 1 = 2.94134 loss) | |
I0401 12:00:22.037940 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.800866 (* 1 = 0.800866 loss) | |
I0401 12:00:22.037962 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 12:00:22.037983 31447 solver.cpp:245] Train net output #16: total_confidence = 0.000297451 | |
I0401 12:00:22.038008 31447 sgd_solver.cpp:106] Iteration 25500, lr = 0.05 | |
I0401 12:02:30.872120 31447 solver.cpp:229] Iteration 26000, loss = 6.51017 | |
I0401 12:02:30.872227 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0454545 | |
I0401 12:02:30.872246 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.755682 | |
I0401 12:02:30.872259 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.227273 | |
I0401 12:02:30.872277 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.52927 (* 0.3 = 1.05878 loss) | |
I0401 12:02:30.872290 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.958184 (* 0.3 = 0.287455 loss) | |
I0401 12:02:30.872303 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.113636 | |
I0401 12:02:30.872316 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.772727 | |
I0401 12:02:30.872328 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.25 | |
I0401 12:02:30.872342 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.43135 (* 0.3 = 1.02941 loss) | |
I0401 12:02:30.872356 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.925246 (* 0.3 = 0.277574 loss) | |
I0401 12:02:30.872369 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0909091 | |
I0401 12:02:30.872380 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.761364 | |
I0401 12:02:30.872392 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.318182 | |
I0401 12:02:30.872406 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.26078 (* 1 = 3.26078 loss) | |
I0401 12:02:30.872421 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.901761 (* 1 = 0.901761 loss) | |
I0401 12:02:30.872432 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 12:02:30.872444 31447 solver.cpp:245] Train net output #16: total_confidence = 0.000210276 | |
I0401 12:02:30.872457 31447 sgd_solver.cpp:106] Iteration 26000, lr = 0.05 | |
I0401 12:04:39.562217 31447 solver.cpp:229] Iteration 26500, loss = 6.54396 | |
I0401 12:04:39.562364 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0212766 | |
I0401 12:04:39.562384 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.727273 | |
I0401 12:04:39.562397 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.12766 | |
I0401 12:04:39.562413 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.56762 (* 0.3 = 1.07029 loss) | |
I0401 12:04:39.562427 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.0436 (* 0.3 = 0.313079 loss) | |
I0401 12:04:39.562440 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0 | |
I0401 12:04:39.562453 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.727273 | |
I0401 12:04:39.562464 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.0638298 | |
I0401 12:04:39.562479 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.48735 (* 0.3 = 1.04621 loss) | |
I0401 12:04:39.562492 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.00444 (* 0.3 = 0.301333 loss) | |
I0401 12:04:39.562505 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0425532 | |
I0401 12:04:39.562520 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.721591 | |
I0401 12:04:39.562531 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.106383 | |
I0401 12:04:39.562546 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.50577 (* 1 = 3.50577 loss) | |
I0401 12:04:39.562559 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 1.0171 (* 1 = 1.0171 loss) | |
I0401 12:04:39.562572 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 12:04:39.562583 31447 solver.cpp:245] Train net output #16: total_confidence = 0.000150378 | |
I0401 12:04:39.562595 31447 sgd_solver.cpp:106] Iteration 26500, lr = 0.05 | |
I0401 12:06:48.221434 31447 solver.cpp:229] Iteration 27000, loss = 6.49055 | |
I0401 12:06:48.221654 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0.137255 | |
I0401 12:06:48.221673 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.738636 | |
I0401 12:06:48.221685 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.313726 | |
I0401 12:06:48.221701 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.21603 (* 0.3 = 0.964808 loss) | |
I0401 12:06:48.221716 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.01668 (* 0.3 = 0.305004 loss) | |
I0401 12:06:48.221729 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.137255 | |
I0401 12:06:48.221741 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.738636 | |
I0401 12:06:48.221753 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.294118 | |
I0401 12:06:48.221766 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.22599 (* 0.3 = 0.967796 loss) | |
I0401 12:06:48.221781 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.012 (* 0.3 = 0.303599 loss) | |
I0401 12:06:48.221792 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0.156863 | |
I0401 12:06:48.221804 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.75 | |
I0401 12:06:48.221817 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.294118 | |
I0401 12:06:48.221830 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.13421 (* 1 = 3.13421 loss) | |
I0401 12:06:48.221844 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.972799 (* 1 = 0.972799 loss) | |
I0401 12:06:48.221856 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 12:06:48.221868 31447 solver.cpp:245] Train net output #16: total_confidence = 3.88315e-06 | |
I0401 12:06:48.221880 31447 sgd_solver.cpp:106] Iteration 27000, lr = 0.05 | |
I0401 12:08:56.875216 31447 solver.cpp:229] Iteration 27500, loss = 6.50224 | |
I0401 12:08:56.875329 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0925926 | |
I0401 12:08:56.875346 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.715909 | |
I0401 12:08:56.875360 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.259259 | |
I0401 12:08:56.875375 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.28408 (* 0.3 = 0.985223 loss) | |
I0401 12:08:56.875390 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.07307 (* 0.3 = 0.321921 loss) | |
I0401 12:08:56.875402 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.037037 | |
I0401 12:08:56.875416 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.698864 | |
I0401 12:08:56.875427 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.185185 | |
I0401 12:08:56.875440 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.4522 (* 0.3 = 1.03566 loss) | |
I0401 12:08:56.875454 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.10234 (* 0.3 = 0.330701 loss) | |
I0401 12:08:56.875466 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0555556 | |
I0401 12:08:56.875479 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.710227 | |
I0401 12:08:56.875491 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.333333 | |
I0401 12:08:56.875504 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.22587 (* 1 = 3.22587 loss) | |
I0401 12:08:56.875519 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 1.01592 (* 1 = 1.01592 loss) | |
I0401 12:08:56.875530 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 12:08:56.875542 31447 solver.cpp:245] Train net output #16: total_confidence = 2.75131e-05 | |
I0401 12:08:56.875555 31447 sgd_solver.cpp:106] Iteration 27500, lr = 0.05 | |
I0401 12:11:05.622807 31447 solver.cpp:229] Iteration 28000, loss = 6.48189 | |
I0401 12:11:05.622934 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0652174 | |
I0401 12:11:05.622956 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.738636 | |
I0401 12:11:05.622968 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.326087 | |
I0401 12:11:05.622984 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.33793 (* 0.3 = 1.00138 loss) | |
I0401 12:11:05.622999 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 1.00457 (* 0.3 = 0.301371 loss) | |
I0401 12:11:05.623011 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0217391 | |
I0401 12:11:05.623024 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.721591 | |
I0401 12:11:05.623039 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.326087 | |
I0401 12:11:05.623054 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.45397 (* 0.3 = 1.03619 loss) | |
I0401 12:11:05.623069 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.05839 (* 0.3 = 0.317518 loss) | |
I0401 12:11:05.623080 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0.152174 | |
I0401 12:11:05.623092 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.761364 | |
I0401 12:11:05.623105 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.26087 | |
I0401 12:11:05.623118 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.46469 (* 1 = 3.46469 loss) | |
I0401 12:11:05.623133 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 1.0023 (* 1 = 1.0023 loss) | |
I0401 12:11:05.623145 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 12:11:05.623157 31447 solver.cpp:245] Train net output #16: total_confidence = 1.63722e-05 | |
I0401 12:11:05.623169 31447 sgd_solver.cpp:106] Iteration 28000, lr = 0.05 | |
I0401 12:13:14.218230 31447 solver.cpp:229] Iteration 28500, loss = 6.47152 | |
I0401 12:13:14.218367 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0681818 | |
I0401 12:13:14.218387 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.75 | |
I0401 12:13:14.218400 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.181818 | |
I0401 12:13:14.218416 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.39742 (* 0.3 = 1.01923 loss) | |
I0401 12:13:14.218431 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.934821 (* 0.3 = 0.280446 loss) | |
I0401 12:13:14.218443 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0454545 | |
I0401 12:13:14.218456 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.744318 | |
I0401 12:13:14.218467 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.181818 | |
I0401 12:13:14.218482 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.48612 (* 0.3 = 1.04584 loss) | |
I0401 12:13:14.218495 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.958105 (* 0.3 = 0.287431 loss) | |
I0401 12:13:14.218508 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0681818 | |
I0401 12:13:14.218523 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.75 | |
I0401 12:13:14.218535 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.204545 | |
I0401 12:13:14.218549 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.18759 (* 1 = 3.18759 loss) | |
I0401 12:13:14.218564 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.886208 (* 1 = 0.886208 loss) | |
I0401 12:13:14.218575 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 12:13:14.218587 31447 solver.cpp:245] Train net output #16: total_confidence = 0.000172292 | |
I0401 12:13:14.218600 31447 sgd_solver.cpp:106] Iteration 28500, lr = 0.05 | |
I0401 12:15:22.888389 31447 solver.cpp:229] Iteration 29000, loss = 6.44567 | |
I0401 12:15:22.888665 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0666667 | |
I0401 12:15:22.888686 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.755682 | |
I0401 12:15:22.888700 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.155556 | |
I0401 12:15:22.888715 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.25209 (* 0.3 = 0.975626 loss) | |
I0401 12:15:22.888730 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.919658 (* 0.3 = 0.275897 loss) | |
I0401 12:15:22.888742 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0666667 | |
I0401 12:15:22.888754 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.75 | |
I0401 12:15:22.888767 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.222222 | |
I0401 12:15:22.888780 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.22341 (* 0.3 = 0.967022 loss) | |
I0401 12:15:22.888794 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.918481 (* 0.3 = 0.275544 loss) | |
I0401 12:15:22.888806 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0888889 | |
I0401 12:15:22.888818 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.75 | |
I0401 12:15:22.888830 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.244444 | |
I0401 12:15:22.888844 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.21877 (* 1 = 3.21877 loss) | |
I0401 12:15:22.888859 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.932457 (* 1 = 0.932457 loss) | |
I0401 12:15:22.888870 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 12:15:22.888882 31447 solver.cpp:245] Train net output #16: total_confidence = 3.11775e-05 | |
I0401 12:15:22.888895 31447 sgd_solver.cpp:106] Iteration 29000, lr = 0.05 | |
I0401 12:17:31.653494 31447 solver.cpp:229] Iteration 29500, loss = 6.49534 | |
I0401 12:17:31.653614 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0.113636 | |
I0401 12:17:31.653633 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.761364 | |
I0401 12:17:31.653646 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.159091 | |
I0401 12:17:31.653661 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.37656 (* 0.3 = 1.01297 loss) | |
I0401 12:17:31.653676 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.97184 (* 0.3 = 0.291552 loss) | |
I0401 12:17:31.653689 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0909091 | |
I0401 12:17:31.653702 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.761364 | |
I0401 12:17:31.653714 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.181818 | |
I0401 12:17:31.653728 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.3382 (* 0.3 = 1.00146 loss) | |
I0401 12:17:31.653743 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.94534 (* 0.3 = 0.283602 loss) | |
I0401 12:17:31.653754 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0.113636 | |
I0401 12:17:31.653767 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.767045 | |
I0401 12:17:31.653779 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.181818 | |
I0401 12:17:31.653792 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.28948 (* 1 = 3.28948 loss) | |
I0401 12:17:31.653806 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.91977 (* 1 = 0.91977 loss) | |
I0401 12:17:31.653818 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 12:17:31.653831 31447 solver.cpp:245] Train net output #16: total_confidence = 0.000120836 | |
I0401 12:17:31.653842 31447 sgd_solver.cpp:106] Iteration 29500, lr = 0.05 | |
I0401 12:19:40.093232 31447 solver.cpp:338] Iteration 30000, Testing net (#0) | |
I0401 12:20:09.885484 31447 solver.cpp:393] Test loss: 6.05536 | |
I0401 12:20:09.885530 31447 solver.cpp:406] Test net output #0: loss1/accuracy = 0.113754 | |
I0401 12:20:09.885547 31447 solver.cpp:406] Test net output #1: loss1/accuracy_incl_empty = 0.775273 | |
I0401 12:20:09.885560 31447 solver.cpp:406] Test net output #2: loss1/accuracy_top3 = 0.305335 | |
I0401 12:20:09.885576 31447 solver.cpp:406] Test net output #3: loss1/cross_entropy_loss = 2.95625 (* 0.3 = 0.886876 loss) | |
I0401 12:20:09.885591 31447 solver.cpp:406] Test net output #4: loss1/cross_entropy_loss_incl_empty = 0.792714 (* 0.3 = 0.237814 loss) | |
I0401 12:20:09.885602 31447 solver.cpp:406] Test net output #5: loss2/accuracy = 0.119265 | |
I0401 12:20:09.885614 31447 solver.cpp:406] Test net output #6: loss2/accuracy_incl_empty = 0.755636 | |
I0401 12:20:09.885625 31447 solver.cpp:406] Test net output #7: loss2/accuracy_top3 = 0.31066 | |
I0401 12:20:09.885639 31447 solver.cpp:406] Test net output #8: loss2/cross_entropy_loss = 2.90411 (* 0.3 = 0.871232 loss) | |
I0401 12:20:09.885653 31447 solver.cpp:406] Test net output #9: loss2/cross_entropy_loss_incl_empty = 1.04512 (* 0.3 = 0.313537 loss) | |
I0401 12:20:09.885664 31447 solver.cpp:406] Test net output #10: loss3/accuracy = 0.101335 | |
I0401 12:20:09.885678 31447 solver.cpp:406] Test net output #11: loss3/accuracy_incl_empty = 0.761363 | |
I0401 12:20:09.885689 31447 solver.cpp:406] Test net output #12: loss3/accuracy_top3 = 0.292665 | |
I0401 12:20:09.885702 31447 solver.cpp:406] Test net output #13: loss3/cross_entropy_loss = 2.91806 (* 1 = 2.91806 loss) | |
I0401 12:20:09.885716 31447 solver.cpp:406] Test net output #14: loss3/cross_entropy_loss_incl_empty = 0.82784 (* 1 = 0.82784 loss) | |
I0401 12:20:09.885727 31447 solver.cpp:406] Test net output #15: total_accuracy = 0.001 | |
I0401 12:20:09.885740 31447 solver.cpp:406] Test net output #16: total_confidence = 7.48164e-05 | |
I0401 12:20:10.035734 31447 solver.cpp:229] Iteration 30000, loss = 6.43498 | |
I0401 12:20:10.035771 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0.146341 | |
I0401 12:20:10.035789 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.784091 | |
I0401 12:20:10.035800 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.341463 | |
I0401 12:20:10.035815 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.69068 (* 0.3 = 0.807204 loss) | |
I0401 12:20:10.035830 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.781104 (* 0.3 = 0.234331 loss) | |
I0401 12:20:10.035842 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.219512 | |
I0401 12:20:10.035854 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.806818 | |
I0401 12:20:10.035866 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.341463 | |
I0401 12:20:10.035879 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.78882 (* 0.3 = 0.836645 loss) | |
I0401 12:20:10.035894 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.756817 (* 0.3 = 0.227045 loss) | |
I0401 12:20:10.035907 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0.219512 | |
I0401 12:20:10.035918 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.789773 | |
I0401 12:20:10.035929 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.365854 | |
I0401 12:20:10.035943 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.66896 (* 1 = 2.66896 loss) | |
I0401 12:20:10.035956 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.750371 (* 1 = 0.750371 loss) | |
I0401 12:20:10.035969 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 12:20:10.035980 31447 solver.cpp:245] Train net output #16: total_confidence = 7.89306e-05 | |
I0401 12:20:10.035994 31447 sgd_solver.cpp:106] Iteration 30000, lr = 0.05 | |
I0401 12:22:18.529975 31447 solver.cpp:229] Iteration 30500, loss = 6.44151 | |
I0401 12:22:18.530268 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0 | |
I0401 12:22:18.530287 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.744318 | |
I0401 12:22:18.530302 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.205128 | |
I0401 12:22:18.530318 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.54741 (* 0.3 = 1.06422 loss) | |
I0401 12:22:18.530331 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.985062 (* 0.3 = 0.295519 loss) | |
I0401 12:22:18.530344 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0512821 | |
I0401 12:22:18.530357 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.761364 | |
I0401 12:22:18.530369 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.205128 | |
I0401 12:22:18.530382 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.51971 (* 0.3 = 1.05591 loss) | |
I0401 12:22:18.530396 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.921328 (* 0.3 = 0.276398 loss) | |
I0401 12:22:18.530408 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0.025641 | |
I0401 12:22:18.530421 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.772727 | |
I0401 12:22:18.530432 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.205128 | |
I0401 12:22:18.530447 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.48923 (* 1 = 3.48923 loss) | |
I0401 12:22:18.530459 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.887271 (* 1 = 0.887271 loss) | |
I0401 12:22:18.530472 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 12:22:18.530483 31447 solver.cpp:245] Train net output #16: total_confidence = 0.000516864 | |
I0401 12:22:18.530494 31447 sgd_solver.cpp:106] Iteration 30500, lr = 0.05 | |
I0401 12:24:27.604528 31447 solver.cpp:229] Iteration 31000, loss = 6.46405 | |
I0401 12:24:27.604660 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0714286 | |
I0401 12:24:27.604681 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.704545 | |
I0401 12:24:27.604694 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.160714 | |
I0401 12:24:27.604710 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.03611 (* 0.3 = 0.910834 loss) | |
I0401 12:24:27.604725 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.995256 (* 0.3 = 0.298577 loss) | |
I0401 12:24:27.604737 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0535714 | |
I0401 12:24:27.604751 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.698864 | |
I0401 12:24:27.604763 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.214286 | |
I0401 12:24:27.604776 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.31575 (* 0.3 = 0.994724 loss) | |
I0401 12:24:27.604790 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.08351 (* 0.3 = 0.325052 loss) | |
I0401 12:24:27.604802 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0.107143 | |
I0401 12:24:27.604815 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.710227 | |
I0401 12:24:27.604827 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.285714 | |
I0401 12:24:27.604841 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.91462 (* 1 = 2.91462 loss) | |
I0401 12:24:27.604854 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.974486 (* 1 = 0.974486 loss) | |
I0401 12:24:27.604866 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 12:24:27.604878 31447 solver.cpp:245] Train net output #16: total_confidence = 3.00539e-06 | |
I0401 12:24:27.604892 31447 sgd_solver.cpp:106] Iteration 31000, lr = 0.05 | |
I0401 12:26:36.183753 31447 solver.cpp:229] Iteration 31500, loss = 6.48811 | |
I0401 12:26:36.183893 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0888889 | |
I0401 12:26:36.183914 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.75 | |
I0401 12:26:36.183928 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.266667 | |
I0401 12:26:36.183943 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.00181 (* 0.3 = 0.900544 loss) | |
I0401 12:26:36.183957 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.894487 (* 0.3 = 0.268346 loss) | |
I0401 12:26:36.183970 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0222222 | |
I0401 12:26:36.183984 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.744318 | |
I0401 12:26:36.183995 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.244444 | |
I0401 12:26:36.184008 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.10696 (* 0.3 = 0.932088 loss) | |
I0401 12:26:36.184022 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.880856 (* 0.3 = 0.264257 loss) | |
I0401 12:26:36.184034 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0.155556 | |
I0401 12:26:36.184046 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.772727 | |
I0401 12:26:36.184058 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.333333 | |
I0401 12:26:36.184072 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.90838 (* 1 = 2.90838 loss) | |
I0401 12:26:36.184087 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.840072 (* 1 = 0.840072 loss) | |
I0401 12:26:36.184099 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 12:26:36.184111 31447 solver.cpp:245] Train net output #16: total_confidence = 5.26969e-05 | |
I0401 12:26:36.184123 31447 sgd_solver.cpp:106] Iteration 31500, lr = 0.05 | |
I0401 12:28:44.702633 31447 solver.cpp:229] Iteration 32000, loss = 6.41531 | |
I0401 12:28:44.702738 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0952381 | |
I0401 12:28:44.702756 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.784091 | |
I0401 12:28:44.702769 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.333333 | |
I0401 12:28:44.702786 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 2.84963 (* 0.3 = 0.854888 loss) | |
I0401 12:28:44.702801 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.749025 (* 0.3 = 0.224707 loss) | |
I0401 12:28:44.702814 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.119048 | |
I0401 12:28:44.702827 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.784091 | |
I0401 12:28:44.702839 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.357143 | |
I0401 12:28:44.702852 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 2.74947 (* 0.3 = 0.824841 loss) | |
I0401 12:28:44.702867 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.728653 (* 0.3 = 0.218596 loss) | |
I0401 12:28:44.702878 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0.190476 | |
I0401 12:28:44.702891 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.801136 | |
I0401 12:28:44.702903 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.404762 | |
I0401 12:28:44.702918 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 2.5501 (* 1 = 2.5501 loss) | |
I0401 12:28:44.702931 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.66136 (* 1 = 0.66136 loss) | |
I0401 12:28:44.702942 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 12:28:44.702955 31447 solver.cpp:245] Train net output #16: total_confidence = 0.000207781 | |
I0401 12:28:44.702966 31447 sgd_solver.cpp:106] Iteration 32000, lr = 0.05 | |
I0401 12:30:53.237467 31447 solver.cpp:229] Iteration 32500, loss = 6.39665 | |
I0401 12:30:53.237756 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0.145833 | |
I0401 12:30:53.237777 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.761364 | |
I0401 12:30:53.237789 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.291667 | |
I0401 12:30:53.237805 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.22404 (* 0.3 = 0.967211 loss) | |
I0401 12:30:53.237820 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.91608 (* 0.3 = 0.274824 loss) | |
I0401 12:30:53.237833 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.145833 | |
I0401 12:30:53.237845 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.767045 | |
I0401 12:30:53.237856 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.333333 | |
I0401 12:30:53.237870 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.21609 (* 0.3 = 0.964826 loss) | |
I0401 12:30:53.237884 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.909068 (* 0.3 = 0.27272 loss) | |
I0401 12:30:53.237896 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0.145833 | |
I0401 12:30:53.237908 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.761364 | |
I0401 12:30:53.237920 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.291667 | |
I0401 12:30:53.237933 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.14969 (* 1 = 3.14969 loss) | |
I0401 12:30:53.237947 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.900579 (* 1 = 0.900579 loss) | |
I0401 12:30:53.237959 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 12:30:53.237972 31447 solver.cpp:245] Train net output #16: total_confidence = 0.000361797 | |
I0401 12:30:53.237983 31447 sgd_solver.cpp:106] Iteration 32500, lr = 0.05 | |
I0401 12:32:46.487531 31447 sgd_solver.cpp:92] Gradient clipping: scaling down gradients (L2 norm 73.3525 > 30) by scale factor 0.408984 | |
I0401 12:33:01.815485 31447 solver.cpp:229] Iteration 33000, loss = 6.32743 | |
I0401 12:33:01.815536 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0.106383 | |
I0401 12:33:01.815553 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.744318 | |
I0401 12:33:01.815565 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.191489 | |
I0401 12:33:01.815582 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.15648 (* 0.3 = 0.946944 loss) | |
I0401 12:33:01.815596 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.97896 (* 0.3 = 0.293688 loss) | |
I0401 12:33:01.815608 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0638298 | |
I0401 12:33:01.815621 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.727273 | |
I0401 12:33:01.815634 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.148936 | |
I0401 12:33:01.815647 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.26131 (* 0.3 = 0.978393 loss) | |
I0401 12:33:01.815660 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 1.01987 (* 0.3 = 0.305962 loss) | |
I0401 12:33:01.815672 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0.0851064 | |
I0401 12:33:01.815685 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.738636 | |
I0401 12:33:01.815696 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.234043 | |
I0401 12:33:01.815711 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.25063 (* 1 = 3.25063 loss) | |
I0401 12:33:01.815724 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.959643 (* 1 = 0.959643 loss) | |
I0401 12:33:01.815737 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 12:33:01.815747 31447 solver.cpp:245] Train net output #16: total_confidence = 8.50269e-05 | |
I0401 12:33:01.815760 31447 sgd_solver.cpp:106] Iteration 33000, lr = 0.05 | |
I0401 12:35:10.599174 31447 solver.cpp:229] Iteration 33500, loss = 6.37951 | |
I0401 12:35:10.599308 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0888889 | |
I0401 12:35:10.599339 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.732955 | |
I0401 12:35:10.599362 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.2 | |
I0401 12:35:10.599391 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.15642 (* 0.3 = 0.946925 loss) | |
I0401 12:35:10.599416 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.994403 (* 0.3 = 0.298321 loss) | |
I0401 12:35:10.599439 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0888889 | |
I0401 12:35:10.599462 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.738636 | |
I0401 12:35:10.599484 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.155556 | |
I0401 12:35:10.599509 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.1555 (* 0.3 = 0.946649 loss) | |
I0401 12:35:10.599539 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.99859 (* 0.3 = 0.299577 loss) | |
I0401 12:35:10.599560 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0.111111 | |
I0401 12:35:10.599583 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.75 | |
I0401 12:35:10.599606 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.288889 | |
I0401 12:35:10.599630 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.05897 (* 1 = 3.05897 loss) | |
I0401 12:35:10.599654 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.959419 (* 1 = 0.959419 loss) | |
I0401 12:35:10.599675 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 12:35:10.599694 31447 solver.cpp:245] Train net output #16: total_confidence = 1.86374e-05 | |
I0401 12:35:10.599715 31447 sgd_solver.cpp:106] Iteration 33500, lr = 0.05 | |
I0401 12:37:19.171293 31447 solver.cpp:229] Iteration 34000, loss = 6.36775 | |
I0401 12:37:19.171429 31447 solver.cpp:245] Train net output #0: loss1/accuracy = 0.0714286 | |
I0401 12:37:19.171449 31447 solver.cpp:245] Train net output #1: loss1/accuracy_incl_empty = 0.761364 | |
I0401 12:37:19.171463 31447 solver.cpp:245] Train net output #2: loss1/accuracy_top3 = 0.142857 | |
I0401 12:37:19.171478 31447 solver.cpp:245] Train net output #3: loss1/cross_entropy_loss = 3.16401 (* 0.3 = 0.949202 loss) | |
I0401 12:37:19.171494 31447 solver.cpp:245] Train net output #4: loss1/cross_entropy_loss_incl_empty = 0.896118 (* 0.3 = 0.268836 loss) | |
I0401 12:37:19.171505 31447 solver.cpp:245] Train net output #5: loss2/accuracy = 0.0238095 | |
I0401 12:37:19.171521 31447 solver.cpp:245] Train net output #6: loss2/accuracy_incl_empty = 0.732955 | |
I0401 12:37:19.171535 31447 solver.cpp:245] Train net output #7: loss2/accuracy_top3 = 0.0952381 | |
I0401 12:37:19.171548 31447 solver.cpp:245] Train net output #8: loss2/cross_entropy_loss = 3.20621 (* 0.3 = 0.961862 loss) | |
I0401 12:37:19.171562 31447 solver.cpp:245] Train net output #9: loss2/cross_entropy_loss_incl_empty = 0.962478 (* 0.3 = 0.288743 loss) | |
I0401 12:37:19.171574 31447 solver.cpp:245] Train net output #10: loss3/accuracy = 0 | |
I0401 12:37:19.171587 31447 solver.cpp:245] Train net output #11: loss3/accuracy_incl_empty = 0.738636 | |
I0401 12:37:19.171599 31447 solver.cpp:245] Train net output #12: loss3/accuracy_top3 = 0.119048 | |
I0401 12:37:19.171612 31447 solver.cpp:245] Train net output #13: loss3/cross_entropy_loss = 3.14425 (* 1 = 3.14425 loss) | |
I0401 12:37:19.171627 31447 solver.cpp:245] Train net output #14: loss3/cross_entropy_loss_incl_empty = 0.902724 (* 1 = 0.902724 loss) | |
I0401 12:37:19.171638 31447 solver.cpp:245] Train net output #15: total_accuracy = 0 | |
I0401 12:37:19.171649 31447 solver.cpp:245] Train net output #16: total_confidence = 5.508e-05 | |
I0401 12:37:19.171663 31447 sgd_solver.cpp:106] Iteration 34000, lr = 0.05 | |
I0401 12:39:27.747115 31447 solver.cpp:229] Iteration 34500, loss = 6.32832 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment