Last active
April 5, 2016 19:56
-
-
Save stas-sl/d5b738c685812b6a5a90dd6fcb176074 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
I0405 13:48:26.366220 29564 solver.cpp:280] Solving | |
I0405 13:48:26.366231 29564 solver.cpp:281] Learning Rate Policy: poly | |
I0405 13:48:26.526338 29564 solver.cpp:229] Iteration 0, loss = 4.30412 | |
I0405 13:48:26.526379 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0 | |
I0405 13:48:26.526397 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0405 13:48:26.526412 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0405 13:48:26.526423 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0 | |
I0405 13:48:26.526435 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.03125 | |
I0405 13:48:26.526448 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0 | |
I0405 13:48:26.526459 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0 | |
I0405 13:48:26.526470 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0 | |
I0405 13:48:26.526482 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0 | |
I0405 13:48:26.526494 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 0 | |
I0405 13:48:26.526504 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 0 | |
I0405 13:48:26.526515 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 0 | |
I0405 13:48:26.526527 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 0 | |
I0405 13:48:26.526538 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 0 | |
I0405 13:48:26.526549 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 0 | |
I0405 13:48:26.526561 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 0 | |
I0405 13:48:26.526572 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 0 | |
I0405 13:48:26.526583 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 0 | |
I0405 13:48:26.526594 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 0 | |
I0405 13:48:26.526605 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 0 | |
I0405 13:48:26.526617 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 0 | |
I0405 13:48:26.526628 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 0 | |
I0405 13:48:26.526643 29564 solver.cpp:245] Train net output #22: loss/loss01 = 4.3041 (* 0.0454545 = 0.195641 loss) | |
I0405 13:48:26.526656 29564 solver.cpp:245] Train net output #23: loss/loss02 = 4.30408 (* 0.0454545 = 0.19564 loss) | |
I0405 13:48:26.526671 29564 solver.cpp:245] Train net output #24: loss/loss03 = 4.30403 (* 0.0454545 = 0.195638 loss) | |
I0405 13:48:26.526685 29564 solver.cpp:245] Train net output #25: loss/loss04 = 4.3041 (* 0.0454545 = 0.195641 loss) | |
I0405 13:48:26.526698 29564 solver.cpp:245] Train net output #26: loss/loss05 = 4.30404 (* 0.0454545 = 0.195638 loss) | |
I0405 13:48:26.526712 29564 solver.cpp:245] Train net output #27: loss/loss06 = 4.3041 (* 0.0454545 = 0.195641 loss) | |
I0405 13:48:26.526726 29564 solver.cpp:245] Train net output #28: loss/loss07 = 4.3042 (* 0.0454545 = 0.195645 loss) | |
I0405 13:48:26.526759 29564 solver.cpp:245] Train net output #29: loss/loss08 = 4.30421 (* 0.0454545 = 0.195646 loss) | |
I0405 13:48:26.526775 29564 solver.cpp:245] Train net output #30: loss/loss09 = 4.30422 (* 0.0454545 = 0.195646 loss) | |
I0405 13:48:26.526788 29564 solver.cpp:245] Train net output #31: loss/loss10 = 4.30416 (* 0.0454545 = 0.195644 loss) | |
I0405 13:48:26.526801 29564 solver.cpp:245] Train net output #32: loss/loss11 = 4.30404 (* 0.0454545 = 0.195638 loss) | |
I0405 13:48:26.526815 29564 solver.cpp:245] Train net output #33: loss/loss12 = 4.30381 (* 0.0454545 = 0.195628 loss) | |
I0405 13:48:26.526829 29564 solver.cpp:245] Train net output #34: loss/loss13 = 4.30409 (* 0.0454545 = 0.195641 loss) | |
I0405 13:48:26.526842 29564 solver.cpp:245] Train net output #35: loss/loss14 = 4.30411 (* 0.0454545 = 0.195641 loss) | |
I0405 13:48:26.526856 29564 solver.cpp:245] Train net output #36: loss/loss15 = 4.30418 (* 0.0454545 = 0.195645 loss) | |
I0405 13:48:26.526872 29564 solver.cpp:245] Train net output #37: loss/loss16 = 4.30418 (* 0.0454545 = 0.195644 loss) | |
I0405 13:48:26.526886 29564 solver.cpp:245] Train net output #38: loss/loss17 = 4.30424 (* 0.0454545 = 0.195647 loss) | |
I0405 13:48:26.526900 29564 solver.cpp:245] Train net output #39: loss/loss18 = 4.30417 (* 0.0454545 = 0.195644 loss) | |
I0405 13:48:26.526913 29564 solver.cpp:245] Train net output #40: loss/loss19 = 4.30409 (* 0.0454545 = 0.19564 loss) | |
I0405 13:48:26.526926 29564 solver.cpp:245] Train net output #41: loss/loss20 = 4.30424 (* 0.0454545 = 0.195647 loss) | |
I0405 13:48:26.526939 29564 solver.cpp:245] Train net output #42: loss/loss21 = 4.30425 (* 0.0454545 = 0.195648 loss) | |
I0405 13:48:26.526953 29564 solver.cpp:245] Train net output #43: loss/loss22 = 4.3039 (* 0.0454545 = 0.195632 loss) | |
I0405 13:48:26.526964 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 13:48:26.526976 29564 solver.cpp:245] Train net output #45: total_confidence = 7.63848e-42 | |
I0405 13:48:26.526998 29564 sgd_solver.cpp:106] Iteration 0, lr = 0.01 | |
I0405 13:52:15.395735 29564 solver.cpp:229] Iteration 500, loss = 1.83152 | |
I0405 13:52:15.395925 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0405 13:52:15.395946 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0405 13:52:15.395958 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0405 13:52:15.395970 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0 | |
I0405 13:52:15.395982 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0 | |
I0405 13:52:15.395993 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.0625 | |
I0405 13:52:15.396005 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0405 13:52:15.396018 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0405 13:52:15.396030 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 13:52:15.396042 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 13:52:15.396054 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 13:52:15.396065 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 13:52:15.396095 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 13:52:15.396116 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 13:52:15.396128 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 13:52:15.396139 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 13:52:15.396150 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 13:52:15.396162 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 13:52:15.396173 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 13:52:15.396184 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 13:52:15.396196 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 13:52:15.396210 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 13:52:15.396229 29564 solver.cpp:245] Train net output #22: loss/loss01 = 3.86427 (* 0.0454545 = 0.175649 loss) | |
I0405 13:52:15.396242 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.91119 (* 0.0454545 = 0.177781 loss) | |
I0405 13:52:15.396256 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.86094 (* 0.0454545 = 0.175497 loss) | |
I0405 13:52:15.396270 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.99332 (* 0.0454545 = 0.181514 loss) | |
I0405 13:52:15.396284 29564 solver.cpp:245] Train net output #26: loss/loss05 = 4.11789 (* 0.0454545 = 0.187177 loss) | |
I0405 13:52:15.396297 29564 solver.cpp:245] Train net output #27: loss/loss06 = 4.11727 (* 0.0454545 = 0.187148 loss) | |
I0405 13:52:15.396311 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.63765 (* 0.0454545 = 0.0744388 loss) | |
I0405 13:52:15.396325 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.46804 (* 0.0454545 = 0.0212745 loss) | |
I0405 13:52:15.396338 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.265149 (* 0.0454545 = 0.0120522 loss) | |
I0405 13:52:15.396353 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.0149141 (* 0.0454545 = 0.000677912 loss) | |
I0405 13:52:15.396368 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.000276904 (* 0.0454545 = 1.25866e-05 loss) | |
I0405 13:52:15.396383 29564 solver.cpp:245] Train net output #33: loss/loss12 = 0.000275334 (* 0.0454545 = 1.25152e-05 loss) | |
I0405 13:52:15.396396 29564 solver.cpp:245] Train net output #34: loss/loss13 = 0.000246004 (* 0.0454545 = 1.1182e-05 loss) | |
I0405 13:52:15.396411 29564 solver.cpp:245] Train net output #35: loss/loss14 = 0.0002497 (* 0.0454545 = 1.135e-05 loss) | |
I0405 13:52:15.396425 29564 solver.cpp:245] Train net output #36: loss/loss15 = 0.000310403 (* 0.0454545 = 1.41092e-05 loss) | |
I0405 13:52:15.396440 29564 solver.cpp:245] Train net output #37: loss/loss16 = 0.000319382 (* 0.0454545 = 1.45173e-05 loss) | |
I0405 13:52:15.396453 29564 solver.cpp:245] Train net output #38: loss/loss17 = 0.000306028 (* 0.0454545 = 1.39104e-05 loss) | |
I0405 13:52:15.396486 29564 solver.cpp:245] Train net output #39: loss/loss18 = 0.000256154 (* 0.0454545 = 1.16434e-05 loss) | |
I0405 13:52:15.396502 29564 solver.cpp:245] Train net output #40: loss/loss19 = 0.00027652 (* 0.0454545 = 1.25691e-05 loss) | |
I0405 13:52:15.396515 29564 solver.cpp:245] Train net output #41: loss/loss20 = 0.00028508 (* 0.0454545 = 1.29582e-05 loss) | |
I0405 13:52:15.396529 29564 solver.cpp:245] Train net output #42: loss/loss21 = 0.000276597 (* 0.0454545 = 1.25726e-05 loss) | |
I0405 13:52:15.396543 29564 solver.cpp:245] Train net output #43: loss/loss22 = 0.000264065 (* 0.0454545 = 1.2003e-05 loss) | |
I0405 13:52:15.396556 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 13:52:15.396567 29564 solver.cpp:245] Train net output #45: total_confidence = 1.82457e-08 | |
I0405 13:52:15.396582 29564 sgd_solver.cpp:106] Iteration 500, lr = 0.009995 | |
I0405 13:56:03.983819 29564 solver.cpp:229] Iteration 1000, loss = 1.19877 | |
I0405 13:56:03.983958 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0 | |
I0405 13:56:03.983980 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125 | |
I0405 13:56:03.983994 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0405 13:56:03.984005 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625 | |
I0405 13:56:03.984017 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0 | |
I0405 13:56:03.984030 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0 | |
I0405 13:56:03.984041 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.84375 | |
I0405 13:56:03.984052 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0405 13:56:03.984064 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0405 13:56:03.984099 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 13:56:03.984112 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 13:56:03.984124 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 13:56:03.984135 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 13:56:03.984146 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 13:56:03.984158 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 13:56:03.984169 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 13:56:03.984180 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 13:56:03.984191 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 13:56:03.984202 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 13:56:03.984213 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 13:56:03.984225 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 13:56:03.984236 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 13:56:03.984251 29564 solver.cpp:245] Train net output #22: loss/loss01 = 3.88808 (* 0.0454545 = 0.176731 loss) | |
I0405 13:56:03.984266 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.92502 (* 0.0454545 = 0.17841 loss) | |
I0405 13:56:03.984280 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.9565 (* 0.0454545 = 0.179841 loss) | |
I0405 13:56:03.984294 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.8184 (* 0.0454545 = 0.173564 loss) | |
I0405 13:56:03.984308 29564 solver.cpp:245] Train net output #26: loss/loss05 = 4.27721 (* 0.0454545 = 0.194418 loss) | |
I0405 13:56:03.984321 29564 solver.cpp:245] Train net output #27: loss/loss06 = 4.03196 (* 0.0454545 = 0.183271 loss) | |
I0405 13:56:03.984335 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.14511 (* 0.0454545 = 0.0520504 loss) | |
I0405 13:56:03.984349 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.45744 (* 0.0454545 = 0.0207927 loss) | |
I0405 13:56:03.984364 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.0512234 (* 0.0454545 = 0.00232834 loss) | |
I0405 13:56:03.984377 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.0177217 (* 0.0454545 = 0.000805534 loss) | |
I0405 13:56:03.984391 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.000554886 (* 0.0454545 = 2.52221e-05 loss) | |
I0405 13:56:03.984405 29564 solver.cpp:245] Train net output #33: loss/loss12 = 0.000553212 (* 0.0454545 = 2.5146e-05 loss) | |
I0405 13:56:03.984421 29564 solver.cpp:245] Train net output #34: loss/loss13 = 0.000525835 (* 0.0454545 = 2.39016e-05 loss) | |
I0405 13:56:03.984434 29564 solver.cpp:245] Train net output #35: loss/loss14 = 0.000533378 (* 0.0454545 = 2.42445e-05 loss) | |
I0405 13:56:03.984448 29564 solver.cpp:245] Train net output #36: loss/loss15 = 0.000578702 (* 0.0454545 = 2.63046e-05 loss) | |
I0405 13:56:03.984462 29564 solver.cpp:245] Train net output #37: loss/loss16 = 0.000590582 (* 0.0454545 = 2.68446e-05 loss) | |
I0405 13:56:03.984477 29564 solver.cpp:245] Train net output #38: loss/loss17 = 0.0005726 (* 0.0454545 = 2.60273e-05 loss) | |
I0405 13:56:03.984505 29564 solver.cpp:245] Train net output #39: loss/loss18 = 0.000535132 (* 0.0454545 = 2.43242e-05 loss) | |
I0405 13:56:03.984524 29564 solver.cpp:245] Train net output #40: loss/loss19 = 0.000561319 (* 0.0454545 = 2.55145e-05 loss) | |
I0405 13:56:03.984537 29564 solver.cpp:245] Train net output #41: loss/loss20 = 0.00056246 (* 0.0454545 = 2.55663e-05 loss) | |
I0405 13:56:03.984551 29564 solver.cpp:245] Train net output #42: loss/loss21 = 0.000554233 (* 0.0454545 = 2.51924e-05 loss) | |
I0405 13:56:03.984565 29564 solver.cpp:245] Train net output #43: loss/loss22 = 0.000535792 (* 0.0454545 = 2.43542e-05 loss) | |
I0405 13:56:03.984577 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 13:56:03.984589 29564 solver.cpp:245] Train net output #45: total_confidence = 1.43792e-08 | |
I0405 13:56:03.984602 29564 sgd_solver.cpp:106] Iteration 1000, lr = 0.00999 | |
I0405 13:59:52.818518 29564 solver.cpp:229] Iteration 1500, loss = 1.1907 | |
I0405 13:59:52.818645 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0405 13:59:52.818665 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0405 13:59:52.818677 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0405 13:59:52.818689 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125 | |
I0405 13:59:52.818701 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.0625 | |
I0405 13:59:52.818713 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.03125 | |
I0405 13:59:52.818727 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0405 13:59:52.818738 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0405 13:59:52.818750 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0405 13:59:52.818761 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 13:59:52.818773 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 13:59:52.818784 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 13:59:52.818795 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 13:59:52.818807 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 13:59:52.818819 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 13:59:52.818830 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 13:59:52.818841 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 13:59:52.818852 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 13:59:52.818863 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 13:59:52.818876 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 13:59:52.818886 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 13:59:52.818897 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 13:59:52.818912 29564 solver.cpp:245] Train net output #22: loss/loss01 = 3.7467 (* 0.0454545 = 0.170304 loss) | |
I0405 13:59:52.818928 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.72997 (* 0.0454545 = 0.169544 loss) | |
I0405 13:59:52.818941 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.77272 (* 0.0454545 = 0.171487 loss) | |
I0405 13:59:52.818956 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.6474 (* 0.0454545 = 0.165791 loss) | |
I0405 13:59:52.818970 29564 solver.cpp:245] Train net output #26: loss/loss05 = 4.01378 (* 0.0454545 = 0.182445 loss) | |
I0405 13:59:52.818984 29564 solver.cpp:245] Train net output #27: loss/loss06 = 4.03612 (* 0.0454545 = 0.18346 loss) | |
I0405 13:59:52.818999 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.13699 (* 0.0454545 = 0.0516814 loss) | |
I0405 13:59:52.819012 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.792425 (* 0.0454545 = 0.0360193 loss) | |
I0405 13:59:52.819026 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.481984 (* 0.0454545 = 0.0219083 loss) | |
I0405 13:59:52.819041 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.0173699 (* 0.0454545 = 0.000789541 loss) | |
I0405 13:59:52.819054 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.000550279 (* 0.0454545 = 2.50127e-05 loss) | |
I0405 13:59:52.819068 29564 solver.cpp:245] Train net output #33: loss/loss12 = 0.000548482 (* 0.0454545 = 2.4931e-05 loss) | |
I0405 13:59:52.819082 29564 solver.cpp:245] Train net output #34: loss/loss13 = 0.000541013 (* 0.0454545 = 2.45915e-05 loss) | |
I0405 13:59:52.819097 29564 solver.cpp:245] Train net output #35: loss/loss14 = 0.000552146 (* 0.0454545 = 2.50976e-05 loss) | |
I0405 13:59:52.819111 29564 solver.cpp:245] Train net output #36: loss/loss15 = 0.000567112 (* 0.0454545 = 2.57778e-05 loss) | |
I0405 13:59:52.819125 29564 solver.cpp:245] Train net output #37: loss/loss16 = 0.000561806 (* 0.0454545 = 2.55366e-05 loss) | |
I0405 13:59:52.819139 29564 solver.cpp:245] Train net output #38: loss/loss17 = 0.000557603 (* 0.0454545 = 2.53456e-05 loss) | |
I0405 13:59:52.819170 29564 solver.cpp:245] Train net output #39: loss/loss18 = 0.000542487 (* 0.0454545 = 2.46585e-05 loss) | |
I0405 13:59:52.819185 29564 solver.cpp:245] Train net output #40: loss/loss19 = 0.000557618 (* 0.0454545 = 2.53463e-05 loss) | |
I0405 13:59:52.819200 29564 solver.cpp:245] Train net output #41: loss/loss20 = 0.000554045 (* 0.0454545 = 2.51839e-05 loss) | |
I0405 13:59:52.819213 29564 solver.cpp:245] Train net output #42: loss/loss21 = 0.000557398 (* 0.0454545 = 2.53363e-05 loss) | |
I0405 13:59:52.819231 29564 solver.cpp:245] Train net output #43: loss/loss22 = 0.000551339 (* 0.0454545 = 2.50609e-05 loss) | |
I0405 13:59:52.819243 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 13:59:52.819255 29564 solver.cpp:245] Train net output #45: total_confidence = 1.00189e-08 | |
I0405 13:59:52.819269 29564 sgd_solver.cpp:106] Iteration 1500, lr = 0.009985 | |
I0405 14:03:41.431494 29564 solver.cpp:229] Iteration 2000, loss = 1.18388 | |
I0405 14:03:41.431615 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.15625 | |
I0405 14:03:41.431634 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0405 14:03:41.431648 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0405 14:03:41.431659 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0405 14:03:41.431671 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.03125 | |
I0405 14:03:41.431684 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0 | |
I0405 14:03:41.431695 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0405 14:03:41.431707 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0405 14:03:41.431720 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 14:03:41.431730 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 14:03:41.431742 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 14:03:41.431754 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 14:03:41.431766 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 14:03:41.431777 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 14:03:41.431788 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 14:03:41.431799 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 14:03:41.431810 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 14:03:41.431821 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 14:03:41.431833 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 14:03:41.431844 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 14:03:41.431855 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 14:03:41.431867 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 14:03:41.431884 29564 solver.cpp:245] Train net output #22: loss/loss01 = 3.44432 (* 0.0454545 = 0.15656 loss) | |
I0405 14:03:41.431900 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.66235 (* 0.0454545 = 0.16647 loss) | |
I0405 14:03:41.431913 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.5963 (* 0.0454545 = 0.163468 loss) | |
I0405 14:03:41.431927 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.74647 (* 0.0454545 = 0.170294 loss) | |
I0405 14:03:41.431941 29564 solver.cpp:245] Train net output #26: loss/loss05 = 3.90941 (* 0.0454545 = 0.1777 loss) | |
I0405 14:03:41.431957 29564 solver.cpp:245] Train net output #27: loss/loss06 = 3.98601 (* 0.0454545 = 0.181182 loss) | |
I0405 14:03:41.431970 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.42139 (* 0.0454545 = 0.0646086 loss) | |
I0405 14:03:41.431983 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.614816 (* 0.0454545 = 0.0279462 loss) | |
I0405 14:03:41.431998 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.233619 (* 0.0454545 = 0.010619 loss) | |
I0405 14:03:41.432011 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.238961 (* 0.0454545 = 0.0108619 loss) | |
I0405 14:03:41.432026 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.000341528 (* 0.0454545 = 1.5524e-05 loss) | |
I0405 14:03:41.432041 29564 solver.cpp:245] Train net output #33: loss/loss12 = 0.000335269 (* 0.0454545 = 1.52395e-05 loss) | |
I0405 14:03:41.432055 29564 solver.cpp:245] Train net output #34: loss/loss13 = 0.000335911 (* 0.0454545 = 1.52687e-05 loss) | |
I0405 14:03:41.432086 29564 solver.cpp:245] Train net output #35: loss/loss14 = 0.000347265 (* 0.0454545 = 1.57848e-05 loss) | |
I0405 14:03:41.432104 29564 solver.cpp:245] Train net output #36: loss/loss15 = 0.000350656 (* 0.0454545 = 1.59389e-05 loss) | |
I0405 14:03:41.432119 29564 solver.cpp:245] Train net output #37: loss/loss16 = 0.000342731 (* 0.0454545 = 1.55787e-05 loss) | |
I0405 14:03:41.432133 29564 solver.cpp:245] Train net output #38: loss/loss17 = 0.000342219 (* 0.0454545 = 1.55554e-05 loss) | |
I0405 14:03:41.432165 29564 solver.cpp:245] Train net output #39: loss/loss18 = 0.000335618 (* 0.0454545 = 1.52554e-05 loss) | |
I0405 14:03:41.432181 29564 solver.cpp:245] Train net output #40: loss/loss19 = 0.000339589 (* 0.0454545 = 1.54358e-05 loss) | |
I0405 14:03:41.432195 29564 solver.cpp:245] Train net output #41: loss/loss20 = 0.000341371 (* 0.0454545 = 1.55169e-05 loss) | |
I0405 14:03:41.432209 29564 solver.cpp:245] Train net output #42: loss/loss21 = 0.000341316 (* 0.0454545 = 1.55144e-05 loss) | |
I0405 14:03:41.432224 29564 solver.cpp:245] Train net output #43: loss/loss22 = 0.000340134 (* 0.0454545 = 1.54606e-05 loss) | |
I0405 14:03:41.432235 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 14:03:41.432247 29564 solver.cpp:245] Train net output #45: total_confidence = 1.93447e-08 | |
I0405 14:03:41.432261 29564 sgd_solver.cpp:106] Iteration 2000, lr = 0.00998 | |
I0405 14:07:30.400146 29564 solver.cpp:229] Iteration 2500, loss = 1.17555 | |
I0405 14:07:30.400257 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.03125 | |
I0405 14:07:30.400277 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0405 14:07:30.400290 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0405 14:07:30.400301 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0405 14:07:30.400313 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0 | |
I0405 14:07:30.400326 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.0625 | |
I0405 14:07:30.400337 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.65625 | |
I0405 14:07:30.400348 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0405 14:07:30.400360 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0405 14:07:30.400372 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 14:07:30.400383 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 14:07:30.400395 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 14:07:30.400406 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 14:07:30.400418 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 14:07:30.400429 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 14:07:30.400440 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 14:07:30.400451 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 14:07:30.400462 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 14:07:30.400473 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 14:07:30.400485 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 14:07:30.400496 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 14:07:30.400507 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 14:07:30.400522 29564 solver.cpp:245] Train net output #22: loss/loss01 = 3.61557 (* 0.0454545 = 0.164344 loss) | |
I0405 14:07:30.400537 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.67275 (* 0.0454545 = 0.166943 loss) | |
I0405 14:07:30.400550 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.79288 (* 0.0454545 = 0.172404 loss) | |
I0405 14:07:30.400564 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.60689 (* 0.0454545 = 0.16395 loss) | |
I0405 14:07:30.400578 29564 solver.cpp:245] Train net output #26: loss/loss05 = 3.97785 (* 0.0454545 = 0.180811 loss) | |
I0405 14:07:30.400591 29564 solver.cpp:245] Train net output #27: loss/loss06 = 3.8546 (* 0.0454545 = 0.175209 loss) | |
I0405 14:07:30.400605 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.91302 (* 0.0454545 = 0.0869555 loss) | |
I0405 14:07:30.400619 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.619855 (* 0.0454545 = 0.0281752 loss) | |
I0405 14:07:30.400632 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.413469 (* 0.0454545 = 0.0187941 loss) | |
I0405 14:07:30.400647 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.0146159 (* 0.0454545 = 0.000664358 loss) | |
I0405 14:07:30.400661 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.0005236 (* 0.0454545 = 2.38e-05 loss) | |
I0405 14:07:30.400676 29564 solver.cpp:245] Train net output #33: loss/loss12 = 0.000529918 (* 0.0454545 = 2.40872e-05 loss) | |
I0405 14:07:30.400691 29564 solver.cpp:245] Train net output #34: loss/loss13 = 0.000519256 (* 0.0454545 = 2.36025e-05 loss) | |
I0405 14:07:30.400704 29564 solver.cpp:245] Train net output #35: loss/loss14 = 0.000531179 (* 0.0454545 = 2.41445e-05 loss) | |
I0405 14:07:30.400718 29564 solver.cpp:245] Train net output #36: loss/loss15 = 0.000529861 (* 0.0454545 = 2.40846e-05 loss) | |
I0405 14:07:30.400732 29564 solver.cpp:245] Train net output #37: loss/loss16 = 0.000529804 (* 0.0454545 = 2.4082e-05 loss) | |
I0405 14:07:30.400748 29564 solver.cpp:245] Train net output #38: loss/loss17 = 0.000531354 (* 0.0454545 = 2.41524e-05 loss) | |
I0405 14:07:30.400779 29564 solver.cpp:245] Train net output #39: loss/loss18 = 0.000516318 (* 0.0454545 = 2.3469e-05 loss) | |
I0405 14:07:30.400794 29564 solver.cpp:245] Train net output #40: loss/loss19 = 0.000526508 (* 0.0454545 = 2.39322e-05 loss) | |
I0405 14:07:30.400809 29564 solver.cpp:245] Train net output #41: loss/loss20 = 0.000528772 (* 0.0454545 = 2.40351e-05 loss) | |
I0405 14:07:30.400822 29564 solver.cpp:245] Train net output #42: loss/loss21 = 0.000532455 (* 0.0454545 = 2.42025e-05 loss) | |
I0405 14:07:30.400836 29564 solver.cpp:245] Train net output #43: loss/loss22 = 0.000522905 (* 0.0454545 = 2.37684e-05 loss) | |
I0405 14:07:30.400848 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 14:07:30.400859 29564 solver.cpp:245] Train net output #45: total_confidence = 2.47377e-08 | |
I0405 14:07:30.400874 29564 sgd_solver.cpp:106] Iteration 2500, lr = 0.009975 | |
I0405 14:11:19.208225 29564 solver.cpp:229] Iteration 3000, loss = 1.16758 | |
I0405 14:11:19.208442 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.03125 | |
I0405 14:11:19.208467 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0405 14:11:19.208480 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0405 14:11:19.208492 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0405 14:11:19.208504 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.03125 | |
I0405 14:11:19.208516 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.46875 | |
I0405 14:11:19.208529 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0405 14:11:19.208541 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0405 14:11:19.208554 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 14:11:19.208564 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 14:11:19.208576 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 14:11:19.208596 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 14:11:19.208612 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 14:11:19.208624 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 14:11:19.208636 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 14:11:19.208648 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 14:11:19.208662 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 14:11:19.208673 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 14:11:19.208684 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 14:11:19.208696 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 14:11:19.208708 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 14:11:19.208719 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 14:11:19.208734 29564 solver.cpp:245] Train net output #22: loss/loss01 = 3.67939 (* 0.0454545 = 0.167245 loss) | |
I0405 14:11:19.208748 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.86778 (* 0.0454545 = 0.175808 loss) | |
I0405 14:11:19.208762 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.78289 (* 0.0454545 = 0.171949 loss) | |
I0405 14:11:19.208777 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.62507 (* 0.0454545 = 0.164776 loss) | |
I0405 14:11:19.208791 29564 solver.cpp:245] Train net output #26: loss/loss05 = 4.0475 (* 0.0454545 = 0.183977 loss) | |
I0405 14:11:19.208806 29564 solver.cpp:245] Train net output #27: loss/loss06 = 3.72057 (* 0.0454545 = 0.169117 loss) | |
I0405 14:11:19.208822 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.24527 (* 0.0454545 = 0.056603 loss) | |
I0405 14:11:19.208843 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.421787 (* 0.0454545 = 0.0191722 loss) | |
I0405 14:11:19.208858 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.273627 (* 0.0454545 = 0.0124376 loss) | |
I0405 14:11:19.208873 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.0268704 (* 0.0454545 = 0.00122138 loss) | |
I0405 14:11:19.208887 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.00115338 (* 0.0454545 = 5.24263e-05 loss) | |
I0405 14:11:19.208906 29564 solver.cpp:245] Train net output #33: loss/loss12 = 0.00109549 (* 0.0454545 = 4.97951e-05 loss) | |
I0405 14:11:19.208935 29564 solver.cpp:245] Train net output #34: loss/loss13 = 0.00111151 (* 0.0454545 = 5.0523e-05 loss) | |
I0405 14:11:19.208955 29564 solver.cpp:245] Train net output #35: loss/loss14 = 0.00112114 (* 0.0454545 = 5.0961e-05 loss) | |
I0405 14:11:19.208968 29564 solver.cpp:245] Train net output #36: loss/loss15 = 0.00111318 (* 0.0454545 = 5.0599e-05 loss) | |
I0405 14:11:19.208982 29564 solver.cpp:245] Train net output #37: loss/loss16 = 0.00110635 (* 0.0454545 = 5.02886e-05 loss) | |
I0405 14:11:19.208997 29564 solver.cpp:245] Train net output #38: loss/loss17 = 0.00110517 (* 0.0454545 = 5.02351e-05 loss) | |
I0405 14:11:19.209028 29564 solver.cpp:245] Train net output #39: loss/loss18 = 0.00109926 (* 0.0454545 = 4.99662e-05 loss) | |
I0405 14:11:19.209044 29564 solver.cpp:245] Train net output #40: loss/loss19 = 0.00110342 (* 0.0454545 = 5.01555e-05 loss) | |
I0405 14:11:19.209059 29564 solver.cpp:245] Train net output #41: loss/loss20 = 0.00110897 (* 0.0454545 = 5.04079e-05 loss) | |
I0405 14:11:19.209072 29564 solver.cpp:245] Train net output #42: loss/loss21 = 0.00111115 (* 0.0454545 = 5.05068e-05 loss) | |
I0405 14:11:19.209086 29564 solver.cpp:245] Train net output #43: loss/loss22 = 0.00110925 (* 0.0454545 = 5.04207e-05 loss) | |
I0405 14:11:19.209100 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 14:11:19.209110 29564 solver.cpp:245] Train net output #45: total_confidence = 1.90504e-08 | |
I0405 14:11:19.209125 29564 sgd_solver.cpp:106] Iteration 3000, lr = 0.00997 | |
I0405 14:15:07.974445 29564 solver.cpp:229] Iteration 3500, loss = 1.16134 | |
I0405 14:15:07.974550 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0405 14:15:07.974570 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0405 14:15:07.974581 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0405 14:15:07.974593 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125 | |
I0405 14:15:07.974606 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.0625 | |
I0405 14:15:07.974617 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.25 | |
I0405 14:15:07.974629 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0405 14:15:07.974642 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0405 14:15:07.974653 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625 | |
I0405 14:15:07.974664 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 14:15:07.974676 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 14:15:07.974690 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 14:15:07.974702 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 14:15:07.974714 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 14:15:07.974725 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 14:15:07.974736 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 14:15:07.974748 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 14:15:07.974759 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 14:15:07.974771 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 14:15:07.974781 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 14:15:07.974793 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 14:15:07.974804 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 14:15:07.974819 29564 solver.cpp:245] Train net output #22: loss/loss01 = 3.81317 (* 0.0454545 = 0.173326 loss) | |
I0405 14:15:07.974833 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.95322 (* 0.0454545 = 0.179692 loss) | |
I0405 14:15:07.974848 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.81625 (* 0.0454545 = 0.173466 loss) | |
I0405 14:15:07.974861 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.84216 (* 0.0454545 = 0.174644 loss) | |
I0405 14:15:07.974875 29564 solver.cpp:245] Train net output #26: loss/loss05 = 3.98354 (* 0.0454545 = 0.18107 loss) | |
I0405 14:15:07.974889 29564 solver.cpp:245] Train net output #27: loss/loss06 = 3.87404 (* 0.0454545 = 0.176093 loss) | |
I0405 14:15:07.974903 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.49992 (* 0.0454545 = 0.0681784 loss) | |
I0405 14:15:07.974917 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.773858 (* 0.0454545 = 0.0351754 loss) | |
I0405 14:15:07.974931 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.591337 (* 0.0454545 = 0.0268789 loss) | |
I0405 14:15:07.974946 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.24305 (* 0.0454545 = 0.0110477 loss) | |
I0405 14:15:07.974959 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.00103841 (* 0.0454545 = 4.72006e-05 loss) | |
I0405 14:15:07.974974 29564 solver.cpp:245] Train net output #33: loss/loss12 = 0.00100966 (* 0.0454545 = 4.58938e-05 loss) | |
I0405 14:15:07.974988 29564 solver.cpp:245] Train net output #34: loss/loss13 = 0.00101597 (* 0.0454545 = 4.61805e-05 loss) | |
I0405 14:15:07.975003 29564 solver.cpp:245] Train net output #35: loss/loss14 = 0.00103493 (* 0.0454545 = 4.70424e-05 loss) | |
I0405 14:15:07.975018 29564 solver.cpp:245] Train net output #36: loss/loss15 = 0.00101657 (* 0.0454545 = 4.62078e-05 loss) | |
I0405 14:15:07.975033 29564 solver.cpp:245] Train net output #37: loss/loss16 = 0.0010203 (* 0.0454545 = 4.63773e-05 loss) | |
I0405 14:15:07.975049 29564 solver.cpp:245] Train net output #38: loss/loss17 = 0.00101394 (* 0.0454545 = 4.60881e-05 loss) | |
I0405 14:15:07.975080 29564 solver.cpp:245] Train net output #39: loss/loss18 = 0.00102132 (* 0.0454545 = 4.64237e-05 loss) | |
I0405 14:15:07.975095 29564 solver.cpp:245] Train net output #40: loss/loss19 = 0.00101455 (* 0.0454545 = 4.6116e-05 loss) | |
I0405 14:15:07.975108 29564 solver.cpp:245] Train net output #41: loss/loss20 = 0.0010218 (* 0.0454545 = 4.64456e-05 loss) | |
I0405 14:15:07.975122 29564 solver.cpp:245] Train net output #42: loss/loss21 = 0.0010233 (* 0.0454545 = 4.65136e-05 loss) | |
I0405 14:15:07.975136 29564 solver.cpp:245] Train net output #43: loss/loss22 = 0.00102028 (* 0.0454545 = 4.63763e-05 loss) | |
I0405 14:15:07.975148 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 14:15:07.975160 29564 solver.cpp:245] Train net output #45: total_confidence = 1.63369e-08 | |
I0405 14:15:07.975173 29564 sgd_solver.cpp:106] Iteration 3500, lr = 0.009965 | |
I0405 14:18:56.865790 29564 solver.cpp:229] Iteration 4000, loss = 1.15982 | |
I0405 14:18:56.865916 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0405 14:18:56.865936 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0405 14:18:56.865947 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0405 14:18:56.865959 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0405 14:18:56.865972 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.03125 | |
I0405 14:18:56.865983 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5625 | |
I0405 14:18:56.865995 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.78125 | |
I0405 14:18:56.866006 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0405 14:18:56.866019 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 14:18:56.866029 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 14:18:56.866041 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 14:18:56.866053 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 14:18:56.866065 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 14:18:56.866076 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 14:18:56.866087 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 14:18:56.866098 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 14:18:56.866111 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 14:18:56.866122 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 14:18:56.866132 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 14:18:56.866144 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 14:18:56.866155 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 14:18:56.866168 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 14:18:56.866183 29564 solver.cpp:245] Train net output #22: loss/loss01 = 3.48443 (* 0.0454545 = 0.158383 loss) | |
I0405 14:18:56.866196 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.94061 (* 0.0454545 = 0.179119 loss) | |
I0405 14:18:56.866210 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.78767 (* 0.0454545 = 0.172167 loss) | |
I0405 14:18:56.866225 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.77084 (* 0.0454545 = 0.171402 loss) | |
I0405 14:18:56.866238 29564 solver.cpp:245] Train net output #26: loss/loss05 = 3.97025 (* 0.0454545 = 0.180466 loss) | |
I0405 14:18:56.866252 29564 solver.cpp:245] Train net output #27: loss/loss06 = 3.509 (* 0.0454545 = 0.1595 loss) | |
I0405 14:18:56.866266 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.5365 (* 0.0454545 = 0.0698409 loss) | |
I0405 14:18:56.866281 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.463285 (* 0.0454545 = 0.0210584 loss) | |
I0405 14:18:56.866296 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.25421 (* 0.0454545 = 0.011555 loss) | |
I0405 14:18:56.866309 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.0198523 (* 0.0454545 = 0.000902379 loss) | |
I0405 14:18:56.866324 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.000920496 (* 0.0454545 = 4.18407e-05 loss) | |
I0405 14:18:56.866338 29564 solver.cpp:245] Train net output #33: loss/loss12 = 0.000909042 (* 0.0454545 = 4.13201e-05 loss) | |
I0405 14:18:56.866353 29564 solver.cpp:245] Train net output #34: loss/loss13 = 0.000912397 (* 0.0454545 = 4.14726e-05 loss) | |
I0405 14:18:56.866366 29564 solver.cpp:245] Train net output #35: loss/loss14 = 0.000920487 (* 0.0454545 = 4.18403e-05 loss) | |
I0405 14:18:56.866380 29564 solver.cpp:245] Train net output #36: loss/loss15 = 0.000909082 (* 0.0454545 = 4.13219e-05 loss) | |
I0405 14:18:56.866394 29564 solver.cpp:245] Train net output #37: loss/loss16 = 0.000911546 (* 0.0454545 = 4.14339e-05 loss) | |
I0405 14:18:56.866408 29564 solver.cpp:245] Train net output #38: loss/loss17 = 0.000910504 (* 0.0454545 = 4.13866e-05 loss) | |
I0405 14:18:56.866438 29564 solver.cpp:245] Train net output #39: loss/loss18 = 0.000913012 (* 0.0454545 = 4.15005e-05 loss) | |
I0405 14:18:56.866454 29564 solver.cpp:245] Train net output #40: loss/loss19 = 0.000910287 (* 0.0454545 = 4.13767e-05 loss) | |
I0405 14:18:56.866467 29564 solver.cpp:245] Train net output #41: loss/loss20 = 0.000921385 (* 0.0454545 = 4.18811e-05 loss) | |
I0405 14:18:56.866482 29564 solver.cpp:245] Train net output #42: loss/loss21 = 0.000913217 (* 0.0454545 = 4.15099e-05 loss) | |
I0405 14:18:56.866495 29564 solver.cpp:245] Train net output #43: loss/loss22 = 0.000908305 (* 0.0454545 = 4.12866e-05 loss) | |
I0405 14:18:56.866508 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 14:18:56.866518 29564 solver.cpp:245] Train net output #45: total_confidence = 3.66924e-08 | |
I0405 14:18:56.866531 29564 sgd_solver.cpp:106] Iteration 4000, lr = 0.00996 | |
I0405 14:22:46.200162 29564 solver.cpp:229] Iteration 4500, loss = 1.15199 | |
I0405 14:22:46.200268 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0405 14:22:46.200289 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0405 14:22:46.200300 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0405 14:22:46.200312 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375 | |
I0405 14:22:46.200325 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.03125 | |
I0405 14:22:46.200336 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125 | |
I0405 14:22:46.200350 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.78125 | |
I0405 14:22:46.200362 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.96875 | |
I0405 14:22:46.200374 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0405 14:22:46.200387 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 14:22:46.200397 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 14:22:46.200409 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 14:22:46.200420 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 14:22:46.200433 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 14:22:46.200443 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 14:22:46.200455 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 14:22:46.200466 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 14:22:46.200479 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 14:22:46.200489 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 14:22:46.200500 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 14:22:46.200511 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 14:22:46.200523 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 14:22:46.200538 29564 solver.cpp:245] Train net output #22: loss/loss01 = 3.53094 (* 0.0454545 = 0.160497 loss) | |
I0405 14:22:46.200552 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.81042 (* 0.0454545 = 0.173201 loss) | |
I0405 14:22:46.200567 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.62747 (* 0.0454545 = 0.164885 loss) | |
I0405 14:22:46.200580 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.67171 (* 0.0454545 = 0.166896 loss) | |
I0405 14:22:46.200594 29564 solver.cpp:245] Train net output #26: loss/loss05 = 3.98641 (* 0.0454545 = 0.181201 loss) | |
I0405 14:22:46.200608 29564 solver.cpp:245] Train net output #27: loss/loss06 = 3.75485 (* 0.0454545 = 0.170675 loss) | |
I0405 14:22:46.200621 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.41047 (* 0.0454545 = 0.0641124 loss) | |
I0405 14:22:46.200635 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.218344 (* 0.0454545 = 0.00992471 loss) | |
I0405 14:22:46.200649 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.0312096 (* 0.0454545 = 0.00141862 loss) | |
I0405 14:22:46.200664 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.0145468 (* 0.0454545 = 0.000661216 loss) | |
I0405 14:22:46.200677 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.000528008 (* 0.0454545 = 2.40004e-05 loss) | |
I0405 14:22:46.200691 29564 solver.cpp:245] Train net output #33: loss/loss12 = 0.000513376 (* 0.0454545 = 2.33353e-05 loss) | |
I0405 14:22:46.200706 29564 solver.cpp:245] Train net output #34: loss/loss13 = 0.0005168 (* 0.0454545 = 2.34909e-05 loss) | |
I0405 14:22:46.200721 29564 solver.cpp:245] Train net output #35: loss/loss14 = 0.00051393 (* 0.0454545 = 2.33604e-05 loss) | |
I0405 14:22:46.200734 29564 solver.cpp:245] Train net output #36: loss/loss15 = 0.000514951 (* 0.0454545 = 2.34069e-05 loss) | |
I0405 14:22:46.200748 29564 solver.cpp:245] Train net output #37: loss/loss16 = 0.000514141 (* 0.0454545 = 2.337e-05 loss) | |
I0405 14:22:46.200762 29564 solver.cpp:245] Train net output #38: loss/loss17 = 0.000515435 (* 0.0454545 = 2.34289e-05 loss) | |
I0405 14:22:46.200793 29564 solver.cpp:245] Train net output #39: loss/loss18 = 0.000511056 (* 0.0454545 = 2.32298e-05 loss) | |
I0405 14:22:46.200809 29564 solver.cpp:245] Train net output #40: loss/loss19 = 0.000516455 (* 0.0454545 = 2.34752e-05 loss) | |
I0405 14:22:46.200822 29564 solver.cpp:245] Train net output #41: loss/loss20 = 0.000509454 (* 0.0454545 = 2.3157e-05 loss) | |
I0405 14:22:46.200836 29564 solver.cpp:245] Train net output #42: loss/loss21 = 0.000517937 (* 0.0454545 = 2.35426e-05 loss) | |
I0405 14:22:46.200850 29564 solver.cpp:245] Train net output #43: loss/loss22 = 0.000513193 (* 0.0454545 = 2.33269e-05 loss) | |
I0405 14:22:46.200862 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 14:22:46.200873 29564 solver.cpp:245] Train net output #45: total_confidence = 2.4991e-08 | |
I0405 14:22:46.200886 29564 sgd_solver.cpp:106] Iteration 4500, lr = 0.009955 | |
I0405 14:26:34.960763 29564 solver.cpp:338] Iteration 5000, Testing net (#0) | |
I0405 14:26:45.252977 29564 solver.cpp:393] Test loss: 1.05789 | |
I0405 14:26:45.253021 29564 solver.cpp:406] Test net output #0: loss/accuracy01 = 0 | |
I0405 14:26:45.253037 29564 solver.cpp:406] Test net output #1: loss/accuracy02 = 0.004 | |
I0405 14:26:45.253051 29564 solver.cpp:406] Test net output #2: loss/accuracy03 = 0.005 | |
I0405 14:26:45.253063 29564 solver.cpp:406] Test net output #3: loss/accuracy04 = 0.093 | |
I0405 14:26:45.253074 29564 solver.cpp:406] Test net output #4: loss/accuracy05 = 0.212 | |
I0405 14:26:45.253087 29564 solver.cpp:406] Test net output #5: loss/accuracy06 = 0.459 | |
I0405 14:26:45.253098 29564 solver.cpp:406] Test net output #6: loss/accuracy07 = 0.894 | |
I0405 14:26:45.253109 29564 solver.cpp:406] Test net output #7: loss/accuracy08 = 0.97 | |
I0405 14:26:45.253121 29564 solver.cpp:406] Test net output #8: loss/accuracy09 = 0.995 | |
I0405 14:26:45.253132 29564 solver.cpp:406] Test net output #9: loss/accuracy10 = 0.998 | |
I0405 14:26:45.253144 29564 solver.cpp:406] Test net output #10: loss/accuracy11 = 1 | |
I0405 14:26:45.253155 29564 solver.cpp:406] Test net output #11: loss/accuracy12 = 1 | |
I0405 14:26:45.253166 29564 solver.cpp:406] Test net output #12: loss/accuracy13 = 1 | |
I0405 14:26:45.253178 29564 solver.cpp:406] Test net output #13: loss/accuracy14 = 1 | |
I0405 14:26:45.253190 29564 solver.cpp:406] Test net output #14: loss/accuracy15 = 1 | |
I0405 14:26:45.253201 29564 solver.cpp:406] Test net output #15: loss/accuracy16 = 1 | |
I0405 14:26:45.253211 29564 solver.cpp:406] Test net output #16: loss/accuracy17 = 1 | |
I0405 14:26:45.253222 29564 solver.cpp:406] Test net output #17: loss/accuracy18 = 1 | |
I0405 14:26:45.253233 29564 solver.cpp:406] Test net output #18: loss/accuracy19 = 1 | |
I0405 14:26:45.253244 29564 solver.cpp:406] Test net output #19: loss/accuracy20 = 1 | |
I0405 14:26:45.253255 29564 solver.cpp:406] Test net output #20: loss/accuracy21 = 1 | |
I0405 14:26:45.253267 29564 solver.cpp:406] Test net output #21: loss/accuracy22 = 1 | |
I0405 14:26:45.253280 29564 solver.cpp:406] Test net output #22: loss/loss01 = 3.49209 (* 0.0454545 = 0.158731 loss) | |
I0405 14:26:45.253294 29564 solver.cpp:406] Test net output #23: loss/loss02 = 3.89063 (* 0.0454545 = 0.176847 loss) | |
I0405 14:26:45.253309 29564 solver.cpp:406] Test net output #24: loss/loss03 = 3.72724 (* 0.0454545 = 0.16942 loss) | |
I0405 14:26:45.253322 29564 solver.cpp:406] Test net output #25: loss/loss04 = 3.73787 (* 0.0454545 = 0.169903 loss) | |
I0405 14:26:45.253335 29564 solver.cpp:406] Test net output #26: loss/loss05 = 3.62905 (* 0.0454545 = 0.164957 loss) | |
I0405 14:26:45.253348 29564 solver.cpp:406] Test net output #27: loss/loss06 = 3.5284 (* 0.0454545 = 0.160382 loss) | |
I0405 14:26:45.253362 29564 solver.cpp:406] Test net output #28: loss/loss07 = 0.869835 (* 0.0454545 = 0.039538 loss) | |
I0405 14:26:45.253376 29564 solver.cpp:406] Test net output #29: loss/loss08 = 0.297959 (* 0.0454545 = 0.0135436 loss) | |
I0405 14:26:45.253389 29564 solver.cpp:406] Test net output #30: loss/loss09 = 0.0668295 (* 0.0454545 = 0.0030377 loss) | |
I0405 14:26:45.253403 29564 solver.cpp:406] Test net output #31: loss/loss10 = 0.0295842 (* 0.0454545 = 0.00134474 loss) | |
I0405 14:26:45.253418 29564 solver.cpp:406] Test net output #32: loss/loss11 = 0.000327893 (* 0.0454545 = 1.49042e-05 loss) | |
I0405 14:26:45.253432 29564 solver.cpp:406] Test net output #33: loss/loss12 = 0.000339578 (* 0.0454545 = 1.54353e-05 loss) | |
I0405 14:26:45.253445 29564 solver.cpp:406] Test net output #34: loss/loss13 = 0.000364947 (* 0.0454545 = 1.65885e-05 loss) | |
I0405 14:26:45.253463 29564 solver.cpp:406] Test net output #35: loss/loss14 = 0.000335257 (* 0.0454545 = 1.5239e-05 loss) | |
I0405 14:26:45.253476 29564 solver.cpp:406] Test net output #36: loss/loss15 = 0.00033332 (* 0.0454545 = 1.51509e-05 loss) | |
I0405 14:26:45.253490 29564 solver.cpp:406] Test net output #37: loss/loss16 = 0.000335111 (* 0.0454545 = 1.52323e-05 loss) | |
I0405 14:26:45.253504 29564 solver.cpp:406] Test net output #38: loss/loss17 = 0.000355006 (* 0.0454545 = 1.61366e-05 loss) | |
I0405 14:26:45.253545 29564 solver.cpp:406] Test net output #39: loss/loss18 = 0.000330151 (* 0.0454545 = 1.50069e-05 loss) | |
I0405 14:26:45.253561 29564 solver.cpp:406] Test net output #40: loss/loss19 = 0.000366669 (* 0.0454545 = 1.66668e-05 loss) | |
I0405 14:26:45.253573 29564 solver.cpp:406] Test net output #41: loss/loss20 = 0.000320136 (* 0.0454545 = 1.45516e-05 loss) | |
I0405 14:26:45.253587 29564 solver.cpp:406] Test net output #42: loss/loss21 = 0.000332884 (* 0.0454545 = 1.51311e-05 loss) | |
I0405 14:26:45.253600 29564 solver.cpp:406] Test net output #43: loss/loss22 = 0.000339667 (* 0.0454545 = 1.54394e-05 loss) | |
I0405 14:26:45.253612 29564 solver.cpp:406] Test net output #44: total_accuracy = 0 | |
I0405 14:26:45.253623 29564 solver.cpp:406] Test net output #45: total_confidence = 2.51415e-07 | |
I0405 14:26:45.368388 29564 solver.cpp:229] Iteration 5000, loss = 1.12655 | |
I0405 14:26:45.368434 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.03125 | |
I0405 14:26:45.368463 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0405 14:26:45.368487 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0405 14:26:45.368510 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375 | |
I0405 14:26:45.368532 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125 | |
I0405 14:26:45.368558 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0405 14:26:45.368583 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0405 14:26:45.368605 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 1 | |
I0405 14:26:45.368628 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0405 14:26:45.368648 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 14:26:45.368667 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 14:26:45.368688 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 14:26:45.368710 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 14:26:45.368729 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 14:26:45.368749 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 14:26:45.368770 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 14:26:45.368791 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 14:26:45.368813 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 14:26:45.368834 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 14:26:45.368854 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 14:26:45.368875 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 14:26:45.368896 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 14:26:45.368927 29564 solver.cpp:245] Train net output #22: loss/loss01 = 3.78495 (* 0.0454545 = 0.172043 loss) | |
I0405 14:26:45.368954 29564 solver.cpp:245] Train net output #23: loss/loss02 = 4.06391 (* 0.0454545 = 0.184723 loss) | |
I0405 14:26:45.368980 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.91862 (* 0.0454545 = 0.178119 loss) | |
I0405 14:26:45.369006 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.88557 (* 0.0454545 = 0.176617 loss) | |
I0405 14:26:45.369031 29564 solver.cpp:245] Train net output #26: loss/loss05 = 3.16291 (* 0.0454545 = 0.143768 loss) | |
I0405 14:26:45.369061 29564 solver.cpp:245] Train net output #27: loss/loss06 = 3.4625 (* 0.0454545 = 0.157386 loss) | |
I0405 14:26:45.369088 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.09226 (* 0.0454545 = 0.0496483 loss) | |
I0405 14:26:45.369114 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.0664419 (* 0.0454545 = 0.00302009 loss) | |
I0405 14:26:45.369140 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.0229121 (* 0.0454545 = 0.00104146 loss) | |
I0405 14:26:45.369166 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.00893314 (* 0.0454545 = 0.000406052 loss) | |
I0405 14:26:45.369216 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.000257604 (* 0.0454545 = 1.17093e-05 loss) | |
I0405 14:26:45.369245 29564 solver.cpp:245] Train net output #33: loss/loss12 = 0.000267044 (* 0.0454545 = 1.21384e-05 loss) | |
I0405 14:26:45.369271 29564 solver.cpp:245] Train net output #34: loss/loss13 = 0.000285758 (* 0.0454545 = 1.2989e-05 loss) | |
I0405 14:26:45.369297 29564 solver.cpp:245] Train net output #35: loss/loss14 = 0.000260023 (* 0.0454545 = 1.18192e-05 loss) | |
I0405 14:26:45.369324 29564 solver.cpp:245] Train net output #36: loss/loss15 = 0.000263903 (* 0.0454545 = 1.19956e-05 loss) | |
I0405 14:26:45.369349 29564 solver.cpp:245] Train net output #37: loss/loss16 = 0.000262913 (* 0.0454545 = 1.19506e-05 loss) | |
I0405 14:26:45.369375 29564 solver.cpp:245] Train net output #38: loss/loss17 = 0.000276884 (* 0.0454545 = 1.25856e-05 loss) | |
I0405 14:26:45.369400 29564 solver.cpp:245] Train net output #39: loss/loss18 = 0.000261135 (* 0.0454545 = 1.18698e-05 loss) | |
I0405 14:26:45.369426 29564 solver.cpp:245] Train net output #40: loss/loss19 = 0.000283478 (* 0.0454545 = 1.28854e-05 loss) | |
I0405 14:26:45.369453 29564 solver.cpp:245] Train net output #41: loss/loss20 = 0.000250255 (* 0.0454545 = 1.13752e-05 loss) | |
I0405 14:26:45.369479 29564 solver.cpp:245] Train net output #42: loss/loss21 = 0.000263113 (* 0.0454545 = 1.19597e-05 loss) | |
I0405 14:26:45.369510 29564 solver.cpp:245] Train net output #43: loss/loss22 = 0.000264686 (* 0.0454545 = 1.20312e-05 loss) | |
I0405 14:26:45.369532 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 14:26:45.369554 29564 solver.cpp:245] Train net output #45: total_confidence = 4.5363e-07 | |
I0405 14:26:45.369577 29564 sgd_solver.cpp:106] Iteration 5000, lr = 0.00995 | |
I0405 14:30:34.069612 29564 solver.cpp:229] Iteration 5500, loss = 1.10175 | |
I0405 14:30:34.069775 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0405 14:30:34.069805 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0405 14:30:34.069829 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0405 14:30:34.069851 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0405 14:30:34.069874 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0405 14:30:34.069896 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0405 14:30:34.069919 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.59375 | |
I0405 14:30:34.069949 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0405 14:30:34.069972 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0405 14:30:34.069993 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 14:30:34.070013 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 14:30:34.070034 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 14:30:34.070055 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 14:30:34.070076 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 14:30:34.070097 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 14:30:34.070117 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 14:30:34.070138 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 14:30:34.070158 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 14:30:34.070184 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 14:30:34.070206 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 14:30:34.070227 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 14:30:34.070248 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 14:30:34.070276 29564 solver.cpp:245] Train net output #22: loss/loss01 = 3.27145 (* 0.0454545 = 0.148702 loss) | |
I0405 14:30:34.070303 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.70634 (* 0.0454545 = 0.16847 loss) | |
I0405 14:30:34.070328 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.59191 (* 0.0454545 = 0.163269 loss) | |
I0405 14:30:34.070355 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.45207 (* 0.0454545 = 0.156912 loss) | |
I0405 14:30:34.070384 29564 solver.cpp:245] Train net output #26: loss/loss05 = 3.40027 (* 0.0454545 = 0.154558 loss) | |
I0405 14:30:34.070408 29564 solver.cpp:245] Train net output #27: loss/loss06 = 3.4392 (* 0.0454545 = 0.156327 loss) | |
I0405 14:30:34.070436 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.887 (* 0.0454545 = 0.0857726 loss) | |
I0405 14:30:34.070461 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.589515 (* 0.0454545 = 0.0267961 loss) | |
I0405 14:30:34.070487 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.0357541 (* 0.0454545 = 0.00162519 loss) | |
I0405 14:30:34.070513 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.013427 (* 0.0454545 = 0.000610319 loss) | |
I0405 14:30:34.070540 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.000339241 (* 0.0454545 = 1.54201e-05 loss) | |
I0405 14:30:34.070565 29564 solver.cpp:245] Train net output #33: loss/loss12 = 0.000345828 (* 0.0454545 = 1.57195e-05 loss) | |
I0405 14:30:34.070591 29564 solver.cpp:245] Train net output #34: loss/loss13 = 0.00037059 (* 0.0454545 = 1.6845e-05 loss) | |
I0405 14:30:34.070618 29564 solver.cpp:245] Train net output #35: loss/loss14 = 0.000345483 (* 0.0454545 = 1.57038e-05 loss) | |
I0405 14:30:34.070644 29564 solver.cpp:245] Train net output #36: loss/loss15 = 0.000339111 (* 0.0454545 = 1.54141e-05 loss) | |
I0405 14:30:34.070670 29564 solver.cpp:245] Train net output #37: loss/loss16 = 0.000342651 (* 0.0454545 = 1.5575e-05 loss) | |
I0405 14:30:34.070696 29564 solver.cpp:245] Train net output #38: loss/loss17 = 0.000361458 (* 0.0454545 = 1.64299e-05 loss) | |
I0405 14:30:34.070744 29564 solver.cpp:245] Train net output #39: loss/loss18 = 0.000334189 (* 0.0454545 = 1.51904e-05 loss) | |
I0405 14:30:34.070771 29564 solver.cpp:245] Train net output #40: loss/loss19 = 0.000370826 (* 0.0454545 = 1.68557e-05 loss) | |
I0405 14:30:34.070798 29564 solver.cpp:245] Train net output #41: loss/loss20 = 0.000326477 (* 0.0454545 = 1.48399e-05 loss) | |
I0405 14:30:34.070825 29564 solver.cpp:245] Train net output #42: loss/loss21 = 0.000341354 (* 0.0454545 = 1.55161e-05 loss) | |
I0405 14:30:34.070852 29564 solver.cpp:245] Train net output #43: loss/loss22 = 0.000347693 (* 0.0454545 = 1.58042e-05 loss) | |
I0405 14:30:34.070873 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 14:30:34.070894 29564 solver.cpp:245] Train net output #45: total_confidence = 5.349e-07 | |
I0405 14:30:34.070917 29564 sgd_solver.cpp:106] Iteration 5500, lr = 0.009945 | |
I0405 14:34:23.085561 29564 solver.cpp:229] Iteration 6000, loss = 1.0922 | |
I0405 14:34:23.085669 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0405 14:34:23.085688 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0405 14:34:23.085701 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0405 14:34:23.085713 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875 | |
I0405 14:34:23.085726 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125 | |
I0405 14:34:23.085737 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0405 14:34:23.085749 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875 | |
I0405 14:34:23.085762 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0405 14:34:23.085773 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0405 14:34:23.085785 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0405 14:34:23.085796 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 14:34:23.085808 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 14:34:23.085819 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 14:34:23.085831 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 14:34:23.085842 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 14:34:23.085855 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 14:34:23.085865 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 14:34:23.085877 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 14:34:23.085888 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 14:34:23.085901 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 14:34:23.085911 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 14:34:23.085922 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 14:34:23.085938 29564 solver.cpp:245] Train net output #22: loss/loss01 = 3.49723 (* 0.0454545 = 0.158965 loss) | |
I0405 14:34:23.085953 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.55925 (* 0.0454545 = 0.161784 loss) | |
I0405 14:34:23.085968 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.66037 (* 0.0454545 = 0.16638 loss) | |
I0405 14:34:23.085980 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.55103 (* 0.0454545 = 0.161411 loss) | |
I0405 14:34:23.085994 29564 solver.cpp:245] Train net output #26: loss/loss05 = 3.29274 (* 0.0454545 = 0.14967 loss) | |
I0405 14:34:23.086007 29564 solver.cpp:245] Train net output #27: loss/loss06 = 3.31388 (* 0.0454545 = 0.150631 loss) | |
I0405 14:34:23.086021 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.56793 (* 0.0454545 = 0.0712695 loss) | |
I0405 14:34:23.086035 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.891659 (* 0.0454545 = 0.04053 loss) | |
I0405 14:34:23.086050 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.46258 (* 0.0454545 = 0.0210264 loss) | |
I0405 14:34:23.086063 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.44307 (* 0.0454545 = 0.0201396 loss) | |
I0405 14:34:23.086077 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.00255166 (* 0.0454545 = 0.000115985 loss) | |
I0405 14:34:23.086091 29564 solver.cpp:245] Train net output #33: loss/loss12 = 0.0026176 (* 0.0454545 = 0.000118982 loss) | |
I0405 14:34:23.086105 29564 solver.cpp:245] Train net output #34: loss/loss13 = 0.00276446 (* 0.0454545 = 0.000125657 loss) | |
I0405 14:34:23.086119 29564 solver.cpp:245] Train net output #35: loss/loss14 = 0.00258178 (* 0.0454545 = 0.000117354 loss) | |
I0405 14:34:23.086133 29564 solver.cpp:245] Train net output #36: loss/loss15 = 0.00256616 (* 0.0454545 = 0.000116644 loss) | |
I0405 14:34:23.086148 29564 solver.cpp:245] Train net output #37: loss/loss16 = 0.00257468 (* 0.0454545 = 0.000117031 loss) | |
I0405 14:34:23.086161 29564 solver.cpp:245] Train net output #38: loss/loss17 = 0.00277291 (* 0.0454545 = 0.000126041 loss) | |
I0405 14:34:23.086192 29564 solver.cpp:245] Train net output #39: loss/loss18 = 0.00251856 (* 0.0454545 = 0.00011448 loss) | |
I0405 14:34:23.086207 29564 solver.cpp:245] Train net output #40: loss/loss19 = 0.00273494 (* 0.0454545 = 0.000124316 loss) | |
I0405 14:34:23.086222 29564 solver.cpp:245] Train net output #41: loss/loss20 = 0.00250649 (* 0.0454545 = 0.000113931 loss) | |
I0405 14:34:23.086236 29564 solver.cpp:245] Train net output #42: loss/loss21 = 0.00256929 (* 0.0454545 = 0.000116786 loss) | |
I0405 14:34:23.086251 29564 solver.cpp:245] Train net output #43: loss/loss22 = 0.00261657 (* 0.0454545 = 0.000118935 loss) | |
I0405 14:34:23.086262 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 14:34:23.086273 29564 solver.cpp:245] Train net output #45: total_confidence = 2.51457e-07 | |
I0405 14:34:23.086287 29564 sgd_solver.cpp:106] Iteration 6000, lr = 0.00994 | |
I0405 14:38:11.970351 29564 solver.cpp:229] Iteration 6500, loss = 1.08306 | |
I0405 14:38:11.970525 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0405 14:38:11.970556 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0405 14:38:11.970580 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0405 14:38:11.970603 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125 | |
I0405 14:38:11.970625 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.15625 | |
I0405 14:38:11.970648 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.28125 | |
I0405 14:38:11.970672 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.59375 | |
I0405 14:38:11.970695 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.96875 | |
I0405 14:38:11.970717 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 14:38:11.970739 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 14:38:11.970760 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 14:38:11.970782 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 14:38:11.970801 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 14:38:11.970824 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 14:38:11.970844 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 14:38:11.970865 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 14:38:11.970885 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 14:38:11.970907 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 14:38:11.970927 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 14:38:11.970947 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 14:38:11.970968 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 14:38:11.970989 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 14:38:11.971015 29564 solver.cpp:245] Train net output #22: loss/loss01 = 3.25451 (* 0.0454545 = 0.147932 loss) | |
I0405 14:38:11.971045 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.60598 (* 0.0454545 = 0.163908 loss) | |
I0405 14:38:11.971074 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.60823 (* 0.0454545 = 0.16401 loss) | |
I0405 14:38:11.971117 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.71035 (* 0.0454545 = 0.168652 loss) | |
I0405 14:38:11.971144 29564 solver.cpp:245] Train net output #26: loss/loss05 = 3.45355 (* 0.0454545 = 0.15698 loss) | |
I0405 14:38:11.971170 29564 solver.cpp:245] Train net output #27: loss/loss06 = 3.44101 (* 0.0454545 = 0.156409 loss) | |
I0405 14:38:11.971196 29564 solver.cpp:245] Train net output #28: loss/loss07 = 2.13686 (* 0.0454545 = 0.0971302 loss) | |
I0405 14:38:11.971221 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.293885 (* 0.0454545 = 0.0133584 loss) | |
I0405 14:38:11.971247 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.228078 (* 0.0454545 = 0.0103672 loss) | |
I0405 14:38:11.971273 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.0354082 (* 0.0454545 = 0.00160946 loss) | |
I0405 14:38:11.971299 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.000966407 (* 0.0454545 = 4.39276e-05 loss) | |
I0405 14:38:11.971325 29564 solver.cpp:245] Train net output #33: loss/loss12 = 0.0009914 (* 0.0454545 = 4.50636e-05 loss) | |
I0405 14:38:11.971351 29564 solver.cpp:245] Train net output #34: loss/loss13 = 0.0010643 (* 0.0454545 = 4.83774e-05 loss) | |
I0405 14:38:11.971377 29564 solver.cpp:245] Train net output #35: loss/loss14 = 0.000968283 (* 0.0454545 = 4.40129e-05 loss) | |
I0405 14:38:11.971403 29564 solver.cpp:245] Train net output #36: loss/loss15 = 0.000952074 (* 0.0454545 = 4.32761e-05 loss) | |
I0405 14:38:11.971429 29564 solver.cpp:245] Train net output #37: loss/loss16 = 0.000935229 (* 0.0454545 = 4.25104e-05 loss) | |
I0405 14:38:11.971454 29564 solver.cpp:245] Train net output #38: loss/loss17 = 0.00106192 (* 0.0454545 = 4.82692e-05 loss) | |
I0405 14:38:11.971498 29564 solver.cpp:245] Train net output #39: loss/loss18 = 0.000926281 (* 0.0454545 = 4.21037e-05 loss) | |
I0405 14:38:11.971526 29564 solver.cpp:245] Train net output #40: loss/loss19 = 0.00100897 (* 0.0454545 = 4.58622e-05 loss) | |
I0405 14:38:11.971559 29564 solver.cpp:245] Train net output #41: loss/loss20 = 0.000928249 (* 0.0454545 = 4.21932e-05 loss) | |
I0405 14:38:11.971585 29564 solver.cpp:245] Train net output #42: loss/loss21 = 0.000965613 (* 0.0454545 = 4.38915e-05 loss) | |
I0405 14:38:11.971611 29564 solver.cpp:245] Train net output #43: loss/loss22 = 0.000913082 (* 0.0454545 = 4.15037e-05 loss) | |
I0405 14:38:11.971632 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 14:38:11.971653 29564 solver.cpp:245] Train net output #45: total_confidence = 5.94193e-07 | |
I0405 14:38:11.971678 29564 sgd_solver.cpp:106] Iteration 6500, lr = 0.009935 | |
I0405 14:42:01.002714 29564 solver.cpp:229] Iteration 7000, loss = 1.06486 | |
I0405 14:42:01.002931 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0405 14:42:01.002962 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0405 14:42:01.002986 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0405 14:42:01.003012 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.21875 | |
I0405 14:42:01.003036 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0405 14:42:01.003058 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375 | |
I0405 14:42:01.003078 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0405 14:42:01.003103 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.8125 | |
I0405 14:42:01.003123 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625 | |
I0405 14:42:01.003145 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 14:42:01.003170 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 14:42:01.003190 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 14:42:01.003211 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 14:42:01.003232 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 14:42:01.003252 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 14:42:01.003273 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 14:42:01.003293 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 14:42:01.003314 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 14:42:01.003335 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 14:42:01.003357 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 14:42:01.003378 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 14:42:01.003401 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 14:42:01.003428 29564 solver.cpp:245] Train net output #22: loss/loss01 = 3.50138 (* 0.0454545 = 0.159154 loss) | |
I0405 14:42:01.003456 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.77238 (* 0.0454545 = 0.171472 loss) | |
I0405 14:42:01.003484 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.85702 (* 0.0454545 = 0.175319 loss) | |
I0405 14:42:01.003509 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.65472 (* 0.0454545 = 0.166123 loss) | |
I0405 14:42:01.003536 29564 solver.cpp:245] Train net output #26: loss/loss05 = 3.55041 (* 0.0454545 = 0.161382 loss) | |
I0405 14:42:01.003562 29564 solver.cpp:245] Train net output #27: loss/loss06 = 3.0902 (* 0.0454545 = 0.140464 loss) | |
I0405 14:42:01.003588 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.68572 (* 0.0454545 = 0.0766236 loss) | |
I0405 14:42:01.003612 29564 solver.cpp:245] Train net output #29: loss/loss08 = 1.20901 (* 0.0454545 = 0.0549549 loss) | |
I0405 14:42:01.003636 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.676928 (* 0.0454545 = 0.0307695 loss) | |
I0405 14:42:01.003661 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.270819 (* 0.0454545 = 0.0123099 loss) | |
I0405 14:42:01.003686 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.000182218 (* 0.0454545 = 8.28263e-06 loss) | |
I0405 14:42:01.003713 29564 solver.cpp:245] Train net output #33: loss/loss12 = 0.000191501 (* 0.0454545 = 8.70458e-06 loss) | |
I0405 14:42:01.003744 29564 solver.cpp:245] Train net output #34: loss/loss13 = 0.000219447 (* 0.0454545 = 9.97485e-06 loss) | |
I0405 14:42:01.003772 29564 solver.cpp:245] Train net output #35: loss/loss14 = 0.000180597 (* 0.0454545 = 8.20893e-06 loss) | |
I0405 14:42:01.003799 29564 solver.cpp:245] Train net output #36: loss/loss15 = 0.000185951 (* 0.0454545 = 8.45232e-06 loss) | |
I0405 14:42:01.003839 29564 solver.cpp:245] Train net output #37: loss/loss16 = 0.000171381 (* 0.0454545 = 7.79003e-06 loss) | |
I0405 14:42:01.003866 29564 solver.cpp:245] Train net output #38: loss/loss17 = 0.00020623 (* 0.0454545 = 9.37411e-06 loss) | |
I0405 14:42:01.003913 29564 solver.cpp:245] Train net output #39: loss/loss18 = 0.000164187 (* 0.0454545 = 7.46307e-06 loss) | |
I0405 14:42:01.003939 29564 solver.cpp:245] Train net output #40: loss/loss19 = 0.000180207 (* 0.0454545 = 8.19123e-06 loss) | |
I0405 14:42:01.003964 29564 solver.cpp:245] Train net output #41: loss/loss20 = 0.000176306 (* 0.0454545 = 8.01392e-06 loss) | |
I0405 14:42:01.003988 29564 solver.cpp:245] Train net output #42: loss/loss21 = 0.000171182 (* 0.0454545 = 7.78099e-06 loss) | |
I0405 14:42:01.004011 29564 solver.cpp:245] Train net output #43: loss/loss22 = 0.00015834 (* 0.0454545 = 7.19726e-06 loss) | |
I0405 14:42:01.004034 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 14:42:01.004055 29564 solver.cpp:245] Train net output #45: total_confidence = 3.44935e-05 | |
I0405 14:42:01.004101 29564 sgd_solver.cpp:106] Iteration 7000, lr = 0.00993 | |
I0405 14:45:49.967234 29564 solver.cpp:229] Iteration 7500, loss = 1.04539 | |
I0405 14:45:49.967371 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0405 14:45:49.967392 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0405 14:45:49.967406 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0405 14:45:49.967417 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125 | |
I0405 14:45:49.967429 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.15625 | |
I0405 14:45:49.967440 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375 | |
I0405 14:45:49.967453 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.59375 | |
I0405 14:45:49.967464 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375 | |
I0405 14:45:49.967475 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0405 14:45:49.967488 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 14:45:49.967499 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 14:45:49.967510 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 14:45:49.967521 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 14:45:49.967533 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 14:45:49.967547 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 14:45:49.967566 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 14:45:49.967581 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 14:45:49.967592 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 14:45:49.967603 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 14:45:49.967614 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 14:45:49.967625 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 14:45:49.967638 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 14:45:49.967653 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.93853 (* 0.0454545 = 0.133569 loss) | |
I0405 14:45:49.967666 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.63647 (* 0.0454545 = 0.165294 loss) | |
I0405 14:45:49.967680 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.52994 (* 0.0454545 = 0.160452 loss) | |
I0405 14:45:49.967694 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.46868 (* 0.0454545 = 0.157667 loss) | |
I0405 14:45:49.967708 29564 solver.cpp:245] Train net output #26: loss/loss05 = 3.20043 (* 0.0454545 = 0.145474 loss) | |
I0405 14:45:49.967721 29564 solver.cpp:245] Train net output #27: loss/loss06 = 3.01628 (* 0.0454545 = 0.137104 loss) | |
I0405 14:45:49.967736 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.86096 (* 0.0454545 = 0.0845893 loss) | |
I0405 14:45:49.967749 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.86129 (* 0.0454545 = 0.0391495 loss) | |
I0405 14:45:49.967762 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.0292927 (* 0.0454545 = 0.00133149 loss) | |
I0405 14:45:49.967777 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.0122027 (* 0.0454545 = 0.00055467 loss) | |
I0405 14:45:49.967790 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.000147883 (* 0.0454545 = 6.72197e-06 loss) | |
I0405 14:45:49.967806 29564 solver.cpp:245] Train net output #33: loss/loss12 = 0.000150257 (* 0.0454545 = 6.82987e-06 loss) | |
I0405 14:45:49.967821 29564 solver.cpp:245] Train net output #34: loss/loss13 = 0.000166523 (* 0.0454545 = 7.56925e-06 loss) | |
I0405 14:45:49.967835 29564 solver.cpp:245] Train net output #35: loss/loss14 = 0.000142367 (* 0.0454545 = 6.47122e-06 loss) | |
I0405 14:45:49.967849 29564 solver.cpp:245] Train net output #36: loss/loss15 = 0.000142791 (* 0.0454545 = 6.49052e-06 loss) | |
I0405 14:45:49.967864 29564 solver.cpp:245] Train net output #37: loss/loss16 = 0.000135645 (* 0.0454545 = 6.16567e-06 loss) | |
I0405 14:45:49.967877 29564 solver.cpp:245] Train net output #38: loss/loss17 = 0.000155415 (* 0.0454545 = 7.06431e-06 loss) | |
I0405 14:45:49.967910 29564 solver.cpp:245] Train net output #39: loss/loss18 = 0.000131075 (* 0.0454545 = 5.95794e-06 loss) | |
I0405 14:45:49.967924 29564 solver.cpp:245] Train net output #40: loss/loss19 = 0.000135429 (* 0.0454545 = 6.15585e-06 loss) | |
I0405 14:45:49.967939 29564 solver.cpp:245] Train net output #41: loss/loss20 = 0.000138298 (* 0.0454545 = 6.28628e-06 loss) | |
I0405 14:45:49.967953 29564 solver.cpp:245] Train net output #42: loss/loss21 = 0.000135615 (* 0.0454545 = 6.16432e-06 loss) | |
I0405 14:45:49.967967 29564 solver.cpp:245] Train net output #43: loss/loss22 = 0.000129522 (* 0.0454545 = 5.88738e-06 loss) | |
I0405 14:45:49.967979 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 14:45:49.967990 29564 solver.cpp:245] Train net output #45: total_confidence = 4.86342e-06 | |
I0405 14:45:49.968008 29564 sgd_solver.cpp:106] Iteration 7500, lr = 0.009925 | |
I0405 14:49:39.144682 29564 solver.cpp:229] Iteration 8000, loss = 1.03291 | |
I0405 14:49:39.144845 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0405 14:49:39.144866 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0405 14:49:39.144878 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0405 14:49:39.144891 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.21875 | |
I0405 14:49:39.144903 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.34375 | |
I0405 14:49:39.144917 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0405 14:49:39.144928 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.78125 | |
I0405 14:49:39.144939 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.96875 | |
I0405 14:49:39.144951 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0405 14:49:39.144963 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 14:49:39.144974 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 14:49:39.144985 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 14:49:39.144997 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 14:49:39.145009 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 14:49:39.145020 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 14:49:39.145031 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 14:49:39.145042 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 14:49:39.145053 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 14:49:39.145069 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 14:49:39.145081 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 14:49:39.145092 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 14:49:39.145103 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 14:49:39.145120 29564 solver.cpp:245] Train net output #22: loss/loss01 = 3.18884 (* 0.0454545 = 0.144947 loss) | |
I0405 14:49:39.145134 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.51973 (* 0.0454545 = 0.159988 loss) | |
I0405 14:49:39.145148 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.42459 (* 0.0454545 = 0.155663 loss) | |
I0405 14:49:39.145162 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.36213 (* 0.0454545 = 0.152824 loss) | |
I0405 14:49:39.145176 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.77853 (* 0.0454545 = 0.126297 loss) | |
I0405 14:49:39.145190 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.58632 (* 0.0454545 = 0.11756 loss) | |
I0405 14:49:39.145205 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.20776 (* 0.0454545 = 0.0548981 loss) | |
I0405 14:49:39.145218 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.281023 (* 0.0454545 = 0.0127738 loss) | |
I0405 14:49:39.145232 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.0530355 (* 0.0454545 = 0.00241071 loss) | |
I0405 14:49:39.145247 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.0244706 (* 0.0454545 = 0.0011123 loss) | |
I0405 14:49:39.145262 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.000430379 (* 0.0454545 = 1.95627e-05 loss) | |
I0405 14:49:39.145277 29564 solver.cpp:245] Train net output #33: loss/loss12 = 0.000435025 (* 0.0454545 = 1.97739e-05 loss) | |
I0405 14:49:39.145292 29564 solver.cpp:245] Train net output #34: loss/loss13 = 0.000459537 (* 0.0454545 = 2.0888e-05 loss) | |
I0405 14:49:39.145305 29564 solver.cpp:245] Train net output #35: loss/loss14 = 0.00041404 (* 0.0454545 = 1.882e-05 loss) | |
I0405 14:49:39.145320 29564 solver.cpp:245] Train net output #36: loss/loss15 = 0.000408769 (* 0.0454545 = 1.85804e-05 loss) | |
I0405 14:49:39.145334 29564 solver.cpp:245] Train net output #37: loss/loss16 = 0.00038989 (* 0.0454545 = 1.77223e-05 loss) | |
I0405 14:49:39.145349 29564 solver.cpp:245] Train net output #38: loss/loss17 = 0.000442837 (* 0.0454545 = 2.01289e-05 loss) | |
I0405 14:49:39.145380 29564 solver.cpp:245] Train net output #39: loss/loss18 = 0.000387808 (* 0.0454545 = 1.76276e-05 loss) | |
I0405 14:49:39.145395 29564 solver.cpp:245] Train net output #40: loss/loss19 = 0.000402898 (* 0.0454545 = 1.83136e-05 loss) | |
I0405 14:49:39.145408 29564 solver.cpp:245] Train net output #41: loss/loss20 = 0.000408161 (* 0.0454545 = 1.85528e-05 loss) | |
I0405 14:49:39.145422 29564 solver.cpp:245] Train net output #42: loss/loss21 = 0.000398607 (* 0.0454545 = 1.81185e-05 loss) | |
I0405 14:49:39.145437 29564 solver.cpp:245] Train net output #43: loss/loss22 = 0.000378277 (* 0.0454545 = 1.71944e-05 loss) | |
I0405 14:49:39.145448 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 14:49:39.145459 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000232831 | |
I0405 14:49:39.145474 29564 sgd_solver.cpp:106] Iteration 8000, lr = 0.00992 | |
I0405 14:53:28.135673 29564 solver.cpp:229] Iteration 8500, loss = 1.03525 | |
I0405 14:53:28.135804 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.15625 | |
I0405 14:53:28.135824 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0405 14:53:28.135838 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0405 14:53:28.135849 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0405 14:53:28.135862 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.125 | |
I0405 14:53:28.135874 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.21875 | |
I0405 14:53:28.135886 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0405 14:53:28.135898 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375 | |
I0405 14:53:28.135910 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0405 14:53:28.135921 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0405 14:53:28.135936 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 14:53:28.135948 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 14:53:28.135959 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 14:53:28.135972 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 14:53:28.135982 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 14:53:28.135993 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 14:53:28.136005 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 14:53:28.136016 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 14:53:28.136028 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 14:53:28.136039 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 14:53:28.136050 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 14:53:28.136061 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 14:53:28.136099 29564 solver.cpp:245] Train net output #22: loss/loss01 = 3.51504 (* 0.0454545 = 0.159774 loss) | |
I0405 14:53:28.136116 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.83976 (* 0.0454545 = 0.174534 loss) | |
I0405 14:53:28.136129 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.80233 (* 0.0454545 = 0.172833 loss) | |
I0405 14:53:28.136144 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.75333 (* 0.0454545 = 0.170606 loss) | |
I0405 14:53:28.136158 29564 solver.cpp:245] Train net output #26: loss/loss05 = 3.45564 (* 0.0454545 = 0.157074 loss) | |
I0405 14:53:28.136173 29564 solver.cpp:245] Train net output #27: loss/loss06 = 3.3687 (* 0.0454545 = 0.153123 loss) | |
I0405 14:53:28.136186 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.71337 (* 0.0454545 = 0.0778804 loss) | |
I0405 14:53:28.136200 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.913805 (* 0.0454545 = 0.0415366 loss) | |
I0405 14:53:28.136214 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.429051 (* 0.0454545 = 0.0195023 loss) | |
I0405 14:53:28.136229 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.465603 (* 0.0454545 = 0.0211638 loss) | |
I0405 14:53:28.136243 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.000374164 (* 0.0454545 = 1.70074e-05 loss) | |
I0405 14:53:28.136258 29564 solver.cpp:245] Train net output #33: loss/loss12 = 0.000380929 (* 0.0454545 = 1.7315e-05 loss) | |
I0405 14:53:28.136272 29564 solver.cpp:245] Train net output #34: loss/loss13 = 0.000404282 (* 0.0454545 = 1.83765e-05 loss) | |
I0405 14:53:28.136286 29564 solver.cpp:245] Train net output #35: loss/loss14 = 0.000352934 (* 0.0454545 = 1.60424e-05 loss) | |
I0405 14:53:28.136301 29564 solver.cpp:245] Train net output #36: loss/loss15 = 0.000363291 (* 0.0454545 = 1.65132e-05 loss) | |
I0405 14:53:28.136314 29564 solver.cpp:245] Train net output #37: loss/loss16 = 0.000340369 (* 0.0454545 = 1.54713e-05 loss) | |
I0405 14:53:28.136328 29564 solver.cpp:245] Train net output #38: loss/loss17 = 0.000386937 (* 0.0454545 = 1.7588e-05 loss) | |
I0405 14:53:28.136360 29564 solver.cpp:245] Train net output #39: loss/loss18 = 0.000328752 (* 0.0454545 = 1.49433e-05 loss) | |
I0405 14:53:28.136376 29564 solver.cpp:245] Train net output #40: loss/loss19 = 0.000359173 (* 0.0454545 = 1.63261e-05 loss) | |
I0405 14:53:28.136390 29564 solver.cpp:245] Train net output #41: loss/loss20 = 0.000369593 (* 0.0454545 = 1.67997e-05 loss) | |
I0405 14:53:28.136404 29564 solver.cpp:245] Train net output #42: loss/loss21 = 0.000346345 (* 0.0454545 = 1.57429e-05 loss) | |
I0405 14:53:28.136418 29564 solver.cpp:245] Train net output #43: loss/loss22 = 0.000319694 (* 0.0454545 = 1.45316e-05 loss) | |
I0405 14:53:28.136430 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 14:53:28.136441 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000106176 | |
I0405 14:53:28.136456 29564 sgd_solver.cpp:106] Iteration 8500, lr = 0.009915 | |
I0405 14:57:17.222748 29564 solver.cpp:229] Iteration 9000, loss = 1.02918 | |
I0405 14:57:17.222867 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.03125 | |
I0405 14:57:17.222887 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0405 14:57:17.222898 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0405 14:57:17.222910 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125 | |
I0405 14:57:17.222923 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.125 | |
I0405 14:57:17.222934 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.28125 | |
I0405 14:57:17.222946 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625 | |
I0405 14:57:17.222959 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.78125 | |
I0405 14:57:17.222970 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0405 14:57:17.222982 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 14:57:17.222995 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 14:57:17.223006 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 14:57:17.223017 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 14:57:17.223028 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 14:57:17.223040 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 14:57:17.223052 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 14:57:17.223062 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 14:57:17.223074 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 14:57:17.223085 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 14:57:17.223096 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 14:57:17.223107 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 14:57:17.223119 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 14:57:17.223134 29564 solver.cpp:245] Train net output #22: loss/loss01 = 3.23176 (* 0.0454545 = 0.146898 loss) | |
I0405 14:57:17.223148 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.48778 (* 0.0454545 = 0.158536 loss) | |
I0405 14:57:17.223162 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.47197 (* 0.0454545 = 0.157817 loss) | |
I0405 14:57:17.223176 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.53846 (* 0.0454545 = 0.160839 loss) | |
I0405 14:57:17.223191 29564 solver.cpp:245] Train net output #26: loss/loss05 = 3.36119 (* 0.0454545 = 0.152781 loss) | |
I0405 14:57:17.223204 29564 solver.cpp:245] Train net output #27: loss/loss06 = 3.02256 (* 0.0454545 = 0.137389 loss) | |
I0405 14:57:17.223218 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.84431 (* 0.0454545 = 0.0838323 loss) | |
I0405 14:57:17.223232 29564 solver.cpp:245] Train net output #29: loss/loss08 = 1.09816 (* 0.0454545 = 0.0499164 loss) | |
I0405 14:57:17.223247 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.43933 (* 0.0454545 = 0.0199696 loss) | |
I0405 14:57:17.223259 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.222654 (* 0.0454545 = 0.0101206 loss) | |
I0405 14:57:17.223274 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.000456803 (* 0.0454545 = 2.07638e-05 loss) | |
I0405 14:57:17.223289 29564 solver.cpp:245] Train net output #33: loss/loss12 = 0.000458315 (* 0.0454545 = 2.08325e-05 loss) | |
I0405 14:57:17.223302 29564 solver.cpp:245] Train net output #34: loss/loss13 = 0.000480255 (* 0.0454545 = 2.18298e-05 loss) | |
I0405 14:57:17.223316 29564 solver.cpp:245] Train net output #35: loss/loss14 = 0.00043189 (* 0.0454545 = 1.96314e-05 loss) | |
I0405 14:57:17.223330 29564 solver.cpp:245] Train net output #36: loss/loss15 = 0.000438099 (* 0.0454545 = 1.99136e-05 loss) | |
I0405 14:57:17.223345 29564 solver.cpp:245] Train net output #37: loss/loss16 = 0.000412502 (* 0.0454545 = 1.87501e-05 loss) | |
I0405 14:57:17.223358 29564 solver.cpp:245] Train net output #38: loss/loss17 = 0.00045832 (* 0.0454545 = 2.08327e-05 loss) | |
I0405 14:57:17.223389 29564 solver.cpp:245] Train net output #39: loss/loss18 = 0.000401143 (* 0.0454545 = 1.82338e-05 loss) | |
I0405 14:57:17.223404 29564 solver.cpp:245] Train net output #40: loss/loss19 = 0.000436926 (* 0.0454545 = 1.98603e-05 loss) | |
I0405 14:57:17.223419 29564 solver.cpp:245] Train net output #41: loss/loss20 = 0.000443674 (* 0.0454545 = 2.0167e-05 loss) | |
I0405 14:57:17.223433 29564 solver.cpp:245] Train net output #42: loss/loss21 = 0.000415547 (* 0.0454545 = 1.88885e-05 loss) | |
I0405 14:57:17.223448 29564 solver.cpp:245] Train net output #43: loss/loss22 = 0.000391956 (* 0.0454545 = 1.78162e-05 loss) | |
I0405 14:57:17.223459 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 14:57:17.223471 29564 solver.cpp:245] Train net output #45: total_confidence = 9.35114e-05 | |
I0405 14:57:17.223484 29564 sgd_solver.cpp:106] Iteration 9000, lr = 0.00991 | |
I0405 15:01:06.383548 29564 solver.cpp:229] Iteration 9500, loss = 1.02821 | |
I0405 15:01:06.383687 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0405 15:01:06.383708 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0405 15:01:06.383719 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0405 15:01:06.383733 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0405 15:01:06.383744 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.15625 | |
I0405 15:01:06.383756 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625 | |
I0405 15:01:06.383769 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0405 15:01:06.383780 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0405 15:01:06.383792 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.875 | |
I0405 15:01:06.383803 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 15:01:06.383816 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 15:01:06.383826 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 15:01:06.383838 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 15:01:06.383852 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 15:01:06.383865 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 15:01:06.383877 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 15:01:06.383888 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 15:01:06.383900 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 15:01:06.383911 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 15:01:06.383924 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 15:01:06.383934 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 15:01:06.383945 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 15:01:06.383960 29564 solver.cpp:245] Train net output #22: loss/loss01 = 3.37391 (* 0.0454545 = 0.15336 loss) | |
I0405 15:01:06.383975 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.70318 (* 0.0454545 = 0.168327 loss) | |
I0405 15:01:06.383990 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.57609 (* 0.0454545 = 0.162549 loss) | |
I0405 15:01:06.384003 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.66453 (* 0.0454545 = 0.16657 loss) | |
I0405 15:01:06.384017 29564 solver.cpp:245] Train net output #26: loss/loss05 = 3.57231 (* 0.0454545 = 0.162378 loss) | |
I0405 15:01:06.384032 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.60585 (* 0.0454545 = 0.118448 loss) | |
I0405 15:01:06.384071 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.58504 (* 0.0454545 = 0.0720474 loss) | |
I0405 15:01:06.384088 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.627117 (* 0.0454545 = 0.0285053 loss) | |
I0405 15:01:06.384102 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.657052 (* 0.0454545 = 0.029866 loss) | |
I0405 15:01:06.384117 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.0188284 (* 0.0454545 = 0.000855837 loss) | |
I0405 15:01:06.384131 29564 solver.cpp:245] Train net output #32: loss/loss11 = 9.69694e-05 (* 0.0454545 = 4.4077e-06 loss) | |
I0405 15:01:06.384145 29564 solver.cpp:245] Train net output #33: loss/loss12 = 9.50263e-05 (* 0.0454545 = 4.31938e-06 loss) | |
I0405 15:01:06.384160 29564 solver.cpp:245] Train net output #34: loss/loss13 = 9.83108e-05 (* 0.0454545 = 4.46867e-06 loss) | |
I0405 15:01:06.384173 29564 solver.cpp:245] Train net output #35: loss/loss14 = 9.09111e-05 (* 0.0454545 = 4.13232e-06 loss) | |
I0405 15:01:06.384187 29564 solver.cpp:245] Train net output #36: loss/loss15 = 9.23381e-05 (* 0.0454545 = 4.19718e-06 loss) | |
I0405 15:01:06.384202 29564 solver.cpp:245] Train net output #37: loss/loss16 = 9.11048e-05 (* 0.0454545 = 4.14113e-06 loss) | |
I0405 15:01:06.384215 29564 solver.cpp:245] Train net output #38: loss/loss17 = 9.45104e-05 (* 0.0454545 = 4.29593e-06 loss) | |
I0405 15:01:06.384246 29564 solver.cpp:245] Train net output #39: loss/loss18 = 9.15947e-05 (* 0.0454545 = 4.1634e-06 loss) | |
I0405 15:01:06.384263 29564 solver.cpp:245] Train net output #40: loss/loss19 = 9.07863e-05 (* 0.0454545 = 4.12665e-06 loss) | |
I0405 15:01:06.384279 29564 solver.cpp:245] Train net output #41: loss/loss20 = 9.30738e-05 (* 0.0454545 = 4.23063e-06 loss) | |
I0405 15:01:06.384294 29564 solver.cpp:245] Train net output #42: loss/loss21 = 8.72039e-05 (* 0.0454545 = 3.96382e-06 loss) | |
I0405 15:01:06.384308 29564 solver.cpp:245] Train net output #43: loss/loss22 = 8.76585e-05 (* 0.0454545 = 3.98448e-06 loss) | |
I0405 15:01:06.384320 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 15:01:06.384331 29564 solver.cpp:245] Train net output #45: total_confidence = 4.51941e-05 | |
I0405 15:01:06.384346 29564 sgd_solver.cpp:106] Iteration 9500, lr = 0.009905 | |
I0405 15:04:55.430845 29564 solver.cpp:338] Iteration 10000, Testing net (#0) | |
I0405 15:05:05.741375 29564 solver.cpp:393] Test loss: 1.0075 | |
I0405 15:05:05.741425 29564 solver.cpp:406] Test net output #0: loss/accuracy01 = 0.1 | |
I0405 15:05:05.741451 29564 solver.cpp:406] Test net output #1: loss/accuracy02 = 0.027 | |
I0405 15:05:05.741477 29564 solver.cpp:406] Test net output #2: loss/accuracy03 = 0.073 | |
I0405 15:05:05.741498 29564 solver.cpp:406] Test net output #3: loss/accuracy04 = 0.078 | |
I0405 15:05:05.741520 29564 solver.cpp:406] Test net output #4: loss/accuracy05 = 0.195 | |
I0405 15:05:05.741544 29564 solver.cpp:406] Test net output #5: loss/accuracy06 = 0.502 | |
I0405 15:05:05.741569 29564 solver.cpp:406] Test net output #6: loss/accuracy07 = 0.894 | |
I0405 15:05:05.741590 29564 solver.cpp:406] Test net output #7: loss/accuracy08 = 0.97 | |
I0405 15:05:05.741611 29564 solver.cpp:406] Test net output #8: loss/accuracy09 = 0.995 | |
I0405 15:05:05.741642 29564 solver.cpp:406] Test net output #9: loss/accuracy10 = 0.998 | |
I0405 15:05:05.741663 29564 solver.cpp:406] Test net output #10: loss/accuracy11 = 1 | |
I0405 15:05:05.741684 29564 solver.cpp:406] Test net output #11: loss/accuracy12 = 1 | |
I0405 15:05:05.741704 29564 solver.cpp:406] Test net output #12: loss/accuracy13 = 1 | |
I0405 15:05:05.741724 29564 solver.cpp:406] Test net output #13: loss/accuracy14 = 1 | |
I0405 15:05:05.741745 29564 solver.cpp:406] Test net output #14: loss/accuracy15 = 1 | |
I0405 15:05:05.741765 29564 solver.cpp:406] Test net output #15: loss/accuracy16 = 1 | |
I0405 15:05:05.741785 29564 solver.cpp:406] Test net output #16: loss/accuracy17 = 1 | |
I0405 15:05:05.741806 29564 solver.cpp:406] Test net output #17: loss/accuracy18 = 1 | |
I0405 15:05:05.741825 29564 solver.cpp:406] Test net output #18: loss/accuracy19 = 1 | |
I0405 15:05:05.741844 29564 solver.cpp:406] Test net output #19: loss/accuracy20 = 1 | |
I0405 15:05:05.741865 29564 solver.cpp:406] Test net output #20: loss/accuracy21 = 1 | |
I0405 15:05:05.741885 29564 solver.cpp:406] Test net output #21: loss/accuracy22 = 1 | |
I0405 15:05:05.741914 29564 solver.cpp:406] Test net output #22: loss/loss01 = 3.72013 (* 0.0454545 = 0.169097 loss) | |
I0405 15:05:05.741945 29564 solver.cpp:406] Test net output #23: loss/loss02 = 3.80327 (* 0.0454545 = 0.172876 loss) | |
I0405 15:05:05.741981 29564 solver.cpp:406] Test net output #24: loss/loss03 = 3.71799 (* 0.0454545 = 0.169 loss) | |
I0405 15:05:05.742008 29564 solver.cpp:406] Test net output #25: loss/loss04 = 3.60808 (* 0.0454545 = 0.164004 loss) | |
I0405 15:05:05.742033 29564 solver.cpp:406] Test net output #26: loss/loss05 = 3.49553 (* 0.0454545 = 0.158888 loss) | |
I0405 15:05:05.742059 29564 solver.cpp:406] Test net output #27: loss/loss06 = 2.57541 (* 0.0454545 = 0.117064 loss) | |
I0405 15:05:05.742089 29564 solver.cpp:406] Test net output #28: loss/loss07 = 0.864105 (* 0.0454545 = 0.0392775 loss) | |
I0405 15:05:05.742115 29564 solver.cpp:406] Test net output #29: loss/loss08 = 0.283985 (* 0.0454545 = 0.0129084 loss) | |
I0405 15:05:05.742141 29564 solver.cpp:406] Test net output #30: loss/loss09 = 0.0671798 (* 0.0454545 = 0.00305363 loss) | |
I0405 15:05:05.742166 29564 solver.cpp:406] Test net output #31: loss/loss10 = 0.0273463 (* 0.0454545 = 0.00124301 loss) | |
I0405 15:05:05.742192 29564 solver.cpp:406] Test net output #32: loss/loss11 = 0.000183531 (* 0.0454545 = 8.34232e-06 loss) | |
I0405 15:05:05.742219 29564 solver.cpp:406] Test net output #33: loss/loss12 = 0.000170689 (* 0.0454545 = 7.75858e-06 loss) | |
I0405 15:05:05.742245 29564 solver.cpp:406] Test net output #34: loss/loss13 = 0.000169147 (* 0.0454545 = 7.68849e-06 loss) | |
I0405 15:05:05.742275 29564 solver.cpp:406] Test net output #35: loss/loss14 = 0.000169928 (* 0.0454545 = 7.724e-06 loss) | |
I0405 15:05:05.742302 29564 solver.cpp:406] Test net output #36: loss/loss15 = 0.000169319 (* 0.0454545 = 7.69633e-06 loss) | |
I0405 15:05:05.742328 29564 solver.cpp:406] Test net output #37: loss/loss16 = 0.000168781 (* 0.0454545 = 7.67186e-06 loss) | |
I0405 15:05:05.742353 29564 solver.cpp:406] Test net output #38: loss/loss17 = 0.000164697 (* 0.0454545 = 7.48621e-06 loss) | |
I0405 15:05:05.742413 29564 solver.cpp:406] Test net output #39: loss/loss18 = 0.000172502 (* 0.0454545 = 7.84102e-06 loss) | |
I0405 15:05:05.742441 29564 solver.cpp:406] Test net output #40: loss/loss19 = 0.000167187 (* 0.0454545 = 7.59941e-06 loss) | |
I0405 15:05:05.742466 29564 solver.cpp:406] Test net output #41: loss/loss20 = 0.000169053 (* 0.0454545 = 7.68424e-06 loss) | |
I0405 15:05:05.742493 29564 solver.cpp:406] Test net output #42: loss/loss21 = 0.000159877 (* 0.0454545 = 7.26714e-06 loss) | |
I0405 15:05:05.742518 29564 solver.cpp:406] Test net output #43: loss/loss22 = 0.000166786 (* 0.0454545 = 7.58118e-06 loss) | |
I0405 15:05:05.742539 29564 solver.cpp:406] Test net output #44: total_accuracy = 0 | |
I0405 15:05:05.742559 29564 solver.cpp:406] Test net output #45: total_confidence = 9.05358e-05 | |
I0405 15:05:05.857699 29564 solver.cpp:229] Iteration 10000, loss = 1.02236 | |
I0405 15:05:05.857741 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0405 15:05:05.857769 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0405 15:05:05.857795 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0405 15:05:05.857817 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0 | |
I0405 15:05:05.857839 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.125 | |
I0405 15:05:05.857863 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0405 15:05:05.857888 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875 | |
I0405 15:05:05.857911 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375 | |
I0405 15:05:05.857944 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0405 15:05:05.857966 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 15:05:05.857988 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 15:05:05.858009 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 15:05:05.858031 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 15:05:05.858052 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 15:05:05.858072 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 15:05:05.858093 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 15:05:05.858114 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 15:05:05.858134 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 15:05:05.858155 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 15:05:05.858175 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 15:05:05.858196 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 15:05:05.858218 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 15:05:05.858249 29564 solver.cpp:245] Train net output #22: loss/loss01 = 3.13333 (* 0.0454545 = 0.142424 loss) | |
I0405 15:05:05.858286 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.48875 (* 0.0454545 = 0.158579 loss) | |
I0405 15:05:05.858314 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.24667 (* 0.0454545 = 0.147576 loss) | |
I0405 15:05:05.858340 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.58229 (* 0.0454545 = 0.162831 loss) | |
I0405 15:05:05.858366 29564 solver.cpp:245] Train net output #26: loss/loss05 = 3.24304 (* 0.0454545 = 0.147411 loss) | |
I0405 15:05:05.858392 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.97312 (* 0.0454545 = 0.135142 loss) | |
I0405 15:05:05.858417 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.50825 (* 0.0454545 = 0.0685566 loss) | |
I0405 15:05:05.858443 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.822252 (* 0.0454545 = 0.0373751 loss) | |
I0405 15:05:05.858470 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.448315 (* 0.0454545 = 0.020378 loss) | |
I0405 15:05:05.858496 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.0124729 (* 0.0454545 = 0.000566952 loss) | |
I0405 15:05:05.858543 29564 solver.cpp:245] Train net output #32: loss/loss11 = 8.46498e-05 (* 0.0454545 = 3.84772e-06 loss) | |
I0405 15:05:05.858572 29564 solver.cpp:245] Train net output #33: loss/loss12 = 8.08526e-05 (* 0.0454545 = 3.67512e-06 loss) | |
I0405 15:05:05.858599 29564 solver.cpp:245] Train net output #34: loss/loss13 = 7.96904e-05 (* 0.0454545 = 3.62229e-06 loss) | |
I0405 15:05:05.858625 29564 solver.cpp:245] Train net output #35: loss/loss14 = 7.7406e-05 (* 0.0454545 = 3.51846e-06 loss) | |
I0405 15:05:05.858651 29564 solver.cpp:245] Train net output #36: loss/loss15 = 7.84938e-05 (* 0.0454545 = 3.5679e-06 loss) | |
I0405 15:05:05.858680 29564 solver.cpp:245] Train net output #37: loss/loss16 = 7.69289e-05 (* 0.0454545 = 3.49677e-06 loss) | |
I0405 15:05:05.858710 29564 solver.cpp:245] Train net output #38: loss/loss17 = 7.7626e-05 (* 0.0454545 = 3.52845e-06 loss) | |
I0405 15:05:05.858737 29564 solver.cpp:245] Train net output #39: loss/loss18 = 7.74397e-05 (* 0.0454545 = 3.51998e-06 loss) | |
I0405 15:05:05.858764 29564 solver.cpp:245] Train net output #40: loss/loss19 = 7.95745e-05 (* 0.0454545 = 3.61702e-06 loss) | |
I0405 15:05:05.858793 29564 solver.cpp:245] Train net output #41: loss/loss20 = 7.78716e-05 (* 0.0454545 = 3.53962e-06 loss) | |
I0405 15:05:05.858819 29564 solver.cpp:245] Train net output #42: loss/loss21 = 7.43264e-05 (* 0.0454545 = 3.37847e-06 loss) | |
I0405 15:05:05.858844 29564 solver.cpp:245] Train net output #43: loss/loss22 = 7.62214e-05 (* 0.0454545 = 3.46461e-06 loss) | |
I0405 15:05:05.858866 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 15:05:05.858888 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000202657 | |
I0405 15:05:05.858912 29564 sgd_solver.cpp:106] Iteration 10000, lr = 0.0099 | |
I0405 15:08:54.654465 29564 solver.cpp:229] Iteration 10500, loss = 1.01629 | |
I0405 15:08:54.654669 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0405 15:08:54.654690 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0405 15:08:54.654702 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0405 15:08:54.654714 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0405 15:08:54.654726 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.125 | |
I0405 15:08:54.654738 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125 | |
I0405 15:08:54.654749 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625 | |
I0405 15:08:54.654762 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0405 15:08:54.654773 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625 | |
I0405 15:08:54.654784 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 15:08:54.654798 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 15:08:54.654810 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 15:08:54.654822 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 15:08:54.654834 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 15:08:54.654845 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 15:08:54.654856 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 15:08:54.654868 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 15:08:54.654880 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 15:08:54.654891 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 15:08:54.654902 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 15:08:54.654913 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 15:08:54.654924 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 15:08:54.654940 29564 solver.cpp:245] Train net output #22: loss/loss01 = 3.49286 (* 0.0454545 = 0.158767 loss) | |
I0405 15:08:54.654954 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.73455 (* 0.0454545 = 0.169752 loss) | |
I0405 15:08:54.654968 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.48192 (* 0.0454545 = 0.158269 loss) | |
I0405 15:08:54.654981 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.81129 (* 0.0454545 = 0.17324 loss) | |
I0405 15:08:54.654995 29564 solver.cpp:245] Train net output #26: loss/loss05 = 3.56079 (* 0.0454545 = 0.161854 loss) | |
I0405 15:08:54.655009 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.98298 (* 0.0454545 = 0.13559 loss) | |
I0405 15:08:54.655024 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.86277 (* 0.0454545 = 0.0846716 loss) | |
I0405 15:08:54.655037 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.780141 (* 0.0454545 = 0.035461 loss) | |
I0405 15:08:54.655051 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.795189 (* 0.0454545 = 0.0361449 loss) | |
I0405 15:08:54.655066 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.0202316 (* 0.0454545 = 0.000919618 loss) | |
I0405 15:08:54.655079 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.000205494 (* 0.0454545 = 9.34064e-06 loss) | |
I0405 15:08:54.655097 29564 solver.cpp:245] Train net output #33: loss/loss12 = 0.000188273 (* 0.0454545 = 8.55784e-06 loss) | |
I0405 15:08:54.655124 29564 solver.cpp:245] Train net output #34: loss/loss13 = 0.000193327 (* 0.0454545 = 8.78759e-06 loss) | |
I0405 15:08:54.655154 29564 solver.cpp:245] Train net output #35: loss/loss14 = 0.000191877 (* 0.0454545 = 8.72169e-06 loss) | |
I0405 15:08:54.655184 29564 solver.cpp:245] Train net output #36: loss/loss15 = 0.00019005 (* 0.0454545 = 8.63865e-06 loss) | |
I0405 15:08:54.655210 29564 solver.cpp:245] Train net output #37: loss/loss16 = 0.000183404 (* 0.0454545 = 8.33657e-06 loss) | |
I0405 15:08:54.655226 29564 solver.cpp:245] Train net output #38: loss/loss17 = 0.000193621 (* 0.0454545 = 8.80093e-06 loss) | |
I0405 15:08:54.655254 29564 solver.cpp:245] Train net output #39: loss/loss18 = 0.000200076 (* 0.0454545 = 9.09438e-06 loss) | |
I0405 15:08:54.655269 29564 solver.cpp:245] Train net output #40: loss/loss19 = 0.000184226 (* 0.0454545 = 8.37389e-06 loss) | |
I0405 15:08:54.655283 29564 solver.cpp:245] Train net output #41: loss/loss20 = 0.000180686 (* 0.0454545 = 8.21301e-06 loss) | |
I0405 15:08:54.655297 29564 solver.cpp:245] Train net output #42: loss/loss21 = 0.000179167 (* 0.0454545 = 8.14396e-06 loss) | |
I0405 15:08:54.655311 29564 solver.cpp:245] Train net output #43: loss/loss22 = 0.000195066 (* 0.0454545 = 8.86662e-06 loss) | |
I0405 15:08:54.655323 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 15:08:54.655334 29564 solver.cpp:245] Train net output #45: total_confidence = 6.28171e-05 | |
I0405 15:08:54.655349 29564 sgd_solver.cpp:106] Iteration 10500, lr = 0.009895 | |
I0405 15:12:44.033658 29564 solver.cpp:229] Iteration 11000, loss = 1.00841 | |
I0405 15:12:44.033792 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0405 15:12:44.033812 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.15625 | |
I0405 15:12:44.033824 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0405 15:12:44.033836 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625 | |
I0405 15:12:44.033849 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125 | |
I0405 15:12:44.033860 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.53125 | |
I0405 15:12:44.033872 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0405 15:12:44.033884 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.8125 | |
I0405 15:12:44.033895 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0405 15:12:44.033906 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 15:12:44.033918 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 15:12:44.033929 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 15:12:44.033942 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 15:12:44.033954 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 15:12:44.033965 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 15:12:44.033977 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 15:12:44.033988 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 15:12:44.033999 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 15:12:44.034010 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 15:12:44.034023 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 15:12:44.034034 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 15:12:44.034044 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 15:12:44.034060 29564 solver.cpp:245] Train net output #22: loss/loss01 = 3.09849 (* 0.0454545 = 0.14084 loss) | |
I0405 15:12:44.034073 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.21474 (* 0.0454545 = 0.146125 loss) | |
I0405 15:12:44.034087 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.33881 (* 0.0454545 = 0.151764 loss) | |
I0405 15:12:44.034101 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.29397 (* 0.0454545 = 0.149726 loss) | |
I0405 15:12:44.034114 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.78256 (* 0.0454545 = 0.12648 loss) | |
I0405 15:12:44.034128 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.16907 (* 0.0454545 = 0.0985942 loss) | |
I0405 15:12:44.034144 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.40291 (* 0.0454545 = 0.0637686 loss) | |
I0405 15:12:44.034158 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.966931 (* 0.0454545 = 0.0439514 loss) | |
I0405 15:12:44.034173 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.0370055 (* 0.0454545 = 0.00168207 loss) | |
I0405 15:12:44.034188 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.0104566 (* 0.0454545 = 0.000475301 loss) | |
I0405 15:12:44.034203 29564 solver.cpp:245] Train net output #32: loss/loss11 = 9.29196e-05 (* 0.0454545 = 4.22362e-06 loss) | |
I0405 15:12:44.034217 29564 solver.cpp:245] Train net output #33: loss/loss12 = 8.37384e-05 (* 0.0454545 = 3.80629e-06 loss) | |
I0405 15:12:44.034232 29564 solver.cpp:245] Train net output #34: loss/loss13 = 8.72257e-05 (* 0.0454545 = 3.9648e-06 loss) | |
I0405 15:12:44.034246 29564 solver.cpp:245] Train net output #35: loss/loss14 = 8.78976e-05 (* 0.0454545 = 3.99535e-06 loss) | |
I0405 15:12:44.034260 29564 solver.cpp:245] Train net output #36: loss/loss15 = 8.59833e-05 (* 0.0454545 = 3.90833e-06 loss) | |
I0405 15:12:44.034274 29564 solver.cpp:245] Train net output #37: loss/loss16 = 8.44946e-05 (* 0.0454545 = 3.84066e-06 loss) | |
I0405 15:12:44.034288 29564 solver.cpp:245] Train net output #38: loss/loss17 = 9.02568e-05 (* 0.0454545 = 4.10258e-06 loss) | |
I0405 15:12:44.034320 29564 solver.cpp:245] Train net output #39: loss/loss18 = 9.11227e-05 (* 0.0454545 = 4.14194e-06 loss) | |
I0405 15:12:44.034335 29564 solver.cpp:245] Train net output #40: loss/loss19 = 8.17422e-05 (* 0.0454545 = 3.71555e-06 loss) | |
I0405 15:12:44.034349 29564 solver.cpp:245] Train net output #41: loss/loss20 = 7.99799e-05 (* 0.0454545 = 3.63545e-06 loss) | |
I0405 15:12:44.034363 29564 solver.cpp:245] Train net output #42: loss/loss21 = 8.21064e-05 (* 0.0454545 = 3.73211e-06 loss) | |
I0405 15:12:44.034378 29564 solver.cpp:245] Train net output #43: loss/loss22 = 8.99652e-05 (* 0.0454545 = 4.08933e-06 loss) | |
I0405 15:12:44.034389 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 15:12:44.034400 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000641852 | |
I0405 15:12:44.034415 29564 sgd_solver.cpp:106] Iteration 11000, lr = 0.00989 | |
I0405 15:16:34.101570 29564 solver.cpp:229] Iteration 11500, loss = 0.998349 | |
I0405 15:16:34.101681 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0405 15:16:34.101701 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0405 15:16:34.101714 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0405 15:16:34.101727 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625 | |
I0405 15:16:34.101738 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0405 15:16:34.101750 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.28125 | |
I0405 15:16:34.101763 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.5625 | |
I0405 15:16:34.101774 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0405 15:16:34.101786 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0405 15:16:34.101799 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 15:16:34.101810 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 15:16:34.101821 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 15:16:34.101832 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 15:16:34.101845 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 15:16:34.101855 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 15:16:34.101867 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 15:16:34.101878 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 15:16:34.101889 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 15:16:34.101900 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 15:16:34.101912 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 15:16:34.101923 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 15:16:34.101934 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 15:16:34.101949 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.96876 (* 0.0454545 = 0.134944 loss) | |
I0405 15:16:34.101964 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.32421 (* 0.0454545 = 0.151101 loss) | |
I0405 15:16:34.101979 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.48744 (* 0.0454545 = 0.15852 loss) | |
I0405 15:16:34.101992 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.35627 (* 0.0454545 = 0.152558 loss) | |
I0405 15:16:34.102005 29564 solver.cpp:245] Train net output #26: loss/loss05 = 3.07704 (* 0.0454545 = 0.139866 loss) | |
I0405 15:16:34.102021 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.80415 (* 0.0454545 = 0.127461 loss) | |
I0405 15:16:34.102036 29564 solver.cpp:245] Train net output #28: loss/loss07 = 2.07907 (* 0.0454545 = 0.094503 loss) | |
I0405 15:16:34.102051 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.488773 (* 0.0454545 = 0.022217 loss) | |
I0405 15:16:34.102064 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.463473 (* 0.0454545 = 0.021067 loss) | |
I0405 15:16:34.102078 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.0152196 (* 0.0454545 = 0.000691799 loss) | |
I0405 15:16:34.102092 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.000494962 (* 0.0454545 = 2.24983e-05 loss) | |
I0405 15:16:34.102108 29564 solver.cpp:245] Train net output #33: loss/loss12 = 0.000424787 (* 0.0454545 = 1.93085e-05 loss) | |
I0405 15:16:34.102121 29564 solver.cpp:245] Train net output #34: loss/loss13 = 0.000469754 (* 0.0454545 = 2.13525e-05 loss) | |
I0405 15:16:34.102135 29564 solver.cpp:245] Train net output #35: loss/loss14 = 0.000467933 (* 0.0454545 = 2.12697e-05 loss) | |
I0405 15:16:34.102150 29564 solver.cpp:245] Train net output #36: loss/loss15 = 0.000475336 (* 0.0454545 = 2.16062e-05 loss) | |
I0405 15:16:34.102164 29564 solver.cpp:245] Train net output #37: loss/loss16 = 0.000474259 (* 0.0454545 = 2.15572e-05 loss) | |
I0405 15:16:34.102179 29564 solver.cpp:245] Train net output #38: loss/loss17 = 0.000503119 (* 0.0454545 = 2.28691e-05 loss) | |
I0405 15:16:34.102208 29564 solver.cpp:245] Train net output #39: loss/loss18 = 0.000520651 (* 0.0454545 = 2.36659e-05 loss) | |
I0405 15:16:34.102223 29564 solver.cpp:245] Train net output #40: loss/loss19 = 0.000412382 (* 0.0454545 = 1.87446e-05 loss) | |
I0405 15:16:34.102237 29564 solver.cpp:245] Train net output #41: loss/loss20 = 0.00045835 (* 0.0454545 = 2.08341e-05 loss) | |
I0405 15:16:34.102252 29564 solver.cpp:245] Train net output #42: loss/loss21 = 0.000469456 (* 0.0454545 = 2.13389e-05 loss) | |
I0405 15:16:34.102267 29564 solver.cpp:245] Train net output #43: loss/loss22 = 0.000487324 (* 0.0454545 = 2.21511e-05 loss) | |
I0405 15:16:34.102278 29564 solver.cpp:245] Train net output #44: total_accuracy = 0.03125 | |
I0405 15:16:34.102293 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000100997 | |
I0405 15:16:34.102308 29564 sgd_solver.cpp:106] Iteration 11500, lr = 0.009885 | |
I0405 15:20:23.409225 29564 solver.cpp:229] Iteration 12000, loss = 0.986678 | |
I0405 15:20:23.409447 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0405 15:20:23.409468 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0405 15:20:23.409481 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0405 15:20:23.409493 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375 | |
I0405 15:20:23.409505 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0405 15:20:23.409518 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0405 15:20:23.409528 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0405 15:20:23.409540 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0405 15:20:23.409553 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 15:20:23.409564 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 15:20:23.409575 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 15:20:23.409587 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 15:20:23.409598 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 15:20:23.409610 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 15:20:23.409621 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 15:20:23.409632 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 15:20:23.409643 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 15:20:23.409656 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 15:20:23.409668 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 15:20:23.409682 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 15:20:23.409693 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 15:20:23.409703 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 15:20:23.409719 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.81407 (* 0.0454545 = 0.127912 loss) | |
I0405 15:20:23.409734 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.16292 (* 0.0454545 = 0.143769 loss) | |
I0405 15:20:23.409747 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.10058 (* 0.0454545 = 0.140935 loss) | |
I0405 15:20:23.409761 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.2681 (* 0.0454545 = 0.14855 loss) | |
I0405 15:20:23.409775 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.81658 (* 0.0454545 = 0.128027 loss) | |
I0405 15:20:23.409790 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.20855 (* 0.0454545 = 0.100389 loss) | |
I0405 15:20:23.409802 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.2382 (* 0.0454545 = 0.0562816 loss) | |
I0405 15:20:23.409816 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.367116 (* 0.0454545 = 0.0166871 loss) | |
I0405 15:20:23.409831 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.185957 (* 0.0454545 = 0.0084526 loss) | |
I0405 15:20:23.409844 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.0198691 (* 0.0454545 = 0.000903142 loss) | |
I0405 15:20:23.409859 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.000219626 (* 0.0454545 = 9.983e-06 loss) | |
I0405 15:20:23.409886 29564 solver.cpp:245] Train net output #33: loss/loss12 = 0.000200402 (* 0.0454545 = 9.10916e-06 loss) | |
I0405 15:20:23.409904 29564 solver.cpp:245] Train net output #34: loss/loss13 = 0.000208112 (* 0.0454545 = 9.45963e-06 loss) | |
I0405 15:20:23.409919 29564 solver.cpp:245] Train net output #35: loss/loss14 = 0.000214567 (* 0.0454545 = 9.75304e-06 loss) | |
I0405 15:20:23.409932 29564 solver.cpp:245] Train net output #36: loss/loss15 = 0.000224329 (* 0.0454545 = 1.01968e-05 loss) | |
I0405 15:20:23.409946 29564 solver.cpp:245] Train net output #37: loss/loss16 = 0.00020644 (* 0.0454545 = 9.38366e-06 loss) | |
I0405 15:20:23.409960 29564 solver.cpp:245] Train net output #38: loss/loss17 = 0.000209925 (* 0.0454545 = 9.54206e-06 loss) | |
I0405 15:20:23.409989 29564 solver.cpp:245] Train net output #39: loss/loss18 = 0.000222979 (* 0.0454545 = 1.01354e-05 loss) | |
I0405 15:20:23.410004 29564 solver.cpp:245] Train net output #40: loss/loss19 = 0.000196523 (* 0.0454545 = 8.93286e-06 loss) | |
I0405 15:20:23.410018 29564 solver.cpp:245] Train net output #41: loss/loss20 = 0.000202325 (* 0.0454545 = 9.1966e-06 loss) | |
I0405 15:20:23.410032 29564 solver.cpp:245] Train net output #42: loss/loss21 = 0.000213421 (* 0.0454545 = 9.70095e-06 loss) | |
I0405 15:20:23.410046 29564 solver.cpp:245] Train net output #43: loss/loss22 = 0.000212977 (* 0.0454545 = 9.68077e-06 loss) | |
I0405 15:20:23.410058 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 15:20:23.410069 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000241453 | |
I0405 15:20:23.410082 29564 sgd_solver.cpp:106] Iteration 12000, lr = 0.00988 | |
I0405 15:24:12.556998 29564 solver.cpp:229] Iteration 12500, loss = 0.978997 | |
I0405 15:24:12.557185 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.21875 | |
I0405 15:24:12.557209 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0405 15:24:12.557224 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0405 15:24:12.557235 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.21875 | |
I0405 15:24:12.557247 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125 | |
I0405 15:24:12.557260 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625 | |
I0405 15:24:12.557271 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875 | |
I0405 15:24:12.557283 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0405 15:24:12.557296 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0405 15:24:12.557307 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 15:24:12.557317 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 15:24:12.557328 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 15:24:12.557342 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 15:24:12.557353 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 15:24:12.557366 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 15:24:12.557379 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 15:24:12.557389 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 15:24:12.557400 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 15:24:12.557415 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 15:24:12.557426 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 15:24:12.557437 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 15:24:12.557448 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 15:24:12.557464 29564 solver.cpp:245] Train net output #22: loss/loss01 = 3.06846 (* 0.0454545 = 0.139475 loss) | |
I0405 15:24:12.557478 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.39412 (* 0.0454545 = 0.154278 loss) | |
I0405 15:24:12.557492 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.17204 (* 0.0454545 = 0.144184 loss) | |
I0405 15:24:12.557507 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.05024 (* 0.0454545 = 0.138647 loss) | |
I0405 15:24:12.557520 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.79374 (* 0.0454545 = 0.126988 loss) | |
I0405 15:24:12.557534 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.44265 (* 0.0454545 = 0.11103 loss) | |
I0405 15:24:12.557548 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.4356 (* 0.0454545 = 0.0652544 loss) | |
I0405 15:24:12.557561 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.404275 (* 0.0454545 = 0.0183761 loss) | |
I0405 15:24:12.557575 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.0335448 (* 0.0454545 = 0.00152476 loss) | |
I0405 15:24:12.557590 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.00801603 (* 0.0454545 = 0.000364365 loss) | |
I0405 15:24:12.557603 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.00114645 (* 0.0454545 = 5.21113e-05 loss) | |
I0405 15:24:12.557617 29564 solver.cpp:245] Train net output #33: loss/loss12 = 0.00105995 (* 0.0454545 = 4.81795e-05 loss) | |
I0405 15:24:12.557631 29564 solver.cpp:245] Train net output #34: loss/loss13 = 0.0011106 (* 0.0454545 = 5.04816e-05 loss) | |
I0405 15:24:12.557646 29564 solver.cpp:245] Train net output #35: loss/loss14 = 0.00114577 (* 0.0454545 = 5.20807e-05 loss) | |
I0405 15:24:12.557659 29564 solver.cpp:245] Train net output #36: loss/loss15 = 0.00120919 (* 0.0454545 = 5.49632e-05 loss) | |
I0405 15:24:12.557673 29564 solver.cpp:245] Train net output #37: loss/loss16 = 0.0011777 (* 0.0454545 = 5.3532e-05 loss) | |
I0405 15:24:12.557687 29564 solver.cpp:245] Train net output #38: loss/loss17 = 0.00120167 (* 0.0454545 = 5.46212e-05 loss) | |
I0405 15:24:12.557721 29564 solver.cpp:245] Train net output #39: loss/loss18 = 0.00125392 (* 0.0454545 = 5.69965e-05 loss) | |
I0405 15:24:12.557737 29564 solver.cpp:245] Train net output #40: loss/loss19 = 0.00105116 (* 0.0454545 = 4.77798e-05 loss) | |
I0405 15:24:12.557751 29564 solver.cpp:245] Train net output #41: loss/loss20 = 0.00113005 (* 0.0454545 = 5.13659e-05 loss) | |
I0405 15:24:12.557765 29564 solver.cpp:245] Train net output #42: loss/loss21 = 0.00119393 (* 0.0454545 = 5.42695e-05 loss) | |
I0405 15:24:12.557780 29564 solver.cpp:245] Train net output #43: loss/loss22 = 0.00119991 (* 0.0454545 = 5.45413e-05 loss) | |
I0405 15:24:12.557791 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 15:24:12.557802 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000119003 | |
I0405 15:24:12.557816 29564 sgd_solver.cpp:106] Iteration 12500, lr = 0.009875 | |
I0405 15:28:01.903882 29564 solver.cpp:229] Iteration 13000, loss = 0.970281 | |
I0405 15:28:01.903991 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.15625 | |
I0405 15:28:01.904011 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0405 15:28:01.904023 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0405 15:28:01.904036 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875 | |
I0405 15:28:01.904047 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.09375 | |
I0405 15:28:01.904059 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375 | |
I0405 15:28:01.904093 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0405 15:28:01.904108 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0405 15:28:01.904119 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0405 15:28:01.904131 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 15:28:01.904144 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 15:28:01.904155 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 15:28:01.904166 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 15:28:01.904177 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 15:28:01.904188 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 15:28:01.904199 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 15:28:01.904211 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 15:28:01.904222 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 15:28:01.904233 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 15:28:01.904244 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 15:28:01.904256 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 15:28:01.904268 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 15:28:01.904283 29564 solver.cpp:245] Train net output #22: loss/loss01 = 3.01448 (* 0.0454545 = 0.137022 loss) | |
I0405 15:28:01.904297 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.52362 (* 0.0454545 = 0.160165 loss) | |
I0405 15:28:01.904311 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.56213 (* 0.0454545 = 0.161915 loss) | |
I0405 15:28:01.904325 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.29844 (* 0.0454545 = 0.149929 loss) | |
I0405 15:28:01.904338 29564 solver.cpp:245] Train net output #26: loss/loss05 = 3.42235 (* 0.0454545 = 0.155561 loss) | |
I0405 15:28:01.904352 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.69271 (* 0.0454545 = 0.122396 loss) | |
I0405 15:28:01.904366 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.23441 (* 0.0454545 = 0.0561095 loss) | |
I0405 15:28:01.904381 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.71267 (* 0.0454545 = 0.0323941 loss) | |
I0405 15:28:01.904395 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.377211 (* 0.0454545 = 0.017146 loss) | |
I0405 15:28:01.904409 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.0121667 (* 0.0454545 = 0.000553032 loss) | |
I0405 15:28:01.904424 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.000190727 (* 0.0454545 = 8.66942e-06 loss) | |
I0405 15:28:01.904444 29564 solver.cpp:245] Train net output #33: loss/loss12 = 0.00017552 (* 0.0454545 = 7.97816e-06 loss) | |
I0405 15:28:01.904459 29564 solver.cpp:245] Train net output #34: loss/loss13 = 0.000195114 (* 0.0454545 = 8.86882e-06 loss) | |
I0405 15:28:01.904474 29564 solver.cpp:245] Train net output #35: loss/loss14 = 0.000184574 (* 0.0454545 = 8.38972e-06 loss) | |
I0405 15:28:01.904487 29564 solver.cpp:245] Train net output #36: loss/loss15 = 0.00019458 (* 0.0454545 = 8.84453e-06 loss) | |
I0405 15:28:01.904501 29564 solver.cpp:245] Train net output #37: loss/loss16 = 0.000185565 (* 0.0454545 = 8.43478e-06 loss) | |
I0405 15:28:01.904515 29564 solver.cpp:245] Train net output #38: loss/loss17 = 0.000202093 (* 0.0454545 = 9.18603e-06 loss) | |
I0405 15:28:01.904546 29564 solver.cpp:245] Train net output #39: loss/loss18 = 0.00022397 (* 0.0454545 = 1.01804e-05 loss) | |
I0405 15:28:01.904561 29564 solver.cpp:245] Train net output #40: loss/loss19 = 0.000172388 (* 0.0454545 = 7.83582e-06 loss) | |
I0405 15:28:01.904575 29564 solver.cpp:245] Train net output #41: loss/loss20 = 0.00019102 (* 0.0454545 = 8.68271e-06 loss) | |
I0405 15:28:01.904590 29564 solver.cpp:245] Train net output #42: loss/loss21 = 0.00019889 (* 0.0454545 = 9.04047e-06 loss) | |
I0405 15:28:01.904604 29564 solver.cpp:245] Train net output #43: loss/loss22 = 0.000192621 (* 0.0454545 = 8.7555e-06 loss) | |
I0405 15:28:01.904616 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 15:28:01.904628 29564 solver.cpp:245] Train net output #45: total_confidence = 1.64449e-05 | |
I0405 15:28:01.904641 29564 sgd_solver.cpp:106] Iteration 13000, lr = 0.00987 | |
I0405 15:31:51.148743 29564 solver.cpp:229] Iteration 13500, loss = 0.968372 | |
I0405 15:31:51.148912 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0405 15:31:51.148933 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0405 15:31:51.148946 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0405 15:31:51.148958 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875 | |
I0405 15:31:51.148970 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0405 15:31:51.148983 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375 | |
I0405 15:31:51.148995 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0405 15:31:51.149006 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0405 15:31:51.149019 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 15:31:51.149030 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 15:31:51.149041 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 15:31:51.149052 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 15:31:51.149065 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 15:31:51.149075 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 15:31:51.149087 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 15:31:51.149098 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 15:31:51.149109 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 15:31:51.149121 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 15:31:51.149132 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 15:31:51.149143 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 15:31:51.149158 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 15:31:51.149168 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 15:31:51.149183 29564 solver.cpp:245] Train net output #22: loss/loss01 = 3.19739 (* 0.0454545 = 0.145336 loss) | |
I0405 15:31:51.149199 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.41129 (* 0.0454545 = 0.155059 loss) | |
I0405 15:31:51.149212 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.39526 (* 0.0454545 = 0.15433 loss) | |
I0405 15:31:51.149226 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.28771 (* 0.0454545 = 0.149441 loss) | |
I0405 15:31:51.149240 29564 solver.cpp:245] Train net output #26: loss/loss05 = 3.06547 (* 0.0454545 = 0.139339 loss) | |
I0405 15:31:51.149253 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.69593 (* 0.0454545 = 0.122542 loss) | |
I0405 15:31:51.149267 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.54274 (* 0.0454545 = 0.0701244 loss) | |
I0405 15:31:51.149281 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.619292 (* 0.0454545 = 0.0281496 loss) | |
I0405 15:31:51.149294 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.206153 (* 0.0454545 = 0.00937061 loss) | |
I0405 15:31:51.149312 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.0227198 (* 0.0454545 = 0.00103272 loss) | |
I0405 15:31:51.149327 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.000237608 (* 0.0454545 = 1.08004e-05 loss) | |
I0405 15:31:51.149341 29564 solver.cpp:245] Train net output #33: loss/loss12 = 0.000226222 (* 0.0454545 = 1.02828e-05 loss) | |
I0405 15:31:51.149355 29564 solver.cpp:245] Train net output #34: loss/loss13 = 0.000242498 (* 0.0454545 = 1.10226e-05 loss) | |
I0405 15:31:51.149369 29564 solver.cpp:245] Train net output #35: loss/loss14 = 0.000227662 (* 0.0454545 = 1.03483e-05 loss) | |
I0405 15:31:51.149384 29564 solver.cpp:245] Train net output #36: loss/loss15 = 0.000254229 (* 0.0454545 = 1.15559e-05 loss) | |
I0405 15:31:51.149397 29564 solver.cpp:245] Train net output #37: loss/loss16 = 0.000227409 (* 0.0454545 = 1.03368e-05 loss) | |
I0405 15:31:51.149411 29564 solver.cpp:245] Train net output #38: loss/loss17 = 0.000251617 (* 0.0454545 = 1.14371e-05 loss) | |
I0405 15:31:51.149442 29564 solver.cpp:245] Train net output #39: loss/loss18 = 0.000277829 (* 0.0454545 = 1.26286e-05 loss) | |
I0405 15:31:51.149457 29564 solver.cpp:245] Train net output #40: loss/loss19 = 0.000224198 (* 0.0454545 = 1.01908e-05 loss) | |
I0405 15:31:51.149471 29564 solver.cpp:245] Train net output #41: loss/loss20 = 0.000245403 (* 0.0454545 = 1.11547e-05 loss) | |
I0405 15:31:51.149485 29564 solver.cpp:245] Train net output #42: loss/loss21 = 0.000257812 (* 0.0454545 = 1.17187e-05 loss) | |
I0405 15:31:51.149499 29564 solver.cpp:245] Train net output #43: loss/loss22 = 0.000222004 (* 0.0454545 = 1.00911e-05 loss) | |
I0405 15:31:51.149512 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 15:31:51.149523 29564 solver.cpp:245] Train net output #45: total_confidence = 2.30686e-05 | |
I0405 15:31:51.149539 29564 sgd_solver.cpp:106] Iteration 13500, lr = 0.009865 | |
I0405 15:35:40.517137 29564 solver.cpp:229] Iteration 14000, loss = 0.964783 | |
I0405 15:35:40.517906 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0405 15:35:40.517927 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0405 15:35:40.517940 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0405 15:35:40.517952 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0405 15:35:40.517964 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.21875 | |
I0405 15:35:40.517979 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.46875 | |
I0405 15:35:40.517992 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.65625 | |
I0405 15:35:40.518003 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0405 15:35:40.518015 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 15:35:40.518026 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 15:35:40.518038 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 15:35:40.518049 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 15:35:40.518062 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 15:35:40.518074 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 15:35:40.518085 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 15:35:40.518095 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 15:35:40.518107 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 15:35:40.518118 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 15:35:40.518129 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 15:35:40.518141 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 15:35:40.518151 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 15:35:40.518163 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 15:35:40.518178 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.867 (* 0.0454545 = 0.130318 loss) | |
I0405 15:35:40.518193 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.43272 (* 0.0454545 = 0.156033 loss) | |
I0405 15:35:40.518206 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.45086 (* 0.0454545 = 0.156857 loss) | |
I0405 15:35:40.518220 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.42351 (* 0.0454545 = 0.155614 loss) | |
I0405 15:35:40.518234 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.92716 (* 0.0454545 = 0.133053 loss) | |
I0405 15:35:40.518247 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.20351 (* 0.0454545 = 0.100159 loss) | |
I0405 15:35:40.518261 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.70963 (* 0.0454545 = 0.0777105 loss) | |
I0405 15:35:40.518275 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.590396 (* 0.0454545 = 0.0268362 loss) | |
I0405 15:35:40.518290 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.173583 (* 0.0454545 = 0.00789015 loss) | |
I0405 15:35:40.518304 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.163411 (* 0.0454545 = 0.00742776 loss) | |
I0405 15:35:40.518332 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.000260435 (* 0.0454545 = 1.18379e-05 loss) | |
I0405 15:35:40.518348 29564 solver.cpp:245] Train net output #33: loss/loss12 = 0.000257327 (* 0.0454545 = 1.16967e-05 loss) | |
I0405 15:35:40.518362 29564 solver.cpp:245] Train net output #34: loss/loss13 = 0.000293107 (* 0.0454545 = 1.3323e-05 loss) | |
I0405 15:35:40.518384 29564 solver.cpp:245] Train net output #35: loss/loss14 = 0.000255537 (* 0.0454545 = 1.16153e-05 loss) | |
I0405 15:35:40.518399 29564 solver.cpp:245] Train net output #36: loss/loss15 = 0.000317692 (* 0.0454545 = 1.44406e-05 loss) | |
I0405 15:35:40.518414 29564 solver.cpp:245] Train net output #37: loss/loss16 = 0.00026931 (* 0.0454545 = 1.22414e-05 loss) | |
I0405 15:35:40.518429 29564 solver.cpp:245] Train net output #38: loss/loss17 = 0.000319809 (* 0.0454545 = 1.45368e-05 loss) | |
I0405 15:35:40.518458 29564 solver.cpp:245] Train net output #39: loss/loss18 = 0.000359521 (* 0.0454545 = 1.63419e-05 loss) | |
I0405 15:35:40.518473 29564 solver.cpp:245] Train net output #40: loss/loss19 = 0.000244609 (* 0.0454545 = 1.11186e-05 loss) | |
I0405 15:35:40.518487 29564 solver.cpp:245] Train net output #41: loss/loss20 = 0.000287565 (* 0.0454545 = 1.30712e-05 loss) | |
I0405 15:35:40.518501 29564 solver.cpp:245] Train net output #42: loss/loss21 = 0.000301931 (* 0.0454545 = 1.37241e-05 loss) | |
I0405 15:35:40.518515 29564 solver.cpp:245] Train net output #43: loss/loss22 = 0.000285193 (* 0.0454545 = 1.29633e-05 loss) | |
I0405 15:35:40.518527 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 15:35:40.518539 29564 solver.cpp:245] Train net output #45: total_confidence = 4.09905e-05 | |
I0405 15:35:40.518553 29564 sgd_solver.cpp:106] Iteration 14000, lr = 0.00986 | |
I0405 15:39:29.907860 29564 solver.cpp:229] Iteration 14500, loss = 0.956122 | |
I0405 15:39:29.907977 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0405 15:39:29.907997 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0405 15:39:29.908010 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0405 15:39:29.908022 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625 | |
I0405 15:39:29.908035 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.125 | |
I0405 15:39:29.908047 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.25 | |
I0405 15:39:29.908058 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.5625 | |
I0405 15:39:29.908089 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0405 15:39:29.908104 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 15:39:29.908116 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 15:39:29.908128 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 15:39:29.908139 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 15:39:29.908150 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 15:39:29.908161 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 15:39:29.908172 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 15:39:29.908185 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 15:39:29.908195 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 15:39:29.908206 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 15:39:29.908218 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 15:39:29.908229 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 15:39:29.908241 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 15:39:29.908252 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 15:39:29.908267 29564 solver.cpp:245] Train net output #22: loss/loss01 = 3.00454 (* 0.0454545 = 0.13657 loss) | |
I0405 15:39:29.908282 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.16422 (* 0.0454545 = 0.143828 loss) | |
I0405 15:39:29.908296 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.25037 (* 0.0454545 = 0.147744 loss) | |
I0405 15:39:29.908309 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.19414 (* 0.0454545 = 0.145188 loss) | |
I0405 15:39:29.908324 29564 solver.cpp:245] Train net output #26: loss/loss05 = 3.0732 (* 0.0454545 = 0.139691 loss) | |
I0405 15:39:29.908337 29564 solver.cpp:245] Train net output #27: loss/loss06 = 3.03845 (* 0.0454545 = 0.138112 loss) | |
I0405 15:39:29.908351 29564 solver.cpp:245] Train net output #28: loss/loss07 = 2.00171 (* 0.0454545 = 0.090987 loss) | |
I0405 15:39:29.908365 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.673431 (* 0.0454545 = 0.0306105 loss) | |
I0405 15:39:29.908380 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.227133 (* 0.0454545 = 0.0103242 loss) | |
I0405 15:39:29.908393 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.0318445 (* 0.0454545 = 0.00144748 loss) | |
I0405 15:39:29.908407 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.000211826 (* 0.0454545 = 9.62847e-06 loss) | |
I0405 15:39:29.908424 29564 solver.cpp:245] Train net output #33: loss/loss12 = 0.000226547 (* 0.0454545 = 1.02976e-05 loss) | |
I0405 15:39:29.908439 29564 solver.cpp:245] Train net output #34: loss/loss13 = 0.000240073 (* 0.0454545 = 1.09124e-05 loss) | |
I0405 15:39:29.908453 29564 solver.cpp:245] Train net output #35: loss/loss14 = 0.000210788 (* 0.0454545 = 9.58128e-06 loss) | |
I0405 15:39:29.908468 29564 solver.cpp:245] Train net output #36: loss/loss15 = 0.000265848 (* 0.0454545 = 1.2084e-05 loss) | |
I0405 15:39:29.908484 29564 solver.cpp:245] Train net output #37: loss/loss16 = 0.000226057 (* 0.0454545 = 1.02753e-05 loss) | |
I0405 15:39:29.908499 29564 solver.cpp:245] Train net output #38: loss/loss17 = 0.000255655 (* 0.0454545 = 1.16207e-05 loss) | |
I0405 15:39:29.908529 29564 solver.cpp:245] Train net output #39: loss/loss18 = 0.000289294 (* 0.0454545 = 1.31497e-05 loss) | |
I0405 15:39:29.908545 29564 solver.cpp:245] Train net output #40: loss/loss19 = 0.000211685 (* 0.0454545 = 9.62203e-06 loss) | |
I0405 15:39:29.908560 29564 solver.cpp:245] Train net output #41: loss/loss20 = 0.000247822 (* 0.0454545 = 1.12647e-05 loss) | |
I0405 15:39:29.908573 29564 solver.cpp:245] Train net output #42: loss/loss21 = 0.000264505 (* 0.0454545 = 1.2023e-05 loss) | |
I0405 15:39:29.908586 29564 solver.cpp:245] Train net output #43: loss/loss22 = 0.000234314 (* 0.0454545 = 1.06506e-05 loss) | |
I0405 15:39:29.908598 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 15:39:29.908610 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000126747 | |
I0405 15:39:29.908623 29564 sgd_solver.cpp:106] Iteration 14500, lr = 0.009855 | |
I0405 15:43:19.124881 29564 solver.cpp:338] Iteration 15000, Testing net (#0) | |
I0405 15:43:29.426411 29564 solver.cpp:393] Test loss: 0.865717 | |
I0405 15:43:29.426460 29564 solver.cpp:406] Test net output #0: loss/accuracy01 = 0.33 | |
I0405 15:43:29.426476 29564 solver.cpp:406] Test net output #1: loss/accuracy02 = 0.066 | |
I0405 15:43:29.426491 29564 solver.cpp:406] Test net output #2: loss/accuracy03 = 0.085 | |
I0405 15:43:29.426502 29564 solver.cpp:406] Test net output #3: loss/accuracy04 = 0.118 | |
I0405 15:43:29.426514 29564 solver.cpp:406] Test net output #4: loss/accuracy05 = 0.23 | |
I0405 15:43:29.426525 29564 solver.cpp:406] Test net output #5: loss/accuracy06 = 0.502 | |
I0405 15:43:29.426537 29564 solver.cpp:406] Test net output #6: loss/accuracy07 = 0.894 | |
I0405 15:43:29.426550 29564 solver.cpp:406] Test net output #7: loss/accuracy08 = 0.97 | |
I0405 15:43:29.426561 29564 solver.cpp:406] Test net output #8: loss/accuracy09 = 0.995 | |
I0405 15:43:29.426573 29564 solver.cpp:406] Test net output #9: loss/accuracy10 = 0.998 | |
I0405 15:43:29.426584 29564 solver.cpp:406] Test net output #10: loss/accuracy11 = 1 | |
I0405 15:43:29.426596 29564 solver.cpp:406] Test net output #11: loss/accuracy12 = 1 | |
I0405 15:43:29.426607 29564 solver.cpp:406] Test net output #12: loss/accuracy13 = 1 | |
I0405 15:43:29.426619 29564 solver.cpp:406] Test net output #13: loss/accuracy14 = 1 | |
I0405 15:43:29.426630 29564 solver.cpp:406] Test net output #14: loss/accuracy15 = 1 | |
I0405 15:43:29.426640 29564 solver.cpp:406] Test net output #15: loss/accuracy16 = 1 | |
I0405 15:43:29.426651 29564 solver.cpp:406] Test net output #16: loss/accuracy17 = 1 | |
I0405 15:43:29.426662 29564 solver.cpp:406] Test net output #17: loss/accuracy18 = 1 | |
I0405 15:43:29.426673 29564 solver.cpp:406] Test net output #18: loss/accuracy19 = 1 | |
I0405 15:43:29.426684 29564 solver.cpp:406] Test net output #19: loss/accuracy20 = 1 | |
I0405 15:43:29.426697 29564 solver.cpp:406] Test net output #20: loss/accuracy21 = 1 | |
I0405 15:43:29.426707 29564 solver.cpp:406] Test net output #21: loss/accuracy22 = 1 | |
I0405 15:43:29.426723 29564 solver.cpp:406] Test net output #22: loss/loss01 = 3.01031 (* 0.0454545 = 0.136832 loss) | |
I0405 15:43:29.426736 29564 solver.cpp:406] Test net output #23: loss/loss02 = 3.20372 (* 0.0454545 = 0.145624 loss) | |
I0405 15:43:29.426750 29564 solver.cpp:406] Test net output #24: loss/loss03 = 3.30385 (* 0.0454545 = 0.150175 loss) | |
I0405 15:43:29.426764 29564 solver.cpp:406] Test net output #25: loss/loss04 = 3.20563 (* 0.0454545 = 0.14571 loss) | |
I0405 15:43:29.426779 29564 solver.cpp:406] Test net output #26: loss/loss05 = 3.03907 (* 0.0454545 = 0.138139 loss) | |
I0405 15:43:29.426791 29564 solver.cpp:406] Test net output #27: loss/loss06 = 2.16085 (* 0.0454545 = 0.0982204 loss) | |
I0405 15:43:29.426805 29564 solver.cpp:406] Test net output #28: loss/loss07 = 0.804186 (* 0.0454545 = 0.0365539 loss) | |
I0405 15:43:29.426820 29564 solver.cpp:406] Test net output #29: loss/loss08 = 0.241588 (* 0.0454545 = 0.0109813 loss) | |
I0405 15:43:29.426833 29564 solver.cpp:406] Test net output #30: loss/loss09 = 0.0508498 (* 0.0454545 = 0.00231136 loss) | |
I0405 15:43:29.426847 29564 solver.cpp:406] Test net output #31: loss/loss10 = 0.0251716 (* 0.0454545 = 0.00114417 loss) | |
I0405 15:43:29.426863 29564 solver.cpp:406] Test net output #32: loss/loss11 = 4.43829e-05 (* 0.0454545 = 2.0174e-06 loss) | |
I0405 15:43:29.426877 29564 solver.cpp:406] Test net output #33: loss/loss12 = 4.8262e-05 (* 0.0454545 = 2.19373e-06 loss) | |
I0405 15:43:29.426892 29564 solver.cpp:406] Test net output #34: loss/loss13 = 4.23755e-05 (* 0.0454545 = 1.92616e-06 loss) | |
I0405 15:43:29.426905 29564 solver.cpp:406] Test net output #35: loss/loss14 = 4.64831e-05 (* 0.0454545 = 2.11287e-06 loss) | |
I0405 15:43:29.426919 29564 solver.cpp:406] Test net output #36: loss/loss15 = 4.92342e-05 (* 0.0454545 = 2.23792e-06 loss) | |
I0405 15:43:29.426934 29564 solver.cpp:406] Test net output #37: loss/loss16 = 4.47337e-05 (* 0.0454545 = 2.03335e-06 loss) | |
I0405 15:43:29.426947 29564 solver.cpp:406] Test net output #38: loss/loss17 = 4.07529e-05 (* 0.0454545 = 1.85241e-06 loss) | |
I0405 15:43:29.426995 29564 solver.cpp:406] Test net output #39: loss/loss18 = 4.73628e-05 (* 0.0454545 = 2.15285e-06 loss) | |
I0405 15:43:29.427009 29564 solver.cpp:406] Test net output #40: loss/loss19 = 4.88892e-05 (* 0.0454545 = 2.22224e-06 loss) | |
I0405 15:43:29.427023 29564 solver.cpp:406] Test net output #41: loss/loss20 = 4.5482e-05 (* 0.0454545 = 2.06737e-06 loss) | |
I0405 15:43:29.427037 29564 solver.cpp:406] Test net output #42: loss/loss21 = 4.73006e-05 (* 0.0454545 = 2.15003e-06 loss) | |
I0405 15:43:29.427052 29564 solver.cpp:406] Test net output #43: loss/loss22 = 4.20186e-05 (* 0.0454545 = 1.90994e-06 loss) | |
I0405 15:43:29.427063 29564 solver.cpp:406] Test net output #44: total_accuracy = 0.001 | |
I0405 15:43:29.427075 29564 solver.cpp:406] Test net output #45: total_confidence = 0.000463517 | |
I0405 15:43:29.542510 29564 solver.cpp:229] Iteration 15000, loss = 0.945895 | |
I0405 15:43:29.542557 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.15625 | |
I0405 15:43:29.542572 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0405 15:43:29.542585 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0405 15:43:29.542598 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0405 15:43:29.542609 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0405 15:43:29.542621 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625 | |
I0405 15:43:29.542634 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.78125 | |
I0405 15:43:29.542645 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.96875 | |
I0405 15:43:29.542657 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 15:43:29.542670 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 15:43:29.542681 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 15:43:29.542692 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 15:43:29.542703 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 15:43:29.542714 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 15:43:29.542726 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 15:43:29.542737 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 15:43:29.542749 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 15:43:29.542762 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 15:43:29.542773 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 15:43:29.542783 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 15:43:29.542798 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 15:43:29.542809 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 15:43:29.542824 29564 solver.cpp:245] Train net output #22: loss/loss01 = 3.24188 (* 0.0454545 = 0.147358 loss) | |
I0405 15:43:29.542837 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.57951 (* 0.0454545 = 0.162705 loss) | |
I0405 15:43:29.542851 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.36664 (* 0.0454545 = 0.153029 loss) | |
I0405 15:43:29.542865 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.54995 (* 0.0454545 = 0.161361 loss) | |
I0405 15:43:29.542879 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.97899 (* 0.0454545 = 0.135409 loss) | |
I0405 15:43:29.542893 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.39573 (* 0.0454545 = 0.108897 loss) | |
I0405 15:43:29.542906 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.17731 (* 0.0454545 = 0.0535139 loss) | |
I0405 15:43:29.542920 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.265543 (* 0.0454545 = 0.0120701 loss) | |
I0405 15:43:29.542934 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.151809 (* 0.0454545 = 0.00690042 loss) | |
I0405 15:43:29.542948 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.0053711 (* 0.0454545 = 0.000244141 loss) | |
I0405 15:43:29.542984 29564 solver.cpp:245] Train net output #32: loss/loss11 = 4.28778e-05 (* 0.0454545 = 1.94899e-06 loss) | |
I0405 15:43:29.542999 29564 solver.cpp:245] Train net output #33: loss/loss12 = 4.48315e-05 (* 0.0454545 = 2.0378e-06 loss) | |
I0405 15:43:29.543014 29564 solver.cpp:245] Train net output #34: loss/loss13 = 4.28544e-05 (* 0.0454545 = 1.94793e-06 loss) | |
I0405 15:43:29.543027 29564 solver.cpp:245] Train net output #35: loss/loss14 = 4.28357e-05 (* 0.0454545 = 1.94708e-06 loss) | |
I0405 15:43:29.543041 29564 solver.cpp:245] Train net output #36: loss/loss15 = 4.70228e-05 (* 0.0454545 = 2.1374e-06 loss) | |
I0405 15:43:29.543056 29564 solver.cpp:245] Train net output #37: loss/loss16 = 4.35769e-05 (* 0.0454545 = 1.98077e-06 loss) | |
I0405 15:43:29.543069 29564 solver.cpp:245] Train net output #38: loss/loss17 = 4.23737e-05 (* 0.0454545 = 1.92608e-06 loss) | |
I0405 15:43:29.543083 29564 solver.cpp:245] Train net output #39: loss/loss18 = 4.96653e-05 (* 0.0454545 = 2.25752e-06 loss) | |
I0405 15:43:29.543097 29564 solver.cpp:245] Train net output #40: loss/loss19 = 4.2854e-05 (* 0.0454545 = 1.94791e-06 loss) | |
I0405 15:43:29.543112 29564 solver.cpp:245] Train net output #41: loss/loss20 = 4.55721e-05 (* 0.0454545 = 2.07146e-06 loss) | |
I0405 15:43:29.543124 29564 solver.cpp:245] Train net output #42: loss/loss21 = 4.7427e-05 (* 0.0454545 = 2.15578e-06 loss) | |
I0405 15:43:29.543138 29564 solver.cpp:245] Train net output #43: loss/loss22 = 4.37545e-05 (* 0.0454545 = 1.98884e-06 loss) | |
I0405 15:43:29.543151 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 15:43:29.543162 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000387665 | |
I0405 15:43:29.543177 29564 sgd_solver.cpp:106] Iteration 15000, lr = 0.00985 | |
I0405 15:47:19.601919 29564 solver.cpp:229] Iteration 15500, loss = 0.950703 | |
I0405 15:47:19.602083 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0405 15:47:19.602116 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0405 15:47:19.602136 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0405 15:47:19.602149 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0405 15:47:19.602161 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.09375 | |
I0405 15:47:19.602174 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.1875 | |
I0405 15:47:19.602185 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.65625 | |
I0405 15:47:19.602197 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0405 15:47:19.602208 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 15:47:19.602221 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 15:47:19.602231 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 15:47:19.602242 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 15:47:19.602254 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 15:47:19.602265 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 15:47:19.602277 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 15:47:19.602288 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 15:47:19.602299 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 15:47:19.602310 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 15:47:19.602321 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 15:47:19.602332 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 15:47:19.602344 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 15:47:19.602355 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 15:47:19.602370 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.84613 (* 0.0454545 = 0.12937 loss) | |
I0405 15:47:19.602385 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.37309 (* 0.0454545 = 0.153322 loss) | |
I0405 15:47:19.602398 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.40336 (* 0.0454545 = 0.154698 loss) | |
I0405 15:47:19.602416 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.45465 (* 0.0454545 = 0.15703 loss) | |
I0405 15:47:19.602430 29564 solver.cpp:245] Train net output #26: loss/loss05 = 3.20877 (* 0.0454545 = 0.145853 loss) | |
I0405 15:47:19.602444 29564 solver.cpp:245] Train net output #27: loss/loss06 = 3.19565 (* 0.0454545 = 0.145257 loss) | |
I0405 15:47:19.602458 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.60505 (* 0.0454545 = 0.072957 loss) | |
I0405 15:47:19.602471 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.411457 (* 0.0454545 = 0.0187026 loss) | |
I0405 15:47:19.602485 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.203791 (* 0.0454545 = 0.00926322 loss) | |
I0405 15:47:19.602499 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.0120562 (* 0.0454545 = 0.000548009 loss) | |
I0405 15:47:19.602514 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.000202151 (* 0.0454545 = 9.18869e-06 loss) | |
I0405 15:47:19.602527 29564 solver.cpp:245] Train net output #33: loss/loss12 = 0.000221061 (* 0.0454545 = 1.00482e-05 loss) | |
I0405 15:47:19.602541 29564 solver.cpp:245] Train net output #34: loss/loss13 = 0.000227869 (* 0.0454545 = 1.03577e-05 loss) | |
I0405 15:47:19.602555 29564 solver.cpp:245] Train net output #35: loss/loss14 = 0.000196745 (* 0.0454545 = 8.94294e-06 loss) | |
I0405 15:47:19.602569 29564 solver.cpp:245] Train net output #36: loss/loss15 = 0.00023844 (* 0.0454545 = 1.08382e-05 loss) | |
I0405 15:47:19.602583 29564 solver.cpp:245] Train net output #37: loss/loss16 = 0.000210417 (* 0.0454545 = 9.56439e-06 loss) | |
I0405 15:47:19.602597 29564 solver.cpp:245] Train net output #38: loss/loss17 = 0.000229454 (* 0.0454545 = 1.04297e-05 loss) | |
I0405 15:47:19.602628 29564 solver.cpp:245] Train net output #39: loss/loss18 = 0.000265364 (* 0.0454545 = 1.2062e-05 loss) | |
I0405 15:47:19.602644 29564 solver.cpp:245] Train net output #40: loss/loss19 = 0.000199712 (* 0.0454545 = 9.07782e-06 loss) | |
I0405 15:47:19.602658 29564 solver.cpp:245] Train net output #41: loss/loss20 = 0.000229661 (* 0.0454545 = 1.04391e-05 loss) | |
I0405 15:47:19.602672 29564 solver.cpp:245] Train net output #42: loss/loss21 = 0.000235661 (* 0.0454545 = 1.07119e-05 loss) | |
I0405 15:47:19.602686 29564 solver.cpp:245] Train net output #43: loss/loss22 = 0.000214767 (* 0.0454545 = 9.76213e-06 loss) | |
I0405 15:47:19.602699 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 15:47:19.602710 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000111837 | |
I0405 15:47:19.602725 29564 sgd_solver.cpp:106] Iteration 15500, lr = 0.009845 | |
I0405 15:51:08.932515 29564 solver.cpp:229] Iteration 16000, loss = 0.945956 | |
I0405 15:51:08.932699 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0405 15:51:08.932720 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0405 15:51:08.932736 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0405 15:51:08.932749 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0405 15:51:08.932761 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.09375 | |
I0405 15:51:08.932773 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.21875 | |
I0405 15:51:08.932785 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.78125 | |
I0405 15:51:08.932797 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0405 15:51:08.932808 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625 | |
I0405 15:51:08.932821 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0405 15:51:08.932832 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 15:51:08.932843 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 15:51:08.932855 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 15:51:08.932868 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 15:51:08.932878 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 15:51:08.932890 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 15:51:08.932901 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 15:51:08.932912 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 15:51:08.932924 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 15:51:08.932935 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 15:51:08.932947 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 15:51:08.932958 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 15:51:08.932973 29564 solver.cpp:245] Train net output #22: loss/loss01 = 3.11464 (* 0.0454545 = 0.141574 loss) | |
I0405 15:51:08.932988 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.19378 (* 0.0454545 = 0.145172 loss) | |
I0405 15:51:08.933002 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.34309 (* 0.0454545 = 0.151958 loss) | |
I0405 15:51:08.933017 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.41228 (* 0.0454545 = 0.155104 loss) | |
I0405 15:51:08.933030 29564 solver.cpp:245] Train net output #26: loss/loss05 = 3.22078 (* 0.0454545 = 0.146399 loss) | |
I0405 15:51:08.933043 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.84392 (* 0.0454545 = 0.129269 loss) | |
I0405 15:51:08.933058 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.17586 (* 0.0454545 = 0.0534482 loss) | |
I0405 15:51:08.933071 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.62826 (* 0.0454545 = 0.0285573 loss) | |
I0405 15:51:08.933085 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.677735 (* 0.0454545 = 0.0308062 loss) | |
I0405 15:51:08.933099 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.471947 (* 0.0454545 = 0.0214521 loss) | |
I0405 15:51:08.933114 29564 solver.cpp:245] Train net output #32: loss/loss11 = 7.26103e-05 (* 0.0454545 = 3.30047e-06 loss) | |
I0405 15:51:08.933127 29564 solver.cpp:245] Train net output #33: loss/loss12 = 7.79357e-05 (* 0.0454545 = 3.54253e-06 loss) | |
I0405 15:51:08.933141 29564 solver.cpp:245] Train net output #34: loss/loss13 = 7.44773e-05 (* 0.0454545 = 3.38533e-06 loss) | |
I0405 15:51:08.933156 29564 solver.cpp:245] Train net output #35: loss/loss14 = 7.017e-05 (* 0.0454545 = 3.18955e-06 loss) | |
I0405 15:51:08.933169 29564 solver.cpp:245] Train net output #36: loss/loss15 = 8.01701e-05 (* 0.0454545 = 3.6441e-06 loss) | |
I0405 15:51:08.933183 29564 solver.cpp:245] Train net output #37: loss/loss16 = 7.54048e-05 (* 0.0454545 = 3.42749e-06 loss) | |
I0405 15:51:08.933197 29564 solver.cpp:245] Train net output #38: loss/loss17 = 7.2873e-05 (* 0.0454545 = 3.31241e-06 loss) | |
I0405 15:51:08.933229 29564 solver.cpp:245] Train net output #39: loss/loss18 = 8.52055e-05 (* 0.0454545 = 3.87298e-06 loss) | |
I0405 15:51:08.933244 29564 solver.cpp:245] Train net output #40: loss/loss19 = 7.2347e-05 (* 0.0454545 = 3.2885e-06 loss) | |
I0405 15:51:08.933259 29564 solver.cpp:245] Train net output #41: loss/loss20 = 8.103e-05 (* 0.0454545 = 3.68318e-06 loss) | |
I0405 15:51:08.933274 29564 solver.cpp:245] Train net output #42: loss/loss21 = 8.33271e-05 (* 0.0454545 = 3.7876e-06 loss) | |
I0405 15:51:08.933287 29564 solver.cpp:245] Train net output #43: loss/loss22 = 7.14803e-05 (* 0.0454545 = 3.2491e-06 loss) | |
I0405 15:51:08.933298 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 15:51:08.933310 29564 solver.cpp:245] Train net output #45: total_confidence = 0.00090685 | |
I0405 15:51:08.933325 29564 sgd_solver.cpp:106] Iteration 16000, lr = 0.00984 | |
I0405 15:54:58.523903 29564 solver.cpp:229] Iteration 16500, loss = 0.936841 | |
I0405 15:54:58.524011 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.03125 | |
I0405 15:54:58.524030 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0405 15:54:58.524042 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0405 15:54:58.524055 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625 | |
I0405 15:54:58.524067 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0405 15:54:58.524101 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125 | |
I0405 15:54:58.524114 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875 | |
I0405 15:54:58.524128 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0405 15:54:58.524140 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0405 15:54:58.524152 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 15:54:58.524164 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 15:54:58.524175 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 15:54:58.524188 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 15:54:58.524199 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 15:54:58.524209 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 15:54:58.524220 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 15:54:58.524231 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 15:54:58.524245 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 15:54:58.524257 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 15:54:58.524268 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 15:54:58.524281 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 15:54:58.524291 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 15:54:58.524307 29564 solver.cpp:245] Train net output #22: loss/loss01 = 3.02554 (* 0.0454545 = 0.137525 loss) | |
I0405 15:54:58.524322 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.5755 (* 0.0454545 = 0.162523 loss) | |
I0405 15:54:58.524335 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.40878 (* 0.0454545 = 0.154945 loss) | |
I0405 15:54:58.524349 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.30668 (* 0.0454545 = 0.150303 loss) | |
I0405 15:54:58.524363 29564 solver.cpp:245] Train net output #26: loss/loss05 = 3.17025 (* 0.0454545 = 0.144102 loss) | |
I0405 15:54:58.524377 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.75632 (* 0.0454545 = 0.125287 loss) | |
I0405 15:54:58.524391 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.62252 (* 0.0454545 = 0.0737508 loss) | |
I0405 15:54:58.524405 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.311339 (* 0.0454545 = 0.0141518 loss) | |
I0405 15:54:58.524418 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.353849 (* 0.0454545 = 0.016084 loss) | |
I0405 15:54:58.524432 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.209358 (* 0.0454545 = 0.00951628 loss) | |
I0405 15:54:58.524447 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.000226792 (* 0.0454545 = 1.03087e-05 loss) | |
I0405 15:54:58.524461 29564 solver.cpp:245] Train net output #33: loss/loss12 = 0.000236849 (* 0.0454545 = 1.07659e-05 loss) | |
I0405 15:54:58.524476 29564 solver.cpp:245] Train net output #34: loss/loss13 = 0.000228034 (* 0.0454545 = 1.03652e-05 loss) | |
I0405 15:54:58.524489 29564 solver.cpp:245] Train net output #35: loss/loss14 = 0.000231674 (* 0.0454545 = 1.05306e-05 loss) | |
I0405 15:54:58.524503 29564 solver.cpp:245] Train net output #36: loss/loss15 = 0.000249587 (* 0.0454545 = 1.13449e-05 loss) | |
I0405 15:54:58.524518 29564 solver.cpp:245] Train net output #37: loss/loss16 = 0.00023181 (* 0.0454545 = 1.05368e-05 loss) | |
I0405 15:54:58.524533 29564 solver.cpp:245] Train net output #38: loss/loss17 = 0.000211004 (* 0.0454545 = 9.59111e-06 loss) | |
I0405 15:54:58.524564 29564 solver.cpp:245] Train net output #39: loss/loss18 = 0.000239487 (* 0.0454545 = 1.08858e-05 loss) | |
I0405 15:54:58.524579 29564 solver.cpp:245] Train net output #40: loss/loss19 = 0.000222435 (* 0.0454545 = 1.01107e-05 loss) | |
I0405 15:54:58.524592 29564 solver.cpp:245] Train net output #41: loss/loss20 = 0.000233581 (* 0.0454545 = 1.06173e-05 loss) | |
I0405 15:54:58.524605 29564 solver.cpp:245] Train net output #42: loss/loss21 = 0.000240223 (* 0.0454545 = 1.09193e-05 loss) | |
I0405 15:54:58.524619 29564 solver.cpp:245] Train net output #43: loss/loss22 = 0.000226394 (* 0.0454545 = 1.02906e-05 loss) | |
I0405 15:54:58.524631 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 15:54:58.524643 29564 solver.cpp:245] Train net output #45: total_confidence = 6.9227e-05 | |
I0405 15:54:58.524657 29564 sgd_solver.cpp:106] Iteration 16500, lr = 0.009835 | |
I0405 15:58:48.676604 29564 solver.cpp:229] Iteration 17000, loss = 0.935537 | |
I0405 15:58:48.676738 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0405 15:58:48.676759 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0405 15:58:48.676772 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.15625 | |
I0405 15:58:48.676784 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375 | |
I0405 15:58:48.676800 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.15625 | |
I0405 15:58:48.676812 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0405 15:58:48.676826 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0405 15:58:48.676837 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0405 15:58:48.676849 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 15:58:48.676862 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 15:58:48.676873 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 15:58:48.676892 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 15:58:48.676904 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 15:58:48.676916 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 15:58:48.676928 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 15:58:48.676939 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 15:58:48.676950 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 15:58:48.676961 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 15:58:48.676973 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 15:58:48.676985 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 15:58:48.676995 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 15:58:48.677007 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 15:58:48.677022 29564 solver.cpp:245] Train net output #22: loss/loss01 = 3.02998 (* 0.0454545 = 0.137727 loss) | |
I0405 15:58:48.677038 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.27675 (* 0.0454545 = 0.148943 loss) | |
I0405 15:58:48.677052 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.29964 (* 0.0454545 = 0.149984 loss) | |
I0405 15:58:48.677067 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.15737 (* 0.0454545 = 0.143517 loss) | |
I0405 15:58:48.677088 29564 solver.cpp:245] Train net output #26: loss/loss05 = 3.04847 (* 0.0454545 = 0.138567 loss) | |
I0405 15:58:48.677101 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.56697 (* 0.0454545 = 0.116681 loss) | |
I0405 15:58:48.677115 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.38183 (* 0.0454545 = 0.0628106 loss) | |
I0405 15:58:48.677129 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.356133 (* 0.0454545 = 0.0161879 loss) | |
I0405 15:58:48.677144 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.193193 (* 0.0454545 = 0.00878148 loss) | |
I0405 15:58:48.677157 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.248609 (* 0.0454545 = 0.0113004 loss) | |
I0405 15:58:48.677172 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.00016187 (* 0.0454545 = 7.35774e-06 loss) | |
I0405 15:58:48.677186 29564 solver.cpp:245] Train net output #33: loss/loss12 = 0.000172432 (* 0.0454545 = 7.83784e-06 loss) | |
I0405 15:58:48.677202 29564 solver.cpp:245] Train net output #34: loss/loss13 = 0.000154041 (* 0.0454545 = 7.00187e-06 loss) | |
I0405 15:58:48.677217 29564 solver.cpp:245] Train net output #35: loss/loss14 = 0.000159714 (* 0.0454545 = 7.25973e-06 loss) | |
I0405 15:58:48.677230 29564 solver.cpp:245] Train net output #36: loss/loss15 = 0.000165156 (* 0.0454545 = 7.5071e-06 loss) | |
I0405 15:58:48.677244 29564 solver.cpp:245] Train net output #37: loss/loss16 = 0.000164661 (* 0.0454545 = 7.4846e-06 loss) | |
I0405 15:58:48.677258 29564 solver.cpp:245] Train net output #38: loss/loss17 = 0.000142483 (* 0.0454545 = 6.47651e-06 loss) | |
I0405 15:58:48.677289 29564 solver.cpp:245] Train net output #39: loss/loss18 = 0.000161398 (* 0.0454545 = 7.33627e-06 loss) | |
I0405 15:58:48.677304 29564 solver.cpp:245] Train net output #40: loss/loss19 = 0.000172302 (* 0.0454545 = 7.8319e-06 loss) | |
I0405 15:58:48.677319 29564 solver.cpp:245] Train net output #41: loss/loss20 = 0.000166481 (* 0.0454545 = 7.56731e-06 loss) | |
I0405 15:58:48.677332 29564 solver.cpp:245] Train net output #42: loss/loss21 = 0.000164223 (* 0.0454545 = 7.4647e-06 loss) | |
I0405 15:58:48.677347 29564 solver.cpp:245] Train net output #43: loss/loss22 = 0.000154067 (* 0.0454545 = 7.00304e-06 loss) | |
I0405 15:58:48.677361 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 15:58:48.677373 29564 solver.cpp:245] Train net output #45: total_confidence = 7.80372e-05 | |
I0405 15:58:48.677387 29564 sgd_solver.cpp:106] Iteration 17000, lr = 0.00983 | |
I0405 16:02:38.560196 29564 solver.cpp:229] Iteration 17500, loss = 0.937171 | |
I0405 16:02:38.560436 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0405 16:02:38.560463 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0405 16:02:38.560477 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0405 16:02:38.560488 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125 | |
I0405 16:02:38.560500 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.21875 | |
I0405 16:02:38.560513 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0405 16:02:38.560524 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0405 16:02:38.560537 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0405 16:02:38.560549 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0405 16:02:38.560560 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0405 16:02:38.560572 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 16:02:38.560585 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 16:02:38.560595 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 16:02:38.560607 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 16:02:38.560618 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 16:02:38.560631 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 16:02:38.560642 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 16:02:38.560652 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 16:02:38.560664 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 16:02:38.560675 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 16:02:38.560686 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 16:02:38.560698 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 16:02:38.560713 29564 solver.cpp:245] Train net output #22: loss/loss01 = 3.03435 (* 0.0454545 = 0.137925 loss) | |
I0405 16:02:38.560726 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.28475 (* 0.0454545 = 0.149307 loss) | |
I0405 16:02:38.560740 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.27079 (* 0.0454545 = 0.148672 loss) | |
I0405 16:02:38.560755 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.23558 (* 0.0454545 = 0.147072 loss) | |
I0405 16:02:38.560767 29564 solver.cpp:245] Train net output #26: loss/loss05 = 3.0918 (* 0.0454545 = 0.140536 loss) | |
I0405 16:02:38.560781 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.24371 (* 0.0454545 = 0.101987 loss) | |
I0405 16:02:38.560796 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.33987 (* 0.0454545 = 0.0609033 loss) | |
I0405 16:02:38.560809 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.624173 (* 0.0454545 = 0.0283715 loss) | |
I0405 16:02:38.560823 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.392503 (* 0.0454545 = 0.0178411 loss) | |
I0405 16:02:38.560837 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.383224 (* 0.0454545 = 0.0174193 loss) | |
I0405 16:02:38.560853 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.000243536 (* 0.0454545 = 1.10698e-05 loss) | |
I0405 16:02:38.560868 29564 solver.cpp:245] Train net output #33: loss/loss12 = 0.00023936 (* 0.0454545 = 1.088e-05 loss) | |
I0405 16:02:38.560884 29564 solver.cpp:245] Train net output #34: loss/loss13 = 0.000232872 (* 0.0454545 = 1.05851e-05 loss) | |
I0405 16:02:38.560899 29564 solver.cpp:245] Train net output #35: loss/loss14 = 0.000239313 (* 0.0454545 = 1.08779e-05 loss) | |
I0405 16:02:38.560912 29564 solver.cpp:245] Train net output #36: loss/loss15 = 0.000226361 (* 0.0454545 = 1.02891e-05 loss) | |
I0405 16:02:38.560926 29564 solver.cpp:245] Train net output #37: loss/loss16 = 0.000232776 (* 0.0454545 = 1.05807e-05 loss) | |
I0405 16:02:38.560940 29564 solver.cpp:245] Train net output #38: loss/loss17 = 0.000214409 (* 0.0454545 = 9.74584e-06 loss) | |
I0405 16:02:38.560968 29564 solver.cpp:245] Train net output #39: loss/loss18 = 0.000222934 (* 0.0454545 = 1.01333e-05 loss) | |
I0405 16:02:38.560983 29564 solver.cpp:245] Train net output #40: loss/loss19 = 0.000250224 (* 0.0454545 = 1.13738e-05 loss) | |
I0405 16:02:38.560997 29564 solver.cpp:245] Train net output #41: loss/loss20 = 0.00023945 (* 0.0454545 = 1.08841e-05 loss) | |
I0405 16:02:38.561028 29564 solver.cpp:245] Train net output #42: loss/loss21 = 0.000231005 (* 0.0454545 = 1.05002e-05 loss) | |
I0405 16:02:38.561044 29564 solver.cpp:245] Train net output #43: loss/loss22 = 0.000219927 (* 0.0454545 = 9.99666e-06 loss) | |
I0405 16:02:38.561056 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 16:02:38.561069 29564 solver.cpp:245] Train net output #45: total_confidence = 8.00725e-05 | |
I0405 16:02:38.561081 29564 sgd_solver.cpp:106] Iteration 17500, lr = 0.009825 | |
I0405 16:06:28.005138 29564 solver.cpp:229] Iteration 18000, loss = 0.927327 | |
I0405 16:06:28.005275 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0405 16:06:28.005295 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0405 16:06:28.005308 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0405 16:06:28.005321 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125 | |
I0405 16:06:28.005332 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.21875 | |
I0405 16:06:28.005344 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.28125 | |
I0405 16:06:28.005357 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625 | |
I0405 16:06:28.005368 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375 | |
I0405 16:06:28.005380 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0405 16:06:28.005393 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 16:06:28.005404 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 16:06:28.005415 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 16:06:28.005427 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 16:06:28.005439 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 16:06:28.005450 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 16:06:28.005461 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 16:06:28.005473 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 16:06:28.005484 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 16:06:28.005496 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 16:06:28.005506 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 16:06:28.005518 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 16:06:28.005530 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 16:06:28.005545 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.84533 (* 0.0454545 = 0.129333 loss) | |
I0405 16:06:28.005560 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.02864 (* 0.0454545 = 0.137665 loss) | |
I0405 16:06:28.005574 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.21504 (* 0.0454545 = 0.146138 loss) | |
I0405 16:06:28.005589 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.25461 (* 0.0454545 = 0.147937 loss) | |
I0405 16:06:28.005602 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.87615 (* 0.0454545 = 0.130734 loss) | |
I0405 16:06:28.005616 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.45839 (* 0.0454545 = 0.111745 loss) | |
I0405 16:06:28.005630 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.60661 (* 0.0454545 = 0.0730277 loss) | |
I0405 16:06:28.005645 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.812869 (* 0.0454545 = 0.0369486 loss) | |
I0405 16:06:28.005658 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.360278 (* 0.0454545 = 0.0163763 loss) | |
I0405 16:06:28.005672 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.0331852 (* 0.0454545 = 0.00150842 loss) | |
I0405 16:06:28.005686 29564 solver.cpp:245] Train net output #32: loss/loss11 = 7.79727e-05 (* 0.0454545 = 3.54421e-06 loss) | |
I0405 16:06:28.005704 29564 solver.cpp:245] Train net output #33: loss/loss12 = 8.37354e-05 (* 0.0454545 = 3.80616e-06 loss) | |
I0405 16:06:28.005718 29564 solver.cpp:245] Train net output #34: loss/loss13 = 7.91803e-05 (* 0.0454545 = 3.5991e-06 loss) | |
I0405 16:06:28.005733 29564 solver.cpp:245] Train net output #35: loss/loss14 = 8.02927e-05 (* 0.0454545 = 3.64967e-06 loss) | |
I0405 16:06:28.005748 29564 solver.cpp:245] Train net output #36: loss/loss15 = 8.30097e-05 (* 0.0454545 = 3.77317e-06 loss) | |
I0405 16:06:28.005761 29564 solver.cpp:245] Train net output #37: loss/loss16 = 7.66864e-05 (* 0.0454545 = 3.48575e-06 loss) | |
I0405 16:06:28.005775 29564 solver.cpp:245] Train net output #38: loss/loss17 = 7.41092e-05 (* 0.0454545 = 3.3686e-06 loss) | |
I0405 16:06:28.005806 29564 solver.cpp:245] Train net output #39: loss/loss18 = 7.78339e-05 (* 0.0454545 = 3.53791e-06 loss) | |
I0405 16:06:28.005822 29564 solver.cpp:245] Train net output #40: loss/loss19 = 8.62797e-05 (* 0.0454545 = 3.9218e-06 loss) | |
I0405 16:06:28.005836 29564 solver.cpp:245] Train net output #41: loss/loss20 = 8.00627e-05 (* 0.0454545 = 3.63921e-06 loss) | |
I0405 16:06:28.005851 29564 solver.cpp:245] Train net output #42: loss/loss21 = 7.93702e-05 (* 0.0454545 = 3.60774e-06 loss) | |
I0405 16:06:28.005864 29564 solver.cpp:245] Train net output #43: loss/loss22 = 7.41132e-05 (* 0.0454545 = 3.36878e-06 loss) | |
I0405 16:06:28.005880 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 16:06:28.005892 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000733008 | |
I0405 16:06:28.005908 29564 sgd_solver.cpp:106] Iteration 18000, lr = 0.00982 | |
I0405 16:10:17.767992 29564 solver.cpp:229] Iteration 18500, loss = 0.935033 | |
I0405 16:10:17.768146 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.25 | |
I0405 16:10:17.768167 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.1875 | |
I0405 16:10:17.768182 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0405 16:10:17.768193 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375 | |
I0405 16:10:17.768205 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.125 | |
I0405 16:10:17.768218 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5 | |
I0405 16:10:17.768229 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875 | |
I0405 16:10:17.768240 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0405 16:10:17.768254 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 16:10:17.768266 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 16:10:17.768278 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 16:10:17.768290 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 16:10:17.768301 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 16:10:17.768313 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 16:10:17.768324 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 16:10:17.768335 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 16:10:17.768347 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 16:10:17.768358 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 16:10:17.768369 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 16:10:17.768381 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 16:10:17.768393 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 16:10:17.768404 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 16:10:17.768419 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.69035 (* 0.0454545 = 0.122289 loss) | |
I0405 16:10:17.768434 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.07666 (* 0.0454545 = 0.139848 loss) | |
I0405 16:10:17.768447 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.22349 (* 0.0454545 = 0.146522 loss) | |
I0405 16:10:17.768461 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.15686 (* 0.0454545 = 0.143494 loss) | |
I0405 16:10:17.768476 29564 solver.cpp:245] Train net output #26: loss/loss05 = 3.36542 (* 0.0454545 = 0.152974 loss) | |
I0405 16:10:17.768488 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.36947 (* 0.0454545 = 0.107703 loss) | |
I0405 16:10:17.768502 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.46613 (* 0.0454545 = 0.0666421 loss) | |
I0405 16:10:17.768517 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.366151 (* 0.0454545 = 0.0166432 loss) | |
I0405 16:10:17.768529 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.272741 (* 0.0454545 = 0.0123973 loss) | |
I0405 16:10:17.768543 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.336603 (* 0.0454545 = 0.0153001 loss) | |
I0405 16:10:17.768558 29564 solver.cpp:245] Train net output #32: loss/loss11 = 3.82991e-05 (* 0.0454545 = 1.74087e-06 loss) | |
I0405 16:10:17.768571 29564 solver.cpp:245] Train net output #33: loss/loss12 = 3.86716e-05 (* 0.0454545 = 1.7578e-06 loss) | |
I0405 16:10:17.768585 29564 solver.cpp:245] Train net output #34: loss/loss13 = 3.38428e-05 (* 0.0454545 = 1.53831e-06 loss) | |
I0405 16:10:17.768599 29564 solver.cpp:245] Train net output #35: loss/loss14 = 3.63207e-05 (* 0.0454545 = 1.65094e-06 loss) | |
I0405 16:10:17.768615 29564 solver.cpp:245] Train net output #36: loss/loss15 = 3.36415e-05 (* 0.0454545 = 1.52916e-06 loss) | |
I0405 16:10:17.768628 29564 solver.cpp:245] Train net output #37: loss/loss16 = 4.18595e-05 (* 0.0454545 = 1.9027e-06 loss) | |
I0405 16:10:17.768642 29564 solver.cpp:245] Train net output #38: loss/loss17 = 3.16745e-05 (* 0.0454545 = 1.43975e-06 loss) | |
I0405 16:10:17.768674 29564 solver.cpp:245] Train net output #39: loss/loss18 = 3.74273e-05 (* 0.0454545 = 1.70124e-06 loss) | |
I0405 16:10:17.768690 29564 solver.cpp:245] Train net output #40: loss/loss19 = 3.58063e-05 (* 0.0454545 = 1.62756e-06 loss) | |
I0405 16:10:17.768704 29564 solver.cpp:245] Train net output #41: loss/loss20 = 4.31395e-05 (* 0.0454545 = 1.96089e-06 loss) | |
I0405 16:10:17.768718 29564 solver.cpp:245] Train net output #42: loss/loss21 = 3.69802e-05 (* 0.0454545 = 1.68092e-06 loss) | |
I0405 16:10:17.768731 29564 solver.cpp:245] Train net output #43: loss/loss22 = 3.46627e-05 (* 0.0454545 = 1.57558e-06 loss) | |
I0405 16:10:17.768743 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 16:10:17.768755 29564 solver.cpp:245] Train net output #45: total_confidence = 3.34945e-05 | |
I0405 16:10:17.768769 29564 sgd_solver.cpp:106] Iteration 18500, lr = 0.009815 | |
I0405 16:14:07.371347 29564 solver.cpp:229] Iteration 19000, loss = 0.92663 | |
I0405 16:14:07.371533 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.1875 | |
I0405 16:14:07.371556 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0405 16:14:07.371569 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.15625 | |
I0405 16:14:07.371582 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625 | |
I0405 16:14:07.371593 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.09375 | |
I0405 16:14:07.371604 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625 | |
I0405 16:14:07.371616 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.59375 | |
I0405 16:14:07.371629 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0405 16:14:07.371641 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 16:14:07.371654 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 16:14:07.371666 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 16:14:07.371678 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 16:14:07.371690 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 16:14:07.371701 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 16:14:07.371712 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 16:14:07.371723 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 16:14:07.371734 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 16:14:07.371745 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 16:14:07.371757 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 16:14:07.371767 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 16:14:07.371779 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 16:14:07.371790 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 16:14:07.371806 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.96754 (* 0.0454545 = 0.134888 loss) | |
I0405 16:14:07.371821 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.49516 (* 0.0454545 = 0.158871 loss) | |
I0405 16:14:07.371835 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.4824 (* 0.0454545 = 0.158291 loss) | |
I0405 16:14:07.371850 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.47177 (* 0.0454545 = 0.157808 loss) | |
I0405 16:14:07.371863 29564 solver.cpp:245] Train net output #26: loss/loss05 = 3.22623 (* 0.0454545 = 0.146647 loss) | |
I0405 16:14:07.371877 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.61268 (* 0.0454545 = 0.118758 loss) | |
I0405 16:14:07.371891 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.90507 (* 0.0454545 = 0.0865941 loss) | |
I0405 16:14:07.371906 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.425533 (* 0.0454545 = 0.0193424 loss) | |
I0405 16:14:07.371920 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.183317 (* 0.0454545 = 0.0083326 loss) | |
I0405 16:14:07.371934 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.0308287 (* 0.0454545 = 0.0014013 loss) | |
I0405 16:14:07.371949 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.000170197 (* 0.0454545 = 7.73621e-06 loss) | |
I0405 16:14:07.371963 29564 solver.cpp:245] Train net output #33: loss/loss12 = 0.000171118 (* 0.0454545 = 7.77808e-06 loss) | |
I0405 16:14:07.371978 29564 solver.cpp:245] Train net output #34: loss/loss13 = 0.000173666 (* 0.0454545 = 7.89393e-06 loss) | |
I0405 16:14:07.371991 29564 solver.cpp:245] Train net output #35: loss/loss14 = 0.00015852 (* 0.0454545 = 7.20547e-06 loss) | |
I0405 16:14:07.372006 29564 solver.cpp:245] Train net output #36: loss/loss15 = 0.000169147 (* 0.0454545 = 7.68851e-06 loss) | |
I0405 16:14:07.372020 29564 solver.cpp:245] Train net output #37: loss/loss16 = 0.000168273 (* 0.0454545 = 7.64877e-06 loss) | |
I0405 16:14:07.372035 29564 solver.cpp:245] Train net output #38: loss/loss17 = 0.000171266 (* 0.0454545 = 7.78482e-06 loss) | |
I0405 16:14:07.372066 29564 solver.cpp:245] Train net output #39: loss/loss18 = 0.000181858 (* 0.0454545 = 8.26625e-06 loss) | |
I0405 16:14:07.372102 29564 solver.cpp:245] Train net output #40: loss/loss19 = 0.000162996 (* 0.0454545 = 7.40892e-06 loss) | |
I0405 16:14:07.372117 29564 solver.cpp:245] Train net output #41: loss/loss20 = 0.00018229 (* 0.0454545 = 8.28591e-06 loss) | |
I0405 16:14:07.372131 29564 solver.cpp:245] Train net output #42: loss/loss21 = 0.000174868 (* 0.0454545 = 7.94856e-06 loss) | |
I0405 16:14:07.372145 29564 solver.cpp:245] Train net output #43: loss/loss22 = 0.000169715 (* 0.0454545 = 7.71432e-06 loss) | |
I0405 16:14:07.372158 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 16:14:07.372169 29564 solver.cpp:245] Train net output #45: total_confidence = 2.35167e-05 | |
I0405 16:14:07.372184 29564 sgd_solver.cpp:106] Iteration 19000, lr = 0.00981 | |
I0405 16:17:56.947706 29564 solver.cpp:229] Iteration 19500, loss = 0.921893 | |
I0405 16:17:56.947844 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.03125 | |
I0405 16:17:56.947862 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0405 16:17:56.947875 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0405 16:17:56.947887 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0405 16:17:56.947902 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125 | |
I0405 16:17:56.947914 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375 | |
I0405 16:17:56.947926 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.78125 | |
I0405 16:17:56.947938 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0405 16:17:56.947950 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 16:17:56.947962 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 16:17:56.947973 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 16:17:56.947985 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 16:17:56.947996 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 16:17:56.948009 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 16:17:56.948019 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 16:17:56.948030 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 16:17:56.948042 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 16:17:56.948053 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 16:17:56.948065 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 16:17:56.948097 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 16:17:56.948110 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 16:17:56.948122 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 16:17:56.948137 29564 solver.cpp:245] Train net output #22: loss/loss01 = 3.21962 (* 0.0454545 = 0.146346 loss) | |
I0405 16:17:56.948151 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.57956 (* 0.0454545 = 0.162707 loss) | |
I0405 16:17:56.948165 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.3728 (* 0.0454545 = 0.153309 loss) | |
I0405 16:17:56.948179 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.51996 (* 0.0454545 = 0.159998 loss) | |
I0405 16:17:56.948194 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.99917 (* 0.0454545 = 0.136326 loss) | |
I0405 16:17:56.948206 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.65966 (* 0.0454545 = 0.120894 loss) | |
I0405 16:17:56.948220 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.26064 (* 0.0454545 = 0.057302 loss) | |
I0405 16:17:56.948235 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.370871 (* 0.0454545 = 0.0168578 loss) | |
I0405 16:17:56.948248 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.134453 (* 0.0454545 = 0.00611148 loss) | |
I0405 16:17:56.948263 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.146216 (* 0.0454545 = 0.00664619 loss) | |
I0405 16:17:56.948279 29564 solver.cpp:245] Train net output #32: loss/loss11 = 5.60408e-05 (* 0.0454545 = 2.54731e-06 loss) | |
I0405 16:17:56.948295 29564 solver.cpp:245] Train net output #33: loss/loss12 = 5.5991e-05 (* 0.0454545 = 2.54505e-06 loss) | |
I0405 16:17:56.948309 29564 solver.cpp:245] Train net output #34: loss/loss13 = 4.95734e-05 (* 0.0454545 = 2.25334e-06 loss) | |
I0405 16:17:56.948323 29564 solver.cpp:245] Train net output #35: loss/loss14 = 5.3002e-05 (* 0.0454545 = 2.40918e-06 loss) | |
I0405 16:17:56.948338 29564 solver.cpp:245] Train net output #36: loss/loss15 = 5.26074e-05 (* 0.0454545 = 2.39124e-06 loss) | |
I0405 16:17:56.948351 29564 solver.cpp:245] Train net output #37: loss/loss16 = 5.04484e-05 (* 0.0454545 = 2.29311e-06 loss) | |
I0405 16:17:56.948365 29564 solver.cpp:245] Train net output #38: loss/loss17 = 4.46716e-05 (* 0.0454545 = 2.03053e-06 loss) | |
I0405 16:17:56.948393 29564 solver.cpp:245] Train net output #39: loss/loss18 = 4.6208e-05 (* 0.0454545 = 2.10037e-06 loss) | |
I0405 16:17:56.948408 29564 solver.cpp:245] Train net output #40: loss/loss19 = 5.70383e-05 (* 0.0454545 = 2.59265e-06 loss) | |
I0405 16:17:56.948422 29564 solver.cpp:245] Train net output #41: loss/loss20 = 5.22354e-05 (* 0.0454545 = 2.37434e-06 loss) | |
I0405 16:17:56.948436 29564 solver.cpp:245] Train net output #42: loss/loss21 = 4.95028e-05 (* 0.0454545 = 2.25013e-06 loss) | |
I0405 16:17:56.948451 29564 solver.cpp:245] Train net output #43: loss/loss22 = 4.96091e-05 (* 0.0454545 = 2.25496e-06 loss) | |
I0405 16:17:56.948463 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 16:17:56.948474 29564 solver.cpp:245] Train net output #45: total_confidence = 2.61263e-05 | |
I0405 16:17:56.948488 29564 sgd_solver.cpp:106] Iteration 19500, lr = 0.009805 | |
I0405 16:21:46.409340 29564 solver.cpp:338] Iteration 20000, Testing net (#0) | |
I0405 16:21:56.706635 29564 solver.cpp:393] Test loss: 0.841183 | |
I0405 16:21:56.706697 29564 solver.cpp:406] Test net output #0: loss/accuracy01 = 0.15 | |
I0405 16:21:56.706712 29564 solver.cpp:406] Test net output #1: loss/accuracy02 = 0.074 | |
I0405 16:21:56.706727 29564 solver.cpp:406] Test net output #2: loss/accuracy03 = 0.09 | |
I0405 16:21:56.706738 29564 solver.cpp:406] Test net output #3: loss/accuracy04 = 0.129 | |
I0405 16:21:56.706749 29564 solver.cpp:406] Test net output #4: loss/accuracy05 = 0.246 | |
I0405 16:21:56.706760 29564 solver.cpp:406] Test net output #5: loss/accuracy06 = 0.506 | |
I0405 16:21:56.706773 29564 solver.cpp:406] Test net output #6: loss/accuracy07 = 0.893 | |
I0405 16:21:56.706785 29564 solver.cpp:406] Test net output #7: loss/accuracy08 = 0.97 | |
I0405 16:21:56.706797 29564 solver.cpp:406] Test net output #8: loss/accuracy09 = 0.995 | |
I0405 16:21:56.706809 29564 solver.cpp:406] Test net output #9: loss/accuracy10 = 0.998 | |
I0405 16:21:56.706820 29564 solver.cpp:406] Test net output #10: loss/accuracy11 = 1 | |
I0405 16:21:56.706832 29564 solver.cpp:406] Test net output #11: loss/accuracy12 = 1 | |
I0405 16:21:56.706843 29564 solver.cpp:406] Test net output #12: loss/accuracy13 = 1 | |
I0405 16:21:56.706854 29564 solver.cpp:406] Test net output #13: loss/accuracy14 = 1 | |
I0405 16:21:56.706866 29564 solver.cpp:406] Test net output #14: loss/accuracy15 = 1 | |
I0405 16:21:56.706876 29564 solver.cpp:406] Test net output #15: loss/accuracy16 = 1 | |
I0405 16:21:56.706887 29564 solver.cpp:406] Test net output #16: loss/accuracy17 = 1 | |
I0405 16:21:56.706898 29564 solver.cpp:406] Test net output #17: loss/accuracy18 = 1 | |
I0405 16:21:56.706909 29564 solver.cpp:406] Test net output #18: loss/accuracy19 = 1 | |
I0405 16:21:56.706920 29564 solver.cpp:406] Test net output #19: loss/accuracy20 = 1 | |
I0405 16:21:56.706933 29564 solver.cpp:406] Test net output #20: loss/accuracy21 = 1 | |
I0405 16:21:56.706943 29564 solver.cpp:406] Test net output #21: loss/accuracy22 = 1 | |
I0405 16:21:56.706959 29564 solver.cpp:406] Test net output #22: loss/loss01 = 3.10181 (* 0.0454545 = 0.140991 loss) | |
I0405 16:21:56.706974 29564 solver.cpp:406] Test net output #23: loss/loss02 = 3.21545 (* 0.0454545 = 0.146157 loss) | |
I0405 16:21:56.706986 29564 solver.cpp:406] Test net output #24: loss/loss03 = 3.2207 (* 0.0454545 = 0.146396 loss) | |
I0405 16:21:56.707000 29564 solver.cpp:406] Test net output #25: loss/loss04 = 3.10271 (* 0.0454545 = 0.141032 loss) | |
I0405 16:21:56.707015 29564 solver.cpp:406] Test net output #26: loss/loss05 = 2.89067 (* 0.0454545 = 0.131394 loss) | |
I0405 16:21:56.707028 29564 solver.cpp:406] Test net output #27: loss/loss06 = 1.97616 (* 0.0454545 = 0.0898255 loss) | |
I0405 16:21:56.707042 29564 solver.cpp:406] Test net output #28: loss/loss07 = 0.705744 (* 0.0454545 = 0.0320793 loss) | |
I0405 16:21:56.707056 29564 solver.cpp:406] Test net output #29: loss/loss08 = 0.221434 (* 0.0454545 = 0.0100652 loss) | |
I0405 16:21:56.707069 29564 solver.cpp:406] Test net output #30: loss/loss09 = 0.0473982 (* 0.0454545 = 0.00215447 loss) | |
I0405 16:21:56.707083 29564 solver.cpp:406] Test net output #31: loss/loss10 = 0.0232042 (* 0.0454545 = 0.00105474 loss) | |
I0405 16:21:56.707098 29564 solver.cpp:406] Test net output #32: loss/loss11 = 6.77782e-05 (* 0.0454545 = 3.08083e-06 loss) | |
I0405 16:21:56.707113 29564 solver.cpp:406] Test net output #33: loss/loss12 = 6.47989e-05 (* 0.0454545 = 2.9454e-06 loss) | |
I0405 16:21:56.707126 29564 solver.cpp:406] Test net output #34: loss/loss13 = 6.18561e-05 (* 0.0454545 = 2.81164e-06 loss) | |
I0405 16:21:56.707140 29564 solver.cpp:406] Test net output #35: loss/loss14 = 6.37742e-05 (* 0.0454545 = 2.89883e-06 loss) | |
I0405 16:21:56.707154 29564 solver.cpp:406] Test net output #36: loss/loss15 = 6.67826e-05 (* 0.0454545 = 3.03557e-06 loss) | |
I0405 16:21:56.707168 29564 solver.cpp:406] Test net output #37: loss/loss16 = 6.03262e-05 (* 0.0454545 = 2.7421e-06 loss) | |
I0405 16:21:56.707182 29564 solver.cpp:406] Test net output #38: loss/loss17 = 5.86002e-05 (* 0.0454545 = 2.66364e-06 loss) | |
I0405 16:21:56.707232 29564 solver.cpp:406] Test net output #39: loss/loss18 = 6.18622e-05 (* 0.0454545 = 2.81192e-06 loss) | |
I0405 16:21:56.707248 29564 solver.cpp:406] Test net output #40: loss/loss19 = 6.70327e-05 (* 0.0454545 = 3.04694e-06 loss) | |
I0405 16:21:56.707262 29564 solver.cpp:406] Test net output #41: loss/loss20 = 6.11037e-05 (* 0.0454545 = 2.77744e-06 loss) | |
I0405 16:21:56.707276 29564 solver.cpp:406] Test net output #42: loss/loss21 = 6.24575e-05 (* 0.0454545 = 2.83898e-06 loss) | |
I0405 16:21:56.707291 29564 solver.cpp:406] Test net output #43: loss/loss22 = 6.25772e-05 (* 0.0454545 = 2.84442e-06 loss) | |
I0405 16:21:56.707304 29564 solver.cpp:406] Test net output #44: total_accuracy = 0.001 | |
I0405 16:21:56.707314 29564 solver.cpp:406] Test net output #45: total_confidence = 0.000129186 | |
I0405 16:21:56.822494 29564 solver.cpp:229] Iteration 20000, loss = 0.925324 | |
I0405 16:21:56.822551 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0405 16:21:56.822568 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125 | |
I0405 16:21:56.822582 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0405 16:21:56.822593 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0405 16:21:56.822605 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125 | |
I0405 16:21:56.822618 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.46875 | |
I0405 16:21:56.822629 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625 | |
I0405 16:21:56.822641 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.75 | |
I0405 16:21:56.822654 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625 | |
I0405 16:21:56.822665 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.90625 | |
I0405 16:21:56.822676 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 16:21:56.822688 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 16:21:56.822701 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 16:21:56.822713 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 16:21:56.822724 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 16:21:56.822736 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 16:21:56.822747 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 16:21:56.822759 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 16:21:56.822770 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 16:21:56.822782 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 16:21:56.822793 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 16:21:56.822804 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 16:21:56.822819 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.96617 (* 0.0454545 = 0.134826 loss) | |
I0405 16:21:56.822834 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.32843 (* 0.0454545 = 0.151292 loss) | |
I0405 16:21:56.822849 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.39607 (* 0.0454545 = 0.154367 loss) | |
I0405 16:21:56.822862 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.17219 (* 0.0454545 = 0.14419 loss) | |
I0405 16:21:56.822876 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.61531 (* 0.0454545 = 0.118878 loss) | |
I0405 16:21:56.822890 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.30985 (* 0.0454545 = 0.104993 loss) | |
I0405 16:21:56.822904 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.80237 (* 0.0454545 = 0.0819258 loss) | |
I0405 16:21:56.822918 29564 solver.cpp:245] Train net output #29: loss/loss08 = 1.25931 (* 0.0454545 = 0.0572412 loss) | |
I0405 16:21:56.822932 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.479258 (* 0.0454545 = 0.0217844 loss) | |
I0405 16:21:56.822970 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.578146 (* 0.0454545 = 0.0262794 loss) | |
I0405 16:21:56.822986 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.000846859 (* 0.0454545 = 3.84936e-05 loss) | |
I0405 16:21:56.823001 29564 solver.cpp:245] Train net output #33: loss/loss12 = 0.000774687 (* 0.0454545 = 3.5213e-05 loss) | |
I0405 16:21:56.823015 29564 solver.cpp:245] Train net output #34: loss/loss13 = 0.000691253 (* 0.0454545 = 3.14206e-05 loss) | |
I0405 16:21:56.823030 29564 solver.cpp:245] Train net output #35: loss/loss14 = 0.000813052 (* 0.0454545 = 3.69569e-05 loss) | |
I0405 16:21:56.823045 29564 solver.cpp:245] Train net output #36: loss/loss15 = 0.000797206 (* 0.0454545 = 3.62366e-05 loss) | |
I0405 16:21:56.823062 29564 solver.cpp:245] Train net output #37: loss/loss16 = 0.000844798 (* 0.0454545 = 3.83999e-05 loss) | |
I0405 16:21:56.823076 29564 solver.cpp:245] Train net output #38: loss/loss17 = 0.000738952 (* 0.0454545 = 3.35887e-05 loss) | |
I0405 16:21:56.823091 29564 solver.cpp:245] Train net output #39: loss/loss18 = 0.000759874 (* 0.0454545 = 3.45397e-05 loss) | |
I0405 16:21:56.823104 29564 solver.cpp:245] Train net output #40: loss/loss19 = 0.000864804 (* 0.0454545 = 3.93093e-05 loss) | |
I0405 16:21:56.823119 29564 solver.cpp:245] Train net output #41: loss/loss20 = 0.00081036 (* 0.0454545 = 3.68345e-05 loss) | |
I0405 16:21:56.823133 29564 solver.cpp:245] Train net output #42: loss/loss21 = 0.000755266 (* 0.0454545 = 3.43303e-05 loss) | |
I0405 16:21:56.823148 29564 solver.cpp:245] Train net output #43: loss/loss22 = 0.000869854 (* 0.0454545 = 3.95388e-05 loss) | |
I0405 16:21:56.823159 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 16:21:56.823171 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000124871 | |
I0405 16:21:56.823186 29564 sgd_solver.cpp:106] Iteration 20000, lr = 0.0098 | |
I0405 16:25:46.686305 29564 solver.cpp:229] Iteration 20500, loss = 0.917616 | |
I0405 16:25:46.686405 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.1875 | |
I0405 16:25:46.686424 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0405 16:25:46.686437 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0405 16:25:46.686450 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375 | |
I0405 16:25:46.686460 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.375 | |
I0405 16:25:46.686472 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.46875 | |
I0405 16:25:46.686485 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0405 16:25:46.686496 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.8125 | |
I0405 16:25:46.686507 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625 | |
I0405 16:25:46.686518 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0405 16:25:46.686530 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 16:25:46.686542 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 16:25:46.686553 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 16:25:46.686564 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 16:25:46.686575 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 16:25:46.686586 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 16:25:46.686597 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 16:25:46.686609 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 16:25:46.686620 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 16:25:46.686631 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 16:25:46.686645 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 16:25:46.686657 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 16:25:46.686672 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.98019 (* 0.0454545 = 0.135463 loss) | |
I0405 16:25:46.686686 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.35827 (* 0.0454545 = 0.152649 loss) | |
I0405 16:25:46.686700 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.61015 (* 0.0454545 = 0.164098 loss) | |
I0405 16:25:46.686714 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.19512 (* 0.0454545 = 0.145233 loss) | |
I0405 16:25:46.686728 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.4285 (* 0.0454545 = 0.110386 loss) | |
I0405 16:25:46.686741 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.12518 (* 0.0454545 = 0.0965992 loss) | |
I0405 16:25:46.686755 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.47173 (* 0.0454545 = 0.0668968 loss) | |
I0405 16:25:46.686769 29564 solver.cpp:245] Train net output #29: loss/loss08 = 1.01436 (* 0.0454545 = 0.0461071 loss) | |
I0405 16:25:46.686782 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.59077 (* 0.0454545 = 0.0268532 loss) | |
I0405 16:25:46.686795 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.366058 (* 0.0454545 = 0.016639 loss) | |
I0405 16:25:46.686810 29564 solver.cpp:245] Train net output #32: loss/loss11 = 4.55847e-05 (* 0.0454545 = 2.07203e-06 loss) | |
I0405 16:25:46.686823 29564 solver.cpp:245] Train net output #33: loss/loss12 = 4.38186e-05 (* 0.0454545 = 1.99175e-06 loss) | |
I0405 16:25:46.686837 29564 solver.cpp:245] Train net output #34: loss/loss13 = 4.20463e-05 (* 0.0454545 = 1.9112e-06 loss) | |
I0405 16:25:46.686852 29564 solver.cpp:245] Train net output #35: loss/loss14 = 4.22387e-05 (* 0.0454545 = 1.91994e-06 loss) | |
I0405 16:25:46.686866 29564 solver.cpp:245] Train net output #36: loss/loss15 = 4.16995e-05 (* 0.0454545 = 1.89543e-06 loss) | |
I0405 16:25:46.686880 29564 solver.cpp:245] Train net output #37: loss/loss16 = 4.05577e-05 (* 0.0454545 = 1.84353e-06 loss) | |
I0405 16:25:46.686893 29564 solver.cpp:245] Train net output #38: loss/loss17 = 3.98864e-05 (* 0.0454545 = 1.81302e-06 loss) | |
I0405 16:25:46.686923 29564 solver.cpp:245] Train net output #39: loss/loss18 = 3.86151e-05 (* 0.0454545 = 1.75523e-06 loss) | |
I0405 16:25:46.686939 29564 solver.cpp:245] Train net output #40: loss/loss19 = 4.52818e-05 (* 0.0454545 = 2.05826e-06 loss) | |
I0405 16:25:46.686954 29564 solver.cpp:245] Train net output #41: loss/loss20 = 4.28136e-05 (* 0.0454545 = 1.94607e-06 loss) | |
I0405 16:25:46.686967 29564 solver.cpp:245] Train net output #42: loss/loss21 = 4.0749e-05 (* 0.0454545 = 1.85223e-06 loss) | |
I0405 16:25:46.686983 29564 solver.cpp:245] Train net output #43: loss/loss22 = 3.93698e-05 (* 0.0454545 = 1.78954e-06 loss) | |
I0405 16:25:46.686996 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 16:25:46.687007 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000742693 | |
I0405 16:25:46.687021 29564 sgd_solver.cpp:106] Iteration 20500, lr = 0.009795 | |
I0405 16:29:36.756197 29564 solver.cpp:229] Iteration 21000, loss = 0.914948 | |
I0405 16:29:36.756324 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.21875 | |
I0405 16:29:36.756343 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0405 16:29:36.756356 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0405 16:29:36.756368 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0405 16:29:36.756381 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.21875 | |
I0405 16:29:36.756392 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125 | |
I0405 16:29:36.756404 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0405 16:29:36.756415 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0405 16:29:36.756428 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 16:29:36.756438 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 16:29:36.756450 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 16:29:36.756463 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 16:29:36.756474 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 16:29:36.756485 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 16:29:36.756496 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 16:29:36.756508 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 16:29:36.756520 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 16:29:36.756531 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 16:29:36.756542 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 16:29:36.756553 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 16:29:36.756564 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 16:29:36.756577 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 16:29:36.756592 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.49471 (* 0.0454545 = 0.113396 loss) | |
I0405 16:29:36.756605 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.06486 (* 0.0454545 = 0.139312 loss) | |
I0405 16:29:36.756619 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.07499 (* 0.0454545 = 0.139772 loss) | |
I0405 16:29:36.756634 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.0844 (* 0.0454545 = 0.1402 loss) | |
I0405 16:29:36.756649 29564 solver.cpp:245] Train net output #26: loss/loss05 = 3.03398 (* 0.0454545 = 0.137908 loss) | |
I0405 16:29:36.756662 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.63144 (* 0.0454545 = 0.119611 loss) | |
I0405 16:29:36.756675 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.2607 (* 0.0454545 = 0.0573046 loss) | |
I0405 16:29:36.756690 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.290372 (* 0.0454545 = 0.0131987 loss) | |
I0405 16:29:36.756705 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.180122 (* 0.0454545 = 0.00818738 loss) | |
I0405 16:29:36.756718 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.17767 (* 0.0454545 = 0.00807592 loss) | |
I0405 16:29:36.756732 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.000103343 (* 0.0454545 = 4.69739e-06 loss) | |
I0405 16:29:36.756747 29564 solver.cpp:245] Train net output #33: loss/loss12 = 0.00010183 (* 0.0454545 = 4.62866e-06 loss) | |
I0405 16:29:36.756762 29564 solver.cpp:245] Train net output #34: loss/loss13 = 9.34928e-05 (* 0.0454545 = 4.24967e-06 loss) | |
I0405 16:29:36.756777 29564 solver.cpp:245] Train net output #35: loss/loss14 = 9.55437e-05 (* 0.0454545 = 4.34289e-06 loss) | |
I0405 16:29:36.756790 29564 solver.cpp:245] Train net output #36: loss/loss15 = 9.59539e-05 (* 0.0454545 = 4.36154e-06 loss) | |
I0405 16:29:36.756804 29564 solver.cpp:245] Train net output #37: loss/loss16 = 8.80724e-05 (* 0.0454545 = 4.00329e-06 loss) | |
I0405 16:29:36.756819 29564 solver.cpp:245] Train net output #38: loss/loss17 = 8.45836e-05 (* 0.0454545 = 3.84471e-06 loss) | |
I0405 16:29:36.756846 29564 solver.cpp:245] Train net output #39: loss/loss18 = 8.6478e-05 (* 0.0454545 = 3.93082e-06 loss) | |
I0405 16:29:36.756861 29564 solver.cpp:245] Train net output #40: loss/loss19 = 0.000100893 (* 0.0454545 = 4.58603e-06 loss) | |
I0405 16:29:36.756875 29564 solver.cpp:245] Train net output #41: loss/loss20 = 9.31313e-05 (* 0.0454545 = 4.23324e-06 loss) | |
I0405 16:29:36.756889 29564 solver.cpp:245] Train net output #42: loss/loss21 = 9.18504e-05 (* 0.0454545 = 4.17502e-06 loss) | |
I0405 16:29:36.756903 29564 solver.cpp:245] Train net output #43: loss/loss22 = 9.09999e-05 (* 0.0454545 = 4.13636e-06 loss) | |
I0405 16:29:36.756916 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 16:29:36.756927 29564 solver.cpp:245] Train net output #45: total_confidence = 0.0004224 | |
I0405 16:29:36.756940 29564 sgd_solver.cpp:106] Iteration 21000, lr = 0.00979 | |
I0405 16:33:26.486292 29564 solver.cpp:229] Iteration 21500, loss = 0.915589 | |
I0405 16:33:26.486465 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.1875 | |
I0405 16:33:26.486486 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0405 16:33:26.486498 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0405 16:33:26.486510 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.25 | |
I0405 16:33:26.486522 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125 | |
I0405 16:33:26.486536 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0405 16:33:26.486546 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875 | |
I0405 16:33:26.486558 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375 | |
I0405 16:33:26.486570 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0405 16:33:26.486582 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 16:33:26.486593 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 16:33:26.486605 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 16:33:26.486616 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 16:33:26.486627 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 16:33:26.486639 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 16:33:26.486650 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 16:33:26.486661 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 16:33:26.486672 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 16:33:26.486685 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 16:33:26.486696 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 16:33:26.486707 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 16:33:26.486718 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 16:33:26.486733 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.79133 (* 0.0454545 = 0.126878 loss) | |
I0405 16:33:26.486748 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.07348 (* 0.0454545 = 0.139704 loss) | |
I0405 16:33:26.486762 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.11363 (* 0.0454545 = 0.141529 loss) | |
I0405 16:33:26.486775 29564 solver.cpp:245] Train net output #25: loss/loss04 = 2.88833 (* 0.0454545 = 0.131288 loss) | |
I0405 16:33:26.486789 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.56165 (* 0.0454545 = 0.116439 loss) | |
I0405 16:33:26.486804 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.26416 (* 0.0454545 = 0.102916 loss) | |
I0405 16:33:26.486817 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.2104 (* 0.0454545 = 0.0550184 loss) | |
I0405 16:33:26.486831 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.660792 (* 0.0454545 = 0.030036 loss) | |
I0405 16:33:26.486846 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.0672911 (* 0.0454545 = 0.00305869 loss) | |
I0405 16:33:26.486860 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.0279626 (* 0.0454545 = 0.00127103 loss) | |
I0405 16:33:26.486876 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.000191369 (* 0.0454545 = 8.69861e-06 loss) | |
I0405 16:33:26.486891 29564 solver.cpp:245] Train net output #33: loss/loss12 = 0.00018443 (* 0.0454545 = 8.38317e-06 loss) | |
I0405 16:33:26.486904 29564 solver.cpp:245] Train net output #34: loss/loss13 = 0.000183158 (* 0.0454545 = 8.32535e-06 loss) | |
I0405 16:33:26.486918 29564 solver.cpp:245] Train net output #35: loss/loss14 = 0.00017639 (* 0.0454545 = 8.01775e-06 loss) | |
I0405 16:33:26.486932 29564 solver.cpp:245] Train net output #36: loss/loss15 = 0.000185707 (* 0.0454545 = 8.44121e-06 loss) | |
I0405 16:33:26.486946 29564 solver.cpp:245] Train net output #37: loss/loss16 = 0.000173175 (* 0.0454545 = 7.87159e-06 loss) | |
I0405 16:33:26.486960 29564 solver.cpp:245] Train net output #38: loss/loss17 = 0.000177087 (* 0.0454545 = 8.04939e-06 loss) | |
I0405 16:33:26.486991 29564 solver.cpp:245] Train net output #39: loss/loss18 = 0.000181558 (* 0.0454545 = 8.25262e-06 loss) | |
I0405 16:33:26.487006 29564 solver.cpp:245] Train net output #40: loss/loss19 = 0.000189702 (* 0.0454545 = 8.62281e-06 loss) | |
I0405 16:33:26.487020 29564 solver.cpp:245] Train net output #41: loss/loss20 = 0.000187585 (* 0.0454545 = 8.52661e-06 loss) | |
I0405 16:33:26.487035 29564 solver.cpp:245] Train net output #42: loss/loss21 = 0.000174716 (* 0.0454545 = 7.94165e-06 loss) | |
I0405 16:33:26.487048 29564 solver.cpp:245] Train net output #43: loss/loss22 = 0.000176653 (* 0.0454545 = 8.02968e-06 loss) | |
I0405 16:33:26.487061 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 16:33:26.487072 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000228302 | |
I0405 16:33:26.487087 29564 sgd_solver.cpp:106] Iteration 21500, lr = 0.009785 | |
I0405 16:37:16.806392 29564 solver.cpp:229] Iteration 22000, loss = 0.910457 | |
I0405 16:37:16.806505 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0405 16:37:16.806525 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0405 16:37:16.806537 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0405 16:37:16.806550 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0405 16:37:16.806561 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.125 | |
I0405 16:37:16.806573 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.46875 | |
I0405 16:37:16.806586 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.65625 | |
I0405 16:37:16.806597 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0405 16:37:16.806609 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0405 16:37:16.806620 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 16:37:16.806632 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 16:37:16.806646 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 16:37:16.806659 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 16:37:16.806670 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 16:37:16.806681 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 16:37:16.806692 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 16:37:16.806704 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 16:37:16.806715 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 16:37:16.806726 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 16:37:16.806738 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 16:37:16.806749 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 16:37:16.806761 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 16:37:16.806777 29564 solver.cpp:245] Train net output #22: loss/loss01 = 3.10474 (* 0.0454545 = 0.141124 loss) | |
I0405 16:37:16.806790 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.35839 (* 0.0454545 = 0.152654 loss) | |
I0405 16:37:16.806804 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.34188 (* 0.0454545 = 0.151904 loss) | |
I0405 16:37:16.806818 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.46718 (* 0.0454545 = 0.157599 loss) | |
I0405 16:37:16.806831 29564 solver.cpp:245] Train net output #26: loss/loss05 = 3.17387 (* 0.0454545 = 0.144267 loss) | |
I0405 16:37:16.806845 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.35272 (* 0.0454545 = 0.106942 loss) | |
I0405 16:37:16.806859 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.63666 (* 0.0454545 = 0.0743938 loss) | |
I0405 16:37:16.806874 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.417046 (* 0.0454545 = 0.0189566 loss) | |
I0405 16:37:16.806886 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.280166 (* 0.0454545 = 0.0127348 loss) | |
I0405 16:37:16.806901 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.15181 (* 0.0454545 = 0.00690047 loss) | |
I0405 16:37:16.806915 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.000136364 (* 0.0454545 = 6.19836e-06 loss) | |
I0405 16:37:16.806929 29564 solver.cpp:245] Train net output #33: loss/loss12 = 0.000122598 (* 0.0454545 = 5.57264e-06 loss) | |
I0405 16:37:16.806943 29564 solver.cpp:245] Train net output #34: loss/loss13 = 0.000125088 (* 0.0454545 = 5.68583e-06 loss) | |
I0405 16:37:16.806958 29564 solver.cpp:245] Train net output #35: loss/loss14 = 0.000125856 (* 0.0454545 = 5.72071e-06 loss) | |
I0405 16:37:16.806972 29564 solver.cpp:245] Train net output #36: loss/loss15 = 0.000122777 (* 0.0454545 = 5.58076e-06 loss) | |
I0405 16:37:16.806987 29564 solver.cpp:245] Train net output #37: loss/loss16 = 0.000124998 (* 0.0454545 = 5.68172e-06 loss) | |
I0405 16:37:16.807000 29564 solver.cpp:245] Train net output #38: loss/loss17 = 0.000118476 (* 0.0454545 = 5.38527e-06 loss) | |
I0405 16:37:16.807031 29564 solver.cpp:245] Train net output #39: loss/loss18 = 0.00012303 (* 0.0454545 = 5.59226e-06 loss) | |
I0405 16:37:16.807046 29564 solver.cpp:245] Train net output #40: loss/loss19 = 0.000133319 (* 0.0454545 = 6.05996e-06 loss) | |
I0405 16:37:16.807060 29564 solver.cpp:245] Train net output #41: loss/loss20 = 0.000128825 (* 0.0454545 = 5.8557e-06 loss) | |
I0405 16:37:16.807075 29564 solver.cpp:245] Train net output #42: loss/loss21 = 0.000119391 (* 0.0454545 = 5.42686e-06 loss) | |
I0405 16:37:16.807087 29564 solver.cpp:245] Train net output #43: loss/loss22 = 0.000119239 (* 0.0454545 = 5.41995e-06 loss) | |
I0405 16:37:16.807099 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 16:37:16.807111 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000312691 | |
I0405 16:37:16.807124 29564 sgd_solver.cpp:106] Iteration 22000, lr = 0.00978 | |
I0405 16:41:06.994192 29564 solver.cpp:229] Iteration 22500, loss = 0.910531 | |
I0405 16:41:06.994346 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.1875 | |
I0405 16:41:06.994365 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0405 16:41:06.994379 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0405 16:41:06.994390 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0405 16:41:06.994402 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0405 16:41:06.994415 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625 | |
I0405 16:41:06.994426 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0405 16:41:06.994437 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0405 16:41:06.994451 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 16:41:06.994462 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 16:41:06.994477 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 16:41:06.994488 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 16:41:06.994499 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 16:41:06.994511 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 16:41:06.994523 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 16:41:06.994534 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 16:41:06.994545 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 16:41:06.994556 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 16:41:06.994568 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 16:41:06.994580 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 16:41:06.994590 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 16:41:06.994606 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 16:41:06.994621 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.84864 (* 0.0454545 = 0.129484 loss) | |
I0405 16:41:06.994635 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.26707 (* 0.0454545 = 0.148503 loss) | |
I0405 16:41:06.994649 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.3054 (* 0.0454545 = 0.150245 loss) | |
I0405 16:41:06.994663 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.39036 (* 0.0454545 = 0.154107 loss) | |
I0405 16:41:06.994678 29564 solver.cpp:245] Train net output #26: loss/loss05 = 3.26613 (* 0.0454545 = 0.14846 loss) | |
I0405 16:41:06.994693 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.4102 (* 0.0454545 = 0.109555 loss) | |
I0405 16:41:06.994706 29564 solver.cpp:245] Train net output #28: loss/loss07 = 0.90522 (* 0.0454545 = 0.0411464 loss) | |
I0405 16:41:06.994720 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.393791 (* 0.0454545 = 0.0178996 loss) | |
I0405 16:41:06.994735 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.188788 (* 0.0454545 = 0.00858128 loss) | |
I0405 16:41:06.994752 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.0142397 (* 0.0454545 = 0.000647257 loss) | |
I0405 16:41:06.994768 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.000251032 (* 0.0454545 = 1.14105e-05 loss) | |
I0405 16:41:06.994782 29564 solver.cpp:245] Train net output #33: loss/loss12 = 0.000230952 (* 0.0454545 = 1.04978e-05 loss) | |
I0405 16:41:06.994796 29564 solver.cpp:245] Train net output #34: loss/loss13 = 0.000225847 (* 0.0454545 = 1.02658e-05 loss) | |
I0405 16:41:06.994810 29564 solver.cpp:245] Train net output #35: loss/loss14 = 0.000230811 (* 0.0454545 = 1.04914e-05 loss) | |
I0405 16:41:06.994825 29564 solver.cpp:245] Train net output #36: loss/loss15 = 0.00023207 (* 0.0454545 = 1.05486e-05 loss) | |
I0405 16:41:06.994839 29564 solver.cpp:245] Train net output #37: loss/loss16 = 0.000235836 (* 0.0454545 = 1.07198e-05 loss) | |
I0405 16:41:06.994853 29564 solver.cpp:245] Train net output #38: loss/loss17 = 0.000219471 (* 0.0454545 = 9.97594e-06 loss) | |
I0405 16:41:06.994884 29564 solver.cpp:245] Train net output #39: loss/loss18 = 0.000228509 (* 0.0454545 = 1.03868e-05 loss) | |
I0405 16:41:06.994899 29564 solver.cpp:245] Train net output #40: loss/loss19 = 0.000242739 (* 0.0454545 = 1.10336e-05 loss) | |
I0405 16:41:06.994913 29564 solver.cpp:245] Train net output #41: loss/loss20 = 0.000231654 (* 0.0454545 = 1.05297e-05 loss) | |
I0405 16:41:06.994928 29564 solver.cpp:245] Train net output #42: loss/loss21 = 0.000230914 (* 0.0454545 = 1.04961e-05 loss) | |
I0405 16:41:06.994942 29564 solver.cpp:245] Train net output #43: loss/loss22 = 0.000237549 (* 0.0454545 = 1.07977e-05 loss) | |
I0405 16:41:06.994954 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 16:41:06.994966 29564 solver.cpp:245] Train net output #45: total_confidence = 0.00069723 | |
I0405 16:41:06.994982 29564 sgd_solver.cpp:106] Iteration 22500, lr = 0.009775 | |
I0405 16:44:57.369372 29564 solver.cpp:229] Iteration 23000, loss = 0.913343 | |
I0405 16:44:57.369560 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.03125 | |
I0405 16:44:57.369581 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0405 16:44:57.369593 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0405 16:44:57.369607 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0405 16:44:57.369621 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.0625 | |
I0405 16:44:57.369632 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.28125 | |
I0405 16:44:57.369644 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.65625 | |
I0405 16:44:57.369655 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0405 16:44:57.369668 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0405 16:44:57.369679 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 16:44:57.369690 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 16:44:57.369702 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 16:44:57.369714 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 16:44:57.369725 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 16:44:57.369737 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 16:44:57.369748 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 16:44:57.369760 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 16:44:57.369771 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 16:44:57.369783 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 16:44:57.369794 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 16:44:57.369807 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 16:44:57.369817 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 16:44:57.369832 29564 solver.cpp:245] Train net output #22: loss/loss01 = 3.34406 (* 0.0454545 = 0.152003 loss) | |
I0405 16:44:57.369846 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.63896 (* 0.0454545 = 0.165407 loss) | |
I0405 16:44:57.369860 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.52457 (* 0.0454545 = 0.160208 loss) | |
I0405 16:44:57.369874 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.67372 (* 0.0454545 = 0.166987 loss) | |
I0405 16:44:57.369889 29564 solver.cpp:245] Train net output #26: loss/loss05 = 3.40006 (* 0.0454545 = 0.154548 loss) | |
I0405 16:44:57.369902 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.95034 (* 0.0454545 = 0.134106 loss) | |
I0405 16:44:57.369915 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.71845 (* 0.0454545 = 0.0781115 loss) | |
I0405 16:44:57.369930 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.434738 (* 0.0454545 = 0.0197608 loss) | |
I0405 16:44:57.369943 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.0166748 (* 0.0454545 = 0.000757944 loss) | |
I0405 16:44:57.369957 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.0053613 (* 0.0454545 = 0.000243695 loss) | |
I0405 16:44:57.369972 29564 solver.cpp:245] Train net output #32: loss/loss11 = 6.83065e-05 (* 0.0454545 = 3.10484e-06 loss) | |
I0405 16:44:57.369987 29564 solver.cpp:245] Train net output #33: loss/loss12 = 6.41416e-05 (* 0.0454545 = 2.91553e-06 loss) | |
I0405 16:44:57.370000 29564 solver.cpp:245] Train net output #34: loss/loss13 = 6.69711e-05 (* 0.0454545 = 3.04414e-06 loss) | |
I0405 16:44:57.370014 29564 solver.cpp:245] Train net output #35: loss/loss14 = 6.44646e-05 (* 0.0454545 = 2.93021e-06 loss) | |
I0405 16:44:57.370028 29564 solver.cpp:245] Train net output #36: loss/loss15 = 6.34275e-05 (* 0.0454545 = 2.88307e-06 loss) | |
I0405 16:44:57.370043 29564 solver.cpp:245] Train net output #37: loss/loss16 = 6.13192e-05 (* 0.0454545 = 2.78724e-06 loss) | |
I0405 16:44:57.370056 29564 solver.cpp:245] Train net output #38: loss/loss17 = 6.43749e-05 (* 0.0454545 = 2.92613e-06 loss) | |
I0405 16:44:57.370084 29564 solver.cpp:245] Train net output #39: loss/loss18 = 6.23113e-05 (* 0.0454545 = 2.83233e-06 loss) | |
I0405 16:44:57.370098 29564 solver.cpp:245] Train net output #40: loss/loss19 = 6.66951e-05 (* 0.0454545 = 3.03159e-06 loss) | |
I0405 16:44:57.370113 29564 solver.cpp:245] Train net output #41: loss/loss20 = 6.33759e-05 (* 0.0454545 = 2.88072e-06 loss) | |
I0405 16:44:57.370127 29564 solver.cpp:245] Train net output #42: loss/loss21 = 6.37337e-05 (* 0.0454545 = 2.89699e-06 loss) | |
I0405 16:44:57.370141 29564 solver.cpp:245] Train net output #43: loss/loss22 = 6.36295e-05 (* 0.0454545 = 2.89225e-06 loss) | |
I0405 16:44:57.370153 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 16:44:57.370164 29564 solver.cpp:245] Train net output #45: total_confidence = 3.14313e-05 | |
I0405 16:44:57.370179 29564 sgd_solver.cpp:106] Iteration 23000, lr = 0.00977 | |
I0405 16:48:47.660567 29564 solver.cpp:229] Iteration 23500, loss = 0.907179 | |
I0405 16:48:47.660715 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0405 16:48:47.660738 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.15625 | |
I0405 16:48:47.660751 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0405 16:48:47.660764 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625 | |
I0405 16:48:47.660776 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.15625 | |
I0405 16:48:47.660790 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.28125 | |
I0405 16:48:47.660802 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.53125 | |
I0405 16:48:47.660815 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.75 | |
I0405 16:48:47.660827 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625 | |
I0405 16:48:47.660840 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0405 16:48:47.660851 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 16:48:47.660862 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 16:48:47.660873 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 16:48:47.660884 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 16:48:47.660897 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 16:48:47.660907 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 16:48:47.660918 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 16:48:47.660930 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 16:48:47.660941 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 16:48:47.660953 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 16:48:47.660964 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 16:48:47.660974 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 16:48:47.660990 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.87838 (* 0.0454545 = 0.130836 loss) | |
I0405 16:48:47.661005 29564 solver.cpp:245] Train net output #23: loss/loss02 = 2.9207 (* 0.0454545 = 0.132759 loss) | |
I0405 16:48:47.661017 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.26254 (* 0.0454545 = 0.148297 loss) | |
I0405 16:48:47.661031 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.03282 (* 0.0454545 = 0.137855 loss) | |
I0405 16:48:47.661046 29564 solver.cpp:245] Train net output #26: loss/loss05 = 3.00132 (* 0.0454545 = 0.136424 loss) | |
I0405 16:48:47.661059 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.52046 (* 0.0454545 = 0.114567 loss) | |
I0405 16:48:47.661073 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.91265 (* 0.0454545 = 0.0869386 loss) | |
I0405 16:48:47.661087 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.926509 (* 0.0454545 = 0.042114 loss) | |
I0405 16:48:47.661101 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.610704 (* 0.0454545 = 0.0277593 loss) | |
I0405 16:48:47.661115 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.392 (* 0.0454545 = 0.0178182 loss) | |
I0405 16:48:47.661129 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.000102461 (* 0.0454545 = 4.6573e-06 loss) | |
I0405 16:48:47.661144 29564 solver.cpp:245] Train net output #33: loss/loss12 = 9.50164e-05 (* 0.0454545 = 4.31893e-06 loss) | |
I0405 16:48:47.661159 29564 solver.cpp:245] Train net output #34: loss/loss13 = 9.79713e-05 (* 0.0454545 = 4.45324e-06 loss) | |
I0405 16:48:47.661172 29564 solver.cpp:245] Train net output #35: loss/loss14 = 9.80969e-05 (* 0.0454545 = 4.45895e-06 loss) | |
I0405 16:48:47.661186 29564 solver.cpp:245] Train net output #36: loss/loss15 = 9.85416e-05 (* 0.0454545 = 4.47916e-06 loss) | |
I0405 16:48:47.661201 29564 solver.cpp:245] Train net output #37: loss/loss16 = 8.94176e-05 (* 0.0454545 = 4.06443e-06 loss) | |
I0405 16:48:47.661214 29564 solver.cpp:245] Train net output #38: loss/loss17 = 9.38959e-05 (* 0.0454545 = 4.26799e-06 loss) | |
I0405 16:48:47.661245 29564 solver.cpp:245] Train net output #39: loss/loss18 = 9.79719e-05 (* 0.0454545 = 4.45327e-06 loss) | |
I0405 16:48:47.661262 29564 solver.cpp:245] Train net output #40: loss/loss19 = 9.54952e-05 (* 0.0454545 = 4.34069e-06 loss) | |
I0405 16:48:47.661275 29564 solver.cpp:245] Train net output #41: loss/loss20 = 9.16024e-05 (* 0.0454545 = 4.16375e-06 loss) | |
I0405 16:48:47.661289 29564 solver.cpp:245] Train net output #42: loss/loss21 = 9.47039e-05 (* 0.0454545 = 4.30472e-06 loss) | |
I0405 16:48:47.661303 29564 solver.cpp:245] Train net output #43: loss/loss22 = 0.000102361 (* 0.0454545 = 4.65277e-06 loss) | |
I0405 16:48:47.661316 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 16:48:47.661329 29564 solver.cpp:245] Train net output #45: total_confidence = 0.00043428 | |
I0405 16:48:47.661342 29564 sgd_solver.cpp:106] Iteration 23500, lr = 0.009765 | |
I0405 16:52:38.924685 29564 solver.cpp:229] Iteration 24000, loss = 0.906987 | |
I0405 16:52:38.924885 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0405 16:52:38.924904 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125 | |
I0405 16:52:38.924917 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0405 16:52:38.924929 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0405 16:52:38.924942 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125 | |
I0405 16:52:38.924954 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.625 | |
I0405 16:52:38.924967 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0405 16:52:38.924978 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0405 16:52:38.924990 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 16:52:38.925001 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 16:52:38.925014 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 16:52:38.925025 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 16:52:38.925037 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 16:52:38.925050 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 16:52:38.925060 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 16:52:38.925071 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 16:52:38.925083 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 16:52:38.925094 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 16:52:38.925106 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 16:52:38.925117 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 16:52:38.925128 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 16:52:38.925139 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 16:52:38.925154 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.94792 (* 0.0454545 = 0.133996 loss) | |
I0405 16:52:38.925169 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.16242 (* 0.0454545 = 0.143746 loss) | |
I0405 16:52:38.925184 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.17124 (* 0.0454545 = 0.144147 loss) | |
I0405 16:52:38.925196 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.2862 (* 0.0454545 = 0.149373 loss) | |
I0405 16:52:38.925211 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.80692 (* 0.0454545 = 0.127587 loss) | |
I0405 16:52:38.925225 29564 solver.cpp:245] Train net output #27: loss/loss06 = 1.61985 (* 0.0454545 = 0.0736294 loss) | |
I0405 16:52:38.925240 29564 solver.cpp:245] Train net output #28: loss/loss07 = 0.799759 (* 0.0454545 = 0.0363527 loss) | |
I0405 16:52:38.925253 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.453939 (* 0.0454545 = 0.0206336 loss) | |
I0405 16:52:38.925267 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.171609 (* 0.0454545 = 0.00780041 loss) | |
I0405 16:52:38.925282 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.142308 (* 0.0454545 = 0.00646855 loss) | |
I0405 16:52:38.925297 29564 solver.cpp:245] Train net output #32: loss/loss11 = 7.26556e-05 (* 0.0454545 = 3.30253e-06 loss) | |
I0405 16:52:38.925312 29564 solver.cpp:245] Train net output #33: loss/loss12 = 6.7825e-05 (* 0.0454545 = 3.08295e-06 loss) | |
I0405 16:52:38.925325 29564 solver.cpp:245] Train net output #34: loss/loss13 = 6.72243e-05 (* 0.0454545 = 3.05565e-06 loss) | |
I0405 16:52:38.925339 29564 solver.cpp:245] Train net output #35: loss/loss14 = 6.70051e-05 (* 0.0454545 = 3.04569e-06 loss) | |
I0405 16:52:38.925356 29564 solver.cpp:245] Train net output #36: loss/loss15 = 6.68895e-05 (* 0.0454545 = 3.04043e-06 loss) | |
I0405 16:52:38.925370 29564 solver.cpp:245] Train net output #37: loss/loss16 = 6.42672e-05 (* 0.0454545 = 2.92124e-06 loss) | |
I0405 16:52:38.925384 29564 solver.cpp:245] Train net output #38: loss/loss17 = 6.08484e-05 (* 0.0454545 = 2.76584e-06 loss) | |
I0405 16:52:38.925416 29564 solver.cpp:245] Train net output #39: loss/loss18 = 5.95698e-05 (* 0.0454545 = 2.70772e-06 loss) | |
I0405 16:52:38.925431 29564 solver.cpp:245] Train net output #40: loss/loss19 = 6.68045e-05 (* 0.0454545 = 3.03657e-06 loss) | |
I0405 16:52:38.925446 29564 solver.cpp:245] Train net output #41: loss/loss20 = 6.40825e-05 (* 0.0454545 = 2.91284e-06 loss) | |
I0405 16:52:38.925459 29564 solver.cpp:245] Train net output #42: loss/loss21 = 6.57295e-05 (* 0.0454545 = 2.98771e-06 loss) | |
I0405 16:52:38.925474 29564 solver.cpp:245] Train net output #43: loss/loss22 = 6.11626e-05 (* 0.0454545 = 2.78012e-06 loss) | |
I0405 16:52:38.925487 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 16:52:38.925498 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000142646 | |
I0405 16:52:38.925511 29564 sgd_solver.cpp:106] Iteration 24000, lr = 0.00976 | |
I0405 16:56:29.664108 29564 solver.cpp:229] Iteration 24500, loss = 0.907831 | |
I0405 16:56:29.664219 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.1875 | |
I0405 16:56:29.664239 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0405 16:56:29.664252 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0405 16:56:29.664264 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0405 16:56:29.664276 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.375 | |
I0405 16:56:29.664288 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.59375 | |
I0405 16:56:29.664300 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.78125 | |
I0405 16:56:29.664311 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0405 16:56:29.664324 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0405 16:56:29.664335 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 16:56:29.664347 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 16:56:29.664358 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 16:56:29.664371 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 16:56:29.664381 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 16:56:29.664393 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 16:56:29.664404 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 16:56:29.664415 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 16:56:29.664427 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 16:56:29.664438 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 16:56:29.664449 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 16:56:29.664460 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 16:56:29.664471 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 16:56:29.664489 29564 solver.cpp:245] Train net output #22: loss/loss01 = 3.04379 (* 0.0454545 = 0.138354 loss) | |
I0405 16:56:29.664504 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.12307 (* 0.0454545 = 0.141958 loss) | |
I0405 16:56:29.664518 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.30127 (* 0.0454545 = 0.150058 loss) | |
I0405 16:56:29.664531 29564 solver.cpp:245] Train net output #25: loss/loss04 = 2.96628 (* 0.0454545 = 0.134831 loss) | |
I0405 16:56:29.664546 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.64413 (* 0.0454545 = 0.120188 loss) | |
I0405 16:56:29.664559 29564 solver.cpp:245] Train net output #27: loss/loss06 = 1.77264 (* 0.0454545 = 0.0805744 loss) | |
I0405 16:56:29.664573 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.23312 (* 0.0454545 = 0.0560509 loss) | |
I0405 16:56:29.664587 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.521922 (* 0.0454545 = 0.0237237 loss) | |
I0405 16:56:29.664602 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.0818824 (* 0.0454545 = 0.00372193 loss) | |
I0405 16:56:29.664615 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.0281147 (* 0.0454545 = 0.00127794 loss) | |
I0405 16:56:29.664630 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.000198758 (* 0.0454545 = 9.03444e-06 loss) | |
I0405 16:56:29.664644 29564 solver.cpp:245] Train net output #33: loss/loss12 = 0.0001659 (* 0.0454545 = 7.54092e-06 loss) | |
I0405 16:56:29.664659 29564 solver.cpp:245] Train net output #34: loss/loss13 = 0.000198262 (* 0.0454545 = 9.01191e-06 loss) | |
I0405 16:56:29.664674 29564 solver.cpp:245] Train net output #35: loss/loss14 = 0.000190239 (* 0.0454545 = 8.64723e-06 loss) | |
I0405 16:56:29.664687 29564 solver.cpp:245] Train net output #36: loss/loss15 = 0.000190466 (* 0.0454545 = 8.65757e-06 loss) | |
I0405 16:56:29.664701 29564 solver.cpp:245] Train net output #37: loss/loss16 = 0.00016793 (* 0.0454545 = 7.6332e-06 loss) | |
I0405 16:56:29.664716 29564 solver.cpp:245] Train net output #38: loss/loss17 = 0.00019575 (* 0.0454545 = 8.89773e-06 loss) | |
I0405 16:56:29.664746 29564 solver.cpp:245] Train net output #39: loss/loss18 = 0.000169403 (* 0.0454545 = 7.70013e-06 loss) | |
I0405 16:56:29.664762 29564 solver.cpp:245] Train net output #40: loss/loss19 = 0.000175387 (* 0.0454545 = 7.97215e-06 loss) | |
I0405 16:56:29.664775 29564 solver.cpp:245] Train net output #41: loss/loss20 = 0.000180358 (* 0.0454545 = 8.19809e-06 loss) | |
I0405 16:56:29.664789 29564 solver.cpp:245] Train net output #42: loss/loss21 = 0.000198644 (* 0.0454545 = 9.02929e-06 loss) | |
I0405 16:56:29.664803 29564 solver.cpp:245] Train net output #43: loss/loss22 = 0.000202263 (* 0.0454545 = 9.19375e-06 loss) | |
I0405 16:56:29.664816 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 16:56:29.664827 29564 solver.cpp:245] Train net output #45: total_confidence = 9.3463e-05 | |
I0405 16:56:29.664840 29564 sgd_solver.cpp:106] Iteration 24500, lr = 0.009755 | |
I0405 17:00:19.844066 29564 solver.cpp:338] Iteration 25000, Testing net (#0) | |
I0405 17:00:30.108234 29564 solver.cpp:393] Test loss: 0.902006 | |
I0405 17:00:30.108281 29564 solver.cpp:406] Test net output #0: loss/accuracy01 = 0.113 | |
I0405 17:00:30.108307 29564 solver.cpp:406] Test net output #1: loss/accuracy02 = 0.075 | |
I0405 17:00:30.108331 29564 solver.cpp:406] Test net output #2: loss/accuracy03 = 0.08 | |
I0405 17:00:30.108355 29564 solver.cpp:406] Test net output #3: loss/accuracy04 = 0.131 | |
I0405 17:00:30.108376 29564 solver.cpp:406] Test net output #4: loss/accuracy05 = 0.219 | |
I0405 17:00:30.108397 29564 solver.cpp:406] Test net output #5: loss/accuracy06 = 0.506 | |
I0405 17:00:30.108418 29564 solver.cpp:406] Test net output #6: loss/accuracy07 = 0.891 | |
I0405 17:00:30.108439 29564 solver.cpp:406] Test net output #7: loss/accuracy08 = 0.97 | |
I0405 17:00:30.108459 29564 solver.cpp:406] Test net output #8: loss/accuracy09 = 0.995 | |
I0405 17:00:30.108482 29564 solver.cpp:406] Test net output #9: loss/accuracy10 = 0.998 | |
I0405 17:00:30.108506 29564 solver.cpp:406] Test net output #10: loss/accuracy11 = 1 | |
I0405 17:00:30.108528 29564 solver.cpp:406] Test net output #11: loss/accuracy12 = 1 | |
I0405 17:00:30.108548 29564 solver.cpp:406] Test net output #12: loss/accuracy13 = 1 | |
I0405 17:00:30.108567 29564 solver.cpp:406] Test net output #13: loss/accuracy14 = 1 | |
I0405 17:00:30.108587 29564 solver.cpp:406] Test net output #14: loss/accuracy15 = 1 | |
I0405 17:00:30.108608 29564 solver.cpp:406] Test net output #15: loss/accuracy16 = 1 | |
I0405 17:00:30.108628 29564 solver.cpp:406] Test net output #16: loss/accuracy17 = 1 | |
I0405 17:00:30.108647 29564 solver.cpp:406] Test net output #17: loss/accuracy18 = 1 | |
I0405 17:00:30.108669 29564 solver.cpp:406] Test net output #18: loss/accuracy19 = 1 | |
I0405 17:00:30.108690 29564 solver.cpp:406] Test net output #19: loss/accuracy20 = 1 | |
I0405 17:00:30.108710 29564 solver.cpp:406] Test net output #20: loss/accuracy21 = 1 | |
I0405 17:00:30.108729 29564 solver.cpp:406] Test net output #21: loss/accuracy22 = 1 | |
I0405 17:00:30.108754 29564 solver.cpp:406] Test net output #22: loss/loss01 = 3.43168 (* 0.0454545 = 0.155986 loss) | |
I0405 17:00:30.108780 29564 solver.cpp:406] Test net output #23: loss/loss02 = 3.38997 (* 0.0454545 = 0.15409 loss) | |
I0405 17:00:30.108805 29564 solver.cpp:406] Test net output #24: loss/loss03 = 3.43179 (* 0.0454545 = 0.15599 loss) | |
I0405 17:00:30.108829 29564 solver.cpp:406] Test net output #25: loss/loss04 = 3.29325 (* 0.0454545 = 0.149693 loss) | |
I0405 17:00:30.108855 29564 solver.cpp:406] Test net output #26: loss/loss05 = 3.11312 (* 0.0454545 = 0.141505 loss) | |
I0405 17:00:30.108880 29564 solver.cpp:406] Test net output #27: loss/loss06 = 2.16199 (* 0.0454545 = 0.0982721 loss) | |
I0405 17:00:30.108906 29564 solver.cpp:406] Test net output #28: loss/loss07 = 0.685374 (* 0.0454545 = 0.0311534 loss) | |
I0405 17:00:30.108929 29564 solver.cpp:406] Test net output #29: loss/loss08 = 0.247247 (* 0.0454545 = 0.0112385 loss) | |
I0405 17:00:30.108955 29564 solver.cpp:406] Test net output #30: loss/loss09 = 0.0602433 (* 0.0454545 = 0.00273833 loss) | |
I0405 17:00:30.108980 29564 solver.cpp:406] Test net output #31: loss/loss10 = 0.0270347 (* 0.0454545 = 0.00122885 loss) | |
I0405 17:00:30.109005 29564 solver.cpp:406] Test net output #32: loss/loss11 = 0.000227296 (* 0.0454545 = 1.03316e-05 loss) | |
I0405 17:00:30.109030 29564 solver.cpp:406] Test net output #33: loss/loss12 = 0.000210804 (* 0.0454545 = 9.58199e-06 loss) | |
I0405 17:00:30.109055 29564 solver.cpp:406] Test net output #34: loss/loss13 = 0.000214178 (* 0.0454545 = 9.73537e-06 loss) | |
I0405 17:00:30.109079 29564 solver.cpp:406] Test net output #35: loss/loss14 = 0.000212654 (* 0.0454545 = 9.66609e-06 loss) | |
I0405 17:00:30.109103 29564 solver.cpp:406] Test net output #36: loss/loss15 = 0.000202015 (* 0.0454545 = 9.18248e-06 loss) | |
I0405 17:00:30.109129 29564 solver.cpp:406] Test net output #37: loss/loss16 = 0.000194703 (* 0.0454545 = 8.85015e-06 loss) | |
I0405 17:00:30.109155 29564 solver.cpp:406] Test net output #38: loss/loss17 = 0.000194811 (* 0.0454545 = 8.85505e-06 loss) | |
I0405 17:00:30.109218 29564 solver.cpp:406] Test net output #39: loss/loss18 = 0.000190102 (* 0.0454545 = 8.64101e-06 loss) | |
I0405 17:00:30.109244 29564 solver.cpp:406] Test net output #40: loss/loss19 = 0.000209457 (* 0.0454545 = 9.52078e-06 loss) | |
I0405 17:00:30.109268 29564 solver.cpp:406] Test net output #41: loss/loss20 = 0.00019699 (* 0.0454545 = 8.9541e-06 loss) | |
I0405 17:00:30.109293 29564 solver.cpp:406] Test net output #42: loss/loss21 = 0.000199284 (* 0.0454545 = 9.05837e-06 loss) | |
I0405 17:00:30.109318 29564 solver.cpp:406] Test net output #43: loss/loss22 = 0.000195722 (* 0.0454545 = 8.89643e-06 loss) | |
I0405 17:00:30.109338 29564 solver.cpp:406] Test net output #44: total_accuracy = 0 | |
I0405 17:00:30.109359 29564 solver.cpp:406] Test net output #45: total_confidence = 0.000131673 | |
I0405 17:00:30.224400 29564 solver.cpp:229] Iteration 25000, loss = 0.906876 | |
I0405 17:00:30.224444 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0405 17:00:30.224472 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0405 17:00:30.224494 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0405 17:00:30.224517 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0405 17:00:30.224539 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125 | |
I0405 17:00:30.224560 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0405 17:00:30.224583 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0405 17:00:30.224606 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0405 17:00:30.224627 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 17:00:30.224648 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 17:00:30.224669 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 17:00:30.224689 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 17:00:30.224710 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 17:00:30.224732 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 17:00:30.224753 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 17:00:30.224774 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 17:00:30.224794 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 17:00:30.224815 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 17:00:30.224834 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 17:00:30.224855 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 17:00:30.224875 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 17:00:30.224897 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 17:00:30.224925 29564 solver.cpp:245] Train net output #22: loss/loss01 = 3.12799 (* 0.0454545 = 0.142181 loss) | |
I0405 17:00:30.224951 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.15692 (* 0.0454545 = 0.143496 loss) | |
I0405 17:00:30.224977 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.37655 (* 0.0454545 = 0.153479 loss) | |
I0405 17:00:30.225002 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.14705 (* 0.0454545 = 0.143048 loss) | |
I0405 17:00:30.225026 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.88633 (* 0.0454545 = 0.131197 loss) | |
I0405 17:00:30.225051 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.42406 (* 0.0454545 = 0.110185 loss) | |
I0405 17:00:30.225075 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.28995 (* 0.0454545 = 0.0586341 loss) | |
I0405 17:00:30.225105 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.436196 (* 0.0454545 = 0.0198271 loss) | |
I0405 17:00:30.225131 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.168606 (* 0.0454545 = 0.00766393 loss) | |
I0405 17:00:30.225159 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.0203957 (* 0.0454545 = 0.000927078 loss) | |
I0405 17:00:30.225208 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.000388991 (* 0.0454545 = 1.76814e-05 loss) | |
I0405 17:00:30.225235 29564 solver.cpp:245] Train net output #33: loss/loss12 = 0.000366948 (* 0.0454545 = 1.66795e-05 loss) | |
I0405 17:00:30.225260 29564 solver.cpp:245] Train net output #34: loss/loss13 = 0.000378269 (* 0.0454545 = 1.7194e-05 loss) | |
I0405 17:00:30.225286 29564 solver.cpp:245] Train net output #35: loss/loss14 = 0.000375054 (* 0.0454545 = 1.70479e-05 loss) | |
I0405 17:00:30.225316 29564 solver.cpp:245] Train net output #36: loss/loss15 = 0.000361806 (* 0.0454545 = 1.64457e-05 loss) | |
I0405 17:00:30.225340 29564 solver.cpp:245] Train net output #37: loss/loss16 = 0.00034237 (* 0.0454545 = 1.55623e-05 loss) | |
I0405 17:00:30.225365 29564 solver.cpp:245] Train net output #38: loss/loss17 = 0.000349733 (* 0.0454545 = 1.5897e-05 loss) | |
I0405 17:00:30.225390 29564 solver.cpp:245] Train net output #39: loss/loss18 = 0.000343522 (* 0.0454545 = 1.56146e-05 loss) | |
I0405 17:00:30.225415 29564 solver.cpp:245] Train net output #40: loss/loss19 = 0.000358348 (* 0.0454545 = 1.62886e-05 loss) | |
I0405 17:00:30.225442 29564 solver.cpp:245] Train net output #41: loss/loss20 = 0.000349728 (* 0.0454545 = 1.58967e-05 loss) | |
I0405 17:00:30.225469 29564 solver.cpp:245] Train net output #42: loss/loss21 = 0.000343808 (* 0.0454545 = 1.56276e-05 loss) | |
I0405 17:00:30.225494 29564 solver.cpp:245] Train net output #43: loss/loss22 = 0.000360465 (* 0.0454545 = 1.63848e-05 loss) | |
I0405 17:00:30.225517 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 17:00:30.225536 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000166169 | |
I0405 17:00:30.225559 29564 sgd_solver.cpp:106] Iteration 25000, lr = 0.00975 | |
I0405 17:04:20.432235 29564 solver.cpp:229] Iteration 25500, loss = 0.901547 | |
I0405 17:04:20.432476 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.21875 | |
I0405 17:04:20.432497 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125 | |
I0405 17:04:20.432509 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0405 17:04:20.432523 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375 | |
I0405 17:04:20.432534 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0405 17:04:20.432546 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.28125 | |
I0405 17:04:20.432557 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625 | |
I0405 17:04:20.432569 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0405 17:04:20.432580 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 17:04:20.432591 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 17:04:20.432603 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 17:04:20.432615 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 17:04:20.432626 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 17:04:20.432637 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 17:04:20.432649 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 17:04:20.432660 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 17:04:20.432672 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 17:04:20.432682 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 17:04:20.432694 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 17:04:20.432705 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 17:04:20.432716 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 17:04:20.432729 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 17:04:20.432744 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.51737 (* 0.0454545 = 0.114426 loss) | |
I0405 17:04:20.432757 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.0277 (* 0.0454545 = 0.137623 loss) | |
I0405 17:04:20.432771 29564 solver.cpp:245] Train net output #24: loss/loss03 = 2.95632 (* 0.0454545 = 0.134378 loss) | |
I0405 17:04:20.432785 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.19117 (* 0.0454545 = 0.145053 loss) | |
I0405 17:04:20.432798 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.81198 (* 0.0454545 = 0.127817 loss) | |
I0405 17:04:20.432812 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.7415 (* 0.0454545 = 0.124614 loss) | |
I0405 17:04:20.432826 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.29571 (* 0.0454545 = 0.0588958 loss) | |
I0405 17:04:20.432840 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.646563 (* 0.0454545 = 0.0293892 loss) | |
I0405 17:04:20.432854 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.222332 (* 0.0454545 = 0.010106 loss) | |
I0405 17:04:20.432868 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.00781516 (* 0.0454545 = 0.000355234 loss) | |
I0405 17:04:20.432883 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.000229037 (* 0.0454545 = 1.04108e-05 loss) | |
I0405 17:04:20.432901 29564 solver.cpp:245] Train net output #33: loss/loss12 = 0.000197358 (* 0.0454545 = 8.97084e-06 loss) | |
I0405 17:04:20.432915 29564 solver.cpp:245] Train net output #34: loss/loss13 = 0.000210891 (* 0.0454545 = 9.58597e-06 loss) | |
I0405 17:04:20.432929 29564 solver.cpp:245] Train net output #35: loss/loss14 = 0.000203219 (* 0.0454545 = 9.23722e-06 loss) | |
I0405 17:04:20.432945 29564 solver.cpp:245] Train net output #36: loss/loss15 = 0.000203283 (* 0.0454545 = 9.24013e-06 loss) | |
I0405 17:04:20.432958 29564 solver.cpp:245] Train net output #37: loss/loss16 = 0.000207342 (* 0.0454545 = 9.42462e-06 loss) | |
I0405 17:04:20.432971 29564 solver.cpp:245] Train net output #38: loss/loss17 = 0.000209985 (* 0.0454545 = 9.54478e-06 loss) | |
I0405 17:04:20.433002 29564 solver.cpp:245] Train net output #39: loss/loss18 = 0.000217875 (* 0.0454545 = 9.90341e-06 loss) | |
I0405 17:04:20.433018 29564 solver.cpp:245] Train net output #40: loss/loss19 = 0.000191462 (* 0.0454545 = 8.70281e-06 loss) | |
I0405 17:04:20.433032 29564 solver.cpp:245] Train net output #41: loss/loss20 = 0.000227956 (* 0.0454545 = 1.03617e-05 loss) | |
I0405 17:04:20.433046 29564 solver.cpp:245] Train net output #42: loss/loss21 = 0.00019909 (* 0.0454545 = 9.04956e-06 loss) | |
I0405 17:04:20.433060 29564 solver.cpp:245] Train net output #43: loss/loss22 = 0.000210548 (* 0.0454545 = 9.57038e-06 loss) | |
I0405 17:04:20.433073 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 17:04:20.433084 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000142732 | |
I0405 17:04:20.433099 29564 sgd_solver.cpp:106] Iteration 25500, lr = 0.009745 | |
I0405 17:08:11.240216 29564 solver.cpp:229] Iteration 26000, loss = 0.898188 | |
I0405 17:08:11.240324 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.21875 | |
I0405 17:08:11.240344 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125 | |
I0405 17:08:11.240355 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0405 17:08:11.240368 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.25 | |
I0405 17:08:11.240380 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125 | |
I0405 17:08:11.240391 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.46875 | |
I0405 17:08:11.240403 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875 | |
I0405 17:08:11.240414 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375 | |
I0405 17:08:11.240427 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0405 17:08:11.240438 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 17:08:11.240449 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 17:08:11.240461 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 17:08:11.240473 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 17:08:11.240483 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 17:08:11.240495 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 17:08:11.240506 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 17:08:11.240517 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 17:08:11.240528 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 17:08:11.240540 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 17:08:11.240551 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 17:08:11.240562 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 17:08:11.240573 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 17:08:11.240589 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.95747 (* 0.0454545 = 0.13443 loss) | |
I0405 17:08:11.240603 29564 solver.cpp:245] Train net output #23: loss/loss02 = 2.91955 (* 0.0454545 = 0.132707 loss) | |
I0405 17:08:11.240617 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.37517 (* 0.0454545 = 0.153417 loss) | |
I0405 17:08:11.240631 29564 solver.cpp:245] Train net output #25: loss/loss04 = 2.95944 (* 0.0454545 = 0.13452 loss) | |
I0405 17:08:11.240645 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.54936 (* 0.0454545 = 0.11588 loss) | |
I0405 17:08:11.240659 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.17553 (* 0.0454545 = 0.0988878 loss) | |
I0405 17:08:11.240674 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.25374 (* 0.0454545 = 0.056988 loss) | |
I0405 17:08:11.240687 29564 solver.cpp:245] Train net output #29: loss/loss08 = 1.05755 (* 0.0454545 = 0.0480703 loss) | |
I0405 17:08:11.240701 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.358963 (* 0.0454545 = 0.0163165 loss) | |
I0405 17:08:11.240715 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.209878 (* 0.0454545 = 0.00953989 loss) | |
I0405 17:08:11.240730 29564 solver.cpp:245] Train net output #32: loss/loss11 = 4.2468e-05 (* 0.0454545 = 1.93036e-06 loss) | |
I0405 17:08:11.240744 29564 solver.cpp:245] Train net output #33: loss/loss12 = 4.13949e-05 (* 0.0454545 = 1.88159e-06 loss) | |
I0405 17:08:11.240758 29564 solver.cpp:245] Train net output #34: loss/loss13 = 3.86673e-05 (* 0.0454545 = 1.7576e-06 loss) | |
I0405 17:08:11.240772 29564 solver.cpp:245] Train net output #35: loss/loss14 = 3.81009e-05 (* 0.0454545 = 1.73186e-06 loss) | |
I0405 17:08:11.240787 29564 solver.cpp:245] Train net output #36: loss/loss15 = 3.90159e-05 (* 0.0454545 = 1.77345e-06 loss) | |
I0405 17:08:11.240800 29564 solver.cpp:245] Train net output #37: loss/loss16 = 3.71416e-05 (* 0.0454545 = 1.68826e-06 loss) | |
I0405 17:08:11.240814 29564 solver.cpp:245] Train net output #38: loss/loss17 = 3.52785e-05 (* 0.0454545 = 1.60357e-06 loss) | |
I0405 17:08:11.240844 29564 solver.cpp:245] Train net output #39: loss/loss18 = 3.53437e-05 (* 0.0454545 = 1.60653e-06 loss) | |
I0405 17:08:11.240859 29564 solver.cpp:245] Train net output #40: loss/loss19 = 3.92413e-05 (* 0.0454545 = 1.78369e-06 loss) | |
I0405 17:08:11.240874 29564 solver.cpp:245] Train net output #41: loss/loss20 = 3.57571e-05 (* 0.0454545 = 1.62532e-06 loss) | |
I0405 17:08:11.240887 29564 solver.cpp:245] Train net output #42: loss/loss21 = 3.62622e-05 (* 0.0454545 = 1.64828e-06 loss) | |
I0405 17:08:11.240901 29564 solver.cpp:245] Train net output #43: loss/loss22 = 3.79333e-05 (* 0.0454545 = 1.72424e-06 loss) | |
I0405 17:08:11.240914 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 17:08:11.240926 29564 solver.cpp:245] Train net output #45: total_confidence = 0.00037837 | |
I0405 17:08:11.240939 29564 sgd_solver.cpp:106] Iteration 26000, lr = 0.00974 | |
I0405 17:12:01.679661 29564 solver.cpp:229] Iteration 26500, loss = 0.897151 | |
I0405 17:12:01.679909 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.1875 | |
I0405 17:12:01.679930 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125 | |
I0405 17:12:01.679942 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.1875 | |
I0405 17:12:01.679955 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0405 17:12:01.679968 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0405 17:12:01.679980 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375 | |
I0405 17:12:01.679991 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875 | |
I0405 17:12:01.680003 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0405 17:12:01.680016 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 17:12:01.680027 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 17:12:01.680039 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 17:12:01.680058 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 17:12:01.680094 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 17:12:01.680107 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 17:12:01.680119 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 17:12:01.680130 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 17:12:01.680141 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 17:12:01.680152 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 17:12:01.680163 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 17:12:01.680174 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 17:12:01.680186 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 17:12:01.680197 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 17:12:01.680212 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.74982 (* 0.0454545 = 0.124992 loss) | |
I0405 17:12:01.680227 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.16766 (* 0.0454545 = 0.143984 loss) | |
I0405 17:12:01.680241 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.12891 (* 0.0454545 = 0.142223 loss) | |
I0405 17:12:01.680255 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.08776 (* 0.0454545 = 0.140353 loss) | |
I0405 17:12:01.680269 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.86345 (* 0.0454545 = 0.130157 loss) | |
I0405 17:12:01.680282 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.35933 (* 0.0454545 = 0.107242 loss) | |
I0405 17:12:01.680296 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.22476 (* 0.0454545 = 0.0556709 loss) | |
I0405 17:12:01.680312 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.300092 (* 0.0454545 = 0.0136406 loss) | |
I0405 17:12:01.680327 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.116854 (* 0.0454545 = 0.00531156 loss) | |
I0405 17:12:01.680341 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.0264152 (* 0.0454545 = 0.00120069 loss) | |
I0405 17:12:01.680356 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.000161365 (* 0.0454545 = 7.33478e-06 loss) | |
I0405 17:12:01.680371 29564 solver.cpp:245] Train net output #33: loss/loss12 = 0.000158366 (* 0.0454545 = 7.19845e-06 loss) | |
I0405 17:12:01.680384 29564 solver.cpp:245] Train net output #34: loss/loss13 = 0.000147136 (* 0.0454545 = 6.68799e-06 loss) | |
I0405 17:12:01.680398 29564 solver.cpp:245] Train net output #35: loss/loss14 = 0.000142949 (* 0.0454545 = 6.49768e-06 loss) | |
I0405 17:12:01.680411 29564 solver.cpp:245] Train net output #36: loss/loss15 = 0.000140272 (* 0.0454545 = 6.376e-06 loss) | |
I0405 17:12:01.680426 29564 solver.cpp:245] Train net output #37: loss/loss16 = 0.000140779 (* 0.0454545 = 6.39904e-06 loss) | |
I0405 17:12:01.680439 29564 solver.cpp:245] Train net output #38: loss/loss17 = 0.000130924 (* 0.0454545 = 5.95111e-06 loss) | |
I0405 17:12:01.680469 29564 solver.cpp:245] Train net output #39: loss/loss18 = 0.000133295 (* 0.0454545 = 6.05887e-06 loss) | |
I0405 17:12:01.680483 29564 solver.cpp:245] Train net output #40: loss/loss19 = 0.000144011 (* 0.0454545 = 6.54594e-06 loss) | |
I0405 17:12:01.680497 29564 solver.cpp:245] Train net output #41: loss/loss20 = 0.000140628 (* 0.0454545 = 6.39219e-06 loss) | |
I0405 17:12:01.680511 29564 solver.cpp:245] Train net output #42: loss/loss21 = 0.000142205 (* 0.0454545 = 6.46386e-06 loss) | |
I0405 17:12:01.680526 29564 solver.cpp:245] Train net output #43: loss/loss22 = 0.000143437 (* 0.0454545 = 6.51986e-06 loss) | |
I0405 17:12:01.680537 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 17:12:01.680548 29564 solver.cpp:245] Train net output #45: total_confidence = 1.74388e-05 | |
I0405 17:12:01.680562 29564 sgd_solver.cpp:106] Iteration 26500, lr = 0.009735 | |
I0405 17:15:52.063196 29564 solver.cpp:229] Iteration 27000, loss = 0.897092 | |
I0405 17:15:52.063316 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.15625 | |
I0405 17:15:52.063336 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0405 17:15:52.063349 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0405 17:15:52.063361 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625 | |
I0405 17:15:52.063374 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.34375 | |
I0405 17:15:52.063385 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625 | |
I0405 17:15:52.063397 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.59375 | |
I0405 17:15:52.063410 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0405 17:15:52.063422 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0405 17:15:52.063434 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0405 17:15:52.063446 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 17:15:52.063457 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 17:15:52.063469 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 17:15:52.063480 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 17:15:52.063493 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 17:15:52.063503 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 17:15:52.063515 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 17:15:52.063529 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 17:15:52.063541 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 17:15:52.063552 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 17:15:52.063563 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 17:15:52.063575 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 17:15:52.063590 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.80489 (* 0.0454545 = 0.127495 loss) | |
I0405 17:15:52.063603 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.22032 (* 0.0454545 = 0.146378 loss) | |
I0405 17:15:52.063618 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.22563 (* 0.0454545 = 0.146619 loss) | |
I0405 17:15:52.063632 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.05709 (* 0.0454545 = 0.138959 loss) | |
I0405 17:15:52.063647 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.56995 (* 0.0454545 = 0.116816 loss) | |
I0405 17:15:52.063660 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.37172 (* 0.0454545 = 0.107805 loss) | |
I0405 17:15:52.063674 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.79181 (* 0.0454545 = 0.0814457 loss) | |
I0405 17:15:52.063689 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.583848 (* 0.0454545 = 0.0265385 loss) | |
I0405 17:15:52.063702 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.426971 (* 0.0454545 = 0.0194078 loss) | |
I0405 17:15:52.063716 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.383321 (* 0.0454545 = 0.0174237 loss) | |
I0405 17:15:52.063731 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.00014389 (* 0.0454545 = 6.54045e-06 loss) | |
I0405 17:15:52.063746 29564 solver.cpp:245] Train net output #33: loss/loss12 = 0.000138445 (* 0.0454545 = 6.29297e-06 loss) | |
I0405 17:15:52.063760 29564 solver.cpp:245] Train net output #34: loss/loss13 = 0.000137399 (* 0.0454545 = 6.24541e-06 loss) | |
I0405 17:15:52.063774 29564 solver.cpp:245] Train net output #35: loss/loss14 = 0.000136473 (* 0.0454545 = 6.20332e-06 loss) | |
I0405 17:15:52.063788 29564 solver.cpp:245] Train net output #36: loss/loss15 = 0.00013003 (* 0.0454545 = 5.91047e-06 loss) | |
I0405 17:15:52.063802 29564 solver.cpp:245] Train net output #37: loss/loss16 = 0.000127654 (* 0.0454545 = 5.80244e-06 loss) | |
I0405 17:15:52.063817 29564 solver.cpp:245] Train net output #38: loss/loss17 = 0.000125818 (* 0.0454545 = 5.71899e-06 loss) | |
I0405 17:15:52.063846 29564 solver.cpp:245] Train net output #39: loss/loss18 = 0.000127444 (* 0.0454545 = 5.79291e-06 loss) | |
I0405 17:15:52.063863 29564 solver.cpp:245] Train net output #40: loss/loss19 = 0.000127989 (* 0.0454545 = 5.8177e-06 loss) | |
I0405 17:15:52.063876 29564 solver.cpp:245] Train net output #41: loss/loss20 = 0.00013333 (* 0.0454545 = 6.06043e-06 loss) | |
I0405 17:15:52.063891 29564 solver.cpp:245] Train net output #42: loss/loss21 = 0.000127816 (* 0.0454545 = 5.80981e-06 loss) | |
I0405 17:15:52.063905 29564 solver.cpp:245] Train net output #43: loss/loss22 = 0.000131153 (* 0.0454545 = 5.96151e-06 loss) | |
I0405 17:15:52.063916 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 17:15:52.063928 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000375065 | |
I0405 17:15:52.063942 29564 sgd_solver.cpp:106] Iteration 27000, lr = 0.00973 | |
I0405 17:19:42.548249 29564 solver.cpp:229] Iteration 27500, loss = 0.890448 | |
I0405 17:19:42.548362 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0405 17:19:42.548382 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0405 17:19:42.548394 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.1875 | |
I0405 17:19:42.548406 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875 | |
I0405 17:19:42.548419 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.34375 | |
I0405 17:19:42.548431 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0405 17:19:42.548442 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.65625 | |
I0405 17:19:42.548454 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.78125 | |
I0405 17:19:42.548466 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625 | |
I0405 17:19:42.548478 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 17:19:42.548490 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 17:19:42.548503 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 17:19:42.548516 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 17:19:42.548527 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 17:19:42.548538 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 17:19:42.548550 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 17:19:42.548562 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 17:19:42.548573 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 17:19:42.548588 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 17:19:42.548599 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 17:19:42.548611 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 17:19:42.548622 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 17:19:42.548638 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.97448 (* 0.0454545 = 0.135204 loss) | |
I0405 17:19:42.548652 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.20335 (* 0.0454545 = 0.145607 loss) | |
I0405 17:19:42.548666 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.10228 (* 0.0454545 = 0.141013 loss) | |
I0405 17:19:42.548679 29564 solver.cpp:245] Train net output #25: loss/loss04 = 2.97181 (* 0.0454545 = 0.135082 loss) | |
I0405 17:19:42.548693 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.52744 (* 0.0454545 = 0.114884 loss) | |
I0405 17:19:42.548707 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.2735 (* 0.0454545 = 0.103341 loss) | |
I0405 17:19:42.548722 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.31437 (* 0.0454545 = 0.0597442 loss) | |
I0405 17:19:42.548737 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.842246 (* 0.0454545 = 0.0382839 loss) | |
I0405 17:19:42.548750 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.446593 (* 0.0454545 = 0.0202997 loss) | |
I0405 17:19:42.548764 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.0302842 (* 0.0454545 = 0.00137655 loss) | |
I0405 17:19:42.548779 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.000132534 (* 0.0454545 = 6.02429e-06 loss) | |
I0405 17:19:42.548794 29564 solver.cpp:245] Train net output #33: loss/loss12 = 0.000123473 (* 0.0454545 = 5.61241e-06 loss) | |
I0405 17:19:42.548809 29564 solver.cpp:245] Train net output #34: loss/loss13 = 0.000129169 (* 0.0454545 = 5.87132e-06 loss) | |
I0405 17:19:42.548822 29564 solver.cpp:245] Train net output #35: loss/loss14 = 0.000113365 (* 0.0454545 = 5.15297e-06 loss) | |
I0405 17:19:42.548836 29564 solver.cpp:245] Train net output #36: loss/loss15 = 0.000114311 (* 0.0454545 = 5.19597e-06 loss) | |
I0405 17:19:42.548851 29564 solver.cpp:245] Train net output #37: loss/loss16 = 0.000111139 (* 0.0454545 = 5.05178e-06 loss) | |
I0405 17:19:42.548866 29564 solver.cpp:245] Train net output #38: loss/loss17 = 0.000119035 (* 0.0454545 = 5.41066e-06 loss) | |
I0405 17:19:42.548897 29564 solver.cpp:245] Train net output #39: loss/loss18 = 0.000114031 (* 0.0454545 = 5.18323e-06 loss) | |
I0405 17:19:42.548912 29564 solver.cpp:245] Train net output #40: loss/loss19 = 0.000120622 (* 0.0454545 = 5.48284e-06 loss) | |
I0405 17:19:42.548926 29564 solver.cpp:245] Train net output #41: loss/loss20 = 0.00011788 (* 0.0454545 = 5.3582e-06 loss) | |
I0405 17:19:42.548940 29564 solver.cpp:245] Train net output #42: loss/loss21 = 0.000107147 (* 0.0454545 = 4.87032e-06 loss) | |
I0405 17:19:42.548954 29564 solver.cpp:245] Train net output #43: loss/loss22 = 0.000117886 (* 0.0454545 = 5.35845e-06 loss) | |
I0405 17:19:42.548967 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 17:19:42.548979 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000185104 | |
I0405 17:19:42.548992 29564 sgd_solver.cpp:106] Iteration 27500, lr = 0.009725 | |
I0405 17:23:33.474828 29564 solver.cpp:229] Iteration 28000, loss = 0.897026 | |
I0405 17:23:33.475018 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.1875 | |
I0405 17:23:33.475038 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0405 17:23:33.475050 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0405 17:23:33.475062 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375 | |
I0405 17:23:33.475075 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.21875 | |
I0405 17:23:33.475086 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125 | |
I0405 17:23:33.475098 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625 | |
I0405 17:23:33.475111 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.78125 | |
I0405 17:23:33.475121 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 17:23:33.475133 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 17:23:33.475145 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 17:23:33.475157 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 17:23:33.475168 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 17:23:33.475179 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 17:23:33.475190 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 17:23:33.475205 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 17:23:33.475217 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 17:23:33.475230 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 17:23:33.475242 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 17:23:33.475253 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 17:23:33.475265 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 17:23:33.475276 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 17:23:33.475291 29564 solver.cpp:245] Train net output #22: loss/loss01 = 3.13527 (* 0.0454545 = 0.142512 loss) | |
I0405 17:23:33.475306 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.25824 (* 0.0454545 = 0.148102 loss) | |
I0405 17:23:33.475319 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.14863 (* 0.0454545 = 0.143119 loss) | |
I0405 17:23:33.475333 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.27133 (* 0.0454545 = 0.148697 loss) | |
I0405 17:23:33.475347 29564 solver.cpp:245] Train net output #26: loss/loss05 = 3.12795 (* 0.0454545 = 0.14218 loss) | |
I0405 17:23:33.475360 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.8647 (* 0.0454545 = 0.130213 loss) | |
I0405 17:23:33.475374 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.91824 (* 0.0454545 = 0.0871928 loss) | |
I0405 17:23:33.475389 29564 solver.cpp:245] Train net output #29: loss/loss08 = 1.15486 (* 0.0454545 = 0.0524938 loss) | |
I0405 17:23:33.475402 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.224068 (* 0.0454545 = 0.0101849 loss) | |
I0405 17:23:33.475416 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.00602984 (* 0.0454545 = 0.000274083 loss) | |
I0405 17:23:33.475430 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.000173345 (* 0.0454545 = 7.8793e-06 loss) | |
I0405 17:23:33.475445 29564 solver.cpp:245] Train net output #33: loss/loss12 = 0.000169879 (* 0.0454545 = 7.72178e-06 loss) | |
I0405 17:23:33.475458 29564 solver.cpp:245] Train net output #34: loss/loss13 = 0.000167322 (* 0.0454545 = 7.60555e-06 loss) | |
I0405 17:23:33.475473 29564 solver.cpp:245] Train net output #35: loss/loss14 = 0.000162054 (* 0.0454545 = 7.36608e-06 loss) | |
I0405 17:23:33.475487 29564 solver.cpp:245] Train net output #36: loss/loss15 = 0.000155526 (* 0.0454545 = 7.06936e-06 loss) | |
I0405 17:23:33.475502 29564 solver.cpp:245] Train net output #37: loss/loss16 = 0.000145113 (* 0.0454545 = 6.59602e-06 loss) | |
I0405 17:23:33.475515 29564 solver.cpp:245] Train net output #38: loss/loss17 = 0.00014853 (* 0.0454545 = 6.75135e-06 loss) | |
I0405 17:23:33.475545 29564 solver.cpp:245] Train net output #39: loss/loss18 = 0.000154427 (* 0.0454545 = 7.01939e-06 loss) | |
I0405 17:23:33.475561 29564 solver.cpp:245] Train net output #40: loss/loss19 = 0.000160618 (* 0.0454545 = 7.30081e-06 loss) | |
I0405 17:23:33.475575 29564 solver.cpp:245] Train net output #41: loss/loss20 = 0.000153416 (* 0.0454545 = 6.97347e-06 loss) | |
I0405 17:23:33.475589 29564 solver.cpp:245] Train net output #42: loss/loss21 = 0.000154307 (* 0.0454545 = 7.01394e-06 loss) | |
I0405 17:23:33.475603 29564 solver.cpp:245] Train net output #43: loss/loss22 = 0.00015173 (* 0.0454545 = 6.89681e-06 loss) | |
I0405 17:23:33.475615 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 17:23:33.475626 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000184161 | |
I0405 17:23:33.475641 29564 sgd_solver.cpp:106] Iteration 28000, lr = 0.00972 | |
I0405 17:27:24.544528 29564 solver.cpp:229] Iteration 28500, loss = 0.894256 | |
I0405 17:27:24.544661 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.21875 | |
I0405 17:27:24.544692 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0405 17:27:24.544715 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0405 17:27:24.544740 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.34375 | |
I0405 17:27:24.544762 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.46875 | |
I0405 17:27:24.544783 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5625 | |
I0405 17:27:24.544807 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0405 17:27:24.544829 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0405 17:27:24.544850 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 17:27:24.544872 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 17:27:24.544893 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 17:27:24.544916 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 17:27:24.544936 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 17:27:24.544957 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 17:27:24.544977 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 17:27:24.544997 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 17:27:24.545018 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 17:27:24.545044 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 17:27:24.545068 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 17:27:24.545089 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 17:27:24.545109 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 17:27:24.545128 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 17:27:24.545155 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.73495 (* 0.0454545 = 0.124316 loss) | |
I0405 17:27:24.545181 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.24896 (* 0.0454545 = 0.14768 loss) | |
I0405 17:27:24.545205 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.46054 (* 0.0454545 = 0.157297 loss) | |
I0405 17:27:24.545230 29564 solver.cpp:245] Train net output #25: loss/loss04 = 2.84533 (* 0.0454545 = 0.129333 loss) | |
I0405 17:27:24.545258 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.47498 (* 0.0454545 = 0.112499 loss) | |
I0405 17:27:24.545284 29564 solver.cpp:245] Train net output #27: loss/loss06 = 1.56715 (* 0.0454545 = 0.0712341 loss) | |
I0405 17:27:24.545308 29564 solver.cpp:245] Train net output #28: loss/loss07 = 0.75141 (* 0.0454545 = 0.034155 loss) | |
I0405 17:27:24.545334 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.290599 (* 0.0454545 = 0.0132091 loss) | |
I0405 17:27:24.545361 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.166349 (* 0.0454545 = 0.00756131 loss) | |
I0405 17:27:24.545385 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.163398 (* 0.0454545 = 0.00742718 loss) | |
I0405 17:27:24.545411 29564 solver.cpp:245] Train net output #32: loss/loss11 = 3.47293e-05 (* 0.0454545 = 1.5786e-06 loss) | |
I0405 17:27:24.545436 29564 solver.cpp:245] Train net output #33: loss/loss12 = 3.45803e-05 (* 0.0454545 = 1.57183e-06 loss) | |
I0405 17:27:24.545461 29564 solver.cpp:245] Train net output #34: loss/loss13 = 3.30975e-05 (* 0.0454545 = 1.50443e-06 loss) | |
I0405 17:27:24.545488 29564 solver.cpp:245] Train net output #35: loss/loss14 = 3.17692e-05 (* 0.0454545 = 1.44406e-06 loss) | |
I0405 17:27:24.545514 29564 solver.cpp:245] Train net output #36: loss/loss15 = 3.11452e-05 (* 0.0454545 = 1.41569e-06 loss) | |
I0405 17:27:24.545539 29564 solver.cpp:245] Train net output #37: loss/loss16 = 3.21026e-05 (* 0.0454545 = 1.45921e-06 loss) | |
I0405 17:27:24.545563 29564 solver.cpp:245] Train net output #38: loss/loss17 = 2.93513e-05 (* 0.0454545 = 1.33415e-06 loss) | |
I0405 17:27:24.545608 29564 solver.cpp:245] Train net output #39: loss/loss18 = 3.0277e-05 (* 0.0454545 = 1.37623e-06 loss) | |
I0405 17:27:24.545634 29564 solver.cpp:245] Train net output #40: loss/loss19 = 2.99213e-05 (* 0.0454545 = 1.36006e-06 loss) | |
I0405 17:27:24.545658 29564 solver.cpp:245] Train net output #41: loss/loss20 = 3.13686e-05 (* 0.0454545 = 1.42585e-06 loss) | |
I0405 17:27:24.545688 29564 solver.cpp:245] Train net output #42: loss/loss21 = 3.1039e-05 (* 0.0454545 = 1.41086e-06 loss) | |
I0405 17:27:24.545716 29564 solver.cpp:245] Train net output #43: loss/loss22 = 3.04876e-05 (* 0.0454545 = 1.3858e-06 loss) | |
I0405 17:27:24.545737 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 17:27:24.545758 29564 solver.cpp:245] Train net output #45: total_confidence = 0.0019338 | |
I0405 17:27:24.545779 29564 sgd_solver.cpp:106] Iteration 28500, lr = 0.009715 | |
I0405 17:31:15.659024 29564 solver.cpp:229] Iteration 29000, loss = 0.896314 | |
I0405 17:31:15.659214 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.15625 | |
I0405 17:31:15.659236 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0405 17:31:15.659251 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0405 17:31:15.659263 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625 | |
I0405 17:31:15.659276 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0405 17:31:15.659286 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0405 17:31:15.659298 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0405 17:31:15.659309 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0405 17:31:15.659322 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 17:31:15.659334 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 17:31:15.659346 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 17:31:15.659358 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 17:31:15.659369 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 17:31:15.659380 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 17:31:15.659391 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 17:31:15.659402 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 17:31:15.659415 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 17:31:15.659425 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 17:31:15.659436 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 17:31:15.659447 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 17:31:15.659459 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 17:31:15.659471 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 17:31:15.659485 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.86013 (* 0.0454545 = 0.130006 loss) | |
I0405 17:31:15.659500 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.02756 (* 0.0454545 = 0.137617 loss) | |
I0405 17:31:15.659514 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.18718 (* 0.0454545 = 0.144872 loss) | |
I0405 17:31:15.659528 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.06113 (* 0.0454545 = 0.139142 loss) | |
I0405 17:31:15.659541 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.84677 (* 0.0454545 = 0.129399 loss) | |
I0405 17:31:15.659555 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.56905 (* 0.0454545 = 0.116775 loss) | |
I0405 17:31:15.659569 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.50159 (* 0.0454545 = 0.068254 loss) | |
I0405 17:31:15.659584 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.625972 (* 0.0454545 = 0.0284533 loss) | |
I0405 17:31:15.659597 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.193977 (* 0.0454545 = 0.00881712 loss) | |
I0405 17:31:15.659611 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.131145 (* 0.0454545 = 0.00596114 loss) | |
I0405 17:31:15.659626 29564 solver.cpp:245] Train net output #32: loss/loss11 = 7.88382e-05 (* 0.0454545 = 3.58355e-06 loss) | |
I0405 17:31:15.659639 29564 solver.cpp:245] Train net output #33: loss/loss12 = 7.07165e-05 (* 0.0454545 = 3.21439e-06 loss) | |
I0405 17:31:15.659653 29564 solver.cpp:245] Train net output #34: loss/loss13 = 7.69689e-05 (* 0.0454545 = 3.49859e-06 loss) | |
I0405 17:31:15.659667 29564 solver.cpp:245] Train net output #35: loss/loss14 = 7.19512e-05 (* 0.0454545 = 3.27051e-06 loss) | |
I0405 17:31:15.659682 29564 solver.cpp:245] Train net output #36: loss/loss15 = 6.50727e-05 (* 0.0454545 = 2.95785e-06 loss) | |
I0405 17:31:15.659695 29564 solver.cpp:245] Train net output #37: loss/loss16 = 7.26161e-05 (* 0.0454545 = 3.30073e-06 loss) | |
I0405 17:31:15.659709 29564 solver.cpp:245] Train net output #38: loss/loss17 = 6.95664e-05 (* 0.0454545 = 3.16211e-06 loss) | |
I0405 17:31:15.659741 29564 solver.cpp:245] Train net output #39: loss/loss18 = 6.94829e-05 (* 0.0454545 = 3.15832e-06 loss) | |
I0405 17:31:15.659756 29564 solver.cpp:245] Train net output #40: loss/loss19 = 6.98521e-05 (* 0.0454545 = 3.1751e-06 loss) | |
I0405 17:31:15.659771 29564 solver.cpp:245] Train net output #41: loss/loss20 = 7.10076e-05 (* 0.0454545 = 3.22762e-06 loss) | |
I0405 17:31:15.659785 29564 solver.cpp:245] Train net output #42: loss/loss21 = 6.95897e-05 (* 0.0454545 = 3.16317e-06 loss) | |
I0405 17:31:15.659798 29564 solver.cpp:245] Train net output #43: loss/loss22 = 7.16344e-05 (* 0.0454545 = 3.25611e-06 loss) | |
I0405 17:31:15.659811 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 17:31:15.659822 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000216207 | |
I0405 17:31:15.659837 29564 sgd_solver.cpp:106] Iteration 29000, lr = 0.00971 | |
I0405 17:35:07.240355 29564 solver.cpp:229] Iteration 29500, loss = 0.893307 | |
I0405 17:35:07.240459 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.15625 | |
I0405 17:35:07.240483 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0405 17:35:07.240496 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0405 17:35:07.240509 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0405 17:35:07.240521 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.15625 | |
I0405 17:35:07.240533 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.25 | |
I0405 17:35:07.240545 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0405 17:35:07.240557 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375 | |
I0405 17:35:07.240571 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0405 17:35:07.240582 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 17:35:07.240593 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 17:35:07.240605 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 17:35:07.240617 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 17:35:07.240628 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 17:35:07.240640 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 17:35:07.240653 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 17:35:07.240664 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 17:35:07.240675 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 17:35:07.240686 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 17:35:07.240699 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 17:35:07.240710 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 17:35:07.240720 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 17:35:07.240736 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.69179 (* 0.0454545 = 0.122354 loss) | |
I0405 17:35:07.240749 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.03889 (* 0.0454545 = 0.138131 loss) | |
I0405 17:35:07.240764 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.00457 (* 0.0454545 = 0.136572 loss) | |
I0405 17:35:07.240778 29564 solver.cpp:245] Train net output #25: loss/loss04 = 2.89336 (* 0.0454545 = 0.131516 loss) | |
I0405 17:35:07.240792 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.81834 (* 0.0454545 = 0.128106 loss) | |
I0405 17:35:07.240808 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.74712 (* 0.0454545 = 0.124869 loss) | |
I0405 17:35:07.240823 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.27913 (* 0.0454545 = 0.0581421 loss) | |
I0405 17:35:07.240836 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.783573 (* 0.0454545 = 0.0356169 loss) | |
I0405 17:35:07.240851 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.35623 (* 0.0454545 = 0.0161923 loss) | |
I0405 17:35:07.240865 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.254137 (* 0.0454545 = 0.0115517 loss) | |
I0405 17:35:07.240880 29564 solver.cpp:245] Train net output #32: loss/loss11 = 4.08872e-05 (* 0.0454545 = 1.85851e-06 loss) | |
I0405 17:35:07.240895 29564 solver.cpp:245] Train net output #33: loss/loss12 = 3.92738e-05 (* 0.0454545 = 1.78517e-06 loss) | |
I0405 17:35:07.240909 29564 solver.cpp:245] Train net output #34: loss/loss13 = 3.82417e-05 (* 0.0454545 = 1.73826e-06 loss) | |
I0405 17:35:07.240923 29564 solver.cpp:245] Train net output #35: loss/loss14 = 3.81672e-05 (* 0.0454545 = 1.73487e-06 loss) | |
I0405 17:35:07.240937 29564 solver.cpp:245] Train net output #36: loss/loss15 = 3.60769e-05 (* 0.0454545 = 1.63986e-06 loss) | |
I0405 17:35:07.240952 29564 solver.cpp:245] Train net output #37: loss/loss16 = 3.61142e-05 (* 0.0454545 = 1.64155e-06 loss) | |
I0405 17:35:07.240965 29564 solver.cpp:245] Train net output #38: loss/loss17 = 3.50672e-05 (* 0.0454545 = 1.59397e-06 loss) | |
I0405 17:35:07.240996 29564 solver.cpp:245] Train net output #39: loss/loss18 = 3.67365e-05 (* 0.0454545 = 1.66984e-06 loss) | |
I0405 17:35:07.241011 29564 solver.cpp:245] Train net output #40: loss/loss19 = 3.72842e-05 (* 0.0454545 = 1.69474e-06 loss) | |
I0405 17:35:07.241025 29564 solver.cpp:245] Train net output #41: loss/loss20 = 3.71537e-05 (* 0.0454545 = 1.68881e-06 loss) | |
I0405 17:35:07.241039 29564 solver.cpp:245] Train net output #42: loss/loss21 = 3.66881e-05 (* 0.0454545 = 1.66764e-06 loss) | |
I0405 17:35:07.241053 29564 solver.cpp:245] Train net output #43: loss/loss22 = 3.64831e-05 (* 0.0454545 = 1.65832e-06 loss) | |
I0405 17:35:07.241065 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 17:35:07.241077 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000625936 | |
I0405 17:35:07.241092 29564 sgd_solver.cpp:106] Iteration 29500, lr = 0.009705 | |
I0405 17:38:58.009238 29564 solver.cpp:338] Iteration 30000, Testing net (#0) | |
I0405 17:39:08.267765 29564 solver.cpp:393] Test loss: 0.773282 | |
I0405 17:39:08.267810 29564 solver.cpp:406] Test net output #0: loss/accuracy01 = 0.296 | |
I0405 17:39:08.267827 29564 solver.cpp:406] Test net output #1: loss/accuracy02 = 0.091 | |
I0405 17:39:08.267839 29564 solver.cpp:406] Test net output #2: loss/accuracy03 = 0.08 | |
I0405 17:39:08.267853 29564 solver.cpp:406] Test net output #3: loss/accuracy04 = 0.154 | |
I0405 17:39:08.267865 29564 solver.cpp:406] Test net output #4: loss/accuracy05 = 0.234 | |
I0405 17:39:08.267877 29564 solver.cpp:406] Test net output #5: loss/accuracy06 = 0.523 | |
I0405 17:39:08.267889 29564 solver.cpp:406] Test net output #6: loss/accuracy07 = 0.892 | |
I0405 17:39:08.267900 29564 solver.cpp:406] Test net output #7: loss/accuracy08 = 0.97 | |
I0405 17:39:08.267911 29564 solver.cpp:406] Test net output #8: loss/accuracy09 = 0.995 | |
I0405 17:39:08.267922 29564 solver.cpp:406] Test net output #9: loss/accuracy10 = 0.998 | |
I0405 17:39:08.267935 29564 solver.cpp:406] Test net output #10: loss/accuracy11 = 1 | |
I0405 17:39:08.267946 29564 solver.cpp:406] Test net output #11: loss/accuracy12 = 1 | |
I0405 17:39:08.267956 29564 solver.cpp:406] Test net output #12: loss/accuracy13 = 1 | |
I0405 17:39:08.267968 29564 solver.cpp:406] Test net output #13: loss/accuracy14 = 1 | |
I0405 17:39:08.267979 29564 solver.cpp:406] Test net output #14: loss/accuracy15 = 1 | |
I0405 17:39:08.267990 29564 solver.cpp:406] Test net output #15: loss/accuracy16 = 1 | |
I0405 17:39:08.268002 29564 solver.cpp:406] Test net output #16: loss/accuracy17 = 1 | |
I0405 17:39:08.268013 29564 solver.cpp:406] Test net output #17: loss/accuracy18 = 1 | |
I0405 17:39:08.268023 29564 solver.cpp:406] Test net output #18: loss/accuracy19 = 1 | |
I0405 17:39:08.268034 29564 solver.cpp:406] Test net output #19: loss/accuracy20 = 1 | |
I0405 17:39:08.268045 29564 solver.cpp:406] Test net output #20: loss/accuracy21 = 1 | |
I0405 17:39:08.268056 29564 solver.cpp:406] Test net output #21: loss/accuracy22 = 1 | |
I0405 17:39:08.268085 29564 solver.cpp:406] Test net output #22: loss/loss01 = 2.69056 (* 0.0454545 = 0.122298 loss) | |
I0405 17:39:08.268102 29564 solver.cpp:406] Test net output #23: loss/loss02 = 2.9956 (* 0.0454545 = 0.136164 loss) | |
I0405 17:39:08.268117 29564 solver.cpp:406] Test net output #24: loss/loss03 = 3.06394 (* 0.0454545 = 0.13927 loss) | |
I0405 17:39:08.268131 29564 solver.cpp:406] Test net output #25: loss/loss04 = 2.93961 (* 0.0454545 = 0.133619 loss) | |
I0405 17:39:08.268144 29564 solver.cpp:406] Test net output #26: loss/loss05 = 2.72331 (* 0.0454545 = 0.123787 loss) | |
I0405 17:39:08.268157 29564 solver.cpp:406] Test net output #27: loss/loss06 = 1.7288 (* 0.0454545 = 0.078582 loss) | |
I0405 17:39:08.268173 29564 solver.cpp:406] Test net output #28: loss/loss07 = 0.588081 (* 0.0454545 = 0.026731 loss) | |
I0405 17:39:08.268188 29564 solver.cpp:406] Test net output #29: loss/loss08 = 0.213626 (* 0.0454545 = 0.00971028 loss) | |
I0405 17:39:08.268201 29564 solver.cpp:406] Test net output #30: loss/loss09 = 0.044369 (* 0.0454545 = 0.00201677 loss) | |
I0405 17:39:08.268215 29564 solver.cpp:406] Test net output #31: loss/loss10 = 0.0231651 (* 0.0454545 = 0.00105296 loss) | |
I0405 17:39:08.268229 29564 solver.cpp:406] Test net output #32: loss/loss11 = 0.000105164 (* 0.0454545 = 4.78016e-06 loss) | |
I0405 17:39:08.268244 29564 solver.cpp:406] Test net output #33: loss/loss12 = 9.87274e-05 (* 0.0454545 = 4.48761e-06 loss) | |
I0405 17:39:08.268257 29564 solver.cpp:406] Test net output #34: loss/loss13 = 0.000100374 (* 0.0454545 = 4.56248e-06 loss) | |
I0405 17:39:08.268271 29564 solver.cpp:406] Test net output #35: loss/loss14 = 9.89721e-05 (* 0.0454545 = 4.49873e-06 loss) | |
I0405 17:39:08.268286 29564 solver.cpp:406] Test net output #36: loss/loss15 = 9.41509e-05 (* 0.0454545 = 4.27958e-06 loss) | |
I0405 17:39:08.268301 29564 solver.cpp:406] Test net output #37: loss/loss16 = 9.01379e-05 (* 0.0454545 = 4.09718e-06 loss) | |
I0405 17:39:08.268314 29564 solver.cpp:406] Test net output #38: loss/loss17 = 9.30374e-05 (* 0.0454545 = 4.22897e-06 loss) | |
I0405 17:39:08.268362 29564 solver.cpp:406] Test net output #39: loss/loss18 = 9.27846e-05 (* 0.0454545 = 4.21748e-06 loss) | |
I0405 17:39:08.268378 29564 solver.cpp:406] Test net output #40: loss/loss19 = 9.69699e-05 (* 0.0454545 = 4.40772e-06 loss) | |
I0405 17:39:08.268391 29564 solver.cpp:406] Test net output #41: loss/loss20 = 9.10329e-05 (* 0.0454545 = 4.13786e-06 loss) | |
I0405 17:39:08.268405 29564 solver.cpp:406] Test net output #42: loss/loss21 = 9.2897e-05 (* 0.0454545 = 4.22259e-06 loss) | |
I0405 17:39:08.268419 29564 solver.cpp:406] Test net output #43: loss/loss22 = 9.66525e-05 (* 0.0454545 = 4.3933e-06 loss) | |
I0405 17:39:08.268431 29564 solver.cpp:406] Test net output #44: total_accuracy = 0 | |
I0405 17:39:08.268443 29564 solver.cpp:406] Test net output #45: total_confidence = 0.000280943 | |
I0405 17:39:08.383486 29564 solver.cpp:229] Iteration 30000, loss = 0.887349 | |
I0405 17:39:08.383528 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.0625 | |
I0405 17:39:08.383545 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.15625 | |
I0405 17:39:08.383558 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0405 17:39:08.383570 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375 | |
I0405 17:39:08.383582 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.40625 | |
I0405 17:39:08.383594 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125 | |
I0405 17:39:08.383606 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625 | |
I0405 17:39:08.383617 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.8125 | |
I0405 17:39:08.383630 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 17:39:08.383641 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 17:39:08.383653 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 17:39:08.383666 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 17:39:08.383677 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 17:39:08.383688 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 17:39:08.383699 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 17:39:08.383710 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 17:39:08.383721 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 17:39:08.383733 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 17:39:08.383745 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 17:39:08.383756 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 17:39:08.383767 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 17:39:08.383779 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 17:39:08.383792 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.97603 (* 0.0454545 = 0.135274 loss) | |
I0405 17:39:08.383806 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.01986 (* 0.0454545 = 0.137267 loss) | |
I0405 17:39:08.383821 29564 solver.cpp:245] Train net output #24: loss/loss03 = 2.94926 (* 0.0454545 = 0.134057 loss) | |
I0405 17:39:08.383833 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.17268 (* 0.0454545 = 0.144213 loss) | |
I0405 17:39:08.383847 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.39744 (* 0.0454545 = 0.108974 loss) | |
I0405 17:39:08.383864 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.22643 (* 0.0454545 = 0.101201 loss) | |
I0405 17:39:08.383879 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.41898 (* 0.0454545 = 0.064499 loss) | |
I0405 17:39:08.383893 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.960516 (* 0.0454545 = 0.0436598 loss) | |
I0405 17:39:08.383908 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.152193 (* 0.0454545 = 0.00691785 loss) | |
I0405 17:39:08.383939 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.183145 (* 0.0454545 = 0.00832476 loss) | |
I0405 17:39:08.383955 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.000104048 (* 0.0454545 = 4.72944e-06 loss) | |
I0405 17:39:08.383970 29564 solver.cpp:245] Train net output #33: loss/loss12 = 0.000116704 (* 0.0454545 = 5.30472e-06 loss) | |
I0405 17:39:08.383985 29564 solver.cpp:245] Train net output #34: loss/loss13 = 0.000104012 (* 0.0454545 = 4.72782e-06 loss) | |
I0405 17:39:08.383998 29564 solver.cpp:245] Train net output #35: loss/loss14 = 0.000106922 (* 0.0454545 = 4.86011e-06 loss) | |
I0405 17:39:08.384012 29564 solver.cpp:245] Train net output #36: loss/loss15 = 0.000105121 (* 0.0454545 = 4.77822e-06 loss) | |
I0405 17:39:08.384026 29564 solver.cpp:245] Train net output #37: loss/loss16 = 0.000101095 (* 0.0454545 = 4.59521e-06 loss) | |
I0405 17:39:08.384039 29564 solver.cpp:245] Train net output #38: loss/loss17 = 9.42179e-05 (* 0.0454545 = 4.28263e-06 loss) | |
I0405 17:39:08.384053 29564 solver.cpp:245] Train net output #39: loss/loss18 = 9.92735e-05 (* 0.0454545 = 4.51243e-06 loss) | |
I0405 17:39:08.384083 29564 solver.cpp:245] Train net output #40: loss/loss19 = 0.00010259 (* 0.0454545 = 4.6632e-06 loss) | |
I0405 17:39:08.384102 29564 solver.cpp:245] Train net output #41: loss/loss20 = 9.73478e-05 (* 0.0454545 = 4.4249e-06 loss) | |
I0405 17:39:08.384117 29564 solver.cpp:245] Train net output #42: loss/loss21 = 9.2855e-05 (* 0.0454545 = 4.22068e-06 loss) | |
I0405 17:39:08.384131 29564 solver.cpp:245] Train net output #43: loss/loss22 = 9.80352e-05 (* 0.0454545 = 4.45615e-06 loss) | |
I0405 17:39:08.384143 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 17:39:08.384155 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000587551 | |
I0405 17:39:08.384172 29564 sgd_solver.cpp:106] Iteration 30000, lr = 0.0097 | |
I0405 17:42:59.758301 29564 solver.cpp:229] Iteration 30500, loss = 0.890624 | |
I0405 17:42:59.758561 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.1875 | |
I0405 17:42:59.758582 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0405 17:42:59.758595 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0405 17:42:59.758608 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0405 17:42:59.758620 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0405 17:42:59.758632 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0405 17:42:59.758644 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.78125 | |
I0405 17:42:59.758659 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0405 17:42:59.758672 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0405 17:42:59.758685 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 17:42:59.758697 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 17:42:59.758708 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 17:42:59.758719 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 17:42:59.758731 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 17:42:59.758743 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 17:42:59.758754 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 17:42:59.758766 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 17:42:59.758777 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 17:42:59.758790 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 17:42:59.758801 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 17:42:59.758812 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 17:42:59.758823 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 17:42:59.758839 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.533 (* 0.0454545 = 0.115137 loss) | |
I0405 17:42:59.758854 29564 solver.cpp:245] Train net output #23: loss/loss02 = 2.95701 (* 0.0454545 = 0.134409 loss) | |
I0405 17:42:59.758868 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.07722 (* 0.0454545 = 0.139874 loss) | |
I0405 17:42:59.758882 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.04866 (* 0.0454545 = 0.138575 loss) | |
I0405 17:42:59.758895 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.74385 (* 0.0454545 = 0.12472 loss) | |
I0405 17:42:59.758910 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.05799 (* 0.0454545 = 0.0935448 loss) | |
I0405 17:42:59.758924 29564 solver.cpp:245] Train net output #28: loss/loss07 = 0.896193 (* 0.0454545 = 0.040736 loss) | |
I0405 17:42:59.758939 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.336516 (* 0.0454545 = 0.0152962 loss) | |
I0405 17:42:59.758952 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.021998 (* 0.0454545 = 0.000999908 loss) | |
I0405 17:42:59.758967 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.00635294 (* 0.0454545 = 0.00028877 loss) | |
I0405 17:42:59.758981 29564 solver.cpp:245] Train net output #32: loss/loss11 = 3.29315e-05 (* 0.0454545 = 1.49689e-06 loss) | |
I0405 17:42:59.758996 29564 solver.cpp:245] Train net output #33: loss/loss12 = 3.32612e-05 (* 0.0454545 = 1.51187e-06 loss) | |
I0405 17:42:59.759011 29564 solver.cpp:245] Train net output #34: loss/loss13 = 3.39731e-05 (* 0.0454545 = 1.54423e-06 loss) | |
I0405 17:42:59.759024 29564 solver.cpp:245] Train net output #35: loss/loss14 = 3.12717e-05 (* 0.0454545 = 1.42144e-06 loss) | |
I0405 17:42:59.759038 29564 solver.cpp:245] Train net output #36: loss/loss15 = 3.14245e-05 (* 0.0454545 = 1.42839e-06 loss) | |
I0405 17:42:59.759052 29564 solver.cpp:245] Train net output #37: loss/loss16 = 3.14263e-05 (* 0.0454545 = 1.42847e-06 loss) | |
I0405 17:42:59.759069 29564 solver.cpp:245] Train net output #38: loss/loss17 = 3.0443e-05 (* 0.0454545 = 1.38377e-06 loss) | |
I0405 17:42:59.759099 29564 solver.cpp:245] Train net output #39: loss/loss18 = 3.19294e-05 (* 0.0454545 = 1.45134e-06 loss) | |
I0405 17:42:59.759114 29564 solver.cpp:245] Train net output #40: loss/loss19 = 2.97982e-05 (* 0.0454545 = 1.35446e-06 loss) | |
I0405 17:42:59.759129 29564 solver.cpp:245] Train net output #41: loss/loss20 = 3.17243e-05 (* 0.0454545 = 1.44201e-06 loss) | |
I0405 17:42:59.759142 29564 solver.cpp:245] Train net output #42: loss/loss21 = 3.12402e-05 (* 0.0454545 = 1.42001e-06 loss) | |
I0405 17:42:59.759157 29564 solver.cpp:245] Train net output #43: loss/loss22 = 3.04466e-05 (* 0.0454545 = 1.38394e-06 loss) | |
I0405 17:42:59.759169 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 17:42:59.759181 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000663195 | |
I0405 17:42:59.759194 29564 sgd_solver.cpp:106] Iteration 30500, lr = 0.009695 | |
I0405 17:46:51.477682 29564 solver.cpp:229] Iteration 31000, loss = 0.88693 | |
I0405 17:46:51.477790 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.1875 | |
I0405 17:46:51.477809 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0405 17:46:51.477823 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.1875 | |
I0405 17:46:51.477834 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625 | |
I0405 17:46:51.477846 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0405 17:46:51.477859 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.46875 | |
I0405 17:46:51.477869 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.78125 | |
I0405 17:46:51.477881 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0405 17:46:51.477893 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 17:46:51.477905 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 17:46:51.477916 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 17:46:51.477928 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 17:46:51.477939 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 17:46:51.477952 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 17:46:51.477962 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 17:46:51.477973 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 17:46:51.477984 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 17:46:51.477995 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 17:46:51.478008 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 17:46:51.478018 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 17:46:51.478029 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 17:46:51.478040 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 17:46:51.478056 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.78232 (* 0.0454545 = 0.126469 loss) | |
I0405 17:46:51.478075 29564 solver.cpp:245] Train net output #23: loss/loss02 = 2.98051 (* 0.0454545 = 0.135478 loss) | |
I0405 17:46:51.478088 29564 solver.cpp:245] Train net output #24: loss/loss03 = 2.90055 (* 0.0454545 = 0.131843 loss) | |
I0405 17:46:51.478104 29564 solver.cpp:245] Train net output #25: loss/loss04 = 2.78209 (* 0.0454545 = 0.126458 loss) | |
I0405 17:46:51.478117 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.86439 (* 0.0454545 = 0.1302 loss) | |
I0405 17:46:51.478132 29564 solver.cpp:245] Train net output #27: loss/loss06 = 1.9033 (* 0.0454545 = 0.0865136 loss) | |
I0405 17:46:51.478145 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.20436 (* 0.0454545 = 0.0547435 loss) | |
I0405 17:46:51.478159 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.546809 (* 0.0454545 = 0.024855 loss) | |
I0405 17:46:51.478173 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.164054 (* 0.0454545 = 0.00745701 loss) | |
I0405 17:46:51.478190 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.021302 (* 0.0454545 = 0.000968271 loss) | |
I0405 17:46:51.478205 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.000185882 (* 0.0454545 = 8.4492e-06 loss) | |
I0405 17:46:51.478220 29564 solver.cpp:245] Train net output #33: loss/loss12 = 0.000187954 (* 0.0454545 = 8.54338e-06 loss) | |
I0405 17:46:51.478235 29564 solver.cpp:245] Train net output #34: loss/loss13 = 0.000200464 (* 0.0454545 = 9.112e-06 loss) | |
I0405 17:46:51.478248 29564 solver.cpp:245] Train net output #35: loss/loss14 = 0.00018412 (* 0.0454545 = 8.3691e-06 loss) | |
I0405 17:46:51.478263 29564 solver.cpp:245] Train net output #36: loss/loss15 = 0.000168762 (* 0.0454545 = 7.67101e-06 loss) | |
I0405 17:46:51.478277 29564 solver.cpp:245] Train net output #37: loss/loss16 = 0.000177979 (* 0.0454545 = 8.08995e-06 loss) | |
I0405 17:46:51.478291 29564 solver.cpp:245] Train net output #38: loss/loss17 = 0.000172834 (* 0.0454545 = 7.8561e-06 loss) | |
I0405 17:46:51.478322 29564 solver.cpp:245] Train net output #39: loss/loss18 = 0.000174534 (* 0.0454545 = 7.93335e-06 loss) | |
I0405 17:46:51.478337 29564 solver.cpp:245] Train net output #40: loss/loss19 = 0.000173068 (* 0.0454545 = 7.86674e-06 loss) | |
I0405 17:46:51.478350 29564 solver.cpp:245] Train net output #41: loss/loss20 = 0.000173868 (* 0.0454545 = 7.90309e-06 loss) | |
I0405 17:46:51.478364 29564 solver.cpp:245] Train net output #42: loss/loss21 = 0.00016849 (* 0.0454545 = 7.65861e-06 loss) | |
I0405 17:46:51.478379 29564 solver.cpp:245] Train net output #43: loss/loss22 = 0.000176158 (* 0.0454545 = 8.00716e-06 loss) | |
I0405 17:46:51.478390 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 17:46:51.478402 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000420971 | |
I0405 17:46:51.478417 29564 sgd_solver.cpp:106] Iteration 31000, lr = 0.00969 | |
I0405 17:50:42.637169 29564 solver.cpp:229] Iteration 31500, loss = 0.887862 | |
I0405 17:50:42.637313 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0405 17:50:42.637332 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0405 17:50:42.637349 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0405 17:50:42.637362 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875 | |
I0405 17:50:42.637375 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125 | |
I0405 17:50:42.637387 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.28125 | |
I0405 17:50:42.637399 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.65625 | |
I0405 17:50:42.637410 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.96875 | |
I0405 17:50:42.637423 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 17:50:42.637434 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 17:50:42.637446 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 17:50:42.637457 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 17:50:42.637470 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 17:50:42.637480 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 17:50:42.637491 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 17:50:42.637502 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 17:50:42.637514 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 17:50:42.637526 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 17:50:42.637537 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 17:50:42.637548 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 17:50:42.637560 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 17:50:42.637572 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 17:50:42.637586 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.87591 (* 0.0454545 = 0.130723 loss) | |
I0405 17:50:42.637601 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.04676 (* 0.0454545 = 0.138489 loss) | |
I0405 17:50:42.637615 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.09824 (* 0.0454545 = 0.140829 loss) | |
I0405 17:50:42.637630 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.09861 (* 0.0454545 = 0.140846 loss) | |
I0405 17:50:42.637645 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.7404 (* 0.0454545 = 0.124564 loss) | |
I0405 17:50:42.637660 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.59028 (* 0.0454545 = 0.11774 loss) | |
I0405 17:50:42.637673 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.67996 (* 0.0454545 = 0.0763616 loss) | |
I0405 17:50:42.637687 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.233575 (* 0.0454545 = 0.010617 loss) | |
I0405 17:50:42.637702 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.16123 (* 0.0454545 = 0.00732866 loss) | |
I0405 17:50:42.637717 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.179591 (* 0.0454545 = 0.00816321 loss) | |
I0405 17:50:42.637730 29564 solver.cpp:245] Train net output #32: loss/loss11 = 8.67299e-05 (* 0.0454545 = 3.94227e-06 loss) | |
I0405 17:50:42.637745 29564 solver.cpp:245] Train net output #33: loss/loss12 = 8.28693e-05 (* 0.0454545 = 3.76679e-06 loss) | |
I0405 17:50:42.637759 29564 solver.cpp:245] Train net output #34: loss/loss13 = 8.49114e-05 (* 0.0454545 = 3.85961e-06 loss) | |
I0405 17:50:42.637773 29564 solver.cpp:245] Train net output #35: loss/loss14 = 8.18409e-05 (* 0.0454545 = 3.72004e-06 loss) | |
I0405 17:50:42.637786 29564 solver.cpp:245] Train net output #36: loss/loss15 = 7.53521e-05 (* 0.0454545 = 3.4251e-06 loss) | |
I0405 17:50:42.637801 29564 solver.cpp:245] Train net output #37: loss/loss16 = 8.25001e-05 (* 0.0454545 = 3.75e-06 loss) | |
I0405 17:50:42.637816 29564 solver.cpp:245] Train net output #38: loss/loss17 = 7.37143e-05 (* 0.0454545 = 3.35065e-06 loss) | |
I0405 17:50:42.637845 29564 solver.cpp:245] Train net output #39: loss/loss18 = 7.90779e-05 (* 0.0454545 = 3.59445e-06 loss) | |
I0405 17:50:42.637861 29564 solver.cpp:245] Train net output #40: loss/loss19 = 7.9e-05 (* 0.0454545 = 3.59091e-06 loss) | |
I0405 17:50:42.637876 29564 solver.cpp:245] Train net output #41: loss/loss20 = 8.57756e-05 (* 0.0454545 = 3.89889e-06 loss) | |
I0405 17:50:42.637889 29564 solver.cpp:245] Train net output #42: loss/loss21 = 7.95366e-05 (* 0.0454545 = 3.6153e-06 loss) | |
I0405 17:50:42.637903 29564 solver.cpp:245] Train net output #43: loss/loss22 = 7.63301e-05 (* 0.0454545 = 3.46955e-06 loss) | |
I0405 17:50:42.637915 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 17:50:42.637928 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000134873 | |
I0405 17:50:42.637943 29564 sgd_solver.cpp:106] Iteration 31500, lr = 0.009685 | |
I0405 17:54:33.654799 29564 solver.cpp:229] Iteration 32000, loss = 0.883081 | |
I0405 17:54:33.654947 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.1875 | |
I0405 17:54:33.654968 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125 | |
I0405 17:54:33.654980 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0405 17:54:33.654994 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125 | |
I0405 17:54:33.655006 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.21875 | |
I0405 17:54:33.655019 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0405 17:54:33.655030 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0405 17:54:33.655041 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.8125 | |
I0405 17:54:33.655053 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625 | |
I0405 17:54:33.655066 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0405 17:54:33.655077 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 17:54:33.655092 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 17:54:33.655104 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 17:54:33.655115 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 17:54:33.655128 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 17:54:33.655138 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 17:54:33.655150 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 17:54:33.655161 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 17:54:33.655172 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 17:54:33.655184 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 17:54:33.655195 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 17:54:33.655206 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 17:54:33.655222 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.93183 (* 0.0454545 = 0.133265 loss) | |
I0405 17:54:33.655236 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.01076 (* 0.0454545 = 0.136853 loss) | |
I0405 17:54:33.655251 29564 solver.cpp:245] Train net output #24: loss/loss03 = 2.9963 (* 0.0454545 = 0.136195 loss) | |
I0405 17:54:33.655264 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.15284 (* 0.0454545 = 0.143311 loss) | |
I0405 17:54:33.655278 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.89333 (* 0.0454545 = 0.131515 loss) | |
I0405 17:54:33.655292 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.11579 (* 0.0454545 = 0.0961725 loss) | |
I0405 17:54:33.655305 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.04048 (* 0.0454545 = 0.0472947 loss) | |
I0405 17:54:33.655319 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.578017 (* 0.0454545 = 0.0262735 loss) | |
I0405 17:54:33.655333 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.324491 (* 0.0454545 = 0.0147496 loss) | |
I0405 17:54:33.655347 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.255678 (* 0.0454545 = 0.0116217 loss) | |
I0405 17:54:33.655361 29564 solver.cpp:245] Train net output #32: loss/loss11 = 7.51013e-05 (* 0.0454545 = 3.4137e-06 loss) | |
I0405 17:54:33.655375 29564 solver.cpp:245] Train net output #33: loss/loss12 = 7.54623e-05 (* 0.0454545 = 3.4301e-06 loss) | |
I0405 17:54:33.655390 29564 solver.cpp:245] Train net output #34: loss/loss13 = 7.41251e-05 (* 0.0454545 = 3.36932e-06 loss) | |
I0405 17:54:33.655403 29564 solver.cpp:245] Train net output #35: loss/loss14 = 6.70643e-05 (* 0.0454545 = 3.04838e-06 loss) | |
I0405 17:54:33.655417 29564 solver.cpp:245] Train net output #36: loss/loss15 = 6.95182e-05 (* 0.0454545 = 3.15992e-06 loss) | |
I0405 17:54:33.655431 29564 solver.cpp:245] Train net output #37: loss/loss16 = 7.18261e-05 (* 0.0454545 = 3.26482e-06 loss) | |
I0405 17:54:33.655446 29564 solver.cpp:245] Train net output #38: loss/loss17 = 6.53808e-05 (* 0.0454545 = 2.97185e-06 loss) | |
I0405 17:54:33.655472 29564 solver.cpp:245] Train net output #39: loss/loss18 = 7.33713e-05 (* 0.0454545 = 3.33506e-06 loss) | |
I0405 17:54:33.655488 29564 solver.cpp:245] Train net output #40: loss/loss19 = 6.76439e-05 (* 0.0454545 = 3.07472e-06 loss) | |
I0405 17:54:33.655503 29564 solver.cpp:245] Train net output #41: loss/loss20 = 7.32197e-05 (* 0.0454545 = 3.32817e-06 loss) | |
I0405 17:54:33.655516 29564 solver.cpp:245] Train net output #42: loss/loss21 = 7.10882e-05 (* 0.0454545 = 3.23128e-06 loss) | |
I0405 17:54:33.655530 29564 solver.cpp:245] Train net output #43: loss/loss22 = 6.26737e-05 (* 0.0454545 = 2.84881e-06 loss) | |
I0405 17:54:33.655544 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 17:54:33.655557 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000212227 | |
I0405 17:54:33.655570 29564 sgd_solver.cpp:106] Iteration 32000, lr = 0.00968 | |
I0405 17:58:25.390166 29564 solver.cpp:229] Iteration 32500, loss = 0.886963 | |
I0405 17:58:25.390259 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.15625 | |
I0405 17:58:25.390276 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0405 17:58:25.390290 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.15625 | |
I0405 17:58:25.390301 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.21875 | |
I0405 17:58:25.390314 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125 | |
I0405 17:58:25.390326 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0405 17:58:25.390338 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0405 17:58:25.390349 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0405 17:58:25.390362 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625 | |
I0405 17:58:25.390373 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 17:58:25.390385 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 17:58:25.390396 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 17:58:25.390408 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 17:58:25.390419 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 17:58:25.390430 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 17:58:25.390441 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 17:58:25.390452 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 17:58:25.390463 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 17:58:25.390475 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 17:58:25.390486 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 17:58:25.390497 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 17:58:25.390508 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 17:58:25.390524 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.70035 (* 0.0454545 = 0.122743 loss) | |
I0405 17:58:25.390538 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.07881 (* 0.0454545 = 0.139946 loss) | |
I0405 17:58:25.390552 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.10153 (* 0.0454545 = 0.140979 loss) | |
I0405 17:58:25.390566 29564 solver.cpp:245] Train net output #25: loss/loss04 = 2.76958 (* 0.0454545 = 0.12589 loss) | |
I0405 17:58:25.390580 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.3753 (* 0.0454545 = 0.107968 loss) | |
I0405 17:58:25.390594 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.15284 (* 0.0454545 = 0.0978562 loss) | |
I0405 17:58:25.390609 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.1629 (* 0.0454545 = 0.0528591 loss) | |
I0405 17:58:25.390622 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.374017 (* 0.0454545 = 0.0170008 loss) | |
I0405 17:58:25.390636 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.454455 (* 0.0454545 = 0.020657 loss) | |
I0405 17:58:25.390651 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.0244606 (* 0.0454545 = 0.00111185 loss) | |
I0405 17:58:25.390666 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.000184123 (* 0.0454545 = 8.36925e-06 loss) | |
I0405 17:58:25.390681 29564 solver.cpp:245] Train net output #33: loss/loss12 = 0.000178309 (* 0.0454545 = 8.10497e-06 loss) | |
I0405 17:58:25.390694 29564 solver.cpp:245] Train net output #34: loss/loss13 = 0.00017862 (* 0.0454545 = 8.11907e-06 loss) | |
I0405 17:58:25.390709 29564 solver.cpp:245] Train net output #35: loss/loss14 = 0.000174453 (* 0.0454545 = 7.92967e-06 loss) | |
I0405 17:58:25.390723 29564 solver.cpp:245] Train net output #36: loss/loss15 = 0.000167913 (* 0.0454545 = 7.6324e-06 loss) | |
I0405 17:58:25.390738 29564 solver.cpp:245] Train net output #37: loss/loss16 = 0.000159956 (* 0.0454545 = 7.27075e-06 loss) | |
I0405 17:58:25.390753 29564 solver.cpp:245] Train net output #38: loss/loss17 = 0.000163181 (* 0.0454545 = 7.4173e-06 loss) | |
I0405 17:58:25.390782 29564 solver.cpp:245] Train net output #39: loss/loss18 = 0.000169284 (* 0.0454545 = 7.69475e-06 loss) | |
I0405 17:58:25.390797 29564 solver.cpp:245] Train net output #40: loss/loss19 = 0.000168509 (* 0.0454545 = 7.65948e-06 loss) | |
I0405 17:58:25.390811 29564 solver.cpp:245] Train net output #41: loss/loss20 = 0.000167443 (* 0.0454545 = 7.61104e-06 loss) | |
I0405 17:58:25.390826 29564 solver.cpp:245] Train net output #42: loss/loss21 = 0.000171983 (* 0.0454545 = 7.81741e-06 loss) | |
I0405 17:58:25.390839 29564 solver.cpp:245] Train net output #43: loss/loss22 = 0.000163234 (* 0.0454545 = 7.41973e-06 loss) | |
I0405 17:58:25.390851 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 17:58:25.390863 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000512341 | |
I0405 17:58:25.390879 29564 sgd_solver.cpp:106] Iteration 32500, lr = 0.009675 | |
I0405 18:02:16.639050 29564 solver.cpp:229] Iteration 33000, loss = 0.881066 | |
I0405 18:02:16.639216 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.3125 | |
I0405 18:02:16.639235 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.1875 | |
I0405 18:02:16.639248 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.1875 | |
I0405 18:02:16.639261 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375 | |
I0405 18:02:16.639273 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.40625 | |
I0405 18:02:16.639286 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.65625 | |
I0405 18:02:16.639297 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.875 | |
I0405 18:02:16.639308 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0405 18:02:16.639320 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0405 18:02:16.639333 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0405 18:02:16.639344 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 18:02:16.639356 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 18:02:16.639367 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 18:02:16.639379 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 18:02:16.639390 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 18:02:16.639402 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 18:02:16.639413 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 18:02:16.639425 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 18:02:16.639441 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 18:02:16.639452 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 18:02:16.639463 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 18:02:16.639475 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 18:02:16.639490 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.35687 (* 0.0454545 = 0.10713 loss) | |
I0405 18:02:16.639505 29564 solver.cpp:245] Train net output #23: loss/loss02 = 2.78672 (* 0.0454545 = 0.126669 loss) | |
I0405 18:02:16.639519 29564 solver.cpp:245] Train net output #24: loss/loss03 = 2.9442 (* 0.0454545 = 0.133827 loss) | |
I0405 18:02:16.639533 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.11072 (* 0.0454545 = 0.141396 loss) | |
I0405 18:02:16.639547 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.32545 (* 0.0454545 = 0.105702 loss) | |
I0405 18:02:16.639561 29564 solver.cpp:245] Train net output #27: loss/loss06 = 1.26931 (* 0.0454545 = 0.0576957 loss) | |
I0405 18:02:16.639575 29564 solver.cpp:245] Train net output #28: loss/loss07 = 0.527974 (* 0.0454545 = 0.0239988 loss) | |
I0405 18:02:16.639590 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.236325 (* 0.0454545 = 0.0107421 loss) | |
I0405 18:02:16.639605 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.256138 (* 0.0454545 = 0.0116427 loss) | |
I0405 18:02:16.639621 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.296418 (* 0.0454545 = 0.0134735 loss) | |
I0405 18:02:16.639638 29564 solver.cpp:245] Train net output #32: loss/loss11 = 5.22337e-05 (* 0.0454545 = 2.37426e-06 loss) | |
I0405 18:02:16.639653 29564 solver.cpp:245] Train net output #33: loss/loss12 = 5.33106e-05 (* 0.0454545 = 2.42321e-06 loss) | |
I0405 18:02:16.639667 29564 solver.cpp:245] Train net output #34: loss/loss13 = 5.68303e-05 (* 0.0454545 = 2.5832e-06 loss) | |
I0405 18:02:16.639683 29564 solver.cpp:245] Train net output #35: loss/loss14 = 5.27143e-05 (* 0.0454545 = 2.3961e-06 loss) | |
I0405 18:02:16.639696 29564 solver.cpp:245] Train net output #36: loss/loss15 = 4.85173e-05 (* 0.0454545 = 2.20533e-06 loss) | |
I0405 18:02:16.639711 29564 solver.cpp:245] Train net output #37: loss/loss16 = 5.17752e-05 (* 0.0454545 = 2.35342e-06 loss) | |
I0405 18:02:16.639725 29564 solver.cpp:245] Train net output #38: loss/loss17 = 5.17653e-05 (* 0.0454545 = 2.35297e-06 loss) | |
I0405 18:02:16.639755 29564 solver.cpp:245] Train net output #39: loss/loss18 = 4.85504e-05 (* 0.0454545 = 2.20684e-06 loss) | |
I0405 18:02:16.639770 29564 solver.cpp:245] Train net output #40: loss/loss19 = 5.07925e-05 (* 0.0454545 = 2.30875e-06 loss) | |
I0405 18:02:16.639785 29564 solver.cpp:245] Train net output #41: loss/loss20 = 4.89789e-05 (* 0.0454545 = 2.22632e-06 loss) | |
I0405 18:02:16.639798 29564 solver.cpp:245] Train net output #42: loss/loss21 = 5.10664e-05 (* 0.0454545 = 2.3212e-06 loss) | |
I0405 18:02:16.639813 29564 solver.cpp:245] Train net output #43: loss/loss22 = 4.86617e-05 (* 0.0454545 = 2.2119e-06 loss) | |
I0405 18:02:16.639827 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 18:02:16.639837 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000622457 | |
I0405 18:02:16.639852 29564 sgd_solver.cpp:106] Iteration 33000, lr = 0.00967 | |
I0405 18:06:06.958649 29564 solver.cpp:229] Iteration 33500, loss = 0.88189 | |
I0405 18:06:06.958780 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.15625 | |
I0405 18:06:06.958799 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0405 18:06:06.958812 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.15625 | |
I0405 18:06:06.958824 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625 | |
I0405 18:06:06.958837 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.15625 | |
I0405 18:06:06.958848 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625 | |
I0405 18:06:06.958860 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.65625 | |
I0405 18:06:06.958873 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0405 18:06:06.958884 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0405 18:06:06.958895 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 18:06:06.958907 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 18:06:06.958919 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 18:06:06.958930 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 18:06:06.958941 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 18:06:06.958953 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 18:06:06.958964 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 18:06:06.958976 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 18:06:06.958987 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 18:06:06.958999 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 18:06:06.959010 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 18:06:06.959022 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 18:06:06.959033 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 18:06:06.959049 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.61494 (* 0.0454545 = 0.118861 loss) | |
I0405 18:06:06.959066 29564 solver.cpp:245] Train net output #23: loss/loss02 = 2.9249 (* 0.0454545 = 0.13295 loss) | |
I0405 18:06:06.959080 29564 solver.cpp:245] Train net output #24: loss/loss03 = 2.95732 (* 0.0454545 = 0.134424 loss) | |
I0405 18:06:06.959095 29564 solver.cpp:245] Train net output #25: loss/loss04 = 2.94349 (* 0.0454545 = 0.133795 loss) | |
I0405 18:06:06.959108 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.81973 (* 0.0454545 = 0.128169 loss) | |
I0405 18:06:06.959123 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.22787 (* 0.0454545 = 0.101267 loss) | |
I0405 18:06:06.959137 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.48598 (* 0.0454545 = 0.0675443 loss) | |
I0405 18:06:06.959151 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.374727 (* 0.0454545 = 0.0170331 loss) | |
I0405 18:06:06.959166 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.0744086 (* 0.0454545 = 0.00338221 loss) | |
I0405 18:06:06.959180 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.0287328 (* 0.0454545 = 0.00130603 loss) | |
I0405 18:06:06.959194 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.000103445 (* 0.0454545 = 4.70205e-06 loss) | |
I0405 18:06:06.959209 29564 solver.cpp:245] Train net output #33: loss/loss12 = 9.82795e-05 (* 0.0454545 = 4.46725e-06 loss) | |
I0405 18:06:06.959223 29564 solver.cpp:245] Train net output #34: loss/loss13 = 0.00010305 (* 0.0454545 = 4.6841e-06 loss) | |
I0405 18:06:06.959239 29564 solver.cpp:245] Train net output #35: loss/loss14 = 9.76559e-05 (* 0.0454545 = 4.4389e-06 loss) | |
I0405 18:06:06.959254 29564 solver.cpp:245] Train net output #36: loss/loss15 = 9.75964e-05 (* 0.0454545 = 4.4362e-06 loss) | |
I0405 18:06:06.959267 29564 solver.cpp:245] Train net output #37: loss/loss16 = 9.92411e-05 (* 0.0454545 = 4.51096e-06 loss) | |
I0405 18:06:06.959281 29564 solver.cpp:245] Train net output #38: loss/loss17 = 9.64346e-05 (* 0.0454545 = 4.38339e-06 loss) | |
I0405 18:06:06.959311 29564 solver.cpp:245] Train net output #39: loss/loss18 = 0.00010117 (* 0.0454545 = 4.59864e-06 loss) | |
I0405 18:06:06.959327 29564 solver.cpp:245] Train net output #40: loss/loss19 = 9.19487e-05 (* 0.0454545 = 4.17949e-06 loss) | |
I0405 18:06:06.959342 29564 solver.cpp:245] Train net output #41: loss/loss20 = 9.69645e-05 (* 0.0454545 = 4.40748e-06 loss) | |
I0405 18:06:06.959355 29564 solver.cpp:245] Train net output #42: loss/loss21 = 9.84725e-05 (* 0.0454545 = 4.47602e-06 loss) | |
I0405 18:06:06.959369 29564 solver.cpp:245] Train net output #43: loss/loss22 = 9.61062e-05 (* 0.0454545 = 4.36847e-06 loss) | |
I0405 18:06:06.959383 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 18:06:06.959393 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000194459 | |
I0405 18:06:06.959408 29564 sgd_solver.cpp:106] Iteration 33500, lr = 0.009665 | |
I0405 18:09:59.248327 29564 solver.cpp:229] Iteration 34000, loss = 0.877774 | |
I0405 18:09:59.248473 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.15625 | |
I0405 18:09:59.248493 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0405 18:09:59.248507 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0405 18:09:59.248518 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.25 | |
I0405 18:09:59.248531 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125 | |
I0405 18:09:59.248543 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0405 18:09:59.248554 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625 | |
I0405 18:09:59.248566 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375 | |
I0405 18:09:59.248579 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625 | |
I0405 18:09:59.248590 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 18:09:59.248602 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 18:09:59.248613 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 18:09:59.248625 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 18:09:59.248636 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 18:09:59.248647 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 18:09:59.248659 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 18:09:59.248670 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 18:09:59.248682 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 18:09:59.248693 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 18:09:59.248705 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 18:09:59.248716 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 18:09:59.248728 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 18:09:59.248744 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.7915 (* 0.0454545 = 0.126886 loss) | |
I0405 18:09:59.248757 29564 solver.cpp:245] Train net output #23: loss/loss02 = 2.88835 (* 0.0454545 = 0.131289 loss) | |
I0405 18:09:59.248771 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.04253 (* 0.0454545 = 0.138297 loss) | |
I0405 18:09:59.248785 29564 solver.cpp:245] Train net output #25: loss/loss04 = 2.80941 (* 0.0454545 = 0.127701 loss) | |
I0405 18:09:59.248800 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.59526 (* 0.0454545 = 0.117966 loss) | |
I0405 18:09:59.248812 29564 solver.cpp:245] Train net output #27: loss/loss06 = 1.89866 (* 0.0454545 = 0.0863028 loss) | |
I0405 18:09:59.248826 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.37304 (* 0.0454545 = 0.0624107 loss) | |
I0405 18:09:59.248841 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.690988 (* 0.0454545 = 0.0314085 loss) | |
I0405 18:09:59.248853 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.33395 (* 0.0454545 = 0.0151795 loss) | |
I0405 18:09:59.248867 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.158363 (* 0.0454545 = 0.00719832 loss) | |
I0405 18:09:59.248883 29564 solver.cpp:245] Train net output #32: loss/loss11 = 9.50193e-05 (* 0.0454545 = 4.31906e-06 loss) | |
I0405 18:09:59.248896 29564 solver.cpp:245] Train net output #33: loss/loss12 = 9.45776e-05 (* 0.0454545 = 4.29898e-06 loss) | |
I0405 18:09:59.248911 29564 solver.cpp:245] Train net output #34: loss/loss13 = 9.23862e-05 (* 0.0454545 = 4.19937e-06 loss) | |
I0405 18:09:59.248925 29564 solver.cpp:245] Train net output #35: loss/loss14 = 8.51725e-05 (* 0.0454545 = 3.87148e-06 loss) | |
I0405 18:09:59.248939 29564 solver.cpp:245] Train net output #36: loss/loss15 = 8.46572e-05 (* 0.0454545 = 3.84806e-06 loss) | |
I0405 18:09:59.248953 29564 solver.cpp:245] Train net output #37: loss/loss16 = 9.3739e-05 (* 0.0454545 = 4.26086e-06 loss) | |
I0405 18:09:59.248968 29564 solver.cpp:245] Train net output #38: loss/loss17 = 9.14057e-05 (* 0.0454545 = 4.15481e-06 loss) | |
I0405 18:09:59.248996 29564 solver.cpp:245] Train net output #39: loss/loss18 = 8.8777e-05 (* 0.0454545 = 4.03532e-06 loss) | |
I0405 18:09:59.249011 29564 solver.cpp:245] Train net output #40: loss/loss19 = 9.34592e-05 (* 0.0454545 = 4.24815e-06 loss) | |
I0405 18:09:59.249025 29564 solver.cpp:245] Train net output #41: loss/loss20 = 8.68274e-05 (* 0.0454545 = 3.9467e-06 loss) | |
I0405 18:09:59.249039 29564 solver.cpp:245] Train net output #42: loss/loss21 = 8.72831e-05 (* 0.0454545 = 3.96742e-06 loss) | |
I0405 18:09:59.249053 29564 solver.cpp:245] Train net output #43: loss/loss22 = 8.66716e-05 (* 0.0454545 = 3.93962e-06 loss) | |
I0405 18:09:59.249066 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 18:09:59.249078 29564 solver.cpp:245] Train net output #45: total_confidence = 0.0013354 | |
I0405 18:09:59.249092 29564 sgd_solver.cpp:106] Iteration 34000, lr = 0.00966 | |
I0405 18:13:50.034175 29564 solver.cpp:229] Iteration 34500, loss = 0.88215 | |
I0405 18:13:50.034407 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0405 18:13:50.034427 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0405 18:13:50.034441 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0405 18:13:50.034453 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0405 18:13:50.034466 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.21875 | |
I0405 18:13:50.034476 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625 | |
I0405 18:13:50.034488 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875 | |
I0405 18:13:50.034500 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0405 18:13:50.034512 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625 | |
I0405 18:13:50.034523 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 18:13:50.034535 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 18:13:50.034549 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 18:13:50.034561 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 18:13:50.034574 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 18:13:50.034585 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 18:13:50.034596 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 18:13:50.034607 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 18:13:50.034620 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 18:13:50.034631 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 18:13:50.034641 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 18:13:50.034653 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 18:13:50.034664 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 18:13:50.034680 29564 solver.cpp:245] Train net output #22: loss/loss01 = 3.00829 (* 0.0454545 = 0.136741 loss) | |
I0405 18:13:50.034695 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.00421 (* 0.0454545 = 0.136555 loss) | |
I0405 18:13:50.034709 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.08507 (* 0.0454545 = 0.140231 loss) | |
I0405 18:13:50.034723 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.16141 (* 0.0454545 = 0.1437 loss) | |
I0405 18:13:50.034737 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.62207 (* 0.0454545 = 0.119185 loss) | |
I0405 18:13:50.034751 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.37427 (* 0.0454545 = 0.107922 loss) | |
I0405 18:13:50.034765 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.28485 (* 0.0454545 = 0.0584025 loss) | |
I0405 18:13:50.034781 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.640628 (* 0.0454545 = 0.0291194 loss) | |
I0405 18:13:50.034796 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.423822 (* 0.0454545 = 0.0192646 loss) | |
I0405 18:13:50.034811 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.201957 (* 0.0454545 = 0.00917988 loss) | |
I0405 18:13:50.034826 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.000406478 (* 0.0454545 = 1.84763e-05 loss) | |
I0405 18:13:50.034840 29564 solver.cpp:245] Train net output #33: loss/loss12 = 0.000409529 (* 0.0454545 = 1.86149e-05 loss) | |
I0405 18:13:50.034854 29564 solver.cpp:245] Train net output #34: loss/loss13 = 0.000400978 (* 0.0454545 = 1.82263e-05 loss) | |
I0405 18:13:50.034868 29564 solver.cpp:245] Train net output #35: loss/loss14 = 0.000410752 (* 0.0454545 = 1.86705e-05 loss) | |
I0405 18:13:50.034885 29564 solver.cpp:245] Train net output #36: loss/loss15 = 0.000387254 (* 0.0454545 = 1.76025e-05 loss) | |
I0405 18:13:50.034900 29564 solver.cpp:245] Train net output #37: loss/loss16 = 0.000382856 (* 0.0454545 = 1.74026e-05 loss) | |
I0405 18:13:50.034915 29564 solver.cpp:245] Train net output #38: loss/loss17 = 0.000396507 (* 0.0454545 = 1.80231e-05 loss) | |
I0405 18:13:50.034947 29564 solver.cpp:245] Train net output #39: loss/loss18 = 0.000375425 (* 0.0454545 = 1.70648e-05 loss) | |
I0405 18:13:50.034962 29564 solver.cpp:245] Train net output #40: loss/loss19 = 0.000397998 (* 0.0454545 = 1.80908e-05 loss) | |
I0405 18:13:50.034977 29564 solver.cpp:245] Train net output #41: loss/loss20 = 0.000380431 (* 0.0454545 = 1.72923e-05 loss) | |
I0405 18:13:50.034991 29564 solver.cpp:245] Train net output #42: loss/loss21 = 0.000374316 (* 0.0454545 = 1.70144e-05 loss) | |
I0405 18:13:50.035006 29564 solver.cpp:245] Train net output #43: loss/loss22 = 0.000397233 (* 0.0454545 = 1.8056e-05 loss) | |
I0405 18:13:50.035017 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 18:13:50.035029 29564 solver.cpp:245] Train net output #45: total_confidence = 0.00013877 | |
I0405 18:13:50.035043 29564 sgd_solver.cpp:106] Iteration 34500, lr = 0.009655 | |
I0405 18:17:40.364109 29564 solver.cpp:338] Iteration 35000, Testing net (#0) | |
I0405 18:17:50.632021 29564 solver.cpp:393] Test loss: 0.781735 | |
I0405 18:17:50.632077 29564 solver.cpp:406] Test net output #0: loss/accuracy01 = 0.133 | |
I0405 18:17:50.632097 29564 solver.cpp:406] Test net output #1: loss/accuracy02 = 0.106 | |
I0405 18:17:50.632110 29564 solver.cpp:406] Test net output #2: loss/accuracy03 = 0.087 | |
I0405 18:17:50.632122 29564 solver.cpp:406] Test net output #3: loss/accuracy04 = 0.154 | |
I0405 18:17:50.632133 29564 solver.cpp:406] Test net output #4: loss/accuracy05 = 0.25 | |
I0405 18:17:50.632145 29564 solver.cpp:406] Test net output #5: loss/accuracy06 = 0.516 | |
I0405 18:17:50.632158 29564 solver.cpp:406] Test net output #6: loss/accuracy07 = 0.89 | |
I0405 18:17:50.632169 29564 solver.cpp:406] Test net output #7: loss/accuracy08 = 0.97 | |
I0405 18:17:50.632180 29564 solver.cpp:406] Test net output #8: loss/accuracy09 = 0.995 | |
I0405 18:17:50.632191 29564 solver.cpp:406] Test net output #9: loss/accuracy10 = 0.998 | |
I0405 18:17:50.632203 29564 solver.cpp:406] Test net output #10: loss/accuracy11 = 1 | |
I0405 18:17:50.632215 29564 solver.cpp:406] Test net output #11: loss/accuracy12 = 1 | |
I0405 18:17:50.632226 29564 solver.cpp:406] Test net output #12: loss/accuracy13 = 1 | |
I0405 18:17:50.632237 29564 solver.cpp:406] Test net output #13: loss/accuracy14 = 1 | |
I0405 18:17:50.632252 29564 solver.cpp:406] Test net output #14: loss/accuracy15 = 1 | |
I0405 18:17:50.632264 29564 solver.cpp:406] Test net output #15: loss/accuracy16 = 1 | |
I0405 18:17:50.632275 29564 solver.cpp:406] Test net output #16: loss/accuracy17 = 1 | |
I0405 18:17:50.632287 29564 solver.cpp:406] Test net output #17: loss/accuracy18 = 1 | |
I0405 18:17:50.632297 29564 solver.cpp:406] Test net output #18: loss/accuracy19 = 1 | |
I0405 18:17:50.632308 29564 solver.cpp:406] Test net output #19: loss/accuracy20 = 1 | |
I0405 18:17:50.632319 29564 solver.cpp:406] Test net output #20: loss/accuracy21 = 1 | |
I0405 18:17:50.632330 29564 solver.cpp:406] Test net output #21: loss/accuracy22 = 1 | |
I0405 18:17:50.632345 29564 solver.cpp:406] Test net output #22: loss/loss01 = 2.99511 (* 0.0454545 = 0.136141 loss) | |
I0405 18:17:50.632360 29564 solver.cpp:406] Test net output #23: loss/loss02 = 3.00947 (* 0.0454545 = 0.136794 loss) | |
I0405 18:17:50.632375 29564 solver.cpp:406] Test net output #24: loss/loss03 = 3.03299 (* 0.0454545 = 0.137863 loss) | |
I0405 18:17:50.632390 29564 solver.cpp:406] Test net output #25: loss/loss04 = 2.91562 (* 0.0454545 = 0.132528 loss) | |
I0405 18:17:50.632403 29564 solver.cpp:406] Test net output #26: loss/loss05 = 2.68693 (* 0.0454545 = 0.122133 loss) | |
I0405 18:17:50.632417 29564 solver.cpp:406] Test net output #27: loss/loss06 = 1.76637 (* 0.0454545 = 0.0802896 loss) | |
I0405 18:17:50.632431 29564 solver.cpp:406] Test net output #28: loss/loss07 = 0.518297 (* 0.0454545 = 0.0235589 loss) | |
I0405 18:17:50.632444 29564 solver.cpp:406] Test net output #29: loss/loss08 = 0.201439 (* 0.0454545 = 0.00915632 loss) | |
I0405 18:17:50.632458 29564 solver.cpp:406] Test net output #30: loss/loss09 = 0.0463302 (* 0.0454545 = 0.00210592 loss) | |
I0405 18:17:50.632473 29564 solver.cpp:406] Test net output #31: loss/loss10 = 0.0245213 (* 0.0454545 = 0.0011146 loss) | |
I0405 18:17:50.632488 29564 solver.cpp:406] Test net output #32: loss/loss11 = 9.52303e-05 (* 0.0454545 = 4.32865e-06 loss) | |
I0405 18:17:50.632501 29564 solver.cpp:406] Test net output #33: loss/loss12 = 9.08131e-05 (* 0.0454545 = 4.12787e-06 loss) | |
I0405 18:17:50.632516 29564 solver.cpp:406] Test net output #34: loss/loss13 = 9.36047e-05 (* 0.0454545 = 4.25476e-06 loss) | |
I0405 18:17:50.632530 29564 solver.cpp:406] Test net output #35: loss/loss14 = 9.39037e-05 (* 0.0454545 = 4.26835e-06 loss) | |
I0405 18:17:50.632544 29564 solver.cpp:406] Test net output #36: loss/loss15 = 8.79375e-05 (* 0.0454545 = 3.99716e-06 loss) | |
I0405 18:17:50.632558 29564 solver.cpp:406] Test net output #37: loss/loss16 = 8.60312e-05 (* 0.0454545 = 3.91051e-06 loss) | |
I0405 18:17:50.632572 29564 solver.cpp:406] Test net output #38: loss/loss17 = 8.71857e-05 (* 0.0454545 = 3.96299e-06 loss) | |
I0405 18:17:50.632619 29564 solver.cpp:406] Test net output #39: loss/loss18 = 8.89129e-05 (* 0.0454545 = 4.0415e-06 loss) | |
I0405 18:17:50.632635 29564 solver.cpp:406] Test net output #40: loss/loss19 = 8.95045e-05 (* 0.0454545 = 4.06839e-06 loss) | |
I0405 18:17:50.632649 29564 solver.cpp:406] Test net output #41: loss/loss20 = 8.45376e-05 (* 0.0454545 = 3.84262e-06 loss) | |
I0405 18:17:50.632663 29564 solver.cpp:406] Test net output #42: loss/loss21 = 8.81891e-05 (* 0.0454545 = 4.0086e-06 loss) | |
I0405 18:17:50.632678 29564 solver.cpp:406] Test net output #43: loss/loss22 = 9.08137e-05 (* 0.0454545 = 4.12789e-06 loss) | |
I0405 18:17:50.632690 29564 solver.cpp:406] Test net output #44: total_accuracy = 0.001 | |
I0405 18:17:50.632701 29564 solver.cpp:406] Test net output #45: total_confidence = 0.000621769 | |
I0405 18:17:50.747671 29564 solver.cpp:229] Iteration 35000, loss = 0.876853 | |
I0405 18:17:50.747714 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.15625 | |
I0405 18:17:50.747730 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0405 18:17:50.747742 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0405 18:17:50.747755 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.21875 | |
I0405 18:17:50.747767 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0405 18:17:50.747778 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625 | |
I0405 18:17:50.747791 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875 | |
I0405 18:17:50.747802 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0405 18:17:50.747814 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0405 18:17:50.747827 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 18:17:50.747838 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 18:17:50.747849 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 18:17:50.747861 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 18:17:50.747872 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 18:17:50.747884 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 18:17:50.747895 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 18:17:50.747906 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 18:17:50.747917 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 18:17:50.747930 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 18:17:50.747941 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 18:17:50.747953 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 18:17:50.747964 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 18:17:50.747979 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.86783 (* 0.0454545 = 0.130356 loss) | |
I0405 18:17:50.747993 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.21415 (* 0.0454545 = 0.146098 loss) | |
I0405 18:17:50.748006 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.31425 (* 0.0454545 = 0.150648 loss) | |
I0405 18:17:50.748020 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.29806 (* 0.0454545 = 0.149912 loss) | |
I0405 18:17:50.748034 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.99383 (* 0.0454545 = 0.136083 loss) | |
I0405 18:17:50.748049 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.30332 (* 0.0454545 = 0.104696 loss) | |
I0405 18:17:50.748061 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.3483 (* 0.0454545 = 0.0612863 loss) | |
I0405 18:17:50.748097 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.429218 (* 0.0454545 = 0.0195099 loss) | |
I0405 18:17:50.748114 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.308911 (* 0.0454545 = 0.0140414 loss) | |
I0405 18:17:50.748147 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.162398 (* 0.0454545 = 0.00738175 loss) | |
I0405 18:17:50.748164 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.000127094 (* 0.0454545 = 5.77701e-06 loss) | |
I0405 18:17:50.748178 29564 solver.cpp:245] Train net output #33: loss/loss12 = 0.000132697 (* 0.0454545 = 6.03169e-06 loss) | |
I0405 18:17:50.748193 29564 solver.cpp:245] Train net output #34: loss/loss13 = 0.000128819 (* 0.0454545 = 5.85542e-06 loss) | |
I0405 18:17:50.748206 29564 solver.cpp:245] Train net output #35: loss/loss14 = 0.000136104 (* 0.0454545 = 6.18657e-06 loss) | |
I0405 18:17:50.748219 29564 solver.cpp:245] Train net output #36: loss/loss15 = 0.000122085 (* 0.0454545 = 5.54932e-06 loss) | |
I0405 18:17:50.748234 29564 solver.cpp:245] Train net output #37: loss/loss16 = 0.000124921 (* 0.0454545 = 5.67823e-06 loss) | |
I0405 18:17:50.748248 29564 solver.cpp:245] Train net output #38: loss/loss17 = 0.000118279 (* 0.0454545 = 5.3763e-06 loss) | |
I0405 18:17:50.748265 29564 solver.cpp:245] Train net output #39: loss/loss18 = 0.000121488 (* 0.0454545 = 5.5222e-06 loss) | |
I0405 18:17:50.748282 29564 solver.cpp:245] Train net output #40: loss/loss19 = 0.00012571 (* 0.0454545 = 5.71408e-06 loss) | |
I0405 18:17:50.748297 29564 solver.cpp:245] Train net output #41: loss/loss20 = 0.000119923 (* 0.0454545 = 5.45105e-06 loss) | |
I0405 18:17:50.748311 29564 solver.cpp:245] Train net output #42: loss/loss21 = 0.000121268 (* 0.0454545 = 5.51218e-06 loss) | |
I0405 18:17:50.748325 29564 solver.cpp:245] Train net output #43: loss/loss22 = 0.000119454 (* 0.0454545 = 5.42974e-06 loss) | |
I0405 18:17:50.748337 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 18:17:50.748349 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000279971 | |
I0405 18:17:50.748363 29564 sgd_solver.cpp:106] Iteration 35000, lr = 0.00965 | |
I0405 18:21:41.871330 29564 solver.cpp:229] Iteration 35500, loss = 0.877147 | |
I0405 18:21:41.871588 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0405 18:21:41.871610 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125 | |
I0405 18:21:41.871623 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0405 18:21:41.871637 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625 | |
I0405 18:21:41.871650 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.21875 | |
I0405 18:21:41.871662 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0405 18:21:41.871675 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0405 18:21:41.871686 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.96875 | |
I0405 18:21:41.871698 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 18:21:41.871709 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 18:21:41.871721 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 18:21:41.871732 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 18:21:41.871744 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 18:21:41.871755 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 18:21:41.871767 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 18:21:41.871778 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 18:21:41.871789 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 18:21:41.871801 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 18:21:41.871812 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 18:21:41.871824 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 18:21:41.871835 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 18:21:41.871847 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 18:21:41.871861 29564 solver.cpp:245] Train net output #22: loss/loss01 = 3.21089 (* 0.0454545 = 0.14595 loss) | |
I0405 18:21:41.871876 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.17682 (* 0.0454545 = 0.144401 loss) | |
I0405 18:21:41.871891 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.17117 (* 0.0454545 = 0.144144 loss) | |
I0405 18:21:41.871903 29564 solver.cpp:245] Train net output #25: loss/loss04 = 2.96475 (* 0.0454545 = 0.134761 loss) | |
I0405 18:21:41.871917 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.85849 (* 0.0454545 = 0.129931 loss) | |
I0405 18:21:41.871932 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.52126 (* 0.0454545 = 0.114603 loss) | |
I0405 18:21:41.871947 29564 solver.cpp:245] Train net output #28: loss/loss07 = 0.970223 (* 0.0454545 = 0.044101 loss) | |
I0405 18:21:41.871960 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.268083 (* 0.0454545 = 0.0121856 loss) | |
I0405 18:21:41.871974 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.260413 (* 0.0454545 = 0.011837 loss) | |
I0405 18:21:41.871989 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.0159858 (* 0.0454545 = 0.000726626 loss) | |
I0405 18:21:41.872004 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.000104114 (* 0.0454545 = 4.73244e-06 loss) | |
I0405 18:21:41.872017 29564 solver.cpp:245] Train net output #33: loss/loss12 = 0.00010746 (* 0.0454545 = 4.88453e-06 loss) | |
I0405 18:21:41.872031 29564 solver.cpp:245] Train net output #34: loss/loss13 = 0.000110269 (* 0.0454545 = 5.01224e-06 loss) | |
I0405 18:21:41.872046 29564 solver.cpp:245] Train net output #35: loss/loss14 = 0.000108864 (* 0.0454545 = 4.94837e-06 loss) | |
I0405 18:21:41.872061 29564 solver.cpp:245] Train net output #36: loss/loss15 = 0.000100486 (* 0.0454545 = 4.56757e-06 loss) | |
I0405 18:21:41.872092 29564 solver.cpp:245] Train net output #37: loss/loss16 = 9.43859e-05 (* 0.0454545 = 4.29027e-06 loss) | |
I0405 18:21:41.872108 29564 solver.cpp:245] Train net output #38: loss/loss17 = 0.000104477 (* 0.0454545 = 4.74897e-06 loss) | |
I0405 18:21:41.872138 29564 solver.cpp:245] Train net output #39: loss/loss18 = 9.9365e-05 (* 0.0454545 = 4.51659e-06 loss) | |
I0405 18:21:41.872153 29564 solver.cpp:245] Train net output #40: loss/loss19 = 0.000103387 (* 0.0454545 = 4.69941e-06 loss) | |
I0405 18:21:41.872166 29564 solver.cpp:245] Train net output #41: loss/loss20 = 9.6277e-05 (* 0.0454545 = 4.37623e-06 loss) | |
I0405 18:21:41.872181 29564 solver.cpp:245] Train net output #42: loss/loss21 = 0.000101712 (* 0.0454545 = 4.62329e-06 loss) | |
I0405 18:21:41.872195 29564 solver.cpp:245] Train net output #43: loss/loss22 = 0.000103639 (* 0.0454545 = 4.71087e-06 loss) | |
I0405 18:21:41.872207 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 18:21:41.872218 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000117625 | |
I0405 18:21:41.872232 29564 sgd_solver.cpp:106] Iteration 35500, lr = 0.009645 | |
I0405 18:25:33.293083 29564 solver.cpp:229] Iteration 36000, loss = 0.87758 | |
I0405 18:25:33.293210 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.1875 | |
I0405 18:25:33.293231 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125 | |
I0405 18:25:33.293243 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0405 18:25:33.293256 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625 | |
I0405 18:25:33.293267 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.21875 | |
I0405 18:25:33.293279 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.46875 | |
I0405 18:25:33.293292 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875 | |
I0405 18:25:33.293303 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0405 18:25:33.293314 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 18:25:33.293326 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 18:25:33.293337 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 18:25:33.293349 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 18:25:33.293360 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 18:25:33.293375 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 18:25:33.293386 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 18:25:33.293397 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 18:25:33.293409 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 18:25:33.293421 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 18:25:33.293431 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 18:25:33.293442 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 18:25:33.293455 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 18:25:33.293467 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 18:25:33.293483 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.75719 (* 0.0454545 = 0.125327 loss) | |
I0405 18:25:33.293498 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.17073 (* 0.0454545 = 0.144124 loss) | |
I0405 18:25:33.293510 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.01549 (* 0.0454545 = 0.137068 loss) | |
I0405 18:25:33.293524 29564 solver.cpp:245] Train net output #25: loss/loss04 = 2.92407 (* 0.0454545 = 0.132912 loss) | |
I0405 18:25:33.293537 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.95624 (* 0.0454545 = 0.134374 loss) | |
I0405 18:25:33.293551 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.20423 (* 0.0454545 = 0.100192 loss) | |
I0405 18:25:33.293565 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.21022 (* 0.0454545 = 0.0550098 loss) | |
I0405 18:25:33.293579 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.428875 (* 0.0454545 = 0.0194943 loss) | |
I0405 18:25:33.293593 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.146978 (* 0.0454545 = 0.00668084 loss) | |
I0405 18:25:33.293607 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.118301 (* 0.0454545 = 0.00537733 loss) | |
I0405 18:25:33.293622 29564 solver.cpp:245] Train net output #32: loss/loss11 = 5.67061e-05 (* 0.0454545 = 2.57755e-06 loss) | |
I0405 18:25:33.293635 29564 solver.cpp:245] Train net output #33: loss/loss12 = 5.44518e-05 (* 0.0454545 = 2.47508e-06 loss) | |
I0405 18:25:33.293650 29564 solver.cpp:245] Train net output #34: loss/loss13 = 5.69241e-05 (* 0.0454545 = 2.58746e-06 loss) | |
I0405 18:25:33.293664 29564 solver.cpp:245] Train net output #35: loss/loss14 = 5.31514e-05 (* 0.0454545 = 2.41597e-06 loss) | |
I0405 18:25:33.293678 29564 solver.cpp:245] Train net output #36: loss/loss15 = 4.96641e-05 (* 0.0454545 = 2.25746e-06 loss) | |
I0405 18:25:33.293691 29564 solver.cpp:245] Train net output #37: loss/loss16 = 5.44354e-05 (* 0.0454545 = 2.47434e-06 loss) | |
I0405 18:25:33.293705 29564 solver.cpp:245] Train net output #38: loss/loss17 = 5.01075e-05 (* 0.0454545 = 2.27761e-06 loss) | |
I0405 18:25:33.293736 29564 solver.cpp:245] Train net output #39: loss/loss18 = 5.40049e-05 (* 0.0454545 = 2.45477e-06 loss) | |
I0405 18:25:33.293752 29564 solver.cpp:245] Train net output #40: loss/loss19 = 5.51429e-05 (* 0.0454545 = 2.50649e-06 loss) | |
I0405 18:25:33.293766 29564 solver.cpp:245] Train net output #41: loss/loss20 = 5.33604e-05 (* 0.0454545 = 2.42547e-06 loss) | |
I0405 18:25:33.293781 29564 solver.cpp:245] Train net output #42: loss/loss21 = 5.35372e-05 (* 0.0454545 = 2.43351e-06 loss) | |
I0405 18:25:33.293794 29564 solver.cpp:245] Train net output #43: loss/loss22 = 4.88201e-05 (* 0.0454545 = 2.2191e-06 loss) | |
I0405 18:25:33.293807 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 18:25:33.293818 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000192633 | |
I0405 18:25:33.293833 29564 sgd_solver.cpp:106] Iteration 36000, lr = 0.00964 | |
I0405 18:29:23.869829 29564 solver.cpp:229] Iteration 36500, loss = 0.8792 | |
I0405 18:29:23.869926 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.1875 | |
I0405 18:29:23.869956 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0405 18:29:23.869978 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0405 18:29:23.870002 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875 | |
I0405 18:29:23.870024 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.4375 | |
I0405 18:29:23.870045 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5 | |
I0405 18:29:23.870065 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0405 18:29:23.870087 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.96875 | |
I0405 18:29:23.870110 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 18:29:23.870129 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 18:29:23.870151 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 18:29:23.870170 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 18:29:23.870189 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 18:29:23.870211 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 18:29:23.870234 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 18:29:23.870254 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 18:29:23.870278 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 18:29:23.870299 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 18:29:23.870321 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 18:29:23.870342 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 18:29:23.870360 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 18:29:23.870381 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 18:29:23.870407 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.53342 (* 0.0454545 = 0.115155 loss) | |
I0405 18:29:23.870435 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.03504 (* 0.0454545 = 0.137957 loss) | |
I0405 18:29:23.870462 29564 solver.cpp:245] Train net output #24: loss/loss03 = 2.94923 (* 0.0454545 = 0.134056 loss) | |
I0405 18:29:23.870487 29564 solver.cpp:245] Train net output #25: loss/loss04 = 2.91466 (* 0.0454545 = 0.132485 loss) | |
I0405 18:29:23.870512 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.21141 (* 0.0454545 = 0.100519 loss) | |
I0405 18:29:23.870537 29564 solver.cpp:245] Train net output #27: loss/loss06 = 1.7055 (* 0.0454545 = 0.0775228 loss) | |
I0405 18:29:23.870563 29564 solver.cpp:245] Train net output #28: loss/loss07 = 0.958676 (* 0.0454545 = 0.0435762 loss) | |
I0405 18:29:23.870589 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.137543 (* 0.0454545 = 0.00625197 loss) | |
I0405 18:29:23.870615 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.0997611 (* 0.0454545 = 0.0045346 loss) | |
I0405 18:29:23.870641 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.0119661 (* 0.0454545 = 0.000543914 loss) | |
I0405 18:29:23.870668 29564 solver.cpp:245] Train net output #32: loss/loss11 = 2.73057e-05 (* 0.0454545 = 1.24117e-06 loss) | |
I0405 18:29:23.870695 29564 solver.cpp:245] Train net output #33: loss/loss12 = 2.86433e-05 (* 0.0454545 = 1.30197e-06 loss) | |
I0405 18:29:23.870721 29564 solver.cpp:245] Train net output #34: loss/loss13 = 2.69369e-05 (* 0.0454545 = 1.2244e-06 loss) | |
I0405 18:29:23.870746 29564 solver.cpp:245] Train net output #35: loss/loss14 = 2.54094e-05 (* 0.0454545 = 1.15497e-06 loss) | |
I0405 18:29:23.870776 29564 solver.cpp:245] Train net output #36: loss/loss15 = 2.50704e-05 (* 0.0454545 = 1.13956e-06 loss) | |
I0405 18:29:23.870801 29564 solver.cpp:245] Train net output #37: loss/loss16 = 2.38428e-05 (* 0.0454545 = 1.08376e-06 loss) | |
I0405 18:29:23.870826 29564 solver.cpp:245] Train net output #38: loss/loss17 = 2.54373e-05 (* 0.0454545 = 1.15624e-06 loss) | |
I0405 18:29:23.870872 29564 solver.cpp:245] Train net output #39: loss/loss18 = 2.50908e-05 (* 0.0454545 = 1.14049e-06 loss) | |
I0405 18:29:23.870898 29564 solver.cpp:245] Train net output #40: loss/loss19 = 2.42098e-05 (* 0.0454545 = 1.10045e-06 loss) | |
I0405 18:29:23.870923 29564 solver.cpp:245] Train net output #41: loss/loss20 = 2.46959e-05 (* 0.0454545 = 1.12254e-06 loss) | |
I0405 18:29:23.870947 29564 solver.cpp:245] Train net output #42: loss/loss21 = 2.71865e-05 (* 0.0454545 = 1.23575e-06 loss) | |
I0405 18:29:23.870973 29564 solver.cpp:245] Train net output #43: loss/loss22 = 2.44073e-05 (* 0.0454545 = 1.10942e-06 loss) | |
I0405 18:29:23.870995 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 18:29:23.871014 29564 solver.cpp:245] Train net output #45: total_confidence = 0.00175585 | |
I0405 18:29:23.871038 29564 sgd_solver.cpp:106] Iteration 36500, lr = 0.009635 | |
I0405 18:33:16.870301 29564 solver.cpp:229] Iteration 37000, loss = 0.87633 | |
I0405 18:33:16.870527 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.25 | |
I0405 18:33:16.870548 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.25 | |
I0405 18:33:16.870559 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.21875 | |
I0405 18:33:16.870573 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.21875 | |
I0405 18:33:16.870584 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125 | |
I0405 18:33:16.870596 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.46875 | |
I0405 18:33:16.870607 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0405 18:33:16.870620 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.8125 | |
I0405 18:33:16.870630 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625 | |
I0405 18:33:16.870642 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 18:33:16.870654 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 18:33:16.870666 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 18:33:16.870676 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 18:33:16.870687 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 18:33:16.870699 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 18:33:16.870710 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 18:33:16.870723 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 18:33:16.870733 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 18:33:16.870744 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 18:33:16.870755 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 18:33:16.870767 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 18:33:16.870779 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 18:33:16.870793 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.76109 (* 0.0454545 = 0.125504 loss) | |
I0405 18:33:16.870807 29564 solver.cpp:245] Train net output #23: loss/loss02 = 2.92329 (* 0.0454545 = 0.132877 loss) | |
I0405 18:33:16.870821 29564 solver.cpp:245] Train net output #24: loss/loss03 = 2.952 (* 0.0454545 = 0.134182 loss) | |
I0405 18:33:16.870836 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.05731 (* 0.0454545 = 0.138969 loss) | |
I0405 18:33:16.870849 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.79319 (* 0.0454545 = 0.126963 loss) | |
I0405 18:33:16.870863 29564 solver.cpp:245] Train net output #27: loss/loss06 = 1.96372 (* 0.0454545 = 0.0892602 loss) | |
I0405 18:33:16.870877 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.35159 (* 0.0454545 = 0.0614357 loss) | |
I0405 18:33:16.870892 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.811301 (* 0.0454545 = 0.0368773 loss) | |
I0405 18:33:16.870908 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.533483 (* 0.0454545 = 0.0242492 loss) | |
I0405 18:33:16.870923 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.036812 (* 0.0454545 = 0.00167328 loss) | |
I0405 18:33:16.870936 29564 solver.cpp:245] Train net output #32: loss/loss11 = 6.84134e-05 (* 0.0454545 = 3.1097e-06 loss) | |
I0405 18:33:16.870950 29564 solver.cpp:245] Train net output #33: loss/loss12 = 6.36477e-05 (* 0.0454545 = 2.89308e-06 loss) | |
I0405 18:33:16.870965 29564 solver.cpp:245] Train net output #34: loss/loss13 = 6.72391e-05 (* 0.0454545 = 3.05632e-06 loss) | |
I0405 18:33:16.870978 29564 solver.cpp:245] Train net output #35: loss/loss14 = 6.63085e-05 (* 0.0454545 = 3.01402e-06 loss) | |
I0405 18:33:16.870992 29564 solver.cpp:245] Train net output #36: loss/loss15 = 6.09255e-05 (* 0.0454545 = 2.76934e-06 loss) | |
I0405 18:33:16.871006 29564 solver.cpp:245] Train net output #37: loss/loss16 = 6.58725e-05 (* 0.0454545 = 2.99421e-06 loss) | |
I0405 18:33:16.871021 29564 solver.cpp:245] Train net output #38: loss/loss17 = 6.22128e-05 (* 0.0454545 = 2.82786e-06 loss) | |
I0405 18:33:16.871047 29564 solver.cpp:245] Train net output #39: loss/loss18 = 6.62281e-05 (* 0.0454545 = 3.01037e-06 loss) | |
I0405 18:33:16.871062 29564 solver.cpp:245] Train net output #40: loss/loss19 = 6.31626e-05 (* 0.0454545 = 2.87103e-06 loss) | |
I0405 18:33:16.871076 29564 solver.cpp:245] Train net output #41: loss/loss20 = 6.39175e-05 (* 0.0454545 = 2.90534e-06 loss) | |
I0405 18:33:16.871090 29564 solver.cpp:245] Train net output #42: loss/loss21 = 6.31501e-05 (* 0.0454545 = 2.87046e-06 loss) | |
I0405 18:33:16.871104 29564 solver.cpp:245] Train net output #43: loss/loss22 = 5.9546e-05 (* 0.0454545 = 2.70664e-06 loss) | |
I0405 18:33:16.871117 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 18:33:16.871129 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000823716 | |
I0405 18:33:16.871142 29564 sgd_solver.cpp:106] Iteration 37000, lr = 0.00963 | |
I0405 18:37:08.339591 29564 solver.cpp:229] Iteration 37500, loss = 0.877377 | |
I0405 18:37:08.339723 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.25 | |
I0405 18:37:08.339743 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0405 18:37:08.339757 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0405 18:37:08.339769 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.34375 | |
I0405 18:37:08.339782 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125 | |
I0405 18:37:08.339793 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625 | |
I0405 18:37:08.339805 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0405 18:37:08.339818 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0405 18:37:08.339829 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 18:37:08.339841 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 18:37:08.339853 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 18:37:08.339864 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 18:37:08.339875 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 18:37:08.339889 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 18:37:08.339900 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 18:37:08.339911 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 18:37:08.339922 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 18:37:08.339933 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 18:37:08.339944 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 18:37:08.339956 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 18:37:08.339967 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 18:37:08.339978 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 18:37:08.339994 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.8922 (* 0.0454545 = 0.131464 loss) | |
I0405 18:37:08.340008 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.1283 (* 0.0454545 = 0.142196 loss) | |
I0405 18:37:08.340023 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.12721 (* 0.0454545 = 0.142146 loss) | |
I0405 18:37:08.340037 29564 solver.cpp:245] Train net output #25: loss/loss04 = 2.64393 (* 0.0454545 = 0.120179 loss) | |
I0405 18:37:08.340051 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.39563 (* 0.0454545 = 0.108892 loss) | |
I0405 18:37:08.340065 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.32142 (* 0.0454545 = 0.105519 loss) | |
I0405 18:37:08.340093 29564 solver.cpp:245] Train net output #28: loss/loss07 = 0.994247 (* 0.0454545 = 0.045193 loss) | |
I0405 18:37:08.340107 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.352384 (* 0.0454545 = 0.0160174 loss) | |
I0405 18:37:08.340121 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.27318 (* 0.0454545 = 0.0124173 loss) | |
I0405 18:37:08.340136 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.345822 (* 0.0454545 = 0.0157192 loss) | |
I0405 18:37:08.340150 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.000561237 (* 0.0454545 = 2.55108e-05 loss) | |
I0405 18:37:08.340164 29564 solver.cpp:245] Train net output #33: loss/loss12 = 0.000581195 (* 0.0454545 = 2.6418e-05 loss) | |
I0405 18:37:08.340178 29564 solver.cpp:245] Train net output #34: loss/loss13 = 0.000548783 (* 0.0454545 = 2.49447e-05 loss) | |
I0405 18:37:08.340193 29564 solver.cpp:245] Train net output #35: loss/loss14 = 0.000540293 (* 0.0454545 = 2.45588e-05 loss) | |
I0405 18:37:08.340209 29564 solver.cpp:245] Train net output #36: loss/loss15 = 0.00054086 (* 0.0454545 = 2.45846e-05 loss) | |
I0405 18:37:08.340222 29564 solver.cpp:245] Train net output #37: loss/loss16 = 0.000552429 (* 0.0454545 = 2.51104e-05 loss) | |
I0405 18:37:08.340236 29564 solver.cpp:245] Train net output #38: loss/loss17 = 0.000531201 (* 0.0454545 = 2.41455e-05 loss) | |
I0405 18:37:08.340271 29564 solver.cpp:245] Train net output #39: loss/loss18 = 0.000530355 (* 0.0454545 = 2.4107e-05 loss) | |
I0405 18:37:08.340288 29564 solver.cpp:245] Train net output #40: loss/loss19 = 0.000572927 (* 0.0454545 = 2.60422e-05 loss) | |
I0405 18:37:08.340302 29564 solver.cpp:245] Train net output #41: loss/loss20 = 0.000529984 (* 0.0454545 = 2.40902e-05 loss) | |
I0405 18:37:08.340317 29564 solver.cpp:245] Train net output #42: loss/loss21 = 0.000530221 (* 0.0454545 = 2.4101e-05 loss) | |
I0405 18:37:08.340332 29564 solver.cpp:245] Train net output #43: loss/loss22 = 0.000557207 (* 0.0454545 = 2.53276e-05 loss) | |
I0405 18:37:08.340343 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 18:37:08.340355 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000794469 | |
I0405 18:37:08.340368 29564 sgd_solver.cpp:106] Iteration 37500, lr = 0.009625 | |
I0405 18:40:59.697118 29564 solver.cpp:229] Iteration 38000, loss = 0.874872 | |
I0405 18:40:59.697319 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0405 18:40:59.697340 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0405 18:40:59.697353 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0405 18:40:59.697365 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625 | |
I0405 18:40:59.697378 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125 | |
I0405 18:40:59.697391 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0405 18:40:59.697403 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0405 18:40:59.697415 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0405 18:40:59.697427 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 18:40:59.697439 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 18:40:59.697451 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 18:40:59.697464 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 18:40:59.697476 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 18:40:59.697489 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 18:40:59.697501 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 18:40:59.697513 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 18:40:59.697525 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 18:40:59.697536 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 18:40:59.697547 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 18:40:59.697559 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 18:40:59.697571 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 18:40:59.697582 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 18:40:59.697597 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.99786 (* 0.0454545 = 0.136266 loss) | |
I0405 18:40:59.697612 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.36943 (* 0.0454545 = 0.153156 loss) | |
I0405 18:40:59.697625 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.09308 (* 0.0454545 = 0.140595 loss) | |
I0405 18:40:59.697639 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.09788 (* 0.0454545 = 0.140813 loss) | |
I0405 18:40:59.697654 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.51994 (* 0.0454545 = 0.114543 loss) | |
I0405 18:40:59.697667 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.11464 (* 0.0454545 = 0.0961198 loss) | |
I0405 18:40:59.697681 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.04246 (* 0.0454545 = 0.0473846 loss) | |
I0405 18:40:59.697696 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.272052 (* 0.0454545 = 0.012366 loss) | |
I0405 18:40:59.697710 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.167192 (* 0.0454545 = 0.00759964 loss) | |
I0405 18:40:59.697724 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.137756 (* 0.0454545 = 0.00626163 loss) | |
I0405 18:40:59.697738 29564 solver.cpp:245] Train net output #32: loss/loss11 = 8.02155e-05 (* 0.0454545 = 3.64616e-06 loss) | |
I0405 18:40:59.697753 29564 solver.cpp:245] Train net output #33: loss/loss12 = 7.35011e-05 (* 0.0454545 = 3.34096e-06 loss) | |
I0405 18:40:59.697767 29564 solver.cpp:245] Train net output #34: loss/loss13 = 7.49556e-05 (* 0.0454545 = 3.40707e-06 loss) | |
I0405 18:40:59.697784 29564 solver.cpp:245] Train net output #35: loss/loss14 = 7.40893e-05 (* 0.0454545 = 3.36769e-06 loss) | |
I0405 18:40:59.697798 29564 solver.cpp:245] Train net output #36: loss/loss15 = 6.97728e-05 (* 0.0454545 = 3.17149e-06 loss) | |
I0405 18:40:59.697813 29564 solver.cpp:245] Train net output #37: loss/loss16 = 6.85061e-05 (* 0.0454545 = 3.11391e-06 loss) | |
I0405 18:40:59.697827 29564 solver.cpp:245] Train net output #38: loss/loss17 = 7.5126e-05 (* 0.0454545 = 3.41482e-06 loss) | |
I0405 18:40:59.697859 29564 solver.cpp:245] Train net output #39: loss/loss18 = 7.3191e-05 (* 0.0454545 = 3.32686e-06 loss) | |
I0405 18:40:59.697875 29564 solver.cpp:245] Train net output #40: loss/loss19 = 6.89629e-05 (* 0.0454545 = 3.13468e-06 loss) | |
I0405 18:40:59.697888 29564 solver.cpp:245] Train net output #41: loss/loss20 = 7.28923e-05 (* 0.0454545 = 3.31329e-06 loss) | |
I0405 18:40:59.697906 29564 solver.cpp:245] Train net output #42: loss/loss21 = 7.28182e-05 (* 0.0454545 = 3.30992e-06 loss) | |
I0405 18:40:59.697921 29564 solver.cpp:245] Train net output #43: loss/loss22 = 6.96984e-05 (* 0.0454545 = 3.16811e-06 loss) | |
I0405 18:40:59.697932 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 18:40:59.697944 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000231068 | |
I0405 18:40:59.697959 29564 sgd_solver.cpp:106] Iteration 38000, lr = 0.00962 | |
I0405 18:44:51.802055 29564 solver.cpp:229] Iteration 38500, loss = 0.872364 | |
I0405 18:44:51.802172 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0405 18:44:51.802191 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125 | |
I0405 18:44:51.802203 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0405 18:44:51.802216 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875 | |
I0405 18:44:51.802227 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.40625 | |
I0405 18:44:51.802239 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.46875 | |
I0405 18:44:51.802251 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0405 18:44:51.802263 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0405 18:44:51.802274 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0405 18:44:51.802285 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 18:44:51.802297 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 18:44:51.802309 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 18:44:51.802320 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 18:44:51.802331 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 18:44:51.802342 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 18:44:51.802353 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 18:44:51.802366 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 18:44:51.802376 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 18:44:51.802387 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 18:44:51.802398 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 18:44:51.802410 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 18:44:51.802423 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 18:44:51.802438 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.83129 (* 0.0454545 = 0.128695 loss) | |
I0405 18:44:51.802451 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.10604 (* 0.0454545 = 0.141184 loss) | |
I0405 18:44:51.802464 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.21685 (* 0.0454545 = 0.14622 loss) | |
I0405 18:44:51.802479 29564 solver.cpp:245] Train net output #25: loss/loss04 = 2.9337 (* 0.0454545 = 0.13335 loss) | |
I0405 18:44:51.802492 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.63171 (* 0.0454545 = 0.119623 loss) | |
I0405 18:44:51.802510 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.18405 (* 0.0454545 = 0.0992752 loss) | |
I0405 18:44:51.802523 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.62421 (* 0.0454545 = 0.0738279 loss) | |
I0405 18:44:51.802537 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.655526 (* 0.0454545 = 0.0297967 loss) | |
I0405 18:44:51.802551 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.358736 (* 0.0454545 = 0.0163062 loss) | |
I0405 18:44:51.802567 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.01006 (* 0.0454545 = 0.000457273 loss) | |
I0405 18:44:51.802580 29564 solver.cpp:245] Train net output #32: loss/loss11 = 9.70494e-05 (* 0.0454545 = 4.41134e-06 loss) | |
I0405 18:44:51.802594 29564 solver.cpp:245] Train net output #33: loss/loss12 = 9.49921e-05 (* 0.0454545 = 4.31782e-06 loss) | |
I0405 18:44:51.802609 29564 solver.cpp:245] Train net output #34: loss/loss13 = 9.04824e-05 (* 0.0454545 = 4.11284e-06 loss) | |
I0405 18:44:51.802623 29564 solver.cpp:245] Train net output #35: loss/loss14 = 8.7333e-05 (* 0.0454545 = 3.96968e-06 loss) | |
I0405 18:44:51.802637 29564 solver.cpp:245] Train net output #36: loss/loss15 = 8.51663e-05 (* 0.0454545 = 3.8712e-06 loss) | |
I0405 18:44:51.802651 29564 solver.cpp:245] Train net output #37: loss/loss16 = 8.34648e-05 (* 0.0454545 = 3.79386e-06 loss) | |
I0405 18:44:51.802665 29564 solver.cpp:245] Train net output #38: loss/loss17 = 8.66872e-05 (* 0.0454545 = 3.94033e-06 loss) | |
I0405 18:44:51.802696 29564 solver.cpp:245] Train net output #39: loss/loss18 = 8.05681e-05 (* 0.0454545 = 3.66219e-06 loss) | |
I0405 18:44:51.802711 29564 solver.cpp:245] Train net output #40: loss/loss19 = 9.15036e-05 (* 0.0454545 = 4.15926e-06 loss) | |
I0405 18:44:51.802726 29564 solver.cpp:245] Train net output #41: loss/loss20 = 8.2166e-05 (* 0.0454545 = 3.73482e-06 loss) | |
I0405 18:44:51.802739 29564 solver.cpp:245] Train net output #42: loss/loss21 = 7.95161e-05 (* 0.0454545 = 3.61437e-06 loss) | |
I0405 18:44:51.802752 29564 solver.cpp:245] Train net output #43: loss/loss22 = 8.76861e-05 (* 0.0454545 = 3.98573e-06 loss) | |
I0405 18:44:51.802765 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 18:44:51.802778 29564 solver.cpp:245] Train net output #45: total_confidence = 0.00134112 | |
I0405 18:44:51.802791 29564 sgd_solver.cpp:106] Iteration 38500, lr = 0.009615 | |
I0405 18:48:43.402501 29564 solver.cpp:229] Iteration 39000, loss = 0.869528 | |
I0405 18:48:43.402659 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.21875 | |
I0405 18:48:43.402691 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0405 18:48:43.402709 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0405 18:48:43.402721 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625 | |
I0405 18:48:43.402734 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0405 18:48:43.402746 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0405 18:48:43.402760 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.65625 | |
I0405 18:48:43.402772 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0405 18:48:43.402784 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 18:48:43.402796 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 18:48:43.402806 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 18:48:43.402818 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 18:48:43.402829 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 18:48:43.402840 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 18:48:43.402851 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 18:48:43.402864 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 18:48:43.402875 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 18:48:43.402886 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 18:48:43.402897 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 18:48:43.402909 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 18:48:43.402920 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 18:48:43.402930 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 18:48:43.402945 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.91126 (* 0.0454545 = 0.13233 loss) | |
I0405 18:48:43.402959 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.26 (* 0.0454545 = 0.148182 loss) | |
I0405 18:48:43.402977 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.11078 (* 0.0454545 = 0.141399 loss) | |
I0405 18:48:43.402992 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.15959 (* 0.0454545 = 0.143618 loss) | |
I0405 18:48:43.403005 29564 solver.cpp:245] Train net output #26: loss/loss05 = 3.16339 (* 0.0454545 = 0.143791 loss) | |
I0405 18:48:43.403019 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.73081 (* 0.0454545 = 0.124128 loss) | |
I0405 18:48:43.403033 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.61782 (* 0.0454545 = 0.0735372 loss) | |
I0405 18:48:43.403048 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.463425 (* 0.0454545 = 0.0210648 loss) | |
I0405 18:48:43.403061 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.160109 (* 0.0454545 = 0.00727769 loss) | |
I0405 18:48:43.403075 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.00889849 (* 0.0454545 = 0.000404477 loss) | |
I0405 18:48:43.403090 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.000122674 (* 0.0454545 = 5.57611e-06 loss) | |
I0405 18:48:43.403105 29564 solver.cpp:245] Train net output #33: loss/loss12 = 0.00012834 (* 0.0454545 = 5.83362e-06 loss) | |
I0405 18:48:43.403120 29564 solver.cpp:245] Train net output #34: loss/loss13 = 0.000123433 (* 0.0454545 = 5.61057e-06 loss) | |
I0405 18:48:43.403133 29564 solver.cpp:245] Train net output #35: loss/loss14 = 0.000121992 (* 0.0454545 = 5.54507e-06 loss) | |
I0405 18:48:43.403147 29564 solver.cpp:245] Train net output #36: loss/loss15 = 0.000116018 (* 0.0454545 = 5.27354e-06 loss) | |
I0405 18:48:43.403162 29564 solver.cpp:245] Train net output #37: loss/loss16 = 0.000124335 (* 0.0454545 = 5.6516e-06 loss) | |
I0405 18:48:43.403179 29564 solver.cpp:245] Train net output #38: loss/loss17 = 0.000116483 (* 0.0454545 = 5.29467e-06 loss) | |
I0405 18:48:43.403208 29564 solver.cpp:245] Train net output #39: loss/loss18 = 0.000114755 (* 0.0454545 = 5.21612e-06 loss) | |
I0405 18:48:43.403223 29564 solver.cpp:245] Train net output #40: loss/loss19 = 0.00012918 (* 0.0454545 = 5.87182e-06 loss) | |
I0405 18:48:43.403237 29564 solver.cpp:245] Train net output #41: loss/loss20 = 0.000121308 (* 0.0454545 = 5.514e-06 loss) | |
I0405 18:48:43.403252 29564 solver.cpp:245] Train net output #42: loss/loss21 = 0.00011072 (* 0.0454545 = 5.03273e-06 loss) | |
I0405 18:48:43.403266 29564 solver.cpp:245] Train net output #43: loss/loss22 = 0.000120095 (* 0.0454545 = 5.45887e-06 loss) | |
I0405 18:48:43.403278 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 18:48:43.403290 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000896178 | |
I0405 18:48:43.403303 29564 sgd_solver.cpp:106] Iteration 39000, lr = 0.00961 | |
I0405 18:52:35.114548 29564 solver.cpp:229] Iteration 39500, loss = 0.872486 | |
I0405 18:52:35.114743 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.25 | |
I0405 18:52:35.114763 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125 | |
I0405 18:52:35.114775 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0405 18:52:35.114789 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0405 18:52:35.114800 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.125 | |
I0405 18:52:35.114812 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125 | |
I0405 18:52:35.114825 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0405 18:52:35.114836 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0405 18:52:35.114847 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0405 18:52:35.114859 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0405 18:52:35.114871 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 18:52:35.114883 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 18:52:35.114895 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 18:52:35.114907 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 18:52:35.114917 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 18:52:35.114931 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 18:52:35.114943 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 18:52:35.114954 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 18:52:35.114966 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 18:52:35.114977 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 18:52:35.114992 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 18:52:35.115005 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 18:52:35.115020 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.74896 (* 0.0454545 = 0.124953 loss) | |
I0405 18:52:35.115034 29564 solver.cpp:245] Train net output #23: loss/loss02 = 2.98195 (* 0.0454545 = 0.135543 loss) | |
I0405 18:52:35.115048 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.09346 (* 0.0454545 = 0.140612 loss) | |
I0405 18:52:35.115062 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.13268 (* 0.0454545 = 0.142394 loss) | |
I0405 18:52:35.115077 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.89603 (* 0.0454545 = 0.131638 loss) | |
I0405 18:52:35.115090 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.45107 (* 0.0454545 = 0.111412 loss) | |
I0405 18:52:35.115105 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.23442 (* 0.0454545 = 0.0561102 loss) | |
I0405 18:52:35.115119 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.591897 (* 0.0454545 = 0.0269044 loss) | |
I0405 18:52:35.115134 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.286073 (* 0.0454545 = 0.0130033 loss) | |
I0405 18:52:35.115147 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.345683 (* 0.0454545 = 0.0157129 loss) | |
I0405 18:52:35.115162 29564 solver.cpp:245] Train net output #32: loss/loss11 = 8.43552e-05 (* 0.0454545 = 3.83433e-06 loss) | |
I0405 18:52:35.115176 29564 solver.cpp:245] Train net output #33: loss/loss12 = 8.00203e-05 (* 0.0454545 = 3.63729e-06 loss) | |
I0405 18:52:35.115190 29564 solver.cpp:245] Train net output #34: loss/loss13 = 8.46896e-05 (* 0.0454545 = 3.84953e-06 loss) | |
I0405 18:52:35.115206 29564 solver.cpp:245] Train net output #35: loss/loss14 = 8.1156e-05 (* 0.0454545 = 3.68891e-06 loss) | |
I0405 18:52:35.115219 29564 solver.cpp:245] Train net output #36: loss/loss15 = 7.80594e-05 (* 0.0454545 = 3.54816e-06 loss) | |
I0405 18:52:35.115234 29564 solver.cpp:245] Train net output #37: loss/loss16 = 6.80287e-05 (* 0.0454545 = 3.09221e-06 loss) | |
I0405 18:52:35.115248 29564 solver.cpp:245] Train net output #38: loss/loss17 = 8.24896e-05 (* 0.0454545 = 3.74953e-06 loss) | |
I0405 18:52:35.115279 29564 solver.cpp:245] Train net output #39: loss/loss18 = 7.93822e-05 (* 0.0454545 = 3.60828e-06 loss) | |
I0405 18:52:35.115295 29564 solver.cpp:245] Train net output #40: loss/loss19 = 7.87081e-05 (* 0.0454545 = 3.57764e-06 loss) | |
I0405 18:52:35.115309 29564 solver.cpp:245] Train net output #41: loss/loss20 = 7.97291e-05 (* 0.0454545 = 3.62405e-06 loss) | |
I0405 18:52:35.115324 29564 solver.cpp:245] Train net output #42: loss/loss21 = 7.07636e-05 (* 0.0454545 = 3.21653e-06 loss) | |
I0405 18:52:35.115339 29564 solver.cpp:245] Train net output #43: loss/loss22 = 8.26595e-05 (* 0.0454545 = 3.75725e-06 loss) | |
I0405 18:52:35.115350 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 18:52:35.115362 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000694972 | |
I0405 18:52:35.115376 29564 sgd_solver.cpp:106] Iteration 39500, lr = 0.009605 | |
I0405 18:56:25.934914 29564 solver.cpp:338] Iteration 40000, Testing net (#0) | |
I0405 18:56:36.210109 29564 solver.cpp:393] Test loss: 0.777896 | |
I0405 18:56:36.210155 29564 solver.cpp:406] Test net output #0: loss/accuracy01 = 0.194 | |
I0405 18:56:36.210172 29564 solver.cpp:406] Test net output #1: loss/accuracy02 = 0.072 | |
I0405 18:56:36.210186 29564 solver.cpp:406] Test net output #2: loss/accuracy03 = 0.109 | |
I0405 18:56:36.210197 29564 solver.cpp:406] Test net output #3: loss/accuracy04 = 0.136 | |
I0405 18:56:36.210209 29564 solver.cpp:406] Test net output #4: loss/accuracy05 = 0.241 | |
I0405 18:56:36.210222 29564 solver.cpp:406] Test net output #5: loss/accuracy06 = 0.512 | |
I0405 18:56:36.210234 29564 solver.cpp:406] Test net output #6: loss/accuracy07 = 0.896 | |
I0405 18:56:36.210247 29564 solver.cpp:406] Test net output #7: loss/accuracy08 = 0.97 | |
I0405 18:56:36.210258 29564 solver.cpp:406] Test net output #8: loss/accuracy09 = 0.995 | |
I0405 18:56:36.210269 29564 solver.cpp:406] Test net output #9: loss/accuracy10 = 0.998 | |
I0405 18:56:36.210281 29564 solver.cpp:406] Test net output #10: loss/accuracy11 = 1 | |
I0405 18:56:36.210292 29564 solver.cpp:406] Test net output #11: loss/accuracy12 = 1 | |
I0405 18:56:36.210304 29564 solver.cpp:406] Test net output #12: loss/accuracy13 = 1 | |
I0405 18:56:36.210314 29564 solver.cpp:406] Test net output #13: loss/accuracy14 = 1 | |
I0405 18:56:36.210325 29564 solver.cpp:406] Test net output #14: loss/accuracy15 = 1 | |
I0405 18:56:36.210336 29564 solver.cpp:406] Test net output #15: loss/accuracy16 = 1 | |
I0405 18:56:36.210347 29564 solver.cpp:406] Test net output #16: loss/accuracy17 = 1 | |
I0405 18:56:36.210358 29564 solver.cpp:406] Test net output #17: loss/accuracy18 = 1 | |
I0405 18:56:36.210371 29564 solver.cpp:406] Test net output #18: loss/accuracy19 = 1 | |
I0405 18:56:36.210381 29564 solver.cpp:406] Test net output #19: loss/accuracy20 = 1 | |
I0405 18:56:36.210392 29564 solver.cpp:406] Test net output #20: loss/accuracy21 = 1 | |
I0405 18:56:36.210403 29564 solver.cpp:406] Test net output #21: loss/accuracy22 = 1 | |
I0405 18:56:36.210417 29564 solver.cpp:406] Test net output #22: loss/loss01 = 2.89908 (* 0.0454545 = 0.131776 loss) | |
I0405 18:56:36.210433 29564 solver.cpp:406] Test net output #23: loss/loss02 = 3.04403 (* 0.0454545 = 0.138365 loss) | |
I0405 18:56:36.210446 29564 solver.cpp:406] Test net output #24: loss/loss03 = 2.98717 (* 0.0454545 = 0.135781 loss) | |
I0405 18:56:36.210460 29564 solver.cpp:406] Test net output #25: loss/loss04 = 2.93295 (* 0.0454545 = 0.133316 loss) | |
I0405 18:56:36.210474 29564 solver.cpp:406] Test net output #26: loss/loss05 = 2.68775 (* 0.0454545 = 0.12217 loss) | |
I0405 18:56:36.210487 29564 solver.cpp:406] Test net output #27: loss/loss06 = 1.80358 (* 0.0454545 = 0.0819809 loss) | |
I0405 18:56:36.210501 29564 solver.cpp:406] Test net output #28: loss/loss07 = 0.475701 (* 0.0454545 = 0.0216228 loss) | |
I0405 18:56:36.210515 29564 solver.cpp:406] Test net output #29: loss/loss08 = 0.20895 (* 0.0454545 = 0.00949773 loss) | |
I0405 18:56:36.210530 29564 solver.cpp:406] Test net output #30: loss/loss09 = 0.0489 (* 0.0454545 = 0.00222273 loss) | |
I0405 18:56:36.210543 29564 solver.cpp:406] Test net output #31: loss/loss10 = 0.0244788 (* 0.0454545 = 0.00111267 loss) | |
I0405 18:56:36.210557 29564 solver.cpp:406] Test net output #32: loss/loss11 = 9.69563e-05 (* 0.0454545 = 4.40711e-06 loss) | |
I0405 18:56:36.210575 29564 solver.cpp:406] Test net output #33: loss/loss12 = 9.48256e-05 (* 0.0454545 = 4.31026e-06 loss) | |
I0405 18:56:36.210589 29564 solver.cpp:406] Test net output #34: loss/loss13 = 9.4543e-05 (* 0.0454545 = 4.29741e-06 loss) | |
I0405 18:56:36.210603 29564 solver.cpp:406] Test net output #35: loss/loss14 = 9.75338e-05 (* 0.0454545 = 4.43335e-06 loss) | |
I0405 18:56:36.210618 29564 solver.cpp:406] Test net output #36: loss/loss15 = 9.27405e-05 (* 0.0454545 = 4.21548e-06 loss) | |
I0405 18:56:36.210631 29564 solver.cpp:406] Test net output #37: loss/loss16 = 9.00966e-05 (* 0.0454545 = 4.0953e-06 loss) | |
I0405 18:56:36.210645 29564 solver.cpp:406] Test net output #38: loss/loss17 = 9.12214e-05 (* 0.0454545 = 4.14643e-06 loss) | |
I0405 18:56:36.210692 29564 solver.cpp:406] Test net output #39: loss/loss18 = 9.17695e-05 (* 0.0454545 = 4.17134e-06 loss) | |
I0405 18:56:36.210708 29564 solver.cpp:406] Test net output #40: loss/loss19 = 9.63457e-05 (* 0.0454545 = 4.37935e-06 loss) | |
I0405 18:56:36.210722 29564 solver.cpp:406] Test net output #41: loss/loss20 = 8.90542e-05 (* 0.0454545 = 4.04792e-06 loss) | |
I0405 18:56:36.210736 29564 solver.cpp:406] Test net output #42: loss/loss21 = 8.77739e-05 (* 0.0454545 = 3.98972e-06 loss) | |
I0405 18:56:36.210749 29564 solver.cpp:406] Test net output #43: loss/loss22 = 9.40879e-05 (* 0.0454545 = 4.27672e-06 loss) | |
I0405 18:56:36.210762 29564 solver.cpp:406] Test net output #44: total_accuracy = 0.002 | |
I0405 18:56:36.210773 29564 solver.cpp:406] Test net output #45: total_confidence = 0.00195121 | |
I0405 18:56:36.325340 29564 solver.cpp:229] Iteration 40000, loss = 0.866179 | |
I0405 18:56:36.325379 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.1875 | |
I0405 18:56:36.325397 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.15625 | |
I0405 18:56:36.325408 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.21875 | |
I0405 18:56:36.325422 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375 | |
I0405 18:56:36.325433 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0405 18:56:36.325445 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0405 18:56:36.325458 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0405 18:56:36.325469 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0405 18:56:36.325481 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0405 18:56:36.325494 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 18:56:36.325505 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 18:56:36.325517 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 18:56:36.325530 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 18:56:36.325541 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 18:56:36.325551 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 18:56:36.325563 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 18:56:36.325575 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 18:56:36.325587 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 18:56:36.325598 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 18:56:36.325609 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 18:56:36.325620 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 18:56:36.325631 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 18:56:36.325645 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.70328 (* 0.0454545 = 0.122876 loss) | |
I0405 18:56:36.325660 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.20929 (* 0.0454545 = 0.145877 loss) | |
I0405 18:56:36.325675 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.17299 (* 0.0454545 = 0.144227 loss) | |
I0405 18:56:36.325688 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.15847 (* 0.0454545 = 0.143567 loss) | |
I0405 18:56:36.325702 29564 solver.cpp:245] Train net output #26: loss/loss05 = 3.06927 (* 0.0454545 = 0.139512 loss) | |
I0405 18:56:36.325716 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.37222 (* 0.0454545 = 0.107828 loss) | |
I0405 18:56:36.325729 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.47477 (* 0.0454545 = 0.067035 loss) | |
I0405 18:56:36.325743 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.782552 (* 0.0454545 = 0.0355705 loss) | |
I0405 18:56:36.325757 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.278553 (* 0.0454545 = 0.0126615 loss) | |
I0405 18:56:36.325788 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.120815 (* 0.0454545 = 0.00549161 loss) | |
I0405 18:56:36.325805 29564 solver.cpp:245] Train net output #32: loss/loss11 = 6.55108e-05 (* 0.0454545 = 2.97776e-06 loss) | |
I0405 18:56:36.325822 29564 solver.cpp:245] Train net output #33: loss/loss12 = 6.56367e-05 (* 0.0454545 = 2.98348e-06 loss) | |
I0405 18:56:36.325836 29564 solver.cpp:245] Train net output #34: loss/loss13 = 6.70342e-05 (* 0.0454545 = 3.04701e-06 loss) | |
I0405 18:56:36.325850 29564 solver.cpp:245] Train net output #35: loss/loss14 = 6.50107e-05 (* 0.0454545 = 2.95503e-06 loss) | |
I0405 18:56:36.325865 29564 solver.cpp:245] Train net output #36: loss/loss15 = 6.23962e-05 (* 0.0454545 = 2.83619e-06 loss) | |
I0405 18:56:36.325880 29564 solver.cpp:245] Train net output #37: loss/loss16 = 6.38479e-05 (* 0.0454545 = 2.90218e-06 loss) | |
I0405 18:56:36.325892 29564 solver.cpp:245] Train net output #38: loss/loss17 = 6.16248e-05 (* 0.0454545 = 2.80113e-06 loss) | |
I0405 18:56:36.325906 29564 solver.cpp:245] Train net output #39: loss/loss18 = 5.92436e-05 (* 0.0454545 = 2.69289e-06 loss) | |
I0405 18:56:36.325919 29564 solver.cpp:245] Train net output #40: loss/loss19 = 6.96297e-05 (* 0.0454545 = 3.16499e-06 loss) | |
I0405 18:56:36.325933 29564 solver.cpp:245] Train net output #41: loss/loss20 = 6.15501e-05 (* 0.0454545 = 2.79773e-06 loss) | |
I0405 18:56:36.325947 29564 solver.cpp:245] Train net output #42: loss/loss21 = 6.22574e-05 (* 0.0454545 = 2.82988e-06 loss) | |
I0405 18:56:36.325961 29564 solver.cpp:245] Train net output #43: loss/loss22 = 6.3891e-05 (* 0.0454545 = 2.90414e-06 loss) | |
I0405 18:56:36.325973 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 18:56:36.325989 29564 solver.cpp:245] Train net output #45: total_confidence = 5.6899e-05 | |
I0405 18:56:36.326004 29564 sgd_solver.cpp:106] Iteration 40000, lr = 0.0096 | |
I0405 19:00:27.795512 29564 solver.cpp:229] Iteration 40500, loss = 0.871718 | |
I0405 19:00:27.795671 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.1875 | |
I0405 19:00:27.795693 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0405 19:00:27.795706 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0405 19:00:27.795719 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375 | |
I0405 19:00:27.795732 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125 | |
I0405 19:00:27.795743 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625 | |
I0405 19:00:27.795755 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0405 19:00:27.795766 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0405 19:00:27.795778 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 19:00:27.795790 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 19:00:27.795801 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 19:00:27.795814 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 19:00:27.795825 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 19:00:27.795836 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 19:00:27.795847 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 19:00:27.795858 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 19:00:27.795871 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 19:00:27.795882 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 19:00:27.795893 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 19:00:27.795904 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 19:00:27.795917 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 19:00:27.795928 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 19:00:27.795943 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.82258 (* 0.0454545 = 0.128299 loss) | |
I0405 19:00:27.795958 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.51768 (* 0.0454545 = 0.159895 loss) | |
I0405 19:00:27.795972 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.41078 (* 0.0454545 = 0.155036 loss) | |
I0405 19:00:27.795986 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.39129 (* 0.0454545 = 0.154149 loss) | |
I0405 19:00:27.796000 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.72994 (* 0.0454545 = 0.124088 loss) | |
I0405 19:00:27.796015 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.36822 (* 0.0454545 = 0.107646 loss) | |
I0405 19:00:27.796027 29564 solver.cpp:245] Train net output #28: loss/loss07 = 0.884593 (* 0.0454545 = 0.0402088 loss) | |
I0405 19:00:27.796042 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.313835 (* 0.0454545 = 0.0142652 loss) | |
I0405 19:00:27.796056 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.134778 (* 0.0454545 = 0.00612628 loss) | |
I0405 19:00:27.796082 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.0209486 (* 0.0454545 = 0.00095221 loss) | |
I0405 19:00:27.796100 29564 solver.cpp:245] Train net output #32: loss/loss11 = 3.00576e-05 (* 0.0454545 = 1.36625e-06 loss) | |
I0405 19:00:27.796115 29564 solver.cpp:245] Train net output #33: loss/loss12 = 3.09033e-05 (* 0.0454545 = 1.4047e-06 loss) | |
I0405 19:00:27.796129 29564 solver.cpp:245] Train net output #34: loss/loss13 = 3.38787e-05 (* 0.0454545 = 1.53994e-06 loss) | |
I0405 19:00:27.796144 29564 solver.cpp:245] Train net output #35: loss/loss14 = 3.11196e-05 (* 0.0454545 = 1.41453e-06 loss) | |
I0405 19:00:27.796159 29564 solver.cpp:245] Train net output #36: loss/loss15 = 3.03484e-05 (* 0.0454545 = 1.37947e-06 loss) | |
I0405 19:00:27.796172 29564 solver.cpp:245] Train net output #37: loss/loss16 = 3.0587e-05 (* 0.0454545 = 1.39032e-06 loss) | |
I0405 19:00:27.796186 29564 solver.cpp:245] Train net output #38: loss/loss17 = 2.99871e-05 (* 0.0454545 = 1.36305e-06 loss) | |
I0405 19:00:27.796233 29564 solver.cpp:245] Train net output #39: loss/loss18 = 3.1375e-05 (* 0.0454545 = 1.42614e-06 loss) | |
I0405 19:00:27.796252 29564 solver.cpp:245] Train net output #40: loss/loss19 = 3.05309e-05 (* 0.0454545 = 1.38777e-06 loss) | |
I0405 19:00:27.796267 29564 solver.cpp:245] Train net output #41: loss/loss20 = 2.83662e-05 (* 0.0454545 = 1.28937e-06 loss) | |
I0405 19:00:27.796282 29564 solver.cpp:245] Train net output #42: loss/loss21 = 3.05235e-05 (* 0.0454545 = 1.38743e-06 loss) | |
I0405 19:00:27.796295 29564 solver.cpp:245] Train net output #43: loss/loss22 = 3.13769e-05 (* 0.0454545 = 1.42622e-06 loss) | |
I0405 19:00:27.796308 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 19:00:27.796319 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000198853 | |
I0405 19:00:27.796334 29564 sgd_solver.cpp:106] Iteration 40500, lr = 0.009595 | |
I0405 19:04:19.079613 29564 solver.cpp:229] Iteration 41000, loss = 0.866866 | |
I0405 19:04:19.079819 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.09375 | |
I0405 19:04:19.079839 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0405 19:04:19.079852 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0405 19:04:19.079865 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0405 19:04:19.079877 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.21875 | |
I0405 19:04:19.079888 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625 | |
I0405 19:04:19.079900 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.65625 | |
I0405 19:04:19.079913 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375 | |
I0405 19:04:19.079924 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 19:04:19.079936 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 19:04:19.079948 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 19:04:19.079959 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 19:04:19.079972 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 19:04:19.079982 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 19:04:19.079993 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 19:04:19.080004 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 19:04:19.080019 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 19:04:19.080030 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 19:04:19.080041 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 19:04:19.080054 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 19:04:19.080065 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 19:04:19.080093 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 19:04:19.080109 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.84373 (* 0.0454545 = 0.12926 loss) | |
I0405 19:04:19.080123 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.0627 (* 0.0454545 = 0.139214 loss) | |
I0405 19:04:19.080138 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.10706 (* 0.0454545 = 0.14123 loss) | |
I0405 19:04:19.080152 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.08673 (* 0.0454545 = 0.140306 loss) | |
I0405 19:04:19.080165 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.84979 (* 0.0454545 = 0.129536 loss) | |
I0405 19:04:19.080179 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.04121 (* 0.0454545 = 0.0927824 loss) | |
I0405 19:04:19.080193 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.50471 (* 0.0454545 = 0.0683961 loss) | |
I0405 19:04:19.080207 29564 solver.cpp:245] Train net output #29: loss/loss08 = 1.06884 (* 0.0454545 = 0.0485838 loss) | |
I0405 19:04:19.080220 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.217965 (* 0.0454545 = 0.00990749 loss) | |
I0405 19:04:19.080235 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.212355 (* 0.0454545 = 0.00965249 loss) | |
I0405 19:04:19.080250 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.000186803 (* 0.0454545 = 8.49105e-06 loss) | |
I0405 19:04:19.080263 29564 solver.cpp:245] Train net output #33: loss/loss12 = 0.000188418 (* 0.0454545 = 8.56446e-06 loss) | |
I0405 19:04:19.080277 29564 solver.cpp:245] Train net output #34: loss/loss13 = 0.000183377 (* 0.0454545 = 8.33533e-06 loss) | |
I0405 19:04:19.080291 29564 solver.cpp:245] Train net output #35: loss/loss14 = 0.000173265 (* 0.0454545 = 7.87568e-06 loss) | |
I0405 19:04:19.080305 29564 solver.cpp:245] Train net output #36: loss/loss15 = 0.000173455 (* 0.0454545 = 7.88432e-06 loss) | |
I0405 19:04:19.080319 29564 solver.cpp:245] Train net output #37: loss/loss16 = 0.000193772 (* 0.0454545 = 8.80783e-06 loss) | |
I0405 19:04:19.080333 29564 solver.cpp:245] Train net output #38: loss/loss17 = 0.000171792 (* 0.0454545 = 7.80871e-06 loss) | |
I0405 19:04:19.080364 29564 solver.cpp:245] Train net output #39: loss/loss18 = 0.000181165 (* 0.0454545 = 8.23475e-06 loss) | |
I0405 19:04:19.080380 29564 solver.cpp:245] Train net output #40: loss/loss19 = 0.000184574 (* 0.0454545 = 8.38975e-06 loss) | |
I0405 19:04:19.080394 29564 solver.cpp:245] Train net output #41: loss/loss20 = 0.000188872 (* 0.0454545 = 8.58508e-06 loss) | |
I0405 19:04:19.080409 29564 solver.cpp:245] Train net output #42: loss/loss21 = 0.000184579 (* 0.0454545 = 8.38994e-06 loss) | |
I0405 19:04:19.080425 29564 solver.cpp:245] Train net output #43: loss/loss22 = 0.000163405 (* 0.0454545 = 7.4275e-06 loss) | |
I0405 19:04:19.080438 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 19:04:19.080451 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000549077 | |
I0405 19:04:19.080464 29564 sgd_solver.cpp:106] Iteration 41000, lr = 0.00959 | |
I0405 19:08:10.360419 29564 solver.cpp:229] Iteration 41500, loss = 0.866203 | |
I0405 19:08:10.360534 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.21875 | |
I0405 19:08:10.360555 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0405 19:08:10.360569 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0405 19:08:10.360580 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.03125 | |
I0405 19:08:10.360592 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.15625 | |
I0405 19:08:10.360605 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375 | |
I0405 19:08:10.360617 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0405 19:08:10.360630 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0405 19:08:10.360641 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 19:08:10.360652 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 19:08:10.360664 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 19:08:10.360676 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 19:08:10.360687 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 19:08:10.360698 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 19:08:10.360710 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 19:08:10.360723 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 19:08:10.360733 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 19:08:10.360744 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 19:08:10.360756 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 19:08:10.360767 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 19:08:10.360779 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 19:08:10.360790 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 19:08:10.360805 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.68512 (* 0.0454545 = 0.122051 loss) | |
I0405 19:08:10.360819 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.02644 (* 0.0454545 = 0.137566 loss) | |
I0405 19:08:10.360833 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.18877 (* 0.0454545 = 0.144944 loss) | |
I0405 19:08:10.360847 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.04687 (* 0.0454545 = 0.138494 loss) | |
I0405 19:08:10.360862 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.80336 (* 0.0454545 = 0.127426 loss) | |
I0405 19:08:10.360875 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.20578 (* 0.0454545 = 0.100263 loss) | |
I0405 19:08:10.360889 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.03883 (* 0.0454545 = 0.0472196 loss) | |
I0405 19:08:10.360903 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.421888 (* 0.0454545 = 0.0191767 loss) | |
I0405 19:08:10.360918 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.20872 (* 0.0454545 = 0.00948729 loss) | |
I0405 19:08:10.360932 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.00415655 (* 0.0454545 = 0.000188934 loss) | |
I0405 19:08:10.360946 29564 solver.cpp:245] Train net output #32: loss/loss11 = 4.02778e-05 (* 0.0454545 = 1.83081e-06 loss) | |
I0405 19:08:10.360961 29564 solver.cpp:245] Train net output #33: loss/loss12 = 3.98809e-05 (* 0.0454545 = 1.81277e-06 loss) | |
I0405 19:08:10.360975 29564 solver.cpp:245] Train net output #34: loss/loss13 = 3.83627e-05 (* 0.0454545 = 1.74376e-06 loss) | |
I0405 19:08:10.360990 29564 solver.cpp:245] Train net output #35: loss/loss14 = 4.04119e-05 (* 0.0454545 = 1.8369e-06 loss) | |
I0405 19:08:10.361003 29564 solver.cpp:245] Train net output #36: loss/loss15 = 3.87612e-05 (* 0.0454545 = 1.76187e-06 loss) | |
I0405 19:08:10.361017 29564 solver.cpp:245] Train net output #37: loss/loss16 = 4.05126e-05 (* 0.0454545 = 1.84148e-06 loss) | |
I0405 19:08:10.361032 29564 solver.cpp:245] Train net output #38: loss/loss17 = 3.67493e-05 (* 0.0454545 = 1.67042e-06 loss) | |
I0405 19:08:10.361063 29564 solver.cpp:245] Train net output #39: loss/loss18 = 3.87575e-05 (* 0.0454545 = 1.7617e-06 loss) | |
I0405 19:08:10.361079 29564 solver.cpp:245] Train net output #40: loss/loss19 = 4.00153e-05 (* 0.0454545 = 1.81888e-06 loss) | |
I0405 19:08:10.361093 29564 solver.cpp:245] Train net output #41: loss/loss20 = 3.98717e-05 (* 0.0454545 = 1.81235e-06 loss) | |
I0405 19:08:10.361107 29564 solver.cpp:245] Train net output #42: loss/loss21 = 3.74089e-05 (* 0.0454545 = 1.7004e-06 loss) | |
I0405 19:08:10.361122 29564 solver.cpp:245] Train net output #43: loss/loss22 = 3.8087e-05 (* 0.0454545 = 1.73123e-06 loss) | |
I0405 19:08:10.361135 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 19:08:10.361147 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000230284 | |
I0405 19:08:10.361161 29564 sgd_solver.cpp:106] Iteration 41500, lr = 0.009585 | |
I0405 19:12:02.460459 29564 solver.cpp:229] Iteration 42000, loss = 0.864958 | |
I0405 19:12:02.460661 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.3125 | |
I0405 19:12:02.460681 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.15625 | |
I0405 19:12:02.460695 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0405 19:12:02.460706 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375 | |
I0405 19:12:02.460718 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125 | |
I0405 19:12:02.460731 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375 | |
I0405 19:12:02.460742 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.65625 | |
I0405 19:12:02.460754 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375 | |
I0405 19:12:02.460765 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 19:12:02.460777 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 19:12:02.460788 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 19:12:02.460800 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 19:12:02.460811 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 19:12:02.460824 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 19:12:02.460835 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 19:12:02.460846 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 19:12:02.460858 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 19:12:02.460870 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 19:12:02.460880 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 19:12:02.460892 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 19:12:02.460903 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 19:12:02.460916 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 19:12:02.460930 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.2184 (* 0.0454545 = 0.100836 loss) | |
I0405 19:12:02.460945 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.14868 (* 0.0454545 = 0.143122 loss) | |
I0405 19:12:02.460959 29564 solver.cpp:245] Train net output #24: loss/loss03 = 2.93173 (* 0.0454545 = 0.13326 loss) | |
I0405 19:12:02.460973 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.0667 (* 0.0454545 = 0.139396 loss) | |
I0405 19:12:02.460988 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.49261 (* 0.0454545 = 0.1133 loss) | |
I0405 19:12:02.461001 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.3319 (* 0.0454545 = 0.105996 loss) | |
I0405 19:12:02.461015 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.70666 (* 0.0454545 = 0.0775754 loss) | |
I0405 19:12:02.461030 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.859578 (* 0.0454545 = 0.0390717 loss) | |
I0405 19:12:02.461043 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.281854 (* 0.0454545 = 0.0128116 loss) | |
I0405 19:12:02.461057 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.0106709 (* 0.0454545 = 0.000485039 loss) | |
I0405 19:12:02.461072 29564 solver.cpp:245] Train net output #32: loss/loss11 = 8.92675e-05 (* 0.0454545 = 4.05761e-06 loss) | |
I0405 19:12:02.461086 29564 solver.cpp:245] Train net output #33: loss/loss12 = 8.92029e-05 (* 0.0454545 = 4.05468e-06 loss) | |
I0405 19:12:02.461100 29564 solver.cpp:245] Train net output #34: loss/loss13 = 9.01272e-05 (* 0.0454545 = 4.09669e-06 loss) | |
I0405 19:12:02.461114 29564 solver.cpp:245] Train net output #35: loss/loss14 = 8.31342e-05 (* 0.0454545 = 3.77883e-06 loss) | |
I0405 19:12:02.461128 29564 solver.cpp:245] Train net output #36: loss/loss15 = 8.47695e-05 (* 0.0454545 = 3.85316e-06 loss) | |
I0405 19:12:02.461143 29564 solver.cpp:245] Train net output #37: loss/loss16 = 8.71353e-05 (* 0.0454545 = 3.96069e-06 loss) | |
I0405 19:12:02.461156 29564 solver.cpp:245] Train net output #38: loss/loss17 = 8.50015e-05 (* 0.0454545 = 3.86371e-06 loss) | |
I0405 19:12:02.461187 29564 solver.cpp:245] Train net output #39: loss/loss18 = 8.36089e-05 (* 0.0454545 = 3.8004e-06 loss) | |
I0405 19:12:02.461205 29564 solver.cpp:245] Train net output #40: loss/loss19 = 9.0966e-05 (* 0.0454545 = 4.13482e-06 loss) | |
I0405 19:12:02.461220 29564 solver.cpp:245] Train net output #41: loss/loss20 = 8.76469e-05 (* 0.0454545 = 3.98395e-06 loss) | |
I0405 19:12:02.461236 29564 solver.cpp:245] Train net output #42: loss/loss21 = 8.61838e-05 (* 0.0454545 = 3.91745e-06 loss) | |
I0405 19:12:02.461249 29564 solver.cpp:245] Train net output #43: loss/loss22 = 8.23649e-05 (* 0.0454545 = 3.74386e-06 loss) | |
I0405 19:12:02.461261 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 19:12:02.461273 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000384456 | |
I0405 19:12:02.461287 29564 sgd_solver.cpp:106] Iteration 42000, lr = 0.00958 | |
I0405 19:15:53.421238 29564 solver.cpp:229] Iteration 42500, loss = 0.865654 | |
I0405 19:15:53.421414 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.125 | |
I0405 19:15:53.421435 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0405 19:15:53.421449 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0405 19:15:53.421461 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0405 19:15:53.421473 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.34375 | |
I0405 19:15:53.421485 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0405 19:15:53.421497 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875 | |
I0405 19:15:53.421509 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375 | |
I0405 19:15:53.421521 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0405 19:15:53.421533 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 19:15:53.421545 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 19:15:53.421557 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 19:15:53.421568 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 19:15:53.421581 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 19:15:53.421591 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 19:15:53.421603 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 19:15:53.421614 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 19:15:53.421625 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 19:15:53.421638 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 19:15:53.421648 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 19:15:53.421660 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 19:15:53.421671 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 19:15:53.421686 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.78056 (* 0.0454545 = 0.126389 loss) | |
I0405 19:15:53.421703 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.19859 (* 0.0454545 = 0.14539 loss) | |
I0405 19:15:53.421717 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.20374 (* 0.0454545 = 0.145624 loss) | |
I0405 19:15:53.421731 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.10929 (* 0.0454545 = 0.141331 loss) | |
I0405 19:15:53.421746 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.68797 (* 0.0454545 = 0.122181 loss) | |
I0405 19:15:53.421761 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.03853 (* 0.0454545 = 0.0926605 loss) | |
I0405 19:15:53.421774 29564 solver.cpp:245] Train net output #28: loss/loss07 = 0.987358 (* 0.0454545 = 0.0448799 loss) | |
I0405 19:15:53.421788 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.549688 (* 0.0454545 = 0.0249858 loss) | |
I0405 19:15:53.421802 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.326894 (* 0.0454545 = 0.0148588 loss) | |
I0405 19:15:53.421818 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.143796 (* 0.0454545 = 0.00653619 loss) | |
I0405 19:15:53.421833 29564 solver.cpp:245] Train net output #32: loss/loss11 = 4.36831e-05 (* 0.0454545 = 1.98559e-06 loss) | |
I0405 19:15:53.421846 29564 solver.cpp:245] Train net output #33: loss/loss12 = 4.46863e-05 (* 0.0454545 = 2.0312e-06 loss) | |
I0405 19:15:53.421860 29564 solver.cpp:245] Train net output #34: loss/loss13 = 4.47076e-05 (* 0.0454545 = 2.03216e-06 loss) | |
I0405 19:15:53.421875 29564 solver.cpp:245] Train net output #35: loss/loss14 = 4.25405e-05 (* 0.0454545 = 1.93366e-06 loss) | |
I0405 19:15:53.421888 29564 solver.cpp:245] Train net output #36: loss/loss15 = 4.26425e-05 (* 0.0454545 = 1.93829e-06 loss) | |
I0405 19:15:53.421903 29564 solver.cpp:245] Train net output #37: loss/loss16 = 4.40976e-05 (* 0.0454545 = 2.00444e-06 loss) | |
I0405 19:15:53.421917 29564 solver.cpp:245] Train net output #38: loss/loss17 = 3.93385e-05 (* 0.0454545 = 1.78811e-06 loss) | |
I0405 19:15:53.421947 29564 solver.cpp:245] Train net output #39: loss/loss18 = 4.19118e-05 (* 0.0454545 = 1.90508e-06 loss) | |
I0405 19:15:53.421962 29564 solver.cpp:245] Train net output #40: loss/loss19 = 4.49451e-05 (* 0.0454545 = 2.04296e-06 loss) | |
I0405 19:15:53.421977 29564 solver.cpp:245] Train net output #41: loss/loss20 = 4.09918e-05 (* 0.0454545 = 1.86326e-06 loss) | |
I0405 19:15:53.421990 29564 solver.cpp:245] Train net output #42: loss/loss21 = 3.87199e-05 (* 0.0454545 = 1.76e-06 loss) | |
I0405 19:15:53.422005 29564 solver.cpp:245] Train net output #43: loss/loss22 = 4.01499e-05 (* 0.0454545 = 1.825e-06 loss) | |
I0405 19:15:53.422020 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 19:15:53.422032 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000998883 | |
I0405 19:15:53.422046 29564 sgd_solver.cpp:106] Iteration 42500, lr = 0.009575 | |
I0405 19:19:45.062664 29564 solver.cpp:229] Iteration 43000, loss = 0.860307 | |
I0405 19:19:45.062763 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.1875 | |
I0405 19:19:45.062783 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0405 19:19:45.062795 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0405 19:19:45.062809 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625 | |
I0405 19:19:45.062832 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125 | |
I0405 19:19:45.062854 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5 | |
I0405 19:19:45.062867 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.65625 | |
I0405 19:19:45.062880 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.8125 | |
I0405 19:19:45.062894 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.875 | |
I0405 19:19:45.062906 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.90625 | |
I0405 19:19:45.062918 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 19:19:45.062929 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 19:19:45.062942 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 19:19:45.062952 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 19:19:45.062964 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 19:19:45.062976 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 19:19:45.062988 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 19:19:45.062999 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 19:19:45.063011 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 19:19:45.063022 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 19:19:45.063033 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 19:19:45.063045 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 19:19:45.063060 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.95873 (* 0.0454545 = 0.134488 loss) | |
I0405 19:19:45.063074 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.07301 (* 0.0454545 = 0.139682 loss) | |
I0405 19:19:45.063088 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.21901 (* 0.0454545 = 0.146319 loss) | |
I0405 19:19:45.063104 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.08584 (* 0.0454545 = 0.140266 loss) | |
I0405 19:19:45.063118 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.70195 (* 0.0454545 = 0.122816 loss) | |
I0405 19:19:45.063133 29564 solver.cpp:245] Train net output #27: loss/loss06 = 1.90139 (* 0.0454545 = 0.0864266 loss) | |
I0405 19:19:45.063150 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.37064 (* 0.0454545 = 0.0623016 loss) | |
I0405 19:19:45.063164 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.71528 (* 0.0454545 = 0.0325127 loss) | |
I0405 19:19:45.063179 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.60382 (* 0.0454545 = 0.0274464 loss) | |
I0405 19:19:45.063192 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.422511 (* 0.0454545 = 0.019205 loss) | |
I0405 19:19:45.063206 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.000100136 (* 0.0454545 = 4.55166e-06 loss) | |
I0405 19:19:45.063221 29564 solver.cpp:245] Train net output #33: loss/loss12 = 9.24426e-05 (* 0.0454545 = 4.20194e-06 loss) | |
I0405 19:19:45.063235 29564 solver.cpp:245] Train net output #34: loss/loss13 = 9.09499e-05 (* 0.0454545 = 4.13409e-06 loss) | |
I0405 19:19:45.063249 29564 solver.cpp:245] Train net output #35: loss/loss14 = 9.1853e-05 (* 0.0454545 = 4.17514e-06 loss) | |
I0405 19:19:45.063264 29564 solver.cpp:245] Train net output #36: loss/loss15 = 9.13249e-05 (* 0.0454545 = 4.15113e-06 loss) | |
I0405 19:19:45.063278 29564 solver.cpp:245] Train net output #37: loss/loss16 = 9.38928e-05 (* 0.0454545 = 4.26785e-06 loss) | |
I0405 19:19:45.063292 29564 solver.cpp:245] Train net output #38: loss/loss17 = 9.01991e-05 (* 0.0454545 = 4.09996e-06 loss) | |
I0405 19:19:45.063324 29564 solver.cpp:245] Train net output #39: loss/loss18 = 8.78102e-05 (* 0.0454545 = 3.99137e-06 loss) | |
I0405 19:19:45.063340 29564 solver.cpp:245] Train net output #40: loss/loss19 = 9.68835e-05 (* 0.0454545 = 4.40379e-06 loss) | |
I0405 19:19:45.063354 29564 solver.cpp:245] Train net output #41: loss/loss20 = 8.7746e-05 (* 0.0454545 = 3.98845e-06 loss) | |
I0405 19:19:45.063369 29564 solver.cpp:245] Train net output #42: loss/loss21 = 8.46091e-05 (* 0.0454545 = 3.84587e-06 loss) | |
I0405 19:19:45.063383 29564 solver.cpp:245] Train net output #43: loss/loss22 = 9.06076e-05 (* 0.0454545 = 4.11853e-06 loss) | |
I0405 19:19:45.063395 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 19:19:45.063407 29564 solver.cpp:245] Train net output #45: total_confidence = 0.00130942 | |
I0405 19:19:45.063421 29564 sgd_solver.cpp:106] Iteration 43000, lr = 0.00957 | |
I0405 19:23:36.085948 29564 solver.cpp:229] Iteration 43500, loss = 0.862804 | |
I0405 19:23:36.086133 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.15625 | |
I0405 19:23:36.086153 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0405 19:23:36.086165 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0405 19:23:36.086177 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.21875 | |
I0405 19:23:36.086190 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0405 19:23:36.086202 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0405 19:23:36.086215 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0405 19:23:36.086225 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 1 | |
I0405 19:23:36.086237 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0405 19:23:36.086248 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 19:23:36.086259 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 19:23:36.086272 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 19:23:36.086282 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 19:23:36.086294 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 19:23:36.086307 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 19:23:36.086318 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 19:23:36.086328 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 19:23:36.086340 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 19:23:36.086351 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 19:23:36.086362 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 19:23:36.086374 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 19:23:36.086385 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 19:23:36.086401 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.49357 (* 0.0454545 = 0.113344 loss) | |
I0405 19:23:36.086416 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.00379 (* 0.0454545 = 0.136536 loss) | |
I0405 19:23:36.086429 29564 solver.cpp:245] Train net output #24: loss/loss03 = 2.99682 (* 0.0454545 = 0.136219 loss) | |
I0405 19:23:36.086443 29564 solver.cpp:245] Train net output #25: loss/loss04 = 2.76924 (* 0.0454545 = 0.125874 loss) | |
I0405 19:23:36.086457 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.60016 (* 0.0454545 = 0.118189 loss) | |
I0405 19:23:36.086472 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.03151 (* 0.0454545 = 0.0923414 loss) | |
I0405 19:23:36.086484 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.02616 (* 0.0454545 = 0.0466435 loss) | |
I0405 19:23:36.086498 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.0515811 (* 0.0454545 = 0.0023446 loss) | |
I0405 19:23:36.086513 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.0125797 (* 0.0454545 = 0.000571803 loss) | |
I0405 19:23:36.086539 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.00393825 (* 0.0454545 = 0.000179011 loss) | |
I0405 19:23:36.086563 29564 solver.cpp:245] Train net output #32: loss/loss11 = 2.58881e-05 (* 0.0454545 = 1.17673e-06 loss) | |
I0405 19:23:36.086580 29564 solver.cpp:245] Train net output #33: loss/loss12 = 2.6268e-05 (* 0.0454545 = 1.194e-06 loss) | |
I0405 19:23:36.086593 29564 solver.cpp:245] Train net output #34: loss/loss13 = 2.5806e-05 (* 0.0454545 = 1.173e-06 loss) | |
I0405 19:23:36.086608 29564 solver.cpp:245] Train net output #35: loss/loss14 = 2.53589e-05 (* 0.0454545 = 1.15268e-06 loss) | |
I0405 19:23:36.086622 29564 solver.cpp:245] Train net output #36: loss/loss15 = 2.38799e-05 (* 0.0454545 = 1.08545e-06 loss) | |
I0405 19:23:36.086637 29564 solver.cpp:245] Train net output #37: loss/loss16 = 2.54633e-05 (* 0.0454545 = 1.15742e-06 loss) | |
I0405 19:23:36.086650 29564 solver.cpp:245] Train net output #38: loss/loss17 = 2.30864e-05 (* 0.0454545 = 1.04938e-06 loss) | |
I0405 19:23:36.086681 29564 solver.cpp:245] Train net output #39: loss/loss18 = 2.35782e-05 (* 0.0454545 = 1.07174e-06 loss) | |
I0405 19:23:36.086700 29564 solver.cpp:245] Train net output #40: loss/loss19 = 2.45729e-05 (* 0.0454545 = 1.11695e-06 loss) | |
I0405 19:23:36.086715 29564 solver.cpp:245] Train net output #41: loss/loss20 = 2.45729e-05 (* 0.0454545 = 1.11695e-06 loss) | |
I0405 19:23:36.086730 29564 solver.cpp:245] Train net output #42: loss/loss21 = 2.5739e-05 (* 0.0454545 = 1.16995e-06 loss) | |
I0405 19:23:36.086743 29564 solver.cpp:245] Train net output #43: loss/loss22 = 2.30342e-05 (* 0.0454545 = 1.04701e-06 loss) | |
I0405 19:23:36.086755 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 19:23:36.086766 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000877131 | |
I0405 19:23:36.086783 29564 sgd_solver.cpp:106] Iteration 43500, lr = 0.009565 | |
I0405 19:27:27.175858 29564 solver.cpp:229] Iteration 44000, loss = 0.859356 | |
I0405 19:27:27.175997 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.34375 | |
I0405 19:27:27.176017 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0 | |
I0405 19:27:27.176029 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0405 19:27:27.176041 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0405 19:27:27.176054 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0405 19:27:27.176065 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375 | |
I0405 19:27:27.176101 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.65625 | |
I0405 19:27:27.176115 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0405 19:27:27.176126 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 19:27:27.176138 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 19:27:27.176149 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 19:27:27.176162 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 19:27:27.176172 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 19:27:27.176183 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 19:27:27.176194 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 19:27:27.176205 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 19:27:27.176218 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 19:27:27.176229 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 19:27:27.176239 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 19:27:27.176250 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 19:27:27.176262 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 19:27:27.176273 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 19:27:27.176290 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.42813 (* 0.0454545 = 0.110369 loss) | |
I0405 19:27:27.176303 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.35971 (* 0.0454545 = 0.152714 loss) | |
I0405 19:27:27.176321 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.16774 (* 0.0454545 = 0.143988 loss) | |
I0405 19:27:27.176334 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.28281 (* 0.0454545 = 0.149219 loss) | |
I0405 19:27:27.176348 29564 solver.cpp:245] Train net output #26: loss/loss05 = 3.10805 (* 0.0454545 = 0.141275 loss) | |
I0405 19:27:27.176362 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.47508 (* 0.0454545 = 0.112504 loss) | |
I0405 19:27:27.176378 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.66811 (* 0.0454545 = 0.075823 loss) | |
I0405 19:27:27.176391 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.837175 (* 0.0454545 = 0.0380534 loss) | |
I0405 19:27:27.176405 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.121308 (* 0.0454545 = 0.00551402 loss) | |
I0405 19:27:27.176420 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.0105869 (* 0.0454545 = 0.000481223 loss) | |
I0405 19:27:27.176434 29564 solver.cpp:245] Train net output #32: loss/loss11 = 3.65992e-05 (* 0.0454545 = 1.6636e-06 loss) | |
I0405 19:27:27.176448 29564 solver.cpp:245] Train net output #33: loss/loss12 = 3.71133e-05 (* 0.0454545 = 1.68697e-06 loss) | |
I0405 19:27:27.176462 29564 solver.cpp:245] Train net output #34: loss/loss13 = 3.37847e-05 (* 0.0454545 = 1.53567e-06 loss) | |
I0405 19:27:27.176476 29564 solver.cpp:245] Train net output #35: loss/loss14 = 3.70615e-05 (* 0.0454545 = 1.68461e-06 loss) | |
I0405 19:27:27.176491 29564 solver.cpp:245] Train net output #36: loss/loss15 = 3.50323e-05 (* 0.0454545 = 1.59238e-06 loss) | |
I0405 19:27:27.176504 29564 solver.cpp:245] Train net output #37: loss/loss16 = 3.32644e-05 (* 0.0454545 = 1.51202e-06 loss) | |
I0405 19:27:27.176518 29564 solver.cpp:245] Train net output #38: loss/loss17 = 3.43069e-05 (* 0.0454545 = 1.55941e-06 loss) | |
I0405 19:27:27.176550 29564 solver.cpp:245] Train net output #39: loss/loss18 = 3.33268e-05 (* 0.0454545 = 1.51486e-06 loss) | |
I0405 19:27:27.176565 29564 solver.cpp:245] Train net output #40: loss/loss19 = 3.81369e-05 (* 0.0454545 = 1.7335e-06 loss) | |
I0405 19:27:27.176580 29564 solver.cpp:245] Train net output #41: loss/loss20 = 3.33971e-05 (* 0.0454545 = 1.51805e-06 loss) | |
I0405 19:27:27.176594 29564 solver.cpp:245] Train net output #42: loss/loss21 = 3.1979e-05 (* 0.0454545 = 1.45359e-06 loss) | |
I0405 19:27:27.176609 29564 solver.cpp:245] Train net output #43: loss/loss22 = 3.40571e-05 (* 0.0454545 = 1.54805e-06 loss) | |
I0405 19:27:27.176620 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 19:27:27.176632 29564 solver.cpp:245] Train net output #45: total_confidence = 8.58875e-05 | |
I0405 19:27:27.176647 29564 sgd_solver.cpp:106] Iteration 44000, lr = 0.00956 | |
I0405 19:31:18.475551 29564 solver.cpp:229] Iteration 44500, loss = 0.86463 | |
I0405 19:31:18.475837 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.21875 | |
I0405 19:31:18.475859 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0405 19:31:18.475872 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0405 19:31:18.475884 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625 | |
I0405 19:31:18.475898 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0405 19:31:18.475909 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.46875 | |
I0405 19:31:18.475921 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0405 19:31:18.475934 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0405 19:31:18.475945 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 19:31:18.475957 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 19:31:18.475968 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 19:31:18.475980 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 19:31:18.475992 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 19:31:18.476004 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 19:31:18.476018 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 19:31:18.476029 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 19:31:18.476042 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 19:31:18.476052 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 19:31:18.476063 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 19:31:18.476091 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 19:31:18.476104 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 19:31:18.476116 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 19:31:18.476131 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.70421 (* 0.0454545 = 0.122919 loss) | |
I0405 19:31:18.476145 29564 solver.cpp:245] Train net output #23: loss/loss02 = 2.97339 (* 0.0454545 = 0.135154 loss) | |
I0405 19:31:18.476160 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.01669 (* 0.0454545 = 0.137122 loss) | |
I0405 19:31:18.476173 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.05325 (* 0.0454545 = 0.138784 loss) | |
I0405 19:31:18.476187 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.73357 (* 0.0454545 = 0.124253 loss) | |
I0405 19:31:18.476202 29564 solver.cpp:245] Train net output #27: loss/loss06 = 1.96309 (* 0.0454545 = 0.0892312 loss) | |
I0405 19:31:18.476214 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.04099 (* 0.0454545 = 0.0473176 loss) | |
I0405 19:31:18.476228 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.552564 (* 0.0454545 = 0.0251165 loss) | |
I0405 19:31:18.476243 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.223785 (* 0.0454545 = 0.0101721 loss) | |
I0405 19:31:18.476256 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.0237363 (* 0.0454545 = 0.00107892 loss) | |
I0405 19:31:18.476270 29564 solver.cpp:245] Train net output #32: loss/loss11 = 4.16103e-05 (* 0.0454545 = 1.89138e-06 loss) | |
I0405 19:31:18.476284 29564 solver.cpp:245] Train net output #33: loss/loss12 = 4.3408e-05 (* 0.0454545 = 1.97309e-06 loss) | |
I0405 19:31:18.476300 29564 solver.cpp:245] Train net output #34: loss/loss13 = 4.2086e-05 (* 0.0454545 = 1.913e-06 loss) | |
I0405 19:31:18.476313 29564 solver.cpp:245] Train net output #35: loss/loss14 = 4.05731e-05 (* 0.0454545 = 1.84423e-06 loss) | |
I0405 19:31:18.476327 29564 solver.cpp:245] Train net output #36: loss/loss15 = 3.85325e-05 (* 0.0454545 = 1.75148e-06 loss) | |
I0405 19:31:18.476341 29564 solver.cpp:245] Train net output #37: loss/loss16 = 4.06359e-05 (* 0.0454545 = 1.84709e-06 loss) | |
I0405 19:31:18.476356 29564 solver.cpp:245] Train net output #38: loss/loss17 = 3.83873e-05 (* 0.0454545 = 1.74488e-06 loss) | |
I0405 19:31:18.476385 29564 solver.cpp:245] Train net output #39: loss/loss18 = 3.64141e-05 (* 0.0454545 = 1.65519e-06 loss) | |
I0405 19:31:18.476400 29564 solver.cpp:245] Train net output #40: loss/loss19 = 4.41164e-05 (* 0.0454545 = 2.00529e-06 loss) | |
I0405 19:31:18.476414 29564 solver.cpp:245] Train net output #41: loss/loss20 = 3.94829e-05 (* 0.0454545 = 1.79468e-06 loss) | |
I0405 19:31:18.476428 29564 solver.cpp:245] Train net output #42: loss/loss21 = 3.73626e-05 (* 0.0454545 = 1.6983e-06 loss) | |
I0405 19:31:18.476443 29564 solver.cpp:245] Train net output #43: loss/loss22 = 4.23116e-05 (* 0.0454545 = 1.92326e-06 loss) | |
I0405 19:31:18.476454 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 19:31:18.476465 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000188747 | |
I0405 19:31:18.476480 29564 sgd_solver.cpp:106] Iteration 44500, lr = 0.009555 | |
I0405 19:35:10.750051 29564 solver.cpp:338] Iteration 45000, Testing net (#0) | |
I0405 19:35:21.019364 29564 solver.cpp:393] Test loss: 0.782577 | |
I0405 19:35:21.019409 29564 solver.cpp:406] Test net output #0: loss/accuracy01 = 0.224 | |
I0405 19:35:21.019425 29564 solver.cpp:406] Test net output #1: loss/accuracy02 = 0.102 | |
I0405 19:35:21.019438 29564 solver.cpp:406] Test net output #2: loss/accuracy03 = 0.11 | |
I0405 19:35:21.019451 29564 solver.cpp:406] Test net output #3: loss/accuracy04 = 0.136 | |
I0405 19:35:21.019462 29564 solver.cpp:406] Test net output #4: loss/accuracy05 = 0.243 | |
I0405 19:35:21.019474 29564 solver.cpp:406] Test net output #5: loss/accuracy06 = 0.518 | |
I0405 19:35:21.019486 29564 solver.cpp:406] Test net output #6: loss/accuracy07 = 0.892 | |
I0405 19:35:21.019498 29564 solver.cpp:406] Test net output #7: loss/accuracy08 = 0.97 | |
I0405 19:35:21.019510 29564 solver.cpp:406] Test net output #8: loss/accuracy09 = 0.995 | |
I0405 19:35:21.019521 29564 solver.cpp:406] Test net output #9: loss/accuracy10 = 0.998 | |
I0405 19:35:21.019532 29564 solver.cpp:406] Test net output #10: loss/accuracy11 = 1 | |
I0405 19:35:21.019544 29564 solver.cpp:406] Test net output #11: loss/accuracy12 = 1 | |
I0405 19:35:21.019556 29564 solver.cpp:406] Test net output #12: loss/accuracy13 = 1 | |
I0405 19:35:21.019567 29564 solver.cpp:406] Test net output #13: loss/accuracy14 = 1 | |
I0405 19:35:21.019578 29564 solver.cpp:406] Test net output #14: loss/accuracy15 = 1 | |
I0405 19:35:21.019589 29564 solver.cpp:406] Test net output #15: loss/accuracy16 = 1 | |
I0405 19:35:21.019601 29564 solver.cpp:406] Test net output #16: loss/accuracy17 = 1 | |
I0405 19:35:21.019613 29564 solver.cpp:406] Test net output #17: loss/accuracy18 = 1 | |
I0405 19:35:21.019623 29564 solver.cpp:406] Test net output #18: loss/accuracy19 = 1 | |
I0405 19:35:21.019635 29564 solver.cpp:406] Test net output #19: loss/accuracy20 = 1 | |
I0405 19:35:21.019646 29564 solver.cpp:406] Test net output #20: loss/accuracy21 = 1 | |
I0405 19:35:21.019657 29564 solver.cpp:406] Test net output #21: loss/accuracy22 = 1 | |
I0405 19:35:21.019672 29564 solver.cpp:406] Test net output #22: loss/loss01 = 2.92583 (* 0.0454545 = 0.132992 loss) | |
I0405 19:35:21.019687 29564 solver.cpp:406] Test net output #23: loss/loss02 = 3.05019 (* 0.0454545 = 0.138645 loss) | |
I0405 19:35:21.019701 29564 solver.cpp:406] Test net output #24: loss/loss03 = 3.01725 (* 0.0454545 = 0.137148 loss) | |
I0405 19:35:21.019716 29564 solver.cpp:406] Test net output #25: loss/loss04 = 2.97248 (* 0.0454545 = 0.135113 loss) | |
I0405 19:35:21.019729 29564 solver.cpp:406] Test net output #26: loss/loss05 = 2.70128 (* 0.0454545 = 0.122786 loss) | |
I0405 19:35:21.019743 29564 solver.cpp:406] Test net output #27: loss/loss06 = 1.78093 (* 0.0454545 = 0.0809512 loss) | |
I0405 19:35:21.019757 29564 solver.cpp:406] Test net output #28: loss/loss07 = 0.486796 (* 0.0454545 = 0.0221271 loss) | |
I0405 19:35:21.019773 29564 solver.cpp:406] Test net output #29: loss/loss08 = 0.207165 (* 0.0454545 = 0.00941661 loss) | |
I0405 19:35:21.019786 29564 solver.cpp:406] Test net output #30: loss/loss09 = 0.0482265 (* 0.0454545 = 0.00219211 loss) | |
I0405 19:35:21.019800 29564 solver.cpp:406] Test net output #31: loss/loss10 = 0.0249914 (* 0.0454545 = 0.00113597 loss) | |
I0405 19:35:21.019814 29564 solver.cpp:406] Test net output #32: loss/loss11 = 0.000133711 (* 0.0454545 = 6.07779e-06 loss) | |
I0405 19:35:21.019829 29564 solver.cpp:406] Test net output #33: loss/loss12 = 0.000132423 (* 0.0454545 = 6.01925e-06 loss) | |
I0405 19:35:21.019845 29564 solver.cpp:406] Test net output #34: loss/loss13 = 0.000131815 (* 0.0454545 = 5.99161e-06 loss) | |
I0405 19:35:21.019860 29564 solver.cpp:406] Test net output #35: loss/loss14 = 0.000135126 (* 0.0454545 = 6.1421e-06 loss) | |
I0405 19:35:21.019875 29564 solver.cpp:406] Test net output #36: loss/loss15 = 0.000130083 (* 0.0454545 = 5.91285e-06 loss) | |
I0405 19:35:21.019888 29564 solver.cpp:406] Test net output #37: loss/loss16 = 0.000128284 (* 0.0454545 = 5.83111e-06 loss) | |
I0405 19:35:21.019902 29564 solver.cpp:406] Test net output #38: loss/loss17 = 0.00013147 (* 0.0454545 = 5.97589e-06 loss) | |
I0405 19:35:21.019950 29564 solver.cpp:406] Test net output #39: loss/loss18 = 0.000125493 (* 0.0454545 = 5.70422e-06 loss) | |
I0405 19:35:21.019966 29564 solver.cpp:406] Test net output #40: loss/loss19 = 0.000134875 (* 0.0454545 = 6.13067e-06 loss) | |
I0405 19:35:21.019980 29564 solver.cpp:406] Test net output #41: loss/loss20 = 0.000118947 (* 0.0454545 = 5.4067e-06 loss) | |
I0405 19:35:21.019994 29564 solver.cpp:406] Test net output #42: loss/loss21 = 0.000122882 (* 0.0454545 = 5.58554e-06 loss) | |
I0405 19:35:21.020009 29564 solver.cpp:406] Test net output #43: loss/loss22 = 0.000128895 (* 0.0454545 = 5.85886e-06 loss) | |
I0405 19:35:21.020020 29564 solver.cpp:406] Test net output #44: total_accuracy = 0.001 | |
I0405 19:35:21.020031 29564 solver.cpp:406] Test net output #45: total_confidence = 0.00100068 | |
I0405 19:35:21.134642 29564 solver.cpp:229] Iteration 45000, loss = 0.860581 | |
I0405 19:35:21.134680 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.1875 | |
I0405 19:35:21.134697 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0405 19:35:21.134709 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0405 19:35:21.134722 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0405 19:35:21.134734 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.09375 | |
I0405 19:35:21.134749 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.25 | |
I0405 19:35:21.134763 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.65625 | |
I0405 19:35:21.134773 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0405 19:35:21.134786 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0405 19:35:21.134799 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 19:35:21.134809 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 19:35:21.134820 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 19:35:21.134832 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 19:35:21.134843 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 19:35:21.134855 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 19:35:21.134865 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 19:35:21.134878 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 19:35:21.134889 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 19:35:21.134901 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 19:35:21.134912 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 19:35:21.134923 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 19:35:21.134934 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 19:35:21.134948 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.75128 (* 0.0454545 = 0.125058 loss) | |
I0405 19:35:21.134963 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.27022 (* 0.0454545 = 0.148647 loss) | |
I0405 19:35:21.134976 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.18669 (* 0.0454545 = 0.14485 loss) | |
I0405 19:35:21.134990 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.12111 (* 0.0454545 = 0.141869 loss) | |
I0405 19:35:21.135004 29564 solver.cpp:245] Train net output #26: loss/loss05 = 3.13983 (* 0.0454545 = 0.142719 loss) | |
I0405 19:35:21.135017 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.67551 (* 0.0454545 = 0.121614 loss) | |
I0405 19:35:21.135031 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.34939 (* 0.0454545 = 0.0613361 loss) | |
I0405 19:35:21.135045 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.294369 (* 0.0454545 = 0.0133804 loss) | |
I0405 19:35:21.135058 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.0719485 (* 0.0454545 = 0.00327039 loss) | |
I0405 19:35:21.135073 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.0233161 (* 0.0454545 = 0.00105982 loss) | |
I0405 19:35:21.135103 29564 solver.cpp:245] Train net output #32: loss/loss11 = 7.78404e-05 (* 0.0454545 = 3.5382e-06 loss) | |
I0405 19:35:21.135123 29564 solver.cpp:245] Train net output #33: loss/loss12 = 8.03638e-05 (* 0.0454545 = 3.6529e-06 loss) | |
I0405 19:35:21.135138 29564 solver.cpp:245] Train net output #34: loss/loss13 = 7.77062e-05 (* 0.0454545 = 3.5321e-06 loss) | |
I0405 19:35:21.135151 29564 solver.cpp:245] Train net output #35: loss/loss14 = 7.61586e-05 (* 0.0454545 = 3.46176e-06 loss) | |
I0405 19:35:21.135166 29564 solver.cpp:245] Train net output #36: loss/loss15 = 7.43028e-05 (* 0.0454545 = 3.3774e-06 loss) | |
I0405 19:35:21.135180 29564 solver.cpp:245] Train net output #37: loss/loss16 = 7.38962e-05 (* 0.0454545 = 3.35892e-06 loss) | |
I0405 19:35:21.135195 29564 solver.cpp:245] Train net output #38: loss/loss17 = 7.32874e-05 (* 0.0454545 = 3.33125e-06 loss) | |
I0405 19:35:21.135208 29564 solver.cpp:245] Train net output #39: loss/loss18 = 7.02681e-05 (* 0.0454545 = 3.194e-06 loss) | |
I0405 19:35:21.135223 29564 solver.cpp:245] Train net output #40: loss/loss19 = 7.65126e-05 (* 0.0454545 = 3.47784e-06 loss) | |
I0405 19:35:21.135237 29564 solver.cpp:245] Train net output #41: loss/loss20 = 6.96778e-05 (* 0.0454545 = 3.16717e-06 loss) | |
I0405 19:35:21.135251 29564 solver.cpp:245] Train net output #42: loss/loss21 = 7.1654e-05 (* 0.0454545 = 3.257e-06 loss) | |
I0405 19:35:21.135265 29564 solver.cpp:245] Train net output #43: loss/loss22 = 7.10012e-05 (* 0.0454545 = 3.22733e-06 loss) | |
I0405 19:35:21.135277 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 19:35:21.135289 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000484363 | |
I0405 19:35:21.135303 29564 sgd_solver.cpp:106] Iteration 45000, lr = 0.00955 | |
I0405 19:39:13.244794 29564 solver.cpp:229] Iteration 45500, loss = 0.85806 | |
I0405 19:39:13.244909 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.25 | |
I0405 19:39:13.244927 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.15625 | |
I0405 19:39:13.244940 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0405 19:39:13.244952 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625 | |
I0405 19:39:13.244964 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0405 19:39:13.244976 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0405 19:39:13.244987 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0405 19:39:13.244999 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0405 19:39:13.245012 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0405 19:39:13.245024 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 19:39:13.245036 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 19:39:13.245048 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 19:39:13.245059 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 19:39:13.245070 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 19:39:13.245081 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 19:39:13.245093 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 19:39:13.245105 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 19:39:13.245115 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 19:39:13.245129 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 19:39:13.245141 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 19:39:13.245152 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 19:39:13.245167 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 19:39:13.245183 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.65933 (* 0.0454545 = 0.120879 loss) | |
I0405 19:39:13.245198 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.00139 (* 0.0454545 = 0.136427 loss) | |
I0405 19:39:13.245211 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.07172 (* 0.0454545 = 0.139623 loss) | |
I0405 19:39:13.245225 29564 solver.cpp:245] Train net output #25: loss/loss04 = 2.87451 (* 0.0454545 = 0.13066 loss) | |
I0405 19:39:13.245239 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.74978 (* 0.0454545 = 0.12499 loss) | |
I0405 19:39:13.245254 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.05059 (* 0.0454545 = 0.0932087 loss) | |
I0405 19:39:13.245267 29564 solver.cpp:245] Train net output #28: loss/loss07 = 0.775129 (* 0.0454545 = 0.0352331 loss) | |
I0405 19:39:13.245281 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.391861 (* 0.0454545 = 0.0178119 loss) | |
I0405 19:39:13.245296 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.236671 (* 0.0454545 = 0.0107578 loss) | |
I0405 19:39:13.245311 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.04185 (* 0.0454545 = 0.00190227 loss) | |
I0405 19:39:13.245324 29564 solver.cpp:245] Train net output #32: loss/loss11 = 7.16012e-06 (* 0.0454545 = 3.2546e-07 loss) | |
I0405 19:39:13.245339 29564 solver.cpp:245] Train net output #33: loss/loss12 = 8.1734e-06 (* 0.0454545 = 3.71518e-07 loss) | |
I0405 19:39:13.245354 29564 solver.cpp:245] Train net output #34: loss/loss13 = 6.99246e-06 (* 0.0454545 = 3.17839e-07 loss) | |
I0405 19:39:13.245368 29564 solver.cpp:245] Train net output #35: loss/loss14 = 6.48953e-06 (* 0.0454545 = 2.94979e-07 loss) | |
I0405 19:39:13.245383 29564 solver.cpp:245] Train net output #36: loss/loss15 = 7.25698e-06 (* 0.0454545 = 3.29863e-07 loss) | |
I0405 19:39:13.245398 29564 solver.cpp:245] Train net output #37: loss/loss16 = 7.5662e-06 (* 0.0454545 = 3.43918e-07 loss) | |
I0405 19:39:13.245412 29564 solver.cpp:245] Train net output #38: loss/loss17 = 7.18619e-06 (* 0.0454545 = 3.26645e-07 loss) | |
I0405 19:39:13.245443 29564 solver.cpp:245] Train net output #39: loss/loss18 = 7.68914e-06 (* 0.0454545 = 3.49507e-07 loss) | |
I0405 19:39:13.245458 29564 solver.cpp:245] Train net output #40: loss/loss19 = 7.18245e-06 (* 0.0454545 = 3.26475e-07 loss) | |
I0405 19:39:13.245472 29564 solver.cpp:245] Train net output #41: loss/loss20 = 7.18246e-06 (* 0.0454545 = 3.26476e-07 loss) | |
I0405 19:39:13.245487 29564 solver.cpp:245] Train net output #42: loss/loss21 = 6.7615e-06 (* 0.0454545 = 3.07341e-07 loss) | |
I0405 19:39:13.245501 29564 solver.cpp:245] Train net output #43: loss/loss22 = 6.30326e-06 (* 0.0454545 = 2.86512e-07 loss) | |
I0405 19:39:13.245513 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 19:39:13.245525 29564 solver.cpp:245] Train net output #45: total_confidence = 0.00100105 | |
I0405 19:39:13.245540 29564 sgd_solver.cpp:106] Iteration 45500, lr = 0.009545 | |
I0405 19:43:04.164670 29564 solver.cpp:229] Iteration 46000, loss = 0.854223 | |
I0405 19:43:04.164949 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.28125 | |
I0405 19:43:04.164971 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0405 19:43:04.164984 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.15625 | |
I0405 19:43:04.164996 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375 | |
I0405 19:43:04.165009 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125 | |
I0405 19:43:04.165019 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625 | |
I0405 19:43:04.165031 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0405 19:43:04.165043 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0405 19:43:04.165055 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0405 19:43:04.165066 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 19:43:04.165078 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 19:43:04.165089 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 19:43:04.165101 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 19:43:04.165112 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 19:43:04.165123 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 19:43:04.165134 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 19:43:04.165145 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 19:43:04.165158 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 19:43:04.165169 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 19:43:04.165179 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 19:43:04.165190 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 19:43:04.165202 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 19:43:04.165217 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.47439 (* 0.0454545 = 0.112472 loss) | |
I0405 19:43:04.165235 29564 solver.cpp:245] Train net output #23: loss/loss02 = 2.84819 (* 0.0454545 = 0.129463 loss) | |
I0405 19:43:04.165249 29564 solver.cpp:245] Train net output #24: loss/loss03 = 2.79976 (* 0.0454545 = 0.127262 loss) | |
I0405 19:43:04.165263 29564 solver.cpp:245] Train net output #25: loss/loss04 = 2.89201 (* 0.0454545 = 0.131455 loss) | |
I0405 19:43:04.165277 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.43416 (* 0.0454545 = 0.110644 loss) | |
I0405 19:43:04.165292 29564 solver.cpp:245] Train net output #27: loss/loss06 = 1.9228 (* 0.0454545 = 0.0874 loss) | |
I0405 19:43:04.165305 29564 solver.cpp:245] Train net output #28: loss/loss07 = 0.953639 (* 0.0454545 = 0.0433472 loss) | |
I0405 19:43:04.165334 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.304285 (* 0.0454545 = 0.0138311 loss) | |
I0405 19:43:04.165350 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.0178757 (* 0.0454545 = 0.000812531 loss) | |
I0405 19:43:04.165365 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.00498504 (* 0.0454545 = 0.000226593 loss) | |
I0405 19:43:04.165380 29564 solver.cpp:245] Train net output #32: loss/loss11 = 3.78587e-05 (* 0.0454545 = 1.72085e-06 loss) | |
I0405 19:43:04.165395 29564 solver.cpp:245] Train net output #33: loss/loss12 = 4.73992e-05 (* 0.0454545 = 2.15451e-06 loss) | |
I0405 19:43:04.165410 29564 solver.cpp:245] Train net output #34: loss/loss13 = 4.05973e-05 (* 0.0454545 = 1.84533e-06 loss) | |
I0405 19:43:04.165424 29564 solver.cpp:245] Train net output #35: loss/loss14 = 3.9444e-05 (* 0.0454545 = 1.79291e-06 loss) | |
I0405 19:43:04.165439 29564 solver.cpp:245] Train net output #36: loss/loss15 = 4.20318e-05 (* 0.0454545 = 1.91054e-06 loss) | |
I0405 19:43:04.165453 29564 solver.cpp:245] Train net output #37: loss/loss16 = 4.3075e-05 (* 0.0454545 = 1.95795e-06 loss) | |
I0405 19:43:04.165467 29564 solver.cpp:245] Train net output #38: loss/loss17 = 3.78514e-05 (* 0.0454545 = 1.72052e-06 loss) | |
I0405 19:43:04.165495 29564 solver.cpp:245] Train net output #39: loss/loss18 = 3.79445e-05 (* 0.0454545 = 1.72475e-06 loss) | |
I0405 19:43:04.165510 29564 solver.cpp:245] Train net output #40: loss/loss19 = 4.16257e-05 (* 0.0454545 = 1.89208e-06 loss) | |
I0405 19:43:04.165525 29564 solver.cpp:245] Train net output #41: loss/loss20 = 3.91591e-05 (* 0.0454545 = 1.77996e-06 loss) | |
I0405 19:43:04.165539 29564 solver.cpp:245] Train net output #42: loss/loss21 = 3.53866e-05 (* 0.0454545 = 1.60848e-06 loss) | |
I0405 19:43:04.165554 29564 solver.cpp:245] Train net output #43: loss/loss22 = 3.91629e-05 (* 0.0454545 = 1.78013e-06 loss) | |
I0405 19:43:04.165565 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 19:43:04.165576 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000635381 | |
I0405 19:43:04.165591 29564 sgd_solver.cpp:106] Iteration 46000, lr = 0.00954 | |
I0405 19:46:55.787524 29564 solver.cpp:229] Iteration 46500, loss = 0.852908 | |
I0405 19:46:55.787605 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.1875 | |
I0405 19:46:55.787622 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0405 19:46:55.787636 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0405 19:46:55.787647 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0405 19:46:55.787659 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0405 19:46:55.787670 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375 | |
I0405 19:46:55.787683 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875 | |
I0405 19:46:55.787694 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.75 | |
I0405 19:46:55.787705 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625 | |
I0405 19:46:55.787717 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0405 19:46:55.787729 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 19:46:55.787741 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 19:46:55.787752 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 19:46:55.787763 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 19:46:55.787775 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 19:46:55.787786 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 19:46:55.787797 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 19:46:55.787808 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 19:46:55.787820 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 19:46:55.787832 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 19:46:55.787842 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 19:46:55.787854 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 19:46:55.787869 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.80791 (* 0.0454545 = 0.127632 loss) | |
I0405 19:46:55.787883 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.19986 (* 0.0454545 = 0.145448 loss) | |
I0405 19:46:55.787897 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.24427 (* 0.0454545 = 0.147467 loss) | |
I0405 19:46:55.787910 29564 solver.cpp:245] Train net output #25: loss/loss04 = 2.98024 (* 0.0454545 = 0.135465 loss) | |
I0405 19:46:55.787925 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.7626 (* 0.0454545 = 0.125573 loss) | |
I0405 19:46:55.787938 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.27239 (* 0.0454545 = 0.10329 loss) | |
I0405 19:46:55.787951 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.24161 (* 0.0454545 = 0.0564369 loss) | |
I0405 19:46:55.787966 29564 solver.cpp:245] Train net output #29: loss/loss08 = 1.06243 (* 0.0454545 = 0.0482924 loss) | |
I0405 19:46:55.787982 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.480394 (* 0.0454545 = 0.0218361 loss) | |
I0405 19:46:55.787997 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.369464 (* 0.0454545 = 0.0167938 loss) | |
I0405 19:46:55.788010 29564 solver.cpp:245] Train net output #32: loss/loss11 = 2.55256e-05 (* 0.0454545 = 1.16026e-06 loss) | |
I0405 19:46:55.788024 29564 solver.cpp:245] Train net output #33: loss/loss12 = 2.63452e-05 (* 0.0454545 = 1.19751e-06 loss) | |
I0405 19:46:55.788039 29564 solver.cpp:245] Train net output #34: loss/loss13 = 2.6422e-05 (* 0.0454545 = 1.201e-06 loss) | |
I0405 19:46:55.788054 29564 solver.cpp:245] Train net output #35: loss/loss14 = 2.45756e-05 (* 0.0454545 = 1.11707e-06 loss) | |
I0405 19:46:55.788089 29564 solver.cpp:245] Train net output #36: loss/loss15 = 2.58928e-05 (* 0.0454545 = 1.17695e-06 loss) | |
I0405 19:46:55.788107 29564 solver.cpp:245] Train net output #37: loss/loss16 = 2.81957e-05 (* 0.0454545 = 1.28162e-06 loss) | |
I0405 19:46:55.788130 29564 solver.cpp:245] Train net output #38: loss/loss17 = 2.82425e-05 (* 0.0454545 = 1.28375e-06 loss) | |
I0405 19:46:55.788162 29564 solver.cpp:245] Train net output #39: loss/loss18 = 2.49279e-05 (* 0.0454545 = 1.13309e-06 loss) | |
I0405 19:46:55.788177 29564 solver.cpp:245] Train net output #40: loss/loss19 = 2.69471e-05 (* 0.0454545 = 1.22487e-06 loss) | |
I0405 19:46:55.788192 29564 solver.cpp:245] Train net output #41: loss/loss20 = 2.46427e-05 (* 0.0454545 = 1.12012e-06 loss) | |
I0405 19:46:55.788205 29564 solver.cpp:245] Train net output #42: loss/loss21 = 2.47528e-05 (* 0.0454545 = 1.12513e-06 loss) | |
I0405 19:46:55.788219 29564 solver.cpp:245] Train net output #43: loss/loss22 = 2.66049e-05 (* 0.0454545 = 1.20931e-06 loss) | |
I0405 19:46:55.788231 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 19:46:55.788242 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000596531 | |
I0405 19:46:55.788255 29564 sgd_solver.cpp:106] Iteration 46500, lr = 0.009535 | |
I0405 19:50:47.203490 29564 solver.cpp:229] Iteration 47000, loss = 0.851027 | |
I0405 19:50:47.203608 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.25 | |
I0405 19:50:47.203627 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125 | |
I0405 19:50:47.203640 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0405 19:50:47.203652 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0405 19:50:47.203665 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0405 19:50:47.203676 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375 | |
I0405 19:50:47.203688 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.59375 | |
I0405 19:50:47.203701 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.75 | |
I0405 19:50:47.203713 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0405 19:50:47.203727 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 19:50:47.203738 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 19:50:47.203750 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 19:50:47.203761 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 19:50:47.203773 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 19:50:47.203784 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 19:50:47.203795 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 19:50:47.203807 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 19:50:47.203819 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 19:50:47.203830 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 19:50:47.203841 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 19:50:47.203855 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 19:50:47.203866 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 19:50:47.203881 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.54783 (* 0.0454545 = 0.11581 loss) | |
I0405 19:50:47.203894 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.08137 (* 0.0454545 = 0.140062 loss) | |
I0405 19:50:47.203908 29564 solver.cpp:245] Train net output #24: loss/loss03 = 2.91395 (* 0.0454545 = 0.132452 loss) | |
I0405 19:50:47.203922 29564 solver.cpp:245] Train net output #25: loss/loss04 = 2.91849 (* 0.0454545 = 0.132658 loss) | |
I0405 19:50:47.203935 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.83898 (* 0.0454545 = 0.129045 loss) | |
I0405 19:50:47.203949 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.3311 (* 0.0454545 = 0.105959 loss) | |
I0405 19:50:47.203963 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.80765 (* 0.0454545 = 0.0821659 loss) | |
I0405 19:50:47.203977 29564 solver.cpp:245] Train net output #29: loss/loss08 = 1.16042 (* 0.0454545 = 0.0527464 loss) | |
I0405 19:50:47.203990 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.303922 (* 0.0454545 = 0.0138146 loss) | |
I0405 19:50:47.204005 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.122325 (* 0.0454545 = 0.00556025 loss) | |
I0405 19:50:47.204020 29564 solver.cpp:245] Train net output #32: loss/loss11 = 6.36907e-05 (* 0.0454545 = 2.89503e-06 loss) | |
I0405 19:50:47.204035 29564 solver.cpp:245] Train net output #33: loss/loss12 = 6.7979e-05 (* 0.0454545 = 3.08995e-06 loss) | |
I0405 19:50:47.204048 29564 solver.cpp:245] Train net output #34: loss/loss13 = 5.71142e-05 (* 0.0454545 = 2.5961e-06 loss) | |
I0405 19:50:47.204063 29564 solver.cpp:245] Train net output #35: loss/loss14 = 6.2695e-05 (* 0.0454545 = 2.84978e-06 loss) | |
I0405 19:50:47.204092 29564 solver.cpp:245] Train net output #36: loss/loss15 = 6.46755e-05 (* 0.0454545 = 2.93979e-06 loss) | |
I0405 19:50:47.204107 29564 solver.cpp:245] Train net output #37: loss/loss16 = 6.875e-05 (* 0.0454545 = 3.125e-06 loss) | |
I0405 19:50:47.204121 29564 solver.cpp:245] Train net output #38: loss/loss17 = 5.84416e-05 (* 0.0454545 = 2.65644e-06 loss) | |
I0405 19:50:47.204154 29564 solver.cpp:245] Train net output #39: loss/loss18 = 6.04391e-05 (* 0.0454545 = 2.74723e-06 loss) | |
I0405 19:50:47.204169 29564 solver.cpp:245] Train net output #40: loss/loss19 = 7.2754e-05 (* 0.0454545 = 3.307e-06 loss) | |
I0405 19:50:47.204183 29564 solver.cpp:245] Train net output #41: loss/loss20 = 6.5494e-05 (* 0.0454545 = 2.977e-06 loss) | |
I0405 19:50:47.204197 29564 solver.cpp:245] Train net output #42: loss/loss21 = 5.33787e-05 (* 0.0454545 = 2.42631e-06 loss) | |
I0405 19:50:47.204215 29564 solver.cpp:245] Train net output #43: loss/loss22 = 6.71324e-05 (* 0.0454545 = 3.05147e-06 loss) | |
I0405 19:50:47.204227 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 19:50:47.204238 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000524449 | |
I0405 19:50:47.204252 29564 sgd_solver.cpp:106] Iteration 47000, lr = 0.00953 | |
I0405 19:54:38.376016 29564 solver.cpp:229] Iteration 47500, loss = 0.85144 | |
I0405 19:54:38.376233 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.15625 | |
I0405 19:54:38.376253 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125 | |
I0405 19:54:38.376266 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0405 19:54:38.376278 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0405 19:54:38.376291 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0405 19:54:38.376303 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375 | |
I0405 19:54:38.376317 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875 | |
I0405 19:54:38.376328 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0405 19:54:38.376339 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0405 19:54:38.376351 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 19:54:38.376363 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 19:54:38.376374 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 19:54:38.376386 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 19:54:38.376397 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 19:54:38.376408 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 19:54:38.376420 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 19:54:38.376431 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 19:54:38.376442 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 19:54:38.376453 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 19:54:38.376466 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 19:54:38.376477 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 19:54:38.376487 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 19:54:38.376505 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.72704 (* 0.0454545 = 0.123956 loss) | |
I0405 19:54:38.376521 29564 solver.cpp:245] Train net output #23: loss/loss02 = 2.9249 (* 0.0454545 = 0.13295 loss) | |
I0405 19:54:38.376535 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.08084 (* 0.0454545 = 0.140038 loss) | |
I0405 19:54:38.376549 29564 solver.cpp:245] Train net output #25: loss/loss04 = 2.93674 (* 0.0454545 = 0.133488 loss) | |
I0405 19:54:38.376564 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.7615 (* 0.0454545 = 0.125523 loss) | |
I0405 19:54:38.376577 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.42358 (* 0.0454545 = 0.110163 loss) | |
I0405 19:54:38.376591 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.09685 (* 0.0454545 = 0.0498569 loss) | |
I0405 19:54:38.376605 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.689814 (* 0.0454545 = 0.0313552 loss) | |
I0405 19:54:38.376619 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.0542523 (* 0.0454545 = 0.00246601 loss) | |
I0405 19:54:38.376634 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.0180806 (* 0.0454545 = 0.000821848 loss) | |
I0405 19:54:38.376648 29564 solver.cpp:245] Train net output #32: loss/loss11 = 7.14605e-05 (* 0.0454545 = 3.24821e-06 loss) | |
I0405 19:54:38.376663 29564 solver.cpp:245] Train net output #33: loss/loss12 = 7.11183e-05 (* 0.0454545 = 3.23265e-06 loss) | |
I0405 19:54:38.376677 29564 solver.cpp:245] Train net output #34: loss/loss13 = 7.56769e-05 (* 0.0454545 = 3.43986e-06 loss) | |
I0405 19:54:38.376691 29564 solver.cpp:245] Train net output #35: loss/loss14 = 7.25532e-05 (* 0.0454545 = 3.29787e-06 loss) | |
I0405 19:54:38.376705 29564 solver.cpp:245] Train net output #36: loss/loss15 = 7.15285e-05 (* 0.0454545 = 3.25129e-06 loss) | |
I0405 19:54:38.376719 29564 solver.cpp:245] Train net output #37: loss/loss16 = 6.88302e-05 (* 0.0454545 = 3.12865e-06 loss) | |
I0405 19:54:38.376734 29564 solver.cpp:245] Train net output #38: loss/loss17 = 7.64662e-05 (* 0.0454545 = 3.47574e-06 loss) | |
I0405 19:54:38.376765 29564 solver.cpp:245] Train net output #39: loss/loss18 = 6.94606e-05 (* 0.0454545 = 3.1573e-06 loss) | |
I0405 19:54:38.376781 29564 solver.cpp:245] Train net output #40: loss/loss19 = 6.4597e-05 (* 0.0454545 = 2.93623e-06 loss) | |
I0405 19:54:38.376796 29564 solver.cpp:245] Train net output #41: loss/loss20 = 6.75287e-05 (* 0.0454545 = 3.06949e-06 loss) | |
I0405 19:54:38.376809 29564 solver.cpp:245] Train net output #42: loss/loss21 = 7.09191e-05 (* 0.0454545 = 3.2236e-06 loss) | |
I0405 19:54:38.376824 29564 solver.cpp:245] Train net output #43: loss/loss22 = 7.09902e-05 (* 0.0454545 = 3.22683e-06 loss) | |
I0405 19:54:38.376837 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 19:54:38.376847 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000975415 | |
I0405 19:54:38.376862 29564 sgd_solver.cpp:106] Iteration 47500, lr = 0.009525 | |
I0405 19:58:29.953346 29564 solver.cpp:229] Iteration 48000, loss = 0.853797 | |
I0405 19:58:29.953502 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.1875 | |
I0405 19:58:29.953526 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0405 19:58:29.953542 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0405 19:58:29.953554 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625 | |
I0405 19:58:29.953567 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125 | |
I0405 19:58:29.953579 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375 | |
I0405 19:58:29.953591 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875 | |
I0405 19:58:29.953603 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0405 19:58:29.953614 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 19:58:29.953626 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 19:58:29.953639 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 19:58:29.953649 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 19:58:29.953660 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 19:58:29.953672 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 19:58:29.953685 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 19:58:29.953696 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 19:58:29.953706 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 19:58:29.953718 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 19:58:29.953729 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 19:58:29.953742 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 19:58:29.953752 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 19:58:29.953763 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 19:58:29.953778 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.58323 (* 0.0454545 = 0.117419 loss) | |
I0405 19:58:29.953794 29564 solver.cpp:245] Train net output #23: loss/loss02 = 2.94602 (* 0.0454545 = 0.13391 loss) | |
I0405 19:58:29.953807 29564 solver.cpp:245] Train net output #24: loss/loss03 = 2.93883 (* 0.0454545 = 0.133583 loss) | |
I0405 19:58:29.953821 29564 solver.cpp:245] Train net output #25: loss/loss04 = 2.94514 (* 0.0454545 = 0.13387 loss) | |
I0405 19:58:29.953835 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.51702 (* 0.0454545 = 0.11441 loss) | |
I0405 19:58:29.953850 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.07092 (* 0.0454545 = 0.0941327 loss) | |
I0405 19:58:29.953865 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.10576 (* 0.0454545 = 0.0502617 loss) | |
I0405 19:58:29.953878 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.586932 (* 0.0454545 = 0.0266787 loss) | |
I0405 19:58:29.953892 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.09465 (* 0.0454545 = 0.00430227 loss) | |
I0405 19:58:29.953907 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.0249878 (* 0.0454545 = 0.00113581 loss) | |
I0405 19:58:29.953922 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.000121008 (* 0.0454545 = 5.50037e-06 loss) | |
I0405 19:58:29.953936 29564 solver.cpp:245] Train net output #33: loss/loss12 = 0.000140855 (* 0.0454545 = 6.40251e-06 loss) | |
I0405 19:58:29.953950 29564 solver.cpp:245] Train net output #34: loss/loss13 = 0.000127922 (* 0.0454545 = 5.81465e-06 loss) | |
I0405 19:58:29.953965 29564 solver.cpp:245] Train net output #35: loss/loss14 = 0.000131955 (* 0.0454545 = 5.99794e-06 loss) | |
I0405 19:58:29.953979 29564 solver.cpp:245] Train net output #36: loss/loss15 = 0.000132786 (* 0.0454545 = 6.03574e-06 loss) | |
I0405 19:58:29.953994 29564 solver.cpp:245] Train net output #37: loss/loss16 = 0.000117962 (* 0.0454545 = 5.3619e-06 loss) | |
I0405 19:58:29.954008 29564 solver.cpp:245] Train net output #38: loss/loss17 = 0.000126 (* 0.0454545 = 5.72728e-06 loss) | |
I0405 19:58:29.954036 29564 solver.cpp:245] Train net output #39: loss/loss18 = 0.000117744 (* 0.0454545 = 5.35199e-06 loss) | |
I0405 19:58:29.954052 29564 solver.cpp:245] Train net output #40: loss/loss19 = 0.000125119 (* 0.0454545 = 5.68723e-06 loss) | |
I0405 19:58:29.954066 29564 solver.cpp:245] Train net output #41: loss/loss20 = 0.000119177 (* 0.0454545 = 5.41712e-06 loss) | |
I0405 19:58:29.954080 29564 solver.cpp:245] Train net output #42: loss/loss21 = 0.000121453 (* 0.0454545 = 5.5206e-06 loss) | |
I0405 19:58:29.954095 29564 solver.cpp:245] Train net output #43: loss/loss22 = 0.000125512 (* 0.0454545 = 5.70511e-06 loss) | |
I0405 19:58:29.954107 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 19:58:29.954119 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000648076 | |
I0405 19:58:29.954133 29564 sgd_solver.cpp:106] Iteration 48000, lr = 0.00952 | |
I0405 20:02:22.231181 29564 solver.cpp:229] Iteration 48500, loss = 0.849993 | |
I0405 20:02:22.231365 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.21875 | |
I0405 20:02:22.231384 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.15625 | |
I0405 20:02:22.231396 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.15625 | |
I0405 20:02:22.231408 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.28125 | |
I0405 20:02:22.231420 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.15625 | |
I0405 20:02:22.231432 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.53125 | |
I0405 20:02:22.231444 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.84375 | |
I0405 20:02:22.231456 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0405 20:02:22.231467 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0405 20:02:22.231479 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 20:02:22.231492 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 20:02:22.231504 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 20:02:22.231515 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 20:02:22.231528 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 20:02:22.231539 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 20:02:22.231549 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 20:02:22.231560 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 20:02:22.231572 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 20:02:22.231583 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 20:02:22.231595 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 20:02:22.231606 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 20:02:22.231617 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 20:02:22.231632 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.81431 (* 0.0454545 = 0.127923 loss) | |
I0405 20:02:22.231647 29564 solver.cpp:245] Train net output #23: loss/loss02 = 2.94951 (* 0.0454545 = 0.134069 loss) | |
I0405 20:02:22.231660 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.06055 (* 0.0454545 = 0.139116 loss) | |
I0405 20:02:22.231674 29564 solver.cpp:245] Train net output #25: loss/loss04 = 2.79231 (* 0.0454545 = 0.126923 loss) | |
I0405 20:02:22.231688 29564 solver.cpp:245] Train net output #26: loss/loss05 = 3.03294 (* 0.0454545 = 0.137861 loss) | |
I0405 20:02:22.231703 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.00103 (* 0.0454545 = 0.0909561 loss) | |
I0405 20:02:22.231717 29564 solver.cpp:245] Train net output #28: loss/loss07 = 0.704987 (* 0.0454545 = 0.0320449 loss) | |
I0405 20:02:22.231731 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.560542 (* 0.0454545 = 0.0254792 loss) | |
I0405 20:02:22.231745 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.210116 (* 0.0454545 = 0.00955071 loss) | |
I0405 20:02:22.231760 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.176911 (* 0.0454545 = 0.00804139 loss) | |
I0405 20:02:22.231773 29564 solver.cpp:245] Train net output #32: loss/loss11 = 6.51413e-05 (* 0.0454545 = 2.96097e-06 loss) | |
I0405 20:02:22.231788 29564 solver.cpp:245] Train net output #33: loss/loss12 = 7.21629e-05 (* 0.0454545 = 3.28013e-06 loss) | |
I0405 20:02:22.231802 29564 solver.cpp:245] Train net output #34: loss/loss13 = 6.42378e-05 (* 0.0454545 = 2.9199e-06 loss) | |
I0405 20:02:22.231817 29564 solver.cpp:245] Train net output #35: loss/loss14 = 6.09888e-05 (* 0.0454545 = 2.77222e-06 loss) | |
I0405 20:02:22.231830 29564 solver.cpp:245] Train net output #36: loss/loss15 = 6.30088e-05 (* 0.0454545 = 2.86404e-06 loss) | |
I0405 20:02:22.231848 29564 solver.cpp:245] Train net output #37: loss/loss16 = 5.68441e-05 (* 0.0454545 = 2.58382e-06 loss) | |
I0405 20:02:22.231861 29564 solver.cpp:245] Train net output #38: loss/loss17 = 6.04061e-05 (* 0.0454545 = 2.74573e-06 loss) | |
I0405 20:02:22.231891 29564 solver.cpp:245] Train net output #39: loss/loss18 = 5.89399e-05 (* 0.0454545 = 2.67909e-06 loss) | |
I0405 20:02:22.231906 29564 solver.cpp:245] Train net output #40: loss/loss19 = 6.60788e-05 (* 0.0454545 = 3.00358e-06 loss) | |
I0405 20:02:22.231920 29564 solver.cpp:245] Train net output #41: loss/loss20 = 6.04749e-05 (* 0.0454545 = 2.74886e-06 loss) | |
I0405 20:02:22.231935 29564 solver.cpp:245] Train net output #42: loss/loss21 = 6.05711e-05 (* 0.0454545 = 2.75323e-06 loss) | |
I0405 20:02:22.231948 29564 solver.cpp:245] Train net output #43: loss/loss22 = 6.1326e-05 (* 0.0454545 = 2.78755e-06 loss) | |
I0405 20:02:22.231961 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 20:02:22.231972 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000227339 | |
I0405 20:02:22.231986 29564 sgd_solver.cpp:106] Iteration 48500, lr = 0.009515 | |
I0405 20:06:13.581295 29564 solver.cpp:229] Iteration 49000, loss = 0.848038 | |
I0405 20:06:13.581398 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.3125 | |
I0405 20:06:13.581418 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0405 20:06:13.581431 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.15625 | |
I0405 20:06:13.581444 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625 | |
I0405 20:06:13.581455 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125 | |
I0405 20:06:13.581467 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.53125 | |
I0405 20:06:13.581480 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.53125 | |
I0405 20:06:13.581491 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0405 20:06:13.581503 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0405 20:06:13.581514 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 20:06:13.581526 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 20:06:13.581540 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 20:06:13.581552 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 20:06:13.581564 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 20:06:13.581575 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 20:06:13.581586 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 20:06:13.581598 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 20:06:13.581609 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 20:06:13.581620 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 20:06:13.581631 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 20:06:13.581642 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 20:06:13.581653 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 20:06:13.581670 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.21572 (* 0.0454545 = 0.100715 loss) | |
I0405 20:06:13.581683 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.08282 (* 0.0454545 = 0.140128 loss) | |
I0405 20:06:13.581697 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.06593 (* 0.0454545 = 0.13936 loss) | |
I0405 20:06:13.581712 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.05136 (* 0.0454545 = 0.138698 loss) | |
I0405 20:06:13.581725 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.61554 (* 0.0454545 = 0.118888 loss) | |
I0405 20:06:13.581738 29564 solver.cpp:245] Train net output #27: loss/loss06 = 1.83931 (* 0.0454545 = 0.0836052 loss) | |
I0405 20:06:13.581753 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.66634 (* 0.0454545 = 0.0757428 loss) | |
I0405 20:06:13.581766 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.422916 (* 0.0454545 = 0.0192235 loss) | |
I0405 20:06:13.581780 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.0480659 (* 0.0454545 = 0.00218482 loss) | |
I0405 20:06:13.581794 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.0132863 (* 0.0454545 = 0.000603924 loss) | |
I0405 20:06:13.581809 29564 solver.cpp:245] Train net output #32: loss/loss11 = 8.14686e-05 (* 0.0454545 = 3.70312e-06 loss) | |
I0405 20:06:13.581823 29564 solver.cpp:245] Train net output #33: loss/loss12 = 8.5539e-05 (* 0.0454545 = 3.88814e-06 loss) | |
I0405 20:06:13.581837 29564 solver.cpp:245] Train net output #34: loss/loss13 = 9.2441e-05 (* 0.0454545 = 4.20187e-06 loss) | |
I0405 20:06:13.581851 29564 solver.cpp:245] Train net output #35: loss/loss14 = 7.76567e-05 (* 0.0454545 = 3.52985e-06 loss) | |
I0405 20:06:13.581866 29564 solver.cpp:245] Train net output #36: loss/loss15 = 8.25519e-05 (* 0.0454545 = 3.75236e-06 loss) | |
I0405 20:06:13.581879 29564 solver.cpp:245] Train net output #37: loss/loss16 = 6.97305e-05 (* 0.0454545 = 3.16957e-06 loss) | |
I0405 20:06:13.581893 29564 solver.cpp:245] Train net output #38: loss/loss17 = 7.43093e-05 (* 0.0454545 = 3.37769e-06 loss) | |
I0405 20:06:13.581923 29564 solver.cpp:245] Train net output #39: loss/loss18 = 7.91532e-05 (* 0.0454545 = 3.59787e-06 loss) | |
I0405 20:06:13.581939 29564 solver.cpp:245] Train net output #40: loss/loss19 = 7.70397e-05 (* 0.0454545 = 3.50181e-06 loss) | |
I0405 20:06:13.581954 29564 solver.cpp:245] Train net output #41: loss/loss20 = 7.55378e-05 (* 0.0454545 = 3.43353e-06 loss) | |
I0405 20:06:13.581967 29564 solver.cpp:245] Train net output #42: loss/loss21 = 8.00309e-05 (* 0.0454545 = 3.63777e-06 loss) | |
I0405 20:06:13.581981 29564 solver.cpp:245] Train net output #43: loss/loss22 = 7.46047e-05 (* 0.0454545 = 3.39112e-06 loss) | |
I0405 20:06:13.581993 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 20:06:13.582005 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000619135 | |
I0405 20:06:13.582018 29564 sgd_solver.cpp:106] Iteration 49000, lr = 0.00951 | |
I0405 20:10:05.475030 29564 solver.cpp:229] Iteration 49500, loss = 0.847549 | |
I0405 20:10:05.475142 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.40625 | |
I0405 20:10:05.475160 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.15625 | |
I0405 20:10:05.475173 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0405 20:10:05.475186 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625 | |
I0405 20:10:05.475198 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125 | |
I0405 20:10:05.475210 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.53125 | |
I0405 20:10:05.475222 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.84375 | |
I0405 20:10:05.475234 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0405 20:10:05.475245 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0405 20:10:05.475256 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 20:10:05.475267 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 20:10:05.475278 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 20:10:05.475291 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 20:10:05.475302 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 20:10:05.475316 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 20:10:05.475327 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 20:10:05.475342 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 20:10:05.475353 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 20:10:05.475365 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 20:10:05.475376 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 20:10:05.475388 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 20:10:05.475399 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 20:10:05.475415 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.10372 (* 0.0454545 = 0.0956237 loss) | |
I0405 20:10:05.475430 29564 solver.cpp:245] Train net output #23: loss/loss02 = 2.872 (* 0.0454545 = 0.130546 loss) | |
I0405 20:10:05.475443 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.07784 (* 0.0454545 = 0.139902 loss) | |
I0405 20:10:05.475456 29564 solver.cpp:245] Train net output #25: loss/loss04 = 2.87792 (* 0.0454545 = 0.130815 loss) | |
I0405 20:10:05.475471 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.48373 (* 0.0454545 = 0.112897 loss) | |
I0405 20:10:05.475484 29564 solver.cpp:245] Train net output #27: loss/loss06 = 1.67915 (* 0.0454545 = 0.0763248 loss) | |
I0405 20:10:05.475498 29564 solver.cpp:245] Train net output #28: loss/loss07 = 0.784341 (* 0.0454545 = 0.0356519 loss) | |
I0405 20:10:05.475512 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.349442 (* 0.0454545 = 0.0158837 loss) | |
I0405 20:10:05.475528 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.00737114 (* 0.0454545 = 0.000335052 loss) | |
I0405 20:10:05.475541 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.00329015 (* 0.0454545 = 0.000149552 loss) | |
I0405 20:10:05.475556 29564 solver.cpp:245] Train net output #32: loss/loss11 = 2.55452e-05 (* 0.0454545 = 1.16115e-06 loss) | |
I0405 20:10:05.475570 29564 solver.cpp:245] Train net output #33: loss/loss12 = 2.5275e-05 (* 0.0454545 = 1.14887e-06 loss) | |
I0405 20:10:05.475585 29564 solver.cpp:245] Train net output #34: loss/loss13 = 2.56214e-05 (* 0.0454545 = 1.16461e-06 loss) | |
I0405 20:10:05.475600 29564 solver.cpp:245] Train net output #35: loss/loss14 = 2.41571e-05 (* 0.0454545 = 1.09805e-06 loss) | |
I0405 20:10:05.475613 29564 solver.cpp:245] Train net output #36: loss/loss15 = 2.52378e-05 (* 0.0454545 = 1.14717e-06 loss) | |
I0405 20:10:05.475627 29564 solver.cpp:245] Train net output #37: loss/loss16 = 2.28567e-05 (* 0.0454545 = 1.03894e-06 loss) | |
I0405 20:10:05.475641 29564 solver.cpp:245] Train net output #38: loss/loss17 = 2.39894e-05 (* 0.0454545 = 1.09043e-06 loss) | |
I0405 20:10:05.475672 29564 solver.cpp:245] Train net output #39: loss/loss18 = 2.26592e-05 (* 0.0454545 = 1.02997e-06 loss) | |
I0405 20:10:05.475688 29564 solver.cpp:245] Train net output #40: loss/loss19 = 2.7289e-05 (* 0.0454545 = 1.24041e-06 loss) | |
I0405 20:10:05.475703 29564 solver.cpp:245] Train net output #41: loss/loss20 = 2.24394e-05 (* 0.0454545 = 1.01997e-06 loss) | |
I0405 20:10:05.475716 29564 solver.cpp:245] Train net output #42: loss/loss21 = 2.50923e-05 (* 0.0454545 = 1.14056e-06 loss) | |
I0405 20:10:05.475731 29564 solver.cpp:245] Train net output #43: loss/loss22 = 2.28903e-05 (* 0.0454545 = 1.04047e-06 loss) | |
I0405 20:10:05.475744 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 20:10:05.475755 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000622913 | |
I0405 20:10:05.475769 29564 sgd_solver.cpp:106] Iteration 49500, lr = 0.009505 | |
I0405 20:13:56.428879 29564 solver.cpp:338] Iteration 50000, Testing net (#0) | |
I0405 20:14:06.689941 29564 solver.cpp:393] Test loss: 0.768383 | |
I0405 20:14:06.689990 29564 solver.cpp:406] Test net output #0: loss/accuracy01 = 0.154 | |
I0405 20:14:06.690017 29564 solver.cpp:406] Test net output #1: loss/accuracy02 = 0.099 | |
I0405 20:14:06.690042 29564 solver.cpp:406] Test net output #2: loss/accuracy03 = 0.106 | |
I0405 20:14:06.690064 29564 solver.cpp:406] Test net output #3: loss/accuracy04 = 0.15 | |
I0405 20:14:06.690085 29564 solver.cpp:406] Test net output #4: loss/accuracy05 = 0.257 | |
I0405 20:14:06.690105 29564 solver.cpp:406] Test net output #5: loss/accuracy06 = 0.529 | |
I0405 20:14:06.690129 29564 solver.cpp:406] Test net output #6: loss/accuracy07 = 0.897 | |
I0405 20:14:06.690150 29564 solver.cpp:406] Test net output #7: loss/accuracy08 = 0.97 | |
I0405 20:14:06.690171 29564 solver.cpp:406] Test net output #8: loss/accuracy09 = 0.995 | |
I0405 20:14:06.690191 29564 solver.cpp:406] Test net output #9: loss/accuracy10 = 0.998 | |
I0405 20:14:06.690210 29564 solver.cpp:406] Test net output #10: loss/accuracy11 = 1 | |
I0405 20:14:06.690232 29564 solver.cpp:406] Test net output #11: loss/accuracy12 = 1 | |
I0405 20:14:06.690253 29564 solver.cpp:406] Test net output #12: loss/accuracy13 = 1 | |
I0405 20:14:06.690274 29564 solver.cpp:406] Test net output #13: loss/accuracy14 = 1 | |
I0405 20:14:06.690294 29564 solver.cpp:406] Test net output #14: loss/accuracy15 = 1 | |
I0405 20:14:06.690312 29564 solver.cpp:406] Test net output #15: loss/accuracy16 = 1 | |
I0405 20:14:06.690332 29564 solver.cpp:406] Test net output #16: loss/accuracy17 = 1 | |
I0405 20:14:06.690351 29564 solver.cpp:406] Test net output #17: loss/accuracy18 = 1 | |
I0405 20:14:06.690371 29564 solver.cpp:406] Test net output #18: loss/accuracy19 = 1 | |
I0405 20:14:06.690393 29564 solver.cpp:406] Test net output #19: loss/accuracy20 = 1 | |
I0405 20:14:06.690413 29564 solver.cpp:406] Test net output #20: loss/accuracy21 = 1 | |
I0405 20:14:06.690433 29564 solver.cpp:406] Test net output #21: loss/accuracy22 = 1 | |
I0405 20:14:06.690457 29564 solver.cpp:406] Test net output #22: loss/loss01 = 2.90338 (* 0.0454545 = 0.131972 loss) | |
I0405 20:14:06.690484 29564 solver.cpp:406] Test net output #23: loss/loss02 = 3.00067 (* 0.0454545 = 0.136394 loss) | |
I0405 20:14:06.690507 29564 solver.cpp:406] Test net output #24: loss/loss03 = 2.98727 (* 0.0454545 = 0.135785 loss) | |
I0405 20:14:06.690536 29564 solver.cpp:406] Test net output #25: loss/loss04 = 2.91075 (* 0.0454545 = 0.132307 loss) | |
I0405 20:14:06.690560 29564 solver.cpp:406] Test net output #26: loss/loss05 = 2.64378 (* 0.0454545 = 0.120172 loss) | |
I0405 20:14:06.690585 29564 solver.cpp:406] Test net output #27: loss/loss06 = 1.70754 (* 0.0454545 = 0.0776157 loss) | |
I0405 20:14:06.690611 29564 solver.cpp:406] Test net output #28: loss/loss07 = 0.483716 (* 0.0454545 = 0.0219871 loss) | |
I0405 20:14:06.690637 29564 solver.cpp:406] Test net output #29: loss/loss08 = 0.194794 (* 0.0454545 = 0.00885425 loss) | |
I0405 20:14:06.690661 29564 solver.cpp:406] Test net output #30: loss/loss09 = 0.0472342 (* 0.0454545 = 0.00214701 loss) | |
I0405 20:14:06.690686 29564 solver.cpp:406] Test net output #31: loss/loss10 = 0.0241243 (* 0.0454545 = 0.00109656 loss) | |
I0405 20:14:06.690712 29564 solver.cpp:406] Test net output #32: loss/loss11 = 0.000102316 (* 0.0454545 = 4.65072e-06 loss) | |
I0405 20:14:06.690737 29564 solver.cpp:406] Test net output #33: loss/loss12 = 0.000102395 (* 0.0454545 = 4.65434e-06 loss) | |
I0405 20:14:06.690760 29564 solver.cpp:406] Test net output #34: loss/loss13 = 0.000100212 (* 0.0454545 = 4.5551e-06 loss) | |
I0405 20:14:06.690784 29564 solver.cpp:406] Test net output #35: loss/loss14 = 9.99416e-05 (* 0.0454545 = 4.5428e-06 loss) | |
I0405 20:14:06.690809 29564 solver.cpp:406] Test net output #36: loss/loss15 = 9.87806e-05 (* 0.0454545 = 4.49003e-06 loss) | |
I0405 20:14:06.690834 29564 solver.cpp:406] Test net output #37: loss/loss16 = 9.3553e-05 (* 0.0454545 = 4.25241e-06 loss) | |
I0405 20:14:06.690858 29564 solver.cpp:406] Test net output #38: loss/loss17 = 9.42468e-05 (* 0.0454545 = 4.28394e-06 loss) | |
I0405 20:14:06.690928 29564 solver.cpp:406] Test net output #39: loss/loss18 = 8.92453e-05 (* 0.0454545 = 4.05661e-06 loss) | |
I0405 20:14:06.690955 29564 solver.cpp:406] Test net output #40: loss/loss19 = 9.96845e-05 (* 0.0454545 = 4.53111e-06 loss) | |
I0405 20:14:06.690980 29564 solver.cpp:406] Test net output #41: loss/loss20 = 9.22248e-05 (* 0.0454545 = 4.19204e-06 loss) | |
I0405 20:14:06.691004 29564 solver.cpp:406] Test net output #42: loss/loss21 = 8.91127e-05 (* 0.0454545 = 4.05058e-06 loss) | |
I0405 20:14:06.691030 29564 solver.cpp:406] Test net output #43: loss/loss22 = 9.29653e-05 (* 0.0454545 = 4.22569e-06 loss) | |
I0405 20:14:06.691051 29564 solver.cpp:406] Test net output #44: total_accuracy = 0.001 | |
I0405 20:14:06.691071 29564 solver.cpp:406] Test net output #45: total_confidence = 0.000752091 | |
I0405 20:14:06.805964 29564 solver.cpp:229] Iteration 50000, loss = 0.842541 | |
I0405 20:14:06.806008 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.4375 | |
I0405 20:14:06.806040 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125 | |
I0405 20:14:06.806064 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0405 20:14:06.806092 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625 | |
I0405 20:14:06.806114 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0405 20:14:06.806136 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5 | |
I0405 20:14:06.806159 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0405 20:14:06.806180 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0405 20:14:06.806200 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0405 20:14:06.806221 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 20:14:06.806242 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 20:14:06.806264 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 20:14:06.806285 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 20:14:06.806305 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 20:14:06.806325 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 20:14:06.806345 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 20:14:06.806366 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 20:14:06.806385 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 20:14:06.806408 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 20:14:06.806428 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 20:14:06.806448 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 20:14:06.806468 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 20:14:06.806494 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.1356 (* 0.0454545 = 0.0970727 loss) | |
I0405 20:14:06.806519 29564 solver.cpp:245] Train net output #23: loss/loss02 = 2.87353 (* 0.0454545 = 0.130615 loss) | |
I0405 20:14:06.806545 29564 solver.cpp:245] Train net output #24: loss/loss03 = 2.99339 (* 0.0454545 = 0.136063 loss) | |
I0405 20:14:06.806570 29564 solver.cpp:245] Train net output #25: loss/loss04 = 2.98004 (* 0.0454545 = 0.135456 loss) | |
I0405 20:14:06.806596 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.59239 (* 0.0454545 = 0.117836 loss) | |
I0405 20:14:06.806622 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.17623 (* 0.0454545 = 0.0989197 loss) | |
I0405 20:14:06.806648 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.21301 (* 0.0454545 = 0.055137 loss) | |
I0405 20:14:06.806673 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.346913 (* 0.0454545 = 0.0157688 loss) | |
I0405 20:14:06.806699 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.0162458 (* 0.0454545 = 0.000738447 loss) | |
I0405 20:14:06.806725 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.00965686 (* 0.0454545 = 0.000438948 loss) | |
I0405 20:14:06.806771 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.000115472 (* 0.0454545 = 5.24872e-06 loss) | |
I0405 20:14:06.806797 29564 solver.cpp:245] Train net output #33: loss/loss12 = 0.000113976 (* 0.0454545 = 5.18073e-06 loss) | |
I0405 20:14:06.806823 29564 solver.cpp:245] Train net output #34: loss/loss13 = 0.000115217 (* 0.0454545 = 5.23712e-06 loss) | |
I0405 20:14:06.806846 29564 solver.cpp:245] Train net output #35: loss/loss14 = 0.000114043 (* 0.0454545 = 5.18375e-06 loss) | |
I0405 20:14:06.806874 29564 solver.cpp:245] Train net output #36: loss/loss15 = 0.000114581 (* 0.0454545 = 5.20825e-06 loss) | |
I0405 20:14:06.806900 29564 solver.cpp:245] Train net output #37: loss/loss16 = 0.000109911 (* 0.0454545 = 4.99595e-06 loss) | |
I0405 20:14:06.806926 29564 solver.cpp:245] Train net output #38: loss/loss17 = 0.000111509 (* 0.0454545 = 5.0686e-06 loss) | |
I0405 20:14:06.806951 29564 solver.cpp:245] Train net output #39: loss/loss18 = 0.000110931 (* 0.0454545 = 5.04234e-06 loss) | |
I0405 20:14:06.806975 29564 solver.cpp:245] Train net output #40: loss/loss19 = 0.000119972 (* 0.0454545 = 5.45326e-06 loss) | |
I0405 20:14:06.806999 29564 solver.cpp:245] Train net output #41: loss/loss20 = 0.000109959 (* 0.0454545 = 4.99815e-06 loss) | |
I0405 20:14:06.807024 29564 solver.cpp:245] Train net output #42: loss/loss21 = 0.000111382 (* 0.0454545 = 5.0628e-06 loss) | |
I0405 20:14:06.807049 29564 solver.cpp:245] Train net output #43: loss/loss22 = 0.000101263 (* 0.0454545 = 4.60286e-06 loss) | |
I0405 20:14:06.807070 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 20:14:06.807096 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000950022 | |
I0405 20:14:06.807118 29564 sgd_solver.cpp:106] Iteration 50000, lr = 0.0095 | |
I0405 20:17:57.943902 29564 solver.cpp:229] Iteration 50500, loss = 0.846187 | |
I0405 20:17:57.944010 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.21875 | |
I0405 20:17:57.944030 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0405 20:17:57.944042 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0405 20:17:57.944054 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875 | |
I0405 20:17:57.944067 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0405 20:17:57.944078 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0405 20:17:57.944089 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.78125 | |
I0405 20:17:57.944102 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.78125 | |
I0405 20:17:57.944113 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625 | |
I0405 20:17:57.944124 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 20:17:57.944157 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 20:17:57.944178 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 20:17:57.944190 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 20:17:57.944202 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 20:17:57.944213 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 20:17:57.944224 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 20:17:57.944238 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 20:17:57.944250 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 20:17:57.944262 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 20:17:57.944272 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 20:17:57.944284 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 20:17:57.944295 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 20:17:57.944310 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.78984 (* 0.0454545 = 0.126811 loss) | |
I0405 20:17:57.944325 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.00338 (* 0.0454545 = 0.136517 loss) | |
I0405 20:17:57.944339 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.16785 (* 0.0454545 = 0.143993 loss) | |
I0405 20:17:57.944353 29564 solver.cpp:245] Train net output #25: loss/loss04 = 2.90245 (* 0.0454545 = 0.13193 loss) | |
I0405 20:17:57.944366 29564 solver.cpp:245] Train net output #26: loss/loss05 = 3.17083 (* 0.0454545 = 0.144129 loss) | |
I0405 20:17:57.944380 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.19459 (* 0.0454545 = 0.0997542 loss) | |
I0405 20:17:57.944394 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.05487 (* 0.0454545 = 0.0479485 loss) | |
I0405 20:17:57.944407 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.863349 (* 0.0454545 = 0.0392431 loss) | |
I0405 20:17:57.944422 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.53507 (* 0.0454545 = 0.0243214 loss) | |
I0405 20:17:57.944437 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.0360254 (* 0.0454545 = 0.00163752 loss) | |
I0405 20:17:57.944450 29564 solver.cpp:245] Train net output #32: loss/loss11 = 3.01093e-05 (* 0.0454545 = 1.3686e-06 loss) | |
I0405 20:17:57.944465 29564 solver.cpp:245] Train net output #33: loss/loss12 = 3.22385e-05 (* 0.0454545 = 1.46538e-06 loss) | |
I0405 20:17:57.944479 29564 solver.cpp:245] Train net output #34: loss/loss13 = 2.89833e-05 (* 0.0454545 = 1.31742e-06 loss) | |
I0405 20:17:57.944494 29564 solver.cpp:245] Train net output #35: loss/loss14 = 2.9116e-05 (* 0.0454545 = 1.32345e-06 loss) | |
I0405 20:17:57.944507 29564 solver.cpp:245] Train net output #36: loss/loss15 = 2.88249e-05 (* 0.0454545 = 1.31022e-06 loss) | |
I0405 20:17:57.944521 29564 solver.cpp:245] Train net output #37: loss/loss16 = 3.01047e-05 (* 0.0454545 = 1.3684e-06 loss) | |
I0405 20:17:57.944535 29564 solver.cpp:245] Train net output #38: loss/loss17 = 2.7905e-05 (* 0.0454545 = 1.26841e-06 loss) | |
I0405 20:17:57.944566 29564 solver.cpp:245] Train net output #39: loss/loss18 = 2.77238e-05 (* 0.0454545 = 1.26017e-06 loss) | |
I0405 20:17:57.944582 29564 solver.cpp:245] Train net output #40: loss/loss19 = 2.99246e-05 (* 0.0454545 = 1.36021e-06 loss) | |
I0405 20:17:57.944597 29564 solver.cpp:245] Train net output #41: loss/loss20 = 2.66639e-05 (* 0.0454545 = 1.212e-06 loss) | |
I0405 20:17:57.944612 29564 solver.cpp:245] Train net output #42: loss/loss21 = 2.67015e-05 (* 0.0454545 = 1.2137e-06 loss) | |
I0405 20:17:57.944625 29564 solver.cpp:245] Train net output #43: loss/loss22 = 2.83874e-05 (* 0.0454545 = 1.29034e-06 loss) | |
I0405 20:17:57.944638 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 20:17:57.944649 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000225279 | |
I0405 20:17:57.944663 29564 sgd_solver.cpp:106] Iteration 50500, lr = 0.009495 | |
I0405 20:21:49.367291 29564 solver.cpp:229] Iteration 51000, loss = 0.839899 | |
I0405 20:21:49.367494 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.25 | |
I0405 20:21:49.367513 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0405 20:21:49.367527 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0405 20:21:49.367538 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0405 20:21:49.367550 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0405 20:21:49.367563 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0405 20:21:49.367574 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625 | |
I0405 20:21:49.367585 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.78125 | |
I0405 20:21:49.367597 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625 | |
I0405 20:21:49.367609 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 20:21:49.367620 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 20:21:49.367631 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 20:21:49.367642 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 20:21:49.367655 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 20:21:49.367666 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 20:21:49.367676 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 20:21:49.367687 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 20:21:49.367699 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 20:21:49.367710 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 20:21:49.367722 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 20:21:49.367733 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 20:21:49.367744 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 20:21:49.367759 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.50928 (* 0.0454545 = 0.114058 loss) | |
I0405 20:21:49.367774 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.35555 (* 0.0454545 = 0.152525 loss) | |
I0405 20:21:49.367787 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.44816 (* 0.0454545 = 0.156734 loss) | |
I0405 20:21:49.367801 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.55308 (* 0.0454545 = 0.161504 loss) | |
I0405 20:21:49.367815 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.94775 (* 0.0454545 = 0.133989 loss) | |
I0405 20:21:49.367830 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.03584 (* 0.0454545 = 0.0925381 loss) | |
I0405 20:21:49.367843 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.71532 (* 0.0454545 = 0.0779691 loss) | |
I0405 20:21:49.367857 29564 solver.cpp:245] Train net output #29: loss/loss08 = 1.09574 (* 0.0454545 = 0.0498065 loss) | |
I0405 20:21:49.367871 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.741746 (* 0.0454545 = 0.0337157 loss) | |
I0405 20:21:49.367884 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.148286 (* 0.0454545 = 0.00674028 loss) | |
I0405 20:21:49.367899 29564 solver.cpp:245] Train net output #32: loss/loss11 = 3.80455e-05 (* 0.0454545 = 1.72934e-06 loss) | |
I0405 20:21:49.367913 29564 solver.cpp:245] Train net output #33: loss/loss12 = 3.48113e-05 (* 0.0454545 = 1.58233e-06 loss) | |
I0405 20:21:49.367926 29564 solver.cpp:245] Train net output #34: loss/loss13 = 3.55527e-05 (* 0.0454545 = 1.61603e-06 loss) | |
I0405 20:21:49.367940 29564 solver.cpp:245] Train net output #35: loss/loss14 = 3.57464e-05 (* 0.0454545 = 1.62484e-06 loss) | |
I0405 20:21:49.367954 29564 solver.cpp:245] Train net output #36: loss/loss15 = 3.55453e-05 (* 0.0454545 = 1.61569e-06 loss) | |
I0405 20:21:49.367967 29564 solver.cpp:245] Train net output #37: loss/loss16 = 3.77252e-05 (* 0.0454545 = 1.71478e-06 loss) | |
I0405 20:21:49.367981 29564 solver.cpp:245] Train net output #38: loss/loss17 = 3.35036e-05 (* 0.0454545 = 1.52289e-06 loss) | |
I0405 20:21:49.368012 29564 solver.cpp:245] Train net output #39: loss/loss18 = 3.73711e-05 (* 0.0454545 = 1.69869e-06 loss) | |
I0405 20:21:49.368028 29564 solver.cpp:245] Train net output #40: loss/loss19 = 3.41202e-05 (* 0.0454545 = 1.55092e-06 loss) | |
I0405 20:21:49.368042 29564 solver.cpp:245] Train net output #41: loss/loss20 = 3.59886e-05 (* 0.0454545 = 1.63585e-06 loss) | |
I0405 20:21:49.368057 29564 solver.cpp:245] Train net output #42: loss/loss21 = 3.21661e-05 (* 0.0454545 = 1.4621e-06 loss) | |
I0405 20:21:49.368093 29564 solver.cpp:245] Train net output #43: loss/loss22 = 3.26857e-05 (* 0.0454545 = 1.48571e-06 loss) | |
I0405 20:21:49.368108 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 20:21:49.368120 29564 solver.cpp:245] Train net output #45: total_confidence = 0.00436227 | |
I0405 20:21:49.368134 29564 sgd_solver.cpp:106] Iteration 51000, lr = 0.00949 | |
I0405 20:25:41.331127 29564 solver.cpp:229] Iteration 51500, loss = 0.839004 | |
I0405 20:25:41.331990 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.3125 | |
I0405 20:25:41.332013 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.15625 | |
I0405 20:25:41.332027 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0405 20:25:41.332041 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875 | |
I0405 20:25:41.332052 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.375 | |
I0405 20:25:41.332064 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5 | |
I0405 20:25:41.332077 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0405 20:25:41.332088 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 1 | |
I0405 20:25:41.332100 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0405 20:25:41.332129 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 20:25:41.332142 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 20:25:41.332154 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 20:25:41.332165 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 20:25:41.332177 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 20:25:41.332188 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 20:25:41.332200 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 20:25:41.332211 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 20:25:41.332222 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 20:25:41.332233 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 20:25:41.332245 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 20:25:41.332257 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 20:25:41.332272 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 20:25:41.332288 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.31588 (* 0.0454545 = 0.105267 loss) | |
I0405 20:25:41.332303 29564 solver.cpp:245] Train net output #23: loss/loss02 = 2.88138 (* 0.0454545 = 0.130972 loss) | |
I0405 20:25:41.332331 29564 solver.cpp:245] Train net output #24: loss/loss03 = 2.97753 (* 0.0454545 = 0.135342 loss) | |
I0405 20:25:41.332346 29564 solver.cpp:245] Train net output #25: loss/loss04 = 2.92472 (* 0.0454545 = 0.132942 loss) | |
I0405 20:25:41.332360 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.39238 (* 0.0454545 = 0.108745 loss) | |
I0405 20:25:41.332381 29564 solver.cpp:245] Train net output #27: loss/loss06 = 1.89942 (* 0.0454545 = 0.0863372 loss) | |
I0405 20:25:41.332397 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.07296 (* 0.0454545 = 0.048771 loss) | |
I0405 20:25:41.332412 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.0749662 (* 0.0454545 = 0.00340755 loss) | |
I0405 20:25:41.332427 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.0208638 (* 0.0454545 = 0.000948354 loss) | |
I0405 20:25:41.332442 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.00549365 (* 0.0454545 = 0.000249711 loss) | |
I0405 20:25:41.332456 29564 solver.cpp:245] Train net output #32: loss/loss11 = 5.38145e-05 (* 0.0454545 = 2.44612e-06 loss) | |
I0405 20:25:41.332471 29564 solver.cpp:245] Train net output #33: loss/loss12 = 5.44403e-05 (* 0.0454545 = 2.47456e-06 loss) | |
I0405 20:25:41.332485 29564 solver.cpp:245] Train net output #34: loss/loss13 = 5.46734e-05 (* 0.0454545 = 2.48516e-06 loss) | |
I0405 20:25:41.332500 29564 solver.cpp:245] Train net output #35: loss/loss14 = 5.19812e-05 (* 0.0454545 = 2.36278e-06 loss) | |
I0405 20:25:41.332515 29564 solver.cpp:245] Train net output #36: loss/loss15 = 4.99934e-05 (* 0.0454545 = 2.27243e-06 loss) | |
I0405 20:25:41.332528 29564 solver.cpp:245] Train net output #37: loss/loss16 = 5.14389e-05 (* 0.0454545 = 2.33813e-06 loss) | |
I0405 20:25:41.332542 29564 solver.cpp:245] Train net output #38: loss/loss17 = 4.94062e-05 (* 0.0454545 = 2.24574e-06 loss) | |
I0405 20:25:41.332573 29564 solver.cpp:245] Train net output #39: loss/loss18 = 5.12285e-05 (* 0.0454545 = 2.32857e-06 loss) | |
I0405 20:25:41.332589 29564 solver.cpp:245] Train net output #40: loss/loss19 = 4.97307e-05 (* 0.0454545 = 2.26049e-06 loss) | |
I0405 20:25:41.332604 29564 solver.cpp:245] Train net output #41: loss/loss20 = 4.91714e-05 (* 0.0454545 = 2.23507e-06 loss) | |
I0405 20:25:41.332617 29564 solver.cpp:245] Train net output #42: loss/loss21 = 4.87118e-05 (* 0.0454545 = 2.21417e-06 loss) | |
I0405 20:25:41.332633 29564 solver.cpp:245] Train net output #43: loss/loss22 = 4.69717e-05 (* 0.0454545 = 2.13508e-06 loss) | |
I0405 20:25:41.332644 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 20:25:41.332656 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000947328 | |
I0405 20:25:41.332670 29564 sgd_solver.cpp:106] Iteration 51500, lr = 0.009485 | |
I0405 20:29:33.034991 29564 solver.cpp:229] Iteration 52000, loss = 0.837471 | |
I0405 20:29:33.035097 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.3125 | |
I0405 20:29:33.035116 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0405 20:29:33.035130 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0 | |
I0405 20:29:33.035145 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375 | |
I0405 20:29:33.035157 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.21875 | |
I0405 20:29:33.035168 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625 | |
I0405 20:29:33.035181 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0405 20:29:33.035192 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0405 20:29:33.035203 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0405 20:29:33.035215 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0405 20:29:33.035226 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 20:29:33.035238 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 20:29:33.035250 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 20:29:33.035261 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 20:29:33.035274 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 20:29:33.035284 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 20:29:33.035295 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 20:29:33.035306 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 20:29:33.035318 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 20:29:33.035331 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 20:29:33.035342 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 20:29:33.035353 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 20:29:33.035368 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.45978 (* 0.0454545 = 0.111808 loss) | |
I0405 20:29:33.035382 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.11932 (* 0.0454545 = 0.141787 loss) | |
I0405 20:29:33.035397 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.46158 (* 0.0454545 = 0.157345 loss) | |
I0405 20:29:33.035410 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.098 (* 0.0454545 = 0.140818 loss) | |
I0405 20:29:33.035424 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.68649 (* 0.0454545 = 0.122113 loss) | |
I0405 20:29:33.035439 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.21388 (* 0.0454545 = 0.100631 loss) | |
I0405 20:29:33.035452 29564 solver.cpp:245] Train net output #28: loss/loss07 = 0.83957 (* 0.0454545 = 0.0381623 loss) | |
I0405 20:29:33.035466 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.446684 (* 0.0454545 = 0.0203038 loss) | |
I0405 20:29:33.035480 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.305057 (* 0.0454545 = 0.0138662 loss) | |
I0405 20:29:33.035493 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.301799 (* 0.0454545 = 0.0137181 loss) | |
I0405 20:29:33.035508 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.000103656 (* 0.0454545 = 4.71165e-06 loss) | |
I0405 20:29:33.035521 29564 solver.cpp:245] Train net output #33: loss/loss12 = 0.000111329 (* 0.0454545 = 5.0604e-06 loss) | |
I0405 20:29:33.035536 29564 solver.cpp:245] Train net output #34: loss/loss13 = 0.000110022 (* 0.0454545 = 5.00101e-06 loss) | |
I0405 20:29:33.035550 29564 solver.cpp:245] Train net output #35: loss/loss14 = 0.000115588 (* 0.0454545 = 5.25398e-06 loss) | |
I0405 20:29:33.035564 29564 solver.cpp:245] Train net output #36: loss/loss15 = 0.000113622 (* 0.0454545 = 5.16463e-06 loss) | |
I0405 20:29:33.035578 29564 solver.cpp:245] Train net output #37: loss/loss16 = 0.000106594 (* 0.0454545 = 4.84519e-06 loss) | |
I0405 20:29:33.035591 29564 solver.cpp:245] Train net output #38: loss/loss17 = 9.66049e-05 (* 0.0454545 = 4.39113e-06 loss) | |
I0405 20:29:33.035624 29564 solver.cpp:245] Train net output #39: loss/loss18 = 0.000102276 (* 0.0454545 = 4.64893e-06 loss) | |
I0405 20:29:33.035639 29564 solver.cpp:245] Train net output #40: loss/loss19 = 0.000100873 (* 0.0454545 = 4.58515e-06 loss) | |
I0405 20:29:33.035652 29564 solver.cpp:245] Train net output #41: loss/loss20 = 9.96094e-05 (* 0.0454545 = 4.5277e-06 loss) | |
I0405 20:29:33.035665 29564 solver.cpp:245] Train net output #42: loss/loss21 = 0.000108635 (* 0.0454545 = 4.93797e-06 loss) | |
I0405 20:29:33.035679 29564 solver.cpp:245] Train net output #43: loss/loss22 = 0.000108575 (* 0.0454545 = 4.93525e-06 loss) | |
I0405 20:29:33.035692 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 20:29:33.035703 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000474257 | |
I0405 20:29:33.035717 29564 sgd_solver.cpp:106] Iteration 52000, lr = 0.00948 | |
I0405 20:33:25.997171 29564 solver.cpp:229] Iteration 52500, loss = 0.83269 | |
I0405 20:33:25.997388 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.25 | |
I0405 20:33:25.997417 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0405 20:33:25.997442 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.15625 | |
I0405 20:33:25.997465 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.21875 | |
I0405 20:33:25.997488 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.34375 | |
I0405 20:33:25.997509 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.53125 | |
I0405 20:33:25.997531 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0405 20:33:25.997555 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.96875 | |
I0405 20:33:25.997575 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0405 20:33:25.997596 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 20:33:25.997617 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 20:33:25.997637 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 20:33:25.997659 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 20:33:25.997681 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 20:33:25.997702 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 20:33:25.997722 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 20:33:25.997743 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 20:33:25.997764 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 20:33:25.997784 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 20:33:25.997807 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 20:33:25.997828 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 20:33:25.997848 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 20:33:25.997875 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.52256 (* 0.0454545 = 0.114662 loss) | |
I0405 20:33:25.997900 29564 solver.cpp:245] Train net output #23: loss/loss02 = 2.97385 (* 0.0454545 = 0.135175 loss) | |
I0405 20:33:25.997926 29564 solver.cpp:245] Train net output #24: loss/loss03 = 2.95986 (* 0.0454545 = 0.134539 loss) | |
I0405 20:33:25.997951 29564 solver.cpp:245] Train net output #25: loss/loss04 = 2.75571 (* 0.0454545 = 0.125259 loss) | |
I0405 20:33:25.997975 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.43506 (* 0.0454545 = 0.110685 loss) | |
I0405 20:33:25.998006 29564 solver.cpp:245] Train net output #27: loss/loss06 = 1.8704 (* 0.0454545 = 0.085018 loss) | |
I0405 20:33:25.998034 29564 solver.cpp:245] Train net output #28: loss/loss07 = 0.829055 (* 0.0454545 = 0.0376843 loss) | |
I0405 20:33:25.998060 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.197875 (* 0.0454545 = 0.00899433 loss) | |
I0405 20:33:25.998086 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.0165208 (* 0.0454545 = 0.000750948 loss) | |
I0405 20:33:25.998112 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.00719674 (* 0.0454545 = 0.000327125 loss) | |
I0405 20:33:25.998142 29564 solver.cpp:245] Train net output #32: loss/loss11 = 8.436e-05 (* 0.0454545 = 3.83455e-06 loss) | |
I0405 20:33:25.998168 29564 solver.cpp:245] Train net output #33: loss/loss12 = 8.74807e-05 (* 0.0454545 = 3.9764e-06 loss) | |
I0405 20:33:25.998193 29564 solver.cpp:245] Train net output #34: loss/loss13 = 8.05562e-05 (* 0.0454545 = 3.66164e-06 loss) | |
I0405 20:33:25.998219 29564 solver.cpp:245] Train net output #35: loss/loss14 = 7.45863e-05 (* 0.0454545 = 3.39029e-06 loss) | |
I0405 20:33:25.998263 29564 solver.cpp:245] Train net output #36: loss/loss15 = 8.49608e-05 (* 0.0454545 = 3.86185e-06 loss) | |
I0405 20:33:25.998293 29564 solver.cpp:245] Train net output #37: loss/loss16 = 7.9969e-05 (* 0.0454545 = 3.63495e-06 loss) | |
I0405 20:33:25.998319 29564 solver.cpp:245] Train net output #38: loss/loss17 = 7.72617e-05 (* 0.0454545 = 3.5119e-06 loss) | |
I0405 20:33:25.998365 29564 solver.cpp:245] Train net output #39: loss/loss18 = 7.52703e-05 (* 0.0454545 = 3.42138e-06 loss) | |
I0405 20:33:25.998389 29564 solver.cpp:245] Train net output #40: loss/loss19 = 7.41794e-05 (* 0.0454545 = 3.37179e-06 loss) | |
I0405 20:33:25.998414 29564 solver.cpp:245] Train net output #41: loss/loss20 = 7.93361e-05 (* 0.0454545 = 3.60619e-06 loss) | |
I0405 20:33:25.998440 29564 solver.cpp:245] Train net output #42: loss/loss21 = 7.66978e-05 (* 0.0454545 = 3.48626e-06 loss) | |
I0405 20:33:25.998466 29564 solver.cpp:245] Train net output #43: loss/loss22 = 6.61838e-05 (* 0.0454545 = 3.00835e-06 loss) | |
I0405 20:33:25.998486 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 20:33:25.998507 29564 solver.cpp:245] Train net output #45: total_confidence = 0.00693355 | |
I0405 20:33:25.998529 29564 sgd_solver.cpp:106] Iteration 52500, lr = 0.009475 | |
I0405 20:37:18.195638 29564 solver.cpp:229] Iteration 53000, loss = 0.837065 | |
I0405 20:37:18.195757 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.25 | |
I0405 20:37:18.195785 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.1875 | |
I0405 20:37:18.195808 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0405 20:37:18.195832 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375 | |
I0405 20:37:18.195853 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.125 | |
I0405 20:37:18.195874 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125 | |
I0405 20:37:18.195895 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0405 20:37:18.195915 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 1 | |
I0405 20:37:18.195937 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0405 20:37:18.195960 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 20:37:18.195981 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 20:37:18.196002 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 20:37:18.196022 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 20:37:18.196041 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 20:37:18.196061 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 20:37:18.196100 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 20:37:18.196125 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 20:37:18.196147 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 20:37:18.196168 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 20:37:18.196188 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 20:37:18.196208 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 20:37:18.196228 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 20:37:18.196255 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.3872 (* 0.0454545 = 0.108509 loss) | |
I0405 20:37:18.196281 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.06411 (* 0.0454545 = 0.139278 loss) | |
I0405 20:37:18.196307 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.12484 (* 0.0454545 = 0.142038 loss) | |
I0405 20:37:18.196332 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.03156 (* 0.0454545 = 0.137798 loss) | |
I0405 20:37:18.196362 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.83797 (* 0.0454545 = 0.128999 loss) | |
I0405 20:37:18.196390 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.36727 (* 0.0454545 = 0.107603 loss) | |
I0405 20:37:18.196416 29564 solver.cpp:245] Train net output #28: loss/loss07 = 0.962071 (* 0.0454545 = 0.0437305 loss) | |
I0405 20:37:18.196441 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.138303 (* 0.0454545 = 0.0062865 loss) | |
I0405 20:37:18.196467 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.0180204 (* 0.0454545 = 0.000819108 loss) | |
I0405 20:37:18.196493 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.00686802 (* 0.0454545 = 0.000312183 loss) | |
I0405 20:37:18.196519 29564 solver.cpp:245] Train net output #32: loss/loss11 = 2.31946e-05 (* 0.0454545 = 1.0543e-06 loss) | |
I0405 20:37:18.196545 29564 solver.cpp:245] Train net output #33: loss/loss12 = 2.08921e-05 (* 0.0454545 = 9.49641e-07 loss) | |
I0405 20:37:18.196570 29564 solver.cpp:245] Train net output #34: loss/loss13 = 2.43979e-05 (* 0.0454545 = 1.109e-06 loss) | |
I0405 20:37:18.196595 29564 solver.cpp:245] Train net output #35: loss/loss14 = 2.32505e-05 (* 0.0454545 = 1.05684e-06 loss) | |
I0405 20:37:18.196620 29564 solver.cpp:245] Train net output #36: loss/loss15 = 2.15627e-05 (* 0.0454545 = 9.80125e-07 loss) | |
I0405 20:37:18.196645 29564 solver.cpp:245] Train net output #37: loss/loss16 = 2.03967e-05 (* 0.0454545 = 9.27121e-07 loss) | |
I0405 20:37:18.196671 29564 solver.cpp:245] Train net output #38: loss/loss17 = 1.95547e-05 (* 0.0454545 = 8.88849e-07 loss) | |
I0405 20:37:18.196719 29564 solver.cpp:245] Train net output #39: loss/loss18 = 2.18459e-05 (* 0.0454545 = 9.92995e-07 loss) | |
I0405 20:37:18.196748 29564 solver.cpp:245] Train net output #40: loss/loss19 = 2.25351e-05 (* 0.0454545 = 1.02432e-06 loss) | |
I0405 20:37:18.196776 29564 solver.cpp:245] Train net output #41: loss/loss20 = 2.1872e-05 (* 0.0454545 = 9.94182e-07 loss) | |
I0405 20:37:18.196804 29564 solver.cpp:245] Train net output #42: loss/loss21 = 2.10151e-05 (* 0.0454545 = 9.55233e-07 loss) | |
I0405 20:37:18.196830 29564 solver.cpp:245] Train net output #43: loss/loss22 = 2.32616e-05 (* 0.0454545 = 1.05735e-06 loss) | |
I0405 20:37:18.196851 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 20:37:18.196871 29564 solver.cpp:245] Train net output #45: total_confidence = 0.00137165 | |
I0405 20:37:18.196893 29564 sgd_solver.cpp:106] Iteration 53000, lr = 0.00947 | |
I0405 20:41:09.846488 29564 solver.cpp:229] Iteration 53500, loss = 0.82918 | |
I0405 20:41:09.846737 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.34375 | |
I0405 20:41:09.846760 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0405 20:41:09.846773 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0405 20:41:09.846786 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625 | |
I0405 20:41:09.846797 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125 | |
I0405 20:41:09.846808 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125 | |
I0405 20:41:09.846819 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.53125 | |
I0405 20:41:09.846832 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.8125 | |
I0405 20:41:09.846843 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0405 20:41:09.846855 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 20:41:09.846866 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 20:41:09.846879 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 20:41:09.846892 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 20:41:09.846904 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 20:41:09.846915 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 20:41:09.846926 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 20:41:09.846937 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 20:41:09.846948 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 20:41:09.846959 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 20:41:09.846971 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 20:41:09.846982 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 20:41:09.846993 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 20:41:09.847008 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.40242 (* 0.0454545 = 0.109201 loss) | |
I0405 20:41:09.847023 29564 solver.cpp:245] Train net output #23: loss/loss02 = 2.8482 (* 0.0454545 = 0.129464 loss) | |
I0405 20:41:09.847036 29564 solver.cpp:245] Train net output #24: loss/loss03 = 2.8006 (* 0.0454545 = 0.1273 loss) | |
I0405 20:41:09.847050 29564 solver.cpp:245] Train net output #25: loss/loss04 = 2.82071 (* 0.0454545 = 0.128214 loss) | |
I0405 20:41:09.847064 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.74032 (* 0.0454545 = 0.12456 loss) | |
I0405 20:41:09.847079 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.37931 (* 0.0454545 = 0.108151 loss) | |
I0405 20:41:09.847092 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.71896 (* 0.0454545 = 0.0781346 loss) | |
I0405 20:41:09.847106 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.982012 (* 0.0454545 = 0.0446369 loss) | |
I0405 20:41:09.847121 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.199456 (* 0.0454545 = 0.00906617 loss) | |
I0405 20:41:09.847134 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.0138119 (* 0.0454545 = 0.000627814 loss) | |
I0405 20:41:09.847148 29564 solver.cpp:245] Train net output #32: loss/loss11 = 2.87131e-05 (* 0.0454545 = 1.30514e-06 loss) | |
I0405 20:41:09.847172 29564 solver.cpp:245] Train net output #33: loss/loss12 = 2.9928e-05 (* 0.0454545 = 1.36037e-06 loss) | |
I0405 20:41:09.847189 29564 solver.cpp:245] Train net output #34: loss/loss13 = 3.41008e-05 (* 0.0454545 = 1.55004e-06 loss) | |
I0405 20:41:09.847203 29564 solver.cpp:245] Train net output #35: loss/loss14 = 2.67575e-05 (* 0.0454545 = 1.21625e-06 loss) | |
I0405 20:41:09.847218 29564 solver.cpp:245] Train net output #36: loss/loss15 = 2.95492e-05 (* 0.0454545 = 1.34315e-06 loss) | |
I0405 20:41:09.847231 29564 solver.cpp:245] Train net output #37: loss/loss16 = 2.73388e-05 (* 0.0454545 = 1.24267e-06 loss) | |
I0405 20:41:09.847246 29564 solver.cpp:245] Train net output #38: loss/loss17 = 2.88983e-05 (* 0.0454545 = 1.31356e-06 loss) | |
I0405 20:41:09.847273 29564 solver.cpp:245] Train net output #39: loss/loss18 = 2.93406e-05 (* 0.0454545 = 1.33366e-06 loss) | |
I0405 20:41:09.847288 29564 solver.cpp:245] Train net output #40: loss/loss19 = 2.71224e-05 (* 0.0454545 = 1.23284e-06 loss) | |
I0405 20:41:09.847302 29564 solver.cpp:245] Train net output #41: loss/loss20 = 2.62095e-05 (* 0.0454545 = 1.19134e-06 loss) | |
I0405 20:41:09.847316 29564 solver.cpp:245] Train net output #42: loss/loss21 = 3.14666e-05 (* 0.0454545 = 1.4303e-06 loss) | |
I0405 20:41:09.847331 29564 solver.cpp:245] Train net output #43: loss/loss22 = 2.86378e-05 (* 0.0454545 = 1.30172e-06 loss) | |
I0405 20:41:09.847342 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 20:41:09.847354 29564 solver.cpp:245] Train net output #45: total_confidence = 0.00035931 | |
I0405 20:41:09.847368 29564 sgd_solver.cpp:106] Iteration 53500, lr = 0.009465 | |
I0405 20:45:02.303689 29564 solver.cpp:229] Iteration 54000, loss = 0.828972 | |
I0405 20:45:02.303805 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.40625 | |
I0405 20:45:02.303824 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125 | |
I0405 20:45:02.303838 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.15625 | |
I0405 20:45:02.303849 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375 | |
I0405 20:45:02.303861 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0405 20:45:02.303874 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0405 20:45:02.303884 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.78125 | |
I0405 20:45:02.303896 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0405 20:45:02.303908 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 20:45:02.303920 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 20:45:02.303931 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 20:45:02.303943 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 20:45:02.303954 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 20:45:02.303966 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 20:45:02.303977 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 20:45:02.303988 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 20:45:02.303999 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 20:45:02.304010 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 20:45:02.304021 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 20:45:02.304033 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 20:45:02.304044 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 20:45:02.304055 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 20:45:02.304087 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.18932 (* 0.0454545 = 0.0995146 loss) | |
I0405 20:45:02.304105 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.0631 (* 0.0454545 = 0.139232 loss) | |
I0405 20:45:02.304119 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.18571 (* 0.0454545 = 0.144805 loss) | |
I0405 20:45:02.304133 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.04533 (* 0.0454545 = 0.138424 loss) | |
I0405 20:45:02.304147 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.98964 (* 0.0454545 = 0.135893 loss) | |
I0405 20:45:02.304162 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.45712 (* 0.0454545 = 0.111687 loss) | |
I0405 20:45:02.304174 29564 solver.cpp:245] Train net output #28: loss/loss07 = 0.960281 (* 0.0454545 = 0.0436491 loss) | |
I0405 20:45:02.304188 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.501839 (* 0.0454545 = 0.0228109 loss) | |
I0405 20:45:02.304206 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.149352 (* 0.0454545 = 0.00678874 loss) | |
I0405 20:45:02.304220 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.0150007 (* 0.0454545 = 0.00068185 loss) | |
I0405 20:45:02.304235 29564 solver.cpp:245] Train net output #32: loss/loss11 = 5.88727e-05 (* 0.0454545 = 2.67603e-06 loss) | |
I0405 20:45:02.304250 29564 solver.cpp:245] Train net output #33: loss/loss12 = 6.71584e-05 (* 0.0454545 = 3.05266e-06 loss) | |
I0405 20:45:02.304263 29564 solver.cpp:245] Train net output #34: loss/loss13 = 6.63351e-05 (* 0.0454545 = 3.01523e-06 loss) | |
I0405 20:45:02.304276 29564 solver.cpp:245] Train net output #35: loss/loss14 = 5.72861e-05 (* 0.0454545 = 2.60391e-06 loss) | |
I0405 20:45:02.304291 29564 solver.cpp:245] Train net output #36: loss/loss15 = 5.94022e-05 (* 0.0454545 = 2.7001e-06 loss) | |
I0405 20:45:02.304304 29564 solver.cpp:245] Train net output #37: loss/loss16 = 5.87137e-05 (* 0.0454545 = 2.6688e-06 loss) | |
I0405 20:45:02.304318 29564 solver.cpp:245] Train net output #38: loss/loss17 = 6.07147e-05 (* 0.0454545 = 2.75976e-06 loss) | |
I0405 20:45:02.304350 29564 solver.cpp:245] Train net output #39: loss/loss18 = 6.09232e-05 (* 0.0454545 = 2.76924e-06 loss) | |
I0405 20:45:02.304365 29564 solver.cpp:245] Train net output #40: loss/loss19 = 6.51901e-05 (* 0.0454545 = 2.96319e-06 loss) | |
I0405 20:45:02.304380 29564 solver.cpp:245] Train net output #41: loss/loss20 = 6.24102e-05 (* 0.0454545 = 2.83683e-06 loss) | |
I0405 20:45:02.304394 29564 solver.cpp:245] Train net output #42: loss/loss21 = 5.68044e-05 (* 0.0454545 = 2.58202e-06 loss) | |
I0405 20:45:02.304407 29564 solver.cpp:245] Train net output #43: loss/loss22 = 5.7018e-05 (* 0.0454545 = 2.59173e-06 loss) | |
I0405 20:45:02.304420 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 20:45:02.304431 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000150502 | |
I0405 20:45:02.304446 29564 sgd_solver.cpp:106] Iteration 54000, lr = 0.00946 | |
I0405 20:48:54.000131 29564 solver.cpp:229] Iteration 54500, loss = 0.82438 | |
I0405 20:48:54.000257 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.3125 | |
I0405 20:48:54.000278 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.15625 | |
I0405 20:48:54.000291 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.15625 | |
I0405 20:48:54.000304 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.0625 | |
I0405 20:48:54.000316 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125 | |
I0405 20:48:54.000329 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5625 | |
I0405 20:48:54.000341 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0405 20:48:54.000354 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0405 20:48:54.000365 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 20:48:54.000376 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 20:48:54.000388 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 20:48:54.000401 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 20:48:54.000411 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 20:48:54.000423 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 20:48:54.000433 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 20:48:54.000445 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 20:48:54.000457 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 20:48:54.000468 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 20:48:54.000479 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 20:48:54.000490 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 20:48:54.000501 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 20:48:54.000514 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 20:48:54.000527 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.3519 (* 0.0454545 = 0.106905 loss) | |
I0405 20:48:54.000542 29564 solver.cpp:245] Train net output #23: loss/loss02 = 2.88196 (* 0.0454545 = 0.130998 loss) | |
I0405 20:48:54.000556 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.0729 (* 0.0454545 = 0.139677 loss) | |
I0405 20:48:54.000571 29564 solver.cpp:245] Train net output #25: loss/loss04 = 2.96115 (* 0.0454545 = 0.134598 loss) | |
I0405 20:48:54.000583 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.74915 (* 0.0454545 = 0.124961 loss) | |
I0405 20:48:54.000597 29564 solver.cpp:245] Train net output #27: loss/loss06 = 1.7331 (* 0.0454545 = 0.0787772 loss) | |
I0405 20:48:54.000612 29564 solver.cpp:245] Train net output #28: loss/loss07 = 0.642626 (* 0.0454545 = 0.0292103 loss) | |
I0405 20:48:54.000625 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.524018 (* 0.0454545 = 0.023819 loss) | |
I0405 20:48:54.000639 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.137762 (* 0.0454545 = 0.0062619 loss) | |
I0405 20:48:54.000653 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.0112771 (* 0.0454545 = 0.000512595 loss) | |
I0405 20:48:54.000669 29564 solver.cpp:245] Train net output #32: loss/loss11 = 4.54904e-05 (* 0.0454545 = 2.06775e-06 loss) | |
I0405 20:48:54.000684 29564 solver.cpp:245] Train net output #33: loss/loss12 = 4.63972e-05 (* 0.0454545 = 2.10896e-06 loss) | |
I0405 20:48:54.000697 29564 solver.cpp:245] Train net output #34: loss/loss13 = 4.04649e-05 (* 0.0454545 = 1.83931e-06 loss) | |
I0405 20:48:54.000711 29564 solver.cpp:245] Train net output #35: loss/loss14 = 3.87734e-05 (* 0.0454545 = 1.76243e-06 loss) | |
I0405 20:48:54.000725 29564 solver.cpp:245] Train net output #36: loss/loss15 = 4.07427e-05 (* 0.0454545 = 1.85194e-06 loss) | |
I0405 20:48:54.000740 29564 solver.cpp:245] Train net output #37: loss/loss16 = 4.06435e-05 (* 0.0454545 = 1.84743e-06 loss) | |
I0405 20:48:54.000753 29564 solver.cpp:245] Train net output #38: loss/loss17 = 3.79237e-05 (* 0.0454545 = 1.72381e-06 loss) | |
I0405 20:48:54.000784 29564 solver.cpp:245] Train net output #39: loss/loss18 = 3.40429e-05 (* 0.0454545 = 1.54741e-06 loss) | |
I0405 20:48:54.000800 29564 solver.cpp:245] Train net output #40: loss/loss19 = 4.34965e-05 (* 0.0454545 = 1.97711e-06 loss) | |
I0405 20:48:54.000814 29564 solver.cpp:245] Train net output #41: loss/loss20 = 3.76742e-05 (* 0.0454545 = 1.71246e-06 loss) | |
I0405 20:48:54.000828 29564 solver.cpp:245] Train net output #42: loss/loss21 = 3.87361e-05 (* 0.0454545 = 1.76073e-06 loss) | |
I0405 20:48:54.000843 29564 solver.cpp:245] Train net output #43: loss/loss22 = 3.64967e-05 (* 0.0454545 = 1.65894e-06 loss) | |
I0405 20:48:54.000855 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 20:48:54.000867 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000506768 | |
I0405 20:48:54.000882 29564 sgd_solver.cpp:106] Iteration 54500, lr = 0.009455 | |
I0405 20:52:45.521280 29564 solver.cpp:338] Iteration 55000, Testing net (#0) | |
I0405 20:52:55.782263 29564 solver.cpp:393] Test loss: 0.737048 | |
I0405 20:52:55.782311 29564 solver.cpp:406] Test net output #0: loss/accuracy01 = 0.281 | |
I0405 20:52:55.782328 29564 solver.cpp:406] Test net output #1: loss/accuracy02 = 0.122 | |
I0405 20:52:55.782341 29564 solver.cpp:406] Test net output #2: loss/accuracy03 = 0.149 | |
I0405 20:52:55.782353 29564 solver.cpp:406] Test net output #3: loss/accuracy04 = 0.161 | |
I0405 20:52:55.782366 29564 solver.cpp:406] Test net output #4: loss/accuracy05 = 0.262 | |
I0405 20:52:55.782377 29564 solver.cpp:406] Test net output #5: loss/accuracy06 = 0.531 | |
I0405 20:52:55.782388 29564 solver.cpp:406] Test net output #6: loss/accuracy07 = 0.892 | |
I0405 20:52:55.782400 29564 solver.cpp:406] Test net output #7: loss/accuracy08 = 0.969 | |
I0405 20:52:55.782412 29564 solver.cpp:406] Test net output #8: loss/accuracy09 = 0.995 | |
I0405 20:52:55.782423 29564 solver.cpp:406] Test net output #9: loss/accuracy10 = 0.998 | |
I0405 20:52:55.782434 29564 solver.cpp:406] Test net output #10: loss/accuracy11 = 1 | |
I0405 20:52:55.782445 29564 solver.cpp:406] Test net output #11: loss/accuracy12 = 1 | |
I0405 20:52:55.782457 29564 solver.cpp:406] Test net output #12: loss/accuracy13 = 1 | |
I0405 20:52:55.782469 29564 solver.cpp:406] Test net output #13: loss/accuracy14 = 1 | |
I0405 20:52:55.782480 29564 solver.cpp:406] Test net output #14: loss/accuracy15 = 1 | |
I0405 20:52:55.782490 29564 solver.cpp:406] Test net output #15: loss/accuracy16 = 1 | |
I0405 20:52:55.782502 29564 solver.cpp:406] Test net output #16: loss/accuracy17 = 1 | |
I0405 20:52:55.782513 29564 solver.cpp:406] Test net output #17: loss/accuracy18 = 1 | |
I0405 20:52:55.782524 29564 solver.cpp:406] Test net output #18: loss/accuracy19 = 1 | |
I0405 20:52:55.782536 29564 solver.cpp:406] Test net output #19: loss/accuracy20 = 1 | |
I0405 20:52:55.782546 29564 solver.cpp:406] Test net output #20: loss/accuracy21 = 1 | |
I0405 20:52:55.782557 29564 solver.cpp:406] Test net output #21: loss/accuracy22 = 1 | |
I0405 20:52:55.782572 29564 solver.cpp:406] Test net output #22: loss/loss01 = 2.67056 (* 0.0454545 = 0.121389 loss) | |
I0405 20:52:55.782588 29564 solver.cpp:406] Test net output #23: loss/loss02 = 2.85754 (* 0.0454545 = 0.129888 loss) | |
I0405 20:52:55.782600 29564 solver.cpp:406] Test net output #24: loss/loss03 = 2.86423 (* 0.0454545 = 0.130192 loss) | |
I0405 20:52:55.782614 29564 solver.cpp:406] Test net output #25: loss/loss04 = 2.8373 (* 0.0454545 = 0.128968 loss) | |
I0405 20:52:55.782629 29564 solver.cpp:406] Test net output #26: loss/loss05 = 2.58058 (* 0.0454545 = 0.117299 loss) | |
I0405 20:52:55.782642 29564 solver.cpp:406] Test net output #27: loss/loss06 = 1.67025 (* 0.0454545 = 0.0759204 loss) | |
I0405 20:52:55.782655 29564 solver.cpp:406] Test net output #28: loss/loss07 = 0.469877 (* 0.0454545 = 0.021358 loss) | |
I0405 20:52:55.782671 29564 solver.cpp:406] Test net output #29: loss/loss08 = 0.191508 (* 0.0454545 = 0.0087049 loss) | |
I0405 20:52:55.782686 29564 solver.cpp:406] Test net output #30: loss/loss09 = 0.0466052 (* 0.0454545 = 0.00211842 loss) | |
I0405 20:52:55.782701 29564 solver.cpp:406] Test net output #31: loss/loss10 = 0.0249541 (* 0.0454545 = 0.00113428 loss) | |
I0405 20:52:55.782716 29564 solver.cpp:406] Test net output #32: loss/loss11 = 0.000144078 (* 0.0454545 = 6.549e-06 loss) | |
I0405 20:52:55.782730 29564 solver.cpp:406] Test net output #33: loss/loss12 = 0.000156029 (* 0.0454545 = 7.09224e-06 loss) | |
I0405 20:52:55.782743 29564 solver.cpp:406] Test net output #34: loss/loss13 = 0.00014523 (* 0.0454545 = 6.60137e-06 loss) | |
I0405 20:52:55.782757 29564 solver.cpp:406] Test net output #35: loss/loss14 = 0.00013687 (* 0.0454545 = 6.22136e-06 loss) | |
I0405 20:52:55.782771 29564 solver.cpp:406] Test net output #36: loss/loss15 = 0.000144174 (* 0.0454545 = 6.55336e-06 loss) | |
I0405 20:52:55.782785 29564 solver.cpp:406] Test net output #37: loss/loss16 = 0.00013592 (* 0.0454545 = 6.1782e-06 loss) | |
I0405 20:52:55.782799 29564 solver.cpp:406] Test net output #38: loss/loss17 = 0.000135534 (* 0.0454545 = 6.16064e-06 loss) | |
I0405 20:52:55.782848 29564 solver.cpp:406] Test net output #39: loss/loss18 = 0.000132253 (* 0.0454545 = 6.01148e-06 loss) | |
I0405 20:52:55.782865 29564 solver.cpp:406] Test net output #40: loss/loss19 = 0.000135637 (* 0.0454545 = 6.16533e-06 loss) | |
I0405 20:52:55.782878 29564 solver.cpp:406] Test net output #41: loss/loss20 = 0.000132111 (* 0.0454545 = 6.00505e-06 loss) | |
I0405 20:52:55.782892 29564 solver.cpp:406] Test net output #42: loss/loss21 = 0.000127322 (* 0.0454545 = 5.78736e-06 loss) | |
I0405 20:52:55.782907 29564 solver.cpp:406] Test net output #43: loss/loss22 = 0.000138583 (* 0.0454545 = 6.29923e-06 loss) | |
I0405 20:52:55.782917 29564 solver.cpp:406] Test net output #44: total_accuracy = 0.001 | |
I0405 20:52:55.782929 29564 solver.cpp:406] Test net output #45: total_confidence = 0.000902461 | |
I0405 20:52:55.897347 29564 solver.cpp:229] Iteration 55000, loss = 0.826118 | |
I0405 20:52:55.897394 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.3125 | |
I0405 20:52:55.897423 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.1875 | |
I0405 20:52:55.897445 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0405 20:52:55.897469 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875 | |
I0405 20:52:55.897491 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125 | |
I0405 20:52:55.897513 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5 | |
I0405 20:52:55.897534 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0405 20:52:55.897557 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.96875 | |
I0405 20:52:55.897578 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0405 20:52:55.897600 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 20:52:55.897620 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 20:52:55.897640 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 20:52:55.897661 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 20:52:55.897685 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 20:52:55.897704 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 20:52:55.897725 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 20:52:55.897745 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 20:52:55.897766 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 20:52:55.897788 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 20:52:55.897807 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 20:52:55.897827 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 20:52:55.897850 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 20:52:55.897877 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.37315 (* 0.0454545 = 0.107871 loss) | |
I0405 20:52:55.897903 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.03533 (* 0.0454545 = 0.137969 loss) | |
I0405 20:52:55.897928 29564 solver.cpp:245] Train net output #24: loss/loss03 = 2.88826 (* 0.0454545 = 0.131285 loss) | |
I0405 20:52:55.897953 29564 solver.cpp:245] Train net output #25: loss/loss04 = 2.77772 (* 0.0454545 = 0.12626 loss) | |
I0405 20:52:55.897977 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.32621 (* 0.0454545 = 0.105737 loss) | |
I0405 20:52:55.898002 29564 solver.cpp:245] Train net output #27: loss/loss06 = 1.78747 (* 0.0454545 = 0.0812487 loss) | |
I0405 20:52:55.898028 29564 solver.cpp:245] Train net output #28: loss/loss07 = 0.641113 (* 0.0454545 = 0.0291415 loss) | |
I0405 20:52:55.898053 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.275232 (* 0.0454545 = 0.0125105 loss) | |
I0405 20:52:55.898082 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.031741 (* 0.0454545 = 0.00144277 loss) | |
I0405 20:52:55.898108 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.00872924 (* 0.0454545 = 0.000396784 loss) | |
I0405 20:52:55.898159 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.000115532 (* 0.0454545 = 5.25147e-06 loss) | |
I0405 20:52:55.898185 29564 solver.cpp:245] Train net output #33: loss/loss12 = 0.00010766 (* 0.0454545 = 4.89362e-06 loss) | |
I0405 20:52:55.898211 29564 solver.cpp:245] Train net output #34: loss/loss13 = 0.000106929 (* 0.0454545 = 4.86041e-06 loss) | |
I0405 20:52:55.898236 29564 solver.cpp:245] Train net output #35: loss/loss14 = 9.5629e-05 (* 0.0454545 = 4.34677e-06 loss) | |
I0405 20:52:55.898260 29564 solver.cpp:245] Train net output #36: loss/loss15 = 0.00010664 (* 0.0454545 = 4.84728e-06 loss) | |
I0405 20:52:55.898284 29564 solver.cpp:245] Train net output #37: loss/loss16 = 0.000104771 (* 0.0454545 = 4.76234e-06 loss) | |
I0405 20:52:55.898309 29564 solver.cpp:245] Train net output #38: loss/loss17 = 9.60167e-05 (* 0.0454545 = 4.3644e-06 loss) | |
I0405 20:52:55.898334 29564 solver.cpp:245] Train net output #39: loss/loss18 = 9.48737e-05 (* 0.0454545 = 4.31244e-06 loss) | |
I0405 20:52:55.898361 29564 solver.cpp:245] Train net output #40: loss/loss19 = 9.97414e-05 (* 0.0454545 = 4.5337e-06 loss) | |
I0405 20:52:55.898387 29564 solver.cpp:245] Train net output #41: loss/loss20 = 9.80684e-05 (* 0.0454545 = 4.45765e-06 loss) | |
I0405 20:52:55.898412 29564 solver.cpp:245] Train net output #42: loss/loss21 = 9.22372e-05 (* 0.0454545 = 4.1926e-06 loss) | |
I0405 20:52:55.898444 29564 solver.cpp:245] Train net output #43: loss/loss22 = 9.68082e-05 (* 0.0454545 = 4.40037e-06 loss) | |
I0405 20:52:55.898466 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 20:52:55.898486 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000891456 | |
I0405 20:52:55.898510 29564 sgd_solver.cpp:106] Iteration 55000, lr = 0.00945 | |
I0405 20:56:47.492681 29564 solver.cpp:229] Iteration 55500, loss = 0.824517 | |
I0405 20:56:47.492858 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.375 | |
I0405 20:56:47.492878 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0405 20:56:47.492892 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0405 20:56:47.492904 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875 | |
I0405 20:56:47.492916 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125 | |
I0405 20:56:47.492928 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0405 20:56:47.492940 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0405 20:56:47.492952 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375 | |
I0405 20:56:47.492964 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0405 20:56:47.492975 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0405 20:56:47.492987 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 20:56:47.493000 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 20:56:47.493010 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 20:56:47.493021 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 20:56:47.493033 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 20:56:47.493044 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 20:56:47.493055 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 20:56:47.493067 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 20:56:47.493078 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 20:56:47.493089 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 20:56:47.493101 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 20:56:47.493113 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 20:56:47.493129 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.46009 (* 0.0454545 = 0.111822 loss) | |
I0405 20:56:47.493142 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.35046 (* 0.0454545 = 0.152294 loss) | |
I0405 20:56:47.493156 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.1974 (* 0.0454545 = 0.145337 loss) | |
I0405 20:56:47.493171 29564 solver.cpp:245] Train net output #25: loss/loss04 = 2.66418 (* 0.0454545 = 0.121099 loss) | |
I0405 20:56:47.493185 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.54867 (* 0.0454545 = 0.115849 loss) | |
I0405 20:56:47.493198 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.27612 (* 0.0454545 = 0.10346 loss) | |
I0405 20:56:47.493212 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.04583 (* 0.0454545 = 0.0475376 loss) | |
I0405 20:56:47.493227 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.710641 (* 0.0454545 = 0.0323019 loss) | |
I0405 20:56:47.493240 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.273155 (* 0.0454545 = 0.0124161 loss) | |
I0405 20:56:47.493255 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.252885 (* 0.0454545 = 0.0114948 loss) | |
I0405 20:56:47.493269 29564 solver.cpp:245] Train net output #32: loss/loss11 = 7.85528e-05 (* 0.0454545 = 3.57058e-06 loss) | |
I0405 20:56:47.493283 29564 solver.cpp:245] Train net output #33: loss/loss12 = 7.67281e-05 (* 0.0454545 = 3.48764e-06 loss) | |
I0405 20:56:47.493299 29564 solver.cpp:245] Train net output #34: loss/loss13 = 8.28812e-05 (* 0.0454545 = 3.76733e-06 loss) | |
I0405 20:56:47.493312 29564 solver.cpp:245] Train net output #35: loss/loss14 = 7.12074e-05 (* 0.0454545 = 3.2367e-06 loss) | |
I0405 20:56:47.493325 29564 solver.cpp:245] Train net output #36: loss/loss15 = 7.13538e-05 (* 0.0454545 = 3.24335e-06 loss) | |
I0405 20:56:47.493340 29564 solver.cpp:245] Train net output #37: loss/loss16 = 8.89845e-05 (* 0.0454545 = 4.04475e-06 loss) | |
I0405 20:56:47.493353 29564 solver.cpp:245] Train net output #38: loss/loss17 = 6.58007e-05 (* 0.0454545 = 2.99094e-06 loss) | |
I0405 20:56:47.493383 29564 solver.cpp:245] Train net output #39: loss/loss18 = 7.25981e-05 (* 0.0454545 = 3.29991e-06 loss) | |
I0405 20:56:47.493399 29564 solver.cpp:245] Train net output #40: loss/loss19 = 7.90517e-05 (* 0.0454545 = 3.59326e-06 loss) | |
I0405 20:56:47.493413 29564 solver.cpp:245] Train net output #41: loss/loss20 = 7.4516e-05 (* 0.0454545 = 3.38709e-06 loss) | |
I0405 20:56:47.493428 29564 solver.cpp:245] Train net output #42: loss/loss21 = 6.58847e-05 (* 0.0454545 = 2.99476e-06 loss) | |
I0405 20:56:47.493443 29564 solver.cpp:245] Train net output #43: loss/loss22 = 6.76228e-05 (* 0.0454545 = 3.07377e-06 loss) | |
I0405 20:56:47.493455 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 20:56:47.493466 29564 solver.cpp:245] Train net output #45: total_confidence = 0.00160213 | |
I0405 20:56:47.493480 29564 sgd_solver.cpp:106] Iteration 55500, lr = 0.009445 | |
I0405 21:00:39.451901 29564 solver.cpp:229] Iteration 56000, loss = 0.823023 | |
I0405 21:00:39.452008 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.25 | |
I0405 21:00:39.452028 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0405 21:00:39.452040 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.25 | |
I0405 21:00:39.452054 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.25 | |
I0405 21:00:39.452066 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.4375 | |
I0405 21:00:39.452080 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5625 | |
I0405 21:00:39.452092 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0405 21:00:39.452105 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.96875 | |
I0405 21:00:39.452117 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0405 21:00:39.452143 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 21:00:39.452159 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 21:00:39.452172 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 21:00:39.452183 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 21:00:39.452194 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 21:00:39.452205 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 21:00:39.452217 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 21:00:39.452229 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 21:00:39.452240 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 21:00:39.452252 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 21:00:39.452263 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 21:00:39.452275 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 21:00:39.452286 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 21:00:39.452301 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.46097 (* 0.0454545 = 0.111862 loss) | |
I0405 21:00:39.452316 29564 solver.cpp:245] Train net output #23: loss/loss02 = 2.98154 (* 0.0454545 = 0.135525 loss) | |
I0405 21:00:39.452329 29564 solver.cpp:245] Train net output #24: loss/loss03 = 2.99253 (* 0.0454545 = 0.136024 loss) | |
I0405 21:00:39.452343 29564 solver.cpp:245] Train net output #25: loss/loss04 = 2.67034 (* 0.0454545 = 0.121379 loss) | |
I0405 21:00:39.452358 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.22379 (* 0.0454545 = 0.101082 loss) | |
I0405 21:00:39.452370 29564 solver.cpp:245] Train net output #27: loss/loss06 = 1.6243 (* 0.0454545 = 0.073832 loss) | |
I0405 21:00:39.452384 29564 solver.cpp:245] Train net output #28: loss/loss07 = 0.658894 (* 0.0454545 = 0.0299497 loss) | |
I0405 21:00:39.452399 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.269329 (* 0.0454545 = 0.0122422 loss) | |
I0405 21:00:39.452414 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.0296475 (* 0.0454545 = 0.00134761 loss) | |
I0405 21:00:39.452427 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.00638691 (* 0.0454545 = 0.000290314 loss) | |
I0405 21:00:39.452441 29564 solver.cpp:245] Train net output #32: loss/loss11 = 4.6974e-05 (* 0.0454545 = 2.13518e-06 loss) | |
I0405 21:00:39.452455 29564 solver.cpp:245] Train net output #33: loss/loss12 = 4.61742e-05 (* 0.0454545 = 2.09883e-06 loss) | |
I0405 21:00:39.452469 29564 solver.cpp:245] Train net output #34: loss/loss13 = 5.11857e-05 (* 0.0454545 = 2.32662e-06 loss) | |
I0405 21:00:39.452484 29564 solver.cpp:245] Train net output #35: loss/loss14 = 4.53808e-05 (* 0.0454545 = 2.06276e-06 loss) | |
I0405 21:00:39.452498 29564 solver.cpp:245] Train net output #36: loss/loss15 = 4.55007e-05 (* 0.0454545 = 2.06821e-06 loss) | |
I0405 21:00:39.452512 29564 solver.cpp:245] Train net output #37: loss/loss16 = 4.34336e-05 (* 0.0454545 = 1.97426e-06 loss) | |
I0405 21:00:39.452527 29564 solver.cpp:245] Train net output #38: loss/loss17 = 4.74813e-05 (* 0.0454545 = 2.15824e-06 loss) | |
I0405 21:00:39.452558 29564 solver.cpp:245] Train net output #39: loss/loss18 = 4.12729e-05 (* 0.0454545 = 1.87604e-06 loss) | |
I0405 21:00:39.452574 29564 solver.cpp:245] Train net output #40: loss/loss19 = 3.89462e-05 (* 0.0454545 = 1.77028e-06 loss) | |
I0405 21:00:39.452590 29564 solver.cpp:245] Train net output #41: loss/loss20 = 4.06382e-05 (* 0.0454545 = 1.84719e-06 loss) | |
I0405 21:00:39.452605 29564 solver.cpp:245] Train net output #42: loss/loss21 = 4.30167e-05 (* 0.0454545 = 1.9553e-06 loss) | |
I0405 21:00:39.452620 29564 solver.cpp:245] Train net output #43: loss/loss22 = 4.86458e-05 (* 0.0454545 = 2.21117e-06 loss) | |
I0405 21:00:39.452631 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 21:00:39.452643 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000743622 | |
I0405 21:00:39.452657 29564 sgd_solver.cpp:106] Iteration 56000, lr = 0.00944 | |
I0405 21:04:31.182992 29564 solver.cpp:229] Iteration 56500, loss = 0.815774 | |
I0405 21:04:31.183182 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.3125 | |
I0405 21:04:31.183200 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.15625 | |
I0405 21:04:31.183213 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0405 21:04:31.183225 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625 | |
I0405 21:04:31.183238 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.125 | |
I0405 21:04:31.183249 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0405 21:04:31.183261 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875 | |
I0405 21:04:31.183274 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.8125 | |
I0405 21:04:31.183285 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0405 21:04:31.183300 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 21:04:31.183311 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 21:04:31.183323 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 21:04:31.183336 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 21:04:31.183346 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 21:04:31.183358 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 21:04:31.183369 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 21:04:31.183380 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 21:04:31.183393 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 21:04:31.183403 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 21:04:31.183414 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 21:04:31.183425 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 21:04:31.183437 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 21:04:31.183452 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.80822 (* 0.0454545 = 0.127647 loss) | |
I0405 21:04:31.183467 29564 solver.cpp:245] Train net output #23: loss/loss02 = 2.92159 (* 0.0454545 = 0.1328 loss) | |
I0405 21:04:31.183482 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.35026 (* 0.0454545 = 0.152285 loss) | |
I0405 21:04:31.183496 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.1763 (* 0.0454545 = 0.144377 loss) | |
I0405 21:04:31.183511 29564 solver.cpp:245] Train net output #26: loss/loss05 = 3.05295 (* 0.0454545 = 0.13877 loss) | |
I0405 21:04:31.183524 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.25424 (* 0.0454545 = 0.102466 loss) | |
I0405 21:04:31.183538 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.21084 (* 0.0454545 = 0.0550381 loss) | |
I0405 21:04:31.183552 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.75003 (* 0.0454545 = 0.0340923 loss) | |
I0405 21:04:31.183570 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.205054 (* 0.0454545 = 0.00932065 loss) | |
I0405 21:04:31.183584 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.155367 (* 0.0454545 = 0.00706213 loss) | |
I0405 21:04:31.183599 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.000134335 (* 0.0454545 = 6.10614e-06 loss) | |
I0405 21:04:31.183614 29564 solver.cpp:245] Train net output #33: loss/loss12 = 0.000119502 (* 0.0454545 = 5.43191e-06 loss) | |
I0405 21:04:31.183629 29564 solver.cpp:245] Train net output #34: loss/loss13 = 0.0001355 (* 0.0454545 = 6.1591e-06 loss) | |
I0405 21:04:31.183642 29564 solver.cpp:245] Train net output #35: loss/loss14 = 0.000126993 (* 0.0454545 = 5.77242e-06 loss) | |
I0405 21:04:31.183656 29564 solver.cpp:245] Train net output #36: loss/loss15 = 0.000151412 (* 0.0454545 = 6.88236e-06 loss) | |
I0405 21:04:31.183670 29564 solver.cpp:245] Train net output #37: loss/loss16 = 0.000135011 (* 0.0454545 = 6.13688e-06 loss) | |
I0405 21:04:31.183684 29564 solver.cpp:245] Train net output #38: loss/loss17 = 0.000132941 (* 0.0454545 = 6.04275e-06 loss) | |
I0405 21:04:31.183717 29564 solver.cpp:245] Train net output #39: loss/loss18 = 0.000138553 (* 0.0454545 = 6.29787e-06 loss) | |
I0405 21:04:31.183732 29564 solver.cpp:245] Train net output #40: loss/loss19 = 0.000111212 (* 0.0454545 = 5.05508e-06 loss) | |
I0405 21:04:31.183747 29564 solver.cpp:245] Train net output #41: loss/loss20 = 0.000101814 (* 0.0454545 = 4.62792e-06 loss) | |
I0405 21:04:31.183760 29564 solver.cpp:245] Train net output #42: loss/loss21 = 0.000115665 (* 0.0454545 = 5.25751e-06 loss) | |
I0405 21:04:31.183774 29564 solver.cpp:245] Train net output #43: loss/loss22 = 0.000112582 (* 0.0454545 = 5.11738e-06 loss) | |
I0405 21:04:31.183786 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 21:04:31.183797 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000861242 | |
I0405 21:04:31.183811 29564 sgd_solver.cpp:106] Iteration 56500, lr = 0.009435 | |
I0405 21:08:22.876871 29564 solver.cpp:229] Iteration 57000, loss = 0.821206 | |
I0405 21:08:22.877002 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.34375 | |
I0405 21:08:22.877025 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0405 21:08:22.877039 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0405 21:08:22.877051 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625 | |
I0405 21:08:22.877063 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125 | |
I0405 21:08:22.877075 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375 | |
I0405 21:08:22.877086 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.59375 | |
I0405 21:08:22.877099 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0405 21:08:22.877111 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 21:08:22.877123 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 21:08:22.877135 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 21:08:22.877146 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 21:08:22.877158 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 21:08:22.877169 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 21:08:22.877180 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 21:08:22.877192 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 21:08:22.877203 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 21:08:22.877214 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 21:08:22.877226 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 21:08:22.877238 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 21:08:22.877249 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 21:08:22.877259 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 21:08:22.877274 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.3582 (* 0.0454545 = 0.107191 loss) | |
I0405 21:08:22.877288 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.27253 (* 0.0454545 = 0.148751 loss) | |
I0405 21:08:22.877303 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.26201 (* 0.0454545 = 0.148273 loss) | |
I0405 21:08:22.877317 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.1433 (* 0.0454545 = 0.142877 loss) | |
I0405 21:08:22.877333 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.99341 (* 0.0454545 = 0.136064 loss) | |
I0405 21:08:22.877348 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.65753 (* 0.0454545 = 0.120797 loss) | |
I0405 21:08:22.877363 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.29435 (* 0.0454545 = 0.0588343 loss) | |
I0405 21:08:22.877377 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.503817 (* 0.0454545 = 0.0229008 loss) | |
I0405 21:08:22.877391 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.285435 (* 0.0454545 = 0.0129743 loss) | |
I0405 21:08:22.877405 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.00739205 (* 0.0454545 = 0.000336002 loss) | |
I0405 21:08:22.877420 29564 solver.cpp:245] Train net output #32: loss/loss11 = 3.80355e-05 (* 0.0454545 = 1.72889e-06 loss) | |
I0405 21:08:22.877434 29564 solver.cpp:245] Train net output #33: loss/loss12 = 3.46799e-05 (* 0.0454545 = 1.57636e-06 loss) | |
I0405 21:08:22.877449 29564 solver.cpp:245] Train net output #34: loss/loss13 = 3.62516e-05 (* 0.0454545 = 1.6478e-06 loss) | |
I0405 21:08:22.877466 29564 solver.cpp:245] Train net output #35: loss/loss14 = 3.40227e-05 (* 0.0454545 = 1.54649e-06 loss) | |
I0405 21:08:22.877481 29564 solver.cpp:245] Train net output #36: loss/loss15 = 4.07236e-05 (* 0.0454545 = 1.85107e-06 loss) | |
I0405 21:08:22.877496 29564 solver.cpp:245] Train net output #37: loss/loss16 = 3.51886e-05 (* 0.0454545 = 1.59948e-06 loss) | |
I0405 21:08:22.877509 29564 solver.cpp:245] Train net output #38: loss/loss17 = 3.41156e-05 (* 0.0454545 = 1.55071e-06 loss) | |
I0405 21:08:22.877552 29564 solver.cpp:245] Train net output #39: loss/loss18 = 3.7638e-05 (* 0.0454545 = 1.71082e-06 loss) | |
I0405 21:08:22.877568 29564 solver.cpp:245] Train net output #40: loss/loss19 = 3.23071e-05 (* 0.0454545 = 1.46851e-06 loss) | |
I0405 21:08:22.877583 29564 solver.cpp:245] Train net output #41: loss/loss20 = 3.41591e-05 (* 0.0454545 = 1.55268e-06 loss) | |
I0405 21:08:22.877599 29564 solver.cpp:245] Train net output #42: loss/loss21 = 3.61374e-05 (* 0.0454545 = 1.64261e-06 loss) | |
I0405 21:08:22.877614 29564 solver.cpp:245] Train net output #43: loss/loss22 = 3.16748e-05 (* 0.0454545 = 1.43977e-06 loss) | |
I0405 21:08:22.877625 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 21:08:22.877637 29564 solver.cpp:245] Train net output #45: total_confidence = 0.00105903 | |
I0405 21:08:22.877650 29564 sgd_solver.cpp:106] Iteration 57000, lr = 0.00943 | |
I0405 21:12:15.757899 29564 solver.cpp:229] Iteration 57500, loss = 0.817643 | |
I0405 21:12:15.758100 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.4375 | |
I0405 21:12:15.758119 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.21875 | |
I0405 21:12:15.758131 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0405 21:12:15.758144 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.21875 | |
I0405 21:12:15.758157 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.15625 | |
I0405 21:12:15.758168 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.53125 | |
I0405 21:12:15.758180 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875 | |
I0405 21:12:15.758191 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.8125 | |
I0405 21:12:15.758203 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0405 21:12:15.758214 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 21:12:15.758226 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 21:12:15.758237 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 21:12:15.758249 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 21:12:15.758260 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 21:12:15.758270 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 21:12:15.758282 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 21:12:15.758293 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 21:12:15.758304 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 21:12:15.758316 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 21:12:15.758327 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 21:12:15.758338 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 21:12:15.758349 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 21:12:15.758369 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.18219 (* 0.0454545 = 0.0991906 loss) | |
I0405 21:12:15.758384 29564 solver.cpp:245] Train net output #23: loss/loss02 = 2.95641 (* 0.0454545 = 0.134382 loss) | |
I0405 21:12:15.758399 29564 solver.cpp:245] Train net output #24: loss/loss03 = 2.98225 (* 0.0454545 = 0.135557 loss) | |
I0405 21:12:15.758412 29564 solver.cpp:245] Train net output #25: loss/loss04 = 2.93356 (* 0.0454545 = 0.133344 loss) | |
I0405 21:12:15.758425 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.82476 (* 0.0454545 = 0.128398 loss) | |
I0405 21:12:15.758440 29564 solver.cpp:245] Train net output #27: loss/loss06 = 1.83766 (* 0.0454545 = 0.0835301 loss) | |
I0405 21:12:15.758453 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.11297 (* 0.0454545 = 0.0505898 loss) | |
I0405 21:12:15.758467 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.663002 (* 0.0454545 = 0.0301365 loss) | |
I0405 21:12:15.758481 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.0519154 (* 0.0454545 = 0.00235979 loss) | |
I0405 21:12:15.758496 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.0214384 (* 0.0454545 = 0.000974475 loss) | |
I0405 21:12:15.758509 29564 solver.cpp:245] Train net output #32: loss/loss11 = 5.79354e-05 (* 0.0454545 = 2.63343e-06 loss) | |
I0405 21:12:15.758523 29564 solver.cpp:245] Train net output #33: loss/loss12 = 5.42817e-05 (* 0.0454545 = 2.46735e-06 loss) | |
I0405 21:12:15.758538 29564 solver.cpp:245] Train net output #34: loss/loss13 = 5.82726e-05 (* 0.0454545 = 2.64876e-06 loss) | |
I0405 21:12:15.758553 29564 solver.cpp:245] Train net output #35: loss/loss14 = 5.61552e-05 (* 0.0454545 = 2.55251e-06 loss) | |
I0405 21:12:15.758566 29564 solver.cpp:245] Train net output #36: loss/loss15 = 6.30124e-05 (* 0.0454545 = 2.8642e-06 loss) | |
I0405 21:12:15.758580 29564 solver.cpp:245] Train net output #37: loss/loss16 = 5.63848e-05 (* 0.0454545 = 2.56294e-06 loss) | |
I0405 21:12:15.758594 29564 solver.cpp:245] Train net output #38: loss/loss17 = 5.34057e-05 (* 0.0454545 = 2.42753e-06 loss) | |
I0405 21:12:15.758625 29564 solver.cpp:245] Train net output #39: loss/loss18 = 4.98044e-05 (* 0.0454545 = 2.26383e-06 loss) | |
I0405 21:12:15.758641 29564 solver.cpp:245] Train net output #40: loss/loss19 = 5.65428e-05 (* 0.0454545 = 2.57013e-06 loss) | |
I0405 21:12:15.758654 29564 solver.cpp:245] Train net output #41: loss/loss20 = 5.59082e-05 (* 0.0454545 = 2.54128e-06 loss) | |
I0405 21:12:15.758668 29564 solver.cpp:245] Train net output #42: loss/loss21 = 5.07127e-05 (* 0.0454545 = 2.30512e-06 loss) | |
I0405 21:12:15.758683 29564 solver.cpp:245] Train net output #43: loss/loss22 = 5.49323e-05 (* 0.0454545 = 2.49692e-06 loss) | |
I0405 21:12:15.758695 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 21:12:15.758708 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000891749 | |
I0405 21:12:15.758720 29564 sgd_solver.cpp:106] Iteration 57500, lr = 0.009425 | |
I0405 21:16:07.710180 29564 solver.cpp:229] Iteration 58000, loss = 0.816059 | |
I0405 21:16:07.710362 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.34375 | |
I0405 21:16:07.710383 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125 | |
I0405 21:16:07.710397 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0405 21:16:07.710408 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.21875 | |
I0405 21:16:07.710420 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.34375 | |
I0405 21:16:07.710433 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5625 | |
I0405 21:16:07.710444 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.875 | |
I0405 21:16:07.710456 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0405 21:16:07.710469 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0405 21:16:07.710480 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 21:16:07.710492 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 21:16:07.710505 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 21:16:07.710517 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 21:16:07.710530 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 21:16:07.710541 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 21:16:07.710552 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 21:16:07.710564 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 21:16:07.710575 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 21:16:07.710587 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 21:16:07.710598 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 21:16:07.710610 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 21:16:07.710621 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 21:16:07.710638 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.59732 (* 0.0454545 = 0.11806 loss) | |
I0405 21:16:07.710654 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.20317 (* 0.0454545 = 0.145599 loss) | |
I0405 21:16:07.710667 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.25816 (* 0.0454545 = 0.148098 loss) | |
I0405 21:16:07.710681 29564 solver.cpp:245] Train net output #25: loss/loss04 = 2.79697 (* 0.0454545 = 0.127135 loss) | |
I0405 21:16:07.710695 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.66937 (* 0.0454545 = 0.121335 loss) | |
I0405 21:16:07.710710 29564 solver.cpp:245] Train net output #27: loss/loss06 = 1.47288 (* 0.0454545 = 0.0669489 loss) | |
I0405 21:16:07.710723 29564 solver.cpp:245] Train net output #28: loss/loss07 = 0.473901 (* 0.0454545 = 0.021541 loss) | |
I0405 21:16:07.710737 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.384979 (* 0.0454545 = 0.017499 loss) | |
I0405 21:16:07.710752 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.258143 (* 0.0454545 = 0.0117338 loss) | |
I0405 21:16:07.710765 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.1261 (* 0.0454545 = 0.0057318 loss) | |
I0405 21:16:07.710780 29564 solver.cpp:245] Train net output #32: loss/loss11 = 6.11823e-05 (* 0.0454545 = 2.78101e-06 loss) | |
I0405 21:16:07.710795 29564 solver.cpp:245] Train net output #33: loss/loss12 = 6.31759e-05 (* 0.0454545 = 2.87163e-06 loss) | |
I0405 21:16:07.710809 29564 solver.cpp:245] Train net output #34: loss/loss13 = 6.44248e-05 (* 0.0454545 = 2.9284e-06 loss) | |
I0405 21:16:07.710824 29564 solver.cpp:245] Train net output #35: loss/loss14 = 5.81111e-05 (* 0.0454545 = 2.64141e-06 loss) | |
I0405 21:16:07.710839 29564 solver.cpp:245] Train net output #36: loss/loss15 = 5.73144e-05 (* 0.0454545 = 2.6052e-06 loss) | |
I0405 21:16:07.710852 29564 solver.cpp:245] Train net output #37: loss/loss16 = 5.27408e-05 (* 0.0454545 = 2.39731e-06 loss) | |
I0405 21:16:07.710866 29564 solver.cpp:245] Train net output #38: loss/loss17 = 6.13057e-05 (* 0.0454545 = 2.78662e-06 loss) | |
I0405 21:16:07.710901 29564 solver.cpp:245] Train net output #39: loss/loss18 = 5.3754e-05 (* 0.0454545 = 2.44337e-06 loss) | |
I0405 21:16:07.710916 29564 solver.cpp:245] Train net output #40: loss/loss19 = 5.36952e-05 (* 0.0454545 = 2.44069e-06 loss) | |
I0405 21:16:07.710929 29564 solver.cpp:245] Train net output #41: loss/loss20 = 4.97599e-05 (* 0.0454545 = 2.26181e-06 loss) | |
I0405 21:16:07.710943 29564 solver.cpp:245] Train net output #42: loss/loss21 = 6.22834e-05 (* 0.0454545 = 2.83107e-06 loss) | |
I0405 21:16:07.710958 29564 solver.cpp:245] Train net output #43: loss/loss22 = 5.18376e-05 (* 0.0454545 = 2.35625e-06 loss) | |
I0405 21:16:07.710969 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 21:16:07.710981 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000666282 | |
I0405 21:16:07.710996 29564 sgd_solver.cpp:106] Iteration 58000, lr = 0.00942 | |
I0405 21:19:59.155477 29564 solver.cpp:229] Iteration 58500, loss = 0.815101 | |
I0405 21:19:59.155589 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.3125 | |
I0405 21:19:59.155608 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125 | |
I0405 21:19:59.155622 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.1875 | |
I0405 21:19:59.155633 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625 | |
I0405 21:19:59.155645 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0405 21:19:59.155658 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0405 21:19:59.155668 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625 | |
I0405 21:19:59.155680 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375 | |
I0405 21:19:59.155692 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 21:19:59.155704 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 21:19:59.155716 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 21:19:59.155727 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 21:19:59.155738 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 21:19:59.155750 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 21:19:59.155761 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 21:19:59.155772 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 21:19:59.155783 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 21:19:59.155794 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 21:19:59.155807 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 21:19:59.155817 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 21:19:59.155830 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 21:19:59.155843 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 21:19:59.155858 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.07101 (* 0.0454545 = 0.094137 loss) | |
I0405 21:19:59.155871 29564 solver.cpp:245] Train net output #23: loss/loss02 = 2.94943 (* 0.0454545 = 0.134065 loss) | |
I0405 21:19:59.155885 29564 solver.cpp:245] Train net output #24: loss/loss03 = 2.8079 (* 0.0454545 = 0.127632 loss) | |
I0405 21:19:59.155900 29564 solver.cpp:245] Train net output #25: loss/loss04 = 2.93582 (* 0.0454545 = 0.133446 loss) | |
I0405 21:19:59.155913 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.65793 (* 0.0454545 = 0.120815 loss) | |
I0405 21:19:59.155926 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.30446 (* 0.0454545 = 0.104748 loss) | |
I0405 21:19:59.155941 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.27073 (* 0.0454545 = 0.0577605 loss) | |
I0405 21:19:59.155954 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.60659 (* 0.0454545 = 0.0275723 loss) | |
I0405 21:19:59.155968 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.159906 (* 0.0454545 = 0.00726846 loss) | |
I0405 21:19:59.155982 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.0194663 (* 0.0454545 = 0.000884832 loss) | |
I0405 21:19:59.155997 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.000180275 (* 0.0454545 = 8.19433e-06 loss) | |
I0405 21:19:59.156011 29564 solver.cpp:245] Train net output #33: loss/loss12 = 0.000192297 (* 0.0454545 = 8.74077e-06 loss) | |
I0405 21:19:59.156025 29564 solver.cpp:245] Train net output #34: loss/loss13 = 0.000201899 (* 0.0454545 = 9.17721e-06 loss) | |
I0405 21:19:59.156039 29564 solver.cpp:245] Train net output #35: loss/loss14 = 0.000193814 (* 0.0454545 = 8.80972e-06 loss) | |
I0405 21:19:59.156054 29564 solver.cpp:245] Train net output #36: loss/loss15 = 0.000188231 (* 0.0454545 = 8.55596e-06 loss) | |
I0405 21:19:59.156088 29564 solver.cpp:245] Train net output #37: loss/loss16 = 0.000192264 (* 0.0454545 = 8.73926e-06 loss) | |
I0405 21:19:59.156107 29564 solver.cpp:245] Train net output #38: loss/loss17 = 0.000167214 (* 0.0454545 = 7.60061e-06 loss) | |
I0405 21:19:59.156138 29564 solver.cpp:245] Train net output #39: loss/loss18 = 0.000184253 (* 0.0454545 = 8.37515e-06 loss) | |
I0405 21:19:59.156154 29564 solver.cpp:245] Train net output #40: loss/loss19 = 0.00019402 (* 0.0454545 = 8.81911e-06 loss) | |
I0405 21:19:59.156168 29564 solver.cpp:245] Train net output #41: loss/loss20 = 0.000171709 (* 0.0454545 = 7.80493e-06 loss) | |
I0405 21:19:59.156183 29564 solver.cpp:245] Train net output #42: loss/loss21 = 0.000174924 (* 0.0454545 = 7.95111e-06 loss) | |
I0405 21:19:59.156196 29564 solver.cpp:245] Train net output #43: loss/loss22 = 0.000179839 (* 0.0454545 = 8.1745e-06 loss) | |
I0405 21:19:59.156210 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 21:19:59.156224 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000347317 | |
I0405 21:19:59.156237 29564 sgd_solver.cpp:106] Iteration 58500, lr = 0.009415 | |
I0405 21:23:51.212242 29564 solver.cpp:229] Iteration 59000, loss = 0.809161 | |
I0405 21:23:51.212543 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.4375 | |
I0405 21:23:51.212563 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0405 21:23:51.212576 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0405 21:23:51.212589 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375 | |
I0405 21:23:51.212600 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.09375 | |
I0405 21:23:51.212612 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125 | |
I0405 21:23:51.212625 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0405 21:23:51.212636 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0405 21:23:51.212648 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0405 21:23:51.212659 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 21:23:51.212671 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 21:23:51.212683 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 21:23:51.212695 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 21:23:51.212707 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 21:23:51.212718 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 21:23:51.212728 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 21:23:51.212740 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 21:23:51.212751 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 21:23:51.212764 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 21:23:51.212774 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 21:23:51.212786 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 21:23:51.212798 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 21:23:51.212815 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.35023 (* 0.0454545 = 0.106828 loss) | |
I0405 21:23:51.212828 29564 solver.cpp:245] Train net output #23: loss/loss02 = 2.91164 (* 0.0454545 = 0.132347 loss) | |
I0405 21:23:51.212842 29564 solver.cpp:245] Train net output #24: loss/loss03 = 2.80783 (* 0.0454545 = 0.127629 loss) | |
I0405 21:23:51.212857 29564 solver.cpp:245] Train net output #25: loss/loss04 = 2.94714 (* 0.0454545 = 0.133961 loss) | |
I0405 21:23:51.212870 29564 solver.cpp:245] Train net output #26: loss/loss05 = 3.02953 (* 0.0454545 = 0.137706 loss) | |
I0405 21:23:51.212884 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.38453 (* 0.0454545 = 0.108388 loss) | |
I0405 21:23:51.212898 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.4673 (* 0.0454545 = 0.0666954 loss) | |
I0405 21:23:51.212913 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.572567 (* 0.0454545 = 0.0260258 loss) | |
I0405 21:23:51.212926 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.311319 (* 0.0454545 = 0.0141509 loss) | |
I0405 21:23:51.212940 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.0464404 (* 0.0454545 = 0.00211093 loss) | |
I0405 21:23:51.212959 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.000180384 (* 0.0454545 = 8.19929e-06 loss) | |
I0405 21:23:51.212973 29564 solver.cpp:245] Train net output #33: loss/loss12 = 0.000219528 (* 0.0454545 = 9.97854e-06 loss) | |
I0405 21:23:51.212988 29564 solver.cpp:245] Train net output #34: loss/loss13 = 0.000206396 (* 0.0454545 = 9.38163e-06 loss) | |
I0405 21:23:51.213002 29564 solver.cpp:245] Train net output #35: loss/loss14 = 0.000203406 (* 0.0454545 = 9.24573e-06 loss) | |
I0405 21:23:51.213016 29564 solver.cpp:245] Train net output #36: loss/loss15 = 0.000213513 (* 0.0454545 = 9.70513e-06 loss) | |
I0405 21:23:51.213032 29564 solver.cpp:245] Train net output #37: loss/loss16 = 0.000199656 (* 0.0454545 = 9.07529e-06 loss) | |
I0405 21:23:51.213047 29564 solver.cpp:245] Train net output #38: loss/loss17 = 0.000182344 (* 0.0454545 = 8.28835e-06 loss) | |
I0405 21:23:51.213074 29564 solver.cpp:245] Train net output #39: loss/loss18 = 0.000194679 (* 0.0454545 = 8.84903e-06 loss) | |
I0405 21:23:51.213089 29564 solver.cpp:245] Train net output #40: loss/loss19 = 0.000196317 (* 0.0454545 = 8.92348e-06 loss) | |
I0405 21:23:51.213104 29564 solver.cpp:245] Train net output #41: loss/loss20 = 0.000191161 (* 0.0454545 = 8.68913e-06 loss) | |
I0405 21:23:51.213117 29564 solver.cpp:245] Train net output #42: loss/loss21 = 0.000184655 (* 0.0454545 = 8.39342e-06 loss) | |
I0405 21:23:51.213132 29564 solver.cpp:245] Train net output #43: loss/loss22 = 0.000189907 (* 0.0454545 = 8.63214e-06 loss) | |
I0405 21:23:51.213145 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 21:23:51.213156 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000372767 | |
I0405 21:23:51.213170 29564 sgd_solver.cpp:106] Iteration 59000, lr = 0.00941 | |
I0405 21:27:42.535707 29564 solver.cpp:229] Iteration 59500, loss = 0.812189 | |
I0405 21:27:42.535821 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.46875 | |
I0405 21:27:42.535841 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0405 21:27:42.535854 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0405 21:27:42.535866 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0405 21:27:42.535879 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.21875 | |
I0405 21:27:42.535890 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.53125 | |
I0405 21:27:42.535902 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875 | |
I0405 21:27:42.535913 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0405 21:27:42.535925 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 21:27:42.535936 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 21:27:42.535948 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 21:27:42.535959 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 21:27:42.535971 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 21:27:42.535982 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 21:27:42.535994 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 21:27:42.536005 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 21:27:42.536016 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 21:27:42.536027 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 21:27:42.536038 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 21:27:42.536049 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 21:27:42.536062 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 21:27:42.536095 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 21:27:42.536113 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.00697 (* 0.0454545 = 0.0912261 loss) | |
I0405 21:27:42.536129 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.01683 (* 0.0454545 = 0.137129 loss) | |
I0405 21:27:42.536154 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.03449 (* 0.0454545 = 0.137931 loss) | |
I0405 21:27:42.536169 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.02635 (* 0.0454545 = 0.137562 loss) | |
I0405 21:27:42.536185 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.85848 (* 0.0454545 = 0.129931 loss) | |
I0405 21:27:42.536198 29564 solver.cpp:245] Train net output #27: loss/loss06 = 1.89554 (* 0.0454545 = 0.0861607 loss) | |
I0405 21:27:42.536212 29564 solver.cpp:245] Train net output #28: loss/loss07 = 0.985708 (* 0.0454545 = 0.0448049 loss) | |
I0405 21:27:42.536226 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.310137 (* 0.0454545 = 0.0140971 loss) | |
I0405 21:27:42.536240 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.111833 (* 0.0454545 = 0.0050833 loss) | |
I0405 21:27:42.536254 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.0500011 (* 0.0454545 = 0.00227278 loss) | |
I0405 21:27:42.536268 29564 solver.cpp:245] Train net output #32: loss/loss11 = 2.5761e-05 (* 0.0454545 = 1.17096e-06 loss) | |
I0405 21:27:42.536283 29564 solver.cpp:245] Train net output #33: loss/loss12 = 3.02822e-05 (* 0.0454545 = 1.37646e-06 loss) | |
I0405 21:27:42.536298 29564 solver.cpp:245] Train net output #34: loss/loss13 = 2.45972e-05 (* 0.0454545 = 1.11805e-06 loss) | |
I0405 21:27:42.536311 29564 solver.cpp:245] Train net output #35: loss/loss14 = 2.58183e-05 (* 0.0454545 = 1.17356e-06 loss) | |
I0405 21:27:42.536325 29564 solver.cpp:245] Train net output #36: loss/loss15 = 2.48056e-05 (* 0.0454545 = 1.12753e-06 loss) | |
I0405 21:27:42.536339 29564 solver.cpp:245] Train net output #37: loss/loss16 = 2.77393e-05 (* 0.0454545 = 1.26088e-06 loss) | |
I0405 21:27:42.536353 29564 solver.cpp:245] Train net output #38: loss/loss17 = 2.41766e-05 (* 0.0454545 = 1.09893e-06 loss) | |
I0405 21:27:42.536386 29564 solver.cpp:245] Train net output #39: loss/loss18 = 2.22289e-05 (* 0.0454545 = 1.0104e-06 loss) | |
I0405 21:27:42.536401 29564 solver.cpp:245] Train net output #40: loss/loss19 = 2.47896e-05 (* 0.0454545 = 1.1268e-06 loss) | |
I0405 21:27:42.536415 29564 solver.cpp:245] Train net output #41: loss/loss20 = 2.28385e-05 (* 0.0454545 = 1.03811e-06 loss) | |
I0405 21:27:42.536429 29564 solver.cpp:245] Train net output #42: loss/loss21 = 2.57254e-05 (* 0.0454545 = 1.16933e-06 loss) | |
I0405 21:27:42.536443 29564 solver.cpp:245] Train net output #43: loss/loss22 = 2.56679e-05 (* 0.0454545 = 1.16672e-06 loss) | |
I0405 21:27:42.536455 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 21:27:42.536468 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000613998 | |
I0405 21:27:42.536484 29564 sgd_solver.cpp:106] Iteration 59500, lr = 0.009405 | |
I0405 21:31:34.631546 29564 solver.cpp:338] Iteration 60000, Testing net (#0) | |
I0405 21:31:44.912168 29564 solver.cpp:393] Test loss: 0.777785 | |
I0405 21:31:44.912214 29564 solver.cpp:406] Test net output #0: loss/accuracy01 = 0.331 | |
I0405 21:31:44.912230 29564 solver.cpp:406] Test net output #1: loss/accuracy02 = 0.124 | |
I0405 21:31:44.912242 29564 solver.cpp:406] Test net output #2: loss/accuracy03 = 0.127 | |
I0405 21:31:44.912257 29564 solver.cpp:406] Test net output #3: loss/accuracy04 = 0.155 | |
I0405 21:31:44.912269 29564 solver.cpp:406] Test net output #4: loss/accuracy05 = 0.251 | |
I0405 21:31:44.912281 29564 solver.cpp:406] Test net output #5: loss/accuracy06 = 0.539 | |
I0405 21:31:44.912292 29564 solver.cpp:406] Test net output #6: loss/accuracy07 = 0.892 | |
I0405 21:31:44.912303 29564 solver.cpp:406] Test net output #7: loss/accuracy08 = 0.97 | |
I0405 21:31:44.912315 29564 solver.cpp:406] Test net output #8: loss/accuracy09 = 0.995 | |
I0405 21:31:44.912327 29564 solver.cpp:406] Test net output #9: loss/accuracy10 = 0.998 | |
I0405 21:31:44.912338 29564 solver.cpp:406] Test net output #10: loss/accuracy11 = 1 | |
I0405 21:31:44.912349 29564 solver.cpp:406] Test net output #11: loss/accuracy12 = 1 | |
I0405 21:31:44.912361 29564 solver.cpp:406] Test net output #12: loss/accuracy13 = 1 | |
I0405 21:31:44.912371 29564 solver.cpp:406] Test net output #13: loss/accuracy14 = 1 | |
I0405 21:31:44.912384 29564 solver.cpp:406] Test net output #14: loss/accuracy15 = 1 | |
I0405 21:31:44.912395 29564 solver.cpp:406] Test net output #15: loss/accuracy16 = 1 | |
I0405 21:31:44.912405 29564 solver.cpp:406] Test net output #16: loss/accuracy17 = 1 | |
I0405 21:31:44.912416 29564 solver.cpp:406] Test net output #17: loss/accuracy18 = 1 | |
I0405 21:31:44.912427 29564 solver.cpp:406] Test net output #18: loss/accuracy19 = 1 | |
I0405 21:31:44.912438 29564 solver.cpp:406] Test net output #19: loss/accuracy20 = 1 | |
I0405 21:31:44.912449 29564 solver.cpp:406] Test net output #20: loss/accuracy21 = 1 | |
I0405 21:31:44.912461 29564 solver.cpp:406] Test net output #21: loss/accuracy22 = 1 | |
I0405 21:31:44.912475 29564 solver.cpp:406] Test net output #22: loss/loss01 = 2.64148 (* 0.0454545 = 0.120067 loss) | |
I0405 21:31:44.912489 29564 solver.cpp:406] Test net output #23: loss/loss02 = 3.09037 (* 0.0454545 = 0.140471 loss) | |
I0405 21:31:44.912503 29564 solver.cpp:406] Test net output #24: loss/loss03 = 3.07847 (* 0.0454545 = 0.139931 loss) | |
I0405 21:31:44.912516 29564 solver.cpp:406] Test net output #25: loss/loss04 = 2.99563 (* 0.0454545 = 0.136165 loss) | |
I0405 21:31:44.912530 29564 solver.cpp:406] Test net output #26: loss/loss05 = 2.76015 (* 0.0454545 = 0.125462 loss) | |
I0405 21:31:44.912544 29564 solver.cpp:406] Test net output #27: loss/loss06 = 1.72869 (* 0.0454545 = 0.0785768 loss) | |
I0405 21:31:44.912559 29564 solver.cpp:406] Test net output #28: loss/loss07 = 0.503852 (* 0.0454545 = 0.0229024 loss) | |
I0405 21:31:44.912571 29564 solver.cpp:406] Test net output #29: loss/loss08 = 0.217208 (* 0.0454545 = 0.0098731 loss) | |
I0405 21:31:44.912585 29564 solver.cpp:406] Test net output #30: loss/loss09 = 0.0599563 (* 0.0454545 = 0.00272529 loss) | |
I0405 21:31:44.912600 29564 solver.cpp:406] Test net output #31: loss/loss10 = 0.0324541 (* 0.0454545 = 0.00147519 loss) | |
I0405 21:31:44.912613 29564 solver.cpp:406] Test net output #32: loss/loss11 = 0.000253878 (* 0.0454545 = 1.15399e-05 loss) | |
I0405 21:31:44.912627 29564 solver.cpp:406] Test net output #33: loss/loss12 = 0.00026925 (* 0.0454545 = 1.22386e-05 loss) | |
I0405 21:31:44.912642 29564 solver.cpp:406] Test net output #34: loss/loss13 = 0.000259033 (* 0.0454545 = 1.17742e-05 loss) | |
I0405 21:31:44.912657 29564 solver.cpp:406] Test net output #35: loss/loss14 = 0.000264209 (* 0.0454545 = 1.20095e-05 loss) | |
I0405 21:31:44.912670 29564 solver.cpp:406] Test net output #36: loss/loss15 = 0.000258016 (* 0.0454545 = 1.1728e-05 loss) | |
I0405 21:31:44.912684 29564 solver.cpp:406] Test net output #37: loss/loss16 = 0.00023636 (* 0.0454545 = 1.07436e-05 loss) | |
I0405 21:31:44.912698 29564 solver.cpp:406] Test net output #38: loss/loss17 = 0.000245672 (* 0.0454545 = 1.11669e-05 loss) | |
I0405 21:31:44.912746 29564 solver.cpp:406] Test net output #39: loss/loss18 = 0.000222901 (* 0.0454545 = 1.01319e-05 loss) | |
I0405 21:31:44.912762 29564 solver.cpp:406] Test net output #40: loss/loss19 = 0.000245701 (* 0.0454545 = 1.11683e-05 loss) | |
I0405 21:31:44.912776 29564 solver.cpp:406] Test net output #41: loss/loss20 = 0.000247209 (* 0.0454545 = 1.12368e-05 loss) | |
I0405 21:31:44.912791 29564 solver.cpp:406] Test net output #42: loss/loss21 = 0.000227149 (* 0.0454545 = 1.03249e-05 loss) | |
I0405 21:31:44.912804 29564 solver.cpp:406] Test net output #43: loss/loss22 = 0.000258334 (* 0.0454545 = 1.17425e-05 loss) | |
I0405 21:31:44.912816 29564 solver.cpp:406] Test net output #44: total_accuracy = 0 | |
I0405 21:31:44.912827 29564 solver.cpp:406] Test net output #45: total_confidence = 0.00101389 | |
I0405 21:31:45.027544 29564 solver.cpp:229] Iteration 60000, loss = 0.809542 | |
I0405 21:31:45.027582 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.375 | |
I0405 21:31:45.027600 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0405 21:31:45.027611 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0405 21:31:45.027624 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625 | |
I0405 21:31:45.027637 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.125 | |
I0405 21:31:45.027648 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.34375 | |
I0405 21:31:45.027660 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.65625 | |
I0405 21:31:45.027672 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375 | |
I0405 21:31:45.027683 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0405 21:31:45.027698 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 21:31:45.027709 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 21:31:45.027720 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 21:31:45.027731 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 21:31:45.027743 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 21:31:45.027755 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 21:31:45.027765 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 21:31:45.027776 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 21:31:45.027787 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 21:31:45.027801 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 21:31:45.027813 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 21:31:45.027825 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 21:31:45.027837 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 21:31:45.027850 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.19631 (* 0.0454545 = 0.0998322 loss) | |
I0405 21:31:45.027865 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.02242 (* 0.0454545 = 0.137383 loss) | |
I0405 21:31:45.027878 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.01055 (* 0.0454545 = 0.136843 loss) | |
I0405 21:31:45.027892 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.35054 (* 0.0454545 = 0.152297 loss) | |
I0405 21:31:45.027906 29564 solver.cpp:245] Train net output #26: loss/loss05 = 3.04838 (* 0.0454545 = 0.138563 loss) | |
I0405 21:31:45.027920 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.44266 (* 0.0454545 = 0.11103 loss) | |
I0405 21:31:45.027933 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.28417 (* 0.0454545 = 0.0583713 loss) | |
I0405 21:31:45.027947 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.722235 (* 0.0454545 = 0.0328289 loss) | |
I0405 21:31:45.027961 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.0387269 (* 0.0454545 = 0.00176031 loss) | |
I0405 21:31:45.027976 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.0206097 (* 0.0454545 = 0.000936804 loss) | |
I0405 21:31:45.028007 29564 solver.cpp:245] Train net output #32: loss/loss11 = 8.22451e-05 (* 0.0454545 = 3.73841e-06 loss) | |
I0405 21:31:45.028022 29564 solver.cpp:245] Train net output #33: loss/loss12 = 7.71848e-05 (* 0.0454545 = 3.5084e-06 loss) | |
I0405 21:31:45.028036 29564 solver.cpp:245] Train net output #34: loss/loss13 = 8.48575e-05 (* 0.0454545 = 3.85716e-06 loss) | |
I0405 21:31:45.028050 29564 solver.cpp:245] Train net output #35: loss/loss14 = 9.13863e-05 (* 0.0454545 = 4.15392e-06 loss) | |
I0405 21:31:45.028064 29564 solver.cpp:245] Train net output #36: loss/loss15 = 8.47408e-05 (* 0.0454545 = 3.85186e-06 loss) | |
I0405 21:31:45.028096 29564 solver.cpp:245] Train net output #37: loss/loss16 = 8.82168e-05 (* 0.0454545 = 4.00985e-06 loss) | |
I0405 21:31:45.028111 29564 solver.cpp:245] Train net output #38: loss/loss17 = 7.78697e-05 (* 0.0454545 = 3.53953e-06 loss) | |
I0405 21:31:45.028126 29564 solver.cpp:245] Train net output #39: loss/loss18 = 6.90256e-05 (* 0.0454545 = 3.13753e-06 loss) | |
I0405 21:31:45.028139 29564 solver.cpp:245] Train net output #40: loss/loss19 = 7.20643e-05 (* 0.0454545 = 3.27565e-06 loss) | |
I0405 21:31:45.028153 29564 solver.cpp:245] Train net output #41: loss/loss20 = 7.92242e-05 (* 0.0454545 = 3.6011e-06 loss) | |
I0405 21:31:45.028167 29564 solver.cpp:245] Train net output #42: loss/loss21 = 7.23026e-05 (* 0.0454545 = 3.28648e-06 loss) | |
I0405 21:31:45.028182 29564 solver.cpp:245] Train net output #43: loss/loss22 = 8.32581e-05 (* 0.0454545 = 3.78446e-06 loss) | |
I0405 21:31:45.028192 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 21:31:45.028204 29564 solver.cpp:245] Train net output #45: total_confidence = 5.49805e-05 | |
I0405 21:31:45.028218 29564 sgd_solver.cpp:106] Iteration 60000, lr = 0.0094 | |
I0405 21:35:37.754698 29564 solver.cpp:229] Iteration 60500, loss = 0.804925 | |
I0405 21:35:37.754824 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.4375 | |
I0405 21:35:37.754844 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.1875 | |
I0405 21:35:37.754856 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.15625 | |
I0405 21:35:37.754869 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875 | |
I0405 21:35:37.754881 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125 | |
I0405 21:35:37.754894 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0405 21:35:37.754905 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.65625 | |
I0405 21:35:37.754916 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375 | |
I0405 21:35:37.754928 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.875 | |
I0405 21:35:37.754940 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 21:35:37.754951 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 21:35:37.754963 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 21:35:37.754974 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 21:35:37.754987 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 21:35:37.754997 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 21:35:37.755008 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 21:35:37.755020 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 21:35:37.755034 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 21:35:37.755048 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 21:35:37.755059 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 21:35:37.755069 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 21:35:37.755081 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 21:35:37.755097 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.09623 (* 0.0454545 = 0.0952834 loss) | |
I0405 21:35:37.755111 29564 solver.cpp:245] Train net output #23: loss/loss02 = 2.77704 (* 0.0454545 = 0.126229 loss) | |
I0405 21:35:37.755125 29564 solver.cpp:245] Train net output #24: loss/loss03 = 2.91737 (* 0.0454545 = 0.132608 loss) | |
I0405 21:35:37.755139 29564 solver.cpp:245] Train net output #25: loss/loss04 = 2.96456 (* 0.0454545 = 0.134753 loss) | |
I0405 21:35:37.755153 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.47738 (* 0.0454545 = 0.112608 loss) | |
I0405 21:35:37.755167 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.15979 (* 0.0454545 = 0.0981724 loss) | |
I0405 21:35:37.755180 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.13193 (* 0.0454545 = 0.0514514 loss) | |
I0405 21:35:37.755198 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.515937 (* 0.0454545 = 0.0234517 loss) | |
I0405 21:35:37.755213 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.476543 (* 0.0454545 = 0.021661 loss) | |
I0405 21:35:37.755226 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.172809 (* 0.0454545 = 0.00785497 loss) | |
I0405 21:35:37.755240 29564 solver.cpp:245] Train net output #32: loss/loss11 = 6.59412e-05 (* 0.0454545 = 2.99733e-06 loss) | |
I0405 21:35:37.755255 29564 solver.cpp:245] Train net output #33: loss/loss12 = 7.4859e-05 (* 0.0454545 = 3.40268e-06 loss) | |
I0405 21:35:37.755270 29564 solver.cpp:245] Train net output #34: loss/loss13 = 7.07084e-05 (* 0.0454545 = 3.21402e-06 loss) | |
I0405 21:35:37.755283 29564 solver.cpp:245] Train net output #35: loss/loss14 = 7.45789e-05 (* 0.0454545 = 3.38995e-06 loss) | |
I0405 21:35:37.755298 29564 solver.cpp:245] Train net output #36: loss/loss15 = 6.63982e-05 (* 0.0454545 = 3.0181e-06 loss) | |
I0405 21:35:37.755312 29564 solver.cpp:245] Train net output #37: loss/loss16 = 6.31582e-05 (* 0.0454545 = 2.87083e-06 loss) | |
I0405 21:35:37.755326 29564 solver.cpp:245] Train net output #38: loss/loss17 = 7.18073e-05 (* 0.0454545 = 3.26397e-06 loss) | |
I0405 21:35:37.755353 29564 solver.cpp:245] Train net output #39: loss/loss18 = 6.6565e-05 (* 0.0454545 = 3.02568e-06 loss) | |
I0405 21:35:37.755369 29564 solver.cpp:245] Train net output #40: loss/loss19 = 6.24555e-05 (* 0.0454545 = 2.83889e-06 loss) | |
I0405 21:35:37.755383 29564 solver.cpp:245] Train net output #41: loss/loss20 = 6.27672e-05 (* 0.0454545 = 2.85305e-06 loss) | |
I0405 21:35:37.755398 29564 solver.cpp:245] Train net output #42: loss/loss21 = 6.10481e-05 (* 0.0454545 = 2.77491e-06 loss) | |
I0405 21:35:37.755411 29564 solver.cpp:245] Train net output #43: loss/loss22 = 6.40505e-05 (* 0.0454545 = 2.91139e-06 loss) | |
I0405 21:35:37.755424 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 21:35:37.755435 29564 solver.cpp:245] Train net output #45: total_confidence = 0.00053562 | |
I0405 21:35:37.755448 29564 sgd_solver.cpp:106] Iteration 60500, lr = 0.009395 | |
I0405 21:39:29.837688 29564 solver.cpp:229] Iteration 61000, loss = 0.804579 | |
I0405 21:39:29.837796 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.28125 | |
I0405 21:39:29.837815 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0405 21:39:29.837828 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0405 21:39:29.837841 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375 | |
I0405 21:39:29.837852 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0405 21:39:29.837864 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0405 21:39:29.837877 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0405 21:39:29.837888 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375 | |
I0405 21:39:29.837899 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 21:39:29.837911 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 21:39:29.837924 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 21:39:29.837934 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 21:39:29.837946 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 21:39:29.837959 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 21:39:29.837970 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 21:39:29.837981 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 21:39:29.837992 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 21:39:29.838004 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 21:39:29.838016 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 21:39:29.838027 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 21:39:29.838038 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 21:39:29.838049 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 21:39:29.838064 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.50228 (* 0.0454545 = 0.11374 loss) | |
I0405 21:39:29.838079 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.05879 (* 0.0454545 = 0.139036 loss) | |
I0405 21:39:29.838093 29564 solver.cpp:245] Train net output #24: loss/loss03 = 2.99319 (* 0.0454545 = 0.136054 loss) | |
I0405 21:39:29.838106 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.08529 (* 0.0454545 = 0.140241 loss) | |
I0405 21:39:29.838120 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.74932 (* 0.0454545 = 0.124969 loss) | |
I0405 21:39:29.838135 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.24193 (* 0.0454545 = 0.101906 loss) | |
I0405 21:39:29.838150 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.2611 (* 0.0454545 = 0.0573229 loss) | |
I0405 21:39:29.838162 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.763208 (* 0.0454545 = 0.0346913 loss) | |
I0405 21:39:29.838176 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.29711 (* 0.0454545 = 0.013505 loss) | |
I0405 21:39:29.838191 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.295397 (* 0.0454545 = 0.0134272 loss) | |
I0405 21:39:29.838206 29564 solver.cpp:245] Train net output #32: loss/loss11 = 3.54126e-05 (* 0.0454545 = 1.60966e-06 loss) | |
I0405 21:39:29.838220 29564 solver.cpp:245] Train net output #33: loss/loss12 = 3.019e-05 (* 0.0454545 = 1.37227e-06 loss) | |
I0405 21:39:29.838234 29564 solver.cpp:245] Train net output #34: loss/loss13 = 3.22094e-05 (* 0.0454545 = 1.46407e-06 loss) | |
I0405 21:39:29.838249 29564 solver.cpp:245] Train net output #35: loss/loss14 = 3.1088e-05 (* 0.0454545 = 1.41309e-06 loss) | |
I0405 21:39:29.838263 29564 solver.cpp:245] Train net output #36: loss/loss15 = 2.75831e-05 (* 0.0454545 = 1.25378e-06 loss) | |
I0405 21:39:29.838277 29564 solver.cpp:245] Train net output #37: loss/loss16 = 2.83507e-05 (* 0.0454545 = 1.28867e-06 loss) | |
I0405 21:39:29.838291 29564 solver.cpp:245] Train net output #38: loss/loss17 = 2.77755e-05 (* 0.0454545 = 1.26252e-06 loss) | |
I0405 21:39:29.838322 29564 solver.cpp:245] Train net output #39: loss/loss18 = 2.85932e-05 (* 0.0454545 = 1.29969e-06 loss) | |
I0405 21:39:29.838338 29564 solver.cpp:245] Train net output #40: loss/loss19 = 3.21012e-05 (* 0.0454545 = 1.45915e-06 loss) | |
I0405 21:39:29.838352 29564 solver.cpp:245] Train net output #41: loss/loss20 = 2.56718e-05 (* 0.0454545 = 1.1669e-06 loss) | |
I0405 21:39:29.838366 29564 solver.cpp:245] Train net output #42: loss/loss21 = 3.05812e-05 (* 0.0454545 = 1.39005e-06 loss) | |
I0405 21:39:29.838382 29564 solver.cpp:245] Train net output #43: loss/loss22 = 3.33388e-05 (* 0.0454545 = 1.5154e-06 loss) | |
I0405 21:39:29.838393 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 21:39:29.838405 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000671729 | |
I0405 21:39:29.838418 29564 sgd_solver.cpp:106] Iteration 61000, lr = 0.00939 | |
I0405 21:43:22.427870 29564 solver.cpp:229] Iteration 61500, loss = 0.804815 | |
I0405 21:43:22.428061 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.65625 | |
I0405 21:43:22.428097 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.25 | |
I0405 21:43:22.428110 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.15625 | |
I0405 21:43:22.428122 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625 | |
I0405 21:43:22.428134 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125 | |
I0405 21:43:22.428146 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0405 21:43:22.428158 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875 | |
I0405 21:43:22.428170 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0405 21:43:22.428181 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 21:43:22.428194 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 21:43:22.428205 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 21:43:22.428216 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 21:43:22.428227 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 21:43:22.428238 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 21:43:22.428251 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 21:43:22.428261 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 21:43:22.428273 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 21:43:22.428284 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 21:43:22.428295 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 21:43:22.428306 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 21:43:22.428318 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 21:43:22.428329 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 21:43:22.428344 29564 solver.cpp:245] Train net output #22: loss/loss01 = 1.40838 (* 0.0454545 = 0.0640172 loss) | |
I0405 21:43:22.428359 29564 solver.cpp:245] Train net output #23: loss/loss02 = 2.94791 (* 0.0454545 = 0.133996 loss) | |
I0405 21:43:22.428372 29564 solver.cpp:245] Train net output #24: loss/loss03 = 2.7215 (* 0.0454545 = 0.123704 loss) | |
I0405 21:43:22.428385 29564 solver.cpp:245] Train net output #25: loss/loss04 = 2.67662 (* 0.0454545 = 0.121665 loss) | |
I0405 21:43:22.428400 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.44028 (* 0.0454545 = 0.110922 loss) | |
I0405 21:43:22.428413 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.00962 (* 0.0454545 = 0.0913463 loss) | |
I0405 21:43:22.428427 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.0836 (* 0.0454545 = 0.0492548 loss) | |
I0405 21:43:22.428442 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.281024 (* 0.0454545 = 0.0127738 loss) | |
I0405 21:43:22.428455 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.119262 (* 0.0454545 = 0.005421 loss) | |
I0405 21:43:22.428469 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.010551 (* 0.0454545 = 0.000479592 loss) | |
I0405 21:43:22.428484 29564 solver.cpp:245] Train net output #32: loss/loss11 = 3.88779e-05 (* 0.0454545 = 1.76718e-06 loss) | |
I0405 21:43:22.428498 29564 solver.cpp:245] Train net output #33: loss/loss12 = 4.05758e-05 (* 0.0454545 = 1.84435e-06 loss) | |
I0405 21:43:22.428513 29564 solver.cpp:245] Train net output #34: loss/loss13 = 4.31592e-05 (* 0.0454545 = 1.96178e-06 loss) | |
I0405 21:43:22.428527 29564 solver.cpp:245] Train net output #35: loss/loss14 = 4.5331e-05 (* 0.0454545 = 2.0605e-06 loss) | |
I0405 21:43:22.428541 29564 solver.cpp:245] Train net output #36: loss/loss15 = 3.98266e-05 (* 0.0454545 = 1.8103e-06 loss) | |
I0405 21:43:22.428556 29564 solver.cpp:245] Train net output #37: loss/loss16 = 4.26087e-05 (* 0.0454545 = 1.93676e-06 loss) | |
I0405 21:43:22.428570 29564 solver.cpp:245] Train net output #38: loss/loss17 = 3.595e-05 (* 0.0454545 = 1.63409e-06 loss) | |
I0405 21:43:22.428602 29564 solver.cpp:245] Train net output #39: loss/loss18 = 3.93098e-05 (* 0.0454545 = 1.78681e-06 loss) | |
I0405 21:43:22.428617 29564 solver.cpp:245] Train net output #40: loss/loss19 = 4.14796e-05 (* 0.0454545 = 1.88544e-06 loss) | |
I0405 21:43:22.428632 29564 solver.cpp:245] Train net output #41: loss/loss20 = 4.05605e-05 (* 0.0454545 = 1.84366e-06 loss) | |
I0405 21:43:22.428645 29564 solver.cpp:245] Train net output #42: loss/loss21 = 3.53839e-05 (* 0.0454545 = 1.60836e-06 loss) | |
I0405 21:43:22.428659 29564 solver.cpp:245] Train net output #43: loss/loss22 = 4.07384e-05 (* 0.0454545 = 1.85174e-06 loss) | |
I0405 21:43:22.428671 29564 solver.cpp:245] Train net output #44: total_accuracy = 0.03125 | |
I0405 21:43:22.428683 29564 solver.cpp:245] Train net output #45: total_confidence = 0.00185746 | |
I0405 21:43:22.428697 29564 sgd_solver.cpp:106] Iteration 61500, lr = 0.009385 | |
I0405 21:47:15.153421 29564 solver.cpp:229] Iteration 62000, loss = 0.801027 | |
I0405 21:47:15.153547 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.4375 | |
I0405 21:47:15.153566 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.15625 | |
I0405 21:47:15.153578 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0405 21:47:15.153591 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.28125 | |
I0405 21:47:15.153604 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.375 | |
I0405 21:47:15.153615 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.53125 | |
I0405 21:47:15.153627 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.84375 | |
I0405 21:47:15.153638 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0405 21:47:15.153650 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 21:47:15.153662 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 21:47:15.153674 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 21:47:15.153687 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 21:47:15.153697 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 21:47:15.153708 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 21:47:15.153720 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 21:47:15.153731 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 21:47:15.153743 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 21:47:15.153754 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 21:47:15.153765 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 21:47:15.153776 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 21:47:15.153787 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 21:47:15.153800 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 21:47:15.153815 29564 solver.cpp:245] Train net output #22: loss/loss01 = 1.96309 (* 0.0454545 = 0.0892312 loss) | |
I0405 21:47:15.153828 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.01643 (* 0.0454545 = 0.13711 loss) | |
I0405 21:47:15.153843 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.03588 (* 0.0454545 = 0.137995 loss) | |
I0405 21:47:15.153856 29564 solver.cpp:245] Train net output #25: loss/loss04 = 2.86916 (* 0.0454545 = 0.130417 loss) | |
I0405 21:47:15.153872 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.33598 (* 0.0454545 = 0.106181 loss) | |
I0405 21:47:15.153887 29564 solver.cpp:245] Train net output #27: loss/loss06 = 1.64435 (* 0.0454545 = 0.074743 loss) | |
I0405 21:47:15.153901 29564 solver.cpp:245] Train net output #28: loss/loss07 = 0.649853 (* 0.0454545 = 0.0295388 loss) | |
I0405 21:47:15.153916 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.514593 (* 0.0454545 = 0.0233906 loss) | |
I0405 21:47:15.153930 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.251607 (* 0.0454545 = 0.0114367 loss) | |
I0405 21:47:15.153944 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.261671 (* 0.0454545 = 0.0118941 loss) | |
I0405 21:47:15.153959 29564 solver.cpp:245] Train net output #32: loss/loss11 = 1.11986e-05 (* 0.0454545 = 5.09029e-07 loss) | |
I0405 21:47:15.153973 29564 solver.cpp:245] Train net output #33: loss/loss12 = 9.76431e-06 (* 0.0454545 = 4.43832e-07 loss) | |
I0405 21:47:15.153988 29564 solver.cpp:245] Train net output #34: loss/loss13 = 1.05429e-05 (* 0.0454545 = 4.79221e-07 loss) | |
I0405 21:47:15.154003 29564 solver.cpp:245] Train net output #35: loss/loss14 = 9.64131e-06 (* 0.0454545 = 4.38242e-07 loss) | |
I0405 21:47:15.154017 29564 solver.cpp:245] Train net output #36: loss/loss15 = 9.08992e-06 (* 0.0454545 = 4.13178e-07 loss) | |
I0405 21:47:15.154031 29564 solver.cpp:245] Train net output #37: loss/loss16 = 9.02656e-06 (* 0.0454545 = 4.10298e-07 loss) | |
I0405 21:47:15.154045 29564 solver.cpp:245] Train net output #38: loss/loss17 = 1.00362e-05 (* 0.0454545 = 4.56192e-07 loss) | |
I0405 21:47:15.154075 29564 solver.cpp:245] Train net output #39: loss/loss18 = 9.79779e-06 (* 0.0454545 = 4.45354e-07 loss) | |
I0405 21:47:15.154091 29564 solver.cpp:245] Train net output #40: loss/loss19 = 1.12284e-05 (* 0.0454545 = 5.10384e-07 loss) | |
I0405 21:47:15.154105 29564 solver.cpp:245] Train net output #41: loss/loss20 = 9.63386e-06 (* 0.0454545 = 4.37903e-07 loss) | |
I0405 21:47:15.154119 29564 solver.cpp:245] Train net output #42: loss/loss21 = 9.96914e-06 (* 0.0454545 = 4.53143e-07 loss) | |
I0405 21:47:15.154134 29564 solver.cpp:245] Train net output #43: loss/loss22 = 9.58913e-06 (* 0.0454545 = 4.3587e-07 loss) | |
I0405 21:47:15.154146 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 21:47:15.154157 29564 solver.cpp:245] Train net output #45: total_confidence = 0.00107803 | |
I0405 21:47:15.154171 29564 sgd_solver.cpp:106] Iteration 62000, lr = 0.00938 | |
I0405 21:51:07.563786 29564 solver.cpp:229] Iteration 62500, loss = 0.800968 | |
I0405 21:51:07.564055 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.5625 | |
I0405 21:51:07.564096 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.15625 | |
I0405 21:51:07.564111 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0405 21:51:07.564124 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875 | |
I0405 21:51:07.564136 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0405 21:51:07.564148 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5625 | |
I0405 21:51:07.564160 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0405 21:51:07.564172 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0405 21:51:07.564184 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 21:51:07.564196 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 21:51:07.564208 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 21:51:07.564219 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 21:51:07.564230 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 21:51:07.564242 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 21:51:07.564254 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 21:51:07.564265 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 21:51:07.564276 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 21:51:07.564287 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 21:51:07.564298 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 21:51:07.564309 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 21:51:07.564321 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 21:51:07.564332 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 21:51:07.564347 29564 solver.cpp:245] Train net output #22: loss/loss01 = 1.53607 (* 0.0454545 = 0.0698213 loss) | |
I0405 21:51:07.564363 29564 solver.cpp:245] Train net output #23: loss/loss02 = 2.72112 (* 0.0454545 = 0.123687 loss) | |
I0405 21:51:07.564376 29564 solver.cpp:245] Train net output #24: loss/loss03 = 2.94624 (* 0.0454545 = 0.13392 loss) | |
I0405 21:51:07.564390 29564 solver.cpp:245] Train net output #25: loss/loss04 = 2.64935 (* 0.0454545 = 0.120425 loss) | |
I0405 21:51:07.564405 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.56541 (* 0.0454545 = 0.11661 loss) | |
I0405 21:51:07.564419 29564 solver.cpp:245] Train net output #27: loss/loss06 = 1.63855 (* 0.0454545 = 0.0744796 loss) | |
I0405 21:51:07.564434 29564 solver.cpp:245] Train net output #28: loss/loss07 = 0.764607 (* 0.0454545 = 0.0347549 loss) | |
I0405 21:51:07.564447 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.257318 (* 0.0454545 = 0.0116963 loss) | |
I0405 21:51:07.564461 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.180264 (* 0.0454545 = 0.00819383 loss) | |
I0405 21:51:07.564476 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.195543 (* 0.0454545 = 0.0088883 loss) | |
I0405 21:51:07.564491 29564 solver.cpp:245] Train net output #32: loss/loss11 = 3.31554e-05 (* 0.0454545 = 1.50706e-06 loss) | |
I0405 21:51:07.564504 29564 solver.cpp:245] Train net output #33: loss/loss12 = 3.65587e-05 (* 0.0454545 = 1.66176e-06 loss) | |
I0405 21:51:07.564518 29564 solver.cpp:245] Train net output #34: loss/loss13 = 3.53455e-05 (* 0.0454545 = 1.60661e-06 loss) | |
I0405 21:51:07.564532 29564 solver.cpp:245] Train net output #35: loss/loss14 = 3.14615e-05 (* 0.0454545 = 1.43007e-06 loss) | |
I0405 21:51:07.564546 29564 solver.cpp:245] Train net output #36: loss/loss15 = 3.40457e-05 (* 0.0454545 = 1.54753e-06 loss) | |
I0405 21:51:07.564560 29564 solver.cpp:245] Train net output #37: loss/loss16 = 3.68824e-05 (* 0.0454545 = 1.67647e-06 loss) | |
I0405 21:51:07.564574 29564 solver.cpp:245] Train net output #38: loss/loss17 = 3.07783e-05 (* 0.0454545 = 1.39901e-06 loss) | |
I0405 21:51:07.564604 29564 solver.cpp:245] Train net output #39: loss/loss18 = 3.05382e-05 (* 0.0454545 = 1.3881e-06 loss) | |
I0405 21:51:07.564618 29564 solver.cpp:245] Train net output #40: loss/loss19 = 3.49463e-05 (* 0.0454545 = 1.58847e-06 loss) | |
I0405 21:51:07.564632 29564 solver.cpp:245] Train net output #41: loss/loss20 = 3.06314e-05 (* 0.0454545 = 1.39234e-06 loss) | |
I0405 21:51:07.564646 29564 solver.cpp:245] Train net output #42: loss/loss21 = 3.08055e-05 (* 0.0454545 = 1.40025e-06 loss) | |
I0405 21:51:07.564663 29564 solver.cpp:245] Train net output #43: loss/loss22 = 3.35278e-05 (* 0.0454545 = 1.52399e-06 loss) | |
I0405 21:51:07.564677 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 21:51:07.564688 29564 solver.cpp:245] Train net output #45: total_confidence = 0.00260502 | |
I0405 21:51:07.564702 29564 sgd_solver.cpp:106] Iteration 62500, lr = 0.009375 | |
I0405 21:54:59.801003 29564 solver.cpp:229] Iteration 63000, loss = 0.79424 | |
I0405 21:54:59.801157 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.375 | |
I0405 21:54:59.801180 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0405 21:54:59.801193 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0405 21:54:59.801206 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375 | |
I0405 21:54:59.801219 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0405 21:54:59.801231 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5 | |
I0405 21:54:59.801242 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.84375 | |
I0405 21:54:59.801254 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0405 21:54:59.801266 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0405 21:54:59.801277 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 21:54:59.801290 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 21:54:59.801301 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 21:54:59.801312 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 21:54:59.801323 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 21:54:59.801334 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 21:54:59.801347 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 21:54:59.801357 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 21:54:59.801368 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 21:54:59.801379 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 21:54:59.801390 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 21:54:59.801403 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 21:54:59.801414 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 21:54:59.801429 29564 solver.cpp:245] Train net output #22: loss/loss01 = 1.82954 (* 0.0454545 = 0.0831608 loss) | |
I0405 21:54:59.801443 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.12679 (* 0.0454545 = 0.142127 loss) | |
I0405 21:54:59.801457 29564 solver.cpp:245] Train net output #24: loss/loss03 = 2.97111 (* 0.0454545 = 0.13505 loss) | |
I0405 21:54:59.801471 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.21062 (* 0.0454545 = 0.145937 loss) | |
I0405 21:54:59.801486 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.74577 (* 0.0454545 = 0.124808 loss) | |
I0405 21:54:59.801501 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.12641 (* 0.0454545 = 0.096655 loss) | |
I0405 21:54:59.801513 29564 solver.cpp:245] Train net output #28: loss/loss07 = 0.65518 (* 0.0454545 = 0.0297809 loss) | |
I0405 21:54:59.801527 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.314033 (* 0.0454545 = 0.0142742 loss) | |
I0405 21:54:59.801542 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.0405344 (* 0.0454545 = 0.00184247 loss) | |
I0405 21:54:59.801555 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.0161294 (* 0.0454545 = 0.000733153 loss) | |
I0405 21:54:59.801569 29564 solver.cpp:245] Train net output #32: loss/loss11 = 4.29775e-05 (* 0.0454545 = 1.95352e-06 loss) | |
I0405 21:54:59.801584 29564 solver.cpp:245] Train net output #33: loss/loss12 = 5.15158e-05 (* 0.0454545 = 2.34163e-06 loss) | |
I0405 21:54:59.801597 29564 solver.cpp:245] Train net output #34: loss/loss13 = 3.90399e-05 (* 0.0454545 = 1.77454e-06 loss) | |
I0405 21:54:59.801611 29564 solver.cpp:245] Train net output #35: loss/loss14 = 4.00923e-05 (* 0.0454545 = 1.82238e-06 loss) | |
I0405 21:54:59.801625 29564 solver.cpp:245] Train net output #36: loss/loss15 = 4.88716e-05 (* 0.0454545 = 2.22143e-06 loss) | |
I0405 21:54:59.801640 29564 solver.cpp:245] Train net output #37: loss/loss16 = 4.17863e-05 (* 0.0454545 = 1.89938e-06 loss) | |
I0405 21:54:59.801652 29564 solver.cpp:245] Train net output #38: loss/loss17 = 4.70205e-05 (* 0.0454545 = 2.13729e-06 loss) | |
I0405 21:54:59.801684 29564 solver.cpp:245] Train net output #39: loss/loss18 = 3.71391e-05 (* 0.0454545 = 1.68814e-06 loss) | |
I0405 21:54:59.801699 29564 solver.cpp:245] Train net output #40: loss/loss19 = 4.30555e-05 (* 0.0454545 = 1.95707e-06 loss) | |
I0405 21:54:59.801713 29564 solver.cpp:245] Train net output #41: loss/loss20 = 4.33636e-05 (* 0.0454545 = 1.97107e-06 loss) | |
I0405 21:54:59.801728 29564 solver.cpp:245] Train net output #42: loss/loss21 = 3.78953e-05 (* 0.0454545 = 1.72251e-06 loss) | |
I0405 21:54:59.801743 29564 solver.cpp:245] Train net output #43: loss/loss22 = 4.2795e-05 (* 0.0454545 = 1.94523e-06 loss) | |
I0405 21:54:59.801755 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 21:54:59.801769 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000648586 | |
I0405 21:54:59.801784 29564 sgd_solver.cpp:106] Iteration 63000, lr = 0.00937 | |
I0405 21:58:51.672319 29564 solver.cpp:229] Iteration 63500, loss = 0.791099 | |
I0405 21:58:51.672444 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.40625 | |
I0405 21:58:51.672464 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.21875 | |
I0405 21:58:51.672477 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.03125 | |
I0405 21:58:51.672489 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.3125 | |
I0405 21:58:51.672502 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.46875 | |
I0405 21:58:51.672513 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.53125 | |
I0405 21:58:51.672524 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0405 21:58:51.672536 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0405 21:58:51.672549 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0405 21:58:51.672559 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 21:58:51.672571 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 21:58:51.672582 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 21:58:51.672595 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 21:58:51.672605 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 21:58:51.672617 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 21:58:51.672628 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 21:58:51.672639 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 21:58:51.672651 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 21:58:51.672662 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 21:58:51.672673 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 21:58:51.672684 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 21:58:51.672696 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 21:58:51.672711 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.07743 (* 0.0454545 = 0.0944288 loss) | |
I0405 21:58:51.672725 29564 solver.cpp:245] Train net output #23: loss/loss02 = 2.6942 (* 0.0454545 = 0.122464 loss) | |
I0405 21:58:51.672740 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.14688 (* 0.0454545 = 0.14304 loss) | |
I0405 21:58:51.672754 29564 solver.cpp:245] Train net output #25: loss/loss04 = 2.53051 (* 0.0454545 = 0.115023 loss) | |
I0405 21:58:51.672767 29564 solver.cpp:245] Train net output #26: loss/loss05 = 1.91678 (* 0.0454545 = 0.0871262 loss) | |
I0405 21:58:51.672781 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.00881 (* 0.0454545 = 0.0913095 loss) | |
I0405 21:58:51.672796 29564 solver.cpp:245] Train net output #28: loss/loss07 = 0.712058 (* 0.0454545 = 0.0323663 loss) | |
I0405 21:58:51.672809 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.65672 (* 0.0454545 = 0.0298509 loss) | |
I0405 21:58:51.672823 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.4601 (* 0.0454545 = 0.0209136 loss) | |
I0405 21:58:51.672837 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.327644 (* 0.0454545 = 0.0148929 loss) | |
I0405 21:58:51.672852 29564 solver.cpp:245] Train net output #32: loss/loss11 = 6.66158e-05 (* 0.0454545 = 3.02799e-06 loss) | |
I0405 21:58:51.672866 29564 solver.cpp:245] Train net output #33: loss/loss12 = 7.33031e-05 (* 0.0454545 = 3.33196e-06 loss) | |
I0405 21:58:51.672880 29564 solver.cpp:245] Train net output #34: loss/loss13 = 6.04913e-05 (* 0.0454545 = 2.7496e-06 loss) | |
I0405 21:58:51.672894 29564 solver.cpp:245] Train net output #35: loss/loss14 = 6.11771e-05 (* 0.0454545 = 2.78078e-06 loss) | |
I0405 21:58:51.672909 29564 solver.cpp:245] Train net output #36: loss/loss15 = 6.86002e-05 (* 0.0454545 = 3.11819e-06 loss) | |
I0405 21:58:51.672924 29564 solver.cpp:245] Train net output #37: loss/loss16 = 6.36441e-05 (* 0.0454545 = 2.89291e-06 loss) | |
I0405 21:58:51.672937 29564 solver.cpp:245] Train net output #38: loss/loss17 = 6.34747e-05 (* 0.0454545 = 2.88521e-06 loss) | |
I0405 21:58:51.672967 29564 solver.cpp:245] Train net output #39: loss/loss18 = 5.87223e-05 (* 0.0454545 = 2.66919e-06 loss) | |
I0405 21:58:51.672983 29564 solver.cpp:245] Train net output #40: loss/loss19 = 6.44121e-05 (* 0.0454545 = 2.92782e-06 loss) | |
I0405 21:58:51.672997 29564 solver.cpp:245] Train net output #41: loss/loss20 = 6.54466e-05 (* 0.0454545 = 2.97485e-06 loss) | |
I0405 21:58:51.673012 29564 solver.cpp:245] Train net output #42: loss/loss21 = 5.92592e-05 (* 0.0454545 = 2.6936e-06 loss) | |
I0405 21:58:51.673025 29564 solver.cpp:245] Train net output #43: loss/loss22 = 5.90648e-05 (* 0.0454545 = 2.68476e-06 loss) | |
I0405 21:58:51.673038 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 21:58:51.673050 29564 solver.cpp:245] Train net output #45: total_confidence = 0.00217719 | |
I0405 21:58:51.673065 29564 sgd_solver.cpp:106] Iteration 63500, lr = 0.009365 | |
I0405 22:02:44.024389 29564 solver.cpp:229] Iteration 64000, loss = 0.792084 | |
I0405 22:02:44.024585 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.46875 | |
I0405 22:02:44.024605 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.0625 | |
I0405 22:02:44.024617 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0405 22:02:44.024631 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.28125 | |
I0405 22:02:44.024642 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0405 22:02:44.024653 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5625 | |
I0405 22:02:44.024665 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.78125 | |
I0405 22:02:44.024677 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0405 22:02:44.024689 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625 | |
I0405 22:02:44.024700 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0405 22:02:44.024714 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 22:02:44.024725 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 22:02:44.024737 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 22:02:44.024749 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 22:02:44.024760 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 22:02:44.024772 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 22:02:44.024783 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 22:02:44.024796 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 22:02:44.024806 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 22:02:44.024817 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 22:02:44.024829 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 22:02:44.024842 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 22:02:44.024857 29564 solver.cpp:245] Train net output #22: loss/loss01 = 1.80357 (* 0.0454545 = 0.0819806 loss) | |
I0405 22:02:44.024870 29564 solver.cpp:245] Train net output #23: loss/loss02 = 2.7169 (* 0.0454545 = 0.123495 loss) | |
I0405 22:02:44.024885 29564 solver.cpp:245] Train net output #24: loss/loss03 = 2.94936 (* 0.0454545 = 0.134062 loss) | |
I0405 22:02:44.024899 29564 solver.cpp:245] Train net output #25: loss/loss04 = 2.87594 (* 0.0454545 = 0.130724 loss) | |
I0405 22:02:44.024914 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.60265 (* 0.0454545 = 0.118302 loss) | |
I0405 22:02:44.024929 29564 solver.cpp:245] Train net output #27: loss/loss06 = 1.82375 (* 0.0454545 = 0.0828978 loss) | |
I0405 22:02:44.024942 29564 solver.cpp:245] Train net output #28: loss/loss07 = 0.909634 (* 0.0454545 = 0.041347 loss) | |
I0405 22:02:44.024956 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.71771 (* 0.0454545 = 0.0326232 loss) | |
I0405 22:02:44.024971 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.622978 (* 0.0454545 = 0.0283172 loss) | |
I0405 22:02:44.024984 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.502024 (* 0.0454545 = 0.0228193 loss) | |
I0405 22:02:44.024999 29564 solver.cpp:245] Train net output #32: loss/loss11 = 4.65212e-05 (* 0.0454545 = 2.1146e-06 loss) | |
I0405 22:02:44.025014 29564 solver.cpp:245] Train net output #33: loss/loss12 = 5.4306e-05 (* 0.0454545 = 2.46845e-06 loss) | |
I0405 22:02:44.025028 29564 solver.cpp:245] Train net output #34: loss/loss13 = 4.64811e-05 (* 0.0454545 = 2.11278e-06 loss) | |
I0405 22:02:44.025043 29564 solver.cpp:245] Train net output #35: loss/loss14 = 4.36364e-05 (* 0.0454545 = 1.98347e-06 loss) | |
I0405 22:02:44.025058 29564 solver.cpp:245] Train net output #36: loss/loss15 = 5.00596e-05 (* 0.0454545 = 2.27544e-06 loss) | |
I0405 22:02:44.025071 29564 solver.cpp:245] Train net output #37: loss/loss16 = 4.92624e-05 (* 0.0454545 = 2.2392e-06 loss) | |
I0405 22:02:44.025085 29564 solver.cpp:245] Train net output #38: loss/loss17 = 4.74654e-05 (* 0.0454545 = 2.15752e-06 loss) | |
I0405 22:02:44.025115 29564 solver.cpp:245] Train net output #39: loss/loss18 = 3.70359e-05 (* 0.0454545 = 1.68345e-06 loss) | |
I0405 22:02:44.025135 29564 solver.cpp:245] Train net output #40: loss/loss19 = 5.06222e-05 (* 0.0454545 = 2.30101e-06 loss) | |
I0405 22:02:44.025149 29564 solver.cpp:245] Train net output #41: loss/loss20 = 4.55375e-05 (* 0.0454545 = 2.06989e-06 loss) | |
I0405 22:02:44.025163 29564 solver.cpp:245] Train net output #42: loss/loss21 = 4.14462e-05 (* 0.0454545 = 1.88392e-06 loss) | |
I0405 22:02:44.025177 29564 solver.cpp:245] Train net output #43: loss/loss22 = 4.46848e-05 (* 0.0454545 = 2.03113e-06 loss) | |
I0405 22:02:44.025189 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 22:02:44.025202 29564 solver.cpp:245] Train net output #45: total_confidence = 0.00253083 | |
I0405 22:02:44.025215 29564 sgd_solver.cpp:106] Iteration 64000, lr = 0.00936 | |
I0405 22:06:35.617768 29564 solver.cpp:229] Iteration 64500, loss = 0.792169 | |
I0405 22:06:35.617904 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.28125 | |
I0405 22:06:35.617924 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.15625 | |
I0405 22:06:35.617944 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0405 22:06:35.617960 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.3125 | |
I0405 22:06:35.617972 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.1875 | |
I0405 22:06:35.617985 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.59375 | |
I0405 22:06:35.618005 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0405 22:06:35.618024 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0405 22:06:35.618036 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 22:06:35.618047 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 22:06:35.618058 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 22:06:35.618070 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 22:06:35.618082 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 22:06:35.618093 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 22:06:35.618104 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 22:06:35.618115 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 22:06:35.618127 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 22:06:35.618139 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 22:06:35.618149 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 22:06:35.618160 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 22:06:35.618171 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 22:06:35.618182 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 22:06:35.618197 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.44826 (* 0.0454545 = 0.111284 loss) | |
I0405 22:06:35.618212 29564 solver.cpp:245] Train net output #23: loss/loss02 = 2.7631 (* 0.0454545 = 0.125595 loss) | |
I0405 22:06:35.618227 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.00923 (* 0.0454545 = 0.136783 loss) | |
I0405 22:06:35.618239 29564 solver.cpp:245] Train net output #25: loss/loss04 = 2.74262 (* 0.0454545 = 0.124665 loss) | |
I0405 22:06:35.618253 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.82195 (* 0.0454545 = 0.12827 loss) | |
I0405 22:06:35.618268 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.0517 (* 0.0454545 = 0.0932589 loss) | |
I0405 22:06:35.618283 29564 solver.cpp:245] Train net output #28: loss/loss07 = 0.935275 (* 0.0454545 = 0.0425125 loss) | |
I0405 22:06:35.618296 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.27531 (* 0.0454545 = 0.0125141 loss) | |
I0405 22:06:35.618310 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.26618 (* 0.0454545 = 0.0120991 loss) | |
I0405 22:06:35.618324 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.00466538 (* 0.0454545 = 0.000212063 loss) | |
I0405 22:06:35.618338 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.000219418 (* 0.0454545 = 9.97355e-06 loss) | |
I0405 22:06:35.618352 29564 solver.cpp:245] Train net output #33: loss/loss12 = 0.000225419 (* 0.0454545 = 1.02463e-05 loss) | |
I0405 22:06:35.618366 29564 solver.cpp:245] Train net output #34: loss/loss13 = 0.000219093 (* 0.0454545 = 9.95875e-06 loss) | |
I0405 22:06:35.618383 29564 solver.cpp:245] Train net output #35: loss/loss14 = 0.000202585 (* 0.0454545 = 9.20839e-06 loss) | |
I0405 22:06:35.618413 29564 solver.cpp:245] Train net output #36: loss/loss15 = 0.000223765 (* 0.0454545 = 1.01711e-05 loss) | |
I0405 22:06:35.618443 29564 solver.cpp:245] Train net output #37: loss/loss16 = 0.000211836 (* 0.0454545 = 9.62889e-06 loss) | |
I0405 22:06:35.618486 29564 solver.cpp:245] Train net output #38: loss/loss17 = 0.000204731 (* 0.0454545 = 9.30595e-06 loss) | |
I0405 22:06:35.618520 29564 solver.cpp:245] Train net output #39: loss/loss18 = 0.00018212 (* 0.0454545 = 8.27817e-06 loss) | |
I0405 22:06:35.618535 29564 solver.cpp:245] Train net output #40: loss/loss19 = 0.000224586 (* 0.0454545 = 1.02084e-05 loss) | |
I0405 22:06:35.618549 29564 solver.cpp:245] Train net output #41: loss/loss20 = 0.000211564 (* 0.0454545 = 9.61653e-06 loss) | |
I0405 22:06:35.618563 29564 solver.cpp:245] Train net output #42: loss/loss21 = 0.00018244 (* 0.0454545 = 8.29273e-06 loss) | |
I0405 22:06:35.618577 29564 solver.cpp:245] Train net output #43: loss/loss22 = 0.000202575 (* 0.0454545 = 9.20794e-06 loss) | |
I0405 22:06:35.618592 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 22:06:35.618603 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000549167 | |
I0405 22:06:35.618618 29564 sgd_solver.cpp:106] Iteration 64500, lr = 0.009355 | |
I0405 22:10:27.856535 29564 solver.cpp:338] Iteration 65000, Testing net (#0) | |
I0405 22:10:38.128298 29564 solver.cpp:393] Test loss: 0.740262 | |
I0405 22:10:38.128346 29564 solver.cpp:406] Test net output #0: loss/accuracy01 = 0.315 | |
I0405 22:10:38.128362 29564 solver.cpp:406] Test net output #1: loss/accuracy02 = 0.141 | |
I0405 22:10:38.128376 29564 solver.cpp:406] Test net output #2: loss/accuracy03 = 0.146 | |
I0405 22:10:38.128387 29564 solver.cpp:406] Test net output #3: loss/accuracy04 = 0.164 | |
I0405 22:10:38.128399 29564 solver.cpp:406] Test net output #4: loss/accuracy05 = 0.289 | |
I0405 22:10:38.128410 29564 solver.cpp:406] Test net output #5: loss/accuracy06 = 0.544 | |
I0405 22:10:38.128422 29564 solver.cpp:406] Test net output #6: loss/accuracy07 = 0.893 | |
I0405 22:10:38.128433 29564 solver.cpp:406] Test net output #7: loss/accuracy08 = 0.97 | |
I0405 22:10:38.128444 29564 solver.cpp:406] Test net output #8: loss/accuracy09 = 0.995 | |
I0405 22:10:38.128456 29564 solver.cpp:406] Test net output #9: loss/accuracy10 = 0.998 | |
I0405 22:10:38.128468 29564 solver.cpp:406] Test net output #10: loss/accuracy11 = 1 | |
I0405 22:10:38.128480 29564 solver.cpp:406] Test net output #11: loss/accuracy12 = 1 | |
I0405 22:10:38.128491 29564 solver.cpp:406] Test net output #12: loss/accuracy13 = 1 | |
I0405 22:10:38.128502 29564 solver.cpp:406] Test net output #13: loss/accuracy14 = 1 | |
I0405 22:10:38.128515 29564 solver.cpp:406] Test net output #14: loss/accuracy15 = 1 | |
I0405 22:10:38.128525 29564 solver.cpp:406] Test net output #15: loss/accuracy16 = 1 | |
I0405 22:10:38.128536 29564 solver.cpp:406] Test net output #16: loss/accuracy17 = 1 | |
I0405 22:10:38.128547 29564 solver.cpp:406] Test net output #17: loss/accuracy18 = 1 | |
I0405 22:10:38.128559 29564 solver.cpp:406] Test net output #18: loss/accuracy19 = 1 | |
I0405 22:10:38.128569 29564 solver.cpp:406] Test net output #19: loss/accuracy20 = 1 | |
I0405 22:10:38.128582 29564 solver.cpp:406] Test net output #20: loss/accuracy21 = 1 | |
I0405 22:10:38.128592 29564 solver.cpp:406] Test net output #21: loss/accuracy22 = 1 | |
I0405 22:10:38.128607 29564 solver.cpp:406] Test net output #22: loss/loss01 = 2.50072 (* 0.0454545 = 0.113669 loss) | |
I0405 22:10:38.128623 29564 solver.cpp:406] Test net output #23: loss/loss02 = 2.92555 (* 0.0454545 = 0.132979 loss) | |
I0405 22:10:38.128635 29564 solver.cpp:406] Test net output #24: loss/loss03 = 2.94173 (* 0.0454545 = 0.133715 loss) | |
I0405 22:10:38.128649 29564 solver.cpp:406] Test net output #25: loss/loss04 = 2.90285 (* 0.0454545 = 0.131948 loss) | |
I0405 22:10:38.128665 29564 solver.cpp:406] Test net output #26: loss/loss05 = 2.61447 (* 0.0454545 = 0.11884 loss) | |
I0405 22:10:38.128680 29564 solver.cpp:406] Test net output #27: loss/loss06 = 1.65994 (* 0.0454545 = 0.0754518 loss) | |
I0405 22:10:38.128693 29564 solver.cpp:406] Test net output #28: loss/loss07 = 0.467016 (* 0.0454545 = 0.021228 loss) | |
I0405 22:10:38.128707 29564 solver.cpp:406] Test net output #29: loss/loss08 = 0.197408 (* 0.0454545 = 0.00897308 loss) | |
I0405 22:10:38.128721 29564 solver.cpp:406] Test net output #30: loss/loss09 = 0.0487873 (* 0.0454545 = 0.00221761 loss) | |
I0405 22:10:38.128736 29564 solver.cpp:406] Test net output #31: loss/loss10 = 0.0261659 (* 0.0454545 = 0.00118936 loss) | |
I0405 22:10:38.128749 29564 solver.cpp:406] Test net output #32: loss/loss11 = 9.62871e-05 (* 0.0454545 = 4.37669e-06 loss) | |
I0405 22:10:38.128763 29564 solver.cpp:406] Test net output #33: loss/loss12 = 0.000103084 (* 0.0454545 = 4.68566e-06 loss) | |
I0405 22:10:38.128777 29564 solver.cpp:406] Test net output #34: loss/loss13 = 9.33648e-05 (* 0.0454545 = 4.24386e-06 loss) | |
I0405 22:10:38.128792 29564 solver.cpp:406] Test net output #35: loss/loss14 = 9.74204e-05 (* 0.0454545 = 4.4282e-06 loss) | |
I0405 22:10:38.128805 29564 solver.cpp:406] Test net output #36: loss/loss15 = 0.000101831 (* 0.0454545 = 4.62867e-06 loss) | |
I0405 22:10:38.128819 29564 solver.cpp:406] Test net output #37: loss/loss16 = 8.67052e-05 (* 0.0454545 = 3.94114e-06 loss) | |
I0405 22:10:38.128834 29564 solver.cpp:406] Test net output #38: loss/loss17 = 8.6947e-05 (* 0.0454545 = 3.95214e-06 loss) | |
I0405 22:10:38.128882 29564 solver.cpp:406] Test net output #39: loss/loss18 = 8.96003e-05 (* 0.0454545 = 4.07274e-06 loss) | |
I0405 22:10:38.128898 29564 solver.cpp:406] Test net output #40: loss/loss19 = 9.19971e-05 (* 0.0454545 = 4.18169e-06 loss) | |
I0405 22:10:38.128912 29564 solver.cpp:406] Test net output #41: loss/loss20 = 9.51282e-05 (* 0.0454545 = 4.32401e-06 loss) | |
I0405 22:10:38.128926 29564 solver.cpp:406] Test net output #42: loss/loss21 = 8.80604e-05 (* 0.0454545 = 4.00275e-06 loss) | |
I0405 22:10:38.128940 29564 solver.cpp:406] Test net output #43: loss/loss22 = 9.39869e-05 (* 0.0454545 = 4.27213e-06 loss) | |
I0405 22:10:38.128952 29564 solver.cpp:406] Test net output #44: total_accuracy = 0.001 | |
I0405 22:10:38.128963 29564 solver.cpp:406] Test net output #45: total_confidence = 0.000624989 | |
I0405 22:10:38.243957 29564 solver.cpp:229] Iteration 65000, loss = 0.78951 | |
I0405 22:10:38.243998 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.4375 | |
I0405 22:10:38.244014 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.03125 | |
I0405 22:10:38.244025 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0405 22:10:38.244038 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.125 | |
I0405 22:10:38.244050 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0405 22:10:38.244061 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5 | |
I0405 22:10:38.244094 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.71875 | |
I0405 22:10:38.244108 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0405 22:10:38.244120 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 22:10:38.244132 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 22:10:38.244144 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 22:10:38.244156 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 22:10:38.244168 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 22:10:38.244179 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 22:10:38.244189 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 22:10:38.244200 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 22:10:38.244212 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 22:10:38.244225 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 22:10:38.244235 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 22:10:38.244249 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 22:10:38.244261 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 22:10:38.244272 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 22:10:38.244287 29564 solver.cpp:245] Train net output #22: loss/loss01 = 1.69845 (* 0.0454545 = 0.0772024 loss) | |
I0405 22:10:38.244302 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.0131 (* 0.0454545 = 0.136959 loss) | |
I0405 22:10:38.244315 29564 solver.cpp:245] Train net output #24: loss/loss03 = 2.84513 (* 0.0454545 = 0.129324 loss) | |
I0405 22:10:38.244329 29564 solver.cpp:245] Train net output #25: loss/loss04 = 2.73364 (* 0.0454545 = 0.124257 loss) | |
I0405 22:10:38.244343 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.56027 (* 0.0454545 = 0.116376 loss) | |
I0405 22:10:38.244357 29564 solver.cpp:245] Train net output #27: loss/loss06 = 1.99284 (* 0.0454545 = 0.0905836 loss) | |
I0405 22:10:38.244370 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.11235 (* 0.0454545 = 0.0505613 loss) | |
I0405 22:10:38.244385 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.370025 (* 0.0454545 = 0.0168193 loss) | |
I0405 22:10:38.244400 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.217072 (* 0.0454545 = 0.00986691 loss) | |
I0405 22:10:38.244413 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.00349594 (* 0.0454545 = 0.000158906 loss) | |
I0405 22:10:38.244446 29564 solver.cpp:245] Train net output #32: loss/loss11 = 6.26095e-05 (* 0.0454545 = 2.84589e-06 loss) | |
I0405 22:10:38.244460 29564 solver.cpp:245] Train net output #33: loss/loss12 = 6.16871e-05 (* 0.0454545 = 2.80396e-06 loss) | |
I0405 22:10:38.244474 29564 solver.cpp:245] Train net output #34: loss/loss13 = 6.4501e-05 (* 0.0454545 = 2.93186e-06 loss) | |
I0405 22:10:38.244489 29564 solver.cpp:245] Train net output #35: loss/loss14 = 6.2049e-05 (* 0.0454545 = 2.82041e-06 loss) | |
I0405 22:10:38.244503 29564 solver.cpp:245] Train net output #36: loss/loss15 = 6.61145e-05 (* 0.0454545 = 3.0052e-06 loss) | |
I0405 22:10:38.244518 29564 solver.cpp:245] Train net output #37: loss/loss16 = 6.34377e-05 (* 0.0454545 = 2.88353e-06 loss) | |
I0405 22:10:38.244532 29564 solver.cpp:245] Train net output #38: loss/loss17 = 5.90989e-05 (* 0.0454545 = 2.68631e-06 loss) | |
I0405 22:10:38.244546 29564 solver.cpp:245] Train net output #39: loss/loss18 = 5.29847e-05 (* 0.0454545 = 2.40839e-06 loss) | |
I0405 22:10:38.244560 29564 solver.cpp:245] Train net output #40: loss/loss19 = 5.58053e-05 (* 0.0454545 = 2.5366e-06 loss) | |
I0405 22:10:38.244575 29564 solver.cpp:245] Train net output #41: loss/loss20 = 5.74576e-05 (* 0.0454545 = 2.61171e-06 loss) | |
I0405 22:10:38.244588 29564 solver.cpp:245] Train net output #42: loss/loss21 = 5.4423e-05 (* 0.0454545 = 2.47377e-06 loss) | |
I0405 22:10:38.244606 29564 solver.cpp:245] Train net output #43: loss/loss22 = 5.53552e-05 (* 0.0454545 = 2.51615e-06 loss) | |
I0405 22:10:38.244617 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 22:10:38.244629 29564 solver.cpp:245] Train net output #45: total_confidence = 0.00122941 | |
I0405 22:10:38.244643 29564 sgd_solver.cpp:106] Iteration 65000, lr = 0.00935 | |
I0405 22:14:30.155336 29564 solver.cpp:229] Iteration 65500, loss = 0.78227 | |
I0405 22:14:30.155570 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.25 | |
I0405 22:14:30.155588 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125 | |
I0405 22:14:30.155601 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.25 | |
I0405 22:14:30.155613 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625 | |
I0405 22:14:30.155625 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125 | |
I0405 22:14:30.155639 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.53125 | |
I0405 22:14:30.155652 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0405 22:14:30.155663 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.875 | |
I0405 22:14:30.155675 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0405 22:14:30.155688 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 22:14:30.155699 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 22:14:30.155710 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 22:14:30.155721 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 22:14:30.155733 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 22:14:30.155745 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 22:14:30.155755 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 22:14:30.155766 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 22:14:30.155778 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 22:14:30.155789 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 22:14:30.155800 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 22:14:30.155812 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 22:14:30.155824 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 22:14:30.155840 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.50681 (* 0.0454545 = 0.113946 loss) | |
I0405 22:14:30.155854 29564 solver.cpp:245] Train net output #23: loss/loss02 = 2.92416 (* 0.0454545 = 0.132916 loss) | |
I0405 22:14:30.155869 29564 solver.cpp:245] Train net output #24: loss/loss03 = 2.82716 (* 0.0454545 = 0.128507 loss) | |
I0405 22:14:30.155882 29564 solver.cpp:245] Train net output #25: loss/loss04 = 2.76676 (* 0.0454545 = 0.125762 loss) | |
I0405 22:14:30.155896 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.46701 (* 0.0454545 = 0.112137 loss) | |
I0405 22:14:30.155910 29564 solver.cpp:245] Train net output #27: loss/loss06 = 1.66802 (* 0.0454545 = 0.0758193 loss) | |
I0405 22:14:30.155923 29564 solver.cpp:245] Train net output #28: loss/loss07 = 0.865469 (* 0.0454545 = 0.0393395 loss) | |
I0405 22:14:30.155937 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.582242 (* 0.0454545 = 0.0264655 loss) | |
I0405 22:14:30.155951 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.253335 (* 0.0454545 = 0.0115152 loss) | |
I0405 22:14:30.155966 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.143654 (* 0.0454545 = 0.00652975 loss) | |
I0405 22:14:30.155980 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.00019803 (* 0.0454545 = 9.00135e-06 loss) | |
I0405 22:14:30.155995 29564 solver.cpp:245] Train net output #33: loss/loss12 = 0.000251187 (* 0.0454545 = 1.14176e-05 loss) | |
I0405 22:14:30.156010 29564 solver.cpp:245] Train net output #34: loss/loss13 = 0.000219991 (* 0.0454545 = 9.99959e-06 loss) | |
I0405 22:14:30.156024 29564 solver.cpp:245] Train net output #35: loss/loss14 = 0.000234283 (* 0.0454545 = 1.06492e-05 loss) | |
I0405 22:14:30.156039 29564 solver.cpp:245] Train net output #36: loss/loss15 = 0.000233903 (* 0.0454545 = 1.0632e-05 loss) | |
I0405 22:14:30.156054 29564 solver.cpp:245] Train net output #37: loss/loss16 = 0.00018847 (* 0.0454545 = 8.56681e-06 loss) | |
I0405 22:14:30.156087 29564 solver.cpp:245] Train net output #38: loss/loss17 = 0.000222948 (* 0.0454545 = 1.0134e-05 loss) | |
I0405 22:14:30.156123 29564 solver.cpp:245] Train net output #39: loss/loss18 = 0.000186299 (* 0.0454545 = 8.46813e-06 loss) | |
I0405 22:14:30.156139 29564 solver.cpp:245] Train net output #40: loss/loss19 = 0.000194641 (* 0.0454545 = 8.8473e-06 loss) | |
I0405 22:14:30.156153 29564 solver.cpp:245] Train net output #41: loss/loss20 = 0.000214157 (* 0.0454545 = 9.73443e-06 loss) | |
I0405 22:14:30.156168 29564 solver.cpp:245] Train net output #42: loss/loss21 = 0.000199684 (* 0.0454545 = 9.07656e-06 loss) | |
I0405 22:14:30.156183 29564 solver.cpp:245] Train net output #43: loss/loss22 = 0.000218755 (* 0.0454545 = 9.94341e-06 loss) | |
I0405 22:14:30.156194 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 22:14:30.156209 29564 solver.cpp:245] Train net output #45: total_confidence = 0.00339284 | |
I0405 22:14:30.156224 29564 sgd_solver.cpp:106] Iteration 65500, lr = 0.009345 | |
I0405 22:18:22.349535 29564 solver.cpp:229] Iteration 66000, loss = 0.787329 | |
I0405 22:18:22.349634 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.25 | |
I0405 22:18:22.349653 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.125 | |
I0405 22:18:22.349666 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.09375 | |
I0405 22:18:22.349679 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875 | |
I0405 22:18:22.349691 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125 | |
I0405 22:18:22.349702 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.53125 | |
I0405 22:18:22.349715 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0405 22:18:22.349726 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.96875 | |
I0405 22:18:22.349738 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0405 22:18:22.349750 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 22:18:22.349761 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 22:18:22.349774 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 22:18:22.349786 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 22:18:22.349800 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 22:18:22.349812 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 22:18:22.349823 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 22:18:22.349834 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 22:18:22.349845 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 22:18:22.349858 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 22:18:22.349869 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 22:18:22.349879 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 22:18:22.349890 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 22:18:22.349905 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.19433 (* 0.0454545 = 0.0997421 loss) | |
I0405 22:18:22.349920 29564 solver.cpp:245] Train net output #23: loss/loss02 = 2.83205 (* 0.0454545 = 0.128729 loss) | |
I0405 22:18:22.349933 29564 solver.cpp:245] Train net output #24: loss/loss03 = 2.93469 (* 0.0454545 = 0.133395 loss) | |
I0405 22:18:22.349947 29564 solver.cpp:245] Train net output #25: loss/loss04 = 2.69949 (* 0.0454545 = 0.122704 loss) | |
I0405 22:18:22.349961 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.32793 (* 0.0454545 = 0.105815 loss) | |
I0405 22:18:22.349974 29564 solver.cpp:245] Train net output #27: loss/loss06 = 1.88275 (* 0.0454545 = 0.0855794 loss) | |
I0405 22:18:22.349990 29564 solver.cpp:245] Train net output #28: loss/loss07 = 0.965734 (* 0.0454545 = 0.043897 loss) | |
I0405 22:18:22.350004 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.192715 (* 0.0454545 = 0.00875975 loss) | |
I0405 22:18:22.350018 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.0383551 (* 0.0454545 = 0.00174341 loss) | |
I0405 22:18:22.350033 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.0106924 (* 0.0454545 = 0.00048602 loss) | |
I0405 22:18:22.350047 29564 solver.cpp:245] Train net output #32: loss/loss11 = 4.82693e-05 (* 0.0454545 = 2.19406e-06 loss) | |
I0405 22:18:22.350061 29564 solver.cpp:245] Train net output #33: loss/loss12 = 5.6447e-05 (* 0.0454545 = 2.56577e-06 loss) | |
I0405 22:18:22.350076 29564 solver.cpp:245] Train net output #34: loss/loss13 = 5.10004e-05 (* 0.0454545 = 2.3182e-06 loss) | |
I0405 22:18:22.350090 29564 solver.cpp:245] Train net output #35: loss/loss14 = 5.03169e-05 (* 0.0454545 = 2.28713e-06 loss) | |
I0405 22:18:22.350105 29564 solver.cpp:245] Train net output #36: loss/loss15 = 5.11402e-05 (* 0.0454545 = 2.32455e-06 loss) | |
I0405 22:18:22.350118 29564 solver.cpp:245] Train net output #37: loss/loss16 = 4.86887e-05 (* 0.0454545 = 2.21312e-06 loss) | |
I0405 22:18:22.350132 29564 solver.cpp:245] Train net output #38: loss/loss17 = 4.71163e-05 (* 0.0454545 = 2.14165e-06 loss) | |
I0405 22:18:22.350160 29564 solver.cpp:245] Train net output #39: loss/loss18 = 4.55624e-05 (* 0.0454545 = 2.07102e-06 loss) | |
I0405 22:18:22.350175 29564 solver.cpp:245] Train net output #40: loss/loss19 = 5.06784e-05 (* 0.0454545 = 2.30356e-06 loss) | |
I0405 22:18:22.350189 29564 solver.cpp:245] Train net output #41: loss/loss20 = 4.81115e-05 (* 0.0454545 = 2.18689e-06 loss) | |
I0405 22:18:22.350203 29564 solver.cpp:245] Train net output #42: loss/loss21 = 4.56725e-05 (* 0.0454545 = 2.07602e-06 loss) | |
I0405 22:18:22.350237 29564 solver.cpp:245] Train net output #43: loss/loss22 = 5.11813e-05 (* 0.0454545 = 2.32642e-06 loss) | |
I0405 22:18:22.350250 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 22:18:22.350261 29564 solver.cpp:245] Train net output #45: total_confidence = 0.00204024 | |
I0405 22:18:22.350275 29564 sgd_solver.cpp:106] Iteration 66000, lr = 0.00934 | |
I0405 22:22:14.301017 29564 solver.cpp:229] Iteration 66500, loss = 0.781401 | |
I0405 22:22:14.301218 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.34375 | |
I0405 22:22:14.301237 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.21875 | |
I0405 22:22:14.301249 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.21875 | |
I0405 22:22:14.301261 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.28125 | |
I0405 22:22:14.301273 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0405 22:22:14.301285 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.375 | |
I0405 22:22:14.301297 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.8125 | |
I0405 22:22:14.301309 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0405 22:22:14.301321 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0405 22:22:14.301332 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 22:22:14.301343 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 22:22:14.301354 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 22:22:14.301367 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 22:22:14.301378 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 22:22:14.301388 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 22:22:14.301399 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 22:22:14.301410 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 22:22:14.301421 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 22:22:14.301432 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 22:22:14.301445 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 22:22:14.301456 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 22:22:14.301467 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 22:22:14.301482 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.1627 (* 0.0454545 = 0.0983045 loss) | |
I0405 22:22:14.301497 29564 solver.cpp:245] Train net output #23: loss/loss02 = 2.42077 (* 0.0454545 = 0.110035 loss) | |
I0405 22:22:14.301512 29564 solver.cpp:245] Train net output #24: loss/loss03 = 2.81084 (* 0.0454545 = 0.127766 loss) | |
I0405 22:22:14.301525 29564 solver.cpp:245] Train net output #25: loss/loss04 = 2.62695 (* 0.0454545 = 0.119407 loss) | |
I0405 22:22:14.301539 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.72621 (* 0.0454545 = 0.123919 loss) | |
I0405 22:22:14.301553 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.13261 (* 0.0454545 = 0.0969369 loss) | |
I0405 22:22:14.301568 29564 solver.cpp:245] Train net output #28: loss/loss07 = 0.646619 (* 0.0454545 = 0.0293918 loss) | |
I0405 22:22:14.301581 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.267828 (* 0.0454545 = 0.012174 loss) | |
I0405 22:22:14.301595 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.0276172 (* 0.0454545 = 0.00125533 loss) | |
I0405 22:22:14.301610 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.00914611 (* 0.0454545 = 0.000415732 loss) | |
I0405 22:22:14.301625 29564 solver.cpp:245] Train net output #32: loss/loss11 = 0.000101238 (* 0.0454545 = 4.60173e-06 loss) | |
I0405 22:22:14.301640 29564 solver.cpp:245] Train net output #33: loss/loss12 = 0.000104301 (* 0.0454545 = 4.74094e-06 loss) | |
I0405 22:22:14.301653 29564 solver.cpp:245] Train net output #34: loss/loss13 = 9.56805e-05 (* 0.0454545 = 4.34911e-06 loss) | |
I0405 22:22:14.301667 29564 solver.cpp:245] Train net output #35: loss/loss14 = 0.000103181 (* 0.0454545 = 4.69005e-06 loss) | |
I0405 22:22:14.301681 29564 solver.cpp:245] Train net output #36: loss/loss15 = 8.29897e-05 (* 0.0454545 = 3.77226e-06 loss) | |
I0405 22:22:14.301695 29564 solver.cpp:245] Train net output #37: loss/loss16 = 8.67855e-05 (* 0.0454545 = 3.9448e-06 loss) | |
I0405 22:22:14.301709 29564 solver.cpp:245] Train net output #38: loss/loss17 = 9.67863e-05 (* 0.0454545 = 4.39938e-06 loss) | |
I0405 22:22:14.301739 29564 solver.cpp:245] Train net output #39: loss/loss18 = 0.000103701 (* 0.0454545 = 4.71367e-06 loss) | |
I0405 22:22:14.301754 29564 solver.cpp:245] Train net output #40: loss/loss19 = 9.68969e-05 (* 0.0454545 = 4.40441e-06 loss) | |
I0405 22:22:14.301769 29564 solver.cpp:245] Train net output #41: loss/loss20 = 8.57485e-05 (* 0.0454545 = 3.89766e-06 loss) | |
I0405 22:22:14.301782 29564 solver.cpp:245] Train net output #42: loss/loss21 = 8.40443e-05 (* 0.0454545 = 3.8202e-06 loss) | |
I0405 22:22:14.301797 29564 solver.cpp:245] Train net output #43: loss/loss22 = 8.68535e-05 (* 0.0454545 = 3.94789e-06 loss) | |
I0405 22:22:14.301810 29564 solver.cpp:245] Train net output #44: total_accuracy = 0.03125 | |
I0405 22:22:14.301821 29564 solver.cpp:245] Train net output #45: total_confidence = 0.0153248 | |
I0405 22:22:14.301836 29564 sgd_solver.cpp:106] Iteration 66500, lr = 0.009335 | |
I0405 22:26:07.190371 29564 solver.cpp:229] Iteration 67000, loss = 0.779515 | |
I0405 22:26:07.190521 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.28125 | |
I0405 22:26:07.190551 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.15625 | |
I0405 22:26:07.190573 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.15625 | |
I0405 22:26:07.190594 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375 | |
I0405 22:26:07.190618 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.25 | |
I0405 22:26:07.190639 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5 | |
I0405 22:26:07.190659 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.75 | |
I0405 22:26:07.190680 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.90625 | |
I0405 22:26:07.190701 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.9375 | |
I0405 22:26:07.190723 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 22:26:07.190744 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 22:26:07.190765 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 22:26:07.190785 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 22:26:07.190805 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 22:26:07.190824 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 22:26:07.190845 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 22:26:07.190865 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 22:26:07.190886 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 22:26:07.190907 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 22:26:07.190927 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 22:26:07.190948 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 22:26:07.190971 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 22:26:07.190999 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.44991 (* 0.0454545 = 0.111359 loss) | |
I0405 22:26:07.191023 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.2834 (* 0.0454545 = 0.149245 loss) | |
I0405 22:26:07.191050 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.20293 (* 0.0454545 = 0.145588 loss) | |
I0405 22:26:07.191074 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.35978 (* 0.0454545 = 0.152717 loss) | |
I0405 22:26:07.191102 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.63612 (* 0.0454545 = 0.119824 loss) | |
I0405 22:26:07.191128 29564 solver.cpp:245] Train net output #27: loss/loss06 = 1.90859 (* 0.0454545 = 0.0867542 loss) | |
I0405 22:26:07.191153 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.28294 (* 0.0454545 = 0.0583154 loss) | |
I0405 22:26:07.191177 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.502715 (* 0.0454545 = 0.0228507 loss) | |
I0405 22:26:07.191202 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.230168 (* 0.0454545 = 0.0104622 loss) | |
I0405 22:26:07.191227 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.0617882 (* 0.0454545 = 0.00280856 loss) | |
I0405 22:26:07.191253 29564 solver.cpp:245] Train net output #32: loss/loss11 = 5.68846e-05 (* 0.0454545 = 2.58566e-06 loss) | |
I0405 22:26:07.191277 29564 solver.cpp:245] Train net output #33: loss/loss12 = 5.78383e-05 (* 0.0454545 = 2.62901e-06 loss) | |
I0405 22:26:07.191303 29564 solver.cpp:245] Train net output #34: loss/loss13 = 5.66396e-05 (* 0.0454545 = 2.57453e-06 loss) | |
I0405 22:26:07.191328 29564 solver.cpp:245] Train net output #35: loss/loss14 = 5.94282e-05 (* 0.0454545 = 2.70128e-06 loss) | |
I0405 22:26:07.191354 29564 solver.cpp:245] Train net output #36: loss/loss15 = 5.09554e-05 (* 0.0454545 = 2.31616e-06 loss) | |
I0405 22:26:07.191380 29564 solver.cpp:245] Train net output #37: loss/loss16 = 4.93434e-05 (* 0.0454545 = 2.24288e-06 loss) | |
I0405 22:26:07.191406 29564 solver.cpp:245] Train net output #38: loss/loss17 = 5.29733e-05 (* 0.0454545 = 2.40788e-06 loss) | |
I0405 22:26:07.191452 29564 solver.cpp:245] Train net output #39: loss/loss18 = 4.49736e-05 (* 0.0454545 = 2.04425e-06 loss) | |
I0405 22:26:07.191479 29564 solver.cpp:245] Train net output #40: loss/loss19 = 5.83429e-05 (* 0.0454545 = 2.65195e-06 loss) | |
I0405 22:26:07.191504 29564 solver.cpp:245] Train net output #41: loss/loss20 = 4.47407e-05 (* 0.0454545 = 2.03367e-06 loss) | |
I0405 22:26:07.191535 29564 solver.cpp:245] Train net output #42: loss/loss21 = 5.10199e-05 (* 0.0454545 = 2.31909e-06 loss) | |
I0405 22:26:07.191561 29564 solver.cpp:245] Train net output #43: loss/loss22 = 4.24678e-05 (* 0.0454545 = 1.93036e-06 loss) | |
I0405 22:26:07.191583 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 22:26:07.191603 29564 solver.cpp:245] Train net output #45: total_confidence = 0.0060467 | |
I0405 22:26:07.191627 29564 sgd_solver.cpp:106] Iteration 67000, lr = 0.00933 | |
I0405 22:29:58.799440 29564 solver.cpp:229] Iteration 67500, loss = 0.775161 | |
I0405 22:29:58.799566 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.53125 | |
I0405 22:29:58.799595 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.25 | |
I0405 22:29:58.799620 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.15625 | |
I0405 22:29:58.799645 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875 | |
I0405 22:29:58.799666 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.40625 | |
I0405 22:29:58.799687 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.4375 | |
I0405 22:29:58.799707 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.78125 | |
I0405 22:29:58.799731 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0405 22:29:58.799752 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.96875 | |
I0405 22:29:58.799772 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 22:29:58.799793 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 22:29:58.799813 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 22:29:58.799832 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 22:29:58.799852 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 22:29:58.799875 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 22:29:58.799896 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 22:29:58.799914 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 22:29:58.799934 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 22:29:58.799955 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 22:29:58.799979 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 22:29:58.799999 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 22:29:58.800020 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 22:29:58.800046 29564 solver.cpp:245] Train net output #22: loss/loss01 = 1.89324 (* 0.0454545 = 0.0860565 loss) | |
I0405 22:29:58.800093 29564 solver.cpp:245] Train net output #23: loss/loss02 = 2.73869 (* 0.0454545 = 0.124486 loss) | |
I0405 22:29:58.800123 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.06051 (* 0.0454545 = 0.139114 loss) | |
I0405 22:29:58.800149 29564 solver.cpp:245] Train net output #25: loss/loss04 = 2.90282 (* 0.0454545 = 0.131946 loss) | |
I0405 22:29:58.800174 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.33561 (* 0.0454545 = 0.106164 loss) | |
I0405 22:29:58.800199 29564 solver.cpp:245] Train net output #27: loss/loss06 = 1.88273 (* 0.0454545 = 0.0855788 loss) | |
I0405 22:29:58.800223 29564 solver.cpp:245] Train net output #28: loss/loss07 = 0.91088 (* 0.0454545 = 0.0414036 loss) | |
I0405 22:29:58.800248 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.372064 (* 0.0454545 = 0.016912 loss) | |
I0405 22:29:58.800273 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.108936 (* 0.0454545 = 0.00495163 loss) | |
I0405 22:29:58.800298 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.00681405 (* 0.0454545 = 0.00030973 loss) | |
I0405 22:29:58.800324 29564 solver.cpp:245] Train net output #32: loss/loss11 = 1.83094e-05 (* 0.0454545 = 8.32246e-07 loss) | |
I0405 22:29:58.800349 29564 solver.cpp:245] Train net output #33: loss/loss12 = 1.87996e-05 (* 0.0454545 = 8.54525e-07 loss) | |
I0405 22:29:58.800375 29564 solver.cpp:245] Train net output #34: loss/loss13 = 1.83393e-05 (* 0.0454545 = 8.33604e-07 loss) | |
I0405 22:29:58.800402 29564 solver.cpp:245] Train net output #35: loss/loss14 = 1.69533e-05 (* 0.0454545 = 7.70604e-07 loss) | |
I0405 22:29:58.800428 29564 solver.cpp:245] Train net output #36: loss/loss15 = 1.78735e-05 (* 0.0454545 = 8.12432e-07 loss) | |
I0405 22:29:58.800452 29564 solver.cpp:245] Train net output #37: loss/loss16 = 2.44358e-05 (* 0.0454545 = 1.11072e-06 loss) | |
I0405 22:29:58.800477 29564 solver.cpp:245] Train net output #38: loss/loss17 = 1.83226e-05 (* 0.0454545 = 8.32847e-07 loss) | |
I0405 22:29:58.800524 29564 solver.cpp:245] Train net output #39: loss/loss18 = 1.58951e-05 (* 0.0454545 = 7.22503e-07 loss) | |
I0405 22:29:58.800551 29564 solver.cpp:245] Train net output #40: loss/loss19 = 1.77357e-05 (* 0.0454545 = 8.06167e-07 loss) | |
I0405 22:29:58.800575 29564 solver.cpp:245] Train net output #41: loss/loss20 = 2.07895e-05 (* 0.0454545 = 9.44977e-07 loss) | |
I0405 22:29:58.800606 29564 solver.cpp:245] Train net output #42: loss/loss21 = 1.57794e-05 (* 0.0454545 = 7.17246e-07 loss) | |
I0405 22:29:58.800631 29564 solver.cpp:245] Train net output #43: loss/loss22 = 1.89004e-05 (* 0.0454545 = 8.5911e-07 loss) | |
I0405 22:29:58.800652 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 22:29:58.800673 29564 solver.cpp:245] Train net output #45: total_confidence = 0.00106704 | |
I0405 22:29:58.800694 29564 sgd_solver.cpp:106] Iteration 67500, lr = 0.009325 | |
I0405 22:33:50.081284 29564 solver.cpp:229] Iteration 68000, loss = 0.770231 | |
I0405 22:33:50.081562 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.40625 | |
I0405 22:33:50.081580 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0405 22:33:50.081593 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0405 22:33:50.081609 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625 | |
I0405 22:33:50.081622 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.21875 | |
I0405 22:33:50.081634 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.3125 | |
I0405 22:33:50.081646 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.625 | |
I0405 22:33:50.081658 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0405 22:33:50.081670 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0405 22:33:50.081682 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 22:33:50.081693 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 22:33:50.081706 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 22:33:50.081717 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 22:33:50.081727 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 22:33:50.081739 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 22:33:50.081750 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 22:33:50.081761 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 22:33:50.081773 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 22:33:50.081784 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 22:33:50.081795 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 22:33:50.081809 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 22:33:50.081820 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 22:33:50.081835 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.32165 (* 0.0454545 = 0.105529 loss) | |
I0405 22:33:50.081850 29564 solver.cpp:245] Train net output #23: loss/loss02 = 3.31109 (* 0.0454545 = 0.150504 loss) | |
I0405 22:33:50.081863 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.34072 (* 0.0454545 = 0.151851 loss) | |
I0405 22:33:50.081877 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.02034 (* 0.0454545 = 0.137288 loss) | |
I0405 22:33:50.081892 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.90157 (* 0.0454545 = 0.13189 loss) | |
I0405 22:33:50.081905 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.56954 (* 0.0454545 = 0.116797 loss) | |
I0405 22:33:50.081919 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.50514 (* 0.0454545 = 0.0684155 loss) | |
I0405 22:33:50.081933 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.373601 (* 0.0454545 = 0.0169819 loss) | |
I0405 22:33:50.081948 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.0178513 (* 0.0454545 = 0.000811421 loss) | |
I0405 22:33:50.081962 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.00554224 (* 0.0454545 = 0.00025192 loss) | |
I0405 22:33:50.081977 29564 solver.cpp:245] Train net output #32: loss/loss11 = 5.73727e-05 (* 0.0454545 = 2.60785e-06 loss) | |
I0405 22:33:50.081991 29564 solver.cpp:245] Train net output #33: loss/loss12 = 5.12697e-05 (* 0.0454545 = 2.33044e-06 loss) | |
I0405 22:33:50.082008 29564 solver.cpp:245] Train net output #34: loss/loss13 = 5.84333e-05 (* 0.0454545 = 2.65606e-06 loss) | |
I0405 22:33:50.082023 29564 solver.cpp:245] Train net output #35: loss/loss14 = 4.9783e-05 (* 0.0454545 = 2.26286e-06 loss) | |
I0405 22:33:50.082037 29564 solver.cpp:245] Train net output #36: loss/loss15 = 5.04374e-05 (* 0.0454545 = 2.29261e-06 loss) | |
I0405 22:33:50.082051 29564 solver.cpp:245] Train net output #37: loss/loss16 = 5.12679e-05 (* 0.0454545 = 2.33036e-06 loss) | |
I0405 22:33:50.082067 29564 solver.cpp:245] Train net output #38: loss/loss17 = 5.20656e-05 (* 0.0454545 = 2.36662e-06 loss) | |
I0405 22:33:50.082093 29564 solver.cpp:245] Train net output #39: loss/loss18 = 4.92933e-05 (* 0.0454545 = 2.2406e-06 loss) | |
I0405 22:33:50.082109 29564 solver.cpp:245] Train net output #40: loss/loss19 = 5.44643e-05 (* 0.0454545 = 2.47565e-06 loss) | |
I0405 22:33:50.082123 29564 solver.cpp:245] Train net output #41: loss/loss20 = 5.29555e-05 (* 0.0454545 = 2.40707e-06 loss) | |
I0405 22:33:50.082137 29564 solver.cpp:245] Train net output #42: loss/loss21 = 4.98288e-05 (* 0.0454545 = 2.26494e-06 loss) | |
I0405 22:33:50.082152 29564 solver.cpp:245] Train net output #43: loss/loss22 = 5.64517e-05 (* 0.0454545 = 2.56598e-06 loss) | |
I0405 22:33:50.082165 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 22:33:50.082176 29564 solver.cpp:245] Train net output #45: total_confidence = 0.00201641 | |
I0405 22:33:50.082190 29564 sgd_solver.cpp:106] Iteration 68000, lr = 0.00932 | |
I0405 22:37:42.219012 29564 solver.cpp:229] Iteration 68500, loss = 0.774291 | |
I0405 22:37:42.219115 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.4375 | |
I0405 22:37:42.219133 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.25 | |
I0405 22:37:42.219146 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.1875 | |
I0405 22:37:42.219158 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.15625 | |
I0405 22:37:42.219171 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.34375 | |
I0405 22:37:42.219182 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.53125 | |
I0405 22:37:42.219193 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.78125 | |
I0405 22:37:42.219205 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.8125 | |
I0405 22:37:42.219218 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625 | |
I0405 22:37:42.219229 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.96875 | |
I0405 22:37:42.219241 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 22:37:42.219254 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 22:37:42.219264 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 22:37:42.219275 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 22:37:42.219286 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 22:37:42.219298 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 22:37:42.219310 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 22:37:42.219321 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 22:37:42.219332 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 22:37:42.219343 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 22:37:42.219357 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 22:37:42.219367 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 22:37:42.219383 29564 solver.cpp:245] Train net output #22: loss/loss01 = 1.92804 (* 0.0454545 = 0.087638 loss) | |
I0405 22:37:42.219398 29564 solver.cpp:245] Train net output #23: loss/loss02 = 2.62167 (* 0.0454545 = 0.119167 loss) | |
I0405 22:37:42.219411 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.02803 (* 0.0454545 = 0.137638 loss) | |
I0405 22:37:42.219425 29564 solver.cpp:245] Train net output #25: loss/loss04 = 2.68076 (* 0.0454545 = 0.121853 loss) | |
I0405 22:37:42.219440 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.54688 (* 0.0454545 = 0.115767 loss) | |
I0405 22:37:42.219455 29564 solver.cpp:245] Train net output #27: loss/loss06 = 1.69348 (* 0.0454545 = 0.0769764 loss) | |
I0405 22:37:42.219468 29564 solver.cpp:245] Train net output #28: loss/loss07 = 0.964836 (* 0.0454545 = 0.0438562 loss) | |
I0405 22:37:42.219482 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.712686 (* 0.0454545 = 0.0323948 loss) | |
I0405 22:37:42.219496 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.466899 (* 0.0454545 = 0.0212227 loss) | |
I0405 22:37:42.219511 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.281326 (* 0.0454545 = 0.0127875 loss) | |
I0405 22:37:42.219526 29564 solver.cpp:245] Train net output #32: loss/loss11 = 5.38525e-05 (* 0.0454545 = 2.44784e-06 loss) | |
I0405 22:37:42.219539 29564 solver.cpp:245] Train net output #33: loss/loss12 = 5.81917e-05 (* 0.0454545 = 2.64508e-06 loss) | |
I0405 22:37:42.219554 29564 solver.cpp:245] Train net output #34: loss/loss13 = 5.26276e-05 (* 0.0454545 = 2.39216e-06 loss) | |
I0405 22:37:42.219568 29564 solver.cpp:245] Train net output #35: loss/loss14 = 5.41383e-05 (* 0.0454545 = 2.46083e-06 loss) | |
I0405 22:37:42.219583 29564 solver.cpp:245] Train net output #36: loss/loss15 = 5.52045e-05 (* 0.0454545 = 2.50929e-06 loss) | |
I0405 22:37:42.219596 29564 solver.cpp:245] Train net output #37: loss/loss16 = 4.61598e-05 (* 0.0454545 = 2.09817e-06 loss) | |
I0405 22:37:42.219611 29564 solver.cpp:245] Train net output #38: loss/loss17 = 5.51122e-05 (* 0.0454545 = 2.5051e-06 loss) | |
I0405 22:37:42.219643 29564 solver.cpp:245] Train net output #39: loss/loss18 = 4.73319e-05 (* 0.0454545 = 2.15145e-06 loss) | |
I0405 22:37:42.219658 29564 solver.cpp:245] Train net output #40: loss/loss19 = 4.99812e-05 (* 0.0454545 = 2.27187e-06 loss) | |
I0405 22:37:42.219672 29564 solver.cpp:245] Train net output #41: loss/loss20 = 5.27428e-05 (* 0.0454545 = 2.3974e-06 loss) | |
I0405 22:37:42.219689 29564 solver.cpp:245] Train net output #42: loss/loss21 = 4.68232e-05 (* 0.0454545 = 2.12833e-06 loss) | |
I0405 22:37:42.219704 29564 solver.cpp:245] Train net output #43: loss/loss22 = 5.21684e-05 (* 0.0454545 = 2.37129e-06 loss) | |
I0405 22:37:42.219717 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 22:37:42.219728 29564 solver.cpp:245] Train net output #45: total_confidence = 0.000787454 | |
I0405 22:37:42.219741 29564 sgd_solver.cpp:106] Iteration 68500, lr = 0.009315 | |
I0405 22:41:33.962854 29564 solver.cpp:229] Iteration 69000, loss = 0.770882 | |
I0405 22:41:33.963076 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.46875 | |
I0405 22:41:33.963095 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0405 22:41:33.963107 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0405 22:41:33.963121 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.1875 | |
I0405 22:41:33.963134 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.28125 | |
I0405 22:41:33.963145 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.40625 | |
I0405 22:41:33.963157 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.78125 | |
I0405 22:41:33.963168 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.84375 | |
I0405 22:41:33.963181 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0405 22:41:33.963192 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 22:41:33.963203 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 22:41:33.963214 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 22:41:33.963225 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 22:41:33.963238 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 22:41:33.963248 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 22:41:33.963260 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 22:41:33.963271 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 22:41:33.963282 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 22:41:33.963294 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 22:41:33.963304 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 22:41:33.963316 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 22:41:33.963327 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 22:41:33.963342 29564 solver.cpp:245] Train net output #22: loss/loss01 = 1.80476 (* 0.0454545 = 0.0820345 loss) | |
I0405 22:41:33.963356 29564 solver.cpp:245] Train net output #23: loss/loss02 = 2.67057 (* 0.0454545 = 0.12139 loss) | |
I0405 22:41:33.963371 29564 solver.cpp:245] Train net output #24: loss/loss03 = 2.75163 (* 0.0454545 = 0.125074 loss) | |
I0405 22:41:33.963384 29564 solver.cpp:245] Train net output #25: loss/loss04 = 2.98584 (* 0.0454545 = 0.13572 loss) | |
I0405 22:41:33.963398 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.37135 (* 0.0454545 = 0.107789 loss) | |
I0405 22:41:33.963413 29564 solver.cpp:245] Train net output #27: loss/loss06 = 2.37438 (* 0.0454545 = 0.107926 loss) | |
I0405 22:41:33.963426 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.03757 (* 0.0454545 = 0.0471625 loss) | |
I0405 22:41:33.963440 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.631376 (* 0.0454545 = 0.0286989 loss) | |
I0405 22:41:33.963455 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.0231071 (* 0.0454545 = 0.00105032 loss) | |
I0405 22:41:33.963469 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.00539053 (* 0.0454545 = 0.000245024 loss) | |
I0405 22:41:33.963485 29564 solver.cpp:245] Train net output #32: loss/loss11 = 2.84522e-05 (* 0.0454545 = 1.29328e-06 loss) | |
I0405 22:41:33.963498 29564 solver.cpp:245] Train net output #33: loss/loss12 = 2.69964e-05 (* 0.0454545 = 1.22711e-06 loss) | |
I0405 22:41:33.963512 29564 solver.cpp:245] Train net output #34: loss/loss13 = 2.65034e-05 (* 0.0454545 = 1.2047e-06 loss) | |
I0405 22:41:33.963527 29564 solver.cpp:245] Train net output #35: loss/loss14 = 2.60652e-05 (* 0.0454545 = 1.18478e-06 loss) | |
I0405 22:41:33.963541 29564 solver.cpp:245] Train net output #36: loss/loss15 = 2.77666e-05 (* 0.0454545 = 1.26212e-06 loss) | |
I0405 22:41:33.963556 29564 solver.cpp:245] Train net output #37: loss/loss16 = 2.83889e-05 (* 0.0454545 = 1.29041e-06 loss) | |
I0405 22:41:33.963569 29564 solver.cpp:245] Train net output #38: loss/loss17 = 2.68888e-05 (* 0.0454545 = 1.22222e-06 loss) | |
I0405 22:41:33.963600 29564 solver.cpp:245] Train net output #39: loss/loss18 = 2.61586e-05 (* 0.0454545 = 1.18903e-06 loss) | |
I0405 22:41:33.963615 29564 solver.cpp:245] Train net output #40: loss/loss19 = 2.59921e-05 (* 0.0454545 = 1.18146e-06 loss) | |
I0405 22:41:33.963629 29564 solver.cpp:245] Train net output #41: loss/loss20 = 2.54618e-05 (* 0.0454545 = 1.15736e-06 loss) | |
I0405 22:41:33.963644 29564 solver.cpp:245] Train net output #42: loss/loss21 = 2.09558e-05 (* 0.0454545 = 9.52538e-07 loss) | |
I0405 22:41:33.963659 29564 solver.cpp:245] Train net output #43: loss/loss22 = 1.80621e-05 (* 0.0454545 = 8.21006e-07 loss) | |
I0405 22:41:33.963670 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 22:41:33.963682 29564 solver.cpp:245] Train net output #45: total_confidence = 0.00144444 | |
I0405 22:41:33.963696 29564 sgd_solver.cpp:106] Iteration 69000, lr = 0.00931 | |
I0405 22:45:26.475708 29564 solver.cpp:229] Iteration 69500, loss = 0.768303 | |
I0405 22:45:26.475841 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.21875 | |
I0405 22:45:26.475860 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.09375 | |
I0405 22:45:26.475873 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.0625 | |
I0405 22:45:26.475886 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.09375 | |
I0405 22:45:26.475898 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.3125 | |
I0405 22:45:26.475910 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.46875 | |
I0405 22:45:26.475922 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.78125 | |
I0405 22:45:26.475934 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0405 22:45:26.475945 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0405 22:45:26.475956 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 22:45:26.475970 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 22:45:26.475980 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 22:45:26.475992 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 22:45:26.476003 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 22:45:26.476016 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 22:45:26.476027 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 22:45:26.476037 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 22:45:26.476048 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 22:45:26.476060 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 22:45:26.476084 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 22:45:26.476099 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 22:45:26.476109 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 22:45:26.476125 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.46924 (* 0.0454545 = 0.112238 loss) | |
I0405 22:45:26.476140 29564 solver.cpp:245] Train net output #23: loss/loss02 = 2.97982 (* 0.0454545 = 0.135447 loss) | |
I0405 22:45:26.476153 29564 solver.cpp:245] Train net output #24: loss/loss03 = 3.05679 (* 0.0454545 = 0.138945 loss) | |
I0405 22:45:26.476167 29564 solver.cpp:245] Train net output #25: loss/loss04 = 3.24105 (* 0.0454545 = 0.147321 loss) | |
I0405 22:45:26.476181 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.54451 (* 0.0454545 = 0.11566 loss) | |
I0405 22:45:26.476196 29564 solver.cpp:245] Train net output #27: loss/loss06 = 1.84843 (* 0.0454545 = 0.0840198 loss) | |
I0405 22:45:26.476209 29564 solver.cpp:245] Train net output #28: loss/loss07 = 0.842697 (* 0.0454545 = 0.0383044 loss) | |
I0405 22:45:26.476223 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.413717 (* 0.0454545 = 0.0188053 loss) | |
I0405 22:45:26.476238 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.0335278 (* 0.0454545 = 0.00152399 loss) | |
I0405 22:45:26.476251 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.0103958 (* 0.0454545 = 0.000472536 loss) | |
I0405 22:45:26.476266 29564 solver.cpp:245] Train net output #32: loss/loss11 = 9.28685e-05 (* 0.0454545 = 4.22129e-06 loss) | |
I0405 22:45:26.476280 29564 solver.cpp:245] Train net output #33: loss/loss12 = 9.15552e-05 (* 0.0454545 = 4.1616e-06 loss) | |
I0405 22:45:26.476294 29564 solver.cpp:245] Train net output #34: loss/loss13 = 8.37188e-05 (* 0.0454545 = 3.8054e-06 loss) | |
I0405 22:45:26.476308 29564 solver.cpp:245] Train net output #35: loss/loss14 = 8.72734e-05 (* 0.0454545 = 3.96697e-06 loss) | |
I0405 22:45:26.476322 29564 solver.cpp:245] Train net output #36: loss/loss15 = 9.86082e-05 (* 0.0454545 = 4.48219e-06 loss) | |
I0405 22:45:26.476336 29564 solver.cpp:245] Train net output #37: loss/loss16 = 8.33612e-05 (* 0.0454545 = 3.78914e-06 loss) | |
I0405 22:45:26.476351 29564 solver.cpp:245] Train net output #38: loss/loss17 = 8.92459e-05 (* 0.0454545 = 4.05663e-06 loss) | |
I0405 22:45:26.476382 29564 solver.cpp:245] Train net output #39: loss/loss18 = 9.21111e-05 (* 0.0454545 = 4.18687e-06 loss) | |
I0405 22:45:26.476397 29564 solver.cpp:245] Train net output #40: loss/loss19 = 7.94528e-05 (* 0.0454545 = 3.61149e-06 loss) | |
I0405 22:45:26.476411 29564 solver.cpp:245] Train net output #41: loss/loss20 = 9.27504e-05 (* 0.0454545 = 4.21593e-06 loss) | |
I0405 22:45:26.476425 29564 solver.cpp:245] Train net output #42: loss/loss21 = 7.30127e-05 (* 0.0454545 = 3.31876e-06 loss) | |
I0405 22:45:26.476439 29564 solver.cpp:245] Train net output #43: loss/loss22 = 8.80888e-05 (* 0.0454545 = 4.00404e-06 loss) | |
I0405 22:45:26.476452 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 22:45:26.476464 29564 solver.cpp:245] Train net output #45: total_confidence = 0.00159681 | |
I0405 22:45:26.476477 29564 sgd_solver.cpp:106] Iteration 69500, lr = 0.009305 | |
I0405 22:49:18.306404 29564 solver.cpp:338] Iteration 70000, Testing net (#0) | |
I0405 22:49:28.562494 29564 solver.cpp:393] Test loss: 0.671108 | |
I0405 22:49:28.562542 29564 solver.cpp:406] Test net output #0: loss/accuracy01 = 0.377 | |
I0405 22:49:28.562559 29564 solver.cpp:406] Test net output #1: loss/accuracy02 = 0.195 | |
I0405 22:49:28.562572 29564 solver.cpp:406] Test net output #2: loss/accuracy03 = 0.175 | |
I0405 22:49:28.562583 29564 solver.cpp:406] Test net output #3: loss/accuracy04 = 0.222 | |
I0405 22:49:28.562595 29564 solver.cpp:406] Test net output #4: loss/accuracy05 = 0.308 | |
I0405 22:49:28.562607 29564 solver.cpp:406] Test net output #5: loss/accuracy06 = 0.559 | |
I0405 22:49:28.562618 29564 solver.cpp:406] Test net output #6: loss/accuracy07 = 0.899 | |
I0405 22:49:28.562629 29564 solver.cpp:406] Test net output #7: loss/accuracy08 = 0.97 | |
I0405 22:49:28.562641 29564 solver.cpp:406] Test net output #8: loss/accuracy09 = 0.995 | |
I0405 22:49:28.562652 29564 solver.cpp:406] Test net output #9: loss/accuracy10 = 0.998 | |
I0405 22:49:28.562664 29564 solver.cpp:406] Test net output #10: loss/accuracy11 = 1 | |
I0405 22:49:28.562675 29564 solver.cpp:406] Test net output #11: loss/accuracy12 = 1 | |
I0405 22:49:28.562686 29564 solver.cpp:406] Test net output #12: loss/accuracy13 = 1 | |
I0405 22:49:28.562697 29564 solver.cpp:406] Test net output #13: loss/accuracy14 = 1 | |
I0405 22:49:28.562708 29564 solver.cpp:406] Test net output #14: loss/accuracy15 = 1 | |
I0405 22:49:28.562719 29564 solver.cpp:406] Test net output #15: loss/accuracy16 = 1 | |
I0405 22:49:28.562731 29564 solver.cpp:406] Test net output #16: loss/accuracy17 = 1 | |
I0405 22:49:28.562742 29564 solver.cpp:406] Test net output #17: loss/accuracy18 = 1 | |
I0405 22:49:28.562753 29564 solver.cpp:406] Test net output #18: loss/accuracy19 = 1 | |
I0405 22:49:28.562764 29564 solver.cpp:406] Test net output #19: loss/accuracy20 = 1 | |
I0405 22:49:28.562775 29564 solver.cpp:406] Test net output #20: loss/accuracy21 = 1 | |
I0405 22:49:28.562786 29564 solver.cpp:406] Test net output #21: loss/accuracy22 = 1 | |
I0405 22:49:28.562803 29564 solver.cpp:406] Test net output #22: loss/loss01 = 2.14711 (* 0.0454545 = 0.0975961 loss) | |
I0405 22:49:28.562816 29564 solver.cpp:406] Test net output #23: loss/loss02 = 2.61663 (* 0.0454545 = 0.118938 loss) | |
I0405 22:49:28.562830 29564 solver.cpp:406] Test net output #24: loss/loss03 = 2.68823 (* 0.0454545 = 0.122192 loss) | |
I0405 22:49:28.562844 29564 solver.cpp:406] Test net output #25: loss/loss04 = 2.64362 (* 0.0454545 = 0.120165 loss) | |
I0405 22:49:28.562858 29564 solver.cpp:406] Test net output #26: loss/loss05 = 2.43742 (* 0.0454545 = 0.110792 loss) | |
I0405 22:49:28.562875 29564 solver.cpp:406] Test net output #27: loss/loss06 = 1.53994 (* 0.0454545 = 0.0699975 loss) | |
I0405 22:49:28.562890 29564 solver.cpp:406] Test net output #28: loss/loss07 = 0.425049 (* 0.0454545 = 0.0193204 loss) | |
I0405 22:49:28.562903 29564 solver.cpp:406] Test net output #29: loss/loss08 = 0.192644 (* 0.0454545 = 0.00875655 loss) | |
I0405 22:49:28.562917 29564 solver.cpp:406] Test net output #30: loss/loss09 = 0.0489488 (* 0.0454545 = 0.00222495 loss) | |
I0405 22:49:28.562932 29564 solver.cpp:406] Test net output #31: loss/loss10 = 0.0240476 (* 0.0454545 = 0.00109307 loss) | |
I0405 22:49:28.562945 29564 solver.cpp:406] Test net output #32: loss/loss11 = 6.21048e-05 (* 0.0454545 = 2.82295e-06 loss) | |
I0405 22:49:28.562959 29564 solver.cpp:406] Test net output #33: loss/loss12 = 6.85464e-05 (* 0.0454545 = 3.11575e-06 loss) | |
I0405 22:49:28.562973 29564 solver.cpp:406] Test net output #34: loss/loss13 = 6.40279e-05 (* 0.0454545 = 2.91036e-06 loss) | |
I0405 22:49:28.562988 29564 solver.cpp:406] Test net output #35: loss/loss14 = 6.74663e-05 (* 0.0454545 = 3.06665e-06 loss) | |
I0405 22:49:28.563001 29564 solver.cpp:406] Test net output #36: loss/loss15 = 6.51602e-05 (* 0.0454545 = 2.96183e-06 loss) | |
I0405 22:49:28.563016 29564 solver.cpp:406] Test net output #37: loss/loss16 = 6.02009e-05 (* 0.0454545 = 2.73641e-06 loss) | |
I0405 22:49:28.563030 29564 solver.cpp:406] Test net output #38: loss/loss17 = 5.74405e-05 (* 0.0454545 = 2.61093e-06 loss) | |
I0405 22:49:28.563077 29564 solver.cpp:406] Test net output #39: loss/loss18 = 6.07843e-05 (* 0.0454545 = 2.76292e-06 loss) | |
I0405 22:49:28.563092 29564 solver.cpp:406] Test net output #40: loss/loss19 = 6.43061e-05 (* 0.0454545 = 2.92301e-06 loss) | |
I0405 22:49:28.563107 29564 solver.cpp:406] Test net output #41: loss/loss20 = 5.80721e-05 (* 0.0454545 = 2.63964e-06 loss) | |
I0405 22:49:28.563120 29564 solver.cpp:406] Test net output #42: loss/loss21 = 5.85362e-05 (* 0.0454545 = 2.66074e-06 loss) | |
I0405 22:49:28.563134 29564 solver.cpp:406] Test net output #43: loss/loss22 = 5.83152e-05 (* 0.0454545 = 2.65069e-06 loss) | |
I0405 22:49:28.563146 29564 solver.cpp:406] Test net output #44: total_accuracy = 0.003 | |
I0405 22:49:28.563158 29564 solver.cpp:406] Test net output #45: total_confidence = 0.00430348 | |
I0405 22:49:28.677342 29564 solver.cpp:229] Iteration 70000, loss = 0.768503 | |
I0405 22:49:28.677379 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.34375 | |
I0405 22:49:28.677395 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.21875 | |
I0405 22:49:28.677408 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.21875 | |
I0405 22:49:28.677419 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.21875 | |
I0405 22:49:28.677431 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.34375 | |
I0405 22:49:28.677443 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.5 | |
I0405 22:49:28.677454 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.6875 | |
I0405 22:49:28.677466 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.8125 | |
I0405 22:49:28.677479 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 0.90625 | |
I0405 22:49:28.677490 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 0.9375 | |
I0405 22:49:28.677501 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 22:49:28.677513 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 22:49:28.677525 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 22:49:28.677536 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 22:49:28.677547 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 22:49:28.677558 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 22:49:28.677569 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 22:49:28.677582 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 22:49:28.677592 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 22:49:28.677603 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 22:49:28.677614 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 22:49:28.677625 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 22:49:28.677640 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.12392 (* 0.0454545 = 0.096542 loss) | |
I0405 22:49:28.677654 29564 solver.cpp:245] Train net output #23: loss/loss02 = 2.67779 (* 0.0454545 = 0.121718 loss) | |
I0405 22:49:28.677667 29564 solver.cpp:245] Train net output #24: loss/loss03 = 2.73406 (* 0.0454545 = 0.124275 loss) | |
I0405 22:49:28.677681 29564 solver.cpp:245] Train net output #25: loss/loss04 = 2.81331 (* 0.0454545 = 0.127878 loss) | |
I0405 22:49:28.677695 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.43411 (* 0.0454545 = 0.110641 loss) | |
I0405 22:49:28.677712 29564 solver.cpp:245] Train net output #27: loss/loss06 = 1.93451 (* 0.0454545 = 0.0879325 loss) | |
I0405 22:49:28.677726 29564 solver.cpp:245] Train net output #28: loss/loss07 = 1.21791 (* 0.0454545 = 0.0553595 loss) | |
I0405 22:49:28.677739 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.700563 (* 0.0454545 = 0.0318438 loss) | |
I0405 22:49:28.677753 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.394339 (* 0.0454545 = 0.0179245 loss) | |
I0405 22:49:28.677784 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.253616 (* 0.0454545 = 0.011528 loss) | |
I0405 22:49:28.677799 29564 solver.cpp:245] Train net output #32: loss/loss11 = 5.04593e-05 (* 0.0454545 = 2.2936e-06 loss) | |
I0405 22:49:28.677814 29564 solver.cpp:245] Train net output #33: loss/loss12 = 5.41182e-05 (* 0.0454545 = 2.45992e-06 loss) | |
I0405 22:49:28.677829 29564 solver.cpp:245] Train net output #34: loss/loss13 = 5.86603e-05 (* 0.0454545 = 2.66638e-06 loss) | |
I0405 22:49:28.677842 29564 solver.cpp:245] Train net output #35: loss/loss14 = 5.30174e-05 (* 0.0454545 = 2.40988e-06 loss) | |
I0405 22:49:28.677855 29564 solver.cpp:245] Train net output #36: loss/loss15 = 5.44795e-05 (* 0.0454545 = 2.47634e-06 loss) | |
I0405 22:49:28.677870 29564 solver.cpp:245] Train net output #37: loss/loss16 = 5.2743e-05 (* 0.0454545 = 2.39741e-06 loss) | |
I0405 22:49:28.677883 29564 solver.cpp:245] Train net output #38: loss/loss17 = 5.34718e-05 (* 0.0454545 = 2.43054e-06 loss) | |
I0405 22:49:28.677897 29564 solver.cpp:245] Train net output #39: loss/loss18 = 5.34548e-05 (* 0.0454545 = 2.42977e-06 loss) | |
I0405 22:49:28.677912 29564 solver.cpp:245] Train net output #40: loss/loss19 = 4.90003e-05 (* 0.0454545 = 2.22728e-06 loss) | |
I0405 22:49:28.677928 29564 solver.cpp:245] Train net output #41: loss/loss20 = 4.47748e-05 (* 0.0454545 = 2.03522e-06 loss) | |
I0405 22:49:28.677942 29564 solver.cpp:245] Train net output #42: loss/loss21 = 5.32285e-05 (* 0.0454545 = 2.41948e-06 loss) | |
I0405 22:49:28.677955 29564 solver.cpp:245] Train net output #43: loss/loss22 = 4.70836e-05 (* 0.0454545 = 2.14016e-06 loss) | |
I0405 22:49:28.677968 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 22:49:28.677979 29564 solver.cpp:245] Train net output #45: total_confidence = 0.0047996 | |
I0405 22:49:28.677992 29564 sgd_solver.cpp:106] Iteration 70000, lr = 0.0093 | |
I0405 22:53:20.521121 29564 solver.cpp:229] Iteration 70500, loss = 0.763873 | |
I0405 22:53:20.521356 29564 solver.cpp:245] Train net output #0: loss/accuracy01 = 0.40625 | |
I0405 22:53:20.521376 29564 solver.cpp:245] Train net output #1: loss/accuracy02 = 0.25 | |
I0405 22:53:20.521389 29564 solver.cpp:245] Train net output #2: loss/accuracy03 = 0.125 | |
I0405 22:53:20.521400 29564 solver.cpp:245] Train net output #3: loss/accuracy04 = 0.25 | |
I0405 22:53:20.521412 29564 solver.cpp:245] Train net output #4: loss/accuracy05 = 0.375 | |
I0405 22:53:20.521425 29564 solver.cpp:245] Train net output #5: loss/accuracy06 = 0.59375 | |
I0405 22:53:20.521435 29564 solver.cpp:245] Train net output #6: loss/accuracy07 = 0.90625 | |
I0405 22:53:20.521447 29564 solver.cpp:245] Train net output #7: loss/accuracy08 = 0.9375 | |
I0405 22:53:20.521459 29564 solver.cpp:245] Train net output #8: loss/accuracy09 = 1 | |
I0405 22:53:20.521471 29564 solver.cpp:245] Train net output #9: loss/accuracy10 = 1 | |
I0405 22:53:20.521483 29564 solver.cpp:245] Train net output #10: loss/accuracy11 = 1 | |
I0405 22:53:20.521494 29564 solver.cpp:245] Train net output #11: loss/accuracy12 = 1 | |
I0405 22:53:20.521505 29564 solver.cpp:245] Train net output #12: loss/accuracy13 = 1 | |
I0405 22:53:20.521517 29564 solver.cpp:245] Train net output #13: loss/accuracy14 = 1 | |
I0405 22:53:20.521528 29564 solver.cpp:245] Train net output #14: loss/accuracy15 = 1 | |
I0405 22:53:20.521539 29564 solver.cpp:245] Train net output #15: loss/accuracy16 = 1 | |
I0405 22:53:20.521550 29564 solver.cpp:245] Train net output #16: loss/accuracy17 = 1 | |
I0405 22:53:20.521561 29564 solver.cpp:245] Train net output #17: loss/accuracy18 = 1 | |
I0405 22:53:20.521572 29564 solver.cpp:245] Train net output #18: loss/accuracy19 = 1 | |
I0405 22:53:20.521584 29564 solver.cpp:245] Train net output #19: loss/accuracy20 = 1 | |
I0405 22:53:20.521595 29564 solver.cpp:245] Train net output #20: loss/accuracy21 = 1 | |
I0405 22:53:20.521607 29564 solver.cpp:245] Train net output #21: loss/accuracy22 = 1 | |
I0405 22:53:20.521621 29564 solver.cpp:245] Train net output #22: loss/loss01 = 2.214 (* 0.0454545 = 0.100637 loss) | |
I0405 22:53:20.521636 29564 solver.cpp:245] Train net output #23: loss/loss02 = 2.73827 (* 0.0454545 = 0.124467 loss) | |
I0405 22:53:20.521649 29564 solver.cpp:245] Train net output #24: loss/loss03 = 2.9467 (* 0.0454545 = 0.133941 loss) | |
I0405 22:53:20.521663 29564 solver.cpp:245] Train net output #25: loss/loss04 = 2.63344 (* 0.0454545 = 0.119702 loss) | |
I0405 22:53:20.521677 29564 solver.cpp:245] Train net output #26: loss/loss05 = 2.2057 (* 0.0454545 = 0.100259 loss) | |
I0405 22:53:20.521692 29564 solver.cpp:245] Train net output #27: loss/loss06 = 1.55155 (* 0.0454545 = 0.070525 loss) | |
I0405 22:53:20.521705 29564 solver.cpp:245] Train net output #28: loss/loss07 = 0.382458 (* 0.0454545 = 0.0173844 loss) | |
I0405 22:53:20.521719 29564 solver.cpp:245] Train net output #29: loss/loss08 = 0.274554 (* 0.0454545 = 0.0124797 loss) | |
I0405 22:53:20.521733 29564 solver.cpp:245] Train net output #30: loss/loss09 = 0.00807781 (* 0.0454545 = 0.000367173 loss) | |
I0405 22:53:20.521747 29564 solver.cpp:245] Train net output #31: loss/loss10 = 0.00292341 (* 0.0454545 = 0.000132882 loss) | |
I0405 22:53:20.521761 29564 solver.cpp:245] Train net output #32: loss/loss11 = 3.43316e-05 (* 0.0454545 = 1.56053e-06 loss) | |
I0405 22:53:20.521775 29564 solver.cpp:245] Train net output #33: loss/loss12 = 3.5327e-05 (* 0.0454545 = 1.60577e-06 loss) | |
I0405 22:53:20.521790 29564 solver.cpp:245] Train net output #34: loss/loss13 = 3.32325e-05 (* 0.0454545 = 1.51057e-06 loss) | |
I0405 22:53:20.521803 29564 solver.cpp:245] Train net output #35: loss/loss14 = 2.93457e-05 (* 0.0454545 = 1.33389e-06 loss) | |
I0405 22:53:20.521817 29564 solver.cpp:245] Train net output #36: loss/loss15 = 3.03404e-05 (* 0.0454545 = 1.37911e-06 loss) | |
I0405 22:53:20.521831 29564 solver.cpp:245] Train net output #37: loss/loss16 = 3.12482e-05 (* 0.0454545 = 1.42037e-06 loss) | |
I0405 22:53:20.521845 29564 solver.cpp:245] Train net output #38: loss/loss17 = 3.16097e-05 (* 0.0454545 = 1.43681e-06 loss) | |
I0405 22:53:20.521875 29564 solver.cpp:245] Train net output #39: loss/loss18 = 2.84477e-05 (* 0.0454545 = 1.29308e-06 loss) | |
I0405 22:53:20.521890 29564 solver.cpp:245] Train net output #40: loss/loss19 = 2.85108e-05 (* 0.0454545 = 1.29594e-06 loss) | |
I0405 22:53:20.521904 29564 solver.cpp:245] Train net output #41: loss/loss20 = 2.99065e-05 (* 0.0454545 = 1.35939e-06 loss) | |
I0405 22:53:20.521919 29564 solver.cpp:245] Train net output #42: loss/loss21 = 2.9389e-05 (* 0.0454545 = 1.33586e-06 loss) | |
I0405 22:53:20.521932 29564 solver.cpp:245] Train net output #43: loss/loss22 = 2.97798e-05 (* 0.0454545 = 1.35363e-06 loss) | |
I0405 22:53:20.521945 29564 solver.cpp:245] Train net output #44: total_accuracy = 0 | |
I0405 22:53:20.521956 29564 solver.cpp:245] Train net output #45: total_confidence = 0.0047478 | |
I0405 22:53:20.521972 29564 sgd_solver.cpp:106] Iteration 70500, lr = 0.009295 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment